
M A N N I N G

Craig Walls

FOURTH EDITION

covers Spring 4

Praise for the Third Edition of Spring in Action

Continues to be the de-facto reference guide to Spring. Offers clear explanations of
concepts with very good examples in an easy-to-read format.

 —Dan Dobrin, CIBC

An indispensable guide to the large landscape of Spring.
 —Mykel Alvis, Automaton Online

The one book you need on your desk when working with Spring.
 —Josh Devins, Nokia

Covers both the fundamentals and the breadth of Spring.
 —Chad Davis, Blackdog Software, Inc.

Using Spring is not difficult—but with this book it becomes much easier.
 —Alberto Lagna, Biznology

One of my favorite technology books. Great content delivered by a great teacher.
 —Robert Hanson, Author of Manning’s GWT in Action

The right dose of humor with a load of technical wisdom is the perfect mix for
learning Spring.

 —Valentin Crettaz, Goomzee

Tremendous focus—and fun to read.
 —Doug Warren, Java Web Services

Craig’s witty examples make complex concepts easy to understand.
 —Dan Alford

nordi
Выделение

Spring in Action
FOURTH EDITION

CRAIG WALLS

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2015 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Cynthia Kane
20 Baldwin Road Copyeditor: Andy Carroll
Shelter Island, NY 11964 Proofreader: Alyson Brener

Typesetter: Dottie Marsico
 Cover designer: Marija Tudor

ISBN 9781617291203
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 19 18 17 16 15 14

www.manning.com

brief contents
PART 1 CORE SPRING ...1

1 ■ Springing into action 3

2 ■ Wiring beans 32

3 ■ Advanced wiring 64

4 ■ Aspect-oriented Spring 97

PART 2 SPRING ON THE WEB...129

5 ■ Building Spring web applications 131

6 ■ Rendering web views 164

7 ■ Advanced Spring MVC 194

8 ■ Working with Spring Web Flow 219

9 ■ Securing web applications 244

PART 3 SPRING IN THE BACK END ..279

10 ■ Hitting the database with Spring and JDBC 281

11 ■ Persisting data with object-relational mapping 305

12 ■ Working with NoSQL databases 327

13 ■ Caching data 362

14 ■ Securing methods 379
v

BRIEF CONTENTSvi
PART 4 INTEGRATING SPRING..391

15 ■ Working with remote services 393

16 ■ Creating REST APIs with Spring MVC 416

17 ■ Messaging in Spring 452

18 ■ Messaging with WebSocket and STOMP 485

19 ■ Sending email with Spring 511

20 ■ Managing Spring beans with JMX 523

21 ■ Simplifying Spring development with Spring Boot 540

contents
preface xvii
acknowledgments xix
about this book xxi

PART 1 CORE SPRING..1

1 Springing into action 3
1.1 Simplifying Java development 4

Unleashing the power of POJOs 5 ■ Injecting dependencies 5
Applying aspects 11 ■ Eliminating boilerplate code with
templates 16

1.2 Containing your beans 18
Working with an application context 19 ■ A bean’s life 20

1.3 Surveying the Spring landscape 21
Spring modules 22 ■ The Spring portfolio 24

1.4 What’s new in Spring 27
What was new in Spring 3.1? 27 ■ What was new in
Spring 3.2? 28 ■ What’s new in Spring 4.0? 29

1.5 Summary 30
vii

CONTENTSviii
2 Wiring beans 32
2.1 Exploring Spring’s configuration options 33
2.2 Automatically wiring beans 34

Creating discoverable beans 34 ■ Naming a component-scanned
bean 38 ■ Setting a base package for component scanning 38
Annotating beans to be automatically wired 39 ■ Verifying
automatic configuration 41

2.3 Wiring beans with Java 43
Creating a configuration class 43 ■ Declaring a simple
bean 44 ■ Injecting with JavaConfig 45

2.4 Wiring beans with XML 46
Creating an XML configuration specification 47 ■ Declaring a
simple <bean> 48 ■ Initializing a bean with constructor
injection 49 ■ Setting properties 54

2.5 Importing and mixing configurations 59
Referencing XML configuration in JavaConfig 59
Referencing JavaConfig in XML configuration 61

2.6 Summary 63

3 Advanced wiring 64
3.1 Environments and profiles 64

Configuring profile beans 66 ■ Activating profiles 70

3.2 Conditional beans 72
3.3 Addressing ambiguity in autowiring 75

Designating a primary bean 76 ■ Qualifying autowired
beans 77

3.4 Scoping beans 81
Working with request and session scope 82 ■ Declaring scoped
proxies in XML 84

3.5 Runtime value injection 84
Injecting external values 85 ■ Wiring with the Spring
Expression Language 89

3.6 Summary 95

4 Aspect-oriented Spring 97
4.1 What is aspect-oriented programming? 98

Defining AOP terminology 99 ■ Spring’s AOP support 101

CONTENTS ix
4.2 Selecting join points with pointcuts 103
Writing pointcuts 104 ■ Selecting beans in pointcuts 106

4.3 Creating annotated aspects 106
Defining an aspect 106 ■ Creating around advice 110
Handling parameters in advice 112 ■ Annotating
introductions 115

4.4 Declaring aspects in XML 117
Declaring before and after advice 118 ■ Declaring around
advice 121 ■ Passing parameters to advice 122
Introducing new functionality with aspects 124

4.5 Injecting AspectJ aspects 125
4.6 Summary 127

PART 2 SPRING ON THE WEB129

5 Building Spring web applications 131
5.1 Getting started with Spring MVC 132

Following the life of a request 132 ■ Setting up Spring
MVC 134 ■ Introducing the Spittr application 138

5.2 Writing a simple controller 139
Testing the controller 140 ■ Defining class-level request
handling 142 ■ Passing model data to the view 143

5.3 Accepting request input 148
Taking query parameters 149 ■ Taking input via path
parameters 151

5.4 Processing forms 154
Writing a form-handling controller 156 ■ Validating forms 159

5.5 Summary 162

6 Rendering web views 164
6.1 Understanding view resolution 164
6.2 Creating JSP views 167

Configuring a JSP-ready view resolver 167 ■ Using Spring’s JSP
libraries 169

6.3 Defining a layout with Apache Tiles views 182
Configuring a Tiles view resolver 182

CONTENTSx
6.4 Working with Thymeleaf 187
Configuring a Thymeleaf view resolver 187 ■ Defining
Thymeleaf templates 189

6.5 Summary 193

7 Advanced Spring MVC 194
7.1 Alternate Spring MVC configuration 195

Customizing DispatcherServlet configuration 195
Adding additional servlets and filters 196 ■ Declaring
DispatcherServlet in web.xml 197

7.2 Processing multipart form data 200
Configuring a multipart resolver 201 ■ Handling multipart
requests 205

7.3 Handling exceptions 208
Mapping exceptions to HTTP status codes 209 ■ Writing
exception-handling methods 211

7.4 Advising controllers 212
7.5 Carrying data across redirect requests 213

Redirecting with URL templates 214 ■ Working with flash
attributes 215

7.6 Summary 217

8 Working with Spring Web Flow 219
8.1 Configuring Web Flow in Spring 220

Wiring a flow executor 220 ■ Configuring a flow
registry 221 ■ Handling flow requests 222

8.2 The components of a flow 222
States 223 ■ Transitions 226 ■ Flow data 227

8.3 Putting it all together: the pizza flow 229
Defining the base flow 229 ■ Collecting customer
information 232 ■ Building an order 238
Taking payment 240

8.4 Securing web flows 242
8.5 Summary 242

9 Securing web applications 244
9.1 Getting started with Spring Security 245

Understanding Spring Security modules 246 ■ Filtering web
requests 246 ■ Writing a simple security configuration 248

CONTENTS xi
9.2 Selecting user details services 250
Working with an in-memory user store 251 ■ Authenticating
against database tables 252 ■ Applying LDAP-backed
authentication 255 ■ Configuring a custom user service 259

9.3 Intercepting requests 260
Securing with Spring Expressions 263 ■ Enforcing channel
security 264 ■ Preventing cross-site request forgery 265

9.4 Authenticating users 267
Adding a custom login page 268 ■ Enabling HTTP Basic
authentication 269 ■ Enabling remember-me functionality 270
Logging out 270

9.5 Securing the view 271
Using Spring Security’s JSP tag library 272 ■ Working with
Thymeleaf’s Spring Security dialect 275

9.6 Summary 277

PART 3 SPRING IN THE BACK END...............................279

10 Hitting the database with Spring and JDBC 281
10.1 Learning Spring’s data-access philosophy 282

Getting to know Spring’s data-access exception hierarchy 283
Templating data access 286

10.2 Configuring a data source 288
Using JNDI data sources 288 ■ Using a pooled data source 289
Using JDBC driver-based data sources 291 ■ Using an embedded
data source 292 ■ Using profiles to select a data source 293

10.3 Using JDBC with Spring 295
Tackling runaway JDBC code 296 ■ Working with JDBC
templates 299

10.4 Summary 304

11 Persisting data with object-relational mapping 305
11.1 Integrating Hibernate with Spring 307

Declaring a Hibernate session factory 307 ■ Building Spring-free
Hibernate 309

11.2 Spring and the Java Persistence API 311
Configuring an entity manager factory 311 ■ Writing a
JPA-based repository 316

CONTENTSxii
11.3 Automatic JPA repositories with Spring Data 318
Defining query methods 320 ■ Declaring custom queries 323
Mixing in custom functionality 324

11.4 Summary 326

12 Working with NoSQL databases 327
12.1 Persisting documents with MongoDB 328

Enabling MongoDB 329 ■ Annotating model types for
MongoDB persistence 332 ■ Accessing MongoDB with
MongoTemplate 335 ■ Writing a MongoDB repository 337

12.2 Working with graph data in Neo4j 341
Configuring Spring Data Neo4j 342 ■ Annotating graph
entities 344 ■ Working with Neo4jTemplate 348
Creating automatic Neo4j repositories 349

12.3 Working with key-value data in Redis 354
Connecting to Redis 354 ■ Working with RedisTemplate 355
Setting key and value serializers 359

12.4 Summary 360

13 Caching data 362
13.1 Enabling cache support 363

Configuring a cache manager 364

13.2 Annotating methods for caching 368
Populating the cache 369 ■ Removing cache entries 373

13.3 Declaring caching in XML 374
13.4 Summary 378

14 Securing methods 379
14.1 Securing methods with annotations 380

Restricting method access with @Secured 380 ■ Using JSR-250’s
@RolesAllowed with Spring Security 382

14.2 Using expressions for method-level security 383
Expressing method access rules 383 ■ Filtering method inputs
and outputs 385

14.3 Summary 390

CONTENTS xiii
PART 4 INTEGRATING SPRING....................................391

15 Working with remote services 393
15.1 An overview of Spring remoting 394
15.2 Working with RMI 396

Exporting an RMI service 397 ■ Wiring an RMI service 399

15.3 Exposing remote services with Hessian and Burlap 402
Exposing bean functionality with Hessian/Burlap 402
Accessing Hessian/Burlap services 405

15.4 Using Spring’s HttpInvoker 407
Exposing beans as HTTP services 407 ■ Accessing services
via HTTP 408

15.5 Publishing and consuming web services 410
Creating Spring-enabled JAX-WS endpoints 410
Proxying JAX-WS services on the client side 413

15.6 Summary 415

16 Creating REST APIs with Spring MVC 416
16.1 Getting REST 417

The fundamentals of REST 417 ■ How Spring supports
REST 418

16.2 Creating your first REST endpoint 419
Negotiating resource representation 421 ■ Working with
HTTP message converters 426

16.3 Serving more than resources 432
Communicating errors to the client 432 ■ Setting headers
in the response 436

16.4 Consuming REST resources 439
Exploring RestTemplate’s operations 440 ■ GETting
resources 441 ■ Retrieving resources 442 ■ Extracting
response metadata 443 ■ PUTting resources 444
DELETEing resources 445 ■ POSTing resource data 446
Receiving object responses from POST requests 446
Receiving a resource location after a POST request 448
Exchanging resources 448

16.5 Summary 450

CONTENTSxiv
17 Messaging in Spring 452
17.1 A brief introduction to asynchronous messaging 453

Sending messages 454 ■ Assessing the benefits of asynchronous
messaging 456

17.2 Sending messages with JMS 458
Setting up a message broker in Spring 458 ■ Using Spring’s JMS
template 460 ■ Creating message-driven POJOs 469 ■ Using
message-based RPC 472

17.3 Messaging with AMQP 474
A brief introduction to AMQP 475 ■ Configuring Spring for
AMQP messaging 477 ■ Sending messages with
RabbitTemplate 479 ■ Receiving AMQP messages 482

17.4 Summary 484

18 Messaging with WebSocket and STOMP 485
18.1 Working with Spring’s low-level WebSocket API 486
18.2 Coping with a lack of WebSocket support 491
18.3 Working with STOMP messaging 493

Enabling STOMP messaging 495 ■ Handling STOMP messages
from the client 498 ■ Sending messages to the client 501

18.4 Working with user-targeted messages 505
Working with user messages in a controller 505
Sending messages to a specific user 507

18.5 Handling message exceptions 508
18.6 Summary 509

19 Sending email with Spring 511
19.1 Configuring Spring to send email 512

Configuring a mail sender 512 ■ Wiring and using the
mail sender 514

19.2 Constructing rich email messages 515
Adding attachments 515 ■ Sending email with rich content 516

19.3 Generating email with templates 517
Constructing email messages with Velocity 518 ■ Using Thymeleaf
to create email messages 520

19.4 Summary 522

CONTENTS xv
20 Managing Spring beans with JMX 523
20.1 Exporting Spring beans as MBeans 524

Exposing methods by name 527 ■ Using interfaces to define
MBean operations and attributes 529 ■ Working with
annotation-driven MBeans 530 ■ Handling MBean
collisions 532

20.2 Remoting MBeans 533
Exposing remote MBeans 533 ■ Accessing remote MBeans 534
Proxying MBeans 536

20.3 Handling notifications 537
Listening for notifications 538

20.4 Summary 539

21 Simplifying Spring development with Spring Boot 540
21.1 Introducing Spring Boot 541

Adding starter dependencies 541 ■ Autoconfiguration 546
The Spring Boot CLI 546 ■ The Actuator 547

21.2 Building an application with Spring Boot 547
Handling requests 550 ■ Creating the view 552
Adding static artifacts 554 ■ Persisting the data 555
Try it out 557

21.3 Going Groovy with the Spring Boot CLI 560
Writing a Groovy controller 560 ■ Persisting with a Groovy
repository 563 ■ Running the Spring Boot CLI 564

21.4 Gaining application insight with the Actuator 565
21.5 Summary 568

index 570

preface
The best keeps getting better. More than a dozen years ago, Spring entered the Java
development scene with the ambitious goal of simplifying enterprise Java develop-
ment. It challenged the heavyweight programming models of the time with a simpler
and lighter programming model based on plain old Java objects.

 Now, several years and many releases later, we see that Spring has had a tremen-
dous impact on enterprise application development. It has become a de facto stan-
dard framework for countless Java projects and has had an impact on the evolution of
some of the specifications and frameworks that it originally set out to replace. It’d be
hard to deny that the current Enterprise JavaBeans (EJB) specification may have
turned out very differently had Spring not challenged earlier versions of the EJB spec.

 But Spring itself continues to evolve and improve upon itself, always seeking to
make the difficult development tasks simpler and empower Java developers with inno-
vative features. Where Spring had first set out to challenge the status quo, Spring now
has leapt ahead and is paving trails in Java application development.

 Therefore, it’s time for an updated edition of this book to expose the current state
of Spring. There’s so much that has happened in the past few years since the previous
edition of this book; it’d be impossible to cover everything in a single edition. Never-
theless, I still tried to pack this fourth edition of Spring in Action with as much as I could.
Here are just a few of the exciting new things that have been added in this edition:

■ An emphasis on Java-based Spring configuration with Java configuration
options available for almost every area of Spring development

■ Conditional configuration and profiles that make runtime decisions regarding
what Spring configuration should be used or ignored
xvii

PREFACExviii
■ Several enhancements and improvements to Spring MVC, especially with regard
to creating REST services

■ Using Thymeleaf with Spring web applications as an alternative to JSP
■ Enabling Spring Security with Java-based configuration
■ Using Spring Data to automatically generate repository implementations at

runtime for JPA, MongoDB, and Neo4j
■ Spring’s new declarative caching support
■ Asynchronous web messaging with WebSocket and STOMP
■ Spring Boot, a game-changing new approach to working with Spring

If you’re a seasoned Spring veteran, you’ll find that these new elements will become
valuable additions to your Spring toolkit. On the other hand, if you’re new to Spring,
you’ve picked a good time to learn Spring, and this book will help you get started.

 This is, indeed, an exciting time to be working with Spring. It’s been a blast to
develop with Spring and write about it during the past 12 years. I can’t wait to see what
Spring does next!

acknowledgments
Before this book goes to press, before it is bound, before it is boxed, before it is
shipped, and before you get your hands on it, there are many other hands that have
touched it along the way. Even if you have an eBook copy that didn’t go through that
process, there were numerous hands on the bits and bytes that you downloaded—
hands that edited it, reviewed it, typeset it, and proofread it. If it weren’t for all of
those hands, this book wouldn’t exist.

 First, a big thank you to everyone at Manning for working hard, for their patience
when the writing wasn’t moving as fast as it should have, and for prodding me along to
get it done: Marjan Bace, Michael Stephens, Cynthia Kane, Andy Carroll, Benjamin
Berg, Alyson Brener, Dottie Marisco, Mary Piergies, Janet Vail, and many others
behind the scenes.

 Getting feedback early and often is just as critical when writing a book as it is when
developing software. While the pages of this book were still in a very rough form, there
were several great reviewers who took the time to read the drafts and provide feedback
that helped shape the final product. Thanks to the following: Bob Casazza, Chaoho
Hsieh, Christophe Martini, Gregor Zurowski, James Wright, Jeelani Basha, Jens
Richter, Jonathan Thoms, Josh Hart, Karen Christenson, Mario Arias, Michael Roberts,
Paul Balogh, and Ricardo da Silva Lima. And special thanks to John Ryan for his thor-
ough technical review of the manuscript shortly before it went into production.

 Of course, I want to thank my beautiful wife for enduring yet another writing proj-
ect and for her encouragement along the way. I love you more than you could possibly
ever know.
xix

ACKNOWLEDGMENTSxx
 To Maisy and Madi, the most awesome little girls in the world, thank you again for
your hugs, laughs, and unusual insights into what should go into the book.

 To my colleagues on the Spring team, what can I say? You guys ROCK! I’m humbled
and grateful for being a part of the organization that drives Spring forward. I never
cease to be amazed at the never-ending awesomeness that you crank out.

 And many thanks to everyone I encounter as I travel the country speaking at user
groups and No Fluff/Just Stuff conferences.

 Finally, thank you to the Phoenicians. You (and Epcot fans) know what you did.

about this book
The Spring Framework was created with a very specific goal in mind—to make devel-
oping Java EE applications easier. Along the same lines, Spring in Action, Fourth Edition
was written to make learning how to use Spring easier. My goal is not to give you a
blow-by-blow listing of Spring APIs. Instead, I hope to present the Spring Framework
in a way that is most relevant to a Java EE developer by providing practical code exam-
ples from real-world experiences. Since Spring is a modular framework, this book was
written in the same way. I recognize that not all developers have the same needs. Some
may want to learn the Spring Framework from the ground up, while others may want
to pick and choose different topics and go at their own pace. That way, the book can
act as a tool for learning Spring for the first time as well as a guide and reference for
those wanting to dig deeper into specific features.

 Spring in Action, Fourth Edition is for all Java developers, but enterprise Java develop-
ers will find it particularly useful. While I will guide you along gently through code
examples that build in complexity throughout each chapter, the true power of Spring
lies in its ability to make enterprise applications easier to develop. Therefore, enter-
prise developers will most fully appreciate the examples presented in this book.
Because a vast portion of Spring is devoted to providing enterprise services, many par-
allels can be drawn between Spring and EJB.

Roadmap
Spring in Action, Fourth Edition is divided into four parts. The first part introduces you
to the essentials of the Spring Framework. Part 2 expands on that by showing how to
build web applications with Spring. Part 3 steps behind the front end and shows where
xxi

ABOUT THIS BOOKxxii
Spring fits in the back end of an application. The final part shows how Spring can be
used to integrate with other applications and services.

 In part 1, you’ll explore the Spring container, dependency injection (DI), and
aspect-oriented programming…the essentials of the Spring Framework. This will give
you a foundation upon which the rest of the book will build.

■ In chapter 1, you’ll be given an overview of Spring, including some basic exam-
ples of DI and AOP. You’ll also get an overview of the greater Spring ecosystem.

■ Chapter 2 goes into more detail with DI, showing you various ways that the com-
ponents in your application (the “beans”) can be wired together. This includes
wiring with XML, Java, and automatic wiring.

■ With the basics of bean wiring down, chapter 3 presents several advanced wiring
techniques. You won’t need these techniques that often, but when you do need
them this chapter will show you how to get the most power out of the Spring
container.

■ Chapter 4 explores how to use Spring AOP to decouple cross-cutting concerns
from the objects that they service. This chapter also sets the stage for later chap-
ters where you’ll use AOP to provide declarative services such as transactions,
security, and caching.

In part 2 you’ll see how to use Spring to build web applications.

■ Chapter 5 covers the basics of working with Spring MVC, the foundational web
framework in Spring. You’ll see how to write controllers to handle web requests
and respond with model data.

■ Once a controller is finished with its work, the model data must be rendered
using a view. Chapter 6 will explore various view technologies that can be used
with Spring, including JSP, Apache Tiles, and Thymeleaf.

■ Chapter 7 goes beyond the basics of Spring MVC. In this chapter, you’ll learn
how to customize Spring MVC configuration, handle multipart file uploads,
deal with exceptions that may occur in a controller, and pass data between
requests with flash attributes.

■ Chapter 8 explores Spring Web Flow, an extension to Spring MVC that enables
development of conversational web applications. In this chapter, you’ll learn how
to build web applications that lead the user through a specific, guided flow.

■ In chapter 9 you’ll learn how to apply security to the web layer of your applica-
tion using Spring Security.

Part 3 goes behind the front end of an application and looks at how data is processed
and persisted.

■ Data persistence is first tackled in chapter 10 using Spring’s abstraction over
JDBC to work with data stored in a relational database.

■ Chapter 11 takes on data persistence from another angle, using the Java Persis-
tence API (JPA) to store data in a relational database.

ABOUT THIS BOOK xxiii
■ Chapter 12 looks at how Spring works with non-relational databases, such as
MongoDB and Neo4j. Regardless of where the data is stored, caching can help
improve performance by not hitting the database any more than necessary.

■ Chapter 13 introduces you to Spring’s support for declarative caching.
■ Chapter 14 revisits Spring Security, showing how to use AOP to apply security at

the method level.

The final part looks at ways to integrate your Spring applications with other systems.

■ Chapter 15 looks at how to create and consume remote services, including RMI,
Hessian, Burlap, and SOAP-based services.

■ In chapter 16, Spring MVC is revisited to see how to create RESTful services
using the same programming model as described previously in chapter 5.

■ Chapter 17 explores Spring support for asynchronous messaging. This chapter
includes working with Java Message Service (JMS) as well as the Advanced Mes-
sage Queuing Protocol (AMQP).

■ Asynchronous messaging takes a different twist in chapter 18 where you’ll see
how to use Spring with WebSocket and STOMP for asynchronous communica-
tion between the server and a client.

■ Chapter 19 looks at how to send emails with Spring.
■ Chapter 20 highlights Spring’s management support for Java Management

Extensions (JMX), enabling you to monitor and modify runtime settings for a
Spring application.

■ Finally, in chapter 21 you’ll be introduced to a game-changing and very new way
to work with Spring called Spring Boot. You’ll see how Spring Boot can take
away much of the boilerplate configuration required in a Spring application,
enabling you to focus on the business functionality.

Code conventions and downloads
There are many code examples throughout this book. These examples will always
appear in a fixed-width code font like this. Any class name, method name, or
XML fragment within the normal text of the book will appear in code font as well.

 Many of Spring’s classes and packages have exceptionally long (but expressive)
names. Because of this, line-continuation markers (➥) may be included when necessary.

 Not all code examples in this book will be complete. Often I only show a method
or two from a class to focus on a particular topic. Complete source code for the appli-
cations found throughout the book can be downloaded from the publisher’s website
at www.manning.com/SpringinActionFourthEdition.

Author Online
Purchase of Spring in Action, Fourth Edition includes free access to a private web forum
run by Manning Publications where you can make comments about the book, ask
technical questions, and receive help from the author and from other users. To

www.manning.com/SpringinActionFourthEdition

ABOUT THIS BOOKxxiv
access the forum and subscribe to it, point your web browser to www.manning.com/
SpringinActionFourthEdition. This page provides information on how to get on the
forum once you are registered, what kind of help is available, and the rules of con-
duct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of the
author, whose contribution to the book’s forum remains voluntary (and unpaid). We
suggest you try asking the author some challenging questions, lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the author
Craig Walls is a senior engineer with Pivotal as the project lead for Spring Social and
Spring Sync, and is the author of Manning’s Spring in Action books, now updated in
this Fourth Edition. He’s a zealous promoter of the Spring Framework, speaking fre-
quently at local user groups and conferences and writing about Spring. When he’s not
slinging code, Craig spends as much time as he can with his wife, two daughters, two
birds, and two dogs.

About the cover illustration
The figure on the cover of Spring in Action, Fourth Edition, is “Le Caraco,” or an inhab-
itant of the province of Karak in southwest Jordan. Its capital is the city of Al-Karak,
which boasts an ancient hilltop castle with magnificent views of the Dead Sea and sur-
rounding plains. The illustration is taken from a French travel book, Encyclopédie des
Voyages by J. G. St. Sauveur, published in 1796. Travel for pleasure was a relatively new
phenomenon at the time and travel guides such as this one were popular, introducing
both the tourist as well as the armchair traveler to the inhabitants of other regions of
France and abroad.

 The diversity of the drawings in the Encyclopédie des Voyages speaks vividly of the dis-
tinctiveness and individuality of the world’s towns and provinces just two hundred
years ago. This was a time when the dress codes of two regions separated by a few
dozen miles identified people uniquely as belonging to one or the other. The travel
guide brings to life a sense of isolation and distance of that period, and of every other
historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitants of one continent from
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
diversity for a more varied personal life—or a more varied and interesting intellectual
and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on the rich diversity of regional life two centu-
ries ago brought back to life by the pictures from this travel guide.

www.manning.com/SpringinActionFourthEdition
www.manning.com/SpringinActionFourthEdition

Part 1

Core Spring

Spring does a lot of things. But underneath all of the fantastic functionality
it adds to enterprise development, its primary features are dependency injection
(DI) and aspect-oriented programming (AOP).

 Starting in chapter 1, “Springing into action,” I’ll give you a quick overview of
the Spring Framework, including a quick overview of DI and AOP in Spring and
show how they help with decoupling application components.

 In chapter 2, “Wiring beans,” we’ll dive deeper into how to piece together
the components of an application. We’ll look at automatic configuration, Java-
based configuration, and XML configuration options offered by Spring.

 Chapter 3, “Advanced wiring,” goes beyond the basics and shows you a few
tricks and techniques that will help you get the most power out of Spring, includ-
ing conditional configuration, dealing with ambiguity when autowiring, scoping,
and the Spring Expression Language.

 Chapter 4, “Aspect-oriented Spring,” explores how to use Spring’s AOP fea-
tures to decouple system-wide services (such as security and auditing) from the
objects they service. This chapter sets the stage for later chapters such as chap-
ters 9, 13, and 14 where you’ll see how to leverage Spring AOP for declarative
security and caching.

Springing into action
It’s a good time to be a Java developer.
 In its almost 20 year history, Java has seen some good times and some bad

times. Despite a handful of rough spots, such as applets, Enterprise JavaBeans
(EJB), Java Data Objects (JDO), and countless logging frameworks, Java has enjoyed
a rich and diverse history as the platform on which much enterprise software has
been built. And Spring has been a big part of that story.

 In its early days, Spring was created as an alternative to heavier enterprise Java
technologies, especially EJB. Spring offered a lighter and leaner programming
model as compared to EJB. It empowered plain old Java objects (POJOs) with pow-
ers previously only available using EJB and other enterprise Java specifications.

 Over time, EJB and the Java 2 Enterprise Edition (J2EE) evolved. EJB started
offering a simple POJO-oriented programming model of its own. Now EJB employs
ideas such as dependency injection (DI) and aspect-oriented programming (AOP),
arguably inspired by the success of Spring.

This chapter covers
 Spring’s bean container

 Exploring Spring’s core modules

 The greater Spring ecosystem

 What’s new in Spring
3

4 CHAPTER 1 Springing into action
 Although J2EE (now known as JEE) was able to catch up with Spring, Spring never
stopped moving forward. Spring has continued to progress in areas where, even now,
JEE is just starting to explore or isn’t innovating at all. Mobile development, social API
integration, NoSQL databases, cloud computing, and big data are just a few areas
where Spring has been and is innovating. And the future continues to look bright for
Spring.

 As I said, it’s a good time to be a Java developer.
 This book is an exploration of Spring. In this chapter, we’ll examine Spring at a

high level, providing you with a taste of what Spring is about. This chapter will give
you a good idea of the types of problems Spring solves, and it will set the stage for the
rest of the book.

1.1 Simplifying Java development
Spring is an open source framework, originally created by Rod Johnson and described
in his book Expert One-on-One: J2EE Design and Development (Wrox, 2002, http://
amzn.com/0764543857). Spring was created to address the complexity of enterprise
application development and makes it possible to use plain-vanilla JavaBeans to
achieve things that were previously only possible with EJB. But Spring’s usefulness isn’t
limited to server-side development. Any Java application can benefit from Spring in
terms of simplicity, testability, and loose coupling.

 A bean by any other name… Although Spring uses the words bean and JavaBean lib-
erally when referring to application components, this doesn’t mean a Spring compo-
nent must follow the JavaBeans specification to the letter. A Spring component can be
any type of POJO. In this book, I assume a loose definition of JavaBean, which is synon-
ymous with POJO.

 As you’ll see throughout this book, Spring does many things. But at the root of
almost everything Spring provides are a few foundational ideas, all focused on
Spring’s fundamental mission: Spring simplifies Java development.

 That’s a bold statement! A lot of frameworks claim to simplify something or other.
But Spring aims to simplify the broad subject of Java development. This begs for more
explanation. How does Spring simplify Java development?

 To back up its attack on Java complexity, Spring employs four key strategies:

 Lightweight and minimally invasive development with POJOs
 Loose coupling through DI and interface orientation
 Declarative programming through aspects and common conventions
 Eliminating boilerplate code with aspects and templates

Almost everything Spring does can be traced back to one or more of these four strate-
gies. Throughout the rest of this chapter, I’ll expand on each of these ideas, showing
concrete examples of how Spring makes good on its promise to simplify Java develop-
ment. Let’s start with seeing how Spring remains minimally invasive by encouraging
POJO-oriented development.

http://amzn.com/0764543857
http://amzn.com/0764543857

5Simplifying Java development
1.1.1 Unleashing the power of POJOs

If you’ve been doing Java development for long, you’ve probably seen (and may have
even worked with) frameworks that lock you in by forcing you to extend one of their
classes or implement one of their interfaces. The easy-target example of such an inva-
sive programming model was EJB 2-era stateless session beans. But even though early
EJBs were such an easy target, invasive programming could easily be found in earlier
versions of Struts, WebWork, Tapestry, and countless other Java specifications and
frameworks.

 Spring avoids (as much as possible) littering your application code with its API.
Spring almost never forces you to implement a Spring-specific interface or extend a
Spring-specific class. Instead, the classes in a Spring-based application often have no
indication that they’re being used by Spring. At worst, a class may be annotated with
one of Spring’s annotations, but it’s otherwise a POJO.

 To illustrate, consider the HelloWorldBean class shown in the following listing.

package com.habuma.spring;
public class HelloWorldBean {

public String sayHello() {
return "Hello World";

}
}

As you can see, this is a simple, garden-variety Java class—a POJO. Nothing special
about it indicates that it’s a Spring component. Spring’s non-invasive programming
model means this class could function equally well in a Spring application as it could
in a non-Spring application.

 Despite their simple form, POJOs can be powerful. One of the ways Spring empow-
ers POJOs is by assembling them using DI. Let’s see how DI can help keep application
objects decoupled from each other.

1.1.2 Injecting dependencies

The phrase dependency injection may sound intimidating, conjuring up notions of a
complex programming technique or design pattern. But as it turns out, DI isn’t nearly
as complex as it sounds. By applying DI in your projects, you’ll find that your code will
become significantly simpler, easier to understand, and easier to test.

HOW DI WORKS

Any nontrivial application (pretty much anything more complex than a Hello World
example) is made up of two or more classes that collaborate with each other to per-
form some business logic. Traditionally, each object is responsible for obtaining its
own references to the objects it collaborates with (its dependencies). This can lead to
highly coupled and hard-to-test code.

 For example, consider the Knight class shown next.

Listing 1.1 Spring doesn’t make any unreasonable demands on HelloWorldBean.

This is all you need.

6 CHAPTER 1 Springing into action

package com.springinaction.knights;

public class DamselRescuingKnight implements Knight {

private RescueDamselQuest quest;

public DamselRescuingKnight() {
this.quest = new RescueDamselQuest();

}

public void embarkOnQuest() {
quest.embark();

}

}

As you can see, DamselRescuingKnight creates its own quest, a RescueDamselQuest,
in the constructor. This makes a DamselRescuingKnight tightly coupled to a Rescue-
DamselQuest and severely limits the knight’s quest-embarking repertoire. If a damsel
needs rescuing, this knight’s there. But if a dragon needs slaying or a round table
needs … well … rounding, then this knight’s going to have to sit it out.

 What’s more, it’d be terribly difficult to write a unit test for DamselRescuing-
Knight. In such a test, you’d like to be able to assert that the quest’s embark() method
is called when the knight’s embarkOnQuest() method is called. But there’s no clear
way to accomplish that here. Unfortunately, DamselRescuingKnight will remain
untested.

 Coupling is a two-headed beast. On the one hand, tightly coupled code is difficult
to test, difficult to reuse, and difficult to understand, and it typically exhibits “whack-a-
mole” bug behavior (fixing one bug results in the creation of one or more new bugs).
On the other hand, a certain amount of coupling is necessary—completely uncoupled
code doesn’t do anything. In order to do anything
useful, classes need to know about each other some-
how. Coupling is necessary but should be carefully
managed.

 With DI, objects are given their dependencies at
creation time by some third party that coordinates
each object in the system. Objects aren’t expected to
create or obtain their dependencies. As illustrated in
figure 1.1, dependencies are injected into the objects
that need them.

 To illustrate this point, let’s look at BraveKnight
in the next listing: a knight who’s not only brave, but
also capable of embarking on any kind of quest that
comes along.

Listing 1.2 A DamselRescuingKnight can only embark on RescueDamselQuests.

Tightly coupled to
RescueDamselQuest

Foo

Bar

Baz

Injected into

Injected into

Figure 1.1 Dependency injection
involves giving an object its
dependencies as opposed to an
object having to acquire those
dependencies on its own.

7Simplifying Java development

package com.springinaction.knights;

public class BraveKnight implements Knight {

private Quest quest;

public BraveKnight(Quest quest) {
this.quest = quest;

}

public void embarkOnQuest() {
quest.embark();

}

}

As you can see, BraveKnight, unlike DamselRescuingKnight, doesn’t create his own
quest. Instead, he’s given a quest at construction time as a constructor argument. This
is a type of DI known as constructor injection.

 What’s more, the quest he’s given is typed as Quest, an interface that all quests imple-
ment. So BraveKnight could embark on a RescueDamselQuest, a SlayDragonQuest, a
MakeRoundTableRounderQuest, or any other Quest implementation he’s given.

 The point is that BraveKnight isn’t coupled to any specific implementation of
Quest. It doesn’t matter to him what kind of quest he’s asked to embark on, as long as
it implements the Quest interface. That’s the key benefit of DI—loose coupling. If an
object only knows about its dependencies by their interface (not by their implementa-
tion or how they’re instantiated), then the dependency can be swapped out with a dif-
ferent implementation without the depending object knowing the difference.

 One of the most common ways a dependency is swapped out is with a mock imple-
mentation during testing. You were unable to adequately test DamselRescuingKnight
due to tight coupling, but you can easily test BraveKnight by giving it a mock imple-
mentation of Quest, as shown next.

package com.springinaction.knights;
import static org.mockito.Mockito.*;
import org.junit.Test;

public class BraveKnightTest {

@Test
public void knightShouldEmbarkOnQuest() {

Quest mockQuest = mock(Quest.class);
BraveKnight knight = new BraveKnight(mockQuest);
knight.embarkOnQuest();
verify(mockQuest, times(1)).embark();

}

}

Listing 1.3 A BraveKnight is flexible enough to take on any Quest he’s given.

Listing 1.4 To test BraveKnight, inject it with a mock Quest.

Quest is injected

Create mock Quest
Inject mock Quest

8 CHAPTER 1 Springing into action
Here you use a mock object framework known as Mockito to create a mock implemen-
tation of the Quest interface. With the mock object in hand, you create a new instance
of BraveKnight, injecting the mock Quest via the constructor. After calling the
embarkOnQuest() method, you ask Mockito to verify that the mock Quest’s embark()
method was called exactly once.

INJECTING A QUEST INTO A KNIGHT

Now that the BraveKnight class is written in such a way that you can give a knight any
quest you want, how can you specify which Quest to give him? Suppose, for instance,
that you’d like for the BraveKnight to embark on a quest to slay a dragon. Perhaps
SlayDragonQuest, shown in the following listing, would be appropriate.

package com.springinaction.knights;

import java.io.PrintStream;

public class SlayDragonQuest implements Quest {

private PrintStream stream;

public SlayDragonQuest(PrintStream stream) {
this.stream = stream;

}

public void embark() {
stream.println("Embarking on quest to slay the dragon!");

}

}

As you can see, SlayDragonQuest implements the Quest interface, making it a good
fit for BraveKnight. You may also notice that rather than lean on System.out
.println() like many small getting-started Java samples, SlayDragonQuest more
generically asks for a PrintStream through its constructor. The big question here is,
how can you give SlayDragonQuest to BraveKnight? And how can you give a Print-
Stream to SlayDragonQuest?

 The act of creating associations between application components is commonly
referred to as wiring. In Spring, there are many ways to wire components together, but
a common approach has always been via XML. The next listing shows a simple Spring
configuration file, knights.xml, that wires a BraveKnight, a SlayDragonQuest, and a
PrintStream together.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Listing 1.5 SlayDragonQuest is a Quest to be injected into BraveKnight

Listing 1.6 Injecting a SlayDragonQuest into a BraveKnight with Spring

9Simplifying Java development
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="knight" class="com.springinaction.knights.BraveKnight">
<constructor-arg ref="quest" />

</bean>

<bean id="quest" class="com.springinaction.knights.SlayDragonQuest">
<constructor-arg value="#{T(System).out}" />

</bean>

</beans>

Here, BraveKnight and SlayDragonQuest are declared as beans in Spring. In the case
of the BraveKnight bean, it’s constructed, passing a reference to the SlayDragon-
Quest bean as a constructor argument. Meanwhile, the SlayDragonQuest bean decla-
ration uses the Spring Expression Language to pass System.out (which is a
PrintStream) to SlayDragonQuest’s constructor.

 If XML configuration doesn’t suit your tastes, you might like to know that Spring
also allows you to express configuration using Java. For example, here you see a Java-
based equivalent to listing 1.6.

package com.springinaction.knights.config;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

import com.springinaction.knights.BraveKnight;
import com.springinaction.knights.Knight;
import com.springinaction.knights.Quest;
import com.springinaction.knights.SlayDragonQuest;

@Configuration
public class KnightConfig {

@Bean
public Knight knight() {

return new BraveKnight(quest());
}

@Bean
public Quest quest() {

return new SlayDragonQuest(System.out);
}

}

Whether you use XML-based or Java-based configuration, the benefits of DI are the
same. Although BraveKnight depends on a Quest, it doesn’t know what type of Quest
it will be given or where that Quest will come from. Likewise, SlayDragonQuest

Listing 1.7 Spring offers Java-based configuration as an alternative to XML.

Inject quest bean

Create
SlayDragonQuest

10 CHAPTER 1 Springing into action
depends on a PrintStream, but it isn’t coded with knowledge of how that Print-
Stream comes to be. Only Spring, through its configuration, knows how all the pieces
come together. This makes it possible to change those dependencies with no changes
to the depending classes.

 This example has shown a simple approach to wiring beans in Spring. Don’t con-
cern yourself too much with the details right now. We’ll dig more into Spring configu-
ration when we get to chapter 2. We’ll also look at other ways that beans can be wired
in Spring, including a way to let Spring automatically discover beans and create the
relationships between them.

 Now that you’ve declared the relationship between BraveKnight and a Quest, you
need to load the XML configuration file and kick off the application.

SEEING IT WORK

In a Spring application, an application context loads bean definitions and wires them
together. The Spring application context is fully responsible for the creation of and
wiring of the objects that make up the application. Spring comes with several imple-
mentations of its application context, each primarily differing only in how it loads its
configuration.

 When the beans in knights.xml are declared in an XML file, an appropriate choice
for application context might be ClassPathXmlApplicationContext.1 This Spring
context implementation loads the Spring context from one or more XML files located
in the application’s classpath. The main() method in the following listing uses Class-
PathXmlApplicationContext to load knights.xml and to get a reference to the Knight
object.

package com.springinaction.knights;

import org.springframework.context.support.
ClassPathXmlApplicationContext;

public class KnightMain {

public static void main(String[] args) throws Exception {
ClassPathXmlApplicationContext context =

new ClassPathXmlApplicationContext(
"META-INF/spring/knight.xml");

Knight knight = context.getBean(Knight.class);
knight.embarkOnQuest();
context.close();

}

}

1 For Java-based configurations, Spring offers AnnotationConfigApplicationContext.

Listing 1.8 KnightMain.java loads the Spring context containing a Knight.

Load Spring
context

Get knight
bean

Use knight

11Simplifying Java development
Here the main() method creates the Spring application context based on the
knights.xml file. Then it uses the application context as a factory to retrieve the bean
whose ID is knight. With a reference to the Knight object, it calls the embarkOnQuest()
method to have the knight embark on the quest he was given. Note that this class
knows nothing about which type of Quest your hero has. For that matter, it’s blissfully
unaware of the fact that it’s dealing with BraveKnight. Only the knights.xml file
knows for sure what the implementations are.

 And with that you have a quick introduction to dependency injection. You’ll see a
lot more DI throughout this book. But if you want even more DI, I encourage you to
look at Dhanji R. Prasanna’s Dependency Injection (Manning, 2009, www.manning.com/
prasanna/), which covers DI in fine detail.

 Now let’s look at another of Spring’s Java-simplifying strategies: declarative pro-
gramming through aspects.

1.1.3 Applying aspects

Although DI makes it possible to tie software components together loosely, aspect-
oriented programming (AOP) enables you to capture functionality that’s used
throughout your application in reusable components.

 AOP is often defined as a technique that promotes separation of concerns in a soft-
ware system. Systems are composed of several components, each responsible for a spe-
cific piece of functionality. But often these components also carry additional respon-
sibilities beyond their core functionality. System services such as logging, transaction
management, and security often find their way into components whose core responsi-
bilities is something else. These system services are commonly referred to as cross-cut-
ting concerns because they tend to cut across multiple components in a system.

 By spreading these concerns across multiple components, you introduce two levels
of complexity to your code:

 The code that implements the system-wide concerns is duplicated across multi-
ple components. This means that if you need to change how those concerns
work, you’ll need to visit multiple components. Even if you’ve abstracted the
concern to a separate module so that the impact to your components is a single
method call, that method call is duplicated in multiple places.

 Your components are littered with code that isn’t aligned with their core func-
tionality. A method that adds an entry to an address book should only be con-
cerned with how to add the address and not with whether it’s secure or
transactional.

Figure 1.2 illustrates this complexity. The business objects on the left are too inti-
mately involved with the system services on the right. Not only does each object know
that it’s being logged, secured, and involved in a transactional context, but each
object also is responsible for performing those services for itself.

www.manning.com/prasanna/
www.manning.com/prasanna/

12 CHAPTER 1 Springing into action
AOP makes it possible to modularize these services and then apply them declaratively
to the components they should affect. This results in components that are more cohe-
sive and that focus on their own specific concerns, completely ignorant of any system
services that may be involved. In short, aspects ensure that POJOs remain plain.

 It may help to think of aspects as blankets that cover many components of an appli-
cation, as illustrated in figure 1.3. At its core, an application consists of modules that
implement business functionality. With AOP, you can then cover your core application
with layers of functionality. These layers can be applied declaratively throughout your
application in a flexible manner without your core application even knowing they
exist. This is a powerful concept, because it keeps the security, transaction, and log-
ging concerns from littering the application’s core business logic.

 To demonstrate how aspects can be applied in Spring, let’s revisit the knight exam-
ple, adding a basic Spring aspect to the mix.

Figure 1.2 Calls to system-wide concerns such as logging and security are often
scattered about in modules where those tasks are not their primary concern.

Student
service

Billing
service

Course
service

Instructor
service

Content
service

Logging
module

Security
module

Transaction
manager

Figure 1.3 Using AOP, system-wide
concerns blanket the components
they impact. This leaves the
application components to focus on
their specific business functionality.

S
ec

ur
ity

 m
od

ul
e

Logging m
odule

Transaction manager

Student
service

Instructor
service

Course
service

Billing
service

Content
service

13Simplifying Java development
AOP IN ACTION

Anyone who knows anything about knights only knows about them because their
deeds were chronicled in song by the musically inclined storytellers known as min-
strels. Let’s suppose that you want to record the comings and goings of your BraveK-
night using the services of a minstrel. The following listing shows the Minstrel class
you might use.

package com.springinaction.knights;

import java.io.PrintStream;

public class Minstrel {

private PrintStream stream;

public Minstrel(PrintStream stream) {
this.stream = stream;

}

public void singBeforeQuest() {
stream.println("Fa la la, the knight is so brave!");

}

public void singAfterQuest() {
stream.println("Tee hee hee, the brave knight " +

"did embark on a quest!");
}

}

As you can see, Minstrel is a simple class with two methods. The singBeforeQuest()
method is intended to be invoked before a knight embarks on a quest, and the sing-
AfterQuest() method should be invoked after the knight has completed a quest. In
both cases, the Minstrel sings of the knight’s deeds via a PrintStream injected
through its constructor.

 It should be simple to work this into your code—you can just inject it into Brave-
Knight, right? Let’s make the appropriate tweaks to BraveKnight to use Minstrel.
The next listing shows a first attempt at bringing BraveKnight and Minstrel together.

package com.springinaction.knights;

public class BraveKnight implements Knight {

private Quest quest;
private Minstrel minstrel;

public BraveKnight(Quest quest, Minstrel minstrel) {

Listing 1.9 A Minstrel is a musically inclined logging system from medieval times.

Listing 1.10 A BraveKnight that must call Minstrel methods

Called before quest

Called after quest

14 CHAPTER 1 Springing into action
this.quest = quest;
this.minstrel = minstrel;

}

public void embarkOnQuest() throws QuestException {
minstrel.singBeforeQuest();
quest.embark();
minstrel.singAfterQuest();

}

}

That should do the trick. Now all you need to do is go back to your Spring configura-
tion to declare a Minstrel bean and inject it into the BraveKnight bean’s constructor.
But hold on…

 Something doesn’t seem right. Is it really within the knight’s range of concern to
manage his minstrel? It seems to me that minstrels should just do their job without
having to be asked to do so. After all, that’s a minstrel’s job—to sing about the knight’s
endeavors. Why should the knight have to keep reminding the minstrel?

 Furthermore, because the knight needs to know about the minstrel, you’re forced
to inject Minstrel into BraveKnight. This not only complicates the BraveKnight code
but also makes me wonder if you’d ever want a knight who didn’t have a minstrel.
What if Minstrel is null? Should you introduce some null-checking logic to cover
that case?

 Your simple BraveKnight class is starting to get more complicated and would
become more so if you were to handle the nullMinstrel scenario. But using AOP, you
can declare that the minstrel should sing about a knight’s quests and free the knight
from having to deal with the Minstrel methods directly.

 To turn Minstrel into an aspect, all you need to do is declare it as one in
the Spring configuration file. Here’s the updated knights.xml file, revised to declare
Minstrel as an aspect.

<?xml version="1.0" encoding="UTF-8"?>>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation="http://www.springframework.org/schema/aop

http://www.springframework.org/schema/aop/spring-aop-3.2.xsd
http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="knight" class="com.springinaction.knights.BraveKnight">
<constructor-arg ref="quest" />

</bean>

<bean id="quest" class="com.springinaction.knights.SlayDragonQuest">
<constructor-arg value="#{T(System).out}" />

</bean>

Listing 1.11 Declaring the Minstrel as an aspect

Should a knight manage
his own minstrel?

15Simplifying Java development
<bean id="minstrel" class="com.springinaction.knights.Minstrel">
<constructor-arg value="#{T(System).out}" />

</bean>

<aop:config>
<aop:aspect ref="minstrel">

<aop:pointcut id="embark"
expression="execution(* *.embarkOnQuest(..))"/>

<aop:before pointcut-ref="embark"
method="singBeforeQuest"/>

<aop:after pointcut-ref="embark"
method="singAfterQuest"/>

</aop:aspect>
</aop:config>

</beans>

Here you’re using Spring’s aop configuration namespace to declare that the Minstrel
bean is an aspect. First you declare Minstrel as a bean. Then you refer to that bean in the
<aop:aspect> element. Defining the aspect further, you declare (using <aop:before>)
that before the embarkOnQuest() method is executed, the Minstrel’s singBefore-
Quest() should be called. This is called before advice. And you (using <aop:after>)
declare that the singAfterQuest() method should be called after embarkOnQuest()
has executed. This is known as after advice.

 In both cases, the pointcut-ref attribute refers to a pointcut named embark. This
pointcut is defined in the preceding <pointcut> element with an expression attri-
bute set to select where the advice should be applied. The expression syntax is
AspectJ’s pointcut expression language.

 Don’t worry if you don’t know AspectJ or the details of how AspectJ pointcut
expressions are written. We’ll talk more about Spring AOP later, in chapter 4. For now
it’s enough to know that you’ve asked Spring to call Minstrel’s singBeforeQuest()
and singAfterQuest() methods before and after BraveKnight embarks on a quest.

 That’s all there is to it! With a tiny bit of XML, you’ve turned Minstrel into a
Spring aspect. Don’t worry if this doesn’t make complete sense yet—you’ll see plenty
more examples of Spring AOP in chapter 4 that should help clear this up. For now,
there are two important points to take away from this example.

 First, Minstrel is still a POJO—nothing about it indicates that it’s to be used as an
aspect. Instead, Minstrel became an aspect when you declared it as such in the
Spring context.

 Second, and most important, Minstrel can be applied to BraveKnight without
BraveKnight needing to explicitly call on it. In fact, BraveKnight remains completely
unaware of Minstrel’s existence.

 I should also point out that although you used some Spring magic to turn
Minstrel into an aspect, it was declared as a Spring <bean> first. The point is that you

Declare Minstrel bean

Define
pointcut

Declare before advice

Declare after advice

16 CHAPTER 1 Springing into action
can do anything with Spring aspects that you can do with other Spring beans, such as
inject them with dependencies.

 Using aspects to sing about knights can be fun. But Spring’s AOP can be used for
even more practical things. As you’ll see later, Spring AOP can be employed to pro-
vide services such as declarative transactions and security (chapters 9 and 14).

 But for now, let’s look at one more way that Spring simplifies Java development.

1.1.4 Eliminating boilerplate code with templates

Have you ever written some code and then felt like you’d already written the same code
before? That’s not déjà vu, my friend. That’s boilerplate code—the code that you often
have to write over and over again to accomplish common and otherwise simple tasks.

 Unfortunately, there are a lot of places where Java APIs involve a bunch of boiler-
plate code. A common example of boilerplate code can be seen when working with
JDBC to query data from a database. If you’ve ever worked with JDBC, you’ve probably
written something similar to the following.

public Employee getEmployeeById(long id) {
Connection conn = null;
PreparedStatement stmt = null;
ResultSet rs = null;
try {

conn = dataSource.getConnection();
stmt = conn.prepareStatement(

"select id, firstname, lastname, salary from " +
"employee where id=?");

stmt.setLong(1, id);
rs = stmt.executeQuery();
Employee employee = null;
if (rs.next()) {

employee = new Employee();
employee.setId(rs.getLong("id"));
employee.setFirstName(rs.getString("firstname"));
employee.setLastName(rs.getString("lastname"));
employee.setSalary(rs.getBigDecimal("salary"));

}
return employee;

} catch (SQLException e) {
} finally {

if(rs != null) {
try {

rs.close();
} catch(SQLException e) {}

}
if(stmt != null) {

try {
stmt.close();
} catch(SQLException e) {}

}

Listing 1.12 Many Java APIs, such as JDBC, involve writing boilerplate code.

Select employee

Create object from data

What should be done here?

Clean up mess

17Simplifying Java development
if(conn != null) {
try {

conn.close();
} catch(SQLException e) {}

}
}
return null;

}

As you can see, this JDBC code queries the database for an employee’s name and sal-
ary. But I’ll bet you had to look hard to see that. That’s because the small bit of code
that’s specific to querying for an employee is buried in a heap of JDBC ceremony. You
first have to create a connection, then create a statement, and finally query for the
results. And, to appease JDBC’s anger, you must catch SQLException, a checked excep-
tion, even though there’s not a lot you can do if it’s thrown.

 Finally, after all is said and done, you have to clean up the mess, closing down the
connection, statement, and result set. This could also stir JDBC’s anger, so you must
catch SQLException here as well.

 What’s most notable about listing 1.12 is that much of it is the exact same code
you’d write for pretty much any JDBC operation. Little of it has anything to do with
querying for an employee, and much of it is JDBC boilerplate.

 JDBC is not alone in the boilerplate code business. Many activities require similar
boilerplate code. JMS, JNDI, and the consumption of REST services often involve a lot
of commonly repeated code.

 Spring seeks to eliminate boilerplate code by encapsulating it in templates.
Spring’s JdbcTemplate makes it possible to perform database operations without all
the ceremony required by traditional JDBC.

 For example, using Spring’s SimpleJdbcTemplate (a specialization of Jdbc-
Template that takes advantage of Java 5 features), the getEmployeeById() method
can be rewritten so that its focus is on the task of retrieving employee data and not
catering to the demands of the JDBC API. The following shows what such an updated
getEmployeeById() method might look like.

public Employee getEmployeeById(long id) {
return jdbcTemplate.queryForObject(

"select id, firstname, lastname, salary " +
"from employee where id=?",
new RowMapper<Employee>() {

public Employee mapRow(ResultSet rs,
int rowNum) throws SQLException {

Employee employee = new Employee();
employee.setId(rs.getLong("id"));
employee.setFirstName(rs.getString("firstname"));
employee.setLastName(rs.getString("lastname"));
employee.setSalary(rs.getBigDecimal("salary"));
return employee;

Listing 1.13 Templates let your code focus on the task at hand.

SQL query

Map results to object

18 CHAPTER 1 Springing into action
}
},
id);

}

As you can see, this new version of getEmployeeById() is much simpler and acutely
focused on selecting an employee from the database. The template’s queryFor-
Object() method is given the SQL query, a RowMapper (for mapping result set data to
a domain object), and zero or more query parameters. What you don’t see in get-
EmployeeById() is any of the JDBC boilerplate from before. Everything is handled
inside the template.

 I’ve shown you how Spring attacks complexity in Java development using POJO-
oriented development, DI, aspects, and templates. Along the way, I showed you how to
configure beans and aspects in XML-based configuration files. But how do those files
get loaded? And what are they loaded into? Let’s look at the Spring container, the
place where your application’s beans reside.

1.2 Containing your beans
In a Spring-based application, your appli-
cation objects live in the Spring container.
As illustrated in figure 1.4, the container
creates the objects, wires them together,
configures them, and manages their com-
plete lifecycle from cradle to grave (or new
to finalize(), as the case may be).

 In the next chapter, you’ll see how to
configure Spring so it knows what objects
it should create, configure, and wire
together. First, though, it’s important to
get to know the container where your
objects will be hanging out. Understand-
ing the container will help you grasp how
your objects will be managed.

 The container is at the core of the Spring Framework. Spring’s container uses DI to
manage the components that make up an application. This includes creating associa-
tions between collaborating components. As such, these objects are cleaner and easier
to understand, they support reuse, and they’re easy to unit test.

 There’s no single Spring container. Spring comes with several container imple-
mentations that can be categorized into two distinct types. Bean factories (defined by
the org.springframework.beans.factory.BeanFactory interface) are the simplest
of containers, providing basic support for DI. Application contexts (defined by the
org.springframework.context.ApplicationContext interface) build on the notion
of a bean factory by providing application-framework services, such as the ability to

Specify query parameter

Spring container

Figure 1.4 In a Spring application, objects are
created, are wired together, and live in the Spring
container.

19Containing your beans
resolve textual messages from a properties file and the ability to publish application
events to interested event listeners.

 Although it’s possible to work with Spring using either bean factories or applica-
tion contexts, bean factories are often too low-level for most applications. Therefore,
application contexts are preferred over bean factories. We’ll focus on working with
application contexts and not spend any more time talking about bean factories.

1.2.1 Working with an application context

Spring comes with several flavors of application context. Here are a few that you’ll
most likely encounter:

 AnnotationConfigApplicationContext—Loads a Spring application context
from one or more Java-based configuration classes

 AnnotationConfigWebApplicationContext—Loads a Spring web application
context from one or more Java-based configuration classes

 ClassPathXmlApplicationContext—Loads a context definition from one or
more XML files located in the classpath, treating context-definition files as class-
path resources

 FileSystemXmlApplicationContext—Loads a context definition from one or
more XML files in the filesystem

 XmlWebApplicationContext—Loads context definitions from one or more
XML files contained in a web application

We’ll talk more about AnnotationConfigWebApplicationContext and XmlWeb-

ApplicationContext in chapter 8 when we discuss web-based Spring applications. For
now, let’s load the application context from the filesystem using FileSystemXml-
ApplicationContext or from the classpath using ClassPathXmlApplicationContext.

 Loading an application context from the filesystem or from the classpath is similar
to how you load beans into a bean factory. For example, here’s how you’d load a File-
SystemXmlApplicationContext:

ApplicationContext context = new
FileSystemXmlApplicationContext("c:/knight.xml");

Similarly, you can load an application context from the application’s classpath using
ClassPathXmlApplicationContext:

ApplicationContext context = new
ClassPathXmlApplicationContext("knight.xml");

The difference between using FileSystemXmlApplicationContext and ClassPathXml-
ApplicationContext is that FileSystemXmlApplicationContext looks for knight.xml
in a specific location within the filesystem, whereas ClassPathXmlApplicationContext
looks for knight.xml anywhere in the classpath (including JAR files).

20 CHAPTER 1 Springing into action
 Alternatively, if you’d rather load your application context from a Java configura-
tion, you can use AnnotationConfigApplicationContext:

ApplicationContext context = new AnnotationConfigApplicationContext(
com.springinaction.knights.config.KnightConfig.class);

Instead of specifying an XML file from which to load the Spring application context,
AnnotationConfigApplicationContext has been given a configuration class from
which to load beans.

 With an application context in hand, you can retrieve beans from the Spring con-
tainer by calling the context’s getBean() method.

 Now that you know the basics of how to create a Spring container, let’s take a closer
look at the lifecycle of a bean in the bean container.

1.2.2 A bean’s life

In a traditional Java application, the lifecycle of a bean is simple. Java’s new keyword is
used to instantiate the bean, and it’s ready to use. Once the bean is no longer in use,
it’s eligible for garbage collection and eventually goes to the big bit bucket in the sky.

 In contrast, the lifecycle of a bean in a Spring container is more elaborate. It’s
important to understand the lifecycle of a Spring bean, because you may want to take
advantage of some of the opportunities that Spring offers to customize how a bean is
created. Figure 1.5 shows the startup lifecycle of a typical bean as it’s loaded into a
Spring application context.

Instantiate

Bean is
ready to use

Populate
properties

BeanNameAware’s
setBeanName()

BeanFactoryAware’s
setBeanFactory()

Pre-initialization
BeanPostProcessors

Post-initialization
BeanPostProcessors

InitializingBean ’s
afterPropertiesSet()

Call custom
init-method

Container is
shutdown

DisposableBean’s
destroy()

Call custom
destroy-method

ApplicationContextAware’s
setApplicationContext()

Figure 1.5 A bean goes through several steps between creation and destruction in the Spring
container. Each step is an opportunity to customize how the bean is managed in Spring.

21Surveying the Spring landscape
As you can see, a bean factory performs several setup steps before a bean is ready to
use. Let’s break down figure 1.5 in more detail:

1 Spring instantiates the bean.
2 Spring injects values and bean references into the bean’s properties.
3 If the bean implements BeanNameAware, Spring passes the bean’s ID to the set-

BeanName() method.
4 If the bean implements BeanFactoryAware, Spring calls the setBeanFactory()

method, passing in the bean factory itself.
5 If the bean implements ApplicationContextAware, Spring calls the set-

ApplicationContext() method, passing in a reference to the enclosing appli-
cation context.

6 If the bean implements the BeanPostProcessor interface, Spring calls its post-
ProcessBeforeInitialization() method.

7 If the bean implements the InitializingBean interface, Spring calls its after-
PropertiesSet() method. Similarly, if the bean was declared with an init-
method, then the specified initialization method is called.

8 If the bean implements BeanPostProcessor, Spring calls its postProcess-
AfterInitialization() method.

9 At this point, the bean is ready to be used by the application and remains in the
application context until the application context is destroyed.

10 If the bean implements the DisposableBean interface, Spring calls its
destroy() method. Likewise, if the bean was declared with a destroy-method,
the specified method is called.

Now you know how to create and load a Spring container. But an empty container
isn’t much good by itself; it doesn’t contain anything unless you put something in it.
To achieve the benefits of Spring DI, you must wire your application objects into the
Spring container. We’ll go into bean wiring in more detail in chapter 2.

 First, let’s survey the modern Spring landscape to see what the Spring Framework
is made up of and what the latest versions of Spring have to offer.

1.3 Surveying the Spring landscape
As you’ve seen, the Spring Framework is focused on simplifying enterprise Java devel-
opment through DI, AOP, and boilerplate reduction. Even if that were all Spring did,
it’d be worth using. But there’s more to Spring than meets the eye.

 Within the Spring Framework proper, you’ll find several ways that Spring can ease
Java development. But beyond the Spring Framework is a greater ecosystem of proj-
ects that build on the core framework, extending Spring into areas such as web ser-
vices, REST, mobile, and NoSQL.

 Let’s first break down the core Spring Framework to see what it brings to the
table. Then we’ll expand our sights to review the other members of the greater
Spring portfolio.

22 CHAPTER 1 Springing into action
1.3.1 Spring modules

When you download the Spring distribu-
tion and dig into its libs folder, you’ll find
several JAR files. As of Spring 4.0, there
are 20 distinct modules in the Spring
Framework distribution, with three JAR
files for each module (the binary class
library, the source JAR file, and a JavaDoc
JAR file). The complete list of library JAR
files is shown in figure 1.6.

 These modules can be arranged into
six categories of functionality, as illus-
trated in figure 1.7.

 Taken as a whole, these modules give
you everything you need to develop
enterprise-ready applications. But you
don’t have to base your application fully
on the Spring Framework. You’re free to
choose the modules that suit your appli-
cation and look to other options when

Data access & integration

JDBC

OXM

Transaction ORM

JMS

Web and remoting

Web Web servlet

Web portlet WebSocket

Aspect-oriented programming

AOP Aspects

Instrumentation

Instrument
TomcatInstrument

Core Spring container

Beans Core Context Expression Context
support

Testing

Test

Messaging

Figure 1.7 The Spring Framework is made up of six well-defined module categories.

Figure 1.6 Spring 4.0 is made up of 20 distinct
modules.

23Surveying the Spring landscape
Spring doesn’t fit the bill. Spring even offers integration points with several other
frameworks and libraries so that you don’t have to write them yourself.

 Let’s look at each of Spring’s modules, one at a time, to see how each fits in the
overall Spring picture.

CORE SPRING CONTAINER

The centerpiece of the Spring Framework is a container that manages how the beans
in a Spring-enabled application are created, configured, and managed. In this mod-
ule is the Spring bean factory, which is the portion of Spring that provides DI. Build-
ing on the bean factory, you’ll find several implementations of Spring’s application
context, each of which provides a different way to configure Spring.

 In addition to the bean factory and application context, this module also supplies
many enterprise services such as email, JNDI access, EJB integration, and scheduling.

 All of Spring’s modules are built on top of the core container. You’ll implicitly use
these classes when you configure your application. We’ll discuss the core module
throughout this book, starting in chapter 2 where we’ll dig deep into Spring DI.

SPRING’S AOP MODULE

Spring provides rich support for aspect-oriented programming in its AOP module.
This module serves as the basis for developing your own aspects for your Spring-
enabled application. Like DI, AOP supports loose coupling of application objects. But
with AOP, application-wide concerns (such as transactions and security) are decoupled
from the objects to which they’re applied.

 We’ll dig into Spring’s AOP support in chapter 4.

DATA ACCESS AND INTEGRATION

Working with JDBC often results in a lot of boilerplate code that gets a connection,
creates a statement, processes a result set, and then closes the connection. Spring’s
JDBC and data-access objects (DAO) module abstracts away the boilerplate code so that
you can keep your database code clean and simple, and prevents problems that result
from a failure to close database resources. This module also builds a layer of meaning-
ful exceptions on top of the error messages given by several database servers. No more
trying to decipher cryptic and proprietary SQL error messages!

 For those who prefer using an object-relational mapping (ORM) tool over straight
JDBC, Spring provides the ORM module. Spring’s ORM support builds on the DAO sup-
port, providing a convenient way to build DAOs for several ORM solutions. Spring
doesn’t attempt to implement its own ORM solution but does provide hooks into sev-
eral popular ORM frameworks, including Hibernate, Java Persistence API, Java Data
Objects, and iBATIS SQL Maps. Spring’s transaction management supports each of
these ORM frameworks as well as JDBC.

 You’ll see how Spring’s template-based JDBC abstraction can greatly simplify JDBC
code when we look at Spring data access in chapter 10.

 This module also includes a Spring abstraction over the Java Message Service (JMS)
for asynchronous integration with other applications through messaging. And, as of

24 CHAPTER 1 Springing into action
Spring 3.0, this module includes the object-to-XML mapping features that were origi-
nally part of the Spring Web Services project.

 In addition, this module uses Spring’s AOP module to provide transaction-
management services for objects in a Spring application.

WEB AND REMOTING

The Model-View-Controller (MVC) paradigm is a commonly accepted approach to build-
ing web applications such that the user interface is separate from the application
logic. Java has no shortage of MVC frameworks, with Apache Struts, JSF, WebWork, and
Tapestry being among the most popular MVC choices.

 Even though Spring integrates with several popular MVC frameworks, its web and
remoting module comes with a capable MVC framework that promotes Spring’s
loosely coupled techniques in the web layer of an application. We’ll look at Spring’s
MVC framework in chapters 5–7.

 In addition to user-facing web applications, this module also provides several
remoting options for building applications that interact with other applications.
Spring’s remoting capabilities include Remote Method Invocation (RMI), Hessian, Bur-
lap, JAX-WS, and Spring’s own HTTP invoker. Spring also offers first-class support for
exposing and consuming REST APIs.

 In chapter 15, we’ll check out Spring remoting. And you’ll learn how to create and
consume REST APIs in chapter 16.

INSTRUMENTATION

Spring’s instrumentation module includes support for adding agents to the JVM. Spe-
cifically, it provides a weaving agent for Tomcat that transforms class files as they’re
loaded by the classloader.

 If that sounds like a lot to understand, don’t worry too much about it. The instru-
mentation provided by this module has a narrow set of use cases and we won’t be deal-
ing with this module at all in this book.

TESTING

Recognizing the importance of developer-written tests, Spring provides a module ded-
icated to testing Spring applications.

 In this module you’ll find a collection of mock object implementations for writing
unit tests against code that works with JNDI, servlets, and portlets. For integration-level
testing, this module provides support for loading a collection of beans in a Spring
application context and working with the beans in that context.

 Throughout this book, many of the examples will be driven by tests, utilizing the
testing facilities offered by Spring.

1.3.2 The Spring portfolio

When it comes to Spring, there’s more than meets the eye. In fact, there’s more than
what comes in the Spring Framework download. If you stop at just the core Spring
Framework, you’ll miss out on a wealth of potential afforded by the larger Spring

25Surveying the Spring landscape
portfolio. The whole Spring portfolio includes several frameworks and libraries that
build on the core Spring Framework and on each other. All together, the entire
Spring portfolio brings the Spring programming model to almost every facet of Java
development.

 It would take several volumes to cover everything the Spring portfolio has to offer,
and much of it is outside the scope of this book. But we’ll look at some of the elements
of the Spring portfolio; here’s a taste of what lies beyond the core Spring Framework.

SPRING WEB FLOW

Spring Web Flow builds on Spring’s core MVC framework to provide support for build-
ing conversational, flow-based web applications that guide users toward a goal (think
wizards or shopping carts). We’ll talk more about Spring Web Flow in chapter 8, and
you can learn more about it at http://projects.spring.io/spring-webflow/.

SPRING WEB SERVICES

Although the core Spring Framework provides for declaratively publishing Spring
beans as web services, those services are based on an arguably architecturally inferior
contract-last model. The contract for the service is determined from the bean’s inter-
face. Spring Web Services offers a contract-first web services model where service
implementations are written to satisfy the service contract.

 I won’t be talking about Spring-WS in this book, but you can read more about it at
http://docs.spring.io/spring-ws/site/.

SPRING SECURITY

Security is a critical aspect of many applications. Implemented using Spring AOP,
Spring Security offers a declarative security mechanism for Spring-based applications.
You’ll see how to add Spring Security to an application’s web layer in chapter 9. We’ll
return to Spring Security again in chapter 14 to examine how to secure method
invocations. For further exploration, Spring Security’s home page is at http://
projects.spring.io/spring-security/.

SPRING INTEGRATION

Many enterprise applications must interact with other enterprise applications. Spring
Integration offers implementations of several common integration patterns in
Spring’s declarative style.

 We won’t cover Spring Integration in this book, but if you want more information,
look at Spring Integration in Action by Mark Fisher, Jonas Partner, Marius Bogoevici, and
Iwein Fuld (Manning, 2012, www.manning.com/fisher/). Or you can visit the Spring
Integration home page at http://projects.spring.io/spring-integration/.

SPRING BATCH

When it’s necessary to perform bulk operations on data, nothing beats batch process-
ing. If you’re going to be developing a batch application, you can use Spring’s robust,
POJO-oriented development model to do it using Spring Batch.

http://docs.spring.io/spring-ws/site/
http://projects.spring.io/spring-security/
http://projects.spring.io/spring-security/
www.manning.com/fisher/
http://projects.spring.io/spring-integration/
http://projects.spring.io/spring-webflow/

26 CHAPTER 1 Springing into action
 Spring Batch is beyond the scope of this book, but Arnaud Cogoluegnes, Thierry
Templier, Gary Gregory, and Olivier Bazoud will enlighten you in their book, Spring
Batch in Action (Manning, 2011, www.manning.com/templier/). You can also learn
about Spring Batch from its home page at http://projects.spring.io/spring-batch/.

SPRING DATA

Spring Data makes it easy to work with all kinds of databases in Spring. Although the
relational database has been ubiquitous in enterprise applications for many years, mod-
ern applications are recognizing that not all data is best served by columns and rows in
a table. A new breed of databases, commonly referred to as NoSQL databases,2 offer new
ways of working with data that are more fitting than the traditional relational database.

 Whether you’re using a document database like MongoDB, a graph database such
as Neo4j, or even a traditional relational database, Spring Data offers a simplified pro-
gramming model for persistence. This includes, for many database types, an auto-
matic repository mechanism that creates repository implementations for you.

 We’ll look at using Spring Data to simplify Java Persistence API (JPA) development
in chapter 11 and then expand the discussion to include a few NoSQL databases in
chapter 12.

SPRING SOCIAL

Social networking is a rising trend on the internet, and more and more applications
are being outfitted with integration into social networking sites such as Facebook and
Twitter. If this is the kind of thing that interests you, you’ll want to look at Spring
Social, a social networking extension to Spring.

 But Spring Social is about more than just tweets and friends. Despite its name,
Spring Social is less about the word social and more about the word connect. It helps
you connect your Spring application with REST APIs, including many that may not
have any social purpose to them.

 Due to space constraints, we won’t cover Spring Social in this book. But if you’re
interested in how Spring can help you connect with Facebook or Twitter, have a look
at the Getting Started guides at https://spring.io/guides/gs/accessing-facebook/ and
https://spring.io/guides/gs/accessing-twitter/.

SPRING MOBILE

Mobile applications are another significant area of software development. Smart-
phones and tablet devices are taking over as the preferred client for many users.
Spring Mobile is a new extension to Spring MVC to support development of mobile
web applications.

SPRING FOR ANDROID

Related to Spring Mobile is the Spring Android project. This project aims to bring
some of the simplicity afforded by the Spring Framework to development of native

2 I prefer the term non-relational or schema-less over NoSQL. Calling these databases NoSQL places the blame on
the query language and not the database model.

www.manning.com/templier/
http://projects.spring.io/spring-batch/
https://spring.io/guides/gs/accessing-facebook/
https://spring.io/guides/gs/accessing-twitter/

27What’s new in Spring
applications for Android-based devices. Initially, this project is offering a version of
Spring’s RestTemplate that can be used in an Android application. It also works with
Spring Social to enable native Android apps to connect with REST APIs.

 I won’t discuss Spring for Android in this book, but you can learn more about it at
http://projects.spring.io/spring-android/.

SPRING BOOT

Spring greatly simplifies many programming tasks, reducing or even eliminating
much of the boilerplate code you might normally be required to write without it.
Spring Boot is an exciting new project that takes an opinionated view of developing
with Spring to simplify Spring itself.

 Spring Boot heavily employs automatic configuration techniques that can elimi-
nate most (and in many cases, all) Spring configuration. It also provides several starter
projects to help reduce the size of your Spring project build files, whether you’re
using Maven or Gradle.

 We’ll look at Spring Boot near the end of the book in chapter 21.

1.4 What’s new in Spring
When the third edition of this book went to press, the latest version of Spring was ver-
sion 3.0.5. That was around three years ago, and a lot has changed since then. The
Spring Framework has seen three significant releases—3.1, 3.2, and now 4.0—each
bringing new features and improvements to ease application development. And sev-
eral of the other members of the Spring portfolio have undergone major changes.

 This edition of Spring in Action has been updated to cover many of the most excit-
ing and useful features in these releases. But for now, let’s briefly size up what’s new in
Spring.

1.4.1 What was new in Spring 3.1?

Spring 3.1 had several useful new features and improvements, many of which were
focused on simplifying and improving configuration. In addition, Spring 3.1 provided
declarative caching support as well as many improvements to Spring MVC. Here’s a
brief list of some of the highlights of Spring 3.1:

 To address the common issue of selecting distinct configurations for various
environments (such as development, test, and production), Spring 3.1 intro-
duced environment profiles. Profiles make it possible, for instance, to select a
different data source bean depending on which environment the application is
deployed in.

 Building on Spring 3.0’s Java-based configuration, Spring 3.1 added several enable
annotations to switch on certain features of Spring with a single annotation.

 Declarative caching support made its way into Spring, making it possible to
declare caching boundaries and rules with simple annotations, similar to how
you could already declare transaction boundaries.

http://projects.spring.io/spring-android/

28 CHAPTER 1 Springing into action
 A new c namespace brought constructor injection the same succinct attribute-
oriented style as Spring 2.0’s p namespace brought to property injection.

 Spring began to support Servlet 3.0, including the ability to declare servlets and
filters in Java-based configuration instead of web.xml.

 Improvements to Spring’s JPA support made it possible to completely configure
JPA in Spring without needing a persistence.xml file.

Spring 3.1 also included several enhancements to Spring MVC:

 Automatic binding of path variables to model attributes
 @RequestMappingproduces and consumes attributes, for matching against a

request’s Accept and Content-Type headers
 A @RequestPart annotation that enables binding parts of a multipart request to

handler method parameters
 Support for flash attributes (attributes that survive a redirect) and a Redirect-

Attributes type to carry the flash attributes between requests

Just as important as what was new in Spring 3.1 is what was no longer available in
Spring as of Spring 3.1. Specifically, Spring’s JpaTemplate and JpaDaoSupport classes
were deprecated in favor of native EntityManager usage. Even though they were dep-
recated, they were still around in Spring 3.2. But you shouldn’t use them, because they
weren’t upgraded to support JPA 2.0 and have been removed in Spring 4.

 Now let’s look at what was new in Spring 3.2.

1.4.2 What was new in Spring 3.2?

Whereas Spring 3.1 was largely focused on configuration improvements with a small set
of other enhancements, including Spring MVC enhancements, Spring 3.2 was primarily
a Spring MVC-focused release. Spring MVC 3.2 boasted the following improvements:

 Spring 3.2 controllers can take advantage of Servlet 3’s asynchronous requests
to spin off request processing in separate threads, freeing up the servlet thread
to process more requests.

 Although Spring MVC controllers have been easily testable as POJOs since
Spring 2.5, Spring 3.2 included a Spring MVC test framework for writing richer
tests against controllers, asserting their behavior as controllers, but without a
servlet container.

 In addition to improved controller testing, Spring 3.2 included support for
testing RestTemplate-based clients without sending requests to the real REST
endpoint.

 An @ControllerAdvice annotation enables common @ExceptionHandler,
@InitBinder, and @ModelAttributes methods to be collected in a single class
and applied to all controllers.

 Prior to Spring 3.2, full content negotiation support was only available via
ContentNegotiatingViewResolver. But in Spring 3.2, full content negotiation

29What’s new in Spring
became available throughout Spring MVC, even on controller methods relying
on message converters for content consumption and production.

 Spring MVC 3.2 included a new @MatrixVariable annotation for binding a
request’s matrix variables to handler method parameters.

 The abstract base class AbstractDispatcherServletInitializer can be used
for conveniently configuring DispatcherServlet without web.xml. Likewise, a
subclass named AbstractAnnotationConfigDispatcherServletInitializer
can be used when you wish to configure Spring with Java-based configuration.

 The ResponseEntityExceptionHandler class was added to be used as an alter-
native to DefaultHandlerExceptionResolver. ResponseEntityException-

Handler methods return ResponseEntity<Object> instead of ModelAndView.
 RestTemplate and @RequestBody arguments support generic types.
 RestTemplate and @RequestMapping methods support the HTTP PATCH

method.
 Mapped interceptors support URL patterns to be excluded from interceptor

processing.

Although Spring MVC was the main story of Spring 3.2, a few other non-MVC improve-
ments were added as well. Here are a few of the most interesting new features in
Spring 3.2:

 @Autowired, @Value, and @Bean annotations can be used as meta-annotations to
create custom injection and bean-declaration annotations.

 The @DateTimeFormat annotation no longer has a hard dependency on Joda-
Time. If JodaTime is present, it is used. Otherwise, SimpleDateFormat is used.

 Spring’s declarative caching support has initial support for JCache 0.5.
 You can define global formats for parsing and rendering dates and times.
 Integration tests can configure and load a WebApplicationContext.
 Integration tests can test against request- and session-scoped beans.

You’ll see a lot of Spring 3.2’s features across several chapters in this book, especially
in the web and REST chapters.

1.4.3 What’s new in Spring 4.0?

Spring 4.0 is the freshest release of Spring available. There are a lot of exciting new
features in Spring 4.0, including the following:

 Spring now includes support for WebSocket programming, including support
for JSR-356: Java API for WebSocket.

 Recognizing that WebSocket offers a low-level API, screaming for a higher-level
abstraction, Spring 4.0 includes a higher level message-oriented programming
model on top of WebSocket that’s based on SockJS and includes STOMP sub-
protocol support.

30 CHAPTER 1 Springing into action
 A new messaging module with many types carried over from the Spring Integra-
tion project. This messaging module supports Spring’s SockJS/STOMP support.
It also includes template-based support for publishing messages.

 Spring 4.0 is one of the first (if not the first) Java frameworks to support Java 8
features, including lambdas. Among other things, this makes working with cer-
tain callback interfaces (such as RowMapper with JdbcTemplate) much cleaner
and easier to read.

 Along with Java 8 support comes support for JSR-310: Data and Time API, offer-
ing the opportunity for developers to work with dates and times in a richer API
than that offered with java.util.Date or java.util.Calendar.

 A smooth programming experience for applications developed in Groovy has
also been added, essentially enabling a Spring application to be developed eas-
ily entirely in Groovy. With this comes the BeanBuilder from Grails, enabling
Spring applications to be configured with Groovy.

 Generalized support for conditional bean creation has been added, wherein
beans can be declared to be created only if a developer-defined condition is
met.

 Spring 4.0 also includes a new asynchronous implementation of Spring’s Rest-
Template that returns immediately but allows for callbacks once the operation
completes.

 Support for many JEE specs has been added, including JMS 2.0, JTA 1.2, JPA 2.1,
and Bean Validation 1.1.

As you can see, a lot of exciting new stuff has found its way into the latest versions of
the Spring Framework. Throughout this book, we’ll look at many of these new fea-
tures as well as many of the long-standing features of Spring.

1.5 Summary
You should now have a good idea of what Spring brings to the table. Spring aims to
make enterprise Java development easier and to promote loosely coupled code. Vital
to this are dependency injection and aspect-oriented programming.

 In this chapter, you got a taste of DI in Spring. DI is a way of associating application
objects such that the objects don’t need to know where their dependencies come
from or how they’re implemented. Rather than acquiring dependencies on their own,
dependent objects are given the objects that they depend on. Because dependent
objects often only know about their injected objects through interfaces, coupling is
kept low.

 In addition to DI, you also saw a glimpse of Spring’s AOP support. AOP enables you
to centralize in one place—an aspect—logic that would normally be scattered
throughout an application. When Spring wires your beans together, these aspects can
be woven in at runtime, effectively giving the beans new behavior.

31Summary
 DI and AOP are central to everything in Spring. Thus you must understand how to
use these principal functions of Spring to be able to use the rest of the framework. In
this chapter, we’ve just scratched the surface of Spring’s DI and AOP features. Over the
next few chapters, we’ll dig deeper into DI and AOP.

 Without further ado, let’s move on to chapter 2 to learn how to wire objects
together in Spring using DI.

Wiring beans
Have you ever stuck around long enough after a movie to watch the credits? It’s
incredible how many different people it takes to pull together a major motion pic-
ture. In addition to the obvious participants—the actors, scriptwriters, directors,
and producers—there are the not-so-obvious—the musicians, special effects crew,
and art directors. And that’s not to mention the key grip, sound mixer, costumers,
makeup artists, stunt coordinators, publicists, first assistant to the cameraperson,
second assistant to the cameraperson, set designers, gaffer, and (perhaps most
important) caterers.

 Now imagine what your favorite movie would’ve been like had none of these
people talked to one another. Let’s say that they all showed up at the studio and
started doing their own thing without any coordination of any kind. If the director
keeps to himself and doesn’t say “Roll ’em,” then the cameraperson wouldn’t start
shooting. It probably wouldn’t matter anyway, because the lead actress would still
be in her trailer and the lighting wouldn’t work because the gaffer wouldn’t have
been hired. Maybe you’ve seen a movie where it looks like this is what happened.

This chapter covers
 Declaring beans

 Injecting constructors and setters

 Wiring beans

 Controlling bean creation and destruction
32

33Exploring Spring’s configuration options
But most movies (the good ones, anyway) are the product of thousands of people
working together toward the common goal of making a blockbuster film.

 In this respect, a great piece of software isn’t much different. Any nontrivial appli-
cation is made up of several objects that must work together to meet some business
goal. These objects must be aware of one another and communicate with one another
to get their jobs done. In an online shopping application, for instance, an order-
manager component may need to work with a product-manager component and a
credit-card authorization component. All of these will likely need to work with a data-
access component to read from and write to a database.

 But as you saw in chapter 1, the traditional approach to creating associations
between application objects (via construction or lookup) leads to complicated code
that’s difficult to reuse and unit-test. At best, these objects do more work than they
should. At worst, they’re highly coupled to one another, making them hard to reuse
and hard to test.

 In Spring, objects aren’t responsible for finding or creating the other objects that
they need to do their jobs. Instead, the container gives them references to the objects
that they collaborate with. An order-manager component, for example, may need a
credit-card authorizer—but it doesn’t have to create the credit-card authorizer. It just
needs to show up empty-handed, and it’s given a credit-card authorizer to work with.

 The act of creating these associations between application objects is the essence of
dependency injection (DI) and is commonly referred to as wiring. In this chapter, we’ll
explore the basics of bean wiring using Spring. DI is the most elemental thing Spring
does, so these are techniques you’ll use almost every time you develop Spring-based
applications.

 There are many ways to wire beans in Spring. To begin, let’s take a moment to get
a feel for the three most common approaches for configuring the Spring container.

2.1 Exploring Spring’s configuration options
As mentioned in chapter 1, the Spring container is responsible for creating the beans
in your application and coordinating the relationships between those objects via DI.
But it’s your responsibility as a developer to tell Spring which beans to create and how
to wire them together. When it comes to expressing a bean wiring specification,
Spring is incredibly flexible, offering three primary wiring mechanisms:

 Explicit configuration in XML

 Explicit configuration in Java
 Implicit bean discovery and automatic wiring

At first glance, it may seem that offering these three configuration options compli-
cates Spring. There is some overlap in what each configuration technique offers, and
it can be overwhelming to decide which technique is most applicable for a given situa-
tion. But don’t be distressed—in many cases, the choice is largely a matter of personal
taste, and you’re welcome to choose the approach that feels best for you.

34 CHAPTER 2 Wiring beans
 It’s great that you have many choices about how to wire beans in Spring, but at
some point you must select one.

 There’s no single right answer here. Any choice you make must be suitable for you
and your project. And who says that you must make one choice? Spring’s configura-
tion styles are mix-and-match, so you could choose XML to wire up some beans, use
Spring’s Java-based configuration (JavaConfig) for other beans, and let other beans be
automatically discovered by Spring.

 Even so, my recommendation is to lean on automatic configuration as much as you
can. The less configuration you have to do explicitly, the better. When you must
explicitly configure beans (such as when you’re configuring beans for which you don’t
maintain the source code), I’d favor the type-safe and more powerful JavaConfig over
XML. Finally, fall back on XML only in situations where there’s a convenient XML
namespace you want to use that has no equivalent in JavaConfig.

 We’ll explore all three of these techniques in detail in this chapter and apply them
throughout the book. At this point, let’s test-taste each one to get an idea of what
they’re like. For your first sampling of Spring configuration, let’s look at Spring’s auto-
matic configuration.

2.2 Automatically wiring beans
A little bit later in this chapter, you’ll see how to express Spring wiring in both Java
and XML. Even though you’ll find a lot of use for those explicit wiring techniques,
nothing beats Spring’s automatic configuration for ease of use. Why bother explicitly
wiring beans together if Spring can be configured to automatically do it for you?

 Spring attacks automatic wiring from two angles:

 Component scanning—Spring automatically discovers beans to be created in the
application context.

 Autowiring—Spring automatically satisfies bean dependencies.

Working together, component scanning and autowiring are a powerful force and can
help keep explicit configuration to a minimum.

 To demonstrate component scanning and autowiring, you’re going to create a few
beans that represent some of the components in a stereo system. You’ll start by creating
a CompactDisc class that Spring will discover and create as a bean. Then you’ll create a
CDPlayer class and have Spring discover it and inject it with the CompactDisc bean.

2.2.1 Creating discoverable beans

In this age of MP3 files and streaming music, the compact disc may seem a bit quaint
and archaic. Not as much as cassette tapes, eight-tracks, or vinyl records, of course, but
CDs are becoming more and more scarce as the last remnant of physical music delivery.

 In spite of that, the CD provides a nice illustration of how DI works. CD players are
of little value unless you insert (or inject) a CD into them. You could say that a CD
player depends on a CD to do its job.

35Automatically wiring beans
 To bring this illustration to life in Spring, let’s establish the concept of a CD in Java.
The following listing shows CompactDisc, an interface that defines a CD.

package soundsystem;

public interface CompactDisc {
void play();

}

The specifics of the CompactDisc interface aren’t important. What is important is that
you’ve defined it as an interface. As an interface, it defines the contract through
which a CD player can operate on the CD. And it keeps the coupling between any CD
player implementation and the CD itself to a minimum.

 You still need an implementation of CompactDisc, though. In fact, you could
have several CompactDisc implementations. In this case, you’ll start with one: the
SgtPeppers class, as shown in the next listing.

package soundsystem;
import org.springframework.stereotype.Component;

@Component
public class SgtPeppers implements CompactDisc {

private String title = "Sgt. Pepper's Lonely Hearts Club Band";
private String artist = "The Beatles";

public void play() {
System.out.println("Playing " + title + " by " + artist);

}

}

As with the CompactDisc interface, the specifics of SgtPeppers aren’t important to
this discussion. What you should take note of is that SgtPeppers is annotated with
@Component. This simple annotation identifies this class as a component class and
serves as a clue to Spring that a bean should be created for the class. There’s no need
to explicitly configure a SgtPeppers bean; Spring will do it for you because this class is
annotated with @Component.

 Component scanning isn’t turned on by default, however. You’ll still need to write
an explicit configuration to tell Spring to seek out classes annotated with @Component
and to create beans from them. The configuration class in the following listing shows
the minimal configuration to make this possible.

Listing 2.1 The CompactDisc interface defines the concept of a CD in Java.

Listing 2.2 @CompactDisc-annotated SgtPeppers implements CompactDisc

36 CHAPTER 2 Wiring beans

package soundsystem;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;

@Configuration
@ComponentScan
public class CDPlayerConfig {
}

The CDPlayerConfig class defines a Spring wiring specification, expressed in Java.
We’ll look at Java-based Spring configuration more in section 2.3. But for now,
observe that CDPlayerConfig doesn’t explicitly define any beans itself. Instead, it’s
annotated with @ComponentScan to enable component scanning in Spring.

 With no further configuration, @ComponentScan will default to scanning the same
package as the configuration class. Therefore, because CDPlayerConfig is in the
soundsystem package, Spring will scan that package and any subpackages underneath
it, looking for classes that are annotated with @Component. It should find the Compact-
Disc class and automatically create a bean for it in Spring.

 If you’d rather turn on component scanning via XML configuration, then you can
use the <context:component-scan> element from Spring’s context namespace. Here
is a minimal XML configuration to enable component scanning.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd">

<context:component-scan base-package="soundsystem" />

</beans>

Even though XML is an option for enabling component scanning, I’m going to focus on
using the preferred Java-based configuration for the remainder of this discussion. If
XML is more your style, though, you’ll be happy to know that the <context:component-
scan> element has attributes and sub-elements that mirror the attributes you’ll use
when working with @ComponentScan.

 Believe it or not, with only two classes created, you already have something that
you can try out. To test that component scanning works, let’s write a simple JUnit test
that creates a Spring application context and asserts that the CompactDisc bean is, in
fact, created. CDPlayerTest in the next listing does precisely that.

Listing 2.3 @ComponentScan enables component scanning

Listing 2.4 Enabling component scanning in XML

37Automatically wiring beans

package soundsystem;

import static org.junit.Assert.*;

import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes=CDPlayerConfig.class)
public class CDPlayerTest {

@Autowired
private CompactDisc cd;

@Test
public void cdShouldNotBeNull() {

assertNotNull(cd);
}

}

CDPlayerTest takes advantage of Spring’s SpringJUnit4ClassRunner to have a Spring
application context automatically created when the test starts. And the @Context-
Configuration annotation tells it to load its configuration from the CDPlayerConfig
class. Because that configuration class includes @ComponentScan, the resulting applica-
tion context should include the CompactDisc bean.

 To prove that, the test has a property of type CompactDisc that is annotated with
@Autowired to inject the CompactDisc bean into the test. (I’ll talk more about
@Autowired in a moment.) Finally, a simple test method asserts that the cd property
isn’t null. If it’s not null, that means Spring was able to discover the CompactDisc class,
automatically create it as a bean in the Spring application context, and inject it into
the test.

 The test should pass with flying colors (or, hopefully, the color green in your test
runner). Your first simple component-scanning exercise was a success! Even though
you’ve only used it to create a single bean, that same small amount of configuration is
good for discovering and creating any number of beans. Any classes in or under the
soundsystem package that are annotated with @Component will also be created as
beans. One line with @ComponentScan in exchange for countless automatically created
beans is a good trade-off.

 Now let’s dig a bit deeper into @ComponentScan and @Component and see what else
you can do with component scanning.

Listing 2.5 Testing that a CompactDisc was found by component scanning

38 CHAPTER 2 Wiring beans
2.2.2 Naming a component-scanned bean

All beans in a Spring application context are given an ID. What may not have been
apparent from the previous example is that although you didn’t explicitly give the
SgtPeppers bean an ID, it was given one derived from its class name. Specifically, the
bean was given an ID of sgtPeppers by lowercasing the first letter of the class name.

 If you’d rather give the bean a different ID, all you have to do is pass the desired ID
as a value to the @Component annotation. For example, if you wanted to identify the
bean as lonelyHeartsClub, then you’d annotate the SgtPeppers class with @Component
like this:

@Component("lonelyHeartsClub")
public class SgtPeppers implements CompactDisc {

...
}

Another way to name a bean is to not use the @Component annotation at all. Instead,
you can use the @Named annotation from the Java Dependency Injection specification
(JSR-330) to provide a bean ID:

package soundsystem;
import javax.inject.Named;

@Named("lonelyHeartsClub")
public class SgtPeppers implements CompactDisc {

...
}

Spring supports the @Named annotation as an alternative to @Component. There are a
few subtle differences, but in most common cases they’re interchangeable.

 With that said, I have a strong preference for the @Component annotation, largely
because @Named is … well … poorly named. It doesn’t describe what it does as well as
@Component. Therefore, I won’t use @Named any further in this book or its examples.

2.2.3 Setting a base package for component scanning

Thus far, you’ve used @ComponentScan with no attributes. That means it will default to
the configuration class’s package as its base package to scan for components. But what
if you want to scan a different package? Or what if you want to scan multiple base
packages?

 One common reason for explicitly setting the base package is so that you can keep
all of your configuration code in a package of its own, separate from the rest of your
application’s code. In that case, the default base package won’t do.

 No problem. To specify a different base package, you only need to specify the pack-
age in @ComponentScan’s value attribute:

@Configuration
@ComponentScan("soundsystem")
public class CDPlayerConfig {}

39Automatically wiring beans
Or, if you’d rather it be clear that you’re setting the base package, you can do so with
the basePackages attribute:

@Configuration
@ComponentScan(basePackages="soundsystem")
public class CDPlayerConfig {}

You probably noticed that basePackages is plural. If you’re wondering whether that
means you can specify multiple base packages, you can. All you need to do is set
basePackages to an array of packages to be scanned:

@Configuration
@ComponentScan(basePackages={"soundsystem", "video"})
public class CDPlayerConfig {}

The one thing about setting the base packages as shown here is that they’re expressed
as String values. That’s fine, I suppose, but it’s not very type-safe. If you were to refac-
tor the package names, the specified base packages would be wrong.

 Rather than specify the packages as simple String values, @ComponentScan also
offers you the option of specifying them via classes or interfaces that are in the
packages:

@Configuration
@ComponentScan(basePackageClasses={CDPlayer.class, DVDPlayer.class})
public class CDPlayerConfig {}

As you can see, the basePackages attribute has been replaced with basePackage-
Classes. And instead of identifying the packages with String names, the array given
to basePackageClasses includes classes. Whatever packages those classes are in will
be used as the base package for component scanning.

 Although I’ve specified component classes for basePackageClasses, you might
consider creating an empty marker interface in the packages to be scanned. With a
marker interface, you can still have a refactor-friendly reference to an interface, but
without references to any actual application code (that could later be refactored out
of the package you intended to component-scan).

 If all the objects in your applications were standalone and had no dependencies, like
the SgtPeppers bean, then component scanning would be everything you need. But
many objects lean on other objects for help to get their job done. You need a way to wire
up your component-scanned beans with any dependencies they have. To do that, we’ll
need to look at autowiring, the other side of automatic Spring configuration.

2.2.4 Annotating beans to be automatically wired

Put succinctly, autowiring is a means of letting Spring automatically satisfy a bean’s
dependencies by finding other beans in the application context that are a match to
the bean’s needs. To indicate that autowiring should be performed, you can use
Spring’s @Autowired annotation.

 For example, consider the CDPlayer class in the following listing. Its constructor
is annotated with @Autowired, indicating that when Spring creates the CDPlayer bean,

40 CHAPTER 2 Wiring beans
it should instantiate it via that constructor and pass in a bean that is assignable to
CompactDisc.

package soundsystem;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;

@Component
public class CDPlayer implements MediaPlayer {

private CompactDisc cd;

@Autowired
public CDPlayer(CompactDisc cd) {

this.cd = cd;
}

public void play() {
cd.play();

}

}

The @Autowired annotation’s use isn’t limited to constructors. It can also be used on a
property’s setter method. For example, if CDPlayer had a setCompactDisc() method,
you might annotate it for autowiring like this:

@Autowired
public void setCompactDisc(CompactDisc cd) {

this.cd = cd;
}

After Spring has instantiated the bean, it will try to satisfy the dependencies expressed
through methods such as the setCompactDisc() method that are annotated with
@Autowired.

 Actually, there’s nothing special about setter methods. @Autowired can also be
applied on any method on the class. Pretending that CDPlayer has an insertDisc()
method, @Autowired would work equally well there as on setCompactDisc():

@Autowired
public void insertDisc(CompactDisc cd) {

this.cd = cd;
}

Whether it’s a constructor, a setter method, or any other method, Spring will attempt
to satisfy the dependency expressed in the method’s parameters. Assuming that one
and only one bean matches, that bean will be wired in.

 If there are no matching beans, Spring will throw an exception as the application
context is being created. To avoid that exception, you can set the required attribute
on @Autowired to false:

Listing 2.6 Injecting a CompactDisc into a CDPlayer bean using autowiring

41Automatically wiring beans
@Autowired(required=false)
public CDPlayer(CompactDisc cd) {

this.cd = cd;
}

When required is false, Spring will attempt to perform autowiring; but if there are no
matching beans, it will leave the bean unwired. You should be careful setting required
to false, however. Leaving the property unwired could lead to NullPointer-
Exceptions if you don’t check for null in your code.

 In the event that multiple beans can satisfy the dependency, Spring will throw an
exception indicating ambiguity in selecting a bean for autowiring. We’ll talk more
about managing ambiguity in autowiring later, in chapter 3.

 @Autowired is a Spring-specific annotation. If it troubles you to be scattering
Spring-specific annotations throughout your code for autowiring, you might consider
using the @Inject annotation instead:

package soundsystem;
import javax.inject.Inject;
import javax.inject.Named;

@Named
public class CDPlayer {

...

@Inject
public CDPlayer(CompactDisc cd) {

this.cd = cd;
}

...
}

@Inject comes from the Java Dependency Injection specification, the same specifica-
tion that gave us @Named. Spring supports the @Inject annotation for autowiring
alongside its own @Autowired. Although there are some subtle differences between
@Inject and @Autowired, they’re interchangeable in many cases.

 I have no strong preference between @Autowired and @Inject. In fact, I some-
times find myself using both in a given project. For the purposes of the examples in
this book, however, I’ll consistently use @Autowired. You’re welcome to use whichever
one suits you best.

2.2.5 Verifying automatic configuration

Now that you’ve annotated CDPlayer’s constructor with @Autowired, you can be
assured that Spring will automatically inject it with a bean assignable to CompactDisc.
To be certain, let’s change CDPlayerTest to play the compact disc through the
CDPlayer bean:

package soundsystem;
import static org.junit.Assert.*;

42 CHAPTER 2 Wiring beans
import org.junit.Rule;
import org.junit.Test;
import org.junit.contrib.java.lang.system.StandardOutputStreamLog;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes=CDPlayerConfig.class)
public class CDPlayerTest {

@Rule
public final StandardOutputStreamLog log =

new StandardOutputStreamLog();

@Autowired
private MediaPlayer player;

@Autowired
private CompactDisc cd;

@Test
public void cdShouldNotBeNull() {

assertNotNull(cd);
}

@Test
public void play() {

player.play();
assertEquals(

"Playing Sgt. Pepper's Lonely Hearts Club Band" +
" by The Beatles\n",
log.getLog());

}

}

Now, in addition to injecting CompactDisc, you’re injecting the CDPlayer bean into
the test’s player member variable (as the more generic MediaPlayer type). In the
play() test method, you call the play() method on the CDPlayer and assert that it
does what you expect.

 Testing code that uses System.out.println() is a tricky business. Therefore, this
example uses StandardOutputStreamLog, a JUnit rule from the System Rules library
(http://stefanbirkner.github.io/system-rules/index.html) that lets you make asser-
tions against whatever is written to the console. Here it’s asserting that the message
from the SgtPeppers.play() method was sent to the console.

 Now you know the basics of component scanning and autowiring. We’ll revisit com-
ponent scanning in chapter 3 when we look at ways to address autowiring ambiguity.

 But at this point, let’s set aside component scanning and autowiring and see how
you can explicitly wire beans in Spring. We’ll start with Spring’s facility for expressing
configuration in Java.

http://stefanbirkner.github.io/system-rules/index.html

43Wiring beans with Java
2.3 Wiring beans with Java
Although automatic Spring configuration with component scanning and automatic
wiring is preferable in many cases, there are times when automatic configuration isn’t
an option and you must configure Spring explicitly. For instance, let’s say that you
want to wire components from some third-party library into your application.
Because you don’t have the source code for that library, there’s no opportunity to
annotate its classes with @Component and @Autowired. Therefore, automatic configu-
ration isn’t an option.

 In that case, you must turn to explicit configuration. You have two choices for
explicit configuration: Java and XML. In this section, we’ll look at how to use Java-
Config. We’ll then follow up in the next section on Spring’s XML configuration.

 As I mentioned earlier, JavaConfig is the preferred option for explicit configura-
tion because it’s more powerful, type-safe, and refactor-friendly. That’s because it’s just
Java code, like any other Java code in your application.

 At the same time, it’s important to recognize that JavaConfig code isn’t just any
other Java code. It’s conceptually set apart from the business logic and domain code
in your application. Even though it’s expressed in the same language as those compo-
nents, JavaConfig is configuration code. This means it shouldn’t contain any business
logic, nor should JavaConfig invade any code where business logic resides. In fact,
although it’s not required, JavaConfig is often set apart in a separate package from
the rest of an application’s logic so there’s no confusion as to its purpose.

 Let’s see how to explicitly configure Spring with JavaConfig.

2.3.1 Creating a configuration class

Earlier in this chapter, in listing 2.3, you got your first taste of JavaConfig. Let’s revisit
CDPlayerConfig from that example:

package soundsystem;
import org.springframework.context.annotation.Configuration;

@Configuration
public class CDPlayerConfig {
}

The key to creating a JavaConfig class is to annotate it with @Configuration. The
@Configuration annotation identifies this as a configuration class, and it’s expected
to contain details on beans that are to be created in the Spring application context.

 So far, you’ve relied on component scanning to discover the beans that Spring
should create. Although there’s no reason you can’t use component scanning and
explicit configuration together, we’re focusing on explicit configuration in this sec-
tion, so I’ve removed the @ComponentScan annotation from CDPlayerConfig.

 With @ComponentScan gone, the CDPlayerConfig class is ineffective. If you were to
run CDPlayerTest now, the test would fail with a BeanCreationException. The test
expects to be injected with CDPlayer and CompactDisc, but those beans are never cre-
ated because they’re never discovered by component scanning.

44 CHAPTER 2 Wiring beans
 To make the test happy again, you could put @ComponentScan back in. Keeping the
focus on explicit configuration, however, let’s see how you can wire the CDPlayer and
CompactDisc beans in JavaConfig.

2.3.2 Declaring a simple bean

To declare a bean in JavaConfig, you write a method that creates an instance of the
desired type and annotate it with @Bean. For example, the following method declares
the CompactDisc bean:

@Bean
public CompactDisc sgtPeppers() {

return new SgtPeppers();
}

The @Bean annotation tells Spring that this method will return an object that should
be registered as a bean in the Spring application context. The body of the method
contains logic that ultimately results in the creation of the bean instance.

 By default, the bean will be given an ID that is the same as the @Bean-annotated
method’s name. In this case, the bean will be named compactDisc. If you’d rather it
have a different name, you can either rename the method or prescribe a different
name with the name attribute:

@Bean(name="lonelyHeartsClubBand")
public CompactDisc sgtPeppers() {

return new SgtPeppers();
}

No matter how you name the bean, this bean declaration is about as simple as they
come. The body of the method returns a new instance of SgtPeppers. But because it’s
expressed in Java, it has every capability afforded it by the Java language to do almost
anything to arrive at the CompactDisc that is returned.

 Unleashing your imagination a bit, you might do something crazy like randomly
selecting a CompactDisc from a selection of choices:

@Bean
public CompactDisc randomBeatlesCD() {

int choice = (int) Math.floor(Math.random() * 4);
if (choice == 0) {

return new SgtPeppers();
} else if (choice == 1) {

return new WhiteAlbum();
} else if (choice == 2) {

return new HardDaysNight();
} else {

return new Revolver();
}

}

I’ll let you daydream a bit about all the ways you can exploit the power of Java to pro-
duce a bean from an @Bean-annotated method. When you’re done, we’ll pick it back up
and look at how you can inject the CompactDisc bean into the CDPlayer in JavaConfig.

45Wiring beans with Java
2.3.3 Injecting with JavaConfig

The CompactDisc bean you declared was simple and had no dependencies of its own.
But now you must declare the CDPlayer bean, which depends on a CompactDisc. How
can you wire that up in JavaConfig?

 The simplest way to wire up beans in JavaConfig is to refer to the referenced bean’s
method. For example, here’s how you might declare the CDPlayer bean:

@Bean
public CDPlayer cdPlayer() {

return new CDPlayer(sgtPeppers());
}

The cdPlayer() method, like the sgtPeppers() method, is annotated with @Bean to
indicate that it will produce an instance of a bean to be registered in the Spring appli-
cation context. The ID of the bean will be cdPlayer, the same as the method’s name.

 The body of the cdPlayer() method differs subtly from that of the sgtPeppers()
method. Rather than construct an instance via its default method, the CDPlayer
instance is created by calling its constructor that takes a CompactDisc.

 It appears that the CompactDisc is provided by calling sgtPeppers, but that’s not
exactly true. Because the sgtPeppers() method is annotated with @Bean, Spring will
intercept any calls to it and ensure that the bean produced by that method is returned
rather than allowing it to be invoked again.

 For example, suppose you were to introduce another CDPlayer bean that is just
like the first:

@Bean
public CDPlayer cdPlayer() {

return new CDPlayer(sgtPeppers());
}

@Bean
public CDPlayer anotherCDPlayer() {

return new CDPlayer(sgtPeppers());
}

If the call to sgtPeppers() was treated like any other call to a Java method, then each
CDPlayer would be given its own instance of SgtPeppers. That would make sense if we
were talking about real CD players and compact discs. If you have two CD players,
there’s no physical way for a single compact disc to simultaneously be inserted into
two CD players.

 In software, however, there’s no reason you couldn’t inject the same instance of
SgtPeppers into as many other beans as you want. By default, all beans in Spring are
singletons, and there’s no reason you need to create a duplicate instance for the sec-
ond CDPlayer bean. So Spring intercepts the call to sgtPeppers() and makes sure
that what is returned is the Spring bean that was created when Spring itself called
sgtPeppers() to create the CompactDisc bean. Therefore, both CDPlayer beans will
be given the same instance of SgtPeppers.

46 CHAPTER 2 Wiring beans
 I can see how referring to a bean by calling its method can be confusing. There’s
another way that might be easier to digest:

@Bean
public CDPlayer cdPlayer(CompactDisc compactDisc) {

return new CDPlayer(compactDisc);
}

Here, the cdPlayer() method asks for a CompactDisc as a parameter. When Spring
calls cdPlayer() to create the CDPlayer bean, it autowires a CompactDisc into the
configuration method. Then the body of the method can use it however it sees fit.
With this technique, the cdPlayer() method can still inject the CompactDisc into the
CDPlayer’s constructor without explicitly referring to the CompactDisc’s @Bean
method.

 This approach to referring to other beans is usually the best choice because it
doesn’t depend on the CompactDisc bean being declared in the same configuration
class. In fact, there’s nothing that says the CompactDisc bean even needs to be
declared in JavaConfig; it could have been discovered by component scanning or
declared in XML. You could break up your configuration into a healthy mix of config-
uration classes, XML files, and automatically scanned and wired beans. No matter how
the CompactDisc was created, Spring will be happy to hand it to this configuration
method to create the CDPlayer bean.

 In any event, it’s important to recognize that although you’re performing DI via
the CDPlayer’s constructor, there’s no reason you couldn’t apply other styles of DI
here. For example, if you wanted to inject a CompactDisc via a setter method, it might
look like this:

@Bean
public CDPlayer cdPlayer(CompactDisc compactDisc) {

CDPlayer cdPlayer = new CDPlayer(compactDisc);
cdPlayer.setCompactDisc(compactDisc);
return cdPlayer;

}

Once again, it bears repeating that the body of an @Bean method can utilize whatever
Java is necessary to produce the bean instance. Constructor and setter injection just
happen to be two simple examples of what you can do in an @Bean-annotated method.
The possibilities are limited only by the capabilities of the Java language.

2.4 Wiring beans with XML
So far, you’ve seen how to let Spring automatically discover and wire beans. And you’ve
seen how to step in and explicitly wire beans using JavaConfig. But there’s another
option for bean wiring that, although less desirable, has a long history with Spring.

 Since the beginning of Spring, XML has been the primary way of expressing con-
figuration. Countless lines of XML have been created in the name of Spring. And for
many, Spring has become synonymous with XML configuration.

47Wiring beans with XML
 Although it’s true that Spring has long been associated with XML, let’s be clear that
XML isn’t the only option for configuring Spring. And now that Spring has strong sup-
port for automatic configuration and Java-based configuration, XML should not be
your first choice.

 Nevertheless, because so much XML-based Spring configuration has already been
written, it’s important to understand how to use XML with Spring. I hope, however,
that this section will only serve to help you work with existing XML configuration, and
that you’ll lean on automatic configuration and JavaConfig for any new Spring work
you do.

2.4.1 Creating an XML configuration specification

Before you can start using XML to wire together beans in Spring, you’ll need to create
the empty configuration specification. With JavaConfig, that meant creating a class
annotated with @Configuration. For XML configuration, that means creating an XML
file rooted with a <beans> element.

 The simplest possible Spring XML configuration looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context">

<!-- configuration details go here -->

</beans>

It doesn’t take much to see that this basic XML configuration is already much more
complex than an equivalent JavaConfig class. Whereas JavaConfig’s @Configuration
annotation was all you needed to get started, the XML elements for configuring
Spring are defined in several XML schema (XSD) files that must be declared in the
preamble of the XML configuration file.

CREATING XML CONFIGURATIONS WITH SPRING TOOL SUITE An easy way to create
and manage Spring XML configuration files is to use Spring Tool Suite
(https://spring.io/tools/sts). Select File > New > Spring Bean Configuration
File from Spring Tool Suite’s menu to create a Spring XML configuration file,
and select from one of the available configuration namespaces.

The most basic XML elements for wiring beans are contained in the spring-beans
schema, which is declared as the root namespace of this XML file. The <beans> ele-
ment, the root element of any Spring configuration file, is one of the elements in this
schema.

 Several other schemas are available for configuring Spring in XML. Although I’m
going to focus on automatic and Java configuration throughout this book, I’ll at least

https://spring.io/tools/sts

48 CHAPTER 2 Wiring beans
keep you informed along the way when some of these other schemas might come
into play.

 As it is, you have a perfectly valid Spring XML configuration. It’s also a perfectly
useless configuration, because it doesn’t (yet) declare any beans. To give it some life,
let’s re-create the CD example, this time using XML configuration instead of Java-
Config or automatic configuration.

2.4.2 Declaring a simple <bean>

To declare a bean in Spring’s XML-based configuration, you’re going to use another
element from the spring-beans schema: the <bean> element. The <bean> element is
the XML analogue to JavaConfig’s @Bean annotation. You can use it to declare the
CompactDisc bean like this:

<bean class="soundsystem.SgtPeppers" />

Here you declare a very simple bean. The class used to create this bean is specified in
the class attribute and is expressed as the fully qualified class name.

 For lack of an explicitly given ID, the bean will be named according to the fully
qualified class name. In this case, the bean’s ID will be soundsystem.SgtPeppers#0.
The #0 is an enumeration used to differentiate this bean from any other bean of the
same type. If you were to declare another SgtPeppers bean without explicitly identify-
ing it, it would automatically be given an ID of soundsystem.SgtPeppers#1.

 Even though it’s convenient to have beans named automatically for you, the gener-
ated names will be less useful if you need to refer to them later. Therefore, it’s usually
a good idea to give each bean a name of your own choosing via the id attribute:

<bean id="compactDisc" class="soundsystem.SgtPeppers" />

You’ll use this explicit name in a moment when you wire this bean into the CDPlayer
bean.

REDUCING VERBOSITY To cut down on XML verbosity, only explicitly name a
bean if you’ll need to refer to it by name (such as if you were to inject a refer-
ence to it into another bean).

But before we go any further, let’s take a moment to examine some of the characteris-
tics of this simple bean declaration.

 The first thing to notice is that you aren’t directly responsible for creating an
instance of SgtPeppers as you were when using JavaConfig. When Spring sees this
<bean> element, it will create a SgtPeppers bean for you by calling its default con-
structor. Bean creation is much more passive with XML configuration. But it’s also less
powerful than JavaConfig, where you can do almost anything imaginable to arrive at
the bean instance.

 Another notable thing about this simple <bean> declaration is that you express the
type of the bean as a string set to the class attribute. Who’s to say that the value given
to class even refers to a real class? Spring’s XML configuration doesn’t benefit from

49Wiring beans with XML
compile-time verification of the Java types being referred to. And even if it does refer
to an actual type, what will happen if you rename the class?

CHECK XML VALIDITY WITH AN IDE Using a Spring-aware IDE such as Spring Tool
Suite can help a lot to ensure the validity of your Spring XML configuration.

These are just a few of the reasons why JavaConfig is preferable over XML configura-
tion. I encourage you to be mindful of these shortcomings of XML configuration
when choosing the configuration style for your application. Nevertheless, let’s
continue this study of Spring’s XML configuration to see how you can inject your
SgtPeppers bean into the CDPlayer.

2.4.3 Initializing a bean with constructor injection

There’s only one way to declare a bean in Spring XML configuration: use the <bean>
element, and specify a class attribute. Spring takes it from there.

 But when it comes to declaring DI in XML, there are several options and styles.
With specific regard to constructor injection, you have two basic options to choose
from:

 The <constructor-arg> element
 Using the c-namespace introduced in Spring 3.0

The difference between these two choices is largely one of verbosity. As you’ll see, the
<constructor-arg> element is generally more verbose than using the c-namespace
and results in XML that is more difficult to read. On the other hand, <constructor-
arg> can do a few things that the c-namespace can’t.

 As we look at constructor injection in Spring XML, we’ll stack these two options
side by side. First, let’s see how each fares at injecting bean references.

INJECTING CONSTRUCTORS WITH BEAN REFERENCES

As currently defined, the CDPlayer bean has a constructor that accepts a Compact-
Disc. This makes it a perfect candidate for injection with a bean reference.

 Because you’ve already declared a SgtPeppers bean, and because the SgtPeppers
class implements the CompactDisc interface, you have a bean to inject into a CDPlayer
bean. All you need to do is declare the CDPlayer bean in XML and reference the
SgtPeppers bean by its ID:

<bean id="cdPlayer" class="soundsystem.CDPlayer">
<constructor-arg ref="compactDisc" />

</bean>

When Spring encounters this <bean> element, it will create an instance of CDPlayer.
The <constructor-arg> element tells it to pass a reference to the bean whose ID is
compactDisc to the CDPlayer’s constructor.

 Alternatively, you can use Spring’s c-namespace. The c-namespace was introduced
in Spring 3.0 as a more succinct way of expressing constructor args in XML. To use it,
you must declare its schema in the preamble of the XML, like this:

50 CHAPTER 2 Wiring beans
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:c="http://www.springframework.org/schema/c"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

...

</beans>

With the c-namespace and schema declared, you can use it to declare a constructor
argument like this:

<bean id="cdPlayer" class="soundsystem.CDPlayer"
c:cd-ref="compactDisc" />

Here you’re using the c-namespace to declare the
constructor argument as an attribute of the
<bean> element. And it’s a rather odd-looking
attribute name. Figure 2.1 illustrates how the
pieces of the attribute name come together.

 The attribute name starts with c:, the
namespace prefix. Following that is the name of
the constructor argument being wired. After that
is -ref, a naming convention that indicates to
Spring that you’re wiring a reference to a bean
named compactDisc and not the literal String
value "compactDisc".

 It’s clear that using c-namespace attributes is much more terse than using the
<constructor-arg> element. That’s one of the reasons that I like it a lot. Aside from
being slightly easier to read, c-namespace attributes are especially helpful when I have
to write code samples that fit neatly within the margins of a book.

 But one thing that bugs me about the c-namespace as I’ve used it in the previous
example is that it directly refers to the name of the constructor argument. Referring
to a parameter name seems a bit flaky to me. Referring to a parameter by name
requires that you compile your code with debug symbols stored in the class code. If
you optimize your builds to leave out debug symbols, then this probably won’t work.

 Instead, you could refer to the parameter’s position in the parameter list:

<bean id="cdPlayer" class="soundsystem.CDPlayer"
c:_0-ref="compactDisc" />

This c-namespace attribute looks even more bizarre than the last one. I’ve replaced the
name of the parameter with 0, the parameter index. But because XML doesn’t allow digits
as the first character of an attribute, I had to add an underscore as a prefix.

 Using an index to identify the constructor argument feels better than referencing
it by its name. Even if debug symbols are excluded from the build, the parameters will

c:cd-ref="compactDisc"

c-namespace
prefix

Constructor
argument name

Injecting a
bean reference

The ID of the
bean to inject

Figure 2.1 Injecting a bean reference
into a constructor argument with
Spring’s c-namespace

51Wiring beans with XML
still be in the same order. And if there were multiple constructor arguments, it would
certainly be useful. But because you have only one constructor argument, you have
one more option—don’t identify the parameter at all:

<bean id="cdPlayer" class="soundsystem.CDPlayer"
c:_-ref="compactDisc" />

This is by far the most peculiar c-namespace attribute. There’s no parameter index or
parameter name. There’s just an underscore placeholder followed by -ref to indicate
that you’re wiring a reference.

 Now that you’ve tried wiring a reference to other beans, let’s see how to wire literal
values into constructors.

INJECTING CONSTRUCTORS WITH LITERAL VALUES

Although DI often refers to the type of wiring you’ve done thus far—wiring references
to objects into other objects that depend on them—sometimes all you need to do is
configure an object with a literal value. To illustrate, suppose you were to create a new
implementation of CompactDisc, as shown here:

package soundsystem;

public class BlankDisc implements CompactDisc {

private String title;
private String artist;

public BlankDisc(String title, String artist) {
this.title = title;
this.artist = artist;

}

public void play() {
System.out.println("Playing " + title + " by " + artist);

}

}

Unlike SgtPeppers, which was hard-coded with a title and artist, this implementation
of CompactDisc is considerably more flexible. Much like a real-world blank disc, it can
be set to contain any artist and title you want. Now you can change the existing
SgtPeppers bean to use this class instead:

<bean id="compactDisc"
class="soundsystem.BlankDisc">

<constructor-arg value="Sgt. Pepper's Lonely Hearts Club Band" />
<constructor-arg value="The Beatles" />

</bean>

Once again, the <constructor-arg> element is used to inject into constructor argu-
ments. But this time, instead of using the ref attribute to reference another bean, you
use the value attribute to indicate that the given value is to be taken literally and
injected into the constructor.

 How would this look if you were to use c-namespace attributes instead? One possi-
ble rendition might reference the constructor arguments by name:

52 CHAPTER 2 Wiring beans
<bean id="compactDisc"
class="soundsystem.BlankDisc"
c:_title="Sgt. Pepper's Lonely Hearts Club Band"
c:_artist="The Beatles" />

As you can see, wiring literal values via the c-namespace differs from wiring references
in that the -ref suffix is left off the attribute name. Similarly, you could wire the same
literal values using parameter indexes, like this:

<bean id="compactDisc"
class="soundsystem.BlankDisc"
c:_0="Sgt. Pepper's Lonely Hearts Club Band"
c:_1="The Beatles" />

XML doesn’t allow more than one attribute on a given element to share the same
name. Therefore, you can’t use the simple underscore when you have two or more
constructor arguments. But you can use it when there’s only one constructor argu-
ment. For the sake of completeness, let’s pretend that BlankDisc has a single-
argument constructor that takes the album’s title. In that case, you could declare it in
Spring like this:

<bean id="compactDisc" class="soundsystem.BlankDisc"
c:_="Sgt. Pepper's Lonely Hearts Club Band" />

When it comes to wiring bean reference and literal values, both <constructor-arg>
and the c-namespace attributes are equally capable. But there’s one thing that
<constructor-arg> can do that the c-namespace can’t do. Let’s look at how to wire
collections to constructor arguments.

WIRING COLLECTIONS

Up until now, we’ve assumed that CompactDisc was defined by merely a title and an
artist name. But if that’s all that came with a real-world CD, the technology would’ve
never taken off. What makes CDs worth buying is that they carry music on them. Most
CDs carry roughly a dozen tracks, each holding a song.

 If CompactDisc is to truly model a real-world CD, then it must also have the notion
of a list of tracks. Consider the new BlankDisc shown here:

package soundsystem.collections;
import java.util.List;
import soundsystem.CompactDisc;

public class BlankDisc implements CompactDisc {

private String title;
private String artist;
private List<String> tracks;

public BlankDisc(String title, String artist, List<String> tracks) {
this.title = title;
this.artist = artist;
this.tracks = tracks;

}

53Wiring beans with XML
public void play() {
System.out.println("Playing " + title + " by " + artist);
for (String track : tracks) {

System.out.println("-Track: " + track);
}

}

}

This change has implications for how you configure the bean in Spring. You must pro-
vide a list of tracks when declaring the bean.

 The simplest thing you could do is leave the list null. Because it’s a constructor
argument, you must specify it, but you can still pass null like this:

<bean id="compactDisc" class="soundsystem.BlankDisc">
<constructor-arg value="Sgt. Pepper's Lonely Hearts Club Band" />
<constructor-arg value="The Beatles" />
<constructor-arg><null/></constructor-arg>

</bean>

The <null/> element does as you’d expect: it passes null into the constructor. It’s a
dirty fix, but it will work at injection time. You’ll get a NullPointerException when
the play() method is called, so it’s far from ideal.

 A better fix would be to supply a list of track names. For that you have a couple of
options. First, you could specify it as a list, using the <list> element:

<bean id="compactDisc" class="soundsystem.BlankDisc">
<constructor-arg value="Sgt. Pepper's Lonely Hearts Club Band" />
<constructor-arg value="The Beatles" />
<constructor-arg>

<list>
<value>Sgt. Pepper's Lonely Hearts Club Band</value>
<value>With a Little Help from My Friends</value>
<value>Lucy in the Sky with Diamonds</value>
<value>Getting Better</value>
<value>Fixing a Hole</value>
<!-- ...other tracks omitted for brevity... -->

</list>
</constructor-arg>

</bean>

The <list> element is a child of <constructor-arg> and indicates that a list of values
is to be passed into the constructor. The <value> element is used to specify each ele-
ment of the list.

 Similarly, a list of bean references could be wired using the <ref> element instead
of <value>. For example, suppose you have a Discography class with the following
constructor:

public Discography(String artist, List<CompactDisc> cds) { ... }

You can then configure a Discography bean like this:

<bean id="beatlesDiscography"
class="soundsystem.Discography">

54 CHAPTER 2 Wiring beans
<constructor-arg value="The Beatles" />
<constructor-arg>

<list>
<ref bean="sgtPeppers" />
<ref bean="whiteAlbum" />
<ref bean="hardDaysNight" />
<ref bean="revolver" />
...

</list>
</constructor-arg>

</bean>

It makes sense to use <list> when wiring a constructor argument of type
java.util.List. Even so, you could also use the <set> element in the same way:

<bean id="compactDisc" class="soundsystem.BlankDisc">
<constructor-arg value="Sgt. Pepper's Lonely Hearts Club Band" />
<constructor-arg value="The Beatles" />
<constructor-arg>

<set>
<value>Sgt. Pepper's Lonely Hearts Club Band</value>
<value>With a Little Help from My Friends</value>
<value>Lucy in the Sky with Diamonds</value>
<value>Getting Better</value>
<value>Fixing a Hole</value>
<!-- ...other tracks omitted for brevity... -->

</set>
</constructor-arg>

</bean>

There’s little difference between <set> and <list>. The main difference is that when
Spring creates the collection to be wired, it will create it as either a java.util.Set or
a java.util.List. If it’s a Set, then any duplicate values will be discarded and the
ordering may not be honored. But in either case, either a <set> or a <list> can be
wired into a List, a Set, or even an array.

 Wiring collections is one place where the <constructor-arg> has an advantage
over the c-namespace attributes. There’s no obvious way to wire collections like this
via c-namespace attributes.

 There are a handful of other nuances to using both <constructor-arg> and the c-
namespace for constructor injection. But what we’ve covered here should carry you
quite far, especially considering my earlier advice to favor Java configuration over XML
configuration. Therefore, rather than belabor the topic of constructor injection in
XML, let’s move on to see how to wire properties in XML.

2.4.4 Setting properties

Up to this point, the CDPlayer and BlankDisc classes have been configured entirely
through constructor injection and don’t have any property setter methods. In con-
trast, let’s examine how property injection works in Spring XML. Suppose that your
new property-injected CDPlayer looks like this:

55Wiring beans with XML
package soundsystem;
import org.springframework.beans.factory.annotation.Autowired;
import soundsystem.CompactDisc;
import soundsystem.MediaPlayer;

public class CDPlayer implements MediaPlayer {
private CompactDisc compactDisc;

@Autowired
public void setCompactDisc(CompactDisc compactDisc) {

this.compactDisc = compactDisc;
}

public void play() {
compactDisc.play();

}
}

CHOOSING BETWEEN CONSTRUCTOR INJECTION AND PROPERTY INJECTION As a
general rule, I favor constructor injection for hard dependencies and prop-
erty injection for any optional dependencies. In light of that rule, we could
argue that the title, artist, and track list are hard dependencies for a Blank-
Disc and that constructor injection was the right choice. It’s debatable, how-
ever, whether a CompactDisc is a hard or optional dependency for a
CDPlayer. I stand by that choice, but you could say that a CDPlayer might still
have some limited functionality even without a CompactDisc being injected
into it.

Now that CDPlayer doesn’t have any constructors (aside from the implicit default con-
structor), it also doesn’t have any hard dependencies. Therefore, you could declare it
as a Spring bean like this:

<bean id="cdPlayer"
class="soundsystem.CDPlayer" />

Spring will have absolutely no problem creating that bean. Your CDPlayerTest would
fail with a NullPointerException, however, because you never injected CDPlayer’s
compactDisc property. But you can fix that with the following change to the XML:

<bean id="cdPlayer"
class="soundsystem.CDPlayer">

<property name="compactDisc" ref="compactDisc" />
</bean>

The <property> element does for property setter methods what the <constructor-
arg> element does for constructors. In this case, it references (with the ref attribute)
the bean whose ID is compactDisc to be injected into the compactDisc property (via
the setCompactDisc() method). Now if you run your test, it should pass.

 You may also like to know that just as Spring offers the c-namespace as an alterna-
tive to the <constructor-arg> element, Spring also offers a succinct p-namespace as
an alternative to the <property> element. To enable the p-namespace, you must
declare it among the other namespaces in the XML file:

56 CHAPTER 2 Wiring beans
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:p="http://www.springframework.org/schema/p"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd">
...

</bean>

Using the p-namespace, you can wire the compactDisc property like this:

<bean id="cdPlayer"
class="soundsystem.CDPlayer"
p:compactDisc-ref="compactDisc" />

The p-namespace attributes follow a nam-
ing convention similar to that of the
c-namespace attributes. Figure 2.2 illus-
trates how this p-namespace attribute
name breaks down.

 First, the attribute name is prefixed
with p: to indicate that you’re setting a
property. Next up is the name of the prop-
erty to be injected. Finally, the name ends
with -ref as a clue to Spring that you’re
wiring a reference to a bean and not a literal value.

INJECTING PROPERTIES WITH LITERAL VALUES

Properties can be injected with literal values in much the same way as constructor
arguments. As an example, let’s revisit the BlankDisc bean. This time, however,
BlankDiscs will be configured entirely by property injection, not constructor injec-
tion. The new BlankDisc class looks like this:

package soundsystem;
import java.util.List;
import soundsystem.CompactDisc;

public class BlankDisc implements CompactDisc {

private String title;
private String artist;
private List<String> tracks;

public void setTitle(String title) {
this.title = title;

}

public void setArtist(String artist) {
this.artist = artist;

}

c:compactDisc-ref="compactDisc"

p-namespace
prefix

Property name

Injecting a
bean reference

The ID of the
bean to inject

Figure 2.2 Injecting a bean reference into a
property with Spring’s p-namespace

57Wiring beans with XML
public void setTracks(List<String> tracks) {
this.tracks = tracks;

}

public void play() {
System.out.println("Playing " + title + " by " + artist);
for (String track : tracks) {

System.out.println("-Track: " + track);
}

}

}

Now you’re no longer obligated to wire any of these properties. You could create a
BlankDisc bean in its most blank form as follows:

<bean id="reallyBlankDisc"
class="soundsystem.BlankDisc" />

Of course, wiring the bean without setting those properties wouldn’t play out well at
runtime. The play() method would claim that it’s playing null by null just before a
NullPointerException is thrown because there are no tracks. Therefore, you proba-
bly should wire up those properties. You can do that using the value attribute of the
<property> element:

<bean id="compactDisc"
class="soundsystem.BlankDisc">

<property name="title"
value="Sgt. Pepper's Lonely Hearts Club Band" />

<property name="artist" value="The Beatles" />
<property name="tracks">

<list>
<value>Sgt. Pepper's Lonely Hearts Club Band</value>
<value>With a Little Help from My Friends</value>
<value>Lucy in the Sky with Diamonds</value>
<value>Getting Better</value>
<value>Fixing a Hole</value>
<!-- ...other tracks omitted for brevity... -->

</list>
</property>

</bean>

Aside from using the <property> element’s value attribute to set the title and artist
properties, notice how you set the tracks property with a nested <list> element, the
same as before when wiring the tracks through <constructor-arg>.

 Optionally, you can accomplish the same thing using p-namespace attributes:

<bean id="compactDisc"
class="soundsystem.BlankDisc"
p:title="Sgt. Pepper's Lonely Hearts Club Band"
p:artist="The Beatles">

<property name="tracks">
<list>

<value>Sgt. Pepper's Lonely Hearts Club Band</value>

58 CHAPTER 2 Wiring beans
<value>With a Little Help from My Friends</value>
<value>Lucy in the Sky with Diamonds</value>
<value>Getting Better</value>
<value>Fixing a Hole</value>
<!-- ...other tracks omitted for brevity... -->

</list>
</property>

</bean>

As with c-namespace attributes, the only difference between wiring a bean reference
and wiring a literal value is the presence or absence of a -ref suffix. Without the -ref
suffix, you’re wiring literal values.

 Notice, however, that you can’t use the p-namespace when wiring a collection.
Unfortunately, there’s no convenient way to specify a list of values (or bean refer-
ences) with the p-namespace. But you can take advantage of something from Spring’s
util-namespace to simplify the BlankDisc bean.

 First, you need to declare the util-namespace and its schema in the XML:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xmlns:util="http://www.springframework.org/schema/util"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/util
http://www.springframework.org/schema/util/spring-util.xsd">

...

</beans>

One of the things that the util-namespace offers is the <util:list> element, which
creates a list bean. Using <util:list>, you can shift the track list out of the Blank-
Disc bean and into a bean of its own, like this:

<util:list id="trackList">
<value>Sgt. Pepper's Lonely Hearts Club Band</value>
<value>With a Little Help from My Friends</value>
<value>Lucy in the Sky with Diamonds</value>
<value>Getting Better</value>
<value>Fixing a Hole</value>
<!-- ...other tracks omitted for brevity... -->

</util:list>

Now you can wire the track-list bean into the BlankDisc bean’s tracks property just
like any other bean:

<bean id="compactDisc"
class="soundsystem.BlankDisc"
p:title="Sgt. Pepper's Lonely Hearts Club Band"
p:artist="The Beatles"
p:tracks-ref="trackList" />

59Importing and mixing configurations
The <util:list> element is just one of several elements in the util-namespace.
Table 2.1 lists everything the util-namespace has to offer.

You’ll occasionally call on members of the util-namespace as you need them. For
now, though, let’s wrap up this chapter by seeing how you can mix and match auto-
matic configuration, JavaConfig, and XML configuration.

2.5 Importing and mixing configurations
In a typical Spring application, you’re likely to need to use both automatic and
explicit configuration. And even if you favor JavaConfig for explicit configuration,
there may be times when XML configuration is the best choice.

 Fortunately, none of the configuration options available in Spring are mutually
exclusive. You’re free to mix component scanning and autowiring with JavaConfig
and/or XML configuration. In fact, as you saw in section 2.2.1, you’ll need at least a lit-
tle explicit configuration to enable component scanning and autowiring.

 The first thing to know about mixing configuration styles is that when it comes to
autowiring, it doesn’t matter where the bean to be wired comes from. Autowiring con-
siders all beans in the Spring container, regardless of whether they were declared in
JavaConfig or XML or picked up by component scanning.

 That leaves you with how to reference beans when doing explicit configuration,
either with XML configuration or with Java configuration. Let’s start by seeing how to
reference XML-configured beans from JavaConfig.

2.5.1 Referencing XML configuration in JavaConfig

Pretend for a moment that CDPlayerConfig is getting unwieldy and you want to split
it apart. Sure, it only declares two beans, which is a far cry from a complex Spring con-
figuration. Nevertheless, let’s pretend that two beans is two beans too many.

 What you could do is break out the BlankDisc bean from CDPlayerConfig into its
own CDConfig class, like this:

package soundsystem;
import org.springframework.context.annotation.Bean;

Table 2.1 Elements in Spring’s util-namespace

Element Description

<util:constant> References a public static field on a type and exposes it as a bean

<util:list> Creates a bean that is a java.util.List of values or references

<util:map> Creates a bean that is a java.util.Map of values or references

<util:properties> Creates a bean that is a java.util.Properties

<util:property-path> References a bean property (or nested property) and exposes it as a
bean

<util:set> Creates a bean that is a java.util.Set of values or references

60 CHAPTER 2 Wiring beans
import org.springframework.context.annotation.Configuration;

@Configuration
public class CDConfig {

@Bean
public CompactDisc compactDisc() {

return new SgtPeppers();
}

}

Now that the compactDisc() method is gone from CDPlayerConfig, you need a way
to bring the two configuration classes together. One way is to import CDConfig from
CDPlayerConfig using the @Import annotation:

package soundsystem;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Import;

@Configuration
@Import(CDConfig.class)
public class CDPlayerConfig {

@Bean
public CDPlayer cdPlayer(CompactDisc compactDisc) {

return new CDPlayer(compactDisc);
}

}

Or, better yet, you can leave @Import out of CDPlayerConfig and instead create a
higher-level SoundSystemConfig that uses @Import to bring both configurations
together:

package soundsystem;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Import;

@Configuration
@Import({CDPlayerConfig.class, CDConfig.class})
public class SoundSystemConfig {
}

Either way, you’ve separated the configuration of CDPlayer from the configuration of
BlankDisc. Now let’s suppose that (for whatever reason) you want to configure the
BlankDisc bean in XML like this:

<bean id="compactDisc"
class="soundsystem.BlankDisc"
c:_0="Sgt. Pepper's Lonely Hearts Club Band"
c:_1="The Beatles">

<constructor-arg>
<list>

<value>Sgt. Pepper's Lonely Hearts Club Band</value>
<value>With a Little Help from My Friends</value>

61Importing and mixing configurations
<value>Lucy in the Sky with Diamonds</value>
<value>Getting Better</value>
<value>Fixing a Hole</value>
<!-- ...other tracks omitted for brevity... -->

</list>
</constructor-arg>

</bean>

With BlankDisc being declared in XML, how can you have Spring load it in along with
the rest of your Java-based configuration?

 The answer lies with the @ImportResource annotation. Assuming that the Blank-
Disc bean is declared in a file named cd-config.xml that can be found at the root of
the classpath, you can change SoundSystemConfig to use @ImportResource like this:

package soundsystem;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Import;
import org.springframework.context.annotation.ImportResource;

@Configuration
@Import(CDPlayerConfig.class)
@ImportResource("classpath:cd-config.xml")
public class SoundSystemConfig {
}

Both beans—CDPlayer configured in JavaConfig and BlankDisc configured in XML—
will be loaded into the Spring container. And because CDPlayer’s @Bean method
accepts a CompactDisc as a parameter, the BlankDisc bean will be wired into it, even
though it’s configured in XML.

 Let’s run through this exercise again. But this time, you’ll reference a JavaConfig-
declared bean from XML.

2.5.2 Referencing JavaConfig in XML configuration

Suppose you’re working with Spring’s XML-based configuration and you’ve decided
that the XML is getting out of hand. As before, you’re only dealing with two beans, and
things could be worse. But before you’re inundated with a flood of angle brackets, you
decide to break the XML configuration file apart.

 With JavaConfig, I showed you how to use @Import and @ImportResource to split
up your JavaConfig classes. In XML, you can use the <import> element to split up the
XML configuration.

 For example, suppose you were to split out the BlankDisc bean into its own config-
uration file called cd-config.xml, as you did when working with @ImportResource. You
can reference that file from the XML configuration file using <import>:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:c="http://www.springframework.org/schema/c"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd">

62 CHAPTER 2 Wiring beans
<import resource="cd-config.xml" />

<bean id="cdPlayer"
class="soundsystem.CDPlayer"
c:cd-ref="compactDisc" />

</beans>

Now, suppose that instead of configuring BlankDisc in XML, you want to configure it
in XML while leaving the CDPlayer configuration in JavaConfig. How can your XML-
based configuration reference a JavaConfig class?

 As it turns out, the answer isn’t intuitive. The <import> element only works to
import other XML configuration files, and there isn’t an XML element whose job it is
to import JavaConfig classes.

 There is, however, an element you already know that can be used to bring a Java
configuration into an XML configuration: the <bean> element. To import a JavaConfig
class into an XML configuration, you declare it as a bean like this:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:c="http://www.springframework.org/schema/c"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean class="soundsystem.CDConfig" />

<bean id="cdPlayer"
class="soundsystem.CDPlayer"
c:cd-ref="compactDisc" />

</beans>

And just like that, the two configurations—one expressed in XML and one expressed
in Java—have been brought together. Similarly, you might consider creating a higher-
level configuration file that doesn’t declare any beans but that brings two or more
configurations together. For example, you could leave the CDConfig bean out of the
previous XML configuration and instead have a third configuration file that joins
them:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:c="http://www.springframework.org/schema/c"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean class="soundsystem.CDConfig" />

<import resource="cdplayer-config.xml" />

</beans>

63Summary
Whether I’m using JavaConfig or XML wiring, I often create a root configuration, as I’ve
shown here, that brings together two or more wiring classes and/or XML files. It’s in
this root configuration that I’ll also usually turn on component scanning (with either
<context:component-scan> or @ComponentScan). You’ll see this technique employed
for many of the examples in this book.

2.6 Summary
At the core of the Spring Framework is the Spring container. This container manages
the lifecycle of the components of an application, creating those components and
ensuring that their dependencies are met so that they can do their job.

 In this chapter, we’ve looked at three primary ways of wiring beans together in
Spring: automatic configuration, explicit Java-based configuration, and explicit XML-
based configuration. No matter which you choose, these techniques describe the com-
ponents in a Spring application and the relationships between those components.

 I’ve also strongly recommended that you favor automatic configuration as much as
possible to avoid the maintenance costs involved with explicit configuration. But when
you must explicitly configure Spring, you should favor Java-based configuration—
which is more powerful, type-safe, and refactorable—over XML configuration. This
preference will guide my choice of wiring techniques as I present the examples
throughout this book.

 Because dependency injection is an essential part of working with Spring, the tech-
niques shown in this chapter will play a role in almost everything else you do in this
book. Building on this foundation, the next chapter will present some more advanced
bean-wiring techniques that will help you make the most of the Spring container.

Advanced wiring
In the previous chapter, we looked at some essential bean-wiring techniques. You’re
likely to find a lot of use for what you learned in that chapter. But there’s more to
bean wiring than what we explored in chapter 2. Spring has several other tricks up
its sleeve for more advanced bean wiring.

 In this chapter, we’ll dig in to some of these advanced techniques. You won’t get
as much day-to-day use out of the techniques in this chapter, but that doesn’t mean
they’re any less valuable.

3.1 Environments and profiles
One of the most challenging things about developing software is transitioning an
application from one environment to another. Certain environment-specific choices
made for development aren’t appropriate or won’t work when the application
transitions from development to production. Database configuration, encryption

This chapter covers
 Spring profiles

 Conditional bean declaration

 Autowiring and ambiguity

 Bean scoping

 The Spring Expression Language
64

65Environments and profiles
algorithms, and integration with external systems are just a few examples of things that
are likely to vary across deployment environments.

 Consider database configuration, for instance. In a development environment,
you’re likely to use an embedded database preloaded with test data. For example,
in a Spring configuration class, you might use EmbeddedDatabaseBuilder in an @Bean
method like this:

@Bean(destroyMethod="shutdown")
public DataSource dataSource() {

return new EmbeddedDatabaseBuilder()
.addScript("classpath:schema.sql")
.addScript("classpath:test-data.sql")
.build();

}

This will create a bean of type javax.sql.DataSource. But it’s how that bean is created
that’s most interesting. Using EmbeddedDatabaseBuilder sets up an embedded Hyper-
sonic database whose schema is defined in schema.sql and loaded with test data from
test-data.sql.

 This DataSource is useful in a development environment when you’re running
integration tests or firing up an application for manual testing. You can count on your
database being in a given state every time you start it.

 Although that makes an EmbeddedDatabaseBuilder-created DataSource perfect
for development, it makes it a horrible choice for production. In a production setting,
you may want to retrieve a DataSource from your container using JNDI. In that case,
the following @Bean method is more appropriate:

@Bean
public DataSource dataSource() {

JndiObjectFactoryBean jndiObjectFactoryBean =
new JndiObjectFactoryBean();

jndiObjectFactoryBean.setJndiName("jdbc/myDS");
jndiObjectFactoryBean.setResourceRef(true);
jndiObjectFactoryBean.setProxyInterface(javax.sql.DataSource.class);
return (DataSource) jndiObjectFactoryBean.getObject();

}

Retrieving a DataSource from JNDI allows your container to make decisions about
how it’s created, including handing off a DataSource from a container-managed con-
nection pool. Even so, using a JNDI-managed DataSource is more fitting for produc-
tion and unnecessarily complicated for a simple integration test or developer test.

 Meanwhile, in a QA environment you could select a completely different Data-
Source configuration. You might choose to configure a Commons DBCP connection
pool like this:

@Bean(destroyMethod="close")
public DataSource dataSource() {

BasicDataSource dataSource = new BasicDataSource();
dataSource.setUrl("jdbc:h2:tcp://dbserver/~/test");
dataSource.setDriverClassName("org.h2.Driver");

66 CHAPTER 3 Advanced wiring
dataSource.setUsername("sa");
dataSource.setPassword("password");
dataSource.setInitialSize(20);
dataSource.setMaxActive(30);
return dataSource;

}

Clearly, all three versions of the dataSource() method presented here are different
from each other. They all produce a bean whose type is javax.sql.DataSource, but
that’s where the similarities end. Each applies a completely different strategy for pro-
ducing the DataSource bean.

 Again, this discussion isn’t about how to configure a DataSource (we’ll talk more
about that in chapter 10). But certainly the seemingly simple DataSource bean isn’t so
simple. It’s a good example of a bean that might vary across different environments.
You must find a way to configure a DataSource bean so that the most appropriate con-
figuration is chosen for each environment.

 One way of doing this is to configure each bean in a separate configuration class
(or XML file) and then make a build-time decision (perhaps using Maven profiles)
about which to compile into the deployable application. The problem with this solu-
tion is that it requires that the application be rebuilt for each environment. A rebuild
might not be that big a problem when going from development to QA. But requiring a
rebuild between QA and production has the potential to introduce bugs and cause an
epidemic of ulcers among the members of your QA team.

 Fortunately, Spring has a solution that doesn’t require a rebuild.

3.1.1 Configuring profile beans

Spring’s solution for environment-specific beans isn’t much different from build-time
solutions. Certainly, an environment-specific decision is made as to which beans will
and won’t be created. But rather than make that decision at build time, Spring waits to
make the decision at runtime. Consequently, the same deployment unit (perhaps a
WAR file) will work in all environments without being rebuilt.

 In version 3.1, Spring introduced bean profiles. To use profiles, you must gather all
the varying bean definitions into one or more profiles and then make sure the proper
profile is active when your application is deployed in each environment.

 In Java configuration, you can use the @Profile annotation to specify which pro-
file a bean belongs to. For example, the embedded database DataSource bean might
be configured in a configuration class like this:

package com.myapp;
import javax.activation.DataSource;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Profile;
import

org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseBuilder;
import

67Environments and profiles
org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseType;

@Configuration
@Profile("dev")
public class DevelopmentProfileConfig {

@Bean(destroyMethod="shutdown")
public DataSource dataSource() {

return new EmbeddedDatabaseBuilder()
.setType(EmbeddedDatabaseType.H2)
.addScript("classpath:schema.sql")
.addScript("classpath:test-data.sql")
.build();

}

}

The main thing I want to draw your attention to is the @Profile annotation applied at
the class level. It tells Spring that the beans in this configuration class should be cre-
ated only if the dev profile is active. If the dev profile isn’t active, then the @Bean meth-
ods will be ignored.

 Meanwhile, you may have another configuration class for production that looks
like this:

package com.myapp;
import javax.activation.DataSource;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Profile;
import org.springframework.jndi.JndiObjectFactoryBean;

@Configuration
@Profile("prod")
public class ProductionProfileConfig {

@Bean
public DataSource dataSource() {

JndiObjectFactoryBean jndiObjectFactoryBean =
new JndiObjectFactoryBean();

jndiObjectFactoryBean.setJndiName("jdbc/myDS");
jndiObjectFactoryBean.setResourceRef(true);
jndiObjectFactoryBean.setProxyInterface(

javax.sql.DataSource.class);
return (DataSource) jndiObjectFactoryBean.getObject();

}

}

In this case, the bean won’t be created unless the prod profile is active.
 In Spring 3.1, you could only use the @Profile annotation at the class level. Start-

ing with Spring 3.2, however, you can use @Profile at the method level, alongside the
@Bean annotation. This makes it possible to combine both bean declarations into a
single configuration class, as shown in the following listing.

68 CHAPTER 3 Advanced wiring
package com.myapp;
import javax.activation.DataSource;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Profile;
import

org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseBuilder;
import

org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseType;
import org.springframework.jndi.JndiObjectFactoryBean;

@Configuration
public class DataSourceConfig {

@Bean(destroyMethod="shutdown")
@Profile("dev")
public DataSource embeddedDataSource() {

return new EmbeddedDatabaseBuilder()
.setType(EmbeddedDatabaseType.H2)
.addScript("classpath:schema.sql")
.addScript("classpath:test-data.sql")
.build();

}

@Bean
@Profile("prod")
public DataSource jndiDataSource() {

JndiObjectFactoryBean jndiObjectFactoryBean =
new JndiObjectFactoryBean();

jndiObjectFactoryBean.setJndiName("jdbc/myDS");
jndiObjectFactoryBean.setResourceRef(true);
jndiObjectFactoryBean.setProxyInterface(javax.sql.DataSource.class);
return (DataSource) jndiObjectFactoryBean.getObject();

}

}

What’s not apparent here is that although each of the DataSource beans is in a profile
and will only be created if the prescribed profile is active, there are probably other
beans that aren’t defined in the scope of a given profile. Any bean that isn’t given a
profile will always be created, regardless of what profile is active.

