

Core Java, Volume I:
Fundamentals

Twelfth Edition

Cay S. Horstmann

Ещё больше книг по Java в нашем телеграм канале:
 https://t.me/javalib

Contents

Preface

Acknowledgments

Chapter 1: An Introduction to Java

Chapter 2: The Java Programming Environment

Chapter 3: Fundamental Programming Structures in Java

Chapter 4: Objects and Classes

Chapter 5: Inheritance

Chapter 7: Exceptions, Assertions, and Logging

Chapter 8: Generic Programming

Chapter 9: Collections

Chapter 10: Graphical User Interface Programming

Chapter 11: User Interface Components with Swing

Chapter 12: Concurrency

Appendix

Table of Contents

Preface

Acknowledgments

Chapter 1: An Introduction to Java

1.1 Java as a Programming Platform
1.2 The Java “White Paper” Buzzwords

1.2.1 Simple
1.2.2 Object-Oriented
1.2.3 Distributed
1.2.4 Robust
1.2.5 Secure
1.2.6 Architecture-Neutral
1.2.7 Portable
1.2.8 Interpreted
1.2.9 High-Performance
1.2.10 Multithreaded
1.2.11 Dynamic

1.3 Java Applets and the Internet
1.4 A Short History of Java
1.5 Common Misconceptions about Java

Chapter 2: The Java Programming Environment

2.1 Installing the Java Development Kit
2.1.1 Downloading the JDK
2.1.2 Setting up the JDK
2.1.3 Installing Source Files and Documentation

2.2 Using the Command-Line Tools
2.3 Using an Integrated Development Environment
2.4 JShell

Chapter 3: Fundamental Programming Structures in Java

3.1 A Simple Java Program
3.2 Comments
3.3 Data Types

3.3.1 Integer Types
3.3.2 Floating-Point Types
3.3.3 The char Type
3.3.4 Unicode and the char Type
3.3.5 The boolean Type

3.4 Variables and Constants
3.4.1 Declaring Variables
3.4.2 Initializing Variables
3.4.3 Constants
3.4.4 Enumerated Types

3.5 Operators
3.5.1 Arithmetic Operators
3.5.2 Mathematical Functions and Constants
3.5.3 Conversions between Numeric Types
3.5.4 Casts
3.5.5 Assignment
3.5.6 Increment and Decrement Operators
3.5.7 Relational and boolean Operators
3.5.8 The Conditional Operator
3.5.9 Switch Expressions
3.5.10 Bitwise Operators
3.5.11 Parentheses and Operator Hierarchy

3.6 Strings
3.6.1 Substrings
3.6.2 Concatenation
3.6.3 Strings Are Immutable
3.6.4 Testing Strings for Equality

3.6.5 Empty and Null Strings
3.6.6 Code Points and Code Units
3.6.7 The String API
3.6.8 Reading the Online API Documentation
3.6.9 Building Strings
3.6.10 Text Blocks

3.7 Input and Output
3.7.1 Reading Input
3.7.2 Formatting Output
3.7.3 File Input and Output

3.8 Control Flow
3.8.1 Block Scope
3.8.2 Conditional Statements
3.8.3 Loops
3.8.4 Determinate Loops
3.8.5 Multiple Selections with switch
3.8.6 Statements That Break Control Flow

3.9 Big Numbers
3.10 Arrays

3.10.1 Declaring Arrays
3.10.2 Accessing Array Elements
3.10.3 The “for each” Loop
3.10.4 Array Copying
3.10.5 Command-Line Parameters
3.10.6 Array Sorting
3.10.7 Multidimensional Arrays
3.10.8 Ragged Arrays

Chapter 4: Objects and Classes

4.1 Introduction to Object-Oriented Programming
4.1.1 Classes
4.1.2 Objects

4.1.3 Identifying Classes
4.1.4 Relationships between Classes

4.2 Using Predefined Classes
4.2.1 Objects and Object Variables
4.2.2 The LocalDate Class of the Java Library
4.2.3 Mutator and Accessor Methods

4.3 Defining Your Own Classes
4.3.1 An Employee Class
4.3.2 Use of Multiple Source Files
4.3.3 Dissecting the Employee Class
4.3.4 First Steps with Constructors
4.3.5 Declaring Local Variables with var
4.3.6 Working with null References
4.3.7 Implicit and Explicit Parameters
4.3.8 Benefits of Encapsulation
4.3.9 Class-Based Access Privileges
4.3.10 Private Methods
4.3.11 Final Instance Fields

4.4 Static Fields and Methods
4.4.1 Static Fields
4.4.2 Static Constants
4.4.3 Static Methods
4.4.4 Factory Methods
4.4.5 The main Method

4.5 Method Parameters
4.6 Object Construction

4.6.1 Overloading
4.6.2 Default Field Initialization
4.6.3 The Constructor with No Arguments
4.6.4 Explicit Field Initialization
4.6.5 Parameter Names
4.6.6 Calling Another Constructor

4.6.7 Initialization Blocks
4.6.8 Object Destruction and the finalize Method

4.7 Records
4.7.1 The Record Concept
4.7.2 Constructors: Canonical, Custom, and Compact

4.8 Packages
4.8.1 Package Names
4.8.2 Class Importation
4.8.3 Static Imports
4.8.4 Addition of a Class into a Package
4.8.5 Package Access
4.8.6 The Class Path
4.8.7 Setting the Class Path

4.9 JAR Files
4.9.1 Creating JAR files
4.9.2 The Manifest
4.9.3 Executable JAR Files
4.9.4 Multi-Release JAR Files
4.9.5 A Note about Command-Line Options

4.10 Documentation Comments
4.10.1 Comment Insertion
4.10.2 Class Comments
4.10.3 Method Comments
4.10.4 Field Comments
4.10.5 General Comments
4.10.6 Package Comments
4.10.7 Comment Extraction

4.11 Class Design Hints

Chapter 5: Inheritance

5.1 Classes, Superclasses, and Subclasses
5.1.1 Defining Subclasses

5.1.2 Overriding Methods
5.1.3 Subclass Constructors
5.1.4 Inheritance Hierarchies
5.1.5 Polymorphism
5.1.6 Understanding Method Calls
5.1.7 Preventing Inheritance: Final Classes and Methods
5.1.8 Casting
5.1.9 Pattern Matching for instanceof
5.1.10 Protected Access

5.2 Object: The Cosmic Superclass
5.2.1 Variables of Type Object
5.2.2 The equals Method
5.2.3 Equality Testing and Inheritance
5.2.4 The hashCode Method
5.2.5 The toString Method

5.3 Generic Array Lists
5.3.1 Declaring Array Lists
5.3.2 Accessing Array List Elements
5.3.3 Compatibility between Typed and Raw Array Lists

5.4 Object Wrappers and Autoboxing
5.5 Methods with a Variable Number of Parameters
5.6 Abstract Classes
5.7 Enumeration Classes
5.8 Sealed Classes
5.9 Reflection

5.9.1 The Class Class
5.9.2 A Primer on Declaring Exceptions
5.9.3 Resources
5.9.4 Using Reflection to Analyze the Capabilities of Classes
5.9.5 Using Reflection to Analyze Objects at Runtime
5.9.6 Using Reflection to Write Generic Array Code
5.9.7 Invoking Arbitrary Methods and Constructors

5.10 Design Hints for Inheritance

Chapter 6: Interfaces, Lambda Expressions, and Inner Classes

6.1 Interfaces
6.1.1 The Interface Concept
6.1.2 Properties of Interfaces
6.1.3 Interfaces and Abstract Classes
6.1.4 Static and Private Methods
6.1.5 Default Methods
6.1.6 Resolving Default Method Conflicts
6.1.7 Interfaces and Callbacks
6.1.8 The Comparator Interface
6.1.9 Object Cloning

6.2 Lambda Expressions
6.2.1 Why Lambdas?
6.2.2 The Syntax of Lambda Expressions
6.2.3 Functional Interfaces
6.2.4 Method References
6.2.5 Constructor References
6.2.6 Variable Scope
6.2.7 Processing Lambda Expressions
6.2.8 More about Comparators

6.3 Inner Classes
6.3.1 Use of an Inner Class to Access Object State
6.3.2 Special Syntax Rules for Inner Classes
6.3.3 Are Inner Classes Useful? Actually Necessary? Secure?
6.3.4 Local Inner Classes
6.3.5 Accessing Variables from Outer Methods
6.3.6 Anonymous Inner Classes
6.3.7 Static Inner Classes

6.4 Service Loaders
6.5 Proxies

6.5.1 When to Use Proxies
6.5.2 Creating Proxy Objects
6.5.3 Properties of Proxy Classes

Chapter 7: Exceptions, Assertions, and Logging

7.1 Dealing with Errors
7.1.1 The Classification of Exceptions
7.1.2 Declaring Checked Exceptions
7.1.3 How to Throw an Exception
7.1.4 Creating Exception Classes

7.2 Catching Exceptions
7.2.1 Catching an Exception
7.2.2 Catching Multiple Exceptions
7.2.3 Rethrowing and Chaining Exceptions
7.2.4 The finally Clause
7.2.5 The try-with-Resources Statement
7.2.6 Analyzing Stack Trace Elements

7.3 Tips for Using Exceptions
7.4 Using Assertions

7.4.1 The Assertion Concept
7.4.2 Assertion Enabling and Disabling
7.4.3 Using Assertions for Parameter Checking
7.4.4 Using Assertions for Documenting Assumptions

7.5 Logging
7.5.1 Basic Logging
7.5.2 Advanced Logging
7.5.3 Changing the Log Manager Configuration
7.5.4 Localization
7.5.5 Handlers
7.5.6 Filters
7.5.7 Formatters
7.5.8 A Logging Recipe

7.6 Debugging Tips

Chapter 8: Generic Programming

8.1 Why Generic Programming?
8.1.1 The Advantage of Type Parameters
8.1.2 Who Wants to Be a Generic Programmer?

8.2 Defining a Simple Generic Class
8.3 Generic Methods
8.4 Bounds for Type Variables
8.5 Generic Code and the Virtual Machine

8.5.1 Type Erasure
8.5.2 Translating Generic Expressions
8.5.3 Translating Generic Methods
8.5.4 Calling Legacy Code

8.6 Restrictions and Limitations
8.6.1 Type Parameters Cannot Be Instantiated with Primitive Types
8.6.2 Runtime Type Inquiry Only Works with Raw Types
8.6.3 You Cannot Create Arrays of Parameterized Types
8.6.4 Varargs Warnings
8.6.5 You Cannot Instantiate Type Variables
8.6.6 You Cannot Construct a Generic Array
8.6.7 Type Variables Are Not Valid in Static Contexts of Generic

Classes
8.6.8 You Cannot Throw or Catch Instances of a Generic Class
8.6.9 You Can Defeat Checked Exception Checking
8.6.10 Beware of Clashes after Erasure

8.7 Inheritance Rules for Generic Types
8.8 Wildcard Types

8.8.1 The Wildcard Concept
8.8.2 Supertype Bounds for Wildcards
8.8.3 Unbounded Wildcards
8.8.4 Wildcard Capture

8.9 Reflection and Generics
8.9.1 The Generic Class Class
8.9.2 Using Class<T> Parameters for Type Matching
8.9.3 Generic Type Information in the Virtual Machine
8.9.4 Type Literals

Chapter 9: Collections

9.1 The Java Collections Framework
9.1.1 Separating Collection Interfaces and Implementation
9.1.2 The Collection Interface
9.1.3 Iterators
9.1.4 Generic Utility Methods

9.2 Interfaces in the Collections Framework
9.3 Concrete Collections

9.3.1 Linked Lists
9.3.2 Array Lists
9.3.3 Hash Sets
9.3.4 Tree Sets
9.3.5 Queues and Deques
9.3.6 Priority Queues

9.4 Maps
9.4.1 Basic Map Operations
9.4.2 Updating Map Entries
9.4.3 Map Views
9.4.4 Weak Hash Maps
9.4.5 Linked Hash Sets and Maps
9.4.6 Enumeration Sets and Maps
9.4.7 Identity Hash Maps

9.5 Copies and Views
9.5.1 Small Collections
9.5.2 Unmodifiable Copies and Views
9.5.3 Subranges

9.5.4 Checked Views
9.5.5 Synchronized Views
9.5.6 A Note on Optional Operations

9.6 Algorithms
9.6.1 Why Generic Algorithms?
9.6.2 Sorting and Shuffling
9.6.3 Binary Search
9.6.4 Simple Algorithms
9.6.5 Bulk Operations
9.6.6 Converting between Collections and Arrays
9.6.7 Writing Your Own Algorithms

9.7 Legacy Collections
9.7.1 The Hashtable Class
9.7.2 Enumerations
9.7.3 Property Maps
9.7.4 Stacks
9.7.5 Bit Sets

Chapter 10: Graphical User Interface Programming

10.1 A History of Java User Interface Toolkits
10.2 Displaying Frames

10.2.1 Creating a Frame
10.2.2 Frame Properties

10.3 Displaying Information in a Component
10.3.1 Working with 2D Shapes
10.3.2 Using Color
10.3.3 Using Fonts
10.3.4 Displaying Images

10.4 Event Handling
10.4.1 Basic Event Handling Concepts
10.4.2 Example: Handling a Button Click
10.4.3 Specifying Listeners Concisely

10.4.4 Adapter Classes
10.4.5 Actions
10.4.6 Mouse Events
10.4.7 The AWT Event Hierarchy

10.5 The Preferences API

Chapter 11: User Interface Components with Swing

11.1 Swing and the Model-View-Controller Design Pattern
11.2 Introduction to Layout Management

11.2.1 Layout Managers
11.2.2 Border Layout
11.2.3 Grid Layout

11.3 Text Input
11.3.1 Text Fields
11.3.2 Labels and Labeling Components
11.3.3 Password Fields
11.3.4 Text Areas
11.3.5 Scroll Panes

11.4 Choice Components
11.4.1 Checkboxes
11.4.2 Radio Buttons
11.4.3 Borders
11.4.4 Combo Boxes
11.4.5 Sliders

11.5 Menus
11.5.1 Menu Building
11.5.2 Icons in Menu Items
11.5.3 Checkbox and Radio Button Menu Items
11.5.4 Pop-Up Menus
11.5.5 Keyboard Mnemonics and Accelerators
11.5.6 Enabling and Disabling Menu Items
11.5.7 Toolbars

11.5.8 Tooltips
11.6 Sophisticated Layout Management

11.6.2 Custom Layout Managers
11.7 Dialog Boxes

11.7.1 Option Dialogs
11.7.2 Creating Dialogs
11.7.3 Data Exchange
11.7.4 File Dialogs

Chapter 12: Concurrency

12.1 What Are Threads?
12.2 Thread States

12.2.1 New Threads
12.2.2 Runnable Threads
12.2.3 Blocked and Waiting Threads
12.2.4 Terminated Threads

12.3 Thread Properties
12.3.1 Interrupting Threads
12.3.2 Daemon Threads
12.3.3 Thread Names
12.3.4 Handlers for Uncaught Exceptions
12.3.5 Thread Priorities

12.4 Synchronization
12.4.1 An Example of a Race Condition
12.4.2 The Race Condition Explained
12.4.3 Lock Objects
12.4.4 Condition Objects
12.4.5 The synchronized Keyword
12.4.6 Synchronized Blocks
12.4.7 The Monitor Concept
12.4.8 Volatile Fields
12.4.9 Final Variables

12.4.10 Atomics
12.4.11 Deadlocks
12.4.12 Why the stop and suspend Methods Are Deprecated
12.4.13 On-Demand Initialization
12.4.14 Thread-Local Variables

12.5 Thread-Safe Collections
12.5.1 Blocking Queues
12.5.2 Efficient Maps, Sets, and Queues
12.5.3 Atomic Update of Map Entries
12.5.4 Bulk Operations on Concurrent Hash Maps
12.5.5 Concurrent Set Views
12.5.6 Copy on Write Arrays
12.5.7 Parallel Array Algorithms
12.5.8 Older Thread-Safe Collections

12.6 Tasks and Thread Pools
12.6.1 Callables and Futures
12.6.2 Executors
12.6.3 Controlling Groups of Tasks
12.6.4 The Fork-Join Framework

12.7 Asynchronous Computations
12.7.1 Completable Futures
12.7.2 Composing Completable Futures
12.7.3 Long-Running Tasks in User Interface Callbacks

12.8 Processes
12.8.1 Building a Process
12.8.2 Running a Process
12.8.3 Process Handles

Appendix

Preface

To the Reader

In late 1995, the Java programming language burst onto the Internet scene
and gained instant celebrity status. The promise of Java technology was that
it would become the universal glue that connects users with information
wherever it comes from—web servers, databases, information providers, or
any other imaginable source. Indeed, Java is in a unique position to fulfill
this promise. It is an extremely solidly engineered language that has gained
wide acceptance. Its built-in security and safety features are reassuring both
to programmers and to the users of Java programs. Java has built-in support
for advanced programming tasks, such as network programming, database
connectivity, and concurrency.