CONFIGURING PROFILES IN XML
You can also configure profiled beans in XML by setting the profile attribute of the
<beans> element. For example, to define the embedded database DataSource bean
for development in XML, you can create a configuration XML file that looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jdbc="http://www.springframework.org/schema/jdbc"
xsi:schemaLocation="

Listing 3.1 The @Profile annotation wires beans based on active files

Wired for “dev” profile

Wired for “prod” profile

69Environments and profiles
http://www.springframework.org/schema/jdbc
http://www.springframework.org/schema/jdbc/spring-jdbc.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd"

profile="dev">

<jdbc:embedded-database id="dataSource">
<jdbc:script location="classpath:schema.sql" />
<jdbc:script location="classpath:test-data.sql" />

</jdbc:embedded-database>

</beans>

Likewise, you could create another configuration file, with profile set to prod for the
production-ready JNDI-obtained DataSource bean. And you could create yet another
XML file for the connection pool–defined DataSource bean specified by the qa profile.
All the configuration XML files are collected into the deployment unit (likely a WAR
file), but only those whose profile attribute matches the active profile will be used.

 Rather than creating a proliferation of XML files for each environment, you also
have the option of defining <beans> elements embedded in the root <beans> ele-
ment. This helps to collect all profiled bean definitions into a single XML file, as
shown next.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jdbc="http://www.springframework.org/schema/jdbc"
xmlns:jee="http://www.springframework.org/schema/jee"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemaLocation="

http://www.springframework.org/schema/jee
http://www.springframework.org/schema/jee/spring-jee.xsd
http://www.springframework.org/schema/jdbc
http://www.springframework.org/schema/jdbc/spring-jdbc.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<beans profile="dev">
<jdbc:embedded-database id="dataSource">

<jdbc:script location="classpath:schema.sql" />
<jdbc:script location="classpath:test-data.sql" />

</jdbc:embedded-database>
</beans>

<beans profile="qa">
<bean id="dataSource"

class="org.apache.commons.dbcp.BasicDataSource"
destroy-method="close"
p:url="jdbc:h2:tcp://dbserver/~/test"
p:driverClassName="org.h2.Driver"
p:username="sa"
p:password="password"

Listing 3.2 <beans> elements can be repeated to specify multiple profiles

“dev” profile beans

“qa” profile beans

70 CHAPTER 3 Advanced wiring
p:initialSize="20"
p:maxActive="30" />

</beans>

<beans profile="prod">
<jee:jndi-lookup id="dataSource"

jndi-name="jdbc/myDatabase"
resource-ref="true"
proxy-interface="javax.sql.DataSource" />

</beans>
</beans>

Aside from the fact that all these beans are now defined in the same XML file, the
effect is the same as if they were defined in separate XML files. There are three beans,
all of type javax.sql.DataSource and all with an ID of dataSource. But at runtime,
only one bean will be created, depending on which profile is active.

 That raises the question: how do you make a profile active?

3.1.2 Activating profiles

Spring honors two separate properties when determining which profiles are active:
spring.profiles.active and spring.profiles.default. If spring.profiles.active
is set, then its value determines which profiles are active. But if spring

.profiles.active isn’t set, then Spring looks to spring.profiles.default. If neither
spring.profiles.active nor spring.profiles.default is set, then there are no
active profiles, and only those beans that aren’t defined as being in a profile are created.

 There are several ways to set these properties:

 As initialization parameters on DispatcherServlet
 As context parameters of a web application
 As JNDI entries
 As environment variables
 As JVM system properties
 Using the @ActiveProfiles annotation on an integration test class

I’ll leave it to you to choose the best combination of spring.profiles.active and
spring.profiles.default to suit your needs.

 One approach that I like is to set spring.profiles.default to the development
profile using parameters on DispatcherServlet and in the servlet context (for the
sake of ContextLoaderListener). For example, a web application’s web.xml file
might set spring.profiles.default as shown in the next listing.

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"

xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">

Listing 3.3 Setting default profiles in a web application’s web.xml file

“prod” profile beans

71Environments and profiles
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>/WEB-INF/spring/root-context.xml</param-value>

</context-param>

<context-param>
<param-name>spring.profiles.default</param-name>
<param-value>dev</param-value>

</context-param>

<listener>
<listener-class>

org.springframework.web.context.ContextLoaderListener
</listener-class>

</listener>

<servlet>
<servlet-name>appServlet</servlet-name>
<servlet-class>

org.springframework.web.servlet.DispatcherServlet
</servlet-class>
<init-param>

<param-name>spring.profiles.default</param-name>
<param-value>dev</param-value>

</init-param>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>appServlet</servlet-name>
<url-pattern>/</url-pattern>

</servlet-mapping>

</web-app>

With spring.profiles.default set this way, any developer can retrieve the applica-
tion code from source control and run it using development settings (such as an
embedded database) without any additional configuration.

 Then, when the application is deployed in a QA, production, or other environ-
ment, the person responsible for deploying it can set spring.profiles.active using
system properties, environment variables, or JNDI as appropriate. When spring
.profiles.active is set, it doesn’t matter what spring.profiles.default is set to;
the profiles set in spring.profiles.active take precedence.

 You’ve probably noticed that the word profiles is plural in spring.profiles.active
and spring.profiles.default. This means you can activate multiple profiles at the
same time by listing the profile names, separated by commas. Of course, it probably
doesn’t make much sense to enable both dev and prod profiles at the same time, but
you could enable multiple orthogonal profiles simultaneously.

TESTING WITH PROFILES

When running an integration test, you’ll often want to test using the same configura-
tion (or some subset thereof) you’d use in production. But if your configuration

Set default profile
for context

Set default profile
for servlet

72 CHAPTER 3 Advanced wiring
references beans that are in profiles, you need a way to enable the appropriate profile
when running those tests.

 Spring offers the @ActiveProfiles annotation to let you specify which profile(s)
should be active when a test is run. Often it’s the development profile that you’ll want
to activate during an integration test. For example, here’s a snippet of a test class that
uses @ActiveProfiles to activate the dev profile:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes={PersistenceTestConfig.class})
@ActiveProfiles("dev")
public class PersistenceTest {

...
}

Spring profiles are a great way to conditionally define beans where the condition is
based on which profile is active. But Spring 4 offers a more general-purpose mecha-
nism for conditional bean definitions where the condition is up to you. Let’s see how
to define conditional beans using Spring 4 and the @Conditional annotation.

3.2 Conditional beans
Suppose you want one or more beans to be configured if and only if some library is
available in the application’s classpath. Or let’s say you want a bean to be created only
if a certain other bean is also declared. Maybe you want a bean to be created if and
only if a specific environment variable is set.

 Until Spring 4, it was difficult to achieve this level of conditional configuration, but
Spring 4 introduced a new @Conditional annotation that can be applied to @Bean
methods. If the prescribed condition evaluates to true, then the bean is created. Oth-
erwise the bean is ignored.

 For example, suppose you have a class named MagicBean that you only want Spring
to instantiate if a magic environment property has been set. If the environment has no
such property, then the MagicBean should be ignored. The following listing shows a
configuration that conditionally configures the MagicBean using @Conditional.

@Bean
@Conditional(MagicExistsCondition.class)
public MagicBean magicBean() {

return new MagicBean();
}

As you can see, @Conditional is given a Class that specifies the condition—in this
case, MagicExistsCondition. @Conditional comes paired with a Condition interface:

public interface Condition {
boolean matches(ConditionContext ctxt,

AnnotatedTypeMetadata metadata);
}

Listing 3.4 Conditionally configuring a bean

Conditionally create bean

73Conditional beans
The class given to @Conditional can be any type that implements the Condition
interface. As you can see, it’s a straightforward interface to implement, requiring only
that you provide an implementation for the matches() method. If the matches()
method returns true, then the @Conditional-annotated beans are created. If
matches() returns false, then those beans aren’t created.

 For this example, you need to create an implementation of Condition that hinges
its decision on the presence of a magic property in the environment. The next listing
shows MagicExistsCondition, an implementation of Condition that does the trick.

package com.habuma.restfun;
import org.springframework.context.annotation.Condition;
import org.springframework.context.annotation.ConditionContext;
import org.springframework.core.type.AnnotatedTypeMetadata;
import org.springframework.util.ClassUtils;

public class MagicExistsCondition implements Condition {

public boolean matches(
ConditionContext context, AnnotatedTypeMetadata metadata) {

Environment env = context.getEnvironment();
return env.containsProperty("magic");

}

}

The matches() method in this listing is simple but powerful. It uses the Environment
obtained from the given ConditionContext object to check for the presence of an
environment property named magic. For this example, the value of the property is
irrelevant; it only needs to exist. This results in true being returned from matches().
Consequently, the condition is met, and any beans whose @Conditional annotation
refers to MagicExistsCondition will be created.

 On the other hand, if the property doesn’t exist, the condition will fail, false will
be returned from matches(), and none of those beans will be created.

 MagicExistsCondition only uses the Environment from the ConditionContext,
but there’s much more that a Condition implementation can consider. The
matches() method is given a ConditionContext and an AnnotatedTypeMetadata to
use in making its decision.

 ConditionContext is an interface that looks something like this:

public interface ConditionContext {
BeanDefinitionRegistry getRegistry();
ConfigurableListableBeanFactory getBeanFactory();
Environment getEnvironment();
ResourceLoader getResourceLoader();
ClassLoader getClassLoader();

}

Listing 3.5 Checking for the presence of magic in a Condition

Check for “magic” property

74 CHAPTER 3 Advanced wiring
From the ConditionContext, you can do the following:

 Check for bean definitions via the BeanDefinitionRegistry returned from
getRegistry().

 Check for the presence of beans, and even dig into bean properties via the
ConfigurableListableBeanFactory returned from getBeanFactory().

 Check for the presence and values of environment variables via the Environment
retrieved from getEnvironment().

 Read and inspect the contents of resources loaded via the ResourceLoader
returned from getResourceLoader().

 Load and check for the presence of classes via the ClassLoader returned from
getClassLoader().

As for the AnnotatedTypeMetadata, it offers you a chance to inspect annotations that
may also be placed on the @Bean method. Like ConditionContext, Annotated-
TypeMetadata is an interface. It looks like this:

public interface AnnotatedTypeMetadata {
boolean isAnnotated(String annotationType);
Map<String, Object> getAnnotationAttributes(String annotationType);
Map<String, Object> getAnnotationAttributes(

String annotationType, boolean classValuesAsString);
MultiValueMap<String, Object> getAllAnnotationAttributes(

String annotationType);
MultiValueMap<String, Object> getAllAnnotationAttributes(

String annotationType, boolean classValuesAsString);
}

Using the isAnnotated() method, you can check to see if the @Bean method is anno-
tated with any particular annotation type. Using the other methods, you can check on
the attributes of any annotation applied to the @Bean method.

 Interestingly, starting with Spring 4, the @Profile annotation has been refactored
to be based on @Conditional and the Condition interface. As another example of
how to work with @Conditional and Condition, let’s look at how @Profile is imple-
mented in Spring 4.

 The @Profile annotation looks like this:

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.TYPE, ElementType.METHOD})
@Documented
@Conditional(ProfileCondition.class)
public @interface Profile {

String[] value();
}

Notice that @Profile is itself annotated with @Conditional and refers to Profile-
Condition as the Condition implementation. As shown next, ProfileCondition
implements Condition and considers several factors from both ConditionContext
and AnnotatedTypeMetadata in making its decision.

75Addressing ambiguity in autowiring

class ProfileCondition implements Condition {
public boolean matches(

ConditionContext context, AnnotatedTypeMetadata metadata) {
if (context.getEnvironment() != null) {

MultiValueMap<String, Object> attrs =
metadata.getAllAnnotationAttributes(Profile.class.getName());

if (attrs != null) {
for (Object value : attrs.get("value")) {

if (context.getEnvironment()
.acceptsProfiles(((String[]) value))) {

return true;
}

}
return false;

}
}
return true;

}
}

As you can see, ProfileCondition fetches all the annotation attributes for the
@Profile annotation from AnnotatedTypeMetadata. With that, it checks explicitly for
the value attribute, which contains the name of the bean’s profile. It then consults
with the Environment retrieved from the ConditionContext to see whether the pro-
file is active (by calling the acceptsProfiles() method).

3.3 Addressing ambiguity in autowiring
In chapter 2, you saw how to use autowiring to let Spring do all the work when inject-
ing bean references into constructor arguments or properties. Autowiring is a huge
help because it reduces the amount of explicit configuration necessary to assemble
application components.

 But autowiring only works when exactly one bean matches the desired result.
When there’s more than one matching bean, the ambiguity prevents Spring from
autowiring the property, constructor argument, or method parameter.

 To illustrate autowiring ambiguity, suppose you’ve annotated the following set-
Dessert() method with @Autowired:

@Autowired
public void setDessert(Dessert dessert) {

this.dessert = dessert;
}

In this example, Dessert is an interface and is implemented by three classes: Cake,
Cookies, and IceCream:

@Component
public class Cake implements Dessert { ... }

@Component
public class Cookies implements Dessert { ... }

Listing 3.6 ProfileCondition checking whether a bean profile is acceptable

76 CHAPTER 3 Advanced wiring
@Component
public class IceCream implements Dessert { ... }

Because all three implementations are annotated by @Component, they’re all picked up
during component-scanning and created as beans in the Spring application context.
Then, when Spring tries to autowire the Dessert parameter in setDessert(), it
doesn’t have a single, unambiguous choice. Although most people wouldn’t have any
problem making choices when faced with multiple dessert options, Spring can’t
choose. Spring has no option but to fail and throw an exception. To be precise, Spring
throws a NoUniqueBeanDefinitionException:

nested exception is
org.springframework.beans.factory.NoUniqueBeanDefinitionException:

No qualifying bean of type [com.desserteater.Dessert] is defined:
expected single matching bean but found 3: cake,cookies,iceCream

Of course, this dessert-eating example is contrived to illustrate how autowiring can
run into trouble with ambiguity. In reality, autowiring ambiguity is more rare than
you’d expect. Even though such ambiguity is a real problem, more often than not
there’s only one implementation of a given type, and autowiring works perfectly.

 For those times when ambiguity does happen, however, Spring offers a couple of
options. You can declare one of the candidate beans as the primary choice, or you can
use qualifiers to help Spring narrow its choices to a single candidate.

3.3.1 Designating a primary bean

If you’re like me, you enjoy all kinds of desserts. Cake … cookies … ice cream … it’s
all good. But if you were forced to choose only a single dessert, which is your favorite?

 When declaring beans, you can avoid autowiring ambiguity by designating one of
the candidate beans as a primary bean. In the event of any ambiguity, Spring will
choose the primary bean over any other candidate beans. Essentially, you’re declaring
your “favorite” bean.

 Let’s say that ice cream is your favorite dessert. You can express that favorite choice
in Spring using the @Primary annotation. @Primary can be used either alongside
@Component for beans that are component-scanned or alongside @Bean for beans
declared in Java configuration. For example, here’s how you might declare the
@Component-annotated IceCream bean as the primary choice:

@Component
@Primary
public class IceCream implements Dessert { ... }

Or, if you’re declaring the IceCream bean explicitly in Java configuration, the @Bean
method might look like this:

@Bean
@Primary
public Dessert iceCream() {

return new IceCream();
}

77Addressing ambiguity in autowiring
If you’re configuring your beans in XML, you’re not left out. The <bean> element has
a primary attribute to specify a primary bean:

<bean id="iceCream"
class="com.desserteater.IceCream"
primary="true" />

No matter how you designate a primary bean, the effect is the same. You’re telling
Spring that it should choose the primary bean in the case of ambiguity.

 This works well right up to the point where you designate two or more primary
beans. For example, suppose the Cake class looks like this:

@Component
@Primary
public class Cake implements Dessert { ... }

Now there are two primary Dessert beans: Cake and IceCream. This poses a new ambi-
guity issue. Just as Spring couldn’t choose among multiple candidate beans, it can’t
choose among multiple primary beans. Clearly, when more than one bean is desig-
nated as primary, there are no primary candidates.

 For a more powerful ambiguity-busting mechanism, let’s look at qualifiers.

3.3.2 Qualifying autowired beans

The limitation of primary beans is that @Primary doesn’t limit the choices to a single
unambiguous option. It only designates a preferred option. When there’s more than
one primary, there’s not much else you can do to narrow the choices further.

 In contrast, Spring’s qualifiers apply a narrowing operation to all candidate beans,
ultimately arriving at the single bean that meets the prescribed qualifications. If ambi-
guity still exists after applying all qualifiers, you can always apply more qualifiers to
narrow the choices further.

 The @Qualifier annotation is the main way to work with qualifiers. It can be
applied alongside @Autowired or @Inject at the point of injection to specify which
bean you want to be injected. For example, let’s say you want to ensure that the
IceCream bean is injected into setDessert():

@Autowired
@Qualifier("iceCream")
public void setDessert(Dessert dessert) {

this.dessert = dessert;
}

This is a prime example of qualifiers in their simplest form. The parameter given to
@Qualifier is the ID of the bean that you want to inject. All @Component-annotated
classes will be created as beans whose ID is the uncapitalized class name. Therefore,
@Qualifier("iceCream") refers to the bean created when component-scanning cre-
ated an instance of the IceCream class.

 Actually, there’s a bit more to the story than that. To be more precise, @Qualifier
("iceCream") refers to the bean that has the String “iceCream” as a qualifier. For

78 CHAPTER 3 Advanced wiring
lack of having specified any other qualifiers, all beans are given a default qualifier
that’s the same as their bean ID. Therefore, the setDessert() method will be injected
with the bean that has “iceCream” as a qualifier. That just happens to be the bean
whose ID is iceCream, created when the IceCream class was component-scanned.

 Basing qualification on the default bean ID qualifier is simple but can pose some
problems. What do you suppose would happen if you refactored the IceCream class,
renaming it Gelato? In that case, the bean’s ID and default qualifier would be gelato,
which doesn’t match the qualifier on setDessert(). Autowiring would fail.

 The problem is that you specified a qualifier on setDessert() that is tightly cou-
pled to the class name of the bean being injected. Any change to that class name will
render the qualifier ineffective.

CREATING CUSTOM QUALIFIERS

Instead of relying on the bean ID as the qualifier, you can assign your own qualifier to
a bean. All you need to do is place the @Qualifier annotation on the bean declara-
tion. For example, it can be applied alongside @Component like this:

@Component
@Qualifier("cold")
public class IceCream implements Dessert { ... }

In this case, a qualifier of cold is assigned to the IceCream bean. Because it’s not cou-
pled to the class name, you can refactor the name of the IceCream class all you want
without worrying about breaking autowiring. It will work as long as you refer to the
cold qualifier at the injection point:

@Autowired
@Qualifier("cold")
public void setDessert(Dessert dessert) {

this.dessert = dessert;
}

It’s worth noting that @Qualifier can also be used alongside the @Bean annotation
when explicitly defining beans with Java configuration:

@Bean
@Qualifier("cold")
public Dessert iceCream() {

return new IceCream();
}

When defining custom @Qualifier values, it’s a good practice to use a trait or descrip-
tive term for the bean, rather than using an arbitrary name. In this case, I’ve described
the IceCream bean as a “cold” bean. At the injection point, it reads as “give me the
cold dessert,” which happens to describe IceCream. Similarly, I might describe Cake as
“soft” and Cookies as “crispy.”

79Addressing ambiguity in autowiring
DEFINING CUSTOM QUALIFIER ANNOTATIONS

Trait-oriented qualifiers are better than those based on the bean ID. But they still run
into trouble when you have multiple beans that share common traits. For example,
imagine what would happen if you introduced this new Dessert bean:

@Component
@Qualifier("cold")
public class Popsicle implements Dessert { ... }

Oh no! Now you have two “cold” desserts. Once again you’re faced with ambiguity in
autowiring dessert beans. You need more qualifiers to narrow the selection to a single
bean.

 Perhaps the solution is to tack on another @Qualifier at both the injection point
and at the bean definition. Maybe the IceCream class could look like this:

@Component
@Qualifier("cold")
@Qualifier("creamy")
public class IceCream implements Dessert { ... }

Perhaps the Popsicle class could also use another @Qualifier:

@Component
@Qualifier("cold")
@Qualifier("fruity")
public class Popsicle implements Dessert { ... }

And at the injection point, you could narrow it down to IceCream like this:

@Autowired
@Qualifier("cold")
@Qualifier("creamy")
public void setDessert(Dessert dessert) {

this.dessert = dessert;
}

There’s only one small problem: Java doesn’t allow multiple annotations of the same
type to be repeated on the same item.1 The compiler will complain with errors if you
try this. There’s no way you can use @Qualifier (at least not directly) to narrow the
list of autowiring candidates to a single choice.

 What you can do, however, is create custom qualifier annotations to represent the
traits you want your beans to be qualified with. All you have to do is create an annota-
tion that is itself annotated with @Qualifier. Rather than use @Qualifier("cold"),
you can use a custom @Cold annotation that’s defined like this:

@Target({ElementType.CONSTRUCTOR, ElementType.FIELD,
ElementType.METHOD, ElementType.TYPE})

@Retention(RetentionPolicy.RUNTIME)
@Qualifier
public @interface Cold { }

1 Java 8 allows repeated annotations, as long as the annotation is annotated with @Repeatable. Even so,
Spring’s @Qualifier annotation isn’t annotated with @Repeatable.

80 CHAPTER 3 Advanced wiring
Likewise, you can create a new @Creamy annotation as a replacement for @Qualifier
("creamy"):

@Target({ElementType.CONSTRUCTOR, ElementType.FIELD,
ElementType.METHOD, ElementType.TYPE})

@Retention(RetentionPolicy.RUNTIME)
@Qualifier
public @interface Creamy { }

And, similarly, you can create @Soft, @Crispy, and @Fruity annotations to use wher-
ever you’d otherwise use the @Qualifier annotation. By annotating these annotations
with @Qualifier, they take on the characteristics of @Qualifier. They are, in fact,
qualifier annotations in their own right.

 Now you can revisit IceCream and annotate it with @Cold and @Creamy, like this:

@Component
@Cold
@Creamy
public class IceCream implements Dessert { ... }

Similarly, the Popsicle class can be annotated with @Cold and @Fruity:

@Component
@Cold
@Fruity
public class Popsicle implements Dessert { ... }

Finally, at the injection point, you can use any combination of qualifier annotations
necessary to narrow the selection to the one bean that meets your specifications. To
arrive at the IceCream bean, the setDessert() method can be annotated like this:

@Autowired
@Cold
@Creamy
public void setDessert(Dessert dessert) {

this.dessert = dessert;
}

By defining custom qualifier annotations, you’re able to use multiple qualifiers
together with no limitations or complaints from the Java compiler. Also, your custom
annotations are more type-safe than using the raw @Qualifier annotation and specify-
ing the qualifier as a String.

 Take a closer look at the setDessert() method and how it’s annotated. Nowhere
do you explicitly say that you want that method to be autowired with the IceCream
bean. Instead, you identify the desired bean by its traits, @Cold and @Creamy. Thus set-
Dessert() remains decoupled from any specific Dessert implementation. Any bean
that satisfies those traits will do fine. It just so happens that in your current selection of
Dessert implementations, the IceCream bean is the single matching candidate.

 In this section and the previous section, we explored a couple of ways to extend
Spring with custom annotations. To create a custom conditional annotation, you create
a new annotation and annotate it with @Conditional. And to create a custom qualifier
annotation, you can create a new annotation and annotate it with @Qualifier. This

81Scoping beans
technique can be applied using many of Spring’s annotations, composing them into
custom special-purpose annotations.

 Now let’s take a moment to see how you can declare beans to be created in differ-
ent scopes.

3.4 Scoping beans
By default, all beans created in the Spring application context are created as single-
tons. That is to say, no matter how many times a given bean is injected into other
beans, it’s always the same instance that is injected each time.

 Most of the time, singleton beans are ideal. The cost of instantiating and garbage-
collecting instances of objects that are only used for small tasks can’t be justified when
an object is stateless and can be reused over and over again in an application.

 But sometimes you may find yourself working with a mutable class that does main-
tain some state and therefore isn’t safe for reuse. In that case, declaring the class as a
singleton bean probably isn’t a good idea because that object can be tainted and cre-
ate unexpected problems when reused later.

 Spring defines several scopes under which a bean can be created, including the
following:

 Singleton—One instance of the bean is created for the entire application.
 Prototype—One instance of the bean is created every time the bean is injected

into or retrieved from the Spring application context.
 Session—In a web application, one instance of the bean is created for each session.
 Request—In a web application, one instance of the bean is created for each

request.

Singleton scope is the default scope, but as we’ve discussed, it isn’t ideal for mutable
types. To select an alternative type, you can use the @Scope annotation, either in con-
junction with the @Component annotation or with the @Bean annotation.

 For example, if you’re relying on component-scanning to discover and declare a
bean, then you can annotate the bean class with @Scope to make it a prototype bean:

@Component
@Scope(ConfigurableBeanFactory.SCOPE_PROTOTYPE)
public class Notepad { ... }

Here, you specify prototype scope by using the SCOPE_PROTOTYPE constant from the
ConfigurableBeanFactory class. You could also use @Scope("prototype"), but using
the SCOPE_PROTOTYPE constant is safer and less prone to mistakes.

 Alternatively, if you’re configuring the Notepad bean as a prototype in Java config-
uration, you can use @Scope along with @Bean to specify the desired scoping:

@Bean
@Scope(ConfigurableBeanFactory.SCOPE_PROTOTYPE)
public Notepad notepad() {

return new Notepad();
}

82 CHAPTER 3 Advanced wiring
And, in the event that you’re configuring the bean in XML, you can set the scope
using the scope attribute of the <bean> element:

<bean id="notepad"
class="com.myapp.Notepad"
scope="prototype" />

Regardless of how you specify prototype scope, an instance of the bean will be created
each and every time it’s injected into or retrieved from the Spring application context.
Consequently, everyone gets their own instance of Notepad.

3.4.1 Working with request and session scope

In a web application, it may be useful to instantiate a bean that’s shared within the
scope of a given request or session. For instance, in a typical e-commerce application,
you may have a bean that represents the user’s shopping cart. If the shopping cart
bean is a singleton, then all users will be adding products to the same cart. On the
other hand, if the shopping cart is prototype-scoped, then products added to the cart
in one area of the application may not be available in another part of the application
where a different prototype-scoped shopping cart was injected.

 In the case of a shopping cart bean, session scope makes the most sense, because
it’s most directly attached to a given user. To apply session scope, you can use the
@Scope annotation in a way similar to how you specified prototype scope:

@Component
@Scope(

value=WebApplicationContext.SCOPE_SESSION,
proxyMode=ScopedProxyMode.INTERFACES)

public ShoppingCart cart() { ... }

Here you’re setting the value attribute to the SCOPE_SESSION constant from Web-
ApplicationContext (which has a value of session). This tells Spring to create an
instance of the ShoppingCart bean for each session in a web application. There will
be multiple instances of the ShoppingCart bean, but only one will be created for a
given session and it will essentially be a singleton as far as that session is concerned.

 Notice that @Scope also has a proxyMode attribute set to ScopedProxyMode.INTERFACES.
This attribute addresses a problem encountered when injecting a session- or request-
scoped bean into a singleton-scoped bean. But before I explain proxyMode, let’s look at a
scenario that presents the problem that proxyMode addresses.

 Suppose you want to inject the ShoppingCart bean into the following setter
method on a singleton StoreService bean:

@Component
public class StoreService {

@Autowired
public void setShoppingCart(ShoppingCart shoppingCart) {

this.shoppingCart = shoppingCart;
}

...
}

83Scoping beans
Because StoreService is a singleton bean, it will be created as the Spring application
context is loaded. As it’s created, Spring will attempt to inject ShoppingCart into the
setShoppingCart() method. But the ShoppingCart bean, being session scoped,
doesn’t exist yet. There won’t be an instance of ShoppingCart until a user comes
along and a session is created.

 Moreover, there will be many instances of ShoppingCart: one per user. You don’t
want Spring to inject just any single instance of ShoppingCart into StoreService. You
want StoreService to work with the ShoppingCart instance for whichever session
happens to be in play when StoreService needs to work with the shopping cart.

 Instead of injecting the actual ShoppingCart bean into StoreService, Spring
should inject a proxy to the ShoppingCart bean, as illustrated in listing 3.2. This proxy
will expose the same methods as ShoppingCart so that for all StoreService knows, it
is the shopping cart. But when StoreService calls methods on ShoppingCart, the
proxy will lazily resolve it and delegate the call to the actual session-scoped Shopping-
Cart bean. See figure 3.1.

 Now let’s take this understanding of scoped proxies and discuss the proxyMode
attribute. As configured, proxyMode is set to ScopedProxyMode.INTERFACES, indicat-
ing that the proxy should implement the ShoppingCart interface and delegate to the
implementation bean.

 This is fine (and the most ideal proxy mode) as long as ShoppingCart is an inter-
face and not a class. But if ShoppingCart is a concrete class, there’s no way Spring can
create an interface-based proxy. Instead, it must use CGLib to generate a class-based
proxy. So, if the bean type is a concrete class, you must set proxyMode to ScopedProxy-
Mode.TARGET_CLASS to indicate that the proxy should be generated as an extension of
the target class.

 Although I’ve focused on session scope, know that request-scoped beans pose the
same wiring challenges as session-scoped beans. Therefore, request-scoped beans
should also be injected as scoped proxies.

...

Singleton
bean

Injected into
Delegates to

Delegates to

Delegates to

Delegates to

Session/request-
scoped bean

In
te

rfa
ce

Session/request-
scoped bean

In
te

rfa
ce

Session/request-
scoped bean

In
te

rfa
ce

Session/request-
scoped bean

In
te

rfa
ce

Scoped
proxy

In
te

rfa
ce

Figure 3.1 Scoped proxies enable deferred injection
of request- and session-scoped beans.

84 CHAPTER 3 Advanced wiring
3.4.2 Declaring scoped proxies in XML

If you’re declaring your session-scoped or request-scoped beans in XML, then you
can’t use the @Scope annotation or its proxyMode attribute. The scope attribute of the
<bean> element lets you set the bean scope, but how can you specify the proxy mode?

 To set the proxy mode, you must use a new element from Spring’s aop namespace:

<bean id="cart"
class="com.myapp.ShoppingCart"
scope="session">

<aop:scoped-proxy />
</bean>

<aop:scoped-proxy> is the Spring XML configuration’s counterpart to the @Scope
annotation’s proxyMode attribute. It tells Spring to create a scoped proxy for the bean.
By default, it uses CGLib to create a target class proxy. But you can ask it to generate an
interface-based proxy by setting the proxy-target-class attribute to false:

<bean id="cart"
class="com.myapp.ShoppingCart"
scope="session">

<aop:scoped-proxy proxy-target-class="false" />
</bean>

In order to use the <aop:scoped-proxy> element, you must declare Spring’s aop
namespace in your XML configuration:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation="

http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

...

</beans>

We’ll talk more about Spring’s aop namespace in chapter 4 when you work with
Spring and aspect-oriented programming. For now, let’s wrap up this chapter by look-
ing at one more of Spring’s advanced wiring options: Spring Expression Language.

3.5 Runtime value injection
When we talk about dependency injection and wiring, we’re often talking about wir-
ing a bean reference into a property or constructor argument of another bean. It’s
often about associating one object with another object.

 But another side to bean wiring is when you wire a value into a bean property or
into its constructor as an argument. You did a lot of value wiring in chapter 2, such as

85Runtime value injection
wiring the name of an album into the constructor or title property of a BlankDisc
bean. For example, you might have wired up a BlankDisc like this:

@Bean
public CompactDisc sgtPeppers() {

return new BlankDisc(
"Sgt. Pepper's Lonely Hearts Club Band",
"The Beatles");

}

Although this accomplished what you needed, setting the title and artist for the
BlankDisc bean, it did so with values hard-coded in the configuration class. Likewise,
if you had done this in XML, the values would have also been hard-coded:

<bean id="sgtPeppers"
class="soundsystem.BlankDisc"
c:_title="Sgt. Pepper's Lonely Hearts Club Band"
c:_artist="The Beatles" />

Sometimes hard-coded values are fine. Other times, however, you may want to avoid
hard-coded values and let the values be determined at runtime. For those cases,
Spring offers two ways of evaluating values at runtime:

 Property placeholders
 The Spring Expression Language (SpEL)

You’ll soon see that the application of these two techniques is similar, although their
purposes and behavior are different. Let’s start with a look at property placeholders,
the simpler of the two, and then dig into the more powerful SpEL.

3.5.1 Injecting external values

The simplest way to resolve external values in Spring is to declare a property source
and retrieve the properties via the Spring Environment. For example, the following
listing shows a basic Spring configuration class that uses external properties to wire up
a BlankDisc bean.

package com.soundsystem;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.PropertySource;
import org.springframework.core.env.Environment;

@Configuration
@PropertySource("classpath:/com/soundsystem/app.properties")
public class ExpressiveConfig {

@Autowired
Environment env;

@Bean

Listing 3.7 Using the @PropertySource annotation and Environment

Declare a
property
source

86 CHAPTER 3 Advanced wiring
public BlankDisc disc() {
return new BlankDisc(

env.getProperty("disc.title"),
env.getProperty("disc.artist"));

}

}

In this example, @PropertySource references a file named app.properties in the class-
path. It might look something like this:

disc.title=Sgt. Peppers Lonely Hearts Club Band
disc.artist=The Beatles

This properties file is loaded into Spring’s Environment, from which it can be
retrieved later. Meanwhile, in the disc() method, a new BlankDisc is created; its con-
structor arguments are resolved from the properties file by calling getProperty().

DIGGING INTO SPRING’S ENVIRONMENT

While we’re on the subject of Environment, you might find it helpful to know that the
getProperty() method shown in listing 3.7 isn’t the only method you can use to fetch
a property value. getProperty() is overloaded into four variations:

 String getProperty(String key)
 String getProperty(String key, String defaultValue)
 T getProperty(String key, Class<T> type)
 T getProperty(String key, Class<T> type, T defaultValue)

The first two forms of getProperty() always return a String value. You saw how to
use the first form in listing 3.7. But you can tweak the @Bean method slightly to work
with default values if the specified properties don’t exist:

@Bean
public BlankDisc disc() {
return new BlankDisc(

env.getProperty("disc.title", "Rattle and Hum"),
env.getProperty("disc.artist", "U2"));

}

The second two forms of getProperty() work much like the first two, but they recog-
nize that not all values may be Strings. For example, suppose you’re retrieving a value
representing the number of connections to maintain in a connection pool. If you
receive a String value from the properties file, then you’ll need to convert it to an
Integer before you can use it. But using one of the overloaded getProperty() meth-
ods handles that conversion for you:

int connectionCount =
env.getProperty("db.connection.count", Integer.class, 30);

A few more property-related methods are offered by Environment. If you use either of
the getProperty() methods without specifying a default value, you’ll receive null if
the property isn’t defined. If you want to require that the property be defined, you can
use getRequiredProperty() like this:

Retrieve property values

87Runtime value injection
@Bean
public BlankDisc disc() {
return new BlankDisc(

env.getRequiredProperty("disc.title"),
env.getRequiredProperty("disc.artist"));

}

Here, if either the disc.title property or the disc.artist property is undefined, an
IllegalStateException will be thrown.

 If you want to check for the existence of a property, you can call contains-
Property() on Environment:

boolean titleExists = env.containsProperty("disc.title");

Finally, if you need to resolve a property into a Class, you can use the getProperty-
AsClass() method:

Class<CompactDisc> cdClass =
env.getPropertyAsClass("disc.class", CompactDisc.class);

Digressing a bit from the subject of properties, Environment also offers some methods
for checking which profiles are active:

 String[] getActiveProfiles()—Returns an array of active profile names
 String[] getDefaultProfiles()—Returns an array of default profile names
 boolean acceptsProfiles(String... profiles)—Returns true if the envi-

ronment supports the given profile(s)

You saw how to use the acceptsProfiles() method in listing 3.6. In that case,
Environment was retrieved from ConditionContext, and the acceptsProfiles()
method was used to ensure that a given bean’s profile was in play before allowing the bean
to be created. You often won’t need the profile-focused methods from Environment, but
it’s good to know that they’re available.

 Retrieving properties directly from Environment is handy, especially when you’re
wiring beans in Java configuration. But Spring also offers the option of wiring proper-
ties with placeholder values that are resolved from a property source.

RESOLVING PROPERTY PLACEHOLDERS

Spring has always supported the option of externalizing properties into a properties
file and then plugging them into Spring beans using placeholder values. In Spring
wiring, placeholder values are property names wrapped with ${ ... }. As an exam-
ple, you can resolve the constructor arguments for a BlankDisc in XML like this:

<bean id="sgtPeppers"
class="soundsystem.BlankDisc"
c:_title="${disc.title}"
c:_artist="${disc.artist}" />

As shown here, the title constructor argument is given a value that’s resolved from
the property whose name is disc.title. And the artist argument is wired with the
value of the property whose name is disc.artist. In this way, the XML configuration

88 CHAPTER 3 Advanced wiring
doesn’t use any hard-coded values. Instead, the values are resolved from a source
external to the configuration file. (We’ll talk about how those properties are resolved
in a moment.)

 When relying on component-scanning and autowiring to create and initialize your
application components, there’s no configuration file or class where you can specify
the placeholders. Instead, you can use the @Value annotation in much the same way as
you might use the @Autowired annotation. In the BlankDisc class, for example, the
constructor might be written like this:

public BlankDisc(
@Value("${disc.title}") String title,
@Value("${disc.artist}") String artist) {

this.title = title;
this.artist = artist;

}

In order to use placeholder values, you must configure either a PropertyPlaceholder-
Configurer bean or a PropertySourcesPlaceholderConfigurer bean. Starting with
Spring 3.1, PropertySourcesPlaceholderConfigurer is preferred because it resolves
placeholders against the Spring Environment and its set of property sources.

 The following @Bean method configures PropertySourcesPlaceholderConfigurer
in Java configuration:

@Bean
public
static PropertySourcesPlaceholderConfigurer placeholderConfigurer() {

return new PropertySourcesPlaceholderConfigurer();
}

If you’d rather use XML configuration, the <context:property-placeholder> ele-
ment from Spring’s context namespace will give you a PropertySourcesPlaceholder-
Configurer bean:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd">

<context:property-placeholder />

</beans>

Resolving external properties is one way to defer value resolution until runtime, but
its focus is finely tuned on resolving properties, by name, from Spring’s Environment
and property sources. Spring Expression Language, on the other hand, offers a more
general way of calculating values for injection at runtime.

89Runtime value injection
3.5.2 Wiring with the Spring Expression Language

Spring 3 introduced Spring Expression Language (SpEL), a powerful yet succinct way
of wiring values into a bean’s properties or constructor arguments using expressions
that are evaluated at runtime. Using SpEL, you can pull off amazing feats of bean
wiring that would be much more difficult (or in some cases impossible) using other
wiring techniques.

 SpEL has a lot of tricks up its sleeves, including the following:

 The ability to reference beans by their IDs
 Invoking methods and accessing properties on objects
 Mathematical, relational, and logical operations on values
 Regular expression matching
 Collection manipulation

As you’ll see later in this book, SpEL can also be used for purposes other than depen-
dency injection. Spring Security, for example, supports defining security constraints
using SpEL expressions. And if you’re using Thymeleaf templates as the views in your
Spring MVC application, those templates can use SpEL expressions to reference
model data.

 To get started, let’s consider a few examples of SpEL expressions and see how to
wire them into beans. Then we’ll take a deeper dive into some of SpEL’s primitive
expressions that can be pieced together into more powerful expressions.

A FEW SPEL EXAMPLES

SpEL is such a flexible expression language that it would be impossible to show you all
the ways it can be used in the space allowed in this book. But there is enough room to
show you a few basic examples from which you can draw inspiration for your own
expressions.

 The first thing to know is that SpEL expressions are framed with #{ ... }, much as
property placeholders are framed with ${ ... }. What follows is possibly one of the
simplest SpEL expressions you can write:

#{1}

Stripping away the #{ ... } markers, what’s left is the body of a SpEL expression,
which is a numeric constant. It probably won’t surprise you much to learn that this
expression evaluates to the numeric value of 1.

 Of course, you’re not likely to use such a simple expression in a real application.
You’re more likely to build up more interesting expressions, such as this one:

#{T(System).currentTimeMillis()}

Ultimately this expression evaluates to the current time in milliseconds at the moment
when the expression is evaluated. The T() operator evaluates java.lang.System as a
type so that the staticcurrentTimeMillis() method can be invoked.

90 CHAPTER 3 Advanced wiring
 SpEL expressions can also refer to other beans or properties on those beans. For
example, the following expression evaluates to the value of the artist property on a
bean whose ID is sgtPeppers:

#{sgtPeppers.artist}

You can also refer to system properties via the systemProperties object:

#{systemProperties['disc.title']}

These are just a few basic examples of SpEL. You’ll see more before this chapter ends.
But first, let’s consider how you might use these expressions during bean wiring.

 When injecting properties and constructor arguments on beans that are created
via component-scanning, you can use the @Value annotation, much as you saw earlier
with property placeholders. Rather than use a placeholder expression, however, you
use a SpEL expression. For example, here’s what the BlankDisc constructor might
look like, drawing the album title and artist from system properties:

public BlankDisc(
@Value("#{systemProperties['disc.title']}") String title,
@Value("#{systemProperties['disc.artist']}") String artist) {

this.title = title;
this.artist = artist;

}

In XML configuration, you can pass in the SpEL expression to the value attribute of
<property> or <constructor-arg>, or as the value given to a p-namespace or c-
namespace entry. For example, here’s the XML declaration of the BlankDisc bean
that has its constructor arguments set from a SpEL expression:

<bean id="sgtPeppers"
class="soundsystem.BlankDisc"
c:_title="#{systemProperties['disc.title']}"
c:_artist="#{systemProperties['disc.artist']}" />

Now that we’ve looked at a few simple examples and how to inject values resolved
from SpEL expressions, let’s go over some of the primitive expressions supported in
SpEL.

EXPRESSING LITERAL VALUES

You’ve already seen an example of using SpEL to express a literal integer value. But it
can also be used for floating-point numbers, String values, and Boolean values.

 Here’s an example of a SpEL expression that is a floating-point value:

#{3.14159}

Numbers can also be expressed in scientific notation. For example, the following
expression evaluates to 98,700:

#{9.87E4}

A SpEL expression can also evaluate literal String values, such as

91Runtime value injection
#{'Hello'}

Finally, Boolean literals true and false are evaluated to their Boolean value. For
example,

#{false}

Working with literal values in SpEL is mundane. After all, you don’t need SpEL to set
an integer property to 1 or a Boolean property to false. I admit there’s not much use
in SpEL expressions that only contain literal values. But remember that more interest-
ing SpEL expressions are composed of simpler expressions, so it’s good to know how
to work with literal values in SpEL. You’ll eventually need them as you compose more
complex expressions.

REFERENCING BEANS, PROPERTIES, AND METHODS

Another basic thing that a SpEL expression can do is reference another bean by its ID.
For example, you could use SpEL to wire one bean into another bean’s property by
using the bean ID as the SpEL expression (in this case, a bean whose ID is sgtPeppers):

#{sgtPeppers}

Now let’s say that you want to refer to the artist property of the sgtPeppers bean in
an expression:

#{sgtPeppers.artist}

The first part of the expression body refers to the bean whose ID is sgtPeppers. What
follows the period delimiter is a reference to the artist property.

 In addition to referencing a bean’s properties, you can also call methods on a
bean. For example, suppose you have another bean whose ID is artistSelector. You
can call that bean’s selectArtist() method in a SpEL expression like this:

#{artistSelector.selectArtist()}

You can also call methods on the value returned from the invoked method. For exam-
ple, if selectArtist() returns a String, you can call toUpperCase() to make the
entire artist name uppercase lettering:

#{artistSelector.selectArtist().toUpperCase()}

This will work fine, as long as selectArtist() doesn’t return null. To guard against a
NullPointerException, you can use the type-safe operator:

#{artistSelector.selectArtist()?.toUpperCase()}

Instead of a lonely dot (.) to access the toUpperCase() method, now you’re using
the ?. operator. This operator makes sure the item to its left isn’t null before access-
ing the thing on its right. So, if selectArtist() returns null, then SpEL won’t even
try to invoke toUpperCase(). The expression will evaluate to null.

92 CHAPTER 3 Advanced wiring
WORKING WITH TYPES IN EXPRESSIONS

The key to working with class-scoped methods and constants in SpEL is to use the T()
operator. For example, to express Java’s Math class in SpEL, you need to use the T()
operator like this:

T(java.lang.Math)

The result of the T() operator, as shown here, is a Class object that represents
java.lang.Math. You can even wire it into a bean property of type Class, if you want.
But the real value of the T() operator is that it gives you access to static methods and
constants on the evaluated type.

 For example, suppose you need to wire the value of pi into a bean property. The
following SpEL expression does the trick:

T(java.lang.Math).PI

Similarly, static methods can be invoked in the type resolved with the T() operator.
You’ve seen an example of using T() to make a call to System.currentTimeMillis().
Here’s another example that evaluates to a random value between 0 and 1:

T(java.lang.Math).random()

SPEL OPERATORS

SpEL offers several operators that you can apply on values in SpEL expressions.
Table 3.1 summarizes these operators.

As a simple example of using one of these operators, consider the following SpEL
expression:

#{2 * T(java.lang.Math).PI * circle.radius}

Not only is this a great example of using SpEL’s multiplication operator (*), but it also
shows how you can compose simpler expressions into a more complex expression.
Here the value of pi is multiplied by 2, and that result is multiplied by the value of the
radius property of a bean whose ID is circle. Essentially, it evaluates to the circum-
ference of the circle defined in the circle bean.

Table 3.1 SpEL operators for manipulating expression values

Operator type Operators

Arithmetic +, -, *, /, %, ^

Comparison <, lt, >, gt, ==, eq, <=, le, >=, ge

Logical and, or, not, |

Conditional ?: (ternary), ?: (Elvis)

Regular expression matches

93Runtime value injection
 Similarly, you can use the carat symbol (^) in an expression to calculate a circle’s
area:

#{T(java.lang.Math).PI * circle.radius ^ 2}

The carat symbol is the power-of operator. In this case, it’s used to calculate the square
of the circle’s radius.

 When working with String values, the + operator performs concatenation, just as
in Java:

#{disc.title + ' by ' + disc.artist}

SpEL also offers comparison operators for comparing values in an expression. Notice
in table 3.1 that the comparison operators come in two forms: symbolic and textual.
For the most part, the symbolic operators are equivalent to their textual counterparts,
and you’re welcome to use whichever one suits you best.

 For example, to compare two numbers for equality, you can use the double-equal
(==) operator:

#{counter.total == 100}

Or you can use the textual eq operator:

#{counter.total eq 100}

Either way, the result is the same. The expression evaluates to a Boolean: true if
counter.total is equal to 100 or false if it’s not.

 SpEL also offers a ternary operator that works much like Java’s ternary operator. For
example, the following expression evaluates to the String “Winner!” if scoreboard
.score > 1000 or “Loser” if not:

#{scoreboard.score > 1000 ? "Winner!" : "Loser"}

A common use of the ternary operator is to check for a null value and offer a default
value in place of the null. For example, the following expression evaluates to the
value of disc.title if it isn’t null. If disc.title is null, then the expression evalu-
ates to “Rattle and Hum”.

#{disc.title ?: 'Rattle and Hum'}

This expression is commonly referred to as the Elvis operator. This strange name
comes from using the operator as an emoticon, where the question mark appears to
form the shape of Elvis Presley’s hair style.2

EVALUATING REGULAR EXPRESSIONS

When working with text, it’s sometimes useful to check whether that text matches a
certain pattern. SpEL supports pattern matching in expressions with its matches oper-
ator. The matches operator attempts to apply a regular expression (given as its right-
side argument) against a String value (given as the left-side argument). The result of

2 Don’t blame me. I didn’t come up with that name. But you gotta admit—it does kinda look like Elvis’s hair.

94 CHAPTER 3 Advanced wiring
a matches evaluation is a Boolean value: true if the value matches the regular expres-
sion, and false otherwise.

 To demonstrate, suppose you want to check whether a String contains a valid
email address. In that case, you can apply matches like this:

#{admin.email matches '[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.com'}

Exploring the mysteries of the enigmatic regular-expression syntax is outside the
scope of this book. And I realize that the regular expression given here isn’t robust
enough to cover all scenarios. But for the purposes of showing off the matches opera-
tor, it’ll have to suffice.

EVALUATING COLLECTIONS

Some of SpEL’s most amazing tricks involve working with collections and arrays. The
most basic thing you can do is reference a single element from a list:

#{jukebox.songs[4].title}

This evaluates to the title property of the fifth (zero-based) element from the songs
collection property on the bean whose ID is jukebox.

 To spice things up a bit, I suppose you could randomly select a song from the
jukebox:

#{jukebox.songs[T(java.lang.Math).random() *
jukebox.songs.size()].title}

As it turns out, the [] operator used to fetch an indexed element from a collection or
array can also be used to fetch a single character from a String. For example,

#{'This is a test'[3]}

This references the fourth (zero-based) character in the String, or s.
 SpEL also offers a selection operator (.?[]) to filter a collection into a subset of

the collection. As a demonstration, suppose you want a list of all songs in the jukebox
where the artist property is Aerosmith. The following expression uses the selection
operator to arrive at the list of available Aerosmith songs:

#{jukebox.songs.?[artist eq 'Aerosmith']}

As you can see, the selection operator accepts another expression within its square
brackets. As SpEL iterates over the list of songs, it evaluates that expression for each
entry in the songs collection. If the expression evaluates to true, then the entry is car-
ried over into the new collection. Otherwise it’s left out of the new collection. In this
case, the inner expression checks to see if the song’s artist property equals Aerosmith.

 SpEL also offers two other selection operations: .^[] for selecting the first match-
ing entry and .$[] for selecting the last matching entry. To demonstrate, consider this
expression, which finds the first song in the list whose artist property is Aerosmith:

#{jukebox.songs.^[artist eq 'Aerosmith']}

95Summary
Finally, SpEL offers a projection operator (.![]) to project properties from the ele-
ments in the collection onto a new collection. As an example, suppose you don’t want
a collection of the song objects, but a collection of all the song titles. The following
expression projects the title property into a new collection of Strings:

#{jukebox.songs.![title]}

Naturally, the projection operator can be combined with any of SpEL’s other opera-
tors, including the selection operator. For example, you could use this expression to
obtain a list of all of Aerosmith’s songs:

#{jukebox.songs.?[artist eq 'Aerosmith'].![title]}

We’ve only scratched the surface of what SpEL can do. There will be more opportunities
to tinker with SpEL throughout this book, especially when defining security constraints.

 For now, however, let me wrap up this discussion of SpEL with a warning. SpEL
expressions are handy and powerful ways to dynamically inject values into Spring
beans. It can be tempting to get crafty and write very involved expressions. But take
care not to get too clever with your expressions. The more clever your expressions
become, the more important it will be to test them. Ultimately, SpEL expressions are
given as String values and can be difficult to test. For that reason, I encourage you to
keep your expressions simple so that testing isn’t as big a concern.

3.6 Summary
We’ve covered a lot of ground in this chapter. In doing so, we’ve built on the founda-
tional bean-wiring techniques explored in chapter 2 with some powerful advanced
wiring tricks.

 We started by using Spring profiles to address a common problem where Spring
beans must vary across deployment environments. By resolving environment-specific
beans at runtime by matching them against one or more active profiles, Spring makes
it possible to deploy the same deployment unit across multiple environments without
rebuilding.

 Profiled beans are one way to conditionally create beans at runtime, but Spring 4
offers a more generic way to declare beans that are created (or not created) depend-
ing on the outcome of a given condition. The @Conditional annotation, paired with
an implementation of Spring’s Condition interface, offers developers a powerful and
flexible mechanism for conditionally creating beans.

 We also looked at two techniques for resolving autowiring ambiguity: primary
beans and qualifiers. Although designating a bean as a primary bean is simple, it’s also
limited, so we discussed using qualifiers to narrow the list of autowire candidates to a
single bean. In addition, you saw how to create custom qualifier annotations that
describe a bean by its traits.

 Although most Spring beans are created as singletons, there are times when other
creation strategies are more appropriate. Out of the box, Spring allows beans to be
created as singletons, prototypes, request-scoped, or session-scoped. When declaring

96 CHAPTER 3 Advanced wiring
request- or session-scoped beans, you also learned how to control the way scoped
proxies are created, either as class-based proxies or interface-based proxies.

 Finally, we looked at the Spring Expression Language, which gives you a way to
resolve values to be injected into bean properties at runtime.

 With a strong foundation in bean wiring established, we’ll now turn our attention to
aspect-oriented programming (AOP). Much as dependency injection helps decouple
components from the other components they collaborate with, AOP helps decouple
your application components from tasks that span multiple components in an applica-
tion. In the next chapter, we’ll dig into creating and working with aspects in Spring.

Aspect-oriented Spring
As I’m writing this chapter, summertime is upon Texas (where I reside). And in
Texas, it’s very common to go through several days of record-high temperatures.
It’s hot. In weather like this, air conditioning is a must. But the downside of air con-
ditioning is that it uses electricity, and electricity costs money. There’s little we can
do to avoid paying for a cool and comfortable home. That’s because every home
has a meter that measures every kilowatt, and once a month someone comes by to
read that meter so that the electric company knows how much to bill us.

 Now imagine what would happen if the meter went away and nobody came by to
measure our electricity usage. Suppose it was up to each homeowner to contact the
electric company and report their electricity usage. Although it’s possible that some
obsessive homeowners would keep careful records of how much they used their
lights, televisions, and air conditioning, most wouldn’t bother. Electricity on the
honor system might be great for consumers, but it would be less than ideal for the
electric companies.

This chapter covers
 Basics of aspect-oriented programming

 Creating aspects from POJOs

 Using @AspectJ annotations

 Injecting dependencies into AspectJ aspects
97

98 CHAPTER 4 Aspect-oriented Spring
 Monitoring electricity consumption is an important function, but it isn’t foremost
in most homeowners’ minds. Mowing the lawn, vacuuming the carpet, and cleaning
the bathroom are the kinds of things that homeowners are actively involved in. Moni-
toring the amount of electricity used by their house is a passive event from the home-
owner’s point of view. (Although it’d be great if mowing the lawn was also a passive
event—especially on these hot days.)

 Some functions of software systems are like the electric meters on our homes. The
functions need to be applied at multiple points within the application, but it’s unde-
sirable to explicitly call them at every point. Logging, security, and transaction man-
agement are important, but should they be activities that your application objects are
actively participating in? Or would it be better for your application objects to focus on
the business domain problems they’re designed for, and to leave certain aspects to be
handled by someone else?

 In software development, functions that span multiple points of an application are
called cross-cutting concerns. Typically, these cross-cutting concerns are conceptually
separate from (but often embedded directly within) the application’s business logic.
Separating these cross-cutting concerns from the business logic is where aspect-
oriented programming (AOP) goes to work.

 In chapter 2, you learned how to use dependency injection to manage and config-
ure application objects. Whereas DI helps you decouple application objects from
each other, AOP helps you decouple cross-cutting concerns from the objects they
affect.

 Logging is a common example of the application of aspects, but it’s not the only
thing aspects are good for. Throughout this book, you’ll see several practical applica-
tions of aspects, including declarative transactions, security, and caching.

 This chapter explores Spring’s support for aspects, including how to declare regu-
lar classes to be aspects and how to use annotations to create aspects. In addition,
you’ll see how AspectJ—another popular AOP implementation—can complement
Spring’s AOP framework. But first, before we get carried away with transactions, secu-
rity, and caching, let’s see how aspects are implemented in Spring, starting with a
primer on a few of AOP’s fundamentals.

4.1 What is aspect-oriented programming?
As stated earlier, aspects help to modularize cross-cutting concerns. In short, a cross-
cutting concern can be described as any functionality that affects multiple points of an
application. Security, for example, is a cross-cutting concern, in that many methods in
an application can have security rules applied to them. Figure 4.1 gives a visual depic-
tion of cross-cutting concerns.

 This figure represents a typical application that’s broken down into modules.
Each module’s main concern is to provide services for its particular domain. But each
module also requires similar ancillary functionality, such as security and transaction
management.

99What is aspect-oriented programming?
 A common object-oriented technique
for reusing common functionality is to
apply inheritance or delegation. But inheri-
tance can lead to a brittle object hierarchy
if the same base class is used throughout an
application, and delegation can be cumber-
some because complicated calls to the dele-
gate object may be required.

 Aspects offer an alternative to inheri-
tance and delegation that can be cleaner in
many circumstances. With AOP, you still
define the common functionality in one
place, but you can declaratively define how and where this functionality is applied
without having to modify the class to which you’re applying the new feature. Cross-
cutting concerns can now be modularized into special classes called aspects. This has
two benefits. First, the logic for each concern is in one place, as opposed to being scat-
tered all over the code base. Second, your service modules are cleaner because they
only contain code for their primary concern (or core functionality), and secondary
concerns have been moved to aspects.

4.1.1 Defining AOP terminology

Like most technologies, AOP has its own
jargon. Aspects are often described in
terms of advice, pointcuts, and join
points. Figure 4.2 illustrates how these
concepts are tied together.

 Unfortunately, many of the terms used
to describe AOP features aren’t intuitive.
Nevertheless, they’re now part of the AOP
idiom, and in order to understand AOP,
you must know these terms. Before you
walk the walk, you have to learn to talk
the talk.

ADVICE

When a meter reader shows up at your house, his purpose is to report the number of
kilowatt hours back to the electric company. Sure, he has a list of houses that he must
visit, and the information he reports is important. But the actual act of recording elec-
tricity usage is the meter reader’s main job.

 Likewise, aspects have a purpose—a job they’re meant to do. In AOP terms, the job
of an aspect is called advice.

 Advice defines both the what and the when of an aspect. In addition to describing
the job that an aspect will perform, advice addresses the question of when to perform

CourseService

StudentService

MiscService

S
ecurity

Transactions

O
ther

Figure 4.1 Aspects modularize cross-
cutting concerns, applying logic that spans
multiple application objects.

Figure 4.2 An aspect’s functionality (advice)
is woven into a program’s execution at one or
more join points.

100 CHAPTER 4 Aspect-oriented Spring
the job. Should it be applied before a method is invoked? After the method is
invoked? Both before and after method invocation? Or should it be applied only if a
method throws an exception?

 Spring aspects can work with five kinds of advice:

 Before—The advice functionality takes place before the advised method is
invoked.

 After—The advice functionality takes place after the advised method completes,
regardless of the outcome.

 After-returning—The advice functionality takes place after the advised method
successfully completes.

 After-throwing—The advice functionality takes place after the advised method
throws an exception.

 Around—The advice wraps the advised method, providing some functionality
before and after the advised method is invoked.

JOIN POINTS

An electric company services several houses, perhaps even an entire city. Each house
has an electric meter that needs to be read, so each house is a potential target for the
meter reader. The meter reader could potentially read all kinds of devices, but to do
her job, she needs to target electric meters that are attached to houses.

 In the same way, your application may have thousands of opportunities for advice
to be applied. These opportunities are known as join points. A join point is a point in
the execution of the application where an aspect can be plugged in. This point could
be a method being called, an exception being thrown, or even a field being modified.
These are the points where your aspect’s code can be inserted into the normal flow of
your application to add new behavior.

POINTCUTS

It’s not possible for any one meter reader to visit all houses serviced by the electric
company. Instead, each one is assigned a subset of all the houses to visit. Likewise, an
aspect doesn’t necessarily advise all join points in an application. Pointcuts help narrow
down the join points advised by an aspect.

 If advice defines the what and when of aspects, then pointcuts define the where. A
pointcut definition matches one or more join points at which advice should be woven.
Often you specify these pointcuts using explicit class and method names or through
regular expressions that define matching class and method name patterns. Some AOP
frameworks allow you to create dynamic pointcuts that determine whether to apply
advice based on runtime decisions, such as the value of method parameters.

ASPECTS

When a meter reader starts his day, he knows both what he’s supposed to do (report
electricity usage) and which houses to collect that information from. Thus he knows
everything he needs to know to get his job done.

101What is aspect-oriented programming?
 An aspect is the merger of advice and pointcuts. Taken together, advice and point-
cuts define everything there is to know about an aspect—what it does and where and
when it does it.

INTRODUCTIONS

An introduction allows you to add new methods or attributes to existing classes. For
example, you could create an Auditable advice class that keeps the state of when an
object was last modified. This could be as simple as having one method, setLast-
Modified(Date), and an instance variable to hold this state. The new method and
instance variable can then be introduced to existing classes without having to change
them, giving them new behavior and state.

WEAVING

Weaving is the process of applying aspects to a target object to create a new proxied
object. The aspects are woven into the target object at the specified join points. The
weaving can take place at several points in the target object’s lifetime:

 Compile time—Aspects are woven in when the target class is compiled. This
requires a special compiler. AspectJ’s weaving compiler weaves aspects this way.

 Class load time—Aspects are woven in when the target class is loaded into the
JVM. This requires a special ClassLoader that enhances the target class’s byte-
code before the class is introduced into the application. AspectJ 5’s load-time
weaving (LTW) support weaves aspects this way.

 Runtime—Aspects are woven in sometime during the execution of the applica-
tion. Typically, an AOP container dynamically generates a proxy object that del-
egates to the target object while weaving in the aspects. This is how Spring AOP
aspects are woven.

That’s a lot of new terms to get to know. Revisiting figure 4.1, you can now see how
advice contains the cross-cutting behavior that needs to be applied to an application’s
objects. The join points are all the points within the execution flow of the application
that are candidates to have advice applied. The pointcut defines where (at what join
points) that advice is applied. The key concept you should take from this is that point-
cuts define which join points get advised.

 Now that you’re familiar with some basic AOP terminology, let’s see how these core
AOP concepts are implemented in Spring.

4.1.2 Spring’s AOP support

Not all AOP frameworks are created equal. They may differ in how rich their join
point models are. Some allow you to apply advice at the field-modification level,
whereas others only expose the join points related to method invocations. They may
also differ in how and when they weave the aspects. Whatever the case, the ability to
create pointcuts that define the join points at which aspects should be woven is what
makes it an AOP framework.

102 CHAPTER 4 Aspect-oriented Spring
 Because this is a Spring book, we’ll focus on Spring AOP. Even so, there’s a lot of
synergy between the Spring and AspectJ projects, and the AOP support in Spring bor-
rows a lot from the AspectJ project.

 Spring’s support for AOP comes in four styles:

 Classic Spring proxy-based AOP

 Pure-POJO aspects
 @AspectJ annotation-driven aspects
 Injected AspectJ aspects (available in all versions of Spring)

The first three styles are all variations on Spring’s own AOP implementation. Spring
AOP is built around dynamic proxies. Consequently, Spring’s AOP support is limited
to method interception.

 The term classic usually carries a good connotation. Classic cars, classic golf tourna-
ments, and classic Coca-Cola are all good things. But Spring’s classic AOP program-
ming model isn’t so great. Oh, it was good in its day. But now Spring supports much
cleaner and easier ways to work with aspects. When held up against simple declarative
AOP and annotation-based AOP, Spring’s classic AOP seems bulky and overcompli-
cated. Therefore, I won’t be covering classic Spring AOP.

 With Spring’s aop namespace, you can turn pure POJOs into aspects. In truth,
those POJOs will only supply methods that are called in reaction to a pointcut. Unfor-
tunately, this technique requires XML configuration, but it’s an easy way to declara-
tively turn any object into an aspect.

 Spring borrows AspectJ’s aspects to enable annotation-driven AOP. Under the cov-
ers, it’s still Spring’s proxy-based AOP, but the programming model is almost identical
to writing full-blown AspectJ annotated aspects. The perk of this AOP style is that it can
be done without any XML configuration.

 If your AOP needs exceed simple method interception (constructor or property
interception, for example), you’ll want to consider implementing aspects in AspectJ.
In that case, the fourth style listed will enable you to inject values into AspectJ-driven
aspects.

 We’ll explore more of these Spring AOP techniques in this chapter. But before we
get started, it’s important to understand a few key points of Spring’s AOP framework.

SPRING ADVICE IS WRITTEN IN JAVA

All the advice you create in Spring is written in a standard Java class. That way, you get
the benefit of developing your aspects in the same integrated development environ-
ment (IDE) you’d use for normal Java development. The pointcuts that define where
advice should be applied may be specified with annotations or configured in a Spring
XML configuration, but either will be familiar to Java developers.

 Contrast this with AspectJ. Although AspectJ now supports annotation-based
aspects, it also comes as a language extension to Java. This approach has benefits and
drawbacks. By having an AOP-specific language, you get more power and fine-grained
control, as well as a richer AOP toolset. But you’re required to learn a new tool and
syntax to accomplish this.

103Selecting join points with pointcuts
SPRING ADVISES OBJECTS AT RUNTIME

In Spring, aspects are woven into Spring-managed beans at runtime by wrapping them
with a proxy class. As illustrated in figure 4.3, the proxy class poses as the target bean,
intercepting advised method calls and forwarding those calls to the target bean.
Between the time when the proxy intercepts the method call and the time when it
invokes the target bean’s method, the proxy performs the aspect logic.

 Spring doesn’t create a proxied object until that proxied bean is needed by the
application. If you’re using an ApplicationContext, the proxied objects will be cre-
ated when it loads all the beans from the BeanFactory. Because Spring creates prox-
ies at runtime, you don’t need a special compiler to weave aspects in Spring’s AOP.

SPRING ONLY SUPPORTS METHOD JOIN POINTS

As mentioned earlier, multiple join-point models are available through various AOP
implementations. Because it’s based on dynamic proxies, Spring only supports
method join points. This is in contrast to some other AOP frameworks, such as AspectJ
and JBoss, which provide field and constructor join points in addition to method
pointcuts. Spring’s lack of field pointcuts prevents you from creating very fine-grained
advice, such as intercepting updates to an object’s field. And without constructor
pointcuts, there’s no way to apply advice when a bean is instantiated.

 But method interception should suit most, if not all, of your needs. If you find
yourself in need of more than method interception, you’ll want to complement
Spring AOP with AspectJ.

 Now you have a general idea of what AOP does and how it’s supported by Spring.
It’s time to get your hands dirty creating aspects in Spring. Let’s start with Spring’s
declarative AOP model.

4.2 Selecting join points with pointcuts
As mentioned before, pointcuts are used to pinpoint where an aspect’s advice should
be applied. Along with an aspect’s advice, pointcuts are among the most fundamental
elements of an aspect. Therefore, it’s important to know how to write pointcuts.

 In Spring AOP, pointcuts are defined using AspectJ’s pointcut expression language.
If you’re already familiar with AspectJ, then defining pointcuts in Spring should feel

Proxy

TargetCaller
Figure 4.3 Spring aspects are
implemented as proxies that
wrap the target object. The proxy
handles method calls, performs
additional aspect logic, and then
invokes the target method.

104 CHAPTER 4 Aspect-oriented Spring
natural. But in case you’re new to AspectJ, this section will serve as a quick lesson on
writing AspectJ-style pointcuts. For a more detailed discussion of AspectJ and AspectJ’s
pointcut expression language, I strongly recommend Ramnivas Laddad’s AspectJ in
Action, Second Edition (Manning, 2009, www.manning.com/laddad2/).

 The most important thing to know about AspectJ pointcuts as they pertain to
Spring AOP is that Spring only supports a subset of the pointcut designators available
in AspectJ. Recall that Spring AOP is proxy-based, and certain pointcut expressions
aren’t relevant to proxy-based AOP. Table 4.1 lists the AspectJ pointcut designators
that are supported in Spring AOP.

Attempting to use any of AspectJ’s other designators will result in an
IllegalArgumentException being thrown.

 As you browse through the supported designators, note that the execution desig-
nator is the only one that actually performs matches. The other designators are used
to limit those matches. This means execution is the primary designator you’ll use in
every pointcut definition you write. You’ll use the other designators to constrain the
pointcut’s reach.

4.2.1 Writing pointcuts

To demonstrate aspects in Spring, you need something to be the subject of the
aspect’s pointcuts. For that purpose, let’s define a Performance interface:

Table 4.1 Spring uses AspectJ’s pointcut expression language to define Spring aspects.

AspectJ designator Description

args() Limits join-point matches to the execution of methods whose arguments are
instances of the given types

@args() Limits join-point matches to the execution of methods whose arguments are
annotated with the given annotation types

execution() Matches join points that are method executions

this() Limits join-point matches to those where the bean reference of the AOP proxy
is of a given type

target() Limits join-point matches to those where the target object is of a given type

@target() Limits matching to join points where the class of the executing object has an
annotation of the given type

within() Limits matching to join points within certain types

@within() Limits matching to join points within types that have the given annotation (the
execution of methods declared in types with the given annotation when using
Spring AOP)

@annotation Limits join-point matches to those where the subject of the join point has the
given annotation

www.manning.com/laddad2/

105Selecting join points with pointcuts
package concert;

public interface Performance {
public void perform();

}

Performance represents any kind of live performance, such as a stage play, a movie,
or a concert. Let’s say that you want to write an aspect that triggers off Performance’s
perform() method. Figure 4.4 shows a pointcut expression that can be used to apply
advice whenever the perform() method is executed.

You use the execution() designator to select Performance’s perform() method.
The method specification starts with an asterisk, which indicates that you don’t care
what type the method returns. Then you specify the fully qualified class name and the
name of the method you want to select. For the method’s parameter list, you use the
double dot (..), indicating that the pointcut should select any perform() method,
no matter what the argument list is.

 Now let’s suppose that you want to confine the reach of that pointcut to only the
concert package. In that case, you can limit the match by tacking on a within() des-
ignator, as shown in figure 4.5.

Note that you use the && operator to combine the execution() and within() desig-
nators in an “and” relationship (where both designators must match for the pointcut
to match). Similarly, you could use the || operator to indicate an “or” relationship.
And the ! operator can be used to negate the effect of a designator.

 Because ampersands have special meaning in XML, you’re free to use and in place
of && when specifying pointcuts in a Spring XML-based configuration. Likewise, or
and not can be used in place of || and !, respectively.

execution(* concert.Performance.perform(..))

Trigger on a
method’s execution

Returning
any type

The type that the
method belongs to

Method specifiction

The method Taking any
arguments

Figure 4.4 Selecting
Performance’s perform()
method with an AspectJ pointcut
expression

execution(* concert.Performance.perform(..))
 && within(concert.*))

Combination (and)
operator

The execution of the Instrument.play() method

When the method is called from within any
class in the concert package

Figure 4.5 Limiting a pointcut’s reach
by using the within() designator

106 CHAPTER 4 Aspect-oriented Spring
4.2.2 Selecting beans in pointcuts

In addition to the designators listed in table 4.1, Spring adds a bean() designator that
lets you identify beans by their ID in a pointcut expression. bean() takes a bean ID or
name as an argument and limits the pointcut’s effect to that specific bean.

 For example, consider the following pointcut:

execution(* concert.Performance.perform())
and bean('woodstock')

Here you’re saying that you want to apply aspect advice to the execution of
Performance’s perform() method, but limited to the bean whose ID is woodstock.

 Narrowing a pointcut to a specific bean may be valuable in some cases, but you can
also use negation to apply an aspect to all beans that don’t have a specific ID:

execution(* concert.Performance.perform())
and !bean('woodstock')

In this case, the aspect’s advice will be woven into all beans whose ID isn’t woodstock.
 Now that we’ve covered the basics of writing pointcuts, let’s see how to write the

advice and declare the aspects that use those pointcuts.

4.3 Creating annotated aspects
A key feature introduced in AspectJ 5 is the ability to use annotations to create aspects.
Prior to AspectJ 5, writing AspectJ aspects involved learning a Java language extension.
But AspectJ’s annotation-oriented model makes it simple to turn any class into an
aspect by sprinkling a few annotations around.

 You’ve already defined the Performance interface as the subject of your aspect’s
pointcuts. Now let’s use AspectJ annotations to create an aspect.

4.3.1 Defining an aspect

A performance isn’t a performance without an audience. Or is it? When you think
about it from the perspective of a performance, an audience is important but isn’t
central to the function of the performance itself; it’s a separate concern. Therefore, it
makes sense to define the audience as an aspect that’s applied to a performance.

 The following listing shows the Audience class that defines the aspect you’ll need.

package concert;
import org.aspectj.lang.annotation.AfterReturning;
import org.aspectj.lang.annotation.AfterThrowing;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;

@Aspect
public class Audience {

@Before("execution(** concert.Performance.perform(..))")
public void silenceCellPhones() {

Listing 4.1 Audience class: an aspect that watches a performance

Before
performance

107Creating annotated aspects
System.out.println("Silencing cell phones");
}

@Before("execution(** concert.Performance.perform(..))")
public void takeSeats() {

System.out.println("Taking seats");
}

@AfterReturning("execution(** concert.Performance.perform(..))")
public void applause() {
System.out.println("CLAP CLAP CLAP!!!");

}

@AfterThrowing("execution(** concert.Performance.perform(..))")
public void demandRefund() {
System.out.println("Demanding a refund");

}

}

Notice how the Audience class is annotated with @Aspect. This annotation indicates
that Audience isn’t just any POJO—it’s an aspect. And throughout the Audience class
are methods that are annotated to define the specifics of the aspect.

 Audience has four methods that define things an audience might do as it observes
a performance. Before the performance, the audience should take their seats
(takeSeats()) and silence their cell phones (silenceCellPhones()). If the perfor-
mance goes well, the audience should applaud (applause()). But if the performance
fails to meet the audience’s expectations, then the audience should demand a refund
(demandRefund()).

 As you can see, those methods are annotated with advice annotations to indicate
when those methods should be called. AspectJ provides five annotations for defining
advice, as listed in table 4.2.

The Audience class makes use of three out of the five advice annotations. The
takeSeats() and silenceCellPhones() methods are both annotated with
@Before, indicating that they should be called before a performance is performed.
The applause() method is annotated with @AfterReturning so that it will be called

Table 4.2 Spring uses AspectJ annotations to declare advice methods.

Annotation Advice

@After The advice method is called after the advised method returns or throws an
exception.

@AfterReturning The advice method is called after the advised method returns.

@AfterThrowing The advice method is called after the advised method throws an exception.

@Around The advice method wraps the advised method.

@Before The advice method is called before the advised method is called.

Before
performance

After
performance

After bad
performance

108 CHAPTER 4 Aspect-oriented Spring
after a performance returns successfully. And the @AfterThrowing annotation is
placed on demandRefund() so that it will be called if any exceptions are thrown dur-
ing a performance.

 You’ve probably noticed that all of these annotations are given a pointcut expres-
sion as a value. And you may have noticed that it’s the same pointcut expression on all
four methods. They could each be given a different pointcut expression, but this par-
ticular pointcut suits your needs for all the advice methods. Taking a closer look at the
pointcut expression given to the advice annotations, you’ll see that it triggers on the
execution of the perform() method on a Performance.

 It’s a shame that you had to repeat that same pointcut expression four times.
Duplication like this doesn’t feel right. It’d be nice if you could define the pointcut
once and then reference it every time you need it.

 Fortunately, there’s a way: the @Pointcut annotation defines a reusable pointcut
within an @AspectJ aspect. The next listing shows the Audience aspect, updated to
use @Pointcut.

package concert;
import org.aspectj.lang.annotation.AfterReturning;
import org.aspectj.lang.annotation.AfterThrowing;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;
import org.aspectj.lang.annotation.Pointcut;

@Aspect
public class Audience {

@Pointcut("execution(** concert.Performance.perform(..))")
public void performance() {}

@Before("performance()")
public void silenceCellPhones() {

System.out.println("Silencing cell phones");
}

@Before("performance()")
public void takeSeats() {

System.out.println("Taking seats");
}

@AfterReturning("performance()")
public void applause() {

System.out.println("CLAP CLAP CLAP!!!");
}

@AfterThrowing("performance()")
public void demandRefund() {

System.out.println("Demanding a refund");
}

}

Listing 4.2 Declaring a frequently used pointcut expression with @Pointcut

Define
named
pointcut

Before
performance

After performance

After bad performance

109Creating annotated aspects
In Audience, the performance() method is annotated with @Pointcut. The value
given to the @Pointcut annotation is a pointcut expression, just like the ones you
used previously with the advice annotations. By annotating performance() with
@Pointcut in this way, you essentially extend the pointcut expression language so that
you can use performance() in your pointcut expressions anywhere you’d otherwise
use the longer expression. As you can see, you replace the longer expression in all the
advice annotations with performance().

 The body of the performance() method is irrelevant and, in fact, should be
empty. The method itself is just a marker, giving the @Pointcut annotation something
to attach itself to.

 Note that aside from the annotations and the no-op performance() method, the
Audience class is essentially a POJO. Its methods can be called just like methods on
any other Java class. Its methods can be individually unit-tested just as in any other
Java class. Audience is just another Java class that happens to be annotated to be used
as an aspect.

 And, just like any other Java class, it can be wired as a bean in Spring:

@Bean
public Audience audience() {

return new Audience();
}

If you were to stop here, Audience would only be a bean in the Spring container. Even
though it’s annotated with AspectJ annotations, it wouldn’t be treated as an aspect
without something that interpreted those annotations and created the proxies that
turn it into an aspect.

 If you’re using JavaConfig, you can turn on auto-proxying by applying the
@EnableAspectJAutoProxy annotation at the class level of the configuration class.
The following configuration class shows how to enable auto-proxying in JavaConfig.

package concert;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.EnableAspectJAutoProxy;

@Configuration
@EnableAspectJAutoProxy
@ComponentScan
public class ConcertConfig {

@Bean
public Audience audience() {

return new Audience();
}

}

Listing 4.3 Enabling auto-proxying of AspectJ annotations in JavaConfig

Enable AspectJ
auto-proxying

Declare
Audience bean

110 CHAPTER 4 Aspect-oriented Spring

Aspec
p

If, however, you’re using XML to wire your beans in Spring, then you need to use the
<aop:aspectj-autoproxy> element from Spring’s aop namespace. The XML config-
uration in the following listing shows how this is done.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation="http://www.springframework.org/schema/aop

http://www.springframework.org/schema/aop/spring-aop.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd">

<context:component-scan base-package="concert" />

<aop:aspectj-autoproxy />

<bean class="concert.Audience" />

</beans>

Whether you use JavaConfig or XML, AspectJ auto-proxying uses the @Aspect-
annotated bean to create a proxy around any other beans for which the aspect’s point-
cuts are a match. In this case, a proxy will be created for the Concert bean, with the
advice methods in Audience being applied before and after the perform() method.

 It’s important to understand that Spring’s AspectJ auto-proxying only uses
@AspectJ annotations as a guide for creating proxy-based aspects. Under the covers,
it’s still Spring’s proxy-based aspects. This is significant because it means that although
you’re using @AspectJ annotations, you’re still limited to proxying method invoca-
tions. If you want to be able to exploit the full power of AspectJ, you’ll have to use the
AspectJ runtime and not rely on Spring to create proxy-based aspects.

 At this point, your aspect is defined using distinct advice methods for before and
after advice. But table 4.2 mentions another kind of advice: around advice. Around
advice is just different enough from the other advice types that it’s worth spending a
moment seeing how to write it.

4.3.2 Creating around advice

Around advice is the most powerful advice type. It allows you to write logic that com-
pletely wraps the advised method. It’s essentially like writing both before advice and
after advice in a single advice method.

 To illustrate around advice, let’s rewrite the Audience aspect. This time you’ll use
a single around advice method instead of distinct before and after advice methods.

Listing 4.4 Enabling AspectJ auto-proxying in XML using Spring’s aop namespace

Declare
Spring’s aop
namespace

Enable
tJ auto-
roxying

Declare the
Audience bean

111Creating annotated aspects

package concert;
import org.aspectj.lang.ProceedingJoinPoint;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Pointcut;

@Aspect
public class Audience {

@Pointcut("execution(** concert.Performance.perform(..))")
public void performance() {}

@Around("performance()")
public void watchPerformance(ProceedingJoinPoint jp) {

try {
System.out.println("Silencing cell phones");
System.out.println("Taking seats");
jp.proceed();
System.out.println("CLAP CLAP CLAP!!!");

} catch (Throwable e) {
System.out.println("Demanding a refund");

}

}

}

Here the @Around annotation indicates that the watchPerformance() method is to
be applied as around advice to the performance() pointcut. In this advice, the audi-
ence will silence their cell phones and take their seats before the performance and
will applaud after the performance. And just like before, if an exception is thrown
during the performance, the audience will ask for their money back.

 As you can see, the effect of this advice is identical to what you did earlier with
before and after advice. But here it’s all in a single advice method, whereas before it
was spread across four distinct advice methods.

 The first thing you’ll notice about this new advice method is that it’s given a
ProceedingJoinPoint as a parameter. This object is necessary because it’s how you
can invoke the advised method from within your advice. The advice method will do
everything it needs to do; and when it’s ready to pass control to the advised method, it
will call ProceedingJoinPoint’s proceed() method.

 Note that it’s crucial that you remember to include a call to the proceed()
method. If you don’t, then your advice will effectively block access to the advised
method. Maybe that’s what you want, but chances are good that you do want the
advised method to be executed at some point.

 What’s also interesting is that just as you can omit a call to the proceed() method
to block access to the advised method, you can also invoke it multiple times from
within the advice. One reason for doing this may be to implement retry logic to per-
form repeated attempts on the advised method should it fail.

Listing 4.5 Reimplementing the Audience aspect using around advice

Declare
named
pointcut

Around
advice

method

112 CHAPTER 4 Aspect-oriented Spring
4.3.3 Handling parameters in advice

So far, your aspects have been simple, taking no parameters. The only exception is that
the watchPerformance() method you wrote for the around advice example took a
ProceedingJoinPoint as a parameter. Other than that, the advice you’ve written hasn’t
bothered to look at any parameters passed to the advised methods. That’s been okay,
though, because the perform() method you were advising didn’t take any parameters.

 But what if your aspect was to advise a method that does take parameters? Could
the aspect access the parameters that are passed into the method and use them?

 To illustrate, let’s revisit the BlankDisc class from section 2.4.4. As it is, the play()
method cycles through all the tracks and calls playTrack() for each track. But you
could call the playTrack() method directly to play an individual track.

 Suppose you want to keep a count of how many times each track is played. One way
to do this is to change the playTrack() method to directly keep track of that count
each time it’s called. But track-counting logic is a separate concern from playing a
track and therefore doesn’t belong in the playTrack() method. This looks like a job
for an aspect.

 To keep a running count of how many times a track is played, let’s create Track-
Counter, an aspect that advises playTrack(). The following listing shows just such an
aspect.

package soundsystem;
import java.util.HashMap;
import java.util.Map;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;
import org.aspectj.lang.annotation.Pointcut;

@Aspect
public class TrackCounter {

private Map<Integer, Integer> trackCounts =
new HashMap<Integer, Integer>();

@Pointcut(
"execution(* soundsystem.CompactDisc.playTrack(int)) " +
"&& args(trackNumber)")

public void trackPlayed(int trackNumber) {}

@Before("trackPlayed(trackNumber)")
public void countTrack(int trackNumber) {

int currentCount = getPlayCount(trackNumber);
trackCounts.put(trackNumber, currentCount + 1);

}

public int getPlayCount(int trackNumber) {
return trackCounts.containsKey(trackNumber)

? trackCounts.get(trackNumber) : 0;
}

}

Listing 4.6 Using parameterized advice to count how many times a track is played

Advise the
playTrack()
method

Count a track
before it’s played

113Creating annotated aspects
As with the other aspects you’ve created so far, this aspect uses @Pointcut to define a
named pointcut and @Before to declare a method as supplying before advice. What’s
different here, however, is that the pointcut also declares parameters to be supplied to
the advice method. Figure 4.6 breaks down the pointcut expression to show where the
parameter is specified.

 The thing to focus on in the figure is the args(trackNumber) qualifier in the
pointcut expression. This indicates that any int argument that is passed into the exe-
cution of playTrack() should also be passed into the advice. The parameter name,
trackNumber, also matches the parameter in the pointcut method signature.

 That carries over into the advice method where the @Before annotation is defined
with the named pointcut, trackPlayed(trackNumber). The parameter in the point-
cut aligns with the parameter of the same name in the pointcut method, completing
the path of the parameter from the named pointcut to the advice method.

 Now you can configure BlankDisc and TrackCounter as beans in the Spring con-
figuration and enable AspectJ auto-proxying, as shown next.

package soundsystem;
import java.util.ArrayList;
import java.util.List;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.EnableAspectJAutoProxy;

@Configuration
@EnableAspectJAutoProxy
public class TrackCounterConfig {

@Bean
public CompactDisc sgtPeppers() {

BlankDisc cd = new BlankDisc();
cd.setTitle("Sgt. Pepper's Lonely Hearts Club Band");
cd.setArtist("The Beatles");
List<String> tracks = new ArrayList<String>();
tracks.add("Sgt. Pepper's Lonely Hearts Club Band");
tracks.add("With a Little Help from My Friends");
tracks.add("Lucy in the Sky with Diamonds");
tracks.add("Getting Better");
tracks.add("Fixing a Hole");

Listing 4.7 Configuring TrackCounter to count the number of times a track is played

execution(* soundsystem.CompactDisc.playTrack(int))
&& args(trackNumber)

Returning
any type

The type that the
method belongs to

Arguments specifiction

The method Taking an int
argument

Figure 4.6 Declaring a
parameter in a pointcut
expression that’s to be
passed into an advice
method

Enable AspectJ auto-proxying

CompactDisc bean

114 CHAPTER 4 Aspect-oriented Spring
// ...other tracks omitted for brevity...
cd.setTracks(tracks);
return cd;

}

@Bean
public TrackCounter trackCounter() {

return new TrackCounter();
}

}

Finally, to prove that this all works, you can write the following simple test. It plays a
few tracks and then asserts the play count through the TrackCounter bean.

package soundsystem;
import static org.junit.Assert.*;
import org.junit.Assert;
import org.junit.Rule;
import org.junit.Test;
import org.junit.contrib.java.lang.system.StandardOutputStreamLog;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes=TrackCounterConfig.class)
public class TrackCounterTest {

@Rule
public final StandardOutputStreamLog log =

new StandardOutputStreamLog();

@Autowired
private CompactDisc cd;

@Autowired
private TrackCounter counter;

@Test
public void testTrackCounter() {

cd.playTrack(1);
cd.playTrack(2);
cd.playTrack(3);
cd.playTrack(3);
cd.playTrack(3);
cd.playTrack(3);
cd.playTrack(7);
cd.playTrack(7);

assertEquals(1, counter.getPlayCount(1));
assertEquals(1, counter.getPlayCount(2));
assertEquals(4, counter.getPlayCount(3));
assertEquals(0, counter.getPlayCount(4));

Listing 4.8 Testing the TrackCounter aspect

TrackCounter bean

Play some tracks

Assert the expected counts

115Creating annotated aspects
assertEquals(0, counter.getPlayCount(5));
assertEquals(0, counter.getPlayCount(6));
assertEquals(2, counter.getPlayCount(7));

}

}

The aspects you’ve worked with thus far wrap existing methods on the advised object.
But method wrapping is just one of the tricks that aspects can perform. Let’s see how
to write aspects that introduce completely new functionality into an advised object.

4.3.4 Annotating introductions

Some languages, such as Ruby and Groovy, have the notion of open classes. They
make it possible to add new methods to an object or class without directly changing
the definition of those objects or classes. Unfortunately, Java isn’t that dynamic. Once
a class has been compiled, there’s little you can do to append new functionality to it.

 But if you think about it, isn’t that what you’ve been doing in this chapter with
aspects? Sure, you haven’t added any new methods to objects, but you’re adding new
functionality around the methods that the objects already have. If an aspect can wrap
existing methods with additional functionality, why not add new methods to the
object? In fact, using an AOP concept known as introduction, aspects can attach new
methods to Spring beans.

 Recall that in Spring, aspects are proxies that implement the same interfaces as the
beans they wrap. What if, in addition to implementing those interfaces, the proxy is
also exposed through some new interface? Then any bean that’s advised by the aspect
will appear to implement the new interface, even if its underlying implementation
class doesn’t. Figure 4.7 illustrates how this works.

Advised
bean

Caller

Introduction
delegate

Introduced method

Proxy

Existing method

Figure 4.7 With Spring AOP, you can introduce new methods to a bean. A proxy
intercepts the calls and delegates to a different object that provides the implementation.

116 CHAPTER 4 Aspect-oriented Spring
Notice that when a method on the introduced interface is called, the proxy dele-
gates the call to some other object that provides the implementation of the new
interface. Effectively, this gives you one bean whose implementation is split across
multiple classes.

 Putting this idea to work, let’s say you want to introduce the following Encoreable
interface to any implementation of Performance:

package concert;

public interface Encoreable {
void performEncore();

}

Setting aside any debates as to whether Encoreable is a real word, you need a way to
apply this interface to your Performance implementations. I suppose you could visit
all implementations of Performance and change them so that they also implement
Encoreable. But from a design standpoint, that may not be the best move. Not all
Performances will necessarily be Encoreable. Moreover, it may not be possible to
change all implementations of Performance, especially if you’re working with third-
party implementations and don’t have the source code.

 Fortunately, AOP introductions can help you without compromising design choices
or requiring invasive changes to the existing implementations. To pull it off, you cre-
ate a new aspect:

package concert;

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.DeclareParents;

@Aspect
public class EncoreableIntroducer {

@DeclareParents(value="concert.Performance+",
defaultImpl=DefaultEncoreable.class)

public static Encoreable encoreable;

}

As you can see, EncoreableIntroducer is an aspect. But unlike the aspects you’ve
created so far, it doesn’t provide before, after, or around advice. Instead, it introduces
the Encoreable interface to Performance beans using the @DeclareParents anno-
tation.

 The @DeclareParents annotation is made up of three parts:

 The value attribute identifies the kinds of beans that should be introduced with
the interface. In this case, that’s anything that implements the Performance
interface. (The plus sign at the end specifies any subtype of Performance, as
opposed to Performance itself.)

 The defaultImpl attribute identifies the class that will provide the implemen-
tation for the introduction. Here you’re saying that DefaultEncoreable will
provide that implementation.

117Declaring aspects in XML
 The static property that is annotated by @DeclareParents specifies the inter-
face that’s to be introduced. In this case, you’re introducing the Encoreable
interface.

As with any aspect, you need to declare EncoreableIntroducer as a bean in the
Spring application context:

<bean class="concert.EncoreableIntroducer" />

Spring auto-proxying will take it from there. When Spring discovers a bean annotated
with @Aspect, it will automatically create a proxy that delegates calls to either the
proxied bean or to the introduction implementation, depending on whether the
method called belongs to the proxied bean or to the introduced interface.

 Annotations and auto-proxying provide a convenient programming model for cre-
ating aspects in Spring. It’s simple and involves only minimal Spring configuration.
But annotation-oriented aspect declaration has one clear disadvantage: you must be
able to annotate the advice class. And to do that, you must have the source code.

 When you don’t have the source code, or if you don’t want to place AspectJ anno-
tations in your code, Spring offers another option for aspects. Let’s see how you can
declare aspects in a Spring XML configuration file.

4.4 Declaring aspects in XML
Early in this book, I established a preference for annotation-based configuration over
Java-based configuration, and Java-based configuration over XML configuration. But if
you need to declare aspects without annotating the advice class, then you must turn to
XML configuration.

 Spring’s aop namespace offers several elements that are useful for declaring
aspects in XML, as described in table 4.3.

Table 4.3 Spring’s AOP configuration elements enable non-invasive declaration of aspects.

AOP configuration element Purpose

<aop:advisor> Defines an AOP advisor.

<aop:after> Defines an AOP after advice (regardless of whether the advised
method returns successfully).

<aop:after-returning> Defines an AOP after-returning advice.

<aop:after-throwing> Defines an AOP after-throwing advice.

<aop:around> Defines an AOP around advice.

<aop:aspect> Defines an aspect.

<aop:aspectj-autoproxy> Enables annotation-driven aspects using @AspectJ.

<aop:before> Defines an AOP before advice.

118 CHAPTER 4 Aspect-oriented Spring
You’ve already seen the <aop:aspectj-autoproxy> element and how it can enable
auto-proxying of AspectJ-annotated advice classes. But the other elements in the aop
namespace let you declare aspects directly in your Spring configuration without using
annotations.

 For example, let’s have another look at the Audience class. This time, let’s remove
all of those AspectJ annotations:

package concert;

public class Audience {

public void silenceCellPhones() {
System.out.println("Silencing cell phones");

}

public void takeSeats() {
System.out.println("Taking seats");

}

public void applause() {
System.out.println("CLAP CLAP CLAP!!!");

}

public void demandRefund() {
System.out.println("Demanding a refund");

}

}

As you can see, without the AspectJ annotations, there’s nothing remarkable about
the Audience class. It’s a basic Java class with a handful of methods. And you can reg-
ister it as a bean in the Spring application context like any other class.

 Despite its unassuming appearance, what’s remarkable about Audience is that it
has all the makings of AOP advice. It just needs a little help to become the advice it’s
meant to be.

4.4.1 Declaring before and after advice

You could put back all the AspectJ annotations, but that isn’t the point of this section.
Instead, you’ll use some of the elements from Spring’s aop namespace to turn the
annotation-free Audience into an aspect. The next listing shows the XML you need.

<aop:config> The top-level AOP element. Most \<aop:*\> elements must be
contained within \<aop:config\>.

<aop:declare-parents> Introduces additional interfaces to advised objects that are trans-
parently implemented.

<aop:pointcut> Defines a pointcut.

Table 4.3 Spring’s AOP configuration elements enable non-invasive declaration of aspects. (continued)

AOP configuration element Purpose

119Declaring aspects in XML

<aop:config>
<aop:aspect ref="audience">

<aop:before
pointcut="execution(** concert.Performance.perform(..))"
method="silenceCellPhones"/>

<aop:before
pointcut="execution(** concert.Performance.perform(..))"
method="takeSeats"/>

<aop:after-returning
pointcut="execution(** concert.Performance.perform(..))"
method="applause"/>

<aop:after-throwing
pointcut="execution(** concert.Performance.perform(..))"
method="demandRefund"/>

</aop:aspect>
</aop:config>

The first thing to notice about the Spring AOP configuration elements is that most of
them must be used in the context of the <aop:config> element. There are a few
exceptions to this rule, but when it comes to declaring beans as aspects, you’ll always
start with <aop:config>.

 In <aop:config>, you may declare one or more advisers, aspects, or pointcuts. In
listing 4.9, you declare a single aspect using the <aop:aspect> element. The ref attri-
bute references the POJO bean that will be used to supply the functionality of the
aspect—in this case, audience. The bean that’s referenced by the ref attribute will
supply the methods called by any advice in the aspect.

 It’s worth noting that the referenced advice bean can be any type that provides
methods to be called at the designated pointcuts. This makes Spring’s XML configura-
tion for AOP a handy way to use types defined in third-party libraries as advice, even
though you can’t annotate them with AspectJ aspects.

 The aspect has four different bits of advice. The two <aop:before> elements
define before advice that will call the takeSeats() and silenceCellPhones() meth-
ods (declared by the method attribute) of the Audience bean before any methods
matching the pointcut are executed. The <aop:after-returning> element defines
after-returning advice to call the applause() method after the pointcut. Meanwhile,
the <aop:after-throwing> element defines an after-throwing advice to call the
demandRefund() method if any exceptions are thrown. Figure 4.8 shows how the
advice logic is woven into the business logic.

 In all advice elements, the pointcut attribute defines the pointcut where the
advice will be applied. The value given to the pointcut attribute is a pointcut defined
in AspectJ’s pointcut expression syntax.

Listing 4.9 Annotation-free Audience class, declared in XML as an aspect

Reference audience bean

Before
performance

After performance

After bad performance

120 CHAPTER 4 Aspect-oriented Spring
You’ve probably noticed that the value of the pointcut attribute is the same for all
the advice elements. That’s because all the advice is being applied to the same point-
cut.

 When you found the same kind of duplication in your AspectJ-annotated advice,
you eliminated it by using the @Pointcut annotation. For XML-based aspect declara-
tions, however, you’ll need to use the <aop:pointcut> element. The following XML
shows how to extract the common pointcut expression into a single pointcut declara-
tion that can be used across all advice elements.

<aop:config>
<aop:aspect ref="audience">

<aop:pointcut
id="performance"
expression="execution(** concert.Performance.perform(..))" />

<aop:before
pointcut-ref="performance"
method="silenceCellPhones"/>

<aop:before
pointcut-ref="performance"
method="takeSeats"/>

<aop:after-returning
pointcut-ref="performance"

Listing 4.10 Defining a named pointcut with <aop:pointcut>

Audience aspect

<aop:before
method="takeSeats"
pointcut-ref="performance"/>

<aop:before
method="turnOffCellPhones"
pointcut-ref="performance"/>

<aop:after-returning
method="applause"
pointcut-ref="performance"/>

<aop:after-throwing
method="demandRefund"
pointcut-ref="performance"/>

try {
audience.takeSeats();

audience.turnOffCellPhones();

audience.applause();

} catch (Exception e) {
audience.demandRefund();

}

Advice logic

performance.perform();

Business logic

Figure 4.8 The Audience aspect includes four bits of advice that weave advice logic around methods
that match the aspect’s pointcut.

Define pointcut

Reference
pointcut

121Declaring aspects in XML
method="applause"/>

<aop:after-throwing
pointcut-ref="performance"
method="demandRefund"/>

</aop:aspect>
</aop:config>

Now the pointcut is defined in a single location and is referenced across multiple
advice elements. The <aop:pointcut> element defines the pointcut to have an id of
performance. Meanwhile, all the advice elements have been changed to reference
the named pointcut with the pointcut-ref attribute.

 As used in listing 4.10, the <aop:pointcut> element defines a pointcut that can
be referenced by all advice in the same <aop:aspect> element. But you can also
define pointcuts that can be used across multiple aspects by placing the <aop:point-
cut> elements within the scope of the <aop:config> element.

4.4.2 Declaring around advice

The current implementation of Audience works great. But basic before and after
advice have some limitations. Specifically, it’s tricky to share information between
before advice and after advice without resorting to storing that information in mem-
ber variables.

 For example, suppose that in addition to putting away cell phones and applauding
at the end, you also want the audience to keep their eyes on their watches and report
how long the performance takes. The only way to accomplish this with before and
after advice is to note the start time in before advice and report the length of time in
after advice. But you’d have to store the start time in a member variable. Because
Audience is a singleton, it wouldn’t be thread-safe to retain state like that.

 Around advice has an advantage over before and after advice in this regard. With
around advice, you can accomplish the same thing you could with distinct before and
after advice, but you can do it in a single method. Because the entire set of advice
takes place in a single method, there’s no need to retain state in a member variable.

 For example, consider the new annotation-free Audience class with a single
watchPerformance() method.

package concert;

import org.aspectj.lang.ProceedingJoinPoint;

public class Audience {

public void watchPerformance(ProceedingJoinPoint jp) {
try {

System.out.println("Silencing cell phones");

System.out.println("Taking seats");

Listing 4.11 Providing around advice with the watchPerformance() method

Reference pointcut

Before performance

122 CHAPTER 4 Aspect-oriented Spring
jp.proceed();

System.out.println("CLAP CLAP CLAP!!!");
} catch (Throwable e) {

System.out.println("Demanding a refund");

}
}

}

In the case of the audience aspect, the watchPerformance() method contains all the
functionality of the previous four advice methods. But all of it is contained in this sin-
gle method, and this method is responsible for its own exception handling.

 Declaring around advice isn’t dramatically different from declaring other types of
advice. All you need to do is use the <aop:around> element, as shown next.

<aop:config>
<aop:aspect ref="audience">

<aop:pointcut
id="performance"
expression="execution(** concert.Performance.perform(..))" />

<aop:around
pointcut-ref="performance"
method="watchPerformance"/>

</aop:aspect>
</aop:config>

As with the other advice XML elements, <aop:around> is given a pointcut and the
name of an advice method. Here you’re using the same pointcut as before, but you set
the method attribute to point to the new watchPerformance() method.

4.4.3 Passing parameters to advice

In section 4.3.3, you used AspectJ annotations to create an aspect that kept a running
count of the number of times tracks were played on a CompactDisc. Now that you’re
configuring your aspects in XML, let’s see how you can accomplish the same thing.

 First, let’s strip all the @AspectJ annotations out of the TrackCounter.

package soundsystem;
import java.util.HashMap;
import java.util.Map;

public class TrackCounter {

private Map<Integer, Integer> trackCounts =
new HashMap<Integer, Integer>();

public void countTrack(int trackNumber) {
int currentCount = getPlayCount(trackNumber);

Listing 4.12 Declaring around advice in XML with the <aop:around> element

Listing 4.13 Annotation-free TrackCounter

Proceed to advised method

After performance

After bad performance

Declare around advice

Method to be declared
as before advice

123Declaring aspects in XML
trackCounts.put(trackNumber, currentCount + 1);
}

public int getPlayCount(int trackNumber) {
return trackCounts.containsKey(trackNumber)

? trackCounts.get(trackNumber) : 0;
}

}

Without the AspectJ annotations, TrackCounter seems kind of bare. And as it stands
now, TrackCounter won’t count any tracks unless you explicitly call the count-
Track() method. But with a little XML Spring configuration, you can reinstate
TrackCounter’s status as an aspect.

 The following listing shows the complete Spring configuration that declares both
the TrackCounter bean and the BlankDisc bean and enables TrackCounter as an
aspect.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation=

"http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="trackCounter"
class="soundsystem.TrackCounter" />

<bean id="cd"
class="soundsystem.BlankDisc">

<property name="title"
value="Sgt. Pepper's Lonely Hearts Club Band" />

<property name="artist" value="The Beatles" />
<property name="tracks">

<list>
<value>Sgt. Pepper's Lonely Hearts Club Band</value>
<value>With a Little Help from My Friends</value>
<value>Lucy in the Sky with Diamonds</value>
<value>Getting Better</value>
<value>Fixing a Hole</value>
<!-- ...other tracks omitted for brevity... -->

</list>
</property>

</bean>

<aop:config>
<aop:aspect ref="trackCounter">

<aop:pointcut id="trackPlayed" expression=
"execution(* soundsystem.CompactDisc.playTrack(int))

and args(trackNumber)" />

Listing 4.14 Configuring TrackCounter as a parameterized aspect in XML

TrackCounter bean

BlankDisc bean

Declare TrackCounter
as an aspect

124 CHAPTER 4 Aspect-oriented Spring
<aop:before
pointcut-ref="trackPlayed"
method="countTrack"/>

</aop:aspect>
</aop:config>

</beans>

As you can see, you’re using the same XML elements from the aop namespace as
before; they declare a POJO to be treated as an aspect. The only significant difference
is that your pointcut expression now includes a parameter to be passed into the
advice method. If you compare this expression with the one from listing 4.6, you’ll
see that they’re almost identical. The only real difference is that here you use the and
keyword instead of && (because ampersands are interpreted as the beginning of an
entity in XML).

 Now that you’ve exercised Spring’s aop namespace to declare a few basic aspects in
XML, let’s see how the aop namespace can help you declare introduction aspects.

4.4.4 Introducing new functionality with aspects

Earlier, in section 4.3.4, I showed you how to use AspectJ’s @DeclareParents annota-
tion to magically introduce a new method into an advised bean. But AOP introduc-
tions aren’t exclusive to AspectJ. Using the <aop:declare-parents> element from
Spring’s aop namespace, you can do similar magic in XML.

 The following snippet of XML is equivalent to the AspectJ-based introduction you
created earlier:

<aop:aspect>
<aop:declare-parents

types-matching="concert.Performance+"
implement-interface="concert.Encoreable"
default-impl="concert.DefaultEncoreable"
/>

</aop:aspect>

As its name implies, <aop:declare-parents> declares that the beans it advises will
have new parents in its object hierarchy. Specifically, in this case you’re saying that the
beans whose type matches the Performance interface (per the types-matching attri-
bute) should have Encoreable in their parentage (per the implement-interface
attribute). The final matter to settle is where the implementation of the Encoreable’s
methods will come from.

 There are two ways to identify the implementation of the introduced interface. In
this case, you’re using the default-impl attribute to explicitly identify the implemen-
tation by its fully qualified class name. Alternatively, you could identify it using the
delegate-ref attribute:

<aop:aspect>
<aop:declare-parents

types-matching="concert.Performance+"
implement-interface="concert.Encoreable"
delegate-ref="encoreableDelegate"

125Injecting AspectJ aspects
/>
</aop:aspect>

The delegate-ref attribute refers to a Spring bean as the introduction delegate.
This assumes that a bean with an ID of encoreableDelegate exists in the Spring con-
text:

<bean id="encoreableDelegate"
class="concert.DefaultEncoreable" />

The difference between directly identifying the delegate using default-impl and
indirectly using delegate-ref is that the latter will be a Spring bean that itself may be
injected, advised, or otherwise configured through Spring.

4.5 Injecting AspectJ aspects
Although Spring AOP is sufficient for many applications of aspects, it’s a weak AOP
solution when contrasted with AspectJ. AspectJ offers many types of pointcuts that
aren’t possible with Spring AOP.

 Constructor pointcuts, for example, are convenient when you need to apply advice
on the creation of an object. Unlike constructors in some other object-oriented lan-
guages, Java constructors are different from normal methods. This makes Spring’s
proxy-based AOP woefully inadequate for advising the creation of an object.

 For the most part, AspectJ aspects are independent of Spring. Although they can
be woven into any Java-based application, including Spring applications, there’s little
involvement on Spring’s part in applying AspectJ aspects.

 But any well-designed and meaningful aspect will likely depend on other classes to
assist in its work. If an aspect depends on one or more classes when executing its
advice, you can instantiate those collaborating objects with the aspect itself. Or, better
yet, you can use Spring’s dependency injection to inject beans into AspectJ aspects.

 To illustrate, let’s create a new aspect for performances. Specifically, let’s create an
aspect that plays the role of a critic who watches a performance and provides a critical
review afterward. CriticAspect is such an aspect.

package concert;
public aspect CriticAspect {

public CriticAspect() {}

pointcut performance() : execution(* perform(..));

afterReturning() : performance() {
System.out.println(criticismEngine.getCriticism());

}

private CriticismEngine criticismEngine;

public void setCriticismEngine(CriticismEngine criticismEngine) {
this.criticismEngine = criticismEngine;

}

Listing 4.15 Implementing a performance critic using AspectJ

Inject
CriticismEngine

126 CHAPTER 4 Aspect-oriented Spring
}

The chief responsibility for CriticAspect is to comment on a performance after the
performance has completed. The performance() pointcut in listing 4.15 matches the
perform() method. When it’s married with the afterReturning() advice, you get
an aspect that reacts to the completion of a performance.

 What makes listing 4.15 interesting is that the critic doesn’t make commentary on
its own. Instead, CriticAspect collaborates with a CriticismEngine object, calling
its getCriticism() method, to produce critical commentary after a performance. To
avoid unnecessary coupling between CriticAspect and CriticismEngine, Critic-
Aspect is given a reference to CriticismEngine through setter injection. This rela-
tionship is illustrated in figure 4.9.

 CriticismEngine is an interface that declares a simple getCriticism() method.
The next listing shows the implementation of CriticismEngine.

package com.springinaction.springidol;
public class CriticismEngineImpl implements CriticismEngine {

public CriticismEngineImpl() {}

public String getCriticism() {
int i = (int) (Math.random() * criticismPool.length);
return criticismPool[i];

}

// injected
private String[] criticismPool;
public void setCriticismPool(String[] criticismPool) {

this.criticismPool = criticismPool;
}

}

CriticismEngineImpl implements the CriticismEngine interface by randomly
choosing a critical comment from a pool of injected criticisms. This class can be
declared as a Spring <bean> using the following XML:

<bean id="criticismEngine"
class="com.springinaction.springidol.CriticismEngineImpl">

<property name="criticisms">

Listing 4.16 CriticismEngine to be injected into CriticAspect

JudgeAspectPerformer CriticismEngine

CriticismEngineImpl

Advises getCriticism()

Injected into

Figure 4.9 Aspects
need injection, too.
Spring can inject
AspectJ aspects with
dependencies just as
if they were another
bean.

127Summary
<list>
<value>Worst performance ever!</value>
<value>I laughed, I cried, then I realized I was at the

wrong show.</value>
<value>A must see show!</value>

</list>
</property>

</bean>

So far, so good. You now have a CriticismEngine implementation to give to Critic-
Aspect. All that’s left is to wire CriticismEngineImpl into CriticAspect.

 Before I show you how to do the injection, you should know that AspectJ aspects
can be woven into your application without involving Spring at all. But if you want to
use Spring’s dependency injection to inject collaborators into an AspectJ aspect, you’ll
need to declare the aspect as a <bean> in Spring’s configuration. The following
<bean> declaration injects the criticismEngine bean into CriticAspect:

<bean class="com.springinaction.springidol.CriticAspect"
factory-method="aspectOf">

<property name="criticismEngine" ref="criticismEngine" />
</bean>

For the most part, this <bean> declaration isn’t much different from any other
<bean> you may find in Spring. The big difference is the use of the factory-method
attribute. Normally, Spring beans are instantiated by the Spring container, but AspectJ
aspects are created by the AspectJ runtime. By the time Spring gets a chance to inject
CriticismEngine into CriticAspect, CriticAspect has already been instantiated.

 Because Spring isn’t responsible for the creation of CriticAspect, it isn’t possible
to declare CriticAspect as a bean in Spring. Instead, you need a way for Spring to
get a handle to the CriticAspect instance that has already been created by AspectJ
so that you can inject it with a CriticismEngine. Conveniently, all AspectJ aspects
provide a static aspectOf() method that returns the singleton instance of the aspect.
So to get an instance of the aspect, you must use factory-method to invoke the
aspectOf() method instead of trying to call CriticAspect’s constructor.

 In short, Spring doesn’t use the <bean> declaration from earlier to create an
instance of the CriticAspect—it has already been created by the AspectJ runtime.
Instead, Spring retrieves a reference to the aspect through the aspectOf() factory
method and then performs dependency injection on it as prescribed by the <bean>
element.

4.6 Summary
AOP is a powerful complement to object-oriented programming. With aspects, you can
group application behavior that was once spread throughout your applications into
reusable modules. You can then declare exactly where and how this behavior is applied.
This reduces code duplication and lets your classes focus on their main functionality.

128 CHAPTER 4 Aspect-oriented Spring
 Spring provides an AOP framework that lets you insert aspects around method exe-
cutions. You’ve learned how to weave advice before, after, and around a method invo-
cation, as well as to add custom behavior for handling exceptions.

 You have several choices in how you can use aspects in your Spring applications.
Wiring advice and pointcuts in Spring is much easier with the addition of @AspectJ
annotation support and a simplified configuration schema.

 Finally, there are times when Spring AOP isn’t enough, and you must turn to
AspectJ for more powerful aspects. For those situations, we looked at how to use
Spring to inject dependencies into AspectJ aspects.

 At this point, we’ve covered the basics of the Spring Framework. You’ve seen how
to configure the Spring container and how to apply aspects to Spring-managed
objects. These core techniques offer you a great opportunity to create applications
composed of loosely coupled objects.

 Now we’ll move past the essentials and look at what it takes to build real applica-
tions in Spring. Starting in the next chapter, you’ll see how to build web applications
using Spring.

Part 2

Spring on the web

Spring is often used to develop web applications. Therefore, in part 2
you’ll see how to use Spring’s MVC framework to add a web front end to your
application.

 In chapter 5, “Building Spring web applications,” you’ll learn the basics of
Spring MVC, a web framework built on the principles of the Spring Framework.
You’ll discover how to write controllers to handle web requests and see how to
transparently bind request parameters and payload to your business objects
while providing validation and error handling at the same time.

 Chapter 6, “Rendering web views,” continues what chapter 5 started by show-
ing you how to take model data produced in Spring MVC controllers and render
it as HTML to be served to a user’s browser. This chapter includes discussions of
JavaServer Pages (JSP), Apache Tiles, and Thymeleaf templates.

 In Chapter 7, “Advanced Spring MVC,” you’ll learn a few more advanced
techniques to use when building web applications, including custom Spring
MVC configuration options, handling multipart file uploads, dealing with excep-
tions, and passing data across requests using flash attributes.

 Chapter 8, “Working with Spring Web Flow,” will show you how to build con-
versation, flow-based web applications using the Spring Web Flow framework.

 As security is an important aspect of many applications, chapter 9, “Securing
Spring,” will show you how to use Spring Security to secure your web application
and protect the information it serves.

Building Spring
web applications
As an enterprise Java developer, you’ve likely developed a web-based application or
two. For many Java developers, web-based applications are their primary focus. If
this is your experience, then you’re well aware of the challenges that come with
these systems. Specifically, state management, workflow, and validation are all
important features that need to be addressed. None of these is made any easier
given the HTTP protocol’s stateless nature.

 Spring’s web framework is designed to help you address these concerns. Based
on the Model-View-Controller (MVC) pattern, Spring MVC helps you build web-
based applications that are as flexible and as loosely coupled as the Spring Frame-
work itself.

 In this chapter, we’ll explore the essentials of Spring’s MVC web framework.
We’ll focus on using annotations to create controllers that handle various kinds of
web requests, parameters, and form input. Before we go too deep with the specifics

This chapter covers
 Mapping requests to Spring controllers

 Transparently binding form parameters

 Validating form submissions
131

132 CHAPTER 5 Building Spring web applications
of Spring MVC, let’s start with a high-level view and set up the basic plumbing needed
to make Spring MVC work.

5.1 Getting started with Spring MVC
Have you ever seen the children’s game Mousetrap? It’s crazy. The goal is to send a
small steel ball through a series of wacky contraptions in order to trigger a mousetrap.
The ball navigates all kinds of intricate gadgets, from rolling down a curvy ramp to
springing off a teeter-totter to spinning on a miniature Ferris wheel to being kicked
out of a bucket by a rubber boot. It goes through all this to spring a trap on a poor,
unsuspecting plastic mouse.

 At first glance, you may think that Spring’s MVC framework is a lot like Mousetrap.
Instead of moving a ball through various ramps, teeter-totters, and wheels, Spring
moves requests between a dispatcher servlet, handler mappings, controllers, and view
resolvers. But don’t draw too strong a comparison between Spring MVC and the Rube
Goldberg-esque game of Mousetrap. Each of the components in Spring MVC per-
forms a specific purpose. And it’s really not that complex.

 Let’s take a look at how a request makes its way from the client through the com-
ponents in Spring MVC, ultimately resulting in a request that goes back to the client.

5.1.1 Following the life of a request

Every time a user clicks a link or submits a form in their web browser, a request goes to
work. A request’s job description is that of a courier. Just like a postal carrier or a
FedEx delivery person, a request lives to carry information from one place to another.

 The request is a busy creature. From the time it leaves the browser until it returns
with a response, it makes several stops, each time dropping off a bit of information
and picking up some more. Figure 5.1 shows all the stops the request makes as it trav-
els through Spring MVC.

 When the request leaves the browser B, it carries information about what the user
is asking for. At the least, the request will be carrying the requested URL. But it may
also carry additional data, such as the information submitted in a form by the user.

bRequest DispatcherServlet

Handler
mapping

Controller

View

Model and logical
view name

ViewResolver

Response

c
d

e

f

g

H

Figure 5.1 A request couriers
information to several stops on
its way to producing the
desired results.

133Getting started with Spring MVC
The first stop in the request’s travels is at Spring’s DispatcherServlet. Like most Java-
based web frameworks, Spring MVC funnels requests through a single front controller
servlet. A front controller is a common web application pattern where a single servlet
delegates responsibility for a request to other components of an application to per-
form actual processing. In the case of Spring MVC, DispatcherServlet is the front
controller.

 The DispatcherServlet’s job is to send the request on to a Spring MVC controller.
A controller is a Spring component that processes the request. But a typical application
may have several controllers, and DispatcherServlet needs some help deciding
which controller to send the request to. So the DispatcherServlet consults one or
more handler mappings C to figure out where the request’s next stop will be. The
handler mapping pays particular attention to the URL carried by the request when
making its decision.

 Once an appropriate controller has been chosen, DispatcherServlet sends the
request on its merry way to the chosen controller D. At the controller, the request
drops off its payload (the information submitted by the user) and patiently waits while
the controller processes that information. (Actually, a well-designed controller per-
forms little or no processing itself and instead delegates responsibility for the business
logic to one or more service objects.)

 The logic performed by a controller often results in some information that needs
to be carried back to the user and displayed in the browser. This information is
referred to as the model. But sending raw information back to the user isn’t suffi-
cient—it needs to be formatted in a user-friendly format, typically HTML. For that, the
information needs to be given to a view, typically a JavaServer Page (JSP).

 One of the last things a controller does is package up the model data and identify
the name of a view that should render the output. It then sends the request, along
with the model and view name, back to the DispatcherServlet E.

 So that the controller doesn’t get coupled to a particular view, the view name
passed back to DispatcherServlet doesn’t directly identify a specific JSP. It doesn’t
even necessarily suggest that the view is a JSP. Instead, it only carries a logical name
that will be used to look up the actual view that will produce the result. The
DispatcherServlet consults a view resolver F to map the logical view name to a spe-
cific view implementation, which may or may not be a JSP.

 Now that DispatcherServlet knows which view will render the result, the
request’s job is almost over. Its final stop is at the view implementation G, typically a
JSP, where it delivers the model data. The request’s job is finally done. The view will
use the model data to render output that will be carried back to the client by the (not-
so-hardworking) response object H.

 As you can see, a request goes through several steps along its way to producing a
response for the client. Most of these steps take place within the Spring MVC frame-
work, in the components shown in figure 5.1. Although the bulk of this chapter will
focus on writing controllers, let’s take a moment to set up the essential components of
Spring MVC.

134 CHAPTER 5 Building Spring web applications
5.1.2 Setting up Spring MVC

Based on figure 5.1, it looks like there are a lot of moving parts to be configured. For-
tunately, thanks to some advancements in the most recent versions of Spring, it’s easy
to get started with Spring MVC. For now, you’ll take the simplest approach to configur-
ing Spring MVC: you’ll do just enough configuring to be able to run the controllers
you create. In chapter 7, we’ll look at some additional setup options.

CONFIGURING DISPATCHERSERVLET

DispatcherServlet is the centerpiece of Spring MVC. It’s where the request first hits
the framework, and it’s responsible for routing the request through all the other
components.

 Historically, servlets like DispatcherServlet have been configured in a web.xml
file that’s carried in the web application’s WAR file. Certainly that’s one option for con-
figuring DispatcherServlet. But thanks to recent advances in the Servlet 3 specifica-
tion and in Spring 3.1, it’s not the only option. And it’s not the option we’ll go with in
this chapter.

 Instead of a web.xml file, you’re going to use Java to configure DispatcherServlet
in the servlet container. The following listing shows the Java class you’ll need.

package spittr.config;
import org.springframework.web.servlet.support.

AbstractAnnotationConfigDispatcherServletInitializer;

public class SpittrWebAppInitializer
extends AbstractAnnotationConfigDispatcherServletInitializer {

@Override
protected String[] getServletMappings() {

return new String[] { "/" };
}

@Override
protected Class<?>[] getRootConfigClasses() {

return new Class<?>[] { RootConfig.class };
}

@Override
protected Class<?>[] getServletConfigClasses() {

return new Class<?>[] { WebConfig.class };
}

}

Before we dive into the details of listing 5.1, you may wonder what the word spittr has
to do with anything. The class is named SpittrWebAppInitializer, and it’s in a pack-
age named spittr.config. I’ll explain that in a moment (in section 5.1.3), but for now,
suffice it to say that the application you’ll create is named Spittr.

Listing 5.1 Configuring DispatcherServlet

Map DispatcherServlet to /

Specify configuration class

135Getting started with Spring MVC
 To understand how listing 5.1 works, it’s probably sufficient to know that any class
that extends AbstractAnnotationConfigDispatcherServletInitializer will auto-
matically be used to configure DispatcherServlet and the Spring application con-
text in the application’s servlet context.

Even though its name is extremely long, AbstractAnnotationConfigDispatcher-
ServletInitializer is a snap to use. Looking at listing 5.1, you can see that
SpittrWebAppInitializer overrides three methods.

 The first method, getServletMappings(), identifies one or more paths that
DispatcherServlet will be mapped to. In this case, it’s mapped to /, indicating that it
will be the application’s default servlet. It will handle all requests coming into the
application.

 In order to understand the other two methods, you must first understand the rela-
tionship between DispatcherServlet and a servlet listener known as ContextLoader-
Listener.

A TALE OF TWO APPLICATION CONTEXTS

When DispatcherServlet starts up, it creates a Spring application context and starts
loading it with beans declared in the configuration files or classes that it’s given. With
the getServletConfigClasses() method in listing 5.1, you’ve asked that Dispatcher-
Servlet load its application context with beans defined in the WebConfig configura-
tion class (using Java configuration).

 But in Spring web applications, there’s often another application context. This
other application context is created by ContextLoaderListener.

 Whereas DispatcherServlet is expected to load beans containing web components
such as controllers, view resolvers, and handler mappings, ContextLoaderListener is
expected to load the other beans in your application. These beans are typically the
middle-tier and data-tier components that drive the back end of the application.

AbstractAnnotationConfigDispatcherServletInitializer exposed
If you insist on the more detailed explanation, here it is. In a Servlet 3.0 environment,
the container looks for any classes in the classpath that implement the javax.servlet
.ServletContainerInitializer interface; if any are found, they’re used to config-
ure the servlet container.

Spring supplies an implementation of that interface called SpringServlet-
ContainerInitializer that, in turn, seeks out any classes that implement Web-
ApplicationInitializer and delegates to them for configuration. Spring 3.2
introduced a convenient base implementation of WebApplicationInitializer
called AbstractAnnotationConfigDispatcherServletInitializer. Because
your SpittrWebAppInitializer extends AbstractAnnotationConfigDispatcher-
ServletInitializer (and thus implements WebApplicationInitializer), it will
be automatically discovered when deployed in a Servlet 3.0 container and be used to
configure the servlet context.

136 CHAPTER 5 Building Spring web applications
 Under the covers, AbstractAnnotationConfigDispatcherServletInitializer cre-
ates both a DispatcherServlet and a ContextLoaderListener. The @Configuration
classes returned from getServletConfigClasses() will define beans for Dispatcher-
Servlet’s application context. Meanwhile, the @Configuration class’s returned get-
RootConfigClasses() will be used to configure the application context created by
ContextLoaderListener.

 In this case, your root configuration is defined in RootConfig, whereas Dispatcher-
Servlet’s configuration is declared in WebConfig. You’ll see what those two configura-
tion classes look like in a moment.

 It’s important to realize that configuring DispatcherServlet via Abstract-
AnnotationConfigDispatcherServletInitializer is an alternative to the tradi-
tional web.xml file. Although you can include a web.xml file alongside a subclass
of AbstractAnnotationConfigDispatcherServletInitializer if you like, it’s not
necessary.

 The only gotcha with configuring DispatcherServlet in this way, as opposed to in
a web.xml file, is that it will only work when deploying to a server that supports
Servlet 3.0, such as Apache Tomcat 7 or higher. The Servlet 3.0 specification has been
final since December 2009, and the odds are good that you’ll be deploying your appli-
cations to a servlet container that supports Servlet 3.0.

 If you’re not yet working with a Servlet 3.0-capable server, then configuring
DispatcherServlet in a subclass of AbstractAnnotationConfigDispatcherServlet-
Initializer won’t work for you. You’ll have no choice but to configure Dispatcher-
Servlet in web.xml. We’ll look at web.xml and other configuration options in
chapter 7. For now, though, let’s look at WebConfig and RootConfig, the two configu-
ration classes referred to in listing 5.1, and see how to enable Spring MVC.

ENABLING SPRING MVC
Just as there are several ways of configuring DispatcherServlet, there’s more than
one way to enable Spring MVC components. Historically, Spring has been configured
using XML, and there’s an <mvc:annotation-driven> element that you can use to
enable annotation-driven Spring MVC.

 We’ll talk about <mvc:annotation-driven>, among other Spring MVC configura-
tion options, in chapter 7. But for now, you’ll keep your Spring MVC setup simple and
Java-based.

 The very simplest Spring MVC configuration you can create is a class annotated
with @EnableWebMvc:

package spittr.config;
import org.springframework.context.annotation.Configuration;
import org.springframework.web.servlet.config.annotation.EnableWebMvc;

@Configuration
@EnableWebMvc
public class WebConfig {
}

137Getting started with Spring MVC
This will work, and it will enable Spring MVC. But it leaves a lot to be desired:

 No view resolver is configured. As such, Spring will default to using Bean-
NameViewResolver, a view resolver that resolves views by looking for beans whose
ID matches the view name and whose class implements the View interface.

 Component-scanning isn’t enabled. Consequently, the only way Spring will find
any controllers is if you declare them explicitly in the configuration.

 As it is, DispatcherServlet is mapped as the default servlet for the application
and will handle all requests, including requests for static resources, such as
images and stylesheets (which is probably not what you want in most cases).

Therefore, you need to add a bit more configuration in WebConfig on top of this bare
minimum Spring MVC configuration to make it useful. The new WebConfig in the
next listing addresses these concerns.

package spittr.config;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.web.servlet.ViewResolver;
import org.springframework.web.servlet.config.annotation.

DefaultServletHandlerConfigurer;
import org.springframework.web.servlet.config.annotation.EnableWebMvc;
import org.springframework.web.servlet.config.annotation.

WebMvcConfigurerAdapter;
import org.springframework.web.servlet.view.

InternalResourceViewResolver;

@Configuration
@EnableWebMvc
@ComponentScan("spitter.web")
public class WebConfig

extends WebMvcConfigurerAdapter {

@Bean
public ViewResolver viewResolver() {

InternalResourceViewResolver resolver =
new InternalResourceViewResolver();

resolver.setPrefix("/WEB-INF/views/");
resolver.setSuffix(".jsp");
resolver.setExposeContextBeansAsAttributes(true);
return resolver;

}

@Override
public void configureDefaultServletHandling(

DefaultServletHandlerConfigurer configurer) {
configurer.enable();

}

}

Listing 5.2 A minimal yet useful configuration for Spring MVC

Enable Spring MVC
Enable component-scanning

Configure a JSP
view resolver

Configure static
content handling

138 CHAPTER 5 Building Spring web applications
The first thing to notice in listing 5.2 is that WebConfig is now annotated with
@ComponentScan so that the spitter.web package will be scanned for components. As
you’ll soon see, the controllers you write will be annotated with @Controller, which
will make them candidates for component-scanning. Consequently, you won’t have to
explicitly declare any controllers in the configuration class.

 Next, you add a ViewResolver bean. More specifically, it’s an Internal-
ResourceViewResolver. We’ll talk more about view resolvers in chapter 6. For now,
just know that it’s configured to look for JSP files by wrapping view names with a spe-
cific prefix and suffix (for example, a view name of home will be resolved as /WEB-INF/
views/home.jsp).

 Finally, this new WebConfig class extends WebMvcConfigurerAdapter and overrides
its configureDefaultServletHandling() method. By calling enable() on the given
DefaultServletHandlerConfigurer, you’re asking DispatcherServlet to forward
requests for static resources to the servlet container’s default servlet and not to try to
handle them itself.

 With WebConfig settled, what about RootConfig? Because this chapter is focused
on web development, and web configuration is done in the application context cre-
ated by DispatcherServlet, you’ll keep RootConfig relatively simple for now:

package spittr.config;

import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.ComponentScan.Filter;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.FilterType;
import org.springframework.web.servlet.config.annotation.EnableWebMvc;

@Configuration
@ComponentScan(basePackages={"spitter"},

excludeFilters={
@Filter(type=FilterType.ANNOTATION, value=EnableWebMvc.class)

})
public class RootConfig {
}

The only significant thing to note in RootConfig is that it’s annotated with @Component-
Scan. There will be plenty of opportunities throughout this book to flesh out Root-
Config with non-web components.

 You’re almost ready to start building a web application with Spring MVC. The big
question at this point is what application you’ll build.

5.1.3 Introducing the Spittr application

In an attempt to get in on the online social networking game, you’re going to develop
a simple microblogging application. In many ways, your application will be much like
the original microblogging application, Twitter. You’ll add some little twists on the
idea along the way. And, of course, you’ll develop it using Spring.

139Writing a simple controller
 Borrowing some ideas from Twitter and implementing them in Spring gives the
application a working title: Spitter. Taking it a step further and applying a naming pat-
tern that’s popular with sites like Flickr, let’s drop the e and call the app Spittr. This
name will also be helpful in differentiating the application name from a domain type
you’ll create called Spitter.

 The Spittr application has two essential domain concepts: spitters (the users of the
application) and spittles (the brief status updates that users publish). We’ll draw pri-
marily on these two domain concepts throughout this book as we flesh out the func-
tionality of the Spittr application. Initially, in this chapter, you’ll build out the web
layer of the application, create controllers that display spittles, and process forms
where users register as spitters.

 The stage is now set. You’ve configured DispatcherServlet, enabled essential
Spring MVC components, and established a target application. Let’s turn to the meat
of the chapter: handling web requests with Spring MVC controllers.

5.2 Writing a simple controller
In Spring MVC, controllers are just classes with methods that are annotated with
@RequestMapping to declare the kind of requests they’ll handle.

 Starting simple, let’s imagine a controller class that handles requests for / and ren-
ders the application’s home page. HomeController, shown in the following listing, is
an example of what might be the simplest possible Spring MVC controller class.

package spittr.web;
import static org.springframework.web.bind.annotation.RequestMethod.*;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;

@Controller
public class HomeController {

@RequestMapping(value="/", method=GET)
public String home() {

return "home";
}

}

The first thing you’ll notice about HomeController is that it’s annotated with
@Controller. Although it’s clear that this annotation declares a controller, the annota-
tion has little to do with Spring MVC.

 @Controller is a stereotype annotation, based on the @Component annotation. Its
purpose here is entirely for the benefit of component-scanning. Because Home-
Controller is annotated with @Controller, the component scanner will automatically
pick up HomeController and declare it as a bean in the Spring application context.

Listing 5.3 HomeController: an example of an extremely simple controller

Declared to be a controller

Handle GET requests for /

View name is home

140 CHAPTER 5 Building Spring web applications
You could have annotated HomeController with @Component, and it would have had
the same effect, but it would have been less expressive about what type of component
HomeController is.

 HomeController’s only method, the home() method, is annotated with @Request-
Mapping. The value attribute specifies the request path that this method will handle,
and the method attribute details the HTTP method that it can handle. In this case,
whenever an HTTP GET request comes in for /, the home() method will be called.

 As you can see, the home() method doesn’t do much: it returns a String value of
“home”. This String will be interpreted by Spring MVC as the name of the view that
will be rendered. DispatcherServlet will ask the view resolver to resolve this logical
view name into an actual view.

 Given the way you configured InternalResourceViewResolver, the view name
“home” will be resolved as a JSP at /WEB-INF/views/home.jsp. For now, you’ll keep the
Spittr application’s home page rather basic, as shown next.

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<%@ page session="false" %>
<html>

<head>
<title>Spittr</title>
<link rel="stylesheet"

type="text/css"
href="<c:url value="/resources/style.css" />" >

</head>
<body>

<h1>Welcome to Spittr</h1>

<a href="<c:url value="/spittles" />">Spittles |
<a href="<c:url value="/spitter/register" />">Register

</body>
</html>

There’s nothing noteworthy about this JSP. It merely welcomes the user to the applica-
tion and offers two links: one to view a Spittle list and another to register with the
application. Figure 5.2 shows what the home page looks like at this point.

 Before this chapter is complete, you’ll have implemented the controller methods to
handle those requests. But for now, let’s throw some requests at this controller and see
if it works. The obvious way to test a controller may be to build and deploy the applica-
tion and poke at it with a web browser, but an automated test will give you quicker feed-
back and more consistent hands-off results. So, let’s cover HomeController with a test.

5.2.1 Testing the controller
Take another look at HomeController. If you squint really hard—so hard that you
can’t see the annotations—you’ll see that what’s left is a simple POJO. And you know

Listing 5.4 Spittr home page, defined as a simple JSP

141Writing a simple controller
it’s easy to test POJOs. Therefore, you can test HomeController by writing a simple test
like the following.

package spittr.web;
import static org.junit.Assert.assertEquals;
import org.junit.Test;
import spittr.web.HomeController;

public class HomeControllerTest {
@Test
public void testHomePage() throws Exception {

HomeController controller = new HomeController();
assertEquals("home", controller.home());

}
}

Although the test in listing 5.5 is straightforward, it only tests what happens in the
home() method. It calls home() directly and asserts that a String containing the value
“home” is returned. It completely fails to test what makes that method a Spring MVC
controller method. Nothing about the test asserts that home() will be called when a
GET request for / comes in. And just because it returns “home”, there’s nothing to
truly test that home is the name of the view.

 Starting with Spring 3.2, however, you have a way to test Spring MVC controllers as
controllers, not merely as POJOs. Spring now includes a mechanism for mocking all

Listing 5.5 HomeControllerTest: tests HomeController

Figure 5.2 The Spittr home page in action

142 CHAPTER 5 Building Spring web applications
the mechanics of Spring MVC and executing HTTP requests against controllers. This
will enable you to test your controllers without firing up a web server or web browser.

 To demonstrate proper testing of a Spring MVC controller, you can rewrite Home-
ControllerTest to take advantage of the new Spring MVC testing features. The fol-
lowing listing shows the new HomeControllerTest.

package spittr.web;
import static

org.springframework.test.web.servlet.request.MockMvcRequestBuilders.*;
import static

org.springframework.test.web.servlet.result.MockMvcResultMatchers.*;
import static

org.springframework.test.web.servlet.setup.MockMvcBuilders.*;
import org.junit.Test;
import org.springframework.test.web.servlet.MockMvc;
import spittr.web.HomeController;

public class HomeControllerTest {
@Test
public void testHomePage() throws Exception {

HomeController controller = new HomeController();
MockMvc mockMvc =

standaloneSetup(controller).build();

mockMvc.perform(get("/"))
.andExpect(view().name("home"));

}
}

Even though this new version of the test is a few lines longer than its predecessor, it
more completely tests HomeController. Rather than call home() directly and test its
return value, this test issues a GET request for / and asserts that the resulting view is
named home. It starts by passing an instance of HomeController to MockMvcBuilders
.standaloneSetup() and calling build() to set up the MockMvc instance. Then it asks
the MockMvc instance to perform a GET request for / and sets an expectation for the
view name.

5.2.2 Defining class-level request handling

Now that you have a test around HomeController, you can do a bit of refactoring to be
certain that nothing breaks. One thing you can do is split up @RequestMapping by
placing the path-mapping portion of it at the class level. The next listing shows how
this is done.

package spittr.web;
import static org.springframework.web.bind.annotation.RequestMethod.*;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;

Listing 5.6 Revised HomeControllerTest

Listing 5.7 Splitting the @RequestMapping in HomeController

Set up MockMvc

Perform GET /
Expect home view

143Writing a simple controller
import org.springframework.web.bind.annotation.RequestMethod;

@Controller
@RequestMapping("/")
public class HomeController {

@RequestMapping(method=GET)
public String home() {

return "home";
}

}

In this new version of HomeController, the path has been moved up to a new class-
level @RequestMapping, whereas the HTTP method is still mapped at the method level.
Any time there’s a class-level @RequestMapping on a controller class, it applies to
all handler methods in the controller. Then any @RequestMapping annotations on
handler methods will complement the class-level @RequestMapping.

 In the case of HomeController, there’s only one handler method. Its @RequestMap-
ping, when taken together with the class-level @RequestMapping, indicates that the
home() method will handle GET requests for /.

 In other words, you really haven’t changed anything. You’ve moved a few things
around, but HomeController still does the same thing as before. Because you have a
test, you can be sure you haven’t broken anything along the way.

 While you’re tinkering with the @RequestMapping annotations, you can make
another tweak to HomeController. The value attribute of @RequestMapping accepts
an array of String. So far, you’ve only given it a single String value of “/”. But you can
also map it to requests whose path is /homepage by changing the class-level
@RequestMapping to look like this:

@Controller
@RequestMapping({"/", "/homepage"})
public class HomeController {
...
}

Now HomeController’s home() method is mapped to handle GET requests for both /
and /homepage requests.

5.2.3 Passing model data to the view

As it stands now, HomeController is a great example of how to write an extremely sim-
ple controller. But most controllers aren’t this simple. In the Spittr application, you’ll
need a page that displays a list of the most recent spittles that have been submitted.
Therefore, you’ll need a new method to serve such a page.

 First you need to define a repository for data access. For decoupling purposes, and
so you don’t get bogged down in database specifics, you’ll define the repository as an
interface now and create an implementation of it later (in chapter 10). At the
moment, you only need a repository that can fetch a list of the spittles. Spittle-
Repository, as defined here, is a sufficient start:

Map controller to /

Handle GET requests

View name is home

144 CHAPTER 5 Building Spring web applications
package spittr.data;
import java.util.List;
import spittr.Spittle;

public interface SpittleRepository {
List<Spittle> findSpittles(long max, int count);

}

The findSpittles() method takes two parameters. The max parameter is a Spittle
ID that represents the maximum ID of any Spittle that should be returned. As for the
count parameter, it indicates how many Spittle objects to return. In order to get the
20 most recent Spittle objects, you can call findSpittles() like this:

List<Spittle> recent =
spittleRepository.findSpittles(Long.MAX_VALUE, 20);

You’ll keep the Spittle class fairly simple for now, as shown next. It will have proper-
ties to carry a message, a timestamp, and the latitude/longitude of the location from
which the spittle was posted.

package spittr;
import java.util.Date;

public class Spittle {
private final Long id;
private final String message;
private final Date time;
private Double latitude;
private Double longitude;

public Spittle(String message, Date time) {
this(message, time, null, null);

}

public Spittle(
String message, Date time, Double longitude, Double latitude) {

this.id = null;
this.message = message;
this.time = time;
this.longitude = longitude;
this.latitude = latitude;

}

public long getId() {
return id;

}

public String getMessage() {
return message;

}

public Date getTime() {
return time;

}

Listing 5.8 Spittle class: carries a message, a timestamp, and a location

145Writing a simple controller
public Double getLongitude() {
return longitude;

}

public Double getLatitude() {
return latitude;

}

@Override
public boolean equals(Object that) {

return EqualsBuilder.reflectionEquals(this, that, "id", "time");
}

@Override
public int hashCode() {

return HashCodeBuilder.reflectionHashCode(this, "id", "time");
}

}

For the most part, Spittle is a basic POJO data object—nothing complicated. The
only thing to note is that you’re using Apache Commons Lang for easy implementa-
tion of the equals() and hashCode() methods. Aside from the general utility value of
those methods, they’ll be valuable in writing a test for the controller handler method.

 While we’re on the subject of testing, let’s go ahead and write a test for the new
controller method. The following listing uses Spring’s MockMvc to assert the behavior
you want in the new handler method.

@Test
public void shouldShowRecentSpittles() throws Exception {

List<Spittle> expectedSpittles = createSpittleList(20);
SpittleRepository mockRepository =

mock(SpittleRepository.class);
when(mockRepository.findSpittles(Long.MAX_VALUE, 20))

.thenReturn(expectedSpittles);

SpittleController controller =
new SpittleController(mockRepository);

SpittleController controller =
new SpittleController(mockRepository);

MockMvc mockMvc = standaloneSetup(controller)
.setSingleView(

new InternalResourceView("/WEB-INF/views/spittles.jsp"))
.build();

mockMvc.perform(get("/spittles"))
.andExpect(view().name("spittles"))
.andExpect(model().attributeExists("spittleList"))
.andExpect(model().attribute("spittleList",

hasItems(expectedSpittles.toArray())));
}

...

Listing 5.9 Testing that SpittleController handles GET requests for /spittles

Mock repository

Mock Spring MVC

GET /spittles

Assert expectations

146 CHAPTER 5 Building Spring web applications
private List<Spittle> createSpittleList(int count) {
List<Spittle> spittles = new ArrayList<Spittle>();
for (int i=0; i < count; i++) {

spittles.add(new Spittle("Spittle " + i, new Date()));
}
return spittles;

}

This test starts by creating a mock implementation of the SpittleRepository inter-
face that will return a list of 20 Spittle objects from its findSpittles() method. It
then injects that repository into a new SpittleController instance and sets up Mock-
Mvc to use that controller.

 Notice that unlike HomeControllerTest, this test calls setSingleView() on the
MockMvc builder. This is so the mock framework won’t try to resolve the view name
coming from the controller on its own. In many cases, this is unnecessary. But for this
controller method, the view name will be similar to the request’s path; left to its
default view resolution, MockMvc will fail because the view path will be confused with
the controller’s path. The actual path given when constructing the Internal-
ResourceView is unimportant in this test, but you set it to be consistent with how
you’ve configured InternalResourceViewResolver.

 The test wraps up by performing a GET request for /spittles and asserting that the
view name is spittles and that the model has an attribute named spittleList with
the expected contents.

 Of course, if you ran the test at this point, it would fail. It wouldn’t just fail to run;
it would fail to compile. That’s because you haven’t yet written the Spittle-
Controller. Let’s create a SpittleController so that it satisfies the expectations of
the test in listing 5.9. Here’s an implementation of SpittleController that should
satisfy the test.

package spittr.web;
import java.util.List;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import spittr.Spittle;
import spittr.data.SpittleRepository;

@Controller
@RequestMapping("/spittles")
public class SpittleController {

private SpittleRepository spittleRepository;

@Autowired
public SpittleController(

SpittleRepository spittleRepository) {
this.spittleRepository = spittleRepository;

Listing 5.10 SpittleController: places a list of recent spittles in the model

Inject SpittleRepository

147Writing a simple controller
}

@RequestMapping(method=RequestMethod.GET)
public String spittles(Model model) {

model.addAttribute(
spittleRepository.findSpittles(

Long.MAX_VALUE, 20));
return "spittles";

}

}

As you can see, SpittleController has a constructor that’s annotated with
@Autowired to be given a SpittleRepository. That SpittleRepository is then used
in the spittles() method to fetch a list of recent spittles.

 Notice that the spittles() method is given a Model as a parameter. This is so that
spittles() can populate the model with the Spittle list it retrieves from the reposi-
tory. The Model is essentially a map (that is, a collection of key-value pairs) that will be
handed off to the view so that the data can be rendered to the client. When add-
Attribute() is called without specifying a key, the key is inferred from the type of
object being set as the value. In this case, because it’s a List<Spittle>, the key will be
inferred as spittleList.

 The last thing spittles() does is return spittles as the name of the view that will
render the model.

 If you’d prefer to be explicit about the model key, you’re welcome to specify it. For
example, the following version of spittles() is equivalent to the one in listing 5.10:

@RequestMapping(method=RequestMethod.GET)
public String spittles(Model model) {

model.addAttribute("spittleList",
spittleRepository.findSpittles(Long.MAX_VALUE, 20));

return "spittles";
}

Likewise, if you’d prefer to work with a non-Spring type, you can ask for a java
.util.Map instead of Model. Here’s another version of spittles() that’s functionally
equivalent to the others:

@RequestMapping(method=RequestMethod.GET)
public String spittles(Map model) {

model.put("spittleList",
spittleRepository.findSpittles(Long.MAX_VALUE, 20));

return "spittles";
}

And while we’re on the subject of alternate implementations, here’s another way to
write the spittles() method:

@RequestMapping(method=RequestMethod.GET)
public List<Spittle> spittles() {

return spittleRepository.findSpittles(Long.MAX_VALUE, 20));
}

Add spittles to model

Return view name

148 CHAPTER 5 Building Spring web applications
This version is quite a bit different from the others. Rather than return a logical view
name and explicitly setting the model, this method returns the Spittle list. When a
handler method returns an object or a collection like this, the value returned is put
into the model, and the model key is inferred from its type (spittleList, as in the
other examples).

 As for the logical view name, it’s inferred from the request path. Because this
method handles GET requests for /spittles, the view name is spittles (chopping off
the leading slash).

 No matter which way you choose to write the spittles() method, the result is
the same. A list of Spittle objects is stored in the model with a key of spittleList
and given to the view whose name is spittles. Given the way you’ve configured
InternalResourceViewResolver, that view is a JSP at /WEB-INF/views/spittles.jsp.

 Now that there’s data in the model, how does the JSP access it? As it turns out,
when the view is a JSP, the model data is copied into the request as request attributes.
Therefore, the spittles.jsp file can use JavaServer Pages Standard Tag Library’s (JSTL)
<c:forEach> tag to render the list of spittles:

<c:forEach items="${spittleList}" var="spittle" >
<li id="spittle_<c:out value="spittle.id"/>">

<div class="spittleMessage">
<c:out value="${spittle.message}" />

</div>
<div>

<c:out value="${spittle.time}" />

(<c:out value="${spittle.latitude}" />,
<c:out value="${spittle.longitude}" />)

</div>

</c:forEach>

Figure 5.3 will help you visualize how this might look in your web browser.
 Although SpittleController is simple, it’s still a step up from what you wrote in

HomeController. One thing that neither HomeController nor SpittleController
does, however, is handle any form of input. Let’s expand on SpittleController to
take some input from the client.

5.3 Accepting request input
Some web applications are read-only. Humans poke about on the website in their web
browser, reading whatever content the server sends to the browser.

 The good news is that it doesn’t have to be that way. Many web applications give
the user an opportunity to chime in and send data back to the server. Without this
capability, the web would be a very different place.

149Accepting request input
Spring MVC provides several ways that a client can pass data into a controller’s handler
method. These include

 Query parameters
 Form parameters
 Path variables

You’ll see how to write controllers to handle input using all of these mechanisms. For
a start, let’s look at handling requests with query parameters, the simplest and most
straightforward way to send data from the client to the server.

5.3.1 Taking query parameters

One thing that your Spittr application will need to do is display a paged list of spittles.
As it is, SpittleController only displays the most recent spittles; it offers no way to
page back through the history of the spittles that have been written. If you’re going to
let users go through spittle history a page at a time, you’ll need to offer a way for them
to pass in parameters that determine which set of spittles to display.

 In deciding how to do this, consider that if you’re viewing a page of spittles, it’s
ordered with the most recent spittle first. Therefore, the first spittle on the next page
should have an ID that is before the ID of the last spittle on the current page. So, in
order to display the next page of spittles, you should be able to pass in a spittle ID that
is just less than the ID of the last spittle on the current page. You can also pass in a
parameter saying how many spittles to display.

Figure 5.3 Spittle model data from a controller is made available as request parameters and
rendered as a list on a web page.

150 CHAPTER 5 Building Spring web applications
 To implement this paging solution, you’ll need to write a handler method that
accepts the following:

 A before parameter (which indicates the ID of the Spittle that all Spittle
objects in the results are before)

 A count parameter (which indicates how many spittles to include in the result)

To achieve this, let’s replace the spittles() method you created in listing 5.10 with
a new spittles() method that works with the before and count parameters. You’ll
start by adding a test to reflect the functionality you want to see from the new
spittles() method.

@Test
public void shouldShowPagedSpittles() throws Exception {

List<Spittle> expectedSpittles = createSpittleList(50);
SpittleRepository mockRepository = mock(SpittleRepository.class);
when(mockRepository.findSpittles(238900, 50))

.thenReturn(expectedSpittles);

SpittleController controller =
new SpittleController(mockRepository);

MockMvc mockMvc = standaloneSetup(controller)
.setSingleView(

new InternalResourceView("/WEB-INF/views/spittles.jsp"))
.build();

mockMvc.perform(get("/spittles?max=238900&count=50"))
.andExpect(view().name("spittles"))
.andExpect(model().attributeExists("spittleList"))
.andExpect(model().attribute("spittleList",

hasItems(expectedSpittles.toArray())));
}

The key difference between this test method and the one in listing 5.9 is that it per-
forms a GET request against /spittles, passing in values for the max and count parame-
ters. This tests the handler method when those parameters are present; the other test
method tests for when those parameters are absent. With both tests in place, you can
be assured that no matter what changes you make to the controller, it will still be able
to handle both kinds of requests:

@RequestMapping(method=RequestMethod.GET)
public List<Spittle> spittles(

@RequestParam("max") long max,
@RequestParam("count") int count) {

return spittleRepository.findSpittles(max, count);
}

If the handler method in SpittleController is going to handle requests with or with-
out the max and count parameters, you’ll need to change it to accept those parameters

Listing 5.11 New method to test for a paged list of spittles

Expect max and
count parameters

Pass max and
count
parameters

151Accepting request input
but still default to Long.MAX_VALUE and 20 if those parameters are absent on the
request. The defaultValue attribute of @RequestParam will do the trick:

@RequestMapping(method=RequestMethod.GET)
public List<Spittle> spittles(

@RequestParam(value="max",
defaultValue=MAX_LONG_AS_STRING) long max,

@RequestParam(value="count", defaultValue="20") int count) {
return spittleRepository.findSpittles(max, count);

}

Now, if the max parameter isn’t specified, it will default to the maximum value of Long.
Because query parameters are always of type String, the defaultValue attribute
requires a String value. Therefore, Long.MAX_VALUE won’t work. Instead, you can cap-
ture Long.MAX_VALUE in a String constant named MAX_LONG_AS_STRING:

private static final String MAX_LONG_AS_STRING =
Long.toString(Long.MAX_VALUE);

Even though the defaultValue is given as a String, it will be converted to a Long
when bound to the method’s max parameter.

 The count parameter will default to 20 if the request doesn’t have a count parameter.
 Query parameters are a common way to pass information to a controller in a

request. Another way that’s popular, especially in a discussion of building resource-
oriented controllers, is to pass parameters as part of the request path. Let’s see how to
use path variables to take input as part of the request path.

5.3.2 Taking input via path parameters

Let’s say your application needs to support the display of a single Spittle, given its ID.
One option you have is to write a handler method that accepts the ID as a query
parameter using @RequestParam:

@RequestMapping(value="/show", method=RequestMethod.GET)
public String showSpittle(

@RequestParam("spittle_id") long spittleId,
Model model) {

model.addAttribute(spittleRepository.findOne(spittleId));
return "spittle";

}

This handler method would handle requests such as /spittles/show?spittle_id=12345.
Although this could be made to work, it’s not ideal from a resource-orientation per-
spective. Ideally, the resource being identified (the Spittle) would be identified by
the URL path, not by query parameters. As a general rule, query parameters should
not be used to identify a resource. A GET request for /spittles/12345 is better than one
for /spittles/show?spittle_id=12345. The former identifies a resource to be retrieved.
The latter describes an operation with a parameter—essentially RPC over HTTP.

152 CHAPTER 5 Building Spring web applications
 With the goal of resource-oriented controllers in mind, let’s capture this require-
ment in a test. The following listing shows a new test method to assert resource-
oriented request handling in SpittleController.

@Test
public void testSpittle() throws Exception {

Spittle expectedSpittle = new Spittle("Hello", new Date());
SpittleRepository mockRepository = mock(SpittleRepository.class);
when(mockRepository.findOne(12345)).thenReturn(expectedSpittle);

SpittleController controller = new SpittleController(mockRepository);
MockMvc mockMvc = standaloneSetup(controller).build();

mockMvc.perform(get("/spittles/12345"))
.andExpect(view().name("spittle"))
.andExpect(model().attributeExists("spittle"))
.andExpect(model().attribute("spittle", expectedSpittle));

}

As you can see, this test sets up a mock repository, a controller, and MockMvc, much
like the other tests you’ve written in this chapter. The most important part of the test
is in the last few lines, where it performs a GET request for /spittles/12345 and asserts
that the view name is spittle and that the expected Spittle object is placed in the
model. Because you haven’t yet implemented the handler method for that kind of
request, the request will fail. But you can fix that by adding a new method to Spittle-
Controller.

 Up to this point, all of your controller methods have been mapped (via @Request-
Mapping) to a statically defined path. But if you’re going to make this test pass, you’ll
need to write an @RequestMapping that has a variable portion of the path that repre-
sents the Spittle ID.

 To accommodate these path variables, Spring MVC allows for placeholders in
an @RequestMapping path. The placeholders are names surrounded by curly braces
({ and }). Although all the other parts of the path need to match exactly for the
request to be handled, the placeholder can carry any value.

 Here’s a handler method that uses placeholders to accept a Spittle ID as part of
the path:

@RequestMapping(value="/{spittleId}", method=RequestMethod.GET)
public String spittle(

@PathVariable("spittleId") long spittleId,
Model model) {

model.addAttribute(spittleRepository.findOne(spittleId));
return "spittle";

}

For example, it can handle requests for /spittles/12345, the path being tested for in
listing 5.12.

Listing 5.12 Testing a request for a Spittle with ID specified in a path variable

Request resource
via path

153Accepting request input
 As you can see, spittle() has a spittleId parameter that is annotated with
@PathVariable("spittleId"). This indicates that whatever value is at the place-
holder position in the request path will be passed into the handler method’s
spittleId parameter. If the request is a GET request for /spittles/54321, then 54321
will be passed in as the value of spittleId.

 Notice that the phrase spittleId is repeated a few times in the example: in the
@RequestMapping path, as the value attribute of @PathVariable, and again as a
method parameter name. Because the method parameter name happens to be the
same as the placeholder name, you can optionally omit the value parameter on
@PathVariable:

@RequestMapping(value="/{spittleId}", method=RequestMethod.GET)
public String spittle(@PathVariable long spittleId, Model model) {

model.addAttribute(spittleRepository.findOne(spittleId));
return "spittle";

}

If no value attribute is given for @PathVariable, it assumes the placeholder’s name is
the same as the method parameter name. This can make the code a little cleaner by not
duplicating the placeholder name any more than necessary. But be cautioned: if you
decide to rename the parameter, you must also change the placeholder name to match.

 The spittle() method will pass the parameter along to the findOne() method on
the SpittleRepository to find a single Spittle object and will add that Spittle to
the model. The model key will be spittle, inferred by the type passed in to add-
Attribute().

 The data in the Spittle object can then be rendered in the view by referring to
the request attribute whose key is spittle (the same as the model key). Here’s a snip-
pet of a JSP view that renders the Spittle:

<div class="spittleView">
<div class="spittleMessage"><c:out value="${spittle.message}" /></div>
<div>

<c:out value="${spittle.time}" />
</div>

</div>

There’s nothing flashy about this view, as you can see from the screenshot in figure 5.4.
 Query parameters and path parameters are fine for passing small amounts of data

on a request. But often you need to pass a lot of data (perhaps data coming from a
form submission), and query parameters are too awkward and limited for that. Let’s
see how you can write controller methods that handle form submissions.

154 CHAPTER 5 Building Spring web applications
5.4 Processing forms
Web applications typically do more than just push content out to the user. Most also
let users participate in the conversation by filling out forms and submitting data back
into the application. Spring MVC controllers are well-suited for form processing as
well as serving content.

 There are two sides to working with forms: displaying the form and processing the
data the user submits from the form. In the Spittr application, you’ll need a form for
new users to register with the application. SpitterController is a new controller with
a single request-handling method for displaying the registration form.

package spittr.web;
import static org.springframework.web.bind.annotation.RequestMethod.*;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import spittr.Spitter;
import spittr.data.SpitterRepository;

@Controller
@RequestMapping("/spitter")
public class SpitterController {

Listing 5.13 SpitterController: displays a form for users to sign up with the app

Figure 5.4 Displaying a spittle in the browser

155Processing forms
@RequestMapping(value="/register", method=GET)
public String showRegistrationForm() {

return "registerForm";
}

}

The showRegistrationForm() method’s @RequestMapping annotation, along with the
class-level @RequestMapping annotation, declares that it will handle HTTP GET requests
for /spitter/register. It’s a simple method, taking no input and only returning a logi-
cal view named registerForm. Given how you’ve configured InternalResourceView-
Resolver, that means the JSP at /WEB-INF/views/registerForm.jsp will be called on to
render the registration form.

 As simple as showRegistrationForm() is, it still deserves to be covered by a test.
Because it’s a simple method, its test will be equally simple.

@Test
public void shouldShowRegistration() throws Exception {

SpitterController controller = new SpitterController();
MockMvc mockMvc = standaloneSetup(controller).build();

mockMvc.perform(get("/spitter/register"))
.andExpect(view().name("registerForm"));

}

This test method is very similar to the test for the home page controller method. It
performs a GET request for /spitter/register and then asserts that the resulting view is
named registerForm.

 Now let’s get back to the view. Because the view name is registerForm, you’ll
need a JSP named registerForm.jsp. This JSP must include an HTML <form> where the
user will enter information to sign up with the application. Here’s the JSP you’ll use
for now.

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<%@ page session="false" %>
<html>

<head>
<title>Spittr</title>
<link rel="stylesheet" type="text/css"

href="<c:url value="/resources/style.css" />" >
</head>
<body>

<h1>Register</h1>

<form method="POST">
First Name: <input type="text" name="firstName" />

Last Name: <input type="text" name="lastName" />

Username: <input type="text" name="username" />

Password: <input type="password" name="password" />

Listing 5.14 Testing a form-displaying controller method

Listing 5.15 JSP to render a registration form

Handle GET requests
for /spitter/register

Set up MockMvc

Assert registerForm view

156 CHAPTER 5 Building Spring web applications
<input type="submit" value="Register" />
</form>

</body>
</html>

As you can see, this JSP is fairly basic. It has HTML form fields to capture the user’s first
name, last name, a username, and a password, as well as a button to submit the form.
Rendered in the browser, it looks a little something like figure 5.5.

Notice that the <form> tag doesn’t have an action parameter set. Because of that,
when this form is submitted, it will be posted back to the same URL path that displayed
it. That is, it will be posted back to /spitters/register.

 That means you’ll need something back on the server to handle the HTTP POST
request. Let’s add another method to SpitterController to handle form submission.

5.4.1 Writing a form-handling controller

When processing the POST request from the registration form, the controller needs to
accept the form data and save the form data as a Spitter object. Finally, in order to
prevent a duplicate submission (such as might happen if the user clicked their
browser’s Refresh button), it should redirect the browser to the newly created user’s
profile page. This behavior is captured and tested in shouldProcessRegistration().

Figure 5.5 The registration page offers a form that will be processed by SpitterController
to add a new user to the application.

157Processing forms

@Test
public void shouldProcessRegistration() throws Exception {

SpitterRepository mockRepository =
mock(SpitterRepository.class);

Spitter unsaved =
new Spitter("jbauer", "24hours", "Jack", "Bauer");

Spitter saved =
new Spitter(24L, "jbauer", "24hours", "Jack", "Bauer");

when(mockRepository.save(unsaved)).thenReturn(saved);

SpitterController controller =
new SpitterController(mockRepository);

MockMvc mockMvc = standaloneSetup(controller).build();

mockMvc.perform(post("/spitter/register")
.param("firstName", "Jack")
.param("lastName", "Bauer")
.param("username", "jbauer")
.param("password", "24hours"))
.andExpect(redirectedUrl("/spitter/jbauer"));

verify(mockRepository, atLeastOnce()).save(unsaved);
}

Clearly, this test is more involved than the test for displaying the registration form.
After setting up a mock implementation of SpitterRepository and creating a control-
ler and MockMvc setup to execute against, shouldProcessRegistration() performs a
POST request against /spitter/register. As part of that POST request, user information is
passed as parameters on the request to simulate a form being submitted.

 When handling a POST request, it’s usually a good idea to send a redirect after the
POST has completed processing so that a browser refresh won’t accidentally submit the
form a second time. This test expects that the request will end in a redirect to /spitter
/jbauer, the URL path of the new user’s profile page.

 Finally, the test verifies that the mocked SpitterRepository was actually used to
save the data coming in on the form.

 Now let’s implement the controller method that will handle this form submission
test. shouldProcessRegistration() may have left you with the impression that a
chunk of work is required to satisfy the test. But as you can see in the new Spitter-
Controller in this listing, there’s not much to it.

package spittr.web;

import static org.springframework.web.bind.annotation.RequestMethod.*;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;

Listing 5.16 Testing form-handling controller methods

Listing 5.17 Handling form submission to register a new user

Set up mock repository

Set up MockMvc

Perform request

Verify save

158 CHAPTER 5 Building Spring web applications
import spittr.Spitter;
import spittr.data.SpitterRepository;

@Controller
@RequestMapping("/spitter")
public class SpitterController {

private SpitterRepository spitterRepository;

@Autowired
public SpitterController(

SpitterRepository spitterRepository) {
this.spitterRepository = spitterRepository;

}

@RequestMapping(value="/register", method=GET)
public String showRegistrationForm() {

return "registerForm";
}

@RequestMapping(value="/register", method=POST)
public String processRegistration(Spitter spitter) {

spitterRepository.save(spitter);

return "redirect:/spitter/" +
spitter.getUsername();

}
}

The showRegistrationForm() method is still in place. But notice the new process-
Registration() method: it’s given a Spitter object as a parameter. This object has
firstName, lastName, username, and password properties that will be populated from
the request parameters of the same name.

 Once it’s called with the Spitter object, processRegistration() calls the save()
method on the SpitterRepository that is now injected into SpitterController in
the constructor.

 The last thing that processRegistration() does is return a String specifying the
view. But this view specification is different from what you’ve seen before. Rather than
just return a view name and let the view resolver sort it out, here you’re returning a
redirect specification.

 When InternalResourceViewResolver sees the redirect: prefix on the view spec-
ification, it knows to interpret it as a redirect specification instead of as a view name. In
this case, it will redirect to the path for a user’s profile page. For example, if the Spitter
.username property is jbauer, then the view will redirect to /spitter/jbauer.

 It’s worth noting that in addition to redirect:, InternalResourceViewResolver
also recognizes the forward: prefix. When it sees a view specification prefixed with
forward:, the request is forwarded to the given URL path instead of redirected.

 Perfect! At this point, the test in listing 5.16 should pass. But you’re not finished
yet. Because you’re redirecting to the user’s profile page, you should probably add a
handler method to SpitterController to handle requests for the profile page.
Here’s a showSpitterProfile() method that will do the trick:

@RequestMapping(value="/{username}", method=GET)

Inject SpitterRepository

Save a Spitter

Redirect to profile page

159Processing forms
public String showSpitterProfile(
@PathVariable String username, Model model) {

Spitter spitter = spitterRepository.findByUsername(username);
model.addAttribute(spitter);
return "profile";

}

showSpitterProfile() fetches a Spitter object from the SpitterRepository by the
username. It adds the Spitter to the model and then returns profile, the logical
view name for the profile view. Like all the other views presented in this chapter, you’ll
keep the profile view simple for now:

<h1>Your Profile</h1>
<c:out value="${spitter.username}" />

<c:out value="${spitter.firstName}" />

<c:out value="${spitter.lastName}" />

Figure 5.6 shows the profile page as rendered in a web browser.
 What will happen if the form doesn’t send a username or password parameter? Or

what if the firstName or lastName value is empty or too long? Let’s look at how to add
validation to the form submission to prevent inconsistencies in the data presented.

5.4.2 Validating forms

If the user were to leave the username or password field empty when submitting the
form, it could result in the creation of a new Spitter object whose username and
password were empty Strings. At the very least, this is odd behavior. But left

Figure 5.6 The Spittr profile page displays a user’s information, as populated into the model
by SpitterController.

160 CHAPTER 5 Building Spring web applications
unchecked, it could present a security concern where anyone could sign in to the
application by submitting an empty login form.

 Also, you should take steps to prevent the user from submitting an empty first-
Name and/or lastName in an effort to maintain some level of anonymity. And it’s prob-
ably a good idea to limit the length of the values given in those fields, keeping them at
a reasonable size and avoiding misuse of the fields.

 One way to handle validation, albeit naive, is to add code to the process-
Registration() method to check for invalid values and send the user back to the reg-
istration form unless the data is valid. It’s a short method, so tossing in a few extra if
statements won’t do much harm. Right?

 Rather than litter your handler methods with validation logic, however, you can
take advantage of Spring’s support for the Java Validation API (a.k.a. JSR-303). Starting
with Spring 3.0, Spring supports the Java Validation API in Spring MVC. No extra con-
figuration is required to make Java Validation work in Spring MVC. You just need to
make sure an implementation of the Java API, such as Hibernate Validator, is in the
project’s classpath.

 The Java Validation API defines several annotations that you can put on properties
to place constraints on the values of those properties. All of these annotations are in the
javax.validation.constraints package. Table 5.1 lists these validation annotations.

Table 5.1 Validation annotations provided by the Java Validation API

Annotation Description

@AssertFalse The annotated element must be a Boolean type and be false.

@AssertTrue The annotated element must be a Boolean type and be true.

@DecimalMax The annotated element must be a number whose value is less than or equal to
a given BigDecimalString value.

@DecimalMin The annotated element must be a number whose value is greater than or
equal to a given BigDecimalString value.

@Digits The annotated element must be a number whose value has a specified num-
ber of digits.

@Future The value of the annotated element must be a date in the future.

@Max The annotated element must be a number whose value is less than or equal to
a given value.

@Min The annotated element must be a number whose value is greater than or
equal to a given value.

@NotNull The value of the annotated element must not be null.

@Null The value of the annotated element must be null.

@Past The value of the annotated element must be a date in the past.

@Pattern The value of the annotated element must match a given regular expression.

161Processing forms
In addition to the annotations in table 5.1, Java Validation API implementations may
provide additional validation annotations. And it’s also possible to define your own
constraints. But for our purposes, we’ll focus on a couple of the core constraint valida-
tions from the table.

 Thinking over the constraints you need to apply to the fields in Spitter, it seems
you’ll probably need the @NotNull and @Size annotations. All you need to do is toss
those annotations around on the properties of Spitter. The next listing shows
Spitter with its properties annotated for validation.

package spittr;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;
import org.apache.commons.lang3.builder.EqualsBuilder;
import org.apache.commons.lang3.builder.HashCodeBuilder;

public class Spitter {

private Long id;

@NotNull
@Size(min=5, max=16)
private String username;

@NotNull
@Size(min=5, max=25)
private String password;

@NotNull
@Size(min=2, max=30)
private String firstName;

@NotNull
@Size(min=2, max=30)
private String lastName;

...

}

All the properties of Spitter are now annotated with @NotNull to ensure that they
aren’t left null. Similarly, the @Size annotation is placed on the properties to con-
strain them between minimum and maximum lengths. What this means in the Spittr

@Size The value of the annotated element must be either a String, a collection, or
an array whose length fits within the given range.

Listing 5.18 SpittleForm: carries only fields submitted in a SpittlePOST request

Table 5.1 Validation annotations provided by the Java Validation API (continued)

Annotation Description

Not null, from 5
to 16 characters

Not null, from 5
to 25 characters

Not null, from 2
to 30 characters

Not null, from 2
to 30 characters

162 CHAPTER 5 Building Spring web applications
application is that the user must completely fill out the registration form with values
that fit within the size constraints.

 Now that you have annotated Spitter with validation constraints, you need to
change the processRegistration() method to apply validation. The new validation-
enabled processRegistration() is shown next.

@RequestMapping(value="/register", method=POST)
public String processRegistration(

@Valid Spitter spitter,
Errors errors) {

if (errors.hasErrors()) {
return "registerForm";

}

spitterRepository.save(spitter);
return "redirect:/spitter/" + spitter.getUsername();

}

A lot has changed since the original processRegistration() in listing 5.17. The
Spitter parameter is now annotated with @Valid to indicate to Spring that the com-
mand object has validation constraints that should be enforced.

 Just having validation constraints on the Spitter’s properties won’t prevent the
form from being submitted. Even if the user fails to fill in a field on the form or gives
a value whose length exceeds the maximum length, the processRegistration()
method will still be called. This gives you a chance to deal with the validation prob-
lems however you see fit in processRegistration().

 If there are any validation errors, they’re available in the Errors object that you’re
now asking for as a parameter to processRegistration(). (Note that it’s important
that the Errors parameter immediately follow the @Valid-annotated parameter that’s
being validated.) The first thing processRegistration() does is call Errors.has-
Errors() to check for any errors.

 If there are errors, Errors.hasErrors() returns registerForm, the view name for
the registration form. This will take the user’s browser back to the registration form so
they can correct any problems and try again. For now, the blank form will be dis-
played, but in the next chapter, you’ll adapt the form to show the values that were
originally submitted and communicate validation problems to the user.

 If there are no errors, the Spitter is saved via the repository, and the controller
redirects to the profile page as before.

5.5 Summary
In this chapter, you’ve made a good start on the web portion of your application. As
you’ve seen, Spring comes with a powerful and flexible web framework. Employing
annotations, Spring MVC offers a near-POJO development model, making simple work
of developing controllers that handle requests and are easy to test.

Listing 5.19 processRegistration(): ensures that data submitted is valid

Validate Spitter input

Return to form on
validation errors

163Summary
 When it comes to writing controller handler methods, Spring MVC is extremely
flexible. As a rule of thumb, if your handler method needs something, then it should
ask for that object as a parameter. Likewise, anything it doesn’t need should be left out
of the parameter list. This leads to infinite possibilities in request handling, while
maintaining a simple programming model.

 Although much of this chapter focused on request handling with controllers,
response rendering is also important. We briefly looked at how to write views for your
controllers using JSPs. But there’s more to Spring MVC views than the basic JSPs you
wrote in this chapter.

 Coming up in chapter 6, we’ll dig deeper into Spring views, expanding on how you
can take advantage of Spring tag libraries in JSP. You’ll also see how to add consistent
layouts to your views using Apache Tiles. And we’ll look at Thymeleaf, an exciting
alternative to JSP that comes with built-in Spring support.

Rendering web views
In the previous chapter, we primarily focused on writing the controllers that handle
web requests. You also created some simple views to render the model data produced
by those controllers, but we didn’t spend too much time discussing the views or what
happens between the time a controller finishes handling a request and the time the
results are displayed in the user’s web browser. That’s the topic of this chapter.

6.1 Understanding view resolution
None of the methods in the controllers you wrote in chapter 5 directly produce the
HTML that is rendered in the browser. Instead, they populate the model with some
data and then pass the model off to a view for rendering. Those methods return a
String value that is the logical name of the view but that doesn’t directly refer to a
specific view implementation. Although you wrote a few simple JavaServer Page
(JSP) views, nothing in the controllers is aware of that fact.

This chapter covers
 Rendering model data as HTML

 Using JSP views

 Defining view layout with tiles

 Working with Thymeleaf views
164

165Understanding view resolution
 Decoupling request-handling logic in the controller from the view-rendering of a
view is an important feature of Spring MVC. If the controller methods were directly
responsible for producing HTML, it would be difficult to maintain and update the
view without getting your hands dirty in request-handling logic. At most, the control-
ler methods and view implementations should agree on the contents of the model;
apart from that, they should keep an arms-length distance from each other.

 But if the controller only knows about the view by a logical view name, how does
Spring determine which actual view implementation it should use to render the
model? That’s a job for Spring’s view resolvers.

 In chapter 5, you used a view resolver known as InternalResourceViewResolver.
It was configured to apply a prefix of /WEB-INF/views/ and a suffix of .jsp to a view
name to arrive at the physical location of the JSP that would render the model. Now
let’s take a step back and look at view resolution in general and some of the other view
resolvers that Spring offers.

 Spring MVC defines an interface named ViewResolver that looks a little some-
thing like this:

public interface ViewResolver {
View resolveViewName(String viewName, Locale locale)

throws Exception;
}

The resolveViewName() method, when given a view name and a Locale, returns a
View instance. View is another interface that looks like this:

public interface View {
String getContentType();
void render(Map<String, ?> model,

HttpServletRequest request,
HttpServletResponse response) throws Exception;

}

The View interface’s job is to take the model, as well as the servlet request and
response objects, and render output into the response.

 It looks simple enough. All you need to do is start writing implementations of
ViewResolver and View to render content into the response to be displayed in your
users’ browsers. Right?

 Not necessarily. Although you can write your own custom implementations of
ViewResolver and View, and although there are some special cases where that’s neces-
sary, typically you needn’t worry yourself with these interfaces. I only mention them to
give you some insight into how view resolution works. Fortunately, Spring provides sev-
eral out-of-the-box implementations, listed in table 6.1, that fit most circumstances.

166 CHAPTER 6 Rendering web views

Note that all the view resolvers in table 6.1 are available in both Spring 4 and Spring 3.2.
And all but one of them (the Tiles 3 TilesViewResolver) are supported by Spring 3.1.

 We don’t have room in this book to cover all 13 view resolvers offered by Spring.
But that’s okay, because there are only a handful of them that you’ll ever need in most
applications.

 For the most part, each of the view resolvers in table 6.1 corresponds to a specific
view technology available for Java web applications. InternalResourceViewResolver
is typically used for JSP, TilesViewResolver is for Apache Tiles views, and FreeMarker-
ViewResolver and VelocityViewResolver map to FreeMarker and Velocity template
views respectively.

 In this chapter, we’ll focus our attention on the view technologies that are most rel-
evant to the majority of Java developers. Because most Java web applications use JSP,

Table 6.1 Spring comes with 13 view resolvers to translate logical view names into physical view
implementations.

View resolver Description

BeanNameViewResolver Resolves views as beans in the Spring application context
whose ID is the same as the view name.

ContentNegotiatingViewResolver Resolves views by considering the content type desired by
the client and delegating to another view resolver that can
produce that type.

FreeMarkerViewResolver Resolves views as FreeMarker templates.

InternalResourceViewResolver Resolves views as resources internal to the web applica-
tion (typically JSPs).

JasperReportsViewResolver Resolves views as JasperReports definitions.

ResourceBundleViewResolver Resolves views from a resource bundle (typically a proper-
ties file).

TilesViewResolver Resolves views as Apache Tile definitions, where the tile
ID is the same as the view name. Note that there are two
different TilesViewResolver implementations, one
each for Tiles 2.0 and Tiles 3.0.

UrlBasedViewResolver Resolves views directly from the view name, where the
view name matches the name of a physical view definition.

VelocityLayoutViewResolver Resolves views as Velocity layouts to compose pages from
different Velocity templates.

VelocityViewResolver Resolves views as Velocity templates.

XmlViewResolver Resolves views as bean definitions from a specified XML
file. Similar to BeanNameViewResolver.

XsltViewResolver Resolves views to be rendered as the result of an XSLT
transformation.

167Creating JSP views
we’ll start by looking at InternalResourceViewResolver, the view resolver that’s
typically used to resolve JSP views. Then we’ll try out TilesViewResolver to achieve
layout control over JSP pages.

 To wrap up this chapter, we’ll look at a view-resolver option that isn’t listed in
table 6.1. Thymeleaf is a compelling alternative to JSP that offers a view resolver for
working with Thymeleaf’s natural templates: templates that have more in common with
the HTML they produce than with the Java code that drives them. Thymeleaf is such
an exciting view option that I wouldn’t blame you if you flipped a few pages ahead to
section 6.4 to see how to use it with Spring.

 If you’re still on this page, it’s probably because you know that JSP has been, and
still is, the dominant view technology for Java. You’ve probably used JSP on several
projects before and are likely to need it again. So let’s start with a look at how you can
use JSP views with Spring MVC.

6.2 Creating JSP views
Believe it or not, JavaServer Pages has been the go-to view technology for Java-based
web applications for almost 15 years. Although it started out as an ugly, Java-centric
twist on similar templating technologies (such as Microsoft’s Active Server Pages), JSP
has evolved over the years to include support for an expression language and custom
tag libraries.

 Spring supports JSP views in two ways:

 InternalResourceViewResolver can be used to resolve view names into JSP
files. Moreover, if you’re using JavaServer Pages Standard Tag Library (JSTL)
tags in your JSP pages, InternalResourceViewResolver can resolve view names
into JSP files fronted by JstlView to expose JSTL locale and resource bundle
variables to JSTL’s formatting and message tags.

 Spring provides two JSP tag libraries, one for form-to-model binding and one
providing general utility features.

Whether or not you use JSTL or intend to use Spring’s JSP tag libraries, it’s important
to configure a view resolver to resolve JSP views. Although a few of Spring’s other view
resolvers could be used to map view names to JSP files, InternalResourceView-
Resolver is the simplest and most commonly used view resolver for this task. We
touched on configuring InternalResourceViewResolver in chapter 5. But that was
done in haste just so you could exercise your controllers in a web browser. Let’s take a
closer look at InternalResourceViewResolver and see how to tweak it to do your
bidding.

6.2.1 Configuring a JSP-ready view resolver

Whereas some view resolvers, such as ResourceBundleViewResolver, directly map a
logical view name to a specific implementation of the View interface, Internal-
ResourceViewResolver takes a more indirect approach. It follows a convention

168 CHAPTER 6 Rendering web views
whereby a prefix and a suffix are
attached to the view name to determine
the physical path to a view resource in
the same web application.

 As an example, consider the simple
case where the logical view name is
home. It’s a common practice to place
JSP files under the web application’s
WEB-INF folder to prevent direct access.
If you were to keep all your JSP files in /WEB-INF/views/, and if your home page JSP is
named home.jsp, then you could derive the physical view path by prefixing the logical
view name home with /WEB-INF/views/ and adding a suffix of .jsp. This is illustrated in
figure 6.1.

 You can configure InternalResourceViewResolver to apply this convention when
resolving views by configuring it with this @Bean-annotated method:

@Bean
public ViewResolver viewResolver() {

InternalResourceViewResolver resolver =
new InternalResourceViewResolver();

resolver.setPrefix("/WEB-INF/views/");
resolver.setSuffix(".jsp");
return resolver;

}

Optionally, if you prefer to use Spring’s XML-based configuration, you can configure
InternalResourceViewResolver like this:

<bean id="viewResolver"
class="org.springframework.web.servlet.view.

InternalResourceViewResolver"
p:prefix="/WEB-INF/views/"
p:suffix=".jsp" />

With this configuration of InternalResourceViewResolver in place, you can expect it
to resolve logical view names into JSP files such as this:

 home resolves to /WEB-INF/views/home.jsp
 productList resolves to /WEB-INF/views/productList.jsp
 books/detail resolves to /WEB-INF/views/books/detail.jsp

Let me call particular attention to that last example. When a logical view name has a
slash in it, that slash is carried over into the resource path name. Therefore, it maps to
a JSP file that’s in a subdirectory of whatever directory is referenced by the prefix
property. This offers a handy way of organizing your view templates under a hierarchy
of directories rather than keeping them all in a single directory.

RESOLVING JSTL VIEWS

So far you’ve configured the basic, garden-variety InternalResourceViewResolver. It
ultimately resolves logical view names into instances of InternalResourceView that

/WEB-INF/views/home.jsp

Prefix

Logical view name

Suffix

Figure 6.1 InternalResourceViewResolver
resolves views by adding a prefix and a suffix to the
view name.

169Creating JSP views
reference JSP files. But if those JSP files are using JSTL tags for formatting or messages,
then you may want to configure InternalResourceViewResolver to resolve a
JstlView instead.

 JSTL’s formatting tags need a Locale to properly format locale-specific values such
as dates and money. And its message tags can use a Spring message source and a
Locale to properly choose messages to render in HTML. By resolving JstlView, the
JSTL tags will be given the Locale and any message source configured in Spring.

 All that’s needed to have InternalResourceViewResolver resolve JstlView
instead of InternalResourceView is to set its viewClass property:

@Bean
public ViewResolver viewResolver() {

InternalResourceViewResolver resolver =
new InternalResourceViewResolver();

resolver.setPrefix("/WEB-INF/views/");
resolver.setSuffix(".jsp");
resolver.setViewClass(

org.springframework.web.servlet.view.JstlView.class);
return resolver;

}

Again, you can accomplish the same thing with XML:

<bean id="viewResolver"
class="org.springframework.web.servlet.view.

InternalResourceViewResolver"
p:prefix="/WEB-INF/views/"
p:suffix=".jsp"
p:viewClass="org.springframework.web.servlet.view.JstlView" />

Whether you use Java configuration or XML, this will ensure that JSTL’s formatting
and message tags will get the Locale and message sources configured in Spring.

6.2.2 Using Spring’s JSP libraries

Tag libraries are a powerful way to bring functionality to a JSP template without resort-
ing to writing Java code directly in scriptlet blocks. Spring offers two JSP tag libraries to
help define the view of your Spring MVC web views. One tag library renders HTML
form tags that are bound to a model attribute. The other has a hodgepodge of utility
tags that come in handy from time to time.

 You’re likely to find the form-binding tag library to be the more useful of the two
tag libraries. So that’s where you’ll start with Spring’s JSP tags. You’ll see how to bind
the Spittr application’s registration form to the model so that the form will be prepop-
ulated and validation errors can be displayed after a failed form submission.

BINDING FORMS TO THE MODEL

Spring’s form-binding JSP tag library includes 14 tags, most of which render HTML
form tags. But what makes these different from the raw HTML tags is that they’re
bound to an object in the model and can be populated with values from the model

170 CHAPTER 6 Rendering web views
object’s properties. The tag library also includes a tag that can be used to communi-
cate errors to the user by rendering them into the resulting HTML.

 To use the form-binding tag library, you’ll need to declare it in the JSP pages that
will use it:

<%@ taglib uri="http://www.springframework.org/tags/form" prefix="sf" %>

Notice that I specified a prefix of sf, but it’s also common to use a prefix of form. You
may specify any prefix you’d like. I chose sf because it’s succinct, easy to type, and an
abbreviation for Spring forms. Throughout this book, I’ll assume a prefix of sf when-
ever the form-binding library is used.

 Once you declare the form-binding tag library, you’re afforded 14 tags. These are
listed in table 6.2.

It would be hard to cook up an example to demonstrate all of these tags, and any
attempt would certainly be contrived. For the Spittr example, you’ll only use the tags
that are fitting for the Spittr application’s registration form. Specifically, you’ll start by
using <sf:form>, <sf:input>, and <sf:password>. Applying those tags to the regis-
tration JSP, you get the following:

Table 6.2 Spring’s form-binding tag library includes tags to bind model objects to and from rendered
HTML forms.

JSP tag Description

<sf:checkbox> Renders an HTML <input> tag with type set to checkbox.

<sf:checkboxes> Renders multiple HTML <input> tags with type set to checkbox.

<sf:errors> Renders field errors in an HTML tag.

<sf:form> Renders an HTML <form> tag and exposed binding path to inner tags
for data-binding.

<sf:hidden> Renders an HTML <input> tag with type set to hidden.

<sf:input> Renders an HTML <input> tag with type set to text.

<sf:label> Renders an HTML <label> tag.

<sf:option> Renders an HTML <option> tag. The selected attribute is set
according to the bound value.

<sf:options> Renders a list of HTML <option> tags corresponding to the bound
collection, array, or map.

<sf:password> Renders an HTML <input> tag with type set to password.

<sf:radiobutton> Renders an HTML <input> tag with type set to radio.

<sf:radiobuttons> Renders multiple HTML <input> tags with type set to radio.

<sf:select> Renders an HTML <select> tag.

<sf:textarea> Renders an HTML <textarea> tag.

171Creating JSP views
<sf:form method="POST" commandName="spitter">
First Name: <sf:input path="firstName" />

Last Name: <sf:input path="lastName" />

Email: <sf:input path="email" />

Username: <sf:input path="username" />

Password: <sf:password path="password" />

<input type="submit" value="Register" />

</sf:form>

The <sf:form> tag renders an HTML <form> tag. But it also sets some context around
a model object designated in the commandName attribute. Properties on the model
object will be referenced in the other form-binding tags you use.

 In the preceding code, you set commandName to spitter. Therefore, there must be
an object in the model whose key is spitter, or else the form won’t be able to render
(and you’ll get JSP errors). That means you need to make a small change to Spitter-
Controller to ensure that a Spitter object is in the model under the spitter key:

@RequestMapping(value="/register", method=GET)
public String showRegistrationForm(Model model) {

model.addAttribute(new Spitter());
return "registerForm";

}

This tweak to showRegistrationForm() now has that method adding a new Spitter
instance to the model. The model key will be inferred from the object type to be
spitter—exactly what you need it to be.

 Going back to the form, the first three fields have had their HTML <input> tag
replaced with <sf:input>. This tag renders an HTML <input> tag with the type attri-
bute set to text. Its value attribute will be set to the value of the model object’s prop-
erty specified in the path attribute. For instance, if the Spitter object in the model
has Jack as the value of its firstName property, then <sf:input path="firstName"/>
will render an <input> tag with value="Jack".

 The password field uses <sf:password> instead of <sf:input>. <sf:password> is
similar to <sf:input> but renders an HTML <input> whose type attribute is set to
password so that the value will be masked as it’s typed.

 To help you visualize what the resulting HTML will look like, suppose that a user
has already submitted the form with invalid values for all the fields. After validation
fails and the user is forwarded back to the registration form, the resulting HTML
<form> element looks like this:

<form id="spitter" action="/spitter/spitter/register" method="POST">
First Name:

<input id="firstName"
name="firstName" type="text" value="J"/>

Last Name:
<input id="lastName"

name="lastName" type="text" value="B"/>

Email:

<input id="email"
name="email" type="text" value="jack"/>

172 CHAPTER 6 Rendering web views
Username:
<input id="username"

name="username" type="text" value="jack"/>

Password:

<input id="password"
name="password" type="password" value=""/>

<input type="submit" value="Register" />
</form>

It’s worth noting that starting with Spring 3.1, the <sf:input> tag allows you to specify
a type attribute so that you can declare HTML 5–specific type text fields such as data,
range, and email, among other options. For example, you could declare the email
field like this:

Email: <sf:input path="email" type="email" />

This is rendered to HTML as

Email:
<input id="email" name="email" type="email" value="jack"/>

Using Spring’s form-binding tags gives you a slight improvement over using standard
HTML tags—the form is prepopulated with the previously entered values after failed
validation. But it still fails to tell the user what they did wrong. To guide the user in fix-
ing their mistakes, you’ll need the <sf:errors> tag.

DISPLAYING ERRORS

When there are validation errors, the details of those errors are carried in the request
along with model data. All you need to do is dig into the model and extract the errors
to display to the user. The <sf:errors> tag makes this a simple task.

 For example, look at how <sf:errors> is used in this snippet from register-
Form.jsp:

<sf:form method="POST" commandName="spitter">
First Name: <sf:input path="firstName" />

<sf:errors path="firstName" />

...
</sf:form>

Even though I’m only showing you <sf:errors> as applied to the First Name field, it’s
just as easy to use on all the fields in the registration form. Here its path attribute is set
to firstName, the name of the Spitter model object property for which errors should
be displayed. If there are no errors for the firstName property, then <sf:errors>
won’t render anything. But if there is a validation error, it will render that error mes-
sage in an HTML tag.

 For example, if the user submits J as the first name, the following HTML is ren-
dered for the First Name field:

First Name: <input id="firstName"
name="firstName" type="text" value="J"/>

size must be between 2 and 30

173Creating JSP views
Now you’re communicating the error to the user, and they have a chance to fix it. You
can take this a step further by changing the style of the error so that it stands out. To
do that, set the cssClass attribute:

<sf:form method="POST" commandName="spitter" >
First Name: <sf:input path="firstName" />

<sf:errors path="firstName" cssClass="error" />

...
</sf:form>

Again, for brevity’s sake, I’ve only shown how to set the cssClass attribute for the
<sf:errors> tag whose path is firstName. You can certainly apply it to the other fields
as well.

 Now the errors has a class attribute set to error. All that’s left is to define
a CSS style for that class. Here’s a simple CSS style that renders the error in red:

span.error {
color: red;

}

Figure 6.2 shows how the form might look in a web browser at this point.
 Displaying validation errors next to the fields that have errors is a nice way to draw

the user’s attention to problems they need to fix. But it could be problematic with
regard to layout. Another way to handle validation errors is to display them all
together. To do this, you can remove the <sf:errors> element from each field and
place it at the top of the form like this:

<sf:form method="POST" commandName="spitter" >
<sf:errors path="*" element="div" cssClass="errors" />

...
</sf:form>

What’s noticeably different about this <sf:errors> as compared to the ones you’ve
used before is that its path is set to *. This is a wildcard selector that tells <sf:errors>
to render all errors for all properties.

Figure 6.2 Displaying validation errors next to form fields

174 CHAPTER 6 Rendering web views
Also notice that you set the element attribute to div. By default, errors are rendered
in an HTML tag, which is fine when there’s only one error to display. But when
you’re rendering errors for all fields, there could easily be more than one error to dis-
play, and a tag (an inline tag) is not ideal. A block tag such as <div> would be
better. Therefore, you can set the element attribute to div so that errors render in a
<div> tag.

 As before, cssClass is set to errors so that you can style the <div>. Here’s some
CSS to style the <div> with a red border and a light red background:

div.errors {
background-color: #ffcccc;
border: 2px solid red;

}

Now you’ve shoved all the errors to the top of the form, which may make laying out
the page easier. But you’ve lost the ability to highlight the fields that need to be cor-
rected. That’s easily addressed by setting the cssErrorClass attribute on each field.
You can also wrap each label with <sf:label> and set its cssErrorClass. Here’s the
First Name field with the necessary changes applied:

<sf:form method="POST" commandName="spitter" >
<sf:label path="firstName"

cssErrorClass="error">First Name</sf:label>:
<sf:input path="firstName" cssErrorClass="error" />

...
</sf:form>

The <sf:label> tag, much like the other form-binding tags, has a path attribute to
indicate which property of the model object it belongs to. In this case, it’s set to
firstName so it will be bound to the Spitter object’s firstName property. Assuming
there are no validation errors, this will render an HTML <label> element like this:

<label for="firstName">First Name</label>

On its own, setting the path attribute on <sf:label> doesn’t accomplish much. But
you’re also setting cssErrorClass. If the bound property has any errors, the rendered
<label> element’s class attribute will be set to error like this:

<label for="firstName" class="error">First Name</label>

Similarly, the <sf:input> tag now has its cssErrorClass set to error. If there’s a vali-
dation error, the rendered <input> tag’s class attribute will be set to error. Now you
can style the label and the fields so that the user’s attention is drawn to them if there
are any errors. For example, the following CSS renders the label in red and the input
field with a light red background:

label.error {
color: red;

}

input.error {
background-color: #ffcccc;

}

175Creating JSP views
Now you have a fairly nice way of presenting validation errors to the user. There’s one
more thing you can do to make those errors friendlier to read. Revisiting the Spitter
class, you can set the message attribute on the validation annotations to reference a
friendly message that you’ll define in a properties file:

@NotNull
@Size(min=5, max=16, message="{username.size}")
private String username;

@NotNull
@Size(min=5, max=25, message="{password.size}")
private String password;

@NotNull
@Size(min=2, max=30, message="{firstName.size}")
private String firstName;

@NotNull
@Size(min=2, max=30, message="{lastName.size}")
private String lastName;

@NotNull
@Email(message="{email.valid}")
private String email;

For each of the fields, the @Size annotation has message set to a string whose value is
wrapped in curly braces. If you left the curly braces out, the value given to message
would be the error message displayed to the user. But by using curly braces, you desig-
nate a property in a properties file that contains the actual message.

 All that’s left to do is to create a file named ValidationMessages.properties at the
root of the classpath:

firstName.size=
First name must be between {min} and {max} characters long.

lastName.size=
Last name must be between {min} and {max} characters long.

username.size=
Username must be between {min} and {max} characters long.

password.size=
Password must be between {min} and {max} characters long.

email.valid=The email address must be valid.

Notice how the key for each message in ValidationMessages.properties corresponds to
the placeholder values in the message attributes. Also, so that the minimum and max-
imum lengths aren’t hard-coded in ValidationMessages.properties, the friendly mes-
sages have placeholders of their own—{min} and {max}—that reference the min and
max attributes given on the @Size annotation.

 When the user submits a registration form that fails validation, they might see
something like figure 6.3 in their browser.

 What’s nice about extracting the error messages to a properties file is that you can
display language- and locale-specific messages by creating a locale-specific properties
file. For example, to display the errors in Spanish if the user’s browser has its language

176 CHAPTER 6 Rendering web views
set to Spanish, you can create a file named ValidationErrors_es.properties with the fol-
lowing content:

firstName.size=
Nombre debe ser entre {min} y {max} caracteres largo.

lastName.size=
El apellido debe ser entre {min} y {max} caracteres largo.

username.size=
Nombre de usuario debe ser entre {min} y {max} caracteres largo.

password.size=
Contraseña debe estar entre {min} y {max} caracteres largo.

email.valid=La dirección de email no es válida

You can create as many renditions of ValidationMessages.properties as necessary to
cover all the languages and locales your application will support.

SPRING’S GENERAL TAG LIBRARY

In addition to the form-binding tag library, Spring also offers a more general JSP tag
library. In fact, this tag library was the first JSP tag library available in Spring. It has
grown a bit over the years, but it was available in the earliest versions of Spring.

 To use Spring’s general tag library, you must declare it in the pages that will use it:

<%@ taglib uri="http://www.springframework.org/tags" prefix="s" %>

As with any JSP tag library, the prefix can be anything you want. Commonly, spring is
given as the prefix for this tag library. But I prefer to use s because it’s much more suc-
cinct and easier to type and read.

 With the tag library declared, you can now use the 10 JSP tags listed in table 6.3.

Figure 6.3 Validation errors displayed with friendly error messages pulled from a
properties file

177Creating JSP views
Several of the tags in table 6.3 have been made obsolete by Spring’s form-binding tag
library. The <s:bind> tag, for instance, was Spring’s original form-binding tag, and it
was much more complex than the tags covered in the previous section.

 Because this tag library sees a lot less action than the form-binding tags, I won’t
cover each tag in detail. Instead, I’ll quickly go over a handful of the most valuable
tags and leave it to you to explore the others on your own. (Odds are good that you
won’t need them often—if at all.)

DISPLAYING INTERNATIONALIZED MESSAGES

As it stands, your JSP templates contain a lot of hard-coded text. There’s nothing hor-
ribly wrong with that, but it doesn’t lend itself to easily changing the text. Moreover,
there’s no way to internationalize the text so it’s tailored to the user’s language settings.

 For instance, consider the welcome message on the home page:

<h1>Welcome to Spittr!</h1>

Table 6.3 Spring’s other JSP tag library offers a handful of convenient utility tags in addition to some
legacy data-binding tags.

JSP tag Description

<s:bind> Exports a bound property status to a page-scoped status property. Used
along with <s:path> to obtain a bound property value.

<s:escapeBody> HTML and/or JavaScript escapes the content in the body of the tag.

<s:hasBindErrors> Conditionally renders content if a specified model object (in a request attri-
bute) has bind errors.

<s:htmlEscape> Sets the default HTML escape value for the current page.

<s:message> Retrieves the message with the given code and either renders it (default) or
assigns it to a page-, request-, session-, or application-scoped variable
(when using the var and scope attributes).

<s:nestedPath> Sets a nested path to be used by <s:bind>.

<s:theme> Retrieves a theme message with the given code and either renders it
(default) or assigns it to a page-, request-, session-, or application-scoped
variable (when using the var and scope attributes).

<s:transform> Transforms properties not contained in a command object using a com-
mand object’s property editors.

<s:url> Creates context-relative URLs with support for URI template variables and
HTML/XML/JavaScript escaping. Can either render the URL (default) or
assign it to a page-, request-, session-, or application-scoped variable
(when using the var and scope attributes).

<s:eval> Evaluates Spring Expression Language (SpEL) expressions, rendering the
result (default) or assigning it to a page-, request-, session-, or application-
scoped variable (when using the var and scope attributes).

178 CHAPTER 6 Rendering web views
The only way to modify that message is to open home.jsp and change it. Not a big
deal, I suppose. But spreading your application’s text across multiple templates means
changing a lot of JSP files for large-scale changes of the application’s messaging.

 A more significant issue is that no matter what text you choose for the welcome
message, all users see the same message. The web is a global network, and the applica-
tions you build for it are likely to have a global audience. Therefore, it’s wise to com-
municate to your users in their language and not force them to use a single language.

 The <s:message> tag is perfect for rendering text that’s externalized in one or
more properties files. Using <s:message>, you can replace the hard-coded welcome
message with the following:

<h1><s:message code="spittr.welcome" /></h1>

As used here, <s:message> will render the text available from a message source where
the key is spittr.welcome. Therefore, you’ll need to configure such a message source
if you expect <s:message> to be able to do its job.

 Spring has a handful of message-source classes, all implementing the Message-
Source interface. One of the more common and useful implementations is Resource-
BundleMessageSource. It loads messages from a properties file whose name is derived
from a base name. The following @Bean method configures ResourceBundleMessage-
Source:

@Bean
public MessageSource messageSource() {

ResourceBundleMessageSource messageSource =
new ResourceBundleMessageSource();

messageSource.setBasename("messages");
return messageSource;

}

The key thing in this bean declaration is the setting of the basename property. You can
set it to any value you’d like, but here I’ve chosen to set it to messages. By setting it to
messages, you can expect ResourceBundleMessageResolver to resolve messages from
properties files at the root of the classpath whose names are derived from that base
name.

 Optionally, you may choose ReloadableResourceBundleMessageSource, which
works much like ResourceBundleMessageSource, but it has the ability to reload mes-
sage properties without recompiling or restarting the application. Here’s a sample
configuration for ReloadableResourceBundleMessageSource:

@Bean
public MessageSource messageSource() {

ReloadableResourceBundleMessageSource messageSource =
new ReloadableResourceBundleMessageSource();

messageSource.setBasename("file:///etc/spittr/messages");
messageSource.setCacheSeconds(10);
return messageSource;

}

179Creating JSP views
The key difference here is that the basename property is configured to look outside of
the application (not in the classpath, like ResourceBundleMessageSource). The
basename property can be set to look for messages in the classpath (with a classpath:
prefix), in the filesystem (with a file: prefix), or at the root of the web application
(with no prefix). Here, it’s configured to look for messages in properties files in the /
etc/spittr directory of the server’s filesystem and with a base filename of “messages”.

 Now let’s create those properties files. To start, you’ll create the default properties
file named messages.properties. It will be located either at the root of the classpath (if
you’re using ResourceBundleMessageSource) or at the path specified in the basename
property (if you’re using ReloadableResourceBundleMessageSource). It needs the
following entry for the spittr.welcome message:

spittr.welcome=Welcome to Spittr!

If you create no other messages files, then all you’ve accomplished is extracting the
hard-coded message from the JSP into a properties file as a hard-coded message. It
does give you one-stop editing for all of your application’s messages, but little more
than that.

 Nevertheless, the essential pieces are in place to start internationalizing the mes-
sage. If, for example, you wanted to show the welcome message in Spanish for anyone
whose language settings are set to Spanish, you’d need to create another properties
file named messages_es.properties with this entry:

spittr.welcome=Bienvenidos a Spittr!

Now you’ve accomplished something big. Your application is only a few more
<s:message> tags and language-specific properties files away from being an interna-
tional success! I’ll leave it to you to internationalize the rest of the application.

CREATING URLS

The <s:url> tag is a modest little tag. Its main job is to create a URL and either assign
it to a variable or render it in the response. It’s a drop-in replacement for JSTL’s
<c:url> tag, but with a few new tricks up its sleeve.

 In its simplest form, <s:url> takes a servlet-context-relative URL and renders it
with the servlet context path prepended. For example, consider this basic use of
<s:url>:

<a href="<s:url href="/spitter/register" />">Register

If the application’s servlet context is named spittr, then the following HTML will be
rendered in the response:

Register

This enables you to create URLs without worrying about what the servlet context path
will be. The <s:url> tag takes care of it for you.

 Optionally, you can have <s:url> construct the URL and assign it to a variable to
be used later in the template:

180 CHAPTER 6 Rendering web views
<s:url href="/spitter/register" var="registerUrl" />

Register

By default, URL variables are created in page scope. But you can have <s:url> create
them in application, session, or request scope instead by setting the scope attribute:

<s:url href="/spitter/register" var="registerUrl" scope="request" />

If you’d like to add parameters to the URL, you can do so with the <s:param> tag. For
instance, here’s a <s:url> tag with two nested <s:param> tags to set the max and count
parameters for /spittles:

<s:url href="/spittles" var="spittlesUrl">
<s:param name="max" value="60" />
<s:param name="count" value="20" />

</s:url>

So far, you’ve seen nothing that <s:url> can do that JSTL’s <c:url> can’t do. But what
if you need to create a URL with a path parameter? How can you write the href value
such that it has a replaceable path parameter?

 For instance, suppose you need to create a URL for a particular user’s profile page.
No problem. Once again, the <s:param> tag is up to the task:

<s:url href="/spitter/{username}" var="spitterUrl">
<s:param name="username" value="jbauer" />

</s:url>

When the href value is a placeholder that matches a parameter specified by
<s:param>, the parameter is inserted into the placeholder’s spot. If the <s:param>
parameter doesn’t match any placeholders in href, then the parameter is used as a
query parameter.

 The <s:url> tag can also address any escaping needs for the URL. For example, if
you intend to render the URL to be displayed as part of the content on a web page (as
opposed to being used as a hypertext link), you may want to ask <s:url> to do HTML
escaping on the URL by setting the htmlEscape attribute to true. For example, the fol-
lowing <s:url> tag renders an HTML-escaped URL:

<s:url value="/spittles" htmlEscape="true">
<s:param name="max" value="60" />
<s:param name="count" value="20" />

</s:url>

This results in the URL being rendered like this:

/spitter/spittles?max=60&count=20

On the other hand, if you intend to use the URL in JavaScript code, you may want to
set the javaScriptEscape attribute to true:

<s:url value="/spittles" var="spittlesJSUrl" javaScriptEscape="true">
<s:param name="max" value="60" />
<s:param name="count" value="20" />

</s:url>

181Creating JSP views
<script>
var spittlesUrl = "${spittlesJSUrl}"

</script>

This renders the following to the response:

<script>
var spittlesUrl = "\/spitter\/spittles?max=60&count=20"

</script>

Speaking of escaping, there’s another tag for escaping content other than tags. Let’s
have a look.

ESCAPING CONTENT

The <s:escapeBody> tag is a general-purpose escaping tag. It renders any content
nested in its body, escaping as necessary.

 For example, suppose you want to display a snippet of HTML code on a page. In
order for it to be displayed properly, the < and > characters need to be replaced with
< and > or the browser will interpret the HTML as any other HTML in the page.

 Nothing’s stopping you from putting in < and > escaping by hand, but it’s
cumbersome and doesn’t read well. Instead, you can use <s:escapeBody> and let
Spring take care of it for you:

<s:escapeBody htmlEscape="true">
<h1>Hello</h1>
</s:escapeBody>

This renders the following to the body of the response:

<h1>Hello</h1>

Of course, even though it looks horrible in its escaped form, the browser is happy to
render it as the un-escaped HTML you want the user to see.

 The <s:escapeBody> tag also supports JavaScript escaping with the javaScript-
Escape attribute:

<s:escapeBody javaScriptEscape="true">
<h1>Hello</h1>
</s:escapeBody>

<s:escapeBody> does one job and does it well. Unlike <s:url>, it only renders con-
tent and doesn’t let you assign that content to a variable.

 Now that you’ve seen how to use JSP to define Spring views, let’s consider what
would be required to make them aesthetically appealing. There’s a lot you can do by
adding common elements to the pages, such as inserting a header with a site logo,
applying a stylesheet, and maybe even showing a copyright in the footer. But rather
than do that in each of the JSP files in the Spittr application, let’s see how to employ
Apache Tiles to bring some common and reusable layouts to your templates.

182 CHAPTER 6 Rendering web views
6.3 Defining a layout with Apache Tiles views
At this point, you’ve done very little with regard to the layout of your application’s web
pages. Each JSP is fully responsible for defining its own layout, and they’re not doing
much in that regard.

 Suppose you want to add a common header and footer to all pages in the applica-
tion. The naive way to do this is to visit every JSP template and add the HTML for the
header and footer. But that approach doesn’t scale well with regard to maintenance.
There’s an initial cost of adding those elements to each and every page, and any
future changes will incur a similar cost.

 A better approach is to use a layout engine such as Apache Tiles to define a com-
mon page layout that will be applied to all pages. Spring MVC provides support for
Apache Tiles in the form of a view resolver that can resolve logical view names into tile
definitions.

6.3.1 Configuring a Tiles view resolver

In order to use Tiles with Spring, you’ll have to configure a couple of beans. You need
a TilesConfigurer bean whose job is to locate and load tile definitions and generally
coordinate Tiles. In addition, you need a TilesViewResolver bean to resolve logical
view names to tile definitions.

 This pair of components comes in two forms: a pair for Apache Tiles 2 and another
pair for Apache Tiles 3. The most significant difference between the two sets of Tiles
components is in their package names. The TilesConfigurer/TilesViewResolver
pair for Apache Tiles 2 comes in the org.springframework.web.servlet

.view.tiles2 package, whereas the Tiles 3 variety comes in the org.springframework

.web.servlet.view.tiles3 package. For our purposes, I’ll assume that you’re using
Tiles 3.

 First, let’s add the TilesConfigurer bean as shown in the following listing.

@Bean
public TilesConfigurer tilesConfigurer() {

TilesConfigurer tiles = new TilesConfigurer();
tiles.setDefinitions(new String[] {

"/WEB-INF/layout/tiles.xml"
});
tiles.setCheckRefresh(true);
return tiles;

}

When configuring a TilesConfigurer, the most important property you set is
definitions. This property takes an array of Strings where each entry specifies the
location of tile-definition XML files. For the Spittr application, you’ll have it look for a
file named tiles.xml in the /WEB-INF/layout/ directory.

 Although you’re not taking advantage of it here, it’s also possible to specify multi-
ple tile-definition files and even use wildcards in the location path. For example, you

Listing 6.1 Configuring TilesConfigurer to resolve tile definitions

Specify tile
definition locations

Enable refresh

183Defining a layout with Apache Tiles views
could ask that TilesConfigurer look for any file named tiles.xml anywhere under the
/WEB-INF/ directory by setting the definitions property like this:

tiles.setDefinitions(new String[] {
"/WEB-INF/**/tiles.xml"

});

In this case, you’re using Ant-style wildcards (**) so that TilesConfigurer will recur-
sively dig under all subdirectories in /WEB-INF/ in its search for tile definitions.

 Next, let’s configure TilesViewResolver. As you can see, it’s a rather basic bean
definition, with no properties to set:

@Bean
public ViewResolver viewResolver() {

return new TilesViewResolver();
}

Optionally, if you prefer working with XML configuration, you may choose to config-
ure TilesConfigurer and TilesViewResolver like this:

<bean id="tilesConfigurer" class=
"org.springframework.web.servlet.view.tiles3.TilesConfigurer">

<property name="definitions">
<list>

<value>/WEB-INF/layout/tiles.xml.xml</value>
<value>/WEB-INF/views/**/tiles.xml</value>

</list>
</property>

</bean>

<bean id="viewResolver" class=
"org.springframework.web.servlet.view.tiles3.TilesViewResolver" />

Whereas TilesConfigurer loads tile definitions and coordinates with Apache Tiles,
TilesViewResolver resolves logical view names to views that reference tile defini-
tions. It does this by looking for a tile definition whose name matches the logical view
name. You’ll need to create a few tile definitions to see how this works.

DEFINING TILES

Apache Tiles provides a document type definition (DTD) for specifying tile definitions
in an XML file. Each definition consists of a <definition> element that generally has
one or more <put-attribute> elements. For example, the following XML document
defines several tiles for the Spittr application.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE tiles-definitions PUBLIC

"-//Apache Software Foundation//DTD Tiles Configuration 3.0//EN"
"http://tiles.apache.org/dtds/tiles-config_3_0.dtd">

<tiles-definitions>

<definition name="base"
template="/WEB-INF/layout/page.jsp">

Listing 6.2 Defining tiles for the Spittr application

Define a base tile

184 CHAPTER 6 Rendering web views
<put-attribute name="header"
value="/WEB-INF/layout/header.jsp" />

<put-attribute name="footer"
value="/WEB-INF/layout/footer.jsp" />

</definition>

<definition name="home" extends="base">
<put-attribute name="body"

value="/WEB-INF/views/home.jsp" />
</definition>

<definition name="registerForm" extends="base">
<put-attribute name="body"

value="/WEB-INF/views/registerForm.jsp" />
</definition>

<definition name="profile" extends="base">
<put-attribute name="body"

value="/WEB-INF/views/profile.jsp" />
</definition>

<definition name="spittles" extends="base">
<put-attribute name="body"

value="/WEB-INF/views/spittles.jsp" />
</definition>

<definition name="spittle" extends="base">
<put-attribute name="body"

value="/WEB-INF/views/spittle.jsp" />
</definition>

</tiles-definitions>

Each <definition> element defines a tile that ultimately references a JSP template.
In the case of the tile whose name is base, the template referenced is at /WEB-INF/
layout/page.jsp. A tile may also reference other JSP templates to be embedded in the
main template. For the base tile, it references a header JSP template and a footer JSP
template.

 The page.jsp template referenced by the base tile is shown next.

<%@ taglib uri="http://www.springframework.org/tags" prefix="s" %>
<%@ taglib uri="http://tiles.apache.org/tags-tiles" prefix="t" %>
<%@ page session="false" %>
<html>

<head>
<title>Spittr</title>
<link rel="stylesheet"

type="text/css"
href="<s:url value="/resources/style.css" />" >

</head>
<body>

<div id="header">
<t:insertAttribute name="header" />

</div>

Listing 6.3 Main layout template: references other templates to create a view

Set an attribute

Extend the base tile

Insert the header

185Defining a layout with Apache Tiles views
<div id="content">
<t:insertAttribute name="body" />

</div>
<div id="footer">

<t:insertAttribute name="footer" />
</div>

</body>
</html>

The key thing to observe in listing 6.3 is how it uses the <t:insertAttribute> JSP tag
from the Tiles tag library to insert other templates. It’s used to insert the attributes
named header, body, and footer. Ultimately, this gives you a layout that somewhat
resembles figure 6.4.

 The header and footer attributes were set in the base tile definition to point at /
WEB-INF/layout/header.jsp and /WEB-INF/layout/footer.jsp respectively. But what
about the body attribute? Where is it set?

 The base tile is never expected to be used on its own. It serves as a base definition
(thus the meaning behind its name) for other tile definitions to extend. Throughout
the rest of listing 6.2, you can see that the other tile definitions all extend base. This
means they inherit its settings for the header and footer attributes (although they
could choose to override them). But each also sets a body attribute to reference a JSP
template specific to that tile.
Focusing on the home tile, notice that it extends base. Because it extends base, it
inherits the template and all the attributes from base. Even though the home tile defi-
nition is relatively simple, it has the following effective definition:

<definition name="home" template="/WEB-INF/layout/page.jsp">
<put-attribute name="header" value="/WEB-INF/layout/header.jsp" />
<put-attribute name="footer" value="/WEB-INF/layout/footer.jsp" />
<put-attribute name="body" value="/WEB-INF/views/home.jsp" />

</definition>

Insert the body

Insert the footer

Figure 6.4 A general layout defining a header, a body, and a footer

186 CHAPTER 6 Rendering web views
The individual templates referenced by the attributes are simple. Here’s the
header.jsp template:

<%@ taglib uri="http://www.springframework.org/tags" prefix="s" %>
<a href="<s:url value="/" />"><img

src="<s:url value="/resources" />/images/spittr_logo_50.png"
border="0"/>

The footer.jsp template is even simpler:

Copyright © Craig Walls

Each tile that extends base defines its own body template, so each will differ from the
others. But to complete the picture for the home tile, here’s home.jsp:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<%@ page session="false" %>
<h1>Welcome to Spittr</h1>

<a href="<c:url value="/spittles" />">Spittles |
<a href="<c:url value="/spitter/register" />">Register

The key point here is that the common elements of a page are captured in page.jsp,
header.jsp, and footer.jsp and are absent in each of the other tile templates. This
makes them reusable across all pages and simplifies maintenance of those elements.

 To see how this all comes together, look at figure 6.5. As you can see, the page
includes some styling and imagery to increase the application’s aesthetics. These
weren’t pertinent to the discussion of page layout with Tiles, so I chose not to cover
the details in this section. Nevertheless, you can see how the various components of
the page are brought together by the tile definitions to render the Spittr home page.

Figure 6.5 The Spittr home page, laid out using Apache Tiles

187Working with Thymeleaf
JSP has long been the go-to option for templating in Java web applications. But there’s
a new contender for the job, known as Thymeleaf. Let’s see how to use Thymeleaf
templates with a Spring MVC application.

6.4 Working with Thymeleaf
Even though JSP has been around for a long time and is ubiquitous among Java web
servers, it has a few unfortunate flaws. One significant issue with JSP is that it appears
to be a form of HTML or XML, but it’s really neither. Most JSP templates take the form
of HTML, littered with tags from various JSP tag libraries. Although these tag libraries
bring dynamic rendering power to JSP in a succinct form, they break any hope of
authoring a well-formed document. As an extreme example, consider that a JSP tag
can even be used as the value of an HTML parameter:

<input type="text" value="<c:out value="${thing.name}"/>" />

A side effect of tag libraries and JSP’s lack of good form is that a JSP template often
only coincidentally resembles the HTML it produces. Indeed, viewing an unrendered
JSP template in a web browser or an HTML editor gives some puzzling and ugly results.
The results aren’t just incompletely rendered—they’re a visual disaster! Because JSP
isn’t truly HTML, many web browsers and editors struggle to display anything that aes-
thetically approximates what the template will render.

 Also, JSP is a specification that’s tightly coupled to the servlet specification. This
means it can only be used for web views in a servlet-based web application. JSP tem-
plates aren’t an option for general-purpose templating (such as formatted emails) or
in web applications that aren’t based on servlets.

 Several attempts have been made over the years to supplant JSP as the dominant
view technology for Java applications. The most recent contender, Thymeleaf, shows
some real promise and is an exciting choice to consider. Thymeleaf templates are nat-
ural and don’t rely on tag libraries. They can be edited and rendered anywhere that
raw HTML is welcome. And because they’re not coupled to the servlet specification,
Thymeleaf templates can go places JSPs dare not tread. Let’s look at how to use
Thymeleaf with Spring MVC.

6.4.1 Configuring a Thymeleaf view resolver

In order to use Thymeleaf with Spring, you’ll need to configure three beans that
enable Thymeleaf-Spring integration:

 A ThymeleafViewResolver that resolves Thymeleaf template views from logical
view names

 A SpringTemplateEngine to process the templates and render the results
 A TemplateResolver that loads Thymeleaf templates

Here’s the Java configuration that declares those beans.

188 CHAPTER 6 Rendering web views

@Bean
public ViewResolver viewResolver(

SpringTemplateEngine templateEngine) {
ThymeleafViewResolver viewResolver = new ThymeleafViewResolver();
viewResolver.setTemplateEngine(templateEngine);
return viewResolver;

}

@Bean
public TemplateEngine templateEngine(

TemplateResolver templateResolver) {
SpringTemplateEngine templateEngine = new SpringTemplateEngine();
templateEngine.setTemplateResolver(templateResolver);
return templateEngine;

}

@Bean
public TemplateResolver templateResolver() {

TemplateResolver templateResolver =
new ServletContextTemplateResolver();

templateResolver.setPrefix("/WEB-INF/templates/");
templateResolver.setSuffix(".html");
templateResolver.setTemplateMode("HTML5");
return templateResolver;

}

If you’d prefer to configure the beans in XML, the following <bean> declarations will
do the trick.

<bean id="viewResolver"
class="org.thymeleaf.spring3.view.ThymeleafViewResolver"
p:templateEngine-ref="templateEngine" />

<bean id="templateEngine"
class="org.thymeleaf.spring3.SpringTemplateEngine"
p:templateResolver-ref="templateResolver" />

<bean id="templateResolver" class=
"org.thymeleaf.templateresolver.ServletContextTemplateResolver"

p:prefix="/WEB-INF/templates/"
p:suffix=".html"
p:templateMode="HTML5" />

No matter which configuration style you use, Thymeleaf is now ready to render its
templates in response to requests handled by Spring MVC controllers.

 ThymeleafViewResolver is an implementation of Spring MVC’s ViewResolver. Just
like any view resolver, it takes a logical view name and resolves a view. But in this case,
that view is ultimately a Thymeleaf template.

 Notice that the ThymeleafViewResolver bean is injected with a reference to the
SpringTemplateEngine bean. SpringTemplateEngine is a Spring-enabled Thymeleaf

Listing 6.4 Configuring Thymeleaf support for Spring in Java configuration

Listing 6.5 Configuring Thymeleaf support for Spring in XML

Thymeleaf view resolver

Template engine

Template resolver

Thymeleaf view resolver

Template engine

Template resolver

189Working with Thymeleaf
engine for parsing templates and rendering results based on those templates. As you
can see, it’s injected with a reference to the TemplateResolver bean.

 TemplateResolver is what ultimately locates the templates. It’s configured much
as you previously configured InternalResourceViewResolver with prefix and
suffix properties. The prefix and suffix are applied to the logical view name to locate
the Thymeleaf template. Its templateMode property is also set to HTML5, indicating
that the templates resolved are expected to render HTML5 output.

 Now that all the Thymeleaf beans have been configured, it’s time to create a few of
those templates.

6.4.2 Defining Thymeleaf templates

Thymeleaf templates are primarily just HTML files. There are no special tags or tag
libraries as with JSP. What makes Thymeleaf tick, however, is that it adds Thymeleaf
attributes to the standard set of HTML tags via a custom namespace. The following list-
ing shows home.html, the home page template that uses the Thymeleaf namespace.

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:th="http://www.thymeleaf.org">

<head>
<title>Spittr</title>
<link rel="stylesheet"

type="text/css"
th:href="@{/resources/style.css}"></link>

</head>
<body>

<h1>Welcome to Spittr</h1>

<a th:href="@{/spittles}">Spittles |
<a th:href="@{/spitter/register}">Register

</body>
</html>

The home page template is relatively simple and only takes advantage of the th:href
attribute. This attribute greatly resembles its native HTML counterpart, the href attri-
bute, and can be used the same way. What makes th:href special is that its value can
contain Thymeleaf expressions to evaluate dynamic values. It will render a standard
href attribute containing a value that’s dynamically created at render time. This is how
many of the attributes in the Thymeleaf namespace work: they mirror the standard
HTML attribute that they share a name with, to render some computed value. In this
case, all three uses of the th:href attribute use the @{} expressions to calculate
context-sensitive URL paths (much as you might use JSTL’s <c:url> tag or Spring’s
<s:url> tag in a JSP page).

 Even though home.html is a rather basic specimen of a Thymeleaf template, it’s
still remarkable in that it’s a near-pure HTML template. The only thing that stands out
is the th:href attribute. Otherwise, it’s your basic, garden-variety HTML file.

Listing 6.6 home.html: home page template using the Thymeleaf namespace

Declare Thymeleaf namespace

th:href link to stylesheet

th:href links to pages

190 CHAPTER 6 Rendering web views
This means Thymeleaf templates, unlike JSPs, can be edited and even rendered natu-
rally, without going through any sort of processor. Sure, you’ll need Thymeleaf to pro-
cess the templates to fully render the desired output. But as is, without any special
processing, home.html can be loaded into a web browser and will appear much as it
will when fully rendered. To illustrate, figure 6.6 shows a comparison of home.jsp
(top) and home.html (bottom) when viewed in a web browser.

 As you can see, the JSP template renders poorly in the web browser. Although you
can see familiar elements, the JSP tag library declarations are also displayed. And
there’s some odd unfinished markup just before the links, the result of the <s:url>
tag not being properly interpreted by the web browser.

 In contrast, the Thymeleaf template renders almost flawlessly. The only things that
aren’t quite right are the links. The web browser doesn’t treat the th:href attribute
like href, so the links aren’t rendered as links. Aside from that minor issue, the tem-
plate renders exactly as you’d expect.

 Simple templates like home.html are a nice introduction to Thymeleaf. But form
binding is something that Spring’s JSP tags excel at. If you’re abandoning JSP, must
you abandon form binding as well? Fear not. Thymeleaf has a little something up its
sleeve.

FORM BINDING WITH THYMELEAF

Form binding is an important feature of Spring MVC. It makes it possible for control-
lers to receive command objects populated with data submitted in a form and for the
form to be prepopulated with values from the command object when displaying the
form. Without proper form binding, you’d have to ensure that the HTML form fields
were properly named to map to the backing command object’s properties. And you’d
also be responsible for ensuring that the fields’ values were set to the command
object’s properties when redisplaying a form after validation failure.

Figure 6.6 Thymeleaf templates, unlike JSPs, are HTML and can be rendered and
edited just like HTML.

191Working with Thymeleaf
 But with form binding, this is taken care of for you. As a reminder of how form
binding works, here’s the First Name field from registration.jsp:

<sf:label path="firstName"
cssErrorClass="error">First Name</sf:label>:

<sf:input path="firstName" cssErrorClass="error" />

Here the <sf:input> tag from Spring’s form-binding tag library is called on to render
an HTML <input> tag with its value attribute set to the value of the backing object’s
firstName property. It also uses Spring’s <sf:label> and its cssErrorClass to render
the label in red if there are any validation errors.

 But in this section we’re not talking about JSP. On the contrary, we’re talking about
replacing JSP with Thymeleaf. So instead of using Spring’s JSP tags to achieve form
binding, you’ll take advantage of features of Thymeleaf’s Spring dialect.

 As a demonstration, consider this snippet of a Thymeleaf template that renders
the First Name field:

<label th:class="${#fields.hasErrors('firstName')}? 'error'">
First Name</label>:

<input type="text" th:field="*{firstName}"
th:class="${#fields.hasErrors('firstName')}? 'error'" />

Instead of using the cssClassName attribute as you did with Spring’s JSP tags, here you
use Thymeleaf’s th:class attribute on standard HTML tags. The th:class attribute
renders a class attribute with a value calculated from the given expression. In both
uses of th:class, it directly checks to see if there are any field errors for the first-
Name field. If so, the class attribute is rendered with a value of error. If there are no
field errors, the class attribute isn’t rendered at all.

 The <input> tag uses the th:field attribute to reference the firstName field from
the backing object. This may be slightly different than you expected. Many times in a
Thymeleaf template, you’ll use a Thymeleaf attribute that mirrors a standard HTML
attribute, so it might seem appropriate to use the th:value attribute to set the
<input> tag’s value attribute.

 Instead, because you’re binding the field to the backing object’s firstName prop-
erty, you use the th:field attribute, referring to the firstName field. By using
th:field, you get both a value attribute set to the value of firstName and also a name
attribute set to firstName.

 To demonstrate Thymeleaf data binding in action, the following listing shows the
complete registration form template.

<form method="POST" th:object="${spitter}">
<div class="errors" th:if="${#fields.hasErrors('*')}">

<li th:each="err : ${#fields.errors('*')}"

th:text="${err}">Input is incorrect

Listing 6.7 Registration page, using Thymeleaf to bind a form to a command object

Display
errors

192 CHAPTER 6 Rendering web views

First

Last

Use

Pas
</div>
<label th:class="${#fields.hasErrors('firstName')}? 'error'">

First Name</label>:
<input type="text" th:field="*{firstName}"

th:class="${#fields.hasErrors('firstName')}? 'error'" />

<label th:class="${#fields.hasErrors('lastName')}? 'error'">
Last Name</label>:

<input type="text" th:field="*{lastName}"
th:class="${#fields.hasErrors('lastName')}? 'error'" />

<label th:class="${#fields.hasErrors('email')}? 'error'">
Email</label>:

<input type="text" th:field="*{email}"
th:class="${#fields.hasErrors('email')}? 'error'" />

<label th:class="${#fields.hasErrors('username')}? 'error'">
Username</label>:

<input type="text" th:field="*{username}"
th:class="${#fields.hasErrors('username')}? 'error'" />

<label th:class="${#fields.hasErrors('password')}? 'error'">
Password</label>:

<input type="password" th:field="*{password}"
th:class="${#fields.hasErrors('password')}? 'error'" />

<input type="submit" value="Register" />
</form>

Listing 6.7 shows that all the form fields use the same Thymeleaf attributes and the
*{} expression to bind to the backing object. This repeats what you already did with
the First Name field.

 But also notice that Thymeleaf is used near the top of the form to render all errors.
The <div> element has a th:if attribute that checks to see if there are any errors. If
there are, the <div> will be rendered. Otherwise, it won’t be rendered.

 In the <div> is an unordered list to display each of the errors. The th:each attri-
bute on the tag instructs Thymeleaf to render the one time for each error,
assigning the current error in each iteration to a variable named err.

 The tag also has a th:text attribute. This attribute instructs Thymeleaf to
evaluate an expression (in this case, the value of the err variable) and render its value
as the body of the tag. In effect, there will be one for each error, displaying
the text of that error.

 You may be wondering about the difference between the expressions wrapped with
${} and those wrapped with *{}. The ${} expressions (such as ${spitter}) are vari-
able expressions. Normally, these are Object-Graph Navigation Language (OGNL)
expressions (http://commons.apache.org/proper/commons-ognl/). But when used
with Spring, they’re SpEL expressions. In the case of ${spitter}, it resolves to the
model property whose key is spitter.

 As for *{} expressions, they’re selection expressions. Whereas variable expressions
are evaluated against the entire SpEL context, selection expressions are evaluated on
a selected object. In the case of the form, the selected object is the one given in the

 name

 name

Email

rname

sword

http://commons.apache.org/proper/commons-ognl/

193Summary
<form> tag’s th:object attribute: a Spitter object from the model. Therefore the
*{firstName} expression evaluates to the firstName property on the Spitter object.

6.5 Summary
Processing requests is only half of the story of Spring MVC. If the results coming from
the controllers you write are ever to be seen, the model data they produce needs to be
rendered into views and displayed in the user’s web browser. Spring is flexible with
regard to view rendering and offers several out-of-the-box options, including conven-
tional JavaServer Pages and the popular Apache Tiles layout engine.

 In this chapter, you’ve had a quick look at all the view and view-resolution options
offered by Spring. We also took a deeper dive to show how you can use JSP and Apache
Tiles with Spring MVC.

 You also saw how to use Thymeleaf, an alternative to JSP, as the view layer of a
Spring MVC application. Thymeleaf is a compelling option because it enables the cre-
ation of natural templates that are still pure HTML and can be edited and viewed in the
raw as if they were static HTML, but still render dynamic model data at runtime. More-
over, Thymeleaf templates are largely decoupled from servlets, enabling them to be
used in places where JSPs can’t.

 With the view of the Spittr application defined, you have a small but deployable
and functional web application written with Spring MVC. We still need to flesh out
some other concerns like data persistence and security, and we’ll get to those in due
time. But the application is starting to take shape nicely.

 Before we dive deeper into the application stack, the next chapter continues our
discussion of Spring MVC, looking at some of the more useful and advanced capabili-
ties in the framework.

Advanced Spring MVC
But wait! There’s more!
 You’ve probably heard those words before if you’ve ever seen one of those “as

seen on TV” ads for some gizmo or gadget. Just about the time the ad has com-
pletely described the product and made initial claims about what it can do, you
hear, “But wait! There’s more!” and the ad continues to tell you just how much
more amazing the product can be.

 In many ways, Spring MVC (and, indeed, every part of Spring) has that feel of
“There’s more!” Just about the time you think you’ve got your head around what
Spring MVC can do, you find out there’s even more that you can do with it.

 In chapter 5, we looked at essential Spring MVC and how to write controllers to
handle various kinds of requests. Then you built on that in chapter 6 to create the
JSP and Thymeleaf views that present model data to the user. You might think you
know everything about Spring MVC. But wait! There’s more!

 In this chapter, we’ll continue with the Spring MVC topic by covering a handful
of features that exceed the basics covered in chapters 5 and 6. We’ll look at how to

This chapter covers
 Alternate Spring MVC configuration options

 Handling file uploads

 Handling exceptions in controllers

 Working with flash attributes
194

195Alternate Spring MVC configuration
write controllers that accept file uploads, how to handle exceptions thrown from con-
trollers, and how to pass data around in the model such that it survives a redirect.

 But first, I have a promise to keep. In chapter 5, I quickly showed you how to use
AbstractAnnotationConfigDispatcherServletInitializer to set up Spring MVC,
and I promised that I’d show you some alternate setup options. So before we look at
file uploads and exception handling, let’s take a moment to explore some of the other
ways you can set up DispatcherServlet and ContextLoaderListener.

7.1 Alternate Spring MVC configuration
In chapter 5, we took a quick path toward setting up Spring MVC by extending
AbstractAnnotationConfigDispatcherServletInitializer. That convenient base
class assumes that you want a basic DispatcherServlet and ContextLoaderListener
setup and that your Spring configuration will be in Java instead of XML.

 Although that is a safe assumption for many Spring applications, it may not always
fit what you need. You may need servlets and filters in addition to DispatcherServlet.
Maybe you need to do some additional configuration on DispatcherServlet itself. Or,
if you’re deploying your application to a pre-Servlet 3.0 container, you may need to
configure DispatcherServlet in a traditional web.xml file.

 Fortunately, there are several ways that Spring returns some control to you when
the garden-variety AbstractAnnotationConfigDispatcherServletInitializer con-
figuration doesn’t fit your needs. Let’s start by looking at a few ways to customize how
DispatcherServlet is configured.

7.1.1 Customizing DispatcherServlet configuration

It isn’t apparent from the looks of the class in listing 7.1, but there’s more to
AbstractAnnotationConfigDispatcherServletInitializer than meets the eye. The
three methods you wrote in SpittrWebAppInitializer were the only abstract ones
you were required to override. But there are more methods that can be overridden to
apply additional configuration.

 One such method is customizeRegistration(). After AbstractAnnotation-
ConfigDispatcherServletInitializer registers DispatcherServlet with the servlet
container, it calls the customizeRegistration() method, passing in the Servlet-
Registration.Dynamic that resulted from the servlet registration. By overriding
customizeRegistration(), you can apply additional configuration to Dispatcher-
Servlet.

 For instance, a little later in this chapter (in section 7.2) you’ll see how to handle
multipart requests and file uploads with Spring MVC. If you plan to use Servlet 3.0 sup-
port for multipart configuration, you need to enable DispatcherServlet’s registra-
tion to enable multipart requests. You can override the customizeRegistration()
method to set a MultipartConfigElement like this:

@Override
protected void customizeRegistration(Dynamic registration) {

196 CHAPTER 7 Advanced Spring MVC
registration.setMultipartConfig(
new MultipartConfigElement("/tmp/spittr/uploads"));

}

With the ServletRegistration.Dynamic that’s given to customizeRegistration(),
you can do several things, including set the load-on-startup priority by calling set-
LoadOnStartup(), set an initialization parameter by calling setInitParameter(), and
call setMultipartConfig() to configure Servlet 3.0 multipart support. In the preced-
ing example, you’re setting up multipart support to temporarily store uploaded files
at /tmp/spittr/uploads.

7.1.2 Adding additional servlets and filters

Given the way that AbstractAnnotationConfigDispatcherServletInitializer is
defined, it will create a DispatcherServlet and a ContextLoaderListener. But what
if you want to register additional servlets, filters, or listeners?

 One of the nice things about working with a Java-based initializer is that (unlike
with web.xml) you can define as many initializer classes as you want. Therefore, if you
need to register any additional components into the web container, you need only cre-
ate a new initializer class. The easiest way to do this is by implementing Spring’s
WebApplicationInitializer interface.

 For example, the following listing shows how to create an implementation of
WebApplicationInitializer that registers a servlet.

package com.myapp.config;
import javax.servlet.ServletContext;
import javax.servlet.ServletException;
import javax.servlet.ServletRegistration.Dynamic;
import org.springframework.web.WebApplicationInitializer;
import com.myapp.MyServlet;

public class MyServletInitializer implements WebApplicationInitializer {

@Override
public void onStartup(ServletContext servletContext)

throws ServletException {

Dynamic myServlet =
servletContext.addServlet("myServlet", MyServlet.class);

myServlet.addMapping("/custom/**");
}

}

Listing 7.1 is a rather basic servlet-registering initializer class. It registers a servlet and
maps it to a single path. You could use this approach to register DispatcherServlet
manually. (But there’s no need, because AbstractAnnotationConfigDispatcher-
ServletInitializer does a fine job without as much code.)

Listing 7.1 Implementing WebApplicationInitializer to register a servlet

Register the
servlet

Map the servlet

197Alternate Spring MVC configuration
 Similarly, you can register listeners and filters by creating a new implementation
of WebApplicationInitializer. For example, the next listing shows how to register a
filter.

@Override
public void onStartup(ServletContext servletContext)

throws ServletException {

javax.servlet.FilterRegistration.Dynamic filter =
servletContext.addFilter("myFilter", MyFilter.class);

filter.addMappingForUrlPatterns(null, false, "/custom/*");
}

WebApplicationInitializer is a fine general-purpose way of registering servlets, fil-
ters, and listeners in Java when deploying to a Servlet 3.0 container. But if you’re regis-
tering a filter and only need to map that filter to DispatcherServlet, then there’s a
shortcut in AbstractAnnotationConfigDispatcherServletInitializer.

 To register one or more filters and map them to DispatcherServlet, all you need
to do is override the getServletFilters() method of AbstractAnnotationConfig-
DispatcherServletInitializer. For example, the following getServletFilters()
method overrides the one from AbstractAnnotationConfigDispatcherServlet-
Initializer to register a filter:

@Override
protected Filter[] getServletFilters() {

return new Filter[] { new MyFilter() };
}

As you can see, this method returns an array of javax.servlet.Filter. Here it only
returns a single filter, but it could return as many filters as you need. There’s no need
to declare the mapping for the filters; any filter returned from getServletFilters()
will automatically be mapped to DispatcherServlet.

 When deploying to a Servlet 3.0 container, Spring offers several ways of registering
servlets (including DispatcherServlet), filters, and listeners without creating a
web.xml file. But you don’t have to use any of those if you don’t want to. If you aren’t
deploying your application to a Servlet 3.0 container (or if you just like working with
web.xml), then there’s no reason you can’t configure Spring MVC in a legacy manner
with web.xml. Let’s see how.

7.1.3 Declaring DispatcherServlet in web.xml

In a typical Spring MVC application, you need a DispatcherServlet and a Context-
LoaderListener. AbstractAnnotationConfigDispatcherServletInitializer will
register these automatically for you, but if you’re registering them in web.xml, you’ll
need to do all the work.

Listing 7.2 A WebApplicationInitializer that can also register filters

Register
filter

Add filter
mapping

198 CHAPTER 7 Advanced Spring MVC
 Here’s a basic web.xml file with a typical setup for DispatcherServlet and
ContextLoaderListener.

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"

xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">

<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>/WEB-INF/spring/root-context.xml</param-value>

</context-param>

<listener>
<listener-class>

org.springframework.web.context.ContextLoaderListener
</listener-class>

</listener>

<servlet>
<servlet-name>appServlet</servlet-name>
<servlet-class>

org.springframework.web.servlet.DispatcherServlet
</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>appServlet</servlet-name>
<url-pattern>/</url-pattern>

</servlet-mapping>

</web-app>

As I mentioned in chapter 5, ContextLoaderListener and DispatcherServlet each
load a Spring application context. The contextConfigLocation context parameter
specifies the location of the XML file that defines the root application context loaded
by ContextLoaderListener. As defined in listing 7.3, the root context is loaded with
bean definitions in /WEB-INF/spring/root-context.xml.

 DispatcherServlet loads its application context with beans defined in a file whose
name is based on the servlet name. In listing 7.3, the servlet is named appServlet.
Therefore, DispatcherServlet loads its application context from an XML file at /
WEB-INF/appServlet-context.xml.

 If you’d rather specify the location of the DispatcherServlet configuration file,
you can set a contextConfigLocation initialization parameter on the servlet. For
example, the following DispatcherServlet configuration has DispatcherServlet
loading its beans from /WEB-INF/spring/appServlet/servlet-context.xml:

Listing 7.3 Setting up Spring MVC in web.xml

Set root
context
location

Register
ContextLoaderListener

Register
DispatcherServlet

Map
DispatcherServlet
to /

199Alternate Spring MVC configuration
<servlet>
<servlet-name>appServlet</servlet-name>
<servlet-class>

org.springframework.web.servlet.DispatcherServlet
</servlet-class>
<init-param>

<param-name>contextConfigLocation</param-name>
<param-value>

/WEB-INF/spring/appServlet/servlet-context.xml
</param-value>

</init-param>
<load-on-startup>1</load-on-startup>

</servlet>

Of course, that’s how you’d have DispatcherServlet and ContextLoaderListener
load their respective application contexts from XML. But throughout much of this
book, we’ll favor Java configuration over XML configuration. Therefore you’ll need to
set up Spring MVC to load the configuration from @Configuration-annotated classes.

 To use Java-based configuration in Spring MVC, you need to tell DispatcherServlet
and ContextLoaderListener to use AnnotationConfigWebApplicationContext, an
implementation of WebApplicationContext that loads Java configuration classes
instead of XML. You can do that by setting the contextClass context parameter and ini-
tialization parameter for DispatcherServlet. The next listing shows a new web.xml file
that sets up Spring MVC for Java-based Spring configuration.

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"

xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">

<context-param>
<param-name>contextClass</param-name>
<param-value>

org.springframework.web.context.support.

➥ AnnotationConfigWebApplicationContext
</param-value>

</context-param>

<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>com.habuma.spitter.config.RootConfig</param-value>

</context-param>

<listener>
<listener-class>

org.springframework.web.context.ContextLoaderListener
</listener-class>

</listener>

Listing 7.4 Configuring web.xml to use Java configuration

Use Java
configuration

Specify root
configuration class

200 CHAPTER 7 Advanced Spring MVC
<servlet>
<servlet-name>appServlet</servlet-name>
<servlet-class>

org.springframework.web.servlet.DispatcherServlet
</servlet-class>
<init-param>

<param-name>contextClass</param-name>
<param-value>

org.springframework.web.context.support.

➥ AnnotationConfigWebApplicationContext
</param-value>

</init-param>
<init-param>

<param-name>contextConfigLocation</param-name>
<param-value>

com.habuma.spitter.config.WebConfigConfig
</param-value>

</init-param>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>appServlet</servlet-name>
<url-pattern>/</url-pattern>

</servlet-mapping>

</web-app>

Now that we’ve looked at a variety of ways to set up Spring MVC, let’s examine how to
use Spring MVC to handle file uploads.

7.2 Processing multipart form data
It’s common for a web application to enable its users to upload content. On sites like
Facebook and Flickr, it’s normal for users to upload photos and videos to share with
their family and friends. There are also several services that allow users to upload pho-
tos to be printed on paper the old-fashioned way or to be applied to T-shirts and cof-
fee mugs.

 The Spittr application calls for file uploads in two places. When a new user regis-
ters with the application, you’d like them to be able to provide a picture to associate
with their profile. And when a user posts a new Spittle, they may want to upload a
photo to go along with their message.

 The request resulting from a typical form submission is simple and takes the form
of multiple name-value pairs separated by ampersands. For example, when submitting
the registration form from the Spittr application, the request might look like this:

firstName=Charles&lastName=Xavier&email=professorx%40xmen.org
&username=professorx&password=letmein01

Although this encoding scheme is simple and sufficient for typical text-based form
submissions, it isn’t robust enough to carry binary data such as an uploaded image. In
contrast, multipart form data breaks a form into individual parts, with one part per

Use Java
configuration

Specify
DispatcherServlet
configuration class

201Processing multipart form data
field. Each part can have its own type. Typical form fields have textual data in their
parts, but when something is being uploaded, the part can be binary, as shown in the
following multipart request body:

------WebKitFormBoundaryqgkaBn8IHJCuNmiW
Content-Disposition: form-data; name="firstName"

Charles
------WebKitFormBoundaryqgkaBn8IHJCuNmiW
Content-Disposition: form-data; name="lastName"

Xavier
------WebKitFormBoundaryqgkaBn8IHJCuNmiW
Content-Disposition: form-data; name="email"

charles@xmen.com
------WebKitFormBoundaryqgkaBn8IHJCuNmiW
Content-Disposition: form-data; name="username"

professorx
------WebKitFormBoundaryqgkaBn8IHJCuNmiW
Content-Disposition: form-data; name="password"

letmein01
------WebKitFormBoundaryqgkaBn8IHJCuNmiW
Content-Disposition: form-data; name="profilePicture"; filename="me.jpg"
Content-Type: image/jpeg

[[Binary image data goes here]]
------WebKitFormBoundaryqgkaBn8IHJCuNmiW--

In this multipart request, the profilePicture part is noticeably different from the
other parts. Among other things, it has its own Content-Type header indicating that
it’s a JPEG image. And although it may not be obvious, the body of the profile-
Picture part is binary data instead of simple text.

 Even though multipart requests look complex, handling them in a Spring MVC
controller is easy. But before you can write controller methods to handle file uploads,
you must configure a multipart resolver to tell DispatcherServlet how to read multi-
part requests.

7.2.1 Configuring a multipart resolver

DispatcherServlet doesn’t implement any logic for parsing the data in a multipart
request. Instead, it delegates to an implementation of Spring’s MultipartResolver
strategy interface to resolve the content in a multipart request. Since Spring 3.1,
Spring comes with two out-of-the-box implementations of MultipartResolver to
choose from:

 CommonsMultipartResolver—Resolves multipart requests using Jakarta Com-
mons FileUpload

 StandardServletMultipartResolver—Relies on Servlet 3.0 support for multi-
part requests (since Spring 3.1)

202 CHAPTER 7 Advanced Spring MVC
Generally speaking, StandardServletMultipartResolver should probably be your
first choice of these two. It uses existing support in your servlet container and doesn’t
require any additional project dependencies. But you might choose Commons-
MultipartResolver if you’ll be deploying your application to a pre-Servlet 3.0 con-
tainer or if you aren’t using Spring 3.1 or higher yet.

RESOLVING MULTIPART REQUESTS WITH SERVLET 3.0
The Servlet 3.0-compatible StandardServletMultipartResolver has no constructor
arguments or properties to be set. This makes it extremely simple to declare as a bean
in your Spring configuration, as shown here:

@Bean
public MultipartResolver multipartResolver() throws IOException {

return new StandardServletMultipartResolver();
}

As easy as that @Bean method is, you might be wondering how you can place con-
straints on the way StandardServletMultipartResolver works. What if you want to
limit the maximum size of file that a user can upload? Or what if you’d like to specify
the location where the uploaded files are temporarily written while they’re being
uploaded? With no properties and no constructor arguments, StandardServlet-
MultipartResolver seems limiting.

 On the contrary, it’s possible to configure constraints on StandardServlet-
MultipartResolver. But instead of configuring StandardServletMultipartResolver
in your Spring configuration, you must specify multipart configuration in the servlet
configuration. At the very least, you must specify the temporary file path where the file
will be written during the upload. StandardServletMultipartResolver won’t work
unless you configure this minimum detail. More specifically, you must configure mul-
tipart details as part of DispatcherServlet’s configuration in web.xml or in the serv-
let initializer class.

 If you’re configuring DispatcherServlet in a servlet initializer class that imple-
ments WebApplicationInitializer, you can configure multipart details by calling
setMultipartConfig() on the servlet registration, passing an instance of Multipart-
ConfigElement. Here’s a minimal multipart configuration for DispatcherServlet
that sets the temporary location to /tmp/spittr/uploads:

DispatcherServlet ds = new DispatcherServlet();
Dynamic registration = context.addServlet("appServlet", ds);
registration.addMapping("/");
registration.setMultipartConfig(

new MultipartConfigElement("/tmp/spittr/uploads"));

If you’ve configured DispatcherServlet in a servlet initializer class that extends
AbstractAnnotationConfigDispatcherServletInitializer or AbstractDispatcher-
ServletInitializer, you don’t create the instance of DispatcherServlet or register
it with the servlet context directly. Consequently, there’s no handy reference to the
Dynamic servlet registration to work with. But you can override the customize-
Registration() method (which is given a Dynamic as a parameter) to configure mul-
tipart details:

203Processing multipart form data
@Override
protected void customizeRegistration(Dynamic registration) {

registration.setMultipartConfig(
new MultipartConfigElement("/tmp/spittr/uploads"));

}

The single-argument constructor for MultipartConfigElement that you’ve been
using thus far takes the absolute path to a directory in the filesystem where the
uploaded file will be written temporarily. But there’s another constructor that lets you
set a few constraints on the size of the file being uploaded. In addition to the tempo-
rary location path, the other constructor accepts the following:

 The maximum size (in bytes) of any file uploaded. By default there is no limit.
 The maximum size (in bytes) of the entire multipart request, regardless of how

many parts or how big any of the parts are. By default there is no limit.
 The maximum size (in bytes) of a file that can be uploaded without being writ-

ten to the temporary location. The default is 0, meaning that all uploaded files
will be written to disk.

For example, suppose you want to limit files to no more than 2 MB, to limit the entire
request to no more than 4 MB, and to write all files to disk. The following use of
MultipartConfigElement sets those thresholds:

@Override
protected void customizeRegistration(Dynamic registration) {

registration.setMultipartConfig(
new MultipartConfigElement("/tmp/spittr/uploads",

2097152, 4194304, 0));
}

If you’re configuring DispatcherServlet in a more traditional way in web.xml, you
can specify multipart configuration using the <multipart-config> element in the
<servlet> element, like this:

<servlet>
<servlet-name>appServlet</servlet-name>
<servlet-class>

org.springframework.web.servlet.DispatcherServlet
</servlet-class>
<load-on-startup>1</load-on-startup>
<multipart-config>

<location>/tmp/spittr/uploads</location>
<max-file-size>2097152</max-file-size>
<max-request-size>4194304</max-request-size>

</multipart-config>
</servlet>

The defaults for <multipart-config> are the same as for MultipartConfigElement.
And just as with MultipartConfigElement, you must configure the <location>.

204 CHAPTER 7 Advanced Spring MVC
CONFIGURING A JAKARTA COMMONS FILEUPLOAD MULTIPART RESOLVER
StandardServletMultipartResolver is usually the best choice, but if you’re not
deploying your application to a Servlet 3.0 container, you’ll need an alternative. You
can write your own implementation of the MultipartResolver interface if you’d like.
But unless you need to perform some special handling during multipart request han-
dling, there’s no reason to do that. Spring offers CommonsMultipartResolver as an
out-of-the-box alternative to StandardServletMultipartResolver.

 The simplest way to declare CommonsMultipartResolver as a Spring bean is like
this:

@Bean
public MultipartResolver multipartResolver() {

return new CommonsMultipartResolver();
}

Unlike StandardServletMultipartResolver, there’s no need to configure a tempo-
rary file location with CommonsMultipartResolver. By default, the location is the serv-
let container’s temporary directory. But you can specify a different location by setting
the uploadTempDir property:

@Bean
public MultipartResolver multipartResolver() throws IOException {

CommonsMultipartResolver multipartResolver =
new CommonsMultipartResolver();

multipartResolver.setUploadTempDir(
new FileSystemResource("/tmp/spittr/uploads"));

return multipartResolver;
}

In fact, you can specify other multipart upload details directly in the Spring configura-
tion in the same way, by setting properties on CommonsMultipartResolver. For exam-
ple, the following configuration is roughly equivalent to how you configured
StandardServletMultipartResolver via MultipartConfigElement earlier:

@Bean
public MultipartResolver multipartResolver() throws IOException {

CommonsMultipartResolver multipartResolver =
new CommonsMultipartResolver();

multipartResolver.setUploadTempDir(
new FileSystemResource("/tmp/spittr/uploads"));

multipartResolver.setMaxUploadSize(2097152);
multipartResolver.setMaxInMemorySize(0);
return multipartResolver;

}

Here you’re setting the maximum file size to 2 MB and the maximum in-memory size
to 0 bytes. These two properties directly correspond to MultipartConfigElement’s
second and fourth constructor arguments, indicating that no files larger than 2 MB
may be uploaded and that all files will be written to disk no matter what size. Unlike
MultipartConfigElement, however, there’s no way to specify the maximum multipart
request size.

205Processing multipart form data
7.2.2 Handling multipart requests

Now that you’ve configured multipart support in Spring (and perhaps in the servlet
container), you’re ready to write controller methods to accept the uploaded files. The
most common way of doing that is to annotate a controller method parameter with
@RequestPart.

 Suppose you want to offer people the opportunity to upload an image when they
register as users of the Spittr application. You need to update the registration form so
that the user can select a picture to be uploaded, and you need to tweak the process-
Registration() method in SpitterController to accept the uploaded file. The fol-
lowing snippet from the Thymeleaf registration form view (registrationForm.html)
highlights the necessary changes to the form:

<form method="POST" th:object="${spitter}"
enctype="multipart/form-data">

...

<label>Profile Picture</label>:
<input type="file"

name="profilePicture"
accept="image/jpeg,image/png,image/gif" />

...

</form>

The <form> tag now has its enctype attribute set to multipart/form-data. This tells
the browser to submit the form as multipart data instead of form data. Each field has
its own part in the multipart request.

 In addition to all the existing fields on the registration form, you’ve added a new
<input> field whose type is file. This lets the user select an image file to upload. The
accept attribute is set to limit file types to JPEG, PNG, and GIF images. And according
to its name attribute, the image data will be sent in the multipart request in the
profilePicture part.

 Now you just need to change the processRegistration() method to accept the
uploaded image. One way to do that is to add a byte array parameter that’s annotated
with @RequestPart. Here’s an example:

@RequestMapping(value="/register", method=POST)
public String processRegistration(

@RequestPart("profilePicture") byte[] profilePicture,
@Valid Spitter spitter,
Errors errors) {

...
}

When the registration form is submitted, the profilePicture attribute is given an
array of byte containing the data from the request part (as specified by @Request-
Part). If the user submits the form without selecting a file, then the array will be

206 CHAPTER 7 Advanced Spring MVC
empty (but not null). With the image data in hand, all that’s left is for process-
Registration() to save the file somewhere.

 We’ll discuss how to save the image data more in a bit. But first, consider what you
know about the image data that was submitted. Or, more important, what do you not
know? Although you have the image data as an array of byte and from that you can
derive the size of the image, there’s little else you know about it. You have no idea
what type of file it is or even what the name of the original file was. And it’s up to you
to figure out how to turn that byte array into a file you can save.

RECEIVING A MULTIPARTFILE

Working with the uploaded file’s raw bytes is simple but limiting. Therefore, Spring
also offers MultipartFile as a way to get a richer object for processing multipart data.
The following listing shows what the MultipartFile interface looks like.

package org.springframework.web.multipart;
import java.io.File;
import java.io.IOException;
import java.io.InputStream;

public interface MultipartFile {
String getName();
String getOriginalFilename();
String getContentType();
boolean isEmpty();
long getSize();
byte[] getBytes() throws IOException;
InputStream getInputStream() throws IOException;
void transferTo(File dest) throws IOException;

}

As you can see, MultipartFile offers a way to get at the bytes for the uploaded file.
But it offers much more, including the original filename, size, and content type. It
also offers an InputStream for reading the file data as a stream.

 What’s more, MultipartFile offers a convenient transferTo() method to help
you write the uploaded file to the filesystem. For example, you could add the following
lines to processRegistration() to write the uploaded image file to the filesystem:

profilePicture.transferTo(
new File("/data/spittr/" + profilePicture.getOriginalFilename()));

Saving a file to the local filesystem like this is simple enough, but it leaves the manage-
ment of the file up to you. You’re responsible for ensuring that there’s plenty of space.
It’s up to you to make sure the file is backed up in case of a hardware failure. And it’s
your job to deal with synchronizing the image files across multiple servers in a cluster.

SAVING FILES TO AMAZON S3
Another option is to hand that responsibility off to someone else. With only a bit more
code, you can save the images to the cloud. The following listing, for example, shows

Listing 7.5 Spring’s MultipartFile interface for working with uploaded files

207Processing multipart form data
saveImage(), a method you can call from processRegistration() to save the
uploaded image to Amazon S3.

private void saveImage(MultipartFile image)
throws ImageUploadException {

try {
AWSCredentials awsCredentials =

new AWSCredentials(s3AccessKey, s2SecretKey);
S3Service s3 = new RestS3Service(awsCredentials);

S3Bucket bucket = s3.getBucket("spittrImages");
S3Object imageObject =

new S3Object(image.getOriginalFilename());

imageObject.setDataInputStream(
image.getInputStream());

imageObject.setContentLength(image.getSize());
imageObject.setContentType(image.getContentType());

AccessControlList acl = new AccessControlList();
acl.setOwner(bucket.getOwner());
acl.grantPermission(GroupGrantee.ALL_USERS,

Permission.PERMISSION_READ);
imageObject.setAcl(acl);

s3.putObject(bucket, imageObject);
} catch (Exception e) {

throw new ImageUploadException("Unable to save image", e);
}

}

The first thing that saveImage() does is set up Amazon Web Service (AWS) creden-
tials. For this, you’ll need an S3 access key and an S3 secret access key. These will
be given to you by Amazon when you sign up for S3 service. They’re provided to
SpitterController via value injection.

 With the AWS credentials in hand, saveImage() creates an instance of JetS3t’s
RestS3Service, through which it operates on the S3 filesystem. It gets a reference to
the spitterImages bucket, creates an S3Object to contain the image, and then fills
that S3Object with image data.

 Just before calling the putObject() method to write the image data to S3, save-
Image() sets the permissions on the S3Object to allow all users to view it. This is
important—without it, the images wouldn’t be visible to your application’s users.
Finally, if anything goes wrong, an ImageUploadException will be thrown.

RECEIVING THE UPLOADED FILE AS A PART

If you’re deploying your application to a Servlet 3.0 container, you have an alternative
to MultipartFile. Spring MVC will also accept a javax.servlet.http.Part as a con-
troller method parameter. Using Part instead of MultipartFile leaves the process-
Registration() method signature looking like this:

Listing 7.6 Saving a MultipartFile to Amazon S3

Set up S3
service Create S3

bucket and
object

Set image data

Set permissions

Save image

208 CHAPTER 7 Advanced Spring MVC
@RequestMapping(value="/register", method=POST)
public String processRegistration(

@RequestPart("profilePicture") Part profilePicture,
@Valid Spitter spitter,
Errors errors) {

...
}

For the most part (no pun intended), the Part interface isn’t much different from
MultipartFile. As you can see in the next listing, the Part interface has several meth-
ods that mirror the methods in MultipartFile.

package javax.servlet.http;
import java.io.*;
import java.util.*;

public interface Part {
public InputStream getInputStream() throws IOException;
public String getContentType();
public String getName();
public String getSubmittedFileName();
public long getSize();
public void write(String fileName) throws IOException;
public void delete() throws IOException;
public String getHeader(String name);
public Collection<String> getHeaders(String name);
public Collection<String> getHeaderNames();

}

In many cases, the Part methods are named exactly the same as the MultipartFile
methods. A few have similar but different names; getSubmittedFileName(), for exam-
ple, corresponds to getOriginalFilename(). Likewise, write() corresponds to
transferTo(), making it possible to write the uploaded file like this:

profilePicture.write("/data/spittr/" +
profilePicture.getOriginalFilename());

It’s worth noting that if you write your controller handler methods to accept file
uploads via a Part parameter, then you don’t need to configure the StandardServlet-
MultipartResolver bean. StandardServletMultipartResolver is required only
when you’re working with MultipartFile.

7.3 Handling exceptions
Up to this point, we’ve been assuming that everything will always work in the Spittr
application. But what if something goes wrong? What if, while handling a request, an
exception is thrown? What response will be sent to the client when thing go awry?

 No matter what happens, good or bad, the outcome of a servlet request is a servlet
response. If an exception occurs during request processing, the outcome is still a serv-
let response. Somehow, the exception must be translated into a response.

Listing 7.7 Part interface: an alternative to Spring’s MultipartFile

209Handling exceptions
 Spring offers a handful of ways to translate exceptions to responses:

 Certain Spring exceptions are automatically mapped to specific HTTP status
codes.

 An exception can be annotated with @ResponseStatus to map it to an HTTP sta-
tus code.

 A method can be annotated with @ExceptionHandler to handle the exception.

The simplest way to handle an exception is to map it to the HTTP status code to be
placed on the response. Let’s see how to map exceptions to HTTP status codes.

7.3.1 Mapping exceptions to HTTP status codes

Out of the box, Spring automatically maps a dozen of its own exceptions to appropri-
ate status codes. Table 7.1 shows those mappings.

The exceptions in table 7.1 are usually thrown by Spring itself as the result of some-
thing going wrong in DispatcherServlet or while performing validation. For exam-
ple, if DispatcherServlet can’t find a controller method suitable to handle a request,
a NoSuchRequestHandlingMethodException will be thrown, resulting in a response
with a status code of 404 (Not Found).

 Although these built-in mappings are helpful, they do no good for any application
exceptions that may be thrown. Fortunately, Spring offers a way to map exceptions to
HTTP status codes via the @ResponseStatus annotation.

Table 7.1 Some Spring exceptions are mapped by default to HTTP status codes.

Spring exception HTTP status code

BindException 400 - Bad Request

ConversionNotSupportedException 500 - Internal Server Error

HttpMediaTypeNotAcceptableException 406 - Not Acceptable

HttpMediaTypeNotSupportedException 415 - Unsupported Media Type

HttpMessageNotReadableException 400 - Bad Request

HttpMessageNotWritableException 500 - Internal Server Error

HttpRequestMethodNotSupportedException 405 - Method Not Allowed

MethodArgumentNotValidException 400 - Bad Request

MissingServletRequestParameterException 400 - Bad Request

MissingServletRequestPartException 400 - Bad Request

NoSuchRequestHandlingMethodException 404 - Not Found

TypeMismatchException 400 - Bad Request

210 CHAPTER 7 Advanced Spring MVC
 To demonstrate, consider the following request-handling method from Spittle-
Controller that could result in an HTTP 404 status (but doesn’t):

@RequestMapping(value="/{spittleId}", method=RequestMethod.GET)
public String spittle(

@PathVariable("spittleId") long spittleId,
Model model) {

Spittle spittle = spittleRepository.findOne(spittleId);
if (spittle == null) {

throw new SpittleNotFoundException();
}
model.addAttribute(spittle);
return "spittle";

}

Here, a Spittle is retrieved by its ID from the SpittleRepository. If findOne()
returns a Spittle object, that Spittle is put into the model, and the view whose
name is spittle is tasked with rendering it in the response. But if findOne() returns
null, then a SpittleNotFoundException is thrown. For now, SpittleNotFound-
Exception is a simple unchecked exception that looks like this:

package spittr.web;
public class SpittleNotFoundException extends RuntimeException {
}

If the spittle() method is called on to handle a request, and the given ID comes up
empty, the SpittleNotFoundException will (by default) result in a response with a
500 (Internal Server Error) status code. In fact, in the event of any exception that isn’t
otherwise mapped, the response will always have a 500 status code. But you can
change that by mapping SpittleNotFoundException otherwise.

 When SpittleNotFoundException is thrown, it’s a situation where a requested
resource isn’t found. The HTTP status code of 404 is precisely the appropriate
response status code when a resource isn’t found. So, let’s use @ResponseStatus to
map SpittleNotFoundException to HTTP status code 404.

package spittr.web;
import org.springframework.http.HttpStatus;
import org.springframework.web.bind.annotation.ResponseStatus;

@ResponseStatus(value=HttpStatus.NOT_FOUND,
reason="Spittle Not Found")

public class SpittleNotFoundException extends RuntimeException {
}

After introducing this @ResponseStatus annotation, if a SpittleNotFoundException
were to be thrown from a controller method, the response would have a status code of
404 and a reason of Spittle Not Found.

Listing 7.8 @ResponseStatus annotation: maps exceptions to a specified status code

Map exception
to HTTP Status
404

211Handling exceptions
7.3.2 Writing exception-handling methods

Mapping exceptions to status codes is simple and sufficient for many cases. But what if
you want the response to carry more than just a status code that represents the error
that occurred? Rather than treat the exception generically as some HTTP error, maybe
you’d like to handle the exception the same way you might handle the request itself.

 As an example, suppose that SpittleRepository’s save() method throws a
DuplicateSpittleException if a user attempts to create a Spittle with text identical
to one they’ve already created. That means the saveSpittle() method of Spittle-
Controller might need to deal with that exception. As shown in the following listing,
saveSpittle() could directly handle the exception.

@RequestMapping(method=RequestMethod.POST)
public String saveSpittle(SpittleForm form, Model model) {

try {
spittleRepository.save(

new Spittle(null, form.getMessage(), new Date(),
form.getLongitude(), form.getLatitude()));

return "redirect:/spittles";
} catch (DuplicateSpittleException e) {

return "error/duplicate";
}

}

There’s nothing particularly outstanding about listing 7.9. It’s a basic example of Java
exception handling. Nothing more.

 It works fine, but the method is a bit complex. Two paths can be taken, each with a
different outcome. It’d be simpler if saveSpittle() could focus on the happy path
and let some other method deal with the exception.

 First, let’s rip the exception-handling code out of saveSpittle():

@RequestMapping(method=RequestMethod.POST)
public String saveSpittle(SpittleForm form, Model model) {

spittleRepository.save(
new Spittle(null, form.getMessage(), new Date(),

form.getLongitude(), form.getLatitude()));
return "redirect:/spittles";

}

As you can see, saveSpittle() is now much simpler. Because it’s written to only be
concerned with the successful saving of a Spittle, it has only one path and is easy to
follow (and test).

 Now let’s add a new method to SpittleController that will handle the case where
DuplicateSpittleException is thrown:

Listing 7.9 Handling an exception directly in a request-handling method

Catch the
exception

212 CHAPTER 7 Advanced Spring MVC
@ExceptionHandler(DuplicateSpittleException.class)
public String handleDuplicateSpittle() {

return "error/duplicate";
}

The @ExceptionHandler annotation has been applied to the handleDuplicate-
Spittle() method, designating it as the go-to method when a DuplicateSpittle-
Exception is thrown. It returns a String, which, just as with the request-handling
method, specifies the logical name of the view to render, telling the user that they
attempted to create a duplicate entry.

 What’s especially interesting about @ExceptionHandler methods is that they han-
dle their exceptions from any handler method in the same controller. So although
you created the handleDuplicateSpittle() method from the code extracted from
saveSpittle(), it will handle a DuplicateSpittleException thrown from any
method in SpittleController. Rather than duplicate exception-handling code in
every method that has the potential for throwing a DuplicateSpittleException, this
one method covers them all.

 If @ExceptionHandler methods can handle exceptions thrown from any handler
method in the same controller class, you might be wondering if there’s a way they can
handle exceptions thrown from handler methods in any controller. As of Spring 3.2
they certainly can, but only if they’re defined in a controller advice class.

 What’s a controller advice class? I’m glad you asked, because that’s what we’ll look
at next.

7.4 Advising controllers
Certain aspects of controller classes might be handier if they could be applied broadly
across all controllers in a given application. @ExceptionHandler methods, for
instance, could prove useful in handling exceptions across multiple controllers. If a
particular exception is thrown from multiple controller classes, you might find your-
self duplicating the same @ExceptionHandler method in all of those controllers. Or,
to avoid the duplication, you might create a base controller class that all of your con-
trollers could extend to inherit the common @ExceptionHandler method.

 Spring 3.2 brings another option to the table: controller advice. A controller advice is
any class that’s annotated with @ControllerAdvice and has one or more of the follow-
ing kinds of methods:

 @ExceptionHandler-annotated
 @InitBinder-annotated
 @ModelAttribute-annotated

Those methods in an @ControllerAdvice-annotated class are applied globally across
all @RequestMapping-annotated methods on all controllers in an application.

 The @ControllerAdvice annotation is itself annotated with @Component. Therefore,
an @ControllerAdvice-annotated class will be picked up by component-scanning, just
like an @Controller-annotated class.

213Carrying data across redirect requests
 One of the most practical uses for @ControllerAdvice is to gather all @Exception-
Handler methods in a single class so that exceptions from all controllers are handled
consistently in one place. For example, suppose you want to apply the Duplicate-
SpittleException-handling method across all controllers in your application. The
next listing shows AppWideExceptionHandler, a @ControllerAdvice-annotated class
that does just that.

package spitter.web;
import org.springframework.web.bind.annotation.ControllerAdvice;
import org.springframework.web.bind.annotation.ExceptionHandler;

@ControllerAdvice
public class AppWideExceptionHandler {

@ExceptionHandler(DuplicateSpittleException.class)
public String duplicateSpittleHandler() {

return "error/duplicate";
}

}

Now, if a DuplicateSpittleException is thrown from any controller method, no mat-
ter which controller it’s in, this duplicateSpittleHandler() method will be called to
handle the exception. The @ExceptionHandler-annotated method can be written
much like an @RequestMapping-annotated method. As shown in listing 7.10, it returns
error/duplicate as the logical view name so that a friendly error page is displayed to
the user.

7.5 Carrying data across redirect requests
As mentioned in section XREF _writing_a_form_handling_controller, it’s generally a
good practice to perform a redirect after handling a POST request. Among other
things, this prevents the client from reissuing a dangerous POST request if the user
clicks the Refresh or back-arrow button in their browser.

 In chapter 5, you used the power of the redirect: prefix in the view names
returned from controller methods. When a controller method returns a String
whose value starts with redirect:, that String isn’t used to look up a view, but is
instead used as a path to redirect the browser to. Looking back at listing XREF
ex_SpitterController_processRegistration_validation, you’ll see that the last line of
the processRegistration() method returns a redirect:String like this:

return "redirect:/spitter/" + spitter.getUsername();

The redirect: prefix makes working with redirects plain and simple. You’d think
there’s nothing more that Spring could do to make working with redirects any sim-
pler. But wait: Spring has a bit more to offer to help with redirects.

 Specifically, how can a redirecting method send data to the method that handles
the redirect? Typically, when a handler method completes, any model data specified

Listing 7.10 Using @ControllerAdvice to handle exception for all controllers

Declare
controller advice

Define exception-
handler method

214 CHAPTER 7 Advanced Spring MVC
in the method is copied into the request as request attributes, and the request is for-
warded to the view for rendering. Because it’s the same request that’s handled by both
the controller method and the view, the request attributes survive the forward.

 But as illustrated in figure 7.1, when a controller method results in a redirect, the
original request ends and a new HTTP GET request begins. Any model data carried in
the original request dies with the request. The new request is devoid of any model
data in its attributes and has to figure it out on its own.

 Clearly, the model isn’t going to help you carry data across a redirect. But there are
a couple of options to get the data from the redirecting method to the redirect-
handling method:

 Passing data as path variables and/or query parameters using URL templates
 Sending data in flash attributes

First we’ll look at how Spring can help you send data in path variables and/or query
parameters.

7.5.1 Redirecting with URL templates

Passing data in path variables and query parameters seems simple enough. In listing
XREF ex_SpitterController_processRegistration_validation, for example, the newly
created Spitter’s username is passed as a path variable. But as it’s currently written,
the username value is concatenated to the redirect String. That works, but it’s far
from bulletproof. String concatenation is dangerous business when constructing
things like URLs and SQL queries.

 Instead of concatenating your way to a redirect URL, Spring offers the option
of using templates to define redirect URLs. For example, the last line of process-
Registration() in listing XREF ex_SpitterController_processRegistration_validation
could be written like this:

return "redirect:/spitter/{username}";

All you need to do is set the value in the model. To do that, the processRegistration()
needs to be written to accept a Model as a parameter and populate it with the username.
Here’s how it can set the username value in the model so that it can fill in the place-
holder in the redirect path:

@RequestMapping(value="/register", method=POST)
public String processRegistration(

Spitter spitter, Model model) {
spitterRepository.save(spitter);

Original request Redirect request

Redirect
performed

Model
spitter=Spitter

Model
empty

Figure 7.1 Model attributes
are carried in a request as
request attributes and don’t
survive a redirect.

215Carrying data across redirect requests
model.addAttribute("username", spitter.getUsername());
return "redirect:/spitter/{username}";

}

Because it’s filled into the placeholder in the URL template instead of concatenated
into the redirect String, any unsafe characters in the username property are escaped.
This is safer than allowing the user to type in whatever they want for the username and
then appending it to the path.

 What’s more, any other primitive values in the model are also added to the redi-
rect URL as query parameters. Suppose, for the sake of example, that in addition to
the username, the model also contained the newly created Spitter object’s id prop-
erty. The processRegistration() method could be written like this:

@RequestMapping(value="/register", method=POST)
public String processRegistration(

Spitter spitter, Model model) {
spitterRepository.save(spitter);
model.addAttribute("username", spitter.getUsername());
model.addAttribute("spitterId", spitter.getId());
return "redirect:/spitter/{username}";

}

Not much has changed with regard to the redirect String being returned. But
because the spitterId attribute from the model doesn’t map to any URL placehold-
ers in the redirect, it’s tacked on to the redirect automatically as a query parameter.

 If the username attribute is habuma and the spitterId attribute is 42, then the
resulting redirect path will be /spitter/habuma?spitterId=42.

 Sending data across a redirect via path variables and query parameters is easy and
straightforward, but it’s also somewhat limiting. It’s only good for sending simple val-
ues, such as String and numeric values. There’s no good way to send anything more
complex in a URL. But that’s where flash attributes come in to help.

7.5.2 Working with flash attributes

Let’s say that instead of sending a username or ID in the redirect, you want to send the
actual Spitter object. If you send just the ID, then the method that handles the redi-
rect has to turn around and look up the Spitter from the database. But before the
redirect, you already have the Spitter object in hand. Why not send it to the redirect-
handling method to display?

 A Spitter object is a bit more complex than a String or an int. Therefore, it
can’t easily be sent as a path variable or a query parameter. It can, however, be set as
an attribute in the model.

 But as we’ve already discussed, model attributes are ultimately copied into the
request as request attributes and are lost when the redirect takes place. Therefore, you
need to put the Spitter object somewhere that will survive the redirect.

 One option is to put the Spitter into the session. A session is long-lasting, spanning
multiple requests. So you could put the Spitter into the session before the redirect and

216 CHAPTER 7 Advanced Spring MVC
then retrieve it from the session after the redirect. Of course, you’re also responsible for
cleaning it up from the session after the redirect.

 As it turns out, Spring agrees that putting data into the session is a great way to pass
information that survives a redirect. But Spring doesn’t think you should be responsi-
ble for managing that data. Instead, Spring offers the capability of sending the data as
flash attributes. Flash attributes, by definition, carry data until the next request; then
they go away.

 Spring offers a way to set flash attributes via RedirectAttributes, a sub-interface
of Model added in Spring 3.1. RedirectAttributes offers everything that Model
offers, plus a few methods for setting flash attributes.

 Specifically, RedirectAttributes provides a couple of addFlashAttribute()
methods for adding a flash attribute. Revisiting the processRegistration() method
once more, you can use addFlashAttribute() to add the Spitter object to the
model:

@RequestMapping(value="/register", method=POST)
public String processRegistration(

Spitter spitter, RedirectAttributes model) {
spitterRepository.save(spitter);
model.addAttribute("username", spitter.getUsername());
model.addFlashAttribute("spitter", spitter);
return "redirect:/spitter/{username}";

}

Here, you’re calling addFlashAttribute(), giving it spitter as the key and the
Spitter object as a value. Optionally, you can leave the key parameter out and let the
key be inferred from the value type:

model.addFlashAttribute(spitter);

Because you’re passing a Spitter object to addFlashAttribute(), the key is inferred
to be spitter.

 Before the redirect takes place, all flash attributes are copied into the session. After
the redirect, the flash attributes stored in the session are moved out of the session and
into the model. The method that handles the redirect request can then access the
Spitter from the model, just like any other model object. Figure 7.2 illustrates how
this works.

Original request Redirect request

Redirect
performed

Flash attributes
spitter=Spitter

Model
spitter=Spitter

Session

Figure 7.2 Flash attributes are stored
in the session and then retrieved into
the model, surviving a redirect.

217Summary
 To complete the flash attribute story, here’s a slightly updated version of show-
SpitterProfile() that checks for a Spitter in the model before going to the trouble
of looking it up from the database:

@RequestMapping(value="/{username}", method=GET)
public String showSpitterProfile(

@PathVariable String username, Model model) {
if (!model.containsAttribute("spitter")) {

model.addAttribute(
spitterRepository.findByUsername(username));

}
return "profile";

}

As you can see, the first thing showSpitterProfile() does is check to see if there’s a
model attribute whose key is spitter. If the model contains a spitter attribute, then
there’s nothing to do. The Spitter object contained therein will be carried forward
to the view for rendering. But if the model doesn’t contain a spitter attribute, then
showSpitterProfile() will look up the Spitter from the repository and store it in
the model.

7.6 Summary
When it comes to Spring, there’s always more: more features, more choices, and more
ways to achieve your development goals. Spring MVC has a lot of capabilities and many
tricks up its sleeves.

 Spring MVC setup is certainly one area where you have a lot of choices. In this
chapter, we started by looking at various ways to set up Spring MVC’s Dispatcher-
Servlet and ContextLoaderListener. You saw how to tweak DispatcherServlet’s
registration and how to register additional servlets and filters. And, in case you’re
deploying your application to an older application server, we took a quick look at how
to declare DispatcherServlet and ContextLoaderListener in web.xml.

 Then we took a look at how to handle exceptions thrown from Spring MVC con-
trollers. Although an @RequestMapping method could handle exceptions itself, your
controller code is much cleaner when you extract the exception handling into a sepa-
rate method.

 To consistently handle common tasks, including exception handling, across all
controllers in your application, Spring 3.2 introduced @ControllerAdvice to create
classes that collect common controller behavior in one place.

 Finally, we looked at how to carry data across redirects, including Spring’s support
for flash attributes: model-like attributes that will survive a redirect. This enables you
to properly respond to POST requests with a redirect, but to still carry model data
obtained while handling a POST request and use it or display it after the redirect.

218 CHAPTER 7 Advanced Spring MVC
 In case you’re wondering—yes, there’s more! We still haven’t discussed everything
Spring MVC can do. We’ll pick up the discussion of Spring MVC again in chapter 16,
when you see how to use it to create REST APIs.

 But for now, we’ll set aside Spring MVC and look at Spring Web Flow, a flow frame-
work built on top of Spring MVC for creating applications that walk a user through a
series of guided steps.

Working with
Spring Web Flow
One of the strangely wonderful things about the internet is that it’s so easy to get
lost. There are so many things to see and read. The hyperlink is at the core of the
internet’s power. But at the same time, it’s no wonder they call it the web. Just like
webs built by spiders, it traps anyone who happens to crawl across it. I’ll confess:
one reason it took me so long to write this book is because I once got lost in an end-
less path of Wikipedia links.

 There are times when a web application must take control of a web surfer’s voy-
age, leading the user step by step through the application. The quintessential
example of such an application is the checkout process on an e-commerce site.
Starting with the shopping cart, the application leads you through a process of
entering shipping details and billing information, and ultimately it displays an
order confirmation.

This chapter covers
 Creating conversational web applications

 Defining flow states and actions

 Securing web flows
219

220 CHAPTER 8 Working with Spring Web Flow
 Spring Web Flow is a web framework that enables the development of elements fol-
lowing a prescribed flow. In this chapter, we’ll explore Spring Web Flow and see how it
fits into the Spring web framework landscape.

 It’s possible to write a flowed application with any web framework. I’ve even seen a
Struts application that had a certain flow built into it. But without a way to separate
the flow from the implementation, you’ll find that the definition of the flow is scat-
tered across the various elements that make up the flow. There’s no one place to go to
fully understand the flow.

 Spring Web Flow is an extension to Spring MVC that enables development of flow-
based web applications. It does this by separating the definition of an application’s
flow from the classes and views that implement the flow’s behavior.

 As you get to know Spring Web Flow, you’ll take a break from the Spittr example
and work on a new web application for taking pizza orders. You’ll use Spring Web
Flow to define the order process.

 The first step in working with Spring Web Flow is to install it in your project. Let’s
start there.

8.1 Configuring Web Flow in Spring
Spring Web Flow is built on a foundation of Spring MVC. That means all requests to a
flow first go through Spring MVC’s DispatcherServlet. From there, a handful of spe-
cial beans in the Spring application context must be configured to handle the flow
request and execute the flow.

 At this time, there’s no support for configuring Spring Web Flow in Java, so you
have no choice but to configure it in XML. Several of the web flow beans are declared
using elements from Spring Web Flow’s Spring configuration XML namespace. There-
fore, you’ll need to add the namespace declaration to the context definition XML file:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:flow="http://www.springframework.org/schema/webflow-config"
xsi:schemaLocation=
"http://www.springframework.org/schema/webflow-config
http://www.springframework.org/schema/webflow-config/[CA]
spring-webflow-config-2.3.xsd

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

With the namespace declaration in place, you’re ready to start wiring up web flow
beans, starting with the flow executor.

8.1.1 Wiring a flow executor

As its name implies, the flow executor drives the execution of a flow. When a user enters
a flow, the flow executor creates and launches an instance of the flow execution for
that user. When the flow pauses (such as when a view is presented to the user), the
flow executor also resumes the flow once the user has taken some action.

221Configuring Web Flow in Spring
The <flow:flow-executor> element creates a flow executor in Spring:

<flow:flow-executor id="flowExecutor" />

Although the flow executor is responsible for creating and executing flows, it’s not
responsible for loading flow definitions. That responsibility falls to a flow registry,
which you’ll create next.

8.1.2 Configuring a flow registry

A flow registry’s job is to load flow definitions and make them available to the flow exec-
utor. You can configure a flow registry in the Spring configuration with the
<flow:flow-registry> element like this:

<flow:flow-registry id="flowRegistry" base-path="/WEB-INF/flows">
<flow:flow-location-pattern value="*-flow.xml" />

</flow:flow-registry>

As declared here, the flow registry will look for flow definitions under the
/WEB-INF/flows directory, as specified in the base-path attribute. Per the <flow:
flow-location-pattern> element, any XML file whose name ends with -flow.xml will
be considered a flow definition.

 All flows are referred to by their IDs.
Using <flow:flow-location-pattern>

as you have, the flow ID is the directory
path relative to the base-path—or the
part of the path represented with the
double asterisk. Figure 8.1 shows how the
flow ID is calculated in this scenario.

 Alternatively, you can leave off the
base-path attribute and explicitly iden-
tify the flow definition file’s location:

<flow:flow-registry id="flowRegistry">
<flow:flow-location path="/WEB-INF/flows/springpizza.xml" />

</flow:flow-registry>

Here, the <flow:flow-location> element is used instead of <flow:flow-location-
pattern>. The path attribute directly points at the /WEB-INF/flows/springpizza.xml
file as the flow definition. When configured this way, the flow’s ID is derived from the
base name of the flow definition file, springpizza in this case.

 If you’d like to be even more explicit about the flow’s ID, you can set it with the id
attribute of the <flow:flow-location> element. For example, to specify pizza as the
flow’s ID, configure <flow:flow-location> like this:

<flow:flow-registry id="flowRegistry">
<flow:flow-location id="pizza"

path="/WEB-INF/flows/springpizza.xml" />
</flow:flow-registry>

Flow ID

/WEB-INF/flows/order/order-flow.xml

Flow registry
base path

Flow definition

Figure 8.1 When using a flow location pattern,
the path to the flow definition file relative to the
base path is used as the flow’s ID.

222 CHAPTER 8 Working with Spring Web Flow
8.1.3 Handling flow requests

As you saw in the previous chapter, DispatcherServlet typically dispatches requests to
controllers. But for flows, you need a FlowHandlerMapping to help Dispatcher-
Servlet know that it should send flow requests to Spring Web Flow. The FlowHandler-
Mapping is configured in the Spring application context like this:

<bean class=
"org.springframework.webflow.mvc.servlet.FlowHandlerMapping">

<property name="flowRegistry" ref="flowRegistry" />
</bean>

As you can see, the FlowHandlerMapping is wired with a reference to the flow registry
so it knows when a request’s URL maps to a flow. For example, if you have a flow whose
ID is pizza, then FlowHandlerMapping will know to map a request to that flow if the
request’s URL pattern (relative to the application context path) is /pizza.

 Whereas the FlowHandlerMapping’s job is to direct flow requests to Spring Web
Flow, it’s the job of a FlowHandlerAdapter to answer that call. A FlowHandlerAdapter
is equivalent to a Spring MVC controller in that it handles requests coming in for a
flow and processes those requests. The FlowHandlerAdapter is wired as a Spring bean
like this:

<bean class=
"org.springframework.webflow.mvc.servlet.FlowHandlerAdapter">

<property name="flowExecutor" ref="flowExecutor" />
</bean>

This handler adapter is the bridge between DispatcherServlet and Spring Web Flow.
It handles flow requests and manipulates the flow based on those requests. Here, it’s
wired with a reference to the flow executor to execute the flows for which it handles
requests.

 You’ve configured all the beans and components that are needed for Spring Web
Flow to work. What’s left is to define a flow. You’ll do that soon enough. But first, let’s
get to know the elements that are put together to make up a flow.

8.2 The components of a flow
In Spring Web Flow, a flow is defined by three primary elements: states, transitions,
and flow data. States are points in a flow where something happens. If you imagine a
flow as being like a road trip, then states are the towns, truck stops, and scenic stops
along the way. Instead of picking up a bag of Doritos and a Diet Coke, a state in a flow
is where some logic is performed, some decision is made, or some page is presented to
the user.

 If flow states are like the points on a map where you might stop during a road trip,
then transitions are the roads that connect those points. In a flow, you get from one
state to another by way of a transition.

 As you travel from town to town, you may pick up some souvenirs, memories, and
empty snack bags along the way. Similarly, as a flow progresses, it collects some data:

223The components of a flow
the current condition of the flow. I’m tempted to refer to it as the state of the flow, but
the word state already has another meaning when talking about flows.

 Let’s take a closer look at how these three elements are defined in Spring Web
Flow.

8.2.1 States

Spring Web Flow defines five different kinds of state, as shown in table 8.1. This selec-
tion of states makes it possible to construct virtually any arrangement of functionality
into a conversational web application. Although not all flows require all the states
described in the table, you’ll probably end up using most of them at one time or
another.

In a moment, you’ll see how to piece these different kinds of states together to form a
complete flow. But first, let’s get to know how these flow elements are manifested in a
Spring Web Flow definition.

VIEW STATES

View states are used to display information to the user and to offer the user an oppor-
tunity to play an active role in the flow. The actual view implementation could be any
of the views supported by Spring MVC but is often implemented in JSP.

 In the flow definition XML file, the <view-state> element is used to define a view
state:

<view-state id="welcome" />

In this simple example, the id attribute serves a dual purpose. First, it identifies the
state in the flow. Also, because no view has been specified otherwise, it specifies welcome
as the logical name of the view to be rendered when the flow reaches this state.

 If you’d rather explicitly identify another view name, then you can do so with the
view attribute:

<view-state id="welcome" view="greeting" />

Table 8.1 Spring Web Flow’s selections of states

State type What it’s for

Action Action states are where the logic of a flow takes place.

Decision Decision states branch the flow in two directions, routing the flow based on
the outcome of evaluating flow data.

End The end state is the last stop for a flow. Once a flow has reached its end
state, the flow is terminated.

Subflow A subflow state starts a new flow in the context of a flow that is already
underway.

View A view state pauses the flow and invites the user to participate in the flow.

224 CHAPTER 8 Working with Spring Web Flow
If a flow presents a form to the user, you may want to specify the object to which the
form will be bound. To do that, set the model attribute:

<view-state id="takePayment" model="flowScope.paymentDetails"/>

Here you specify that the form in the takePayment view will be bound to the flow-
scoped paymentDetails object. (We’ll talk more about flow scopes and data in a
moment.)

ACTION STATES

Whereas view states involve the users of the application in the flow, action states are
where the application itself goes to work. Action states typically invoke some method
on a Spring-managed bean and then transition to another state depending on the out-
come of the method call.

 In the flow definition XML, action states are expressed with the <action-state>
element. Here’s an example:

<action-state id="saveOrder">
<evaluate expression="pizzaFlowActions.saveOrder(order)" />
<transition to="thankYou" />

</action-state>

Although it’s not strictly required, <action-state> elements usually have an
<evaluate> element as a child. The <evaluate> element gives an action state some-
thing to do. The expression attribute is given an expression that’s evaluated when the
state is entered. In this case, expression is given a SpEL expression indicating that the
saveOrder() method should be called on a bean whose ID is pizzaFlowActions.

DECISION STATES

It’s possible for a flow to be purely linear, stepping from one state to another without
taking any alternate routes. But more often, a flow branches at one point or another,
depending on the flow’s current circumstances.

 Decision states enable a binary branch in a flow execution. A decision state evalu-
ates a Boolean expression and takes one of two transitions, depending on whether the
expression evaluates to true or false. In the XML flow definition, decision states are

Spring Web Flow and expression languages
Spring Web Flow has been fickle in its choice of expression languages over the years.
In version 1.0, Spring Web Flow used the Object-Graph Navigation Language (OGNL).
It then flirted with the Unified Expression Language (Unified EL) starting in version
2.0. Now, starting with version 2.1, Spring Web Flow’s loyalties are with SpEL.

Although it’s possible to configure Spring Web Flow to use any of these expression
languages, SpEL is the default and recommended expression language. Therefore,
I’ll focus on SpEL when defining flows and disregard the other options.

225The components of a flow
defined by the <decision-state> element. A typical example of a decision state
might look like this:

<decision-state id="checkDeliveryArea">
<if test="pizzaFlowActions.checkDeliveryArea(customer.zipCode)"

then="addCustomer"
else="deliveryWarning" />

</decision-state>

As you can see, the <decision-state> element doesn’t work alone. The <if> element
is the heart of a decision state. It’s where the expression is evaluated. If the expression
evaluates to true, then the flow transitions to the state identified by the then attribute.
But if it’s false, the flow transitions to the state named in the else attribute.

SUBFLOW STATES

You probably wouldn’t write all of your application’s logic in a single method. Instead,
you’ll break it up into multiple classes, methods, and other structures.

 In the same way, it’s a good idea to break flows down into discrete parts. The
<subflow-state> element lets you call another flow from within an executing flow.
It’s analogous to calling a method from within another method.

 A <subflow-state> might be declared as follows:

<subflow-state id="order" subflow="pizza/order">
<input name="order" value="order"/>
<transition on="orderCreated" to="payment" />

</subflow-state>

Here, the <input> element is used to pass the order object as input to the subflow.
And if the subflow ends with an <end-state> whose ID is orderCreated, then the flow
will transition to the state whose ID is payment.

 But I’m getting ahead of myself. I haven’t talked about the <end-state> element
or transitions yet. We’ll look at transitions soon, in section 8.2.2. As for end states,
that’s what we’ll look at next.

END STATES

Eventually, all flows must come to an end. And that’s what they do when they transi-
tion to an end state. The <end-state> element designates the end of a flow and typi-
cally appears like this:

<end-state id="customerReady" />

When the flow reaches an <end-state>, the flow ends. What happens next depends
on a few factors:

 If the flow that’s ending is a subflow, the calling flow will proceed from the
<subflow-state>. The <end-state>’s ID will be used as an event to trigger the
transition away from the <subflow-state>.

 If the <end-state> has its view attribute set, the specified view will be rendered.
The view may be a flow-relative path to a view template, prefixed with

226 CHAPTER 8 Working with Spring Web Flow
externalRedirect: to redirect to some page external to the flow, or prefixed
with flowRedirect: to redirect to another flow.

 If the ending flow isn’t a subflow and no view is specified, the flow ends. The
browser lands on the flow’s base URL, and, with no current flow active, a new
instance of the flow begins.

It’s important to realize that a flow may have more than one end state. Because the
end state’s ID determines the event fired from a subflow, you may want to end the flow
through multiple end states to trigger different events in the calling flow. Even in
flows that aren’t subflows, there may be several landing pages that follow the comple-
tion of a flow, depending on the course that the flow took.

 Now that we’ve looked at the various kinds of states in a flow, we should take a
moment to examine how the flow travels between states. Let’s look at how you can
pave some roads in a flow by defining transitions.

8.2.2 Transitions

As I’ve already mentioned, transitions connect the states within a flow. Every state in a
flow, with the exception of end states, should have at least one transition so that the
flow will know where to go once that state has completed. A state may have multiple
transitions, each one representing a different path that could be taken on completion
of the state.

 A transition is defined by the <transition> element, a child of the various state
elements (<action-state>, <view-state>, and <subflow-state>). In its simplest
form, the <transition> element identifies the next state in the flow:

<transition to="customerReady" />

The to attribute is used to specify the next state in the flow. When <transition> is
declared with only a to attribute, the transition is the default transition for that state
and will be taken if no other transitions are applicable.

 More commonly, transitions are defined to take place on some event being fired.
In a view state, the event is usually an action taken by the user. In an action state, the
event is the result of evaluating an expression. In the case of a subflow state, the event
is determined by the ID of the subflow’s end state. In any event (no pun intended),
you can specify the event to trigger the transition in the on attribute:

<transition on="phoneEntered" to="lookupCustomer"/>

In this example, the flow will transition to the state whose ID is lookupCustomer if a
phoneEntered event is fired.

 The flow can also transition to another state in response to some exception being
thrown. For example, if a customer record can’t be found, you may want the flow to
transition to a view state that presents a registration form. The following snippet shows
that kind of transition:

227The components of a flow
<transition
on-exception=

"com.springinaction.pizza.service.CustomerNotFoundException"
to="registrationForm" />

The on-exception attribute is much like the on attribute, except that it specifies an
exception to transition on instead of an event. In this case, a CustomerNotFound-
Exception will cause the flow to transition to the registrationForm state.

GLOBAL TRANSITIONS

After you’ve created a flow, you may find that several states share some common tran-
sitions. For example, I wouldn’t be surprised to find the following <transition>
sprinkled all over a flow:

<transition on="cancel" to="endState" />

Rather than repeat common transitions in multiple states, you can define them
as global transitions by placing the <transition> element as a child of a <global-
transitions> element. For example,

<global-transitions>
<transition on="cancel" to="endState" />

</global-transitions>

With this global transition in place, all states in the flow will have an implicit cancel
transition.

 We’ve talked about states and transitions. Before we get busy writing flows, let’s
look at flow data, the remaining member of the web flow triad.

8.2.3 Flow data

If you’ve ever played one of those old text-based adventure games, you know that as
you move from location to location, you occasionally find objects lying around that
you can pick up and carry with you. Sometimes you need an object right away. Other
times, you may carry an object through the entire game without knowing what it’s
for—until you get to that final puzzle and find that it’s useful after all.

 In many ways, flows are like those adventure games. As the flow progresses from
one state to another, it picks up data. Sometimes that data is only needed for a little
while (maybe just long enough to display a page to the user). Other times, that data is
carried through the entire flow and is ultimately used as the flow completes.

DECLARING VARIABLES

Flow data is stored in variables that can be referenced at various points in the flow. It
can be created and accumulated in several ways. The simplest way to create a variable
in a flow is by using the <var> element:

<var name="customer" class="com.springinaction.pizza.domain.Customer"/>

Here, a new instance of a Customer object is created and placed into the variable
whose name is customer. This variable is available to all states in a flow.

228 CHAPTER 8 Working with Spring Web Flow
 As part of an action state or on entry to a view state, you may also create variables
using the <evaluate> element. For example,

<evaluate result="viewScope.toppingsList"
expression="T(com.springinaction.pizza.domain.Topping).asList()" />

In this case, the <evaluate> element evaluates an expression (a SpEL expression) and
places the result in a variable named toppingsList that’s view-scoped. (We’ll talk
more about scopes in a moment.)

 Similarly, the <set> element can set a variable’s value:

<set name="flowScope.pizza"
value="new com.springinaction.pizza.domain.Pizza()" />

The <set> element works much the same as the <evaluate> element, setting a vari-
able to the resulting value from an evaluated expression. Here, you’re setting a flow-
scoped pizza variable to a new instance of a Pizza object.

 You’ll see more specifics on how these elements are used in an actual flow when
you get to section 8.3 and start building a real working web flow. But first, let’s see
what it means for a variable to be flow-scoped, be view-scoped, or use some other
scope.

SCOPING FLOW DATA

The lifespan and visibility of data carried in a flow will vary depending on the scope of
the variable it’s kept in. Spring Web Flow defines five scopes, as described in table 8.2.

When you declare a variable using the <var> element, the variable is always flow-
scoped in the flow defining the variable. When you use <set> or <evaluate>, the
scope is specified as a prefix for the name or result attribute. For example, here’s how
you would assign a value to a flow-scoped variable named theAnswer:

<set name="flowScope.theAnswer" value="42"/>

Table 8.2 Spring Web Flow’s selections of scopes

Scope Lifespan and visibility

Conversation Created when a top-level flow starts, and destroyed when the top-level flow ends.
Shared by a top-level flow and all of its subflows.

Flow Created when a flow starts, and destroyed when the flow ends. Only visible in the
flow it was created by.

Request Created when a request is made into a flow, and destroyed when the flow returns.

Flash Created when a flow starts, and destroyed when the flow ends. It’s also cleared
out after a view state renders.

View Created when a view state is entered, and destroyed when the state exits. Visible
only in the view state.

229Putting it all together: the pizza flow
Now that you’ve seen all the raw materials of a web flow, it’s time to piece them
together into a full-blown, fully functional web flow. As you do, keep your eyes peeled
for examples of how to store data in scoped variables.

8.3 Putting it all together: the pizza flow
As I mentioned earlier in this chapter, we’re taking a break from the Spittr applica-
tion. Instead, you’ve been asked to build out an online pizza-ordering application
where hungry web visitors can order their favorite Italian pie.

 As it turns out, the process of ordering a pizza can be defined nicely in a flow.
You’ll start by building a high-level flow that defines the overall process of ordering a
pizza. Then you’ll break that flow down into subflows that define the details at a lower
level.

8.3.1 Defining the base flow

A new pizza chain, Spizza, has decided to relieve the load on its stores’ telephones by
allowing customers to place orders online. When a customer visits the Spizza website,
they’ll identify themselves, select one or more pizzas to add to their order, provide
payment information, and then submit the order and wait for their pizza to arrive, hot
and fresh. Figure 8.2 illustrates this flow.

 The boxes in the diagram represent states, and the arrows represent transitions. As
you can see, the overall pizza flow is simple and linear. It should be easy to express this
flow in Spring Web Flow. The only thing that makes it interesting is that the first three
states can be more involved than suggested by a simple box.

S

Start

endState

customerReady orderCreated

paym
entTaken

identify
Customer buildOrder take

Payment

saveOrderthank
Customer

Figure 8.2 The process of ordering
a pizza boils down to a simple flow.

230 CHAPTER 8 Working with Spring Web Flow

cu
s

 The following listing shows the high-level pizza order flow as defined using Spring
Web Flow’s XML-based flow definition.

<?xml version="1.0" encoding="UTF-8"?>
<flow xmlns="http://www.springframework.org/schema/webflow"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/webflow
http://www.springframework.org/schema/webflow/spring-webflow-2.3.xsd">
<var name="order"

class="com.springinaction.pizza.domain.Order"/>
<subflow-state id="identifyCustomer" subflow="pizza/customer">

<output name="customer" value="order.customer"/>
<transition on="customerReady" to="buildOrder" />

</subflow-state>
<subflow-state id="buildOrder" subflow="pizza/order">

<input name="order" value="order"/>
<transition on="orderCreated" to="takePayment" />

</subflow-state>
<subflow-state id="takePayment" subflow="pizza/payment">

<input name="order" value="order"/>
<transition on="paymentTaken" to="saveOrder"/>

</subflow-state>
<action-state id="saveOrder">

<evaluate expression="pizzaFlowActions.saveOrder(order)" />
<transition to="thankCustomer" />

</action-state>
<view-state id="thankCustomer">

<transition to="endState" />
</view-state>
<end-state id="endState" />
<global-transitions>

<transition on="cancel" to="endState" />
</global-transitions>

</flow>

The first thing you see in the flow definition is the declaration of the order variable.
Each time the flow starts, a new instance of Order is created. The Order class has prop-
erties for carrying all the information about an order, including the customer infor-
mation, the list of pizzas ordered, and the payment details.

package com.springinaction.pizza.domain;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;
public class Order implements Serializable {

private static final long serialVersionUID = 1L;
private Customer customer;
private List<Pizza> pizzas;
private Payment payment;

Listing 8.1 Pizza order flow, defined as a Spring Web Flow

Listing 8.2 Order: carries all the details pertaining to a pizza order

Call
stomer
ubflow

Call order
subflow

Call
payment
subflow

Save
order

Thank customer

Global cancel transition

231Putting it all together: the pizza flow
public Order() {
pizzas = new ArrayList<Pizza>();
customer = new Customer();

}
public Customer getCustomer() {

return customer;
}
public void setCustomer(Customer customer) {

this.customer = customer;
}
public List<Pizza> getPizzas() {

return pizzas;
}
public void setPizzas(List<Pizza> pizzas) {

this.pizzas = pizzas;
}
public void addPizza(Pizza pizza) {

pizzas.add(pizza);
}
public float getTotal() {

return 0.0f;
}
public Payment getPayment() {

return payment;
}
public void setPayment(Payment payment) {

this.payment = payment;
}

}

The main portion of the flow definition is made up of the flow states. By default, the
first state in the flow definition file is also the first state that will be visited in the flow.
In this case, that’s the identifyCustomer state (a subflow state). But if you’d like, you
can explicitly identify any state as the starting state by setting the start-state attri-
bute in the <flow> element:

<?xml version="1.0" encoding="UTF-8"?>
<flow xmlns="http://www.springframework.org/schema/webflow"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/webflow
http://www.springframework.org/schema/webflow/spring-webflow-2.3.xsd"
start-state="identifyCustomer">

...
</flow>

Identifying a customer, building a pizza order, and taking payment are activities that
are too complex to be crammed into a single state. That’s why you’ll define them later
in more detail as flows in their own right. But for the purposes of the high-level pizza
flow, these activities are expressed with the <subflow-state> element.