Since 1995, twelve major revisions of the Java Development Kit have been
released. Over the course of the last 25 years, the Application Programming
Interface (API) has grown from about 200 to over 4,000 classes. The API
now spans such diverse areas as user interface construction, database
management, internationalization, security, and XML processing.

The book that you are reading right now is the first volume of the twelfth
edition of Core Java. Each edition closely followed a release of the Java
Development Kit, and each time, I rewrote the book to take advantage of
the newest Java features. This edition has been updated to reflect the
features of Java 17.

As with the previous editions, this book still targets serious programmers
who want to put Java to work on real projects. I think of you, the reader, as
a programmer with a solid background in a programming language other
than Java. I assume that you don’t like books filled with toy examples (such
as toasters, zoo animals, or “nervous text”). You won’t find any of these in
the book. My goal is to enable you to fully understand the Java language
and library, not to give you an illusion of understanding.

In this book you will find lots of sample code demonstrating almost every
language and library feature. The sample programs are purposefully simple
to focus on the major points, but, for the most part, they aren’t fake and they
don’t cut corners. They should make good starting points for your own
code.

I assume you are willing, even eager, to learn about all the advanced
features that Java puts at your disposal. For example, you will find a
detailed treatment of

• Object-oriented programming
• Reflection and proxies
• Interfaces and inner classes
• Exception handling
• Generic programming
• The collections framework
• The event listener model
• Graphical user interface design
• Concurrency

With the explosive growth of the Java class library, a one-volume treatment
of all the features of Java that serious programmers need to know is no
longer possible. Hence, the book is broken up into two volumes. This first
volume concentrates on the fundamental concepts of the Java language,
along with the basics of user-interface programming. The second volume,
Core Java, Volume II: Advanced Features, goes further into the enterprise
features and advanced user-interface programming. It includes detailed
discussions of

• The Stream API
• File processing and regular expressions
• Databases
• XML processing

• Annotations
• Internationalization
• Network programming
• Advanced GUI components
• Advanced graphics
• Native methods

When writing a book, errors and inaccuracies are inevitable. I’d very much
like to know about them. But, of course, I’d prefer to learn about each of
them only once. You will find a list of frequently asked questions and bug
fixes at http://horstmann.com/corejava. Strategically placed at the end of
the errata page (to encourage you to read through it first) is a form you can
use to report bugs and suggest improvements. Please don’t be disappointed
if I don’t answer every query or don’t get back to you immediately. I do
read all e-mail and

appreciate your input to make future editions of this book clearer and more
informative.

A Tour of This Book

Chapter 1 gives an overview of the capabilities of Java that set it apart
from other programming languages. The chapter explains what the
designers of the language set out to do and to what extent they succeeded. A
short history of Java follows, detailing how Java came into being and how it
has evolved.

In Chapter 2, you will see how to download and install the JDK and the
program examples for this book. Then I’ll guide you through compiling and
running a console application and a graphical application. You will see how
to use the plain JDK, a Java IDE, and the JShell tool.

Chapter 3 starts the discussion of the Java language. In this chapter, I cover
the basics: variables, loops, and simple functions. If you are a C or C++
programmer, this is smooth sailing because the syntax for these language

http://horstmann.com/corejava

features is essentially the same as in C. If you come from a non-C
background such as Visual Basic, you will want to read this chapter
carefully.

Object-oriented programming (OOP) is now in the mainstream of
programming practice, and Java is an object-oriented programming
language. Chapter 4 introduces encapsulation, the first of two fundamental
building blocks of object orientation, and the Java language mechanism to
implement it—that is, classes and methods. In addition to the rules of the
Java language, you will also find advice on sound OOP design. Finally, I
cover the marvelous javadoc tool that formats your code comments as a set
of hyperlinked web pages. If you are familiar with C++, you can browse
through this chapter quickly. Programmers coming from a non-object-
oriented background should expect to spend some time mastering the OOP
concepts before going further with Java.

Classes and encapsulation are only one part of the OOP story, and Chapter
5 introduces the other—namely, inheritance. Inheritance lets you take an
existing class and modify it according to your needs. This is a fundamental
technique for programming in Java. The inheritance mechanism in Java is
quite similar to that in C++. Once again, C++ programmers can focus on
the differences between the languages.

Chapter 6 shows you how to use Java’s notion of an interface. Interfaces
let you go beyond the simple inheritance model of Chapter 5. Mastering
interfaces allows you to have full access to the power of Java’s completely
object-oriented approach to programming. After covering interfaces, I move
on to lambda expressions, a concise way for expressing a block of code that
can be executed at a later point in time. I then explain a useful technical
feature of Java called inner classes.

Chapter 7 discusses exception handling—Java’s robust mechanism to deal
with the fact that bad things can happen to good programs. Exceptions give
you an efficient way of separating the normal processing code from the
error handling. Of course, even after hardening your program by handling
all exceptional conditions, it still might fail to work as expected. In the final
part of this chapter, I give you a number of useful debugging tips.

Chapter 8 gives an overview of generic programming. Generic
programming makes your programs easier to read and safer. I show you
how to use strong typing and remove unsightly and unsafe casts, and how to
deal with the complexities that arise from the need to stay compatible with
older versions of Java.

The topic of Chapter 9 is the collections framework of the Java platform.
Whenever you want to collect multiple objects and retrieve them later, you
should use a collection that is best suited for your circumstances, instead of
just tossing the elements into an array. This chapter shows you how to take
advantage of the standard collections that are prebuilt for your use.

Chapter 10 provides an introduction into GUI programming. I show how
you can make windows, how to paint on them, how to draw with geometric
shapes, how to format text in multiple fonts, and how to display images.
Next, you’ll see how to write code that responds to events, such as mouse
clicks or key presses.

Chapter 11 discusses the Swing GUI toolkit in great detail. The Swing
toolkit allows you to build cross-platform graphical user interfaces. You’ll
learn all about the various kinds of buttons, text components, borders,
sliders, list boxes, menus, and dialog boxes. However, some of the more
advanced components are discussed in Volume II.

Chapter 12 finishes the book with a discussion of concurrency, which
enables you to program tasks to be done in parallel. This is an important
and exciting application of Java technology in an era where most processors
have multiple cores that you want to keep busy.

The Appendix lists the reserved words of the Java language.

Conventions

As is common in many computer books, I use monospace type to represent
computer code.

 NOTE:
Notes are tagged with “note” icons that look like this.

 TIP:
Tips are tagged with “tip” icons that look like this.

 CAUTION:
When there is danger ahead, I warn you with a “caution” icon.

 C++ NOTE:
There are many C++ notes that explain the differences between Java and
C++. You can skip over them if you don’t have a background in C++ or if
you consider your experience with that language a bad dream of which
you’d rather not be reminded.

Java comes with a large programming library, or Application Programming
Interface (API). When using an API call for the first time, I add a short
summary description at the end of the section. These descriptions are a bit
more informal but, hopefully, also a little more informative than those in the
official online API documentation. The names of interfaces are in italics,
just like in the official documentation. The number after a class, interface,
or method name is the JDK version in which the feature was introduced, as
shown in the following example:

Application Programming Interface 9

Programs whose source code is on the book’s companion web site are
presented as listings, for instance:

Listing 1.1 InputTest/InputTest.java

Sample Code

The web site for this book at http://horstmann.com/corejava contains all
sample code from the book. See Chapter 2 for more information on
installing the Java Development Kit and the sample code.

Register your copy of Core Java, Volume I: Fundamentals, Twelfth
Edition, on the InformIT site for convenient access to updates and/or
corrections as they become available. To start the registration
process, go to informit.com/register and log in or create an
account. Enter the product ISBN (9780137673629) and click
Submit. Look on the Registered Products tab for an Access Bonus
Content link next to this product, and follow that link to access any
available bonus materials. If you would like to be notified of
exclusive offers on new editions and updates, please check the box
to receive email from us.

http://horstmann.com/corejava

Acknowledgments

This content is currently in development.

Chapter 1. An Introduction to Java

In this chapter

• 1.1 Java as a Programming Platform
• 1.2 The Java “White Paper” Buzzwords
• 1.3 Java Applets and the Internet
• 1.4 A Short History of Java
• 1.5 Common Misconceptions about Java

The first release of Java in 1996 generated an incredible amount of
excitement, not just in the computer press, but in mainstream media such as
the New York Times, the Washington Post, and BusinessWeek. Java has the
distinction of being the first and only programming language that had a ten-
minute story on National Public Radio. A $100,000,000 venture capital fund
was set up solely for products using a specific computer language. I hope
you will enjoy a brief history of Java that you will find in this chapter.

1.1 Java as a Programming Platform

In the first edition of this book, my coauthor Gary Cornell and I had this to
write about Java:

“As a computer language, Java’s hype is overdone: Java is certainly a good
programming language. There is no doubt that it is one of the better
languages available to serious programmers. We think it could potentially
have been a great programming language, but it is probably too late for that.
Once a language is out in the field, the ugly reality of compatibility with
existing code sets in.”

Our editor got a lot of flack for this paragraph from someone very high up at
Sun Microsystems, the company that originally developed Java. The Java
language has a lot of nice features that we will examine in detail later in this
chapter. It has its share of warts, and some of the newer additions to the
language are not as elegant as the original features because of compatibility
requirements.

But, as we already said in the first edition, Java was never just a language.
There are lots of programming languages out there, but few of them make
much of a splash. Java is a whole platform, with a huge library, containing
lots of reusable code, and an execution environment that provides services
such as security, portability across operating systems, and automatic garbage
collection.

As a programmer, you will want a language with a pleasant syntax and
comprehensible semantics (i.e., not C++). Java fits the bill, as do dozens of
other fine languages. Some languages give you portability, garbage
collection, and the like, but they don’t have much of a library, forcing you to
roll your own if you want fancy graphics or networking or database access.
Well, Java has everything—a good language, a high-quality execution
environment, and a vast library. That combination is what makes Java an
irresistible proposition to so many programmers.

1.2 The Java “White Paper” Buzzwords

The authors of Java wrote an influential white paper that explains their
design goals and accomplishments. They also published a shorter overview
that is organized along the following 11 buzzwords:

1. Simple
2. Object-Oriented
3. Distributed
4. Robust
5. Secure
6. Architecture-Neutral
7. Portable

8. Interpreted
9. High-Performance

10. Multithreaded
11. Dynamic

In the following subsections, you will find a summary, with excerpts from
the white paper, of what the Java designers say about each buzzword,
together with a commentary based on my experiences with the current
version of Java.

 NOTE:
The white paper can be found at
www.oracle.com/technetwork/java/langenv-140151.html. You can retrieve
the overview with the 11 buzzwords at
http://horstmann.com/corejava/java-an-overview/7Gosling.pdf.

1.2.1 Simple

We wanted to build a system that could be programmed easily without a
lot of esoteric training and which leveraged today’s standard practice. So
even though we found that C++ was unsuitable, we designed Java as
closely to C++ as possible in order to make the system more
comprehensible. Java omits many rarely used, poorly understood,
confusing features of C++ that, in our experience, bring more grief than
benefit.

The syntax for Java is, indeed, a cleaned-up version of C++ syntax. There is
no need for header files, pointer arithmetic (or even a pointer syntax),
structures, unions, operator overloading, virtual base classes, and so on. (See
the C++ notes interspersed throughout the text for more on the differences
between Java and C++.) The designers did not, however, attempt to fix all of
the clumsy features of C++. For example, the syntax of the switch statement

http://www.oracle.com/technetwork/java/langenv-140151.html
http://horstmann.com/corejava/java-an-overview/7Gosling.pdf

is unchanged in Java. If you know C++, you will find the transition to the
Java syntax easy.

At the time Java was released, C++ was actually not the most commonly
used programming language. Many developers used Visual Basic and its
drag-and-drop programming environment. These developers did not find
Java simple. It took several years for Java development environments to
catch up. Nowadays, Java development environments are far ahead of those
for most other programming languages.

Another aspect of being simple is being small. One of the goals of Java is
to enable the construction of software that can run stand-alone on small
machines. The size of the basic interpreter and class support is about
40K; the basic standard libraries and thread support (essentially a self-
contained microkernel) add another 175K.

This was a great achievement at the time. Of course, the library has since
grown to huge proportions. There are now separate editions with a smaller
library, suitable for embedded devices and smart cards.

1.2.2 Object-Oriented

Simply stated, object-oriented design is a programming technique that
focuses on the data—objects—and on the interfaces to those objects. To
make an analogy with carpentry, an “object-oriented” carpenter would
be mostly concerned with the chair he is building, and secondarily with
the tools used to make it; a “non-object-oriented” carpenter would think
primarily of his tools. The object-oriented facilities of Java are essentially
those of C++.

Object orientation was pretty well established when Java was developed.
The object-oriented features of Java are comparable to those of C++. The
major difference between Java and C++ lies in multiple inheritance, which
Java has replaced with a simpler concept of interfaces. Java has a richer
capacity for runtime introspection (discussed in Chapter 5) than C++.

1.2.3 Distributed

Java has an extensive library of routines for coping with TCP/IP
protocols like HTTP and FTP. Java applications can open and access
objects across the Net via URLs with the same ease as when accessing a
local file system.

Nowadays, one takes this for granted—but in 1995, connecting to a web
server from a C++ or Visual Basic program was a major undertaking.

1.2.4 Robust

Java is intended for writing programs that must be reliable in a variety of
ways. Java puts a lot of emphasis on early checking for possible
problems, later dynamic (runtime) checking, and eliminating situations
that are error-prone. . . . The single biggest difference between Java and
C/C++ is that Java has a pointer model that eliminates the possibility of
overwriting memory and corrupting data.

The Java compiler detects many problems that in other languages would
show up only at runtime. As for the second point, anyone who has spent
hours chasing memory corruption caused by a pointer bug will be very
happy with this aspect of Java.

1.2.5 Secure

Java is intended to be used in networked/distributed environments.
Toward that end, a lot of emphasis has been placed on security. Java
enables the construction of virus-free, tamper-free systems.

From the beginning, Java was designed to make certain kinds of attacks
impossible, among them:

• Overrunning the runtime stack—a common attack of worms and viruses
• Corrupting memory outside its own process space
• Reading or writing files without permission

Originally, the Java attitude towards downloaded code was “Bring it on!”
Untrusted code was executed in a sandbox environment where it could not

impact the host system. Users were assured that nothing bad could happen
because Java code, no matter where it came from, could never escape from
the sandbox.

However, the security model of Java is complex. Not long after the first
version of the Java Development Kit was shipped, a group of security
experts at Princeton University found subtle bugs that allowed untrusted
code to attack the host system.

Initially, security bugs were fixed quickly. Unfortunately, over time, hackers
got quite good at spotting subtle flaws in the implementation of the security
architecture. Sun, and then Oracle, had a tough time keeping up with bug
fixes.

After a number of high-profile attacks, browser vendors and Oracle became
increasingly cautious. For a time, remote code had to be digitally signed.
Nowadays, delivering Java applications via a browser is a a distant memory.

 NOTE:
Even though in hindsight, the Java security model was not as successful as
originally envisioned, Java was well ahead of its time. A competing code
delivery mechanism from Microsoft, called ActiveX, relied on digital
signatures alone for security. Clearly this was not sufficient: As any user of
Microsoft’s own products can confirm, programs from well-known vendors
do crash and create damage.

1.2.6 Architecture-Neutral

The compiler generates an architecture-neutral object file format. The
compiled code is executable on many processors, given the presence of
the Java runtime system. The Java compiler does this by generating
bytecode instructions which have nothing to do with a particular
computer architecture. Rather, they are designed to be both easy to

interpret on any machine and easy to translate into native machine code
on the fly.

Generating code for a “virtual machine” was not a new idea at the time.
Programming languages such as Lisp, Smalltalk, and Pascal had employed
this technique for many years.

Of course, interpreting virtual machine instructions is slower than running
machine instructions at full speed. However, virtual machines have the
option of translating the most frequently executed bytecode sequences into
machine code—a process called just-in-time compilation.

Java’s virtual machine has another advantage. It increases security because it
can check the behavior of instruction sequences.

1.2.7 Portable

Unlike C and C++, there are no “implementation-dependent” aspects of
the specification. The sizes of the primitive data types are specified, as is
the behavior of arithmetic on them.