 The order flow variable will be populated by the first three states and then saved in
the fourth state. The identifyCustomer subflow state uses the <output> element to
populate the order’s customer property, setting it to the output received from calling

232 CHAPTER 8 Working with Spring Web Flow
the customer subflow. The buildOrder and takePayment states take a different
approach, using <input> to pass the order flow variable as input so that those sub-
flows can populate the order internally.

 After the order has been given a customer, some pizzas, and payment details, it’s
time to save it. The saveOrder state is an action state that handles that task. It uses
<evaluate> to make a call to the saveOrder() method on the bean whose ID is pizza-
FlowActions, passing in the order to be saved. When it’s finished saving the order, it
transitions to thankCustomer.

 The thankCustomer state is a simple view state, backed by the JSP file at /WEB-
INF/flows/pizza/thankCustomer.jsp, as shown next.

<html xmlns:jsp="http://java.sun.com/JSP/Page">
<jsp:output omit-xml-declaration="yes"/>
<jsp:directive.page contentType="text/html;charset=UTF-8" />
<head><title>Spizza</title></head>
<body>

<h2>Thank you for your order!</h2>
<![CDATA[
Finish
]]>
</body>

</html>

The “thank you” page thanks the customer for their order and gives a link for the cus-
tomer to finish the flow. This link is the most interesting thing on the page, because it
shows one way that a user can interact with the flow.

 Spring Web Flow provides a flowExecutionUrl variable, which contains the URL
for the flow, for use in the view. The Finish link attaches an _eventId parameter to the
URL to fire a finished event back to the web flow. That event sends the flow to the
end state.

 At the end state, the flow ends. Because there are no further details on where to go
after the flow ends, the flow will start over again at the identifyCustomer state, ready
to take another pizza order.

 That covers the general flow for ordering a pizza. But there’s more to the flow than
what you see in listing 8.1. You still need to define the subflows for the identify-
Customer, buildOrder, and takePayment states. Let’s build those flows next, starting
with the one that identifies the customer.

8.3.2 Collecting customer information

If you’ve ordered a pizza before, you probably know the drill. The first thing you’re
asked for is your phone number. Aside from giving the pizza shop a way to call you if
the delivery driver can’t find your house, the phone number also serves as your identi-
fication. If you’re a repeat customer, the shop can use that phone number to look up
your address so that it will know where to deliver your order.

Listing 8.3 JSP view that thanks the customer for their order

Fire finished
event

233Putting it all together: the pizza flow
For a new customer, the phone number won’t turn up any results, so the next infor-
mation the shop will ask for is your address. At this point, the pizzeria knows who you
are and where to deliver your pizzas. But before you’re asked what kind of pizza you
want, the shop needs to check to make sure your address falls within its delivery area.
If not, you’ll have to go pick up the pizza yourself.

 The initial question-and-answer period that begins every pizza order can be illus-
trated with the flow diagram in figure 8.3.

 This flow is more interesting than the top-level pizza flow. It isn’t linear, and it
branches in a couple of places depending on different conditions. For example, after
looking up the customer, the flow could either end (if the customer was found) or
transition to a registration form (if the customer was not found). Also, at the check-
DeliveryArea state, the customer may or may not be warned that their address isn’t in
the delivery area.

 The following listing shows the flow definition for identifying the customer.

<?xml version="1.0" encoding="UTF-8"?>
<flow xmlns="http://www.springframework.org/schema/webflow"

Listing 8.4 Identifying the hungry pizza customer with a web flow

S

Start

welcome

delivery
Warning

customer
Ready

cancel

phoneEntered

CustomerNotFoundException

accept

cancel

cancel

cancel
true

falsecheck
Delivery

Area

lookup
Customer

registration
Form

add
Customer

Figure 8.3 The flow for identifying a customer has a few more twists than the pizza flow.

234 CHAPTER 8 Working with Spring Web Flow
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/webflow
http://www.springframework.org/schema/webflow/spring-webflow-2.3.xsd">
<var name="customer"

class="com.springinaction.pizza.domain.Customer"/>
<view-state id="welcome">

<transition on="phoneEntered" to="lookupCustomer"/>
</view-state>
<action-

state id="lookupCustomer">
<evaluate result="customer" expression=

"pizzaFlowActions.lookupCustomer(requestParameters.phoneNumber)" />
<transition to="registrationForm" on-exception=

"com.springinaction.pizza.service.CustomerNotFoundException" />
<transition to="customerReady" />

</action-state>
<view-state id="registrationForm" model="customer">

<on-entry>
<evaluate expression=

"customer.phoneNumber = requestParameters.phoneNumber" />
</on-entry>
<transition on="submit" to="checkDeliveryArea" />

</view-state>
<decision-state id="checkDeliveryArea">

<if test="pizzaFlowActions.checkDeliveryArea(customer.zipCode)"
then="addCustomer"
else="deliveryWarning"/>

</decision-state>
<view-state id="deliveryWarning">

<transition on="accept" to="addCustomer" />
</view-state>
<action-state id="addCustomer">

<evaluate expression="pizzaFlowActions.addCustomer(customer)" />
<transition to="customerReady" />

</action-state>
<end-state id="cancel" />
<end-state id="customerReady">

<output name="customer" />
</end-state>
<global-transitions>

<transition on="cancel" to="cancel" />
</global-transitions>

</flow>

This flow introduces a few new tricks, including your first use of the <decision-
state> element. Also, because it’s a subflow of the pizza flow, it expects to receive an
Order object as input.

 As before, let’s break down this flow definition state by state, starting with the
welcome state.

ASKING FOR A PHONE NUMBER

The welcome state is a fairly straightforward view state that welcomes the customer to
the Spizza website and asks them to enter their phone number. The state itself isn’t

Welcome customer

Look up customer

Register new customer

Check
delivery
area

Show
delivery
warning

Add customer

235Putting it all together: the pizza flow
particularly interesting. It has two transitions: one that directs the flow to the lookup-
Customer state if a phoneEntered event is fired from the view, and another cancel
transition, defined as a global transition, that reacts to a cancel event.

 Where the welcome state gets interesting is in the view. The welcome view is
defined in /WEB-INF/flows/pizza/customer/welcome.jspx, as shown next.

<html xmlns:jsp="http://java.sun.com/JSP/Page"
xmlns:form="http://www.springframework.org/tags/form">

<jsp:output omit-xml-declaration="yes"/>
<jsp:directive.page contentType="text/html;charset=UTF-8" />
<head><title>Spizza</title></head>
<body>

<h2>Welcome to Spizza!!!</h2>
<form:form>

<input type="hidden" name="_flowExecutionKey"
value="${flowExecutionKey}"/>

<input type="text" name="phoneNumber"/>

<input type="submit" name="_eventId_phoneEntered"

value="Lookup Customer" />
</form:form>

</body>
</html>

This simple form prompts the user to enter their phone number. But the form has two
special ingredients that enable it to drive the flow.

 First, note the hidden _flowExecutionKey field. When a view state is entered, the
flow pauses and waits for the user to take some action. The flow execution key is given
to the view as a sort of claim ticket for the flow. When the user submits the form, the
flow execution key is sent along with it in the _flowExecutionKey field, and the flow
resumes where it left off.

 Also pay special attention to the submit button’s name. The _eventId_ portion of
the button’s name is a clue to Spring Web Flow that what follows is an event that
should be fired. When the form is submitted by clicking that button, a phoneEntered
event is fired, triggering a transition to lookupCustomer.

LOOKING UP THE CUSTOMER

After the welcome form has been submitted, the customer’s phone number is among
the request parameters and is ready to be used to look up a customer. The lookup-
Customer state’s <evaluate> element is where that happens. It pulls the phone num-
ber off the request parameters and passes it to the lookupCustomer() method on the
pizzaFlowActions bean.

 The implementation of lookupCustomer() isn’t important right now. It’s sufficient
to know that it will either return a Customer object or throw a CustomerNotFound-
Exception.

 In the former case, the Customer object is assigned to the customer variable (per
the result attribute) and the default transition takes the flow to the customerReady

Listing 8.5 Welcoming the customer and asking for their phone number

Flow execution key

Fire
phoneEntered
event

236 CHAPTER 8 Working with Spring Web Flow
state. But if the customer can’t be found, then a CustomerNotFoundException will be
thrown, and the flow will transition to the registrationForm state.

REGISTERING A NEW CUSTOMER

The registrationForm state is where the user is asked for their delivery address. Like
other view states you’ve seen, it renders a JSP view. The JSP file is shown next.

<html xmlns:c="http://java.sun.com/jsp/jstl/core"
xmlns:jsp="http://java.sun.com/JSP/Page"
xmlns:spring="http://www.springframework.org/tags"
xmlns:form="http://www.springframework.org/tags/form">

<jsp:output omit-xml-declaration="yes"/>
<jsp:directive.page contentType="text/html;charset=UTF-8" />
<head><title>Spizza</title></head>
<body>

<h2>Customer Registration</h2>
<form:form commandName="customer">

<input type="hidden" name="_flowExecutionKey"
value="${flowExecutionKey}"/>

Phone number: <form:input path="phoneNumber"/>

Name: <form:input path="name"/>

Address: <form:input path="address"/>

City: <form:input path="city"/>

State: <form:input path="state"/>

Zip Code: <form:input path="zipCode"/>

<input type="submit" name="_eventId_submit"

value="Submit" />
<input type="submit" name="_eventId_cancel"

value="Cancel" />
</form:form>
</body>

</html>

This isn’t the first form you’ve seen in your flow. The welcome view state also displays a
form to the customer. That form is simple and has only a single field. It’s easy enough
to pull that field’s value from the request parameters. The registration form, on the
other hand, is more involved.

 Instead of dealing with the fields one at a time through the request parameters, it
makes more sense to bind the form to a Customer object and let the framework do all
the hard work.

CHECKING THE DELIVERY AREA

After the customer has given their address, you need to be sure that they live in the
delivery area. If Spizza can’t deliver to them, you should let them know and advise
them that they’ll need to come in and pick up the pizzas themselves.

 To make that decision, you use a decision state. The checkDeliveryArea decision
state has an <if> element that passes the customer’s ZIP code in to the checkDelivery-
Area() method on the pizzaFlowActions bean. That method returns a Boolean value:
true if the customer is in the delivery area, and false otherwise.

Listing 8.6 Registering a new customer

237Putting it all together: the pizza flow
 If the customer is in the delivery area, the flow transitions to the addCustomer state.
If not, the customer is taken to the deliveryWarning view state. The view behind the
deliveryWarning is /WEB-INF/flows/pizza/customer/deliveryWarning.jspx, shown
next.

<html xmlns:jsp="http://java.sun.com/JSP/Page">
<jsp:output omit-xml-declaration="yes"/>
<jsp:directive.page contentType="text/html;charset=UTF-8" />
<head><title>Spizza</title></head>
<body>

<h2>Delivery Unavailable</h2>
<p>The address is outside of our delivery area. You may
still place the order, but you will need to pick it up
yourself.</p>
<![CDATA[

Continue, I'll pick up the order |
Never mind
]]>

</body>
</html>

The key flow-related items in deliveryWarning.jspx are the two links that offer the cus-
tomer a chance to continue with the order or to cancel. Using the same flow-
ExecutionUrl variable that you use in the welcome state, these links trigger either an
accept event or a cancel event in the flow. If an accept event is sent, the flow will
transition to the addCustomer state. Otherwise, the global cancel transition will be fol-
lowed, and the subflow will transition to the cancel end state.

 We’ll talk about the end states in a moment. First, let’s take a quick look at the
addCustomer state.

STORING THE CUSTOMER DATA

By the time the flow arrives at the addCustomer state, the customer has entered
their address. For future reference, that address needs to be stored (probably in a
database). The addCustomer state has an <evaluate> element that calls the add-
Customer() method on the pizzaFlowActions bean, passing in the customer flow
variable.

 Once the evaluation is complete, the default transition will be taken, and the flow
will transition to the end state whose ID is customerReady.

ENDING THE FLOW

Normally, a flow’s end state isn’t that interesting. But in this flow, there’s not just one
end state, but two. When a subflow ends, it fires a flow event that’s equivalent to its
end state’s ID. If the flow only has one end state, then it always fires the same event.
But with two or more end states, a flow can influence the direction of the calling flow.

Listing 8.7 Warning a customer that pizza can’t be delivered to their address

238 CHAPTER 8 Working with Spring Web Flow
 When the customer flow goes down any of the normal paths, it ultimately lands on
the end state whose ID is customerReady. When the calling pizza flow resumes, it
receives a customerReady event, which results in a transition to the buildOrder state.

 Note that the customerReady end state includes an <output> element. This ele-
ment is a flow’s equivalent of Java’s return statement. It passes back some data from a
subflow to the calling flow. In this case, <output> returns the customer flow variable
so that the identifyCustomer subflow state in the pizza flow can assign it to the order.
On the other hand, if a cancel event is triggered at any time during the customer
flow, it exits the flow through the end state whose ID is cancel. That triggers a cancel
event in the pizza flow and results in a transition (via the global transition) to the
pizza flow’s end state.

8.3.3 Building an order

After the customer has been identified, the
next step in the main flow is to figure out
what kind of pizzas they want. The order
subflow, as illustrated in figure 8.4, is where
the user is prompted to create pizzas and
add them to the order.

 As you can see, the showOrder state is the
centerpiece of the order subflow. It’s the
first state the user sees on entering the flow,
and it’s the state to which the user is sent
after adding a new pizza to the order. It dis-
plays the current state of the order and
offers the user a chance to add another
pizza to the order.

 When the user chooses to add a pizza to
the order, the flow transitions to the
createPizza state. This is another view state
that gives the user a selection of pizza sizes and toppings with which to build a pizza.
From here, the user may add a pizza or cancel. In either event, the flow transitions
back to the showOrder state.

 From the showOrder state, the user may choose to either submit the order or can-
cel the order. Either choice ends the order subflow, but the main flow will go down
different paths depending on which choice is made.

 The following listing shows how the diagram translates into a Spring Web Flow
definition.

<?xml version="1.0" encoding="UTF-8"?>
<flow xmlns="http://www.springframework.org/schema/webflow"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Listing 8.8 Order subflow view shows states to display the order and create a pizza

create
Pizza

S

Start

cancelorder
Created

createPizza

cancel/addPizza

ch
ec

ko
ut

cancel

showOrder

Figure 8.4 Pizzas are added via the order
subflow.

239Putting it all together: the pizza flow
xsi:schemaLocation="http://www.springframework.org/schema/webflow
http://www.springframework.org/schema/webflow/spring-webflow-2.3.xsd">

<input name="order" required="true" />

<view-state id="showOrder">
<transition on="createPizza" to="createPizza" />

<transition on="checkout" to="orderCreated" />
<transition on="cancel" to="cancel" />

</view-state>

<view-
state id="createPizza" model="flowScope.pizza">
<on-entry>
<set name="flowScope.pizza"

value="new com.springinaction.pizza.domain.Pizza()" />
<evaluate result="viewScope.toppingsList" expression=

"T(com.springinaction.pizza.domain.Topping).asList()" />
</on-entry>
<transition on="addPizza" to="showOrder">

<evaluate expression="order.addPizza(flowScope.pizza)" />
</transition>
<transition on="cancel" to="showOrder" />

</view-state>

<end-state id="cancel" /

<end-state id="orderCreated" />

</flow>

This subflow operates on the Order object created in the main flow. Therefore, you
need a way of passing the Order from the main flow to the subflow. As you’ll recall
from listing 8.1, you use the <input> element to pass the Order in to the flow. Here
you’re using it to accept that Order object. If you think of this subflow as being analo-
gous to a method in Java, the <input> element used here is effectively defining the
subflow’s signature. This flow requires a single parameter called order.

 Next you find the showOrder state, a basic view state with three different transi-
tions: one for creating a pizza, one for submitting the order, and another to cancel the
order.

 The createPizza state is more interesting. Its view is a form that submits a new
Pizza object to be added to the order. The <on-entry> element adds a new Pizza
object to flow scope to be populated when the form is submitted. Note that the model
of this view state references the same flow-scoped Pizza object. That Pizza object is
bound to the Create Pizza form, shown next.

<div xmlns:form="http://www.springframework.org/tags/form"
xmlns:jsp="http://java.sun.com/JSP/Page">

<jsp:output omit-xml-declaration="yes"/>
<jsp:directive.page contentType="text/html;charset=UTF-8" />

<h2>Create Pizza</h2>
<form:form commandName="pizza">

<input type="hidden" name="_flowExecutionKey"

Listing 8.9 Adding pizzas with an HTML form bound to a flow-scoped object

Accept order as input

Order display state

Pizza creation state

Cancel end state

Create order end state

240 CHAPTER 8 Working with Spring Web Flow
value="${flowExecutionKey}"/>
Size:

<form:radiobutton path="size"
label="Small (12-inch)" value="SMALL"/>

<form:radiobutton path="size"
label="Medium (14-inch)" value="MEDIUM"/>

<form:radiobutton path="size"
label="Large (16-inch)" value="LARGE"/>

<form:radiobutton path="size"
label="Ginormous (20-inch)" value="GINORMOUS"/>

Toppings:

<form:checkboxes path="toppings" items="${toppingsList}"

delimiter="
"/>

<input type="submit" class="button"

name="_eventId_addPizza" value="Continue"/>
<input type="submit" class="button"

name="_eventId_cancel" value="Cancel"/>
</form:form>

</div>

When the form is submitted via the Continue button, the size and topping selections
are bound to the Pizza object, and the addPizza transition is taken. The <evaluate>
element associated with that transition indicates that the flow-scoped Pizza object
should be passed in a call to the order’s addPizza() method before transitioning to
the showOrder state.

 There are two ways to end the flow. The user can either click the Cancel button on
the showOrder view or click the Checkout button. Either way, the flow transitions to an
<end-state>. But the id of the end state chosen determines the event triggered on
the way out of this flow and ultimately determines the next step in the main flow. The
main flow will either transition on cancel or transition on orderCreated. In the for-
mer case, the outer flow ends; in the lat-
ter case, it transitions to the takePayment
subflow, which we’ll look at next.

8.3.4 Taking payment

It’s not common to get a free pizza, and
the Spizza pizzeria wouldn’t stay in busi-
ness long if it let customers order pizzas
without providing some form of payment.
As the pizza flow nears an end, the final
subflow prompts the user to enter pay-
ment details. This simple flow is illus-
trated in figure 8.5.

 Like the order subflow, the payment
subflow accepts an Order object as input
using the <input> element.

payment
Takencancel

paymentSubmitted

S

Start

cancel

verify
Payment

take
Payment

Figure 8.5 The final step in placing a pizza
order is to take payment from the customer
through the payment subflow.

241Putting it all together: the pizza flow
 As you can see, on entering the payment subflow, the user arrives at the take-
Payment state. This is a view state where the user can indicate that they’ll pay by credit
card, check, or cash. On submitting their payment information, they’re taken to the
verifyPayment state, an action state that verifies that their payment information is
acceptable.

 The payment subflow is defined in XML as shown next.

<?xml version="1.0" encoding="UTF-8"?>
<flow xmlns="http://www.springframework.org/schema/webflow"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/webflow
http://www.springframework.org/schema/webflow/spring-webflow-2.3.xsd">
<input name="order" required="true"/>
<view-state id="takePayment" model="flowScope.paymentDetails">

<on-entry>
<set name="flowScope.paymentDetails"

value="new com.springinaction.pizza.domain.PaymentDetails()" />
<evaluate result="viewScope.paymentTypeList" expression=

"T(com.springinaction.pizza.domain.PaymentType).asList()" />
</on-entry>
<transition on="paymentSubmitted" to="verifyPayment" />
<transition on="cancel" to="cancel" />

</view-state>
<action-state id="verifyPayment">

<evaluate result="order.payment" expression=
"pizzaFlowActions.verifyPayment(flowScope.paymentDetails)" />

<transition to="paymentTaken" />
</action-state>

<end-state id="cancel" />
<end-state id="paymentTaken" />

</flow>

As the flow enters the takePayment view state, the <on-entry> element sets up the
payment form by first using a SpEL expression to create a new PaymentDetails
instance in flow scope. This is effectively the backing object for the form. It also sets
the view-scoped paymentTypeList variable to a list containing the values of the
PaymentType enum (shown in the next listing). SpEL’s T() operator is used to get the
PaymentType class so that the static toList() method can be invoked.

package com.springinaction.pizza.domain;
import static org.apache.commons.lang.WordUtils.*;
import java.util.Arrays;
import java.util.List;
public enum PaymentType {

CASH, CHECK, CREDIT_CARD;
public static List<PaymentType> asList() {

PaymentType[] all = PaymentType.values();

Listing 8.10 Payment subflow, with one view state and one action state

Listing 8.11 PaymentType enumeration: defines customer choices for payment

242 CHAPTER 8 Working with Spring Web Flow
return Arrays.asList(all);
}
@Override
public String toString() {

return capitalizeFully(name().replace('_', ' '));
}

}

On being presented with the payment form, the user may either submit a payment or
cancel. Depending on the choice made, the payment subflow ends through either the
paymentTaken <end-state> or the cancel <end-state>. As with other subflows,
either <end-state> will end the subflow and return control to the main flow. But the
id of the <end-state> taken determines the transition taken next in the main flow.

 Now we’ve stepped all the way through the pizza flow and its subflows. You’ve seen
a lot of what Spring Web Flow is capable of. Before we finish with the Web Flow topic,
let’s take a quick look at what’s involved in securing access to a flow or any of its states.

8.4 Securing web flows
In the next chapter, you’ll see how to secure Spring web applications using Spring
Security. But while we’re on the subject of Spring Web Flow, let’s quickly look at how it
supports flow-level security when used along with Spring Security.

 States, transitions, and entire flows can be secured in Spring Web Flow by using the
<secured> element as a child of those elements. For example, to secure access to a
view state, you might use <secured> like this:

<view-state id="restricted">
<secured attributes="ROLE_ADMIN" match="all"/>

</view-state>

As configured here, access to the view state will be restricted to only users who are
granted ROLE_ADMIN access (per the attributes attribute). The attributes attribute
takes a comma-separated list of authorities that the user must have to gain access to
the state, transition, or flow. The match attribute can be set to either any or all. If it’s
set to any, then the user must be granted at least one of the authorities listed in
attributes. If it’s set to all, then the user must have been granted all the authorities.
You may be wondering how a user is granted the authorities checked for by the
<secured> element. For that matter, how does the user log in to the application in the
first place? The answers to those questions will be addressed in the next chapter.

8.5 Summary
Not all web applications are freely navigable. Sometimes a user must be guided along,
asked appropriate questions, and led to specific pages based on their responses. In
these situations, an application feels less like a menu of options and more like a con-
versation between the application and the user.

 In this chapter, we’ve explored Spring Web Flow, a web framework that enables
development of conversational applications. Along the way, you built a flow-based

243Summary
application to take pizza orders. You started by defining the overall path the applica-
tion should take, beginning with gathering customer information and concluding
with the order being saved in the system.

 A flow is made up of several states and transitions that define how the conversation
traverses from state to state. The states themselves come in several varieties: action
states that perform business logic, view states that involve the user in the flow, decision
states that dynamically direct the flow, and end states that signify the end of a flow. In
addition, there are subflow states, which are themselves defined by a flow.

 Finally, you saw hints about how access to a flow, state, or transition can be
restricted to users who are granted specific authorities. But we deferred conversation
of how the user authenticates to the application and how the user is granted those
authorities. That’s where Spring Security comes in, and Spring Security is what we’ll
explore in the next chapter.

Securing
web applications
Have you ever noticed that most people in television sitcoms don’t lock their
doors? It happens all the time. On Seinfeld, Kramer frequently let himself into
Jerry’s apartment to help himself to the goodies in Jerry’s refrigerator. On Friends,
the various characters often entered one another’s apartments without warning or
hesitation. Once, while in London, Ross even burst into Chandler’s hotel room,
narrowly missing Chandler in a compromising situation with Ross’s sister.

 In the days of Leave it to Beaver, it wasn’t so unusual for people to leave their
doors unlocked. But it seems crazy that in a day when we’re concerned with privacy
and security, we see television characters enabling unhindered access to their apart-
ments and homes.

 Information is probably the most valuable item we now have; crooks are looking
for ways to steal our data and identities by sneaking into unsecured applications. As
software developers, we must take steps to protect the information that resides in

This chapter covers
 Introducing Spring Security

 Securing web applications using servlet filters

 Authentication against databases and LDAP
244

245Getting started with Spring Security
our applications. Whether it’s an email account protected with a username/password
pair or a brokerage account protected with a trading PIN, security is a crucial aspect of
most applications.

 It’s no accident that I chose to describe application security with the word “aspect.”
Security is a concern that transcends an application’s functionality. For the most part,
an application should play no part in securing itself. Although you could write security
functionality directly into your application’s code (and that’s not uncommon), it’s bet-
ter to keep security concerns separate from application concerns.

 If you’re thinking that it’s starting to sound as if security is accomplished using
aspect-oriented techniques, you’re right. In this chapter we’re going to explore ways
to secure your applications with aspects. But you won’t have to develop those aspects
yourself—we’re going to look at Spring Security, a security framework implemented
with Spring AOP and servlet filters.

9.1 Getting started with Spring Security
Spring Security is a security framework that provides declarative security for your
Spring-based applications. Spring Security provides a comprehensive security solu-
tion, handling authentication and authorization at both the web request level and at
the method invocation level. Based on the Spring Framework, Spring Security takes
full advantage of dependency injection (DI) and aspect-oriented techniques.

 Spring Security got its start as Acegi Security. Acegi was a powerful security frame-
work, but it had one big turn-off: it required a lot of XML configuration. I’ll spare you
the intricate details of what such a configuration may have looked like. Suffice it to say
that it was common for a typical Acegi configuration to grow to several hundred lines
of XML.

 With version 2.0, Acegi Security became Spring Security. But the 2.0 release
brought more than just a superficial name change. Spring Security 2.0 introduced a
new security-specific XML namespace for configuring security in Spring. The new
namespace, along with annotations and reasonable defaults, slimmed typical security
configuration from hundreds of lines to only a dozen or so lines of XML. Spring Secu-
rity 3.0 added SpEL to the mix, simplifying security configuration even more.

 Now at version 3.2, Spring Security tackles security from two angles. To secure web
requests and restrict access at the URL level, Spring Security uses servlet filters. Spring
Security can also secure method invocations using Spring AOP, proxying objects and
applying advice to ensure that the user has the proper authority to invoke secured
methods.

 We’ll focus on web-layer security with Spring Security in this chapter. Later, in
chapter 14, we’ll revisit Spring Security and see how it can be used to secure method
invocations.

246 CHAPTER 9 Securing web applications
9.1.1 Understanding Spring Security modules

No matter what kind of application you want to secure using Spring Security, the first
thing you need to do is to add the Spring Security modules to the application’s class-
path. Spring Security 3.2 is divided into eleven modules, as listed in table 9.1.

At the least, you’ll want to include the Core and Configuration modules in your appli-
cation’s classpath. Spring Security is often used to secure web applications, and that’s
certainly the case with the Spittr application, so you’ll also need to add the Web mod-
ule. We’ll also be taking advantage of Spring Security’s JSP tag library, so you’ll need to
add that module to the mix.

9.1.2 Filtering web requests

Spring Security employs several servlet filters to provide various aspects of security.
You might be thinking that means you’ll need to configure several filters in a web.xml
file, or perhaps in a WebApplicationInitializer class. But thanks to a little Spring
magic, you’ll only need to configure one of those filters.

 DelegatingFilterProxy is a special servlet filter that, by itself, doesn’t do much.
Instead, it delegates to an implementation of javax.servlet.Filter that’s registered
as a <bean> in the Spring application context, as illustrated in figure 9.1.

Table 9.1 Spring Security is partitioned into eleven modules

Module Description

ACL Provides support for domain object security through access control lists
(ACLs).

Aspects A small module providing support for AspectJ-based aspects instead of stan-
dard Spring AOP when using Spring Security annotations.

CAS Client Support for single sign-on authentication using Jasig’s Central Authentication
Service (CAS).

Configuration Contains support for configuring Spring Security with XML and Java. (Java con-
figuration support introduced in Spring Security 3.2.)

Core Provides the essential Spring Security library.

Cryptography Provides support for encryption and password encoding.

LDAP Provides support for LDAP-based authentication.

OpenID Contains support for centralized authentication with OpenID.

Remoting Provides integration with Spring Remoting.

Tag Library Spring Security’s JSP tag library.

Web Provides Spring Security’s filter-based web security support.

247Getting started with Spring Security
If you like configuring servlets and filters in the traditional web.xml file, you can do
that with the <filter> element, like this:

<filter>
<filter-name>springSecurityFilterChain</filter-name>
<filter-class>

org.springframework.web.filter.DelegatingFilterProxy
</filter-class>

</filter>

The most important thing here is that the <filter-name> be set to springSecurity-
FilterChain. That’s because you’ll soon be configuring Spring Security for web secu-
rity, and there will be a filter bean named springSecurityFilterChain that
DelegatingFilterProxy will need to delegate to.

 If you'd rather configure DelegatingFilterProxy in Java with a WebApplication-
Initializer, then all you need to do is create a new class that extends Abstract-
SecurityWebApplicationInitializer:

package spitter.config;
import org.springframework.security.web.context.

AbstractSecurityWebApplicationInitializer;

public class SecurityWebInitializer
extends AbstractSecurityWebApplicationInitializer {}

AbstractSecurityWebApplicationInitializer implements WebApplication-

Initializer, so it will be discovered by Spring and be used to register Delegating-
FilterProxy with the web container. Although you can override its appendFilters()
or insertFilters() methods to register filters of your own choosing, you need not
override anything to register DelegatingFilterProxy.

 Whether you configure DelegatingFilterProxy in web.xml or by subclassing
AbstractSecurityWebApplicationInitializer, it will intercept requests coming
into the application and delegate them to a bean whose ID is springSecurityFilter-
Chain.

 As for the springSecurityFilterChain bean itself, it’s another special filter
known as FilterChainProxy. It’s a single filter that chains together one or more addi-
tional filters. Spring Security relies on several servlet filters to provide different secu-
rity features, but you should almost never need to know these details, as you likely
won’t need to explicitly declare the springSecurityFilterChain bean or any of the
filters it chains together. Those filters will be created when you enable web security.

DelegatingFilterProxy Spring-injected filter

Servlet context

Delegates to

Spring application context

Figure 9.1 DelegatingFilterProxy proxies filter handling to a delegate filter
bean in the Spring application context.

248 CHAPTER 9 Securing web applications

En

sec

E
S

se
 To get the ball rolling with web security, let’s create the simplest possible security
configuration.

9.1.3 Writing a simple security configuration

In the early days of Spring Security (way back when it was known as Acegi Security),
you’d need to write hundreds of lines of XML configuration just to enable simple secu-
rity in a web application. Spring Security 2.0 made things better by offering a security-
specific XML configuration namespace.

 Spring 3.2 introduced a new Java configuration option, altogether eliminating the
need for XML security configuration. The following listing shows the simplest possible
Java configuration for Spring Security.

package spitter.config;
import org.springframework.context.annotation.Configuration;
import org.springframework.security.config.annotation.web.

configuration.EnableWebSecurity;
import org.springframework.security.config.annotation.web.

configuration.WebSecurityConfigurerAdapter;

@Configuration
@EnableWebSecurity
public class SecurityConfig extends WebSecurityConfigurerAdapter {
}

As its name suggests, the @EnableWebSecurity annotation enables web security. It is use-
less on its own, however. Spring Security must be configured in a bean that implements
WebSecurityConfigurer or (for convenience) extends WebSecurityConfigurer-
Adapter. Any bean in the Spring application context that implements WebSecurity-
Configurer can contribute to Spring Security configuration, but it’s often most
convenient for the configuration class to extend WebSecurityConfigurerAdapter, as
shown in listing 9.1.

 @EnableWebSecurity is generally useful for enabling security in any web applica-
tion. But if you happen to be developing a Spring MVC application, you should con-
sider using @EnableWebMvcSecurity instead, as shown in the following listing.

package spitter.config;
import org.springframework.context.annotation.Configuration;
import org.springframework.security.config.annotation.web.

configuration.WebSecurityConfigurerAdapter;
import org.springframework.security.config.annotation.web.servlet.

configuration.EnableWebMvcSecurity;

@Configuration
@EnableWebMvcSecurity
public class SecurityConfig extends WebSecurityConfigurerAdapter {

}

Listing 9.1 The simplest configuration class to enable web security for Spring MVC

Listing 9.2 The simplest configuration class to enable web security for Spring MVC

able
web

urity

nable
pring
MVC

curity

249Getting started with Spring Security
Among other things, the @EnableWebMvcSecurity annotation configures a Spring
MVC argument resolver so that handler methods can receive the authenticated user’s
principal (or username) via @AuthenticationPrincipal-annotated parameters. It
also configures a bean that automatically adds a hidden cross-site request forgery
(CSRF) token field on forms using Spring’s form-binding tag library.

 It may not look like much, but the security configuration class in listings 9.1 and
9.2 packs quite a punch. Either one will lock down an application so tightly that
nobody can get in!

 Although it’s not strictly required, you’ll probably want to specify the finer points
of web security by overriding one or more of the methods from WebSecurity-
ConfigurerAdapter. You can configure web security by overriding WebSecurity-
ConfigurerAdapter’s three configure() methods and setting behavior on the
parameter passed in. Table 9.2 describes these three methods.

Looking back to listing 9.2, you can see that it doesn’t override any of these three
configure() methods, and that explains why the application is now locked down tight.
Although the default filter chain is fine for our needs, the default configure(Http-
Security) effectively looks like this:

protected void configure(HttpSecurity http) throws Exception {
http

.authorizeRequests()
.anyRequest().authenticated()
.and()

.formLogin().and()

.httpBasic();
}

This simple default configuration specifies how HTTP requests should be secured and
what options a client has for authenticating the user. The call to authorize-
Requests() and anyRequest().authenticated() demands that all HTTP requests
coming into the application be authenticated. It also configures Spring Security to
support authentication via a form-based login (using a predefined login page) as well
as HTTP Basic.

 Meanwhile, because you haven’t overridden the configure(Authentication-
ManagerBuilder) method, there’s no user store backing the authentication process.

Table 9.2 Overriding WebSecurityConfigurerAdapter’s configure() methods

Method Description

configure(WebSecurity) Override to configure Spring Security’s fil-
ter chain.

configure(HttpSecurity) Override to configure how requests are
secured by interceptors.

configure(AuthenticationManagerBuilder) Override to configure user-details services.

250 CHAPTER 9 Securing web applications
With no user store, there are effectively no users. Therefore, all requests require
authentication, but there’s nobody who can log in.

 You’re going to need to add a bit more configuration to bend Spring Security to fit
your application’s needs. Specifically, you’ll need to…

 Configure a user store
 Specify which requests should and should not require authentication, as well as

what authorities they require
 Provide a custom login screen to replace the plain default login screen

In addition to these facets of Spring Security, you may also want to selectively render
certain content in your web views based on security constraints.

 First things first, however. Let’s see how to configure user services to access user
data during the authentication process.

9.2 Selecting user details services
Suppose you were to go out for a nice dinner at an exclusive restaurant. Of course,
you made the reservation several weeks in advance to be assured that you have a table.
As you enter the restaurant, you give the host your name. Unfortunately, there’s no
record of your reservation. Your special evening is in jeopardy. Not one to give up so
easily, you ask the host to check the reservation list again. That’s when things get
weird.

 The host says that there isn’t a reservation list. Your name isn’t on the list—
nobody’s name is on the list—because there isn’t a list. That would explain why you
can’t get in the door, despite the fact that the place is empty. Weeks later, you’ll realize
that it also explains why the restaurant ended up closing and being replaced with a
taqueria.

 That’s the scenario you have with your application at this point. There’s no way to
get into the application because even if the user thinks they should be allowed in,
there’s no record of them having access to the application. For lack of a user store, the
application is so exclusive that it’s completely unusable.

 What you need is a user store—some place where usernames, passwords, and other
data can be kept and retrieved from when making authentication decisions.

 Fortunately, Spring Security is extremely flexible and is capable of authenticating
users against virtually any data store. Several common user store situations—such as
in-memory, relational database, and LDAP—are provided out of the box. But you can
also create and plug in custom user store implementations.

 Spring Security’s Java configuration makes it easy to configure one or more data
store options. We’ll start with the simplest user store: one that maintains its user store
in memory.

251Selecting user details services

E
in-
us
9.2.1 Working with an in-memory user store

Since your security configuration class extends WebSecurityConfigurerAdapter, the
easiest way to configure a user store is to override the configure() method that takes
an AuthenticationManagerBuilder as a parameter. AuthenticationManagerBuilder
has several methods that can be used to configure Spring Security’s authentication
support. With the inMemoryAuthentication() method, you can enable and configure
and optionally populate an in-memory user store.

 For example, in the following listing, SecurityConfig overrides configure() to
configure an in-memory user store with two users.

package spitter.config;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Configuration;
import org.springframework.security.config.annotation.

authentication.builders.AuthenticationManagerBuilder;
import org.springframework.security.config.annotation.web.

configuration.WebSecurityConfigurerAdapter;
import org.springframework.security.config.annotation.web.servlet.

configuration.EnableWebMvcSecurity;

@Configuration
@EnableWebMvcSecurity
public class SecurityConfig extends WebSecurityConfigurerAdapter {

@Override
protected void configure(AuthenticationManagerBuilder auth)

throws Exception {
auth
.inMemoryAuthentication()

.withUser("user").password("password").roles("USER").and()
.withUser("admin").password("password").roles("USER", "ADMIN");

}

}

As you can see, the AuthenticationManagerBuilder given to configure() employs a
builder-style interface to build up authentication configuration. Simply calling
inMemoryAuthentication() will enable an in-memory user store. But you’ll also need
some users in there, or else it’s as if you have no user store at all.

 Therefore, you need to call the withUser() method to add a new user to the in-
memory user store. The parameter given is the username. withUser() returns a User-
DetailsManagerConfigurer.UserDetailsBuilder,which has several methods for fur-
ther configuration of the user, including password() to set the user’s password and
roles() to give the user one or more role authorities.

 In listing 9.3, you’re adding two users, “user” and “admin”, both with “password”
for a password. The “user” user has the USER role, while the “admin” user has both

Listing 9.3 Configuring Spring Security to use an in-memory user store

nable an
memory
er store.

252 CHAPTER 9 Securing web applications
USER and ADMIN roles. As you can see, the and() method is used to chain together
multiple user configurations.

 In addition to password(), roles(), and and(), there are several other methods
for configuring user details for in-memory user stores. Table 9.3 describes all of the
methods available from UserDetailsManagerConfigurer.UserDetailsBuilder.

Note that the roles() method is a shortcut for the authorities() methods. Any val-
ues given to roles() are prefixed with ROLE_ and assigned as authorities to the user.
In effect, the following user configuration is equivalent to that in listing 9.3:

auth
.inMemoryAuthentication()

.withUser("user").password("password")
.authorities("ROLE_USER").and()

.withUser("admin").password("password")
.authorities("ROLE_USER", "ROLE_ADMIN");

Although an in-memory user store is very useful for debugging and developer testing
purposes, it’s probably not the most ideal choice for a production application. For
production-ready purposes, it’s usually better to maintain user data in a database of
some sort.

9.2.2 Authenticating against database tables

It’s quite common for user data to be stored in a relational database, accessed via
JDBC. To configure Spring Security to authenticate against a JDBC-backed user store,
you can use the jdbcAuthentication() method. The minimal configuration required
is as follows:

Table 9.3 Methods for configuring user details

Module Description

accountExpired(boolean) Defines if the account is expired or not

accountLocked(boolean) Defines if the account is locked or not

and() Used for chaining configuration

authorities(GrantedAuthority…) Specifies one or more authorities to grant to the user

authorities(List<? extends
GrantedAuthority>)

Specifies one or more authorities to grant to the user

authorities(String…) Specifies one or more authorities to grant to the user

credentialsExpired(boolean) Defines if the credentials are expired or not

disabled(boolean) Defines if the account is disabled or not

password(String) Specifies the user’s password

roles(String…) Specifies one or more roles to assign to the user

253Selecting user details services
@Autowired
DataSource dataSource;

@Override
protected void configure(AuthenticationManagerBuilder auth)

throws Exception {
auth

.jdbcAuthentication()
.dataSource(dataSource);

}

The only thing you must configure is a DataSource so that it’s able to access the rela-
tional database. The DataSource is provided here via the magic of autowiring.

OVERRIDING THE DEFAULT USER QUERIES

Although this minimal configuration will work, it makes some assumptions about your
database schema. It expects that certain tables exist where user data will be kept. More
specifically, the following snippet of code from Spring Security’s internals shows the
SQL queries that will be performed when looking up user details:

public static final String DEF_USERS_BY_USERNAME_QUERY =
"select username,password,enabled " +
"from users " +
"where username = ?";

public static final String DEF_AUTHORITIES_BY_USERNAME_QUERY =
"select username,authority " +
"from authorities " +
"where username = ?";

public static final String DEF_GROUP_AUTHORITIES_BY_USERNAME_QUERY =
"select g.id, g.group_name, ga.authority " +
"from groups g, group_members gm, group_authorities ga " +
"where gm.username = ? " +
"and g.id = ga.group_id " +
"and g.id = gm.group_id";

The first query retrieves a user’s username, password, and whether or not they’re
enabled. This information is used to authenticate the user. The next query looks up the
user’s granted authorities for authorization purposes, and the final query looks up
authorities granted to a user as a member of a group.

 If you’re okay with defining and populating tables in your database that satisfy
those queries, then there’s not much else for you to do. But chances are your database
doesn’t look anything like this, and you’ll want more control over the queries. In that
case, you can configure your own queries like this:

@Override
protected void configure(AuthenticationManagerBuilder auth)

throws Exception {
auth

.jdbcAuthentication()
.dataSource(dataSource)
.usersByUsernameQuery(

"select username, password, true " +

254 CHAPTER 9 Securing web applications
"from Spitter where username=?")
.authoritiesByUsernameQuery(

"select username, 'ROLE_USER' from Spitter where username=?");
}

In this case, you’re only overriding the authentication and basic authorization
queries. But you can also override the group authorities query by calling group-
AuthoritiesByUsername() with a custom query.

 When replacing the default SQL queries with those of your own design, it’s impor-
tant to adhere to the basic contract of the queries. All of them take the username as
their only parameter. The authentication query selects the username, password, and
enabled status. The authorities query selects zero or more rows containing the user-
name and a granted authority. And the group authorities query selects zero or more
rows each with a group ID, group name, and an authority.

WORKING WITH ENCODED PASSWORDS

Focusing on the authentication query, you can see that user passwords are expected to
be stored in the database. The only problem with that is that if the passwords are
stored in plain text, they’re subject to the prying eyes of a hacker. But if you encode
the password in the database, then authentication will fail because it won’t match the
plain text password submitted by the user.

 To remedy this problem, you need to specify a password encoder by calling the
passwordEncoder() method:

@Override
protected void configure(AuthenticationManagerBuilder auth)

throws Exception {
auth

.jdbcAuthentication()
.dataSource(dataSource)
.usersByUsernameQuery(

"select username, password, true " +
"from Spitter where username=?")

.authoritiesByUsernameQuery(
"select username, 'ROLE_USER' from Spitter where username=?")

.passwordEncoder(new StandardPasswordEncoder("53cr3t"));
}

The passwordEncoder method accepts any implementation of Spring Security’s
PasswordEncoder interface. Spring Security’s cryptography module includes
three such implementations: BCryptPasswordEncoder, NoOpPasswordEncoder, and
StandardPasswordEncoder.

 The preceding code uses StandardPasswordEncoder. But you can always provide
your own custom implementation if none of the out-of-the-box implementations meet
your needs. The PasswordEncoder interface is rather simple:

public interface PasswordEncoder {
String encode(CharSequence rawPassword);
boolean matches(CharSequence rawPassword, String encodedPassword);

}

255Selecting user details services
No matter which password encoder you use, it’s important to understand that the
password in the database is never decoded. Instead, the password that the user enters
at login is encoded using the same algorithm and is then compared with the encoded
password in the database. That comparison is performed in the PasswordEncoder’s
matches() method.

 Relational databases are just one storage option for user data. Another very com-
mon choice is to keep user data in an LDAP repository.

9.2.3 Applying LDAP-backed authentication

To configure Spring Security for LDAP-based authentication, you can use the ldap-
Authentication() method. This method is the LDAP analog to jdbcAuthentication().
The following configure() method shows a simple configuration for LDAP
authentication:

@Override
protected void configure(AuthenticationManagerBuilder auth)

throws Exception {
auth

.ldapAuthentication()
.userSearchFilter("(uid={0})")
.groupSearchFilter("member={0}");

}

The userSearchFilter() and groupSearchFilter() methods are used to provide a
filter for the base LDAP queries, which are used to search for users and groups. By
default, the base queries for both users and groups are empty, indicating that the
search will be done from the root of the LDAP hierarchy. But you can change that by
specifying a query base:

@Override
protected void configure(AuthenticationManagerBuilder auth)

throws Exception {
auth

.ldapAuthentication()
.userSearchBase("ou=people")
.userSearchFilter("(uid={0})")
.groupSearchBase("ou=groups")
.groupSearchFilter("member={0}");

}

The userSearchBase() method provides a base query for finding users. Likewise, the
groupSearchBase() specifies the base query for finding groups. Rather than search
from the root, this example specifies that users be searched for where the organiza-
tion unit is people. And groups should be searched for where the organizational unit
is groups.

CONFIGURING PASSWORD COMPARISON

The default strategy for authenticating against LDAP is to perform a bind operation,
authenticating the user directly to the LDAP server. Another option is to perform a

256 CHAPTER 9 Securing web applications
comparison operation. This involves sending the entered password to the LDAP direc-
tory and asking the server to compare the password against a user’s password attri-
bute. Because the comparison is done within the LDAP server, the actual password
remains secret.

 If you’d rather authenticate by doing a password comparison, you can declare so
with the passwordCompare() method:

@Override
protected void configure(AuthenticationManagerBuilder auth)

throws Exception {
auth

.ldapAuthentication()
.userSearchBase("ou=people")
.userSearchFilter("(uid={0})")
.groupSearchBase("ou=groups")
.groupSearchFilter("member={0}")
.passwordCompare();

}

By default, the password given in the login form will be compared with the value of the
userPassword attribute in the user’s LDAP entry. If the password is kept in a different
attribute, you can specify the password attribute’s name with passwordAttribute():

@Override
protected void configure(AuthenticationManagerBuilder auth)

throws Exception {
auth

.ldapAuthentication()
.userSearchBase("ou=people")
.userSearchFilter("(uid={0})")
.groupSearchBase("ou=groups")
.groupSearchFilter("member={0}")
.passwordCompare()
.passwordEncoder(new Md5PasswordEncoder())
.passwordAttribute("passcode");

}

In this example, you specify that the "passcode" attribute is what should be compared
with the given password. Moreover, you also specify a password encoder. It’s nice that
the actual password is kept secret on the server when doing server-side password com-
parison. But the attempted password is still passed across the wire to the LDAP server
and could be intercepted by a hacker. To prevent that, you can specify an encryption
strategy by calling the passwordEncoder() method.

 In the example, passwords are encrypted using MD5. This assumes that the pass-
words are also encrypted using MD5 in the LDAP server.

REFERRING TO A REMOTE LDAP SERVER

The one thing I’ve left out until now is where the LDAP server and data actually reside.
You’ve happily been configuring Spring to authenticate against an LDAP server, but
where is that server?

257Selecting user details services
 By default, Spring Security’s LDAP authentication assumes that the LDAP server is
listening on port 33389 on localhost. But if your LDAP server is on another machine,
you can use the contextSource() method to configure the location:

@Override
protected void configure(AuthenticationManagerBuilder auth)

throws Exception {
auth
.ldapAuthentication()

.userSearchBase("ou=people")

.userSearchFilter("(uid={0})")

.groupSearchBase("ou=groups")

.groupSearchFilter("member={0}")

.contextSource()
.url("ldap://habuma.com:389/dc=habuma,dc=com");

}

The contextSource() method returns a ContextSourceBuilder, which, among other
things, offers the url() method that lets you specify the location of the LDAP server.

CONFIGURING AN EMBEDDED LDAP SERVER

If you don’t happen to have an LDAP server lying around waiting to be authenticated
against, Spring Security can provide an embedded LDAP server for you. Instead of set-
ting the URL to a remote LDAP server, you can specify the root suffix for the embed-
ded server via the root() method:

@Override
protected void configure(AuthenticationManagerBuilder auth)

throws Exception {
auth
.ldapAuthentication()

.userSearchBase("ou=people")

.userSearchFilter("(uid={0})")

.groupSearchBase("ou=groups")

.groupSearchFilter("member={0}")

.contextSource()
.root("dc=habuma,dc=com");

}

When the LDAP server starts, it will attempt to load data from any LDIF files that it can
find in the classpath. LDIF (LDAP Data Interchange Format) is a standard way of rep-
resenting LDAP data in a plain text file. Each record is composed of one or more lines,
each containing a name:value pair. Records are separated from each other by blank
lines.

 If you’d rather that Spring not rummage through your classpath looking for just
any LDIF files it can find, you can be more explicit about which LDIF file gets loaded
by calling the ldif() method:

@Override
protected void configure(AuthenticationManagerBuilder auth)

throws Exception {
auth

258 CHAPTER 9 Securing web applications
.ldapAuthentication()
.userSearchBase("ou=people")
.userSearchFilter("(uid={0})")
.groupSearchBase("ou=groups")
.groupSearchFilter("member={0}")
.contextSource()

.root("dc=habuma,dc=com")

.ldif("classpath:users.ldif");
}

Here you specifically ask the LDAP server to load its content from the users.ldif file at
the root of the classpath. In case you’re curious, here’s an LDIF file that you could use
to load the embedded LDAP server with user data:

dn: ou=groups,dc=habuma,dc=com
objectclass: top
objectclass: organizationalUnit
ou: groups
dn: ou=people,dc=habuma,dc=com
objectclass: top
objectclass: organizationalUnit
ou: people
dn: uid=habuma,ou=people,dc=habuma,dc=com
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
cn: Craig Walls
sn: Walls
uid: habuma
userPassword: password
dn: uid=jsmith,ou=people,dc=habuma,dc=com
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
cn: John Smith
sn: Smith
uid: jsmith
userPassword: password
dn: cn=spittr,ou=groups,dc=habuma,dc=com
objectclass: top
objectclass: groupOfNames
cn: spittr
member: uid=habuma,ou=people,dc=habuma,dc=com

Spring Security’s built-in user stores are convenient and cover the most common use
cases. But if your authentication needs are of the uncommon variety, you may need to
create and configure a custom user-details service.

259Selecting user details services

ository

9.2.4 Configuring a custom user service

Suppose that you need to authenticate against users in a non-relational database such
as Mongo or Neo4j. In that case, you’ll need to implement a custom implementation
of the UserDetailsService interface.

 The UserDetailsService interface is rather straightforward:

public interface UserDetailsService {
UserDetails loadUserByUsername(String username)

throws UsernameNotFoundException;
}

All you need to do is implement the loadUserByUsername() method to find a user
given the user’s username. loadUserByUsername() then returns a UserDetails object
representing the given user. The following listing shows an implementation of
UserDetailsService that looks up a user from a given implementation of Spitter-
Repository.

package spittr.security;
import org.springframework.security.core.GrantedAuthority;
import org.springframework.security.core.authority.

SimpleGrantedAuthority;
import org.springframework.security.core.userdetails.User;
import org.springframework.security.core.userdetails.UserDetails;
import org.springframework.security.core.userdetails.

UserDetailsService;
import org.springframework.security.core.userdetails.

UsernameNotFoundException;
import spittr.Spitter;
import spittr.data.SpitterRepository;

public class SpitterUserService implements UserDetailsService {

private final SpitterRepository spitterRepository;

public SpitterUserService(SpitterRepository spitterRepository) {
this.spitterRepository = spitterRepository;

}

@Override
public UserDetails loadUserByUsername(String username)

throws UsernameNotFoundException {
Spitter spitter = spitterRepository.findByUsername(username);
if (spitter != null) {
List<GrantedAuthority> authorities =

new ArrayList<GrantedAuthority>();
authorities.add(new SimpleGrantedAuthority("ROLE_SPITTER"));

return new User(
spitter.getUsername(),

spitter.getPassword(),
authorities);

}

Listing 9.4 Retrieve a UserDetails object from a SpitterRepository

Inject
SpitterRep

Look up
Spitter

Create
authorities
list

Return a
User

260 CHAPTER 9 Securing web applications
throw new UsernameNotFoundException(
"User '" + username + "' not found.");

}

}

What’s interesting about SpitterUserService is that it has no idea how the user data
is persisted. The SpitterRepository it’s given could look up the Spitter from a rela-
tional database, from a document database, from a graph database, or it could just
make it up. SpitterUserService doesn’t know or care what underlying data storage is
used. It just fetches the Spitter object and uses it to create a User object. (User is a
concrete implementation of UserDetails.)

 To use SpitterUserService to authenticate users, you can configure it in your
security configuration with the userDetailsService() method:

@Autowired
SpitterRepository spitterRepository;

@Override
protected void configure(AuthenticationManagerBuilder auth)

throws Exception {
auth

.userDetailsService(new SpitterUserService(spitterRepository));
}

The userDetailsService() method (like jdbcAuthentication(), ldapAuthentication,
and inMemoryAuthentication()) configures a configuration store. But instead of using
one of Spring’s provided user stores, it takes any implementation of UserDetailsService.

 Another option worth considering is that you could change Spitter so that it
implements UserDetailsService. By doing that, you could return the Spitter
directly from the loadUserByUsername() method without copying its values into a
User object.

9.3 Intercepting requests
Earlier, in section 9.1.3, you saw an extremely simple Spring Security configuration
and learned how it falls back to a default configuration where all requests require
authentication. Some may argue that too much security is better than too little. But
there’s also something to be said about applying the appropriate amount of security.

 In any given application, not all requests should be secured equally. Some may
require authentication; some may not. Some requests may only be available to users
with certain authorities and unavailable to those without those authorities.

 For example, consider the requests served by the Spittr application. Certainly, the
home page is public and doesn’t need to be secured. Likewise, since all Spittle
objects are essentially public, the pages that display Spittles don’t require security.
Requests that create a Spittle, however, should only be performed by an authenti-
cated user. Similarly, although user profile pages are public and don’t require authen-

261Intercepting requests
tication, if you were to handle a request for /spitters/me to display the current user’s
profile, then authentication is required to know whose profile to show.

 The key to fine-tuning security for each request is to override the configure
(HttpSecurity) method. The following code snippet shows how you might override
configure(HttpSecurity) to selectively apply security to different URL paths.

@Override
protected void configure(HttpSecurity http) throws Exception {

http
.authorizeRequests()

.antMatchers("/spitters/me").authenticated()

.antMatchers(HttpMethod.POST, "/spittles").authenticated()

.anyRequest().permitAll();
}

The HttpSecurity object given to configure() can be used to configure several
aspects of HTTP security. Here you’re calling authorizeRequests() and then calling
methods on the object it returns to indicate that you want to configure request-level
security details. The first call to antMatchers() specifies that requests whose path is
/spitters/me should be authenticated. The second call to antMatchers() is even
more specific, saying that any HTTP POST request to /spittles must be authenticated.
Finally, a call to anyRequests() says that all other requests should be permitted, not
requiring authentication or any authorities.

 The path given to antMatchers() supports Ant-style wildcarding. Although we’re
not using it here, you could specify a path with a wildcard like this:

.antMatchers("/spitters/**").authenticated();

You could also specify multiple paths in a single call to antMatchers():

.antMatchers("/spitters/**", "/spittles/mine").authenticated();

Whereas the antMatchers() method works with paths that may contain Ant-style wild-
cards, there’s also a regexMatchers() method that accepts regular expressions to
define request paths. For example, the following snippet uses a regular expression
that’s equivalent to /spitters/** (Ant-style):

.regexMatchers("/spitters/.*").authenticated();

Aside from path selection, we’ve also used authenticated() and permitAll() to
define how the paths should be secured. The authenticated() method demands that
the user have logged into the application to perform the request. If the user isn’t
authenticated, Spring Security’s filters will capture the request and redirect the user
to the application’s login page. Meanwhile, the permitAll() method allows the
requests without any security demands.

 In addition to authenticated() and permitAll(), there are other methods that
can be used to define how a request should be secured. Table 9.4 describes all of the
options available.

262 CHAPTER 9 Securing web applications

Using methods from table 9.4, you can configure security to require more than just an
authenticated user. For example, you could change the previous configure() method
to require that the user not only be authenticated, but also have ROLE_SPITTER
authority:

@Override
protected void configure(HttpSecurity http) throws Exception {

http
.authorizeRequests()

.antMatchers("/spitters/me").hasAuthority("ROLE_SPITTER")

.antMatchers(HttpMethod.POST, "/spittles")
.hasAuthority("ROLE_SPITTER")

.anyRequest().permitAll();
}

Optionally, you can use the hasRole() method to have the ROLE_ prefix applied
automatically:

@Override
protected void configure(HttpSecurity http) throws Exception {

http
.authorizeRequests()

.antMatchers("/spitter/me").hasRole("SPITTER")

.antMatchers(HttpMethod.POST, "/spittles").hasRole("SPITTER")

.anyRequest().permitAll();
}

Table 9.4 Configuration methods to define how a path is to be secured

Method What it does

access(String) Allows access if the given SpEL expression evaluates to true

anonymous() Allows access to anonymous users

authenticated() Allows access to authenticated users

denyAll() Denies access unconditionally

fullyAuthenticated() Allows access if the user is fully authenticated (not remembered)

hasAnyAuthority(String…) Allows access if the user has any of the given authorities

hasAnyRole(String…) Allows access if the user has any of the given roles

hasAuthority(String) Allows access if the user has the given authority

hasIpAddress(String) Allows access if the request comes from the given IP address

hasRole(String) Allows access if the user has the given role

not() Negates the effect of any of the other access methods

permitAll() Allows access unconditionally

rememberMe() Allows access for users who are authenticated via remember-me

263Intercepting requests
You can chain as many calls to antMatchers(), regexMatchers(), and anyRequest()
as you need to fully establish the security rules around your web application. You
should know, however, that they’ll be applied in the order given. For that reason, it’s
important to configure the most specific request path patterns first and the least spe-
cific ones (such as anyRequest()) last. If not, then the least specific paths will trump
the more specific ones.

9.3.1 Securing with Spring Expressions

Most of the methods in table 9.4 are one-dimensional. That is, you can use hasRole()
to require a certain role, but you can’t also use hasIpAddress() to require a specific
IP address on the same path.

 Moreover, there’s no way to work in any conditions that aren’t defined by the
methods in table 9.4. What if you wanted to restrict access to certain roles only on
Tuesday?

 In chapter 3, you saw how to use the Spring Expression Language (SpEL) as an
advanced technique for wiring bean properties. Using the access() method, you can
also use SpEL as a means for declaring access requirements. For example, here’s how
you could use a SpEL expression to require ROLE_SPITTER access for the /spitter/me
URL pattern:

.antMatchers("/spitter/me").access("hasRole('ROLE_SPITTER')")

This security constraint placed on /spitter/me is equivalent to the one we started
with, except that now it uses SpEL to express the security rules. The hasRole() expres-
sion evaluates to true if the current user has been granted the given authority.

 What makes SpEL a more powerful option here is that hasRole() is only one of
the security-specific expressions supported. Table 9.5 lists all of the SpEL expressions
available in Spring Security.

Table 9.5 Spring Security extends the Spring Expression Language with several security-specific
expressions

Security expression What it evaluates to

authentication The user’s authentication object

denyAll Always evaluates to false

hasAnyRole(list of roles) True if the user has any of the given roles

hasRole(role) True if the user has the given role

hasIpAddress(IP address) True if the request comes from the given IP address

isAnonymous() True if the user is anonymous

isAuthenticated() True if the user is authenticated

isFullyAuthenticated() True if the user is fully authenticated (not authenticated
with remember-me)

264 CHAPTER 9 Securing web applications
With Spring Security’s SpEL expressions at your disposal, you can do more than just
limit access based on a user’s granted authorities. For example, if you wanted to lock
down the /spitter/me URLs to not only require ROLE_SPITTER, but to also only be
allowed from a given IP address, you might call the access() method like this:

.antMatchers("/spitter/me")
.access("hasRole('ROLE_SPITTER') and hasIpAddress('192.168.1.2')")

With SpEL-based security constraints, the possibilities are virtually endless. I’ll bet that
you’re already dreaming up interesting security constraints based on SpEL.

 But for now, let’s look at another way that Spring Security intercepts requests to
enforce channel security.

9.3.2 Enforcing channel security

Submitting data across HTTP can be a risky proposition. It may not be a big deal to
send a spittle message in the clear over HTTP. But if you’re passing sensitive informa-
tion such as passwords and credit card numbers across HTTP, then you’re asking for
trouble. Data is sent over HTTP unencrypted, leaving an open opportunity for a
hacker to intercept the request and see information you don’t want them to see.
That’s why sensitive information should be sent encrypted over HTTPS.

 Working with HTTPS seems simple enough. All you have to do is add an s after the
http in a URL and you’re set. Right?

 That’s true, but it places responsibility for using the HTTPS channel in the wrong
place. Just as it’s easy to make a page secure by adding an s, it’s just as easy to forget to
add that s. If you have several links in your app that require HTTPS, chances are good
that you’ll forget to add an s or two.

 On the other hand, you might overcorrect and use HTTPS in places where it’s
unnecessary.

 In addition to the authorizeRequests() method, the HttpSecurity object passed
into configure() has a requiresChannel() method that lets you declare channel
requirements for various URL patterns.

 For example, consider the Spittr application’s registration form. Although Spittr
doesn’t ask for credit card numbers or social security numbers or anything terribly
sensitive, users may want their registration information to be kept private. To ensure

isRememberMe() True if the user was authenticated via remember-me

permitAll Always evaluates to true

principal The user’s principal object

Table 9.5 Spring Security extends the Spring Expression Language with several security-specific
expressions (continued)

Security expression What it evaluates to

265Intercepting requests
that the registration form is sent over HTTPS, you can add requiresChannel() to the
configuration, as in the following listing.

@Override
protected void configure(HttpSecurity http) throws Exception {

http
.authorizeRequests()

.antMatchers("/spitter/me").hasRole("SPITTER")

.antMatchers(HttpMethod.POST, "/spittles").hasRole("SPITTER")

.anyRequest().permitAll();
.and()
.requiresChannel()

.antMatchers("/spitter/form").requiresSecure();
}

Any time a request comes in for /spitter/form, Spring Security will see that it requires
a secure channel (per the call to requiresSecure()) and automatically redirect the
request to go over HTTPS.

 Conversely, some pages don’t need to be sent over HTTPS. The home page, for
example, doesn’t carry any sensitive information and should be sent over HTTP. You
can declare that the home page always be sent over HTTP by using requires-
Insecure() instead of requiresSecure:

.antMatchers("/").requiresInecure();

If a request for / comes in over HTTPS, Spring Security will redirect the request to
flow over the insecure HTTP.

 Notice that the path selection options for channel enforcement are the same as
for authorizeRequests(). In listing 9.5 you’re using antMatches(), but regex-
Matchers() is also available for selecting path patterns with regular expressions.

9.3.3 Preventing cross-site request forgery

As you’ll recall, our SpittleController will create a new Spittle for a user when a
POST request is submitted to /spittles. But what if that POST request comes from
another website? And what if that POST request is the result of submitting the follow-
ing form on that other site?

<form method="POST" action="http://www.spittr.com/spittles">
<input type="hidden" name="message" value="I'm stupid!" />
<input type="submit" value="Click here to win a new car!" />

</form>

Let’s say that you’re tempted by the offer of winning a new car and you click the but-
ton—you’ll submit the form to http://www.spittr.com/spittles. If you’re already
logged in to spittr.com, you’ll be broadcasting a message that tells everyone that you
made a bad decision.

 This is a simple example of a cross-site request forgery (CSRF). Basically, a CSRF
attack happens when one site tricks a user into submitting a request to another server,

Listing 9.5 The requiresChannel() method enforces HTTPS for select URLs

Require HTTPS

http://www.spittr.com/spittles

266 CHAPTER 9 Securing web applications
possibly having a negative outcome. Although posting “I’m stupid!” to a microblog-
ging site is hardly the worst example of CSRF, you can easily imagine more serious
exploits, perhaps performing some undesired operation on your bank account.

 Starting with Spring Security 3.2, CSRF protection is enabled by default. In fact,
unless you take steps to work with CSRF protection or disable it, you’ll probably have
trouble getting the forms in your application to submit successfully.

 Spring Security implements CSRF protection with a synchronizer token. State-
changing requests (for example, any request that is not GET, HEAD, OPTIONS, or TRACE)
will be intercepted and checked for a CSRF token. If the request doesn’t carry a CSRF
token, or if the token doesn’t match the token on the server, the request will fail with
a CsrfException.

 This means that any forms in your application must submit a token in a _csrf
field. And that token must be the same as the one calculated and stored by the server
so that it matches up when the form is submitted.

 Fortunately, Spring Security makes this easy for you by putting the token into the
request under the request attributes. If you’re using Thymeleaf for your page tem-
plate, you’ll get the hidden _csrf field automatically, as long as the <form> tag’s
action attribute is prefixed to come from the Thymeleaf namespace:

<form method="POST" th:action="@{/spittles}">
...

</form>

If you’re using JSP for page templates, you can do something very similar:

<input type="hidden"
name="${_csrf.parameterName}"
value="${_csrf.token}" />

Even better, if you’re using Spring’s form-binding tag library, the <sf:form> tag will
automatically add the hidden CSRF token tag for you.

 Another way of dealing with CSRF is to not deal with it at all. You can disable Spring
Security’s CSRF protection by calling csrf().disable() in the configuration, as
shown in the next listing.

@Override
protected void configure(HttpSecurity http) throws Exception {

http
...
.csrf()

.disable();
}

Be warned that it’s generally not a good idea to disable CSRF protection. If you do, you
leave your application open to a CSRF attack. Use the configuration in listing 9.6 only
after careful deliberation.

Listing 9.6 You can disable Spring Security’s CSRF protection

Disable CSRF protection

267Authenticating users
 Now that you’ve configured a user store and configured Spring Security to intercept
requests, you should turn your attention to prompting the user for their credentials.

9.4 Authenticating users
When you were still using the extremely simple Spring Security configuration in list-
ing 9.1, you got a login page for free. In fact, up until you overrode configure(Http-
Security), you could count on a plain-vanilla, yet fully functional login page. But as
soon as you override configure(HttpSecurity), you lose that simple login page.

 Fortunately, it’s easy enough to get it back. All you need to do is call formLogin()
in the configure(HttpSecurity) method, as shown in the following listing.

@Override
protected void configure(HttpSecurity http) throws Exception {

http
.formLogin()
.and()

.authorizeRequests()
.antMatchers("/spitter/me").hasRole("SPITTER")
.antMatchers(HttpMethod.POST, "/spittles").hasRole("SPITTER")
.anyRequest().permitAll();

.and()

.requiresChannel()
.antMatchers("/spitter/form").requiresSecure();

}

Notice that, as before, and() is called to chain together different configuration
instructions.

 If you link to /login in the application, or if the user navigates to a page that requires
authentication, then the login page will be shown in the browser. As you can see in fig-
ure 9.2, the page isn’t very exciting aesthetically, but it does the job it needs to do.

 I’ll bet you’d prefer that your application’s login page look nicer than the default
login page. It’d be a shame to have such a plain login page ruin your otherwise beauti-
fully designed website. No problem. Let’s see how you can add a custom login page to
your application.

Listing 9.7 The formLogin() method enables a basic login page

Enable default login page

Figure 9.2 The default login
page is simple aesthetically,
but fully functional

268 CHAPTER 9 Securing web applications
9.4.1 Adding a custom login page

The first step toward creating a custom login page is knowing what you need to
include in the login form. Look no further than the HTML source of the default login
page to see what’s required:

<html>
<head><title>Login Page</title></head>
<body onload='document.f.username.focus();'>
<h3>Login with Username and Password</h3>
<form name='f' action='/spittr/login' method='POST'>
<table>

<tr><td>User:</td><td>
<input type='text' name='username' value=''></td></tr>

<tr><td>Password:</td>
<td><input type='password' name='password'/></td></tr>

<tr><td colspan='2'>
<input name="submit" type="submit" value="Login"/></td></tr>

<input name="_csrf" type="hidden"
value="6829b1ae-0a14-4920-aac4-5abbd7eeb9ee" />

</table>
</form>
</body>
</html>

The key thing to note is where the <form> submits to. And make note of the username
and password fields; you’ll need those same fields on your login page. Finally, assum-
ing that you’ve not disabled CSRF, you’ll need to be sure to include a _csrf field with
the CSRF token.

 The following listing shows a Thymeleaf template that provides a login page within
the style of the Spittr application.

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:th="http://www.thymeleaf.org">

<head>
<title>Spitter</title>
<link rel="stylesheet"

type="text/css"
th:href="@{/resources/style.css}"></link>

</head>
<body onload='document.f.username.focus();'>

<div id="header" th:include="page :: header"></div>

<div id="content">
<form name='f' th:action='@{/login}' method='POST'>

<table>
<tr><td>User:</td><td>

<input type='text' name='username' value='' /></td></tr>
<tr><td>Password:</td>

<td><input type='password' name='password'/></td></tr>
<tr><td colspan='2'>

<input name="submit" type="submit" value="Login"/></td></tr>

Listing 9.8 A custom login page for the Spittr application (as a Thymeleaf template)

Submit to /login

269Authenticating users
</table>
</form>
</div>
<div id="footer" th:include="page :: copy"></div>
</body>

</html>

Notice that the Thymeleaf template has both username and password fields, just like
the default login page. It also submits to the context-relative /login page. And since
this is a Thymeleaf template, the hidden _csrf field will automatically be added to the
form.

9.4.2 Enabling HTTP Basic authentication

Form-based authentication is ideal for human users of an application. But in chapter
16, you’ll see how to turn some of your web application’s pages into a RESTful API.
When the user of the application is another application, prompting for login with a
form just won’t do.

 HTTP Basic authentication is one way to authenticate a user to an application
directly in the HTTP request itself. You may have seen HTTP Basic authentication
before. When encountered by a web browser, it prompts the user with a plain modal
dialog box.

 But that’s just how it’s manifested in a web browser. In reality, it’s an HTTP 401
response, indicating that a username and password must be presented with the
request. This makes it suitable as a means for REST clients to authenticate against the
services they’re consuming.

 Enabling HTTP Basic authentication is as simple as calling httpBasic() on the
HttpSecurity object passed into configure(). Optionally, you can specify a realm by
calling realmName(). Here’s a rather typical example of Spring Security configuration
to enable HTTP Basic:

@Override
protected void configure(HttpSecurity http) throws Exception {

http
.formLogin()

.loginPage("/login")
.and()
.httpBasic()

.realmName("Spittr")
.and()

...
}

Notice that once again the and() method is used to chain together different configu-
ration directives in configure().

 Not much customization is available or even required with httpBasic(). HTTP
Basic authentication is either turned on or it’s not. So rather than dwell on the topic
any further, let’s move on to see how to have a user automatically authenticated via
remember-me functionality.

270 CHAPTER 9 Securing web applications
9.4.3 Enabling remember-me functionality

It’s important for an application to be able to authenticate users. But from the user’s
perspective, it’d be nice if the application didn’t always prompt them with a login
every time they use it. That’s why many websites offer remember-me functionality, so
that you can log in once and then be remembered by the application when you come
back to it later.

 Spring Security makes it easy to add remember-me functionality to an application.
To turn on remember-me support, all you need to do is call rememberMe() on the
HttpSecurity passed into configure():

@Override
protected void configure(HttpSecurity http) throws Exception {

http
.formLogin()

.loginPage("/login")
.and()
.rememberMe()

.tokenValiditySeconds(2419200)

.key("spittrKey")
...

}

Here, in addition to turning on remember-me functionality, a bit of special configura-
tion has also been added. By default, a remember-me token is stored in a cookie that’s
valid for up to two weeks. But this example specifies that the token should stay valid
for up to four weeks (2,419,200 seconds).

 The token that’s stored in the cookie is made up of the username, password, an
expiration date, and a private key—all encoded in an MD5 hash before being written
to the cookie. By default, the private key is SpringSecured, but this example sets it to
spitterKey to make it specific to the Spittr application.

 Simple enough. Now that the remember-me functionality is enabled, you’ll need a
way for users to indicate that they’d like the application to remember them. For that,
the login request will need to include a remember-me parameter. A simple check box
in the login form ought to do the job:

<input id="remember_me" name="remember-me" type="checkbox"/>
<label for="remember_me" class="inline">Remember me</label>

Just as important as being able to log in to an application is the ability to log out. This
is especially true if you’ve enabled remember-me; otherwise the user would be logged
into the application forever. Let’s see how you can add the ability to log out.

9.4.4 Logging out

As it turns out, logout capability is already enabled by your configuration without you
having to do anything else. All you need to do is add a link that uses it.

271Securing the view
 Logout is implemented as a servlet filter that (by default) intercepts requests to
/logout. Therefore, adding logout to an application is as easy as adding the following
link (shown here as a Thymeleaf snippet):

<a th:href="@{/logout}">Logout

When the user clicks on the link, the request for /logout will be handled by Spring
Security’s LogoutFilter. The user will be logged out and any remember-me tokens
cleared. After the logout is complete, the user’s browser will be redirected to
/login?logout to give the user an opportunity to log in again.

 If you’d like to have the user redirected to some other page, such as the applica-
tion’s home page, you can configure that in configure() like this:

@Override
protected void configure(HttpSecurity http) throws Exception {

http
.formLogin()

.loginPage("/login")
.and()
.logout()

.logoutSuccessUrl("/")
...

}

Here, as before, and() chains a call to logout(). The logout() method offers meth-
ods for configuring logout behavior. In this case, the call to logoutSuccessUrl() indi-
cates that the browser should be redirected to / after a successful logout.

 In addition to logoutSuccessUrl(), you may want to also override the default
path that LogoutFilter intercepts. You can do that with a call to logoutUrl():

.logout()
.logoutSuccessUrl("/")
.logoutUrl("/signout")

So far you’ve seen how to secure web applications as requests are made. The assump-
tion has been that security would involve stopping a user from accessing a URL that
they’re not authorized to use. But it’s also a good idea to never show links that a user
won’t be able to follow. Let’s see how to add view layer security.

9.5 Securing the view
When rendering HTML to be served in the browser, you may want the view to reflect
the security constraints and information. A simple example may be that you want to
render the authenticated user’s principal (for example, “You are logged in as…”). Or
you may want to conditionally render certain view elements, depending on what
authorities have been granted to the user.

 In chapter 6, we looked at two significant options for rendering views in a Spring
MVC application: JSP and Thymeleaf. It doesn’t matter which of these options you
choose, there’s a way to work with security in the view. Spring Security itself provides

272 CHAPTER 9 Securing web applications
a JSP tag library, whereas Thymeleaf offers Spring Security integration through a spe-
cial dialect.

 Let’s see how to work Spring Security into our views, starting with Spring Security’s
JSP tag library.

9.5.1 Using Spring Security’s JSP tag library

Spring Security’s JSP tag library is small and includes only three tags, listed in table 9.6.

To use the JSP tag library, we’ll need to declare it in any JSP file where it will be used:

<%@ taglib prefix="security"
uri="http://www.springframework.org/security/tags" %>

Once the tag library has been declared in the JSP file, you’re ready to use it. Let’s look
at each of the three JSP tags that come with Spring Security and see how they work.

ACCESSING AUTHENTICATION DETAILS

One of the simplest things that the Spring Security JSP tag library can do is provide
convenient access to the user’s authentication information. For example, it’s com-
mon for websites to display a “welcome” or “hello” message in the page header, iden-
tifying the user by their username. That’s precisely the kind of thing that
<security:authentication> can do for us. Here’s an example:

Hello <security:authentication property="principal.username" />!

The property attribute identifies a property of the user’s authentication object. The
properties available will vary depending on how the user was authenticated, but you can
count on a few common properties being available, including those listed in table 9.7.

 In our example, the property being rendered is actually the nested username prop-
erty of the principal property.

Table 9.6 Spring Security supports security in the view layer with a JSP tag library

JSP tag What it does

<security:accesscontrollist> Conditionally renders its body content if the user is granted
authorities by an access control list

<security:authentication> Renders details about the current authentication

<security:authorize> Conditionally renders its body content if the user is granted
certain authorities or if a SpEL expression evaluates to true

Table 9.7 You can access several of the user’s authentication details using the
<security:authentication> JSP tag

Authentication property Description

authorities A collection of GrantedAuthority objects that represent the privi-
leges granted to the user

273Securing the view
When used as shown in the previous example, <security:authentication> will ren-
der the property’s value in the view. But if you’d rather assign it to a variable, then sim-
ply specify the name of the variable in the var attribute. For example, here's how you
could assign it to a property named loginId:

<security:authentication property="principal.username"
var="loginId"/>

The variable is created in page scope by default. But if you’d rather create it in some
other scope, such as request or session (or any of the scopes available from
javax.servlet.jsp.PageContext), you can specify it via the scope attribute. For
example, to create the variable in request scope, use the <security:authentication>
tag like this:

<security:authentication property="principal.username"
var="loginId" scope="request" />

The <security:authentication> tag is useful, but it’s just the start of what Spring
Security’s JSP tag library can do. Let’s see how to conditionally render content
depending on the user’s privileges.

CONDITIONAL RENDERING

Sometimes portions of the view should or shouldn’t be rendered, depending on what
the user is privileged to see. There’s no point in showing a login form to a user who’s
already logged in or in showing a personalized greeting to a user who’s not logged in.

 Spring Security’s <security:authorize> JSP tag conditionally renders a portion of
the view depending on the user’s granted authorities. For example, in the Spittr appli-
cation you don’t want to show the form for adding a new spittle unless the user has the
ROLE_SPITTER role. Listing 9.9 shows how to use the <security:authorize> tag to dis-
play the spittle form if the user has ROLE_SPITTER authority.

<sec:authorize access="hasRole('ROLE_SPITTER')">
<s:url value="/spittles" var="spittle_url" />
<sf:form modelAttribute="spittle"

action="${spittle_url}">

credentials The credentials that were used to verify the principal (commonly, this
is the user’s password)

details Additional information about the authentication (IP address, certifi-
cate serial number, session ID, and so on)

principal The user’s principal

Listing 9.9 <sec:authorize> conditionally renders content based on SpEL

Table 9.7 You can access several of the user’s authentication details using the
<security:authentication> JSP tag

Authentication property Description

Only with
ROLE_SPITTER
authority

274 CHAPTER 9 Securing web applications
<sf:label path="text"><s:message code="label.spittle"
text="Enter spittle:"/></sf:label>

<sf:textarea path="text" rows="2" cols="40" />
<sf:errors path="text" />

<div class="spitItSubmitIt">

<input type="submit" value="Spit it!"
class="status-btn round-btn disabled" />

</div>
</sf:form>

</sec:authorize>

The access attribute is given a SpEL expression whose result determines whether
<security:authorize>’s body is rendered. Here you’re using the hasRole

('ROLE_SPITTER') expression to ensure that the user has the ROLE_SPITTER role. But
you have the full power of SpEL at your disposal when setting the access attribute,
including the Spring Security-provided expressions listed in table 9.5.

 With these expressions available, you can cook up some interesting security con-
straints. For example, imagine that the application has some administrative functions
that are only available to the user whose username is “habuma”. Maybe you’d use the
isAuthenticated() and principal expressions like this:

<security:authorize
access="isAuthenticated() and principal.username=='habuma'">

Administration
</security:authorize>

I’m sure you can dream up even more interesting expressions than that. I’ll leave it up
to your imagination to concoct more security constraints. The options are virtually
limitless with SpEL.

 But one thing about the example that I dreamt up still bugs me. Though I might
want to restrict the administrative functions to “habuma”, perhaps doing it with a JSP tag
isn’t ideal. Sure, it’ll keep the link from being rendered in the view. But nothing’s stop-
ping anyone from manually entering the /admin URL in the browser’s address line.

 Drawing on what you learned earlier in this chapter, that should be an easy thing
to fix. Adding a new call to the antMatchers() method in the security configuration
will tighten security around the /admin URL:

.antMatchers("/admin")
.access("isAuthenticated() and principal.username=='habuma'");

Now the admin functionality is locked down. The URL is secured and the link to the
URL won’t appear unless the user is authorized to use it. But to do that, you had to
declare the SpEL expression in two places—in the security configuration and in the
<security:authorize> tag’s access attribute. Is there any way to eliminate that dupli-
cation and still prevent the link to the administrative functions from being rendered
unless the rule is met?

 That’s what the <security:authorize> tag’s url attribute is for. Unlike the access
attribute where the security constraint is explicitly declared, the url attribute indirectly

275Securing the view
refers to the security constraints for a given URL pattern. Since you’ve already declared
security constraints for /admin in the Spring Security configuration, you can use the
url attribute like this:

<security:authorize url="/admin">
<spring:url value="/admin" var="admin_url" />

Admin

</security:authorize>

Since the /admin URL is restricted to only authenticated users whose principal’s user-
name is “habuma”, the body of the <security:authorize> tag will only be rendered if
those same conditions are met. The expression was configured in one place (in the
security configuration), but used in two places.

 Spring Security’s JSP tag library comes in very handy, especially when it comes to
conditionally rendering view elements to only those users who are allowed to see
them. But if you’ve chosen Thymeleaf instead of JSP for your views, then you’re not
out of luck. You’ve already seen how Thymeleaf’s Spring dialect will automatically add
a hidden CSRF token field to your forms. Now let’s look at how Thymeleaf supports
Spring Security.

9.5.2 Working with Thymeleaf’s Spring Security dialect

Much like Spring Security’s JSP tag library, Thymeleaf’s security dialect offers condi-
tional rendering and the ability to render authentication details. Table 9.8 lists the
attributes provided by the security dialect.

In order to use the security dialect, you’ll need to make sure that the Thymeleaf
Extras Spring Security module is in your application’s classpath. Then you’ll need to
register the SpringSecurityDialect with the SpringTemplateEngine in your config-
uration. Listing 9.10 shows the @Bean method that declares the SpringTemplate-
Engine bean, including the SpringSecurityDialect.

Table 9.8 Thymeleaf’s security dialect offers attributes that mirror much of Spring Security’s tag
library

Attribute What it does

sec:authentication Renders properties of the authentication object. Similar to Spring
Security’s <sec:authentication/> JSP tag.

sec:authorize Conditionally renders content based on evaluation of an expression.
Similar to Spring Security’s <sec:authorize/> JSP tag.

sec:authorize-acl Conditionally renders content based on evaluation of an expression.
Similar to Spring Security’s <sec:accesscontrollist/> JSP tag.

sec:authorize-expr An alias for the sec:authorize attribute.

sec:authorize-url Conditionally renders content based on evaluation of security rules
associated with a given URL path. Similar to Spring Security’s
<sec:authorize/> JSP tag when using the url attribute.

276 CHAPTER 9 Securing web applications

@Bean
public SpringTemplateEngine templateEngine(

TemplateResolver templateResolver) {
SpringTemplateEngine templateEngine = new SpringTemplateEngine();
templateEngine.setTemplateResolver(templateResolver);
templateEngine.addDialect(new SpringSecurityDialect());
return templateEngine;

}

With the security dialect, you’re almost ready to start using its attributes in your
Thymeleaf templates. First, declare the security namespace in the templates where
you’ll be using those attributes:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:th="http://www.thymeleaf.org"
xmlns:sec=

"http://www.thymeleaf.org/thymeleaf-extras-springsecurity3">
...

</html>

Here the standard Thymeleaf dialect is assigned to the th prefix as before, and the
security dialect is assigned to the sec prefix.

 Now you can use the Thymeleaf attributes however you see fit. For example, sup-
pose that you want to render text saying “Hello” to the user if the user is authenti-
cated. The following snippet from a Thymeleaf template will do the trick:

<div sec:authorize="isAuthenticated()">
Hello someone

</div>

The sec:authorize attribute takes a SpEL expression. If that expression evaluates to
true, then the body of the element will be rendered. In this case, the expression is
isAuthenticated(), so the body of the <div> tag will be rendered only if the user is
authenticated. With regard to the body, it says “Hello” to the authentication’s name
property.

 As you’ll recall, Spring Security’s <sec:authorize> JSP tag has a url attribute that
causes its body to be conditionally rendered based on the authorizations associated
with a given URL path. With Thymeleaf, you can accomplish the same thing with the
sec:authorize-url attribute. For example, the following Thymeleaf snippet accom-
plishes the same thing you previously used the <sec:authorize> JSP tag and url attri-
bute for:

<a th:href="@{/admin}">Admin

Assuming that the user has authorization to access /admin, then a link to the admin
page will be rendered; otherwise it won’t.

Listing 9.10 Registering Thymeleaf's Spring Security dialect

Register the
security dialect

277Summary
9.6 Summary
Security is a crucial aspect of many applications. Spring Security provides a mecha-
nism for securing your application that’s simple, flexible, and powerful.

 Using a series of servlet filters, Spring Security can control access to web resources,
including Spring MVC controllers. But thanks to Spring Security’s Java configuration
model, you don’t need to deal with those filters directly. Web security can be declared
concisely.

 When it comes to authenticating users, Spring Security offers several options. You
saw how to configure authentication against an in-memory user store, a relational data-
base, and LDAP directory servers. And when your authentication needs don’t fit any of
those options, you saw how to create and configure a custom user-details service.

 Over the past few chapters, you’ve seen how Spring fits into the front end of an
application. Coming up in the next section, we’ll move a bit deeper down the stack
and see how Spring plays a part in the back end. That exploration will start in the next
chapter with a look at Spring’s JDBC abstraction.

Part 3

Spring in the back end

Although the web pages served by a web application are all your users ever
see, the real work happens behind the scenes on the back end server where data
is processed and persisted. Part 3 will look at how Spring can help you work with
data in the back end.

 Relational databases have been the workhorse of enterprise applications for
decades. In chapter 10, “Hitting the database with Spring and JDBC,” you’ll see
how to use Spring’s JDBC abstraction to query relational databases in a way that is
far simpler than native JDBC.

 If JDBC is not your style, perhaps you’d rather work with an object-relational
mapping (ORM) framework. Chapter 11, “Persisting data with object-relational
mapping,” will show you how Spring integrates with ORM frameworks such as
Hibernate and other implementations of the Java Persistence API (JPA). In addi-
tion, you’ll see how to work magic with Spring Data JPA, automatically generat-
ing repository implementations on the fly at runtime.

 Relational databases aren’t always a perfect fit. Therefore, chapter 12, “Work-
ing with NoSQL databases,” looks at other Spring data projects useful for persist-
ing data in a variety of nonrelational databases, including MongoDB, Neo4j, and
Redis.

 Chapter 13, “Caching data,” layers the previous persistence chapters with
caching, to improve application performance by avoiding the database alto-
gether if the data needed is readily available.

 Security is an important aspect in the back end as well as the front end. In
Chapter 14, “Securing methods,” you’ll see how to apply Spring Security in the
back end, intercepting method calls and ensuring that the caller has been
granted proper authority.

Hitting the database
with Spring and JDBC
With the core of the Spring container now under your belt, it’s time to put it to
work in real applications. A perfect place to start is with a requirement of nearly
any enterprise application: persisting data. You have probably dealt with database
access in an application in the past. In practice, you’ll know that data access has
many pitfalls. You have to initialize your data-access framework, open connections,
handle various exceptions, and close connections. If you get any of this wrong, you
could potentially corrupt or delete valuable company data. In case you haven’t
experienced the consequences of mishandled data access, it’s a Bad Thing.

 Because we strive for Good Things, we turn to Spring. Spring comes with a family
of data-access frameworks that integrate with a variety of data-access technologies.
Whether you’re persisting your data via direct JDBC or an object-relational map-
ping (ORM) framework such as Hibernate, Spring removes the tedium of data
access from your persistence code. Instead, you can lean on Spring to handle the

This chapter covers
 Defining Spring’s data-access support

 Configuring database resources

 Working with Spring’s JDBC template
281

282 CHAPTER 10 Hitting the database with Spring and JDBC
low-level data-access work for you so that you can turn your attention to managing
your application’s data.

 As you develop the persistence layer of the Spittr application, you’re faced with
some choices. You could use JDBC, Hibernate, the Java Persistence API (JPA), or any of
a number of persistence frameworks. Or you might consider one of the new breed of
NoSQL databases (or schemaless databases, as I prefer to call them) that are popular
these days.

 No matter what choice you make, it’s good to know that there’s probably support
for it in Spring. In this chapter, we’ll focus on Spring’s support for JDBC. But first, let’s
lay some groundwork by getting familiar with Spring’s persistence philosophy.

10.1 Learning Spring’s data-access philosophy
From the previous chapters, you know that one of Spring’s goals is to allow you to
develop applications following the sound object-oriented (OO) principle of coding to
interfaces. Spring’s data-access support is no exception.

 Like many applications, your Spittr application needs to read data from and write
data to some kind of database. To avoid scattering persistence logic across all
components in the application, it’s good to factor database access into one or more
components that are focused on that task. Such components are commonly called
data-access objects (DAOs) or repositories.

 To avoid coupling the application to any particular data-access strategy, properly
written repositories should expose their functionality through interfaces. Figure 10.1
shows the proper approach to designing your data-access tier.

 As you can see, the service objects access the repositories through interfaces. This
has a couple of positive consequences. First, it makes your service objects easily test-
able, because they’re not coupled to a specific data-access implementation. In fact,
you could create mock implementations of these data-access interfaces. That would
allow you to test your service object without ever having to connect to the database,
which would significantly speed up your unit tests and rule out the chance of a test
failure due to inconsistent data.

 In addition, the data-access tier is accessed in a persistence technology–agnostic
manner. The chosen persistence approach is isolated to the repository, and only the

Repository
interface

Repository
implementation

Service
object

Figure 10.1 Service objects don’t
handle their own data access. Instead,
they delegate data access to
repositories. The repository’s interface
keeps it loosely coupled to the service
object.

283Learning Spring’s data-access philosophy
relevant data-access methods are exposed through the interface. This makes for a
flexible application design and allows the chosen persistence framework to be
swapped out with minimal impact on the rest of the application. If the implementa-
tion details of the data-access tier were to leak into other parts of the application, the
entire application would become coupled with the data-access tier, leading to a rigid
application design.

INTERFACES AND SPRING If, after reading the last couple of paragraphs,
you feel that I have a strong bias toward hiding the persistence layer behind
interfaces, then I’m happy I was able to get that point across. I believe that
interfaces are key to writing loosely coupled code and that they should be
used at all layers of an application, not just at the data-access layer. That said,
it’s also important to note that though Spring encourages the use of inter-
faces, Spring doesn’t require them—you’re welcome to use Spring to wire a
bean (repository or otherwise) directly into a property of another bean with-
out an interface between them.

One way Spring helps you insulate your data-access tier from the rest of your applica-
tion is by providing a consistent exception hierarchy that’s used across all of its sup-
ported persistence options.

10.1.1 Getting to know Spring’s data-access exception hierarchy

There’s an old joke about a skydiver who’s blown off course and ends up landing in a
tree, dangling above the ground. After a while, someone walks by, and the skydiver
asks where he is. The passerby answers, “You’re about 20 feet off the ground.” The sky-
diver replies, “You must be a software analyst.” “You’re right. How did you know?” asks
the passerby. “Because what you told me was 100% accurate but completely worthless.”

 That story has been told several times, with the profession or nationality of
the passerby different each time. But the story reminds me of JDBC’s SQLException.
If you’ve ever written JDBC code (without Spring), you’re probably keenly aware that
you can’t do anything with JDBC without being forced to catch SQLException. SQL-
Exception means something went wrong while trying to access a database. But there’s
little about that exception that tells you what went wrong or how to deal with it.

 Some common problems that might cause a SQLException to be thrown include
these:

 The application is unable to connect to the database.
 The query being performed has errors in its syntax.
 The tables and/or columns referred to in the query don’t exist.
 An attempt was made to insert or update values that violate a database

constraint.

The big question surrounding SQLException is how it should be handled when it’s
caught. As it turns out, many of the problems that trigger a SQLException can’t be

284 CHAPTER 10 Hitting the database with Spring and JDBC
remedied in a catch block. Most SQLExceptions that are thrown indicate a fatal con-
dition. If the application can’t connect to the database, that usually means the applica-
tion will be unable to continue. Likewise, if there are errors in the query, little can be
done about it at runtime.

 If nothing can be done to recover from a SQLException, why are you forced to
catch it?

 Even if you have a plan for dealing with some SQLExceptions, you’ll have to catch
the SQLException and dig around in its properties for more information about the
nature of the problem. That’s because SQLException is treated as a one-size-fits-all
exception for problems related to data access. Rather than have a different exception
type for each possible problem, SQLException is the exception that’s thrown for all
data-access problems.

 Some persistence frameworks offer a richer hierarchy of exceptions. Hibernate,
for example, offers almost two dozen different exceptions, each targeting a specific
data-access problem. This makes it possible to write catch blocks for the exceptions
that you want to deal with.

 Even so, Hibernate’s exceptions are specific to Hibernate. As stated before,
we’d like to isolate the specifics of the persistence mechanism to the data-access layer.
If Hibernate-specific exceptions are being thrown, then the fact that you’re dealing
with Hibernate will leak into the rest of the application. Either that, or you’ll be
forced to catch persistence platform exceptions and rethrow them as platform-
agnostic exceptions.

 On one hand, JDBC’s exception hierarchy is too generic—it’s not much of a hierar-
chy at all. On the other hand, Hibernate’s exception hierarchy is proprietary to Hiber-
nate. What we need is a hierarchy of data-access exceptions that are descriptive but
not directly associated with a specific persistence framework.

SPRING’S PERSISTENCE PLATFORM–AGNOSTIC EXCEPTIONS

Spring JDBC provides a hierarchy of data-access exceptions that solve both problems.
In contrast to JDBC, Spring provides several data-access exceptions, each descriptive of
the problem for which they’re thrown. Table 10.1 shows some of Spring’s data-access
exceptions lined up against the exceptions offered by JDBC.

 As you can see, Spring has an exception for virtually anything that could go wrong
when reading from or writing to a database. And the list of Spring’s data-access excep-
tions is more vast than what’s shown in table 10.1. (I would have listed them all, but I
didn’t want JDBC to get an inferiority complex.)

 Even though Spring’s exception hierarchy is far richer than JDBC’s simple SQL-
Exception, it isn’t associated with any particular persistence solution. This means you
can count on Spring to throw a consistent set of exceptions, regardless of which persis-
tence provider you choose. This helps to keep your persistence choice confined to the
data-access layer.

285Learning Spring’s data-access philosophy

LOOK, MA! NO CATCH BLOCKS!
What isn’t evident from table 10.1 is that all of those exceptions are rooted with
DataAccessException. What makes DataAccessException special is that it’s an
unchecked exception. In other words, you don’t have to catch any of the data-access
exceptions thrown from Spring (although you’re welcome to if you’d like).

 DataAccessException is just one example of Spring’s across-the-board philosophy
of checked versus unchecked exceptions. Spring takes the stance that many excep-
tions are the result of problems that can’t be addressed in a catch block. Instead of
forcing developers to write catch blocks (which are often left empty), Spring pro-
motes the use of unchecked exceptions. This leaves the decision of whether or not to
catch an exception in your hands.

Table 10.1 JDBC’s exception hierarchy versus Spring’s data-access exceptions

JDBC’s exceptions Spring’s data-access exceptions

BatchUpdateException
DataTruncation
SQLException
SQLWarning

BadSqlGrammarException
CannotAcquireLockException
CannotSerializeTransactionException
CannotGetJdbcConnectionException
CleanupFailureDataAccessException
ConcurrencyFailureException
DataAccessException
DataAccessResourceFailureException
DataIntegrityViolationException
DataRetrievalFailureException
DataSourceLookupApiUsageException
DeadlockLoserDataAccessException
DuplicateKeyException
EmptyResultDataAccessException
IncorrectResultSizeDataAccessException
IncorrectUpdateSemanticsDataAccessException
InvalidDataAccessApiUsageException
InvalidDataAccessResourceUsageException
InvalidResultSetAccessException
JdbcUpdateAffectedIncorrectNumberOfRowsException
LobRetrievalFailureException
NonTransientDataAccessResourceException
OptimisticLockingFailureException
PermissionDeniedDataAccessException
PessimisticLockingFailureException
QueryTimeoutException
RecoverableDataAccessException
SQLWarningException
SqlXmlFeatureNotImplementedException
TransientDataAccessException
TransientDataAccessResourceException
TypeMismatchDataAccessException
UncategorizedDataAccessException
UncategorizedSQLException

286 CHAPTER 10 Hitting the database with Spring and JDBC
 To take advantage of Spring’s data-access exceptions, you must use one of Spring’s
supported data-access templates. Let’s look at how Spring templates can greatly sim-
plify data access.

10.1.2 Templating data access

You’ve probably traveled by plane before. If so, you’ll surely agree that one of the most
important parts of traveling is getting your luggage from point A to point B. There are
many steps to this process: When you arrive at the terminal, your first stop is at the
counter to check your luggage. Next, security scans it to ensure the safety of the flight.
Then it takes a ride on the luggage train on its way to being placed on the plane. If
you need to catch a connecting flight, your luggage needs to be moved, as well. When
you arrive at your final destination, the luggage has to be removed from the plane and
placed on the carousel. Finally, you go down to the baggage claim area and pick it up.

 Even though there are many steps to this process, you’re actively involved in only a
couple of them. The carrier is responsible for driving the process. You’re involved
only when you need to be; the rest is taken care of. This mirrors a powerful design pat-
tern: the template method pattern.

 A template method defines the skeleton of a process. In the example, the process
is moving luggage from departure city to arrival city. The process itself is fixed; it never
changes. The overall sequence of events for handling luggage occurs the same way
every time: luggage is checked in, luggage is loaded onto the plane, and so forth.
Some steps of the process are fixed as well—they happen the same way every time.
When the plane arrives at its destination, every piece of luggage is unloaded one at a
time and placed on a carousel to be taken to baggage claim.

 At certain points, the process delegates its work to a subclass to fill in some imple-
mentation-specific details. This is the variable part of the process. For example, the
handling of luggage starts with a passenger checking in the luggage at the counter.
This part of the process always has to happen at the beginning, so its sequence in the
process is fixed. Because each passenger’s luggage check-in is different, the imple-
mentation of this part of the process is determined by the passenger. In software
terms, a template method delegates the implementation-specific portions of the pro-
cess to an interface. Different implementations of this interface define specific imple-
mentations of this portion of the process.

 This is the same pattern that Spring applies to data access. No matter what technol-
ogy you’re using, certain data-access steps are required. For example, you always need
to obtain a connection to your data store and clean up resources when you’re done.
These are the fixed steps in a data-access process. But each data-access method you
write is slightly different. You query for different objects and update the data in differ-
ent ways. These are the variable steps in the data-access process.

 Spring separates the fixed and variable parts of the data-access process into two dis-
tinct classes: templates and callbacks. Templates manage the fixed part of the process,
whereas your custom data-access code is handled in callbacks. Figure 10.2 shows the
responsibilities of both classes.

287Learning Spring’s data-access philosophy
As you can see, Spring’s template classes handle the fixed parts of data access—con-
trolling transactions, managing resources, and handling exceptions. Meanwhile, the
specifics of data access as they pertain to your application—creating statements, bind-
ing parameters, and marshaling result sets—are handled in the callback implementa-
tion. In practice, this makes for an elegant framework, because all you have to worry
about is your data-access logic.

 Spring comes with several templates to choose from, depending on your persis-
tence platform choice. If you’re using straight JDBC, then you’ll want to use Jdbc-
Template. But if you favor one of the object-relational mapping frameworks, perhaps
HibernateTemplate or JpaTemplate is more suitable. Table 10.2 lists all of Spring’s
data-access templates and their purposes.

Table 10.2 Spring comes with several data-access templates, each suitable for a different persistence
mechanism.

Template class (org.springframework.*) Used to template . . .

jca.cci.core.CciTemplate JCA CCI connections

jdbc.core.JdbcTemplate JDBC connections

jdbc.core.namedparam.NamedParameterJdbcTemplate JDBC connections with support for
named parameters

jdbc.core.simple.SimpleJdbcTemplate JDBC connections, simplified with
Java 5 constructs (deprecated in
Spring 3.1)

orm.hibernate3.HibernateTemplate Hibernate 3.x+ sessions

orm.ibatis.SqlMapClientTemplate iBATIS SqlMap clients

orm.jdo.JdoTemplate Java Data Object implementations

orm.jpa.JpaTemplate Java Persistence API entity
managers

Repository template

1. Prepare resources
2. Start transaction

5. Commit/rollback
transaction

6. Close resources
and handle errors

Repository callback

3. Execute in
transaction

4. Return data

Figure 10.2 Spring’s
data-access template
classes take
responsibility for common
data-access duties. For
application-specific
tasks, it calls back into a
custom callback object.

288 CHAPTER 10 Hitting the database with Spring and JDBC
Spring provides support for several persistence frameworks, and there isn’t enough
space to cover them all in this chapter. Therefore, I’m going to focus on what I believe
are the most beneficial persistence options and the ones you’ll most likely be using.

 We’ll start with basic JDBC access in this chapter, because it’s the simplest way to
read data from and write data to a database. Then, in chapter 11, we’ll look at Hiber-
nate and JPA, two of the most popular POJO-based ORM solutions. We’ll wrap up our
exploration of Spring persistence in chapter 12 by looking at how the Spring Data
project brings the world of schemaless data to Spring.

 But first things first. Most of Spring’s persistence support options depend on a data
source, so before you can get started with declaring templates and repositories, you
need to configure Spring with a data source to be able to connect to the database.

10.2 Configuring a data source
Regardless of which form of Spring-supported data access you use, you’ll likely need
to configure a reference to a data source. Spring offers several options for configuring
data-source beans in your Spring application, including these:

 Data sources that are defined by a JDBC driver
 Data sources that are looked up by JNDI

 Data sources that pool connections

For production-ready applications, I recommend using a data source that draws its
connections from a connection pool. When possible, I prefer to retrieve the pooled
data source from an application server via JNDI. With that preference in mind, let’s
start by looking at how to configure Spring to retrieve a data source from JNDI.

10.2.1 Using JNDI data sources

Spring applications are often deployed to run in a Java EE application server such as
WebSphere or JBoss, or even a web container like Tomcat. These servers allow you to
configure data sources to be retrieved via JNDI. The benefit of configuring data
sources in this way is that they can be managed completely external to the application,
allowing the application to ask for a data source when it’s ready to access the database.
Moreover, data sources managed in an application server are often pooled for greater
performance and can be hot-swapped by system administrators.

 With Spring, you can configure a reference to a data source that’s kept in JNDI and
wire it into the classes that need it as if it were just another Spring bean. The
<jee:jndi-lookup> element from Spring’s jee namespace makes it possible to
retrieve any object, including data sources, from JNDI and make it available as a
Spring bean. For example, if your application’s data source were configured in JNDI,
you might use <jee:jndi-lookup> like this to wire it into Spring:

<jee:jndi-lookup id="dataSource"
jndi-name="/jdbc/SpitterDS"

resource-ref="true" />

289Configuring a data source
The jndi-name attribute is used to specify the name of the resource in JNDI. If only
the jndi-name property is set, then the data source will be looked up using the name
given as is. But if the application is running in a Java application server, you’ll want to
set the resource-ref property to true so that the value given in jndi-name will be
prepended with java:comp/env/.

 Alternatively, if you’re using Java configuration, you can use JndiObjectFactory-
Bean to look up the DataSource from JNDI:

@Bean
public JndiObjectFactoryBean dataSource() {

JndiObjectFactoryBean jndiObjectFB = new JndiObjectFactoryBean();
jndiObjectFB.setJndiName("jdbc/SpittrDS");
jndiObjectFB.setResourceRef(true);
jndiObjectFB.setProxyInterface(javax.sql.DataSource.class);
return jndiObjectFB;

}

Clearly, the Java configuration for JNDI-fetched beans is more involved. Many times,
Java configuration is simpler than XML configuration, but this is one time when you
might write more code in Java. Even so, it’s easy to see how this Java configuration par-
allels the XML equivalent. And it isn’t that much more Java configuration.

10.2.2 Using a pooled data source

If you’re unable to retrieve a data source from JNDI, the next best thing is to configure
a pooled data source directly in Spring. Although Spring doesn’t provide a pooled
data source, plenty of suitable ones are available, including the following open source
options:

 Apache Commons DBCP (http://jakarta.apache.org/commons/dbcp)
 c3p0 (http://sourceforge.net/projects/c3p0/)
 BoneCP (http://jolbox.com/)

Most of these connection pools can be configured as a data source in Spring in a way
that resembles Spring’s own DriverManagerDataSource or SingleConnectionData-
Source (which we’ll talk about next). For example, here’s how you might configure
DBCP’s BasicDataSource:

<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource"
p:driverClassName="org.h2.Driver"
p:url="jdbc:h2:tcp://localhost/~/spitter"
p:username="sa"
p:password=""
p:initialSize="5"
p:maxActive="10" />

Or, if you prefer Java configuration, the pooled DataSource bean can be declared like
this:

@Bean
public BasicDataSource dataSource() {

http://jakarta.apache.org/commons/dbcp
http://sourceforge.net/projects/c3p0/
http://jolbox.com/

290 CHAPTER 10 Hitting the database with Spring and JDBC
BasicDataSource ds = new BasicDataSource();
ds.setDriverClassName("org.h2.Driver");
ds.setUrl("jdbc:h2:tcp://localhost/~/spitter");
ds.setUsername("sa");
ds.setPassword("");
ds.setInitialSize(5);
ds.setMaxActive(10);
return ds;

}

The first four properties are elemental to configuring a BasicDataSource. The
driverClassName property specifies the fully qualified name of the JDBC driver class.
Here you configure it with the JDBC driver for the H2 database. The url property is
where you set the complete JDBC URL for the database. Finally, the username and
password properties are used to authenticate when you’re connecting to the database.

 Those four basic properties define connection information for BasicDataSource.
In addition, you can use several properties to configure the data source pool. Table 10.3
lists a few of the most useful pool-configuration properties of DBCP’s BasicDataSource.

 In this case, you’ve configured the pool to start with five connections. Should more
connections be needed, BasicDataSource is allowed to create them, up to a maxi-
mum of 10 active connections.

Table 10.3 BasicDataSource’s pool-configuration properties

Pool-configuration property What it specifies

initialSize The number of connections created when the pool is started.

maxActive The maximum number of connections that can be allocated
from the pool at the same time. If 0, there’s no limit.

maxIdle The maximum number of connections that can be idle in the
pool without extras being released. If 0, there’s no limit.

maxOpenPreparedStatements The maximum number of prepared statements that can be
allocated from the statement pool at the same time. If 0,
there’s no limit.

maxWait How long the pool will wait for a connection to be returned to
the pool (when there are no available connections) before an
exception is thrown. If 1, wait indefinitely.

minEvictableIdleTimeMillis How long a connection can remain idle in the pool before it’s
eligible for eviction.

minIdle The minimum number of connections that can remain idle in
the pool without new connections being created.

poolPreparedStatements Whether or not to pool prepared statements (Boolean).

291Configuring a data source
10.2.3 Using JDBC driver-based data sources

The simplest data source you can configure in Spring is one that’s defined through a
JDBC driver. Spring offers three such data-source classes to choose from (all in the
org.springframework.jdbc.datasource package):

 DriverManagerDataSource—Returns a new connection every time a connec-
tion is requested. Unlike DBCP’s BasicDataSource, the connections provided
by DriverManagerDataSource aren’t pooled.

 SimpleDriverDataSource—Works much the same as DriverManagerData-
Source except that it works with the JDBC driver directly to overcome class load-
ing issues that may arise in certain environments, such as in an OSGi container.

 SingleConnectionDataSource—Returns the same connection every time a
connection is requested. Although SingleConnectionDataSource isn’t exactly
a pooled data source, you can think of it as a data source with a pool of exactly
one connection.

Configuring any of these data sources is similar to how you configured DBCP’s Basic-
DataSource. For example, here’s how you’d configure a DriverManagerDataSource
bean:

@Bean
public DataSource dataSource() {

DriverManagerDataSource ds = new DriverManagerDataSource();
ds.setDriverClassName("org.h2.Driver");
ds.setUrl("jdbc:h2:tcp://localhost/~/spitter");
ds.setUsername("sa");
ds.setPassword("");
return ds;

}

In XML, the DriverManagerDataSource can be configured as follows:

<bean id="dataSource"
class="org.springframework.jdbc.datasource.DriverManagerDataSource"
p:driverClassName="org.h2.Driver"
p:url="jdbc:h2:tcp://localhost/~/spitter"
p:username="sa"
p:password="" />

The only significant difference with these data-source beans as compared to the pool-
ing data-source beans is that because they don’t provide a connection pool, there are
no pool configuration properties to set.

 Although these data sources are great for small applications and running in
development, you should seriously consider the implications of using them in a pro-
duction application. Because SingleConnectionDataSource has one and only one
database connection to work with, it doesn’t work well in multithreaded applications
and is best limited to use in testing. At the same time, even though DriverManager-
DataSource and SimpleDriverDataSource are both capable of supporting multiple

292 CHAPTER 10 Hitting the database with Spring and JDBC
threads, they incur a performance cost for creating a new connection each time a con-
nection is requested. Because of these limitations, I strongly recommend using pooled
data sources.

10.2.4 Using an embedded data source

There’s one more data source I want to tell you about: the embedded database. An
embedded database runs as part of your application instead of as a separate database
server that your application connects to. Although it’s not very useful in production
settings, an embedded database is a perfect choice for development and testing pur-
poses. That’s because it allows you to populate your database with test data that’s reset
every time you restart your application or run your tests.

 Spring’s jdbc namespace makes configuring an embedded database simple. For
example, the following listing shows how to use the jdbc namespace to configure an
embedded H2 database that’s preloaded with a set of test data.

<?xml version="1.0" encoding="UTF-
8"?> <beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jdbc="http://www.springframework.org/schema/jdbc"
xmlns:c="http://www.springframework.org/schema/c"
xsi:schemaLocation="http://www.springframework.org/schema/jdbc

http://www.springframework.org/schema/jdbc/spring-jdbc-3.1.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

...

<jdbc:embedded-
database id="dataSource" type="H2"> <jdbc:script location="com/habum
a/spitter/db/jdbc/schema.sql"/> <jdbc:script location="com/habuma/sp
itter/db/jdbc/test-data.sql"/> </jdbc:embedded-database>

...

</beans>

The <jdbc:embedded-database>’s type property is set to H2 to indicate that the
embedded database should be an H2 database. (Be sure to have H2 in your applica-
tion’s classpath.) Alternatively, you may set type to DERBY to use an embedded Apache
Derby database.

 In <jdbc:embedded-database>, you may configure zero or more <jdbc:script>
elements to set up the database. Listing 10.1 includes two <jdbc:script> elements:
the first references schema.sql, which contains SQL to create the tables in the data-
base; the second references test-data.sql, to populate the database with test data.

 In addition to setting up an embedded database, the <jdbc:embedded-database>
element also exposes a data source that can be used like any of the other data-source
beans you’ve seen. The id attribute is set to dataSource, which will be the ID of the

Listing 10.1 Configuring an embedded database using the jdbc namespace

293Configuring a data source
exposed data-source bean. Therefore, anywhere you need a javax.sql.DataSource,
you can inject the dataSource bean.

 When you configure an embedded database in Java configuration, there isn’t the
convenience of the jdbc namespace. Instead, you can use EmbeddedDatabaseBuilder
to construct the DataSource:

@Bean
public DataSource dataSource() {

return new EmbeddedDatabaseBuilder()
.setType(EmbeddedDatabaseType.H2)
.addScript("classpath:schema.sql")
.addScript("classpath:test-data.sql")
.build();

}

As you can see, the setType() method is the equivalent to the <jdbc:embedded-
database> element’s type attribute. And instead of using the <jdbc:script> ele-
ment to specify initialization SQL, you can call addScript().

10.2.5 Using profiles to select a data source

You’ve seen a handful of different ways to configure data sources in Spring, and I’ll
bet you’ve identified one or two of them that seem appropriate for your application.
In fact, you probably see a need for one of those data-source beans in one environ-
ment and a different one in another environment.

 For example, the <jdbc:embedded-database> element is great for development
time. But you may want to use DBCP’s BasicDataSource in your QA environment. And
perhaps you need to use <jee:jndi-lookup> in your production deployment.

 Spring’s bean-profiles feature that we discussed in chapter 3 is perfect here. All you
need to do is configure each of these data sources in different profiles, as shown next.

package com.habuma.spittr.config;
import org.apache.commons.dbcp.BasicDataSource;
import javax.sql.DataSource;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Profile;
import

org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseBuilder;
import

org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseType;
import org.springframework.jndi.JndiObjectFactoryBean;

@Configuration
public class DataSourceConfiguration {

@Profile("development")
@Bean
public DataSource embeddedDataSource() {

return new EmbeddedDatabaseBuilder()

Listing 10.2 Spring profiles enabling selection of a data source at runtime

Development
data source

294 CHAPTER 10 Hitting the database with Spring and JDBC

Develo
data
.setType(EmbeddedDatabaseType.H2)

.addScript("classpath:schema.sql")

.addScript("classpath:test-data.sql")

.build();
}

@Profile("qa")
@Bean
public DataSource Data() {

BasicDataSource ds = new BasicDataSource();
ds.setDriverClassName("org.h2.Driver");
ds.setUrl("jdbc:h2:tcp://localhost/~/spitter");
ds.setUsername("sa");
ds.setPassword("");
ds.setInitialSize(5);
ds.setMaxActive(10);
return ds;

}

@Profile("production")
@Bean
public DataSource dataSource() {

JndiObjectFactoryBean jndiObjectFactoryBean
= new JndiObjectFactoryBean();

jndiObjectFactoryBean.setJndiName("jdbc/SpittrDS");
jndiObjectFactoryBean.setResourceRef(true);
jndiObjectFactoryBean.setProxyInterface(javax.sql.DataSource.class);
return (DataSource) jndiObjectFactoryBean.getObject();

}
}

Using profiles, the data source is chosen at runtime, based on which profile is active.
As configured in listing 10.2, the embedded database is created if and only if the
development profile is active. Similarly, the DBCP BasicDataSource is created if and
only if the qa profile is active. And the data source is retrieved from JNDI if and only if
the production profile is active.

 For the sake of completeness, the following listing shows the same profile-driven
configuration using Spring XML configuration instead of Java configuration.

<?xml version="1.0" encoding="UTF-
8"?> <beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jdbc="http://www.springframework.org/schema/jdbc"
xmlns:jee="http://www.springframework.org/schema/jee"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemaLocation="http://www.springframework.org/schema/jdbc

http://www.springframework.org/schema/jdbc/spring-jdbc-3.1.xsd
http://www.springframework.org/schema/jee
http://www.springframework.org/schema/jee/spring-jee-3.1.xsd
http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd">
<beans profile="development">

Listing 10.3 Configuring profile-selected data sources in XML

QA data source

Production data source

pment
 source

295Using JDBC with Spring
<jdbc:embedded-
database id="dataSource" type="H2"> <jdbc:script location="com/hab
uma/spitter/db/jdbc/schema.sql"/> <jdbc:script location="com/habum
a/spitter/db/jdbc/test-data.sql"/> </jdbc:embedded-
database> </beans>

<beans profile="qa">
<bean id="dataSource"

class="org.apache.commons.dbcp.BasicDataSource"
p:driverClassName="org.h2.Driver"
p:url="jdbc:h2:tcp://localhost/~/spitter"
p:username="sa"
p:password=""
p:initialSize="5"
p:maxActive="10" /> </beans>

<beans profile="production">
<jee:jndi-lookup id="dataSource"

jndi-name="/jdbc/SpitterDS"
resource-ref="true" /> </beans>

</beans>

Now that you’ve established a connection to the database through a data source,
you’re ready to access the database. As I’ve already mentioned, Spring affords you sev-
eral options for working with relational databases, including JDBC, Hibernate, and the
Java Persistence API (JPA). In the next section, you’ll see how to build the persistence
layer of a Spring application using Spring’s support for JDBC. But if Hibernate or JPA is
more your style, feel free to jump ahead to the next chapter where those are the topics.

10.3 Using JDBC with Spring
There are many persistence technologies. Hibernate, iBATIS, and JPA are just a few.
Despite this, a good number of applications write Java objects to a database the old-
fashioned way: they earn it. No, wait—that’s how people make money. The tried-and-
true method for persisting data is with good old JDBC.

 And why not? JDBC doesn’t require mastering another framework’s query lan-
guage. It’s built on top of SQL, which is the data-access language. Plus, you can more
finely tune the performance of your data access when you use JDBC than with practi-
cally any other technology. And JDBC allows you to take advantage of your database’s
proprietary features, where other frameworks may discourage or flat-out prohibit this.

 What’s more, JDBC lets you work with data at a much lower level than the persis-
tence frameworks. You’re in full control of how your application reads and manipu-
lates data. This includes allowing you to access and manipulate individual columns in
a database. This fine-grained approach to data access comes in handy in applications,
such as reporting applications, where it doesn’t make sense to organize the data into
objects just to then unwind it back into raw data.

 But all is not sunny in the world of JDBC. With its power, flexibility, and other nice-
ties also come some not-so-niceties.

QA data source

Production data source

296 CHAPTER 10 Hitting the database with Spring and JDBC

s

10.3.1 Tackling runaway JDBC code

Although JDBC gives you an API that works closely with your database, you’re responsi-
ble for handling everything related to accessing the database. This includes managing
database resources and handling exceptions. If you’ve ever written JDBC that inserts
data into the database, the following code shouldn’t be too alien to you.

private static final String SQL_INSERT_SPITTER =

"insert into spitter (username, password, fullname) values (?, ?, ?)";

private DataSource dataSource;

public void addSpitter(Spitter spitter) {

Connection conn = null;

PreparedStatement stmt = null;

try {

conn = dataSource.getConnection();

stmt = conn.prepareStatement(SQL_INSERT_SPITTER);

stmt.setString(1, spitter.getUsername());

stmt.setString(2, spitter.getPassword());

stmt.setString(3, spitter.getFullName());

stmt.execute();

} catch (SQLException e) {

// do something...not sure what, though

} finally {

try {

if (stmt != null) {

stmt.close();

}

if (conn != null) {

conn.close();

}

} catch (SQLException e) {

// I'm even less sure about what to do here

}

}

}

Holy runaway code, Batman! That’s more than 20 lines of code to insert an object into
a database. As far as JDBC operations go, this is about as simple as it gets. So why does
it take this many lines to do something so straightforward? Actually, it doesn’t. Only a
handful of lines do the insert. But JDBC requires that you properly manage connec-
tions and statements and somehow handle the SQLException that may be thrown.

 Speaking of that SQLException, not only is it not clear how you should handle it
(because it’s not clear what went wrong), but you’re forced to catch it twice! You must
catch it if something goes wrong while inserting a record, and you have to catch it

Listing 10.4 Using JDBC to insert a row into a database

Get
connection

Create statement
Bind
parameters

Execute
tatement

Handle
exceptions
(somehow)

Clean up

297Using JDBC with Spring

s

again if something goes wrong when closing the statement and connection. Seems
like a lot of work to handle something that usually can’t be handled programmatically.

 Now look at the next listing, where you use traditional JDBC to update a row in the
Spitter table in the database.

private static final String SQL_UPDATE_SPITTER =

"update spitter set username = ?, password = ?, fullname = ?"

+ "where id = ?";

public void saveSpitter(Spitter spitter) {

Connection conn = null;

PreparedStatement stmt = null;

try {

conn = dataSource.getConnection();

stmt = conn.prepareStatement(SQL_UPDATE_SPITTER)

stmt.setString(1, spitter.getUsername());

stmt.setString(2, spitter.getPassword());

stmt.setString(3, spitter.getFullName());

stmt.setLong(4, spitter.getId());

stmt.execute();

} catch (SQLException e) {

// Still not sure what I'm supposed to do here

} finally {

try {

if (stmt != null) {

stmt.close();

}

if (conn != null) {

conn.close();

}

} catch (SQLException e) {

// or here

}

}

}

At first glance, listing 10.5 may appear to be identical to listing 10.4. In fact, disregard-
ing the SQL String and the line where the statement is created, they’re identical.
Again, that’s a lot of code to do something as simple as update a single row in a data-
base. What’s more, that’s a lot of repeated code. Ideally, you’d only have to write the
lines that are specific to the task at hand. After all, those are the only lines that distin-
guish listing 10.5 from listing 10.4. The rest is boilerplate code.

 To round out our tour of conventional JDBC, let’s see how you might retrieve data
from the database. As you can see here, that’s not pretty, either.

Listing 10.5 Using JDBC to update a row in a database

Get
connection

Create statement
Bind
parameters

Execute
tatement

Handle
exceptions
(somehow)

Clean up

298 CHAPTER 10 Hitting the database with Spring and JDBC

private static final String SQL_SELECT_SPITTER =
"select id, username, fullname from spitter where id = ?";

public Spitter findOne(long id) {
Connection conn = null;
PreparedStatement stmt = null;
ResultSet rs = null;
try {

conn = dataSource.getConnection();
stmt = conn.prepareStatement(SQL_SELECT_SPITTER);
stmt.setLong(1, id)
rs = stmt.executeQuery();
Spitter spitter = null;
if (rs.next()) {

spitter = new Spitter();
spitter.setId(rs.getLong("id"));
spitter.setUsername(rs.getString("username"));
spitter.setPassword(rs.getString("password"));
spitter.setFullName(rs.getString("fullname"));

}
return spitter;

} catch (SQLException e) {
} finally {

if(rs != null) {
try {

rs.close();
} catch(SQLException e) {}

}

if(stmt != null) {
try {
stmt.close();
} catch(SQLException e) {}

}

if(conn != null) {
try {

conn.close();
} catch(SQLException e) {}

}
}
return null;

}

That’s almost as verbose as the insert and update examples—maybe more. It’s like the
Pareto principle flipped on its head: 20% of the code is needed to query a row,
whereas 80% is boilerplate.

 By now you should see that much of JDBC code is boilerplate for creating connec-
tions and statements and handling exceptions. With my point made, I’ll end the tor-
ture and not make you look at any more of this nasty code.

 The fact is that all that JDBC boilerplate code is important. Cleaning up resources
and handling errors is what makes data access robust. Without it, errors would go

Listing 10.6 Using JDBC to query a row from a database

Get
connection

Create statement

Bind parameters
Execute

query

Process results

Handle exceptions (somehow)

Clean up

299Using JDBC with Spring
undetected and resources would be left open, leading to unpredictable code and
resource leaks. So not only do you need this code, but you also need to make sure it’s
correct. This is all the more reason to let a framework deal with the boilerplate so you
know that it’s written once and written right.

10.3.2 Working with JDBC templates

Spring’s JDBC framework will clean up your JDBC code by shouldering the burden of
resource management and exception handling. This leaves you free to write only the
code necessary to move data to and from the database.

 As I explained in the previous section, Spring abstracts away the boilerplate data-
access code behind template classes. For JDBC, Spring comes with three template
classes to choose from:

 JdbcTemplate—The most basic of Spring’s JDBC templates, this class provides
simple access to a database through JDBC and indexed-parameter queries.

 NamedParameterJdbcTemplate—This JDBC template class enables you to per-
form queries where values are bound to named parameters in SQL, rather than
indexed parameters.

 SimpleJdbcTemplate—This version of the JDBC template takes advantage of
Java 5 features such as autoboxing, generics, and variable parameter lists to sim-
plify how a JDBC template is used.

At one time, you had to weigh your choice of JDBC template carefully. But starting
with Spring 3.1, the decision became easier. SimpleJdbcTemplate has been depre-
cated and its Java 5 features have been rolled into JdbcTemplate. Moreover, you only
need NamedParameterJdbcTemplate when you want to work with named parameters
in queries. That leaves good ol’ JdbcTemplate as your go-to option for most JDBC
work—that’s the option I’ll focus on in this section.

INSERTING DATA USING JDBCTEMPLATE

All that a JdbcTemplate needs in order to do its work is a DataSource. This makes it
easy enough to configure a JdbcTemplate bean in Spring with the following @Bean
method:

@Bean
public JdbcTemplate jdbcTemplate(DataSource dataSource) {

return new JdbcTemplate(dataSource);
}

Here, the DataSource is injected via constructor injection. The dataSource bean
being referenced can be any implementation of javax.sql.DataSource, including
those you created in section 10.2.

 Now you can wire the jdbcTemplate bean into your repository and use it to
access the database. For example, suppose the Spitter repository is written to use
JdbcTemplate:

300 CHAPTER 10 Hitting the database with Spring and JDBC
@Repository
public class JdbcSpitterRepository implements SpitterRepository {

private JdbcOperations jdbcOperations;

@Inject
public JdbcSpitterRepository(JdbcOperations jdbcOperations) {

this.jdbcOperations = jdbcOperations;
}

...

}

Here JdbcSpitterRepository is annotated with @Repository, which qualifies it to be
automatically created by component-scanning. And its constructor is annotated with
@Inject so that when it’s created, it will be given a JdbcOperations object. Jdbc-
Operations is an interface defining operations implemented by JdbcTemplate. By
injecting a JdbcOperations instead of the concrete JdbcTemplate, JdbcSpitter-
Repository is able to remain loosely coupled to JdbcTemplate via the Jdbc-
Operations interface.

 As an alternative to component-scanning and autowiring, you could explicitly
declare JdbcSpitterRepository as a bean in Spring, like this:

@Bean
public SpitterRepository spitterRepository(JdbcTemplate jdbcTemplate) {

return new JdbcSpitterRepository(jdbcTemplate);
}

With a JdbcTemplate at your repository’s disposal, you can greatly simplify the
addSpitter() method from listing 10.4. The new JdbcTemplate-based addSpitter()
method is as follows.

public void addSpitter(Spitter spitter) {
jdbcOperations.update(INSERT_SPITTER,

spitter.getUsername(),
spitter.getPassword(),
spitter.getFullName(),
spitter.getEmail(),
spitter.isUpdateByEmail());

}

I think you’ll agree that this version of addSpitter() is significantly simpler. There’s
no more connection or statement-creation code—and no more exception-handling
code. There’s nothing but pure data-insertion goodness.

 Just because you don’t see a lot of boilerplate code doesn’t mean it’s not there. It’s
cleverly hidden in the JDBC template class. When the update() method is called,
JdbcTemplate gets a connection, creates a statement, and executes the insert SQL.

 What you also don’t see is how the SQLException is handled. Internally, Jdbc-
Template catches any SQLExceptions that may be thrown. It then translates the

Listing 10.7 JdbcTemplate-based addSpitter() method

Insert Spitter

301Using JDBC with Spring
generic SQLException into one of the more specific data-access exceptions from
table 10.1 and rethrows it. Because Spring’s data-access exceptions are all runtime
exceptions, you don’t have to catch them in the addSpitter() method.

READING DATA WITH JDBCTEMPLATE

Reading data is also simplified with JdbcTemplate. Listing 10.8 shows a new version of
findOne() that uses JdbcTemplate callbacks to query for a Spitter by ID and map the
result set to a Spitter object.

public Spitter findOne(long id) {
return jdbcOperations.queryForObject(

SELECT_SPITTER_BY_ID, new SpitterRowMapper(),
id
);

}

...

private static final class SpitterRowMapper
implements RowMapper<Spitter> {

public Spitter mapRow(ResultSet rs, int rowNum)
throws SQLException {

return new Spitter(
rs.getLong("id"),
rs.getString("username"),
rs.getString("password"),
rs.getString("fullName"),
rs.getString("email"),
rs.getBoolean("updateByEmail"));

}
}

This findOne() method uses JdbcTemplate’s queryForObject() method to query for
a Spitter from the database. The queryForObject() method takes three parameters:

 A String containing the SQL to be used to select the data from the database
 A RowMapper object that extracts values from a ResultSet and constructs a

domain object (in this case, a Spitter)
 A variable argument list of values to be bound to indexed parameters of the

query

The real magic happens in the SpitterRowMapper object, which implements the Row-
Mapper interface. For every row that results from the query, JdbcTemplate calls the
mapRow() method of the RowMapper, passing in a ResultSet and an integer carrying
the row number. In SpitterRowMapper’s mapRow() method is the code that creates a
Spitter object and populates it with values from the ResultSet.

 Just like addSpitter(), the findOne() method is free of JDBC boilerplate code.
Unlike traditional JDBC, there’s no resource-management or exception-handling

Listing 10.8 Querying for a Spitter using JdbcTemplate

Query for Spitter

Map results
to object

Bind
parameters

302 CHAPTER 10 Hitting the database with Spring and JDBC
code. Methods that use JdbcTemplate are laser focused on retrieving a Spitter object
from the database.

USING JAVA 8 LAMBDAS WITH JDBCTEMPLATE

Because the RowMapper interface only declares the addRow() method, it fits the bill for
a functional interface. This means that if you’re developing your application using
Java 8, you can express the RowMapper implementation with a lambda instead of with a
concrete class implementation.

 For example, the findOne() method in listing 10.8 can be rewritten using Java 8
lambdas like this:

public Spitter findOne(long id) {
return jdbcOperations.queryForObject(

SELECT_SPITTER_BY_ID,
(rs, rowNum) -> {

return new Spitter(
rs.getLong("id"),
rs.getString("username"),
rs.getString("password"),
rs.getString("fullName"),
rs.getString("email"),
rs.getBoolean("updateByEmail"));

},
id);

}

As you can see, the lambda is easier on the eyes than a full-blown RowMapper imple-
mentation, but it’s just as effective. Java coerces the lambda into a RowMapper for the
sake of satisfying the parameter it’s being passed into.

 Alternatively, you can use Java 8 method references to define the mapping in a sep-
arate method:

public Spitter findOne(long id) {
return jdbcOperations.queryForObject(

SELECT_SPITTER_BY_ID, this::mapSpitter, id);
}

private Spitter mapSpitter(ResultSet rs, int row) throws SQLException {
return new Spitter(

rs.getLong("id"),
rs.getString("username"),
rs.getString("password"),
rs.getString("fullName"),
rs.getString("email"),
rs.getBoolean("updateByEmail"));

}

In either event, you don’t have to explicitly implement the RowMapper interface. You
must provide a lambda or method that takes the same parameters and returns the
same type as if you had implemented RowMapper.

303Using JDBC with Spring
USING NAMED PARAMETERS

The addSpitter() method in listing 10.7 uses indexed parameters. This means you
have to notice the order of the parameters in the query and list the values in the cor-
rect order when passing them to the update() method. If you ever changed the SQL
in such a way that the order of the parameters changed, you’d also need to change the
order of the values.

 Optionally, you could use named parameters. Named parameters let you give each
parameter in the SQL an explicit name and refer to the parameter by that name when
binding values to the statement. For example, suppose the SQL_INSERT_SPITTER
query were defined as follows:

private static final String SQL_INSERT_SPITTER =
"insert into spitter (username, password, fullname) " +
"values (:username, :password, :fullname)";

With named-parameter queries, the order of the bound values isn’t important. You
can bind each value by name. If the query changes and the order of the parameters is
no longer the same, you won’t have to change the binding code.

 Spring’s NamedParameterJdbcTemplate is a special JDBC template class that sup-
ports working with named parameters. NamedParameterJdbcTemplate can be
declared in Spring in much the same way as the regular JdbcTemplate:

@Bean
public NamedParameterJdbcTemplate jdbcTemplate(DataSource dataSource) {

return new NamedParameterJdbcTemplate(dataSource);
}

Had you injected a NamedParameterJdbcOperations (the interface that Named-
ParameterJdbcTemplate implements) into your repository instead of JdbcOperations,
your addSpitter() method might look like this.

private static final String INSERT_SPITTER =
"insert into Spitter " +
" (username, password, fullname, email, updateByEmail) " +
"values " +
" (:username, :password, :fullname, :email, :updateByEmail)";

public void addSpitter(Spitter spitter) {
Map<String, Object> paramMap = new HashMap<String, Object>();
paramMap.put("username", spitter.getUsername());
paramMap.put("password", spitter.getPassword());
paramMap.put("fullname", spitter.getFullName());
paramMap.put("email", spitter.getEmail());
paramMap.put("updateByEmail", spitter.isUpdateByEmail());

jdbcOperations.update(INSERT_SPITTER, paramMap);
}

The first thing you’ll notice is that this version of addSpitter() is longer than the pre-
vious version. That’s because named parameters are bound through a java.util.Map.

Listing 10.9 Using named parameters with Spring JDBC templates

Bind parameters

Perform insert

304 CHAPTER 10 Hitting the database with Spring and JDBC
Nevertheless, every line is focused on the goal of inserting a Spitter object into the
database. There’s still no resource-management or exception-handling code clutter-
ing up the chief purpose of the method.

10.4 Summary
Data is the lifeblood of an application. Some of the data-centric among you may even
contend that data is the application. With such significance placed on data, it’s impor-
tant that you develop the data-access portion of your applications in a way that’s
robust, simple, and clear.

 JDBC is the most basic way to work with relational data in Java. But as defined in
the specification, JDBC can be somewhat unwieldy. Spring takes much of the pain out
of working with JDBC, eliminating boilerplate code and simplifying JDBC exception
handling, leaving you little more to deal with than writing the SQL that should be
performed.

 In this chapter, we looked at Spring’s support for data persistence. We also looked
at Spring’s template-based abstraction for JDBC, which greatly simplifies working with
JDBC.

 Coming up in the next chapter, we’ll continue our survey of Spring’s data-
persistence support by looking at Spring’s facilities for the Java Persistence API.

Persisting data with
object-relational mapping
When we were kids, riding a bike was fun, wasn’t it? We’d ride to school in the
mornings. When school let out, we’d cruise to our best friend’s house. When it got
late and our parents were yelling at us for staying out past dark, we’d peddle home
for the night. Gee, those days were fun.

 Then we grew up, and now we need more than a bike. Sometimes we have to
travel a long distance to work. Groceries have to be hauled, and our kids need to
get to soccer practice. And if we live in Texas, air conditioning is a must! Our needs
have outgrown our bikes.

 JDBC is the bike of the persistence world. It’s great for what it does, and for some
jobs it works fine. But as applications become more complex, so do our persistence
requirements. We need to be able to map object properties to database columns

This chapter covers
 Working with Spring and Hibernate

 Writing Spring-free repositories with contextual
sessions

 Using JPA with Spring

 Automatic JPA repositories with Spring Data
305

306 CHAPTER 11 Persisting data with object-relational mapping
and have our statements and queries created for us, freeing us from typing an endless
string of question marks. We also need features that are more sophisticated:

 Lazy loading—As object graphs become more complex, you sometimes don’t
want to fetch entire relationships immediately. To use a typical example, sup-
pose you’re selecting a collection of PurchaseOrder objects, and each of these
objects contains a collection of LineItem objects. If you’re only interested in
PurchaseOrder attributes, it makes no sense to grab the LineItem data. That
could be expensive. Lazy loading allows you to grab data only as it’s needed.

 Eager fetching—This is the opposite of lazy loading. Eager fetching allows you to
grab an entire object graph in one query. In the cases where you know you need
a PurchaseOrder object and its associated LineItems, eager fetching lets you get
this from the database in one operation, saving you from costly round-trips.

 Cascading—Sometimes changes to a database table should result in changes to
other tables as well. Going back to the purchase order example, when an Order
object is deleted, you also want to delete the associated LineItems from the
database.

Several frameworks are available that provide these services. The general name for
these services is object-relational mapping (ORM). Using an ORM tool for your persis-
tence layer can save you literally thousands of lines of code and hours of development
time. This lets you switch your focus from writing error-prone SQL code to addressing
your application’s requirements.

 Spring provides support for several persistence frameworks, including Hibernate,
iBATIS, Java Data Objects (JDO), and the Java Persistence API (JPA). As with Spring’s
JDBC support, Spring’s support for ORM frameworks provides integration points to
the frameworks as well as some additional services:

 Integrated support for Spring declarative transactions
 Transparent exception handling
 Thread-safe, lightweight template classes
 DAO support classes
 Resource management

I don’t have enough space in this chapter to cover all the ORM frameworks that are
supported by Spring. But that’s okay, because Spring’s support for one ORM solution
is similar to the next. Once you get the hang of using one ORM framework with
Spring, you’ll find it easy to switch to another.

 In this chapter, we’ll look at how Spring integrates with two of the most commonly
used ORM solutions: Hibernate and JPA. You’ll also get your first look at the Spring
Data project by looking at Spring Data JPA. In doing so, you’ll not only learn how
Spring Data JPA can take away a lot of the boilerplate code in your JPA repositories,
but you’ll also have a foundation to build on in the next chapter when we look at
using Spring Data for schemaless storage options.

 Let’s get started by exploring Spring’s support for Hibernate.

307Integrating Hibernate with Spring
11.1 Integrating Hibernate with Spring
Hibernate is an open source persistence framework that has gained significant popu-
larity in the developer community. It provides not only basic object-relational map-
ping but also all the other sophisticated features you’d expect from a full-featured
ORM tool, such as caching, lazy loading, eager fetching, and distributed caching.

 In this section, we’ll focus on how Spring integrates with Hibernate, without dwell-
ing too much on the intricate details of using Hibernate. If you need to learn more
about working with Hibernate, I recommend either Java Persistence with Hibernate, Sec-
ond Edition by Christian Bauer, Gavin King, and Gary Gregory (Manning, 2014,
www.manning.com/bauer3/) or the Hibernate website at www.hibernate.org.

11.1.1 Declaring a Hibernate session factory

Natively, the main interface for working with Hibernate is org.hibernate.Session.
The Session interface provides basic data-access functionality such as the ability to
save, update, delete, and load objects from the database. Through the Hibernate
Session, an application’s repository performs all of its persistence needs.

 The standard way to get a reference to a Hibernate Session object is through
an implementation of Hibernate’s SessionFactory interface. Among other
things, SessionFactory is responsible for opening, closing, and managing Hibernate
Sessions.

 In Spring, the way to get a Hibernate SessionFactory is through one of Spring’s
Hibernate session-factory beans. As of version 3.1, Spring comes with three session-
factory beans to choose from:

 org.springframework.orm.hibernate3.LocalSessionFactoryBean
 org.springframework.orm.hibernate3.annotation.AnnotationSession-

FactoryBean
 org.springframework.orm.hibernate4.LocalSessionFactoryBean

These session-factory beans are implementations of Spring’s FactoryBean interface
that produce a Hibernate SessionFactory when wired into any property of type
SessionFactory. This makes it possible to configure your Hibernate session factory
alongside the other beans in your application’s Spring context.

 Choosing which of these session factory beans to use comes down to which version
of Hibernate you’re using and whether you’ll be defining your object-to-database
mapping in XML or using annotations. If you’re using Hibernate 3.2 or higher (up to
but not including Hibernate 4.0) and doing the mapping in XML, you’ll need to con-
figure LocalSessionFactoryBean from the org.springframework.orm.hibernate3
package in Spring:

@Bean
public LocalSessionFactoryBean sessionFactory(DataSource dataSource) {

LocalSessionFactoryBean sfb = new LocalSessionFactoryBean();
sfb.setDataSource(dataSource);
sfb.setMappingResources(new String[] { "Spitter.hbm.xml" });
Properties props = new Properties();

www.manning.com/bauer3/

308 CHAPTER 11 Persisting data with object-relational mapping
props.setProperty("dialect", "org.hibernate.dialect.H2Dialect");
sfb.setHibernateProperties(props);
return sfb;

}

LocalSessionFactoryBean is configured here with three properties. The dataSource
property is wired with a reference to a DataSource bean. The mappingResources
property lists one or more Hibernate mapping files that define the persistence strat-
egy for the application. Finally, hibernateProperties is where you configure the
minutia of how Hibernate should operate. In this case, you’re saying that Hibernate
will be working with an H2 database and should use the H2Dialect to construct SQL
accordingly.

 If annotation-oriented persistence is more your style, and if you’re not yet using
Hibernate 4, then you’ll want to use AnnotationSessionFactoryBean instead of
LocalSessionFactoryBean:

@Bean
public AnnotationSessionFactoryBean sessionFactory(DataSource ds) {

AnnotationSessionFactoryBean sfb = new AnnotationSessionFactoryBean();
sfb.setDataSource(ds);
sfb.setPackagesToScan(new String[] { "com.habuma.spittr.domain" });
Properties props = new Properties();
props.setProperty("dialect", "org.hibernate.dialect.H2Dialect");
sfb.setHibernateProperties(props);
return sfb;

}

Or, if you’re using Hibernate 4, you should use the LocalSessionFactoryBean from
the org.springframework.orm.hibernate4 package. Although it shares a name with
the LocalSessionFactoryBean from the Hibernate 3 package, this new session factory
bean added in Spring 3.1 is like a mashup of the Hibernate 3 LocalSessionFactory-
Bean and AnnotationSessionFactoryBean. It has many of the same properties and
can be configured for either XML-based mapping or annotation-based mapping.
Here’s how you’d configure it for annotation-based mapping:

@Bean
public LocalSessionFactoryBean sessionFactory(DataSource dataSource) {

LocalSessionFactoryBean sfb = new LocalSessionFactoryBean();
sfb.setDataSource(dataSource);
sfb.setPackagesToScan(new String[] { "com.habuma.spittr.domain" });
Properties props = new Properties();
props.setProperty("dialect", "org.hibernate.dialect.H2Dialect");
sfb.setHibernateProperties(props);
return sfb;

}

In either case, the dataSource and hibernateProperties properties specify where to
find a database connection and what kind of database you’ll be dealing with. But
instead of listing Hibernate mapping files, you can use the packagesToScan property to
tell Spring to scan one or more packages, looking for domain classes that are annotated

309Integrating Hibernate with Spring
for persistence with Hibernate. This includes classes that are annotated with JPA’s
@Entity or @MappedSuperclass and Hibernate’s own @Entity annotation.

 If you’d prefer, you may also explicitly list all of your application’s persistent classes
by specifying a list of fully qualified class names in the annotatedClasses property:

sfb.setAnnotatedClasses(
new Class<?>[] { Spitter.class, Spittle.class }

);

The annotatedClasses property is fine for hand-picking a few domain classes. But
packagesToScan is more appropriate if you have a lot of domain classes and don’t
want to list them all or if you want the freedom to add or remove domain classes with-
out revisiting the Spring configuration.

 With a Hibernate session factory bean declared in the Spring application context,
you’re ready to start creating your repository classes.

11.1.2 Building Spring-free Hibernate

In the early days of Spring and Hibernate, writing a repository class would involve
working with Spring's HibernateTemplate. HibernateTemplate would ensure that
only one Hibernate session would be used per transaction. The downside of this
approach is that your repository implementation would be directly coupled to Spring.

 The best practice now, however, is to take advantage of Hibernate contextual ses-
sions and not use HibernateTemplate at all. This can be done by wiring a Hibernate
SessionFactory directly into your repository and using it to obtain a session, as shown
in the following listing.

public HibernateSpitterRepository(SessionFactory sessionFactory) {
this.sessionFactory = sessionFactory;

}

private Session currentSession() {
return sessionFactory.getCurrentSession();

}

public long count() {
return findAll().size();

}

public Spitter save(Spitter spitter) {
Serializable id = currentSession().save(spitter);

return new Spitter((Long) id,
spitter.getUsername(),
spitter.getPassword(),
spitter.getFullName(),
spitter.getEmail(),
spitter.isUpdateByEmail());

}

Listing 11.1 Spring-free Hibernate repositories, enabled by Hibernate sessions

Inject
SessionFactory

Retrieve current
Session from
SessionFactory

Use current
Session

310 CHAPTER 11 Persisting data with object-relational mapping
public Spitter findOne(long id) {
return (Spitter) currentSession().get(Spitter.class, id);

}

public Spitter findByUsername(String username) {
return (Spitter) currentSession()

.createCriteria(Spitter.class)

.add(Restrictions.eq("username", username))

.list().get(0);
}

public List<Spitter> findAll() {
return (List<Spitter>) currentSession()

.createCriteria(Spitter.class).list();
}

}

There are several things to take note of in listing 11.1. First, you’re using the @Inject
annotation to have Spring automatically inject a SessionFactory into Hibernate-
SpitterRepository’s sessionFactory property. Then, in the currentSession()
method, you use that SessionFactory to get the current transaction’s session.

 Also note that you annotate the class with @Repository. This accomplishes two
things. First, @Repository is another one of Spring’s stereotype annotations that,
among other things, are scanned by Spring component-scanning. This means you
won’t have to explicitly declare a HibernateSpitterRepository bean, as long as the
repository class is in a package covered by component-scanning.

 In addition to helping to reduce explicit configuration, @Repository serves
another purpose. Recall that one of the jobs of a template class is to catch platform-
specific exceptions and rethrow them as one of Spring’s unified unchecked excep-
tions. But if you’re using Hibernate contextual sessions and not a Hibernate template,
how can the exception translation take place?

 To add exception translation to a template-less Hibernate repository, you just need
to add a PersistenceExceptionTranslationPostProcessor bean to the Spring appli-
cation context:

@Bean
public BeanPostProcessor persistenceTranslation() {

return new PersistenceExceptionTranslationPostProcessor();
}

PersistenceExceptionTranslationPostProcessor is a bean post-processor that adds
an adviser to any bean that’s annotated with @Repository so that any platform-specific
exceptions are caught and then rethrown as one of Spring’s unchecked data-access
exceptions.

 Now the Hibernate version of your repository is complete. And you were able to
develop it without directly depending on any Spring-specific classes (aside from the
@Repository annotation). That same template-less approach can be applied when
developing a pure JPA-based repository. Let’s take one more stab at developing a
SpitterRepository implementation, this time using JPA.

311Spring and the Java Persistence API
11.2 Spring and the Java Persistence API
The Java Persistence API (JPA) emerged out of the rubble of EJB 2’s entity beans as the
next-generation Java persistence standard. JPA is a POJO-based persistence mechanism
that draws ideas from both Hibernate and Java Data Objects (JDO) and mixes Java 5
annotations in for good measure.

 With the Spring 2.0 release came the premiere of Spring integration with JPA. The
irony is that many blame (or credit) Spring with the demise of EJB. But now that
Spring provides support for JPA, many developers are recommending JPA for persis-
tence in Spring-based applications. In fact, some say that Spring-JPA is the dream team
for POJO development.

 The first step toward using JPA with Spring is to configure an entity manager fac-
tory as a bean in the Spring application context.

11.2.1 Configuring an entity manager factory

In a nutshell, JPA-based applications use an implementation of EntityManager-
Factory to get an instance of an EntityManager. The JPA specification defines two
kinds of entity managers:

 Application-managed—Entity managers are created when an application directly
requests one from an entity manager factory. With application-managed entity
managers, the application is responsible for opening or closing entity managers
and involving the entity manager in transactions. This type of entity manager is
most appropriate for use in standalone applications that don’t run in a Java EE
container.

 Container-managed—Entity managers are created and managed by a Java EE
container. The application doesn’t interact with the entity manager factory at
all. Instead, entity managers are obtained directly through injection or from
JNDI. The container is responsible for configuring the entity manager factories.
This type of entity manager is most appropriate for use by a Java EE container
that wants to maintain some control over JPA configuration beyond what’s spec-
ified in persistence.xml.

Both kinds of entity manager implement the same EntityManager interface. The key
difference isn’t in the EntityManager itself, but rather in how the EntityManager is cre-
ated and managed. Application-managed EntityManagers are created by an Entity-
ManagerFactory obtained by calling the createEntityManagerFactory() method of
the PersistenceProvider. Meanwhile, container-managed EntityManagerFactorys
are obtained through PersistenceProvider’s createContainerEntityManager-

Factory() method.
 What does this all mean for Spring developers wanting to use JPA? Not much.

Regardless of which variety of EntityManagerFactory you want to use, Spring
will take responsibility for managing EntityManagers for you. If you’re using an
application-managed entity manager, Spring plays the role of an application and

312 CHAPTER 11 Persisting data with object-relational mapping
transparently deals with the EntityManager on your behalf. In the container-managed
scenario, Spring plays the role of the container.

 Each flavor of entity manager factory is produced by a corresponding Spring fac-
tory bean:

 LocalEntityManagerFactoryBean produces an application-managed Entity-
ManagerFactory.

 LocalContainerEntityManagerFactoryBean produces a container-managed
EntityManagerFactory.

It’s important to point out that the choice made between an application-managed
EntityManagerFactory and a container-managed EntityManagerFactory is com-
pletely transparent to a Spring-based application. When you’re working with Spring
and JPA, the intricate details of dealing with either form of EntityManagerFactory are
hidden, leaving your data-access code to focus on its true purpose: data access.

 The only real difference between application-managed and container-managed
entity manager factories, as far as Spring is concerned, is how each is configured in the
Spring application context. Let’s start by looking at how to configure the application-
managed LocalEntityManagerFactoryBean in Spring. Then you’ll see how to config-
ure a container-managed LocalContainerEntityManagerFactoryBean.

CONFIGURING APPLICATION-MANAGED JPA
Application-managed entity-manager factories derive most of their configuration
information from a configuration file called persistence.xml. This file must appear in
the META-INF directory in the classpath.

 The purpose of the persistence.xml file is to define one or more persistence units.
A persistence unit is a grouping of one or more persistent classes that correspond to a
single data source. In simple terms, persistence.xml enumerates one or more persis-
tent classes along with any additional configuration such as data sources and XML-
based mapping files. Here’s a typical example of a persistence.xml file as it pertains to
the Spittr application:

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
version="1.0">

<persistence-unit name="spitterPU">
<class>com.habuma.spittr.domain.Spitter</class>
<class>com.habuma.spittr.domain.Spittle</class>
<properties>

<property name="toplink.jdbc.driver"
value="org.hsqldb.jdbcDriver" />

<property name="toplink.jdbc.url" value=
"jdbc:hsqldb:hsql://localhost/spitter/spitter" />

<property name="toplink.jdbc.user"
value="sa" />

<property name="toplink.jdbc.password"
value="" />

</properties>
</persistence-unit>

</persistence>

313Spring and the Java Persistence API
Because so much configuration goes into a persistence.xml file, little configuration is
required (or even possible) in Spring. The following <bean> declares a LocalEntity-
ManagerFactoryBean in Spring:

@Bean
public LocalEntityManagerFactoryBean entityManagerFactoryBean() {

LocalEntityManagerFactoryBean emfb
= new LocalEntityManagerFactoryBean();

emfb.setPersistenceUnitName("spitterPU");
return emfb;

}

The value given to the persistenceUnitName property refers to the persistence unit
name as it appears in persistence.xml.

 The reason much of what goes into creating an application-managed Entity-
ManagerFactory is contained in persistence.xml has everything to do with what it
means to be application-managed. In the application-managed scenario (not involv-
ing Spring), an application is entirely responsible for obtaining an EntityManager-
Factory through the JPA implementation’s PersistenceProvider. The application
code would become incredibly bloated if it had to define the persistence unit every
time it requested an EntityManagerFactory. By specifying it in persistence.xml, JPA
can look in this well-known location for persistence unit definitions.

 But with Spring’s support for JPA, you’ll never deal directly with the Persistence-
Provider. Therefore, it seems silly to extract configuration information into
persistence.xml. In fact, doing so prevents you from configuring the EntityManager-
Factory in Spring (so that, for example, you can provide a Spring-configured data
source).

 For that reason, we’ll turn our attention to container-managed JPA.

CONFIGURING CONTAINER-MANAGED JPA
Container-managed JPA takes a different approach. When running in a container, an
EntityManagerFactory can be produced using information provided by the con-
tainer—Spring, in this case.

 Instead of configuring data-source details in persistence.xml, you can configure
this information in the Spring application context. For example, the following <bean>
declaration shows how to configure container-managed JPA in Spring using Local-
ContainerEntityManagerFactoryBean:

@Bean
public LocalContainerEntityManagerFactoryBean entityManagerFactory(

DataSource dataSource, JpaVendorAdapter jpaVendorAdapter) {
LocalContainerEntityManagerFactoryBean emfb =

new LocalContainerEntityManagerFactoryBean();
emfb.setDataSource(dataSource);
emfb.setJpaVendorAdapter(jpaVendorAdapter);
return emfb;

}

314 CHAPTER 11 Persisting data with object-relational mapping
Here you configured the dataSource property with a Spring-configured data source.
Any implementation of javax.sql.DataSource is appropriate. Although a data
source may still be configured in persistence.xml, the data source specified through
this property takes precedence.

 You can use the jpaVendorAdapter property to provide specifics about the particu-
lar JPA implementation to use. Spring comes with a handful of JPA vendor adapters to
choose from:

 EclipseLinkJpaVendorAdapter

 HibernateJpaVendorAdapter

 OpenJpaVendorAdapter

 TopLinkJpaVendorAdapter (deprecated in Spring 3.1)

In this case, you’re using Hibernate as a JPA implementation, so you configure it with
a HibernateJpaVendorAdapter:

@Bean
public JpaVendorAdapter jpaVendorAdapter() {

HibernateJpaVendorAdapter adapter = new HibernateJpaVendorAdapter();
adapter.setDatabase("HSQL");
adapter.setShowSql(true);
adapter.setGenerateDdl(false);
adapter.setDatabasePlatform("org.hibernate.dialect.HSQLDialect");
return adapter;

}

Several properties are set on the ven-
dor adapter, but the most important is
the database property, where you spec-
ify the Hypersonic database as the data-
base you’ll be using. Other values
supported for this property include
those listed in table 11.1.

 Certain dynamic persistence fea-
tures require that the class of persistent
objects be modified with instrumenta-
tion to support the feature. Objects
whose properties are lazily loaded
(they won’t be retrieved from the data-
base until they’re accessed) must have
their class instrumented with code that
knows to retrieve unloaded data on
access. Some frameworks use dynamic
proxies to implement lazy loading.
Others, such as JDO, perform class
instrumentation at compile time.

Table 11.1 The Hibernate JPA vendor adapter
supports several databases. You can specify which
database to use by setting its database property.

Database platform
Value for database

property

IBM DB2 DB2

Apache Derby DERBY

H2 H2

Hypersonic HSQL

Informix INFORMIX

MySQL MYSQL

Oracle ORACLE

PostgresQL POSTGRESQL

Microsoft SQL Server SQLSERVER

Sybase SYBASE

315Spring and the Java Persistence API
 Which entity manager factory bean you choose will depend primarily on how
you’ll use it. But here’s a trick that may swing your favor in the direction of Local-
ContainerEntityManagerFactoryBean.

 The primary purpose of the persistence.xml file is to identify the entity classes in a
persistence unit. But as of Spring 3.1, you can do that directly with LocalContainer-
EntityManagerFactoryBean by setting the packagesToScan property:

@Bean
public LocalContainerEntityManagerFactoryBean entityManagerFactory(

DataSource dataSource, JpaVendorAdapter jpaVendorAdapter) {
LocalContainerEntityManagerFactoryBean emfb =

new LocalContainerEntityManagerFactoryBean();
emfb.setDataSource(dataSource);
emfb.setJpaVendorAdapter(jpaVendorAdapter);
emfb.setPackagesToScan("com.habuma.spittr.domain");
return emfb;

}

As configured here, LocalContainerEntityManagerFactoryBean will scan the
com.habuma.spittr.domain package for classes that are annotated with @Entity.
Therefore, there’s no need to declare them explicitly in persistence.xml. And because
the DataSource is also injected into LocalContainerEntityManagerFactoryBean,
there’s no need to configure details about the database in persistence.xml. Therefore,
there’s no need for persistence.xml whatsoever! Delete it, and let LocalContainer-
EntityManagerFactoryBean handle it for you.

PULLING AN ENTITYMANAGERFACTORY FROM JNDI
It’s also worth noting that if you’re deploying your Spring application in some applica-
tion servers, an EntityManagerFactory may have already been created for you and
may be waiting in JNDI to be retrieved. In that case, you can use the <jee:jndi-
lookup> element from Spring’s jee namespace to nab a reference to the Entity-
ManagerFactory:

<jee:jndi-lookup id="emf" jndi-name="persistence/spitterPU" />

You can also configure the EntityManagerFactory bean with Java configuration by
using

@Bean
public JndiObjectFactoryBean entityManagerFactory() {}
JndiObjectFactoryBean jndiObjectFB = new JndiObjectFactoryBean();

jndiObjectFB.setJndiName("jdbc/SpittrDS");
return jndiObjectFB;

}

Although this method doesn’t return an EntityManagerFactory, it will result in an
EntityManagerFactory bean. That’s because it returns JndiObjectFactoryBean,
which is an implementation of the FactoryBean interface that produces an Entity-
ManagerFactory.

 Regardless of how you get your hands on an EntityManagerFactory, once you
have one, you’re ready to start writing a repository. Let’s do that now.

316 CHAPTER 11 Persisting data with object-relational mapping
11.2.2 Writing a JPA-based repository

Just like all of Spring’s other persistence integration options, Spring-JPA integration
comes in template form with JpaTemplate. Nevertheless, template-based JPA has been
set aside in favor of a pure JPA approach. This is analogous to the Hibernate contex-
tual sessions you used in section 11.1.2.

 Because pure JPA is favored over template-based JPA, this section focuses on build-
ing Spring-free JPA repositories. Specifically, JpaSpitterRepository in the following
listing shows how you can develop a JPA repository without resorting to using Spring’s
JpaTemplate.

package com.habuma.spittr.persistence;
import java.util.List;
import javax.persistence.EntityManagerFactory;
import javax.persistence.PersistenceUnit;
import org.springframework.dao.DataAccessException;
import org.springframework.stereotype.Repository;
import org.springframework.transaction.annotation.Transactional;
import com.habuma.spittr.domain.Spitter;
import com.habuma.spittr.domain.Spittle;

@Repository
@Transactional
public class JpaSpitterRepository implements SpitterRepository {

@PersistenceUnit
private EntityManagerFactory emf;

public void addSpitter(Spitter spitter) {
emf.createEntityManager().persist(spitter);

}

public Spitter getSpitterById(long id) {
return emf.createEntityManager().find(Spitter.class, id);

}

public void saveSpitter(Spitter spitter) {
emf.createEntityManager().merge(spitter);

}
...
}

The main thing to notice in listing 11.2 is the EntityManagerFactory property. It’s
annotated with @PersistenceUnit so that Spring can inject the EntityManager-
Factory into the repository. With an EntityManagerFactory in hand, JpaSpitter-
Repository’s methods use it to create an EntityManager and then use that
EntityManager to perform operations against the database.

 The only gotcha with JpaSpitterRepository as it stands is that each method
ends up calling createEntityManager(). Aside from presenting a troubling code-
duplication situation, it also means a new EntityManager is created every time one of

Listing 11.2 A pure JPA repository that doesn’t use Spring templates

Inject
EntityManagerFactory

Create and use
EntityManager

317Spring and the Java Persistence API
the repository methods is called. This complicates matters concerning transactions.
Wouldn’t it be handy if you just had the EntityManager up front?

 The problem is that an EntityManager isn’t thread-safe and generally shouldn’t be
injected into a shared singleton bean like your repository. But that doesn’t mean you
can’t ask for an EntityManager anyway. The next listing shows how to use
@PersistenceContext to give JpaSpitterRepository an EntityManager.

package com.habuma.spittr.persistence;
import java.util.List;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import org.springframework.dao.DataAccessException;
import org.springframework.stereotype.Repository;
import org.springframework.transaction.annotation.Transactional;
import com.habuma.spittr.domain.Spitter;
import com.habuma.spittr.domain.Spittle;

@Repository
@Transactional
public class JpaSpitterRepository implements SpitterRepository {

@PersistenceContext
private EntityManager em;

public void addSpitter(Spitter spitter) {
em.persist(spitter);

}

public Spitter getSpitterById(long id) {
return em.find(Spitter.class, id);

}

public void saveSpitter(Spitter spitter) {
em.merge(spitter);

}
...
}

This new version of JpaSpitterRepository is now given an EntityManager directly;
there’s no need for it to create one from an EntityManagerFactory in each of its
methods. Although this is much more convenient, you’re probably wondering about
the thread-safety issues of working with an injected EntityManager.

 The truth is that @PersistenceContext doesn’t inject an EntityManager—at least,
not exactly. Instead of giving the repository a real EntityManager, it gives a proxy to a
real EntityManager. That real EntityManager either is one associated with the cur-
rent transaction or, if one doesn’t exist, creates a new one. Thus, you know that you’re
always working with an entity manager in a thread-safe way.

 It’s important to understand that @PersistenceUnit and @PersistenceContext
aren’t Spring annotations; they’re provided by the JPA specification. In order for
Spring to understand them and inject an EntityManagerFactory or EntityManager,

Listing 11.3 Injecting a repository with a proxy to the EntityManager

Inject EntityManager

Use EntityManager

318 CHAPTER 11 Persisting data with object-relational mapping
Spring’s PersistenceAnnotationBeanPostProcessor must be configured. If you’re
already using <context:annotation-config> or <context:component-scan>, then
you’re good to go because those configuration elements automatically register a
PersistenceAnnotationBeanPostProcessor bean. Otherwise, you’ll need to register
that bean explicitly:

@Bean
public PersistenceAnnotationBeanPostProcessor paPostProcessor() {

return new PersistenceAnnotationBeanPostProcessor();
}

You also may have noticed that JpaSpitterRepository is annotated with @Repository
and @Transactional. @Transactional indicates that the persistence methods in this
repository are involved in a transactional context.

 @Repository serves the same purpose here as it did when you developed the Hiber-
nate contextual session version of the repository. Without a template to handle excep-
tion translation, you need to annotate your repository with @Repository so
PersistenceExceptionTranslationPostProcessor knows that this is a bean for which
exceptions should be translated into one of Spring’s unified data-access exceptions.

 Speaking of PersistenceExceptionTranslationPostProcessor, you need to
remember to wire it up as a bean in Spring just as you did for the Hibernate example:

@Bean
public BeanPostProcessor persistenceTranslation() {

return new PersistenceExceptionTranslationPostProcessor();
}

Note that exception translation, whether with JPA or Hibernate, isn’t mandatory. If
you’d prefer that your repository throw JPA-specific or Hibernate-specific exceptions,
you’re welcome to forgo PersistenceExceptionTranslationPostProcessor and let
the native exceptions flow freely. But if you do use Spring’s exception translation,
you’ll be unifying all of your data-access exceptions under Spring’s exception hierar-
chy, which will make it easier to swap out persistence mechanisms later.

11.3 Automatic JPA repositories with Spring Data
Even though the methods in listings 11.2 and 11.3 are fairly simple, they still interact
directly with the EntityManager to query the database. And, on closer inspection,
those methods start looking a bit boilerplate-ish. For example, let’s reexamine the
addSpitter() method:

public void addSpitter(Spitter spitter) {
entityManager.persist(spitter);

}

In any reasonably-sized application, you’re likely to write that same method almost
exactly the same way many times. In fact, aside from the fact that it’s a Spitter that’s
being persisted, I’ll bet you’ve written a similar method before. And the other methods

319Automatic JPA repositories with Spring Data
in JpaSpitterRepository aren’t too innovative, either. The domain types will be dif-
ferent, but those methods are fairly common across all kinds of repositories.

 Why keep writing the same persistence methods over and over again, just because
you’re dealing with different domain types? Spring Data JPA brings an end to this boil-
erplate madness. Rather than write the same repository implementations again and
again, Spring Data lets you stop at writing the repository interface. No implementa-
tion is required.

 For instance, take a look at the following SpitterRepository interface.

public interface SpitterRepository
extends JpaRepository<Spitter, Long> {

}

At this point, SpitterRepository doesn’t appear all that useful. But there’s a lot more
here than meets the eye.

 The key to writing a Spring Data JPA repository is to extend one of a handful of
interfaces. Here, SpitterRepository extends Spring Data JPA’s JpaRepository (I’ll
mention a few of the other interfaces in a moment). In doing so, JpaRepository is
parameterized such that it knows this is a repository for persisting Spitter objects and
that Spitters have an ID of type Long. It also inherits 18 methods for performing
common persistence operations, such as saving a Spitter, deleting a Spitter, and
finding a Spitter by its ID.

 At this point, you might be expecting that the next step is to write a class that
implements SpitterRepository and its 18 methods. If that were true, then this chap-
ter would be about to take a tedious turn. Fortunately, however, you won’t be writing
any implementations of SpitterRepository. Instead, you’ll let Spring Data do it for
you. All you need to do is ask.

 To ask Spring Data to create an implementation of SpitterRepository, you need
to add a single element to your Spring configuration. The following listing shows the
XML configuration needed to put Spring Data JPA into motion.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jpa="http://www.springframework.org/schema/data/jpa"
xsi:schemaLocation="http://www.springframework.org/schema/data/jpa

http://www.springframework.org/schema/data/jpa/spring-jpa-1.0.xsd">

<jpa:repositories base-package="com.habuma.spittr.db" />

...

</beans>

Listing 11.4 Creating a repository from an interface definition with Spring Data

Listing 11.5 Configuring Spring Data JPA

320 CHAPTER 11 Persisting data with object-relational mapping
The <jpa:repositories> element holds all the magic of Spring Data JPA. Much
like the <context:component-scan> element, <jpa:repositories> is given a base-
package to scan. But where <context:component-scan> scans a package (and its sub-
packages) for classes that are annotated with @Component, <jpa:repositories> scans
its base package for any interfaces that extend Spring Data JPA’s Repository interface.
When it finds any interface extending Repository, it automatically (at application
startup time) generates an implementation of that interface.

 Instead of using the <jpa:repositories> element, you can use @EnableJpa-
Repositories in your Java configuration class. What follows is a Java configuration class
annotated with @EnableJpaRepositories to scan the com.habuma.spittr.db package:

@Configuration
@EnableJpaRepositories(basePackages="com.habuma.spittr.db")
public class JpaConfiguration {

...
}

Getting back to the SpitterRepository interface, it extends JpaRepository.
JpaRepository extends the marker Repository interface (albeit indirectly). There-
fore, SpitterRepository transitively extends the Repository interface that reposi-
tory-scanning is looking for. When Spring Data finds it, it creates an implementation
of SpitterRepository, including an implementation of all 18 methods inherited
from JpaRepository, PagingAndSortingRepository, and CrudRepository.

 It’s important to understand that the repository implementation is generated at
application startup time, as the Spring application context is being created. It isn’t the
product of build-time code generation. Nor is it created at the time any of the inter-
face’s methods are called.

 Nifty, huh?
 It’s awesome that Spring Data JPA can give you 18 convenient methods for com-

mon JPA operations on Spitter objects without you having to write that persistence
code. But what if you need something more than what those 18 methods offer? Fortu-
nately, Spring Data JPA provides a few ways to add custom methods to a repository.
Let’s see how to define a custom query method using Spring Data JPA.

11.3.1 Defining query methods

One thing your SpitterRepository will need is a means of looking up a Spitter
object given a username. For example, let’s say you modify the SpitterRepository
interface to look like this:

public interface SpitterRepository
extends JpaRepository<Spitter, Long> {

Spitter findByUsername(String username);
}

The new findByUsername() method is simple enough and should satisfy your require-
ment. Now, how do you get Spring Data JPA to incorporate an implementation of that
method?

321Automatic JPA repositories with Spring Data
 Actually, nothing else needs to be done to implement findByUsername(). The
method signature tells Spring Data JPA everything it needs to know in order to create
an implementation for the method.

 When creating the repository implementation, Spring Data will examine any meth-
ods in the repository interface, parse the method name, and attempt to understand
the method’s purpose in the context of the persisted object. In essence, Spring Data
defines a sort of miniature domain-specific language (DSL) where persistence details
are expressed in repository method signatures.

 Spring Data knows that this method is intended to find Spitters, because you
parameterized JpaRepository with Spitter. The method name, findByUsername,
makes it clear that this method should find Spitters by matching their username
property with the username passed in as a parameter to the method. Moreover,
because the signature defines the method as returning a single Spitter and not a col-
lection, it knows that it should look for only one Spitter whose username matches.

 The findByUsername() method is simple enough, but Spring Data can handle
even more interesting method names as well. Repository methods are composed of a
verb, an optional subject, the word By, and a predicate. In the case of findBy-
Username(), the verb is find and the predicate is Username; the subject isn’t specified
and is implied to be a Spitter.

 As another example of how to write repository method names, consider how the
method parts are mapped to a method named readSpitterByFirstnameOr-

Lastname(). Figure 11.1 illustrates how the method breaks down.
 As you can see, the verb is read, as opposed to find from the previous example.

Spring Data allows for four verbs in the method name: get, read, find, and count. The
get, read, and find verbs are synonymous; all three result in repository methods that
query for data and return objects. The count verb, on the other hand, returns a count
of matching objects, rather than the objects themselves.

 The subject of a repository method is optional. Its primary purpose is to allow you
some flexibility in how you name the method. If it suits you to name a method
readSpittersByFirstnameOrLastname() instead of readByFirstnameOrLastname(),
you’re welcome to do that.

 The subject is ignored for the most part. readSpittersByFirstnameOrLastname()
is no different from readPuppiesByFirstnameOrLastname(), which is no different
from readThoseThingsWeWantByFirstnameOrLastname(). The type of object being
retrieved is determined by how you parameterize the JpaRepository interface, not
the subject of the method name.

readSpitterByFirstnameOrLastnameOrderByLastname()

Query verb

Subject

Predicate

Figure 11.1 Repository methods
are named following a pattern that
helps Spring Data generate
queries against the database.

322 CHAPTER 11 Persisting data with object-relational mapping
There is one exception to the subject being ignored. If the subject starts with the word
Distinct, then the generated query will be written to ensure a distinct result set.

 The predicate is the most interesting part of the method name. It specifies the
properties that will constrain the result set. In the case of readByFirstnameOr-
Lastname(), the results are constrained by the value of either the firstname property
or the lastname property.

 Within the predicate, you’ll find one or more conditions that constrain the results.
Each condition must reference a property and may also specify a comparison opera-
tion. If the comparison operator is left off, it’s implied to be an equals operation. But
you may choose any other comparison operations, including the following:

 IsAfter, After, IsGreaterThan, GreaterThan
 IsGreaterThanEqual, GreaterThanEqual
 IsBefore, Before, IsLessThan, LessThan
 IsLessThanEqual, LessThanEqual
 IsBetween, Between
 IsNull, Null
 IsNotNull, NotNull
 IsIn, In
 IsNotIn, NotIn
 IsStartingWith, StartingWith, StartsWith
 IsEndingWith, EndingWith, EndsWith
 IsContaining, Containing, Contains
 IsLike, Like
 IsNotLike, NotLike
 IsTrue, True
 IsFalse, False
 Is, Equals
 IsNot, Not

The values that the properties will be compared against are the parameters of the
method. The full method signature looks like this:

List<Spitter> readByFirstnameOrLastname(String first, String last);

When dealing with String properties, the condition may also include IgnoringCase
or IgnoresCase to perform the comparison with no regard for whether the characters
are uppercase or lowercase. For example, to ignore case on the firstname and
lastname properties, you can write the method signature like this:

List<Spitter> readByFirstnameIgnoringCaseOrLastnameIgnoresCase(
String first, String last);

Notice that IgnoringCase and IgnoresCase are synonymous. You may choose which-
ever one suits you best.

323Automatic JPA repositories with Spring Data
 As an alternative to IgnoringCase/IgnoresCase, you may also use AllIgnoring-
Case or AllIgnoresCase after all the conditions to ignore case for all conditions:

List<Spitter> readByFirstnameOrLastnameAllIgnoresCase(
String first, String last);

Note that the parameter names are irrelevant, but they must be ordered to match up
with the method name’s comparators.

 Finally, you can sort the results by adding OrderBy at the end of the method name.
For example, you can sort the results in ascending order by the lastname property:

List<Spitter> readByFirstnameOrLastnameOrderByLastnameAsc(
String first, String last);

To sort by multiple properties, add them to the OrderBy class. For example, this sorts
by the lastname property in ascending order and then by the firstname property in
descending order:

List<Spitter> readByFirstnameOrLastnameOrderByLastnameAscFirstnameDesc(
String first, String last);

As you’ve seen already, the conditional parts are separated by either And or Or.
 It would be impossible (or at least very difficult) to offer a definitive list of the kinds

of methods you can write with Spring Data’s method-naming convention. But here are
a few more method signatures that adhere to the method-naming conventions:

 List<Pet> findPetsByBreedIn(List<String> breed)
 int countProductsByDiscontinuedTrue()

 List<Order> findByShippingDateBetween(Date start, Date end)

This has been only a taste of the kinds of methods you can declare and have Spring
Data JPA implement for you. For now, just know that by carefully constructing a repos-
itory method signature using a mix of property names and keywords, you can make
Spring Data JPA generate an implementation method to query for almost anything you
can imagine.

 Nevertheless, Spring Data’s mini-DSL has its limits, and sometimes it isn’t conve-
nient or even possible to express the desired query in a method name. When that hap-
pens, Spring Data has you covered with its @Query annotation.

11.3.2 Declaring custom queries

Suppose you want to create a repository method to find all Spitters whose email
address is a Gmail address. One way to do this is to define a findByEmailLike()
method and pass in %gmail.com any time you want to find Gmail users. But it would
be nice to define a more convenient findAllGmailSpitters() method that doesn’t
require the partial email address to be passed in:

List<Spitter> findAllGmailSpitters();

Unfortunately, this method name doesn’t adhere to Spring Data’s method-naming
conventions. When Spring Data attempts to generate an implementation for this

324 CHAPTER 11 Persisting data with object-relational mapping
method, it can’t match the contents of the method name with the Spitter meta-
model and throws an exception.

 In situations where the desired data can’t be adequately expressed in the method
name, you can use the @Query annotation to provide Spring Data with the query that
should be performed. For the findAllGmailSpitters() method, you might use
@Query like this:

@Query("select s from Spitter s where s.email like '%gmail.com'")
List<Spitter> findAllGmailSpitters();

You still don’t write the implementation of the findAllGmailSpitters() method.
You only give the query, hinting to Spring Data JPA about how it should implement the
method.

 As you’ve seen here, @Query is useful when it’s difficult to express the query you
want using the method-naming convention. It can also be useful when, if you followed
the naming convention, the method name would be incredibly long. For example,
consider this finder method:

List<Order>
findByCustomerAddressZipCodeOrCustomerNameAndCustomerAddressState();

Now that’s a method name! I had to split it after the return type just to get it to fit in
the margins of this book.

 I’ll grant that this is a contrived example. But there could be a real-world need to
write a repository method to perform a query that could be defined using a long
method name. In that situation, you’d probably rather come up with a shorter
method name and use @Query to specify how the method should query the database.

 The @Query annotation is handy for adding custom query methods to a Spring
Data JPA-enabled interface. But it’s limited to a single JPA query. What if you need to
mix in something more complex than can be handled in a simple query?

11.3.3 Mixing in custom functionality

It’s likely that at some point you’ll want functionality in your repository that can’t be
described with Spring Data’s method-naming conventions or even with a query given
in the @Query annotation. As awesome as Spring Data JPA is, it still has its limits, and
you may need to write a repository method the old-fashioned way: by working with the
EntityManager directly. When that happens, do you give up on Spring Data JPA and
go back to writing your repositories as you did in section 11.2.2?

 In short, yes. When you need to do something that Spring Data JPA can’t do, you’ll
have to work with JPA at a lower level than Spring Data JPA offers. But the good news
is, you don’t have to give up on Spring Data JPA completely. You only need to work at
the lower level for those methods that require it. You can still let Spring Data JPA do
the grunt work for the stuff it knows how to do.

 When Spring Data JPA generates the implementation for a repository interface, it
also looks for a class whose name is the same as the interface’s name postfixed with

325Automatic JPA repositories with Spring Data
Impl. If the class exists, Spring Data JPA merges its methods with those generated by
Spring Data JPA. For the SpitterRepository interface, the class it looks for is named
SpitterRepositoryImpl.

 To illustrate, suppose you need a method in your SpitterRepository that updates
all Spitters who have posted 10,000 or more Spittles, setting them to Elite status.
There’s no good way to declare such a method using Spring Data JPA’s method-
naming conventions or with @Query. The most practical way to do it is using the follow-
ing eliteSweep() method.

public class SpitterRepositoryImpl implements SpitterSweeper {

@PersistenceContext
private EntityManager em;

public int eliteSweep() {
String update =

"UPDATE Spitter spitter " +
"SET spitter.status = 'Elite' " +
"WHERE spitter.status = 'Newbie' " +
"AND spitter.id IN (" +
"SELECT s FROM Spitter s WHERE (" +
" SELECT COUNT(spittles) FROM s.spittles spittles) > 10000" +
")";

return em.createQuery(update).executeUpdate();
}

}

As you can see, the eliteStatus() method isn’t much different from any of the
repository methods you created earlier in section 11.2.2. There’s nothing special
about SpitterRepositoryImpl. It uses the injected EntityManager to do its work.

 Notice that SpitterRepositoryImpl doesn’t implement the SpitterRepository
interface. Spring Data JPA is still responsible for implementing that interface. Instead,
SpitterRepositoryImpl implements SpitterSweeper, which looks like this (the only
thing that ties it into your Spring Data-enabled repository is its name):

public interface SpitterSweeper{
int eliteSweep();

}

You should also make sure the eliteSweep() method is declared in the Spitter-
Repository interface. The easy way to do that and avoid duplicating code is to change
SpitterRepository so that it extends SpitterSweeper:

public interface SpitterRepository
extends JpaRepository<Spitter, Long>,

SpitterSweeper {
....

}

As I mentioned, Spring Data JPA associates the implementation class with the interface
because the implementation’s name is based on the name of the interface. The Impl

Listing 11.6 Repository that promotes frequent Spitter users to Elite status

326 CHAPTER 11 Persisting data with object-relational mapping
postfix is only the default, though. If you’d prefer to use some other postfix, you need
to specify it when configuring @EnableJpaRepositories by setting the repository-
ImplementationPostfix attribute:

@EnableJpaRepositories(
basePackages="com.habuma.spittr.db",
repositoryImplementationPostfix="Helper")

Or, if you’re configuring Spring Data JPA in XML using <jpa:repositories>, you can
specify the postfix with the repository-impl-postfix attribute:

<jpa:repositories base-package="com.habuma.spittr.db"
repository-impl-postfix="Helper" />

With the postfix set to Helper, Spring Data JPA will look for a class named Spitter-
RepositoryHelper to match up with the SpitterRepository interface.

11.4 Summary
Relational databases have been the go-to data store for several applications and for
many years. When working with JDBC and mapping objects to tables is too tedious,
ORM options such as Hibernate and JPA enable a more declarative model for data per-
sistence. Although Spring doesn’t offer direct support for ORM, it does integrate with
several popular ORM solutions, including Hibernate and the Java Persistence API.

 In this chapter, we looked at how to use Hibernate’s contextual sessions in a Spring
application such that your repositories contain little or no Spring-specific code. Like-
wise, you saw how to write Spring-free JPA repositories by injecting an EntityManager-
Factory or an EntityManager into your repository implementations.

 You then got your first taste of Spring Data by seeing how to declare JPA repository
interfaces while letting Spring Data JPA automatically generate implementations of
those interfaces at runtime. And when you need more out of those repository meth-
ods than Spring Data JPA can handle on its own, you can help it out with the @Query
annotation and by writing custom repository method implementations.

 But you have just dipped your toe into the Spring Data pool. Coming up in the
next chapter, we’ll dig deeper into Spring Data’s method-naming DSL and explore
how Spring Data is good for more than just relational databases. That’s right: you’ll
see how Spring Data also supports the new contingent of NoSQL databases that have
become popular in the past few years.

Working with
NoSQL databases
In his autobiography, Henry Ford is famous for having written “Any customer can
have a car painted any color that he wants so long as it is black.”1 Some say this
statement was arrogant and bull-headed. Others may think he was showing a bit of
humor. The reality, however, may be found in the fact that at the time his biography
was published, he was cutting costs by using a quick-drying paint that was only avail-
able in black.

 Paraphrasing Ford’s famous quote and applying it to database choice, we’ve
been told for years that we can have any database we want, as long as it’s a relational
database. Relational databases have had a near-monopolistic hold on application
development for a very long time.

This chapter covers
 Writing repositories backed by MongoDB

and Neo4j

 Persisting data across multiple data stores

 Working with Spring and Redis

1 Henry Ford and Samuel Crowther, My Life and Work (Garden City, New York: Garden City Publishing Com-
pany, 1922).
327

328 CHAPTER 12 Working with NoSQL databases
 But that hold is weakening now that some serious contenders have entered the
database space. The so-called “NoSQL” databases are making inroads into production
applications everywhere as we recognize that there’s no one-size-fits-all database. We
now have a greater choice and can choose the best database for the problem we’re try-
ing to solve.

 Over the past couple of chapters, we’ve focused on relational databases, starting
with Spring’s JDBC support and then object-relational mapping. In the previous chap-
ter, specifically, we looked at Spring Data JPA, one of several projects under the Spring
Data umbrella project. We saw how Spring Data JPA can make working with JPA more
pleasant by automatically generating repository implementations at runtime.

 Spring Data also supports several NoSQL databases, including MongoDB, Neo4j,
and Redis. This not only includes support for automatic repositories, but also
template-based data access and mapping annotations. In this chapter, we’re going
to see how to write repositories that work with non-relational, NoSQL databases.
We’ll start with Spring Data MongoDB to see how to write repositories that deal with
document-based data.

12.1 Persisting documents with MongoDB
Some kinds of data are best represented as documents. That is, rather than spread the
data across multiple tables, nodes, or entities, it may make more sense to collect the
information into denormalized structures (known as documents). Although two or
more of these documents may be related to each other, generally documents are
standalone entities. Databases that are finely tuned to work with documents in this
way are known as document databases.

 For example, suppose that you’re writing an application that captures a college
student’s transcript. You’ll need to be able to retrieve transcripts given a student’s
name or perhaps search across the transcripts for some common properties. But each
student is evaluated individually, so it isn’t necessary for any two transcripts to be
related to each other. Although a relational database schema could be (and probably
has been) designed to capture this transcript data, perhaps a document database is a
better choice.

What document databases aren’t good for
Knowing when to use a document database is important. But it’s also important to
know when document databases don’t make sense. Document databases aren’t
general-purpose databases and they have a very narrow set of problems that they
address well.

Document databases aren’t well-tuned for storing data where there’s any significant
degree of relationships. A social network, for example, represents how different
users of an application relate to each other and isn’t best kept in a document data-
base. Even though it’s not impossible to store relation-rich data in a document
database, you’ll find more challenge than benefit in doing so.

329Persisting documents with MongoDB

MongoDB is one of the most popular open source document databases available.
Spring Data MongoDB brings MongoDB to Spring applications in three ways:

 Annotations for object-to-document mapping
 Template-based database access with MongoTemplate
 Automatic runtime repository generation

We’ve already looked at how Spring Data JPA enabled automatic repository generation
for JPA-based data access. Spring Data MongoDB offers the same feature for MongoDB-
based data access.

 Unlike Spring Data JPA, however, Spring Data MongoDB also offers annotations to
map Java objects to documents. (Spring Data JPA doesn’t need to offer such annota-
tions for JPA because the JPA specification itself defines object-to-relational mapping
annotations.) Moreover, Spring Data MongoDB provides for template-based
MongoDB data access for several common document manipulation tasks.

 Before we can use any of these features, however, we’ll need to configure Spring
Data MongoDB.

12.1.1 Enabling MongoDB

In order to effectively work with Spring Data MongoDB, you’re going to need a few
essential beans in your Spring configuration. First, you’ll need to configure a Mongo-
Client bean to be able to access the MongoDB database. You’ll also need a Mongo-
Template bean to be able to perform template-based data access against the database.
Optionally, but desirably, you’ll want to enable Spring Data MongoDB’s automatic
repository generation.

 The following listing shows how to write a simple Spring Data MongoDB configu-
ration class that addresses these needs.

package orders.config;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.mongodb.core.MongoFactoryBean;
import org.springframework.data.mongodb.core.MongoOperations;
import org.springframework.data.mongodb.core.MongoTemplate;
import org.springframework.data.mongodb.repository.config.

EnableMongoRepositories;
import com.mongodb.Mongo;

@Configuration
@EnableMongoRepositories(basePackages="orders.db")
public class MongoConfig {

Listing 12.1 An essential configuration for Spring Data MongoDB

The domain of the Spittr application isn’t a good fit for a document database. In this
chapter, we’ll look at MongoDB in the context of a purchase order system.

Enable MongoDB
repositories

330 CHAPTER 12 Working with NoSQL databases
@Bean
public MongoFactoryBean mongo() {

MongoFactoryBean mongo = new MongoFactoryBean();
mongo.setHost("localhost");
return mongo;

}

@Bean
public MongoOperations mongoTemplate(Mongo mongo) {

return new MongoTemplate(mongo, "OrdersDB");
}

}

As you’ll recall from the previous chapter, you enabled Spring Data’s automatic JPA
repository generation with the @EnableJpaRepositories annotation. Similarly, the
@EnableMongoRepositories annotation does the same thing for MongoDB.

 In addition to @EnableMongoRepositories, listing 12.1 also includes two @Bean
methods. The first @Bean method uses MongoFactoryBean to declare a Mongo instance.
This bean will bridge Spring Data MongoDB to the database itself (not unlike what a
DataSource does when working with a relational database). Although you could cre-
ate an instance of Mongo directly with MongoClient, you’d be forced to deal with the
UnknownHostException that’s thrown from MongoClient’s constructor. It’s easier
to use Spring Data MongoDB’s MongoFactoryBean here. As a factory bean, Mongo-
FactoryBean will construct an instance of Mongo for you, without you needing to worry
much about UnknownHostException.

 The other @Bean method declares a MongoTemplate bean. It’s constructed giving it
a reference to the Mongo instance created by the other bean method and the name of
the database. In a moment, you’ll see how to use MongoTemplate to query the data-
base. Even if you never use MongoTemplate directly, you’ll need this bean because the
automatically generated repositories will use it under the covers.

 Rather than declare those beans directly, the configuration class could extend
AbstractMongoConfiguration and override its getDatabaseName() and mongo()
methods. The following listing shows how.

package orders.config;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.mongodb.config.

AbstractMongoConfiguration;
import org.springframework.data.mongodb.repository.config.

EnableMongoRepositories;
import com.mongodb.Mongo;
import com.mongodb.MongoClient;

@Configuration
@EnableMongoRepositories("orders.db")
public class MongoConfig extends AbstractMongoConfiguration {

@Override

Listing 12.2 Enabling Spring Data MongoDB with the @EnableMongoRepositories

MongoClient bean

MongoTemplate bean

331Persisting documents with MongoDB
protected String getDatabaseName() {
return "OrdersDB";

}

@Override
public Mongo mongo() throws Exception {

return new MongoClient();
}

}

This new configuration class is equivalent to the one in listing 12.1, albeit marginally
simpler. The most noticeable difference is that this configuration doesn’t directly
declare a MongoTemplate bean, although one is implicitly created. Instead, you over-
ride getDatabaseName() to provide the name of the database. The mongo() method
still creates an instance of MongoClient, but because it throws Exception, you can
work with MongoClient directly without working with MongoFactoryBean.

 As it stands, either listing 12.1 or 12.2 provide a working configuration for Spring
Data MongoDB. That is, as long as the MongoDB server is running on localhost. If
your MongoDB server is running on a different server, you can specify that when you
create MongoClient:

public Mongo mongo() throws Exception {
return new MongoClient("mongodbserver");

}

It’s also possible that your MongoDB server is listening on a port other than the default
(27017). In that case, you should also specify the port when creating MongoClient:

public Mongo mongo() throws Exception {
return new MongoClient("mongodbserver", 37017);

}

And if your MongoDB server is running in a production setting, I’d hope that you
have authentication enabled. In that case, you’ll need to provide your application’s
credentials in order to access the database. Accessing an authenticated MongoDB
server is a bit more involved, as you can see in the next listing.

@Autowired
private Environment env;

@Override
public Mongo mongo() throws Exception {

MongoCredential credential =
MongoCredential.createMongoCRCredential(

env.getProperty("mongo.username"),
"OrdersDB",
env.getProperty("mongo.password").toCharArray());

return new MongoClient(
new ServerAddress("localhost", 37017),

Arrays.asList(credential));
}

Listing 12.3 Creating a MongoClient to access an authenticated MongoDB server

Specify database name

Create a Mongo client

Create MongoDB credential

Create MongoClient

332 CHAPTER 12 Working with NoSQL databases

Mo
In order to access an authenticated MongoDB server, MongoClient must be instanti-
ated with a list of MongoCredentials. In listing 12.3 a single MongoCredential is cre-
ated for that purpose. In order to keep the credential details out of the configuration
class, they’re resolved from the injected Environment.

 For what it’s worth, Spring Data MongoDB can also be configured in XML. As you
should know by now, I favor the Java configuration option. But if you’ve got a fond-
ness for XML configuration, the following listing gives an example of how to configure
Spring Data MongoDB using the mongo configuration namespace.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:mongo="http://www.springframework.org/schema/data/mongo"
xsi:schemaLocation="

http://www.springframework.org/schema/data/mongo
http://www.springframework.org/schema/data/mongo/spring-mongo.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<mongo:repositories base-package="orders.db" />

<mongo:mongo />

<bean id="mongoTemplate"
class="org.springframework.data.mongodb.core.MongoTemplate">

<constructor-arg ref="mongo" />
<constructor-arg value="OrdersDB" />

</bean>

</beans>

Now that Spring Data MongoDB has been configured, you’re almost ready to start
using it to save and retrieve documents. But first, you’ll need to map your Java domain
types for document persistence using Spring Data MongoDB’s object-to-document
mapping annotations.

12.1.2 Annotating model types for MongoDB persistence

When working with JPA, you had to map your Java entity types to relational tables and
columns. The JPA specification provides for several annotations to support object-to-
relational mapping, and some JPA implementations, such as Hibernate, add their own
mapping annotations as well.

 MongoDB, however, doesn’t come with its own object-to-document mapping anno-
tations. Spring Data MongoDB seized the opportunity to fill that gap with a handful of
annotations that you can use to map your Java types to MongoDB documents.
Table 12.1 describes these annotations.

Listing 12.4 Spring Data MongoDB offers an XML configuration option

Declare
mongo
namespace

Enable repository
generation

Declare
ngoClient Create

MongoTemplate bean

333Persisting documents with MongoDB

The @Document and @Id annotations are analogous to JPA’s @Entity and @Id annota-
tions. You’ll use these two annotations often and on every Java type that will be stored
as a document in the MongoDB database. For example, the next listing shows how
you might annotate an Order class to be persisted in MongoDB.

package orders;
import java.util.Collection;
import java.util.LinkedHashSet;
import org.springframework.data.annotation.Id;
import org.springframework.data.mongodb.core.mapping.Document;
import org.springframework.data.mongodb.core.mapping.Field;

@Document
public class Order {

@Id
private String id;

@Field("client")
private String customer;

private String type;

private Collection<Item> items = new LinkedHashSet<Item>();

public String getCustomer() {
return customer;

}

public void setCustomer(String customer) {
this.customer = customer;

}

public String getType() {
return type;

}

public void setType(String type) {
this.type = type;

}

Table 12.1 Spring Data MongoDB annotations for object-to-document mapping

Annotation Description

@Document Identifies a domain object to be mapped to a MongoDB document

@Id Indicates that a field is the ID field

@DbRef Indicates that a field is intended to reference another document,
possibly in another database

@Field Defines custom metadata for a document field

@Version Identifies a property to be used as a version field

Listing 12.5 Spring Data MongoDB annotations map Java types to documents.

This is a document

Designate the ID

Override the default field name

334 CHAPTER 12 Working with NoSQL databases
public Collection<Item> getItems() {
return items;

}

public void setItems(Collection<Item> items) {
this.items = items;

}

public String getId() {
return id;

}

}

As you can see, Order is annotated with @Document, enabling it to be persisted using
MongoTemplate, an automatically generated repository, or both. Its id property is
annotated with @Id to designate it as the ID of the document. In addition, the
customer property is annotated with @Field so that when the document is persisted,
the customer property will be mapped to a field named client.

 Notice that no other properties are annotated. Unless they’re marked as transient,
all fields of the Java object will be persisted as fields of the document. And unless oth-
erwise indicated with @Field, the document fields will have the same names as their
Java property counterparts.

 Also, take note of the items property. It’s clearly a
collection of line items in this order. In a traditional
relational database setting, those items would proba-
bly be kept in a separate database table, referenced
with a foreign key, and the items field might be
annotated for JPA with @OneToMany. But here that’s
not the case.

 As I said earlier, documents can be related to
other documents, but that’s not what document
databases are especially good at. In the case of the
relationship between a purchase order and its line
items, the line items are merely a nested part of the
same order document (as shown in figure 12.1).
Therefore, there’s no need for any annotations to
designate the relationship. In fact, the Item class
itself isn’t annotated at all:

package orders;

public class Item {

private Long id;
private Order order;
private String product;
private double price;
private int quantity;

Order

id
customer
type

Items

id
order
product
price
quantity

Figure 12.1 Documents represent
related but denormalized data.
Related concepts (such as items of
an order) are embedded in the top-
level document.

335Persisting documents with MongoDB
public Order getOrder() {
return order;

}

public String getProduct() {
return product;

}

public void setProduct(String product) {
this.product = product;

}

public double getPrice() {
return price;

}

public void setPrice(double price) {
this.price = price;

}

public int getQuantity() {
return quantity;

}

public void setQuantity(int quantity) {
this.quantity = quantity;

}

public Long getId() {
return id;

}

}

It’s not necessary to annotate Item with @Document, nor is it necessary to annotate one
of its fields with @Id. That’s because you’ll never persist an Item as an independent
document. It will always be a member of the Order document’s Item list and a nested
element in that document.

 Of course, you could annotate one of Item’s properties with @Field if you wanted
to dictate how that field should be stored in the document. It just wasn’t necessary to
do so in this example.

 Now we have a Java domain type annotated for MongoDB persistence. Let’s see
how you can use MongoTemplate to store a few of them.

12.1.3 Accessing MongoDB with MongoTemplate

You’ve already configured a MongoTemplate bean, either explicitly or by extending
AbstractMongoConfiguration in your configuration class. All you need to do is inject
it wherever it will be used:

@Autowired
MongoOperations mongo;

Notice that here I’m injecting MongoTemplate into a property whose type is Mongo-
Operations. MongoOperations is an interface that MongoTemplate implements, and

336 CHAPTER 12 Working with NoSQL databases
it’s good form to not work with the concrete implementation directly, especially when
it’s injected.

 MongoOperations exposes several useful methods for working with a MongoDB
document database. It’d be impossible for us to discuss all of them here, but we can
take a look at a few of the most commonly used operations, such as counting how
many documents are in a document collection. Using the injected MongoOperations,
you get the order collection and then call count() to get a count:

long orderCount = mongo.getCollection("order").count();

Now let’s suppose you want to save a new order. To do that, you can call the save()
method:

Order order = new Order();
... // set properties and add line items
mongo.save(order, "order");

The first parameter to save() is the newly created Order; the second is the name of
the document store to save it to.

 You can also look up an order by its ID by calling findById():

String orderId = ...;
Order order = mongo.findById(orderId, Order.class);

More advanced queries require that you construct a Query object and pass it to the
find() method. For example, to find all orders whose client field is equal to “Chuck
Wagon”, you can use this code:

List<Order> chucksOrders = mongo.find(Query.query(
Criteria.where("client").is("Chuck Wagon")), Order.class);

In this case, the Criteria used to construct the Query only checks one field. But it can
also be used for even more interesting queries. Perhaps you want to get all of Chuck’s
orders that were placed over the web:

List<Order> chucksWebOrders = mongo.find(Query.query(
Criteria.where("customer").is("Chuck Wagon")

.and("type").is("WEB")), Order.class);

And, should you wish to remove a document, the remove() method is what you’re
looking for:

mongo.remove(order);

As I’ve said, MongoOperations has several methods for working with document data. I
encourage you to examine the JavaDoc to discover what else you can do with Mongo-
Operations.

 Typically, you’d inject MongoOperations into a repository class of your own design
and use its operations to implement the repository methods. But if you don’t want to
bother writing the repository yourself, then Spring Data MongoDB can automatically
generate a repository implementation for you at runtime. Let’s see how.

337Persisting documents with MongoDB
12.1.4 Writing a MongoDB repository

To understand how to create repositories with Spring Data MongoDB, let’s once again
consider what you did in chapter 11 with Spring Data JPA. In listing 11.4, you created
an interface named SpitterRepository that extends JpaRepository. In the same sec-
tion, you also enabled Spring Data JPA repositories. As a result, Spring Data JPA was
able to automatically create an implementation of that interface, including several
built-in methods and any methods you added that followed a naming convention.

 You’ve already enabled Spring Data MongoDB repositories with @EnableMongo-
Repositories, so all that’s left is to create an interface that you can generate the
repository implementation from. Instead of extending JpaRepository, however,
you’ll need to extend MongoRepository. The OrderRepository interface in the fol-
lowing listing extends MongoRepository to provide basic CRUD operations for Order
documents.

package orders.db;
import orders.Order;
import org.springframework.data.mongodb.repository.MongoRepository;

public interface OrderRepository
extends MongoRepository<Order, String> {

}

Because OrderRepository extends MongoRepository, it transitively extends the
Repository marker interface. As you’ll recall from our exploration of Spring Data
JPA, any interface that extends Repository will have an implementation automatically
generated at runtime. In this case, however, instead of a JPA repository that interacts
with a relational database, OrderRepository will be implemented to read and write
data to a MongoDB document database.

 The MongoRepository interface has two parameters. The first is the type of
@Document-annotated object that this repository deals with. The second is the type of
the @Id-annotated property.

 Even though OrderRepository doesn’t define any methods of its own, it inherits
several methods, including several useful methods for CRUD operations on Order doc-
uments. Table 12.2 describes all of the methods that OrderRepository inherits.

 The methods in table 12.2 refer to the generic types passed into and returned
from the methods. Given that OrderRepository extends MongoRepository<Order,
String>, this means that T maps to Order, ID maps to String, and S maps to any type
that extends Order.

Listing 12.6 Spring Data MongoDB automatically implements repository interfaces

338 CHAPTER 12 Working with NoSQL databases

ADDING CUSTOM QUERY METHODS

The CRUD operations are generally useful, but you may need the repository to pro-
vide methods beyond what comes out of the box.

 In section 11.3.1, you learned that Spring Data JPA supports a method-naming con-
vention that helps Spring Data to automatically generate implementations for the
methods that follow that convention. As it turns out, the very same convention works
with Spring Data MongoDB. That means you can add custom methods to OrderRe-
pository like this:

public interface OrderRepository
extends MongoRepository<Order, String> {

List<Order> findByCustomer(String c);
List<Order> findByCustomerLike(String c);
List<Order> findByCustomerAndType(String c, String t);
List<Order> findByCustomerLikeAndType(String c, String t);

}

Table 12.2 By extending MongoRepository, a repository interface inherits several CRUD operations
that are automatically implemented by Spring Data MongoDB.

Method Description

long count(); Returns a count of the documents for the repository
type

void delete(Iterable<? extends T); Deletes all documents associated with the given
objects

void delete(T); Deletes the document associated with the given
object

void delete(ID); Deletes a document by its ID

void deleteAll(); Deletes all documents for the given repository type

boolean exists(Object); Returns true if a document associated with the
given object exists

boolean exists(ID); Returns true if a document exists for the given ID

List<T> findAll(); Returns all documents for the repository type

List<T> findAll(Iterable<ID>); Returns all documents for the given document IDs

List<T> findAll(Pageable); Returns a paged and sorted list of documents for the
repository type

List<T> findAll(Sort); Returns a sorted list of all documents for the given
document ID

T findOne(ID); Returns a single document for the given ID

save(Iterable<S>); Saves all documents in the given Iterable

save(S); Saves a single document for the given object

339Persisting documents with MongoDB
Here you have four new methods, each one finding Order objects that match certain
criteria. One method finds a list of Order where the customer property is equal to the
value passed into the method. Another finds a list of Order where the customer prop-
erty is like the value passed into the method. The next finds Order objects whose
customer and type properties are equal to the values passed in. The final method is
like the previous, except that the customer comparison is a like comparison instead of
an equals comparison.

 The find query verb is flexible. If you’d prefer, you can use get as the query verb:

List<Order> getByCustomer(String c);

Or if it suits you better, you can use read:

List<Order> readByCustomer(String c);

There’s also another special query verb for counting the objects that match:

int countByCustomer(String c);

As with Spring Data JPA, there’s a lot of flexibility in what can go in between the query
verb and By. For example, you could state what it is you’re finding:

List<Order> findOrdersByCustomer(String c);

There’s nothing special about the word Orders, though. It has nothing to do with
what is being fetched. You could name the method like this:

List<Order> findSomeStuffWeNeedByCustomer(String c);

You also don’t need to return a List<Order>. If all you want is a single Order, you can
simply return Order:

Order findASingleOrderByCustomer(String c);

Here, the first Order that would’ve been found if it were a List is what will be
returned. If there isn’t a match, the method will return null.

SPECIFYING QUERIES

As you saw in section 11.3.2, the @Query annotation can be used to specify a custom
query for a repository method. @Query works equally well with MongoDB as it does
with JPA. The only material difference is that for MongoDB, @Query takes a JSON
query string instead of a JPA query.

 For example, suppose you need a method that finds all orders of a given type for
the customer whose name is “Chuck Wagon”. The following method declaration in
OrderRepository will give you what you need:

@Query("{'customer': 'Chuck Wagon', 'type' : ?0}")
List<Order> findChucksOrders(String t);

The JSON given to @Query is matched up against all Order documents, and any docu-
ment that matches will be returned. Notice that the type property is mapped to ?0.
This indicates that the type property should be equal to the zeroth parameter to the

340 CHAPTER 12 Working with NoSQL databases
query method. If there were more parameters, they could be referred to with ?1, ?2,
and so forth.

MIXING IN CUSTOM REPOSITORY BEHAVIOR

In section 11.3.3, you learned how to mix fully custom methods into an otherwise
automatically generated repository. For JPA, that involved creating an intermediary
interface that declares the custom method(s), an implementation class for those cus-
tom methods, and changing the automatic repository interface to extend the interme-
diary interface. The steps are the same for a Spring Data MongoDB repository.

 Suppose that you need a method that finds all Order objects where the document’s
type property matches a given value. You could easily create such a method by giving
it a signature of List<Order> findByType(String t). But for the sake of this example,
suppose that if the given type is NET, then it will query for Orders whose type is WEB.
This would be hard to do, even with the @Query annotation. A mixin implementation,
however, can make it work.

 First, define the intermediary interface:

package orders.db;
import java.util.List;
import orders.Order;

public interface OrderOperations {
List<Order> findOrdersByType(String t);

}

That’s simple enough. Now you can write the mixin implementation. The following
listing shows what the implementation might look like.

package orders.db;
import java.util.List;
import orders.Order;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.mongodb.core.MongoOperations;
import org.springframework.data.mongodb.core.query.Criteria;
import org.springframework.data.mongodb.core.query.Query;

public class OrderRepositoryImpl implements OrderOperations {
@Autowired
private MongoOperations mongo;

public List<Order> findOrdersByType(String t) {
String type = t.equals("NET") ? "WEB" : t;

Criteria where = Criteria.where("type").is(t);
Query query = Query.query(where);

return mongo.find(query, Order.class);
}

}

Listing 12.7 Mixing custom repository functionality into an automatic repository

Inject MongoOperations

Create query

Perform query

341Working with graph data in Neo4j
As you can see, the mixin implementation is injected with a MongoOperations (the
interface that MongoTemplate implements). The findOrdersByType() method uses
the MongoOperations to query the database for documents matching the constructed
query.

 All that’s left is to change OrderRepository to extend the intermediary Order-
Operations interface:

public interface OrderRepository
extends MongoRepository<Order, String>, OrderOperations {

...
}

The thing that ties all of this together is the fact that the implementation class is
named OrderRepositoryImpl. This is the same name as the OrderRepository inter-
face, with an “Impl” suffix. When Spring Data MongoDB generates the repository
implementation, it will look for this class and mix it into the automatically generated
implementation.

 If you don’t care for the “Impl” suffix, you can configure Spring Data MongoDB
to look for a class with a different suffix in its name. All you need to do is set the
repositoryImplementationPostfix attribute of @EnableMongoRepositories (in the
Spring configuration class).

@Configuration
@EnableMongoRepositories(basePackages="orders.db",

repositoryImplementationPostfix="Stuff")
public class MongoConfig extends AbstractMongoConfiguration {

...
}

Or, if you’re using XML configuration, you can set the repository-impl-postfix
attribute of <mongo:repositories>:

<mongo:repositories base-package="orders.db"
repository-impl-postfix="Stuff" />

Either way, if you configure Spring Data MongoDB this way, it will look for Order-
RepositoryStuff instead of OrderRepositoryImpl.

 Document databases such as MongoDB solve a certain class of problems. But just
as relational databases aren’t a one-size-fits-all solution, neither is MongoDB. And
there are certain problems that neither a relational database nor a document data-
base is well-suited for. Fortunately, those aren’t the only two choices.

 Let’s have a look at how Spring Data supports Neo4j, a popular graph database.

12.2 Working with graph data in Neo4j
Whereas document databases store data in coarse-grained documents, graph data-
bases store data in several fine-grained nodes that are connected with each other
through relationships. A node in a graph database typically represents a concept in

342 CHAPTER 12 Working with NoSQL databases
the database, having properties that describe the state of the node. Relationships con-
nect two nodes and may carry properties of their own.

 At their simplest, graph databases are more general purpose than document data-
bases, potentially being a schemaless alternative to relational databases. But because
data is structured as a graph, it’s possible to traverse relationships to discover things
about your data that would be difficult or even impossible with other kinds of databases.

 Spring Data Neo4j offers many of the same capabilities as Spring Data JPA and
Spring Data MongoDB, albeit targeting the Neo4j graph database. It provides annota-
tions for mapping Java types to nodes and relationships, template-oriented Neo4j
access, and automatic generation of repository implementations.

 You’ll see how to use these features to work with Neo4j. But first, you must config-
ure Spring Data Neo4j.

12.2.1 Configuring Spring Data Neo4j

The key to configuring Spring Data Neo4j is to declare a GraphDatabaseService bean
and enable automatic Neo4j repository generation. The following listing shows the
basic Java configuration needed for Spring Data Neo4j.

package orders.config;
import org.neo4j.graphdb.GraphDatabaseService;
import org.neo4j.graphdb.factory.GraphDatabaseFactory;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.neo4j.config.EnableNeo4jRepositories;
import org.springframework.data.neo4j.config.Neo4jConfiguration;

@Configuration
@EnableNeo4jRepositories(basePackages="orders.db")
public class Neo4jConfig extends Neo4jConfiguration {

public Neo4jConfig() {
setBasePackage("orders");

}

@Bean(destroyMethod="shutdown")
public GraphDatabaseService graphDatabaseService() {

return new GraphDatabaseFactory()
.newEmbeddedDatabase("/tmp/graphdb");

}

}

The @EnableNeo4jRepositories annotation enables Spring Data Neo4j to automati-
cally generate Neo4j repository implementations. Its basePackages is set so that it
scans the orders.db package for interfaces that extend (directly or indirectly) the
marker Repository interface.

 Neo4jConfig extends Neo4jConfiguration, which provides convenient methods
for configuring Spring Data Neo4j. Among those methods is setBasePackage(),

Listing 12.8 Configuring Spring Data Neo4j with @EnableNeo4jRepositories

Enable
automatic
repositories

Set model
base package

Configure embedded
databasepackage

343Working with graph data in Neo4j
which is called from Neo4jConfig’s constructor to tell Spring Data Neo4j that it can
find model classes in the orders package.

 The final piece of the puzzle is to define a GraphDatabaseService bean. In this
case, the graphDatabaseService() method uses GraphDatabaseFactory to create an
embedded Neo4j database. With Neo4j, an embedded database shouldn’t be con-
fused with an in-memory database. “Embedded” means that the database engine is
running within the same JVM as a part of your application rather than as a separate
server. The data is still persisted to the filesystem (at /tmp/graphdb in this case).

 Alternatively, you might want to configure a GraphDatabaseService that refer-
ences a remote Neo4j server. If you have the spring-data-neo4j-rest library in your
application’s classpath, you can configure SpringRestGraphDatabase, which accesses
a remote Neo4j database over a RESTful API:

@Bean(destroyMethod="shutdown")
public GraphDatabaseService graphDatabaseService() {

return new SpringRestGraphDatabase(
"http://graphdbserver:7474/db/data/");

}

As shown here, SpringRestGraphDatabase is configured to assume that the remote
database doesn’t require authentication. In a production setting, however, it’s likely
that you’ll want to secure the database server. In that case, you’ll want to provide your
application’s credentials when creating the SpringRestGraphDatabase:

@Bean(destroyMethod="shutdown")
public GraphDatabaseService graphDatabaseService(Environment env) {

return new SpringRestGraphDatabase(
"http://graphdbserver:7474/db/data/",
env.getProperty("db.username"), env.getProperty("db.password"));

}

Here, the credentials are obtained via the injected Environment to avoid hard-coding
them in the configuration class.

 Spring Data Neo4j also offers an XML configuration namespace. If you’d rather
configure Spring Data Neo4j in XML, you can use the <neo4j:config> and
<neo4j:repositories> elements from that namespace. Listing 12.9 shows an XML
configuration that’s equivalent to the Java configuration in listing 12.8.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:neo4j="http://www.springframework.org/schema/data/neo4j"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/neo4j
http://www.springframework.org/schema/data/neo4j/spring-neo4j.xsd">

Listing 12.9 Spring Data Neo4j can also be configured in XML.

344 CHAPTER 12 Working with NoSQL databases
<neo4j:config
storeDirectory="/tmp/graphdb"
base-package="orders" />

<neo4j:repositories base-package="orders.db" />
</beans>

The <neo4j:config> element configures the details of how to access the database. In
this case, it configures Spring Data Neo4j to work with an embedded database. Specif-
ically, the storeDirectory attribute specifies the path in the filesystem where the data
will be persisted. The base-package attribute sets the package where the model
classes are defined.

 As for <neo4j:repositories>, it enables Spring Data Neo4j to automatically gen-
erate repository implementations by scanning the orders.db package and looking for
interfaces that extend the Repository interface.

 To configure Spring Neo4j to access a remote Neo4j server, all you need to do is
declare a SpringRestGraphDatabase bean and set <neo4j:config>’s graphDatabase-
Service attribute:

<neo4j:config base-package="orders"
graphDatabaseService="graphDatabaseService" />

<bean id="graphDatabaseService" class=
"org.springframework.data.neo4j.rest.SpringRestGraphDatabase">

<constructor-arg value="http://graphdbserver:7474/db/data/" />
<constructor-arg value="db.username" />
<constructor-arg value="db.password" />

</bean>

Whether you configure Spring Data Neo4j using Java or XML, you’ll need to be sure
that the domain types are under a package specified as a base package
(@EnableNeo4jRepositories’s basePackages attribute or <neo4j:config>’s base-
package attribute). They’ll also need to be annotated as either node entities or rela-
tionship entities. That’s what you’ll do next.

12.2.2 Annotating graph entities

Neo4j defines two kinds of entities: nodes and relationships. Node entities typically
represent the things in your application, whereas relationship entities define how
those things are related.

 Spring Data Neo4j provides several annotations that you can apply to domain types
and their fields for persistence in Neo4j. Table 12.3 describes these annotations.

 To see how a few of these annotations are used, let’s apply these annotations to our
order/item example.

 One way you can model the data is to designate an order as a node that’s related to
one or more items. Figure 12.2 illustrates this model as a graph.

 To designate orders as nodes, you’ll need to annotate the Order class with @Node-
Entity. The next listing shows the Order class annotated with @NodeEntity, as well as
a few other annotations from table 12.3.

Configure Neo4j
database details

Enable repository generation

345Working with graph data in Neo4j

package orders;
import java.util.LinkedHashSet;
import java.util.Set;
import org.springframework.data.neo4j.annotation.GraphId;

Table 12.3 Spring Data Neo4j annotations you can use to map domain types to nodes and
relationships in a graph

Annotation Description

@NodeEntity Declares a Java type as a node entity

@RelationshipEntity Declares a Java type as a relationship entity

@StartNode Declares a property as the start node of a relationship entity

@EndNode Declares a property as the end node of a relationship entity

@Fetch Declares a property on an entity to be eagerly loaded

@GraphId Declares a property as the ID field of an entity (the field must be a
Long)

@GraphProperty Explicitly declares a property

@GraphTraversal Declares a property to automatically provide an iterable that’s built by
following a graph traversal

@Indexed Declares a property to be indexed

@Labels Declares the labels for an @NodeEntity

@Query Declares a property to automatically provide an iterable that’s built by
executing a given Cypher query

@QueryResult Declares a Java class or interface as being able to hold the results of a
query

@RelatedTo Declares a simple relationship between the current @NodeEntity and
another @NodeEntity via a property

@RelatedToVia Declares a field on an @NodeEntity as referencing an
@RelationshipEntity that the node belongs to

@RelationshipType Declares a field as the type of a relationship entity

@ResultColumn Declares a property on an @QueryResult-annotated type to capture a
specific field from a query result

Listing 12.10 Order is annotated to be a node in the graph database

Has items
Order Item Figure 12.2 A simple relationship

connects two nodes but carries no
properties of its own.

346 CHAPTER 12 Working with NoSQL databases
import org.springframework.data.neo4j.annotation.NodeEntity;
import org.springframework.data.neo4j.annotation.RelatedTo;

@NodeEntity
public class Order {

@GraphId
private Long id;
private String customer;
private String type;

@RelatedTo(type="HAS_ITEMS")
private Set<Item> items = new LinkedHashSet<Item>();

...

}

In addition to the @NodeEntity at the class level, notice that the id property is anno-
tated with @GraphId. All entities in Neo4j must have a graph ID. This is roughly analo-
gous to the @Id-annotated properties of a JPA @Entity or a MongoDB @Document. It’s
required that the @GraphId-annotated property be a Long.

 The customer and type properties remain annotation-free. Unless they are tran-
sient, they’ll be properties on the node in the database.

 The items property is annotated with @RelatedTo, indicating that an Order is
related to a Set of Item. The type attribute essentially labels the relationship. It can
be given any value, but it’s commonly given human-readable text that briefly describes
the nature of the relationship. Later you’ll use this label in queries to query across
relationships.

 As for the Item class itself, the following listing shows how it’s annotated for graph
persistence.

package orders;
import org.springframework.data.neo4j.annotation.GraphId;
import org.springframework.data.neo4j.annotation.NodeEntity;

@NodeEntity
public class Item {

@GraphId
private Long id;
private String product;
private double price;
private int quantity;

...

}

As with Order, Item is annotated as @NodeEntity to designate it as a node. It also has a
Long property annotated to be the node’s graph ID with @GraphId. The product,

Listing 12.11 Items are also represented as nodes in the graph database.

Orders are nodes

The graph ID

Relationship to items

Items are nodes

The graph ID

347Working with graph data in Neo4j
price, and quantity properties will also be persisted as node properties in the graph
database.

 The relationship between Order and Item is simple in that it doesn’t carry any data
of its own. Therefore, the @RelatedTo annotation is sufficient to define the relation-
ship. But not all relationships are so simple.

 Let’s reconsider how we’ve modeled this data to see how to work with more com-
plex relationships. In the current data model, we’ve combined the concepts of a line
item and a product into the Item class. When you think about it, however, an order is
related to one or more products. The relationship between an order and a product
constitutes a line item of the order. Figure 12.3 illustrates an alternative way to model
the data in a graph.

In this new model, the quantity of products in the order is a property of the line item,
and a product is a different concept. As before, orders are nodes and so are products.
Line items are relationships. But now that a line item must carry a quantity value, the
relationship can’t be simple. You’re going to need to define a class that represents a
line item, such as LineItem in the next listing.

package orders;
import org.springframework.data.neo4j.annotation.EndNode;
import org.springframework.data.neo4j.annotation.GraphId;
import org.springframework.data.neo4j.annotation.RelationshipEntity;
import org.springframework.data.neo4j.annotation.StartNode;

@RelationshipEntity(type="HAS_LINE_ITEM_FOR")
public class LineItem {

@GraphId
private Long id;

@StartNode
private Order order;

@EndNode
private Product product;

private int quantity;

...

}

Whereas Order was annotated with @NodeEntity to designate it as a node, LineItem is
annotated with @RelationshipEntity. LineItem also has an id property annotated

Listing 12.12 A LineItem connects an Order node and a Product node.

Order Product
(has line items for)

Quantity

LineItem

Figure 12.3 A relationship entity is a
relationship that has properties of its own.

LineItem is a relationship

The graph ID

The start node

The end node

348 CHAPTER 12 Working with NoSQL databases
with @GraphId. Again, all entities, both node entities and relationship entities, must
have a graph ID and it must be of type Long.

 What makes relationship entities special is that they connect two node entities.
The @StartNode and @EndNode annotations are applied to properties that define each
end of a relationship. In this case, the Order is the start node and the Product is the
end node.

 Finally, LineItem has a quantity property that will be persisted to the database
when the relationship is created.

 Now that the domain is annotated, you’re ready to start saving and reading nodes
and relationships. We’ll start by looking at how you can use Spring Data Neo4j’s
template-oriented data access with Neo4jTemplate.

12.2.3 Working with Neo4jTemplate

Just as Spring Data MongoDB provides MongoTemplate for template-based MongoDB
persistence, Spring Data Neo4j brings Neo4jTemplate to the table to work with nodes
and relationships in the Neo4j graph database. If you’ve configured Spring Data
Neo4j as shown earlier, then there’s already a Neo4jTemplate bean in the Spring
application context. All you need to do is inject it wherever you need it.

 For example, you might autowire it directly into a bean property:

@Autowired
private Neo4jOperations neo4j;

Neo4jTemplate defines several dozen methods, including methods for saving nodes,
deleting nodes, and creating relationships between nodes. There’s not enough space
to cover all of them, but let’s have a look at a few of the most commonly used methods
that Neo4jTemplate provides.

 One of the first and most basic things you might want to do with Neo4jTemplate is
to save an object as a node. Assuming that the object is annotated with @NodeEntity,
you can use the save() method like this:

Order order = ...;
Order savedOrder = neo4j.save(order);

If you happen to know the object’s graph ID, you can fetch it using the findOne()
method:

Order order = neo4j.findOne(42, Order.class);

If there is no node with the given ID, then findOne() will throw a NotFoundException.
 If you’d like to retrieve all objects of a given type, you can use the findAll()

method:

EndResult<Order> allOrders = neo4j.findAll(Order.class);

The EndResult returned here is an Iterable, enabling it to be used in for-each loop-
ing and anywhere else an Iterable may be used. If no such nodes exist, findAll()
will return an empty Iterable.

349Working with graph data in Neo4j
 If all you need to know is a count of how many objects of a given type are in the
Neo4j database, you can call the count() method:

long orderCount = count(Order.class);

The delete() method can be used to delete an object:

neo4j.delete(order);

One of the most interesting methods provided by Neo4jTemplate is the create-
RelationshipBetween() method. As you might guess, it creates a relationship
between two nodes. For example, you could create a LineItem relationship between
an Order node and a Product node:

Order order = ...;
Product prod = ...;
LineItem lineItem = neo4j.createRelationshipBetween(

order, prod, LineItem.class, "HAS_LINE_ITEM_FOR", false);
lineItem.setQuantity(5);
neo4j.save(lineItem);

The first two parameters to createRelationshipBetween() are the objects whose
nodes will be at each end of the relationship. The next parameter specifies the
@RelationshipEntity-annotated type that will represent the relationship. Next, you
specify a String value that describes the nature of the relationship. The final parame-
ter is a boolean that indicates whether or not duplicate relationships are allowed
between the two node entities.

 createRelationshipBetween() returns an instance of the relationship class. From
there you can set any properties you’d like. The preceding example sets the quantity
property. When you’re done, you call save() to save the relationship to the database.

 The Neo4jTemplate offers a straightforward way to work with nodes and relation-
ships in a Neo4j graph database. But it requires that you write your own repository
implementations that delegate to Neo4jTemplate. Let’s see how Spring Data Neo4j
can automatically generate repository implementations for you.

12.2.4 Creating automatic Neo4j repositories

One of the most awesome things that most Spring Data projects do is automatically
generate implementations for a repository interface. You’ve already seen this with
Spring Data JPA and Spring Data MongoDB. Not to be left out, Spring Data Neo4j also
supports automatic repository generation.

 You’ve already added @EnableNeo4jRepositories to your configuration, so Spring
Data Neo4j is already set to generate repositories. All you need to do is write the inter-
faces. The following OrderRepository interface is a good start:

package orders.db;
import orders.Order;
import org.springframework.data.neo4j.repository.GraphRepository;

public interface OrderRepository extends GraphRepository<Order> {}

350 CHAPTER 12 Working with NoSQL databases
Just like the other Spring Data projects, Spring Data Neo4j triggers repository genera-
tion for interfaces that extend the Repository interface. In this case, OrderRepository
extends GraphRepository, which indirectly extends Repository. Therefore, Spring
Data Neo4j will generate an implementation for OrderRepository at runtime.

 Notice that GraphRepository is parameterized with Order, the type of entity that
the repository works with. Because Neo4j requires that graph IDs be of type Long,
there’s no need to specify the ID type when extending GraphRepository.

 Out of the box, you get several common CRUD operations, much like what Jpa-
Repository and MongoRepository provide. Table 12.4 describes the methods you get
by extending GraphRepository.

Table 12.4 By extending GraphRepository, a repository interface inherits several CRUD operations
that are automatically implemented by Spring Data Neo4j.

Method Description

long count(); Returns a count of how many entities
of the target type are in the database

void delete(Iterable<? extends T>); Deletes several entities

void delete(Long id); Deletes a single entity given its ID

void delete(T); Deletes a single entity

void deleteAll(); Deletes all entities of the target type

boolean exists(Long id); Checks for the existence of an entity
given its ID

EndResult<T> findAll(); Retrieves all entities of the target type

Iterable<T> findAll(Iterable<Long>); Retrieves all entities of the target type
for the given IDs

Page<T> findAll(Pageable); Retrieves a paged and sorted list of
all entities of the target type

EndResult<T> findAll(Sort); Retrieves a sorted list of all entities of
the target type

EndResult<T>
findAllBySchemaPropertyValue(String, Object);

Retrieves all entities where a given
property matches the given value

Iterable<T> findAllByTraversal(N,
TraversalDescription);

Retrieves all entities obtained by fol-
lowing a graph traversal starting at a
given node

T findBySchemaPropertyValue(String, Object); Finds a single entity where a given
property matches a given value

T findOne(Long); Finds a single entity given its ID

EndResult<T> query(String,
Map<String,Object>);

Finds all entities that match a given
Cypher query

351Working with graph data in Neo4j
There’s not enough space to cover all of these methods, but there are a few methods
that you’ll get a lot of use out of. For example, the following line saves a single Order
entity:

Order savedOrder = orderRepository.save(order);

When the entity is saved, the save() method returns the saved entity, which now
should have its @GraphId-annotated property populated if it was null before.

 You can look up a single entity by calling the findOne() method. For example, this
line will look up an Order whose graph ID is 4:

Order order = orderRepository.findOne(4L);

Or, you can look up all orders:

EndResult<Order> allOrders = orderRepository.findAll();

Of course, you may want to delete an entity. In that case, you can use the delete()
method:

delete(order);

This will delete the given Order node from the database. If you only have the graph
ID, you can pass it to delete() instead of the node type itself:

delete(orderId);

If you want to do custom queries, you could use the query() method to execute an
arbitrary Cypher query against the graph. But that’s not much different than working
with the query() method from Neo4jTemplate. Instead, you can add your own query
methods to OrderRepository.

ADDING QUERY METHODS

You’ve already seen how to add query methods that follow a naming convention using
Spring Data JPA and Spring Data MongoDB. It’d be awfully disappointing if Spring
Data Neo4j didn’t offer the same capability.

 As the next listing shows, there’s no need to be disappointed.

package orders.db;
import java.util.List;
import orders.Order;

Iterable<T> save(Iterable<T>); Saves several entities

S save(S); Saves a single entity

Listing 12.13 Defining query methods by following a naming convention.

Table 12.4 By extending GraphRepository, a repository interface inherits several CRUD operations
that are automatically implemented by Spring Data Neo4j. (continued)

Method Description

352 CHAPTER 12 Working with NoSQL databases
import org.springframework.data.neo4j.repository.GraphRepository;

public interface OrderRepository extends GraphRepository<Order> {

List<Order> findByCustomer(String customer);
List<Order> findByCustomerAndType(String customer, String type);

}

Here you add two query methods. One finds all Order nodes where the customer
property is equal to the given String value. The other method is similar, but in addi-
tion to matching the customer property, the Order nodes must also have a type prop-
erty equal to the given type.

 We’ve already discussed the naming convention for query methods, so there’s no
need to dwell on it any further. Refer to the previous chapter’s discussion of Spring
Data JPA for a refresher on how to write these methods.

SPECIFYING CUSTOM QUERIES

When the naming convention doesn’t meet your needs, you also have the option of
annotating a method with @Query to specify your own query. You’ve seen @Query
before. With Spring Data JPA, you used it to specify a JPA query for a repository
method. With Spring Data MongoDB, you used it to specify a JSON-matching query.
When using Spring Data Neo4j, however, you must specify a Cypher query:

@Query("match (o:Order)-[:HAS_ITEMS]->(i:Item) " +
"where i.product='Spring in Action' return o")

List<Order> findSiAOrders();

Here, the findSiAOrders() is annotated with @Query and given a Cypher query to
find all Order nodes that are related to an Item whose product property is equal to
“Spring in Action”.

MIXING IN CUSTOM REPOSITORY BEHAVIOR

When neither the naming convention nor the @Query methods meet your needs, you
always have the option of mixing in custom repository logic.

 For example, suppose that you want to write the implementation of find-
SiAOrders() yourself, instead of relying on the @Query annotation. You can start by
defining an intermediary interface that carries the definition of the findSiAOrders()
method:

package orders.db;
import java.util.List;
import orders.Order;

public interface OrderOperations {
List<Order> findSiAOrders();

}

Then you can change OrderRepository to extend OrderOperations in addition to
GraphRepository:

Query
methods

353Working with graph data in Neo4j
public interface OrderRepository
extends GraphRepository<Order>, OrderOperations {

...

}

Finally, you need to write the implementation itself. As with Spring Data JPA and
Spring Data MongoDB, Spring Data Neo4j will look for an implementation class
whose name is the same as the repository interface with an “Impl” suffix. Therefore,
you need to create an OrderRepositoryImpl class. The following listing shows Order-
RepositoryImpl, which implements findSiAOrders().

package orders.db;
import java.util.Collections;
import java.util.List;
import java.util.Map;
import orders.Order;
import org.neo4j.helpers.collection.IteratorUtil;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.neo4j.conversion.EndResult;
import org.springframework.data.neo4j.conversion.Result;
import org.springframework.data.neo4j.template.Neo4jOperations;

public class OrderRepositoryImpl implements OrderOperations {

private final Neo4jOperations neo4j;

@Autowired
public OrderRepositoryImpl(Neo4jOperations neo4j) {

this.neo4j = neo4j;
}

public List<Order> findSiAOrders() {
Result<Map<String, Object>> result = neo4j.query(

"match (o:Order)-[:HAS_ITEMS]->(i:Item) " +
"where i.product='Spring in Action' return o",

EndResult<Order> endResult = result.to(Order.class);

return IteratorUtil.asList(endResult);
}

}

OrderRepositoryImpl is injected with Neo4jOperations (specifically, an instance of
Neo4jTemplate), which it uses to query the database. Because the query() method
returns a Result<Map<String, Object>>, you’ll need to convert it to a List<Order>.
The first step is to call the to() method on the Result to produce an EndResult<Order>.
Then you use Neo4j’s IteratorUtil.asList() to convert the EndResult<Order> to a
List<Order>, which is then returned.

 Graph databases such as Neo4j are wonderful for capturing data that’s represented
well as nodes and relationships. When you consider that the world we live in is made

Listing 12.14 Mixing custom functionality into OrderRepository

Implement
intermediate
interface

Inject
Neo4jOperations

Perform query

Convert to
EndResult<Order>

Convert to a
List<Order>

354 CHAPTER 12 Working with NoSQL databases
up of all kinds of things that are related to each other, graph databases may be suit-
able for a wide range of domains. And, speaking personally, I’ll admit that I have a
strong fondness for Neo4j.

 But sometimes your data needs are simpler. Sometimes you only need to store a
value somewhere and be able to retrieve it later with a key. Let’s see how Spring Data
enables key-value data persistence using the Redis key-value store.

12.3 Working with key-value data in Redis
Redis is a special kind of database known as a key-value store. As the name implies,
key-value stores keep key-value pairs. In fact, key-value stores share a lot in common
with hash maps. To call them persistent hash maps would not be too great of an over-
simplification.

 When you think about it, there aren’t too many kinds of queries that you can per-
form against a hash map ... or a key-value store. You can store a value at a particular
key, and you can fetch the value for a particular key. That’s about it. Consequently,
Spring Data’s automatic repository support doesn’t make a lot of sense when applied
to Redis. On the other hand, Spring Data’s other key feature, template-oriented data
access, can come in handy when working with Redis.

 Spring Data Redis comes with a couple of template implementations for storing
data to and fetching it from a Redis database. You’ll see how to use them soon. But to
create one of Spring Data Redis’s templates, you’ll need a Redis connection factory.
Fortunately, Spring Data Redis offers four to choose from.

12.3.1 Connecting to Redis

A Redis connection factory produces connections to a Redis database server. Spring
Data Redis comes with connection factories for four Redis client implementations:

 JedisConnectionFactory

 JredisConnectionFactory

 LettuceConnectionFactory

 SrpConnectionFactory

The choice is up to you. I encourage you to do your own testing and benchmarking to
determine which Redis client and connection factory fits your needs best. From
Spring Data Redis’s perspective, all of these connection factories are equally suitable.

 Once you’ve made your choice, you can configure the connection factory as a
bean in Spring. For example, here’s how you might configure the JedisConnection-
Factory bean:

@Bean
public RedisConnectionFactory redisCF() {

return new JedisConnectionFactory();
}

355Working with key-value data in Redis
Instantiating the connection factory via its default constructor results in a connection
factory that creates its connections for localhost, port 6379, and with no password. If
your Redis server is running on a different host or port, you can set those properties
when you create the connection factory:

@Bean
public RedisConnectionFactory redisCF() {

JedisConnectionFactory cf = new JedisConnectionFactory();
cf.setHostName("redis-server");
cf.setPort(7379);
return cf;

}

Similarly, if your Redis server is configured to require authorization from clients, you
can set the password by calling setPassword():

@Bean
public RedisConnectionFactory redisCF() {

JedisConnectionFactory cf = new JedisConnectionFactory();
cf.setHostName("redis-server");
cf.setPort(7379);
cf.setPassword("foobared");
return cf;

}

In all of these examples, I’ve been assuming the JedisConnectionFactory. If you’ve
made a different choice, then any of the other connection factories can be a drop-in
replacement. For example, if you’d rather use the LettuceConnectionFactory, you
can configure it like this:

@Bean
public RedisConnectionFactory redisCF() {

JedisConnectionFactory cf = new LettuceConnectionFactory();
cf.setHostName("redis-server");
cf.setPort(7379);
cf.setPassword("foobared");
return cf;

}

All of the Redis connection factories have setHostName(), setPort(), and set-
Password() methods. This makes them virtually identical in terms of configuration.

 Now that you have a Redis connection factory, you’re ready to start working with
Spring Data Redis’s templates.

12.3.2 Working with RedisTemplate

As their names suggest, the Redis connection factories produce connections (as
RedisConnection) to a Redis key-value store. Using RedisConnection, you can store
and read data. For example, you might obtain a connection and use it to store a greet-
ing like this:

RedisConnectionFactory cf = ...;
RedisConnection conn = cf.getConnection();

356 CHAPTER 12 Working with NoSQL databases
conn.set("greeting".getBytes(), "Hello World".getBytes());

Likewise, you could retrieve that greeting value using a RedisConnection like this:

byte[] greetingBytes = conn.get("greeting".getBytes());
String greeting = new String(greetingBytes);

No doubt, this will work. But do you really like working with arrays of bytes?
 As with other Spring Data projects, Spring Data Redis offers a higher-level data

access option with templates. In fact, Spring Data Redis offers two templates:

 RedisTemplate

 StringRedisTemplate

RedisTemplate is a class that greatly simplifies Redis data access, enabling you to per-
sist keys and values of any type, not just byte arrays. In recognition of the fact that keys
and values are frequently Strings, StringRedisTemplate extends RedisTemplate to
have a String focus.

 Assuming you have a RedisConnectionFactory available, you can construct a
RedisTemplate like this:

RedisConnectionFactory cf = ...;
RedisTemplate<String, Product> redis =

new RedisTemplate<String, Product>();
redis.setConnectionFactory(cf);

Note that RedisTemplate is parameterized with two types. The first type is that of
the key, and the second is that of the value. In the RedisTemplate constructed here,
Product objects will be stored as values assigned to String keys.

 If you know that you’ll be working with both String values and String keys, then
you should consider using StringRedisTemplate instead of RedisTemplate:

RedisConnectionFactory cf = ...;
StringRedisTemplate redis = new StringRedisTemplate(cf);

Notice that, unlike RedisTemplate, StringRedisTemplate has a constructor that
accepts a RedisConnectionFactory. Therefore, there’s no need to call setConnection-
Factory() after construction.

 Although it’s not required, if you’ll be using RedisTemplate or StringRedis-
Template frequently, you might consider configuring them as beans to be injected
where they’re needed. Here’s a simple @Bean method declaring a RedisTemplate bean:

@Bean
public RedisTemplate<String, Product>

redisTemplate(RedisConnectionFactory cf) {
RedisTemplate<String, Product> redis =

new RedisTemplate<String, Product>();
redis.setConnectionFactory(cf);
return redis;

}

And here’s a bean method to declare a StringRedisTemplate bean:

@Bean

357Working with key-value data in Redis
public StringRedisTemplate
stringRedisTemplate(RedisConnectionFactory cf) {

return new StringRedisTemplate(cf);
}

Once you have a RedisTemplate (or StringRedisTemplate), you can start saving,
fetching, and deleting key-value entries. Most of the operations provided by Redis-
Template are available via the sub-APIs listed in table 12.5.

As you can see, the sub-APIs in table 12.5 are available through methods on Redis-
Template (and StringRedisTemplate). Each one provides operations that work with
entries based on whether the value is a simple value or a collection of values.

 Across all of these sub-APIs, there are several dozen methods for saving and fetch-
ing data in Redis. We don’t have space enough to cover them all, but we’ll look at a
handful of the most common operations you’ll need.

Table 12.5 RedisTemplate offers much of its functionality via sub-APIs, which differentiate single
values from collection values.

Method Sub-API interface Description

opsForValue() ValueOperations<K, V> Operations for working with entries hav-
ing simple values

opsForList() ListOperations<K, V> Operations for working with entries hav-
ing list values

opsForSet() SetOperations<K, V> Operations for working with entries hav-
ing set values

opsForZSet() ZSetOperations<K, V> Operations for working with entries hav-
ing ZSet (sorted set) values

opsForHash() HashOperations<K, HK, HV> Operations for working with entries hav-
ing hash values

boundValueOps(K) BoundValueOperations<K,V> Operations for working with simple val-
ues bound to a given key

boundListOps(K) BoundListOperations<K,V> Operations for working with list values
bound to a given key

boundSetOps(K) BoundSetOperations<K,V> Operations for working with set values
bound to a given key

boundZSet(K) BoundZSetOperations<K,V> Operations for working with ZSet (sorted
set) values bound to a given key

boundHashOps(K) BoundHashOperations<K,V> Operations for working with hash values
bound to a given key

358 CHAPTER 12 Working with NoSQL databases
WORKING WITH SIMPLE VALUES

Suppose that you want to save a Product to a RedisTemplate<String, Product> where
the key is the value of the sku property. The following snippet of code will do that via
opsForValue():

redis.opsForValue().set(product.getSku(), product);

Similarly, if you wanted to fetch a product whose sku is 123456, you could use this
snippet:

Product product = redis.opsForValue().get("123456");

If no entry can be found with the given key, null will be returned.

WORKING WITH LISTS

Working with list values is similarly straightforward via opsForList(). For example,
you can add a value to the end of a list entry like this:

redis.opsForList().rightPush("cart", product);

This adds a Product to the end of the list stored at the key cart. If a list doesn’t
already exist at that key, one will be created.

 Whereas the rightPush() method adds an element to the end of a list entry, left-
Push() inserts a value at the beginning:

redis.opsForList().leftPush("cart", product);

There are a number of ways you can fetch an item from a list. You can pop an entry off
of either end using leftPop() or rightPop():

Product first = redis.opsForList().leftPop("cart");
Product last = redis.opsForList().rightPop("cart");

Aside from fetching a value from the list, these two pop methods have the side effect
of removing the popped items from the list. If you’d rather simply retrieve the value
(perhaps even from the middle of the list), you can use the range() method:

List<Product> products = redis.opsForList().range("cart", 2, 12);

The range() method doesn’t remove any values from the list entry, but it does retrieve
one or more values given the key and a range of indexes. The preceding example
fetches as many as eleven entries starting with the entry at index 2 and going through
index 12 (inclusive). If the range exceeds the bounds of the list, then only the entries
within those indexes will be returned. If no entries fall within the indexes, an empty
list will be returned.

PERFORMING OPERATIONS ON SETS

In addition to lists, you can also work with sets via the opsForSet() method. The most
basic thing you can do is add an item to a set entry:

redis.opsForSet().add("cart", product);

359Working with key-value data in Redis
Once you have a few set entries created and populated with values, you can perform
interesting operations against those sets, including difference, intersection, and
union.

List<Product> diff = redis.opsForSet().difference("cart1", "cart2");
List<Product> union = redis.opsForSet().union("cart1", "cart2");
List<Product> isect = redis.opsForSet().isect("cart1", "cart2");

Of course, you can also remove items:

redis.opsForSet().remove(product);

And you can even fetch a random element from the set:

Product random = redis.opsForSet().randomMember("cart");

As sets don’t have indexes or any implicit ordering, you can’t pinpoint and fetch a sin-
gle item from the set.

BINDING TO A KEY

Table 12.5 includes five sub-APIs for working with operations bound to a given key.
These sub-APIs mirror the other sub-APIs, but focus on a given key.

 As an example of how these are used, let’s consider the case where you’re storing
Product objects in a list entry whose key is cart. In that scenario, suppose that you
want to pop an item from the right end of the list and then add three new items to the
end of the list. You can do that using the BoundListOperations returned from calling
boundListOps():

BoundListOperations<String, Product> cart =
redis.boundListOps("cart");

Product popped = cart.rightPop();
cart.rightPush(product1);
cart.rightPush(product2);
cart.rightPush(product3);

Notice that the only time that the entry’s key is mentioned is when calling bound-
ListOps(). All of the operations performed against the returned BoundList-
Operations will be applied to that entry.

12.3.3 Setting key and value serializers

When an entry is saved to the Redis key-value store, both the key and the value are
serialized using a Redis serializer. Spring Data Redis comes with several such serializ-
ers, including these:

 GenericToStringSerializer—Serializes using a Spring conversion service
 JacksonJsonRedisSerializer—Serializes objects to JSON using Jackson 1
 Jackson2JsonRedisSerializer—Serializes objects to JSON using Jackson 2
 JdkSerializationRedisSerializer—Uses Java serialization
 OxmSerializer—Serializes using marshalers and unmarshalers from Spring’s

O/X mapping, for XML serialization

360 CHAPTER 12 Working with NoSQL databases
 StringRedisSerializer—Serializes String keys and values

All of these serializers implement the RedisSerializer interface, so if there’s not one
to suit your needs, you can always create your own serializer.

 RedisTemplate uses JdkSerializationRedisSerializer, which means that keys
and values are serialized through Java. As you might expect, StringRedisTemplate
uses StringRedisSerializer by default, essentially converting the String values to
and from byte arrays. These defaults are suitable for many cases, but you may find it
helpful to plug in a different serializer.

 For example, suppose that when using RedisTemplate, you want to serialize
Product values to JSON with String keys. The setKeySerializer() and setValue-
Serializer() methods of RedisTemplate are what you need:

@Bean
public RedisTemplate<String, Product>

redisTemplate(RedisConnectionFactory cf) {
RedisTemplate<String, Product> redis =

new RedisTemplate<String, Product>();
redis.setConnectionFactory(cf);
redis.setKeySerializer(new StringRedisSerializer());
redis.setValueSerializer(

new Jackson2JsonRedisSerializer<Product>(Product.class));
return redis;

}

Here, you set RedisTemplate to always use StringRedisSerializer when serializing
key values. You also specify that it should use Jackson2JsonRedisSerializer only
when serializing Product values.

12.4 Summary
Gone are the days when the only choice for data persistence was a relational database.
Now there are several different kinds of databases, each representing data in different
forms and offering capabilities to suit a variety of domain models. The Spring Data
project enables developers to use these databases in their Spring applications and to
use abstractions that are reasonably consistent across the various database choices.

 In this chapter, we built on what you learned about Spring Data in the previous
chapter when using JPA, applying it to the MongoDB document database and the
Neo4j graph database. Just like their JPA counterpart, the Spring Data MongoDB and
Spring Data Neo4j projects both offer automatic generation of repositories based on
interface definitions. Additionally, you saw how to use the annotations provided by the
Spring Data projects to map domain types to documents, nodes, and relationships.

 Spring Data also enables data to be persisted to the Redis key-value store. Key-value
stores are significantly simpler and thus do not require support for automatic reposi-
tories or mapping annotations. Nevertheless, Spring Data Redis offers two different
template classes for working with the Redis key-value store.

361Summary
 No matter what kind of database you choose, fetching data from the database is a
costly operation. In fact, database queries are often the biggest performance bottle-
necks in any application. Now that you’ve seen how to store and fetch data from a vari-
ety of data sources, let’s look at how to avoid that bottleneck. In the next chapter,
you’ll see how to apply declarative caching to prevent unnecessary database fetches.

Caching data
Have you ever had someone ask you a question and then, moments after you reply,
ask you the same thing again? Often, I’m asked this type of question by my children:

 “Can I have some candy?”
 “What time is it?”
 “Are we there yet?”
 “Can I have some candy?”

In many ways, the components of the applications we write are the same way. State-
less components tend to scale better, but they also tend to ask the same question
over and over again. Because they’re stateless, they discard any answer they were
given once their current task is complete, and they have to ask the question again
the next time that same answer is needed.

 Sometimes it takes a little while to fetch or calculate the answer to the question
being asked. Maybe you must fetch data from the database, invoke a remote ser-
vice, or perform a complex calculation. That’s time and resources spent arriving at
the answer.

This chapter covers
 Enabling declarative caching

 Caching with Ehcache, Redis, and GemFire

 Annotation-oriented caching
362

363Enabling cache support
 If that answer isn’t likely to change frequently (or at all), then it’s wasteful to go
through the same channel to fetch it again. Moreover, doing so can and likely will
have a negative impact on the performance of your application. Instead of asking the
same question over and over, only to arrive at the same answer each time, it makes
sense to ask once and remember that answer when it’s needed later.

 Caching is a way to store frequently needed information so that it’s readily available
when needed. In this chapter, we’ll look at Spring’s cache abstraction. Although
Spring doesn’t implement a cache solution, it offers declarative support for caching
that integrates with several popular caching implementations.

13.1 Enabling cache support
Spring’s cache abstraction comes in two forms:

 Annotation-driven caching
 XML-declared caching

The most common way to use Spring’s cache abstraction is to annotate methods with
annotations like @Cacheable and @CacheEvict. You’ll spend most of this chapter
working with that form of declarative caching. Then, in section 13.3, we’ll look at how
to declare cache boundaries in XML.

 Before you can start applying caching annotations in your beans, you must enable
Spring’s support for annotation-driven caching. If you’re using Java configuration,
you can enable annotation-driven caching by adding @EnableCaching to one of your
configuration classes. The following listing shows the @EnableCaching annotation
in action.

package com.habuma.cachefun;
import org.springframework.cache.CacheManager;
import org.springframework.cache.annotation.EnableCaching;
import org.springframework.cache.concurrent.ConcurrentMapCacheManager;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
@EnableCaching
public class CachingConfig {

@Bean
public CacheManager cacheManager() {

return new ConcurrentMapCacheManager();
}

}

If you’re configuring your application with XML, you can enable annotation-driven
caching with the <cache:annotation-driven> element from Spring’s cache

namespace.

Listing 13.1 Enabling annotation-driven caching with @EnableCaching

Enable caching

Declare a cache manager

364 CHAPTER 13 Caching data

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:cache="http://www.springframework.org/schema/cache"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/cache
http://www.springframework.org/schema/cache/spring-cache.xsd">

<cache:annotation-driven />

<bean id="cacheManager" class=
"org.springframework.cache.concurrent.ConcurrentMapCacheManager" />

</beans>

Under the covers, @EnableCaching and <cache:annotation-driven> work the same
way. They create an aspect with pointcuts that trigger off of Spring’s caching annota-
tions. Depending on the annotation used and the state of the cache, that aspect will fetch
a value from the cache, add a value to the cache, or remove a value from the cache.

 You’ve probably noticed that both listings 13.1 and 13.2 do more than enable
annotation-driven caching. They also declare a cache-manager bean. Cache managers
are the heart of Spring’s cache abstraction, enabling integration with one of several
popular caching implementations.

 In this case, a ConcurrentMapCacheManager is declared. This simple cache man-
ager uses a java.util.concurrent.ConcurrentHashMap as its cache store. Its simplic-
ity makes it a tempting choice for development, testing, or basic applications. But
because its cache storage is memory-based and thus tied to the lifecycle of the applica-
tion, it’s probably not an ideal choice for larger production applications.

 Fortunately, several great cache-manager options are available. Let’s look at a few
of the most commonly used cache managers.

13.1.1 Configuring a cache manager

Out of the box, Spring 3.1 comes with five cache-manager implementations:

 SimpleCacheManager
 NoOpCacheManager
 ConcurrentMapCacheManager
 CompositeCacheManager
 EhCacheCacheManager

Spring 3.2 introduced another cache manager for working with JCache (JSR-107)
based cache providers. Outside of the core Spring Framework, Spring Data offers two
more cache managers:

 RedisCacheManager (from Spring Data Redis)

Listing 13.2 Enabling annotation-driven caching with <cache:annotation-driven>

Enable caching

Declare a cache manager

365Enabling cache support
 GemfireCacheManager (from Spring Data GemFire)

As you can see, you have plenty of choices when it comes to selecting a cache manager
for Spring’s cache abstraction. Which one you select will depend on what underlying
cache provider you want to use. Each will provide your application with a different fla-
vor of caching, and some are more production-ready than others. Although the
choice you make will have implications for how your data is cached, it will have no
bearing on the way you declare caching rules in Spring.

 You must select and configure a cache manager as a bean in your Spring applica-
tion context. You’ve already seen how to configure a ConcurrentMapCacheManager
and learned that it may not be the best choice for real-world applications. Now let’s
see how to configure some of Spring’s other cache managers, starting with
EhCacheCacheManager.

CACHING WITH EHCACHE

Ehcache is one of the most popular cache providers. The Ehcache website claims that
it’s “Java’s most widely used cache.” Given its wide adoption, it would make sense for
Spring to offer a cache manager that integrates with Ehcache. EhCacheCacheManager
is it.

 Once you get past the name, which seems to stutter over the word cache, you’ll find
that EhCacheCacheManager is easily configured in Spring. The next listing shows how
to configure it in Java.

package com.habuma.cachefun;
import net.sf.ehcache.CacheManager;
import org.springframework.cache.annotation.EnableCaching;
import org.springframework.cache.ehcache.EhCacheCacheManager;
import org.springframework.cache.ehcache.EhCacheManagerFactoryBean;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.io.ClassPathResource;

@Configuration
@EnableCaching
public class CachingConfig {

@Bean
public EhCacheCacheManager cacheManager(CacheManager cm) {

return new EhCacheCacheManager(cm);
}

@Bean
public EhCacheManagerFactoryBean ehcache() {

EhCacheManagerFactoryBean ehCacheFactoryBean =
new EhCacheManagerFactoryBean();

ehCacheFactoryBean.setConfigLocation(
new ClassPathResource("com/habuma/spittr/cache/ehcache.xml"));

return ehCacheFactoryBean;
}

Listing 13.3 Configuring EhCacheCacheManager in Java configuration

Configure
EhCacheCacheManager

EhCacheManagerFactoryBean

366 CHAPTER 13 Caching data
}

The cacheManager() method in listing 13.3 creates an instance of EhCacheCache-
Manager by passing in an instance of an Ehcache CacheManager. This particular bit of
injection can be confusing because both Spring and Ehcache define a CacheManager
type. To be clear, Ehcache’s CacheManager is being injected into Spring’s
EhCacheCacheManager (which implements Spring’s CacheManager implementation).

 So that you’ll have an Ehcache CacheManager to inject, you must also declare a
CacheManager bean. To make that easy, Spring provides an EhCacheManagerFactory-
Bean that generates an Ehcache CacheManager. The ehcache() method creates and
returns an instance of EhCacheManagerFactoryBean. Because it’s a factory bean (that is,
it implements Spring’s FactoryBean interface), the bean that is registered in the Spring
application context isn’t an instance of EhCacheManagerFactoryBean but rather is an
instance of CacheManager, suitable for injection into EhCacheCacheManager.

 There’s more to Ehcache configuration than the beans you’ll configure in Spring.
Ehcache defines its own configuration schema for XML, and you’ll configure caching
specifics in an XML file that adheres to that schema. In the course of creating the
EhCacheManagerFactoryBean, you need to tell it where the Ehcache configuration
XML is located. Here you call the setConfigLocation() method, passing a Class-
PathResource to specify the location of the Ehcache XML configuration relative to the
root of the classpath.

 The contents of the ehcache.xml file vary from application to application, but you
need to declare at least a minimal cache. For example, the following Ehcache configu-
ration declares a cache named spittleCache with 50 MB of maximum heap storage
and a time-to-live of 100 seconds.

<ehcache>
<cache name="spittleCache"

maxBytesLocalHeap="50m"
timeToLiveSeconds="100">

</cache>
</ehcache>

Clearly, this is a basic Ehcache configuration. In your applications, you’ll likely want to
take advantage of the rich set of configuration options afforded by Ehcache. Consult
Ehcache’s documentation at http://ehcache.org/documentation/configuration for
details on how to fine-tune your Ehcache configuration.

USING REDIS FOR CACHING

When you think about it, a cache entry is nothing more than a key-value pair where
the key describes the operation and parameters from which the value was produced.
Therefore, it isn’t surprising to learn that Redis, which is a key-value store, is perfectly
suited to be a cache store.

 So that Redis can be used to store cache entries for Spring’s caching abstraction,
Spring Data Redis offers RedisCacheManager, an implementation of CacheManager.

http://ehcache.org/documentation/configuration

367Enabling cache support
RedisCacheManager works with a Redis server via a RedisTemplate to store cache
entries in Redis.

 To use RedisCacheManager, you’ll need a RedisTemplate bean and a bean that’s
an implementation of RedisConnectionFactory (such as JedisConnectionFactory).
You saw how to configure those beans in chapter 12. With a RedisTemplate in place,
it’s a snap to configure a RedisCacheManager, as shown next.

package com.myapp;
import org.springframework.cache.CacheManager;
import org.springframework.cache.annotation.EnableCaching;
import org.springframework.context.annotation.Bean;
import org.springframework.data.redis.cache.RedisCacheManager;
import org.springframework.data.redis.connection.jedis

.JedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;

@Configuration
@EnableCaching
public class CachingConfig {

@Bean
public CacheManager cacheManager(RedisTemplate redisTemplate) {

return new RedisCacheManager(redisTemplate);
}

@Bean
public JedisConnectionFactory redisConnectionFactory() {

JedisConnectionFactory jedisConnectionFactory =
new JedisConnectionFactory();

jedisConnectionFactory.afterPropertiesSet();
return jedisConnectionFactory;

}

@Bean
public RedisTemplate<String, String> redisTemplate(

RedisConnectionFactory redisCF) {
RedisTemplate<String, String> redisTemplate =

new RedisTemplate<String, String>();
redisTemplate.setConnectionFactory(redisCF);
redisTemplate.afterPropertiesSet();
return redisTemplate;

}

}

As you can see, you construct a RedisCacheManager by passing an instance of a Redis-
Template as an argument to its constructor.

WORKING WITH MULTIPLE CACHE MANAGERS

There’s no reason to think that you must choose one and only one cache manager. If
you’re having trouble pinning down which cache manager to use, or if you have valid

Listing 13.4 Configuring a cache manager that stores cache entries in a Redis server

Redis cache
manager bean

Redis connection
factory bean

RedisTemplate
bean

368 CHAPTER 13 Caching data
technical reasons for choosing more than one cache manager, you can try Spring’s
CompositeCacheManager.

 CompositeCacheManager is configured with one or more cache managers and iter-
ates over them all as it tries to find a previously cached value. The following listing
shows how to create a CompositeCacheManager bean that iterates over a JCacheCache-
Manager, an EhCacheCacheManager, and a RedisCacheManager.

@Bean
public CacheManager cacheManager(

net.sf.ehcache.CacheManager cm,
javax.cache.CacheManager jcm) {

CompositeCacheManager cacheManager = new CompositeCacheManager();
List<CacheManager> managers = new ArrayList<CacheManager>();
managers.add(new JCacheCacheManager(jcm));
managers.add(new EhCacheCacheManager(cm))
managers.add(new RedisCacheManager(redisTemplate()));
cacheManager.setCacheManagers(managers);
return cacheManager;

}

When it’s time to look for a cache entry, CompositeCacheManager starts with
JCacheCacheManager to check the JCache implementation, then turns to Ehcache by
checking with EhCacheCacheManager, and finally consults with RedisCacheManager to
check Redis for the cache entry.

 Now that you have a cache manager configured and caching enabled, you’re ready
to start applying caching rules to your bean methods. Let’s see how to use Spring’s
caching annotations to define cache boundaries.

13.2 Annotating methods for caching
As mentioned earlier, Spring’s caching abstraction is largely built around aspects.
When you enable caching in Spring, an aspect is created that triggers off one or more
of Spring’s caching annotations. Table 13.1 lists Spring’s caching annotations.

Listing 13.5 CompositeCacheManager iterates over a list of cache managers

Table 13.1 Spring provides four annotations for declaring caching rules.

Annotation Description

@Cacheable Indicates that Spring should look in a cache for the method’s return value
before invoking the method. If the value is found, the cached value is returned.
If not, then the method is invoked and the return value is put in the cache.

@CachePut Indicates that Spring should put the method’s return value in a cache. The
cache isn’t checked prior to method invocation, and the method is always
invoked.

@CacheEvict Indicates that Spring should evict one or more entries from a cache.

Create
CompositeCacheManager

Add individual
cache managers

369Annotating methods for caching
All the annotations in table 13.1 can be placed either on a method or on a class. When
placed on a single method, the caching behavior prescribed by the annotation applies
only to that method. If the annotation is placed at the class level, however, the caching
behavior is applied to all methods in that class.

13.2.1 Populating the cache

As you can see, the @Cacheable and @CachePut annotations can both populate a
cache. They work in slightly different ways, though.

 @Cacheable looks for an entry in the cache first, preempting the method invoca-
tion if a matching entry is found. If no matching entry is found, the method is invoked
and the value returned is put in the cache. @CachePut, on the other hand, never
checks for a matching value in the cache, always allows the target method to be
invoked, and adds the returned value to the cache.

 @Cacheable and @CachePut share a common set of attributes, which are listed in
table 13.2.

In their simplest form, the @Cacheable and @CachePut attributes only specify one or
more caches with the value attribute. For example, consider the findOne() method
from SpittleRepository. Once it’s initially saved, a Spittle isn’t likely to change. If
any particular Spittle is popular and is requested frequently, it’s a waste of time and
resources to fetch it from the database repeatedly. By annotating the findOne()
method with @Cacheable, as shown in the following listing, you can make sure the
Spittle is cached and avoid unnecessary trips to the database.

@Caching A grouping annotation for applying multiples of the other caching annotations
at once.

Table 13.2 @Cacheable and @CachePut share a common set of attributes.

Attribute Type Description

value String[] The name(s) of the cache(s) to use

condition String A SpEL expression that, if it evaluates to false, results in caching
not being applied to the method call

key String A SpEL expression to calculate a custom cache key

unless String A SpEL expression that, if it evaluates to true, prevents the return
value from being put in the cache

Table 13.1 Spring provides four annotations for declaring caching rules.

Annotation Description

370 CHAPTER 13 Caching data

@Cacheable("spittleCache")
public Spittle findOne(long id) {

try {
return jdbcTemplate.queryForObject(

SELECT_SPITTLE_BY_ID,
new SpittleRowMapper(),
id);

} catch (EmptyResultDataAccessException e) {
return null;

}
}

When findOne() is called, the caching aspect intercepts the call and looks for a previ-
ously returned value in the cache named spittleCache. The cache key is the id
parameter passed to the findOne() method. If a value is found for that key, the found
value will be returned and the method won’t be invoked. On the other hand, if no
value is found, then the method will be invoked and the returned value will be put in
the cache, ready for the next time findOne() is called.

 In listing 13.6, the @Cacheable annotation is placed on the implementation of
findOne() in JdbcSpittleRepository. That will work, but the caching is confined to
only the JdbcSpittleRepository implementation. Any other implementation of
SpittleRepository won’t have caching unless it’s also annotated with @Cacheable.
Therefore, you might consider placing the annotation on the method declaration in
SpittleRepository instead of the implementation:

@Cacheable("spittleCache")
Spittle findOne(long id);

When you annotate the interface method, the @Cacheable annotation will be inher-
ited by all implementations of SpittleRepository, and the same caching rules will be
applied.

PUTTING VALUES IN THE CACHE

Whereas @Cacheable conditionally invokes a method, depending on whether the
desired value is already in the cache, @CachePut applies a more linear flow to methods
that it annotates. An @CachePut-annotated method is always invoked and its return
value is placed in the cache. This offers a handy way to preload a cache before anyone
comes asking.

 For example, when a brand-new Spittle is saved via the save() method on
SpittleRepository, there’s a high likelihood that it will soon be asked for. It makes
sense to toss the Spittle into the cache when save() is called, so it’s ready to go when
someone looks for it by calling findOne(). To do that, you can annotate the save()
method with @CachePut like this:

@CachePut("spittleCache")
Spittle save(Spittle spittle);

Listing 13.6 Using @Cacheable to store and fetch values in a cache

Cache this method's results

371Annotating methods for caching
When save() is called, it does whatever it needs to do to save the Spittle. Then the
returned Spittle is placed in the spittleCache cache.

 There’s only one problem: the cache key. As I mentioned earlier, the default cache
key is based on the parameters to the method. Because the only parameter to save()
is a Spittle, it’s used as the cache key. Doesn’t it seem odd to place a Spittle in a
cache where the key is the same Spittle?

 Clearly, the default cache key isn’t what you want in this case. You need the cache
key to be the ID of the newly saved Spittle, not the Spittle itself. So, you need to
specify a key other than the default key. Let’s see how you can customize the cache key.

CUSTOMIZING THE CACHE KEY

Both @Cacheable and @CachePut have a key attribute that lets you replace the default
key with one derived from a SpEL expression. Any valid SpEL expression will work,
but you’ll likely want to use an expression that evaluates to a key relevant to the value
being stored in the cache.

 For this particular case, you need the key to be the ID of the saved Spittle. The
Spittle passed as a parameter to save() hasn’t been saved yet and therefore doesn’t
have an ID. You need the id property of the Spittle that is returned from save().

 Fortunately, Spring exposes several pieces of metadata that come in handy when
you’re writing SpEL expressions for caching. Table 13.3 lists the caching metadata
available in SpEL.

For the save() method, you need the key to be the id property from the Spittle that
is returned. The #result expression will give you the returned Spittle. From that,
you can reference the id property by setting the key attribute to #result.id:

@CachePut(value="spittleCache", key="#result.id")
Spittle save(Spittle spittle);

Table 13.3 Spring offers several SpEL extensions specifically for defining cache rules.

Expression Description

#root.args The arguments passed in to the cached method, as an array

#root.caches The caches this method is executed against, as an array

#root.target The target object

#root.targetClass The target object’s class; a shortcut for #root.target.class

#root.method The cached method

#root.methodName The cached method’s name; a shortcut for #root.method.name

#result The return value from the method call (not available with @Cacheable)

#Argument The name of any method argument (such as #argName) or argument
index (such as #a0 or #p0)

372 CHAPTER 13 Caching data
With @CachePut specified this way, the cache isn’t considered going into the save()
method. But the Spittle that is returned will be put in the cache with a key equal to
the Spittle’s id property.

CONDITIONAL CACHING

By annotating a method with one of Spring’s caching annotations, you indicate that
you want Spring to create a caching aspect around that method. But there may be
cases where you’d rather have caching turned off.

 @Cacheable and @CachePut offer two attributes for conditional caching: unless
and condition. Both are given a SpEL expression. If the unless attribute’s SpEL
expression evaluates to true, then the data returned from the cached method isn’t
placed in the cache. Similarly, if the condition attribute’s SpEL expression evaluates
to false, then caching is effectively disabled for the method.

 On the surface, it may seem that unless and condition accomplish the same thing.
There’s a subtle difference, though. The unless attribute can only prevent an object
from being placed in the cache. But the cache is still searched when the method is
called, and if a match is found, it’s returned. On the other hand, if condition’s expres-
sion evaluates to false, then caching is disabled for the duration of the method invo-
cation. The cache isn’t searched, nor is the return value placed in the cache.

 As an example (albeit a contrived one), suppose you don’t want to cache any
Spittle objects whose message property contains the text “NoCache”. To prevent
such Spittles from being cached, you can set the unless attribute like this:

@Cacheable(value="spittleCache"
unless="#result.message.contains('NoCache')")

Spittle findOne(long id);

The SpEL expression given to unless considers the message property of the returned
Spittle (identified in the expression as #result). If it contains the text “NoCache”,
then the expression evaluates to true and the Spittle isn’t placed in the cache. Oth-
erwise, the expression evaluates to false, the unless clause isn’t satisfied, and the
Spittle is cached.

 The unless attribute prevents values from being written to the cache. But you may
wish to disable caching altogether. That is, you may not want values added to the
cache or fetched from the cache under certain conditions.

 For instance, suppose you don’t want caching to be applied to any Spittle whose
ID is less than 10. In this scenario, those Spittles are test entries you use for debug-
ging purposes, and there’s no real value in caching them. To turn off caching when the
Spittle ID is less than 10, you can use the condition attribute on @Cacheable like this:

@Cacheable(value="spittleCache"
unless="#result.message.contains('NoCache')"
condition="#id >= 10")

Spittle findOne(long id);

373Annotating methods for caching
If findOne() is called with any value less than 10 as the parameter, the cache will not
be searched, nor will the returned Spittle be placed in the cache. It will be as if there
is no @Cacheable annotation on the method.

 As you’ve seen in these examples, the unless attribute expression can refer to the
return value by referring to #result. This is possible and useful because unless
doesn’t start doing its job until a value is returned from the cached method. On the
other hand, condition has the job of disabling caching on the method. Therefore, it
can’t wait until the method has completed to decide if it needs to shut down caching.
This means its expression must be evaluated on the way into the method and that you
can’t refer to the return value with #result.

 You’ve added stuff to the cache, but can that stuff be removed? Let’s see how to use
the @CacheEvict annotation to tell cached data to hit the bricks.

13.2.2 Removing cache entries

@CacheEvict doesn’t add anything to the cache. On the contrary, if an @CacheEvict-
annotated method is called, one or more entries are removed from the cache.

 Under what circumstances might you want to remove something from the cache?
Any time a cached value is no longer valid, you should make sure it’s removed from
the cache so that future cache hits won’t return stale or otherwise nonexistent data.
One such case is when data is deleted. This makes the remove() method of Spittle-
Repository a perfect candidate for @CacheEvict:

@CacheEvict("spittleCache")
void remove(long spittleId);

NOTE Unlike @Cacheable and @CachePut, @CacheEvict can be used on void
methods. @Cacheable and @CachePut require a non-void return value, which
is the item to place in the cache. But because @CacheEvict is only removing
items from the cache, it can be placed on any method, even a void one.

As shown here, a single entry is removed from the spittleCache cache when
remove() is called. The entry to be removed is the one whose key is equal to the value
passed in as the spittleId parameter.

 @CacheEvict has several attributes, listed in table 13.4, that can influence its behav-
ior beyond the defaults.

Table 13.4 The @CacheEvict annotation’s attributes specify which cache entries should be
removed.

Attribute Type Description

value String[] The name(s) of the cache(s) to use.

key String A SpEL expression to calculate a custom cache key.

condition String A SpEL expression that, if it evaluates to false,
results in caching not being applied to the method call.

374 CHAPTER 13 Caching data
As you can see, @CacheEvict shares some of the same attributes as @Cacheable and
@CachePut, along with a couple of new attributes. Unlike @Cacheable and @CachePut,
@CacheEvict doesn’t offer an unless attribute.

 Spring’s caching annotations offer an elegant way to specify caching rules in your
application code. But Spring also offers an XML namespace for caching. To close
out this discussion on caching, let’s take a quick look at how to configure caching
rules in XML.

13.3 Declaring caching in XML
You may be wondering why you’d ever want to declare caching in XML. After all, the
caching annotations we’ve looked at throughout this chapter are much more elegant.

 I can think of two reasons:

 You don’t feel comfortable putting Spring-specific annotations in your source
code.

 You want to apply caching to beans for which you don’t own the source code.

In either of those cases, it’s better (or necessary) to keep the caching configuration
separate from the code whose data is being cached. Spring’s cache namespace offers a
way to declare caching rules in XML as an alternative to annotation-oriented caching.
Because caching is an aspect-oriented activity, the cache namespace is paired with
Spring’s aop namespace for declaring the pointcuts where caching should be applied.

 To get started with XML-declared caching, you’ll need to create a Spring configura-
tion XML file that includes the cache and aop namespaces:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:cache="http://www.springframework.org/schema/cache"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation="http://www.springframework.org/schema/aop

http://www.springframework.org/schema/aop/spring-aop.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/cache
http://www.springframework.org/schema/cache/spring-cache.xsd">

allEntries boolean If true, all entries in the specified cache(s) should be
removed.

beforeInvocation boolean If true, the entries are removed from the cache before
the method is invoked. If false (the default), the
entries are removed after a successful method invoca-
tion.

Table 13.4 The @CacheEvict annotation’s attributes specify which cache entries should be
removed. (continued)

Attribute Type Description

375Declaring caching in XML
<!-- Caching configuration will go here -->

</beans>

The cache namespace defines the configuration elements for declaring caching in a
Spring XML configuration file. Table 13.5 lists all the elements offered by the cache
namespace.

The <cache:annotation-driven> element, much like its Java configuration counter-
part @EnableCaching, turns on annotation-oriented caching. We’ve already discussed
this style of caching, so there’s no need to dwell on it further.

 The remaining elements in table 13.5 are for XML-based caching configuration.
The next listing shows how to use these elements to configure caching around the
SpittleRepository bean, equivalent to what you did earlier in this chapter using
caching annotations.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:cache="http://www.springframework.org/schema/cache"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation="http://www.springframework.org/schema/aop

http://www.springframework.org/schema/aop/spring-aop.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/cache
http://www.springframework.org/schema/cache/spring-cache.xsd">

<aop:config>
<aop:advisor advice-ref="cacheAdvice"

Table 13.5 Spring’s cache namespace offers elements for configuring caching rules in XML.

Element Description

<cache:annotation-driven> Enables annotation-driven caching. Equivalent to
@EnableCaching in Java configuration.

<cache:advice> Defines caching advice. Paired with <aop:advisor> to
apply advice to a pointcut.

<cache:caching> Defines a specific set of caching rules within the caching
advice.

<cache:cacheable> Designates a method as being cacheable. Equivalent to the
@Cacheable annotation.

<cache:cache-put> Designates a method as populating (but not considering) the
cache. Equivalent to the @CachePut annotation.

<cache:cache-evict> Designates a method as evicting one or more entries from the
cache. Equivalent to the @CacheEvict annotation.

Listing 13.7 Declaring caching rules around SpittleRepository using XML elements

Bind cache advice
to a pointcut

376 CHAPTER 13 Caching data
pointcut=
"execution(* com.habuma.spittr.db.SpittleRepository.*(..))"/>

</aop:config>

<cache:advice id="cacheAdvice">
<cache:caching>

<cache:cacheable
cache="spittleCache"
method="findRecent" />

<cache:cacheable
cache="spittleCache" method="findOne" />

<cache:cacheable
cache="spittleCache"
method="findBySpitterId" />

<cache:cache-put
cache="spittleCache"
method="save"
key="#result.id" />

<cache:cache-evict
cache="spittleCache"
method="remove" />

</cache:caching>
</cache:advice>

<bean id="cacheManager" class=
"org.springframework.cache.concurrent.ConcurrentMapCacheManager"

/>

</beans>

The first thing you see declared in listing 13.7 is an <aop:advisor> that references the
advice whose ID is cacheAdvice. This element matches the advice with a pointcut,
thus establishing a complete aspect. In this case, the aspect’s pointcut is triggered on
the execution of any method of the SpittleRepository interface. If such a method is
called on any bean in the Spring application context, the aspect’s advice will be
invoked.

 The advice is declared with the <cache:advice> element. In the <cache:advice>
element, you can have as many <cache:caching> elements as you need to fully define
your application’s caching rules. In this case, there’s only one <cache:caching> ele-
ment. It contains three <cache:cacheable> elements and one <cache:cache-put>
element.

 The <cache:cacheable> elements each declare a method from the pointcut as
being cacheable. It’s the XML equivalent to the @Cacheable annotation. Specifically,
the findRecent(), findOne(), and findBySpitterId() methods are all declared as
cacheable, and their return values will be cached in the spittleCache cache.

 <cache:cache-put> is Spring’s XML equivalent to the @CachePut annotation. It
designates a method as one whose return value will populate a cache, but the method
will never draw its return value from the cache. In this case, the save() method is

Make cacheable

Make cacheable

Make cacheable

Populate cache on save

Remove from cache

377Declaring caching in XML
used to populate the cache. And, as with annotation-oriented caching, you need to
override the default key to be the id property of the returned Spittle object.

 Finally, the <cache:cache-evict> element is Spring’s XML alternative to the
@CacheEvict annotation. It removes an element from the cache so that it won’t be
found the next time someone looks for it. Here, when you delete a Spittle from the
cache by calling remove(), the entry whose key is the same as the ID passed in to
remove() will be evicted from the cache.

 It’s worth noting that the <cache:advice> element has a cache-manager attribute
to specify the bean that serves as the cache manager. By default it’s cacheManager,
which coincides with the <bean> declared at the end of listing 13.7, so there’s no need
to explicitly set it. But if your cache manager bean has a different ID (as might be the
case if you declared multiple cache managers), you can specify which cache manager
to use by setting the cache-manager attribute.

 Also notice that the <cache:cacheable>, <cache:cache-put>, and <cache:cache-
evict> elements refer to the same cache named spittleCache. To remove that dupli-
cation, you can specify the cache name in the <cache:caching> annotation instead:

<cache:advice id="cacheAdvice">
<cache:caching cache="spittleCache">

<cache:cacheable method="findRecent" />

<cache:cacheable method="findOne" />

<cache:cacheable method="findBySpitterId" />

<cache:cache-put
method="save"
key="#result.id" />

<cache:cache-evict method="remove" />

</cache:caching>
</cache:advice>

<cache:caching> shares several attributes with <cache:cacheable>, <cache:cache-
put>, and <cache:cache-evict>, including these:

 cache—Specifies the cache to store values in and retrieve values from.
 condition—A SpEL expression that, if it evaluates to false, disables caching

for the method.
 key—A SpEL expression used to derive the cache key. (Defaults to the

method’s parameters.)
 method—The name of the method to be cached.

In addition, <cache:cacheable> and <cache:cache-put> have an unless attribute.
This optional attribute can be given a SpEL expression that, if it evaluates to true,
prevents the return value from being cached.

 The <cache:cache-evict> element offers a few unique attributes:

378 CHAPTER 13 Caching data
 all-entries—If true, all entries in the cache are removed. If false, only the
entry matching the key is removed.

 before-invocation—If true, the cache entry (or entries) are removed before
the method is invoked. If false, they’re removed after the method is invoked.

Both all-entries and before-invocation default to false. This means that using
<cache:cache-evict> without either of them will result in only a single entry being
removed from the cache after the method is invoked. The item to be removed is iden-
tified by the default key (based on the method’s parameter) or a key specified with a
SpEL expression given to the key attribute.

13.4 Summary
Caching is a great way to keep your application code from having to derive, calculate,
or retrieve the same answers over and over again for the same question. When a
method is initially invoked with a given set of parameters, the return value can be
stored in a cache and retrieved from that cache later when the same method is called
with the same parameters. In many cases, looking up a value from a cache is a cheaper
operation then looking it up otherwise (for example, performing a database query).
Therefore, caching can have a positive impact on application performance.

 In this chapter, you’ve seen how to declare caching in a Spring application. First
you saw how to declare one or more of Spring’s cache managers. Then you applied
caching to the Spittr application by adding annotations such as @Cacheable,
@CachePut, and @CacheEvict to the SpittleRepository.

 We also looked at how to configure caching rules separate from the application code
in XML. The <cache:cacheable>, <cache:cache-put>, and <cache:cache-evict> ele-
ments mirror the annotations you used earlier in the chapter.

 Along the way, we discussed the fact that caching is an aspect-oriented activity. In
fact, Spring implements caching as an aspect. This became apparent when you
declared caching rules in XML: you had to bind your caching advice to a pointcut.

 Spring also uses aspects when applying security rules to methods. In the next chap-
ter, you’ll see how to use Spring Security to enforce security on bean methods.

Securing methods
Before I leave my house or before I go to bed, one of the last things I do is make
sure the doors to my house are locked. But just before that, I set the alarm. Why?
Because although the locks on my doors are a good form of security, the alarm sys-
tem gives a second line of defense, should any burglar make it past the locks.

 In chapter 9, you saw how to use Spring Security to secure the web layer of your
application. Web security is important, as it prevents users from accessing content
that they’re not authorized to access. But what if there’s a hole in your application’s
web layer security? What if somehow a user is able to request content that they may
not be allowed to see?

 Although there’s no reason to think that a user will be able to crack through
your application’s security, a security hole at the web layer can sneak in rather eas-
ily. Imagine, for instance, if a user makes a request for a page that they’re allowed
to see, but due to a lack of developer diligence, the controller that handles that
request calls a method that fetches data that the user isn’t allowed to see. It’s an
honest mistake. But security breaches are just as likely to arise from honest mistakes
as they are from clever hacking.

This chapter covers
 Securing method invocations

 Defining security rules with expressions

 Creating security expression evaluators
379

380 CHAPTER 14 Securing methods
 By securing both the web layer of your application and the methods behind the
scenes, you can be sure that no logic will be executed unless the user is authorized.

 In this chapter, we’ll look at how you can secure bean methods using Spring Secu-
rity. In doing so, we’ll declare security rules that prevent a method from being exe-
cuted unless the user for whom it is being executed has the authority to execute it.
We’ll start by looking at a couple of simple annotations that can be placed on methods
to lock them away from unauthorized access.

14.1 Securing methods with annotations
The most commonly used approach to method-level security with Spring Security is to
apply special security annotations to the methods you want secured. This has several
benefits, not the least of which is that the security rules for any given method are
clearly visible when looking at the method in an editor.

 Spring Security provides three different kinds of security annotations:

 Spring Security’s own @Secured
 JSR-250’s @RolesAllowed
 Expression-driven annotations, with @PreAuthorize, @PostAuthorize,

@PreFilter, and @PostFilter

The @Secured and @RolesAllowed annotations are the simplest options, restricting
access based on what authorities have been granted to the user. When you need more
flexibility in defining security rules on methods, Spring Security offers @PreAuthorize
and @PostAuthorize. And @PreFilter/@PostFilter filter elements out of collections
returned from or passed into a method.

 Before the end of this chapter, you’ll have seen all of these annotations in action.
To get the ball rolling, let’s start by looking at the @Secured annotation, the simplest
of the method-level security annotations offered by Spring Security.

14.1.1 Restricting method access with @Secured

The key to enabling annotation-based method security in Spring is to annotate a con-
figuration class with @EnableGlobalMethodSecurity, like this:

@Configuration
@EnableGlobalMethodSecurity(securedEnabled=true)
public class MethodSecurityConfig

extends GlobalMethodSecurityConfiguration {
}

In addition to being annotated with @EnableGlobalMethodSecurity, you’ll notice
that the configuration class extends GlobalMethodSecurityConfiguration. Much
like the WebSecurityConfigurerAdapter class that your web security configuration
class extended in chapter 9, this class offers you the opportunity to configure the finer
points of method-level security.

381Securing methods with annotations
 For example, if you haven’t already configured authentication in the web-layer
security configuration, you may want to do that here by overriding the GlobalMethod-
SecurityConfiguration’s configure() method:

@Override
protected void configure(AuthenticationManagerBuilder auth)

throws Exception {
auth
.inMemoryAuthentication()

.withUser("user").password("password").roles("USER");
}

A little later in this chapter, in section 14.2.2, you’ll see how to override the Global-
MethodSecurityConfiguration’s createExpressionHandler() method to provide
some custom security expression-handling behavior.

 Getting back to the @EnableGlobalMethodSecurity annotation, notice that its
securedEnabled attribute is set to true. When securedEnabled is true, a pointcut is
created such that the Spring Security aspects will wrap bean methods that are anno-
tated with @Secured. For example, consider this addSpittle() method that’s been
annotated with @Secured:

@Secured("ROLE_SPITTER")
public void addSpittle(Spittle spittle) {

// ...
}

The @Secured annotation takes an array of String as an argument. Each String value
is an authorization, one of which is required to invoke the method. By passing in
ROLE_SPITTER, you tell Spring Security to not allow the addSpittle() method to be
invoked unless the authenticated user has ROLE_SPITTER as one of their granted
authorities.

 If more than one value is passed into @Secured, then the authenticated user must
be granted at least one of those authorities to gain access to the method. For example,
the following use of @Secured indicates that the user must have ROLE_SPITTER or
ROLE_ADMIN privilege to invoke the method:

@Secured({"ROLE_SPITTER", "ROLE_ADMIN"})
public void addSpittle(Spittle spittle) {

// ...
}

When the method is invoked by an unauthenticated user or by a user not possessing
the required privileges, the aspect wrapping the method will throw one of Spring
Security’s exceptions (probably a subclass of AuthenticationException or Access-
DeniedException). These are unchecked exceptions, but ultimately someone will
need to catch it and handle it. If the secured method is invoked in the course of a web
request, the exception will be automatically handled by Spring Security’s filters. Oth-
erwise, you’ll need to write the code to handle the exception.

382 CHAPTER 14 Securing methods
 One drawback of the @Secured annotation is that it’s a Spring-specific annotation.
If you’re more comfortable using annotations defined in Java standards, then perhaps
you should consider using @RolesAllowed instead.

14.1.2 Using JSR-250’s @RolesAllowed with Spring Security

The @RolesAllowed annotation is equivalent to @Secured in almost every way. The
only substantial difference is that @RolesAllowed is one of Java’s standard annotations
as defined in JSR-250.

 This difference carries more political consequence than technical. But using the
standard @RolesAllowed annotation may have implications when used in the context
of other frameworks or APIs that process that annotation.

 Regardless, if you choose to use @RolesAllowed, you’ll need to turn it on by setting
@EnableGlobalMethodSecurity’s jsr250Enabled attribute to true:

@Configuration
@EnableGlobalMethodSecurity(jsr250Enabled=true)
public class MethodSecurityConfig

extends GlobalMethodSecurityConfiguration {
}

Although here we’ve only enabled jsr250Enabled, it’s good to note that it’s not mutu-
ally exclusive with securedEnabled. These two annotation styles can both be enabled
at the same time.

 With jsr250Enabled set to true, a pointcut will be effected such that any methods
annotated with @RolesAllowed will be wrapped with Spring Security’s aspects. This
makes it possible to use @RolesAllowed on your methods in much the same way that
you might use @Secured. For example, here’s the same addSpittle() method anno-
tated with @RolesAllowed instead of @Secured:

@RolesAllowed("ROLE_SPITTER")
public void addSpittle(Spittle spittle) {

// ...
}

Although @RolesAllowed has a slight political advantage over @Secured in that it’s a
standards-based annotation for method security, both annotations share a common
shortcoming. They can restrict the invocation of a method based only on whether or
not that user has been granted a specific privilege. No other factors can play a part in
the decision to allow the method to execute or not. You saw in chapter 9, however,
that SpEL expressions could be used to overcome a similar limitation when securing
URLs. Let’s see how you can use SpEL along with Spring Security’s pre- and postinvo-
cation annotations to perform expression-based method security.

383Using expressions for method-level security
14.2 Using expressions for method-level security
Although @Secured and @RolesAllowed seem to do the trick when it comes to keep-
ing unauthorized users out, that’s about all that they can do. Sometimes security con-
straints depend on more than just whether a user has privileges or not.

 Spring Security 3.0 introduced a handful of new annotations that use SpEL to
enable even more interesting security constraints on methods. These new annotations
are described in table 14.1.

Each of these annotations accepts a SpEL expression for its value parameter. The
expression can be any valid SpEL expression and may include any of the Spring Secu-
rity extensions to SpEL listed in table 9.5. If the expression evaluates to true, then the
security rule passes; otherwise, it fails. The implications of a passing versus failing secu-
rity rule differ depending on which annotation is in use.

 We’ll look at specific examples of each of these in a moment. But first, you’ll need
to enable them by setting @EnableGlobalMethodSecurity’s prePostEnabled attribute
to true:

@Configuration
public class MethodSecurityConfig

extends GlobalMethodSecurityConfiguration {
}

Now that the pre/post annotations are enabled, you can start using them. Let’s start by
seeing how you can restrict access to a method using the @PreAuthorize and @Post-
Authorize annotations.

14.2.1 Expressing method access rules

Thus far you’ve seen how @Secured and @RolesAllowed prevent a method from being
executed unless the user has the required authority. But their weakness is that they’re
only able to make their decisions based on the user’s granted authorities.

 Spring Security offers two more annotations, @PreAuthorize and @PostAuthorize,
that restrict method access based on expression evaluation. Expressions add a

Table 14.1 Spring Security 3.0 offers four new annotations that can be used to secure methods with
SpEL expressions.

Annotations Description

@PreAuthorize Restricts access to a method before invocation based on the result of evalu-
ating an expression

@PostAuthorize Allows a method to be invoked, but throws a security exception if the expres-
sion evaluates to false

@PostFilter Allows a method to be invoked, but filters the results of that method based
on an expression

@PreFilter Allows a method to be invoked, but filters input prior to entering the method

384 CHAPTER 14 Securing methods
tremendous amount of flexibility in defining security constraints. Using expressions,
you can allow or disallow access to a method using almost any conditions you can
imagine.

 The key difference between @PreAuthorize and @PostAuthorize is in when their
expressions are evaluated. @PreAuthorize is evaluated before the method executes
and prevents method execution unless the expression evaluates to true. In contrast,
@PostAuthorize waits until the method has returned before deciding whether or not
to raise a security exception.

 We’ll first look at preauthorization, as it’s the most commonly used of the expression-
driven security annotations. After that, we’ll see how to secure access to methods after the
method executes.

PREAUTHORIZING METHOD ACCESS

At first glance, @PreAuthorize may appear to be nothing more than a SpEL-enabled
equivalent to @Secured and @RolesAllowed. In fact, you could use @PreAuthorize to
limit access based on the roles given to the authenticated user:

@PreAuthorize("hasRole('ROLE_SPITTER')")
public void addSpittle(Spittle spittle) {

// ...
}

When used this way, @PreAuthorize has no tangible benefit over @Secured or @Roles-
Allowed. If the user has the ROLE_SPITTER role, then the method will be allowed to
execute. Otherwise, a security exception will be thrown and the method won’t execute.

 But there’s a lot more to @PreAuthorize than is apparent in this simple example.
The String argument to @PreAuthorize is a SpEL expression. With SpEL expressions
guiding access decisions, far more advanced security constraints can be written. For
example, suppose that the average Spittr user can only write spittles of 140 characters
or less, but premium users are allowed unlimited spittle lengths.

 The @Secured and @RolesAllowed annotations would be of no help here, but
@PreAuthorize is on the case:

@PreAuthorize(
"(hasRole('ROLE_SPITTER') and #spittle.text.length() <= 140)"
+"or hasRole('ROLE_PREMIUM')")

public void addSpittle(Spittle spittle) {
// ...

}

The #spittle portion of the expression refers directly to the method parameter of
the same name. This enables Spring Security to examine the parameters passed to
the method and use those parameters in its authorization decision making. In this
example, you dig into the Spittle’s text to make sure it doesn’t exceed the length
allowed for standard Spittr users. Or if the user is a premium user, then the length
doesn’t matter.

385Using expressions for method-level security
POSTAUTHORIZING METHOD ACCESS

A slightly less obvious way to authorize a method is to postauthorize it. Postauthoriza-
tion typically involves making security decisions based on the object returned from
the secured method. This of course means that the method must be invoked and
given a chance to produce a return value.

 For example, suppose that you wanted to secure the getSpittleById() method so
that it only authorizes access if the Spittle object returned belongs to the authenti-
cated user. There’s no way of knowing if a Spittle belongs to the current user until
you’ve already fetched it. Therefore, getSpittleById() must execute first. If, after
fetching the Spittle, it turns out to not belong to the current user, then a security
exception should be thrown.

 Spring Security’s @PostAuthorize works much the same way as @PreAuthorize,
except that it waits to apply the security rule until after the method has already exe-
cuted. At that point it has the opportunity to consider the return value in its decision-
making.

 For example, to secure the getSpittleById() method as previously described,
you can use @PostAuthorize like this:

@PostAuthorize("returnObject.spitter.username == principal.username")
public Spittle getSpittleById(long id) {

// ...
}

For easy access to the object returned from the secured method, Spring Security pro-
vides the returnObject variable in SpEL. Here you know that the returned object is a
Spittle, so the expression digs into its spitter property and pulls the username
property from that.

 On the other side of the double-equal comparison, the expression digs into the
built-in principal object to get its username property. principal is another one of
Spring Security’s special built-in names that represents the principal (typically the
username) of the currently authenticated user.

 If the Spittle object has a Spitter whose username property is the same as the
principal’s username, the Spittle will be returned to the caller. Otherwise, an
AccessDeniedException will be thrown, and the caller won’t get to see the Spittle.

 It’s important to keep in mind that, unlike methods annotated with @Pre-
Authorize, @PostAuthorize-annotated methods will be executed first and intercepted
afterward. That means that care should be taken to make sure that the method doesn’t
have any side effects that would be undesirable if authorization fails.

14.2.2 Filtering method inputs and outputs

@PreAuthorize and @PostAuthorize are great if you’re using expressions to secure a
method. But sometimes restricting access to a method is too heavy-handed. Some-
times it’s not the method that’s being secured, but rather the data being passed into
or returned from that method.

386 CHAPTER 14 Securing methods
 For instance, suppose that you have a method called getOffensiveSpittles()
that returns a list of Spittles that have been flagged as offensive. This is a method
that’s primarily intended to be used by an administrator to help moderate the content
on the Spittr application. But it could also be used by an individual user to see if any of
their Spittles have been flagged as offensive. The method signature might look
something like this:

public List<Spittle> getOffensiveSpittles() { ... }

As it is, the getOffensiveSpittles() method isn’t concerned with any specific user. It
merely returns a list of offensive Spittles, no matter who they belong to. That’s per-
fect for the administrative use of the method, but it falls short of limiting the list to
those Spittles that belong to the current user.

 Certainly, you could overload getOffensiveSpittles() with another version that
accepts a user ID as a parameter and uses that to fetch only the offensive Spittles for
a given user. But as I stated in the outset of this chapter, there’s always the possibility
that the less restrictive version could be used in places where some restriction is
needed.1

 What’s needed is a way to filter the collection of Spittles returned from get-
OffensiveSpittles(), narrowing it down to the list that the current user is allowed to
see. That’s precisely what Spring Security’s @PostFilter does. Let’s give it a try.

POSTFILTERING METHOD RETURN VALUES

Just like @PreAuthorize and @PostAuthorize, @PostFilter takes a SpEL expression
as its value parameter. But instead of using that expression to restrict access to a
method, @PostFilter evaluates that expression against each member of a collection
being returned from the method, removing those members for whom the expression
evaluates to false.

 To demonstrate, let’s apply @PostFilter to the getOffensiveSpittles() method:

@PreAuthorize("hasAnyRole({'ROLE_SPITTER', 'ROLE_ADMIN'})")
@PostFilter("hasRole('ROLE_ADMIN') || "

+ "filterObject.spitter.username == principal.name")
public List<Spittle> getOffensiveSpittles() {

...
}

Here, the @PreAuthorize annotation only allows users with ROLE_SPITTER or
ROLE_ADMIN authority to execute the method. If the user makes it through that check-
point, the method will execute and a List of Spittles will be returned. But the @Post-
Filter annotation will filter that list, ensuring that the user only sees those Spittle
objects that they’re allowed to see. Specifically, administrators get to see all offensive
Spittles, and non-administrators will only be given Spittles that belong to them.

1 Besides that, if I overloaded getOffensiveSpittles() I’d have to dream up another example for showing
you how to filter method output with SpEL.

387Using expressions for method-level security
 The filterObject referenced in the expression refers to an individual element
(which you know to be a Spittle) in the List returned from the method. If that
Spittle’s Spitter has a username that’s the same as the authenticated user (the
principal.name in the expression) or if the user has the role of ROLE_ADMIN, then the
element will end up in the filtered list. Otherwise, it’ll be left out.

PREFILTERING METHOD PARAMETERS

In addition to postfiltering a method’s return value, you also have the option of prefil-
tering the values passed into a method. This is a much less common technique, but it
may come in handy on occasion.

 For instance, suppose you have a list of Spittles that you want to delete as a batch.
To accomplish that, you might write a method with a signature that looks a little like
this:

public void deleteSpittles(List<Spittle> spittles) { ... }

Seems simple enough, right? But what if you want to apply some security rules to it,
such that the Spittles can only be deleted by the user who owns them or by an
administrator. In that case, you could write logic into the deleteSpittles() method
to sift through each Spittle in the list and only delete those belonging to the current
user (or all of them if the current user is an administrator).

 While that would work, it means that you’re embedding security logic directly into
the logic of the method. And that security logic represents a separate (albeit related)
concern from the concern of deleting Spittles. What would be better is if the list
only contained Spittles that were actually going to be deleted. That would keep the
logic for deleteSpittles() simpler and focused on the task of deleting Spittles.

 Spring Security’s @PreFilter seems to be a perfect fit for this problem. Much like
@PostFilter, @PreFilter uses SpEL to filter a collection to only the elements that sat-
isfy the SpEL expression. But instead of filtering the value returned from a method,
@PreFilter filters those members of a collection going into the method.

 Using @PreFilter is quite simple. Here’s the deleteSpittles() method, now
annotated with @PreFilter:

@PreAuthorize("hasAnyRole({'ROLE_SPITTER', 'ROLE_ADMIN'})")
@PreFilter("hasRole('ROLE_ADMIN') || "

+ "targetObject.spitter.username == principal.name")
public void deleteSpittles(List<Spittle> spittles) { ... }

As before, @PreAuthorize will prevent this method from being called on behalf of any
user who doesn’t have either ROLE_SPITTER or ROLE_ADMIN authority. But also, @Pre-
Filter will ensure that the list being passed into deleteSpittles() will contain only
Spittles that the current user has permission to delete. The expression will be evalu-
ated against each item in the collection, and only those items for whom the expression
evaluates to true will remain in the list. The targetObject variable is another Spring
Security–provided value that represents the current list item to evaluate against.

388 CHAPTER 14 Securing methods
 At this point, you’ve seen how to use all four of Spring Security’s expression-driven
annotations. Expressions are a much more powerful way to define security constraints
than just specifying an authority that must be granted to the user.

 Even so, you should take care not to get too clever with the expressions. Certainly
you should avoid writing complex security expressions or trying to embed too much
non-security business logic into the expressions. Ultimately, expressions are just
String values that are given to the annotations. As such, they’re difficult to test and
difficult to debug.

 If you find yourself thinking that maybe your security expressions are getting out
of hand, you might want to look into writing a custom permission evaluator to help
simplify your SpEL expressions. Let’s see how you can create and use a custom permis-
sion evaluator to simplify the expressions you’ve used for filtering.

DEFINING A PERMISSION EVALUATOR

The expression we used with @PreFilter and @PostFilter certainly isn’t that com-
plex. But it’s not trivial either, and it doesn’t take much to imagine how you might
keep growing that expression to accommodate other security rules. Before long, the
expression could become unwieldy, complex, and difficult to test.

 What if you replaced that entire expression with a much simpler one that looks a
little something like this:

@PreAuthorize("hasAnyRole({'ROLE_SPITTER', 'ROLE_ADMIN'})")
@PreFilter("hasPermission(targetObject, 'delete')")
public void deleteSpittles(List<Spittle> spittles) { ... }

Now the expression given to @PreFilter is much tighter. It simply asks the question
“Does the user have permission to delete the target object?” If so, the expression will
evaluate to true and the Spittle will remain in the list passed to deleteSpittles().
If not, then it will be tossed out.

 But where did hasPermission() come from? What does it mean? And more
importantly, how does it know whether or not the user has permission to delete the
Spittle in targetObject?

 The hasPermission() function is a Spring Security–provided extension to SpEL,
and it represents an opportunity for you, the developer, to plug in whatever logic you
want to perform when it’s evaluated. All you need to do is write and register a custom
permission evaluator. Listing 14.1 shows SpittlePermissionEvaluator, a custom per-
mission evaluator that contains the expression logic.

package spittr.security;
import java.io.Serializable;
import org.springframework.security.access.PermissionEvaluator;
import org.springframework.security.core.Authentication;
import spittr.Spittle;

public class SpittlePermissionEvaluator implements PermissionEvaluator {

Listing 14.1 A permission evaluator provides the logic behind hasPermission()

389Using expressions for method-level security
private static final GrantedAuthority ADMIN_AUTHORITY =
new GrantedAuthorityImpl("ROLE_ADMIN");

public boolean hasPermission(Authentication authentication,
Object target, Object permission) {

if (target instanceof Spittle) {
Spittle spittle = (Spittle) target;
String username = spittle.getSpitter().getUsername();
if ("delete".equals(permission)) {

return isAdmin(authentication) ||
username.equals(authentication.getName());

}
}

throw new UnsupportedOperationException(
"hasPermission not supported for object <" + target

+ "> and permission <" + permission + ">");
}

public boolean hasPermission(Authentication authentication,
Serializable targetId, String targetType, Object permission) {
throw new UnsupportedOperationException();

}

private boolean isAdmin(Authentication authentication) {
return authentication.getAuthorities().contains(ADMIN_AUTHORITY);

}

}

SpittlePermissionEvaluator implements Spring Security’s PermissionEvaluator
interface, which demands that two different hasPermission() methods be imple-
mented. One of the hasPermission() methods takes an Object as the object to evalu-
ate against in the second parameter. The other hasPermission() is useful when only
the ID of the target object is available, and it takes that ID as a Serializable in its sec-
ond parameter.

 For our purposes, we’ll assume that you’ll always have the Spittle object to evalu-
ate permissions against, so the other method simply throws UnsupportedOperation-
Exception.