For example, an int in Java is always a 32-bit integer. In C/C++, int can
mean a 16-bit integer, a 32-bit integer, or any other size that the compiler
vendor likes. The only restriction is that the int type must have at least as
many bytes as a short int and cannot have more bytes than a long int.
Having a fixed size for number types eliminates a major porting headache.
Binary data is stored and transmitted in a fixed format, eliminating confusion
about byte ordering. Strings are saved in a standard Unicode format.

The libraries that are a part of the system define portable interfaces. For
example, there is an abstract Window class and implementations of it for
UNIX, Windows, and the Macintosh.

The example of a Window class was perhaps poorly chosen. As anyone who
has ever tried knows, it is an effort of heroic proportions to implement a user
interface that looks good on Windows, the Macintosh, and ten flavors of
UNIX. Java 1.0 made the heroic effort, delivering a simple toolkit that
provided common user interface elements on a number of platforms.

Unfortunately, the result was a library that, with a lot of work, could give
barely acceptable results on different systems. That initial user interface
toolkit has since been replaced, and replaced again, and portability across
platforms remains an issue.

However, for everything that isn’t related to user interfaces, the Java
libraries do a great job of letting you work in a platform-independent
manner. You can work with files, regular expressions, XML, dates and times,
databases, network connections, threads, and so on, without worrying about
the underlying operating system. Not only are your programs portable, but
the Java APIs are often of higher quality than the native ones.

1.2.8 Interpreted

The Java interpreter can execute Java bytecodes directly on any machine
to which the interpreter has been ported. Since linking is a more
incremental and lightweight process, the development process can be
much more rapid and exploratory.

This was a real stretch. Anyone who has used Lisp, Smalltalk, Visual Basic,
Python, R, or Scala knows what a “rapid and exploratory” development
process is. You try out something, and you instantly see the result. For the
first 20 years of Java’s existence, development environments were not
focused on that experience. It wasn’t until Java 9 that the jshell tool
supported rapid and exploratory programming.

1.2.9 High-Performance

While the performance of interpreted bytecodes is usually more than
adequate, there are situations where higher performance is required. The
bytecodes can be translated on the fly (at runtime) into machine code for
the particular CPU the application is running on.

In the early years of Java, many users disagreed with the statement that the
performance was “more than adequate.” Today, however, the just-in-time
compilers have become so good that they are competitive with traditional
compilers and, in some cases, even outperform them because they have more

information available. For example, a just-in-time compiler can monitor
which code is executed frequently and optimize just that code for speed. A
more sophisticated optimization is the elimination (or “inlining”) of function
calls. The just-in-time compiler knows which classes have been loaded. It
can use inlining when, based upon the currently loaded collection of classes,
a particular function is never overridden, and it can undo that optimization
later if necessary.

1.2.10 Multithreaded

[The] benefits of multithreading are better interactive responsiveness and
real-time behavior.

Nowadays, we care about concurrency because Moore’s law has come to an
end. Instead of faster processors, we just get more of them, and we have to
keep them busy. Yet when you look at most programming languages, they
show a shocking disregard for this problem.

Java was well ahead of its time. It was the first mainstream language to
support concurrent programming. As you can see from the white paper, its
motivation was a little different. At the time, multicore processors were
exotic, but web programming had just started, and processors spent a lot of
time waiting for a response from the server. Concurrent programming was
needed to make sure the user interface didn’t freeze.

Concurrent programming is never easy, but Java has done a very good job
making it manageable.

1.2.11 Dynamic

In a number of ways, Java is a more dynamic language than C or C++. It
was designed to adapt to an evolving environment. Libraries can freely
add new methods and instance variables without any effect on their
clients. In Java, finding out runtime type information is straightforward.

This is an important feature in situations where code needs to be added to a
running program. A prime example is code that is downloaded from the

Internet to run in a browser. In C or C++, this is indeed a major challenge,
but the Java designers were well aware of dynamic languages that made it
easy to evolve a running program. Their achievement was to bring this
feature to a mainstream programming language.

 NOTE:
Shortly after the initial success of Java, Microsoft released a product called
J++ with a programming language and virtual machine that were almost
identical to Java. This effort failed to gain traction, and Microsoft followed
through with another language called C# that also has many similarities to
Java but runs on a different virtual machine. This book does not cover J++
or C#.

1.3 Java Applets and the Internet

The idea here is simple: Users will download Java bytecodes from the
Internet and run them on their own machines. Java programs that work on
web pages are called applets. To use an applet, you only need a Java-enabled
web browser, which will execute the bytecodes for you. You need not install
any software. You get the latest version of the program whenever you visit
the web page containing the applet. Most importantly, thanks to the security
of the virtual machine, you never need to worry about attacks from hostile
code.

Inserting an applet into a web page works much like embedding an image.
The applet becomes a part of the page, and the text flows around the space
used for the applet. The point is, this image is alive. It reacts to user
commands, changes its appearance, and exchanges data between the
computer presenting the applet and the computer serving it.

Figure 1.1 shows the Jmol applet that displays molecular structures. By
using the mouse, you can rotate and zoom each molecule to better
understand its structure. At the time that applets were invented, this kind of

direct manipulation was not achievable with web pages—there was only
rudimentary JavaScript and no HTML canvas.

Figure 1.1 The Jmol applet

When applets first appeared, they created a huge amount of excitement.
Many people believe that the lure of applets was responsible for the
astonishing popularity of Java. However, the initial excitement soon turned
into frustration. Various versions of the Netscape and Internet Explorer
browsers ran different versions of Java, some of which were seriously
outdated. This sorry situation made it increasingly difficult to develop
applets that took advantage of the most current Java version. Instead,
Adobe’s Flash technology became popular for achieving dynamic effects in
the browser. Later, when Java was dogged by serious security issues,
browsers dropped applet support altogether. Of course, Flash fared no better.

1.4 A Short History of Java

This section gives a short history of Java’s evolution. It is based on various
published sources (most importantly an interview with Java’s creators in the
July 1995 issue of SunWorld’s online magazine).

Java goes back to 1991, when a group of Sun engineers, led by Patrick
Naughton and James Gosling (a Sun Fellow and an all-around computer
wizard), wanted to design a small computer language that could be used for
consumer devices like cable TV switchboxes. Since these devices do not
have a lot of power or memory, the language had to be small and generate
very tight code. Also, as different manufacturers may choose different
central processing units (CPUs), it was important that the language not be
tied to any single architecture. The project was code-named “Green.”

The requirements for small, tight, and platform-neutral code led the team to
design a portable language that generated intermediate code for a virtual
machine.

The Sun people came from a UNIX background, so they based their
language on C++ rather than Lisp, Smalltalk, or Pascal. But, as Gosling says
in the interview, “All along, the language was a tool, not the end.” Gosling
decided to call his language “Oak” (presumably because he liked the look of
an oak tree that was right outside his window at Sun). The people at Sun
later realized that Oak was the name of an existing computer language, so
they changed the name to Java. This turned out to be an inspired choice.

In 1992, the Green project delivered its first product, called “*7.” It was an
extremely intelligent remote control. Unfortunately, no one was interested in
producing this at Sun, and the Green people had to find other ways to market
their technology. However, none of the standard consumer electronics
companies were interested either. The group then bid on a project to design a
cable TV box that could deal with emerging cable services such as video-on-
demand. They did not get the contract. (Amusingly, the company that did
was led by the same Jim Clark who started Netscape—a company that did
much to make Java successful.)

The Green project (with a new name of “First Person, Inc.”) spent all of
1993 and half of 1994 looking for people to buy its technology. No one was
found. (Patrick Naughton, one of the founders of the group and the person
who ended up doing most of the marketing, claims to have accumulated
300,000 air miles in trying to sell the technology.) First Person was dissolved
in 1994.

While all of this was going on at Sun, the World Wide Web part of the
Internet was growing bigger and bigger. The key to the World Wide Web
was the browser translating hypertext pages to the screen. In 1994, most
people were using Mosaic, a noncommercial web browser that came out of
the supercomputing center at the University of Illinois in 1993. (Mosaic was
partially written by Marc Andreessen as an undergraduate student on a
work-study project, for $6.85 an hour. He moved on to fame and fortune as
one of the cofounders and the chief of technology at Netscape.)

In the SunWorld interview, Gosling says that in mid-1994, the language
developers realized that “We could build a real cool browser. It was one of
the few things in the client/server mainstream that needed some of the weird
things we’d done: architecture-neutral, real-time, reliable, secure—issues
that weren’t terribly important in the workstation world. So we built a
browser.”

The actual browser was built by Patrick Naughton and Jonathan Payne and
evolved into the HotJava browser, which was designed to show off the
power of Java. The browser was capable of executing Java code inside web
pages. This “proof of technology” was shown at SunWorld ’95 on May 23,
1995, and inspired the Java craze that continues today.

Sun released the first version of Java in early 1996. People quickly realized
that Java 1.0 was not going to cut it for serious application development.
Sure, you could use Java 1.0 to make a nervous text applet that moved text
randomly around in a canvas. But you couldn’t even print in Java 1.0. To be
blunt, Java 1.0 was not ready for prime time. Its successor, version 1.1, filled
in the most obvious gaps, greatly improved the reflection capability, and
added a new event model for GUI programming. It was still rather limited,
though.

The big news of the 1998 JavaOne conference was the upcoming release of
Java 1.2, which replaced the early toylike GUI and graphics toolkits with
sophisticated scalable versions. Three days (!) after its release in December
1998, Sun’s marketing department changed the name to the catchy Java 2
Standard Edition Software Development Kit Version 1.2.

Besides the Standard Edition, two other editions were introduced: the Micro
Edition for embedded devices such as cell phones, and the Enterprise Edition
for server-side processing. This book focuses on the Standard Edition.

Versions 1.3 and 1.4 of the Standard Edition were incremental improvements
over the initial Java 2 release, with an ever-growing standard library,
increased performance, and, of course, quite a few bug fixes. During this
time, much of the initial hype about Java applets and client-side applications
abated, but Java became the platform of choice for server-side applications.

Version 5.0 was the first release since version 1.1 that updated the Java
language in significant ways. (This version was originally numbered 1.5, but
the version number jumped to 5.0 at the 2004 JavaOne conference.) After
many years of research, generic types (roughly comparable to C++
templates) have been added—the challenge was to add this feature without
requiring changes in the virtual machine. Several other useful language
features were inspired by C#: a “for each” loop, autoboxing, and
annotations.

Version 6 (without the .0 suffix) was released at the end of 2006. Again,
there were no language changes but additional performance improvements
and library enhancements.

As datacenters increasingly relied on commodity hardware instead of
specialized servers, Sun Microsystems fell on hard times and was purchased
by Oracle in 2009. Development of Java stalled for a long time. In 2011,
Oracle released a new version, with simple enhancements, as Java 7.

In 2014, the release of Java 8 followed, with the most significant changes to
the Java language in almost two decades. Java 8 embraces a “functional”
style of programming that makes it easy to express computations that can be

executed concurrently. All programming languages must evolve to stay
relevant, and Java has shown a remarkable capacity to do so.

The main feature of Java 9 goes all the way back to 2008. At that time, Mark
Reinhold, the chief engineer of the Java platform, started an effort to break
up the huge, monolithic Java platform. This was to be achieved by
introducing modules, self-contained units of code that provide a specific
functionality. It took eleven years to design and implement a module system
that is a good fit for the Java platform, and it remains to be seen whether it is
also a good fit for Java applications and libraries. Java 9, released in 2017,
has other appealing features that are covered in this book.

Starting in 2018, Java versions are released every six months, to enable
faster introduction of features. Ever so often, a version—so far Java 11 and
Java 17— is designated as a long-term support version. Intermediate
versions provide a mechanism for trying out experimental features.

Table 1.1 shows the evolution of the Java language and library. As you can
see, the size of the application programming interface (API) has grown
tremendously.

Table 1.1 Evolution of the Java Language

1.5 Common Misconceptions about Java

This chapter closes with a commented list of some common misconceptions
about Java.

Java is an extension of HTML.

Java is a programming language; HTML is a way to describe the structure of
a web page. They have nothing in common except that there once were
HTML extensions for placing Java applets on a web page.

I use XML, so I don’t need Java.

Java is a programming language; XML is a way to describe data. You can
process XML data with any programming language, but the Java API
contains excellent support for XML processing. In addition, many important
XML tools are implemented in Java. See Volume II for more information.

Java is an easy programming language to learn.

No programming language as powerful as Java is easy. You always have to
distinguish between how easy it is to write toy programs and how hard it is
to do serious work. Also, consider that only seven chapters in this book
discuss the Java language. The remaining chapters of both volumes show
how to put the language to work, using the Java libraries. The Java libraries
contain thousands of classes and interfaces and tens of thousands of
functions. Luckily, you do not need to know every one of them, but you do
need to know surprisingly many to use Java for anything realistic.

Java will become a universal programming language for all platforms.

This is possible in theory. But in practice, there are domains where other
languages are entrenched. Objective C and its successor, Swift, are not going
to be replaced on iOS devices. Anything that happens in a browser is
controlled by JavaScript. Windows programs are written in C++ or C#. Java
has the edge in server-side programming and in cross-platform client
applications.

Java is just another programming language.

Java is a nice programming language; most programmers prefer it to C, C++,
or C#. But there have been hundreds of nice programming languages that
never gained widespread popularity, whereas languages with obvious flaws,
such as C++ and Visual Basic, have been wildly successful.

Why? The success of a programming language is determined far more by the
utility of the support system surrounding it than by the elegance of its syntax.
Are there useful, convenient, and standard libraries for the features that you
need to implement? Are there tool vendors that build great programming and
debugging environments? Do the language and the toolset integrate with the
rest of the computing infrastructure? Java is successful because its libraries
let you easily do things such as networking, web applications, and
concurrency. The fact that Java reduces pointer errors is a bonus, so
programmers seem to be more productive with Java—but these factors are
not the source of its success.

Java is proprietary, and should therefore be avoided.

When Java was first created, Sun Microsystems gave free licenses to
distributors and end users. Although Sun had ultimate control over Java,
they involved many other companies in the development of language
revisions and the design of new libraries. Source code for the virtual
machine and the libraries has always been freely available, but only for
inspection, not for modification and redistribution. Java was “closed source,
but playing nice.”

This situation changed dramatically in 2007, when Sun announced that
future versions of Java would be available under the General Public License
(GPL), the same open source license that is used by Linux. Oracle has
committed to keeping Java open source. There are now multiple providers of
open Java implementations, with various levels of commitment and support.

Java is interpreted, so it is too slow for serious applications.

In the early days of Java, the language was interpreted. Nowadays, the Java
virtual machine uses a just-in-time compiler. The “hot spots” of your code
will run just as fast in Java as they would in C++, and in some cases even
faster.

All Java programs run inside a web page.

There was a time when Java applets ran inside a web browser. Nowadays,
Java programs are stand-alone applications that run outside of a web

browser. In fact, most Java programs run on servers, producing code for web
pages or computing business logic.

Java programs are a major security risk.

In the early days of Java, there were some well-publicized reports of failures
in the Java security system. Researchers viewed it as a challenge to find
chinks in the Java armor and to defy the strength and sophistication of the
applet security model. The technical failures that they found had been
quickly corrected. Later, there were more serious exploits, to which Sun, and
later Oracle, responded slowly. Browser manufacturers discontinued support
for Java applets. The security manager architecture that made applets
possible is now deprecated. These days, Java applications are no less secure
than other applications. Due to the protections of the virtual machine, they
are far more secure than applications written in C or C++.

JavaScript is a simpler version of Java.

JavaScript, a scripting language that can be used inside web pages, was
invented by Netscape and originally called LiveScript. JavaScript has a
syntax that is reminiscent of Java, and the languages’ names sound similar,
but otherwise they are unrelated. In particularly, Java is strongly typed—the
compiler catches many errors that arise from type misuse. In JavaScript,
such errors are only found when the program runs, which makes their
elimination far more laborious.

With Java, I can replace my desktop computer with a cheap “Internet
appliance.”

When Java was first released, some people bet big that this was going to
happen. Companies produced prototypes of Java-powered network
computers, but users were not ready to give up a powerful and convenient
desktop for a limited machine with no local storage. Nowadays, of course,
the world has changed, and for a large majority of end users, the platform
that matters is a mobile phone or tablet. The majority of these devices are
controlled by the Android platform. Learning Java programming will help
you with Android programming as well.

Chapter 2. The Java Programming Environment

In this chapter

• 2.1 Installing the Java Development Kit
• 2.2 Using the Command-Line Tools
• 2.3 Using an Integrated Development Environment
• 2.4 JShell

In this chapter, you will learn how to install the Java Development Kit (JDK)
and how to compile and run Java programs. You can run the JDK tools by
typing commands in a terminal window. However, many programmers
prefer the comfort of an integrated development environment. You will learn
how to use a freely available development environment to compile and run
Java programs. Once you have mastered the techniques in this chapter and
picked your development tools, you are ready to move on to Chapter 3,
where you will begin exploring the Java programming language.

2.1 Installing the Java Development Kit

In days past, the most complete and up-to-date versions of the Java
Development Kit (JDK) was available from Oracle. Nowadays many
different companies, including Microsoft, Amazon, Red Hat, and Azul,
provide up-to-date OpenJDK builds, some with better licensing conditions
than Oracle. As I write this chapter, my favorite site is
https://adoptium.net, run by a community of vendors, developers, and user
groups. They provide free builds for Linux, Mac OS, and Windows.

2.1.1 Downloading the JDK

https://adoptium.net/

You can download the Java Development Kit from https://adoptium.net,
or from Oracle at www.oracle.com/technetwork/java/javase/downloads, or
from another provider. You should use the Java SE 17 (LTS) JDK. See Table
2.1 for a summary of the acronyms and jargon that you may encounter on
the download site.

Table 2.1 Java Jargon

2.1.2 Setting up the JDK

After downloading the JDK, you need to install it and figure out where it
was installed—you’ll need that information later.

• Under Windows, launch the setup program. You will be asked where to
install the JDK. It is best not to accept a default location with spaces in the

https://adoptium.net/
http://www.oracle.com/technetwork/java/javase/downloads

path name, such as c:\Program Files\Java\jdk-17.0.x. Just take out the
Program Files part of the path name.

• On the Mac, run the installer. It installs the software into /Library/Java/
JavaVirtualMachines/jdk-17.0.x.jdk/Contents/Home. Locate it with the
Finder.

• On Linux, simply uncompress the .tar.gz file to a location of your choice,
such as your home directory or /opt. Or, if you installed from the RPM file,
double-check that it is installed in /usr/java/jdk-17.0.x.

In this book, the installation directory is denoted as jdk. For example, when
referring to the jdk/bin directory, I mean the directory with a name such as
/opt/jdk-17.0.4/bin or c:\Java\jdk-17.0.4\bin.

Here is how you test whether you did it right. Start a terminal window. Type
the line

javac --version

and press the Enter key. You should get a display such as this one:

javac 17.0.4

If instead you get a message such as “javac: command not found” or “The
name specified is not recognized as an internal or external command,
operable program or batch file,” then you need to double-check your
installation.

When you install the JDK on Windows or Linux, you may need to carry out
one additional step: Add the jdk/bin directory to the executable path—the
list of directories that the operating system traverses to locate executable
files.

• On Linux, add a line such as the following to the end of your ~/.bashrc or
~/.bash_profile file:

export PATH=jdk/bin:$PATH

Be sure to use the correct path to the JDK, such as /opt/jdk-17.0.4.
• Under Windows 10, type “environment” into the search bar of the

Windows Settings, and select “Edit environment variables for your
account” (see Figure 2.1). An Environment Variables dialog should appear.
(It may hide performance>behind the Windows Settings dialog. If you
can’t find it anywhere, try running sysdm.cpl from the Run dialog that you
get by holding down the Windows and R key at the same time, and then
select the Advanced tab and click the Environment Variables button.)
Locate and select a variable named Path in the User Variables list. Click
the Edit button, then the New button, and add an entry with the jdk\bin
directory (see Figure 2.2).

Figure 2.1 Setting system properties in Windows

Save your settings. Any new “Command Prompt” windows that you start
will have the correct path.

2.1.3 Installing Source Files and Documentation

The library source files are delivered in the JDK as a compressed file
lib/src.zip. Unpack that file to get access to the source code. Simply do the
following:

1. Make sure the JDK is installed and the jdk/bin directory is on the
executable path.

2. Make a directory javasrc in your home directory. If you like, you can do
this from a terminal window.

mkdir javasrc

3. Inside the jdk/lib directory, locate the file src.zip. 4. Unzip the src.zip
file into the javasrc directory. In a terminal window, you can execute the
commands

cd javasrc
jar xvf jdk/lib/src.zip
cd ..

Figure 2.2 Setting the Path environment variable in Windows

 TIP:

The src.zip file contains the source code for all public libraries. To obtain
even more source (for the compiler, the virtual machine, the native methods,
and the private helper classes), go to http://openjdk.java.net.

The documentation is contained in a compressed file that is separate from the
JDK. You can download the documentation from
www.oracle.com/technetwork/java/javase/downloads. Follow these steps:

1. Download the documentation zip file. It is called jdk-17.0.x_doc-
all.zip.

2. Unzip the file and rename the doc directory into something more
descriptive, like javadoc. If you like, you can do this from the command
line:

jar xvf Downloads/jdk-17.0.x_doc-all.zip
mv docs jdk-17-docs

3. In your browser, navigate to jdk-17-docs/index.html and add this page
to your bookmarks.

You should also install the Core Java program examples. You can download
them from http://horstmann.com/corejava. The programs are packaged into
a zip file corejava.zip. Just unzip them into your home directory. They will
be located in a directory corejava. If you like, you can do this from the
command line:

jar xvf Downloads/corejava.zip

2.2 Using the Command-Line Tools

If your programming experience comes from a development environment
such as Microsoft Visual Studio, you are accustomed to a system with a
builtin text editor, menus to compile and launch a program, and a debugger.
The JDK contains nothing even remotely similar. You do everything by
typing in commands in a terminal window. This may sound cumbersome,
but it is nevertheless an essential skill. When you first install Java, you will
want to troubleshoot your installation before you install a development

http://openjdk.java.net/
http://www.oracle.com/technetwork/java/javase/downloads
http://horstmann.com/corejava

environment. Moreover, by executing the basic steps yourself, you gain a
better understanding of what a development environment does behind your
back.

However, after you have mastered the basic steps of compiling and running
Java programs, you will want to use a professional development
environment. You will see how to do that in the following section.

Let’s get started the hard way: compiling and launching a Java program from
the command line.

1. Open a terminal window.
2. Go to the corejava/v1ch02/Welcome directory. (The corejava directory is

where you installed the source code for the book examples, as explained
in Section 2.1.3, “Installing Source Files and Documentation,” on p. 20.)

3. Enter the following commands:

javac Welcome.java
java Welcome

You should see the output shown in Figure 2.3 in the terminal window.

Congratulations! You have just compiled and run your first Java program.

Figure 2.3 Compiling and running Welcome.java

What happened? The javac program is the Java compiler. It compiles the file

Welcome.java into the file Welcome.class. The java program launches the
Java virtual machine. It executes the bytecodes that the compiler placed in
the class file.

The Welcome program is extremely simple. It merely prints a message to the
terminal. You may enjoy looking inside the program, shown in Listing 2.1.
You will see how it works in the next chapter.

Listing 2.1 Welcome/Welcome.java

 1 /**
 2 * This program displays a greeting for the reader.
 3 * @version 1.30 2014-02-27
 4 * @author Cay Horstmann
 5 */
 6 public class Welcome
 7 {

 8 public static void main(String[] args)
 9 {
10 String greeting = "Welcome to Core Java!";
11 System.out.println(greeting);
12 for (int i = 0; i < greeting.length(); i++)
13 System.out.print("=");
14 System.out.println();
15 }
16 }

In the age of integrated development environments, many programmers are
unfamiliar with running programs in a terminal window. Any number of
things can go wrong, leading to frustrating results.

Pay attention to the following points:

• If you type in the program by hand, make sure you correctly enter the
uppercase and lowercase letters. In particular, the class name is Welcome
and not welcome or WELCOME.

• The compiler requires a file name (Welcome.java). When you run the
program, you specify a class name (Welcome) without a .java or .class
extension.

• If you get a message such as “Bad command or file name” or “javac:
command not found”, go back and double-check your installation, in
particular the executable path setting.

• If javac reports that it cannot find the file Welcome.java, you should check
whether that file is present in the directory.
Under Linux, check that you used the correct capitalization for
Welcome.java.
Under Windows, use the dir command, not the graphical Explorer tool.
Some text editors (in particular Notepad) insist on adding an extension
.txt to every file’s name. If you use Notepad to edit Welcome.java, it will
actually save it as Welcome.java.txt. Under the default Windows settings,
Explorer conspires with Notepad and hides the .txt extension because it
belongs to a “known file type.” In that case, you need to rename the file,

using the ren command, or save it again, placing quotes around the file
name: "Welcome.java".

• If you launch your program and get an error message complaining about a
java.lang.NoClassDefFoundError, then carefully check the name of the
offending class.
If you get a complaint about welcome (with a lowercase w), then you should
reissue the java Welcome command with an uppercase W. As always, case
matters in Java.
If you get a complaint about Welcome/java, it means you accidentally typed
java Welcome.java. Reissue the command as java Welcome.

• If you typed java Welcome and the virtual machine can’t find the Welcome
class, check if someone has set the CLASSPATH environment variable on your
system. It is not a good idea to set this variable globally, but some poorly
written software installers in Windows do just that. Follow the same
procedure as for setting the PATH environment variable, but this time,
remove the setting.

 TIP:
The excellent tutorial at
http://docs.oracle.com/javase/tutorial/getStarted/cupojava goes into
much greater detail about the “gotchas” that beginners can run into.

 NOTE:
You can skip the javac command if you have a single source file. This
feature is intended for shell scripts (starting with a “shebang” line
#!/path/to/java) and perhaps for simple student programs. Once your
programs get more complex, you need to use javac.

The Welcome program was not terribly exciting. Next, try out a graphical
application. This program is a simple image file viewer that loads and

http://docs.oracle.com/javase/tutorial/getStarted/cupojava

displays an image. As before, compile and run the program from the
command line.

1. Open a terminal window.
2. Change to the directory corejava/v1ch02/ImageViewer.
3. Enter the following:

javac ImageViewer.java
java ImageViewer

A new program window pops up with the ImageViewer application. Now,
select File → Open and look for an image file to open. (There are a couple of
sample files in the same directory.) The image is displayed (see Figure 2.4).
To close the program, click on the Close box in the title bar or select File →
Exit from the menu.

Figure 2.4 Running the ImageViewer application

Have a quick look at the source code (Listing 2.2). The program is
substantially longer than the first program, but it is not too complex if you
consider how much code it would take in C or C++ to write a similar
application. Of course, nowadays it is not common to write desktop

applications with graphical user interfaces, but if you are interested, you can
find more details in Chapter 10.

Listing 2.2 ImageViewer/ImageViewer.java

 1 import java.awt.*;
 2 import java.io.*;
 3 import javax.swing.*;
 4
 5 /**
 6 * A program for viewing images.
 7 * @version 1.31 2018-04-10
 8 * @author Cay Horstmann
 9 */
10 public class ImageViewer
11 {
12 public static void main(String[] args)
13 {
14 EventQueue.invokeLater(() ->
15 {
16 var frame = new ImageViewerFrame();
17 frame.setTitle("ImageViewer");
18 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOS
E);
19 frame.setVisible(true);
20 });
21 }
22 }
23
24 /**
25 * A frame with a label to show an image.
26 */
27 class ImageViewerFrame extends JFrame
28 {
29 private static final int DEFAULT_WIDTH = 300;
30 private static final int DEFAULT_HEIGHT = 400;
31
32 public ImageViewerFrame()
33 {

34 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
35
36 // use a label to display the images
37 var label = new JLabel();
38 add(label);
39
40 // set up the file chooser
41 var chooser = new JFileChooser();
42 chooser.setCurrentDirectory(new File("."));
43
44 // set up the menu bar
45 var menuBar = new JMenuBar();
46 setJMenuBar(menuBar);
47
48 var menu = new JMenu("File");
49 menuBar.add(menu);
50
51 var openItem = new JMenuItem("Open");
52 menu.add(openItem);
53 openItem.addActionListener(event ->
54 {
55 // show file chooser dialog
56 int result = chooser.showOpenDialog(null);
57
58 // if file selected, set it as icon of the label
59 if (result == JFileChooser.APPROVE_OPTION)
60 {
61 String name =
chooser.getSelectedFile().getPath();
62 label.setIcon(new ImageIcon(name));
63 }
64 });
65
66 var exitItem = new JMenuItem("Exit");
67 menu.add(exitItem);
68 exitItem.addActionListener(event -> System.exit(0));
69 }
70 }

2.3 Using an Integrated Development Environment

In the preceding section, you saw how to compile and run a Java program
from the command line. That is a useful skill for troubleshooting, but for
most day-to-day work, you should use an integrated development
environment. These environments are so powerful and convenient that it
simply doesn’t make much sense to labor on without them. Excellent choices
are the freely available Eclipse, IntelliJ IDEA, and NetBeans. In this chapter,
you will learn how to get started with Eclipse. Of course, if you prefer a
different development environment, you can certainly use it with this book.

Get started by downloading Eclipse from http://eclipse.org/downloads.
Versions exist for Linux, Mac OS X, and Windows. Run the installation
program and pick the installation set called “Eclipse IDE for Java
Developers”.

Here are the steps to write a program with Eclipse.

1. After starting Eclipse, select File → New → Project from the menu.
2. Select “Java Project” from the wizard dialog (see Figure 2.5).

http://eclipse.org/downloads

Figure 2.5 The New Project dialog in Eclipse

3. Click the Next button. Uncheck the “Use default location” checkbox.
Click on Browse and navigate to the corejava/v1ch02/Welcome directory
(Figure 2.6).

Figure 2.6 Configuring a project in Eclipse

4. Click the Finish button. The project is now created.

5. Click on the triangles in the left pane next to the project until you locate
the file Welcome.java, and double-click on it. You should now see a pane
with the program code (see Figure 2.7).

Figure 2.7 Editing a source file with Eclipse

6. With the right mouse button, click on the project name (Welcome) in the
left pane. Select Run → Run As → Java Application. The program
output is displayed in the console pane.

Presumably, this program does not have typos or bugs. (It was only a few
lines of code, after all.) Let us suppose, for the sake of argument, that your
code occasionally contains a typo (perhaps even a syntax error). Try it

out.ruin your file, for example, by changing the capitalization of String as
follows:

string greeting = "Welcome to Core Java!";

Note the wiggly line under string. In the tabs below the source code, click
on Problems and expand the triangles until you see an error message that
complains about an unknown string type (see Figure 2.8). Click on the error
message. The cursor moves to the matching line in the edit pane, where you
can correct your error. This allows you to fix your errors quickly.

Figure 2.8 Error messages in Eclipse

 TIP:
Often, an Eclipse error report is accompanied by a lightbulb icon. Click on
the lightbulb to get a list of suggested fixes.

2.4 JShell

In the preceding section, you saw how to compile and run a Java program.
Java 9 introduced another way of working with Java. The JShell program
provides a “read-evaluate-print loop,” or REPL. You type a Java expression;
JShell evaluates your input, prints the result, and waits for your next input.
To start JShell, simply type jshell in a terminal window (see Figure 2.9).

Figure 2.9 Running JShell

JShell starts with a greeting, followed by a prompt:

| Welcome to JShell -- Version 17.0.4
| For an introduction type: /help intro

jshell>

Now type an expression, such as

"Core Java".length()

JShell responds with the result—in this case, the number of characters in the
string “Core Java”.

$1 ==> 9

Note that you do not type System.out.println. JShell automatically prints
the value of every expression that you enter.

The $1 in the output indicates that the result is available in further
calculations. For example, if you type

5 * $1 - 3

the response is

$2 ==> 42

If you need a variable many times, you can give it a more memorable name.
You have to follow the Java syntax (explained in Chapter 3) and specify the
type, followed by the name. For example,

jshell> int answer = 6 * 7
answer ==> 42

Another useful feature is tab completion. Type

Math.

followed by the Tab key. You get a list of all methods that you can invoke
with the Math class:

jshell> Math.
E IEEEremainder(PI abs(
absExact(acos(addExact(asin(
atan(atan2(cbrt(ceil(
class copySign(cos(cosh(
decrementExact(exp(expm1(floor(
floorDiv(floorMod(fma(getExponent
(
hypot(incrementExact(log(log10(
log1p(max(min(multiplyExa
ct(
multiplyFull(multiplyHigh(negateExact(nextAfter(
nextDown(nextUp(pow(random()
rint(round(scalb(signum(
sin(sinh(sqrt(subtractExa
ct(
tan(tanh(toDegrees(toIntExact(
toRadians(ulp(

Now type l and hit the Tab key again. The method name is completed to log,
and you get a shorter list:

jshell> Math.log
log(log10(log1p(

Now you can fill in the rest by hand:

jshell> Math.log10(0.001)
$3 ==> -3.0

To repeat a command, hit the ↑ key until you see the line that you want to
reissue or edit. You can move the cursor in the line with the ← and → keys,
and add or delete characters. Hit Enter when you are done. For example, hit
and replace 0.001 with 1000, then hit Enter:

jshell> Math.log10(1000)
$4 ==> 3.0

JShell makes it easy and fun to learn about the Java language and library
without having to launch a heavy-duty development environment and
without fussing with public static void main.