 As for the first hasPermission() method, it checks to see that the object being
evaluated is a Spittle and that you’re checking for delete permission. If so, it checks
that the Spitter’s username is equal to the authenticated user’s name or that the cur-
rent authentication has ROLE_ADMIN authority.

 Once the permission evaluator is ready, you need to register it with Spring Security
for it to back the hasPermission() operation in the expression given to @PostFilter.
To do that, you’ll need to replace the expression handler with one that’s configured
to use your custom permission evaluator.

 By default, Spring Security is configured with a DefaultMethodSecurity-
ExpressionHandler that’s given an instance of DenyAllPermissionEvaluator. As its
name suggests, DenyAllPermissionEvaluator always returns false from its has-

390 CHAPTER 14 Securing methods
Permission() methods, denying all method access. But you can provide Spring Secu-
rity with a DefaultMethodSecurityExpressionHandler configured with your custom
SpittlePermissionEvaluator by overriding the createExpressionHandler method
from GlobalMethodSecurityConfiguration:

@Override
protected MethodSecurityExpressionHandler createExpressionHandler() {

DefaultMethodSecurityExpressionHandler expressionHandler =
new DefaultMethodSecurityExpressionHandler();

expressionHandler.setPermissionEvaluator(
new SpittlePermissionEvaluator());

return expressionHandler;
}

Now anytime you secure a method with an expression that uses hasPermission(), the
SpittlePermissionEvaluator will be invoked and get to decide whether or not the
user has permission to call the method.

14.3 Summary
Method-level security is an important complement to Spring Security’s web-level secu-
rity, which we discussed in chapter 9. For non-web applications, method-level security
is the front line of defense. When applied in a web application, method-level security
backs up the security rules declared to secure web requests.

 In this chapter, we looked at six annotations that can be placed on methods to
declare security constraints. For simple, authorities-oriented security, Spring Security’s
@Secured annotation or the standards-based @RolesAllowed come in handy. When
the security rules get more interesting, @PreAuthorize and @PostAuthorize and
SpEL provide more power. You also saw how to filter a method’s inputs and outputs
using SpEL expressions given to @PreFilter and @PostFilter.

 Finally, we looked at how you can make your security rules easier to maintain, test,
and debug by defining a custom expression evaluator that works behind the scenes of
the hasPermission() function in SpEL.

 Starting with the next chapter, we’ll switch gears from developing the back end of
the application to using Spring to integrate with other applications. Over the next sev-
eral chapters, we’ll look at all kinds of integration techniques, including remoting,
asynchronous messaging, REST, and even sending emails. The first integration tech-
nique on tap will be working with Spring remoting, which we’ll explore in the next
chapter.

Part 4

Integrating Spring

No application is an island. These days, enterprise applications must coor-
dinate with other systems to achieve their purpose. In part 4, you’ll learn how to
take your application beyond its own boundaries and integrate it with other
applications and enterprise services.

 In chapter 15, “Working with remote services,” you’ll learn how to expose
your application objects as remote services. You’ll learn how to transparently
access remote services as though they’re any other object in your application. In
doing so, you’ll explore various remoting technologies, including RMI, Hessian/
Burlap, and SOAP web services with JAX-WS.

 In contrast to RPC-style remote services presented in chapter 15, chapter 16,
"Creating Rest APIs with Spring MVC," explores how to build RESTful services
that are focused on application resources using Spring MVC.

 Chapter 17, “Messaging with Spring,” explores a different approach to appli-
cation integration by showing how Spring can be used with the Java Message Ser-
vice (JMS) and the Advanced Message Queuing Protocol (AMQP) to achieve
asynchronous communication between applications.

 Increasingly, web applications are expected to be responsive and show near
real-time data. Chapter 18, “Messaging with WebSocket and STOMP,” showcases
Spring’s new support for building asynchronous communication between a
server and its web clients.

 Another form of asynchronous communication isn’t necessarily application-
to-application. Chapter 19, “Sending email with Spring,” shows how to send
asynchronous messages to people in the form of email using Spring.

392 PART 4 Integrating Spring
 Management and monitoring of Spring beans is the subject of chapter 20, “Manag-
ing Spring beans with JMX.” In this chapter, you’ll learn how Spring can automatically
expose beans configured in Spring as JMX MBeans.

 Wrapping up the book is a late but necessary addition to the table of contents.
Chapter 21, “Simplifying Spring development with Spring Boot,” presents an exciting
new game-changing development in Spring. You’ll see how Spring Boot takes away the
chore of writing much of the boilerplate configuration that is typical in Spring appli-
cations and leaves you to focus on implementing business functionality.

Working with
remote services
Imagine for a moment that you’re stranded on a deserted island. This may sound
like a dream come true. After all, who wouldn’t want some solitude on a beach,
blissfully ignorant of the goings-on of the outside world?

 But on a deserted island, it’s not pina coladas and sunbathing all the time. Even
if you enjoy the peaceful seclusion, it won’t be long before you’ll get hungry, bored,
and lonely. You can only live on coconuts and spear-caught fish for so long. You’ll
eventually need food, fresh clothing, and other supplies. And if you don’t get in
contact with another human soon, you may end up talking to a volleyball!

 Many applications that you’ll develop are like island castaways. On the surface
they might seem self-sufficient, but in reality, they probably collaborate with other
systems, both within your organization and externally.

This chapter covers
 Accessing and exposing RMI services

 Using Hessian and Burlap services

 Working with Spring’s HTTP invoker

 Using Spring with web services
393

394 CHAPTER 15 Working with remote services
 For example, consider a procurement system that needs to communicate with a
vendor’s supply-chain system. Maybe your company’s human resources system needs
to integrate with the payroll system. Or the payroll system may need to communicate
with an external system that prints and mails paychecks. No matter what the circum-
stances, your application will need to communicate with other systems to access ser-
vices remotely.

 Several remoting technologies are available to you as a Java developer, including
these:

 Remote Method Invocation (RMI)
 Caucho’s Hessian and Burlap
 Spring’s own HTTP-based remoting
 Web services with JAX-RPC and JAX-WS

Regardless of which remoting technology you choose, Spring provides broad support
for accessing and creating remote services with several different technologies. In this
chapter, you’ll learn how Spring both simplifies and complements these remoting ser-
vices. But first, let’s set the stage for this chapter with an overview of how remoting
works in Spring.

15.1 An overview of Spring remoting
Remoting is a conversation between a client application and a service. On the client
side, some functionality is required that isn’t within the scope of the application, so
the application reaches out to another system that can provide the functionality. The
remote application exposes the functionality through a remote service.

 Suppose you’d like to make some of the Spittr application’s functionality available
as remote services for other applications to use. Perhaps in addition to the existing
browser-based user interface, you’d like to make a desktop or mobile front end for
Spittr, as illustrated in figure 15.1. To support that, you’ll need to expose the basic
functions of the SpitterService interface as a remote service.

 The conversation between the other applications and Spittr begins with a remote
procedure call (RPC) from the client applications. On the surface, an RPC is similar to a
call to a method on a local object. Both are synchronous operations, blocking execu-
tion in the calling code until the called procedure is complete.

 The difference is a matter of proximity, with an analogy to human communication.
If you’re at the proverbial water cooler at work discussing the outcome of the week-
end’s football game, you’re conducting a local conversation—the conversation takes

Spitter3rd party client

Client
object

Spitter
serviceGet spittles Figure 15.1 A third-party client

can interact with the Spittr
application by making remote calls
to a service exposed by Spittr.

395An overview of Spring remoting
place between two people in the same room. Likewise, a local method call is one where
execution flow is exchanged between two blocks of code in the same application.

 On the other hand, if you were to pick up the phone to call a client in another city,
your conversation would be conducted remotely over the telephone network. Similarly,
during an RPC, execution flow is handed off from one application to another applica-
tion, theoretically on a different machine in a remote location over the network.

 As I mentioned, Spring supports remoting for several different RPC models, includ-
ing RMI, Caucho’s Hessian and Burlap, and Spring’s HTTP invoker. Table 15.1 outlines
each of these models and briefly discusses their usefulness in various situations.

Regardless of which remoting model you choose, you’ll find that a common theme
runs through Spring’s support for each model. This means that once you understand
how to configure Spring to work with one of the models, you’ll have a modest learn-
ing curve if you decide to use a different model.

 In all models, services can be configured into your application as Spring-managed
beans. This is accomplished using a proxy factory bean that enables you to wire
remote services into properties of your other beans as if they were local objects.
Figure 15.2 illustrates how this works.

Table 15.1 Spring supports RPC via several remoting technologies.

RPC model Useful when...

Remote Method Invocation
(RMI)

Accessing/exposing Java-based services when network constraints
such as firewalls aren’t a factor.

Hessian or Burlap Accessing/exposing Java-based services over HTTP when network con-
straints are a factor. Hessian is a binary protocol, whereas Burlap is
XML-based.

HTTP invoker Accessing/exposing Spring-based services when network constraints
are a factor and you desire Java serialization over XML or proprietary
serialization.

JAX-RPC and JAX-WS Accessing/exposing platform-neutral, SOAP-based web services.

Service interface

Has a

Handles network
communication

details for remote
method calls

Has a

Proxy

Client

Service

Figure 15.2 In Spring, remote
services are proxied so that they
can be wired into client code as if
they were any other Spring bean.

396 CHAPTER 15 Working with remote services
The client makes calls to the proxy as if the proxy were providing the service function-
ality. The proxy communicates with the remote service on behalf of the client. It han-
dles the details of connecting and making remote calls to the remote service.

 What’s more, if the call to the remote service results in a java.rmi.Remote-
Exception, the proxy handles that exception and rethrows it as an unchecked
RemoteAccessException. Remote exceptions usually signal problems such as network
or configuration issues that can’t be gracefully recovered from. Because a client can
usually do little to recover from a remote exception, rethrowing a RemoteAccess-
Exception makes it optional for the client to handle the exception.

 On the service side, you’re able to expose the functionality of any Spring-managed
bean as a remote service using any of the models listed in table 15.1. Figure 15.3 illus-
trates how remote exporters expose bean methods as remote services.

 Whether you’ll be developing code that consumes remote services, implements
those services, or both, working with remote services in Spring is purely a matter of
configuration. You won’t have to write any Java code to support remoting. Your ser-
vice beans don’t have to be aware that they’re involved in an RPC (although any
beans passed to or returned from remote calls may need to implement java.io
.Serializable).

 Let’s start our exploration of Spring’s remoting support by looking at RMI, the
original remoting technology for Java.

15.2 Working with RMI
If you’ve been working in Java for any length of time, you’ve no doubt heard of (and
probably used) RMI. RMI—first introduced into the Java platform in JDK 1.1—gives
Java programmers a powerful way to communicate between Java programs. Before
RMI, the only remoting options available to Java programmers were CORBA (which at
the time required the purchase of a third-party object request broker [ORB]) and hand-
written socket programming.

 But developing and accessing RMI services is tedious, involving several steps, both
programmatic and manual. Spring simplifies the RMI model by providing a proxy

Has a Remote
communication

Handles marshaling
and unmarshaling of
remote method calls

Service
implementation bean

Service interface

ClientRemote exporter

Figure 15.3 Spring-managed beans can be exported as remote services using remote exporters.

397Working with RMI
factory bean that enables you to wire RMI services into your Spring application as if
they were local JavaBeans. Spring also provides a remote exporter that makes short
work of converting your Spring-managed beans into RMI services.

 For the Spittr application, I’ll show you how to wire an RMI service into a client
application’s Spring application context. But first, let’s see how to use the RMI
exporter to publish the SpitterService implementation as an RMI service.

15.2.1 Exporting an RMI service

If you’ve ever created an RMI service, you know that it involves the following steps:

1 Write the service implementation class with methods that throw java.rmi
.RemoteException.

2 Create the service interface to extend java.rmi.Remote.
3 Run the RMI compiler (rmic) to produce client stub and server skeleton classes.
4 Start an RMI registry to host the services.
5 Register the service in the RMI registry.

Wow! That’s a lot of work just to publish a simple RMI service. What’s perhaps worse
than all the steps required is that, as you may have noticed, RemoteExceptions and
MalformedURLExceptions are thrown around a lot. These exceptions usually indicate
a fatal error that can’t be recovered from in a catch block, but you’re still expected to
write boilerplate code that catches and handles those exceptions—even if there’s not
much you can do to fix them.

 Clearly a lot of code and manual work are involved in publishing an RMI service. Is
there anything Spring can do to make this situation less knotty?

CONFIGURING AN RMI SERVICE IN SPRING

Fortunately, Spring provides an easier way to publish RMI services. Instead of writing
RMI-specific classes with methods that throw RemoteException, you write a POJO that
performs the functionality of your service. Spring handles the rest.

 The RMI service that you’ll create exposes the methods from the SpitterService
interface. As a reminder, the following listing shows what that interface looks like.

package com.habuma.spittr.service;
import java.util.List;
import com.habuma.spittr.domain.Spitter;
import com.habuma.spittr.domain.Spittle;
public interface SpitterService {

List<Spittle> getRecentSpittles(int count);
void saveSpittle(Spittle spittle);
void saveSpitter(Spitter spitter);
Spitter getSpitter(long id);
void startFollowing(Spitter follower, Spitter followee);
List<Spittle> getSpittlesForSpitter(Spitter spitter);
List<Spittle> getSpittlesForSpitter(String username);

Listing 15.1 SpitterService: defines the service layer of the Spittr application

398 CHAPTER 15 Working with remote services
Spitter getSpitter(String username);
Spittle getSpittleById(long id);
void deleteSpittle(long id);
List<Spitter> getAllSpitters();

}

If you were using traditional RMI to expose this service, all of those methods in
SpitterService and in SpitterServiceImpl would need to throw java.rmi.Remote-
Exception. But you’re going to turn it into an RMI service using Spring’s RmiService-
Exporter, so the existing implementations will do fine.

 RmiServiceExporter exports any Spring-managed bean as an RMI service. As
shown in figure 15.4, RmiServiceExporter works by wrapping the bean in an adapter
class. The adapter class is then bound to the RMI registry and proxies requests to the
service class—SpitterServiceImpl, in this case.

 The simplest way to use RmiServiceExporter to expose SpitterServiceImpl as an
RMI service is to configure it in Spring with the following @Bean method:

@Bean
public RmiServiceExporter rmiExporter(SpitterService spitterService) {

RmiServiceExporter rmiExporter = new RmiServiceExporter();
rmiExporter.setService(spitterService);
rmiExporter.setServiceName("SpitterService");
rmiExporter.setServiceInterface(SpitterService.class);
return rmiExporter;

}

Here the spitterService bean is wired into the service property to indicate that the
RmiServiceExporter is to export the bean as an RMI service. The serviceName prop-
erty names the RMI service. And the serviceInterface property specifies the inter-
face that the service implements.

 By default, RmiServiceExporter attempts to bind to an RMI registry on port 1099
of the local machine. If no RMI registry is found at that port, RmiServiceExporter will
start one. If you’d rather bind to an RMI registry at a different port or host, you can
specify that with the registryPort and registryHost properties. For example, the
following RmiServiceExporter attempts to bind to an RMI registry on port 1199 on
the host rmi.spitter.com:

RMI service adapter

SpitterServiceImpl Bound in

Creates

RmiServiceExporter

RMI
registry

Figure 15.4 RmiServiceExporter
turns POJOs into RMI services by
wrapping them in a service adapter and
binding the service adapter to the RMI
registry.

399Working with RMI
@Bean
public RmiServiceExporter rmiExporter(SpitterService spitterService) {

RmiServiceExporter rmiExporter = new RmiServiceExporter();
rmiExporter.setService(spitterService);
rmiExporter.setServiceName("SpitterService");
rmiExporter.setServiceInterface(SpitterService.class);
rmiExporter.setRegistryHost("rmi.spitter.com");
rmiExporter.setRegistryPort(1199);
return rmiExporter;

}

That’s all you need to do to have Spring turn a bean into an RMI service. Now that the
Spitter service has been exposed as an RMI service, you can create alternative user
interfaces or invite third parties to create new clients for Spittr that use the RMI ser-
vice. The developers of those clients will have an easy time connecting to the Spitter
RMI service if they’re using Spring.

 Let’s switch gears and see how to write a client of the Spitter RMI service.

15.2.2 Wiring an RMI service

Traditionally, RMI clients must use the RMI API’s Naming class to look up a service from
the RMI registry. For example, the following snippet of code might be used to retrieve
the RMI Spitter service:

try {
String serviceUrl = "rmi:/spitter/SpitterService";
SpitterService spitterService =

(SpitterService) Naming.lookup(serviceUrl);
...

}
catch (RemoteException e) { ... }
catch (NotBoundException e) { ... }
catch (MalformedURLException e) { ... }

Although this snippet of code would certainly retrieve a reference to the RMI Spitter
service, it presents two problems:

 Conventional RMI lookups could result in any one of three checked exceptions
(RemoteException, NotBoundException, and MalformedURLException) that
must be caught or rethrown.

 Any code that needs the Spitter service is responsible for retrieving the service
itself. That’s plumbing code and probably is not directly cohesive with the cli-
ent’s functionality.

The exceptions thrown in the course of an RMI lookup are the kinds that typically sig-
nal a fatal and unrecoverable condition in the application. MalformedURLException,
for instance, indicates that the address given for the service isn’t valid. To recover
from this exception, the application will, at a minimum, need to be reconfigured and
may have to be recompiled. No try/catch block will be able to recover gracefully, so
why should your code be forced to catch and handle it?

400 CHAPTER 15 Working with remote services
 But perhaps more sinister is the fact that this code is in direct opposition to the
principles of dependency injection (DI). Because the client code is responsible for
looking up the Spitter service and the service is an RMI service, there’s no opportunity
to provide a different implementation of SpitterService from some other source.
Ideally, you should be able to inject a SpitterService object into any bean that needs
one, instead of having the bean look up the service itself. Using DI, any client of
SpitterService can be ignorant of where that service comes from.

 Spring’s RmiProxyFactoryBean is a factory bean that creates a proxy to an RMI ser-
vice. Using RmiProxyFactoryBean to reference an RMI SpitterService is as simple as
adding the following @Bean method to the client’s Spring configuration:

@Bean
public RmiProxyFactoryBean spitterService() {

RmiProxyFactoryBean rmiProxy = new RmiProxyFactoryBean();
rmiProxy.setServiceUrl("rmi://localhost/SpitterService");
rmiProxy.setServiceInterface(SpitterService.class);
return rmiProxy;

}

The URL of the service is set through RmiProxyFactoryBean’s serviceUrl property.
Here, the service is named SpitterService and is hosted on the local machine.
Meanwhile, the interface that the service provides is specified with the serviceInter-
face property. The interaction between the client and the RMI proxy is illustrated in
figure 15.5.

 Now that you’ve declared the RMI service as a Spring-managed bean, you can wire
it as a dependency into another bean just as you would a regular non-remote bean. For
example, suppose the client needs to use the Spitter service to retrieve a list of Spittles
for a given user. You might use @Autowired to wire the service proxy into the client:

Network
Method call

JRMP
message

JRMP
message

Produces

Client

RmiProxy
FactoryBean

Spitter
Service

Impl

Spitter
Service

RMI
proxy

S
pi

tte
rS

er
vi

ce

Figure 15.5 RmiProxyFactoryBean produces a proxy object that talks to remote RMI
services on behalf of the client. The client talks to the proxy through the service’s interface as
if the remote service were a local POJO.

401Working with RMI
@Autowired
SpitterService spitterService;

Then you can invoke methods on it as if it were a local bean:

public List<Spittle> getSpittles(String userName) {
Spitter spitter = spitterService.getSpitter(userName);
return spitterService.getSpittlesForSpitter(spitter);

}

What’s great about accessing an RMI service this way is that the client code doesn’t
even know it’s dealing with an RMI service. It’s given a SpitterService object via
injection, without any concern for where it comes from. In fact, who’s to say the client
was even given an RMI-based implementation?

 Furthermore, the proxy catches any RemoteExceptions that may be thrown by the
service and rethrows them as unchecked exceptions that you may safely ignore. This
makes it possible to easily swap out the remote service bean with another implementa-
tion of the service—perhaps a different remote service, or maybe a mock implementa-
tion used when unit-testing the client code.

 Even though the client code isn’t aware that the SpitterService it was given is a
remote service, you may want to take care when you design the service’s interface.
Note that the client had to make two calls to the service: one to look up the Spitter
by username, and another to retrieve the list of Spittle objects. That’s two remote
calls that are affected by network latency and that will impact the performance of the
client. Knowing that this is how the service will be used, it may be worthwhile to revisit
the service’s interface to consolidate those two calls into a single method. But for now,
you’ll accept the service as is.

 RMI is an excellent way to communicate with remote services, but it has some limi-
tations. First, RMI has difficulty working across firewalls. That’s because RMI uses arbi-
trary ports for communication—something that firewalls typically don’t allow. In an
intranet environment, this usually isn’t a concern. But if you’re working on the inter-
net, you’ll probably run into trouble with RMI. Even through RMI has support for tun-
neling over HTTP (which is usually allowed by firewalls), setting up RMI tunneling can
be tricky.

 Another thing to consider is that RMI is Java-based. That means both the client and
the service must be written in Java. And because RMI uses Java serialization, the types
of the objects being sent across the network must have the exact same version of the
Java runtime on both sides of the call. These may or may not be issues for your appli-
cation, but bear them in mind when choosing RMI for remoting.

 Caucho Technology (the same company behind the Resin application server) has
developed a remoting solution that addresses the limitations of RMI. Actually, Caucho
has come up with two solutions: Hessian and Burlap. Let’s see how to use Hessian and
Burlap to work with remote services in Spring.

402 CHAPTER 15 Working with remote services
15.3 Exposing remote services with Hessian and Burlap
Hessian and Burlap are two solutions provided by Caucho Technology that enable
lightweight remote services over HTTP. Each aims to simplify web services by keeping
both its API and its communication protocols as simple as possible.

 You may be wondering why Caucho has two solutions to the same problem. Hessian
and Burlap are two sides of the same coin, but each serves slightly different purposes.

 Hessian, like RMI, uses binary messages to communicate between client and ser-
vice. But unlike other binary remoting technologies (such as RMI), the binary message
is portable to languages other than Java, including PHP, Python, C++, and C#.

 Burlap is an XML-based remoting technology, which automatically makes it porta-
ble to any language that can parse XML. And because it’s XML, it’s more easily human-
readable than Hessian’s binary format. Unlike other XML-based remoting technolo-
gies (such as SOAP and XML-RPC), Burlap’s message structure is as simple as possible
and doesn’t require an external definition language (such as WSDL or IDL).

 How do you choose between Hessian and Burlap? For the most part, they’re iden-
tical. The only difference is that Hessian messages are binary and Burlap messages are
XML. Because Hessian messages are binary, they’re more bandwidth-friendly. If
human readability is important to you (for debugging purposes), or if your applica-
tion will be communicating with a language for which there’s no Hessian implementa-
tion, Burlap’s XML messages may be preferable.

 To demonstrate Hessian and Burlap services in Spring, let’s revisit the Spitter ser-
vice example that we addressed with RMI in the previous section. This time, we’ll look
at how to solve the problem using Hessian and Burlap as the remoting models.

15.3.1 Exposing bean functionality with Hessian/Burlap

As before, suppose you want to expose the functionality of the SpitterServiceImpl
class as a service—a Hessian service, this time. Even without Spring, doing this would
be fairly trivial. You’d write a service class that extends com.caucho.hessian.server
.HessianServlet and make sure all the service methods are public (all public meth-
ods are considered service methods to Hessian).

 Because Hessian services are already easy to implement, Spring doesn’t do much
to simplify the Hessian model further. But when used with Spring, a Hessian service
can take full advantage of the Spring Framework in ways that a pure Hessian service
can’t. This includes using Spring AOP to advise a Hessian service with system-wide ser-
vices, such as declarative transactions.

EXPORTING A HESSIAN SERVICE

Exporting a Hessian service in Spring is remarkably similar to implementing an RMI
service in Spring. To expose the Spitter service bean as an RMI service, you had to con-
figure an RmiServiceExporter bean in the Spring configuration. Similarly, to expose
the Spitter service as a Hessian service, you need to configure another exporter bean.
This time it’ll be a HessianServiceExporter.

403Exposing remote services with Hessian and Burlap
HessianServiceExporter performs the same function for a Hessian service as
RmiServiceExporter does for an RMI service: it exposes the public methods of a POJO
as methods of a Hessian service. But, as shown in figure 15.6, how it pulls off this feat
is different from how RmiServiceExporter exports POJOs as RMI services.

 HessianServiceExporter is a Spring MVC controller (more on that in a moment)
that receives Hessian requests and translates them into method calls on the exported
POJO. The following declaration of HessianServiceExporter in Spring exports the
spitterService bean as a Hessian service:

@Bean
public HessianServiceExporter

hessianExportedSpitterService(SpitterService service) {
HessianServiceExporter exporter = new HessianServiceExporter();
exporter.setService(service);
exporter.setServiceInterface(SpitterService.class);
return exporter;

}

Just as with RmiServiceExporter, the service property is wired with a reference to
the bean that implements the service. Here, that’s a reference to the spitterService
bean. The serviceInterface is set to indicate that SpitterService is the interface
the service implements.

 Unlike RmiServiceExporter, you don’t need to get a serviceName property. With
RMI, the serviceName property is used to register a service in the RMI registry. Hessian
doesn’t have a registry, and, therefore, there’s no need to name a Hessian service.

CONFIGURING THE HESSIAN CONTROLLER

Another major difference between RmiServiceExporter and HessianService-

Exporter is that because Hessian is HTTP-based, HessianServiceExporter is imple-
mented as a Spring MVC controller. This means that in order to use exported Hessian
services, you’ll need to perform two additional configuration steps:

 Configure a Spring DispatcherServlet in web.xml, and deploy your applica-
tion as a web application.

 Configure a URL handler in your Spring configuration to dispatch Hessian ser-
vice URLs to the appropriate Hessian service bean.

Request Dispatches to
Dispatcher

Servlet
HessianService

Exporter

SpitterServiceImpl

Figure 15.6
HessianServiceExporter
is a Spring MVC controller that
exports a POJO as a Hessian
service by receiving Hessian
requests and translating them
into calls to the POJO.

404 CHAPTER 15 Working with remote services
You first saw how to configure Spring’s DispatcherServlet and URL handlers in
chapter 5, so these steps should be somewhat familiar by now. First, you need a
DispatcherServlet. Fortunately, you have one already configured in the Spittr appli-
cation’s web.xml file. But for the purposes of handling Hessian services, that
DispatcherServlet needs a servlet mapping that catches *.service URLs:

<servlet-mapping>
<servlet-name>spitter</servlet-name>
<url-pattern>*.service</url-pattern>

</servlet-mapping>

If you’re configuring DispatcherServlet in Java by implementing WebApplication-
Initializer, you’ll want to add that URL pattern as a mapping to the Servlet-
Registration.Dynamic you got when adding DispatcherServlet to the container:

ServletRegistration.Dynamic dispatcher = container.addServlet(
"appServlet", new DispatcherServlet(dispatcherServletContext));

dispatcher.setLoadOnStartup(1);
dispatcher.addMapping("/");
dispatcher.addMapping("*.service");

Or, if you’re configuring DispatcherServlet by extending AbstractDispatcher-
ServletInitializer or AbstractAnnotationConfigDispatcherServletInitializer,
you’ll need to include the mapping when you override getServletMappings():

@Override
protected String[] getServletMappings() {

return new String[] { "/", "*.service" };
}

Configured this way, any request whose URL ends with .service will be given to
DispatcherServlet, which will in turn hand off the request to the Controller that’s
mapped to the URL. Thus, requests to /spitter.service will ultimately be handled by
the hessianSpitterService bean (which is a proxy to SpitterServiceImpl).

 How do you know the request will go to hessianSpitterService? Because you’re
also going to configure a URL mapping to have DispatcherServlet send the request
to hessianSpitterService. The following SimpleUrlHandlerMapping bean will make
that happen:

@Bean
public HandlerMapping hessianMapping() {

SimpleUrlHandlerMapping mapping = new SimpleUrlHandlerMapping();
Properties mappings = new Properties();
mappings.setProperty("/spitter.service",

"hessianExportedSpitterService");
mapping.setMappings(mappings);
return mapping;

}

An alternative to Hessian’s binary protocol is Burlap’s XML-based protocol. Let’s see
how to export a service as a Burlap service.

405Exposing remote services with Hessian and Burlap
EXPORTING A BURLAP SERVICE

BurlapServiceExporter is virtually identical to HessianServiceExporter in every
way, except that it uses an XML-based protocol instead of a binary protocol. The fol-
lowing bean definition shows how to expose the Spitter service as a Burlap service
using BurlapServiceExporter:

@Bean
public BurlapServiceExporter

burlapExportedSpitterService(SpitterService service) {
BurlapServiceExporter exporter = new BurlapServiceExporter();
exporter.setService(service);
exporter.setServiceInterface(SpitterService.class);
return exporter;

}

As you can see, the only differences between this bean and its Hessian counterpart are
the bean method and the exporter class. Configuring a Burlap service is otherwise the
same as configuring a Hessian service. This includes the need to set up a URL handler
and a DispatcherServlet.

 Now let’s look at the other side of the conversation and consume the service that
you published using Hessian (or Burlap).

15.3.2 Accessing Hessian/Burlap services

As you’ll recall from section 15.2.2, client code that consumes the Spitter service using
RmiProxyFactoryBean has no idea the service is an RMI service. In fact, it has no clue
that it’s a remote service. It only deals with the SpitterService interface—all the RMI
details are contained in the configuration of the beans in Spring’s configuration. The
good news is that because of the client’s ignorance of the service’s implementation,
switching from an RMI client to a Hessian client is extremely easy, requiring no
changes to the client’s Java code.

 The bad news is that if you love writing Java code, this section may be a letdown.
That’s because the only difference between wiring the client side of an RMI-based ser-
vice and wiring the client side of a Hessian-based service is that you’ll use Spring’s
HessianProxyFactoryBean instead of RmiProxyFactoryBean. A Hessian-based Spitter
service can be declared in the client code like this:

@Bean
public HessianProxyFactoryBean spitterService() {

HessianProxyFactoryBean proxy = new HessianProxyFactoryBean();
proxy.setServiceUrl("http://localhost:8080/Spitter/spitter.service");
proxy.setServiceInterface(SpitterService.class);
return proxy;

}

Just as with an RMI-based service, the serviceInterface property specifies the inter-
face that the service implements. And, as with RmiProxyFactoryBean, serviceUrl
indicates the URL of the service. Because Hessian is HTTP-based, it’s set to an HTTP
URL here (determined in part by the URL mapping you defined earlier). Figure 15.7

406 CHAPTER 15 Working with remote services
shows the interaction between a client and the proxy produced by HessianProxy-
FactoryBean.

 As it turns out, wiring a Burlap service into the client is equally uninteresting. The
only difference is that you use BurlapProxyFactoryBean instead of HessianProxy-
FactoryBean:

@Bean
public BurlapProxyFactoryBean spitterService() {

BurlapProxyFactoryBean proxy = new BurlapProxyFactoryBean();
proxy.setServiceUrl("http://localhost:8080/Spitter/spitter.service");
proxy.setServiceInterface(SpitterService.class);
return proxy;

}

Although I’ve made light of how uninteresting the configuration differences are
among RMI, Hessian, and Burlap, this tedium is a benefit. It demonstrates that you
can switch effortlessly between the various remoting technologies supported by Spring
without having to learn a completely new model. Once you’ve configured a reference
to an RMI service, it’s short work to reconfigure it as a Hessian or Burlap service.

 Because both Hessian and Burlap are based on HTTP, they don’t suffer from the
same firewall issues as RMI. But RMI has both Hessian and Burlap beat when it comes
to serializing objects that are sent in RPC messages. Whereas Hessian and Burlap both
use a proprietary serialization mechanism, RMI uses Java’s own serialization mecha-
nism. If your data model is complex, the Hessian/Burlap serialization model may not
be sufficient.

 There is, however, a best-of-both-worlds solution. Let’s look at Spring’s HTTP
invoker, which offers RPC over HTTP (like Hessian/Burlap) while at the same time
using Java serialization of objects (like RMI).

Network
Method call HTTP HTTP

Produces

Client

Hessian/Burlap
FactoryBean

Hessian/Burlap
Proxy

S
pi

tte
rS

er
vi

ce

Spitter
Service

Impl

Spitter
Service

Figure 15.7 HessianProxyFactoryBean and BurlapProxyFactoryBean produce
proxy objects that talk to a remote service over HTTP (Hessian in binary, Burlap in XML).

407Using Spring’s HttpInvoker
15.4 Using Spring’s HttpInvoker
The Spring team recognized a void between RMI services and HTTP-based services
such as Hessian and Burlap. On the one side, RMI uses Java’s standard object serializa-
tion but is difficult to use across firewalls. On the other side, Hessian and Burlap work
well across firewalls but use a proprietary object-serialization mechanism.

 Thus Spring’s HTTP invoker was born. The HTTP invoker is a new remoting model
created as part of the Spring Framework to perform remoting across HTTP (to make
the firewalls happy) and using Java’s serialization (to make programmers happy).
Working with HTTP invoker-based services is similar to working with Hessian/Burlap-
based services.

 To get started with the HTTP invoker, let’s take another look at the Spitter ser-
vice—this time implemented as an HTTP invoker service.

15.4.1 Exposing beans as HTTP services

To export a bean as an RMI service, you used RmiServiceExporter. To export it as a
Hessian service, you used HessianServiceExporter. And to export it as a Burlap ser-
vice, you used BurlapServiceExporter. Continuing this monotony over to Spring’s
HTTP invoker, it shouldn’t surprise you that to export an HTTP invoker service, you’ll
need to use HttpInvokerServiceExporter.

 To export the Spitter service as an HTTP invoker–based service, you need to config-
ure an HttpInvokerServiceExporter bean like this:

@Bean
public HttpInvokerServiceExporter

httpExportedSpitterService(SpitterService service) {
HttpInvokerServiceExporter exporter =

new HttpInvokerServiceExporter();
exporter.setService(service);
exporter.setServiceInterface(SpitterService.class);
return exporter;

}

Feeling a sense of déjà vu? You may have a hard time spotting the difference between
this bean declaration and the ones in section 15.3.2. The only material difference is
the class name: HttpInvokerServiceExporter. Otherwise, this exporter isn’t much
different from the other remote service exporters.

 As illustrated in figure 15.8, HttpInvokerServiceExporter works much like
HessianServiceExporter and BurlapServiceExporter. It’s a Spring MVC controller
that receives requests from a client through DispatcherServlet and translates those
requests into method calls on the service implementation POJO.

408 CHAPTER 15 Working with remote services
Because HttpInvokerServiceExporter is a Spring MVC controller, you need to set up
a URL handler to map an HTTP URL to the service, just like with the Hessian and Bur-
lap exporters:

@Bean
public HandlerMapping httpInvokerMapping() {

SimpleUrlHandlerMapping mapping = new SimpleUrlHandlerMapping();
Properties mappings = new Properties();
mappings.setProperty("/spitter.service",

"httpExportedSpitterService");
mapping.setMappings(mappings);
return mapping;

}

Also as before, you need to make sure you map DispatcherServlet such that it han-
dles requests with a *.service extension. See the instructions in section 15.3.1 for
details on how to set this mapping.

 You’ve already seen how to consume remote services through RMI, Hessian, and
Burlap. Now let’s rework the Spitter client to use the service that you just exposed with
HTTP invoker.

15.4.2 Accessing services via HTTP

At the risk of sounding like a broken record, I must tell you that consuming an HTTP
invoker-based service is much like what you’ve already seen with the other remote ser-
vice proxies. It’s virtually identical. As you can see from figure 15.9, HttpInvoker-
ProxyFactoryBean fills the same hole as the other remote service proxy factory beans
you’ve seen in this chapter.

Request Dispatches to
Dispatcher

Servlet HttpInvokerServiceExporter

SpitterServiceImpl

Figure 15.8 HttpInvokerServiceExporter works much like its
Hessian and Burlap cousins, receiving requests from a Spring MVC
DispatcherServlet and translating them into method calls on a Spring-
managed bean.

409Using Spring’s HttpInvoker
To wire the HTTP invoker–based service into your client’s Spring application context,
you must configure a bean that proxies it using HttpInvokerProxyFactoryBean, as
follows:

@Bean
public HttpInvokerProxyFactoryBean spitterService() {

HttpInvokerProxyFactoryBean proxy = new HttpInvokerProxyFactoryBean();
proxy.setServiceUrl("http://localhost:8080/Spitter/spitter.service");
proxy.setServiceInterface(SpitterService.class);
return proxy;

}

Comparing this bean definition to those in sections 15.2.2 and 15.3.2, you’ll find that
little has changed. The serviceInterface property is still used to indicate the inter-
face implemented by the Spitter service. And the serviceUrl property is still used to
indicate the location of the remote service. Because HTTP invoker is HTTP-based, like
Hessian and Burlap, the serviceUrl can contain the same URL as with the Hessian
and Burlap versions of the bean.

 Don’t you love the symmetry?
 Spring’s HTTP invoker presents a best-of-both-worlds remoting solution combining

the simplicity of HTTP communication with Java’s built-in object serialization. This
makes HTTP invoker services an appealing alternative to either RMI or Hessian/Burlap.

 HttpInvoker has one significant limitation that you should keep in mind: it’s a
remoting solution offered by the Spring Framework only. This means both the client
and the service must be Spring-enabled applications. This also implies, at least for
now, that both the client and the service must be Java-based. And because Java serial-
ization is being used, both sides must have the same version of the classes as well as the
same version of the Java runtime (much like RMI).

Network
Method call HTTP HTTP

Produces

Client

HttpInvokerProxy
FactoryBean

HttpInvoker
Proxy

S
pi

tte
rS

er
vi

ce

Spitter
Service

Impl

Spitter
Service

Figure 15.9 HttpInvokerProxyFactoryBean is a proxy factory bean that produces a
proxy for remoting with a Spring-specific HTTP-based protocol.

410 CHAPTER 15 Working with remote services
 RMI, Hessian, Burlap, and the HTTP invoker are great remoting options. But when
it comes to ubiquitous remoting, none hold a candle to web services. Next up, we’ll
look at how Spring supports remoting through SOAP-based web services.

15.5 Publishing and consuming web services
One of the most hyped TLAs (three-letter acronyms) in recent years is SOA (service-
oriented architecture). SOA means many things to different people. But at the center of
SOA is the idea that applications can and should be designed to lean on a common set
of core services instead of reimplementing the same functionality for each application.

 For example, a financial institution may have many applications, some of which
need access to borrower account information. Rather than build account-access logic
into each application (much of which would be duplicated), the applications can all
rely on a common service to retrieve the account information.

 Java and web services have a long history together, and various options are avail-
able for working with web services in Java. Many of those options integrate with Spring
in some way. Although it would be impossible for me to cover every Spring-enabled
web service framework and toolkit in this book, Spring comes with some capable sup-
port for publishing and consuming SOAP web services using the Java API for XML Web
Services (JAX-WS).

 In this section, we’ll revisit the Spitter service example one more time. This time,
you’ll expose and consume the Spitter service as a web service using Spring’s JAX-WS
support. Let’s start by seeing what it takes to create a JAX-WS web service in Spring.

15.5.1 Creating Spring-enabled JAX-WS endpoints

Earlier in this chapter, you created remote services using Spring’s service exporters.
These service exporters magically turn Spring-configured POJOs into remote services.
You saw how to create RMI services using RmiServiceExporter, Hessian services using
HessianServiceExporter, Burlap services using BurlapServiceExporter, and HTTP
invoker services using HttpInvokerServiceExporter. Now you probably expect me to
show you how to create web services using a JAX-WS service exporter in this section.

 Spring does provide a JAX-WS service exporter, SimpleJaxWsServiceExporter, and
you’ll see it soon enough. But before you get there, you should know that it may not
be the best choice in all situations. You see, SimpleJaxWsServiceExporter requires
that the JAX-WS runtime support publishing of endpoints to a specified address. The
JAX-WS runtime that ships with Sun’s JDK 1.6 fits the bill, but other JAX-WS implemen-
tations, including the reference implementation of JAX-WS, may not.

 If you’ll be deploying to a JAX-WS runtime that doesn’t support publishing to a
specified address, you’ll have write your JAX-WS endpoints in a more conventional
way. That means the lifecycle of the endpoints will be managed by the JAX-WS runtime
and not by Spring. But that doesn’t mean they can’t be wired with beans from a Spring
application context.

411Publishing and consuming web services
AUTOWIRING JAX-WS ENDPOINTS IN SPRING

The JAX-WS programming model involves using annotations to declare a class and its
methods as web service operations. A class that’s annotated with @WebService is con-
sidered a web service endpoint, and its methods—annotated with @WebMethod—are
the operations.

 Just as with any other object in a sizable application, a JAX-WS endpoint will likely
depend on other objects to do its work. That means JAX-WS endpoints could benefit
from dependency injection. But if the endpoint’s lifecycle is managed by the JAX-WS
runtime and not by Spring, it would seem to be impossible to wire Spring-managed
beans into a JAX-WS–managed endpoint instance.

 The secret to wiring JAX-WS endpoints is to extend SpringBeanAutowiringSupport.
By extending SpringBeanAutowiringSupport, you can annotate an endpoint’s proper-
ties with @Autowired, and its dependencies will be met. SpitterServiceEndpoint in
the following listing shows how this works.

package com.habuma.spittr.remoting.jaxws;
import java.util.List;
import javax.jws.WebMethod;
import javax.jws.WebService;
import org.springframework.beans.factory.annotation.Autowired;
import

org.springframework.web.context.support.SpringBeanAutowiringSupport;
import com.habuma.spittr.domain.Spitter;
import com.habuma.spittr.domain.Spittle;
import com.habuma.spittr.service.SpitterService;
@WebService(serviceName="SpitterService")
public class SpitterServiceEndpoint

extends SpringBeanAutowiringSupport {
@Autowired

SpitterService spitterService;
@WebMethod

public void addSpittle(Spittle spittle) {
spitterService.saveSpittle(spittle);

}
@WebMethod
public void deleteSpittle(long spittleId) {

spitterService.deleteSpittle(spittleId);
}

@WebMethod
public List<Spittle> getRecentSpittles(int spittleCount) {

return spitterService.getRecentSpittles(spittleCount);
}

@WebMethod
public List<Spittle> getSpittlesForSpitter(Spitter spitter) {

return spitterService.getSpittlesForSpitter(spitter);
}

}

Listing 15.2 SpringBeanAutowiringSupport on JAX-WS endpoints

Enable autowiring

Autowire SpitterService

Delegate to
SpitterService

Delegate to
SpitterService

412 CHAPTER 15 Working with remote services
You annotate the spitterService property with @Autowired to indicate that it should
be automatically injected with a bean from the Spring application context. From
there, this endpoint delegates to the injected SpitterService to do the real work.

EXPORTING STANDALONE JAX-WS ENDPOINTS

As I said, SpringBeanAutowiringSupport is useful when the object whose properties
are being injected doesn’t have its lifecycle managed by Spring. But under the right
circumstances, it’s possible to export a Spring-managed bean as a JAX-WS endpoint.

 Spring’s SimpleJaxWsServiceExporter works much like the other service export-
ers that you saw earlier in this chapter, in that it publishes Spring-managed beans as
service endpoints in a JAX-WS runtime. Unlike those other service exporters, Simple-
JaxWsServiceExporter doesn’t need to be given a reference to the bean it’s supposed
to export. Instead, it publishes all beans that are annotated with JAX-WS annotations
as JAX-WS services.

 You can configure SimpleJaxWsServiceExporter using the following @Bean
method:

@Bean
public SimpleJaxWsServiceExporter jaxWsExporter() {

return new SimpleJaxWsServiceExporter();
}

As you can see, SimpleJaxWsServiceExporter needs nothing else to do its job. When
it gets started, it digs through the Spring application context looking for beans that
are annotated with @WebService. When it finds one, it publishes the bean as a JAX-WS
endpoint with a base address of http://localhost:8080/. One such bean that it may
find is SpitterServiceEndpoint.

package com.habuma.spittr.remoting.jaxws;
import java.util.List;
import javax.jws.WebMethod;
import javax.jws.WebService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;
import com.habuma.spittr.domain.Spitter;
import com.habuma.spittr.domain.Spittle;
import com.habuma.spittr.service.SpitterService;
@Component
@WebService(serviceName="SpitterService")
public class SpitterServiceEndpoint {

@Autowired
SpitterService spitterService;
@WebMethod

public void addSpittle(Spittle spittle) {
spitterService.saveSpittle(spittle);

}
@WebMethod
public void deleteSpittle(long spittleId) {

Listing 15.3 SimpleJaxWsServiceExporter turns beans into JAX-WS endpoints

Autowire SpitterService

Delegate to SpitterService

413Publishing and consuming web services
spitterService.deleteSpittle(spittleId);
}

@WebMethod
public List<Spittle> getRecentSpittles(int spittleCount) {

return spitterService.getRecentSpittles(spittleCount);
}

@WebMethod
public List<Spittle> getSpittlesForSpitter(Spitter spitter) {

return spitterService.getSpittlesForSpitter(spitter);
}

}

Notice that this new implementation of SpitterServiceEndpoint no longer extends
SpringBeanAutowiringSupport. As a full-fledged Spring bean, it qualifies for autowir-
ing without extending a special support class.

 Because SimpleJaxWsServiceEndpoint’s base address defaults to http://
localhost:8080/, and because SpitterServiceEndpoint is annotated with @Web-
Service (serviceName="SpitterService"), the matchup of these two beans results
in a web service at http://localhost:8080/SpitterService. But you’re in total control of
the service URL, so if you’d like, you can set the base address to something else. For
example, the following configuration of SimpleJaxWsServiceEndpoint publishes the
same service endpoint to http://localhost:8888/services/SpitterService.

@Bean
public SimpleJaxWsServiceExporter jaxWsExporter() {

SimpleJaxWsServiceExporter exporter =
new SimpleJaxWsServiceExporter();

exporter.setBaseAddress("http://localhost:8888/services/");
}

As simple as SimpleJaxWsServiceEndpoint seems, you should be aware that it only
works with a JAX-WS runtime that supports publication of endpoints with an address.
That includes the JAX-WS runtime that comes with Sun’s 1.6 JDK. Other JAX-WS run-
times, such as the JAX-WS 2.1 reference implementation, don’t support this type of
endpoint publication and thus can’t be used with SimpleJaxWsServiceEndpoint.

15.5.2 Proxying JAX-WS services on the client side

Publishing web services with Spring is different from the way you publish services in
RMI, Hessian, Burlap, and the HTTP invoker. But as you’ll soon see, consuming web
services with Spring involves client-side proxies in much the same way that Spring-
based clients consume those other remoting technologies.

 Using JaxWsPortProxyFactoryBean, you can wire the Spitter web service in Spring
as if it were any other bean. JaxWsPortProxyFactoryBean is a Spring FactoryBean
that produces a proxy that knows how to talk to a SOAP web service. The proxy is cre-
ated to implement the service’s interface (see figure 15.10). Consequently, JaxWs-
PortProxyFactoryBean makes it possible to wire and use a remote web service as if it
were any other local POJO.

Delegate to
SpitterService

414 CHAPTER 15 Working with remote services
You configure JaxWsPortProxyFactoryBean to reference the Spitter web service like
this:

@Bean
public JaxWsPortProxyFactoryBean spitterService() {

JaxWsPortProxyFactoryBean proxy = new JaxWsPortProxyFactoryBean();
proxy.setWsdlDocument(

"http://localhost:8080/services/SpitterService?wsdl");
proxy.setServiceName("spitterService");
proxy.setPortName("spitterServiceHttpPort");
proxy.setServiceInterface(SpitterService.class);
proxy.setNamespaceUri("http://spitter.com");
return proxy;

}

As you can see, several properties must be set for JaxWsPortProxyFactoryBean to
work. The wsdlDocumentUrl property identifies the location of the remote web ser-
vice’s definition file. JaxWsPortProxyFactoryBean will use the WSDL available at that
URL to construct a proxy to the service. The proxy that’s produced by JaxWsPort-
ProxyFactoryBean will implement the SpitterService interface, as specified by the
serviceInterface property.

 You can usually determine the values for the remaining three properties by look-
ing at the service’s WSDL. For illustration’s sake, suppose the WSDL for the Spitter ser-
vice looked like this:

<wsdl:definitions targetNamespace="http://spitter.com">
...

<wsdl:service name="spitterService">
<wsdl:port name="spitterServiceHttpPort"

binding="tns:spitterServiceHttpBinding">
...

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

Network
Method call

SOAP
message

SOAP
message

Produces

Client

JaxWsPortProxy
FactoryBean

JAX-WS
proxy

S
pi

tte
rS

er
vi

ce

Spitter
Service

Impl

Spitter
Service

Figure 15.10 JaxWsPortProxyFactoryBean produces proxies that talk to remote web
services. These proxies can then be wired into other beans as if they were local POJOs.

415Summary
Although not likely, it’s possible for multiple services and/or ports to be defined in
the service’s WSDL. For that reason, JaxWsPortProxyFactoryBean requires that you
specify the port and service names in the portName and serviceName properties. A
quick glance at the name attributes of the <wsdl:port> and <wsdl:service> elements
in the WSDL will help you figure out what these properties should be set to.

 Finally, the namespaceUri property specifies the namespace of the service. Among
other things, the namespace helps JaxWsPortProxyFactoryBean locate the service
definition in the WSDL. As with the port and service names, you can find the correct
value for this property by looking in the WSDL. It’s usually available in the target-
Namespace attribute of the <wsdl:definitions> element.

15.6 Summary
Working with remote services is usually a tedious chore. But Spring provides remoting
support that makes working with remote services as simple as working with regular
JavaBeans.

 On the client side, Spring provides proxy factory beans that enable you to config-
ure remote services in your Spring application. Regardless of whether you’re using
RMI, Hessian, Burlap, Spring’s own HTTP invoker, or web services for remoting, you
can wire remote services into your application as if they were POJOs. Spring even
catches any RemoteExceptions that are thrown and rethrows runtime RemoteAccess-
Exceptions in their place, freeing your code from having to deal with an exception
that it probably can’t recover from.

 Even though Spring hides many of the details of remote services, making them
appear as though they’re local JavaBeans, you should bear in mind the consequences
of remote services. Remote services, by their nature, are typically less efficient than
local services. You should consider this when writing code that accesses remote ser-
vices, limiting remote calls to avoid performance bottlenecks.

 In this chapter, you saw how you can use Spring to expose and consume services
based on basic remoting technologies. Although these remoting options are useful in
distributing applications, this was just a taste of what’s involved in working in a service-
oriented architecture (SOA).

 We also looked at how to export beans as SOAP-based web services. Although this is
an easy way to develop web services, it may not be the best choice from an architec-
tural standpoint. In the next chapter, we’ll look at a different approach to building
distributed applications by exposing portions of the application as RESTful resources.

Creating REST APIs
with Spring MVC
Data is king.
 As developers, we’re often focused on building great software to solve business

problems. Data is just the raw material that your software processes need to get
their job done. But if you were to ask most business people which is most valuable
to them, data or software, they’d likely choose data. Data is the lifeblood of many
businesses. Software is often replaceable, but the data gathered over the years can
never be replaced.

 Don’t you think it’s odd that, given the importance of data, the way we develop
software often treats data as an afterthought? Take the remote services from the
previous chapter as an example. Those services were centered on actions and pro-
cesses, not information and resources.

This chapter covers
 Writing controllers that serve REST resources

 Representing resources in XML, JSON, and
other formats

 Consuming REST resources
416

417Getting REST
 In recent years, Representational State Transfer (REST) has emerged as a popular
information-centric alternative to traditional SOAP-based web services. Whereas SOAP
typically focused on actions and processing, REST’s concern is with the data being
handled.

 Starting with Spring 3.0, Spring introduced first-class support for creating REST
APIs. And Spring’s REST implementation has continued to evolve through Spring 3.1,
3.2, and now 4.0.

 The good news is that Spring’s REST support builds on Spring MVC, so we’ve
already covered much of what you’ll need for working with REST in Spring. In this
chapter, you’ll build on what you already know about Spring MVC to develop control-
lers that handle requests for RESTful resources. But before we get too carried away,
let’s examine what working with REST is all about.

16.1 Getting REST
I’ll wager that this isn’t the first time you’ve heard or read about REST. There’s been a
lot of talk about REST in recent years, and you’ll find that it’s fashionable in software
development to speak ill of SOAP-based web services while promoting REST as an
alternative.

 Certainly, SOAP can be overkill for many applications, and REST brings a simpler
alternative. Moreover, many modern applications have mobile and rich JavaScript cli-
ents that consume REST APIs running on a server.

 The problem is that not everybody has a solid grasp of what REST really is. As a
result, a lot of misinformation is floating about, and many things are labeled REST that
don’t fit the true REST intent. Before we can talk about how Spring supports REST, we
need to establish a common understanding of what REST is all about.

16.1.1 The fundamentals of REST

A mistake that’s often made when approaching REST is to think of it as “web services
with URLs”—to think of REST as another remote procedure call (RPC) mechanism,
like SOAP, but invoked through plain HTTP URLs and without SOAP’s hefty XML
namespaces.

 On the contrary, REST has little to do with RPC. Whereas RPC is service oriented
and focused on actions and verbs, REST is resource oriented, emphasizing the things
and nouns that comprise an application.

 To understand what REST is all about, it helps to break down the acronym into its
constituent parts:

 Representational—REST resources can be represented in virtually any form,
including XML, JavaScript Object Notation (JSON), or even HTML—whatever
form best suits the consumer of those resources.

 State—When working with REST, you’re more concerned with the state of a
resource than with the actions you can take against resources.

418 CHAPTER 16 Creating REST APIs with Spring MVC
 Transfer—REST involves transferring resource data, in some representational
form, from one application to another.

Put more succinctly, REST is about transferring the state of resources—in a representa-
tional form that is most appropriate for the client or server—from a server to a client
(or vice versa).

 Resources in REST are identified and located with URLs. There are no strict rules
regarding RESTful URL structure, but the URL should identify a resource, not bark a
command to the server. Again, the focus is on things, not actions.

 That said, there are actions in REST, and they’re defined by HTTP methods. Specif-
ically, GET, POST, PUT, DELETE, PATCH, and other HTTP methods make up the verbs in
REST. These HTTP methods are often mapped to CRUD verbs as follows:

 Create—POST

 Read—GET

 Update—PUT or PATCH
 Delete—DELETE

Even though this is the common mapping of HTTP methods to CRUD verbs, it’s not a
strict requirement. There are cases where PUT can be used to create a new resource
and POST can be used to update a resource. In fact, the non-idempotent nature of
POST makes it a rogue method, capable of performing operations that don’t easily fit
the semantics of the other HTTP methods.

 Given this view of REST, I try to avoid terms such as REST service, RESTful web service,
and anything similar that incorrectly gives prominence to actions. Instead, I prefer to
emphasize the resource-oriented nature of REST and speak of RESTful resources.

16.1.2 How Spring supports REST

Spring has long had some of the ingredients needed for exposing REST resources.
Starting with version 3.0, however, Spring began adding enhancements to Spring MVC
to provide first-class REST support. Now, at version 4.0, Spring supports the creation of
REST resources in the following ways:

 Controllers can handle requests for all HTTP methods, including the four pri-
mary REST methods: GET, PUT, DELETE, and POST. Spring 3.2 and higher also sup-
ports the PATCH method.

 The @PathVariable annotation enables controllers to handle requests for
parameterized URLs (URLs that have variable input as part of their path).

 Resources can be represented in a variety of ways using Spring views and view
resolvers, including View implementations for rendering model data as XML,
JSON, Atom, and RSS.

 The representation best suited for the client can be chosen using Content-
NegotiatingViewResolver.

419Creating your first REST endpoint
 View-based rendering can be bypassed altogether using the @ResponseBody
annotation and various HttpMethodConverter implementations.

 Similarly, the @RequestBody annotation, along with HttpMethodConverter
implementations, can convert inbound HTTP data into Java objects passed in to
a controller’s handler methods.

 Spring applications can consume REST resources using RestTemplate.

Throughout this chapter, we’ll explore these features that make Spring more RESTful
starting with how to produce REST resources using Spring MVC. Then in section 16.4,
we’ll switch to the client side of REST and see how to consume these resources. Let’s
start by looking at what goes into a RESTful Spring MVC controller.

16.2 Creating your first REST endpoint
One of the nice things about Spring’s support for REST is that you already know a lot
about what goes into creating RESTful controllers. What you learned in chapters 5–7
about creating web applications can now be used to expose resources in a REST API.
Let’s start by creating your first REST endpoint in a new controller named Spittle-
ApiController.

 The following listing shows the beginnings of a new REST controller that will serve
Spittle resources. It’s a small start, but you’ll build on this controller throughout this
chapter as you learn the ins and outs of Spring’s REST programming model.

package spittr.api;

import java.util.List;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RequestParam;
import spittr.Spittle;
import spittr.data.SpittleRepository;

@Controller
@RequestMapping("/spittles")
public class SpittleController {

private static final String MAX_LONG_AS_STRING="9223372036854775807";

private SpittleRepository spittleRepository;

@Autowired
public SpittleController(SpittleRepository spittleRepository) {

this.spittleRepository = spittleRepository;
}

@RequestMapping(method=RequestMethod.GET)
public List<Spittle> spittles(

@RequestParam(value="max",
defaultValue=MAX_LONG_AS_STRING) long max,

Listing 16.1 RESTful Spring MVC controller

420 CHAPTER 16 Creating REST APIs with Spring MVC
@RequestParam(value="count", defaultValue="20") int count) {

return spittleRepository.findSpittles(max, count);
}

}

Take a close look at listing 16.1. Can you see how it serves a REST resource instead of
just a web page?

 Probably not. Nothing about this controller, as it’s written, makes it a RESTful,
resource-serving controller. In fact, you may recognize the spittles() method;
you’ve seen it before in chapter 5 (section 5.3.1).

 As you’ll recall, when a GET request comes in for /spittles, the spittles()
method is called. It looks up and returns a Spittle list retrieved from the injected
SpittleRepository. That list is placed into the model for a view to render. For a
browser-based web application, this probably means the model data is rendered to an
HTML page.

 But we’re talking about creating a REST API. In that case, HTML isn’t the appropri-
ate representation of the data.

 Representation is an important facet of REST. It’s how a client and a server commu-
nicate about a resource. Any given resource can be represented in virtually any form.
If the consumer of the resource prefers JSON, then the resource can be presented in
JSON format. Or if the consumer has a fondness for angle brackets, the same resource
can be presented in XML. Meanwhile, a human user viewing the resource in a web
browser will likely prefer seeing it in HTML (or possibly PDF, Excel, or some other
human-readable form). The resource doesn’t change—only how it’s represented.

NOTE Although Spring supports a variety of formats for representing
resources, you aren’t obligated to use them all when defining your REST API.
JSON and XML are often sufficient representations expected by most clients.

Certainly, if you’ll be presenting content to be consumed by a human, you should
probably support HTML formatted resources. Depending on the nature of the
resource and the requirements of your application, you may even choose to present
the resource as a PDF document or an Excel spreadsheet.

 For non-human consumers, such as other applications or code that invokes your
REST endpoints, the leading choices for resource representation are XML and JSON.
It’s easy enough to support both of these options using Spring, so there’s no need to
make a choice.

 With that said, I recommend that you at minimum support JSON. JSON is at least as
easy to work with as XML (and many would argue that it’s much easier). And if the cli-
ent is JavaScript (which is increasingly common these days), JSON is a clear winner
because essentially no marshaling/demarshaling is required to use JSON data in
JavaScript.

 It’s important to know that controllers usually don’t concern themselves with how
resources are represented. Controllers deal with resources in terms of the Java objects

421Creating your first REST endpoint
that define them. But it’s not until after the controller has finished its work that the
resource is transformed into a form that best suits the client.

 Spring offers two options to transform a resource’s Java representation into the
representation that’s shipped to the client:

 Content negotiation—A view is selected that can render the model into a repre-
sentation to be served to the client.

 Message conversion—A message converter transforms an object returned from
the controller into a representation to be served to the client.

Because I discussed view resolvers in chapters 5 and 6, and you’re already familiar with
view-based rendering (from chapter 6), we’ll start by looking at how to use content
negotiation to select a view or view resolver that can render a resource into a form
that’s acceptable to the client.

16.2.1 Negotiating resource representation

As you’ll recall from chapter 5 (and as depicted in figure 5.1), when a controller’s
handler method finishes, a logical view name is usually returned. If the method
doesn’t directly return a logical view name (if the method returns void, for example),
the logical view name is derived from the request’s URL. DispatcherServlet then
passes the view name to a view resolver, asking it to help determine which view should
render the results of the request.

 In a human-facing web application, the view chosen is almost always rendered as
HTML; view resolution is a one-dimensional activity. If the view name matches a view,
then that’s the view you go with.

 When it comes to resolving view names into views that can produce resource repre-
sentations, there’s an additional dimension to consider. Not only does the view need
to match the view name, but the view also needs to be chosen to suit the client. If the
client wants JSON data, then an HTML-rendering view won’t do—even if the view
name matches.

 Spring’s ContentNegotiatingViewResolver is a special view resolver that takes the
content type that the client wants into consideration. In it’s simplest possible form,
ContentNegotiatingViewResolver can be configured like this:

@Bean
public ViewResolver cnViewResolver() {

return new ContentNegotiatingViewResolver();
}

A lot is going on in that simple bean declaration. Understanding how Content-
NegotiatingViewResolver works involves getting to know the content-negotiation
two-step:

1 Determine the requested media type(s).
2 Find the best view for the requested media type(s).

422 CHAPTER 16 Creating REST APIs with Spring MVC
Let’s dig deeper into each of these steps to see what makes ContentNegotiatingView-
Resolver tick. You start by figuring out what kind of content the client wants.

DETERMINING THE REQUESTED MEDIA TYPES

The first step in the content-negotiation two-step is determining what kind of resource
representation the client wants. On the surface, that seems like a simple job.
Shouldn’t the request’s Accept header give a clear indication of what representation
should be sent to the client?

 Unfortunately, the Accept header can’t always be deemed reliable. If the client in
question is a web browser, there’s no guarantee that what the client wants is what the
browser sends in the Accept header. Web browsers typically only accept human-
friendly content types (such as text/html), and there’s no way (short of developer-
oriented browser plugins) to specify a different content type.

 ContentNegotiatingViewResolver considers the Accept header and uses what-
ever media types it asks for, but only after it first looks at the URL’s file extension. If the
URL has a file extension on the end, ContentNegotiatingViewResolver tries to figure
out the desired type based on that extension. If the extension is .json, then the desired
content type must be application/json. If it’s .xml, then the client is asking for
application/xml. Of course, an .html extension indicates that the client wants the
resource represented as HTML (text/html).

 If the file extension doesn’t produce any usable clues for the media type, then the
Accept header in the request is considered. In that case, the Accept header’s value
indicates the MIME type(s) that the client wants; there’s no need to look it up.

 In the end, if there is no Accept header and the extension is no help, Content-
NegotiatingViewResolver falls back to / as the default content type, meaning the cli-
ent has to take whatever representation the server sends it.

 Once a content type has been determined, it’s time for ContentNegotiatingView-
Resolver to resolve the logical view name into a View for rendering the model. Unlike
Spring’s other view resolvers, ContentNegotiatingViewResolver doesn’t resolve views
on its own. Instead, it delegates to other view resolvers, asking them to resolve the view.

 ContentNegotiatingViewResolver asks the other view resolvers to resolve the log-
ical view name into a view. Every view that’s resolved is added to a list of candidate
views. With the candidate view list assembled, ContentNegotiatingViewResolver
cycles through all the requested media types, trying to find a view from among the
candidate views that produces a matching content type. The first match found is the
one that’s used to render the model.

INFLUENCING HOW MEDIA TYPES ARE CHOSEN

The media-type selection process, as described so far, outlines the default strategy for
determining the requested media types. But you can change how it behaves by
giving it a ContentNegotiationManager. A few of the things you can do via a Content-
NegotiationManager are as follows:

423Creating your first REST endpoint
 Specify a default content type to fall back to if a content type can’t be derived
from the request.

 Specify a content type via a request parameter.
 Ignore the request’s Accept header.
 Map request extensions to specific media types.
 Use the Java Activation Framework (JAF) as a fallback option for looking up

media types from extensions.

There are three ways to configure a ContentNegotiationManager:

 Directly declare a bean whose type is ContentNegotiationManager.
 Create the bean indirectly via ContentNegotiationManagerFactoryBean.
 Override the configureContentNegotiation() method of WebMvcConfigurer-

Adapter.

Creating a ContentNegotiationManager directly is a bit involved and not something
you’ll want to do unless you have good reason to. The other two options exist to make
the creation of a ContentNegotiationManager easier.

Generally speaking, ContentNegotiationManagerFactoryBean is most useful when
you’re configuring the ContentNegotiationManager in XML. For example, you might
configure a ContentNegotiationManager with a default content type of application/
json in XML like this:

<bean id="contentNegotiationManager"
class="org.springframework.http.ContentNegotiationManagerFactoryBean"
p:defaultContentType="application/json">

Because ContentNegotiationManagerFactoryBean is an implementation of Factory-
Bean, this results in a ContentNegotiationManager bean being created. That
ContentNegotiationManager can then be injected into ContentNegotiatingView-
Resolver’s contentNegotiationManager property.

ContentNegotiationManager added in Spring 3.2
ContentNegotiationManager is relatively new to Spring, having been introduced in
Spring 3.2. Prior to Spring 3.2, much of ContentNegotiatingViewResolver’s
behavior was configured by setting properties on ContentNegotiatingView-
Resolver itself. As of Spring 3.2, most of the setter methods of Content-
NegotiatingViewResolver have been deprecated, and you’re encouraged to
configure it via a ContentNegotiationManager.

Although I won’t cover the old way of configuring ContentNegotiatingView-
Resolver in this chapter, many of the properties you’ll set when creating a Content-
NegotiationManager have corresponding properties in ContentNegotiating-
ViewResolver. You should be able to easily map the new style of configuration to
the old style if you’re working with an older version of Spring.

424 CHAPTER 16 Creating REST APIs with Spring MVC
 For Java configuration, the easiest way to get a ContentNegotiationManager is to
extend WebMvcConfigurerAdapter and override the configureContentNegotiation()
method. Chances are you already extended WebMvcConfigurerAdapter when you
started creating your Spring MVC application. In the Spittr application—for example,
you already have an extension of WebMvcConfigurerAdapter called WebConfig, so all
you need to do is override configureContentNegotiation(). Here’s an implementa-
tion of configureContentNegotiation() that sets the default content type:

@Override
public void configureContentNegotiation(

ContentNegotiationConfigurer configurer) {
configurer.defaultContentType(MediaType.APPLICATION_JSON);

}

As you can see, configureContentNegotiation() is given a ContentNegotiation-
Configurer to work with. ContentNegotiationConfigurer has several methods that
mirror the setter methods of ContentNegotiationManager and enable you to set
whatever content-negotiation behavior you’d like on the ContentNegotiation-
Manager that will be created. In this case, you’re calling the defaultContentType()
method to set the default content type to application/json.

 Now that you have a ContentNegotiationManager bean, all you need to do is
inject it into the contentNegotiationManager property of ContentNegotiating-
ViewResolver. That requires a small change to the @Bean method where you declare
the ContentNegotiatingViewResolver:

@Bean
public ViewResolver cnViewResolver(ContentNegotiationManager cnm) {

ContentNegotiatingViewResolver cnvr =
new ContentNegotiatingViewResolver();

cnvr.setContentNegotiationManager(cnm);
return cnvr;

}

The @Bean method is injected with a ContentNegotiationManager and calls set-
ContentNegotiationManager() with it. As a result, the ContentNegotiatingView-
Resolver now takes on the behavior defined in the ContentNegotiationManager.

 There are so many different twists on configuring ContentNegotiationManager
that it would be impossible to cover them all here. The following listing is an example
of a fairly simple configuration that I generally prefer when I use ContentNegotiating-
ViewResolver: it defaults to HTML views but renders JSON output for certain view
names.

@Bean
public ViewResolver cnViewResolver(ContentNegotiationManager cnm) {

ContentNegotiatingViewResolver cnvr =
new ContentNegotiatingViewResolver();

cnvr.setContentNegotiationManager(cnm);
return cnvr;

}

Listing 16.2 Configuring a ContentNegotiationManager

425Creating your first REST endpoint
@Override
public void configureContentNegotiation(

ContentNegotiationConfigurer configurer) {
configurer.defaultContentType(MediaType.TEXT_HTML);

}

@Bean
public ViewResolver beanNameViewResolver() {

return new BeanNameViewResolver();
}

@Bean
public View spittles() {

return new MappingJackson2JsonView();
}

In addition to what’s shown in listing 16.2, there would also be an HTML-capable view
resolver (such as InternalResourceViewResolver or TilesViewResolver). Under
most circumstances, ContentNegotiatingViewResolver assumes that the client wants
HTML, as configured in its ContentNegotiationManager. But if the client specifies
that it wants JSON (either with a .json extension on the request path or via the Accept
header), then ContentNegotiatingViewResolver attempts to find a view resolver that
can serve a JSON view.

 If the logical view name is “spittles”, then the configured BeanNameViewResolver
resolves the View declared in the spittles() method. That’s because the bean name
matches the logical view name. Otherwise, unless there’s another matching View,
ContentNegotiatingViewResolver falls back to the default, serving HTML.

 Once ContentNegotiatingViewResolver knows what media types the client wants,
it’s time to find a view that can render that kind of content.

THE BENEFITS AND LIMITATIONS OF CONTENTNEGOTIATINGVIEWRESOLVER

The key benefit of using ContentNegotiatingViewResolver is that it layers REST
resource representation on top of the Spring MVC with no change in controller code.
The same controller method that serves human-facing HTML content can also serve
JSON or XML to a non-human client.

 Content negotiation is a convenient option when there’s a great deal of overlap
between your human and non-human interfaces. In practice, though, human-facing
views rarely deal at the same level of detail as a REST API. The benefit of Content-
NegotiatingViewResolver isn’t realized when there isn’t much overlap between the
human and non-human interfaces.

 ContentNegotiatingViewResolver also has a serious limitation. As a View-
Resolver implementation, it only has an opportunity to determine how a resource is
rendered to a client. It has no say in what representations a controller can consume
from the client. If the client is sending JSON or XML, then ContentNegotiating-
ViewResolver isn’t much help.

 There’s one more gotcha associated with using ContentNegotiatingView-
Resolver. The View chosen renders the model—not the resource—to the client. This

Default to HTML

Look up views as beans

“spittles” JSON view

426 CHAPTER 16 Creating REST APIs with Spring MVC
is a subtle but important distinction. When a client requests a list of Spittle objects in
JSON, the client is probably expecting a response that looks something like this:

[
{

"id": 42,
"latitude": 28.419489,
"longitude": -81.581184,
"message": "Hello World!",
"time": 1400389200000

},
{

"id": 43,
"latitude": 28.419136,
"longitude": -81.577225,
"message": "Blast off!",
"time": 1400475600000

}
]

But because the model is a map of key-value pairs, the response looks more like this:

{
"spittleList": [

{
"id": 42,
"latitude": 28.419489,
"longitude": -81.581184,
"message": "Hello World!",
"time": 1400389200000

},
{

"id": 43,
"latitude": 28.419136,
"longitude": -81.577225,
"message": "Blast off!",
"time": 1400475600000

}
]

}

Although this isn’t a terrible thing, it may not be what your client is expecting.
 Because of these limitations, I generally prefer not to use ContentNegotiating-

ViewResolver. Instead, I lean heavily toward using Spring’s message converters for
producing resource representations. Let’s see how you can employ Spring’s message
converters in your controller methods.

16.2.2 Working with HTTP message converters

Message conversion is a more direct way to transform data produced by a controller
into a representation that’s served to a client. When using message conversion,
DispatcherServlet doesn’t bother with ferrying model data to a view. In fact, there is
no model, and there is no view. There is only data produced by the controller and a
resource representation produced when a message converter transforms that data.

427Creating your first REST endpoint
 Spring comes with a variety of message converters, listed in table 16.1, to handle
the most common object-to-representation conversion needs.

Table 16.1 Spring provides several HTTP message converters that marshal resource representations
to and from various Java types.

Message converter Description

AtomFeedHttpMessageConverter Converts Rome Feed objects to and from Atom
feeds (media type application/atom+xml).
Registered if the Rome library is present on the
classpath.

BufferedImageHttpMessageConverter Converts BufferedImage to and from image
binary data.

ByteArrayHttpMessageConverter Reads and writes byte arrays. Reads from all
media types (*/*), and writes as application/
octet-stream.

FormHttpMessageConverter Reads content as
application/x-www-form-urlencoded into
a MultiValueMap<String,String>. Also
writes MultiValueMap<String,String> as
application/x-www-form-urlencoded and
MultiValueMap<String, Object> as
multipart/form-data.

Jaxb2RootElementHttpMessageConverter Reads and writes XML (either text/xml or
application/xml) to and from JAXB2-annotated
objects. Registered if JAXB v2 libraries are present
on the classpath.

MappingJacksonHttpMessageConverter Reads and writes JSON to and from typed objects
or untyped HashMaps. Registered if the Jackson
JSON library is present on the classpath.

MappingJackson2HttpMessageConverter Reads and writes JSON to and from typed objects
or untyped HashMaps. Registered if the Jackson 2
JSON library is present on the classpath.

MarshallingHttpMessageConverter Reads and writes XML using an injected marshaler
and unmarshaler. Supported (un)marshalers
include Castor, JAXB2, JIBX, XMLBeans, and
XStream.

ResourceHttpMessageConverter Reads and writes
org.springframework.core.io.Resource.

RssChannelHttpMessageConverter Reads and writes RSS feeds to and from Rome
Channel objects. Registered if the Rome library is
present on the classpath.

SourceHttpMessageConverter Reads and writes XML to and from
javax.xml.transform.Source objects.

428 CHAPTER 16 Creating REST APIs with Spring MVC
For example, suppose the client has indicated via the request’s Accept header that it
can accept application/json. Assuming that the Jackson JSON library is in the appli-
cation’s classpath, the object returned from the handler method is given to Mapping-
JacksonHttpMessageConverter for conversion into a JSON representation to be
returned to the client. On the other hand, if the request header indicates that the cli-
ent prefers text/xml, then Jaxb2RootElementHttpMessageConverter is tasked with
producing an XML response to the client.

 Note that all but five of the HTTP message converters in table 16.1 are registered
by default, so no Spring configuration is required to use them. But you may need to
add additional libraries to your application’s classpath to support them. For instance,
if you want to use MappingJacksonHttpMessageConverter to convert JSON messages
to and from Java objects, you’ll need to add the Jackson JSON Processor library to the
classpath. Similarly, the JAXB library is required for Jaxb2RootElement-

HttpMessageConverter to convert messages between XML and Java objects. And the
Rome library is required for AtomFeedHttpMessageConverter and RssChannel-
HttpMessageConverter when the message comes in Atom or RSS format.

 As you may have guessed, a slight twist to Spring MVC’s programming model is
required to support message conversion. Let’s tweak the controller from listing 16.1
so that it will use message conversion.

RETURNING RESOURCE STATE IN THE RESPONSE BODY

Normally, when a handler method returns a Java object (anything other than String
or an implementation of View), that object ends up in the model for rendering in the
view. But if you’re going to employ message conversion, you need to tell Spring to skip
the normal model/view flow and use a message converter instead. There are a hand-
ful of ways to do this, but the simplest is to annotate the controller method with
@ResponseBody.

 Revisiting the spittles() method from listing 16.1, you can add @ResponseBody
to have Spring convert the returned List<Spittle> to the body of the response:

@RequestMapping(method=RequestMethod.GET,
produces="application/json")

public @ResponseBody List<Spittle> spittles(
@RequestParam(value="max",

defaultValue=MAX_LONG_AS_STRING) long max,

StringHttpMessageConverter Reads all media types (*/*) into a String. Writes
String to text/plain.

XmlAwareFormHttpMessageConverter An extension of FormHttpMessageConverter
that adds support for XML-based parts using a
SourceHttpMessageConverter.

Table 16.1 Spring provides several HTTP message converters that marshal resource representations
to and from various Java types. (continued)

Message converter Description

429Creating your first REST endpoint
@RequestParam(value="count", defaultValue="20") int count) {

return spittleRepository.findSpittles(max, count);
}

The @ResponseBody annotation tells Spring that you want to send the returned object
as a resource to the client, converted into some representational form that the client
can accept. More specifically, DispatcherServlet considers the request’s Accept
header and looks for a message converter that can give the client the representation it
wants.

 For illustration’s sake, if the client’s Accept header specifies that the client will
accept application/json, and if the Jackson JSON library is in the application’s class-
path, then either MappingJacksonHttpMessageConverter or MappingJackson2Http-
MessageConverter will be chosen (depending on which version of Jackson is in the
classpath). The message converter will convert the Spittle list returned from the con-
troller into a JSON document that will be written to the body of the response. That
response might look a little something like this:

[
{

"id": 42,
"latitude": 28.419489,
"longitude": -81.581184,
"message": "Hello World!",
"time": 1400389200000

},
{

"id": 43,
"latitude": 28.419136,
"longitude": -81.577225,
"message": "Blast off!",
"time": 1400475600000

}
]

Jackson uses reflection by default
Be aware that by default, the Jackson JSON libraries use reflection in producing the
JSON resource representation from the returned object. For simple representations,
this may be fine. But if you refactor the Java type by adding, removing, or renaming
properties, then the produced JSON will be changed as well (which might break cli-
ents, depending on those properties).

You can, however, influence how the JSON is produced by applying Jackson’s map-
ping annotations on the Java type. This gives you more control over what the resulting
JSON looks like and prevents changes that could break your API and its clients.

Jackson’s mapping annotations are well outside the scope of this book, but there’s
some useful documentation on the subject at http://wiki .fasterxml.com/Jackson-
Annotations.

http://wiki.fasterxml.com/JacksonAnnotations
http://wiki.fasterxml.com/JacksonAnnotations

430 CHAPTER 16 Creating REST APIs with Spring MVC
Speaking of the Accept header, note spittle()’s @RequestMapping. I’ve added a
produces attribute to declare that this method will only handle requests where JSON
output is expected. That is, this method will only handle requests whose Accept
header includes application/json. Any other kind of request, even if it’s a GET
request whose URL matches the path specified, won’t be handled by this method.
Either it will be handled by some other handler method (if an appropriate one exists)
or the client will be sent an HTTP 406 (Not Acceptable) response.

RECEIVING RESOURCE STATE IN THE REQUEST BODY

So far, we’ve been focused on REST endpoints that serve resources to the client. But
REST isn’t read-only. A REST API can also receive resource representations from the
client. It’d be inconvenient if your controller had to convert a JSON or XML represen-
tation sent from a client into an object it can use. Spring’s message converters were
able to convert objects into representations on the way out of your controllers—can
they do the same in reverse for representations coming in?

 Just as @ResponseBody tells Spring to employ a message converter when sending
data to a client, the @RequestBody tells Spring to find a message converter to convert a
resource representation coming from a client into an object. For example, suppose
that you need a way for a client to submit a new Spittle to be saved. You can write the
controller method to handle such a request like this:

@RequestMapping(
method=RequestMethod.POST
consumes="application/json")

public @ResponseBody
Spittle saveSpittle(@RequestBody Spittle spittle) {

return spittleRepository.save(spittle);
}

If you disregard the annotations, saveSpittle() is a fairly straightforward method. It
takes a single Spittle object as a parameter, saves it using the SpittleRepository,
and then returns the Spittle returned from calling spittleRepository.save().

 But by applying the annotations, it becomes much more interesting and powerful.
The @RequestMapping indicates that it will only handle POST requests for /spittles
(as declared in the class-level @RequestMapping). The body of the POST request is
expected to carry a resource representation for a Spittle. Because the Spittle
parameter is annotated with @RequestBody, Spring will look at the Content-Type
header of the request and try to find a message converter that can convert the request
body into a Spittle.

 For example, if the client sent the Spittle data in a JSON representation, then the
Content-Type header might be set to application/json. In that case, Dispatcher-
Servlet will look for a message converter that can convert JSON into Java objects. If
the Jackson 2 library is on the classpath, then MappingJackson2Http-

MessageConverter will get the job and will convert the JSON representation into a
Spittle that’s passed into the saveSpittle() method. The method is also annotated

431Creating your first REST endpoint
with @ResponseBody so that the returned Spittle will be converted into a resource
representation to be returned to the client.

 Notice that the @RequestMapping has a consumes attribute set to application/
json. The consumes attribute works much like the produces attribute, only with
regard to the request’s Content-Type header. This tells Spring that this method will
only handle POST requests to /spittles if the request’s Content-Type header is
application/json. Otherwise, it will be up to some other method (if a suitable one
exists) to handle the request.

DEFAULTING CONTROLLERS FOR MESSAGE CONVERSION

The @ResponseBody and @RequestBody annotations are succinct yet powerful ways to
engage Spring’s message converters when handling requests. But if you’re writing a
controller that has several methods, all of which should use message conversion, then
those annotations get somewhat repetitive.

 Spring 4.0 introduced the @RestController annotation to help with that. If you
annotate your controller class with @RestController instead of @Controller, Spring
applies message conversion to all handler methods in the controller. You don’t need
to annotate each method with @ResponseBody. SpittleController, as defined thus
far, can look like the next listing.

package spittr.api;
import java.util.List;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.RestController;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RequestParam;
import spittr.Spittle;
import spittr.data.SpittleRepository;

@RestController
@RequestMapping("/spittles")
public class SpittleController {

private static final String MAX_LONG_AS_STRING="9223372036854775807";

private SpittleRepository spittleRepository;

@Autowired
public SpittleController(SpittleRepository spittleRepository) {

this.spittleRepository = spittleRepository;
}

@RequestMapping(method=RequestMethod.GET)
public List<Spittle> spittles(

@RequestParam(value="max",
defaultValue=MAX_LONG_AS_STRING) long max,

@RequestParam(value="count", defaultValue="20") int count) {

return spittleRepository.findSpittles(max, count);

Listing 16.3 Using the @RestController annotation

Default to message conversion

432 CHAPTER 16 Creating REST APIs with Spring MVC
}

@RequestMapping(
method=RequestMethod.POST
consumes="application/json")

public Spittle saveSpittle(@RequestBody Spittle spittle) {
return spittleRepository.save(spittle);

}
}

The key thing to notice in listing 16.3 is what’s not in the code. Neither of the handler
methods are annotated with @ResponseBody. But because the controller is annotated
with @RestController, the objects returned from those methods will still go through
message conversion to produce a resource representation for the client.

 So far, you’ve seen how to use Spring MVC’s programming model to publish REST-
ful resources in the body of responses. But there’s more to a response than the pay-
load. There are headers and status codes that can also provide useful information
about the response to the client. Let’s see how to populate response headers and set
the status code when serving resources.

16.3 Serving more than resources
The @ResponseBody annotation is helpful in transforming a Java object returned from
a controller to a resource representation to send to the client. As it turns out, serving
a resource’s representation to a client is only part of the story. A good REST API does
more than transfer resources between the client and server. It also gives the client
additional metadata to help the client understand the resource or know what has just
taken place in the request.

16.3.1 Communicating errors to the client

For example, let’s start by adding a new handler method to SpittleController to
serve a single Spittle:

@RequestMapping(value="/{id}", method=RequestMethod.GET)
public @ResponseBody Spittle spittleById(@PathVariable long id) {

return spittleRepository.findOne(id);
}

That ID is passed in to the id parameter and used to look up a Spittle from
the repository by calling findOne(). The Spittle returned from findOne() will be
returned from the handler method, and message conversion will take care of produc-
ing a resource representation consumable by the client.

 Simple enough, right? This couldn’t be made any better. Or could it?
 What do you suppose will happen if there isn’t a Spittle whose ID matches the

given ID, and findOne() returns null?
 The funny thing is that if spittleById() returns null, the body of the response is

empty. No useful data is returned to the client. Meanwhile, the default HTTP status
code carried on the response is 200 (OK), which means everything is fine.

433Serving more than resources
 But everything is not fine. The client asks for a Spittle, but it gets nothing. It
receives neither a Spittle nor any indication that anything is wrong. The server is
essentially saying, “Here’s a useless response, but just know that everything’s OK!”

 Now consider what should happen in that scenario. At the least, the status code
shouldn’t be 200. It should be 404 (Not Found) to tell the client that what they asked
for wasn’t found. And it would be nice if the response body carried an error message
instead of being empty.

 Spring offers a few options for dealing with such scenarios:

 Status codes can be specified with the @ResponseStatus annotation.
 Controller methods can return a ResponseEntity that carries more metadata

concerning the response.
 An exception handler can deal with the error cases, leaving the handler meth-

ods to focus on the happy path.

This is another area where Spring offers a lot of flexibility, and there’s no one correct
approach. Instead of trying to nail down a single strategy for dealing with these kind
of errors or trying to cover all possible scenarios, I’ll show you a couple of ways you
could change spittleById() to handle the case where a Spittle can’t be found.

WORKING WITH RESPONSEENTITY

As an alternative to @ResponseBody, controller methods can return a Response-
Entity. ResponseEntity is an object that carries metadata (such as headers and the
status code) about a response in addition to the object to be converted to a resource
representation.

 Because ResponseEntity allows you to specify the response’s status code, it seems
like a good choice for communicating an HTTP 404 error when the Spittle can’t be
found. Here’s a new version of spittleById() that returns a ResponseEntity:

@RequestMapping(value="/{id}", method=RequestMethod.GET)
public ResponseEntity<Spittle> spittleById(@PathVariable long id) {

Spittle spittle = spittleRepository.findOne(id);
HttpStatus status = spittle != null ?

HttpStatus.OK : HttpStatus.NOT_FOUND;
return new ResponseEntity<Spittle>(spittle, status);

}

As before, the ID from the path is used to retrieve a Spittle from the repository. If one
is found, the status is set to HttpStatus.OK (which was the default before). But if the
repository returns null, then the status is set to HttpStatus.NOT_FOUND, which trans-
lates to an HTTP 404. Finally, a new ResponseEntity is created to carry the Spittle
and the status code to the client.

 Notice that spittleById() isn’t annotated with @ResponseBody. In addition to car-
rying response headers, a status code, and a payload, ResponseEntity implies the
semantics of @ResponseBody, so the payload will be rendered into the response body
just as if the method were annotated with @ResponseBody. There’s no need to anno-
tate the method with @ResponseBody if it returns ResponseEntity.

434 CHAPTER 16 Creating REST APIs with Spring MVC
 This is a step in the right direction, for sure. Now the client is given a proper status
code if the Spittle it asks for can’t be found. But the body of the response is still
empty in that case. You’d like for the body to carry additional error information.

 Let’s try again. First, define an Error object to carry the error information:

public class Error {
private int code;
private String message;

public Error(int code, String message) {
this.code = code;
this.message = message;

}

public int getCode() {
return code;

}

public String getMessage() {
return message;

}
}

Then you can change spittleById() to return the Error:

@RequestMapping(value="/{id}", method=RequestMethod.GET)
public ResponseEntity<?> spittleById(@PathVariable long id) {

Spittle spittle = spittleRepository.findOne(id);
if (spittle == null) {

Error error = new Error(4, "Spittle [" + id + "] not found");
return new ResponseEntity<Error>(error, HttpStatus.NOT_FOUND);

}
return new ResponseEntity<Spittle>(spittle, HttpStatus.OK);

}

Now this controller method should behave as you wish. If the Spittle is found, it’s
returned, wrapped in a ResponseEntity with a status code of 200 (OK). On the other
hand, if findOne() returns null, you construct an Error object and return it wrapped
in a ResponseEntity with a status code of 404 (Not Found).

 I suppose you could stop here. After all, the method works as you’d like it to. But a
few things trouble me.

 First, it’s a bit more involved than when we started. There’s a bit more logic
involved, including a conditional statement. And the fact that the method returns
ResponseEntity<?> feels wrong. The generic use of ResponseEntity leaves too much
open for interpretation or mistake.

 Fortunately, you can fix this with an error handler.

HANDLING ERRORS

The if block in spittleById() is handling an error. But that’s what controller error
handlers are good for. Error handlers deal with the ugly realities of what could go
wrong, leaving the regular handler methods to blissfully focus on the happy path.

435Serving more than resources
 Let’s refactor some of the code to take advantage of an error handler. Begin by
defining an error handler that reacts to a SpittleNotFoundException:

@ExceptionHandler(SpittleNotFoundException.class)
public ResponseEntity<Error> spittleNotFound(

SpittleNotFoundException e) {
long spittleId = e.getSpittleId();
Error error = new Error(4, "Spittle [" + spittleId + "] not found");
return new ResponseEntity<Error>(error, HttpStatus.NOT_FOUND);

}

The @ExceptionHandler annotation can be applied to controller methods to handle
specific exceptions. Here, it’s indicating that if a SpittleNotFoundException is
thrown from any of the handler methods in the same controller, the spittleNot-
Found() method should be called to handle that exception.

 As for SpittleNotFoundException, it’s a fairly basic exception class:

public class SpittleNotFoundException extends RuntimeException {
private long spittleId;
public SpittleNotFoundException(long spittleId) {

this.spittleId = spittleId;
}

public long getSpittleId() {
return spittleId;

}
}

Now you can remove most of the error handling from the spittleById() method:

@RequestMapping(value="/{id}", method=RequestMethod.GET)
public ResponseEntity<Spittle> spittleById(@PathVariable long id) {

Spittle spittle = spittleRepository.findOne(id);
if (spittle == null) { throw new SpittleNotFoundException(id); }
return new ResponseEntity<Spittle>(spittle, HttpStatus.OK);

}

This cleans up spittleById() quite a bit. Aside from checking for a null return
value, it’s completely focused on the successful case where the requested Spittle is
found. And you were able to get rid of the strange use of generics in the return type.

 You can clean things up a little more, though. Now that you know that spittle-
ById() will return a Spittle and that the HTTP status will always be 200 (OK), you no
longer need to use ResponseEntity and can replace it with @ResponseBody:

@RequestMapping(value="/{id}", method=RequestMethod.GET)
public @ResponseBody Spittle spittleById(@PathVariable long id) {

Spittle spittle = spittleRepository.findOne(id);
if (spittle == null) { throw new SpittleNotFoundException(id); }
return spittle;

}

Of course, if the controller class is annotated with @RestController, you don’t even
need @ResponseBody:

436 CHAPTER 16 Creating REST APIs with Spring MVC
@RequestMapping(value="/{id}", method=RequestMethod.GET)
public Spittle spittleById(@PathVariable long id) {

Spittle spittle = spittleRepository.findOne(id);
if (spittle == null) { throw new SpittleNotFoundException(id); }
return spittle;

}

Knowing that the error handler method always returns an Error and always responds
with an HTTP status code of 404 (Not Found), you can apply a similar cleanup process
to spittleNotFound():

@ExceptionHandler(SpittleNotFoundException.class)
@ResponseStatus(HttpStatus.NOT_FOUND)
public @ResponseBody Error spittleNotFound(SpittleNotFoundException e) {

long spittleId = e.getSpittleId();
return new Error(4, "Spittle [" + spittleId + "] not found");

}

Because spittleNotFound() always returns an Error, the only reason to keep Response-
Entity around is so you can set the status code. But by annotating spittleNot-
Found() with @ResponseStatus(HttpStatus.NOT_FOUND), you can achieve the same
effect and get rid of ResponseEntity.

 Again, if the controller class is annotated with @RestController, you can remove
the @ResponseBody annotation and clean up the code a little more:

@ExceptionHandler(SpittleNotFoundException.class)
@ResponseStatus(HttpStatus.NOT_FOUND)
public Error spittleNotFound(SpittleNotFoundException e) {

long spittleId = e.getSpittleId();
return new Error(4, "Spittle [" + spittleId + "] not found");

}

In some ways, you’ve gone full circle. In order to set the response status code, you
began using ResponseEntity. But then you were able to use an exception handler and
@ResponseStatus to eliminate the need for ResponseEntity and tighten up the code.

 It almost seems that you won’t ever need ResponseEntity. But there’s one more
thing that ResponseEntity does well that can’t be done with other annotations or
exception handlers. Let’s see how to set headers in the response.

16.3.2 Setting headers in the response

In the case of the saveSpittle() method, you’re creating a new Spittle resource
in the course of handling a POST request. But as it’s currently written (refer to
listing 16.3), you’re not accurately communicating that to the client.

 After saveSpittle() handles the request, the server responds to the client with a
representation of the Spittle in the body and an HTTP status code of 200 (OK).
That’s not a horrible thing, but it’s not entirely accurate.

 Certainly, assuming that the request successfully creates the resource, the status
can be thought of as OK. But there’s more to be said than “OK.” Something was just
created, and an HTTP status code communicates that to the client. HTTP 201 says that
the request completed successfully, but it also says that something was created. If

437Serving more than resources
you’re trying to communicate completely and accurately to the client, shouldn’t the
response be a 201 (Created) and not just 200 (OK)?

 Applying what you’ve learned so far, that’s easy to fix. All you need to do is anno-
tate saveSpittle() with @ResponseStatus like this:

@RequestMapping(
method=RequestMethod.POST
consumes="application/json")

@ResponseStatus(HttpStatus.CREATED)
public Spittle saveSpittle(@RequestBody Spittle spittle) {

return spittleRepository.save(spittle);
}

That should do the trick. Now the status code accurately reflects what took place. It
tells the client that a resource was created. Problem solved.

 There’s just one thing, though. The client knows that something was created, but
don’t you think it might be interested in knowing where the resource was created? After
all, it’s a new resource, and a new URL is associated with it. Must the client guess what
the URL for the new resource should be? Or can you communicate that somehow?

 When creating a new resource, it’s considered good form to communicate the
resource’s URL to the client in the Location header of the response. Therefore, you
need some way to populate the response headers. Your old friend ResponseEntity
can help you with that.

 The following listing shows a new version of saveSpittle() that returns a
ResponseEntity to communicate that a new resource was created.

@RequestMapping(
method=RequestMethod.POST
consumes="application/json")

public ResponseEntity<Spittle> saveSpittle(
@RequestBody Spittle spittle) {

Spittle spittle = spittleRepository.save(spittle);

HttpHeaders headers = new HttpHeaders();
URI locationUri = URI.create(

"http://localhost:8080/spittr/spittles/" + spittle.getId());
headers.setLocation(locationUri);

ResponseEntity<Spittle> responseEntity =
new ResponseEntity<Spittle>(

spittle, headers, HttpStatus.CREATED)
return responseEntity;

}

In this new version, an instance of HttpHeaders is created to carry the header values
you want on the response. HttpHeaders is a special implementation of MultiValue-
Map<String, String> with some convenient setter methods (such as setLocation())

Listing 16.4 Setting headers in the response when returning a ResponseEntity

Fetch spittle

Set the location header

Create a ResponseEntity

438 CHAPTER 16 Creating REST APIs with Spring MVC
for setting common HTTP headers. After calculating the URL of the newly created
Spittle resource, the headers are used to create the ResponseEntity.

 Wow! The simple saveSpittle() method suddenly put on weight. What’s more
concerning, however, is that it calculates the Location header value using hard-coded
values. The localhost and 8080 portions of the URI are of particular concern, because
those won’t be applicable if this application is deployed anywhere other than your
local system.

 Rather than construct the URI manually, Spring offers some help in the form of
UriComponentsBuilder. It’s a builder class that lets you build up a UriComponents
instance by specifying the various components of the URI (such as the host, port, path,
and query) a piece at a time. From the UriComponents object that UriComponents-
Builder builds, you can obtain a URI suitable for setting the Location header.

 To use a UriComponentsBuilder, all you have to do is ask for it as a parameter to
the handler method, as shown next.

@RequestMapping(
method=RequestMethod.POST
consumes="application/json")

public ResponseEntity<Spittle> saveSpittle(
@RequestBody Spittle spittle,
UriComponentsBuilder ucb) {

Spittle spittle = spittleRepository.save(spittle);

HttpHeaders headers = new HttpHeaders();
URI locationUri =

ucb.path("/spittles/")
.path(String.valueOf(spittle.getId()))
.build()
.toUri();

headers.setLocation(locationUri);

ResponseEntity<Spittle> responseEntity =
new ResponseEntity<Spittle>(

spittle, headers, HttpStatus.CREATED)
return responseEntity;

}

The UriComponentsBuilder given to the handler method is preconfigured with
known information such as the host, port, and servlet content. It obtains this founda-
tional information from the request that the handler method is serving. From there,
the code builds up the rest of the UriComponents by setting the path.

 Notice that the path is built up in two steps. The first step calls path() to set it to /
spittles/, the base path that the controller handles. Then the saved Spittle ID is
given in a second call to path(). As you may surmise, each call to path() builds on the
previous calls.

Listing 16.5 Using a UriComponentsBuilder to construct the location URI

Given a UriComponentsBuilder …

… calculate the location URI

439Consuming REST resources

C

 After the path is completely set, the build() method is called to construct a Uri-
Components object. From that, a call to toUri() gives the URI of the newly created
Spittle resource.

 Exposing resources in a REST API represents only one side of the conversation. It
does no good to publish an API if nobody comes along and uses it. Commonly, mobile
and JavaScript applications are the clients of a REST API, but there’s no reason a
Spring application can’t consume those resources, too. Let’s shift gears and see how to
write Spring code that works for the client side of a RESTful interaction.

16.4 Consuming REST resources
Writing code that interacts with a REST resource as a client can involve some tedium
and boilerplate. For example, let’s say you need to write a method to fetch someone’s
Facebook profile from Facebook’s Graph API. But the code to fetch the profile data is
a bit more involved, as shown in the following listing.

public Profile fetchFacebookProfile(String id) {
try {

HttpClient client = HttpClients.createDefault();

HttpGet request = new HttpGet("http://graph.facebook.com/" + id);
request.setHeader("Accept", "application/json");

HttpResponse response = client.execute(request);

HttpEntity entity = response.getEntity();
ObjectMapper mapper = new ObjectMapper();
return mapper.readValue(entity.getContent(), Profile.class);

} catch (IOException e) {
throw new RuntimeException(e);

}
}

As you can see, a lot goes into consuming a REST resource. And I’m even cheating by
using Apache HTTP Client to make the request and the Jackson JSON processor to
parse the response.

 Looking closely at the fetchFacebookProfile() method, you’ll realize that little is
specific to the task of fetching a Facebook profile. Most of it is boilerplate code. If you
were to write another method to consume a different REST resource, it would proba-
bly share a lot of code with fetchFacebookProfile().

 What’s more, there are a few places along the way where an IOException could be
thrown. Because IOException is a checked exception, you’re forced to either catch it
or throw it. In this case, I’ve chosen to catch it and throw an unchecked Runtime-
Exception in its place.

 With so much boilerplate involved in resource consumption, you’d think it would
be wise to encapsulate the common code and parameterize the variations. That’s pre-
cisely what Spring’s RestTemplate does. Just as JdbcTemplate handles the ugly parts

Listing 16.6 Fetching a Facebook profile using Apache HTTP Client

Create the clientreate the
request

Execute the
request

Map
response
to object

440 CHAPTER 16 Creating REST APIs with Spring MVC
of working with JDBC data access, RestTemplate frees you from the tedium of consum-
ing RESTful resources.

 In a moment, you’ll see how you can rewrite the fetchFacebookProfile()
method, using RestTemplate to dramatically simplify it and eliminate the boilerplate.
But first, let’s take a high-level survey of all the REST operations that RestTemplate
offers.

16.4.1 Exploring RestTemplate’s operations

RestTemplate defines 36 methods for interacting with REST resources, and most of
these methods map to HTTP methods. I don’t have enough space to go over all 36
methods in this chapter, but as it turns out, there are only 11 unique operations. Ten
of these are overloaded into 3 method variants, while an 11th is overloaded 6 times for
a total of 36 methods. Table 16.2 describes the 11 unique operations provided by
RestTemplate.

Table 16.2 RestTemplate defines 11 unique operations, each of which is overloaded for a total of 36
methods.

Method Description

delete() Performs an HTTP DELETE request on a resource at a specified URL

exchange() Executes a specified HTTP method against a URL, returning a
ResponseEntity containing an object mapped from the response body

execute() Executes a specified HTTP method against a URL, returning an object
mapped from the response body

getForEntity() Sends an HTTP GET request, returning a ResponseEntity containing
an object mapped from the response body

getForObject() Sends an HTTP GET request, returning an object mapped from a
response body

headForHeaders() Sends an HTTP HEAD request, returning the HTTP headers for the speci-
fied resource URL

optionsForAllow() Sends an HTTP OPTIONS request, returning the Allow header for the
specified URL

postForEntity() POSTs data to a URL, returning a ResponseEntity containing an object
mapped from the response body

postForLocation() POSTs data to a URL, returning the URL of the newly created resource

postForObject() POSTs data to a URL, returning an object mapped from the response
body

put() PUTs resource data to the specified URL

441Consuming REST resources
With the exception of TRACE, RestTemplate has methods to cover all the HTTP verbs.
In addition, execute() and exchange() offer lower-level, general-purpose methods
for using any of the HTTP methods.

 Most of the operations in table 16.2 are overloaded into three method forms:

 One that takes a java.net.URI as the URL specification with no support for
parameterized URLs

 One that takes a String URL specification with URL parameters specified as a Map
 One that takes a String URL specification with URL parameters specified as a

variable argument list

Once you get to know the 11 operations provided by RestTemplate and how each of
the variant forms works, you’ll be well on your way to writing resource-consuming
REST clients. Let’s survey RestTemplate’s operations by looking at those that support
the four primary HTTP methods: GET, PUT, DELETE, and POST. We’ll start with get-
ForObject() and getForEntity(), the GET methods.

16.4.2 GETting resources

You may have noticed that table 16.2 lists two kinds of methods for performing GET
requests: getForObject() and getForEntity(). As described earlier, each of these
methods is overloaded into three forms. The signatures of the three getForObject()
methods look like this:

<T> T getForObject(URI url, Class<T> responseType)
throws RestClientException;

<T> T getForObject(String url, Class<T> responseType,
Object... uriVariables) throws RestClientException;

<T> T getForObject(String url, Class<T> responseType,
Map<String, ?> uriVariables) throws RestClientException;

Similarly, the signatures of the getForEntity() methods are as follows:

<T> ResponseEntity<T> getForEntity(URI url, Class<T> responseType)
throws RestClientException;

<T> ResponseEntity<T> getForEntity(String url, Class<T> responseType,
Object... uriVariables) throws RestClientException;

<T> ResponseEntity<T> getForEntity(String url, Class<T> responseType,
Map<String, ?> uriVariables) throws RestClientException;

Except for the return type, the getForEntity() methods are mirror images of the
getForObject() methods. And they work much the same way. They both perform a
GET request, retrieving a resource given a URL. And they both map that resource to an
instance of some type specified by the responseType parameter. The only difference is
that getForObject() returns an object of the type requested, whereas getFor-
Entity() returns that object along with extra information about the response.

 Let’s first look at the simpler getForObject() method. Then you’ll see how to get
more information from a GET response by using the getForEntity() method.

442 CHAPTER 16 Creating REST APIs with Spring MVC
16.4.3 Retrieving resources

The getForObject() method is a no-nonsense option for retrieving a resource. You
ask for a resource, and you receive that resource mapped to a Java type of your choos-
ing. As a simple example of what getForObject() can do, let’s take another stab at
implementing fetchFacebookProfile():

public Profile fetchFacebookProfile(String id) {
RestTemplate rest = new RestTemplate();
return rest.getForObject("http://graph.facebook.com/{spitter}",

Profile.class, id);
}

Back in listing 16.6, fetchFacebookProfile() involved more than a dozen lines of
code. Using RestTemplate, it’s reduced to a handful of lines (and could be even less if
I didn’t have to wrap lines to fit within the margins of this book).

 fetchFacebookProfile() starts by constructing an instance of RestTemplate (an
alternate implementation might use an injected instance instead). Then it invokes the
getForObject() method to retrieve a Facebook profile. In doing so, it asks for the
result as a Profile object. Upon receiving that Profile object, the method returns it
to the caller.

 Note that in this new version of fetchFacebookProfile() you don’t use String
concatenation to produce the URL. Instead, you take advantage of the fact that Rest-
Template accepts parameterized URLs. The {id} placeholder in the URL will ulti-
mately be filled by the method’s id parameter. The last argument of getForObject()
is a variable-sized list of arguments, where each argument is inserted into a place-
holder in the specified URL in the order it appears.

 Alternatively, you could place the id parameter into a Map with a key of id and pass
in that Map as the last parameter to getForObject():

public Spittle[] fetchFacebookProfile(String id) {
Map<String, String> urlVariables = new HashMap<String, String();
urlVariables.put("id", id);
RestTemplate rest = new RestTemplate();
return rest.getForObject("http://graph.facebook.com/{spitter}",

Profile.class, urlVariables);
}

One thing that’s absent here is any sort of JSON parsing or object mapping. Under the
covers, getForObject() converts the response body into an object for you. It does this
by relying on the same set of HTTP message converters from table 16.1 that Spring
MVC uses for handler methods that are annotated with @ResponseBody.

 What’s also missing from this method is any sort of exception handling. That’s not
because getForObject() couldn’t throw an exception, but because any exception it
throws is unchecked. If anything goes wrong in getForObject(), an unchecked Rest-
ClientException (or some subclass thereof) will be thrown. You can catch it if you’d
like—but you’re not forced by the compiler to catch it.

443Consuming REST resources
16.4.4 Extracting response metadata

As an alternative to getForObject(), RestTemplate also offers getForEntity(). The
getForEntity() methods work much the same as the getForObject() methods. But
where getForObject() returns only the resource (converted into a Java object by an
HTTP message converter), getForEntity() returns that same object carried in a
ResponseEntity. The ResponseEntity also carries extra information about the
response, such as the HTTP status code and response headers.

 One thing you might want to do with a ResponseEntity is retrieve the value of one
of the response headers. For example, suppose that in addition to retrieving the
resource, you want to know when that resource was last modified. Assuming that the
server provides that information in the LastModified header, you can use the get-
Headers() method like this:

Date lastModified = new Date(response.getHeaders().getLastModified());

The getHeaders() method returns an HttpHeaders object that provides several con-
venience methods for retrieving response headers, including getLastModified(),
which returns the number of milliseconds since January 1, 1970.

 In addition to getLastModified(), HttpHeaders includes the following methods
for retrieving header information:

public List<MediaType> getAccept() { ... }
public List<Charset> getAcceptCharset() { ... }
public Set<HttpMethod> getAllow() { ... }
public String getCacheControl() { ... }
public List<String> getConnection() { ... }
public long getContentLength() { ... }
public MediaType getContentType() { ... }
public long getDate() { ... }
public String getETag() { ... }
public long getExpires() { ... }
public long getIfNotModifiedSince() { ... }
public List<String> getIfNoneMatch() { ... }
public long getLastModified() { ... }
public URI getLocation() { ... }
public String getOrigin() { ... }
public String getPragma() { ... }
public String getUpgrade() { ... }

For more general-purpose HTTP header access, HttpHeaders includes a get()
method and a getFirst() method. Both take a String argument that identifies the
key of the desired header. The get() method returns a list of String values—one for
each value assigned to the header. The getFirst() method returns only the first
header value.

 If you’re interested in the response’s HTTP status code, then you’ll want to call the
getStatusCode() method. For example, consider this method that fetches a Spittle:

public Spittle fetchSpittle(long id) {
RestTemplate rest = new RestTemplate();
ResponseEntity<Spittle> response = rest.getForEntity(

444 CHAPTER 16 Creating REST APIs with Spring MVC
"http://localhost:8080/spittr-api/spittles/{id}",
Spittle.class, id);

if(response.getStatusCode() == HttpStatus.NOT_MODIFIED) {
throw new NotModifiedException();

}
return response.getBody();

}

Here, if the server responds with a status of 304, it indicates that the content on the
server hasn’t been modified since the client previously requested it. In that event, a
custom NotModifiedException is thrown to indicate that the client should check its
cache for the Spittle.

16.4.5 PUTting resources

For performing PUT operations on a resource, RestTemplate offers a simple set of
three put() methods. As with all of RestTemplate’s methods, the put() method
comes in three forms:

void put(URI url, Object request) throws RestClientException;
void put(String url, Object request, Object... uriVariables)

throws RestClientException;
void put(String url, Object request, Map<String, ?> uriVariables)

throws RestClientException;

In its simplest form, the put() method takes a java.net.URI that identifies (and
locates) the resource being sent to the server, and an object that’s the Java representa-
tion of that resource.

 For example, here’s how you might use the URI-based version of put() to update a
Spittle resource on the server:

public void updateSpittle(Spittle spittle) throws SpitterException {
RestTemplate rest = new RestTemplate();
String url = "http://localhost:8080/spittr-api/spittles/"

+ spittle.getId();
rest.put(URI.create(url), spittle);

}

Here, although the method signature is simple, the implication of using a
java.net.URI argument is evident. In order to create the URL for the Spittle object
to be updated, you have to do String concatenation.

 As you’ve already seen with getForObject() and getForEntity(), using one of
the other String-based put() methods alleviates most of the discomfort associated
with creating a URI. These methods enable you to specify the URI as a template, plug-
ging in values for the variable parts. Here’s a new updateSpittle() method rewritten
to use one of the String-based put() methods:

public void updateSpittle(Spittle spittle) throws SpitterException {
RestTemplate rest = new RestTemplate();
rest.put("http://localhost:8080/spittr-api/spittles/{id}",

spittle, spittle.getId());
}

445Consuming REST resources
The URI is now expressed as a simple String template. When RestTemplate sends the
PUT request, the URI template will be expanded to replace the {id} portion with the
value returned from spittle.getId(). Just like getForObject() and getFor-
Entity(), the last argument to this version of put() is a variable-sized list of argu-
ments, each of which is assigned to the placeholder variables in the order they appear.

 Optionally, you could pass in the template variables as a Map:

public void updateSpittle(Spittle spittle) throws SpitterException {
RestTemplate rest = new RestTemplate();
Map<String, String> params = new HashMap<String, String>();
params.put("id", spittle.getId());
rest.put("http://localhost:8080/spittr-api/spittles/{id}",

spittle, params);
}

When you use a Map to send the template variables, the key of each entry in the Map
corresponds to the placeholder variable of the same name in the URI template.

 In all versions of put(), the second argument is the Java object that represents the
resource being PUT to the server at the given URI. In this case, it’s a Spittle object.
RestTemplate uses one of the message converters from table 16.1 to convert the
Spittle into a representation to send to the server in the request body.

 The content type into which the object will be converted depends largely on the
type being passed in to put(). If given a String value, the StringHttpMessage-
Converter kicks in: the value is written directly to the body of the request, and the
content type is set to text/plain. When given a MultiValueMap<String,String>, the
values in the map are written to the request body in application/x-www-form-
urlencoded form by FormHttpMessageConverter.

 Because you’re passing in a Spittle object, you need a message converter
that can work with arbitrary objects. If the Jackson 2 library is in the classpath,
then the MappingJackson2HttpMessageConverter writes the Spittle to the request
as application/json.

16.4.6 DELETEing resources

When you don’t want a resource to be kept around on the server anymore, you’ll want
to call RestTemplate’s delete() methods. Much like the put() methods, the
delete() methods have only three versions, whose signatures are as follows:

void delete(String url, Object... uriVariables)
throws RestClientException;

void delete(String url, Map<String, ?> uriVariables)
throws RestClientException;

void delete(URI url) throws RestClientException;

Hands down, the delete() methods are the simplest of all the RestTemplate meth-
ods. The only thing you need to supply them with is the URI of the resource to be
deleted. For example, to get rid of a Spittle whose ID is given, you might call
delete() like this:

446 CHAPTER 16 Creating REST APIs with Spring MVC
public void deleteSpittle(long id) {
RestTemplate rest = new RestTemplate();
rest.delete(

URI.create("http://localhost:8080/spittr-api/spittles/" + id));
}

That’s easy enough, but here again you rely on String concatenation to create a URI
object. Let’s turn to one of the simpler versions of delete() to avoid doing so:

public void deleteSpittle(long id) {
RestTemplate rest = new RestTemplate();
rest.delete("http://localhost:8080/spittr-api/spittles/{id}", id));

}

There. I feel better about that. Don’t you?
 Now that I’ve shown you the simplest set of RestTemplate methods, let’s look at

RestTemplate’s most diverse set of methods—those that support HTTP POST requests.

16.4.7 POSTing resource data

Looking back at table 16.2, you see that RestTemplate comes with three different
kinds of methods for sending POST requests. When you multiply that by the three vari-
ants that each is overridden into, that’s a total of nine methods for POSTing data to the
server.

 Two of those methods have names that look familiar. The postForObject() and
postForEntity() methods work with POST requests in a way that’s similar to how get-
ForObject() and getForEntity() work for sending GET requests. The other method,
postForLocation(), is unique for POST requests.

16.4.8 Receiving object responses from POST requests

Let’s say that you’re using RestTemplate to POST a new Spitter object to the Spittr
application’s REST API. Because it’s a brand-new Spitter, the server doesn’t know
about it (yet). Therefore, it’s not officially a REST resource and doesn’t have a URL.
Also, the client won’t know the ID of the Spitter until it’s created on the server.

 One way of POSTing a resource to the server is to use RestTemplate’s post-
ForObject() method. The three varieties of postForObject() have the following
signatures:

<T> T postForObject(URI url, Object request, Class<T> responseType)
throws RestClientException;

<T> T postForObject(String url, Object request, Class<T> responseType,
Object... uriVariables) throws RestClientException;

<T> T postForObject(String url, Object request, Class<T> responseType,
Map<String, ?> uriVariables) throws RestClientException;

In all cases, the first parameter is the URL to which the resource should be POSTed, the
second parameter is the object to post, and the third parameter is the Java type
expected to be given in return. In the case of the two versions that take the URL as a

447Consuming REST resources
String, a fourth parameter identifies the URL variables (as either a variable argu-
ments list or a Map).

 When you POST new Spitter resources to the Spitter REST API, they should be
posted to http://localhost:8080/spittr-api/spitters, where a POST-handling controller
handler method is waiting to save the object. Because this URL requires no URL vari-
ables, you can use any version of postForObject(). But in the interest of keeping it
simple, let’s make the call like this:

public Spitter postSpitterForObject(Spitter spitter) {
RestTemplate rest = new RestTemplate();
return rest.postForObject("http://localhost:8080/spittr-api/spitters",

spitter, Spitter.class);
}

The postSpitterForObject() method is given a newly created Spitter object and
uses postForObject() to send it to the server. In response, it receives a Spitter object
and returns it to the caller.

 As with the getForObject() methods, you may want to examine some of the meta-
data that comes back with the request. In that case, postForEntity() is the preferred
method. postForEntity() comes with a set of signatures that mirror those of post-
ForObject():

<T> ResponseEntity<T> postForEntity(URI url, Object request,
Class<T> responseType) throws RestClientException;

<T> ResponseEntity<T> postForEntity(String url, Object request,
Class<T> responseType, Object... uriVariables)
throws RestClientException;

<T> ResponseEntity<T> postForEntity(String url, Object request,
Class<T> responseType, Map<String, ?> uriVariables)
throws RestClientException;

Suppose that, in addition to receiving the Spitter resource in return, you’d also like
to see the value of the Location header in the response. In that case, you can call
postForEntity() like this:

RestTemplate rest = new RestTemplate();
ResponseEntity<Spitter> response = rest.postForEntity(

"http://localhost:8080/spittr-api/spitters",
spitter, Spitter.class);

Spitter spitter = response.getBody();
URI url = response.getHeaders().getLocation();

Just like the getForEntity() method, postForEntity() returns a ResponseEntity<T>
object. From that object, you can call getBody() to get the resource object (a Spitter
in this case). And the getHeaders() method gives you an HttpHeaders from which you
can access the various HTTP headers returned in the response. Here, you’re calling
getLocation() to retrieve the Location header as a java.net.URI.

448 CHAPTER 16 Creating REST APIs with Spring MVC
16.4.9 Receiving a resource location after a POST request

The postForEntity() method is handy for receiving both the resource posted and
any response headers. But often you don’t need the resource to be sent back to you
(after all, you sent it to the server in the first place). If the value of the Location
header is all you need to know, then it’s even easier to use RestTemplate’s postFor-
Location() method.

 Like the other POST methods, postForLocation() sends a resource to the server in
the body of a POST request. But instead of responding with that same resource object,
postForLocation() responds with the location of the newly created resource. It has
the following three method signatures:

URI postForLocation(String url, Object request, Object... uriVariables)
throws RestClientException;

URI postForLocation(
String url, Object request, Map<String, ?> uriVariables)
throws RestClientException;

URI postForLocation(URI url, Object request) throws RestClientException;

To demonstrate postForLocation(), let’s try POSTing a Spitter again. This time, you
want the resource’s URL in return:

public String postSpitter(Spitter spitter) {
RestTemplate rest = new RestTemplate();
return rest.postForLocation(

"http://localhost:8080/spittr-api/spitters",
spitter).toString();

}

Here, you’re passing in the target URL as a String, along with the Spitter object to
be POSTed (there are no URL variables in this case). If, after creating the resource, the
server responds with the new resource URL in the response’s Location header, then
postForLocation() will return that URL as a String.

16.4.10Exchanging resources

Up to this point, you’ve seen all manner of RestTemplate methods for GETting, PUTting,
DELETEing, and POSTing resources. Among those you saw two special methods, get-
ForEntity() and postForEntity(), that give you the resulting resource wrapped in a
RequestEntity from which you can retrieve response headers and status codes.

 Being able to read headers from the response is useful. But what if you want to set
headers on the request sent to the server? That’s what RestTemplate’s exchange()
methods are good for.

 Like all the other methods in RestTemplate, exchange() is overloaded into three
signature forms. One takes a java.net.URI to identify the target URL, whereas the
other two take the URL in String form with URL variables, as shown here:

<T> ResponseEntity<T> exchange(URI url, HttpMethod method,
HttpEntity<?> requestEntity, Class<T> responseType)
throws RestClientException;

449Consuming REST resources
<T> ResponseEntity<T> exchange(String url, HttpMethod method,
HttpEntity<?> requestEntity, Class<T> responseType,
Object... uriVariables) throws RestClientException;

<T> ResponseEntity<T> exchange(String url, HttpMethod method,
HttpEntity<?> requestEntity, Class<T> responseType,
Map<String, ?> uriVariables) throws RestClientException;

The exchange() method also takes an HttpMethod parameter to indicate the HTTP
verb that should be used. Depending on the value given to this parameter, the
exchange() method can perform the same jobs as any of the other RestTemplate
methods.

 For example, one way to retrieve a Spitter resource from the server is to use
RestTemplate’s getForEntity() method like this:

ResponseEntity<Spitter> response = rest.getForEntity(
"http://localhost:8080/spittr-api/spitters/{spitter}",
Spitter.class, spitterId);

Spitter spitter = response.getBody();

As you can see in the next snippet of code, exchange() is also up to the task:

ResponseEntity<Spitter> response = rest.exchange(
"http://localhost:8080/spittr-api/spitters/{spitter}",
HttpMethod.GET, null, Spitter.class, spitterId);

Spitter spitter = response.getBody();

By passing in HttpMethod.GET as the HTTP verb, you’re asking exchange() to send a
GET request. The third argument is for sending a resource on the request, but because
this is a GET request, it can be null. The next argument indicates that you want the
response converted into a Spitter object. And the final argument is the value to place
into the {spitter} placeholder in the specified URL template.

 Used this way, the exchange() method is virtually identical to the previously used
getForEntity(). But unlike getForEntity()—or getForObject()—exchange() lets
you set headers on the request sent. Instead of passing null to exchange(), you pass
in an HttpEntity created with the request headers you want.

 Without specifying the headers, exchange() sends the GET request for a Spitter
with the following headers:

GET /Spitter/spitters/habuma HTTP/1.1
Accept: application/xml, text/xml, application/*+xml, application/json
Content-Length: 0
User-Agent: Java/1.6.0_20
Host: localhost:8080
Connection: keep-alive

Look at the Accept header. It says it can accept several different XML content types as
well as application/json. That leaves a lot of room for the server to decide which for-
mat to send the resource back as. Suppose you want to demand that the server send
the response back as JSON. In that case, you need to specify application/json as the
only value in the Accept header.

450 CHAPTER 16 Creating REST APIs with Spring MVC
 Setting request headers is a simple matter of constructing the HttpEntity sent to
exchange() with a MultiValueMap loaded with the desired headers:

MultiValueMap<String, String> headers =
new LinkedMultiValueMap<String, String>();

headers.add("Accept", "application/json");
HttpEntity<Object> requestEntity = new HttpEntity<Object>(headers);

Here, you create a LinkedMultiValueMap and add an Accept header set to
application/json. Then you construct an HttpEntity (with a generic type of
Object), passing the MultiValueMap as a constructor argument. If this were a PUT or a
POST request, you would also give the HttpEntity an object to send in the body of the
request—but for a GET request, this isn’t necessary.

 Now you can call exchange(), passing in the HttpEntity:

ResponseEntity<Spitter> response = rest.exchange(
"http://localhost:8080/spittr-api/spitters/{spitter}",
HttpMethod.GET, requestEntity, Spitter.class, spitterId);

Spitter spitter = response.getBody();

On the surface, the results should be the same. You should receive the Spitter object
that you asked for. Under the surface, the request is sent with the following headers:

GET /Spitter/spitters/habuma HTTP/1.1
Accept: application/json
Content-Length: 0
User-Agent: Java/1.6.0_20
Host: localhost:8080
Connection: keep-alive

And, assuming that the server can serialize the Spitter response into JSON, the
response body should be represented in JSON format.

16.5 Summary
RESTful architecture uses web standards to integrate applications, keeping the interac-
tions simple and natural. Resources in a system are identified by URLs, manipulated
with HTTP methods, and represented in one or more forms suitable for the client.

 In this chapter, you’ve seen how to write Spring MVC controllers that respond to
requests to manipulate RESTful resources. By utilizing parameterized URL patterns
and associating controller handler methods with specific HTTP methods, controllers
can respond to GET, POST, PUT, and DELETE requests for the resources in an application.

 In response to those requests, Spring can represent the data behind those
resources in a format that’s best for the client. For view-based responses, Content-
NegotiatingViewResolver can select the best view produced from several view resolv-
ers to satisfy the client’s desired content type. Or a controller handler method can be
annotated with @ResponseBody to completely bypass view resolution and have one of
several message converters convert the returned value into a response for the client.

 REST APIs expose an application’s functionality to a client to build on, and they
expose it in ways that maybe even the original API designers never dreamed of. Often,

451Summary
the clients of a REST API are mobile applications or JavaScript running in a web
browser. But Spring applications can also consume those APIs using RestTemplate.

 The REST resources defined in this chapter are part of a public API. That is, if you
were to deploy them to an application somewhere on the internet, there’d be nothing
stopping anyone from writing a client that uses them. Coming up in the next chapter,
you’ll start locking them down, as we look at ways to secure the REST resources so that
only authorized clients are allowed to consume them.

Messaging in Spring
It’s 4:55 p.m. on Friday. You’re minutes away from starting a much-anticipated vaca-
tion. You have just enough time to drive to the airport and catch your flight. But
before you pack up and head out, you need to be sure your boss and colleagues
know the status of the work you’ve been doing so that on Monday they can pick up
where you left off. Unfortunately, some of your colleagues have already skipped out
for the weekend, and your boss is tied up in a meeting. What do you do?

 You could call your boss’s cell phone—but it’s not necessary to interrupt him for
a mere status report. Maybe you could stick around and wait until he returns. But
it’s anyone’s guess how long the meeting will last, and you have a plane to catch.
Perhaps you could leave a sticky note on his monitor … next to a hundred other
sticky notes it will blend in with.

 The most practical way to communicate your status and still catch your plane is
to send a quick email to your boss and your colleagues, detailing your progress and
promising to send a postcard. You don’t know where they are or when they’ll read

This chapter covers
 Introduction to asynchronous messaging

 Messaging with JMS

 Sending messages with Spring and AMQP

 Message-driven POJOs
452

453A brief introduction to asynchronous messaging
the email, but you do know they’ll eventually return to their desks and read it. Mean-
while, you’re on your way to the airport.

 Sometimes it’s necessary to talk to someone directly. If you injure yourself and
need an ambulance, you’re probably going to pick up the phone—emailing the hospi-
tal just won’t do. But often, sending a message is sufficient and offers some advantages
over direct communication, such as letting you get on with your vacation.

 A couple of chapters back, you saw how to use RMI, Hessian, Burlap, the HTTP
invoker, and web services to enable communication between applications. All of these
communication mechanisms employ synchronous communication in which a client
application directly contacts a remote service and waits for the remote procedure to
complete before continuing.

 Synchronous communication has its place, but it’s not the only style of inter-
application communication available to developers. Asynchronous messaging is a way of
indirectly sending messages from one application to another without waiting for a
response. Asynchronous messaging has several advantages over synchronous messag-
ing, as you’ll soon see.

 With Spring, you have a few options for asynchronous messaging. In this chapter,
we’ll look at how to send and receive messages in Spring using both the Java Message
Service (JMS) and the Advanced Message Queuing Protocol (AMQP). In addition to
basic sending and receiving of messages, we’ll look at Spring’s support for message-
driven POJOs: a way to receive messages that resembles EJB’s message-driven beans
(MDBs).

17.1 A brief introduction to asynchronous messaging
Much like the remoting mechanisms
and REST APIs we’ve covered so far in
this part of the book, asynchronous
messaging is all about applications
communicating with one another. But
it differs from those other communi-
cation mechanisms in how informa-
tion is transferred between systems.

 Remoting options such as RMI and
Hessian/Burlap are synchronous. As
illustrated in figure 17.1, when the cli-
ent invokes a remote method, the cli-
ent must wait for the method to
complete before moving on. Even if
the remote method doesn’t return
anything to the client, the client is put
on hold until the service is done.

S
er

vi
ce

C
lie

nt

Program
flow

Call

Return

The client
waits

Figure 17.1 When communicating synchronously, the
client must wait for the operation to complete.

454 CHAPTER 17 Messaging in Spring
 On the other hand, when mes-
sages are sent asynchronously, as
shown in figure 17.2, the client
doesn’t have to wait for the service
to process the message or even for
the message to be delivered. The
client sends its message and then
moves along, assuming that the ser-
vice will eventually receive and pro-
cess the message.

 Asynchronous communication
offers several advantages over syn-
chronous communication. We’ll
take a closer look at these advan-
tages in a moment, but first let’s
examine how the messages are sent
asynchronously.

17.1.1 Sending messages

Most of us take the postal service for granted. Millions of times every day, people place
letters, cards, and packages in the hands of postal workers, trusting that those items
will reach the desired destinations. The world’s too big for us to hand-deliver these
things ourselves, so we rely on the postal system to handle them for us. We address our
items, place the necessary postage on them, and then drop them in the mail to be
delivered without giving a second thought to how they might get where they’re going.

 The key to the postal service is indirection. When Grandma’s birthday comes
around, it would be inconvenient if we had to deliver a card directly to her. Depend-
ing on where she lives, we’d have to set aside anywhere from a few hours to a few days
to deliver a birthday card. Fortunately, the postal service will deliver the card to her
while we go about our lives.

 Similarly, indirection is the key to asynchronous messaging. When one application
sends a message to another, there’s no direct link between the two applications.
Instead, the sending application places the message in the hands of a service that will
ensure delivery to the receiving application.

 There are two main actors in asynchronous messaging: message brokers and destina-
tions. When an application sends a message, it hands it off to a message broker. A mes-
sage broker is analogous to the post office. The message broker ensures that the
message is delivered to the specified destination, leaving the sender free to go about
other business.

 When you send a letter through the mail, it’s important to address it so that the
postal service knows where it should be delivered. Likewise, asynchronously sent

S
er

vi
ce

C
lie

nt

Program
flow

The client
doesn’t have

to wait

Figure 17.2 Asynchronous communication is a no-wait
form of communication.

455A brief introduction to asynchronous messaging
messages are addressed with a destination. Destinations are like mailboxes where the
messages are placed until someone comes to pick them up.

 But unlike mail addresses, which may indicate a specific person or street address,
destinations are less specific. Destinations are only concerned about where messages
will be picked up—not who will pick them up. In this way, a destination is like sending
a letter addressed “To current resident.”

 Although different messaging systems may offer a variety of message-routing
schemes, there are two common types of destinations: queues and topics. Each of
these is associated with a specific messaging model: either point-to-point (for queues)
or publish/subscribe (for topics).

POINT-TO-POINT MESSAGING

In the point-to-point model, each message has exactly one sender and one receiver, as
illustrated in figure 17.3. When the message broker is given a message, it places the
message in a queue. When a receiver comes along and asks for the next message in
the queue, the message is pulled from the queue and delivered to the receiver.
Because the message is removed from the queue as it’s delivered, it’s guaranteed that
the message will be delivered to only one receiver.

 Although each message in a message queue is delivered to only one receiver, this
doesn’t imply that only one receiver is pulling messages from the queue. It’s likely that
several receivers are processing messages from the queue. But they’ll each be given
their own messages to process.

 This is analogous to waiting in line at the bank. As you wait, you may notice that
multiple tellers are available to help you with your financial transaction. When a teller
finishes helping a customer, the teller calls for the next person in line. When it’s your
turn at the front of the line, you’re called to the counter and helped by one teller. The
other tellers help other banking customers.

 Another observation to be made at the bank is that when you get in line, you prob-
ably don’t know which teller will eventually help you. You could count how many peo-
ple are in line, match that with the number of available tellers, note which teller is
fastest, and come up with a guess as to which teller will call you to their window. But
chances are you’ll be wrong and end up at a different teller’s window.

 Likewise, with point-to-point messaging, if multiple receivers are listening to a
queue, there’s no way of knowing which one will process a specific message. This
uncertainty is a good thing, because it enables an application to scale up message pro-
cessing by adding another listener to the queue.

Message
sender ReceiverQueue

Figure 17.3 A message queue decouples a message sender from the message
receiver. Although a queue may have several receivers, each message is picked up by
exactly one receiver.

456 CHAPTER 17 Messaging in Spring
PUBLISH-SUBSCRIBE MESSAGING

In the publish/subscribe messaging model, messages are sent to a topic. As with
queues, many receivers may be listening to a topic. But unlike with queues, where a
message is delivered to exactly one receiver, all subscribers to a topic receive a copy of
the message, as shown in figure 17.4.

 As you may have guessed from its name, the publish/subscribe message model is
much like the model of a magazine publisher and its subscribers. The magazine (a
message) is published and sent to the postal service, and all subscribers receive their
own copy.

 The magazine analogy breaks down when you realize that the publisher has no
idea who its subscribers are. The publisher only knows that its message will be pub-
lished to a particular topic—not who’s listening to that topic. This also implies that
the publisher has no idea how the message will be processed.

 Now that we’ve covered the basics of asynchronous messaging, let’s see how it com-
pares to synchronous RPC.

17.1.2 Assessing the benefits of asynchronous messaging

Even though it’s intuitive and simple to set up, synchronous communication imposes
several limitations on the client of a remote service. These are the most significant:

 Synchronous communication implies waiting. When a client invokes a method on a
remote service, the client must wait for the remote method to complete before
continuing. If the client communicates frequently with the remote service or
the remote service is slow to respond, this could negatively impact performance
of the client application.

 The client is coupled to the service through the service’s interface. If the interface of the
service changes, all of the service’s clients will need to change accordingly.

 The client is coupled to the service’s location. A client must be configured with the
service’s network location so that it knows how to contact the service. If the

Message
publisher Topic Subscriber

Subscriber

Subscriber

Figure 17.4 Like queues, topics decouple message
senders from message receivers. Unlike queues, a
topic message may be delivered to many topic
subscribers.

457A brief introduction to asynchronous messaging
network topology changes, the client will need to be reconfigured with the new
location.

 The client is coupled to the service’s availability. If the service becomes unavailable,
the client is effectively crippled.

Although synchronous communication has its place, these shortcomings should be
taken into account when deciding what communication mechanism is a best fit for
your application’s needs. If these constraints are a concern for you, you may want to
consider how asynchronous communication addresses them.

NO WAITING

When a message is sent asynchronously, the client doesn’t need to wait for it to be pro-
cessed or delivered. The client drops off the message with the message broker and
moves along, confident that the message will make it to the appropriate destination.

 Because it doesn’t have to wait, the client is freed up to perform other activities.
With all this free time, the client’s performance can be dramatically improved.

MESSAGE ORIENTATION AND DECOUPLING

Unlike RPC communication, which is typically oriented around a method call, mes-
sages sent asynchronously are data-centric. This means the client isn’t fixed to a spe-
cific method signature. Any queue or topic subscriber that can process the data sent
by the client can process the message. The client doesn’t need to be aware of any ser-
vice specifics.

LOCATION INDEPENDENCE

Synchronous RPC services are typically located by their network address. The implica-
tion is that clients aren’t resilient to changes in network topology. If a service’s IP
address changes or if it’s configured to listen on a different port, the client must be
changed accordingly, or the client will be unable to access the service.

 In contrast, messaging clients have no idea what service will process their messages
or where the service is located. The client only knows the queue or topic through
which the messages will be sent. As a result, it doesn’t matter where the service is
located, as long as it can retrieve messages from the queue or topic.

 In the point-to-point model, it’s possible to take advantage of location indepen-
dence to create a cluster of services. If the client is unaware of the service’s location,
and if the service’s only requirement is that it must be able to access the message bro-
ker, there’s no reason multiple services can’t be configured to pull messages from the
same queue. If the service is overburdened and falling behind in its processing, all you
need to do is start a few more instances of the service to listen to the same queue.

 Location independence takes on another interesting side effect in the publish/
subscribe model. Multiple services could all subscribe to a single topic, receiving
duplicate copies of the same message. But each service could process that message dif-
ferently. For example, let’s say you have a set of services that together process a mes-
sage that details the new hire of an employee. One service might add the employee to
the payroll system, another adds them to the HR portal, and yet another makes sure

458 CHAPTER 17 Messaging in Spring
the employee is given access to the systems they’ll need to do their job. Each service
works independently on the same data that they all received from a topic.

GUARANTEED DELIVERY

In order for a client to communicate with a synchronous service, the service must be
listening at the IP address and port specified. If the service were to go down or other-
wise become unavailable, the client wouldn’t be able to proceed.

 But when sending messages asynchronously, the client can rest assured that its
messages will be delivered. Even if the service is unavailable when a message is sent,
the message will be stored until the service is available again.

 Now that you have a feel for the basics of asynchronous messaging, let’s see it in
action. We’ll start by using JMS to send and receive messages.

17.2 Sending messages with JMS
The Java Message Service (JMS) is a Java standard that defines a common API for work-
ing with message brokers. Before JMS, each message broker had a proprietary API,
making an application’s messaging code less portable between brokers. But with JMS,
all compliant implementations can be worked with via a common interface in much
the same way that JDBC has given database operations a common interface.

 Spring supports JMS through a template-based abstraction known as JmsTemplate.
Using JmsTemplate, it’s easy to send messages across queues and topics from the pro-
ducer side and also to receive those messages on the consumer side. Spring also sup-
ports the notion of message-driven POJOs: simple Java objects that react to messages
arriving on a queue or topic in an asynchronous fashion.

 We’re going to explore Spring’s JMS support, including JmsTemplate and message-
driven POJOs. But before you can send and receive messages, you need a message bro-
ker ready to relay those messages between producers and consumers. Let’s kick off
our exploration of Spring JMS by setting up a message broker in Spring.

17.2.1 Setting up a message broker in Spring

ActiveMQ is a great open source message broker and a wonderful option for asyn-
chronous messaging with JMS. As I’m writing this, the current version of ActiveMQ is
5.9.1. To get started with ActiveMQ, you’ll need to download the binary distribution
from http://activemq.apache.org. Once you’ve downloaded ActiveMQ, unzip it to
your local hard drive. In the lib directory of the unzipped distribution, you’ll find
activemq-core-5.9.1.jar. This is the JAR file you’ll need to add to the application’s class-
path to be able to use ActiveMQ’s API.

 Under the bin directory, you’ll find subdirectories for various operating systems. In
those, you’ll find scripts that you can use to start ActiveMQ. For example, to start
ActiveMQ on OS X, run activemq start from the bin/macosx directory. In moments,
ActiveMQ will be ready and waiting to broker your messages.

http://activemq.apache.org

459Sending messages with JMS
CREATING A CONNECTION FACTORY

Throughout this chapter, you’ll see different ways you can use Spring to both send
and receive messages through JMS. In all cases, you’ll need a JMS connection factory to
be able to send messages through the message broker. Because you’re using ActiveMQ
as your message broker, you’ll have to configure the JMS connection factory so that it
knows how to connect to ActiveMQ. ActiveMQConnectionFactory is the JMS connec-
tion factory that comes with ActiveMQ. You can configure it in Spring like this:

<bean id="connectionFactory"
class="org.apache.activemq.spring.ActiveMQConnectionFactory" />

By default, ActiveMQConnectionFactory assumes that the ActiveMQ broker is listen-
ing at port 61616 on localhost. That’s fine for development purposes, but it’s likely
that your production ActiveMQ broker will be on a different host and/or port. In that
case, you can specify the broker URL with the brokerURL property:

<bean id="connectionFactory"
class="org.apache.activemq.spring.ActiveMQConnectionFactory"
p:brokerURL="tcp://localhost:61616"/>

Optionally, because you know you’re dealing with ActiveMQ, you can use ActiveMQ’s
own Spring configuration namespace (available with all versions of ActiveMQ since
version 4.1) to declare the connection factory. First, be sure to declare the amq
namespace in the Spring configuration XML file:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jms="http://www.springframework.org/schema/jms"
xmlns:amq="http://activemq.apache.org/schema/core"
xsi:schemaLocation="http://activemq.apache.org/schema/core

http://activemq.apache.org/schema/core/activemq-core.xsd
http://www.springframework.org/schema/jms
http://www.springframework.org/schema/jms/spring-jms.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

...
</beans>

Then you can use the <amq:connectionFactory> element to declare the connection
factory:

<amq:connectionFactory id="connectionFactory"
brokerURL="tcp://localhost:61616"/>

Note that the <amq:connectionFactory> element is specific to ActiveMQ. If you’re
using a different message-broker implementation, there may or may not be a Spring
configuration namespace available. If not, you’ll need to wire the connection factory
as a <bean>.

 Later in this chapter, you’ll use this connectionFactory bean a lot. But for now,
suffice it to say that brokerURL tells the connection factory where the message broker

460 CHAPTER 17 Messaging in Spring
is located. In this case, the URL given to brokerURL tells the connection factory to con-
nect to ActiveMQ on the local machine at port 61616 (which is the port that
ActiveMQ listens to by default).

DECLARING AN ACTIVEMQ MESSAGE DESTINATION

In addition to a connection factory, you need a destination for the messages to be
passed to. The destination can be either a queue or a topic, depending on the needs
of the application.

 Regardless of whether you’re using a queue or a topic, you must configure the des-
tination bean in Spring using a message broker–specific implementation class. For
example, the following <bean> declaration declares an ActiveMQ queue:

<bean id="queue"
class="org.apache.activemq.command.ActiveMQQueue"
c:_="spitter.queue" />

Similarly, the following <bean> declares a topic for ActiveMQ:

<bean id="topic"
class="org.apache.activemq.command.ActiveMQTopic"
c:_="spitter.queue" />

In either case, the constructor is given the name of the queue, as it’s known to the
message broker—spitter.topic in this case.

 As with the connection factory, the ActiveMQ namespace offers an alternative way
to declare queues and topics. For queues, you can also use the <amq:queue> element:

<amq:queue id="spittleQueue" physicalName="spittle.alert.queue" />

Or, if it’s a JMS topic that’s in order, use the <amq:topic>:

<amq:topic id="spittleTopic" physicalName="spittle.alert.topic" />

Either way, the physicalName attribute sets the name of the message channel.
At this point you’ve seen how to declare the essential components of working with
JMS. Now you’re ready to start sending and receiving messages. For that, you’ll use
Spring’s JmsTemplate, the centerpiece of Spring’s JMS support. But first, let’s gain an
appreciation for what JmsTemplate provides by looking at what JMS is like without
JmsTemplate.

17.2.2 Using Spring’s JMS template

As you’ve seen, JMS gives Java developers a standard API for interacting with message
brokers and for sending and receiving messages. Furthermore, virtually every message
broker implementation supports JMS. So there’s no reason to learn a proprietary mes-
saging API for every message broker you deal with.

 But although JMS offers a universal interface to all message brokers, its conve-
nience comes at a cost. Sending and receiving messages with JMS isn’t a simple matter
of licking a stamp and placing it on an envelope. As you’ll see, JMS demands that you
also (figuratively) fuel the mail carrier’s truck.

461Sending messages with JMS
TACKLING RUNAWAY JMS CODE

In section 10.3.1, I showed you how conventional JDBC code can be an unwieldy mess
when you need to handle connections, statements, result sets, and exceptions. Unfor-
tunately, conventional JMS follows a similar model, as you’ll observe in the following
listing.

ConnectionFactory cf =
new ActiveMQConnectionFactory("tcp://localhost:61616");

Connection conn = null;
Session session = null;
try {

conn = cf.createConnection();
session = conn.createSession(false, Session.AUTO_ACKNOWLEDGE);
Destination destination = new ActiveMQQueue("spitter.queue");
MessageProducer producer = session.createProducer(destination);
TextMessage message = session.createTextMessage();

message.setText("Hello world!");
producer.send(message);

} catch (JMSException e) {
// handle exception?

} finally {
try {

if (session != null) {
session.close();

}
if (conn != null) {

conn.close();
}

} catch (JMSException ex) {
}

}

At the risk of sounding repetitive—holy runaway code, Batman! As with the JDBC
example, there are almost 20 lines of code here just to send a simple “Hello world!”
message. Only a few of those lines actually send the message; the rest merely set the
stage for sending the message.

 It isn’t much better on the receiving end, as you can see in the next listing.

ConnectionFactory cf =
new ActiveMQConnectionFactory("tcp://localhost:61616");

Connection conn = null;
Session session = null;
try {

conn = cf.createConnection();
conn.start();
session = conn.createSession(false, Session.AUTO_ACKNOWLEDGE);
Destination destination =

new ActiveMQQueue("spitter.queue");

Listing 17.1 Sending a message using conventional (non-Spring) JMS

Listing 17.2 Receiving a message using conventional (non-Spring) JMS

Send message

462 CHAPTER 17 Messaging in Spring
MessageConsumer consumer = session.createConsumer(destination);
Message message = consumer.receive();
TextMessage textMessage = (TextMessage) message;
System.out.println("GOT A MESSAGE: " + textMessage.getText());
conn.start();

} catch (JMSException e) {
// handle exception?

} finally {
try {

if (session != null) {
session.close();

}
if (conn != null) {

conn.close();
}

} catch (JMSException ex) {
}

}

As in listing 17.1, that’s a lot of code to do something so darn simple. If you take a line-
by-line comparison, you’ll find that the listings are almost identical. And if you were to
look at a thousand other JMS examples, you’d find them all to be strikingly similar.
Some may retrieve their connection factories from JNDI, and some may use a topic
instead of a queue. Nevertheless, they all follow roughly the same pattern.

 A consequence of this boilerplate code is that you repeat yourself every time you
work with JMS. Worse still, you’ll find yourself repeating other developers’ JMS code.

 You saw in chapter 10 how Spring’s JdbcTemplate handles runaway JDBC boiler-
plate. Now let’s look at how Spring’s JmsTemplate can do the same thing for JMS boil-
erplate code.

WORKING WITH JMS TEMPLATES

JmsTemplate is Spring’s answer to verbose and repetitive JMS code. JmsTemplate takes
care of creating a connection, obtaining a session, and ultimately sending or receiving
messages. This leaves you to focus your development efforts on constructing the mes-
sage to send or processing messages that are received.

 What’s more, JmsTemplate can handle any clumsy JMSException that may be
thrown along the way. If a JMSException is thrown in the course of working with Jms-
Template, JmsTemplate will catch it and rethrow it as one of the unchecked subclasses
of Spring’s own JmsException. Table 17.1 shows how Spring maps standard JMS-
Exceptions to Spring’s unchecked JmsExceptions.

Table 17.1 Spring’s JmsTemplate catches standard JMSExceptions and rethrows them as
unchecked subclasses of Spring’s own JmsException.

Spring (org.springframework.jms.*) Standard JMS (javax.jms.*)

DestinationResolutionException Spring-specific—thrown when Spring can’t
resolve a destination name

IllegalStateException IllegalStateException

463Sending messages with JMS
In fairness to the JMS API, JMSException does come with a rich and descriptive set of
subclasses that give you a better sense of what went wrong. Nevertheless, all these sub-
classes of JMSException are checked exceptions and thus must be caught. JmsTemplate
attends to that for you by catching each exception and rethrowing an appropriate
unchecked subclass of JmsException.

 To use JmsTemplate, you’ll need to declare it as a bean in the Spring configuration
file. The following XML should do the trick:

<bean id="jmsTemplate"
class="org.springframework.jms.core.JmsTemplate"
c:_-ref="connectionFactory" />

Because JmsTemplate needs to know how to get connections to the message broker,
you must set the connectionFactory property with a reference to the bean that imple-
ments JMS’s ConnectionFactory interface. Here, you wire it with a reference to the
connectionFactory bean that you declared earlier in section 17.2.1.

InvalidClientIDException InvalidClientIDException

InvalidDestinationException InvalidDestinationException

InvalidSelectorException InvalidSelectorException

JmsSecurityException JmsSecurityException

ListenerExecutionFailedException Spring-specific—thrown when execution of a
listener method fails

MessageConversionException Spring-specific—thrown when message conver-
sion fails

MessageEOFException MessageEOFException

MessageFormatException MessageFormatException

MessageNotReadableException MessageNotReadableException

MessageNotWriteableException MessageNotWriteableException

ResourceAllocationException ResourceAllocationException

SynchedLocalTransactionFailedException Spring-specific—thrown when a synchronized
local transaction fails to complete

TransactionInProgressException TransactionInProgressException

TransactionRolledBackException TransactionRolledBackException

UncategorizedJmsException Spring-specific—thrown when no other excep-
tion applies

Table 17.1 Spring’s JmsTemplate catches standard JMSExceptions and rethrows them as
unchecked subclasses of Spring’s own JmsException. (continued)

Spring (org.springframework.jms.*) Standard JMS (javax.jms.*)

464 CHAPTER 17 Messaging in Spring
 That’s all you need to do to configure JmsTemplate—it’s ready to go. Let’s start
sending messages!

SENDING MESSAGES

One of the features you’d like to build into the Spittr application is the option of alert-
ing (perhaps by email) other users whenever a spittle has been created. You could
build that feature directly into the application at the point where a spittle is added.
But figuring out whom to send alerts to and sending those alerts may take a while,
which could hurt the perceived performance of the application. When a new spittle is
added, you want the application to be snappy and respond quickly.

 Rather than taking the time to send a message the moment a spittle is added, it
makes more sense to queue up that work and deal with it later, after the response has
gone back to the user. The time it takes to send a message to a message queue or a topic
is negligible, especially compared to the time it may take to send alerts to other users.

 To support sending spittle alerts asynchronously with the creation of spittles, let’s
introduce AlertService to the Spittr application:

package com.habuma.spittr.alerts;
import com.habuma.spittr.domain.Spittle;

public interface AlertService {
void sendSpittleAlert(Spittle spittle);

}

As you can see, AlertService is an interface that defines a single operation, send-
SpittleAlert().

 AlertServiceImpl, shown in listing 17.3, is an implementation of the Alert-
Service interface that uses an injected JmsOperations (the interface that Jms-
Template implements) to send Spittle objects to a message queue to be processed at
some later time.

package com.habuma.spittr.alerts;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.Session;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.jms.core.JmsOperations;
import org.springframework.jms.core.MessageCreator;
import com.habuma.spittr.domain.Spittle;

public class AlertServiceImpl implements AlertService {

private JmsOperations jmsOperations;

@Autowired
public AlertServiceImpl(JmsOperations jmsOperatons) {

this.jmsOperations = jmsOperations;
}

public void sendSpittleAlert(final Spittle spittle) {

Listing 17.3 Sending a Spittle using JmsTemplate

Inject JMS template

465Sending messages with JMS
jmsOperations.send(
"spittle.alert.queue",
new MessageCreator() {
public Message createMessage(Session session)

throws JMSException {
return session.createObjectMessage(spittle);

}
}

);
}

}

The first parameter to JmsOperations’ send() method is the name of the JMS destina-
tion to which the message will be sent. When the send() method is called, Jms-
Template deals with obtaining a JMS connection and session and sends the message
on behalf of the sender (see figure 17.5).