In this chapter, you learned about the mechanics of compiling and running
Java programs. You are now ready to move on to Chapter 3 where you will
start learning the Java language.

Chapter 3. Fundamental Programming Structures
in Java

In this chapter

• 3.1 A Simple Java Program
• 3.2 Comments
• 3.3 Data Types
• 3.4 Variables and Constants
• 3.5 Operators
• 3.6 Strings
• 3.7 Input and Output
• 3.8 Control Flow
• 3.9 Big Numbers
• 3.10 Arrays

At this point, you should have successfully installed the JDK and executed
the sample programs from Chapter 2. It’s time to start programming. This
chapter shows you how the basic programming concepts such as data types,
branches, and loops are implemented in Java.

3.1 A Simple Java Program

Let’s look more closely at one of the simplest Java programs you can have—
one that merely prints a message to console:

public class FirstSample
{
 public static void main(String[] args)
 {
 System.out.println("We will not use 'Hello, World!'");

 }
}

It is worth spending all the time you need to become comfortable with the
framework of this sample; the pieces will recur in all applications. First and
foremost, Java is case sensitive. If you made any mistakes in capitalization
(such as typing Main instead of main), the program will not run.

Now let’s look at this source code line by line. The keyword public is called
an access modifier; these modifiers control the level of access other parts of
a program have to this code. For more about access modifiers, see Chapter 5.
The keyword class reminds you that everything in a Java program lives
inside a class. You will learn a lot more about classes in the next chapter. For
now, think of a class as a container for the program logic that defines the
behavior of an application. As mentioned in Chapter 1, classes are the
building blocks with which all Java applications are built. Everything in a
Java program must be inside a class.

Following the keyword class is the name of the class. The rules for class
names in Java are quite generous. Names must begin with a letter, and after
that, they can have any combination of letters and digits. The length is
essentially unlimited. You cannot use a Java reserved word (such as public
or class) for a class name. (See the appendix for a list of reserved words.)

The standard naming convention (used in the name FirstSample) is that class
names are nouns that start with an uppercase letter. If a name consists of
multiple words, use an initial uppercase letter in each of the words. This use
of uppercase letters in the middle of a name is sometimes called “camel
case” or, self-referentially, “CamelCase”.

You need to make the file name for the source code the same as the name of
the public class, with the extension .java appended. Thus, you must store
this code in a file called FirstSample.java. (Again, case is important—don’t
use firstsample.java.)

If you have named the file correctly and not made any typos in the source
code, then when you compile this source code, you end up with a file
containing the bytecodes for this class. The Java compiler automatically

names the bytecode file FirstSample.class and stores it in the same
directory as the source file. Finally, launch the program by issuing the
following command:

java FirstSample

(Remember to leave off the .class extension.) When the program executes,
it simply displays the string We will not use 'Hello, World!' on the
console.

When you use

java ClassName

to run a compiled program, the Java virtual machine always starts execution
with the code in the main method in the class you indicate. (The term
“method” is Java-speak for a function.) Thus, you must have a main method
in the source of your class for your code to execute. You can, of course, add
your own methods to a class and call them from the main method. (You will
see in the next chapter how to write your own methods.)

 NOTE:
According to the Java Language Specification, the main method must be
declared public. (The Java Language Specification is the official document
that describes the Java language. You can view or download it from
http://docs.oracle.com/javase/specs.)

However, several versions of the Java launcher were willing to execute Java
programs even when the main method was not public. A programmer filed a
bug report. To see it, visit https://bugs.openjdk.java.net/browse/JDK-
4252539. In 1999, that bug was marked as “closed, will not be fixed.” A Sun
engineer added an explanation that the Java Virtual Machine Specification
does not mandate that main is public and that “fixing it will cause potential

http://docs.oracle.com/javase/specs
https://bugs.openjdk.java.net/browse/JDK-4252539

troubles.” Fortunately, sanity prevailed. The Java launcher in Java 1.4 and
beyond enforces that the main method is public.

Of course, it is frustrating to have quality assurance engineers, who are
often overworked and not always experts in the fine points of Java, make
questionable decisions about bug reports. But it is remarkable that the bug
reports and their resolutions have been available for anyone to scrutinize,
long before Java was open source.

Notice the braces { } in the source code. In Java, as in C/C++, braces
delineate the parts (usually called blocks) in your program. In Java, the code
for any method must be started by an opening brace { and ended by a closing
brace }.

Brace styles have inspired an inordinate amount of useless controversy. This
book follows a style that lines up matching braces. As whitespace is
irrelevant to the Java compiler, you can use whatever brace style you like.

For now, don’t worry about the keywords static void—just think of them
as part of what you need to get a Java program to compile. By the end of
Chapter 4, you will understand this incantation completely. The point to
remember for now is that every Java application must have a main method
that is declared in the following way:

public class ClassName
{
 public static void main(String[] args)
 {
 program statements
 }
}

 C++ NOTE:

As a C++ programmer, you know what a class is. Java classes are similar to
C++ classes, but there are a few differences that can trap you. For example,
in Java all functions are methods of some class. (The standard terminology
refers to them as methods, not member functions.) Thus, in Java you must
have a shell class for the main method. You may also be familiar with the
idea of static member functions in C++. These are member functions defined
inside a class that do not operate on objects. The main method in Java is
always static. Finally, as in C/C++, the void keyword indicates that this
method does not return a value. Unlike C/C++, the main method does not
return an “exit code” to the operating system. If the main method exits
normally, the Java program has the exit code 0, indicating successful
completion. To terminate the program with a different exit code, use the
System.exit method.

Next, turn your attention to this fragment:

{
 System.out.println("We will not use 'Hello, World!'");
}

Braces mark the beginning and end of the body of the method. This method
has only one statement in it. As with most programming languages, you can
think of Java statements as sentences of the language. In Java, every
statement must end with a semicolon. In particular, carriage returns do not
mark the end of a statement, so statements can span multiple lines if need be.

The body of the main method contains a statement that outputs a single line
of text to the console.

Here, we are using the System.out object and calling its println method.
Notice the periods used to invoke a method. Java uses the general syntax

object.method(parameters)

as its equivalent of a function call.

In this case, the println method receives a string parameter. The method
displays the string parameter on the console. It then terminates the output
line, so that each call to println displays its output on a new line. Notice
that Java, like C/C++, uses double quotes to delimit strings. (You can find
more information about strings later in this chapter.)

Methods in Java, like functions in any programming language, can use zero,
one, or more parameters (some programmers call them arguments). Even if
a method takes no parameters, you must still use empty parentheses. For
example, a variant of the println method with no parameters just prints a
blank line. You invoke it with the call

System.out.println();

 NOTE:
System.out also has a print method that doesn’t add a newline character to
the output. For example, System.out.print("Hello") prints Hello without a
newline. The next output appears immediately after the letter o.

3.2 Comments

Comments in Java, as in most programming languages, do not show up in
the executable program. Thus, you can add as many comments as needed
without fear of bloating the code. Java has three ways of marking comments.
The most common form is a //. Use this for a comment that runs from the //
to the end of the line.

System.out.println("We will not use 'Hello, World!'"); // is
this too cute?

When longer comments are needed, you can mark each line with a //, or you
can use the /* and */ comment delimiters that let you block off a longer
comment.

Finally, a third kind of comment is used to generate documentation
automatically. This comment uses a /** to start and a */ to end. You can see
this type of comment in Listing 3.1. For more on this type of comment and
on automatic documentation generation, see Chapter 4.

Listing 3.1 FirstSample/FirstSample.java

 1 /**
 2 * This is the first sample program in Core Java Chapter 3
 3 * @version 1.01 1997-03-22
 4 * @author Gary Cornell
 5 */
 6 public class FirstSample
 7 {
 8 public static void main(String[] args)
 9 {
10 System.out.println("We will not use 'Hello, World!'");
11 }
12 }

 CAUTION:
/* */ comments do not nest in Java. That is, you might not be able to
deactivate code simply by surrounding it with /* and */ because the code
you want to deactivate might itself contain a */ delimiter.

3.3 Data Types

Java is a strongly typed language. This means that every variable must have
a declared type. There are eight primitive types in Java. Four of them are
integer types; two are floating-point number types; one is the character type
char, used for code units in the Unicode encoding scheme (see Section 3.3.3,
“The char Type,” on p. 43); and one is a boolean type for truth values.

 NOTE:
Java has an arbitrary-precision arithmetic package. However, “big
numbers,” as they are called, are Java objects and not a primitive Java type.
You will see how to use them later in this chapter.

3.3.1 Integer Types

The integer types are for numbers without fractional parts. Negative values
are allowed. Java provides the four integer types shown in Table 3.1.

Table 3.1 Java Integer Types

In most situations, the int type is the most practical. If you want to represent
the number of inhabitants of our planet, you’ll need to resort to a long. The
byte and short types are mainly intended for specialized applications, such
as low-level file handling, or for large arrays when storage space is at a
premium.

Under Java, the ranges of the integer types do not depend on the machine on
which you will be running the Java code. This alleviates a major pain for the
programmer who wants to move software from one platform to another, or
even between operating systems on the same platform. In contrast, C and
C++ programs use the most efficient integer type for each processor. As a
result, a C program that runs well on a 32-bit processor may exhibit integer

overflow on a 16-bit system. Since Java programs must run with the same
results on all machines, the ranges for the various types are fixed.

Long integer numbers have a suffix L or l (for example, 4000000000L).
Hexadecimal numbers have a prefix 0x or 0X (for example, 0xCAFE). Octal
numbers have a prefix 0 (for example, 010 is 8)—naturally, this can be
confusing, and few programmers use octal constants.

You can write numbers in binary, with a prefix 0b or 0B. For example, 0b1001
is 9. You can add underscores to number literals, such as 1_000_000 (or
0b1111_0100_0010_0100_0000) to denote one million. The underscores are for
human eyes only. The Java compiler simply removes them.

 C++ NOTE:
In C and C++, the sizes of types such as int and long depend on the target
platform. On a 16-bit processor such as the 8086, integers are 2 bytes, but
on a 32-bit processor like a Pentium or SPARC they are 4-byte quantities.
Similarly, long values are 4-byte on 32-bit processors and 8-byte on 64-bit
processors. These differences make it challenging to write cross-platform
programs. In Java, the sizes of all numeric types are platform-independent.

Note that Java does not have any unsigned versions of the int, long, short,
or byte types.

 NOTE:
If you work with integer values that can never be negative and you really
need an additional bit, you can, with some care, interpret signed integer
values as unsigned. For example, instead of having a byte value b represent
the range from –128 to 127, you may want a range from 0 to 255. You can
store it in a byte. Due to the nature of binary arithmetic, addition,
subtraction, and multiplication will work provided they don’t overflow. For

other operations, call Byte.toUnsignedInt(b) to get an int value between 0
and 255, then process the integer value and cast back to byte. The Integer
and Long classes have methods for unsigned division and remainder.

3.3.2 Floating-Point Types

The floating-point types denote numbers with fractional parts. The two
floating-point types are shown in Table 3.2.

Table 3.2 Floating-Point Types

The name double refers to the fact that these numbers have twice the
precision of the float type. (Some people call these double-precision
numbers.) The limited precision of float (6–7 significant digits) is simply
not sufficient for many situations. Use float values only when you work
with a library that requires them, or when you need to store a very large
number of them.

Numbers of type float have a suffix F or f (for example, 3.14F). Floating-
point numbers without an F suffix (such as 3.14) are always considered to be
of type double. You can optionally supply the D or d suffix (for example,
3.14D).

An E or e denotes a decimal exponent. For example, 1.729E3 is the same as
1729.

 NOTE:

You can specify floating-point literals in hexadecimal. For example, 0.125 =
2–3 can be written as 0x1.0p-3. In hexadecimal notation, you use a p, not an
e, to denote the exponent. (An e is a hexadecimal digit.) Note that the
mantissa is written in hexadecimal and the exponent in decimal. The base of
the exponent is 2, not 10.

All floating-point computations follow the IEEE 754 specification. In
particular, there are three special floating-point values to denote overflows
and errors:

• Positive infinity
• Negative infinity
• NaN (not a number)

For example, the result of dividing a positive number by 0 is positive
infinity. Computing 0/0 or the square root of a negative number yields NaN.

 NOTE:
The constants Double.POSITIVE_INFINITY, Double.NEGATIVE_INFINITY, and
Double.NaN (as well as corresponding Float constants) represent these
special values, but they are rarely used in practice. In particular, you cannot
test

if (x == Double.NaN) // is never true

to check whether a particular result equals Double.NaN. All “not a number”
values are considered distinct. However, you can use the Double.isNaN
method:

if (Double.isNaN(x)) // check whether x is "not a number"

 CAUTION:
Floating-point numbers are not suitable for financial calculations in which
roundoff errors cannot be tolerated. For example, the command
System.out.println(2.0 - 1.1) prints 0.8999999999999999, not 0.9 as you
would expect. Such roundoff errors are caused by the fact that floating-point
numbers are represented in the binary number system. There is no precise
binary representation of the fraction 1/10, just as there is no accurate
representation of the fraction 1/3 in the decimal system. If you need precise
numerical computations without roundoff errors, use the BigDecimal class,
which is introduced later in this chapter.

3.3.3 The char Type

The char type was originally intended to describe individual characters.
However, this is no longer the case. Nowadays, some Unicode characters
can be described with one char value, and other Unicode characters require
two char

values. Read the next section for the gory details.

Literal values of type char are enclosed in single quotes. For example, 'A' is
a character constant with value 65. It is different from "A", a string
containing a single character. Values of type char can be expressed as
hexadecimal values that run from \u0000 to \uFFFF. For example, \u2122 is
the trademark symbol (™) and \u03C0 is the Greek letter pi (π).

Besides the \u escape sequences, there are several escape sequences for
special characters, as shown in Table 3.3. You can use these escape
sequences inside quoted character literals and strings, such as '\u2122' or
"Hello\n". The \u escape sequence (but none of the other escape sequences)
can even be used outside quoted character constants and strings. For
example,

public static void main(String\u005B\u005D args)

is perfectly legal—\u005B and \u005D are the encodings for [and].

Table 3.3 Escape Sequences for Special Characters

 CAUTION:
Unicode escape sequences are processed before the code is parsed. For
example, "\u0022+\u0022" is not a string consisting of a plus sign
surrounded by quotation marks (U+0022). Instead, the \u0022 are converted
into " before parsing, yielding ""+"", or an empty string.

Even more insidiously, you must beware of \u inside comments. The
comment

// \u000A is a newline

yields a syntax error since \u000A is replaced with a newline when the
program is read. Similarly, a comment

// look inside c:\users

yields a syntax error because the \u is not followed by four hex digits.

 NOTE:
You can have any number of u in a Unicode escape sequence: \uu0022 and
\uuu0022 also denote the quotation mark character. There is a reason for this
oddity. Consider a programmer happily coding in Unicode who is forced,
for some archaic reason, to check in code as ASCII only. A conversion tool
can turn any character > U+007F into a Unicode escape and add a u to every
existing Unicode escape. That makes the conversion reversible. For
example, \uD800 ™ is turned into \uuD800 \u2122 and can be converted back
to \uD800 ™.

3.3.4 Unicode and the char Type

To fully understand the char type, you have to know about the Unicode
encoding scheme. Unicode was invented to overcome the limitations of
traditional character encoding schemes. Before Unicode, there were many
different standards: ASCII in the United States, ISO 8859–1 for Western
European languages, KOI-8 for Russian, GB18030 and BIG-5 for Chinese,
and so on. This caused two problems. First, a particular code value
corresponds to different letters in the different encoding schemes. Second,
the encodings for languages with large character sets have variable length:
Some common characters are encoded as single bytes, others require two or
more bytes.

Unicode was designed to solve these problems. When the unification effort
started in the 1980s, a fixed 2-byte code was more than sufficient to encode
all characters used in all languages in the world, with room to spare for
future expansion—or so everyone thought at the time. In 1991, Unicode 1.0
was released, using slightly less than half of the available 65,536 code
values. Java was designed from the ground up to use 16-bit Unicode
characters, which was a major advance over other programming languages
that used 8-bit characters.

Unfortunately, over time, the inevitable happened. Unicode grew beyond
65,536 characters, primarily due to the addition of a very large set of
ideographs used for Chinese, Japanese, and Korean. Now, the 16-bit char
type is insufficient to describe all Unicode characters.

We need a bit of terminology to explain how this problem is resolved in
Java. A code point is a code value that is associated with a character in an
encoding scheme. In the Unicode standard, code points are written in
hexadecimal and prefixed with U+, such as U+0041 for the code point of the
Latin letter A. Unicode has code points that are grouped into 17 code planes.
The first code plane, called the basic multilingual plane, consists of the
“classic” Unicode characters with code points U+0000 to U+FFFF. Sixteen
additional planes, with code points U+10000 to U+10FFFF, hold the
supplementary characters.

The UTF-16 encoding represents all Unicode code points in a variable-
length code. The characters in the basic multilingual plane are represented as
16-bit values, called code units. The supplementary characters are encoded
as consecutive pairs of code units. Each of the values in such an encoding
pair falls into a range of 2048 unused values of the basic multilingual plane,
called the surrogates area (U+D800 to U+DBFF for the first code unit, U+DC00 to
U+DFFF for the second code unit). This is rather clever, because you can
immediately tell whether a code unit encodes a single character or it is the
first or second part of a supplementary character. For example, (the
mathematical symbol for the set of octonions,
http://math.ucr.edu/home/baez/octonions) has code point U+1D546 and is
encoded by the two code units U+D835 and U+DD46. (See
https://tools.ietf.org/html/rfc2781 for a description of the encoding
algorithm.)

http://math.ucr.edu/home/baez/octonions
https://tools.ietf.org/html/rfc2781

In Java, the char type describes a code unit in the UTF-16 encoding.

I strongly recommend against using the char type in your programs unless
you are actually manipulating UTF-16 code units. You are almost always
better off treating strings as abstract data types—see Section 3.6, “Strings,”
on p. 61.

3.3.5 The boolean Type

The boolean type has two values, false and true. It is used for evaluating
logical conditions. You cannot convert between integers and boolean values.

 C++ NOTE:
In C++, numbers and even pointers can be used in place of boolean values.
The value 0 is equivalent to the bool value false, and a nonzero value is
equivalent to true. This is not the case in Java. Thus, Java programmers are
shielded from accidents such as

if (x = 0) // oops... meant x == 0

In C++, this test compiles and runs, always evaluating to false. In Java, the
test does not compile because the integer expression x = 0 cannot be
converted to a boolean value.

3.4 Variables and Constants

As in every programming language, variables are used to store values.
Constants are variables whose values don’t change. In the following
sections, you will learn how to declare variables and constants.

3.4.1 Declaring Variables

In Java, every variable has a type. You declare a variable by placing the type
first, followed by the name of the variable. Here are some examples:

double salary;
int vacationDays;
long earthPopulation;
boolean done;

Notice the semicolon at the end of each declaration. The semicolon is
necessary because a declaration is a complete Java statement, which must
end in a semicolon.

The identifier for a variable name (as well as for other names) is made up of
letters, digits, currency symbols, and “punctuation connectors”. The first
character cannot be a digit.

Symbols like '+' or '©' cannot be used inside variable names, nor can
spaces. Letter case is significant: main and Main are distinct identifiers. The
length of an identifier is essentially unlimited.

The terms “letter,” “digit,” and “currency symbol” are much broader in Java
than in most languages. A letter is any Unicode character that denotes a
letter in a language. For example, German users can use umlauts such as 'ä'
in variable names; Greek speakers could use a π. Similarly, digits are 0–9
and any Unicode characters that denote a digit. Currency symbols are $, €, ¥,
and so on. Punctuation connectors include the underscore character _, a
“wavy low line” , and a few others. In practice, most programmers stick to A-
Z, a-z, 0-9, and the underscore _.

 TIP:
If you are really curious as to what Unicode characters can be used in
identifiers, you can use the isJavaIdentifierStart and
isJavaIdentifierPart methods in the Character class to check.

 TIP:
Even though $ is a valid character in an identifier, you should not use it in
your own code. It is intended for names that are generated by the Java
compiler and other tools.

You also cannot use a Java keyword such as class as a variable name.

As of Java 9, a single underscore _ is a reserved word. A future version of
Java may use _ as a wildcard symbol.

You can declare multiple variables on a single line:

int i, j; // both are integers

However, I don’t recommend this style. If you declare each variable
separately, your programs are easier to read.

 NOTE:
As you saw, names are case sensitive, for example, hireday and hireDay are
two separate names. In general, you should not have two names that only
differ in their letter case. However, sometimes it is difficult to come up with
a good name for a variable. Many programmers then give the variable the
same name as the type, for example

Box box; // "Box" is the type and "box" is the variable name

Other programmers prefer to use an “a” prefix for the variable:

Box aBox;

3.4.2 Initializing Variables

After you declare a variable, you must explicitly initialize it by means of an
assignment statement—you can never use the value of an uninitialized
variable. For example, the Java compiler flags the following sequence of
statements as an error:

int vacationDays;
System.out.println(vacationDays); // ERROR--variable not
initialized

You assign to a previously declared variable by using the variable name on
the left, an equal sign (=), and then some Java expression with an appropriate
value on the right.

int vacationDays;
vacationDays = 12;

You can both declare and initialize a variable on the same line. For example:

int vacationDays = 12;

Finally, in Java you can put declarations anywhere in your code. For
example, the following is valid code in Java:

double salary = 65000.0;
System.out.println(salary);
int vacationDays = 12; // OK to declare a variable here

In Java, it is considered good style to declare variables as closely as possible
to the point where they are first used.

 NOTE:

Starting with Java 10, you do not need to declare the types of local variables
if they can be inferred from the initial value. Simply use the keyword var
instead of the type:

var vacationDays = 12; // vacationDays is an int
var greeting = "Hello"; // greeting is a String

As you will see in the next chapter, this feature can make the declaration of
objects less verbose.

 C++ NOTE:
C and C++ distinguish between the declaration and definition of a variable.
For example,

int i = 10;

is a definition, whereas

extern int i;

is a declaration. In Java, no declarations are separate from definitions.

3.4.3 Constants

In Java, you use the keyword final to denote a constant. For example:

public class Constants
{
 public static void main(String[] args)
 {
 final double CM_PER_INCH = 2.54;

 double paperWidth = 8.5;
 double paperHeight = 11;
 System.out.println("Paper size in centimeters: "
 + paperWidth * CM_PER_INCH + " by " + paperHeight *
CM_PER_INCH);
 }
}

The keyword final indicates that you can assign to the variable once, and
then its value is set once and for all. It is customary to name constants in all
uppercase.

It is probably more common in Java to create a constant so it’s available to
multiple methods inside a single class. These are usually called class
constants.

Set up a class constant with the keywords static final. Here is an example
of using a class constant:

public class Constants2
{
 public static final double CM_PER_INCH = 2.54;

 public static void main(String[] args)
 {
 double paperWidth = 8.5;
 double paperHeight = 11;
 System.out.println("Paper size in centimeters: "
 + paperWidth * CM_PER_INCH + " by " + paperHeight *
CM_PER_INCH);
 }
}

Note that the definition of the class constant appears outside the main
method. Thus, the constant can also be used in other methods of the same
class. Furthermore, if the constant is declared, as in this example, public,
methods of other classes can also use it—in our example, as
Constants2.CM_PER_INCH.

 C++ NOTE:
const is a reserved Java keyword, but it is not currently used for anything.
You must use final for a constant.

3.4.4 Enumerated Types

Sometimes, a variable should only hold a restricted set of values. For
example, you may sell clothes or pizza in four sizes: small, medium, large,
and extra large. Of course, you could encode these sizes as integers 1, 2, 3, 4
or characters

S, M, L, and X. But that is an error-prone setup. It is too easy for a variable to
hold a wrong value (such as 0 or m).

You can define your own enumerated type whenever such a situation arises.
An enumerated type has a finite number of named values. For example,

enum Size { SMALL, MEDIUM, LARGE, EXTRA_LARGE };

Now you can declare variables of this type:

Size s = Size.MEDIUM;

A variable of type Size can hold only one of the values listed in the type
declaration, or the special value null that indicates that the variable is not set
to any value at all.

Enumerated types are discussed in greater detail in Chapter 5.

3.5 Operators

Operators are used to combine values. As you will see in the following
sections, Java has a rich set of arithmetic and logical operators and

mathematical functions.

3.5.1 Arithmetic Operators

The usual arithmetic operators +, -, *, / are used in Java for addition,
subtraction, multiplication, and division. The / operator denotes integer
division if both arguments are integers, and floating-point division
otherwise. Integer remainder (sometimes called modulus) is denoted by %.
For example, 15 / 2 is 7, 15 % 2 is 1, and 15.0 / 2 is 7.5.

Note that integer division by 0 raises an exception, whereas floating-point
division by 0 yields an infinite or NaN result.

 NOTE:
One of the stated goals of the Java programming language is portability. A
computation should yield the same results no matter which virtual machine
executes it. For arithmetic computations with floating-point numbers, it can
be surprisingly difficult to achieve this portability. The double type uses 64
bits to store a numeric value, but some processors use 80-bit floating-point
registers. These registers yield added precision in intermediate steps of a
computation.

But the result may be different from a computation that uses 64 bits
throughout. For perfect portability, the initial specification of the Java
virtual machine mandated that all intermediate computations must be
truncated to 64 bit. The numeric community hated it. The computations
were slower because the truncation operations took time on popular
processors. For that reason, the Java programming language was updated to
recognize the conflicting demands for optimum performance and perfect
reproducibility. Virtual machine designers were permitted to use extended
precision for intermediate computations. However, methods tagged with the
strictfp keyword had to use strict floating-point operations that yield
reproducible results.

Processors have become more flexible, and they can now carry out 64-bit
arithmetic efficiently. As of Java 17, the virtual machine is again required to
carry out strict 64-bit arithmetic, and the strictfp keyword is now obsolete.

3.5.2 Mathematical Functions and Constants

The Math class contains an assortment of mathematical functions that you
may occasionally need, depending on the kind of programming that you do.

To take the square root of a number, use the sqrt method:

double x = 4;
double y = Math.sqrt(x);
System.out.println(y); // prints 2.0

 NOTE:
There is a subtle difference between the println method and the sqrt
method. The println method operates on the System.out object. But the
sqrt method in the Math class does not operate on any object. Such a method
is called a static method. You can learn more about static methods in
Chapter 4.

The Java programming language has no operator for raising a quantity to a
power: You must use the pow method in the Math class. The statement

double y = Math.pow(x, a);

sets y to be x raised to the power a (xa). The pow method’s parameters are
both of type double, and it returns a double as well.

The floorMod method aims to solve a long-standing problem with integer
remainders. Consider the expression n % 2. Everyone knows that this is 0 if n
is even and 1 if n is odd. Except, of course, when n is odd and negative. Then
it is -1. Why? When the first computers were built, someone had to make
rules for how integer division and remainder should work for negative
operands. Mathematicians had known the optimal (or “Euclidean”) rule for a
few hundred years: always leave the remainder ≥ 0. But, rather than open a
math textbook, those pioneers came up with rules that seemed reasonable but
are actually inconvenient.

Consider this problem. You compute the position of the hour hand of a
clock. An adjustment is applied, and you want to normalize to a number
between 0 and 11. That is easy: (position + adjustment) % 12. But what if
the adjustment is negative? Then you might get a negative number. So you
have to introduce a branch, or use ((position + adjustment) % 12 + 12) %
12. Either way, it is a hassle.

The floorMod method makes it easier: floorMod(position + adjustment,
12) always yields a value between 0 and 11. (Unfortunately, floorMod gives
negative results for negative divisors, but that situation doesn’t often occur
in practice.)

The Math class supplies the usual trigonometric functions:

Math.sin
Math.cos
Math.tan
Math.atan
Math.atan2

and the exponential function with its inverse, the natural logarithm, as well
as the decimal logarithm:

Math.exp
Math.log
Math.log10

Finally, two constants denote the closest possible approximations to the
mathematical constants π and e:

Math.PI
Math.E

 TIP:
You can avoid the Math prefix for the mathematical methods and constants
by adding the following line to the top of your source file:

import static java.lang.Math.*;

For example:

System.out.println("The square root of \u03C0 is " + sqrt(PI));

Static imports are covered in Chapter 4.

 NOTE:
The methods in the Math class use the routines in the computer’s floating-
point unit for fastest performance. If completely predictable results are more
important than performance, use the StrictMath class instead. It implements
the algorithms from the “Freely Distributable Math Library”
(www.netlib.org/fdlibm), guaranteeing identical results on all platforms.

 NOTE:

http://www.netlib.org/fdlibm

The Math class provides several methods to make integer arithmetic safer.
The mathematical operators quietly return wrong results when a
computation overflows. For example, one billion times three (1000000000 *
3) evaluates to -1294967296 because the largest int value is just over two
billion. If you call Math.multiplyExact(1000000000, 3) instead, an
exception is generated. You can catch that exception or let the program
terminate rather than quietly continue with a wrong result. There are also
methods addExact, subtractExact, incrementExact, decrementExact,
negateExact, and absExact, all with int and long parameters.

3.5.3 Conversions between Numeric Types

It is often necessary to convert from one numeric type to another. Figure 3.1
shows the legal conversions.

Figure 3.1 Legal conversions between numeric types

The six solid arrows in Figure 3.1 denote conversions without information
loss. The three dotted arrows denote conversions that may lose precision.

For example, a large integer such as 123456789 has more digits than the
float

type can represent. When the integer is converted to a float, the resulting
value has the correct magnitude but loses some precision.

int n = 123456789;
float f = n; // f is 1.23456792E8

When two values are combined with a binary operator (such as n + f where
n is an integer and f is a floating-point value), both operands are converted to
a common type before the operation is carried out.

• If either of the operands is of type double, the other one will be converted
to a double.

• Otherwise, if either of the operands is of type float, the other one will be
converted to a float.

• Otherwise, if either of the operands is of type long, the other one will be
converted to a long.

• Otherwise, both operands will be converted to an int.

3.5.4 Casts

In the preceding section, you saw that int values are automatically
converted to double values when necessary. On the other hand, there are
obviously times when you want to consider a double as an integer. Numeric
conversions are possible in Java, but of course information may be lost.
Conversions in which loss of information is possible are done by means of
casts. The syntax for casting is to give the target type in parentheses,
followed by the variable name. For example:

double x = 9.997;
int nx = (int) x;

Now, the variable nx has the value 9 because casting a floating-point value to
an integer discards the fractional part.

If you want to round a floating-point number to the nearest integer (which in
most cases is a more useful operation), use the Math.round method:

double x = 9.997;
int nx = (int) Math.round(x);

Now the variable nx has the value 10. You still need to use the cast (int)
when you call round. The reason is that the return value of the round method
is a long, and a long can only be assigned to an int with an explicit cast
because there is the possibility of information loss.

 CAUTION:
If you try to cast a number of one type to another that is out of range for the
target type, the result will be a truncated number that has a different value.
For example, (byte) 300 is actually 44.

 C++ NOTE:
You cannot cast between boolean values and any numeric type. This
convention prevents common errors. In the rare case when you want to
convert a boolean value to a number, you can use a conditional expression
such as b ? 1 : 0.

3.5.5 Assignment

There is a convenient shortcut for using binary operators in an assignment.
For example,

x += 4;

is equivalent to

x = x + 4;

(In general, place the operator to the left of the = sign, such as *= or %=.)

 CAUTION:
If the operator yields a value whose type is different from that of the left-
hand side, then it is coerced to fit. For example, if x is an int, then the
statement

x += 3.5;

is valid, setting x to (int)(x + 3.5).

Note that in Java, an assignment is an expression. That is, it has a value—
namely, the value that is being assigned. You can use that value—for
example, to assign it to another variable. Consider these statements:

int x = 1;
int y = x += 4;

The value of x += 4 is 5, since that’s the value that is being assigned to x.
Next, that value is assigned to y.

Many programmers find such nested assignments confusing and prefer to
write them more clearly, like this:

int x = 1;
x += 4;

int y = x;

3.5.6 Increment and Decrement Operators

Programmers, of course, know that one of the most common operations with
a numeric variable is to add or subtract 1. Java, following in the footsteps of
C and C++, has both increment and decrement operators: n++ adds 1 to the
current value of the variable n, and n-- subtracts 1 from it. For example, the
code

int n = 12;
n++;

changes n to 13. Since these operators change the value of a variable, they
cannot be applied to numbers themselves. For example, 4++ is not a legal
statement.

There are two forms of these operators; you’ve just seen the postfix form of
the operator that is placed after the operand. There is also a prefix form, ++n.
Both change the value of the variable by 1. The difference between the two
appears only when they are used inside expressions. The prefix form does
the addition first; the postfix form evaluates to the old value of the variable.

int m = 7;
int n = 7;
int a = 2 * ++m; // now a is 16, m is 8
int b = 2 * n++; // now b is 14, n is 8

Many programmers find this behavior confusing. In Java, using ++ inside
expressions is uncommon.