The message is constructed using a MessageCreator, implemented here as an anony-
mous inner class. In MessageCreator’s createMessage() method, you ask for an
object message from the session, giving it the Spittle object from which to build the
object message.

 And that’s it! Note that the sendSpittleAlert() method is focused entirely on
assembling and sending a message. There’s no connection or session-management
code; JmsTemplate handles all that for you. And there’s no need to catch JMS-
Exception; JmsTemplate will catch any JMSException that’s thrown and then rethrow
it as one of Spring’s unchecked exceptions from table 17.1.

SETTING A DEFAULT DESTINATION

In listing 17.3, you explicitly specify a destination where the spittle message should be
sent in the send() method. That form of send() comes in handy when you want to
programmatically choose a destination. But in the case of AlertServiceImpl, you’ll
always be sending the spittle message to the same destination, so the benefits of that
form of send() aren’t as clear.

 Instead of explicitly specifying a destination each time you send a message, you can
opt for wiring a default destination into JmsTemplate:

<bean id="jmsTemplate"
class="org.springframework.jms.core.JmsTemplate"
c:_-ref="connectionFactory"
p:defaultDestinationName="spittle.alert.queue" />

Send message
Specify destination

Create message

send()Message
sender JmsTemplate Queue/topic

Figure 17.5 JmsTemplate deals with the complexities of sending a message on behalf of
the sender.

466 CHAPTER 17 Messaging in Spring
Here you set the destination name to spittle.alert.queue. But that’s only a name: it
doesn’t say what kind of destination you’re dealing with. If an existing queue or topic
exists with that name, it will be used. If not, then a new destination (usually a queue)
will be created. But if you want to be specific about what type of destination to create,
you can instead wire in a reference to a queue or destination bean that you declared
earlier:

<bean id="jmsTemplate"
class="org.springframework.jms.core.JmsTemplate"
c:_-ref="connectionFactory"
p:defaultDestination-ref="spittleTopic" />

Now the call to JmsOperations’ send() method can be simplified slightly by removing
the first parameter:

jmsOperations.send(
new MessageCreator() {
...
}

);

This form of the send() method only takes a MessageCreator. There’s no need to
specify a destination, because the default destination is the one you want to send mes-
sages to.

 Getting rid of the explicit destination in the call to send() made things a bit simpler.
But sending messages can be even easier if you take advantage of a message converter.

CONVERTING MESSAGES WHEN SENDING

In addition to the send() method, JmsTemplate offers convertAndSend(). Unlike
send(), the convertAndSend() method doesn’t take a MessageCreator as an argu-
ment. That’s because convertAndSend() uses a built-in message converter to create
the message for you.

 When you use convertAndSend(), the sendSpittleAlert() method can be
reduced to a single line in its body:

public void sendSpittleAlert(Spittle spittle) {
jmsOperations.convertAndSend(spittle);

}

Just like magic, the Spittle is converted into a Message before it’s sent. But as with
any magic trick, JmsTemplate has a little something up its sleeve. It uses an implemen-
tation of MessageConverter to do the dirty work of converting objects to Messages.

 MessageConverter is a Spring-defined interface that has only two methods to be
implemented:

public interface MessageConverter {
Message toMessage(Object object, Session session)

throws JMSException, MessageConversionException;
Object fromMessage(Message message)

throws JMSException, MessageConversionException;
}

467Sending messages with JMS
Although this interface is simple enough to implement, you often won’t need to cre-
ate a custom implementation. Spring already offers a handful of implementations,
such as those described in table 17.2.

By default, JmsTemplate uses a SimpleMessageConverter when sending messages in
convertAndSend(). But you can override that by declaring the message converter as a
bean and injecting it into JmsTemplate’s messageConverter property. For example, if
you want to work with JSON messages, you can declare a MappingJacksonMessage-
Converter bean:

<bean id="messageConverter"
class="org.springframework.jms.support.converter.

➥ MappingJacksonMessageConverter" />

Then you can wire it into JmsTemplate like this:

<bean id="jmsTemplate"
class="org.springframework.jms.core.JmsTemplate"
c:_-ref="connectionFactory"
p:defaultDestinationName="spittle.alert.queue"
p:messageConverter-ref="messageConverter" />

The various message converters may have additional configuration for finer-grained
control of the conversion process. MappingJacksonMessageConverter, for instance,
allows you to configure things such as encoding and a custom Jackson ObjectMapper.
Consult the JavaDoc for each message converter for more details on how to configure
the finer details of these message converters.

CONSUMING MESSAGES

Now you’ve seen how to send a message using JmsTemplate. But what if you’re on the
receiving end? Can JmsTemplate be used to receive messages, too?

 Yes, it can. In fact, it’s even easier to receive messages with JmsTemplate than it is to
send them. All you need to do is call JmsOperations’ receive() method, as shown in
the following listing.

Table 17.2 Spring offers several message converters for common conversion tasks. (All of these
message converters are in the org.springframework.jms.support.converter package.)

Message converter What it does

MappingJacksonMessageConverter Uses the Jackson JSON library to convert messages to
and from JSON

MappingJackson2MessageConverter Uses the Jackson 2 JSON library to convert messages to
and from JSON

MarshallingMessageConverter Uses JAXB to convert messages to and from XML

SimpleMessageConverter Converts Strings to/from TextMessage, byte arrays to/
from BytesMessage, Maps to/from MapMessage, and
Serializable objects to/from ObjectMessage

468 CHAPTER 17 Messaging in Spring

public Spittle receiveSpittleAlert() {
try {

ObjectMessage receivedMessage =
(ObjectMessage) jmsOperations.receive();

return (Spittle) receivedMessage.getObject();
} catch (JMSException jmsException) {
throw JmsUtils.convertJmsAccessException(jmsException);

}
}

When the JmsOperations’ receive() method is called, it attempts to retrieve a mes-
sage from the message broker. If no message is available, receive() waits until a
message becomes available. This interaction is illustrated in figure 17.6.

 Because you know that the spittle message was sent as an object message, it can
be cast to ObjectMessage on arrival. After that, you call getObject() to extract the
Spittle object from the ObjectMessage and return it.

 The one gotcha is that you have to do something about the JMSException that may
be thrown. As I already mentioned, JmsTemplate is good about handling any checked
JMSExceptions that are thrown and then rethrowing them as Spring unchecked
JmsExceptions. But that’s only applicable when you call one of JmsTemplate’s meth-
ods. JmsTemplate can’t do much about the JMSException that may be thrown by the
call to ObjectMessage’s getObject() method.

 Therefore, you must either catch that JMSException or declare that the method
throws it. In keeping with Spring’s philosophy of avoiding checked exceptions, you
don’t want to let the JMSException escape this method, so you’ll catch it instead. In the
catch block, you can use the convertJmsAccessException() method from Spring’s
JmsUtils class to convert the checked JMSException to an unchecked JmsException.
This is effectively the same thing JmsTemplate does for you in other cases.

 One thing you can do to clear up the message in receiveSpittleAlert() is to
take advantage of a message converter. You’ve seen how message converters can
convert objects to Messages in convertAndSend(). But they can also be used on the
receiving end with JmsTemplate’s receiveAndConvert():

public Spittle retrieveSpittleAlert() {
return (Spittle) jmsOperations.receiveAndConvert();

}

Listing 17.4 Receiving a message using JmsTemplate

Receive message

Get object

Throw converted
exception

receive()
Queue/topic JmsTemplate Message

receiver

Figure 17.6 Receiving messages from a topic or queue using JmsTemplate is as simple
as calling the receive() method. JmsTemplate takes care of the rest.

469Sending messages with JMS
Now there’s no need to cast the Message to ObjectMessage, retrieve the Spittle by
calling getObject(), or muck about with the checked JMSException. This new
retrieveSpittleAlert() is much cleaner. But there’s still a small, not-so-obvious
problem.

 The big downside of consuming messages with JmsTemplate is that both the
receive() and receiveAndConvert() methods are synchronous. This means the
receiver must wait patiently for the message to arrive, because those methods will
block until a message is available (or until a timeout condition occurs). Doesn’t it
seem odd to synchronously consume a message that was asynchronously sent?

 That’s where message-driven POJOs come in handy. Let’s see how to receive
messages asynchronously using components that react to messages rather than wait
on them.

17.2.3 Creating message-driven POJOs

During one summer in college, I had the privilege of working at Yellowstone National
Park. I didn’t have a high-profile job like being a park ranger or the guy who turns
Old Faithful on and off. Instead, I held a position in housekeeping at Old Faithful
Inn, changing sheets, cleaning bathrooms, and vacuuming floors. Not glamorous, but
at least I was working in one of the most beautiful places on Earth.

 Every day after work, I’d head over to the local post office to see if I had any mail. I
was away from home for several weeks, so it was nice to receive a letter or card from
my friends back at school. I didn’t have my own post box, so I’d walk up and ask the
man sitting on the stool behind the counter if I had received any mail. That’s when
the wait would begin.

 You see, the man behind the counter was approximately 195 years old. And like
most people that age, he had a difficult time getting around. He’d drag his keister off
the stool, slowly scoot his feet across the floor, and then disappear behind a partition.
After a few moments, he’d emerge, shuffle his way back to the counter, and lift himself
back up onto the stool. Then he’d look at me and say, “No mail today.”

 JmsTemplate’s receive() method is a lot like that aged postal employee. When
you call receive(), it goes away and looks for a message in the queue or topic and
doesn’t return until a message arrives or until the timeout has passed. Meanwhile,
your application is sitting there doing nothing, waiting to see if there’s a message.
Wouldn’t it be better if your application could go about its business and be notified
when a message arrives?

 One of the highlights of the EJB 2 specification was the inclusion of the message-
driven bean (MDB). MDBs are EJBs that process messages asynchronously. In other
words, MDBs react to messages in a JMS destination as events and respond to those
events. This is in contrast to synchronous message receivers, which block until a mes-
sage is available.

 MDBs were a bright spot in the EJB landscape. Even many of EJB’s most rabid
detractors would concede that MDBs were an elegant way of handling messages. The

470 CHAPTER 17 Messaging in Spring
only blemish to be found in EJB 2 MDBs was that they had to implement
javax.ejb.MessageDrivenBean. In doing so, they also had to implement a few EJB
lifecycle callback methods. Put simply, EJB 2 MDBs were very un-POJO.

 With the EJB 3 specification, MDBs were cleaned up to have a slightly more POJO
feel to them. No longer must you implement the MessageDrivenBean interface.
Instead, you implement the more generic javax.jms.MessageListener interface and
annotate MDBs with @MessageDriven.

 Spring 2.0 addresses the need for asynchronous consumption of messages by pro-
viding its own form of message-driven bean that’s similar to EJB 3’s MDBs. In this sec-
tion, you’ll learn how Spring supports asynchronous message consumption using
message-driven POJOs (we’ll call them MDPs, for short).

CREATING A MESSAGE LISTENER

If you were to build your spittle alert handler using EJB’s message-driven model, it
would need to be annotated with @MessageDriven. And although it’s not strictly
required, it’s recommended that the MDB implement the MessageListener interface.
The result would look something like this:

@MessageDriven(mappedName="jms/spittle.alert.queue")
public class SpittleAlertHandler implements MessageListener {

@Resource
private MessageDrivenContext mdc;

public void onMessage(Message message) {
...

}
}

For a moment, try to imagine a simpler world where message-driven components
don’t have to implement the MessageListener interface. In such a happy place, the
sky would be the brightest of blues, the birds would always whistle your favorite song,
and you wouldn’t have to implement the onMessage() method or have a Message-
DrivenContext injected.

 Okay, maybe the demands placed on an MDB by the EJB 3 specification aren’t that
arduous. But the fact is that the EJB 3 implementation of SpittleAlertHandler is too
tied to EJB’s message-driven APIs and isn’t as POJO-ish as you’d like. Ideally, you’d like
the alert handler to be capable of handling messages, but not coded as if it knows
that’s what it will be doing.

 Spring offers the ability for a method on a POJO to handle messages from a JMS
queue or topic. For example, the following POJO implementation of SpittleAlert-
Handler is sufficient.

package com.habuma.spittr.alerts;
import com.habuma.spittr.domain.Spittle;

public class SpittleAlertHandler {

Listing 17.5 Spring MDP that asynchronously receives and processes messages

471Sending messages with JMS
public void handleSpittleAlert(Spittle spittle) {
// ... implementation goes here...

}
}

Although changing the color of the sky and training birds to sing are out of the scope
of Spring, listing 17.5 shows that the dream world I described is much closer to reality.
You’ll fill in the details of the handleSpittleAlert() method later. For now, consider
that nothing in SpittleAlertHandler shows any hint of JMS. It’s a POJO in every sense
of the term. It can nevertheless handle messages just like its EJB cousin. All it needs is
some special Spring configuration.

CONFIGURING MESSAGE LISTENERS

The trick to empowering a POJO with message-receiving abilities is to configure it as a
message listener in Spring. Spring’s jms namespace provides everything you need to
do that. First, you must declare the handler as a <bean>:

<bean id="spittleHandler"
class="com.habuma.spittr.alerts.SpittleAlertHandler" />

Then, to turn SpittleAlertHandler into a message-driven POJO, you can declare the
bean to be a message listener:

<jms:listener-container connection-factory="connectionFactory">
<jms:listener destination="spitter.alert.queue"

ref="spittleHandler" method="handleSpittleAlert" />
</jms:listener-container>

Here you have a message listener that’s contained in a message-listener container. A
message-listener container is a special bean that watches a JMS destination, waiting for a
message to arrive. Once a message arrives, the bean retrieves the message and passes it
on to any message listeners that are interested. Figure 17.7 illustrates this interaction.

 To configure the message-listener container and message listener in Spring, you
use two elements from Spring’s jms namespace. The <jms:listener-container> is
used to contain <jms:listener> elements. Here its connectionFactory attribute is
configured with a reference to the connectionFactory that’s to be used by each of the
child <jms:listener>s as they listen for messages. In this case, the connection-
factory attribute could have been left off, because it defaults to connectionFactory.

 The <jms:listener> element is used to identify a bean and a method that should
handle incoming messages. For the purposes of handling spittle alert messages, the
ref element refers to your spittleHandler bean. When a message arrives on spitter

Handler method

Queue/topic
Message
listener
(MDP)

Message
listener

container

Figure 17.7 A message-listener container listens to a queue/topic. When a message arrives,
it’s forwarded to a message listener (such as a message-driven POJO).

472 CHAPTER 17 Messaging in Spring
.alert.queue (as designated by the destination attribute), the spittleHandler
bean’s handleSpittleAlert() method gets the call (per the method attribute).

 It’s also worth noting that if the bean identified by the ref attribute implements
MessageListener, then there’s no need to specify the method attribute. The
onMessage() will be called by default.

17.2.4 Using message-based RPC

Chapter 15 explored several of Spring’s options for exposing bean methods as remote
services and for making calls on those services from clients. In this chapter, you’ve
seen how to send messages between applications over message queues and topics.
Now we’ll bring those two concepts together and cover how to make remote calls that
use JMS as a transport.

 To support message-based RPC, Spring offers JmsInvokerServiceExporter for
exporting beans as message-based services and JmsInvokerProxyFactoryBean for cli-
ents to consume those services. As you’ll see, these two options are similar, but each
has advantages and disadvantages. I’ll show you both approaches and let you decide
which works best for you. Let’s start by looking at how to work with Spring’s support
for JMS-backed services.

 As you’ll recall from chapter 15, Spring provides several options for exporting
beans as remote services. You used RmiServiceExporter to export beans as RMI ser-
vices, HessianExporter and BurlapExporter for Hessian and Burlap services over
HTTP, and HttpInvokerServiceExporter to create HTTP invoker services over HTTP.
But Spring has one more service exporter that we didn’t talk about in chapter 15.

EXPORTING JMS-BASED SERVICES

JmsInvokerServiceExporter is much like those other service exporters. In fact, note
that there’s some symmetry in the names of JmsInvokerServiceExporter and Http-
InvokerServiceExporter. If HttpInvokerServiceExporter exports services that
communicate over HTTP, then JmsInvokerServiceExporter must export services that
converse over JMS.

 To demonstrate how JmsInvokerServiceExporter works, consider Alert-

ServiceImpl.

package com.habuma.spittr.alerts;
import org.springframework.mail.SimpleMailMessage;
import org.springframework.mail.javamail.JavaMailSender;
import org.springframework.stereotype.Component;
import com.habuma.spittr.domain.Spittle;

@Component("alertService")
public class AlertServiceImpl implements AlertService {

private JavaMailSender mailSender;
private String alertEmailAddress;

Listing 17.6 AlertServiceImpl: a JMS-free POJO to handle JMS messages

473Sending messages with JMS
public AlertServiceImpl(JavaMailSender mailSender,
String alertEmailAddress) {

this.mailSender = mailSender;
this.alertEmailAddress = alertEmailAddress;

}

public void sendSpittleAlert(final Spittle spittle) {
SimpleMailMessage message = new SimpleMailMessage();

String spitterName = spittle.getSpitter().getFullName();
message.setFrom("noreply@spitter.com");
message.setTo(alertEmailAddress);
message.setSubject("New spittle from " + spitterName);
message.setText(spitterName + " says: " + spittle.getText());
mailSender.send(message);

}

}

Don’t concern yourself too much with the inner details of the sendSpittleAlert()
method at this point. We’ll talk more about how to send emails with Spring later, in
chapter 20. The important thing to notice is that AlertServiceImpl is a simple POJO
and has nothing that indicates it will be used to handle JMS messages. It does imple-
ment the AlertService interface, as shown here:

package com.habuma.spittr.alerts;
import com.habuma.spittr.domain.Spittle;
public interface AlertService {

void sendSpittleAlert(Spittle spittle);
}

As you can see, AlertServiceImpl is annotated with @Component so that it will be auto-
matically discovered and registered as a bean in the Spring application context with an
ID of alertService. You’ll refer to this bean as you configure a JmsInvokerService-
Exporter:

<bean id="alertServiceExporter"
class="org.springframework.jms.remoting.JmsInvokerServiceExporter"
p:service-ref="alertService"
p:serviceInterface="com.habuma.spittr.alerts.AlertService" />

This bean’s properties describe what the exported service should look like. The
service property is wired to refer to the alertService bean, which is the implemen-
tation of the remote service. Meanwhile, the serviceInterface property is set to the
fully qualified class name of the interface that the service provides.

 The exporter’s properties don’t describe the specifics of how the service will be
carried over JMS. But the good news is that JmsInvokerServiceExporter qualifies as a
JMS listener. Therefore, you can configure it as such in a <jms:listener-container>
element:

<jms:listener-container connection-factory="connectionFactory">
<jms:listener destination="spitter.alert.queue"

ref="alertServiceExporter" />
</jms:listener-container>

Send Spittle alert

474 CHAPTER 17 Messaging in Spring
The JMS listener container is given the connection factory so that it can know how to
connect to the message broker. Meanwhile, the <jms:listener> declaration is given
the destination on which the remote message will be carried.

CONSUMING JMS-BASED SERVICES

At this point, the JMS-based alert service should be ready and waiting for RPC messages
to arrive on the spitter.alert.queue queue. On the client side, JmsInvokerProxy-
FactoryBean will be used to access the service.

 JmsInvokerProxyFactoryBean is a lot like the other remoting proxy factory beans
that we looked at in chapter 15. It hides the details of accessing a remote service
behind a convenient interface, through which the client interacts with the service.
The big difference is that instead of proxying RMI- or HTTP-based services,
JmsInvokerProxyFactoryBean proxies a JMS-based service that was exported by
JmsInvokerServiceExporter.

 To consume the alert service, you can wire the JmsInvokerProxyFactoryBean like
this:

<bean id="alertService"
class="org.springframework.jms.remoting.JmsInvokerProxyFactoryBean"
p:connectionFactory-ref="connectionFactory"
p:queueName="spittle.alert.queue"
propp:serviceInterface="com.habuma.spittr.alerts.AlertService" />

The connectionFactory and queueName properties specify how RPC messages should
be delivered—here, on the spitter.alert.queue queue at the message broker con-
figured in the given connection factory. The serviceInterface specifies that the
proxy should be exposed through the AlertService interface.

 JMS has been the go-to messaging solution for Java applications for many years. But
JMS isn’t the only messaging choice available to Java and Spring developers. In the
past few years, the Advanced Message Queuing Protocol (AMQP) has been getting a lot of
attention. As it turns out, Spring has support for sending messages with AMQP, as
you’ll see next.

17.3 Messaging with AMQP
You may be wondering why you need another messaging specification. Isn’t JMS good
enough? What does AMQP bring to the table that is missing from JMS?

 As it turns out, AMQP offers several advantages over JMS. First, AMQP defines a
wire-level protocol for messaging, whereas JMS defines an API specification. JMS’s API
specification ensures that all JMS implementations can be used through a common
API but doesn’t mandate that messages sent by one JMS implementation can be con-
sumed by a different JMS implementation. AMQP’s wire-level protocol, on the other
hand, specifies the format that messages will take when en route between the pro-
ducer and consumer. Consequently, AMQP is more interoperable than JMS—not only
across different AMQP implementations, but also across languages and platforms.1

1 If you read this to mean that AMQP goes beyond the Java language and platform, then you’re catching on
quickly.

475Messaging with AMQP
 Another significant advantage of AMQP over JMS is that AMQP has a much more
flexible and transparent messaging model. With JMS, there are only two messaging
models to choose from: point-to-point and publish/subscribe. Both of those models
are certainly possible with AMQP, but AMQP enables you to route messages in a num-
ber of ways, and it does this by decoupling the message producer from the queue(s) in
which the messages will be placed.

 Spring AMQP is an extension to the Spring Framework that enables AMQP-style
messaging in Spring applications. As you’ll see, Spring AMQP provides an API that
makes working with AMQP remarkably similar to Spring’s JMS abstraction. That means
much of what you learned earlier in this chapter for JMS can be used to help you
understand how to send and receive messages with Spring AMQP.

 You’ll see how to work with Spring AMQP soon enough. But before we dig deep
into how to send and receive AMQP messages in Spring, let’s take a quick look at what
makes AMQP tick.

17.3.1 A brief introduction to AMQP

To understand the AMQP messaging model, it may help to briefly recall the JMS mes-
saging model. In JMS, there are just three primary participants: the message producer,
the message consumer(s), and a channel (either a queue or a topic) to carry the mes-
sage between producers and consumers. These essentials of the JMS messaging model
are illustrated in figures 17.3 and 17.4.

 In JMS, the channel helps to decouple the producer from the consumer, but both
are still coupled to the channel. A producer publishes messages to a specific queue or
topic, and the consumer receives those message from a specific queue or topic. The
channel has the double duty of relaying messages and determining how those mes-
sages will be routed; queues route using a point-to-point algorithm, and topics route
in publish/subscribe fashion.

 In contrast, AMQP producers don’t publish directly to a queue. Instead, AMQP
introduces a new level of indirection between the producer and any queues that will
carry the message: the exchange. This relationship is illustrated in figure 17.8.

 As you can see, a message producer publishes a message to an exchange. The
exchange, which is bound to one or more queues, routes the message to the queue(s).
Consumers pull messages from the queue and process them.

Queue

BindingProducer Exchange Consumer

Figure 17.8 In AMQP, message producers are decoupled from message queues by an
exchange that handles message routing.

476 CHAPTER 17 Messaging in Spring
What’s not apparent from figure 17.8 is that the exchange isn’t a pass-through mecha-
nism to a queue. AMQP defines four different types of exchanges, each with a different
routing algorithm that decides whether to place a message in a queue. Depending on
an exchange’s algorithm, it may consider the message’s routing key and/or arguments
and compare those with the routing key and arguments of the binding between the
exchange and a queue. (A routing key can be loosely thought of as the To address
in an email, specifying the intended recipient.) If the algorithm is satisfied with the
comparison, the message will be routed to the queue. If not, then it won’t be routed to
the queue.

 The four standard types of AMQP exchanges are as follows:

 Direct—A message will be routed to a queue if its routing key is a direct match
for the routing key of the binding.

 Topic—A message will be routed to a queue if its routing key is a wildcard match
for the routing key of the binding.

 Headers—A message will be routed to a queue if the headers and values in its
table of arguments match those in the binding’s table of arguments. A special
header named x-match can specify whether all values must match or if any can
match.

 Fanout—A message will be routed to all queues that are bound to the exchange,
regardless of the routing key or headers/values in the table of arguments.

With these four types of exchanges, it’s easy to imagine how you can define any num-
ber of routing schemes that go beyond simple point-to-point or publish/subscribe.2

Fortunately, when it comes to sending and receiving messages, the routing algo-
rithm(s) in play have little impact on how you develop the message producers and
consumers. Put simply, producers publish to an exchange with a routing key; consum-
ers retrieve from a queue.

 This has been a quick overview of the basics of AMQP messaging—you should have
just enough understanding to start sending and receiving messages using Spring
AMQP. But I encourage you to dig deeper into AMQP by reading the specification and
other materials at www.amqp.org or by reading RabbitMQ in Action by Alvaro Videla
and Jason J.W. Williams (Manning, 2012, www.manning.com/videla/).

 Now let’s step away from the abstract discussion of AMQP so you can get your hands
dirty writing code that sends and receives messages using Spring AMQP. You’ll start by
seeing some of the common Spring AMQP configuration needed for both producers
and consumers.

2 And I haven’t even mentioned that it’s possible to bind exchanges to other exchanges to create a nested hier-
archy of routing.

www.manning.com/videla/

477Messaging with AMQP
17.3.2 Configuring Spring for AMQP messaging

When you first started working with Spring’s JMS abstraction, you began by configur-
ing a connection factory. Similarly, working with Spring AMQP starts with configuring
a connection factory. But instead of configuring a JMS connection factory, you need
to configure an AMQP connection factory. More specifically, you’ll configure a
RabbitMQ connection factory.

The easiest way to configure a RabbitMQ connection factory is to use the rabbit con-
figuration namespace provided by Spring AMQP. To use it, you need to be sure the
schema is declared in your Spring configuration XML:

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns="http://www.springframework.org/schema/rabbit"

xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/rabbit
http://www.springframework.org/schema/rabbit/spring-rabbit-1.0.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

...

</beans:beans>

Although it’s optional, in this case I’ve decided to declare the rabbit namespace as
the primary namespace in the configuration and demote the beans namespace to
being a secondary namespace. That’s because I anticipate declaring more rabbits than
beans in this configuration and would rather prefix the few bean elements with
beans: and leave the rabbit elements prefix-less.

 The rabbit namespace includes several elements for configuring RabbitMQ in
Spring. But the one you’re most interested in at this point is the <connection-
factory> element. In its simplest form, you can configure a RabbitMQ connection
factory with no attributes:

<connection-factory/>

What is RabbitMQ?
RabbitMQ is a popular open source message broker that implements AMQP. Spring
AMQP comes ready with RabbitMQ support, including a RabbitMQ connection factory,
template, and Spring configuration namespace.

You’ll need to install RabbitMQ before you can send and receive messages with it.
You can find installation instructions at www.rabbitmq.com/download.html. They vary
depending on what OS you’re running, so I’ll leave it to you to follow the instructions
appropriate for your environment.

478 CHAPTER 17 Messaging in Spring
This will work, but it leaves the resulting connection factory bean without a usable
bean ID, which makes it hard to wire the connection factory into any other bean that
needs it. Therefore, you’ll probably want to give it a bean ID with the id attribute:

<connection-factory id="connectionFactory" />

By default, the connection factory will assume that the RabbitMQ server is listening on
localhost at post 5672 and that the username and password are both guest. Those are
reasonable defaults for development, but you’ll probably want to change those for
production. Here’s a <connection-factory> with settings to override those defaults:

<connection-factory id="connectionFactory"
host="${rabbitmq.host}"
port="${rabbitmq.port}"
username="${rabbitmq.username}"
password="${rabbitmq.password}" />

You use placeholders to specify the values so that the configuration can be managed
outside of the Spring configuration (most likely in a properties file).

 In addition to the connection factory, there are a few more configuration elements
that you may want to consider using. Let’s see how to configure Spring AMQP to lazily
create queues, exchanges, and bindings.

DECLARING QUEUES, EXCHANGES, AND BINDINGS

Unlike JMS, where the routing behavior of queues and topics is established by the
specification, AMQP routing is richer and more flexible and thus depends on you to
define the queues and exchanges and how they’re bound to each other. One way of
declaring queues, exchanges, and bindings is via a variety of methods on the
RabbitMQ Channel interface. But working with RabbitMQ’s Channel directly is
involved. Can Spring AMQP help you declare your message-routing components?

 Fortunately, the rabbit namespace includes several elements to help declare
queues, exchanges, and the bindings that tie them together. These elements are listed
in table 17.3.

Table 17.3 Spring AMQP’s rabbit namespace includes several elements for lazily creating queues,
exchanges, and the bindings between them.

Element What it does

<queue> Creates a queue.

<fanout-exchange> Creates a fanout exchange.

<header-exchange> Creates a headers exchange.

<topic-exchange> Creates a topic exchange.

<direct-exchange> Creates a direct exchange.

479Messaging with AMQP
These configuration elements are used alongside the <admin> element. The <admin>
element creates a RabbitMQ administrative component that automatically creates (in
the RabbitMQ broker, if they don’t already exist) any queues, exchanges, and bind-
ings declared using the elements in table 17.3.

 For example, if you want to declare a queue named spittle.alert.queue, you
only need to add the following two elements to your Spring configuration:

<admin connection-factory="connectionFactory"/
> <queue id="spittleAlertQueue" name="spittle.alerts" />

For simple messaging, this may be all you need. That’s because there’s a default direct
exchange with no name, and all queues are bound to that exchange with a routing
key that’s the same as the queue’s name. With this simple configuration, you could
send messages to the no-name exchange and specify a routing key of spittle
.alert.queue to have messages routed to the queue. Essentially, this re-creates a JMS-
style point-to-point model.

 More interesting routing, however, will require that you declare one or more
exchanges and bind them to queues. For example, to have a message routed to multi-
ple queues with no regard for the routing key, you can configure a fanout exchange
and several queues like this:

<admin connection-factory="connectionFactory" /
> <queue name="spittle.alert.queue.1" > <queue name="spittle.alert.queue
.2" > <queue name="spittle.alert.queue.3" > <fanout-
exchange name="spittle.fanout"> <bindings> <binding queue="spittle.al
ert.queue.1" /> <binding queue="spittle.alert.queue.2" /
> <binding queue="spittle.alert.queue.3" /> </bindings> </fanout-
exchange>

Using the elements in table 17.3, there are countless ways to configure routing in
RabbitMQ. But I don’t have countless pages to describe them all to you, so in the
interest of keeping this discussion on track, I’ll leave routing creativity as an exercise
for you and move on to discussing how to send messages.

17.3.3 Sending messages with RabbitTemplate

As its name implies, the RabbitMQ connection factory is used to create connections
with RabbitMQ. If you want to send messages via RabbitMQ, you could inject
the connectionFactory bean into your AlertServiceImpl class, use it to create a

<bindings> <binding/> </bindings> The <bindings> element defines a set of one or
more <binding> elements. The <binding> element
creates a binding between an exchange and a
queue.

Table 17.3 Spring AMQP’s rabbit namespace includes several elements for lazily creating queues,
exchanges, and the bindings between them. (continued)

Element What it does

480 CHAPTER 17 Messaging in Spring
Connection, use that Connection to create a Channel, and use that Channel to publish
a message to an exchange.

 Yep, you could do that.
 But that would be a lot of work and would involve a lot of boilerplate coding on

your part. One thing that Spring abhors is boilerplate code. You’ve already seen sev-
eral examples where Spring offers templates to eliminate boilerplate—including
JmsTemplate, earlier in this chapter, which eliminates JMS boilerplate code. It should
be no surprise that Spring AMQP provides RabbitTemplate to eliminate boilerplate
associated with sending and receiving messages with RabbitMQ.

 The simplest configuration for RabbitTemplate can be done using the <template>
element from the rabbit configuration namespace as follows:

<template id="rabbitTemplate"
connection-factory="connectionFactory" />

Now all you need to do to send a message is inject the template bean into Alert-
ServiceImpl and use it to send a Spittle. The following listing shows a new version
of AlertServiceImpl that uses RabbitTemplate instead of JmsTemplate to send a
Spittle alert.

package com.habuma.spitter.alerts;

import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.beans.factory.annotation.Autowired;

import com.habuma.spitter.domain.Spittle;

public class AlertServiceImpl implements AlertService {

private RabbitTemplate rabbit;

@Autowired
public AlertServiceImpl(RabbitTemplate rabbit) {

this.rabbit = rabbit;
}

public void sendSpittleAlert(Spittle spittle) {
rabbit.convertAndSend("spittle.alert.exchange",

"spittle.alerts",
spittle);

}

}

As you can see, the sendSpittleAlert() method now calls the convertAndSend()
method on the injected RabbitTemplate. It passes in three parameters: the name of
the exchange, the routing key, and the object to be sent. Notice that what’s not speci-
fied is how the message will be routed, what queues it will be sent on, or any consum-
ers that are expected to receive the message.

Listing 17.7 Sending a Spittle using RabbitTemplate

481Messaging with AMQP
 RabbitTemplate has several overloaded versions of convertAndSend() to simplify
its use. For example, using one of the overloaded convertAndSend() methods, you
can leave out the exchange name when calling convertAndSend():

rabbit.convertAndSend("spittle.alerts", spittle);

Or, with another, you can leave out both the exchange name and routing key if you
want:

rabbit.convertAndSend(spittle);

When the exchange name or the exchange name and routing key are left out of the
parameter list, RabbitTemplate uses its default exchange name and routing key. As
you have configured the template, the default exchange name is blank (or the default
no-name exchange) and the default routing key is also blank. But you can configure
different defaults using the exchange and routing-key attributes on the <template>
element:

<template id="rabbitTemplate"
connection-factory="connectionFactory"
exchange="spittle.alert.exchange"
routing-key="spittle.alerts" />

No matter what you set the defaults to, you’re always able to override them when call-
ing convertAndSend() by explicitly specifying them as parameters.

 You might be interested in considering one of RabbitTemplate’s other methods
for sending messages. For instance, you can use the lower-level send() method to
send an org.springframework.amqp.core.Message object like this:

Message helloMessage =
new Message("Hello World!".getBytes(), new MessageProperties());

rabbit.send("hello.exchange", "hello.routing", helloMessage);

As with convertAndSend(), the send() method is overloaded to not require the
exchange name and/or routing key.

 The trick to using the send() methods is constructing a Message object to send. In
the Hello World example, you construct a Message instance by giving it the string’s
byte array. That’s easy enough for String values but can get more complicated when
the message payload is a complex object.

 For that reason, convertAndSend() exists to automatically convert an object to a
Message. It does this with the assistance of a message converter. The default message
converter is SimpleMessageConverter, which is suitable for working with Strings,
Serializable instances, and byte arrays. Spring AMQP provides a few other message
converters that you might find useful, including some for working with JSON and
XML data.

 Now that you’ve sent a message, let’s shift to the other side of the conversation and
see how to retrieve the message.

482 CHAPTER 17 Messaging in Spring
17.3.4 Receiving AMQP messages

As you’ll recall, Spring’s JMS support offers two ways to fetch a message from a queue:
synchronously via JmsTemplate and asynchronously with message-driven POJOs.
Spring AMQP offers similar options for retrieving messages sent over AMQP. Because
you already have a RabbitTemplate handy, let’s first look at how to use it to synchro-
nously fetch a message from a queue.

RECEIVING MESSAGES WITH RABBITTEMPLATE
RabbitTemplate offers a handful of methods for receiving messages. The simplest
ones are the receive() methods, which are the consumer-side analogues to Rabbit-
Template’s send() methods. Using the receive() methods, you can fetch a Message
object from the queue:

Message message = rabbit.receive("spittle.alert.queue");

Or, if you prefer, you can configure a default queue for receiving messages by setting
the queue attribute when configuring the template:

<template id="rabbitTemplate"
connection-factory="connectionFactory"
exchange="spittle.alert.exchange"
routing-key="spittle.alerts"
queue="spittle.alert.queue" />

This enables you to call the receive() method without any arguments to receive from
the default queue:

Message message = rabbit.receive();

Once you have a Message object, you’ll probably need to convert the array of bytes in
its body property to whatever object you want. Just as it was tricky to convert domain
objects into Messages for sending, it’s messy to convert received Messages to domain
objects. Therefore, consider using RabbitTemplate’s receiveAndConvert() method
instead:

Spittle spittle =
(Spittle) rabbit.receiveAndConvert("spittle.alert.queue");

Or you can leave the queue name out of the call parameters to fall back on the tem-
plate’s default queue name:

Spittle spittle = (Spittle) rabbit.receiveAndConvert();

The receiveAndConvert() method uses the same message converters as sendAnd-
Convert() to turn a Message object into the type it originated as.

 Calls to both receive() and receiveAndConvert() return immediately, possibly
with a null if no messages are waiting in the queue. That leaves it up to you to manage
any polling and threading necessary to monitor the queue.

483Messaging with AMQP
 Instead of synchronously polling and waiting for messages to arrive, Spring AMQP
offers message-driven POJO support that’s reminiscent of the same feature in Spring
JMS. Let’s see how to consume messages with message-driven AMQP POJOs.

DEFINING MESSAGE-DRIVEN AMQP POJOS

The first thing you’ll need in order to consume a Spittle object asynchronously in a
message-driven POJO is the POJO itself. Here’s SpittleAlertHandler, which fills that
role:

package com.habuma.spittr.alerts;
import com.habuma.spittr.domain.Spittle;

public class SpittleAlertHandler {

public void handleSpittleAlert(Spittle spittle) {
// ... implementation goes here ...

}

}

Notice that this is exactly the same SpittleAlertHandler that you used when con-
suming Spittle messages using JMS. You can get away with reusing the same POJO
because nothing about it is dependent on JMS or AMQP. It’s just a POJO and is ready to
process a Spittle regardless of what messaging mechanism it’s carried over.

 You also need to declare SpittleAlertHandler as a bean in the Spring application
context:

<bean id="spittleListener"
class="com.habuma.spittr.alert.SpittleAlertHandler" />

But again, you already did this when you were working with JMS-based MDPs. There’s
no difference.

 Finally, you need to declare a listener container and a listener to call on Spittle-
AlertHandler when a message arrives. You did this for JMS-based MDPs, but there is a
slight difference in the configuration for AMQP-based MDPs:

<listener-container connection-factory="connectionFactory">
<listener ref="spittleListener"

method="handleSpittleAlert"
queue-names="spittle.alert.queue" />

</listener-container>

Do you see the difference? I’ll agree that it’s not obvious. The <listener-container>
and <listener> elements appear to be similar to their JMS counterparts. These ele-
ments, however, come from the rabbit namespace instead of the JMS namespace.

 I said it wasn’t obvious.
 Well, there is one other slight difference. Instead of specifying a queue or topic to

listen on through the destination attribute (as you did for JMS), here you specify the
queue on which to listen for messages via the queue-names attribute. But otherwise,
AMQP-based MDPs and JMS-based MDPs work similarly.

484 CHAPTER 17 Messaging in Spring
 In case you’re wondering, yes: the queue-names attribute name indicates plurality.
Here you only specify a single queue to listen on, but you can list as many queue
names as you want, separated with commas.

 Another way of specifying the queues to listen on is to reference the queue beans
you declared with the <queue> element. You can do this via the queues attribute:

<listener-container connection-factory="connectionFactory">
<listener ref="spittleListener"

method="handleSpittleAlert"
queues="spittleAlertQueue" />

</listener-container>

Again, this attribute can take a comma-separated list of queue IDs. This, of course,
requires that you declare the queues with IDs. For example, here’s the alert queue
redeclared, this time with an ID:

<queue id="spittleAlertQueue" name="spittle.alert.queue" />

Note that the id attribute is used to assign a bean ID for the queue in the Spring appli-
cation context. The name attribute specifies the queue’s name in the RabbitMQ broker.

17.4 Summary
Asynchronous messaging presents several advantages over synchronous RPC. Indirect
communication results in applications that are loosely coupled with respect to one
another and thus reduces the impact of any one system going down. Additionally,
because messages are forwarded to their recipients, there’s no need for a sender to
wait for a response. In many circumstances, this can be a boost to application perfor-
mance and scalability.

 Although JMS provides a standard API for all Java applications wishing to partici-
pate in asynchronous communication, it can be cumbersome to use. Spring elimi-
nates the need for JMS boilerplate code and exception-handling code and makes
asynchronous messaging easier to use.

 In this chapter, you’ve seen several ways that Spring can help establish asynchro-
nous communication between two applications by way of message brokers and JMS.
Spring’s JMS template eliminates the boilerplate that’s commonly required by the tra-
ditional JMS programming model. And Spring-enabled message-driven beans make it
possible to declare bean methods that react to messages that arrive in a queue or
topic. We also looked at using Spring’s JMS invoker to provide message-based RPC with
Spring beans.

 You’ve seen how to use asynchronous communication between applications in this
chapter. Coming up in the next chapter, we’ll continue this theme by looking at how
to enable asynchronous communication between a browser-based client and a server
using WebSocket.

Messaging with
WebSocket and STOMP
In the previous chapter, you saw ways to send messages between applications using
JMS and AMQP. Asynchronous messaging is a common form of communication
between applications. But when one of those applications is running in a web
browser, something a little different is needed.

 WebSocket is a protocol providing full-duplex communication across a single
socket. It enables, among other things, asynchronous messaging between a web
browser and a server. Being full-duplex means that the server can send messages to
the browser as well as the browser sending messages to the server.

 Spring 4.0 introduced support for WebSocket communication, including

 A low-level API for sending and receiving messages
 A higher-level API for handling messages in Spring MVC controllers
 A messaging template for sending messages

This chapter covers
 Sending messages between the browser and

the server

 Handling messages in Spring MVC controllers

 Sending user-targeted messages
485

486 CHAPTER 18 Messaging with WebSocket and STOMP
 SockJS support to cope with the lack of WebSocket support in browsers, servers,
and proxies

In this chapter, you’ll learn how to achieve asynchronous communication between a
server and a browser-based application using Spring’s WebSocket features. We’ll start
by looking at how to work with Spring’s low-level WebSocket API.

18.1 Working with Spring’s low-level WebSocket API
In its simplest form, a WebSocket is just a communication channel between two appli-
cations. An application on one end of the WebSocket sends a message, and the other
end handles that message. Because it’s full-duplex, either end can send messages and
either end can handle messages. This is illustrated in figure 18.1.

 WebSocket communication can be used between any kinds of applications, but the
most common use of WebSocket is to facilitate communication between a server and a
browser-based application. A JavaScript client in the browser opens a connection to
the server, and the server sends updates to the browser on that connection. This is
generally more efficient and more natural than the historically common alternative of
polling the server for updates.

 To demonstrate Spring’s low-level WebSocket API, let’s write a simple WebSocket
example where a JavaScript-based client plays a never-ending game of Marco Polo
with the server. The server-side application will handle a text message (“Marco!”) and
will react by sending a text message (“Polo!”) back on the same connection. To handle
messages in Spring with low-level WebSocket support, you must write a class that
implements WebSocketHandler:

public interface WebSocketHandler {
void afterConnectionEstablished(WebSocketSession session)

throws Exception;
void handleMessage(WebSocketSession session,

WebSocketMessage<?> message) throws Exception;
void handleTransportError(WebSocketSession session,

Throwable exception) throws Exception;
void afterConnectionClosed(WebSocketSession session,

CloseStatus closeStatus) throws Exception;
boolean supportsPartialMessages();

}

As you can see, the WebSocketHandler interface requires that you implement five
methods. Rather than implement WebSocketHandler directly, it’s easier to extend

Message

Message
Application A Application B

Figure 18.1 A WebSocket is a full-duplex communication channel between two applications.

487Working with Spring’s low-level WebSocket API
AbstractWebSocketHandler, an abstract implementation of WebSocketHandler. The
following listing shows MarcoHandler, a subclass of AbstractWebSocketHandler that
will handle messages on the server.

package marcopolo;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.web.socket.TextMessage;
import org.springframework.web.socket.WebSocketSession;
import org.springframework.web.socket.handler.AbstractWebSocketHandler;

public class MarcoHandler extends AbstractWebSocketHandler {

private static final Logger logger =
LoggerFactory.getLogger(MarcoHandler.class);

protected void handleTextMessage(
WebSocketSession session, TextMessage message) throws Exception {

logger.info("Received message: " + message.getPayload());

Thread.sleep(2000);

session.sendMessage(new TextMessage("Polo!"));
}

}

Although it’s an abstract class, AbstractWebSocketHandler doesn’t require that you
override any specific method. Instead, it leaves it up to you to decide which methods
you want to override. In addition to the five methods defined in WebSocketHandler,
you may also override three additional methods defined by AbstractWebSocket-
Handler:

 handleBinaryMessage()

 handlePongMessage()

 handleTextMessage()

These three methods are merely specializations of the handleMessage() method,
each tuned to a specific kind of message.

 Because MarcoHandler will be handling the textual “Marco!” message, it makes
sense for it to override handleTextMessage(). When a text message comes in, that
message is logged and, after a simulated 2-second delay, another text message is sent
back on the same connection.

 All of the other methods that MarcoHandler doesn’t override are implemented by
AbstractWebSocketHandler with no-op implementations. This means that Marco-
Handler will also handle binary and pong messages, but will do nothing with those
messages.

 Alternatively, you could extend TextWebSocketHandler instead of AbstractWeb-
SocketHandler:

Listing 18.1 MarcoHandler handles text messages sent via a WebSocket.

Handle text
message

Simulate delay

Send text message

488 CHAPTER 18 Messaging with WebSocket and STOMP
public class MarcoHandler extends TextWebSocketHandler {
...

}

TextWebSocketHandler is a subclass of AbstractWebSocketHandler that refuses to
handle binary messages. It overrides handleBinaryMessage() to close the WebSocket
connection if a binary connection is received. In a similar way, Spring also offers
BinaryWebSocketHandler, a subclass of AbstractWebSocketHandler that overrides
handleTextMessage() to close the connection if a text message is received.

 Regardless of whether you handle text messages, binary messages, or both, you
might also be interested in handling the establishment and closing of connections. In
that case, you can override afterConnectionEstablished() and afterConnection-
Closed():

public void afterConnectionEstablished(WebSocketSession session)
throws Exception {

logger.info("Connection established");
}

@Override
public void afterConnectionClosed(

WebSocketSession session, CloseStatus status) throws Exception {
logger.info("Connection closed. Status: " + status);

}

Connections are bookended with the afterConnectionEstablished() and after-
ConnectionClosed() methods. When a new connection is established, the after-
ConnectionEstablished() method is called. Likewise, afterConnectionClosed()
will be called whenever a connection is closed. In this example, the connection events
are only logged, but these methods could be useful for setup and teardown of any
resources used during the life of the connection.

 Notice that these methods both start with the word “after.” That means that these
methods are only able to react to those events after the event occurs and can’t change
the outcome.

 Now that you have a message handler class, you must configure it so that Spring will
dispatch messages to it. In Spring’s Java configuration, this involves annotating a con-
figuration class with @EnableWebSocket and implementing the WebSocketConfigurer
interface, as shown in the next listing.

package marcopolo;

import org.springframework.context.annotation.Bean;
import org.springframework.web.socket.config.annotation.

EnableWebSocket;
import org.springframework.web.socket.config.annotation.

WebSocketConfigurer;
import org.springframework.web.socket.config.annotation.

WebSocketHandlerRegistry;

Listing 18.2 Enabling WebSocket and mapping a message handler in Java configuration

489Working with Spring’s low-level WebSocket API
@EnableWebSocket
public class WebSocketConfig implements WebSocketConfigurer {

@Override
public void registerWebSocketHandlers(

WebSocketHandlerRegistry registry) {
registry.addHandler(marcoHandler(), "/marco");

}

@Bean
public MarcoHandler marcoHandler() {

return new MarcoHandler();
}

}

The registerWebSocketHandlers() method is the key to registering a message han-
dler. By overriding it, you’re given a WebSocketHandlerRegistry through which you
can call addHandler() to register a message handler. In this case, you register the
MarcoHandler (declared as a bean) and associate it with the /marco path.

 Alternatively, if you’d rather configure Spring in XML, you can take advantage of
the websocket namespace, as follows.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:websocket="http://www.springframework.org/schema/websocket"
xsi:schemaLocation="
http://www.springframework.org/schema/websocket
http://www.springframework.org/schema/websocket/spring-websocket.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<websocket:handlers>
<websocket:mapping handler="marcoHandler" path="/marco" />

</websocket:handlers>

<bean id="marcoHandler"
class="marcopolo.MarcoHandler" />

</beans>

Whether you use Java or XML configuration, that’s the only configuration you’ll need.
 Now we can turn our attention to the client that will send a “Marco!” text message

to the server and listen for text messages coming from the server. The following listing
shows some JavaScript that opens a native WebSocket and uses it to volley messages to
the server.

var url = 'ws://' + window.location.host + '/websocket/marco';
var sock = new WebSocket(url);

sock.onopen = function() {

Listing 18.3 The websocket namespace enables XML configuration for WebSockets.

Listing 18.4 A JavaScript client that connects to the “marco” websocket

Map MarcoHandler
to “/marco”

Declare
MarcoHandler bean

Map
MarcoHandler
to “/marco”

Declare
MarcoHandler bean

Open WebSocket

Handle open event

490 CHAPTER 18 Messaging with WebSocket and STOMP
console.log('Opening');
sayMarco();

};

sock.onmessage = function(e) {
console.log('Received message: ', e.data);

setTimeout(function(){sayMarco()}, 2000);
};

sock.onclose = function() {
console.log('Closing');

};

function sayMarco() {
console.log('Sending Marco!');
sock.send("Marco!");

}

The first thing that the code in listing 18.4 does is create an instance of WebSocket.
This type is native to browsers that support WebSocket. By creating a WebSocket
instance, it effectively opens the WebSocket to the URL it’s given. In this case, the URL
is prefixed with “ws://”, indicating a basic WebSocket connection. If it were a secure
WebSocket connection, the protocol prefix would have been “wss://”.

 Once the WebSocket instance is created, the next several lines set up the WebSocket
with event-handling functions. Notice that the WebSocket’s onopen, onmessage, and
onclose events mirror MarcoHandler’s afterConnectionEstablished(), handleText-
Message(), and afterConnectionClosed() methods. The onopen event is given a
function that calls sayMarco() to send the “Marco!” message on the WebSocket. By
sending “Marco!”, the never-ending game of Marco Polo begins, because Marco-
Handler on the server will react by sending “Polo!” back. When the client receives the
message from the server, the onmessage event will result in another “Marco!” message
being sent to the server.

 And it goes on and on like that until the connection is closed. It’s not shown in list-
ing 18.4, but a call to sock.close() will put an end to the madness. The server could
also close the connection, or the browser could navigate away from the page, and the
connection will be closed. In any case, once the connection goes down, the onclose
event will be fired. Here, that occasion will be marked with a simple message to the
console log.

 At this point, you’ve written everything that goes into enabling Spring’s low-level
WebSocket support, including a handler class that receives and sends messages and a
simple JavaScript client to do the same in the browser. If you were to build the code
and deploy it to a servlet container, it might even work.

 Did you sense some pessimism in my choice of the word “might”? That’s because I
can’t guarantee that it will work. In fact, there’s a really good chance that it won’t
work. Even if we do everything correctly, the odds are stacked against us.

 Let’s look at what will prevent WebSocket code from working and take steps to
improve our chances.

Handle message

Handle close event

Send message

491Coping with a lack of WebSocket support
18.2 Coping with a lack of WebSocket support
WebSocket is a relatively new specification. Even though it was standardized by the
end of 2011, it still doesn’t have consistent support in web browsers and application
servers. Firefox and Chrome have had full support for WebSocket for quite a while,
but other browsers have only recently started to support WebSocket. Here’s a brief list
of the minimum versions of several popular browsers that support WebSocket:

 Internet Explorer: 10.0
 Firefox: 4.0 (partial), 6.0 (full)
 Chrome: 4.0 (partial), 13.0 (full)
 Safari: 5.0 (partial), 6.0 (full)
 Opera: 11.0 (partial), 12.10 (full)
 iOS Safari: 4.2 (partial), 6.0 (full)
 Android Browser: 4.4

Unfortunately, many web surfers don’t recognize or understand the features of new
web browsers and are slow to upgrade. Moreover, many corporations standardize on a
specific version of a browser, making it hard (or impossible) for their employees to
use anything newer. Given those circumstances, it’s very likely that your application’s
audience will not be able to use your application if it employs WebSocket.

 It’s the same song, second verse, when it comes to server-side support for Web-
Socket. GlassFish has had some form of WebSocket support for a couple of years, but
many other application servers have only just started supporting WebSocket in their
most recent versions. For example, I had to test the previous example using a release
candidate build of Tomcat 8.

 Even if the browser and application server versions align and WebSocket is sup-
ported on both ends, there might be trouble in the middle. Firewall proxies generally
block anything but HTTP traffic. They’re not capable or not configured (yet) to allow
WebSocket communication.

 I realize that I’ve painted a rather bleak picture of the current WebSocket land-
scape. But don’t let a little thing like lack of support stop you from trying to use Web-
Socket. When it works, WebSocket is fantastic. When it doesn’t, all you need is a
fallback plan.

 Fortunately, WebSocket fallback is the specialty of SockJS. SockJS is a WebSocket
emulator that mirrors the WebSocket API as closely as possible on the surface, but
under the covers is clever enough to choose another form of communication when
WebSocket isn’t available. SockJS will always favor WebSocket first, but if WebSocket
isn’t an option, it will determine the best available option from the following:

 XHR streaming
 XDR streaming
 iFrame event source
 iFrame HTML file

492 CHAPTER 18 Messaging with WebSocket and STOMP
 XHR polling
 XDR polling
 iFrame XHR polling
 JSONP polling

The good news is that you don’t need to fully understand all of those options to be able
to use SockJS. SockJS lets you develop to a consistent programming model as if Web-
Socket support were ubiquitous, and it handles the fallback plans under the covers.

 For example, to enable SockJS communication on the server side, you can simply
ask for it in the Spring configuration. Revisiting the registerWebSocketHandlers()
method from listing 18.2, you can enable WebSocket with a small addition:

@Override
public void registerWebSocketHandlers(

WebSocketHandlerRegistry registry) {
registry.addHandler(marcoHandler(), "/marco").withSockJS();

}

By simply calling withSockJS() on the WebSocketHandlerRegistration returned
from the call to addHandler(), you’re saying that you want SockJS to be enabled, and
for its fallbacks to go into effect if WebSocket can’t be used.

 If you’re using XML to configure Spring, enabling SockJS is a simple matter of add-
ing the <websocket:sockjs> element to the configuration:

<websocket:handlers>
<websocket:mapping handler="marcoHandler" path="/marco" />
<websocket:sockjs />

</websocket:handlers>

To use SockJS on the client, you’ll need to be sure to load the SockJS client library.
The exact way you do that depends largely on whether you’re using a JavaScript mod-
ule loader (such as require.js or curl.js) or are simply loading your JavaScript libraries
with a <script> tag. The simplest way to load the SockJS client library is to load it
from the SockJS CDN with a <script> tag like this:

<script src="http://cdn.sockjs.org/sockjs-0.3.min.js"></script>

Resolving web resources with WebJars
In my example code, I’m using WebJars to resolve JavaScript libraries as part of the
project’s Maven or Gradle build, just like any other dependency. To support that, I’ve
set up a resource handler in the Spring MVC configuration to resolve requests where
the path starts with /webjars/** from the WebJars standard path:
@Override
public void addResourceHandlers(ResourceHandlerRegistry registry) {

registry.addResourceHandler("/webjars/**")
.addResourceLocations("classpath:/META-INF/resources/webjars/");

}

493Working with STOMP messaging
Aside from loading the SockJS client library, there are only two lines from listing 18.4
that must be changed to use SockJS:

var url = 'marco';
var sock = new SockJS(url);

The first change you can make is to the URL. SockJS deals in URLs with the http:// or
https:// scheme instead of ws:// and wss://. Even so, you can use relative URLs, keep-
ing you from having to derive the fully qualified URL. In this case, if the page contain-
ing the JavaScript was at http://localhost:8080/websocket, the simple marco path
given will result in a connection to http://localhost:8080/websocket/marco.

 The key change you must make, however, is to create an instance of SockJS instead
of WebSocket. Because SockJS mimics WebSocket as closely as possible, the rest of the
code from listing 18.4 can remain the same. The same onopen, onmessage, and
onclose event-handler functions will still respond to their respective events. And the
same send() function will still send “Marco!” to the server.

 You didn’t change too many lines of code, and yet you’ve made a huge difference
in how the client-server messaging works. You can be reasonably confident that
WebSocket-like communication will work between the browser and the server, even if
WebSocket isn’t supported by the browser, server, or any proxy that sits in the middle.

 WebSocket enables browser-server communication, and SockJS offers fallback
communication when WebSocket isn’t supported. But in either case, this form of com-
munication is too low-level for practical use. Let’s see how you can layer STOMP (Sim-
ple Text Oriented Messaging Protocol) on top of WebSocket to add proper messaging
semantics to browser-server communication.

18.3 Working with STOMP messaging
If I were to suggest that you write a web application, you’d probably already have a
good idea of the base technologies and frameworks you might use, even before we dis-
cussed requirements. Even for a simple Hello World web application, you might be
thinking of writing a Spring MVC controller to handle a request and a JSP or Thyme-
leaf template for the response. At the very least, you might create a static HTML page
and let the web server deal with serving it to any web browser that requests it. You’d

With that resource handler in effect, I can load the SockJS library in a web page with
the following <script> tag:
<script th:src="@{/webjars/sockjs-client/0.3.4/sockjs.min.js}">
</script>

Notice that this particular <script> tag comes from a Thymeleaf template and takes
advantage of the @{...} expression to calculate the full context-relative URL path for
the JavaScript file.

494 CHAPTER 18 Messaging with WebSocket and STOMP
probably not concern yourself with exactly how a browser would request the page or
how the page would be delivered.

 Now let’s suppose I suggested we pretend that HTTP doesn’t exist and that you
write a web application using nothing but TCP sockets. You’d probably think I was out
of my mind. Certainly, it would be possible to pull off this feat, but you’d need to
devise your own wire protocol that both the client and server could agree upon to
facilitate effective communication. In short, it’d be non-trivial.

 Thankfully, the HTTP protocol addresses the minute details of how a web browser
makes a request and how a web server responds to that request. As a result, most
developers never write code that deals with low-level TCP socket communication.

 Working directly with WebSocket (or SockJS) is a lot like developing a web applica-
tion using only TCP sockets. Without a higher-level wire protocol, it’s up to you to
define the semantics of the messages being sent between applications. And you’d
need to be sure that both ends of the connection agreed on those semantics.

 Fortunately, you don’t have to work with raw WebSocket connections. Just as HTTP
layers a request-response model on top of TCP sockets, STOMP layers a frame-based
wire format to define messaging semantics on top of WebSocket.

 At a quick glance, STOMP message frames look very similar in structure to HTTP
requests. Much like HTTP requests and responses, STOMP frames are comprised of a
command, one or more headers, and a payload. For example, here’s a STOMP frame
that sends data.

SEND
destination:/app/marco
content-length:20

{\"message\":\"Marco!\"}

In this simple example, the STOMP command is SEND, indicating that something is
being sent. It’s followed by two headers: one indicates the destination where the mes-
sage should be sent, and the other communicates the size of the payload. Following a
blank line, the frame concludes with the payload; in this case, a JSON message.

 The destination header is probably the most interesting thing about the STOMP
frame. It’s a clue that STOMP is a messaging protocol, very much like JMS or AMQP.
Messages are published to destinations that may, in fact, be backed by real message
brokers. On the other end, message handlers can listen to those destinations to
receive the messages sent.

 In the context of WebSocket communication, a browser-based JavaScript applica-
tion may publish a message to a destination that’s handled by a server-side compo-
nent. And it works the other way around, too. A server-side component may publish a
message to a destination to be received by the JavaScript client.

 Spring provides for STOMP-based messaging with a programming model based on
Spring MVC. As you’ll see, handling STOMP messages in a Spring MVC controller isn’t
much different from handling HTTP requests. But first, you must configure Spring to
enable STOMP-based messaging.

495Working with STOMP messaging

18.3.1 Enabling STOMP messaging

In a moment, you’ll see how to annotate controller methods with @MessageMapping to
handle STOMP messages within Spring MVC in a way very similar to how @Request-
Mapping-annotated methods handle HTTP requests. Unlike @RequestMapping, how-
ever, @MessageMapping isn’t enabled by the @EnableWebMvc annotation. Spring’s web
messaging is built around a message broker, so there’s more to configure than just tell-
ing Spring that you’d like to handle messages. You must also configure a message bro-
ker and some basic destination details.

 The following listing shows the basic Java configuration required to enable broker-
based web messaging.

package marcopolo;
import org.springframework.context.annotation.Configuration;
import org.springframework.web.socket.config.annotation.

AbstractWebSocketMessageBrokerConfigurer;
import org.springframework.web.socket.config.annotation.

EnableWebSocketMessageBroker;
import org.springframework.web.socket.config.annotation.

StompEndpointRegistry;

@Configuration
@EnableWebSocketMessageBroker
public class WebSocketStompConfig

extends AbstractWebSocketMessageBrokerConfigurer {

@Override
public void registerStompEndpoints(StompEndpointRegistry registry) {

registry.addEndpoint("/marcopolo").withSockJS();
}

@Override
public void configureMessageBroker(MessageBrokerRegistry registry) {

registry.enableSimpleBroker("/queue", "/topic");
registry.setApplicationDestinationPrefixes("/app");

}

}

In contrast to the configuration class in listing 18.2, WebSocketStompConfig is anno-
tated with @EnableWebSocketMessageBroker. This indicates that this configuration
class is not only configuring WebSocket, but it’s configuring broker-based STOMP mes-
saging. It overrides the registerStompEndpoints() method to register /marcopolo
as a STOMP endpoint. This path is distinct from any destination path that you might
send or receive messages from. It’s the endpoint that a client would connect to before
subscribing to or publishing to a destination path.

 WebSocketStompConfig also configures a simple message broker by overriding the
configureMessageBroker() method. This method is optional. If you don’t override
it, you’ll get a simple in-memory message broker configured to handle messages pre-
fixed with /topic. But in this example, you override it so that the message broker is

Listing 18.5 @EnableWebSocketMessageBroker enables STOMP over WebSocket.

Enable STOMP messaging

Enable SockJS over
/marcopolo

496 CHAPTER 18 Messaging with WebSocket and STOMP
responsible for messages prefixed with /topic and /queue. In addition, any messages
destined for the application will be prefixed with /app. Figure 18.2 illustrates how
messages flow in this setup.

 When a message arrives, the destination prefix will determine how the message is
handled. In figure 18.2 the application destinations are prefixed with /app and the
broker destinations are prefixed with either /topic or /queue. A message headed for
an application destination is routed directly to an @MessageMapping-annotated con-
troller method. Messages destined for the broker, including any messages resulting
from values returned by @MessageMapping-annotated methods, are routed to the bro-
ker and are ultimately sent out to clients subscribed to those destinations.

ENABLING A STOMP BROKER RELAY

The simple broker is great for getting started, but it has a few limitations. Although it
mimics a STOMP message broker, it only supports a subset of STOMP commands. And
because it’s memory-based, it’s not suitable for clusters where each node would be
managing its own broker and set of messages.

 For a production application, you’ll probably want to back your WebSocket mes-
saging with a real STOMP-enabled broker, such as RabbitMQ or ActiveMQ. Such bro-
kers will offer more scalable and robust messaging, not to mention the complete set of
STOMP commands. You’ll need to be sure to set up your broker for STOMP according
to their documentation. Once the broker is ready, you can replace the default in-
memory broker with a STOMP broker relay by overriding the configureMessage-
Broker() method like this:

@Override
public void configureMessageBroker(MessageBrokerRegistry registry) {

registry.enableStompBrokerRelay("/topic", "/queue");
registry.setApplicationDestinationPrefixes("/app");

}

The first line of configureMessageBroker() shown here enables the STOMP broker
relay and sets its destination prefixes to /topic and /queue. This is a clue to Spring

Request
channel

Response
channel

Broker
channel/app

/topic
/queue/topic

/queue

AnnotationMethod
MessageHandler

SimpleBroker
MessageHandler

SEND
destination:/app/marco

SEND
destination:/topic/polo

MESSAGE
destination:/topic/polo Figure 18.2 Spring’s simple

STOMP broker is an in-memory
broker that mimics several
STOMP broker functions.

497Working with STOMP messaging
that any messages whose destination begins with /topic or /queue should go to the
STOMP broker. Depending on which STOMP broker you choose, you may be limited in
your choices for the destination prefix. RabbitMQ, for instance, only allows destina-
tions of type /temp-queue, /exchange, /topic, /queue, /amq/queue, and /reply-
queue/. Consult your broker’s documentation for supported destination types and
their purposes.

 In addition to the destination prefix, the second line in configureMessage-
Broker() sets an application prefix to /app. Any messages whose destination begins
with /app will be routed to an @MessageMapping method and not published to a bro-
ker queue or topic.

 Figure 18.3 illustrates how the broker relay fits into Spring’s STOMP message han-
dling. As you can see, the key difference is that rather than mimicking a STOMP bro-
ker’s functionality, the broker relay hands messages off to a real message broker for
handling.

 Note that both enableStompBrokerRelay() and setApplicationDestination-
Prefixes() accept a variable-length String argument, so you can configure multiple
destination and application prefixes. For example:

@Override
public void configureMessageBroker(MessageBrokerRegistry registry) {

registry.enableStompBrokerRelay("/topic", "/queue");
registry.setApplicationDestinationPrefixes("/app", "/foo");

}

By default, the STOMP broker relay assumes that the broker is listening on port 61613
of localhost and that the client username and password are both “guest”. If your
STOMP broker is on another server or is configured with different client credentials,
you can configure those details when enabling the STOMP broker relay:

@Override
public void configureMessageBroker(MessageBrokerRegistry registry) {

Request
channel

Response
channel

Broker
channel/app

Message Broker
(RabbitMQ, ActiveMQ, etc)

/topic
/queue/topic

/queue

AnnotationMethod
MessageHandler

StompBrokerRelay
MessageHandler

SEND
destination:/app/marco

SEND
destination:/topic/polo

MESSAGE
destination:/topic/polo

Figure 18.3 The STOMP broker relay delegates to a real message broker for handling STOMP messages.

498 CHAPTER 18 Messaging with WebSocket and STOMP
registry.enableStompBrokerRelay("/topic", "/queue")
.setRelayHost("rabbit.someotherserver")
.setRelayPort(62623)
.setClientLogin("marcopolo")
.setClientPasscode("letmein01");

registry.setApplicationDestinationPrefixes("/app", "/foo");
}

This bit of configuration adjusts the server, port, and credentials. But it’s not neces-
sary to configure them all. For instance, if you only need to change the relay host, you
can call setRelayHost() and leave out the other setter methods in the configuration.

 Now Spring is configured and ready to handle STOMP messages.

18.3.2 Handling STOMP messages from the client

As you learned in chapter 5, Spring MVC offers an annotation-oriented programming
model for handling HTTP web requests. @RequestMapping, the star annotation
in Spring MVC, maps HTTP requests to methods that will process those requests.
That same programming model extends to serving RESTful resources as you saw in
chapter 16.

 STOMP and WebSocket are more about synchronous messaging as opposed to
HTTP’s request-response approach. Nevertheless, Spring offers a programming model
that’s very similar to Spring MVC for handling STOMP messages. It’s so similar, in fact,
that the handler methods for STOMP are members of @Controller-annotated classes.

 Spring 4.0 introduced @MessageMapping, STOMP messaging’s analog to Spring
MVC’s @RequestMapping. A method annotated with @MessageMapping can handle
messages as they arrive at a specified destination. For example, consider the simple
controller class in the following listing.

package marcopolo;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.messaging.handler.annotation.MessageMapping;
import org.springframework.stereotype.Controller;

@Controller
public class MarcoController {

private static final Logger logger =
LoggerFactory.getLogger(MarcoController.class);

@MessageMapping("/marco")
public void handleShout(Shout incoming) {
logger.info("Received message: " + incoming.getMessage());

}

}

Listing 18.6 @MessageMapping handles STOMP messages in a controller.

Handle messages
for /app/marco
destination

499Working with STOMP messaging
At first glance, this looks like any other Spring MVC controller class. It’s annotated
with @Controller, so it will be picked up and registered as a bean by component-
scanning. And it has a handler method, just like any @Controller class would have.

 But the handler method is a little different than those we’ve looked at before.
Instead of @RequestMapping, the handleShout() method is annotated with @Message-
Mapping. This signifies that handleShout() should handle any messages that arrive at
the specified destination. In this case, the destination is /app/marco (the "/app" pre-
fix is implied as it is the prefix we configured as the application destination prefix).

 Because handleShout() accepts a Shout parameter, the payload of the STOMP
message will be converted into a Shout using one of Spring’s message converters. The
Shout class is just a simple one-property JavaBean that carries a message:

package marcopolo;

public class Shout {
private String message;

public String getMessage() {
return message;

}

public void setMessage(String message) {
this.message = message;

}
}

Since you’re not working with HTTP here, it won’t be one of Spring’s HttpMessage-
Converter implementations that handles the conversion to a Shout object. Instead,
Spring 4.0 offers only a few message converters as part of its messaging API. Table 18.1
describes the message converters that might come into play when handling STOMP
messages.

Assuming that the message handled by handleShout() has a content type of
application/json (which is probably a safe guess given that Shout is neither a byte[]
nor a String), the MappingJackson2MessageConverter will be tasked with converting
the JSON message into a Shout object. Just like its HTTP-oriented counterpart,

Table 18.1 Spring can convert message payloads to Java types using one of a few message
converters.

Message converter Description

ByteArrayMessageConverter Converts a message with a MIME type of
application/octet-stream to and from byte[]

MappingJackson2MessageConverter Converts a message with a MIME type of
application/json to and from a Java object

StringMessageConverter Converts a message with a MIME type of text/
plain to and from String

500 CHAPTER 18 Messaging with WebSocket and STOMP
MappingJackson2HttpMessageConverter, MappingJackson2MessageConverter dele-
gates much of its work to the underlying Jackson 2 JSON processor. By default, Jackson
will use reflection to map JSON properties to Java object properties. Although it’s
unnecessary in this example, you can influence how the conversion takes place by anno-
tating the Java type with Jackson annotations.

PROCESSING SUBSCRIPTIONS

In addition to the @MessagingMapping annotation, Spring also offers an @Subscribe-
Mapping annotation. Any method that’s annotated with @SubscribeMapping will be
invoked, much like @MessagingMapping methods, when a STOMP subscription mes-
sage arrives.

 It’s important to understand that just like @MessageMapping methods,
@SubscribeMapping methods receive their messages via AnnotationMethodMessage-
Handler (as illustrated in figures 18.2 and 18.3). Per the configuration in listing 18.5,
that means that @SubscribeMapping methods can only handle messages for destina-
tions that are prefixed with /app.

 This may seem odd, knowing that outgoing messages tend to go to broker destina-
tions prefixed with /topic or /queue. Clients subscribe to those destinations and
probably won’t subscribe to destinations prefixed with /app. If the clients are sub-
scribing to /topic and /queue destinations, there’s no way that an @Subscribe-
Mapping method can handle those subscriptions. And if that’s true, then what good is
@SubscribeMapping?

 The primary use case for @SubscribeMapping is to implement a request-reply pat-
tern. In the request-reply pattern, the client subscribes to a destination expecting a
one-time response at that destination.

 For example, consider the following @SubscribeMapping-annotated method:

@SubscribeMapping({"/marco"})
public Shout handleSubscription() {

Shout outgoing = new Shout();
outgoing.setMessage("Polo!");
return outgoing;

}

As you can see, the handleSubscription() method is annotated with @Subscribe-
Mapping to handle subscriptions to /app/marco. (As with @MessageMapping, the "/app"
prefix is implied). When handling the subscription, handleSubscription() produces
an outgoing Shout object and returns it. The Shout object is then converted into
a message and sent back to the client at the same destination to which the client
subscribed.

 If you’re thinking that this request-reply pattern isn’t much different than an HTTP
GET request-response pattern, then you’re mostly correct. The key difference, how-
ever, is that where an HTTP GET request is synchronous, a subscription request-reply is
asynchronous, allowing the client to deal with the reply whenever it’s available and
not have to wait for it.

501Working with STOMP messaging
WRITING THE JAVASCRIPT CLIENT

The handleShout() method is ready to process messages as they’re sent. Now all you
need is a client to send those messages.

 The following listing shows some JavaScript client code that might connect to the
/marcopolo endpoint and send a “Marco!” message.

var url = 'http://' + window.location.host + '/stomp/marcopolo';

var sock = new SockJS(url);

var stomp = Stomp.over(sock);

var payload = JSON.stringify({ 'message': 'Marco!' });

stomp.connect('guest', 'guest', function(frame) {

stomp.send("/marco", {}, payload);

});

As with our previous JavaScript client example, this one starts by creating an instance
of SockJS for a given URL. The URL in this case references the STOMP endpoint con-
figured in listing 18.5 (not including the application’s context path, /stomp).

 What’s different here, however, is that you never use SockJS directly. Instead you
construct an instance of the STOMP client by calling Stomp.over(sock). This effec-
tively wraps SockJS to send STOMP messages over the WebSocket connection.

 Next, you use the STOMP client to connect to and, assuming that the connection
succeeds, send a message with a JSON payload to the destination named /marco. The
second parameter passed to send() is a map of headers to be included in the STOMP
frame; although in this case you’re not contributing any headers and the map is empty.

 Now you have a client that sends a message to the server, and a handler method on
the server ready to process it. It’s a good start. But you may have noticed that it’s a bit
one-sided. Let’s give the server a voice and see how to send messages to the client.

18.3.3 Sending messages to the client

So far, the client is doing all of the message sending and the server is forced to listen
for those messages. While that’s a valid use of WebSocket and STOMP, it’s not the use
case that you probably think of when you think of WebSocket. WebSocket is often
viewed as a way that a server can send data to the browser without being in response to
an HTTP request. How can you communicate with the browser-based client using
Spring and WebSocket/STOMP?

 Spring offers two ways to send data to a client:

 As a side-effect of handling a message or subscription
 Using a messaging template

You already know about some methods to handle messages and subscriptions, so we’ll
first look at how to send messages to the client as a side-effect of those methods. Then

Listing 18.7 Messages can be sent from JavaScript using the STOMP library

Create SockJS connection

Create STOMP client

Connect to STOMP endpoint
Send message

502 CHAPTER 18 Messaging with WebSocket and STOMP
we’ll look at Spring’s SimpMessagingTemplate for sending messages from anywhere in
the application.

SENDING A MESSAGE AFTER HANDLING A MESSAGE

The handleShout() method from listing 18.6 simply returns void. Its job is to simply
handle a message, not reply to the client.

 Even so, if you want to send a message in response to receiving a message, all you
need to do is return something other than void. For example, if you want to send a
“Polo!” message in reaction to a “Marco!” message, you could change the handle-
Shout() message to look like this:

@MessageMapping("/marco")
public Shout handleShout(Shout incoming) {

logger.info("Received message: " + incoming.getMessage());

Shout outgoing = new Shout();
outgoing.setMessage("Polo!");
return outgoing;

}

In this new version of handleShout(), a new Shout object is returned. By simply
returning an object, a handler method can also be a sender method. When an
@MessageMapping-annotated method has a return value, the returned object will be
converted (via a message converter) and placed into the payload of a STOMP frame
and published to the broker.

 By default, the frame will be published to the same destination that triggered the
handler method, but with /topic as the prefix. In the case of handleShout(), that
means that the returned Shout object will be written to the payload of a STOMP frame
and published to the /topic/marco destination. But you can override the destination
by annotating the method with @SendTo:

@MessageMapping("/marco")
@SendTo("/topic/shout")
public Shout handleShout(Shout incoming) {

logger.info("Received message: " + incoming.getMessage());

Shout outgoing = new Shout();
outgoing.setMessage("Polo!");
return outgoing;

}

With this @SendTo annotation in place, the message will be published to /topic/shout.
Any application that’s subscribed to that topic (such as the client), will receive that
message.

 The handleShout() method now sends a message in response to having received a
message. In a similar way, an @SubscribeMapping-annotated method can send a mes-
sage in reply to a subscription. For example, you could send a Shout message when
the client subscribes by adding this method to the controller:

@SubscribeMapping("/marco")
public Shout handleSubscription() {

503Working with STOMP messaging
Shout outgoing = new Shout();
outgoing.setMessage("Polo!");
return outgoing;

}

The @SubscribeMapping annotation designates the handleSubscription() method to
be invoked whenever a client subscribes to the /app/marco destination (with the /app
application destination prefix). The Shout object it returns will be converted and sent
back to the client.

 What’s different with @SubscribeMapping is that the Shout message is sent directly to
the client without going through the broker. If you annotate the method with @SendTo,
the message will be sent to the destination specified, going through the broker.

SENDING A MESSAGE FROM ANYWHERE

@MessageMapping and @SubscribeMapping offer a simple way to send messages as a
consequence of receiving a message or handling a subscription. But Spring’s Simp-
MessagingTemplate makes it possible to send messages from anywhere in an applica-
tion, even without having received a message first.

 The easiest way to use a SimpMessagingTemplate is to autowire it (or its interface,
SimpMessageSendingOperations) into the object that needs it.

 To put this into practice, let’s revisit the Spittr application’s home page to offer a
live Spittle feed. As it is currently written, the controller handling the home page
request fetches the most recent list of Spittles and places them into the model to be
rendered into the user’s browser. Although this works fine, it doesn’t offer a live feed
of Spittle updates. If the user wants to see an updated Spittle feed, they’ll have to
refresh the page in their browser.

 Rather than force the user to refresh the page, you can have the home page sub-
scribe to a STOMP topic to receive a live feed of Spittle updates as they’re created.
Within the home page, you need to add the following JavaScript chunk:

<script>
var sock = new SockJS('spittr');
var stomp = Stomp.over(sock);

stomp.connect('guest', 'guest', function(frame) {
console.log('Connected');
stomp.subscribe("/topic/spittlefeed", handleSpittle);

});

function handleSpittle(incoming) {
var spittle = JSON.parse(incoming.body);
console.log('Received: ', spittle);
var source = $("#spittle-template").html();
var template = Handlebars.compile(source);
var spittleHtml = template(spittle);
$('.spittleList').prepend(spittleHtml);

}
</script>

504 CHAPTER 18 Messaging with WebSocket and STOMP
As in previous examples, you’re creating an instance of SockJS and then an instance
of Stomp over that SockJS instance. After connecting to the STOMP broker, you
subscribe to /topic/spittlefeed and designate the handleSpittle() function to
handle the Spittle updates as they arrive. The handleSpittle() function parses
the incoming message’s body into a proper JavaScript object and then uses the Han-
dlebars library to render the Spittle data into HTML prepended to the list. The
Handlebars template is defined in a separate <script> tag as follows:

<script id="spittle-template" type="text/x-handlebars-template">
<li id="preexist">
<div class="spittleMessage">{{message}}</div>
<div>
{{time}}
({{latitude}}, {{longitude}})

</div>

</script>

On the server, you can use SimpMessagingTemplate to publish any newly created
Spittle as a message to the /topic/spittlefeed topic. The following listing shows
SpittleFeedServiceImpl, a simple service that does exactly that.

package spittr;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.messaging.simp.SimpMessageSendingOperations;
import org.springframework.stereotype.Service;

@Service
public class SpittleFeedServiceImpl implements SpittleFeedService {

private SimpMessageSendingOperations messaging;

@Autowired
public SpittleFeedServiceImpl(

SimpMessageSendingOperations messaging) {
this.messaging = messaging;

}

public void broadcastSpittle(Spittle spittle) {
messaging.convertAndSend("/topic/spittlefeed", spittle);

}

}

As a side-effect of configuring Spring’s STOMP support, there’s already a SimpMessage-
Template bean in the Spring application context. Therefore, there’s no need to create
a new instance here. Instead, the SpittleFeedServiceImpl constructor is annotated
with @Autowired to inject the existing SimpMessagingTemplate (as SimpMessage-
SendingOperations) when SpittleFeedServiceImpl is created.

 The broadcastSpittle() method is where the Spittle message is sent. It calls
convertAndSend() on the injected SimpMessageSendingOperations to convert the

Listing 18.8 SimpMessagingTemplate publishes messages from anywhere

Inject messaging template

Send message

505Working with user-targeted messages
Spittle into a message and send it to the /topic/spittlefeed topic. If the convertAnd-
Send() method seems familiar, that’s because it mimics the methods of the same
name offered by both JmsTemplate and RabbitTemplate.

 When you publish a message to a STOMP topic with convertAndSend() or as a
result of a handler method, any client subscribed to that topic will receive the mes-
sage. For a situation where you want to keep all clients up to date with a live Spittle
feed, that’s perfect. But sometimes you might want to send a message to a specific user
and not to all clients.

18.4 Working with user-targeted messages
Up to this point, the messages you’ve sent and received were between a client (in a
web browser) and the server. The user of that client hasn’t been taken into account.
When an @MessageMapping-annotated method is invoked, you know that a message
has been received, but not who it’s from. Similarly, if you don’t know who the user is,
then any messages sent will go to all clients that have subscribed to the topic that the
message is carried on; there’s no way to send that message to a specific user.

 If you know who the user is, however, it becomes possible to deal with messages
associated with a user, not just those associated with a client. The good news is that you
already know how to identify the user. Using the same authentication mechanism
applied in chapter 9, you can use Spring Security to authenticate the user and work
with user-targeted messages.

 There are three ways to take advantage of an authenticated user when messaging
with Spring and STOMP:

 The @MessageMapping and @SubscribeMapping methods can receive a Principal
for the authenticated user.

 Values returned from the @MessageMapping, @SubscribeMapping, and @Message-
Exception methods can be sent as messages to the authenticated user.

 The SimpMessagingTemplate can send messages to a specific user.

Let’s start by looking at the first two ways, both of which enable a controller’s message-
handling methods to work with user messages.

18.4.1 Working with user messages in a controller

As mentioned before, there are two ways that a controller’s @MessageMapping or
@SubscribeMapping method can be user-aware in processing messages. By simply ask-
ing for a Principal as a parameter to a handler method, the handler method can
know who the user is and use that information to focus its work on that user’s data. In
addition, a handler method can be annotated with @SendToUser to indicate that its
return value should be sent in a message to the authenticated user’s client (and to
that client only).

 To demonstrate, let’s write a controller method that creates a new Spittle object
from an incoming message and sends a reply indicating that the Spittle has been

506 CHAPTER 18 Messaging with WebSocket and STOMP
saved. If this use-case sounds familiar, it’s because you already implemented this as a
REST endpoint in chapter 16. Certainly, REST is one way of implementing that func-
tionality. But REST requests are synchronous by nature, and the client must wait while
the server processes them. By posting the Spittle as a STOMP message, you can take
full advantage of the asynchronous nature of STOMP messaging.

 Consider the following handleSpittle() method, which handles an incoming
message and saves it as a Spittle:

@MessageMapping("/spittle")
@SendToUser("/queue/notifications")
public Notification handleSpittle(

Principal principal, SpittleForm form) {

Spittle spittle = new Spittle(
principal.getName(), form.getText(), new Date());

spittleRepo.save(spittle);

return new Notification("Saved Spittle");
}

As you can see, handleSpittle() accepts both a Principal object as well as a
SpittleForm object. It uses those to create an instance of Spittle and then uses the
SpittleRepository to save it. Finally, it returns a new Notification indicating that
the Spittle was saved.

 Of course, what happens inside the method isn’t nearly as interesting as what’s
going on outside. Because this method is annotated with @MessageMapping, it will be
invoked whenever a message arrives on the /app/spittle destination. The Spittle-
Form will be created from that message and, assuming that the user is authenticated,
the Principal will also be derived from headers in the STOMP frame.

 The big thing to pay attention to, however, is where the returned Notification
goes. The @SendToUser annotation specifies that the returned Notification should
be sent as a message to the /queue/notifications destination. On the surface, /queue/
notifications doesn’t appear to be specific to a given user. But because this is the
@SendToUser annotation and not the @SendTo annotation, there’s more to the story.

 To understand how Spring will publish the message, let’s step back a bit and see
how a client would subscribe to the destination that this controller method publishes
a Notification to. Consider this line of JavaScript that subscribes to a user-specific
destination:

stomp.subscribe("/user/queue/notifications", handleNotifications);

Notice that the destination is prefixed with /user. Internally, destinations that are pre-
fixed with /user are handled in a special way. Rather than flowing through
AnnotationMethodMessageHandler (like an application message), or through Simple-
BrokerMessageHandler or StompBrokerRelayMessageHandler (like a broker mes-
sage), /user messages flow through UserDestinationMessageHandler, as illustrated in
figure 18.4.

507Working with user-targeted messages
UserDestinationMessageHandler’s primary job is to reroute user messages to a desti-
nation that’s unique to the user. In the case of a subscription, it derives the target des-
tination by removing the /user prefix and adding a suffix that’s based on the user’s
session. For instance, a subscription to /user/queue/notifications may end up being
rerouted to a destination named /queue/notifications-user6hr83v6t.

 In our example, handleSpittle() is annotated with @SendToUser("/queue/
notifications"). This new destination is prefixed with /queue, which is one of the pre-
fixes that your StompBrokerRelayMessageHandler (or SimpleBrokerMessageHandler)
is configured to handle, so the message will go there next. As it turns out, the client sub-
scribed to that destination, so the client will receive the Notification message.

 The @SendToUser annotation and a Principal parameter are very useful when
working within a controller method. But in listing 18.8 you saw how to send messages
from anywhere in an application using a messaging template. Let’s see how you can
use SimpMessagingTemplate to send messages to a specific user.

18.4.2 Sending messages to a specific user

In addition to convertAndSend(), SimpMessagingTemplate also offers convertAnd-
SendToUser(). As its name suggests, the convertAndSendToUser() method enables
you to send messages that target a specific user.

 To demonstrate, let’s add a feature to the Spittr application that notifies a user
when some other user posts a Spittle that mentions them. For example, if the
Spittle text includes “@jbauer”, then you should send a message to the client where
a user with the username “jbauer” is logged in. The broadcastSpittle() method in

Request
channel

Response
channel

SEND
destination:/app/marco

SEND
destination:/topic/polo

MESSAGE
destination:/topic/polo

Broker
channel

/app

/topic
/queue

/user /user

/topic
/queue

StompBrokerRelay
MessageHandler

Message broker
(RabbitMQ, ActiveMQ, etc)

UserDestination
MessageHandler

AnnotationMethod
MessageHandler

Figure 18.4 User messages flow through UserDestinationMessageHandler, which reroutes
them to a destination that’s unique to a user.

508 CHAPTER 18 Messaging with WebSocket and STOMP
the following listing uses convertAndSendToUser() to notify a user that they’re being
talked about.

package spittr;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.messaging.simp.SimpMessagingTemplate;
import org.springframework.stereotype.Service;

@Service
public class SpittleFeedServiceImpl implements SpittleFeedService {

private SimpMessagingTemplate messaging;
private Pattern pattern = Pattern.compile("\\@(\\S+)");

@Autowired
public SpittleFeedServiceImpl(SimpMessagingTemplate messaging) {

this.messaging = messaging;
}

public void broadcastSpittle(Spittle spittle) {

messaging.convertAndSend("/topic/spittlefeed", spittle);

Matcher matcher = pattern.matcher(spittle.getMessage());
if (matcher.find()) {

String username = matcher.group(1);
messaging.convertAndSendToUser(

username, "/queue/notifications",
new Notification("You just got mentioned!"));

}
}

}

Within broadcastSpittle(), if the given Spittle object’s message contains what
appears to be a username (that is, any text that begins with “@”), a new Notification
will be sent to a destination named /queue/notifications. Therefore, if the Spittle
has a message that contains “@jbauer”, the Notification will be published to the /
user/jbauer/queue/notifications destination.

18.5 Handling message exceptions
Sometimes things don’t work out the way you expected. When handling a message,
something could go wrong and an exception could be thrown. Due to the asynchro-
nous nature of STOMP messaging, the sender may never know that anything went
wrong. Aside from being logged by Spring, the exception could be lost with no
recourse or opportunity to recover.

 In Spring MVC, if an exception occurs during request handling, an @Exception-
Handler method will be given an opportunity to deal with the exception. Similarly,

Listing 18.9 convertAndSendToUser() can send a message to a specific user

Regex pattern for
user mention

Send notification
to user

509Summary
you can annotate a controller method with @MessageExceptionHandler to handle
exceptions thrown in an @MessageMapping method.

 For example, consider this method that handles exceptions thrown from message-
handling methods:

@MessageExceptionHandler
public void handleExceptions(Throwable t) {

logger.error("Error handling message: " + t.getMessage());
}

In its simplest form, @MessageExceptionHandler will handle any exception thrown
from a message-handling method. But you can declare a specific exception type that it
should handle as a parameter:

@MessageExceptionHandler(SpittleException.class)
public void handleExceptions(Throwable t) {

logger.error("Error handling message: " + t.getMessage());
}

Or you can specify several exception types to be handled as an array parameter:

@MessageExceptionHandler(
{SpittleException.class, DatabaseException.class})

public void handleExceptions(Throwable t) {
logger.error("Error handling message: " + t.getMessage());

}

Although it only logs that an error occurred, this method could do much more. For
instance, it could reply with an error:

@MessageExceptionHandler(SpittleException.class)
@SendToUser("/queue/errors")
public SpittleException handleExceptions(SpittleException e) {

logger.error("Error handling message: " + e.getMessage());
return e;

}

Here, if a SpittleException is thrown, that exception will be logged and then
returned. As you learned in section 18.4.1, UserDestinationMessageHandler will
reroute the message to a destination unique to the user.

18.6 Summary
WebSocket is an exciting way to send messages between applications, especially when
one of those applications is running within a web browser. It’s critical for writing
highly interactive web applications that seamlessly transfer data to and from the
server.

 Spring’s WebSocket support includes a low-level API that lets you work with raw
WebSocket connections. Unfortunately, WebSocket support is not ubiquitous among
web browsers, servers, and proxies. Therefore, Spring also supports SockJS, a protocol
that falls back to alternative communication schemes when WebSocket doesn’t work.

510 CHAPTER 18 Messaging with WebSocket and STOMP
 Spring also offers a higher-level programming model for handling WebSocket mes-
sages using the STOMP wire-level protocol. In this higher-level model, STOMP
messages are handled in Spring MVC controllers, similarly to how HTTP messages are
handled.

 In the past couple of chapters, you’ve seen a few ways to send messages asynchro-
nously between applications. But there’s another kind of asynchronous messaging
that Spring can do. In the next chapter, you’ll see how to use Spring to send emails.

Sending email
with Spring
It’s no secret that email has become a common form of communication, displacing
many traditional means of communication such as postal mail, telephone calls,
and, to some degree, face-to-face communication. Email offers many of the same
asynchronous benefits as the messaging options we discussed in chapter 17, only
with humans as the senders and receivers. As soon as you click Send in your email
client, you can move on to some other task, knowing that the recipient will eventu-
ally receive and (hopefully) read your email.

 But humans aren’t always the senders of email. Frequently, email messages are
sent by applications to users. Perhaps it’s an email confirmation of an order that a
user placed on an eCommerce site, or maybe it’s an automated notification of an
activity involving someone’s bank account. Whatever the subject, it’s likely that
you’ll develop applications that need to send email messages. Fortunately, Spring is
ready to help.

This chapter covers
 Configuring Spring’s email abstraction

 Sending rich email messages

 Using templates to construct email messages
511

512 CHAPTER 19 Sending email with Spring
 In chapter 17, you used Spring’s messaging support to asynchronously queue up
jobs to send spittle alerts to other Spittr application users. But you left that task unfin-
ished, because no email messages were sent. Let’s finish what you started by looking at
how Spring abstracts the problem of sending email, and then use that abstraction to
send spittle alert email messages.

19.1 Configuring Spring to send email
At the heart of Spring’s email abstraction is the MailSender interface. As its name
implies, and as illustrated in figure 19.1, a MailSender implementation sends email by
connecting with an email server.

 Spring comes with one implementation of the MailSender interface, JavaMail-
SenderImpl, which uses the JavaMail API to send email. Before you can send email
messages from your Spring application, you must wire JavaMailSenderImpl as a bean
in the Spring application context.

19.1.1 Configuring a mail sender

In its simplest form, JavaMailSenderImpl can be configured as a bean with only a few
lines in an @Bean method:

@Bean
public MailSender mailSender(Environment env) {

JavaMailSenderImpl mailSender = new JavaMailSenderImpl();
mailSender.setHost(env.getProperty("mailserver.host"));
return mailSender;

}

The host property is optional (it defaults to the host of the underlying JavaMail ses-
sion), but you’ll probably want to set it. It specifies the hostname for the mail server
that will be used to send the email. Here it’s configured by fetching the value from the
injected Environment so that you can manage the mail-server configuration outside of
Spring (for example, in a properties file).

 By default, JavaMailSenderImpl assumes that the mail server is listening on port 25
(the standard SMTP port). If your mail server is listening on a different port, specify the
correct port number using the port property. For example,

@Bean
public MailSender mailSender(Environment env) {

JavaMailSenderImpl mailSender = new JavaMailSenderImpl();
mailSender.setHost(env.getProperty("mailserver.host"));
mailSender.setPort(env.getProperty("mailserver.port"));
return mailSender;

}

Mail
sender

Email
server

Figure 19.1 Spring’s MailSender interface
is the primary component of Spring’s email
abstraction API. It sends email to a mail server
for delivery.

513Configuring Spring to send email
Likewise, if the mail server requires authentication, you’ll want to set values for the
username and password properties:

@Bean
public MailSender mailSender(Environment env) {

JavaMailSenderImpl mailSender = new JavaMailSenderImpl();
mailSender.setHost(env.getProperty("mailserver.host"));
mailSender.setPort(env.getProperty("mailserver.port"));
mailSender.setUsername(env.getProperty("mailserver.username"));
mailSender.setPassword(env.getProperty("mailserver.password"));
return mailSender;

}

Thus far, JavaMailSenderImpl has been configured to create its own mail session. But
you may already have a javax.mail.MailSession configured in JNDI (or perhaps one
was placed there by your application server). If so, it doesn’t make much sense to con-
figure JavaMailSenderImpl with the full server details. Instead, you can configure it
to use the MailSession you have ready to use from JNDI.

 Using JndiObjectFactoryBean, you can configure a bean that looks up the Mail-
Session from JNDI with the following @Bean method:

@Bean
public JndiObjectFactoryBean mailSession() {

JndiObjectFactoryBean jndi = new JndiObjectFactoryBean();
jndi.setJndiName("mail/Session");
jndi.setProxyInterface(MailSession.class);
jndi.setResourceRef(true);
return jndi;

}

You’ve also seen how to retrieve objects from JNDI using Spring’s <jee:jndi-lookup>
element. You can use <jee:jndi-lookup> to create a bean that references a mail ses-
sion in JNDI:

<jee:jndi-lookup id="mailSession"
jndi-name="mail/Session" resource-ref="true" />

With the mail session bean configured, you can now wire it into the mailSender bean
like this:

@Bean
public MailSender mailSender(MailSession mailSession) {

JavaMailSenderImpl mailSender = new JavaMailSenderImpl();
mailSender.setSession(mailSession);
return mailSender;

}

By wiring the mail session into the session property of JavaMailSenderImpl, you
replace the explicit server (and username/password) configuration from before. Now
the mail session is completely configured and managed in JNDI. JavaMailSenderImpl
can focus on sending email messages and not worry about the details of how to con-
nect with the mail server.

514 CHAPTER 19 Sending email with Spring

A

19.1.2 Wiring and using the mail sender

With the mail sender configured, it’s time to wire it into the bean that will use it. In
the Spittr application, the SpitterEmailServiceImpl class is the most appropriate
place from which to send email. This class has a mailSender property that’s annotated
with @Autowired:

@Autowired
JavaMailSender mailSender;

When Spring creates SpitterEmailServiceImpl as a bean, it will try to find a bean
that implements MailSender that it can wire in to the mailSender property. It should
find your mailSender bean and use that. With the mailSender bean wired in, you’re
ready to construct and send email messages.

 Because you want to send email to a Spitter user to alert them about new spittles that
their friends may have written, you’ll need a method that, given an email address and
a Spittle object, will send that email message. The following sendSimpleSpittle-
Email() method uses the mail sender to do just that.

public void sendSimpleSpittleEmail(String to, Spittle spittle) {
SimpleMailMessage message = new SimpleMailMessage();
String spitterName = spittle.getSpitter().getFullName();
message.setFrom("noreply@spitter.com");
message.setTo(to);
message.setSubject("New spittle from " + spitterName);
message.setText(spitterName + " says: " +

spittle.getText());

mailSender.send(message);
}

The first thing that sendSimpleSpittleEmail() does is construct an instance of
SimpleMailMessage. This mail-message object, as its name implies, is perfect for send-
ing no-nonsense email messages.

 Next, the details of the message are set. The sender and recipient are specified via
the setFrom() and setTo() methods on the email message. After you set the subject
with setSubject(), the virtual “envelope” has been addressed. All that’s left is to call
setText() to set the message’s content.

 The last step is to pass the message to the mail sender’s send() method, and the
email is on its way.

 Now you’ve configured a mail sender and used it to send a simple email message.
And as you’ve seen, working with Spring’s email abstraction is easy. We could call it
good at this point and move on to the next chapter. But then you’d miss out on the
fun stuff in Spring’s email abstraction. Let’s kick it up a notch and see how to add
attachments and create rich email messages.

Listing 19.1 Sending email with Spring using a MailSender

Construct
message

ddress
email

Set message text

Send email

515Constructing rich email messages
19.2 Constructing rich email messages
Plaintext email messages are fine for simple things like asking your friends over to
watch the big game. But they’re less than ideal when you need to send photos or doc-
uments. And they’re ineffective for capturing the recipient’s attention, as in market-
ing email.

 Fortunately, Spring’s email capabilities don’t end with plaintext email. You have
the option of adding attachments and even dressing up the body of the message with
HTML. Let’s start with the basic task of adding attachments. Then you’ll go a step fur-
ther and make your email messages look good with HTML.

19.2.1 Adding attachments

The trick to sending email with attachments is to create multipart messages—email
messages composed of multiple parts, one of which is the body and the other parts
being the attachments.

 The SimpleMailMessage class is too … well … simple for sending attachments. To
send multipart email messages, you need to create a Multipurpose Internet Mail Exten-
sions (MIME) message. The mail sender object’s createMimeMessage() method can
get you started:

MimeMessage message = mailSender.createMimeMessage();

There you go. You now have a MIME message to work with. It seems that all you need
to do is give it To and From addresses, a subject, some text, and an attachment.
Although that’s true, it’s not as straightforward as you might think. The
javax.mail.internet.MimeMessage class has an API that’s too cumbersome to use on
its own. Fortunately, Spring provides MimeMessageHelper to lend a hand.

 To use MimeMessageHelper, instantiate an instance of it, passing in the Mime-
Message to its constructor:

MimeMessageHelper helper = new MimeMessageHelper(message, true);

The second parameter to the constructor, a Boolean true as shown here, indicates
that this is to be a multipart message.

 From the MimeMessageHelper instance, you’re ready to assemble your email mes-
sage. The only major difference is that you’ll provide the email specifics through
methods on the helper instead of on the message itself:

String spitterName = spittle.getSpitter().getFullName();
helper.setFrom("noreply@spitter.com");
helper.setTo(to);
helper.setSubject("New spittle from " + spitterName);
helper.setText(spitterName + " says: " + spittle.getText());

The only thing needed before you can send the message is to add the attachment: in
this case, a coupon image. To do that, you’ll need to load the image as a resource and
then pass that resource in as you call the helper’s addAttachment() method:

516 CHAPTER 19 Sending email with Spring
FileSystemResource couponImage =
new FileSystemResource("/collateral/coupon.png");

helper.addAttachment("Coupon.png", couponImage);

Here, you’re using Spring’s FileSystemResource to load coupon.png from within the
application’s classpath. From there, you call addAttachment(). The first parameter is
the name to be given to the attachment in the message. The second parameter is the
image’s resource.

 The multipart email message has been constructed, and you’re ready to send it.
The complete sendSpittleEmailWithAttachment() method is shown next.

public void sendSpittleEmailWithAttachment(
String to, Spittle spittle) throws MessagingException {

MimeMessage message = mailSender.createMimeMessage();
MimeMessageHelper helper =

new MimeMessageHelper(message, true);
String spitterName = spittle.getSpitter().getFullName();

helper.setFrom("noreply@spitter.com");
helper.setTo(to);
helper.setSubject("New spittle from " + spitterName);
helper.setText(spitterName + " says: " + spittle.getText());
FileSystemResource couponImage =

new FileSystemResource("/collateral/coupon.png");
helper.addAttachment("Coupon.png", couponImage);
mailSender.send(message);

}

Adding attachments is only one thing you can do with multipart email messages. In
addition, by specifying that the body of the message is HTML, you can produce
polished email messages that look much nicer than flat text. Let’s see how to send
attractive-looking email using Spring’s MimeMessageHelper.

19.2.2 Sending email with rich content

Sending rich email isn’t much different than sending plaintext email messages. The
key is to set the message’s text as HTML. Doing that is as simple as passing in an HTML
string to the helper’s setText() method and true as the second parameter:

helper.setText("<html><body>" +
"<h4>" + spittle.getSpitter().getFullName() + " says...</h4>" +
"<i>" + spittle.getText() + "</i>" +

"</body></html>", true);

The second parameter indicates that the text passed in to the first parameter is HTML,
so that the message part’s content type will be set accordingly.

 Note that the HTML passed in has an tag to display the Spittr application’s
logo as part of the message. The src attribute could be set to a standard http: URL to
pull the Spittr logo from the web. But here, you embed the logo image in the email
message. The value cid:spitterLogo indicates that there will be an image in one of
the message’s parts identified as spitterLogo.

Listing 19.2 Sending email messages with attachments using MimeMessageHelper

Construct
message helper

Add attachment

517Generating email with templates
 Adding the embedded image to the message is much like adding an attachment.
Instead of calling the helper’s addAttachment() method, you call the addInline()
method:

ClassPathResource image =
new ClassPathResource("spitter_logo_50.png");

helper.addInline("spitterLogo", image);

The first parameter to addInline specifies the identity of the inline image—which is
the same as was specified by the ’s src attribute. The second parameter is the
resource reference for the image, created here using Spring’s ClassPathResource to
retrieve the image from the application’s classpath.

 Aside from the slightly different call to setText() and the use of the addInline()
method, sending email with rich content is much like sending a plaintext message
with attachments. For sake of comparison, here’s the new sendRichSpitterEmail()
method.

public void sendRichSpitterEmail(String to, Spittle spittle)
throws MessagingException {

MimeMessage message = mailSender.createMimeMessage();
MimeMessageHelper helper = new MimeMessageHelper(message, true);
helper.setFrom("noreply@spitter.com");
helper.setTo("craig@habuma.com");
helper.setSubject("New spittle from " +

spittle.getSpitter().getFullName());
helper.setText("<html><body>" +

"<h4>" + spittle.getSpitter().getFullName() + " says...</h4>" +
"<i>" + spittle.getText() + "</i>" +

"</body></html>", true);
ClassPathResource image =

new ClassPathResource("spitter_logo_50.png");
helper.addInline("spitterLogo", image);
mailSender.send(message);

}

And now you’re sending email messages with rich content and embedded images! You
could stop here and call your email code complete. But it bugs me that the email’s
body is created by using string concatenation to construct an HTML message. Before
we put the email topic to rest, let’s see how to replace that string-concatenated mes-
sage with a template.

19.3 Generating email with templates
The problem with constructing an email message using string concatenation is that
it’s not clear what the resulting message will look like. It’s hard enough to mentally
parse HTML markup to imagine how it might appear when rendered. But mixing up
that HTML in Java code compounds the issue. Moreover, it might be nice to extract
the email layout into a template that a graphic designer (who probably has an aver-
sion to Java code) can produce.

Set HTML
body

Add inline image

518 CHAPTER 19 Sending email with Spring
 What you need is a way to express the email layout in something close to what the
resulting HTML will look like, and then transform that template into a String to be
passed into the setText() method on the message helper. When it comes to trans-
forming templates into strings, there are several templating options to choose from,
including Apache Velocity and Thymeleaf. Let’s look at how to create rich email mes-
sages using each of these options, starting with Velocity.

19.3.1 Constructing email messages with Velocity

Apache Velocity is a general-purpose templating engine from Apache. Velocity has
been around for quite a while and has been used for all kinds of things, including
code generation and as an alternative to JSP. It can also be used to format rich email
messages, as you’ll do here.

 To use Velocity to lay out your email messages, you’ll first need to wire a Velocity-
Engine into SpitterEmailServiceImpl. Spring provides a handy factory bean called
VelocityEngineFactoryBean that produces a VelocityEngine in the Spring applica-
tion context. The declaration for VelocityEngineFactoryBean looks like this:

@Bean
public VelocityEngineFactoryBean velocityEngine() {

VelocityEngineFactoryBean velocityEngine =
new VelocityEngineFactoryBean();

Properties props = new Properties();
props.setProperty("resource.loader", "class");
props.setProperty("class.resource.loader.class",

ClasspathResourceLoader.class.getName());
velocityEngine.setVelocityProperties(props);
return velocityEngine;

}

The only property that needs to be set on VelocityEngineFactoryBean is velocity-
Properties. In this case, you’re configuring it to load Velocity templates from the class-
path (see the Velocity documentation for more details on how to configure Velocity).

 Now you can wire the Velocity engine into SpitterEmailServiceImpl. Because
SpitterEmailServiceImpl is automatically registered with the component scanner,
you can use @Autowired to automatically wire a velocityEngine property:

@Autowired
VelocityEngine velocityEngine;

Next, you can use the velocityEngine property to transform a Velocity template into
a String to send as your email text. To help with that, Spring comes with Velocity-
EngineUtils to make simple work of merging a Velocity template and some model
data into a String. Here’s how you might use it:

Map<String, String> model = new HashMap<String, String>();
model.put("spitterName", spitterName);
model.put("spittleText", spittle.getText());
String emailText = VelocityEngineUtils.mergeTemplateIntoString(

velocityEngine, "emailTemplate.vm", model);

519Generating email with templates
In preparation for processing the template, you start by creating a Map to hold the
model data used by the template. In the previous string-concatenated code, you
needed the full name of the spitter and the text of their spittle, so you’ll need that
here as well. To produce the merged email text, you then call VelocityEngineUtils’s
mergeTemplateIntoString() method, passing in the Velocity engine, the path to the
template (relative to the root of the classpath), and the model map.

 All that’s left to be done in the Java code is to hand off the merged email text to
the message helper’s setText() method:

helper.setText(emailText, true);

The template is sitting at the root of the classpath in a file called emailTemplate.vm,
which looks like this:

<html>
<body>

<h4>${spitterName} says...</h4>
<i>${spittleText}</i>

</body>
</html>

As you can see, the template file is a lot easier to read than the string-concatenated
version from before. Consequently, it’s also easier to maintain and edit. Figure 19.2
gives a sample of the kind of email message it might produce.

 Looking at the figure, I see a lot of opportunity to dress up the template so the
message looks much nicer. But, as they say, I’ll leave that as an exercise for the reader.

Figure 19.2 A Velocity template and some embedded images can dress up an
otherwise ho-hum email message.

520 CHAPTER 19 Sending email with Spring
Velocity has been used for years as the templating engine of choice for many tasks. But
as you saw in chapter 6, a new templating option is becoming popular. Let’s see how
you can use Thymeleaf to construct spittle email messages.

19.3.2 Using Thymeleaf to create email messages

As we discussed in chapter 6, Thymeleaf is an attractive templating engine for HTML
because it enables you to create WYSIWYG templates. Unlike JSP and Velocity, Thyme-
leaf templates don’t contain any special tag libraries or unusual markup. This makes it
easy for template designers to use any HTML tools they like in their work without wor-
rying about a tool’s inability to deal with special markup.

 When you convert an email template to a Thymeleaf template, the WYSIWYG
nature of Thymeleaf is apparent:

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org">
<body>

<h4>Craig Walls says...</h4>
<i>Hello there!</i>

</body>
</html>

Notice that there are no custom tags (as you might see in JSP). And although model
attributes are referenced with ${} notation, it’s confined to values of attributes instead
of being out in the open as with Velocity. This template could easily be opened in a
web browser and viewed in its complete form without relying on the Thymeleaf
engine to process it.

 Using Thymeleaf to generate and send HTML email messages is similar to what you
did with Velocity:

Context ctx = new Context();
ctx.setVariable("spitterName", spitterName);
ctx.setVariable("spittleText", spittle.getText());
String emailText = thymeleaf.process("emailTemplate.html", ctx);
...
helper.setText(emailText, true);
mailSender.send(message);

The first thing to do is create a Thymeleaf Context instance and populate it with
model data. This is analogous to populating a Map with model data, as you did with
Velocity. Then you ask Thymeleaf to process your template, merging the model data
in the context into the template by calling the process() method on the Thymeleaf
engine. Finally, you set the resulting text on the message using the message helper
and send the message using the mail sender.

 That seems simple enough. But where does the Thymeleaf engine (represented by
the thymeleaf variable) come from?

521Generating email with templates
 The Thymeleaf engine here is the same SpringTemplateEngine bean that you
configured for constructing web views in chapter 6. But now you’re injecting it into
SpitterEmailServiceImpl via constructor injection:

@Autowired
private SpringTemplateEngine thymeleaf;

@Autowired
public SpitterEmailServiceImpl(SpringTemplateEngine thymeleaf) {

this.thymeleaf = thymeleaf;
}

You must make one small tweak to the SpringTemplateEngine bean, however. As you
left it in chapter 6, it’s only configured to resolve templates from the servlet context.
Your email templates will need to be resolved from the classpath. So in addition to
ServletContextTemplateResolver, you’ll also need a ClassLoaderTemplate-

Resolver:

@Bean
public ClassLoaderTemplateResolver emailTemplateResolver() {

ClassLoaderTemplateResolver resolver =
new ClassLoaderTemplateResolver();

resolver.setPrefix("mail/");
resolver.setTemplateMode("HTML5");
resolver.setCharacterEncoding("UTF-8");
setOrder(1);
return resolver;

}

For the most part, you’ll configure the ClassLoaderTemplateResolver bean just as you
did ServletContextTemplateResolver. Note, though, that the prefix property is set
to mail/, indicating that it expects to find Thymeleaf templates in the mail directory
rooted at the classpath root. Therefore, your email template file must be named email-
Template.html and reside in the mail directory relative to the root of the classpath.

 Also, because you’ll now have two template resolvers, you need to indicate which
one takes precedence, using the order property. The ClassLoaderTemplateResolver
bean has its order as 1. Tweak the ServletContextTemplateResolver configuration,
setting its order to 2:

@Bean
public ServletContextTemplateResolver webTemplateResolver() {

ServletContextTemplateResolver resolver =
new ServletContextTemplateResolver();

resolver.setPrefix("/WEB-INF/templates/");
resolver.setTemplateMode("HTML5");
resolver.setCharacterEncoding("UTF-8");
setOrder(2);
return resolver;

}

All that’s left to do is change the SpringTemplateEngine bean’s configuration to use
both of your template resolvers:

522 CHAPTER 19 Sending email with Spring
@Bean
public SpringTemplateEngine templateEngine(

Set<ITemplateResolver> resolvers) {
SpringTemplateEngine engine = new SpringTemplateEngine();
engine.setTemplateResolvers(resolvers);
return engine;

}

Before, you only had one template resolver, so you injected it into SpringTemplate-
Engine’s templateResolver property. But now you have two template resolvers, so you
must inject them as members of a Set into the templateResolvers (plural) property.

19.4 Summary
Email is an important form of human-to-human communication and frequently a cru-
cial form of application-to-human communication as well. Spring builds on the email
capabilities provided in Java, abstracting JavaMail for simpler use and configuration in
a Spring application.

 In this chapter, you’ve seen how to use Spring’s email abstraction to send simple
email messages, and you’ve taken it further by sending rich messages that contain
attachments and that are formatted with HTML. We also looked at using templating
engines like Velocity and Thymeleaf to generate rich email text without resorting to
creating HTML via string concatenation.

 Coming up in the next chapter, you’ll see how to add management and notifica-
tion capabilities to your Spring beans using Java Management Extensions (JMX).

Managing Spring beans
with JMX
Spring’s support for DI is a great way to configure bean properties in an applica-
tion. But once the application has been deployed and is running, DI alone can’t do
much to help you change that configuration. Suppose you want to dig into a run-
ning application and change its configuration on the fly. That’s where Java Manage-
ment Extensions (JMX) comes in.

 JMX is a technology that enables you to instrument applications for manage-
ment, monitoring, and configuration. Originally available as a separate extension
to Java, JMX is now a standard part of the Java 5 distribution.

 The key component of an application that’s instrumented for management with
JMX is the managed bean (MBean). An MBean is a JavaBean that exposes certain
methods that define the management interface. The JMX specification defines four
types of MBeans:

This chapter covers
 Exposing Spring beans as managed beans

 Remotely managing Spring beans

 Handling JMX notifications
523

524 CHAPTER 20 Managing Spring beans with JMX
 Standard MBeans—MBeans whose management interface is determined by
reflection on a fixed Java interface that’s implemented by the bean class.

 Dynamic MBeans—MBeans whose management interface is determined at run-
time by invoking methods of the DynamicMBean interface. Because the manage-
ment interface isn’t defined by a static interface, it can vary at runtime.

 Open MBeans—A special kind of dynamic MBean whose attributes and opera-
tions are limited to primitive types, class wrappers for primitive types, and any
type that can be decomposed into primitives or primitive wrappers.

 Model MBeans—A special kind of dynamic MBean that bridges a management
interface to the managed resource. Model MBeans aren’t written as much as
they are declared. They’re typically produced by a factory that uses some meta-
information to assemble the management interface.

Spring’s JMX module enables you to export Spring beans as model MBeans so that you
can see inside your application and tweak the configuration—even while the applica-
tion is running. Let’s see how to JMX-enable your Spring application so that you can
manage the beans in the Spring application context.

20.1 Exporting Spring beans as MBeans
There are several ways you can use JMX to manage the beans in the Spittr application.
In the interest of keeping things simple, let’s start by making a modest change to
SpittleController as it appeared in listing 5.10. We’ll add a new spittlesPerPage
property:

public static final int DEFAULT_SPITTLES_PER_PAGE = 25;
private int spittlesPerPage = DEFAULT_SPITTLES_PER_PAGE;

public void setSpittlesPerPage(int spittlesPerPage) {
this.spittlesPerPage = spittlesPerPage;

}

public int getSpittlesPerPage() {
return spittlesPerPage;

}

Before this change, when SpittleController called findSpittles() on the Spitter-
Service, it passed in 20 for the second argument, asking for only the most recent 20
Spittles. Now, rather than commit to that decision at build time with a hard-coded
value, you’re going to use JMX to leave the decision open to change at runtime. The
new spittlesPerPage property is the first step toward enabling that.

 But on its own, the spittlesPerPage property can’t enable external configuration
of the number of spittles displayed on the page. It’s just a property on a bean, like any
other property. What you need to do next is expose the SpittleController bean as
an MBean. Then the spittlesPerPage property will be exposed as the MBean’s man-
aged attribute, and you’ll be able to change its value at runtime.

 Spring’s MBeanExporter is the key to JMX-ifying beans in Spring. MBeanExporter is
a bean that exports one or more Spring-managed beans as model MBeans in an

525Exporting Spring beans as MBeans
MBean server. An MBean server (sometimes called an MBean agent) is a container
where MBeans live and through which the MBeans are accessed.

 As illustrated in figure 20.1, exporting Spring beans as JMX MBeans makes it possi-
ble for a JMX-based management tool such as JConsole or VisualVM to peer inside a
running application to view the beans’ properties and invoke their methods.

 The following @Bean method declares an MBeanExporter in Spring to export the
spittleController bean as a model MBean:

@Bean
public MBeanExporter mbeanExporter(SpittleController spittleController) {

MBeanExporter exporter = new MBeanExporter();
Map<String, Object> beans = new HashMap<String, Object>();
beans.put("spitter:name=SpittleController", spittleController);
exporter.setBeans(beans);
return exporter;

}

In its most straightforward form, MBeanExporter can be configured through its beans
property by injecting a Map of one or more beans that you’d like to expose as model
MBeans in JMX. The key of each <entry> is the name to be given to the MBean (com-
posed of a management domain name and a key-value pair—spitter:name=Spittle-

Controller in the case of the SpittleController MBean). The value of entry is a
reference to the Spring-managed bean that’s to be exported. Here, you’re exporting
the spittleController bean so that its properties can be managed at runtime
through JMX.

Spring application context

JConsole MBean
server

MBean
exporter

MBean
exporter

Bean A

Bean B

Figure 20.1 Spring’s MBeanExporter exports the properties and methods of Spring beans as
JMX attributes and operations in an MBean server. From there, a JMX management tool such as
JConsole can look inside the running application.

526 CHAPTER 20 Managing Spring beans with JMX
With the MBeanExporter in place, the spittleController bean is exported as a
model MBean to the MBean server for management under the name Spittle-
Controller. Figure 20.2 shows how the SpittleController MBean appears when
viewed through JConsole.

 As you can see on the left side of figure 20.2, all public members of the Spittle-
Controller are exported as MBean operations and attributes. This probably isn’t
what you want. All you really want to do is configure the spittlesPerPage property.
You don’t need to invoke the spittles() method or muck about with any other part
of SpittleController. Thus, you need a way to select which attributes and operations
are available.

 To gain finer control over an MBean’s attributes and operations, Spring offers a
few options, including the following:

 Declaring bean methods that are to be exposed/ignored by name
 Fronting the bean with an interface to select the exposed methods
 Annotating the bean to designate managed attributes and operations

Figure 20.2 SpittleController exported as an MBean and seen through the eyes of JConsole

527Exporting Spring beans as MBeans
Let’s try each of these options to see which best suits the SpittleController MBean.
You’ll start by selecting the bean methods to expose by name.

20.1.1 Exposing methods by name

An MBean info assembler is the key to constraining which operations and attributes are
exported in an MBean. One such MBean info assembler is MethodNameBasedMBean-
InfoAssembler. This assembler is given a list of names of methods to export as MBean
operations. For the SpittleController bean, you want to export spittlesPerPage as
a managed attribute. How can a method name–based assembler help you export a
managed attribute?

 Recall that per JavaBean rules (not necessarily Spring bean rules), what makes
spittlesPerPage a property is that it has corresponding accessor methods named
setSpittlesPerPage() and getSpittlesPerPage(). To limit your MBean’s exposure,
you need to tell MethodNameBasedMBeanInfoAssembler to include only those methods
in the MBean’s interface. The following declaration of a MethodNameBasedMBean-
InfoAssembler bean singles out those methods:

@Bean
public MethodNameBasedMBeanInfoAssembler assembler() {

MethodNameBasedMBeanInfoAssembler assembler =
new MethodNameBasedMBeanInfoAssembler();

assembler.setManagedMethods(new String[] {
"getSpittlesPerPage", "setSpittlesPerPage"

});
return assembler;

}

The managedMethods property takes a list of method names. Those are the methods
that will be exposed as the MBean’s managed operations. Because they’re property

From whence the MBean server?
As configured, MBeanExporter assumes that it’s running in an application server
(such as Tomcat) or some other context that provides an MBean server. But if your
Spring application will be running standalone or in a container that doesn’t provide
an MBean server, you’ll want to configure an MBean server in the Spring context.

In XML configuration, the <context:mbean-server> element can handle that for
you. In Java configuration, you’ll need to take a more direct approach and configure
a bean of type MBeanServerFactoryBean() (which is what <context:mbean-
server> does for you in XML).

MBeanServerFactoryBean creates an MBean server as a bean in the Spring appli-
cation context. By default, that bean’s ID is mbeanServer. Knowing this, you can wire
it into MBeanExporter’s server property to specify which MBean server an MBean
should be exposed through.

528 CHAPTER 20 Managing Spring beans with JMX
accessor methods, they will also result in a spittlesPerPage managed attribute on
the MBean.

 To put the assembler into action, you need to wire it into the MBeanExporter:

@Bean
public MBeanExporter mbeanExporter(

SpittleController spittleController,
MBeanInfoAssembler assembler) {

MBeanExporter exporter = new MBeanExporter();
Map<String, Object> beans = new HashMap<String, Object>();
beans.put("spitter:name=SpittleController", spittleController);
exporter.setBeans(beans);
exporter.setAssembler(assembler);
return exporter;

}

Now, if you fire up the application, SpittleController’s spittlesPerPage is avail-
able as a managed attribute, but the spittles() method isn’t exposed as a managed
operation. Figure 20.3 shows what this looks like in JConsole.

Figure 20.3 After specifying which methods are exported in the SpittleController MBean,
the spittles() method is no longer a managed operation.

529Exporting Spring beans as MBeans
 Another method name–based assembler to consider is MethodExclusionMBeanInfo-
Assembler. This MBean info assembler is the inverse of MethodNameBasedMBean-
InfoAssembler. Rather than specifying which methods to expose as managed
operations, MethodExclusionMBeanInfoAssembler is given a list of methods to not
reveal as managed operations. For example, here’s how to use MethodExclusion-
MBeanInfoAssembler to keep spittles() out of consideration as a managed operation:

@Bean
public MethodExclusionMBeanInfoAssembler assembler() {

MethodExclusionMBeanInfoAssembler assembler =
new MethodExclusionMBeanInfoAssembler();

assembler.setIgnoredMethods(new String[] {
"spittles"

});
return assembler;

}

Method name–based assemblers are straightforward and easy to use. But can you
imagine what would happen if you were to export several Spring beans as MBeans?
After a while, the list of method names given to the assembler would be huge. And
there’s also a possibility that you may want to export a method from one bean while
another bean has a same-named method that you don’t want to export.

 Clearly, in terms of Spring configuration, the method-name approach doesn’t
scale well when exporting multiple MBeans. Let’s see if using interfaces to expose
MBean operations and attributes is any better.

20.1.2 Using interfaces to define MBean operations and attributes

Spring’s InterfaceBasedMBeanInfoAssembler is another MBean info assembler that
lets you use interfaces to pick and choose which methods on a bean are exported as
MBean-managed operations. It’s similar to the method name–based assemblers,
except that instead of listing method names to be exported, you list interfaces that
define the methods to be exported.

 For example, suppose I define an interface named SpittleControllerManaged-
Operations like this:

package com.habuma.spittr.jmx;

public interface SpittleControllerManagedOperations {
int getSpittlesPerPage();
void setSpittlesPerPage(int spittlesPerPage);

}

Here I’ve selected the setSpittlesPerPage() and getSpittlesPerPage() methods
as the operations I want to export. Again, these accessor methods will indirectly
export the spittlesPerPage property as a managed attribute. To use this assembler, I
just need to use the following assembler bean instead of the method name–based
assemblers from before:

530 CHAPTER 20 Managing Spring beans with JMX
@Bean
public InterfaceBasedMBeanInfoAssembler assembler() {

InterfaceBasedMBeanInfoAssembler assembler =
new InterfaceBasedMBeanInfoAssembler();

assembler.setManagedInterfaces(
new Class<?>[] { SpittleControllerManagedOperations.class }

);
return assembler;

}

The managedInterfaces property takes a list of one or more interfaces that serve as
the MBean-managed operation interfaces—in this case, the SpittleController-
ManagedOperations interface.

 What may not be apparent, but is certainly interesting, is that SpittleController
doesn’t have to explicitly implement SpittleControllerManagedOperations. The
interface is there for the sake of the exporter, but you don’t need to implement it
directly in any of your code. SpittleController probably should implement the
interface, though, if for no other reason than to enforce a consistent contract
between the MBean and the implementation class.

 The nice thing about using interfaces to select managed operations is that you can
collect dozens of methods into a few interfaces and keep the configuration of
InterfaceBasedMBeanInfoAssembler clean. This goes a long way toward keeping the
Spring configuration tidy even when exporting multiple MBeans.

 Ultimately, those managed operations must be declared somewhere, whether in
Spring configuration or in an interface. Moreover, the declaration of the managed
operations represents a duplication in code: method names declared in an interface
or Spring context and method names in the implementation. This duplication exists
for no other reason than to satisfy the MBeanExporter.

 One of the things that Java annotations are good at is helping to eliminate such
duplication. Let’s see how to annotate a Spring-managed bean so that it can be
exported as an MBean.

20.1.3 Working with annotation-driven MBeans

In addition to the MBean info assemblers you’ve seen thus far, Spring provides
another assembler known as MetadataMBeanInfoAssembler that can be configured to
use annotations to appoint bean methods as managed operations and attributes. I
could show you how to use that assembler, but I won’t. That’s because wiring it up
manually is burdensome and not worth the trouble just to be able to use annotations.
Instead, I’m going to show you how to use the <context:mbean-export> element
from Spring’s context configuration namespace. This handy element wires up an
MBean exporter and all the appropriate assemblers to turn on annotation-driven
MBeans in Spring. All you have to do is use it instead of the MBeanExporter bean that
you’ve been using:

<context:mbean-export server="mbeanServer" />

531Exporting Spring beans as MBeans

ler
Now, to turn any Spring bean into an MBean, all you must do is annotate it with
@ManagedResource and annotate its methods with @ManagedOperation or @Managed-
Attribute. For example, the following listing shows how to alter SpittleController
to be exported as an MBean using annotations.

package com.habuma.spittr.mvc;
import java.util.Map;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.jmx.export.annotation.ManagedAttribute;
import org.springframework.jmx.export.annotation.ManagedResource;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;
import com.habuma.spittr.service.SpittrService;
@Controller
@ManagedResource(objectName="spitter:name=SpittleController") //
public class SpittleController {

...
@ManagedAttribute //
public void setSpittlesPerPage(int spittlesPerPage) {

this.spittlesPerPage = spittlesPerPage;
}

@ManagedAttribute //
public int getSpittlesPerPage() {

return spittlesPerPage;
}

}

The @ManagedResource annotation is applied at the class level to indicate that this
bean should be exported as an MBean. The objectName attribute indicates the
domain (spitter) and name (SpittleController) of the MBean.

 The accessor methods for the spittlesPerPage property are both annotated with
@ManagedAttribute to indicate that it should be exposed as a managed attribute.
Note that it’s not strictly necessary to annotate both accessor methods. If you choose
to only annotate the setSpittlesPerPage() method, then you can still set the prop-
erty through JMX, but you won’t be able to see what its value is. Conversely, annotating
getSpittlesPerPage() enables the property’s value to be viewed as read-only via JMX.

 Also note that it’s possible to annotate the accessor methods with @Managed-
Operation instead of @ManagedAttribute. For example,

@ManagedOperation
public void setSpittlesPerPage(int spittlesPerPage) {

this.spittlesPerPage = spittlesPerPage;
}

@ManagedOperation
public int getSpittlesPerPage() {

return spittlesPerPage;
}

Listing 20.1 Annotating SpittleController to be an MBean

Export
SpittleControl
as an MBean

Expose
spittlesPerPage
as a managed
attribute

532 CHAPTER 20 Managing Spring beans with JMX
This exposes those methods through JMX, but it doesn’t expose the spittlesPerPage
property as a managed attribute. That’s because methods annotated with @Managed-
Operation are treated strictly as methods and not as JavaBean accessors when it comes
to exposing MBean functionality. Thus, @ManagedOperation should be reserved for
exposing methods as MBean operations, and @ManagedAttribute should be used
when exposing managed attributes.

20.1.4 Handling MBean collisions

So far you’ve seen how to publish an MBean into an MBean server using several
approaches. In all cases, you’ve given the MBean an object name that’s made up of a
management domain name and a key-value pair. Assuming that there’s not already an
MBean published with the name you’ve given your MBean, you should have no trou-
ble publishing your MBean. But what happens if there’s a name collision?

 By default, MBeanExporter throws an InstanceAlreadyExistsException if you try
to export an MBean that’s named the same as an MBean that’s already in the MBean
server. But you can change that behavior by specifying how the collision should be
handled via the MBeanExporter’s registrationBehaviorName property or through
<context:mbean-export>’s registration attribute.

 There are three ways to handle an MBean name collision via the registration-
Policy property:

 FAIL_ON_EXISTING—Fail if an existing MBean has the same name (this is the
default behavior).

 IGNORE_EXISTING—Ignore the collision and don’t register the new MBean.
 REPLACING_EXISTING—Replace the existing MBean with the new MBean.

For example, if you’re using MBeanExporter, you can configure it to ignore collisions
by setting the registrationPolicy property to RegistrationPolicy.IGNORE

_EXISTING, like this:

@Bean
public MBeanExporter mbeanExporter(

SpittleController spittleController,
MBeanInfoAssembler assembler) {

MBeanExporter exporter = new MBeanExporter();
Map<String, Object> beans = new HashMap<String, Object>();
beans.put("spitter:name=SpittleController", spittleController);
exporter.setBeans(beans);
exporter.setAssembler(assembler);
exporter.setRegistrationPolicy(RegistrationPolicy.IGNORE_EXISTING);
return exporter;

}

The registrationPolicy property accepts a value from the RegistrationPolicy
enum representing one of the three collision-handling behaviors available.

 Now that you’ve registered your MBeans using MBeanExporter, you need a way to
access them for management. As you’ve seen already, you can use tools like JConsole

533Remoting MBeans
to access a local MBean server to view and manipulate MBeans. But a tool such as
JConsole doesn’t lend itself to programmatic management of MBeans. How can you
manipulate MBeans in one application from within another application? Fortunately,
there’s another way to access MBeans as remote objects. Let’s explore how Spring’s
support for remote MBeans enables you to access your MBeans in a standard way
through a remote interface.

20.2 Remoting MBeans
Although the original JMX specification referred to remote management of applica-
tions through MBeans, it didn’t define the actual remoting protocol or API. Conse-
quently, it fell to JMX vendors to define their own, often proprietary, remoting
solutions for JMX.

 In response to the need for a standard for remote JMX, the Java Community Pro-
cess produced JSR-160, the Java Management Extensions Remote API Specification.
This specification defines a standard for JMX remoting, which at a minimum requires
an RMI binding and optionally the JMX Messaging Protocol (JMXMP).

 In this section, you’ll see how Spring enables remote MBeans. You’ll start by con-
figuring Spring to export the SpittleController MBean as a remote MBean. Then
you’ll see how to use Spring to manipulate that MBean remotely.

20.2.1 Exposing remote MBeans

The simplest thing you can do to make your MBeans available as remote objects is to
configure Spring’s ConnectorServerFactoryBean:

@Bean
public ConnectorServerFactoryBean connectorServerFactoryBean() {

return new ConnectorServerFactoryBean();
}

ConnectorServerFactoryBean creates and starts a JSR-160 JMXConnectorServer. By
default, the server listens for the JMXMP protocol on port 9875—thus, it’s bound to
service:jmx:jmxmp://localhost:9875. But you’re not limited to exporting MBeans
using only JMXMP.

 Depending on the JMX implementation, you may have several remoting protocol
options to choose from, including Remote Method Invocation (RMI), SOAP, Hessian/
Burlap, and even Internet InterORB Protocol (IIOP). To specify a different remote
binding for your MBeans, you need to set the serviceUrl property of Connector-
ServerFactoryBean. For example, if you want to use RMI for MBean remoting, you’d
set serviceUrl like this:

@Bean
public ConnectorServerFactoryBean connectorServerFactoryBean() {

ConnectorServerFactoryBean csfb = new ConnectorServerFactoryBean();
csfb.setServiceUrl(

"service:jmx:rmi://localhost/jndi/rmi://localhost:1099/spitter");
return csfb;

}

534 CHAPTER 20 Managing Spring beans with JMX
Here, you’re binding the ConnectorServerFactoryBean to an RMI registry listening
on port 1099 of the localhost. That means you also need an RMI registry running and
listening at that port. As you’ll recall from chapter 15, RmiServiceExporter can start
an RMI registry automatically for you. But in this case, you’re not using RmiService-
Exporter, so you need to start an RMI registry by declaring an RmiRegistryFactory-
Bean in Spring with the following @Bean method:

@Bean
public RmiRegistryFactoryBean rmiRegistryFB() {

RmiRegistryFactoryBean rmiRegistryFB = new RmiRegistryFactoryBean();
rmiRegistryFB.setPort(1099);
return rmiRegistryFB;

}

And that’s it! Now your MBeans are available through RMI. But there’s little point in
doing this if nobody will ever access the MBeans over RMI. Let’s turn our attention to
the client side of JMX remoting and see how to wire up a remote MBean in the Spring
context of a JMX client.

20.2.2 Accessing remote MBeans

Accessing a remote MBean server involves configuring an MBeanServerConnection-
FactoryBean in the Spring context. The following bean declaration sets up an MBean-
ServerConnectionFactoryBean that can be used to access the RMI-based remote
server you created in the previous section:

@Bean
public MBeanServerConnectionFactoryBean connectionFactoryBean() {

MBeanServerConnectionFactoryBean mbscfb =
new MBeanServerConnectionFactoryBean();

mbscfb.setServiceUrl(
"service:jmx:rmi://localhost/jndi/rmi://localhost:1099/spitter");

return mbscfb;
}

As its name implies, MBeanServerConnectionFactoryBean is a factory bean that cre-
ates an MBeanServerConnection. The MBeanServerConnection produced by MBean-
ServerConnectionFactoryBean acts as a local proxy to the remote MBean server. It
can be wired into a bean property as an MBeanServerConnection:

@Bean
public JmxClient jmxClient(MBeanServerConnection connection) {

JmxClient jmxClient = new JmxClient();
jmxClient.setMbeanServerConnection(connection);
return jmxClient;

}

MBeanServerConnection provides several methods that let you query the remote
MBean server and invoke methods on the MBeans contained therein. For example,
say that you’d like to know how many MBeans are registered in the remote MBean
server. The following code snippet prints that information:

535Remoting MBeans
int mbeanCount = mbeanServerConnection.getMBeanCount();
System.out.println("There are " + mbeanCount + " MBeans");

You can also query the remote server for the names of all the MBeans using the
queryNames() method:

java.util.Set mbeanNames = mbeanServerConnection.queryNames(null, null);

The two parameters passed to queryNames() are used to refine the results. Passing in
null for both parameters indicates that you’re asking for the names of all the regis-
tered MBeans.

 Querying the remote MBean server for bean counts and names is fun, but doesn’t
get much work done. The real value of accessing an MBean server remotely is found
in accessing attributes and invoking operations on the MBeans that are registered in
the remote server.

 For accessing MBean attributes, you’ll want to use the getAttribute() and set-
Attribute() methods. For example, to retrieve the value of an MBean attribute,
you’d call the getAttribute() method like so:

String cronExpression = mbeanServerConnection.getAttribute(
new ObjectName("spitter:name=SpittleController"), "spittlesPerPage");

Similarly, you can change the value of an MBean attribute using the setAttribute()
method:

mbeanServerConnection.setAttribute(
new ObjectName("spitter:name=SpittleController"),
new Attribute("spittlesPerPage", 10));

If you’d like to invoke an MBean’s operation, the invoke() method is what you’re
looking for. Here’s how you might invoke the setSpittlesPerPage() method on the
SpittleController MBean:

mbeanServerConnection.invoke(
new ObjectName("spitter:name=SpittleController"),
"setSpittlesPerPage",
new Object[] { 100 },
new String[] {"int"});

You can do dozens of other things with remote MBeans by using the methods avail-
able through MBeanServerConnection. I’ll leave it to you to explore the possibilities.
But invoking methods and setting attributes on remote MBeans is awkward when
done through MBeanServerConnection. Doing something as simple as calling the
setSpittlesPerPage() method involves creating an ObjectName instance and passing
several other parameters to the invoke() method. This isn’t nearly as intuitive as a
normal method invocation would be. For a more direct approach, you need to proxy
the remote MBean.

536 CHAPTER 20 Managing Spring beans with JMX
20.2.3 Proxying MBeans

Spring’s MBeanProxyFactoryBean is a proxy factory bean in the same vein as the
remoting proxy factory beans we examined in chapter 15. But instead of providing
proxy-based access to remote Spring-managed beans, MBeanProxyFactoryBean lets
you access remote MBeans directly (as if they were any other locally configured bean).
Figure 20.4 illustrates how this works.

 For example, consider the following declaration of MBeanProxyFactoryBean:

@Bean
public MBeanProxyFactoryBean remoteSpittleControllerMBean(

MBeanServerConnection mbeanServerClient) {
MBeanProxyFactoryBean proxy = new MBeanProxyFactoryBean();
proxy.setObjectName("");
proxy.setServer(mbeanServerClient);
proxy.setProxyInterface(SpittleControllerManagedOperations.class);
return proxy;

}

The objectName property specifies the object name of the remote MBean that’s to be
proxied locally. Here it’s referring to the SpittleController MBean that you
exported earlier.

 The server property refers to an MBeanServerConnection through which all com-
munication with the MBean is routed. Here you’ve wired in the MBeanServer-
ConnectionFactoryBean that you configured earlier.

 Finally, the proxyInterface property specifies the interface that will be imple-
mented by the proxy. In this case, you’re using the same SpittleControllerManaged-
Operations interface that you defined in section 20.1.2.

 With the remoteSpittleControllerMBean bean declared, you can now wire it into
any bean property whose type is SpittleControllerManagedOperations and use it to
access the remote MBean. From there, you can invoke the setSpittlesPerPage()
and getSpittlesPerPage() methods.

MBean server

Network

Produces

Client

MBeanProxy-
FactoryBean

MBeanMBean
proxy

Figure 20.4 MBeanProxyFactoryBean produces a proxy to a remote MBean. The proxy’s
client can then interact with the remote MBean as if it were a locally configured POJO.

537Handling notifications
You’ve seen several ways that you can communicate with MBeans, and you can now
view and tweak your Spring bean configuration while the application is running. But
thus far it’s been a one-sided conversation. You’ve talked to the MBeans, but the
MBeans haven’t been able to get a word in edgewise. It’s time for you to hear what
they have to say by listening for notifications.

20.3 Handling notifications
Querying an MBean for informa-
tion is only one way of keeping
an eye on the state of an applica-
tion. But it’s not the most effi-
cient way to be informed of
significant events within the
application.

 For example, suppose the
Spittr application were to keep a
count of how many spittles have
been posted. And suppose you
want to know every time the
count has increased by one mil-
lion spittles (the one millionth
spittle, the two millionth, the three millionth, and so on). One way to handle this
would be to write some code that periodically queried the database, counting the
number of spittles. But the process that performed that query would keep itself and
the database busy as it constantly checked for the spittle count.

 Instead of repeatedly querying the database to get that information, a better
approach may be to have an MBean notify you when the momentous occasion takes
place. JMX notifications, as illustrated in figure 20.5, are a way that MBeans can com-
municate with the outside world proactively, instead of waiting for some external
application to query them for information.

 Spring’s support for sending notifications comes in the form of the Notification-
PublisherAware interface. Any bean-turned-MBean that wishes to send notifications
should implement this interface. For example, consider SpittleNotifierImpl in the
next listing.

package com.habuma.spittr.jmx;
import javax.management.Notification;
import org.springframework.jmx.export.annotation.ManagedNotification;
import org.springframework.jmx.export.annotation.ManagedResource;
import
org.springframework.jmx.export.notification.NotificationPublisher;
import
org.springframework.jmx.export.notification.NotificationPublisherAware;

Listing 20.2 Using a NotificationPublisher to send JMX notifications

MBean serverNotification

Notification

Notification

MBean
listener

MBean
listener

MBeanMBean
listener

Figure 20.5 JMX notifications enable MBeans to
communicate proactively with the outside world.

538 CHAPTER 20 Managing Spring beans with JMX
import org.springframework.stereotype.Component;
@Component
@ManagedResource("spitter:name=SpitterNotifier")
@ManagedNotification(

notificationTypes="SpittleNotifier.OneMillionSpittles",
name="TODO")

public class SpittleNotifierImpl
implements NotificationPublisherAware, SpittleNotifier {

private NotificationPublisher notificationPublisher;

public void setNotificationPublisher(
NotificationPublisher notificationPublisher) {

this.notificationPublisher = notificationPublisher;
}

public void millionthSpittlePosted() {
notificationPublisher.sendNotification(

new Notification(
"SpittleNotifier.OneMillionSpittles", this, 0));

}

}

As you can see, SpittleNotifierImpl implements NotificationPublisherAware.
This isn’t a demanding interface. It requires only that a single method be imple-
mented: setNotificationPublisher.

 SpittleNotifierImpl also implements a single method from the SpittleNotifier
interface, millionthSpittlePosted(). This method uses the NotificationPublisher
that’s automatically injected via the setNotificationPublisher() method to send a
notification that another million spittles have been posted.

 Once the sendNotification() method has been called, the notification is on its
way to … hmm … it seems that you haven’t yet decided who will receive the notifica-
tion. Let’s set up a notification listener to listen to and react to the notification.

20.3.1 Listening for notifications

The standard way to receive MBean notifications is to implement the javax
.management.NotificationListener interface. For example, consider Paging-

NotificationListener:

package com.habuma.spittr.jmx;
import javax.management.Notification;
import javax.management.NotificationListener;
public class PagingNotificationListener

implements NotificationListener {

public void handleNotification(
Notification notification, Object handback) {

// ...
}

}

Implement
NotificationPublisherAware

Inject notification
publisher

Send notification

539Summary
PagingNotificationListener is a typical JMX notification listener. When a notifica-
tion is received, its handleNotification() method is invoked to react to the notifi-
cation. Presumably, PagingNotificationListener’s handleNotification() method
will send a message to a pager or cell phone about the fact that another million spit-
tles have been posted. (I’ve left the actual implementation to your imagination.)

 The only thing left to do is register PagingNotificationListener with the MBean-
Exporter:

@Bean
public MBeanExporter mbeanExporter() {

MBeanExporter exporter = new MBeanExporter();
Map<?, NotificationListener> mappings =

new HashMap<?, NotificationListener>();
mappings.put("Spitter:name=PagingNotificationListener",

new PagingNotificationListener());
exporter.setNotificationListenerMappings(mappings);
return exporter;

}

MBeanExporter’s notificationListenerMappings property is used to map notifica-
tion listeners to the MBeans they will be listening to. In this case, you set up Paging-
NotificationListener to listen to any notifications published by the
SpittleNotifier MBean.

20.4 Summary
With JMX, you can open a window into the inner workings of your application. In this
chapter, you saw how to configure Spring to automatically export Spring beans as JMX
MBeans so that their details can be viewed and manipulated through JMX-ready man-
agement tools. You also learned how to create and use remote MBeans for times when
those MBeans and tools are distant from each other. Finally, you saw how to use
Spring to publish and listen for JMX notifications.

 By now you’ve probably noticed that the number of remaining pages in this book
is dwindling fast. Your journey through Spring is almost complete. But before we con-
clude, we have one more quick stop to make. In the next chapter, we’ll look at Spring
Boot, an exciting new way to build Spring applications with little or no explicit
configuration.

Simplifying
Spring development

with Spring Boot
I recall the first few days of my first calculus course where we learned about deriva-
tives of functions. We performed some rather hairy computations using limits to
arrive at the derivatives of several functions. Even though the functions were sim-
ple, the work involved in calculating the derivatives was nightmarish.

 After several homework assignments, study groups, and an exam, most everyone
in the class was able to do the work. But the tedium of it was nearly unbearable. If
this was the first thing we’d learn in a class named “Calculus I,” then what monstros-
ity of mathematics awaited us mid-semester in “Calculus II”?

 Then the instructor clued us in on a trick. Applying a simple formula made
quick work of calculating derivatives (if you’ve ever taken calculus, you’ll know what

This chapter covers
 Adding project dependencies with Spring Boot

starters

 Automatic bean configuration

 Groovy and the Spring Boot CLI

 The Spring Boot Actuator
540

541Introducing Spring Boot
I’m talking about). With this newfound trick, we were able to compute derivatives for
dozens of functions in the time it would’ve previously taken for a single function.

 At this point, one of my classmates spoke up and said what the rest of us were
thinking: “Why didn’t you show us this on the first day?!?!”

 The instructor replied that the hard way helped us appreciate the derivatives for
what they mean, told us it built character, and said something about putting hair on
our chests.

 Now that we’ve gone through an entire book on Spring, I find myself in the same
position as that calculus instructor. Although Spring’s chief benefit is to make Java
development easy, this chapter will show you how Spring Boot can make it even easier.
Spring Boot is arguably the most exciting thing to happen to Spring since the Spring
Framework was first created. It layers a completely new development model on top of
Spring, taking away much of the tedium of developing applications with Spring.

 We’ll get started with an overview of the tricks that Spring Boot employs to simplify
Spring. Before this chapter concludes, you’ll have developed a complete (albeit sim-
ple) application using Spring Boot.

21.1 Introducing Spring Boot
Spring Boot is an exciting (dare I say “game-changing”?) new project in the Spring
family. It offers four main features that will change the way you develop Spring appli-
cations:

 Spring Boot starters—Spring Boot starters aggregate common groupings of
dependencies into single dependencies that can be added to a project’s Maven
or Gradle build.

 Autoconfiguration—Spring Boot’s autoconfiguration feature leverages Spring 4’s
support for conditional configuration to make reasonable guesses about the
beans your application needs and automatically configure them.

 Command-line interface (CLI)—Spring Boot’s CLI takes advantage of the Groovy
programming language along with autoconfiguration to further simplify Spring
application development.

 Actuator—The Spring Boot Actuator adds certain management features to a
Spring Boot application.

Throughout this chapter, you’ll build a small application using all of these features of
Spring Boot. But first, let’s take a quick look at each to get a better feel for how they
contribute to a simpler Spring programming model.

21.1.1 Adding starter dependencies

There are two ways to bake a cake. The ambitious baker will mix flour, eggs, sugar,
baking powder, salt, butter, vanilla, and milk into a batter. Or you can buy a prepack-
aged box of cake mix that includes most of the ingredients you’ll need and only mix
in a few wet ingredients like water, eggs, and vegetable oil.

542 CHAPTER 21 Simplifying Spring development with Spring Boot
 Much as a prepackaged cake mix aggregates many of the ingredients of a cake rec-
ipe into a single ingredient, Spring Boot starters aggregate the various dependencies
of an application into a single dependency.

 To illustrate, let’s suppose you’re starting a new Spring project from scratch. This
will be a web project, so you’ll need Spring MVC. There will also be a REST API, expos-
ing resources as JSON, so you’ll need the Jackson JSON library in your build.

 Because your application will use JDBC to store and fetch data from a relational
database, you’ll want to be sure to include Spring’s JDBC module (for JdbcTemplate)
and Spring’s transaction module (for declarative transaction support). As for the data-
base itself, the H2 database will do fine.

 And, oh yeah, you want to use Thymeleaf for Spring MVC views.
 If you’re building your project with Gradle, you’ll need (at least) the following

dependencies in build.gradle:

dependencies {
compile("org.springframework:spring-web:4.0.6.RELEASE")
compile("org.springframework:spring-webmvc:4.0.6.RELEASE")
compile("com.fasterxml.jackson.core:jackson-databind:2.2.2")
compile("org.springframework:spring-jdbc:4.0.6.RELEASE")
compile("org.springframework:spring-tx:4.0.6.RELEASE")
compile("com.h2database:h2:1.3.174")
compile("org.thymeleaf:thymeleaf-spring4:2.1.2.RELEASE")

}

Fortunately, Gradle makes it possible to express dependencies succinctly. (For the
sake of brevity, I won’t bother showing you what this list of dependencies would look
like in a Maven pom.xml file.) Even so, a lot of work went into creating this list, and
more will go into maintaining it. How can you know if these dependencies will play
well together? As the application grows and evolves, dependency management will
become even more challenging.

 But if you’re using the prepackaged dependencies from Spring Boot starters, the
Gradle dependency list can be a little shorter:

dependencies {
compile("org.springframework.boot:spring-boot-starter-web:

1.1.4.RELEASE")
compile("org.springframework.boot:spring-boot-starter-jdbc:

1.1.4.RELEASE")
compile("com.h2database:h2:1.3.174")
compile("org.thymeleaf:thymeleaf-spring4:2.1.2.RELEASE")

}

As you can see, Spring Boot’s web and JDBC starters replaced several of the finer-
grained dependencies. You still need to include the H2 and Thymeleaf dependencies,
but the other dependencies are rolled up into the starter dependencies. Aside from
making the dependency list shorter, you can feel confident that the versions of depen-
dencies provided by the starters are compatible with each other.