3.5.7 Relational and boolean Operators

Java has the full complement of relational operators. To test for equality, use
a double equal sign, ==. For example, the value of

3 == 7

is false.

Use a != for inequality. For example, the value of

3 != 7

is true.

Finally, you have the usual < (less than), > (greater than), <= (less than or
equal), and >= (greater than or equal) operators. Java, following C++, uses &&
for the logical “and” operator and || for the logical “or” operator. As you
can easily remember from the != operator, the exclamation point ! is the
logical negation operator. The && and || operators are evaluated in “short
circuit” fashion: The second argument is not evaluated if the first argument
already determines the value. If you combine two expressions with the &&
operator,

expression1 && expression2

and the truth value of the first expression has been determined to be false,
then it is impossible for the result to be true. Thus, the value for the second
expression is not calculated. This behavior can be exploited to avoid errors.
For example, in the expression

x != 0 && 1 / x > x + y // no division by 0

the second part is never evaluated if x equals zero. Thus, 1 / x is not
computed if x is zero, and no divide-by-zero error can occur.

Similarly, the value of expression1 || expression2 is automatically true if
the first expression is true, without evaluating the second expression.

3.5.8 The Conditional Operator

Java provides the conditional ?: operator that selects a value, depending on a
Boolean expression. The expression condition ? expression1 : expression2
evaluates to the first expression if the condition is true, to the second
expression otherwise. For example,

x < y ? x : y

gives the smaller of x and y.

3.5.9 Switch Expressions

If you need to choose among more than two values, then you can use a
switch expression (as of Java 14). It looks like this:

String seasonName = switch (seasonCode)
 {
 case 0 -> "Spring";
 case 1 -> "Summer";
 case 2 -> "Fall";
 case 3 -> "Winter";
 default -> "???";
 };

The case labels can also be strings or constants of an enumerated type.

 NOTE:
The switch expression, like every expression, has a value. Note the -> arrow
preceding the value in each branch.

 NOTE:

As of Java 14, there are four (!) forms of switch. This section focuses on the
most useful one. See Section 3.8.5, “Multiple Selections with switch,” on p.
98 for a thorough discussion of all forms of switch expressions and
statements.

You can provide multiple labels for each case, separated by commas:

int numLetters = switch (seasonName)
 {
 case "Spring", "Summer", "Winter" -> 6;
 case "Fall" -> 4;
 default -> -1;
 };

When you use the switch expression with enumerated constants, you need
not supply the name of the enumeration in each label—it is deduced from
the

switch value. For example:
enum Size { SMALL, MEDIUM, LARGE, EXTRA_LARGE }; . . .
Size itemSize = . . .;
String label = switch (itemSize)
 {
 case SMALL -> "S"; // no need to use Size.SMALL
 case MEDIUM -> "M";
 case LARGE -> "L";
 case EXTRA_LARGE -> "XL";
 };

In the example, it was legal to omit the default since there was a case for
each possible value.

 CAUTION:

A switch expression with an integer or String operand must always have a
default since it must yield a value, no matter what the operand value is.

 CAUTION:
If the operand is null, a NullPointerException is thrown.

3.5.10 Bitwise Operators

For any of the integer types, you have operators that can work directly with
the bits that make up the integers. This means that you can use masking
techniques to get at individual bits in a number. The bitwise operators are

& (“and”) | (“or”) ^ (“xor”) ~ (“not”)

These operators work on bit patterns. For example, if n is an integer variable,
then

int fourthBitFromRight = (n & 0b1000) / 0b1000;

gives you a 1 if the fourth bit from the right in the binary representation of n
is 1, and 0 otherwise. Using & with the appropriate power of 2 lets you mask
out all but a single bit.

 NOTE:
When applied to boolean values, the & and | operators yield a boolean value.
These operators are similar to the && and || operators, except that the & and
| operators are not evaluated in “short circuit” fashion—that is, both
arguments are evaluated before the result is computed.

There are also >> and << operators which shift a bit pattern right or left.
These operators are convenient when you need to build up bit patterns to do
bit masking:

int fourthBitFromRight = (n & (1 << 3)) >> 3;

Finally, a >>> operator fills the top bits with zero, unlike >> which extends
the sign bit into the top bits. There is no <<< operator.

 CAUTION:
The right-hand argument of the shift operators is reduced modulo 32 (unless
the left-hand argument is a long, in which case the right-hand argument is
reduced modulo 64). For example, the value of 1 << 35 is the same as 1 <<
3 or 8.

 C++ NOTE:
In C/C++, there is no guarantee as to whether >> performs an arithmetic
shift (extending the sign bit) or a logical shift (filling in with zeroes).
Implementors are free to choose whichever is more efficient. That means the
C/C++ >> operator may yield implementation-dependent results for negative
numbers. Java removes that uncertainty.

3.5.11 Parentheses and Operator Hierarchy

Table 3.4 shows the precedence of operators. If no parentheses are used,
operations are performed in the hierarchical order indicated. Operators on
the same level are processed from left to right, except for those that are
right-associative, as indicated in the table. For example, && has a higher
precedence than ||, so the expression

a && b || c

means

(a && b) || c

Since += associates right to left, the expression

a += b += c

means

a += (b += c)

That is, the value of b += c (which is the value of b after the addition) is
added to a.

Table 3.4 Operator Precedence

 C++ NOTE:
Unlike C or C++, Java does not have a comma operator. However, you can
use a comma-separated list of expressions in the first and third slot of a for
statement.

3.6 Strings

Conceptually, Java strings are sequences of Unicode characters. For
example, the string "Java\u2122" consists of the five Unicode characters J, a,
v, a, and ™. Java does not have a built-in string type. Instead, the standard
Java library contains a predefined class called, naturally enough, String.
Each quoted string is an instance of the String class:

String e = ""; // an empty string
String greeting = "Hello";

3.6.1 Substrings

You can extract a substring from a larger string with the substring method
of the String class. For example,

String greeting = "Hello";
String s = greeting.substring(0, 3);

creates a string consisting of the characters "Hel".

 NOTE:
Like C and C++, Java counts code units and code points in strings starting
with 0.

The second parameter of substring is the first position that you do not want
to copy. In our case, we want to copy positions 0, 1, and 2 (from position 0
to position 2 inclusive). As substring counts it, this means from position 0
inclusive to position 3 exclusive.

There is one advantage to the way substring works: Computing the length
of the substring is easy. The string s.substring(a, b) always has length b –
a. For example, the substring "Hel" has length 3 – 0 = 3.

3.6.2 Concatenation

Java, like most programming languages, allows you to use + to join
(concatenate) two strings.

String expletive = "Expletive";
String PG13 = "deleted";
String message = expletive + PG13;

The preceding code sets the variable message to the string
"Expletivedeleted". (Note the lack of a space between the words: The +
operator joins two strings in the order received, exactly as they are given.)

When you concatenate a string with a value that is not a string, the latter is
converted to a string. (As you will see in Chapter 5, every Java object can be
converted to a string.) For example,

int age = 13;
String rating = "PG" + age;

sets rating to the string "PG13".

This feature is commonly used in output statements. For example,

System.out.println("The answer is " + answer);

is perfectly acceptable and prints what you would expect (and with correct
spacing because of the space after the word is).

If you need to put multiple strings together, separated by a delimiter, use the
static join method:

String all = String.join(" / ", "S", "M", "L", "XL");
 // all is the string "S / M / L / XL"

As of Java 11, there is a repeat method:

String repeated = "Java".repeat(3); // repeated is
"JavaJavaJava"

3.6.3 Strings Are Immutable

The String class gives no methods that let you change a character in an
existing string. If you want to turn greeting into "Help!", you cannot
directly change the last positions of greeting into 'p' and '!'. If you are a C
programmer, this can make you feel pretty helpless. How are we going to
modify the string? In Java, it is quite easy: Concatenate the substring that
you want to keep with the characters that you want to replace.

String greeting = "Hello";
greeting = greeting.substring(0, 3) + "p!";

This declaration changes the current value of the greeting variable to
"Help!".

Since you cannot change the individual characters in a Java string, the
documentation refers to the objects of the String class as immutable. Just as
the number 3 is always 3, the string "Hello" will always contain the code-
unit sequence for the characters H, e, l, l, o. You cannot change these values.
Yet you can, as you just saw, change the contents of the string variable
greeting and make it refer to a different string, just as you can make a
numeric variable currently holding the value 3 hold the value 4.

Isn’t that a lot less efficient? It would seem simpler to change the code units
than to build up a whole new string from scratch. Well, yes and no. Indeed, it
isn’t efficient to generate a new string that holds the concatenation of "Hel"
and "p!". But immutable strings have one great advantage: The compiler can
arrange that strings are shared.

To understand how this works, think of the various strings as sitting in a
common pool. String variables then point to locations in the pool. If you
copy a string variable, both the original and the copy share the same
characters.

Overall, the designers of Java decided that the efficiency of sharing
outweighs the inefficiency of string editing by extracting substrings and
concatenating. Look at your own programs; most of the time, you probably
don’t change strings—you just compare them. (There is one common
exception—assembling strings from individual characters or from shorter
strings that come from the keyboard or a file. For these situations, Java
provides a separate class—see Section 3.6.9, “Building Strings,” on p. 73.)

 C++ NOTE:
C programmers are generally bewildered when they see Java strings for the
first time because they think of strings as arrays of characters:

char greeting[] = "Hello";

That is a wrong analogy: A Java string is roughly analogous to a char*
pointer,

char* greeting = "Hello";

When you replace greeting with another string, the Java code does roughly
the following:

char* temp = malloc(6);
strncpy(temp, greeting, 3);
strncpy(temp + 3, "p!", 3);
greeting = temp;

Sure, now greeting points to the string "Help!". And even the most
hardened C programmer must admit that the Java syntax is more pleasant
than a sequence of strncpy calls. But what if we make another assignment
to greeting?

greeting = "Howdy";

Don’t we have a memory leak? After all, the original string was allocated on
the heap. Fortunately, Java does automatic garbage collection. If a block of
memory is no longer needed, it will eventually be recycled.

If you are a C++ programmer and use the string class defined by ANSI
C++, you will be much more comfortable with the Java String type. C++
string objects also perform automatic allocation and deallocation of
memory. The memory management is performed explicitly by constructors,
assignment operators, and destructors. However, C++ strings are mutable—
you can modify individual characters in a string.

3.6.4 Testing Strings for Equality

To test whether two strings are equal, use the equals method. The expression

s.equals(t)

returns true if the strings s and t are equal, false otherwise. Note that s and
t

can be string variables or string literals. For example, the expression

"Hello".equals(greeting)

is perfectly legal. To test whether two strings are identical except for the
upper/lowercase letter distinction, use the equalsIgnoreCase method.

"Hello".equalsIgnoreCase("hello")

Do not use the == operator to test whether two strings are equal! It only
determines whether or not the strings are stored in the same location. Sure, if
strings are in the same location, they must be equal. But it is entirely
possible to store multiple copies of identical strings in different places.

String greeting = "Hello"; // initialize greeting to a string
if (greeting == "Hello") . . .
 // probably true
if (greeting.substring(0, 3) == "Hel") . . .
 // probably false

If the virtual machine always arranges for equal strings to be shared, then
you could use the == operator for testing equality. But only string literals are
shared, not strings that are the result of operations like + or substring.
Therefore, never use == to compare strings lest you end up with a program
with the worst kind of bug—an intermittent one that seems to occur
randomly.

 C++ NOTE:
If you are used to the C++ string class, you have to be particularly careful
about equality testing. The C++ string class does overload the == operator
to test for equality of the string contents. It is perhaps unfortunate that Java
goes out of its way to give strings the same “look and feel” as numeric
values but then makes strings behave like pointers for equality testing. The
language designers could have redefined == for strings, just as they made a
special arrangement for +. Oh well, every language has its share of
inconsistencies.

C programmers never use == to compare strings but use strcmp instead. The
Java method compareTo is the exact analog of strcmp. You can use

if (greeting.compareTo("Hello") == 0) . . .

but it seems clearer to use equals instead.

3.6.5 Empty and Null Strings

The empty string "" is a string of length 0. You can test whether a string is
empty by calling

if (str.length() == 0)

or

if (str.equals(""))

An empty string is a Java object which holds the string length (namely, 0)
and an empty contents. However, a String variable can also hold a special
value, called null, that indicates that no object is currently associated with
the variable. (See Chapter 4 for more information about null.) To test
whether a string is null, use

if (str == null)

Sometimes, you need to test that a string is neither null nor empty. Then use

if (str != null && str.length() != 0)

You need to test that str is not null first. As you will see in Chapter 4, it is
an error to invoke a method on a null value.

3.6.6 Code Points and Code Units

Java strings are sequences of char values. As you saw in Section 3.3.3, “The
char Type,” on p. 43, the char data type is a code unit for representing
Unicode code points in the UTF-16 encoding. The most commonly used
Unicode characters can be represented with a single code unit. The
supplementary characters require a pair of code units.

The length method yields the number of code units required for a given
string in the UTF-16 encoding. For example:

String greeting = "Hello";
int n = greeting.length(); // is 5

To get the true length—that is, the number of code points—call

int cpCount = greeting.codePointCount(0, greeting.length());

The call s.charAt(n) returns the code unit at position n, where n is between 0
and s.length() – 1. For example:

char first = greeting.charAt(0); // first is 'H'
char last = greeting.charAt(4); // last is 'o'

To get at the ith code point, use the statements

int index = greeting.offsetByCodePoints(0, i);
int cp = greeting.codePointAt(index);

What is the fuss about code units? Consider the sentence

𝕆 is the set of octonions.

The character (U+1D546) requires two code units in the UTF-16 encoding.
Calling

char ch = sentence.charAt(1)

doesn’t return a space but the second code unit of . To avoid this problem,
you should not use the char type. It is too low-level.

 NOTE:

Don’t think that you can ignore exotic characters with code units above
U+FFFF. Your emoji-loving users may put characters such as (U+1F37A,
beer mug) into strings.

If your code traverses a string, and you want to look at each code point in
turn, you can use these statements:

int cp = sentence.codePointAt(i);
if (Character.isSupplementaryCodePoint(cp)) i += 2;
else i++;

You can move backwards with the following statements:

i--;
if (Character.isSurrogate(sentence.charAt(i))) i--;
int cp = sentence.codePointAt(i);

Obviously, that is quite painful. An easier way is to use the codePoints
method that yields a “stream” of int values, one for each code point.
(Streams are covered in Volume II.) You can just turn the stream into an
array (see Section 3.10, “Arrays,” on p. 109) and traverse that.

int[] codePoints = str.codePoints().toArray();

Conversely, to turn an array of code points to a string, use a constructor.
(Chapter 4 covers constructors and the new operator in detail.)

String str = new String(codePoints, 0, codePoints.length);

To turn a single code point into a string, use the Character.toString(int)
method:

int codePoint = 0x1F37A;
str = Character.toString(codePoint);

 NOTE:
The virtual machine does not have to implement strings as sequences of
code units. A more compact representation is used as of Java 9. Strings that
hold only single-byte code units use a byte array, and all others a char array.

3.6.7 The String API

The String class in Java contains close to 100 methods. The following API
note summarizes the most useful ones.

These API notes, found throughout the book, will help you understand the
Java Application Programming Interface (API). Each API note starts with
the name of a class, such as java.lang.String. (The significance of the so-
called package name java.lang is explained in Chapter 4.) The class name is
followed by the names, explanations, and parameter descriptions of one or
more methods.

The API notes do not list all methods of a particular class but present the
most commonly used ones in a concise form. For a full listing, consult the
online documentation (see Section 3.6.8, “Reading the Online API
Documentation,” on p. 70).

The number following the class name is the JDK version number in which it
was introduced. If a method has been added later, it has a separate version
number.

java.lang.String 1.0

• char charAt(int index)
returns the code unit at the specified location. You probably don’t
want to call this method unless you are interested in low-level code
units.

• int codePointAt(int index) 5
returns the code point that starts at the specified location.

• int offsetByCodePoints(int startIndex, int cpCount) 5
returns the index of the code point that is cpCount code points away
from the code point at startIndex.

• int compareTo(String other)
returns a negative value if the string comes before other in
dictionary order, a positive value if the string comes after other in
dictionary order, or 0 if the strings are equal.

• IntStream codePoints() 8
returns the code points of this string as a stream. Call toArray to put
them in an array.

• new String(int[] codePoints, int offset, int count) 5
constructs a string with the count code points in the array starting at
offset.

• boolean isEmpty()
boolean isBlank() 11
returns true if the string is empty or consists of whitespace.

• boolean equals(Object other)
returns true if the string equals other.

• boolean equalsIgnoreCase(String other)
returns true if the string equals other, except for upper/lowercase
distinction.