543Introducing Spring Boot
 The web and JDBC starters are just two of the starters that Spring Boot has to offer.
Table 21.1 lists all of the starters available at the time I was writing this chapter.

Table 21.1 Spring Boot starter dependencies aggregate commonly needed dependency groupings into
single project dependencies.

Starter Provides

spring-boot-starter-actuator spring-boot-starter, spring-boot-
actuator, spring-core

spring-boot-starter-amqp spring-boot-starter, spring-boot-
rabbit, spring-core, spring-tx

spring-boot-starter-aop spring-boot-starter, spring-aop,
AspectJ Runtime, AspectJ Weaver, spring-
core

spring-boot-starter-batch spring-boot-starter, HSQLDB, spring-
jdbc, spring-batch-core, spring-core

spring-boot-starter-elasticsearch spring-boot-starter, spring-data-
elasticsearch, spring-core, spring-tx

spring-boot-starter-gemfire spring-boot-starter, Gemfire, spring-
core, spring-tx, spring-context,
spring-context-support, spring-data-
gemfire

spring-boot-starter-data-jpa spring-boot-starter, spring-boot-
starter-jdbc, spring-boot-starter-
aop, spring-core, Hibernate EntityManager,
spring-orm, spring-data-jpa, spring-
aspects

spring-boot-starter-data-mongodb spring-boot-starter, MongoDB Java driver,
spring-core, spring-tx, spring-data-
mongodb

spring-boot-starter-data-rest spring-boot-starter, spring-boot-
starter-web, Jackson annotations, Jackson
databind, spring-core, spring-tx,
spring-data-rest-webmvc

spring-boot-starter-data-solr spring-boot-starter, Solrj, spring-core,
spring-tx, spring-data-solr, Apache
HTTP Mime

spring-boot-starter-freemarker spring-boot-starter, spring-boot-
starter-web, Freemarker, spring-core,
spring-context-support

spring-boot-starter-groovy-templates spring-boot-starter, spring-boot-
starter-web, Groovy, Groovy Templates
spring-core

spring-boot-starter-hornetq spring-boot-starter, spring-core,
spring-jms, Hornet JMS Client

544 CHAPTER 21 Simplifying Spring development with Spring Boot
spring-boot-starter-integration spring-boot-starter, spring-aop,
spring-tx, spring-web, spring-webmvc,
spring-integration-core,
spring-integration-file,
spring-integration-http,
spring-integration-ip,
spring-integration-stream

spring-boot-starter-jdbc spring-boot-starter, spring-jdbc,
tomcat-jdbc, spring-tx

spring-boot-starter-jetty jetty-webapp, jetty-jsp

spring-boot-starter-log4j jcl-over-slf4j, jul-to-slf4j,
slf4j-log4j12, log4j

spring-boot-starter-logging jcl-over-slf4j, jul-to-slf4j,
log4j-over-slf4j, logback-classic

spring-boot-starter-mobile spring-boot-starter,
spring-boot-starter-web,
spring-mobile-device

spring-boot-starter-redis spring-boot-starter,
spring-data-redis, lettuce

spring-boot-starter-remote-shell spring-boot-starter-actuator,
spring-context, org.crashub.**

spring-boot-starter-security spring-boot-starter,
spring-security-config,
spring-security-web,
spring-aop, spring-beans,
spring-context, spring-core,
spring-expression, spring-web

spring-boot-starter-social-facebook spring-boot-starter,
spring-boot-starter-web, spring-core,
spring-social-config,
spring-social-core,
spring-social-web,
spring-social-facebook

spring-boot-starter-social-twitter spring-boot-starter,
spring-boot-starter-web, spring-core,
spring-social-config,
spring-social-core,
spring-social-web,
spring-social-twitter

Table 21.1 Spring Boot starter dependencies aggregate commonly needed dependency groupings into
single project dependencies. (continued)

Starter Provides

545Introducing Spring Boot
If you were to look under the covers of these starter dependencies, you’d realize that
there’s not much mystery to how the starters work. Taking advantage of Maven’s and
Gradle’s transitive dependency resolution, the starters declare several dependencies
in their own pom.xml file. When you add one of these starter dependencies to your
Maven or Gradle build, the starter’s dependencies are resolved transitively. And those
dependencies may have dependencies of their own. A single starter could transitively
pull in dozens of other dependencies.

 Notice that many of the starters reference other starters. The mobile starter, for
instance, references the web starter, which in turn references the Tomcat starter. And
most of the starters reference spring-boot-starter, which is essentially a base starter
(although it references the logging starter). The dependencies are transitively

spring-boot-starter-social-linkedin spring-boot-starter,
spring-boot-starter-web, spring-core,
spring-social-config,
spring-social-core,
spring-social-web,
spring-social-linkedin

spring-boot-starter spring-boot,
spring-boot-autoconfigure,
spring-boot-starter-logging

spring-boot-starter-test spring-boot-starter-logging,
spring-boot, junit, mockito-core,
hamcrest-library, spring-test

spring-boot-starter-thymeleaf spring-boot-starter,
spring-boot-starter-web, spring-core,
thymeleaf-spring4,
thymeleaf-layout-dialect

spring-boot-starter-tomcat tomcat-embed-core,
tomcat-embed-logging-juli

spring-boot-starter-web spring-boot-starter,
spring-boot-starter-tomcat,
jackson-databind, spring-web,
spring-webmvc

spring-boot-starter-websocket spring-boot-starter-web,
spring-websocket, tomcat-embed-core,
tomcat-embed-logging-juli

spring-boot-starter-ws spring-boot-starter,
spring-boot-starter-web, spring-core,
spring-jms, spring-oxm,
spring-ws-core, spring-ws-support

Table 21.1 Spring Boot starter dependencies aggregate commonly needed dependency groupings into
single project dependencies. (continued)

Starter Provides

546 CHAPTER 21 Simplifying Spring development with Spring Boot
applied; adding the mobile starter as a dependency will effectively add dependencies
from all of the starters down the line.

21.1.2 Autoconfiguration

Whereas Spring Boot starters cut down the size of your build’s dependency list, Spring
Boot autoconfiguration cuts down on the amount of Spring configuration. It does this
by considering other factors in your application and making assumptions about what
Spring configuration you’ll need.

 As an example, recall from chapter 6 (listing 6.4) that you’ll need at least three
beans to enable Thymeleaf templates as views in Spring MVC: a ThymeleafView-
Resolver, a SpringTemplateEngine, and a TemplateResolver. With Spring Boot auto-
configuration, however, all you need to do is add Thymeleaf to the project’s classpath.
When Spring Boot detects that Thymeleaf is on the classpath, it will assume that you
want to use Thymeleaf for Spring MVC views and will automatically configure those
three beans.

 Spring Boot starters can trigger autoconfiguration. For instance, all you need to do
to use Spring MVC in your Spring Boot application is to add the web starter as a
dependency in the build. When you add the web starter to your project’s build, it will
transitively pull in Spring MVC dependencies. When Spring Boot’s web autoconfigura-
tion detects Spring MVC in the classpath, it will automatically configure several beans
to support Spring MVC, including view resolvers, resource handlers, and message con-
verters (among others). All that’s left for you to do is write the controller classes to
handle the requests.

21.1.3 The Spring Boot CLI

The Spring Boot CLI takes the magic provided by Spring Boot starters and autoconfig-
uration and spices it up a little with Groovy. It reduces the Spring development pro-
cess to the point where you can run one or more Groovy scripts through a CLI and see
it run. In the course of running the application, the CLI will also automatically import
Spring types and resolve dependencies.

 One of the most interesting examples used to illustrate Spring Boot CLI is con-
tained in the following Groovy script:

@RestController
class Hi {

@RequestMapping("/")
String hi() {

"Hi!"
}

}

Believe it or not, that is a complete (albeit simple) Spring application that can be exe-
cuted through the Spring Boot CLI. Including whitespace, it’s 82 characters in length.
You can paste it into your Twitter client and tweet it to your friends.

547Building an application with Spring Boot
Eliminate the unnecessary whitespace and you get this 64-character one-liner:

@RestController class Hi{@RequestMapping("/")String hi(){"Hi!"}}

This version is so brief that you can paste it twice into a single tweet on Twitter. But it’s
still a complete and runnable (if feature-poor) Spring application. If you have the
Spring Boot CLI installed, you can run it with the following command line:

$ spring run Hi.groovy

Although it’s fun to show off a tweetable example of Spring Boot CLI’s capabilities,
there’s much more to it than meets the eye. In section 21.3 we’ll look at how you can
build a more complete application with Groovy and the CLI.

21.1.4 The Actuator

The Spring Boot Actuator brings a handful of useful features to a Spring Boot project,
including

 Management endpoints
 Sensible error handling and a default mapping for an /error endpoint
 An /info endpoint that can communicate information about an application
 An audit events framework when Spring Security is in play

All of these features are useful, but the management endpoints are the most immedi-
ately useful and interesting features of the Actuator. In section 21.4 we’ll look at a few
examples of how Spring Boot’s Actuator opens a window into the inner workings of
your application.

 Now that you’ve had a glimpse of each of the four main features of Spring Boot,
let’s put them to work and build a small but complete application.

21.2 Building an application with Spring Boot
Throughout the rest of this chapter, I aim to show you how to build complete, real-
world applications using Spring Boot. Of course, the qualities that define a “real-
world” application are subject to debate and would likely exceed the space and scope
of this chapter. Therefore, rather than build a real-world application here, we’ll scale
it back a little and develop something a little less real-world, but representative of the
kinds of bigger applications you might build with Spring Boot.

 Our application will be a simple contact-list application. It will allow a user to enter
contact information (name, phone number, email address) and to list all of the con-
tacts that the user has previously entered.

 You have the choice of building your application with either Maven or Gradle. I
prefer Gradle, but I’ll show you what’s needed for Maven in case that’s your prefer-
ence. The following listing shows the starter build.gradle file. The dependencies block
is empty to start, but we’ll fill it in with dependencies along the way.

548 CHAPTER 21 Simplifying Spring development with Spring Boot

buildscript {
repositories {

mavenLocal()
}
dependencies {

classpath("org.springframework.boot:spring-boot-gradle-plugin:
1.1.4.RELEASE")

}
}

apply plugin: 'java'
apply plugin: 'spring-boot'

jar {
baseName = 'contacts'
version = '0.1.0'

}

repositories {
mavenCentral()

}

dependencies {

}

task wrapper(type: Wrapper) {
gradleVersion = '1.8'

}

Notice that the build includes a buildscript dependency on the Spring Boot Gradle
plugin. As you’ll see later, this will help produce an executable uber-JAR file that con-
tains all of the application’s dependencies.

 Alternatively, if you prefer Maven, the following listing shows the complete
pom.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>
<groupId>com.habuma</groupId>
<artifactId>contacts</artifactId>
<version>0.1.0</version>
<packaging>jar</packaging>

<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>

Listing 21.1 The Gradle build file for the Contacts application

Listing 21.2 The Maven build file for the Contacts application

Use the Spring
Boot plugin

Build a JAR file

Dependencies will go here

Build a JAR file

Inherit from
Spring Boot
starter parent

549Building an application with Spring Boot
<version>1.1.4.RELEASE</version>
</parent>

<dependencies>

</dependencies>

<build>
<plugins>

<plugin>
<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>

</plugins>
</build>

</project>

Similar to the Gradle build, this Maven pom.xml file makes use of the Spring Boot
Maven plugin. This plugin is the Maven counterpart to the Gradle plugin and enables
the build to produce an executable uber-JAR file.

 Also notice that unlike the Gradle build, this Maven build has a parent project. By
basing your project’s Maven build on the Spring Boot starter parent, you get the bene-
fit of Maven dependency management, and you won’t have to explicitly declare ver-
sion numbers for many of your project dependencies. The versions will be inherited
from the parent.

 Following the standard project structure for Maven- and Gradle-based projects, the
project will be structured like this when you’re finished:

$ tree
.
├── build.gradle
├── pom.xml
└── src

 └── main
 ├── java

 │ └── contacts
 │ ├── Application.java
 │ ├── Contact.java
 │ ├── ContactController.java
 │ └── ContactRepository.java

└── resources
├── schema.sql
├── static

 │ └── style.css
 └── templates

 └── home.html

Don’t worry about those missing Java files and other resource files. You’ll create those
over the next few sections as we develop the Contacts application. In fact, we’ll start
right now by developing the web layer of the application.

Dependencies will go here

Use the Spring Boot plugin

550 CHAPTER 21 Simplifying Spring development with Spring Boot
21.2.1 Handling requests

Since you’re going to develop the web layer of the application with Spring MVC,
you’re going to need to add Spring MVC as a dependency in your build. As we’ve
already discussed, Spring Boot’s web starter is the one-stop-shop for adding everything
needed for Spring MVC to a build. This is the Gradle dependency you’ll need:

compile("org.springframework.boot:spring-boot-starter-web")

If you’re using Maven to do the build, those dependencies will look like this:

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>

</dependency>

Note that because the Spring Boot parent project specifies the version for the web
starter dependency, there’s no need to explicitly specify it in the project’s build.gradle
or pom.xml.

 With the web starter dependency in place, all of the dependencies you’ll need to
work with Spring MVC will be available to your project. Now you’re ready to write a
controller class for the application.

 The controller will be relatively simple, presenting a contact form for an HTTP GET
request and processing the form submission for a POST request. It won’t do any of the
real work itself, but will delegate to a ContactRepository (which you’ll create soon)
for persisting contacts. The ContactController class in listing 21.3 captures these
requirements.

package contacts;
import java.util.List;
import java.util.Map;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;

@Controller
@RequestMapping("/")
public class ContactController {

private ContactRepository contactRepo;

@Autowired
public ContactController(ContactRepository contactRepo) {

this.contactRepo = contactRepo;
}

@RequestMapping(method=RequestMethod.GET)
public String home(Map<String,Object> model) {
List<Contact> contacts = contactRepo.findAll();
model.put("contacts", contacts);
return "home";

}

Listing 21.3 ContactController handles basic web requests for the Contacts application

Inject
ContactRepository

Handle GET /

551Building an application with Spring Boot
@RequestMapping(method=RequestMethod.POST)
public String submit(Contact contact) {
contactRepo.save(contact);
return "redirect:/";

}
}

The first thing you should notice about ContactController is that it’s a typical Spring
MVC controller. Although Spring Boot gets involved when it comes to managing build
dependencies and minimizing Spring configuration, the programming model is the
same when it comes to writing much of your application logic.

 In this case, ContactController follows the typical pattern for a Spring MVC con-
troller that displays and handles form submission. The home() method uses the
injected ContactRepository to retrieve a list of all Contact objects, placing them into
the model before handing the request off to the home view. That view will render the
list of contacts along with a form to add a new Contact. The submit() method will
handle the POST request resulting from the form submission, save the Contact, and
redirect to the home page.

 And because ContactController is annotated with @Controller, it’s subject to
component scanning. Therefore, you won’t have to explicitly configure it as a bean in
the Spring application context.

 As for the Contact model type, it’s just a simple POJO with a handful of properties
and accessor methods, as shown in the following listing.

package contacts;

public class Contact {
private Long id;
private String firstName;
private String lastName;
private String phoneNumber;
private String emailAddress;

public void setId(Long id) {
this.id = id;

}

public Long getId() {
return id;

}

public void setFirstName(String firstName) {
this.firstName = firstName;

}

public String getFirstName() {
return firstName;

}

public void setLastName(String lastName) {
this.lastName = lastName;

}

Listing 21.4 Contact is a simple domain type.

Handle POST /

Properties

Accessor methods

552 CHAPTER 21 Simplifying Spring development with Spring Boot
public String getLastName() {
return lastName;

}

public void setPhoneNumber(String phoneNumber) {
this.phoneNumber = phoneNumber;

}

public String getPhoneNumber() {
return phoneNumber;

}

public void setEmailAddress(String emailAddress) {
this.emailAddress = emailAddress;

}

public String getEmailAddress() {
return emailAddress;

}
}

The web layer of your application is almost finished. All that’s left is to create a
Thymeleaf template that defines the home view.

21.2.2 Creating the view

Traditionally, Java web applications use JSP as the view-layer technology. But as we dis-
cussed in chapter 6, there’s a new kid in town. Thymeleaf’s natural templates are
much more pleasant to work with than JSP, and they make it possible for you to write
your templates as HTML. Because of that, we’re going to use Thymeleaf to define the
home view for the Contacts application.

 First, you need to add Thymeleaf to your project’s build. In this example I’m work-
ing with Spring 4, so I need to add Thymeleaf’s Spring 4 module to the build. In Gra-
dle, the dependency would look like this:

compile("org.thymeleaf:thymeleaf-spring4")

If you’re using Maven, this is the dependency you’ll need:

<dependency>
<groupId>org.thymeleaf</groupId>
<artifactId>thymeleaf-spring4</artifactId>

</dependency>

Keep in mind that by simply adding Thymeleaf to the project’s classpath, you’re set-
ting Spring Boot autoconfiguration in motion. When the application is run, Spring
Boot will detect that Thymeleaf is in the classpath and will automatically configure the
view resolver, template resolver, and template engine beans necessary to use Thyme-
leaf with Spring MVC. Therefore, there’s no explicit Spring configuration required to
use Thymeleaf in your application.

553Building an application with Spring Boot
 Aside from adding the Thymeleaf dependency to the build, the only thing you
need to do is define the view template. Listing 21.5 shows home.html, a Thymeleaf
template that defines the home view.

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org">

<head>
<title>Spring Boot Contacts</title>
<link rel="stylesheet" th:href="@{/style.css}" />

</head>
<body>

<h2>Spring Boot Contacts</h2>

<form method="POST">
<label for="firstName">First Name:</label>
<input type="text" name="firstName"></input>

<label for="lastName">Last Name:</label>
<input type="text" name="lastName"></input>

<label for="phoneNumber">Phone #:</label>
<input type="text" name="phoneNumber"></input>

<label for="emailAddress">Email:</label>
<input type="text" name="emailAddress"></input>

<input type="submit"></input>
</form>

<ul th:each="contact : ${contacts}">

First

Last :
phoneNumber,

emailAddress

</body>
</html>

This is a fairly basic Thymeleaf template. It has two parts: a form and then a list of con-
tacts. The form will POST data back to the submit() method of ContactController to
create a new Contact. The list cycles through the list of Contact objects in the model.

 In order for this template to be used, you need to be careful to name and place it
correctly in your project. Because the logical view name returned from the home()
method in ContactController is home, the template file should be named
home.html. And because the autoconfigured template resolver will look for Thyme-
leaf templates under a directory named templates relative to the root of the classpath,
you’ll need to place home.html in the Maven or Gradle project at src/main/
resources/templates.

 There’s only one loose end that needs to be tied up with regard to this Thymeleaf
template. The HTML it produces will reference a stylesheet named style.css. There-
fore, you need to add that stylesheet to the project.

Listing 21.5 The home view renders a form to create new contacts and to list contacts

Load stylesheet

New contact form

Render list of contacts

554 CHAPTER 21 Simplifying Spring development with Spring Boot
21.2.3 Adding static artifacts

Normally, stylesheets and images are things that I avoid discussing in the context of
writing Spring applications. Certainly, those kind of artifacts go a long way toward
making any application (including Spring applications) more aesthetically pleasing to
a user. But static artifacts aren’t critical to the discussion of writing server-side Spring
code.

 In the case of Spring Boot, however, it’s worth mentioning how Spring Boot deals
with static content. When Spring Boot’s web autoconfiguration is automatically con-
figuring beans for Spring MVC, those beans include a resource handler that maps /**
to several resource locations. Those resource locations include (relative to the root of
the classpath) the following:

 /META-INF/resources/
 /resources/
 /static/
 /public/

In a conventional Maven/Gradle-built application, you’d typically put static content at
src/main/webapp so that it would be placed at the root of the WAR file that the build
produces. When building a WAR file with Spring Boot, that’s still an option. But you
also have the option of placing static content at one of the four locations mapped to
the resource handler.

 So, in order to satisfy the Thymeleaf template’s reference to /style.css, you need to
create a file named style.css at one of the following locations:

 /META-INF/resources/style.css
 /resources/style.css
 /static/style.css
 /public/style.css

The choice is up to you. I tend to put static content in /public, but each of those four
choices works equally well.

 Although the content of style.css isn’t relevant to our discussion, here’s a simple
stylesheet that will give your application a slightly cleaner look:

body {
background-color: #eeeeee;
font-family: sans-serif;

}

label {
display: inline-block;
width: 120px;
text-align: right;

}

555Building an application with Spring Boot
Believe it or not, you’re more than halfway finished building your simple Contacts
application! The web layer is completely finished. Now you need to create the
ContactRepository to handle persistence of Contact objects.

21.2.4 Persisting the data

You have a lot of options when it comes to working with databases in Spring. You
could use JPA or Hibernate to map objects to tables and columns in a relational data-
base. Or you could abandon the relational database model altogether and use a differ-
ent kind of database, such as Mongo or Neo4j.

 For the purposes of the Contacts application, a relational database is a fine choice.
We’ll use the H2 database and JDBC (using Spring’s JdbcTemplate) to keep things
simple.

 These choices naturally lead to the necessity of adding a few dependencies to the
build. The JDBC starter dependency will pull in everything you need to work with
Spring’s JdbcTemplate. But you’ll need to add the H2 dependency along with it to use
the H2 database. In Gradle, the following two lines in the dependencies block will do
the trick:

compile("org.springframework.boot:spring-boot-starter-jdbc")
compile("com.h2database:h2")

For Maven builds, you’ll need these two <dependency> blocks:

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-jdbc</artifactId>

</dependency>
<dependency>

<groupId>com.h2database</groupId>
<artifactId>h2</artifactId>

</dependency>

With these two dependencies in the build, you can now write your repository class.
ContactRepository in the following listing works with an injected JdbcTemplate to
read and write Contact objects from the database.

package contacts;
import java.util.List;
import java.sql.ResultSet;
import java.sql.SQLException;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.jdbc.core.RowMapper;
import org.springframework.stereotype.Repository;

@Repository
public class ContactRepository {

private JdbcTemplate jdbc;

Listing 21.6 ContactRepository saves and fetches Contacts from the database.

556 CHAPTER 21 Simplifying Spring development with Spring Boot
@Autowired
public ContactRepository(JdbcTemplate jdbc) {

this.jdbc = jdbc;
}

public List<Contact> findAll() {
return jdbc.query(

"select id, firstName, lastName, phoneNumber, emailAddress " +
"from contacts order by lastName",
new RowMapper<Contact>() {

public Contact mapRow(ResultSet rs, int rowNum)
throws SQLException {

Contact contact = new Contact();
contact.setId(rs.getLong(1));
contact.setFirstName(rs.getString(2));
contact.setLastName(rs.getString(3));
contact.setPhoneNumber(rs.getString(4));
contact.setEmailAddress(rs.getString(5));
return contact;

}
});

}

public void save(Contact contact) {
jdbc.update(

"insert into contacts " +
"(firstName, lastName, phoneNumber, emailAddress) " +
"values (?, ?, ?, ?)",

contact.getFirstName(), contact.getLastName(),
contact.getPhoneNumber(), contact.getEmailAddress());

}
}

Like ContactController, this repository class is rather straightforward. It looks no dif-
ferent from how it might look in a traditional Spring application. There’s nothing
about its implementation that suggests that it’s part of a Spring Boot–enabled applica-
tion. The findAll() method uses the injected JdbcTemplate to fetch Contact objects
from the database. The save() method uses JdbcTemplate to save a new Contact
object. And because ContactRepository is annotated with @Repository, it will auto-
matically be picked up by component-scanning and created as a bean in the Spring
application context.

 But what about JdbcTemplate? Don’t you need to declare a JdbcTemplate bean in
the Spring application context? For that matter, don’t you need to declare an H2
DataSource bean?

 The short answer to both of those questions is “no.” When Spring Boot detects that
Spring’s JDBC module and H2 are on the classpath, autoconfiguration kicks in and
automatically configures a JdbcTemplate bean and an H2 DataSource bean. Once
again, Spring Boot handles all of the Spring configuration for you.

 But what about the database schema? Certainly you must define the schema that
creates the contacts table, right?

Inject JdbcTemplate

Query for contacts

Insert a contact

557Building an application with Spring Boot
 That’s absolutely right. There’s no way that Spring Boot can guess what the
contacts should look like. So you’ll need to define a schema, such as this:

create table contacts (
id identity,
firstName varchar(30) not null,
lastName varchar(50) not null,
phoneNumber varchar(13),
emailAddress varchar(30)

);

Now you just need some way to load this create table SQL and execute it against the
H2 database. Fortunately, Spring Boot has this covered, too. If you name this SQL file
as schema.sql and place it at the root of the classpath (that is, in src/main/resources
in the Maven or Gradle project), it will be found and loaded when the application
starts up.

21.2.5 Try it out

The Contacts application is rather simple, but it does qualify as a realistic Spring appli-
cation. It has a web layer defined by a Spring MVC controller and a Thymeleaf tem-
plate. And it has a persistence layer defined by a repository and Spring’s
JdbcTemplate.

 At this point you’ve written all of the application code necessary for the Contacts
application. One thing you haven’t written, however, is any form of configuration. You
haven’t yet written any Spring configuration, nor have you configured Dispatcher-
Servlet in a web.xml file or servlet initializer class.

 Would you believe me if I said that you don’t have to write any configuration?
 That can’t be right. After all, according to Spring’s critics, Spring is all about con-

figuration. Certainly there’s an XML file or Java configuration class we’ve overlooked.
You can’t possibly write a Spring application without any configuration…can you?

 Generally speaking, Spring Boot’s autoconfiguration feature eliminates most or all
of the configuration. Therefore, it’s entirely possible to write an entire Spring applica-
tion and not write a single line of configuration code. Of course, autoconfiguration
doesn’t cover all scenarios, so a typical Spring Boot application will still include some
configuration.

 For the Contacts application specifically, there’s no need for any configuration.
Spring’s autoconfiguration took care of all of your configuration needs.

 You do, however, need a special class that bootstraps the Spring Boot application.
On its own, Spring doesn’t know anything about autoconfiguration. The Application
class in listing 21.7 is a typical example of a Spring Boot bootstrap class.

package contacts;
import org.springframework.boot.autoconfigure.EnableAutoConfiguration;
import org.springframework.boot.SpringApplication;

Listing 21.7 A simple bootstrapper class to initiate Spring Boot autoconfiguration

558 CHAPTER 21 Simplifying Spring development with Spring Boot
import org.springframework.context.annotation.ComponentScan;

@ComponentScan
@EnableAutoConfiguration
public class Application {
public static void main(String[] args) {

SpringApplication.run(Application.class, args);
}

}

Okay, I’ll admit that Application has a tiny bit of configuration. It’s annotated with
@ComponentScan to enable component scanning. And it’s annotated with @EnableAuto-
Configuration, which turns on Spring Boot’s autoconfiguration feature. But that’s it!
There’s no more configuration in the Contacts application than those two lines.

 What’s especially interesting about Application is that it has a main() method. As
you’ll see in a moment, Spring Boot applications can be run in a unique way, and the
main() method here makes that possible. Within the main() method, there’s a single
line that tells Spring Boot (via the SpringApplication class) to run using the configu-
ration in Application itself and any arguments that were given on the command line.

 You’re almost ready to run the application. All you need to do now is build it. If
you’re using Gradle, then the following command line will build the project into
build/libs/contacts-0.1.0.jar:

$ gradle build

If you’re a Maven fan, you’ll need to build the project like this:

$ mvn package

After running the Maven build, you’ll find the build artifact in the target folder.
 Now you’re ready to run it. Traditionally, this would mean deploying the applica-

tion WAR file to a servlet container such as Tomcat or WebSphere. But you don’t even
have a WAR file—the build gives you a JAR file.

 No problem. You can run it from the command line like this (referencing the
Gradle-built JAR file):

$ java -jar build/libs/contacts-0.1.0.jar

After only a few seconds, the application should start up and be ready to go. Point
your browser at http://localhost:8080 and you should be ready to start entering con-
tacts. After entering a few contacts, your browser might look a little something like
figure 21.1.

 You’re probably thinking that this isn’t how you should run a web application. It’s
neat and convenient to be able to run it from the command line like this, but that’s
not reality. Where you work, web applications are deployed as WAR files to a web con-
tainer. The deployment police at your company won’t like it if you don’t give them a
WAR file.

 Okay, fine.

Enable autoconfiguration

Run the application

559Building an application with Spring Boot
Even though running the application from the command line is a valid option, even
for production applications, I understand that you probably need to work within the
parameters of your company’s deployment procedures. And that probably means
building and deploying WAR files.

 Fortunately, you won’t need to abandon the simplicity of Spring Boot if it’s a WAR
file that’s required. All that’s needed is a small tweak to the build. In the Gradle build,
you’ll need to add the following line to apply the “war” plugin:

apply plugin: 'war'

Additionally, you’ll need to change the “jar” configuration to a “war” configuration.
This essentially comes down to replacing a “j” with a “w”:

war {
baseName = 'contacts'
version = '0.1.0'

}

In the case of a Maven-built project, it’s even easier. Simply change the packaging
from “jar” to “war”:

<packaging>war</packaging>

Now you can rebuild the project and find contacts-0.1.0.war in the build directory.
That WAR file is deployable to any web container that supports Servlet 3.0. What’s
more, you can still run the application from the command line like this:

$ java -jar build/libs/contacts-0.1.0.war

That’s right: an executable WAR file! It’s the best of both worlds!

Figure 21.1 The Spring Boot Contacts application

560 CHAPTER 21 Simplifying Spring development with Spring Boot
 As you can see, Spring Boot goes a long way to make developing Spring applica-
tions in Java as simple as possible. Spring Boot starters simplify project build depen-
dencies, and autoconfiguration eliminates the need for most explicit Spring
configuration. But as you’ll see next, if you add Groovy to the mix, it gets even easier.

21.3 Going Groovy with the Spring Boot CLI
Groovy is a much simpler programming language than Java. The syntax allows for
shortcuts such as leaving off semicolons and the public keyword. Also, the properties
of a Groovy class don’t require setter and getter methods as in Java. And that’s without
mentioning the other features of Groovy that eliminate much of the ceremony that
goes into Java coding.

 If you’re willing to write your application code in Groovy and run it through
Spring Boot’s CLI, then Spring Boot can take advantage of Groovy’s simplicity to fur-
ther simplify Spring development. To illustrate this point, let’s rewrite the Contacts
application in Groovy.

 Why not? There were only a few small Java classes in the original version of the
application, so there’s not much to rewrite in Groovy. You can reuse the same Thyme-
leaf template and schema.sql file. And if my claims about Groovy simplifying Spring
further are true, then rewriting the application won’t be a big deal.

 Along the way, you can get rid of a few files, too. The Spring Boot CLI is its own
bootstrapper, so you won’t need the Application class you created before. The Maven
and Gradle build files can go away too, since you’ll be running uncompiled Groovy
files through the CLI. And without Maven and Gradle, the entire project structure can
be flattened. The new project structure will look a little like this:

$ tree
.
├── Contact.groovy
├── ContactController.groovy
├── ContactRepository.groovy
├── schema.sql
├── static
│ └── style.css
└── templates

└── home.html

Although the schema.sql, style.css, and home.html files will remain unchanged, you’ll
need to convert the three Java classes to Groovy. We’ll start with the web layer in
Groovy.

21.3.1 Writing a Groovy controller

As mentioned before, Groovy doesn’t have nearly as much ceremony built into the
language as Java. This means that you can write Groovy code without things like

 Semicolons
 Modifiers such as public and private

561Going Groovy with the Spring Boot CLI
 Setter and getter methods for properties
 The return keyword to return values from methods

Taking advantage of Groovy’s relaxed syntax (as well as some Spring Boot magic), you
can rewrite the ContactController class in Groovy, as shown in listing 21.8.

@Grab("thymeleaf-spring4")

@Controller
@RequestMapping("/")
class ContactController {

@Autowired
ContactRepository contactRepo

@RequestMapping(method=RequestMethod.GET)
String home(Map<String,Object> model) {
List<Contact> contacts = contactRepo.findAll()
model.putAll([contacts: contacts])
"home"

}

@RequestMapping(method=RequestMethod.POST)
String submit(Contact contact) {
contactRepo.save(contact)
"redirect:/"

}
}

As you can see, this version of ContactController is much simpler than its Java coun-
terpart. By ditching all of the things that Groovy doesn’t need, ContactController is
shorter and arguably easier to read.

 There’s also something else missing from listing 21.8. You may have noticed that
there are no import lines, as is typical in a Java class. Groovy imports a number of
packages and classes by default, including the following:

 java.io.*
 java.lang.*
 java.math.BigDecimal
 java.math.BigInteger
 java.net.*
 java.util.*
 groovy.lang.*
 groovy.util.*

Thanks to these default imports, the List class doesn’t need to be imported by
ContactController. It’s in the java.util package, so it’s among the default imports.

 But what about Spring types such as @Controller, @RequestMapping, @Autowired,
and @RequestMethod? Those aren’t in any of the default imports, so how can you get
away with leaving their import line out?

Listing 21.8 ContactController is simpler in Groovy than in Java.

Grab Thymeleaf
dependency

Inject ContactRepository

Handle GET /

Handle POST /

562 CHAPTER 21 Simplifying Spring development with Spring Boot
 Later when you run the application, the Spring Boot CLI will try to compile these
Groovy classes using the Groovy compiler. And because those types aren’t imported, it
will fail.

 But the Spring Boot CLI doesn’t give up that easily. This is where the CLI takes
autoconfiguration to a whole new level. The CLI will recognize that the failures were
due to missing Spring types, and it will take two steps to fix that problem. It will first
fetch the Spring Boot web starter dependency and transitively all of its dependencies
and add them to the classpath. (That’s right, it will download and add JARs to the
classpath.) Then it will add the necessary packages to the Groovy compiler’s list of
default imports and try to compile the code again.

 As a consequence of this auto-dependency/auto-import feature of the CLI, your
controller class doesn’t need any imports. And you won’t need to resolve the Spring
libraries manually or by using Maven or Gradle. Spring Boot CLI has you covered.

 Now let’s take a step back and consider what’s going on here. By simply using a
Spring MVC type such as @Controller or @RequestMapping in your code, the CLI will
automatically resolve the Spring Boot web starter. With the web starter’s dependencies
also being added transitively to the classpath, Spring Boot’s autoconfiguration will
kick in and automatically configure the beans necessary to support Spring MVC. But
again, all you had to do was use those types. Spring Boot took care of everything else.

 Naturally, there are some limits to the CLI’s capabilities. Although it knows how to
resolve many Spring dependencies and automatically add imports for many Spring
types (as well as a handful of other libraries), it won’t automatically resolve and import
everything. The choice to use Thymeleaf templates, for example, is an opt-in choice.
So you must explicitly ask for it with an @Grab annotation in the code.

 Note that for many dependencies, it's unnecessary to specify the group ID or ver-
sion number. Spring Boot plugs itself into the dependency resolution behind @Grab
and fills in the missing group ID and version for you.

 Also, by adding the @Grab annotation and asking for Thymeleaf, you triggered
autoconfiguration to configure the beans necessary to support Thymeleaf templates
in Spring MVC.

 Although it has little to do with Spring Boot, it’s worth showing the Contact class
in Groovy for the sake of a complete example:

class Contact {
long id
String firstName
String lastName
String phoneNumber
String emailAddress

}

As you can see, Contact is also much simpler without semicolons, accessor methods,
and modifiers like public and private. This is owed fully to Groovy’s uncomplicated
syntax. Spring Boot had absolutely no part in simplifying the Contact class.

 Now let’s see how to simplify the repository class with Spring Boot CLI and Groovy.

563Going Groovy with the Spring Boot CLI
21.3.2 Persisting with a Groovy repository

All of the Groovy and Spring Boot CLI tricks you applied to ContactController can
also be applied to ContactRepository. The following listing shows the new Groovy
version of ContactRepository.

@Grab("h2")

import java.sql.ResultSet

class ContactRepository {

@Autowired
JdbcTemplate jdbc

List<Contact> findAll() {
jdbc.query(
"select id, firstName, lastName, phoneNumber, emailAddress " +
"from contacts order by lastName",
new RowMapper<Contact>() {

Contact mapRow(ResultSet rs, int rowNum) {
new Contact(id: rs.getLong(1), firstName: rs.getString(2),

lastName: rs.getString(3), phoneNumber: rs.getString(4),
emailAddress: rs.getString(5))

}
})

}

void save(Contact contact) {
jdbc.update(
"insert into contacts " +

"(firstName, lastName, phoneNumber, emailAddress) " +
"values (?, ?, ?, ?)",

contact.firstName, contact.lastName,
contact.phoneNumber, contact.emailAddress)

}
}

Aside from the obvious improvements from Groovy syntax, this new Contact-
Repository class takes advantage of Spring Boot CLI’s auto-import feature to automat-
ically import JdbcTemplate and RowMapper. Moreover, the JDBC starter dependency is
automatically resolved when the CLI sees that you’re using those types.

 There are only a couple of things that the CLI’s auto-import and auto-resolution
couldn’t help you with. As you can see, you still had to import ResultSet. And
because Spring Boot doesn’t know which database you want to use, you must use
@Grab to ask for the H2 database.

 You’ve converted all of the Java classes to Groovy and took advantage of Spring
Boot magic along the way. Now you’re ready to run the application.

Listing 21.9 When written in Groovy, ContactRepository is much more succinct.

Grab H2 database
dependency

Inject JdbcTemplate

Query for contacts

Save a contact

564 CHAPTER 21 Simplifying Spring development with Spring Boot
21.3.3 Running the Spring Boot CLI

After compiling the Java application, you had two choices for running it. You could
either run it as an executable JAR or WAR file from the command line, or you could
deploy a WAR file to a servlet container. Spring Boot’s CLI offers a third option.

 As you might guess from its name, running applications through the Spring Boot
CLI is a way to run the application from the command line. But with the CLI, there’s
no need to build the application into a JAR or WAR file first. You can run the applica-
tion directly by passing the Groovy source code through the CLI.

INSTALLING THE CLI
In order to use the Spring Boot CLI, you’ll need to install it. You have several options
to choose from, including

 The Groovy Environment Manager (GVM)
 Homebrew
 Manual installation

To install Spring Boot CLI using GVM, enter this command:

$ gvm install springboot

If you’re on OS X, you can use Homebrew to install Spring Boot CLI:

$ brew tap pivotal/tap
$ brew install springboot

If you’d rather install Spring Boot manually, you can download it using the instruc-
tions at http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/.

 Once you have the CLI installed, you can check the installation and which version
you’re using with the following command line:

$ spring --version

Assuming everything installs well, you’re ready to run the Contacts application.

RUNNING THE CONTACTS APPLICATION WITH THE CLI
To run an application with the Spring Boot CLI, you type spring run in the command
line, followed by one or more Groovy files that should be run through the CLI. For
example, if your application only has a single Groovy class, you can run it like this:

$ spring run Hello.groovy

This runs a single Groovy class named Hello.groovy through the CLI.
 If your application has several Groovy class files, you can run them using wildcards

like this:

$ spring run *.groovy

Or, if those Groovy class files are in one or more subdirectories, you can use Ant-style
wildcards to recursively seek for Groovy classes:

$ spring run **/*.groovy

http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/

565Gaining application insight with the Actuator
Because the Contacts application has three Groovy classes to be read, and because
they’re all at the project root, either of the last two options will work. After running
the application, you should be able to point your browser to http://localhost:8080
and see essentially the same Contacts application that you created earlier.

 At this point, you’ve created a Spring Boot application twice: once in Java and
another time in Groovy. In both cases, Spring Boot applied a great deal of magic to
minimize the boilerplate configuration and build dependencies. Spring Boot has one
more trick up its sleeves, though. Let’s see how you can use the Spring Boot Actuator
to introduce management endpoints to a web application.

21.4 Gaining application insight with the Actuator
The main thing that the Spring Boot Actuator does is add several helpful manage-
ment endpoints to a Spring Boot-based application. These endpoints include

 GET /autoconfig—Explains the decisions made by Spring Boot when applying
autoconfiguration

 GET /beans—Catalogs the beans that are configured for the running application
 GET /configprops—Lists all properties available for configuring the properties

of beans in the application with their current values
 GET /dump—Lists application threads, including a stack trace for each thread
 GET /env—Lists all environment and system property variables available to the

application context
 GET /env/{name}—Displays the value for a specific environment or property

variable
 GET /health—Displays the current application health
 GET /info—Displays application-specific information
 GET /metrics—Lists metrics concerning the application, including running

counts of requests against certain endpoints
 GET /metrics/{name}—Displays metrics for a specific application metric key
 POST /shutdown—Forcibly shuts down the application
 GET /trace—Lists metadata concerning recent requests served through the

application, including request and response headers

To enable the actuator, you simply add the actuator starter dependency to your proj-
ect. If you’re writing your application in Groovy and running through the Spring Boot
CLI, you can add the actuator starter with @Grab, like this:

@Grab("spring-boot-starter-actuator")

If you’re building a Java application using Gradle, you can add the following depen-
dency to the dependencies block in build.gradle:

compile("org.springframework.boot:spring-boot-starter-actuator")

Or in your project’s Maven pom.xml file, you can add the following <dependency>:

566 CHAPTER 21 Simplifying Spring development with Spring Boot
<dependency>
<groupId> org.springframework.boot</groupId>
<artifactId>spring-boot-actuator</carlsbad>

</dependency>

After adding the Spring Boot Actuator, you can rebuild and restart your application
and then point your browser to any of those management endpoints for more infor-
mation. For example, if you want to see all of the beans that are in the Spring applica-
tion context, you can make a request for http://localhost:8080/beans. Using the curl
command-line tool, the result might look something like this (reformatted and
abridged for readability):

$ curl http://localhost:8080/beans
[

{
"beans": [

{
"bean": "contactController",
"dependencies": [

"contactRepository"
],
"resource": "null",
"scope": "singleton",
"type": "ContactController"

},
{

"bean": "contactRepository",
"dependencies": [

"jdbcTemplate"
],
"resource": "null",
"scope": "singleton",
"type": "ContactRepository"

},

...

{
"bean": "jdbcTemplate",
"dependencies": [],
"resource": "class path resource [...]",
"scope": "singleton",
"type": "org.springframework.jdbc.core.JdbcTemplate"

},

...
]

}
]

From this, you can see that there’s a bean whose ID is contactController that depends
on another bean named contactRepository. In turn, the contactRepository
depends on the jdbcTemplate bean.

567Gaining application insight with the Actuator
 Because I abridged the output, there are dozens of other beans not shown that
you’d otherwise see in the JSON produced from the /beans endpoint. This offers some
insight into the otherwise mysterious outcome of autowiring and autoconfiguration.

 Another endpoint that lends some insight into how Spring Boot’s autoconfigura-
tion works is the /autoconfig endpoint. The JSON produced by this endpoint lays bare
the decisions that Spring Boot made when autoconfiguring beans. For example,
here’s the abridged (and reformatted) JSON received from the /autoconfig endpoint
when fetched from the Contacts application:

$ curl http://localhost:8080/autoconfig
{
"negativeMatches": {

"AopAutoConfiguration": [
{

"condition": "OnClassCondition",
"message": "required @ConditionalOnClass classes not found:

org.aspectj.lang.annotation.Aspect,
org.aspectj.lang.reflect.Advice"

}
],
"BatchAutoConfiguration": [

{
"condition": "OnClassCondition",
"message": "required @ConditionalOnClass classes not found:

org.springframework.batch.core.launch.JobLauncher"
}

],

...

},
"positiveMatches": {

"ThymeleafAutoConfiguration": [
{

"condition": "OnClassCondition",
"message": "@ConditionalOnClass classes found:

org.thymeleaf.spring4.SpringTemplateEngine"
}

],
"ThymeleafAutoConfiguration.DefaultTemplateResolverConfiguration":[

{
"condition": "OnBeanCondition",
"message": "@ConditionalOnMissingBean

(names: defaultTemplateResolver; SearchStrategy: all)
found no beans"

}
],
"ThymeleafAutoConfiguration.ThymeleafDefaultConfiguration": [

{
"condition": "OnBeanCondition",
"message": "@ConditionalOnMissingBean (types:

org.thymeleaf.spring4.SpringTemplateEngine;
SearchStrategy: all) found no beans"

}

568 CHAPTER 21 Simplifying Spring development with Spring Boot
],
"ThymeleafAutoConfiguration.ThymeleafViewResolverConfiguration": [

{
"condition": "OnClassCondition",
"message": "@ConditionalOnClass classes found:

javax.servlet.Servlet"
}

],
"ThymeleafAutoConfiguration.ThymeleafViewResolverConfiguration

#thymeleafViewResolver": [
{

"condition": "OnBeanCondition",
"message": "@ConditionalOnMissingBean (names:

thymeleafViewResolver; SearchStrategy: all)
found no beans"

}
],

...
}
}

As you can see, the report has two sections: one for negative matches and one for pos-
itive matches. The negative matches section shown here indicates that the AOP and
Spring Batch autoconfiguration weren’t applied because the requisite classes weren’t
found on the classpath. Under the positive matches section, you can see that as a
result of SpringTemplateEngine being found on the classpath, the Thymeleaf auto-
configuration goes into effect. You can also see that the default template resolver, view
resolver, and template engine beans will be autoconfigured unless you have already
explicitly configured those beans. Moreover, the default view resolver bean will only
be autoconfigured if the Servlet class is found on the classpath.

 The /beans and /autoconfig endpoints are just two examples of the kind of
insight that Spring Boot’s Actuator makes available. There isn’t enough space in this
chapter to discuss all of the endpoints in detail, but I encourage you to try them out
for yourself to see what the Actuator can tell you about your application.

21.5 Summary
Spring Boot is an exciting new addition to the Spring family of projects. Where
Spring aims to make Java development simpler, Spring Boot aims to make Spring
itself simpler.

 Spring Boot employs two main tricks to eliminate boilerplate configuration in a
Spring project: Spring Boot starters and automatic configuration.

 A single Spring Boot starter dependency can replace several common dependen-
cies in a Maven or Gradle build. For example, adding only Spring Boot’s web starter as
a dependency in a project pulls in Spring’s web and Spring MVC modules as well as
the Jackson 2 databind module.

569Summary
 Automatic configuration takes full advantage of Spring 4.0’s conditional configura-
tion feature to automatically configure certain Spring beans to enable a certain fea-
ture. For example, Spring Boot can detect that Thymeleaf is in the application
classpath and automatically configure the beans required to enable Thymeleaf tem-
plates as Spring MVC views.

 Spring Boot’s command-line interface (CLI) further simplifies Spring projects with
Groovy. By simply referencing a Spring component in Groovy code, you can trigger
the CLI to automatically add the necessary starter dependency (which may, in turn,
trigger automatic configuration). Moreover, many Spring types don’t require explicit
import statements in Groovy code run via the Spring Boot CLI.

 Finally, the Spring Boot Actuator adds some common management features to a
Spring Boot–developed web application, including insight into thread dumps, web
request history, and the beans in the Spring application context.

 After reading this chapter, you may be wondering why I saved such a helpful topic
like Spring Boot until the end of the book. You might even be thinking that had I
introduced Spring Boot earlier in the book, that much of what you learned would’ve
been even easier. Indeed, Spring Boot layers a very compelling programming model
on top of Spring, and once you’ve used it, it’s hard to imagine writing a Spring appli-
cation without it.

 I could say that by saving Spring Boot for last, my intentions were to give you a
deeper appreciation for Spring (and perhaps build character and sprout hair on your
chest). While that could be true, the real reason is that most of this book had already
been written by the time Spring Boot came along. So I slid it in at the only place I
could without shuffling the entire book: at the end.

 Who knows? Maybe the next edition of this book will start off using Spring Boot.

index

Symbols

^ operator 93
.^[] operator 94
.?[] operator 94
.$[] operator 94
[] operator 94
+ operator 93
== operator 93

A

AbstractAnnotationConfigDispatcherServlet-
Initializer class 134, 195, 198, 404

customizeRegistration() method 195, 202
getServletFilters() method 197

AbstractDispatcherServletInitializer class 404
AbstractMongoConfiguration class 330
AbstractSecurityWebApplicationInitializer

class 247
AbstractWebSocketHandler class 487
Accept header 422, 429, 449
acceptsProfiles() method 87
access rules 383–385
access() method 262, 264
accountExpired() method 252
accountLocked() method 252
Acegi Security. See Spring Security
ACL module 246
action states 223–224
<action-state> element 224
activating profiles 70–72
ActiveMQ 458, 460

ActiveMQConnectionFactory 459–460
message destinations 460

ActiveMQConnectionFactory class 459–460
@ActiveProfiles annotation 70, 72

Actuator 547, 565–568
endpoints 565

addAttachment() method 515
addFlashAttribute() method 216
addHandler() method 489
addInline() method 516
<admin> element 479
Advanced Message Queuing Protocol 474–484

basics 475
configuring 477–479
exchanges 475
RabbitMQ 479–481
RabbitTemplate 479–481
receiving messages 482–484

advice 99
after advice 100

declaring 118–121
after-returning advice 100
after-throwing 100
and Java 102
annotations 107
around advice 100, 110–111

declaring 121–122
before advice 100

declaring 118–121
controller advice 212–213
@ControllerAdvice 212
handling parameters 112–115
passing parameters to 122–124
XML elements 117

after advice 15, 100
@After annotation 107
afterConnectionClosed() method 488
afterConnectionEstablished() method 488
afterPropertiesSet() method 21
after-returning advice 100
@AfterReturning annotation 107
570

571INDEX
after-throwing advice 100
@AfterThrowing annotation 107
allEntries attribute 374
all-entries attribute 378
Amazon S3 206–207
amq namespace 459
<amq:connectionFactory> element 459
<amq:queue> element 460
<amq:topic> element 460
AMQP. See Advanced Message Queuing Protocol
and() method 252, 267, 271
annotatedClasses property 309
annotation

@RequestMapping 428, 430
@annotation designator 104
AnnotationConfigWebApplicationContext

class 199
AnnotationMethodMessageHandler class 500
annotations

@ActiveProfiles 70, 72
@After 107
@AfterReturning 107
@AfterThrowing 107
and aspects 106–117
and autowiring 39–41
and caching 368–374
and introductions 115–117
annotation-driven MBeans 530–532
AnnotationSessionFactoryBean 308
@Around 107, 111
@Aspect 107
@AspectJ 102, 122
@AssertFalse 160
@AssertTrue 160
@AuthenticationPrincipal 249
@Autowired 37, 39, 75, 147, 400, 411, 504, 514,

518
required attribute 40

@Bean 44–45, 65, 168, 178, 188, 202, 299, 512,
525

name attribute 44
@Before 107, 113
@Cacheable 368–373
@CacheEvict 369, 373–374
@CachePut 368–373
@Caching 369
@Component 35, 38, 139, 212, 473
@ComponentScan 36, 138, 558

basePackageClasses attribute 39
basePackages attribute 39
value attribute 38

@Conditional 72
@Configuration 43, 199
@Controller 138–139, 498, 551, 562
@ControllerAdvice 212

custom 79
@DbRef 333
@DecimalMax 160
@DecimalMin 160
@DeclareParents 116
@Digits 160
@Document 333, 337
@EnableAspectJAutoProxy 109
@EnableAutoConfiguration 558
@EnableCaching 363
@EnableGlobalMethodSecurity 380–382
@EnableJpaRepositories 320
@EnableMongoRepositories 330, 341
@EnableNeo4jRepositories 342
@EnableWebMvc 136
@EnableWebMvcSecurity 248
@EnableWebSecurity 248
@EnableWebSocket 488
@EnableWebSocketMessageBroker 495
@EndNode 345
@Entity 308, 315
@ExceptionHandler 212, 434–436, 508
@Fetch 345
@Field 333
@Future 160
@Grab 562, 565
@GraphId 345, 351
@GraphProperty 345
@GraphTraversal 345
@Id 333
@Import 60
@ImportResource 61
in Neo4j 344–348
@Indexed 345
@InitBinder 212
@Inject 41, 300, 309
@Labels 345
@ManagedAttribute 530
@ManagedOperation 530
@ManagedResource 530
@MappedSuperclass 308
@Max 160
@MessageDriven 470–471
@MessageExceptionHandler 509
@MessageMapping 495, 498, 505
@Min 160
@ModelAttribute 212
MongoDB model types 332–335
@Named 38
@NodeEntity 345
@NotNull 160
@Null 160
@Part 160
@PathVariable 153, 418
@Pattern 160

572 INDEX
annotations (continued)
@PersistenceContext 317
@PersistenceUnity 316
@Pointcut 108, 113, 120
@PostAuthorize 383, 385
@PostFilter 383, 386, 390
@PreAuthorize 383–384
@PreFilter 383, 387–388
@Primary 76
@Profile 66, 74
@PropertySource 85
@Qualifier 77

custom qualifiers 78
@Query 324, 339, 345, 352
@QueryResult 345
@RelatedTo 345
@RelatedToVia 345
@RelationshipEntity 345, 349
@RelationshipType 345
@Repeatable 79
@Repository 300, 310, 318, 556
@RequestBody 419, 430–431
@RequestMapping 139, 142, 152, 155, 562
@RequestParam 151

defaultValue attribute 151
@RequestPart 205–208
@ResponseBody 419, 428–430
@ResponseStatus 209, 436–439
@RestController 431–432
@ResultColumn 345
@RolesAllowed 382
@Scope 81–82

proxyMode attribute 82
@Secured 380–382
securing methods 380–382
@SendTo 502
@SendToUser 505
@Size 161, 175
@StartNode 345
@SubscribeMapping 500, 502, 505
@Transactional 318
@Valid 162
@Value 88
@Version 333
@WebMethod 411
@WebService 411

AnnotationSessionFactoryBean class 308
anonymous() method 262
antMatchers() method 261, 274
anyRequests() method 261
aop namespace 15, 84, 102, 110, 117, 374

<aop:scoped-proxy> element 84
<aop:advisor> element 117, 376
<aop:after> element 15, 117
<aop:after-returning> element 117

<aop:after-throwing> element 117
<aop:around> element 117, 122
<aop:aspect> element 15, 117, 119
<aop:aspectj-autoproxy> element 110, 117
<aop:before> element 15, 117
<aop:config> element 118–119
<aop:declare-parents> element 118, 124
<aop:pointcut> element 118, 120
<aop:scoped-proxy> element 84
AOP. See aspect-oriented programming
Apache Commons DBCP 289
Apache Tiles 182–187

and view resolvers 182–187
defining tiles 183
<definition> element 183
<put-attribute> element 183
<t:insertAttribute> element 185

Apache Velocity 518–520
APIs

REST 416–451
WebSocket 486–490

appendFilters() method 247
application context 10, 18–20, 23

with DispatcherServlet 135–136
ApplicationContext interface 18
ApplicationContextAware interface 21
application-managed entity managers 311–313
@args() designator 104
args() designator 104
#Argument 371
around advice 100, 110–111
@Around annotation 107, 111
artithmetic operators 92
@Aspect annotation 107
AspectJ 15, 102, 125–127

@annotation designator 104
@args() 104
args() 104
bean() designator 106
execution() designator 104
pointcut designators 104
@target() designator 104
target() designator 104
this() designator 104
@within() designator 104
within() designator 104

@AspectJ annotation 102, 122
aspect-oriented programming 11–16, 97–128

advice 99
around advice 110–111
declaring around advice 121–122
declaring before and after advice 118–121
handling parameters 112–115
passing parameters to 122–124

annotated aspects 106–117

573INDEX
aspect-oriented programming (continued)
aop namespace 102
@AspectJ 102
AspectJ 102, 125–127
aspects 100

declaring in XML 117–125
defining 106–110

defined 98
example 13–16
introducing new functionality 124–125
introductions 101, 115–117
join points 100, 103–106
pointcuts 100, 103
pure-POJO aspects 102
Spring AOP module 23
support in Spring 101–103
terminology 99
weaving 101

aspects 11–16, 100
after advice 15
annotations 106–117
as blankets 12
AspectJ 125–127
before advice 15
cross-cutting concerns 11
declaring in XML 117–125
defining 106–110
example 13–16
introducing new functionality 124–125
pure-POJO 102

Aspects module 246
@AssertFalse annotation 160
@AssertTrue annotation 160
asynchronous communication 454

benefits of 456–458
decoupling 457
guaranteed delivery 458
location independence 457
no waiting 457

AtomFeedHttpMessageConverter class 427
attachments 515–516
attributes 242

allEntries 374
all-entries 378
base-path 221
beforeInvocation 374
before-invocation 378
cache 377
condition 372–373, 377
connectionFactory 471
defining with interfaces 529–530
else 225
expression 224
flash attributes 215–217
flow-registry 221

jndi-name 288
jsr250Enabled 382
key 373, 377, 525
managed 524
method 377
model 223
objectName 531
on 226
on-attribute 227
path 221
physicalName 460
prePostEnabled 383
registration 532
resource-ref 288
secureEnabled 381
start-state 231
targetNamespace 415
then 225
to 226
unless 372
value 373
view 223, 225

authenticated() method 261–262
authentication 267–271

and Spring Security JSP tag library 272–273
custom login page 268–269
HTTP Basic authentication 269
logging out 270
remember-me feature 270

AuthenticationManagerBuilder class 251
@AuthenticationPrincipal annotation 249
authorities() method 252
authorizeRequests() method 261
/autoconfig endpoint 565, 567
@Autowired annotation 37, 39, 75, 147, 400, 411,

504, 514, 518
required attribute 40

autowiring 34
addressing ambiguity 75–81
and annotations 39–41
JAX-WS endpoints 411–412
primary bean 76–77
qualifying autowired beans 77–81
SimpMessagingTemplate 503
verifying configuration 41–42

B

base package
and component scanning 38–39

base-path attribute 221
BasicDataSource class 293

driverClassName property 289
initialSize property 290
maxActive property 290

574 INDEX
BasicDataSource class (continued)
maxIdle property 290
maxOpenPreparedStatements property 290
maxWait property 290
minEvictableIdleTimeMillis property 290
minIdle property 290
password property 289
pool-configuration properties 290
poolPreparedStatements property 290
url property 289
username property 289

BCryptPasswordEncoder. See PaswordEncoder
interface

@Bean annotation 44–45, 65, 168, 178, 188, 202,
299, 330, 512, 525

name attribute 44
with getProperty() 86

bean factories 23
bean() designator 106
<bean> element 48, 168, 188

ActiveMQ 460
LocalContainerEntityManagerFactoryBean

313
LocalEntityManagerFactoryBean 312
MBeans 525
primary attribute 77
scope attribute 84

BeanDefinitionRegistry interface 74
BeanFactory interface 18
BeanFactoryAware interface 21
BeanNameAware interface 21
BeanNameViewResolver class 137, 166
BeanPostProcessor interface 21
beans

and constructor injection 49–54
and property injection 54–59
autowiring 34, 39–41

addressing ambiguity 75–81
custom qualifiers 78–81
qualifying autowired beans 77–81
verifying configuration 41–42

component scanning 34, 38
setting base package 38–39

conditional 72–75
configuring 59
configuring with XML 47
constructor injection with bean references

49–51
declaring with Java 44
declaring with XML 48–49
discovering 34–37
entity beans 311–318
exporting as HTTP services 407–408
exporting as JAX-WS endpoints 412–413
exporting as MBeans 524–533

exposing functionality with Hessian and
Burlap 402, 405

Hibernate session factories 307
injecting with JavaConfig 45–46
Java configuration class 43
lifecycle 20–21
LocalContainerEntityManagerFactoryBean

312
LocalEntityManagerFactoryBean 312
managed beans. See MBeans
primary 76–77
profile beans 66–70
prototype beans 81
referencing 91
referencing JavaConfig from XML 61–63
referencing XML configuration from Java

59–61
request beans 81–82
retrieving from application contexts 19
runtime value injection 84–95

injecting external values 85–89
scoping 81–84

declaring scoped proxies 84
request versus session scope 82–83

selecting in pointcuts 106
session beans 81–82
singletons 81
wiring 32–63
wiring automatically 34–42
wiring with Java 43–46
wiring with XML 46–59
See also JavaBeans

/beans endpoint 565
beans namespace 477
<beans> element 47, 68
before advice 15, 100
@Before annotation 107, 113
beforeInvocation attribute 374
before-invocation attribute 378
BinaryWebSocketHandler class 488
BindException 209
bindings 478
<bindings> element 479
boilerplate code 297

eliminating 16–18
BoneCP 289
BoundHashOperations interface 357
boundHashOps() method 357
BoundListOperations interface 357, 359
boundListOps() method 357, 359
BoundSetOperations interface 357
boundSetOps() method 357
BoundValueOperations interface 357
boundValueOps() method 357
boundZSet() method 357

575INDEX
BoundZSetOperations interface 357
broker relays 496–498
brokerURL property 459
BufferedImageHttpMessageConverter class 427
Burlap 24, 395

accessing services 405–406
compared to Hessian 402
exposing bean functionality 402, 405

BurlapProxyFactoryBean 406
BurlapServiceExporter class 405
ByteArrayHttpMessageConverter class 427
ByteArrayMessageConverter class 499

C

<c:forEach> element 148
c3p0 289
cache attribute 377
cache managers 364–368

Ehcache 365–366
Redis as 366–367
using multiple 368

cache namespace 363, 374
<cache:advice> element 375–377
<cache:annotation-driven> element 363, 375
<cache:cacheable> element 375–376
<cache:cache-evict> element 375, 377
<cache:cache-put> element 375–376
<cache:caching> element 375–376
@Cacheable annotation 368

attributes 369
key attribute 371

Cacheable annotation 369–373
@CacheEvict annotation 369, 373–374

attributes 373
void methods 373

CacheManager interface 366
@CachePut annotation 368–373

annotations 369
key attribute 371

caching 362–378
annotations 368–374
#Argument 371
cache managers 364–368

using multiple 368
conditional 372–373
custom cache key 371–372
declaring in XML 374–378
Ehcache 365–366
enabling 363–368
populating the cache 369–373
removing entries 373–374
#result 371
#root.args 371
#root.caches 371

#root.method 371
#root.methodName 371
#root.target 371
#root.targetClass 371
SpEL expressions for 371
with Redis 366–367

@Caching annotation 369
callbacks 286
CAS Client module 246
cascading 306
Cascading Style Sheets

and Spring Boot 554–555
case sensitivity 322
catch blocks 283, 285
Caucho. See Hessian
CciTemplate class 287
Chanel interface 478
channel security 264–265
class load time 101
classes

AbstractAnnotationConfigDispatcherServlet-
Initializer 134, 195, 404

customizeRegistration() method 195, 202
getServletFilters() method 197

AbstractDispatcherServletInitializer 404
AbstractMongoConfiguration 330
AbstractSecurityWebApplicationInitializer 247
AbstractWebSocketHandler 487
ActiveMQConnectionFactory 459–460
AnnotationConfigWebApplicationContext 199
AnnotationMethodMessageHandler 500
AnnotationSessionFactoryBean 308
AtomFeedHttpMessageConverter 427
AuthenticationManagerBuilder 251
BasicDataSource 289, 293
BeanNameViewResolver 137, 166
BinaryWebSocketHandler 488
BufferedImageHttpMessageConverter 427
BurlapServiceExporter 405
ByteArrayHttpMessageConverter 427
ByteArrayMessageConverter 499
CciTemplate 287
class-level request handing 142–143
ClassLoaderTemplateResolver 521
CommonsMultipartResolver 204

uploadTempDir property 204
CompositeClassManager 368
ConcurrentMapCacheManager 364
ConnectorServerFactoryBean 533–534
ContentNegotiatingViewResolver 166, 418, 421
ContentNegotiationConfigurer 424
ContentNegotiationManager 422–425
ContentNegotiationManagerFactoryBean 423
Context 520
ContextLoaderListener 135, 198

576 INDEX
classes (continued)
DAO support classes 288
DefaultMethodSecurityExpressionHandler 389

–390
DefaultServletHandlerConfigurer 138
DelegatingFilterProxy 246
DenyAllPermissionEvaluator 389
DispatcherServlet 133–135, 195

declaring in web.xml 197–200
with Spring Web Flow 222

DriverManagerDataSource 291
EhCacheManager 365
EhCacheManagerFactoryBean 366
EmbeddedDatabaseBuilder 65, 293
FileSystemResource 516
flowExecutionKey 235
FlowHandlerAdapter 222
FlowHandlerMapping 222
FormHttpMessageConverter 427
FreeMarkerViewResolver 166
GenericToStringSerializer 359
GlobalMethodSecurityConfiguration 380
GraphDatabaseFactory 343
HessianServiceExporter 402–403
HibernateTemplate 287
HttpMethodConverter 419
HttpSecurity 261, 269–270
InterfaceBasedMBeanInfoAssembler 529–530
InternalResourceView Resolver

and JSP 167
InternalResourceViewResolver 138, 166

configuring 167–169
forward: prefix 158
redirect: prefix 158

Jackson2JsonRedisSerializer 359
JacksonJsonRedisSerializer 359
JasperReportsViewResolver 166
java.lang.System 90
JavaConfig

and dependency injection 45–46
JavaMailSenderImpl 512–513
Jaxb2RootElementHttpMessageConverter 427
JaxWsPortProxyFactoryBean 413
JdbcTemplate 287, 299–301, 542, 555
JdkSerializationRedisSerializer 359
JdoTemplate 287
JedisConnectionFactory 354
JmsInvokerServiceExporter 472–474
JmsTemplate 458, 460, 462–469
JmsUtils class 468
JndiObjectFactoryBean 289
JredisConnectionFactory 354
LettuceConnectionFactory 354
LogoutFilter 271
MappingJackson2HttpMessageConverter 427

MappingJackson2MessageConverter 467, 499
MappingJacksonHttpMessageConverter 427
MappingJacksonMessageConverter 467
MarshallingHttpMessageConverter 427
MarshallingMessageConverter 467
MBeanExporter 525, 528, 530, 539
MBeanProxyFactoryBean 536–537
MBeanServerConnectionFactoryBean 534–535
MetadataMBeanInfoAssembler 530–532
MethodExclusionMBeanInfoAssembler 529
MethodNameBasedMBeanInfoAssembler

527–529
MimeMessage 515
MimeMessageHelper 515
MockMvc 145, 152
MongoClient 329
MongoCredential 332
MongoFactoryBean 330
MongoTemplate 329, 335–336
MultipartConfigElement 195, 202–203
MultipartResolver 201–204
NamedParameterJdbcTemplate 287, 299, 303
Naming 399–401
Neo4jTemplate 348–349
Notification 506
OxmSerializer 359
PersistenceAnnotationBeanPostProcessor 318
PersistenceExceptionTranslationPostProcessor

310, 318
PropertyPlaceholderConfigurer 88
PropertySourcesPlaceholderConfigurer 88
RabbitTemplate 479–483
RedisClassManager 367
RedisTemplate 355–360, 367
ReloadableResourceBundleMessageSource

178
ResourceBundleMessageSource 178
ResourceBundleViewResolver 166
ResourceHttpMessageConverter 427
ResponseEntity 433–434, 443
RestTemplate 440–442
RmiProxyFactoryBean 400
RmiRegistryFactoryBean 533
RmiServiceExporter 398
RssChannelHttpMessageConverter 427
ServletContextTemplateResolver 521
SimpleDriverDataSource 291
SimpleJaxWsServiceExporter 410, 412
SimpleJdbcTemplate 287, 299
SimpleMessageConverter 467
SimpMessagingTemplate 503
SingleConnectionDataSource 291
SourceHttpMessageConverter 427
SpringJUnit4ClassRunner 37
SpringRestGraphDatabase 343

577INDEX
classes (continued)
SpringServletContainerInitializer 135
SpringTemplateEngine 187, 275, 546
SqlMapClientTemplate 287
SrpConnectionFactory 354
StandardServletMultipartResolver 202–203
StringHttpMessageConverter 428
StringMessageConverter 499
StringRedisSerializer 360
StringRedisTemplate 356, 360
TemplateResolver 187, 546
TextWebSocketHandler 488
ThymeleafViewResolver 187, 546
TilesConfigurer 182
TilesViewResolver 166, 182
UriComponentsBuilder 438
UrlBasedViewResolver 166
UserDestinationMessageHandler 506
UserDetailsManagerConfigurer.UserDetails-

Builder 251
VelocityEngine 518–520
VelocityEngineUtils 518
VelocityLayoutViewResolver 166
VelocityViewResolver 166
WebMvcConfigurerAdapter 138, 423
WebSecurityConfigurerAdapter 249
XmlAwareFormHttpMessageConverter 428
XmlViewResolver 166
XsltViewResolver 166

ClassLoader interface 74
ClassLoaderTemplateResolver class 521
ClassPathXmlApplicationContext 10, 19
Cogoluègnes, Arnaud 25
collections

in SpEL 94–95
wiring 52–54

collisions, MBean collisions 532–533
command-line interface

and Groovy 560–565
Groovy 564
Spring Boot 546

installing 564
CommonsMultipartResolver class 204

uploadTempDir property 204
comparison operators 92, 322
compile time 101
@Component annotation 35, 38, 139, 212, 473
component scanning 34

@ComponentScan annotation 36
naming beans 38
setting base package 38–39

components 11–16
@ComponentScan annotation 36, 138, 558

basePackageClasses attribute 39
basePackages attribute 39
value attribute 38

CompositeClassManager class 368
ConcurrentMapCacheManager class 364
condition attribute 372–373, 377
@Conditional annotation 72
conditional beans 72–75
conditional caching 372–373
conditional operators 92
/configprops endpoint 565
ConfigurableBeanFactory interface 81
ConfigurableListableBeanFactory interface 74
@Configuration annotation 43, 199
Configuration module 246
configure() method 249, 251, 255, 261, 267,

270–271, 381
configure(AuthenticationManagerBuilder)

method 249
configure(HttpSecurity) method 249
configure(WebSecurity) method 249
configureContentNegotiation() method 423–424
configureMessageBroker() method 495–496
configuring

Apache Tiles 182–187
autowiring 41–42
cache managers 364–368
configuration class 43
ContentNegotiationManager 423
custom data stores 259–260
data sources 288, 295
DispatcherServlet 134–135, 195

in web.xml 197–200
embedded LDAP servers 257–258
entity manager factories 311, 315
flow registries 221
for email 512–514
Hessian controllers 403–404
InternalResourceViewResolver 167–193
LDAP authentication 255
mail senders 514
MBean server 527
message listeners 471–472
MultipartResolver 201–204
profile beans 66–70
profiles in XML 68–70
RMI services 397, 399
Spring 33
Spring Boot autoconfiguration 546
Spring Data with Neo4j 342–344
Spring for AMQP 477–479
Spring MVC 195–200
Spring Security 250
Spring Web Flow 222
Thymeleaf 187–189
wiring 59–63

with Java 43, 47
connectionFactory attribute 471

578 INDEX
connectionFactory property 463, 474
ConnectorServerFactoryBean class 533–534
constructor injection 7

and collections 52–54
bean references 49–51
declaring arguments as attributes 50
in XML 49–54
with literal values 51–52

<constructor-arg> element 49
ref attribute 50
value attribute 51

constructors
constructor injection 7

container-managed entity managers 311,
313–315

containers 18–21
bean lifecycle within 20
container-managed entity managers 311
core container 23
dependency injection 18

containsProperty() method 87
content negotiation 421–426
ContentNegotiatingViewResolver class 166, 418,

421
before Spring 3.2 423
benefits and limitations of 425
determining media types 422–425

ContentNegotiationConfigurer class 424
ContentNegotiationManager class 422–425
contentNegotiationManager property 423
ContentNegotiationManagerFactoryBean

class 423
Context class 520
context namespace 36, 88, 530
<context:component-scan> element 36, 310
<context:mbean-export> element 530, 532
<context:mbean-server> element 527
<context:property-placeholder> element 88
ContextLoaderListener class 135, 198
contextSource() method 257
@Controller annotation 138–139, 498, 551, 562
@ControllerAdvice annotation 212
controllers 133, 139–148

accepting input 148–153
path parameters 151–153
query parameters 149–151

class-level request handling 142–143
controller advice 212–213
@ControllerAdvice 212
form validation 159–162
front controller 133
Groovy 560–562
Hessian controllers 403–404
passing model data to view 143–148
processing forms 154–162

STOMP messaging 505–507
testing 140–142

conversation scope 228
ConversionNotSupportedException 209
convertAndSend() method 466–467, 480, 504
convertAndSendToUser() method 507
convertJmsAccessException() method 468
core container 23
Core module 246
count() method 336, 349–350
coupling 5
createContainerEntityManagerFactory()

method 311
createEntityManagerFactory() method 311
createMessage() method 465
createMimeMessage() method 515
createRelationshipBetween() method 349
credentialsExpired() method 252
cross-cutting concerns 11, 98
cross-site request forgery 265–267
CRUD, mapped to HTTP methods 418
Cryptography module 246
custom annotations 79
custom queries 323–324
customizeRegistration() method 195, 202

D

DAO support classes 288
DAOs. See data access objects
data access

callbacks 286
data sources 288, 295
exception hierarchy 283, 285–286
JDBC 295–304
JDBC driver-based data source 291–292, 295
overview 281–304
runaway code 296, 298–299
templates 286
templating 286–288
tiers 282, 285
with JdbcTemplate 299–301

data access objects 282
JPA-based 316–318
support classes 288
wiring Hibernate to repository classes 309–310

data access tiers 282
data sources

Apache Commons DBCP 289
BasicDataSource 289
BoneCP 289
c3p0 289
JDBC driver-based 291–292, 295
JNDI 288–289

579INDEX
data sources (continued)
pooled 289–290
with JdbcTemplate 299–301

data stores
and Spring Security 250–260
custom 259–260
database tables 252–255

encoded passwords 254–255
in-memory user stores 251–252
LDAP 255–258

embedded servers 257–258
password comparison 255

data-access objects 23
DataAccessException 285
database property 314
databases 281–304

document databases. See MongoDB
MongoDB 328–341

enabling 329–332
repositories 337–341

Neo4j 341–354
annotations 344–348
automatic repositories 349–354

NoSQL 327–361
querying rows with JDBC 297
Redis 354–360

connecting to 354–355
updating rows with JDBC 296

DataSource interface 65–66, 68, 299, 556
dataSource property 308, 313
@DbRef annotation 333
@DecimalMax annotation 160
@DecimalMin annotation 160
decision states 223–224
<decision-state> element 224, 234
@DeclareParents annotation 116
declaring

variables in flows 227
defaultContentType() method 424
DefaultMethodSecurityExpressionHandler

class 389–390
DefaultServletHandlerConfigurer class 138
<definition> element 183
DelegatingFilterProxy class 246

and WebApplicationInitializer 247
delete() method 338, 349–351, 440, 445
deleteAll() method 338, 350
denyAll permission 263
denyAll() method 262
DenyAllPermissionEvaluator class 389
dependencies

starter dependencies 541–546
dependency injection 5–11, 18

and Spring Security 245
constructor injection 7

@Named annotation 38
runtime value injection 84–95

injecting external values 85–89
with JavaConfig 45–46

design patterns
template method 286

DestinationResolutionException 462
destinations 454

queues 455, 478
setting a default 465–466
topics 456

destroy() method 21
@Digits annotation 160
<direct-exchange> element 478
disabled() method 252
DispatcherServlet class 133

and content negotiation 421
and HessianServlet 403
and HTTP invoker 407
and StandardServletMultipartResolver 202
application context 135–136
configuring 134–135
contextClass parameter 199
contextConfigLocation parameter 198
customizing 195
declaring in web.xml 197–200
with Spring Web Flow 222

DisposableBean interface 21
@Document annotation 333, 337
document databases. See MongoDB
driverClassName property 289
DriverManagerDataSource class 291
/dump endpoint 565
Dynamic MBeans 524

E

eager fetching 306
EclipseLinkJpaVendorAdapter 314
Ehcache 365–366
EhCacheManager class 365
EhCacheManagerFactoryBean class 366
else attribute 225
email 511–522

and Thymeleaf 520–522
attachments 515–516
constructing 519
mail senders 514
mail sessions 513
rich content 516–517
rich text 515–517
setText() method 516–517
templates 517, 519–522
wiring mail sender into service bean 514

EmbeddedDatabaseBuilder class 65, 293

580 INDEX
@EnableAspectJAutoProxy annotation 109
@EnableAutoConfiguration annotation 558
@EnableCaching annotation 363
@EnableGlobalMethodSecurity

jsr250Enabled attribute 382
@EnableGlobalMethodSecurity annotation

380–382
prePostEnabled attribute 383
secureEnabled attribute 381

@EnableJpaRepositories annotation 320
@EnableMongoRepositories annotation 330, 341
@EnableNeo4jRepositories annotation 342
@EnableWebMvc annotation 136
@EnableWebMvcSecurity annotation 248
@EnableWebSecurity annotation 248
@EnableWebSocket annotation 488
@EnableWebSocketMessageBroker

annotation 495
enabling

caching 363–368
end states 223, 225
@EndNode annotation 345
endpoints

and Spring Boot Actuator 565
/autoconfig 565, 567
autowiring JAX-WS endpoints 411–412
/beans 565
/configprops 565
content negotiation 421–426
creating 419–432
/dump 565
/env 565
/env/{name} 565
exporting standalone JAX-WS endpoints

412–413
/health 565
/info 565
JAX-WS 410, 413
/metrics 565
/metrics/{name} 565
/shutdown 565
/trace 565

<end-state> element 225, 240, 242
Enterprise JavaBeans

forcing you to use its classes or interfaces 5
@Entity annotation 308, 315
entity beans 311–318
entity managers

application-managed 311–313
container-managed 311, 313–315

EntityManagerFactory interface 311, 315
<entry> element

key attribute 525
/env endpoint 565
/env/{name} endpoint 565

Environment interface 73, 85
containsProperty() method 87
getProperty() method 86
getRequiredProperty() method 87

eq operator 93
errors

displaying with Spring MVC 172–176
@ExceptionHandler annotation 434–436
handling with REST 432–436
ResponseEntity class 433–434

Errors interface 162
escaping

and 180
content 181
URLs 180

<evaluate> element 224, 227, 232, 235
example

performance 104–111
examples

CD player 34–63, 112
Contacts 547
Contacts application 547
dessert 75
JDBC 16–18
knight 5–11, 13–16
magic bean 72–75
Marco Polo game 486
performance 116–127
pizza ordering 229–242
Spittr 138–162, 200–217

and STOMP messaging 503
caching 369–378
security 248–276

@ExceptionHandler annotation 212, 434–436,
508

exceptions
and @ResponseStatus 209
BindException 209
catch blocks 283, 285
ConversionNotSupportedException 209
data access exception hierarchy 283,

285–286
DataAccessException 285
DestinationResolutionException 462
exception-handling methods 211–212
handling 208–212
Hibernate 284
HttpMediaTypeNotAcceptableException 209
HttpMediaTypeNotSupportedException 209
HttpMessageNotReadableException 209
HttpMessageNotWritableException 209
HttpRequestMethodNotSupportedException

209
IllegalStateException 462
in STOMP 508–509

581INDEX
exceptions (continued)
InstanceAlreadyExistsException 532
InvalidClientIDException 463
InvalidDestinationException 463
InvalidSelectorException 463
IOException 439
JDBC exception hierarchy versus Spring excep-

tion hierarchy 284–285
JMSException 462
JmsException 462
JmsSecurityException 463
ListenerExecutionFailedException 463
MalformedURLException 397
mapping to HTTP status codes 209–210
MessageConversionException 463
MessageEOFException 463
MessageFormatException 463
MessageNotReadableException 463
MessageNotWriteableException 463
MethodArgumentNotValidException 209
MissingServletRequestParameterException

209
MissingServletRequestPartException 209
NoSuchRequestHandlingMethodException

209
platform-agnostic 284
RemoteAccessException 396
RemoteException 396–397
ResourceAllocationException 463
SQLException 16, 283, 296
SynchedLocalTransactionFailedException 463
TransactionInProgressException 463
TransactionRolledBackException 463
TypeMismatchException 209
UncategorizedJmsException 463
UnknownHostException 330
UnsupportedOperationException 389

exchange() method 440, 448
exchanges 475, 478

direct 476
fanout 476
headers 476
topic 476

execute() method 440
execution() designator 104
exists() method 338, 350
expression attribute 224
Extensible Markup Language (XML) 8

and property injection 54–59
aspects 15
<bean> element 48
<beans> element 47, 68
caching with 374–378
configuring 47
configuring profiles 68–70

<constructor-arg> element 49–50
value attribute 51

<context:component-scan> element 36
declaring around advice 121
declaring aspects 117–125
declaring beans 48–49
declaring before and after advice 118–121
declaring scoped proxies 84
<import> element 61
introducing new functionality 124–125
<list> element 53
null element 53
passing parameters to advice 122–124
<property> element 55

value attribute 57
referencing Java configuration 61–63
referencing XML configuration from Java

59–61
<set> element 54
setting properties 54–59
<util:constant> element 59
<util:list> element 58
<util:map> element 59
<util:properties> element 59
<util:property-path> element 59
<util:set> element 59
<value> element 53
wiring beans with 46
<xref> element 53

F

FactoryBean interface 307
FAIL_ON_EXISTING 532
<fanout-exchange> element 478
@Fetch annotation 345
@Field annotation 333
FileSystemResource class 516
FileSystemXmlApplicationContext 19
<filter> element 247
filtering requests 246–248
<filter-name> element 247
findAll() method 338, 350
findAllBySchemaPropertyValue() method 350
findAllByTraversal() method 350
findByAll() method 348
findById() method 336
findBySchemaPropertyValue() method 350
findOne() method 338, 348, 350
flash attributes 215–217
flash scope 228
flow data 227–229

collecting 232, 238
conversation scope 228
flash scope 228

582 INDEX
flow data (continued)
flow scope 228
request scope 228
scoping 228
view scope 228

flow executors 220
flow registries 221
flow requests 222
flow scope 228
flow states 223–226

action states 223–224
decision states 223–224
end states 223, 225
subflow states 223, 225
view states 223

<flow:flow-executor> element 220
<flow:flow-location-pattern> element 221
<flow:flow-registry> element 221
<flow> element

start-state attribute 231
flowExecutionKey class 235
flowExecutionUrl variable 232
FlowHandlerAdapter class 222
FlowHandlerMapping class 222
flow-registry attribute 221
flows 219, 242–243

collecting information 232, 238
declaring variables 227
defining a base flow 229–232
flow data 227–229
flow executors 220
flow registries 221
flow requests 222
scoping data 228
securing 242
states 223–226
transitions 226–227

form binding sf prefix 170
form prefix. See sf prefix
form processing

multipart form data 200–208
MultipartFile interface 206
receiving uploaded file as part 207–208

<form> element 205
See also sf prefix

FormHttpMessageConverter class 427
formLogin() method

methods 267
forms

binding to models 169–172
displaying 154
displaying errors 172–176
form binding with Thymeleaf 190–193
form processing

multipart form data 200–208

POST requests 157
processing 154–162
sf prefix 170
validation 159–162

forward
prefix 158

FreeMarkerViewResolver class 166
front controller 133
full-duplex communication 486
fullyAuthenticated() method 262
functional interfaces 302
@Future annotation 160

G

GenericToStringSerializer class 359
getActiveProfiles() method 87
getAttribute() method 535
getDatabaseName() method 331
getDefaultProfiles() method 87
getFirst() method 443
getForEntity() method 440–441, 443
getForObject() method 440–442
getHeaders() method 443
getLastModified() method 443
getObject() method 468
getProperty() method 86

and @Bean 86
getPropertyAsClass() method 87
getRequiredProperty() method 87
getServletFilters() method 197
getStatusCode() method 443
getSubmittedFileName() method 208
global transitions 227
GlobalMethodSecurityConfiguration class 380
<global-transition> element 227
@Grab annotation 562, 565
Gradle

and Spring Boot 547
and Spring Boot starter dependencies 542
building projects 558
dependencies 555

Actuator 565
views 552

graph databases. See Neo4j
GraphDatabaseFactory class 343
GraphDatabaseService interface 342
@GraphId annotation 345, 351
@GraphProperty annotation 345
GraphRepository interface

methods 350
@GraphTraversal annotation 345
Groovy

and Spring Boot 560–565
controllers 560–562

583INDEX
Groovy (continued)
Groovy Environment Manager 564
imports 561
repositories 563
running at command line 564
syntax 560

groupAuthoritiesByUsername() method 254
groupSearchBase() method 255
groupSearchFilter() method 255

H

handleBinaryMessage() method 487
handlePongMessage() method 487
handleTextMessage() method 487
hasAnyAuthority() method 262
hasAnyRole() method 262–263
hasAuthority() method 262
HashOperations interface 357
hasIpAddress() method 262–263
hasPermission() method 389
hasRole() method 262–263
<header-exchange> element 478
headForHeaders() method 440
/health endpoint 565
Hessian 24, 395

accessing services 405–406
compared to Burlap 402
configuring controllers 403–404
exporting services 402–403
exposing bean functionality 402, 405

HessianProxyFactoryBean 405
HessianServiceExporter class 402–403
Hibernate 23

cascading 306
declaring a session factory 307, 309
eager fetching 306
eliminating template classes 309–310
@Entity annotation 308
exception hierarchy 284
HibernateTemplate 287
integrating with Spring 307, 310
JPA vendor adapter 314
lazy loading 306
wiring directly to repository classes 309–310

HibernateJpaVendorAdapter 314
hibernateProperties property 308
HibernateTemplate class 287
Homebrew 564
host property 512
HTTP Basic authentication 269
HTTP invoker 395

accessing services via HTTP 408–410
exporting beans as HTTP services 407–408

HTTP methods
GET 441, 550

Actuator endpoints 565
mapped to CRUD verbs 418
POST 446, 550
Spring support for 418
See also delete() method
See also put() method

HTTP status codes 209–210
httpBasic() method 269
HttpEntity interface 450
HttpHeaders interface 443
HttpInvoker. See HTTP invoker
HttpInvokerProxyFactoryBean 408–410
HttpInvokerServiceExporter 407–408
HttpMediaTypeNotAcceptableException 209
HttpMediaTypeNotSupportedException 209
HttpMessageNotReadableException 209
HttpMessageNotWritableException 209
HttpMethodConverter class 419
HttpRequestMethodNotSupportedException

209
HttpSecurity class 261, 269–270
Hypertext Transfer Protocol

message converters 426–432

I

iBATIS SQL Maps 23
@Id annotation 333
<if> element 225
IgnoreCase 322
IGNORE_EXISTING 532
IgnoringCase 322
IllegalArgumentException 104
IllegalStateException 87, 462
images

and Spring Boot 554–555
 element 516
Impl postfix 325
@Import annotation 60
<import> element 61
@ImportResource annotation 61
@Indexed annotation 345
/info endpoint 565
@InitBinder annotation 212
InitializingBean interface 21
initialSize property 290
init-method 21
@Inject annotation 41, 300, 309
inMemoryAuthentication() method 251
input 148–153

path parameters 151–153
query parameters 149–151

<input> element 225, 231, 239–240

584 INDEX
insertFilters() 247
insertFilters() method 247
installing Spring Web Flow 222
InstanceAlreadyExistsException 532
InterfaceBasedMBeanInfoAssembler class

529–530
interfaces

ApplicationContext 18
ApplicationContextAware 21
BeanDefinitionRegistry 74
BeanFactory 18
BeanFactoryAware 21
BeanNameAware 21
BeanPostProcessor 21
BoundHashOperations 357
BoundListOperations 357, 359
BoundSetOperations 357
BoundValueOperations 357
BoundZSetOperations 357
CacheManager 366
Channel 478
ClassLoader 74
ConfigurableBeanFactory 81
ConfigurableListableBeanFactory 74
@DataSource 556
DataSource 65–66, 68
defining MBean operations and attributes

with 529–530
DisposableBean 21
EntityManagerFactory 311, 315
Environment 73, 85
Errors 162
FactoryBean 307
functional 302
GraphDatabaseService 342
HashOperations 357
hiding persistence layer 283
HttpEntity 450
HttpHeaders 443
InitializingBean 21
java.util.Map 147, 303
javax.sql.DataSource 299
JmsOperations 465–466
ListOperations 357
MailSender 512, 514
MailSession 513
MBeanServerConnection 534
Message 482
MessageConverter 466
MessageCreator 465
MessageListener 470–471
MessageSource 178
MongoOperations 335, 341
MongoRepository 337
MultipartFile 206

and Amazon S3 206–207
transferTo() 206

MultiValueMap 450
NamedParameterJdbcOperations 303
NotificationListener 538
NotificationPublisherAware 537
org.hibernate.Session 307–309
Part 207–208

getSubmittedFileName() method 208
write() method 208

PasswordEncoder 254
PermissionEvaluator 389
PersistenceProvider 311
Principal 505
RedirectAttributes 216

addFlashAttribute() method 216
RedisConnection 355
RedisConnectionFactory 354–355
Remote 397
Repository 320, 337, 342
ResourceLoader 74
RowMapper 301–302
Serializable 396
ServletContainerInitializer 135
SessionFactory 307, 309
SetOperations 357
SimpMessageSendingOperations 503
ValueOperations 357
View 137, 165
ViewResolver 165, 167–169

and Apache Tiles 182–187
and Thymeleaf 187–189
MultipartResolver class 201–204
view resolver types 166

WebApplicationContext 82
AnnotationConfigWebApplicationContext

class 199
WebApplicationInitializer 135, 196, 404
WebSecurityConfigurer 248
WebSocketConfigurer 488
WebSocketHandler 486
WebSocketHandlerRegistry 489
ZSetOperations 357

InternalResourceViewResolver class 138, 166
and JSP 167
and JstlView 169
configuring 167–169
forward: prefix 158
redirect: prefix 158
viewClass property 169

internationalization 177–179
introductions 101

annotating 115
InvalidClientIDException 463
InvalidDestinationException 463

585INDEX
InvalidSelectorException 463
invoke() method 535
IOException 439
isAnonymous() method 263
isAuthenticated() method 263
isFullyAuthenticated() method 263
isRememberMe() method 264

J

Jackson2JsonRedisSerializer class 359
JacksonJsonRedisSerializer class 359
Jakarta Commons Database Connection

Pooling 289–290
JAR files 22
JasperReportsViewResolver class 166
Java

advice 102
configuration class 43
declaring beans 44
POJOs 5
referencing from XML 61–63
referencing XML configuration from 59–61
simplifying development 4–18
wiring beans with 43–46

Java APIs, boilerplate code 16
Java Data Objects 23, 311–318
Java Database Connectivity 295–304

and Spring Security 252–255
boilerplate code 297
JDBC exception hierarchy versus Spring excep-

tion hierarchy 284–285
JdbcTemplate 287
querying rows from databases 297
runaway code 296, 298–299
SQLException 283
templates 299–304
updating rows in databases 296

Java Management Extensions 524–533, 539
and remoting 533, 536–537
JMX Messaging Protocol 533
JSR-160 533
notifications 537, 539

Java Message Service 23
and remote procedure calls 472–474
exporting services 472–474
JMS invoker 474
JmsTemplate 460, 462–464, 469
message-driven POJOs 469, 471–472
runaway code 461–462
sending messages 458–474

Java Naming and Directory Interface
and EntityManagerFactory 315
data sources 288–289

<jee:jndi-lookup> element 288
mail sessions 513

Java Persistence API 23, 311, 318
and Spring Data 318–326
application-managed entity managers 312–313
automatic repositories 318–326
comparison operators 322
container-managed entity managers 313–315
custom queries 323–324
custom repositories 324
Hibernate JPA vendor adapter 314
JPA-based data access objects 316–318
query methods 320–323

Java Validation API 160
java.lang.System class 90
java.util.Map interface 147, 303
JavaBeans

aspects 11–16
containers 18–21
dependency injection 5–11
entity beans 311–318
lifecycle 20
POJOs 5
See also beans

JavaConfig class
and dependency injection 45–46
@EnableAspectJAutoProxy annotation 109
referencing from XML 61–63
referencing XML configuration from 59–61

JavaMailSenderImpl class 512–513
javas.validation.constraints package 160
JavaScript and STOMP 501
JavaScript Object Notation reflection 429
JavaServer Pages 133

and form-binding tag libraries 170
and InternalResourceViewResolver 167
and ViewResolver 167–169
creating URLs 179–181
escaping content 181
general tag library 176–177

s prefix 176
internationalization 177–179
JSP libraries in Spring MVC 169–181
Spring Security JSP tag library 272–275
views 167–181

JavaServer Pages Standard Tag Library 148
and InternalResourceViewResolver 167
and views 168–169

javax.sql.DataSource. See DataSource interface
Jaxb2RootElementHttpMessageConverter

class 427
JAX-RPC 395
JAX-WS 24, 395

autowiring endpoints 411–412
endpoints 410, 413

586 INDEX
JAX-WS (continued)
exporting standalone endpoints 412–413
proxying services on client side 413, 415

JaxWsPortProxyFactoryBean class 413
JBoss 288–289
JConsole, and JMX 525
JDBC

boilerplate code 16
driver-based data sources 291–292, 295

jdbc namespace 292
<jdbc:embedded-database> element 292
<jdbc:script> element 292
JDBC. See Java Database Connectivity
jdbcAuthentication() method 252
JdbcTemplate class 17, 287, 299–301, 555

and lambdas 302
and Spring Boot starter dependencies 542

JdkSerializationRedisSerializer class 359
JDO. See Java Data Objects
JdoTemplate class 287
JedisConnectionFactory class 354
jee namespace 288, 315
<jee:jndi-lookup> element 288, 293, 315, 513
JMS invoker 474
jms namespace 471–472
<jms:listener> element 471
<jms:listener-container> element 471, 473
JMS. See Java Message Service
JMSException 462
JmsException 462
JmsInvokerProxyBean 474
JmsInvokerProxyFactoryBean 474
JmsInvokerServiceExporter class 472–474
JmsOperations interface 465–466
JmsSecurityException 463
JmsTemplate class 458, 460, 462–464, 469

consuming messages 467, 469
convertAndSend() method 466–467
receive() method 467
send() method 465–466
sending messages 464–465
setting a default destination 465–466
wiring 463

JmsUtils class convertJmsAccessException()
method 468

JMX Messaging Protocol 533
JMX. See Java Management Extensions
JMXConnectorServer 533
JMXMP. See JMX Messaging Protocol
JNDI. See Java Naming and Directory Interface
<jndi-lookup> element

jndi-name attribute 288
resource-ref attribute 288

jndi-name attribute 288
JndiObjectFactoryBean 513

JndiObjectFactoryBean class 289
join points 100, 103–106

in Spring 103
<jpa:repositories> element 320
jpaVendorAdapter property 314
JredisConnectionFactory class 354
JSF 24
JSP. See JavaServer Pages
JSR-160 533
JSR-250 @RolesAllowed annotation 382
jsr250Enabled attribute 382
JSTL. See JavaServer Pages Standard Tag Library
JstlView class and InternalViewResolver 169

K

key attribute 373, 377, 525
key-value stores. See Redis
keywords, new 20

L

@Labels annotation 345
lambdas 302
lazy loading 306
LDAP module 246
LDAP. See Lightweight Directory Access Protocol
ldapAuthentication() method 255
ldif() method 257
leftPop() method 358
leftPush() method 358
LettuceConnectionFactory class 354
Lightweight Directory Access Protocol

and Spring Security 255–258
data stores referring to remote servers 257
embedded servers 257–258
password comparison 255
referring to remote servers 256

<list> element 53
ListenerExecutionFailedException 463
listeners, for notifications 538–539
ListOperations interface 357
literals

and constructor injection 51–52
and property injection 56–59

loadUserByUsername() method 259
LocalContainerEntityManagerFactoryBean

312–313
LocalEntityManagerFactoryBean 312–313
LocalSessionFactoryBean 307
<location> element 203
logical operators 92
logout() method 271
LogoutFilter class 271

587INDEX
logoutSuccessUrl() method 271
Long data type

converting to String 151
long() method 338
loose coupling 5–11

M

mail senders 514
mail sessions 513
MailSender interface 512, 514
MailSession interface 513
MalformedURLException 397
managed attributes 524
managed beans. See MBeans
@ManagedAttribute annotation 530
@ManagedOperation annotation 530
@ManagedResource annotation 530
@MappedSuperclass annotation 308
MappingJackson2HttpMessageConverter

class 427
MappingJackson2MessageConverter class 467,

499
MappingJacksonHttpMessageConverter class 427
MappingJacksonMessageConverter class 467
mappingResources property 308
Marco Polo example 486
MarshallingHttpMessageConverter class 427
MarshallingMessageConverter class 467
matches operator 93
Maven

and Spring Boot 548
building projects 558
dependencies 555

Actuator 565
views 552

@Max annotation 160
maxActive property 290
maxIdle property 290
maxOpenPreparedStatements property 290
maxWait property 290
MBean agents

MBean servers 524
MBean info assemblers 527, 529

InterfaceBasedMBeanInfoAssembler 529–530
MetadataMBeanInfoAssembler 530–532
MethodExclusionMBeanInfoAssembler 529
MethodNameBasedMBeanInfoAssembler

527–529
MBeanExporter class 525, 528, 530, 539

registrationBehaviorName property 532
MBeanProxyFactoryBean class 536–537
MBeans

accessing remote MBeans 534–535
annotation-driven 530–532

configuring an MBean server 527
defining operations and attributes with

interfaces 529–530
Dynamic MBeans 524
exporting Spring beans as 524–533
exposing methods by name 527, 529
exposing remote MBeans 533–534
handling collisions 532–533
MBean servers 524
MBeanExporter 525
Model MBeans 524
notifications 537, 539
Open MBeans 524
proxying 536–537
remoting 533, 536–537
Standard MBeans 524

MBeans servers 524
MBeanServerConnection interface 534
MBeanServerConnectionFactoryBean class

534–535
MDPs. See message-driven POJOs
mergeTemplateIntoString() method 518
message brokers 454

ActiveMQ 458, 460
setting up 458, 460

message converters 426–432, 466–467
@RequestBody annotation 430–431
@ResponseBody annotation 428–430
@RestController annotation 431–432
STOMP 499

Message interface 482
message listeners

configuring 471–472
creating 470–471

message-based POJOs
and remote procedure calls 472–474
JmsInvokerProxyBean 474
JmsInvokerProxyFactoryBean 474
JmsInvokerServiceExporter 473–474

MessageConversionException 463
MessageConverter interface 466
MessageCreator interface 465
@MessageDriven annotation 470–471
message-driven beans 469
message-driven POJOs

message listeners 470–471
MessageEOFException 463
@MessageExceptionHandler annotation 509
MessageFormatException 463
MessageListener interface 470–471
@MessageMapping annotation 495, 498, 505
MessageNotReadableException 463
MessageNotWriteableException 463
messages

Advanced Message Queuing Protocol 474–484

588 INDEX
messages (continued)
consuming with JmsTemplate 467, 469

receiving messages 482–484
destinations 460
message converters 466–467
receiving messages 482–484
receiving with AQMP 482–484
sending 454–474
sending with JmsTemplate 464–465
STOMP 493–508

message converters 499
receiving messages 498–501
sending messages 501–505

MessageSource interface 178
messaging

ActiveMQ 458, 460
Advanced Message Queuing Protocol 474–484
asynchronous 454
destinations 454
message brokers 454
message listeners 470–471
message-driven POJOs 469, 471–472
point-to-point 455
publish/subscribe 456
STOMP 493, 495–505
synchronous 453

MetadataMBeanInfoAssembler class 530–532
method attribute 377
MethodArgumentNotValidException 209
MethodExclusionMBeanInfoAssembler class 529
MethodNameBasedMBeanInfoAssembler

class 527–529
methods

acceptsProfiles() 87
access rules 383–385
access() 262, 264
accountExpired() 252
accountLocked() 252
addAttachment() 515
addFlashAttribute() 216
addHandler() 489
addInline() 516
afterConnectionClosed() 488
afterConnectionEstablished() 488
afterPropertiesSet() 21
and() 252, 267, 271
anonymous() 262
antMatchers() 261, 274
anyRequests() 261
appendFilters() 247
authenticated() 261–262
authorities() 252
authorizeRequests() 261
boundHashOps() 357
boundListOps() 357, 359

boundSetOps() 357
boundValueOps() 357
boundZSet() 357
configure() 249, 251, 255, 261, 267, 270–271,

381
configureContentNegotiation() 423–424
configureMessageBroker() 495–496
containsProperty() 87
contextSource() 257
convertAndSend() 466–467, 480, 504
convertAndSendToUser() 507
convertJmsAccessException() 468
count() 336, 349–350
createContainerEntityManagerFactory() 311
createEntityManagerFactory() 311
createMessage() 465
createMimeMessage() 515
createRelationshipBetween() 349
credentialsExpired() 252
customizeRegistration() 195, 202
defaultContentType() 424
delete() 338, 349–351, 440, 445
deleteAll() 338, 350
denyAll() 262
destroy() 21
disabled() 252
exchange() 440, 448
execute() 440
exists() 338, 350
exposing by name 527, 529
filtering inputs and outputs 385–390
findAll() 338, 350
findAllBySchemaPropertyValue() 350
findAllByTraversal() 350
findByAll() 348
findById() 336
findBySchemaPropertyValue() 350
findOne() 338, 348, 350
for handling exceptions 211–212
fullyAuthenticated() 262
getActiveProfiles() 87
getAttribute() 535
getDatabaseName() 331
getDefaultProfiles() 87
getFirst() 443
getForEntity() 440–441, 443
getForObject() 440–442
getHeaders() 443
getLastModified() 443
getObject() 468
getProperty() 86
getPropertyAsClass() 87
getRequiredProperty() 87
getServletFilters() 197
getStatusCode() 443

589INDEX
methods (continued)
getSubmittedFileName() 208
groupAuthoritiesByUsername() 254
groupSearchBase() 255
groupSearchFilter() 255
handleBinaryMessage() 487
handlePongMessage() 487
handleTextMessage() 487
hasAnyAuthority() 262
hasAnyRole() 262–263
hasAuthority() 262
hasIpAddress() 262–263
hasPermission() 389
hasRole() 262–263
headForHeaders() 440
httpBasic() 269
invoke() 535
isAnonymous() 263
isAuthenticated() 263
isFullyAuthenticated() 263
isRememberMe() 264
jdbcAuthentication() 252
JmsOperations 465
ldapAuthentication() 255
ldif() 257
leftPop() and rightPop() 358
leftPush() and rightPush() 358
loadUserByUsername() 259
logout() 271
logoutSuccessUrl() 271
long() 338
mergeTemplateIntoString() 518
mongo() 331
MongoDB custom query methods 338
Neo4j query methods 351
not() 262
opsForHash() 357
opsForList() 357–358
opsForSet() 357–358
opsForValue() 357–358
opsForZSet() 357
optionsForAllow() 440
password() 252
passwordAttribute() 256
passwordCompare() 256
passwordEncoder() 254, 256
permission evaluators 388–390
permitAll() 261–262
postauthorizing 385
postfiltering 386, 390
postForEntity() 440, 447
postForLocation() 440, 448
postForObject() 440, 446
postProcessAfterInitialization() 21
postProcessBeforeInitialization() 21

preauthorizing 384
prefiltering 387–388
process() 520
put() 440, 444
query methods 320–323
query() 350–351
queryNames() 535
realmName() 269
receive() 467, 469, 482
receiveAndConvert() 468, 482
registerStompEndpoints() 495
registerWebSocketHandlers() 489
rememberMe() 262
remove() 336
requireChannels() 264
requiresInsecure() 265
requiresSecure() 265
resolveViewName() 165
roles() 252
root() 257
save() 336, 338, 348, 351
securing with SpEL 383, 390
security 379–390

annotations 380–382
send() 465–466, 481, 514
sendNotification() 538
setApplicationContext() 21
setApplicationDestinationPrefixes() 497
setAttribute() 535
setBeanFactory() 21
setBeanName() 21
setConfigLocation() 366
setFrom() 514
setHostName() 355
setKeySerializer() and setValueSerializer() 360
setNotificationPublisher() 538
setPassword() 355
setPort() 355
setRelayHost() 498
setText() 514, 516–517
setTo() 514
setType() 293
to() 353
transferTo() 206
userSearchBase() 255
userSearchFilter() 255
withSockJS() 492
withUser() 251
write() 208

methods()
rememberMe() 270

/metrics endpoint 565
/metrics/{name} endpoint 565
MIME. See Multipurpose Internet Mail Extensions
MimeMessage class 515

590 INDEX
MimeMessageHelper class 515
@Min annotation 160
minEvictableIdleTimeMillis property 290
minIdle property 290
MissingServletRequestParameterException 209
MissingServletRequestPartException 209
mock implementations 7, 24
Mockito 7
MockMvc class 145, 152
model attribute 223
Model MBeans 524
@ModelAttribute annotation 212
models 133

binding forms 169–172
passing data to view 143–148

Model-View-Controller pattern 24
controller 133
controllers 139–148

testing 140–142
models 133
passing model data to view 143–148
views 164–193
See also Spring MVC

modules 22–24, 246
ACL 246
Aspects 246
CAS Client 246
Configuration 246
Core 246
Cryptography 246
LDAP 246
OpenIS 246
Remoting 246
Tag Library 246
Web 246

mongo namespace 332
<mongo:repositories> element 341
mongo() method 331
MongoClient class 329
MongoCredential class 332
MongoDB 328–341

annotating model types 332–335
custom query methods 338
custom repository behavior 340
enabling 329–332
MongoTemplate class 335–336
@Query annotation 339
writing repositories 337–341

MongoFactoryBean class 330
MongoOperations interface 335, 341
MongoRepository interface 337

methods 337
MongoTemplate class 329, 335–336
<multipart-config> element 203
MultipartConfigElement class 195, 202–203

MultipartFile interface 206
and Amazon S3 206–207
transferTo() method 206

MultipartResolver class 201–204
StandardServletMultipartResolver class

202–203
Multipurpose Internet Mail Extensions 515
MultiValueMap interface 450
MVC. See Model-View-Controller pattern

N

@Named annotation 38
named parameters 303–304
NamedParameterJdbcOperations interface 303
NamedParameterJdbcTemplate class 287, 299,

303
namespaces

amq 459
aop 15, 84, 102, 110, 117, 374
beans 477
cache 363, 374
context 36, 88, 530
jdbc 292
jee 288, 315
jms 471–472
mongo 332
rabbit 477
sf. See sf prefix
util 58

available elements 59
websocket 489

namespaceUrl property 415
Naming class 399–401
Neo4j 341–354

annotations 344–348
automatic repositories 349–354
configuring 342–344
custom queries 352
custom repository behavior 352
Neo4jTemplate class 348–349
@Query annotation 352
query methods 351

<neo4j:config> element 343–344
<neo4j:repositories> element 343–344
Neo4jTemplate class 348–349
new keyword 20
@NodeEntity annotation 345
NoOpPasswordEncoder. See PasswordEncoder

interface
NoSQL databases 327–361
NoSuchRequestHandlingMethodException 209
not() method 262
Notification class 506
NotificationListener interface 538

591INDEX
notificationListenerMappings property 539
NotificationPublisherAware interface 537
notifications 537–539
@NotNull annotation 160
NoUniqueBeanDefinitionException 76
@Null annotation 160
<null> element 53

O

Object Request Broker 396–401
objectName attribute 531
objectName property 536
object-relational mapping 23, 306
on attribute 226
<on-entry> element 239
on-exception attribute 227
Open MBeans 524
OpenID module 246
OpenJpaVendorAdapter 314
operators

arithmetic 92
comparison 92
conditional 92
in SpEL 92–93
logical 92
matches 93
regular expressions 92
T() 92
ternary 93

opsForHash() method 357
opsForList() method 357–358
opsForSet() method 357–358
opsForValue() method 357–358
opsForZSet() method 357
optionsForAllow() method 440
ORB. See Object Request Broker
org.hibernate.Session interface 307–309
org.springframework.jdbc.datasource

package 291–292
ORM

object-relational mapping 306
ORM. See object-relational mapping
OxmSerializer class 359

P

packagesToScan property 308, 315
parameters named 303–304
Pareto principle 298
@Part annotation 160
Part interface 207–208

getSubmittedFileName() method 208
write() method 208

password property 289, 512
password() method 252
passwordAttribute() method 256
passwordCompare() method 256
PasswordEncoder interface 254
passwordEncoder() method 254, 256
passwords 254–255

in LDAP 255
path attribute 221
@PathVariable annotation 153, 418
@Pattern annotation 160
permission evaluators 388–390
PermissionEvaluator interface 389
permitAll permission 264
permitAll() method 261–262
persistence layer

hiding behind interfaces 283
persistence.xml file 312–313
PersistenceAnnotationBeanPostProcessor

class 318
@PersistenceContext annotation 317
PersistenceExceptionTranslationPostProcessor

class 310, 318
PersistenceProvider interface 311
@PersistenceUnit annotation 316
persistenceUnitName property 312–313
persisting data 281–304

in Groovy repository 563
JDBC 295–304
JDBC templates 299–304
overview 281–304
templating 286–288
with Hibernate 307, 309
with Java Persistence API 311, 318
with Spring Boot 555–557

physicalName attribute 460
pizza delivery example

asking for phone number 234
building an order 238–240
checking delivery area 236
collecting customer information 232–238
defining base flow 229–232
ending flow 237
looking up customer 235
registering new customers 236
storing customer data 237
taking payment 240–242

pizza ordering example 229–242
plain-old Java objects. See POJOs
platform-agnostic exceptions 284
@Pointcut annotation 108, 113, 120
<pointcut> element 15
pointcuts 15, 100, 103–106

designators 104
@Pointcut annotation 108

592 INDEX
pointcuts (continued)
selecting beans 106
writing 104–105

POJOs 5, 469, 471–472
pooled data sources 289–290
poolPreparedStatements property 290
port property 512
portName property 414
POST requests 157
@PostAuthorize annotation 383, 385
@PostFilter annotation 383, 386, 390
postForEntity() method 440, 447
postForLocation() method 440, 448
postForObject() method 440, 446
postProcessAfterInitialization() method 21
postProcessBeforeInitialization() method 21
Prasanna, Dhanji R. 11
@PreAuthorize annotation 383–384
@PreFilter annotation 383, 387–388
@Primary annotation 76
primary bean 76–77
Principal interface 505
process() method 520
@Profile annotation 66

in Spring 4 74
profile beans 66–70
profiles 64–72

activating 70–72
configuring with XML 68–70
profile beans 66–70
testing with 71–72

properties
annotatedClasses 309
brokerURL 459
connectionFactory 463, 474
contentNegotiationManager 423
database 314
dataSource 308, 313
hibernateProperties 308
host 512
jpaVendorAdapter 314
mappingResources 308
namespaceUrl 415
notificationListenerMappings 539
objectName 536
packagesToScan 308, 315
persistenceUnitName 313
port 512
portName 414
proxyInterface 536
queueName property 474
registrationBehaviorName 532
registrationPolicy 532
registryHost 398
registryPort 398

server 536
serviceInterface 400, 405, 409
serviceName 414
serviceUrl 400, 405, 409, 533
session 513
username 512
velocityProperties 518

property injection 54–59
with literal values 56–59

property placeholders 87
<property> element 55

value attribute 57
PropertyPlaceholderConfigurer class 88
@PropertySource annotation 85
PropertySourcesPlaceholderConfigurer 88
prototype beans 81
proxying, MBeans 536–537
proxyInterface property 536
put() method 440, 444

content type 445
<put-attribute> element 183

Q

@Qualifier annotation 77
custom qualifiers 78

@Query annotation 324, 339, 345, 352
query methods 320–323
query() method 350–351
queryNames() method 535
@QueryResult annotation 345
<queue> element 478
queueName property 474
queues 455, 478

R

rabbit namespace 477
RabbitMQ configuring 479–481
RabbitTemplate class 479–481

receiving messages 482–483
realmName() method 269
receive() method 467, 469, 482
receiveAndConvert() method 468, 482
redirect

prefix 158
and flash attributes 215–217
and sessions 215
preserving data across redirects 213–217
with URL templates 214–215

RedirectAttributes interface 216
addFlashAttribute() method 216

Redis 354–360
binding to keys 359
caching 366–367

593INDEX
Redis (continued)
connecting to 354–355
key and value serializers 359
lists 358
RedisTemplate class 355–359
sets 358
simple values 358

RedisCacheManager class 367
RedisConnection interface 355
RedisConnectionFactory interface 354–355
RedisTemplate class 355–360, 367
reflection used by default in JSON 429
registerStompEndpoints() method 495
registerWebSocketHandlers() method 489
registration attribute 532
registrationBehaviorName property 532
registrationPolicy property 532
registryHost property 398
registryPort property 398
regular expressions

in SpEL 93
SpEL operators 92

@RelatedTo annotation 345
@RelatedToVia annotation 345
@RelationshipEntity annotation 345, 349
@RelationshipType annotation 345
ReloadableResourceBundleMessageSource

class 178
rememberMe() method 262, 270
Remote interface 397
Remote Method Invocation 24, 395–397, 399,

401, 533
remote procedure calls 394, 474

Burlap 395, 402, 406
Hessian 395, 402, 406
HTTP invoker 395, 407, 409–410
JAX-RPC and JAX-WS 395
JMS invoker 474
JmsInvokerProxyBean 474
JmsInvokerProxyFactoryBean 474
JmsInvokerServiceExporter 473–474
message-based 472–474
models 395
Remote Method Invocation 395–396, 401

remote services 393, 415
Hessian and Burlap 402, 406
HTTP invoker 407, 409–410
overview 394–396
Remote Method Invocation 395–396, 401

RemoteAccessException 396
RemoteException 396–397
Remoting module 246
remoting. See remote services
remove() method 336
@Repeatable annotation 79

REPLACING_EXISTING 532
repositories 282

in MongoDB 337–341
Neo4j automatic repositories 349–354

@Repository annotation 300, 310, 318, 556
Repository interface 320, 337, 342
Representational State Transfer 416–451

content negotiation 421–426
creating endpoints 419–432
fundamentals 417–418
handling errors 432–436
HTTP methods 418
message converters 426–432
resources 439–450

DELETE 445
exchanging 448–450
GET 441
POST 446–448
PUT 444–445
retrieving 442

response metadata 443–444
ResponseEntity class 433–434
setting response headers 436–439

request beans 81–82
request scope 228
@RequestBody annotation 419, 430–431
@RequestMapping annotation 139, 142, 152,

155, 428, 430, 562
@RequestParam annotation 151

defaultValue attribute 151
@RequestPart annotation 205–208
requests

and sessions 215
cross-site request forgery 265–267
filtering 246–248
handling at class level 142–143
handling with Spring Boot 550–552
intercepting 260–267

and channel security 264–265
Spring Expression Language 263–264

lifecycle 132–133
multipart requests 205–208

receiving uploaded file as part 207–208
MultipartFile 206
POST 157
preserving data across redirects 213–217

requiresChannel() method 264
requiresInsecure() method 265
requiresSecure() method 265
resolveViewName() method 165
ResourceAllocationException 463
ResourceBundleMessageSource class 178
ResourceBundleViewResolver class 166
ResourceHttpMessageConverter class 427
ResourceLoader interface 74

594 INDEX
resource-ref attribute 288
resources and Spring Boot 554
@ResponseBody annotation 419, 428–430
ResponseEntity class 433–434, 443
@ResponseStatus annotation 209, 436–439
REST. See Representational State Transfer
@RestController annotation 431–432
RestTemplate class 440–442

methods 440
#result 371
@ResultColumn annotation 345
rich text 516–517
rich text email 515, 517
rightPop() method 358
rightPush() method 358
RMI 24, 395
RmiProxyFactoryBean class 400
RmiRegistryFactoryBean class 533
RmiServiceExporter class 398, 533
roles() method 252
@RolesAllowed annotation 382
#root.args 371
#root.caches 371
#root.method 371
#root.methodName 371
#root.target 371
#root.targetClass 371
root() method 257
routing keys 476
RowMapper interface 301–302
RPC. See remote procedure calls
RssChannelHttpMessageConverter class 427
runaway code 296, 298–299, 461–462
runtime 101, 103

S

s prefix 176–177, 180–181
<s:bind> element 177
<s:escapeBody> element 177, 181
<s:eval> element 177
<s:hasBindErrors> element 177
<s:htmlEscape> element 177
<s:message> element 177–178
<s:nestedPath> element 177
<s:param> element 180
<s:theme> element 177
<s:transform> element 177
<s:url> element 177, 179

escaping 180
save() method 336, 338, 348, 351
scope

conversation scope 228
declaring scoped proxies 84

flash scope 228
flow scope 228
in XML 84
prototype beans 81
request beans 81–82
request scope 228
request scope versus session scope 82–83
SCOPE_SESSION constant 82
scoping beans 81–84
session beans 81–82
singletons 81

@Scope annotation 81–82
proxyMode attribute 82

SCOPE_SESSION constant 82
<script> element 492
sec namespace

<authentication> element 275
<authorize> element 275
<authorize-acl> element 275
<authorize-expr> element 275
<authorize-url> element 275

@Secured annotation 380–382
<secured> element 242
secureEnabled attribute 381
security 244–277

and data stores 250–260
methods 379, 385–390

access rules 383–385
annotations 380–382

permission evaluators 388–390
securing flows 242
user authentication 267–271

<security:accesscontrollist> element 272
<security:authentication> element 272
<security:authorize> element 272–273
send() method 465–466, 481, 514
sending email 519
sending messages 454–458

with JMS 458–474
sendNotification() method 538
@SendTo annotation 502
@SendToUser annotation 505
Serializable interface 396
server property 536
servers, MBean servers 524
serviceInterface property 400, 405, 409
serviceName property 414
service-oriented architecture 410, 415
services

accessing Burlap and Hessian services 405–406
accessing via HTTP 408–410
configuring RMI services 397, 399
exporting beans as HTTP services 407–408
exporting Hessian services 402–403
exporting RMI services 397, 399

595INDEX
services (continued)
JAX-WS on client side 413, 415
publishing and consuming web services 410,

415
remote 415
wiring RMI services 399, 401

serviceUrl property 400, 405, 409, 533
Servlet 3.0 202–203
<servlet> element 203
ServletContainerInitializer interface 135
ServletContextTemplateResolver class 521
<servlet-mapping> element 408
servlets

additional 196–197
Servlet 3.0 202–203

session beans 5, 81–82
session factories 307, 309
session property 513
SessionFactory interface 307, 309
sessions 215

See also flash attributes
<set> element 54, 228
setApplicationContext() method 21
setApplicationDestinationPrefixes() method 497
setAttribute() method 535
setBeanFactory() method 21
setBeanName() method 21
setConfigLocation() method 366
setFrom() method 514
setHostName() method 355
setKeySerializer() method 360
setNotificationPublisher() method 538
SetOperations interface 357
setPassword() method 355
setPort() method 355
setRelayHost() method 498
setText() method 514, 516
setTo() method 514
setType() method 293
setValueSerializer() method 360
sf prefix 170–172, 174, 191
<sf:checkbox> element 170
<sf:checkboxes> element 170
<sf:errors> element 170, 172–176
<sf:form> element 170
<sf:hidden> element 170
<sf:input> element 170–171, 174, 191
<sf:label> element 170, 174, 191
<sf:option> element 170
<sf:options> element 170
<sf:password> element 170–171
<sf:radiobutton> element 170
<sf:radiobuttons> element 170
<sf:select> element 170
<sf:textarea> element 170

/shutdown endpoint 565
Simple Text Oriented Messaging Protocol

493–505
and JavaScript 501
broker relays 496–498
enabling messaging 495–498
exceptions 508–509
message converters 499
message frame structure 494
messages and controllers 505–507
receiving messages 498–501
sending messages 501–505
user-targeted messages 505–508

SimpleDriverDataSource class 291
SimpleJaxWsServiceExporter 412–413
SimpleJaxWsServiceExporter class 410, 412
SimpleJdbcTemplate 17
SimpleJdbcTemplate class 287, 299
SimpleMessageConverter class 467
SimpMessageSendingOperations interface 503
SimpMessagingTemplate class 503
SingleConnectionDataSource class 291
singleton beans 19
singletons 81
@Size annotation 161, 175
SOA. See service-oriented architecture
SockJS 501

and WebJars 492
enabling 492
versus WebSocket 491

SourceHttpMessageConverter class 427
SpEL. See Spring Expression Language
Spitter example 299, 318

and JmsInvokerServiceExporter 472
messaging with JMS 464
remote services 394, 397, 415
with message-driven POJO 470

Spittr example
and email 514
and MBeans 524–533, 539
and STOMP messaging 503
caching 369–378

Spring
activating profiles 70–72
advice 102
and POJOs 5
aop namespace 84
application context 10, 19–20
aspect-oriented programming 11–16, 97–128

advice 99
building web applications 131–163
configuring 33
containers 18–21
core container 23
data access exception hierarchy 283, 285–286

596 INDEX
Spring (continued)
data access tiers 282
data-access objects module 23
dependency injection 5–11
eliminating boilerplate code 16–18
exception hierarchy versus JDBC exception

hierarchy 284–285
flexibility 5
integrating with Hibernate 307, 310
integration with Java Persistence API 311, 318
JmsTemplate 460, 469
modules 22–24
MVC framework 24
ORM module 23
pointcut designators 104
portfolio 24
profiles 64–72
property placeholders 87
runtime advice 103
simplifying Java development 4–18
Spring Batch 25
Spring Expression Language 89–95
Spring Framework 21–24
Spring Integration 25
Spring MVC 131–163

enabling 136–138
setting up 134–138

Spring Security 25
Spring Social 26
Spring Web Flow 25, 219, 242–243
Spring Web Services 25
support for aspect-oriented programming

101–103
support for join points 103
testing module 24
what's new in Spring 4.0 29
what’s new in Spring 3.1 27
what’s new in Spring 3.2 28
wiring beans 32–63
working with databases 281–304

Spring Batch 25
Spring Boot 540–569

Actuator 547, 565–568
and Gradle 547
and Groovy 560–565
and Homebrew 564
and Maven 548
and Spring MVC 550
autoconfiguration 546, 562
building applications with 547–560
command-line interface 546

installing 564
dependencies 541–546
endpoints 565
Groovy 564

repositories 563
Groovy controllers 560–562
persisting data 555–557

in Groovy repository 563
requests 550–552
resources 554
static content 554–555
Thymeleaf 552
views 552–553
WAR files versus JAR files 558

Spring Boot CLI. See Spring Boot
Spring Data 318–326

comparison operators 322
custom queries 323–324
custom repositories 324
MongoDB 328–341

enabling 329–332
MongoTemplate 335–336
repositories 337–341

Neo4j 341–354
annotations 344–348
automatic repositories 349–354
configuring 342–344

query methods 320–323
Redis 354–360

connecting to 354–355
Spring Expression Language 224

and Spring Security 263–264
Boolean values 91
caching expressions 371
collections 94–95
floating-point values 90
literal values 90
operators 92–93
referencing beans 91
regular expressions 93
returnObject variable 385
scientific notation 90
securing methods 383, 390
String values 91
syntax 89
T() operator 92
types 92
wiring 89–95

Spring Framework 21, 23–24
Spring Integration 25
Spring MVC 131–163

accepting input 148–153
path parameters 151–153
query parameters 149–151

adding servlets 196–197
alternate configuration 195–200
and Amazon S3 206–207
and Apache Tiles 182–187
and REST APIs 416–451

597INDEX
Spring MVC (continued)
and Spring Boot 550
binding forms to models 169–172
content negotiation 421–426
controllers 139–148

testing 140–142
creating URLs 179–181
displaying errors 172–176
enabling 136–138
endpoints 419–432
escaping content 181
form binding

with Thymeleaf 190–193
form processing

multipart form data 200–208
form validation 159–162
general tag library 176–177

s prefix 176
handling errors 432–436
handling exceptions 208–212
internationalization 177–179
JSP libraries 169–181
message converters 426–432
preserving data across redirects 213–217
processing forms 154–162
ReponseEntity class 433–434
request lifecycle 132–133
setting up 134
Spring Web Flow 222
support for Java Validation API 160
views 164, 167–193

and JavaServer Pages Standard Tag
Library 168–169

what's new in Spring 3.1 28
what's new in Spring 3.2 29
with Thymeleaf 187–193

Spring portfolio 24
spring prefix. See s prefix
Spring Security 25, 244–277

and data stores 250–260
custom 259–260
database tables 252–255
in-memory user stores 251–252
LDAP 255–258

and dependency injection 245
and Java Database Connectivity 252–255

encoded passwords 254–255
and Spring Expression Language 263–264
and Thymeleaf 276
channel security 264–265
configuring 250
cross-site request forgery 265–267
custom login page 268–269
filtering requests 246–248
history 245

HTTP Basic authentication 269
JSP tag library 272–275
modules 246
requests 260–267

Spring Expression Language 263–264
user authentication 267–271

logging out 270
remember-me feature 270

views 271–276
conditional rendering 273–275

Spring Social 26
Spring Web Flow 25, 219, 222, 242–243

See also flows
Spring Web Services 25
spring.profiles.active property 70
spring.profiles.default property 70
SpringBeanAutowiringSupport 411
spring-beans schema 47
spring-boot-starter 545
spring-boot-starter-actuator 543
spring-boot-starter-amqp 543
spring-boot-starter-aop 543
spring-boot-starter-batch 543
spring-boot-starter-data-jpa 543
spring-boot-starter-data-mongodb 543
spring-boot-starter-data-rest 543
spring-boot-starter-data-solr 543
spring-boot-starter-elasticsearch 543
spring-boot-starter-freemarker 543
spring-boot-starter-gemfire 543
spring-boot-starter-groovy-templates 543
spring-boot-starter-hornetq 543
spring-boot-starter-integration 544
spring-boot-starter-jdbc 544
spring-boot-starter-jetty 544
spring-boot-starter-log4j 544
spring-boot-starter-logging 544
spring-boot-starter-mobile 544
spring-boot-starter-redis 544
spring-boot-starter-remote-shell 544
spring-boot-starter-security 544
spring-boot-starter-social-facebook 544
spring-boot-starter-social-linkedin 545
spring-boot-starter-social-twitter 544
spring-boot-starter-test 545
spring-boot-starter-thymeleaf 545
spring-boot-starter-tomcat 545
spring-boot-starter-web 545
spring-boot-starter-websocket 545
spring-boot-starter-ws 545
SpringJUnit4ClassRunner class 37
SpringRestGraphDatabase class 343
SpringServletContainerInitializer class 135
SpringTemplateEngine class 187, 275, 546
SQLException 16, 283, 296

598 INDEX
SqlMapClientTemplate class 287
SrpConnectionFactory class 354
Standard MBeans 524
StandardOutputStreamLog 42
StandardPasswordEncoder. See PasswordEncoder

interface
StandardServletMultipartResolver class 202–203
starter dependencies 541–546

full list 543
@StartNode annotation 345
start-state attribute 231
state, flow states 223
status codes 209–210
String data type, converting Long to 151
StringHttpMessageConverter class 428
StringMessageConverter class 499
StringRedisSerializer class 360
StringRedisTemplate class 356, 360
subflow states 223, 225
<subflow-state> element 225, 231
@SubscribeMapping annotation 500, 502, 505
SynchedLocalTransactionFailedException 463
synchronous communication 453, 456–458

coupling 457

T

<t:insertAttribute> element 185
T() operator 92
tag libraries, Spring Security JSP tag library

272–275
Tag Library module 246
Tapestry 24
@target() designator 104
target() designator 104
targetNamespace attribute 415
template method pattern 286
<template> element 480
TemplateResolver class 187, 546
templates 16–18, 286

CciTemplate 287
eliminating template classes with

Hibernate 309–310
email templates 517, 519–522
HibernateTemplate 287
JDBC 299–304
JdbcTemplate 17, 287, 542, 555
JdoTemplate 287
JmsTemplate 460, 462–469
MongoTemplate 329
NamedParameterJdbcTemplate 287
Neo4jTemplate 348–349
RabbitTemplate 479–483
RedisTemplate 360, 367
RestTemplate 440–442

SimpleJdbcTemplate 17, 287
SimpMessagingTemplate 503
SqlMapClientTemplate 287
StringRedisTemplate 360

templating, data access 286–288
Templier, Thierry 25
ternary operator 93
testing

controllers 140–142
mock implementations 7, 24
testing module 24
unit testing 6
with profiles 71–72

TextWebSocketHandler class 488
th:class attribute 191
th:each attribute 192
th:field attribute 191
th:href attribute 189
th:if attribute 192
th:text attribute 192
then attribute 225
this() designator 104
Thymeleaf 187–193

and email 520–522
and Spring Boot

views 552
and Spring Boot starter dependencies 542
and Spring Security 276
and view resolvers 187–189
@Bean annotation 188
<bean> element 188
Context class 520
form binding 190–193
templates 189
th:class attribute 191
th:each attribute 192
th:field attribute 191
th:href attribute 189
th:if attribute 192
th:text attribute 192
ThymeleafViewResolver 187

ThymeleafViewResolver class 546
tight coupling 5
TilesConfigurer class 182
TilesViewResolver class 166, 182
to attribute 226
to() method 353
Tomcat 288–289
<topic-exchange> element 478
topics 456
TopLinkJpaVendorAdapter 314
/trace endpoint 565
@Transactional annotation 318
TransactionInProgressException 463
TransactionRolledBackException 463

599INDEX
transferTo() method 206
<transition> element 226
transitions 226–227
TypeMismatchException 209
types, in SpEL 92

U

UncategorizedJmsException 463
uniform resource locators

creating with JavaServer Pages 179–181
escaping 180
redirecting 214–215
URL templates 214–215

unit testing 6
UnknownHostException 330
unless attribute 372
UnsupportedOperationException 389
UriComponentsBuilder class 438
url property 289
UrlBasedViewResolver class 166
user authentication 267–271

and Spring Security JSP tag library 272–273
custom login page 268–269
HTTP Basic authentication 269
logging out 270
remember-me feature 270

UserDestinationMessageHandler class 506
UserDetailsManagerConfigurer.UserDetails-

Builder class 251
UserDetailsService interface 259
username property 289, 512
userSearchBase() method 255
userSearchFilter() method 255
util namespace 58

available elements 59
<util:constant> element 59
<util:list> element 58
<util:map> element 59
<util:properties> element 59
<util:property-path> element 59
<util:set> element 59

V

@Valid annotation 162
@Value annotation 88
value attribute 373
<value> element 53
ValueOperations interface 357
<var> element 227
variables

declaring in flows 227
VelocityEngine class 518–520
VelocityEngineFactoryBean 518–520

VelocityEngineUtils class 518
VelocityLayoutViewResolver class 166
velocityProperties property 518
VelocityViewResolver class 166
@Version annotation 333
view attribute 223, 225
View interface 137, 165
view scope 228
view states 223
ViewResolver interface 165

and Apache Tiles 182–187
and JavaServer Pages 167–169
and Thymeleaf 187–189
CommonsMultipartResolver class 204
MultipartResolver class 201–204
StandardServletMultipartResolver 202–203
view resolver types 166

views 164–193
and JavaServer Pages Standard Tag

Library 168–169
and Thymeleaf 552
Apache Tiles 182–187

view resolvers 182
conditional rendering 273–275
JavaServer Pages 167–181
passing model data to 143–148
securing 271–276
Thymeleaf 187–193

view resolvers 187–189
with Spring Boot 552–553

<view-state> element 223
VisualVM, and JMX 525

W

WAR files 558
weaving 101

class load time 101
compile time 101
runtime 101

web applications
accepting input 148–153

path parameters 151–153
query parameters 149–151

building 131–163
controllers 139–148
displaying forms 154
form processing

multipart form data 200–208
form validation 159–162
processing forms 154–162
securing 244–277
with Apache Tiles 182–187
with Spring Boot 547–560
with Thymeleaf 187–193

600 INDEX
Web module 246
web services

JAX-WS endpoints 410, 413
JAX-WS on client side 413, 415
publishing and consuming 410, 415

web.xml file, alternatives to 134
WebApplicationContext interface 82

AnnotationConfigWebApplicationContext
class 199

WebApplicationInitializer interface 135, 196, 404
and DelegatingFilterProxy 247

WebJars 492
@WebMethod annotation 411
WebMvcConfigurerAdapter class 138, 423
WebSecurityConfigurer interface 248
WebSecurityConfigurerAdapter class 249
@WebService annotation 411
websocket namespace 489
WebSocket protocol 486–493

API 486–490
full-duplex 486
lack of support for 491–493
versus SockJS 491

<websocket:sockjs> element 492
WebSocketConfigurer interface 488
WebSocketHandler interface 486
WebSocketHandlerRegistry interface 489
WebSphere 288–289
WebWork 24
wiring 8

activating profiles 70–72
and conditional beans 72–75
and constructor injection 49–54
and profiles 64–72
and property injection 54–59
automatically 34–42
autowiring 34

addressing ambiguity 75–81
custom qualifiers 78–81
primary bean 76–77
qualifying autowired beans 77–81
verifying configuration 39–42

beans 32–63
collections 52–54

component scanning 34
configuring 59–63
configuring with Java 43
configuring with XML 47
declaring beans in Java 44
declaring beans with XML 48–49
defined 32
discovering beans 34–37
Hibernate to repository classes 309–310
Java configuration class 43
JmsTemplate 463
mail sender to service bean 514
RMI services 399, 401
runtime value injection 84–95

injecting external values 85–89
Spring Expression Language 89–95
with bean references 49–51
with Java 43–46
with XML 46

@within() designator 104
within() designator 104
withSockJS() method 492
withUser() method 251
write() method 208
writing pointcuts 104–105
<wsdl:definitions> element

targetNamespace attribute 415
<wsdl:port> element 414
<wsdl:service> element 414

X

XML. See Extensible Markup Language
XmlAwareFormHttpMessageConverter class 428
XmlViewResolver class 166
XmlWebApplicationContext 19
<xref> element 53
XsltViewResolver class 166

Z

ZSetOperations interface 357

D esigned in 2003 as a lighter approach to J2EE development,
Spring Framework has since become a standard choice for
building enterprise applications and required knowledge

for Java developers. Spring 4, the latest major version, provides
full Java 8 integration along with key upgrades like new annota-
tions for the IoC container, improvements to Spring Expression
Language, and much-needed support for REST. Whether you’re
just discovering Spring or you want to absorb the new features,
there’s no better way to master Spring than with this book.

Spring in Action, Fourth Edition is a hands-on guide to the Spring
Framework. It covers Spring core, along with the latest updates
to Spring MVC, Security, Web Flow, and more. You’ll move
between short snippets and an ongoing example as you learn to
build simple and effi cient JEE applications. Author Craig Walls
has a special knack for crisp and entertaining examples that
zoom in on the features and techniques you really need.

What’s Inside
Updated for Spring 4
Spring Data for NoSQL
Simplify confi guration with annotations
and defi nition profi les
Working with RESTful resources

Nearly 100,000 developers have used this book to learn Spring!
It requires a working knowledge of Java.

Craig Walls is a soft ware developer at Pivotal. He’s a popular
author and a frequent speaker at user groups and conferences.
Craig lives in Cross Roads, Texas.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/SpringinActionFourthEdition

$49.99 / Can $52.99 [INCLUDING eBOOK]

Spring IN ACTION FOURTH EDITION

JAVA

Craig Walls

“Th e best book for Spring—
updated and revised.”—Gregor Zurowski, Sotheby’s

“Th e classic, remastered and
 full of awesomeness.”

—Mario Arias, Cake Solutions Ltd

“Informative, accurate
 and insightful!”

—Jeelani Shaik, D3Banking.com

“Aft er ten years, this is
still the clearest and most

comprehensive introduction
to the core concepts of the

 Spring platform.”—James Wright, Sword-Apak

M A N N I N G

SEE INSERT

	Spring in Action
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Roadmap
	Code conventions and downloads
	Author Online
	About the author
	About the cover illustration

	Part 1 Core Spring
	1 Springing into action
	1.1 Simplifying Java development
	1.1.1 Unleashing the power of POJOs
	1.1.2 Injecting dependencies
	1.1.3 Applying aspects
	1.1.4 Eliminating boilerplate code with templates

	1.2 Containing your beans
	1.2.1 Working with an application context
	1.2.2 A bean’s life

	1.3 Surveying the Spring landscape
	1.3.1 Spring modules
	1.3.2 The Spring portfolio

	1.4 What’s new in Spring
	1.4.1 What was new in Spring 3.1?
	1.4.2 What was new in Spring 3.2?
	1.4.3 What’s new in Spring 4.0?

	1.5 Summary

	2 Wiring beans
	2.1 Exploring Spring’s configuration options
	2.2 Automatically wiring beans
	2.2.1 Creating discoverable beans
	2.2.2 Naming a component-scanned bean
	2.2.3 Setting a base package for component scanning
	2.2.4 Annotating beans to be automatically wired
	2.2.5 Verifying automatic configuration

	2.3 Wiring beans with Java
	2.3.1 Creating a configuration class
	2.3.2 Declaring a simple bean
	2.3.3 Injecting with JavaConfig

	2.4 Wiring beans with XML
	2.4.1 Creating an XML configuration specification
	2.4.2 Declaring a simple <bean>
	2.4.3 Initializing a bean with constructor injection
	2.4.4 Setting properties

	2.5 Importing and mixing configurations
	2.5.1 Referencing XML configuration in JavaConfig
	2.5.2 Referencing JavaConfig in XML configuration

	2.6 Summary

	3 Advanced wiring
	3.1 Environments and profiles
	3.1.1 Configuring profile beans
	3.1.2 Activating profiles

	3.2 Conditional beans
	3.3 Addressing ambiguity in autowiring
	3.3.1 Designating a primary bean
	3.3.2 Qualifying autowired beans

	3.4 Scoping beans
	3.4.1 Working with request and session scope
	3.4.2 Declaring scoped proxies in XML

	3.5 Runtime value injection
	3.5.1 Injecting external values
	3.5.2 Wiring with the Spring Expression Language

	3.6 Summary

	4 Aspect-oriented Spring
	4.1 What is aspect-oriented programming?
	4.1.1 Defining AOP terminology
	4.1.2 Spring’s AOP support

	4.2 Selecting join points with pointcuts
	4.2.1 Writing pointcuts
	4.2.2 Selecting beans in pointcuts

	4.3 Creating annotated aspects
	4.3.1 Defining an aspect
	4.3.2 Creating around advice
	4.3.3 Handling parameters in advice
	4.3.4 Annotating introductions

	4.4 Declaring aspects in XML
	4.4.1 Declaring before and after advice
	4.4.2 Declaring around advice
	4.4.3 Passing parameters to advice
	4.4.4 Introducing new functionality with aspects

	4.5 Injecting AspectJ aspects
	4.6 Summary

	Part 2 Spring on the web
	5 Building Spring web applications
	5.1 Getting started with Spring MVC
	5.1.1 Following the life of a request
	5.1.2 Setting up Spring MVC
	5.1.3 Introducing the Spittr application

	5.2 Writing a simple controller
	5.2.1 Testing the controller
	5.2.2 Defining class-level request handling
	5.2.3 Passing model data to the view

	5.3 Accepting request input
	5.3.1 Taking query parameters
	5.3.2 Taking input via path parameters

	5.4 Processing forms
	5.4.1 Writing a form-handling controller
	5.4.2 Validating forms

	5.5 Summary

	6 Rendering web views
	6.1 Understanding view resolution
	6.2 Creating JSP views
	6.2.1 Configuring a JSP-ready view resolver
	6.2.2 Using Spring’s JSP libraries

	6.3 Defining a layout with Apache Tiles views
	6.3.1 Configuring a Tiles view resolver

	6.4 Working with Thymeleaf
	6.4.1 Configuring a Thymeleaf view resolver
	6.4.2 Defining Thymeleaf templates

	6.5 Summary

	7 Advanced Spring MVC
	7.1 Alternate Spring MVC configuration
	7.1.1 Customizing DispatcherServlet configuration
	7.1.2 Adding additional servlets and filters
	7.1.3 Declaring DispatcherServlet in web.xml

	7.2 Processing multipart form data
	7.2.1 Configuring a multipart resolver
	7.2.2 Handling multipart requests

	7.3 Handling exceptions
	7.3.1 Mapping exceptions to HTTP status codes
	7.3.2 Writing exception-handling methods

	7.4 Advising controllers
	7.5 Carrying data across redirect requests
	7.5.1 Redirecting with URL templates
	7.5.2 Working with flash attributes

	7.6 Summary

	8 Working with Spring Web Flow
	8.1 Configuring Web Flow in Spring
	8.1.1 Wiring a flow executor
	8.1.2 Configuring a flow registry
	8.1.3 Handling flow requests

	8.2 The components of a flow
	8.2.1 States
	8.2.2 Transitions
	8.2.3 Flow data

	8.3 Putting it all together: the pizza flow
	8.3.1 Defining the base flow
	8.3.2 Collecting customer information
	8.3.3 Building an order
	8.3.4 Taking payment

	8.4 Securing web flows
	8.5 Summary

	9 Securing web applications
	9.1 Getting started with Spring Security
	9.1.1 Understanding Spring Security modules
	9.1.2 Filtering web requests
	9.1.3 Writing a simple security configuration

	9.2 Selecting user details services
	9.2.1 Working with an in-memory user store
	9.2.2 Authenticating against database tables
	9.2.3 Applying LDAP-backed authentication
	9.2.4 Configuring a custom user service

	9.3 Intercepting requests
	9.3.1 Securing with Spring Expressions
	9.3.2 Enforcing channel security
	9.3.3 Preventing cross-site request forgery

	9.4 Authenticating users
	9.4.1 Adding a custom login page
	9.4.2 Enabling HTTP Basic authentication
	9.4.3 Enabling remember-me functionality
	9.4.4 Logging out

	9.5 Securing the view
	9.5.1 Using Spring Security’s JSP tag library
	9.5.2 Working with Thymeleaf’s Spring Security dialect

	9.6 Summary

	Part 3 Spring in the back end
	10 Hitting the database with Spring and JDBC
	10.1 Learning Spring’s data-access philosophy
	10.1.1 Getting to know Spring’s data-access exception hierarchy
	10.1.2 Templating data access

	10.2 Configuring a data source
	10.2.1 Using JNDI data sources
	10.2.2 Using a pooled data source
	10.2.3 Using JDBC driver-based data sources
	10.2.4 Using an embedded data source
	10.2.5 Using profiles to select a data source

	10.3 Using JDBC with Spring
	10.3.1 Tackling runaway JDBC code
	10.3.2 Working with JDBC templates

	10.4 Summary

	11 Persisting data with object-relational mapping
	11.1 Integrating Hibernate with Spring
	11.1.1 Declaring a Hibernate session factory
	11.1.2 Building Spring-free Hibernate

	11.2 Spring and the Java Persistence API
	11.2.1 Configuring an entity manager factory
	11.2.2 Writing a JPA-based repository

	11.3 Automatic JPA repositories with Spring Data
	11.3.1 Defining query methods
	11.3.2 Declaring custom queries
	11.3.3 Mixing in custom functionality

	11.4 Summary

	12 Working with NoSQL databases
	12.1 Persisting documents with MongoDB
	12.1.1 Enabling MongoDB
	12.1.2 Annotating model types for MongoDB persistence
	12.1.3 Accessing MongoDB with MongoTemplate
	12.1.4 Writing a MongoDB repository

	12.2 Working with graph data in Neo4j
	12.2.1 Configuring Spring Data Neo4j
	12.2.2 Annotating graph entities
	12.2.3 Working with Neo4jTemplate
	12.2.4 Creating automatic Neo4j repositories

	12.3 Working with key-value data in Redis
	12.3.1 Connecting to Redis
	12.3.2 Working with RedisTemplate
	12.3.3 Setting key and value serializers

	12.4 Summary

	13 Caching data
	13.1 Enabling cache support
	13.1.1 Configuring a cache manager

	13.2 Annotating methods for caching
	13.2.1 Populating the cache
	13.2.2 Removing cache entries

	13.3 Declaring caching in XML
	13.4 Summary

	14 Securing methods
	14.1 Securing methods with annotations
	14.1.1 Restricting method access with @Secured
	14.1.2 Using JSR-250’s @RolesAllowed with Spring Security

	14.2 Using expressions for method-level security
	14.2.1 Expressing method access rules
	14.2.2 Filtering method inputs and outputs

	14.3 Summary

	Part 4 Integrating Spring
	15 Working with remote services
	15.1 An overview of Spring remoting
	15.2 Working with RMI
	15.2.1 Exporting an RMI service
	15.2.2 Wiring an RMI service

	15.3 Exposing remote services with Hessian and Burlap
	15.3.1 Exposing bean functionality with Hessian/Burlap
	15.3.2 Accessing Hessian/Burlap services

	15.4 Using Spring’s HttpInvoker
	15.4.1 Exposing beans as HTTP services
	15.4.2 Accessing services via HTTP

	15.5 Publishing and consuming web services
	15.5.1 Creating Spring-enabled JAX-WS endpoints
	15.5.2 Proxying JAX-WS services on the client side

	15.6 Summary

	16 Creating REST APIs with Spring MVC
	16.1 Getting REST
	16.1.1 The fundamentals of REST
	16.1.2 How Spring supports REST

	16.2 Creating your first REST endpoint
	16.2.1 Negotiating resource representation
	16.2.2 Working with HTTP message converters

	16.3 Serving more than resources
	16.3.1 Communicating errors to the client
	16.3.2 Setting headers in the response

	16.4 Consuming REST resources
	16.4.1 Exploring RestTemplate’s operations
	16.4.2 GETting resources
	16.4.3 Retrieving resources
	16.4.4 Extracting response metadata
	16.4.5 PUTting resources
	16.4.6 DELETEing resources
	16.4.7 POSTing resource data
	16.4.8 Receiving object responses from POST requests
	16.4.9 Receiving a resource location after a POST request
	16.4.10 Exchanging resources

	16.5 Summary

	17 Messaging in Spring
	17.1 A brief introduction to asynchronous messaging
	17.1.1 Sending messages
	17.1.2 Assessing the benefits of asynchronous messaging

	17.2 Sending messages with JMS
	17.2.1 Setting up a message broker in Spring
	17.2.2 Using Spring’s JMS template
	17.2.3 Creating message-driven POJOs
	17.2.4 Using message-based RPC

	17.3 Messaging with AMQP
	17.3.1 A brief introduction to AMQP
	17.3.2 Configuring Spring for AMQP messaging
	17.3.3 Sending messages with RabbitTemplate
	17.3.4 Receiving AMQP messages

	17.4 Summary

	18 Messaging with WebSocket and STOMP
	18.1 Working with Spring’s low-level WebSocket API
	18.2 Coping with a lack of WebSocket support
	18.3 Working with STOMP messaging
	18.3.1 Enabling STOMP messaging
	18.3.2 Handling STOMP messages from the client
	18.3.3 Sending messages to the client

	18.4 Working with user-targeted messages
	18.4.1 Working with user messages in a controller
	18.4.2 Sending messages to a specific user

	18.5 Handling message exceptions
	18.6 Summary

	19 Sending email with Spring
	19.1 Configuring Spring to send email
	19.1.1 Configuring a mail sender
	19.1.2 Wiring and using the mail sender

	19.2 Constructing rich email messages
	19.2.1 Adding attachments
	19.2.2 Sending email with rich content

	19.3 Generating email with templates
	19.3.1 Constructing email messages with Velocity
	19.3.2 Using Thymeleaf to create email messages

	19.4 Summary

	20 Managing Spring beans with JMX
	20.1 Exporting Spring beans as MBeans
	20.1.1 Exposing methods by name
	20.1.2 Using interfaces to define MBean operations and attributes
	20.1.3 Working with annotation-driven MBeans
	20.1.4 Handling MBean collisions

	20.2 Remoting MBeans
	20.2.1 Exposing remote MBeans
	20.2.2 Accessing remote MBeans
	20.2.3 Proxying MBeans

	20.3 Handling notifications
	20.3.1 Listening for notifications

	20.4 Summary

	21 Simplifying Spring development with Spring Boot
	21.1 Introducing Spring Boot
	21.1.1 Adding starter dependencies
	21.1.2 Autoconfiguration
	21.1.3 The Spring Boot CLI
	21.1.4 The Actuator

	21.2 Building an application with Spring Boot
	21.2.1 Handling requests
	21.2.2 Creating the view
	21.2.3 Adding static artifacts
	21.2.4 Persisting the data
	21.2.5 Try it out

	21.3 Going Groovy with the Spring Boot CLI
	21.3.1 Writing a Groovy controller
	21.3.2 Persisting with a Groovy repository
	21.3.3 Running the Spring Boot CLI

	21.4 Gaining application insight with the Actuator
	21.5 Summary

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Back Cover