• boolean startsWith(String prefix)
• boolean endsWith(String suffix)

returns true if the string starts with prefix or ends with suffix.
• int indexOf(String str)
• int indexOf(String str, int fromIndex)

• int indexOf(int cp)
• int indexOf(int cp, int fromIndex)

returns the start of the first substring equal to the string str or the
code point cp, starting at index 0 or at fromIndex, or -1 if str or cp
does not occur in this string.

• int lastIndexOf(String str)
• int lastIndexOf(String str, int fromIndex)
• int lastindexOf(int cp)
• int lastindexOf(int cp, int fromIndex)

returns the start of the last substring equal to the string str or the
code point cp, starting at the end of the string or at fromIndex, or -1 if
str or cp does not occur.

• int length()
returns the number of code units of the string.

• int codePointCount(int startIndex, int endIndex) 5
returns the number of code points between startIndex and endIndex
– 1.

• String replace(CharSequence oldString, CharSequence

newString)

returns a new string that is obtained by replacing all substrings
matching oldString in the string with the string newString. You can
supply String or StringBuilder objects for the CharSequence

parameters.
• String substring(int beginIndex)
• String substring(int beginIndex, int endIndex)

returns a new string consisting of all code units from beginIndex
until the end of the string or until endIndex – 1.

• String toLowerCase()
• String toUpperCase()

returns a new string containing all characters in the original string,
with uppercase characters converted to lowercase, or lowercase
characters converted to uppercase.

• String strip() 11
String stripLeading() 11
String stripTrailing() 11
return a new string by eliminating leading and trailing, or just
leading or traling whitespace in the original string. Use these
methods instead of the archaic trim method that eliminates
characters ≤ U+0020.

• String join(CharSequence delimiter, CharSequence... elements)
8
returns a new string joining all elements with the given delimiter.

• String repeat(int count) 11
returns a string that repeats this string count times.

 NOTE:
In the API notes, there are a few parameters of type CharSequence. This is an
interface type to which all strings belong. You will learn about interface
types in Chapter 6. For now, you just need to know that you can pass
arguments of type String whenever you see a CharSequence parameter.

3.6.8 Reading the Online API Documentation

As you just saw, the String class has lots of methods. Furthermore, there are
thousands of classes in the standard libraries, with many more methods. It is
plainly impossible to remember all useful classes and methods. Therefore, it
is essential that you become familiar with the online API documentation that
lets you look up all classes and methods in the standard library. You can

download the API documentation from Oracle and save it locally, or you can
point your browser to
https://docs.oracle.com/en/java/javase/11/docs/api.

As of Java 9, the API documentation has a search box (see Figure 3.2).
Older versions have frames with lists of packages and classes. You can still
get those lists by clicking on the Frames menu item. For example, to get
more information on the methods of the String class, type “String” into the
search box and select the type java.lang.String, or locate the link in the
frame with class names and click it. You get the class description, as shown
in Figure 3.3.

Figure 3.2 The Java API documentation

https://docs.oracle.com/en/java/javase/11/docs/api

Figure 3.3 Class description for the String class

When you scroll down, you reach a summary of all methods, sorted in
alphabetical order (see Figure 3.4). Click on any method name for a detailed
description of that method (see Figure 3.5). For example, if you click on the
compareToIgnoreCase link, you’ll get the description of the
compareToIgnoreCase method.

Figure 3.4 Method summary of the String class

Figure 3.5 Detailed description of a String method

 TIP:
If you have not already done so, download the JDK documentation, as
described in Chapter 2. Bookmark the index.html page of the
documentation in your browser right now!

3.6.9 Building Strings

Occasionally, you need to build up strings from shorter strings, such as
keystrokes or words from a file. It would be inefficient to use string
concatenation for this purpose. Every time you concatenate strings, a new
String object is constructed. This is time consuming and wastes memory.
Using the StringBuilder class avoids this problem.

Follow these steps if you need to build a string from many small pieces.
First, construct an empty string builder:

StringBuilder builder = new StringBuilder();

Each time you need to add another part, call the append method.

builder.append(ch); // appends a single character
builder.append(str); // appends a string

When you are done building the string, call the toString method. You will
get a String object with the character sequence contained in the builder.

String completedString = builder.toString();

 NOTE:
The StringBuffer class is less efficient than StringBuilder, but it allows
multiple threads to add or remove characters. If all string editing happens in
a single thread (which is usually the case), you should use StringBuilder.
The APIs of both classes are identical.

The following API notes contain the most important methods for the
StringBuilder class.

java.lang.StringBuilder 5

• StringBuilder()
constructs an empty string builder.

• int length()
returns the number of code units of the builder or buffer.

• StringBuilder append(String str)
appends a string and returns this.

• StringBuilder append(char c)
appends a code unit and returns this.

• StringBuilder appendCodePoint(int cp)
appends a code point, converting it into one or two code units, and
returns this.

• void setCharAt(int i, char c)
sets the ith code unit to c.

• StringBuilder insert(int offset, String str)
inserts a string at position offset and returns this.

• StringBuilder insert(int offset, char c)

inserts a code unit at position offset and returns this.
• StringBuilder delete(int startIndex, int endIndex)

deletes the code units with offsets startIndex to endIndex – 1 and
returns this.

• String toString()
returns a string with the same data as the builder or buffer contents.

3.6.10 Text Blocks

The text block feature, added in Java 15, makes it easy to provide string
literals that span multiple lines. A text block starts with """, followed by a
line feed. The block ends with another """:

String greeting = """
Hello
World
""";

A text block is easier to read and write than the equivalent string literal:

"Hello\nWorld\n"

This string contains two \n: one after Hello and one after World. The newline
after the opening """ is not included in the string literal.

If you don’t want a newline after the last line, put the closing """
immediately after the last character:

String prompt = """
Hello, my name is Hal.
Please enter your name: """;

Text blocks are particularly suited for including code in some other
language, such as SQL or HTML. You can just paste it between the triple
quotes:

String html = """
<div class="Warning">
 Beware of those who say "Hello" to the world
</div>
""";

Note that you don’t have to escape the quotation marks. There are just two
situations where you need to escape them:

• If the text block ends in a quotation mark
• If the text block contains a sequence of three or more quotation marks

Unfortunately, you still need to escape all backslashes.

All escape sequences from regular strings work the same way in text blocks.

There is one escape sequence that only works in text blocks. A \ directly
before the end of a line joins this line and the next. For example,

"""
Hello, my name is Hal. \
Please enter your name: """;

is the same as

"Hello, my name is Hal. Please enter your name: "

Line endings are normalized by removing trailing whitespace and changing
any Windows line endings (\r\n) to simple newlines (\n). In the unlikely
case that you need to preserve trailing spaces, turn the last one into a \s
escape.

The story is more complex for leading white space. Consider a typical
variable declaration that is indented from the left margin. You can indent the
text block as well:

 String html = """
 <div class="Warning">
 Beware of those who say "Hello" to the world
 </div>
 """;

The indentation that is common to all lines in the text block is subtracted.
The actual string is

"<div class=\"Warning\">\n Beware of those who say \"Hello\"
to the world\n</div>\n"

Note that there are no indentations in the first and third line.

Your IDE may cheerfully offer to indent all text blocks, using only tabs, only
spaces, or an appropriate mix.

Java wisely does not prescribe the width of a tab. The white space prefix has
to match exactly for all lines in the text block.

Entirely blank lines are not considered in the indentation removal process.
However, the white space before the closing """ is significant. Be sure to
indent to the end of the white space that you want to have stripped.

 CAUTION:
Be careful about mixed tabs and spaces in the common prefix of an indented
text block. An overlooked space can easily yield a wrongly indented string.

 TIP:
If a text block contains code that isn’t Java, you may actually prefer to place
it at the left margin. It stands out from the Java code, and you have more
room for long lines.

3.7 Input and Output

To make our example programs more interesting, we want to accept input
and properly format the program output. Of course, modern programs use a
GUI for collecting user input. However, programming such an interface
requires more tools and techniques than we have at our disposal at this time.
Our first order of business is to become more familiar with the Java
programming language, so we use the humble console for input and output.

3.7.1 Reading Input

You saw that it is easy to print output to the “standard output stream” (that
is, the console window) just by calling System.out.println. Reading from
the “standard input stream” System.in isn’t quite as simple. To read console
input, you first construct a Scanner that is attached to System.in:

Scanner in = new Scanner(System.in);

(Constructors and the new operator are discussed in detail in Chapter 4.)

Now you can use the various methods of the Scanner class to read input. For
example, the nextLine method reads a line of input.

System.out.print("What is your name? ");
String name = in.nextLine();

Here, we use the nextLine method because the input might contain spaces.
To read a single word (delimited by whitespace), call

String firstName = in.next();

To read an integer, use the nextInt method.

System.out.print("How old are you? ");
int age = in.nextInt();

Similarly, the nextDouble method reads the next floating-point number.

The program in Listing 3.2 asks for the user’s name and age and then prints
a message like

Hello, Cay. Next year, you'll be 57

Finally, note the line

import java.util.*;

at the beginning of the program. The Scanner class is defined in the
java.util package. Whenever you use a class that is not defined in the basic
java.lang package, you need to use an import directive. Packages and
import directives are covered in more detail in Chapter 4.

Listing 3.2 InputTest/InputTest.java

 1 import java.util.*;
 2
 3 /**
 4 * This program demonstrates console input.
 5 * @version 1.10 2004-02-10
 6 * @author Cay Horstmann
 7 */
 8 public class InputTest
 9 {
10 public static void main(String[] args)
11 {

12 Scanner in = new Scanner(System.in);
13
14 // get first input
15 System.out.print("What is your name? ");
16 String name = in.nextLine();
17
18 // get second input
19 System.out.print("How old are you? ");
20 int age = in.nextInt();
21
22 // display output on console
23 System.out.println("Hello, " + name + ". Next year,
you'll be " + (age + 1));
24 }
25 }

 NOTE:
The Scanner class is not suitable for reading a password from a console
since the input is plainly visible to anyone. Use the Console class for this
purpose. To read a password, use the following code:

Console cons = System.console();
String username = cons.readLine("User name: ");
char[] passwd = cons.readPassword("Password: ");

For security reasons, the password is returned in an array of characters rather
than a string. After you are done processing the password, you should
immediately overwrite the array elements with a filler value. (Array
processing is discussed in Section 3.10, “Arrays,” on p. 109.)

Input processing with a Console object is not as convenient as with a
Scanner. You must read the input a line at a time. There are no methods for
reading individual words or numbers.

java.util.Scanner 5

• Scanner(InputStream in)
constructs a Scanner object from the given input stream.

• String nextLine()
reads the next line of input.

• String next()
reads the next word of input (delimited by whitespace).

• int nextInt()
• double nextDouble()

reads and converts the next character sequence that represents an
integer or floating-point number.

• boolean hasNext()
tests whether there is another word in the input.

• boolean hasNextInt()
• boolean hasNextDouble()

tests whether the next character sequence represents an integer or
floating-point number.

java.lang.System 1.0

• static Console console() 6
returns a Console object for interacting with the user through a
console window if such interaction is possible, null otherwise. A
Console object is available for any program that is launched in a
console window. Otherwise, the availability is system-dependent.

java.io.Console 6

• static char[] readPassword(String prompt, Object... args)
• static String readLine(String prompt, Object... args)

displays the prompt and reads the user input until the end of the input
line. The optional args parameters are used to supply formatting
arguments, as described in the next section.

3.7.2 Formatting Output

You can print a number x to the console with the statement
System.out.print(x). That command will print x with the maximum number
of nonzero digits for that type. For example,

double x = 10000.0 / 3.0;
System.out.print(x);

prints

3333.3333333333335

That is a problem if you want to display, for example, dollars and cents.

The remedy is the printf method, which follows the venerable conventions
from the C library. For example, the call

System.out.printf("%8.2f", x);

prints x with a field width of 8 characters and a precision of 2 characters.
That is, the printout contains a leading space and the seven characters

3333.33

You can supply multiple parameters to printf. For example:

System.out.printf("Hello, %s. Next year, you'll be %d", name,
age);

Each of the format specifiers that start with a % character is replaced with the
corresponding argument. The conversion character that ends a format
specifier indicates the type of the value to be formatted: f is a floating-point
number, s a string, and d a decimal integer. Table 3.5 shows all conversion
characters.

The uppercase variants produce uppercase letters. For example, "%8.2E"
formats 3333.33 as 3.33E+03, with an uppercase E.

Table 3.5 Conversions for printf

 NOTE:
You can use the s conversion to format arbitrary objects. If an arbitrary
object implements the Formattable interface, the object’s formatTo method
is invoked. Otherwise, the toString method is invoked to turn the object
into a string. The toString method is discussed in Chapter 5 and interfaces
in Chapter 6.

In addition, you can specify flags that control the appearance of the
formatted output. Table 3.6 shows all flags. For example, the comma flag
adds group separators. That is,

System.out.printf("%,.2f", 10000.0 / 3.0);

prints

3,333.33

You can use multiple flags, for example "%,(.2f" to use group separators
and enclose negative numbers in parentheses.

Table 3.6 Flags for printf

You can use the static String.format method to create a formatted string
without printing it:

String message = String.format("Hello, %s. Next year, you'll be
%d", name, age + 1);

 NOTE:
As of Java 15, you can use the formatted method instead, saving you five
characters:

String message = "Hello, %s. Next year, you'll be
%d".formatted(name, age + 1);

You have now seen all features of the printf method. Figure 3.6 shows a
syntax diagram for format specifiers.

Figure 3.6 Format specifier syntax

 NOTE:
Formatting is locale-specific. For example, in Germany, the group separator
is a period, not a comma. Chapter 7 of Volume II shows how to control the
international behavior of your applications.

3.7.3 File Input and Output

To read from a file, construct a Scanner object like this:

Scanner in = new Scanner(Path.of("myfile.txt"),
StandardCharsets.UTF_8);

If the file name contains backslashes, remember to escape each of them with
an additional backslash: "c:\\mydirectory\\myfile.txt".

Now you can read from the file, using any of the Scanner methods that you
already encountered.

 NOTE:
Here, we specify the UTF-8 character encoding, which is common (but not
universal) for files on the Internet. You need to know the character encoding
when you read a text file (see Volume II, Chapter 2 for more information). If
you omit the character encoding, then the “default encoding” of the
computer running the Java program is used. That is not a good idea—the
program might act differently depending on where it is run.

 CAUTION:
You can construct a Scanner with a string parameter, but the scanner
interprets the string as data, not a file name. For example, if you call

Scanner in = new Scanner("myfile.txt"); // ERROR?

then the scanner will see ten characters of data: 'm', 'y', 'f', and so on. That
is probably not what was intended in this case.

To write to a file, construct a PrintWriter object. In the constructor, supply
the file name and the character encoding:

PrintWriter out = new PrintWriter("myfile.txt",
StandardCharsets.UTF_8);

If the file does not exist, it is created. You can use the print, println, and
printf

commands as you did when printing to System.out.

 NOTE:
When you specify a relative file name, such as "myfile.txt",
"mydirectory/myfile.txt", or "../myfile.txt", the file is located relative
to the directory in which the Java virtual machine was started. If you
launched your program from a command shell, by executing

java MyProg

then the starting directory is the current directory of the command shell.
However, if you use an integrated development environment, it controls the
starting directory. You can find the directory location with this call:

String dir = System.getProperty("user.dir");

If you run into grief with locating files, consider using absolute path names
such as "c:\\mydirectory\\myfile.txt" or
"/home/me/mydirectory/myfile.txt".

As you saw, you can access files just as easily as you can use System.in and
System.out. There is just one catch: If you construct a Scanner with a file
that does not exist or a PrintWriter with a file name that cannot be created,
an exception occurs. The Java compiler considers these exceptions to be
more serious than a “divide by zero” exception, for example. In Chapter 7,
you will learn various ways of handling exceptions. For now, you should
simply tell the compiler that you are aware of the possibility of an
“input/output” exception. You do this by tagging the main method with a
throws clause, like this:

public static void main(String[] args) throws IOException
{
 Scanner in = new Scanner(Path.of("myfile.txt"),
StandardCharsets.UTF_8);
 . . .
}

You have now seen how to read and write files that contain textual data. For
more advanced topics, such as dealing with different character encodings,
processing binary data, reading directories, and writing zip files, turn to
Chapter 2 of Volume II.

 NOTE:
When you launch a program from a command shell, you can use the
redirection syntax of your shell and attach any file to System.in and
System.out:

java MyProg < myfile.txt > output.txt

Then, you need not worry about handling the IOException.

java.util.Scanner 5

• Scanner(Path p, String encoding)
constructs a Scanner that reads data from the given path, using the
given character encoding.

• Scanner(String data)
constructs a Scanner that reads data from the given string.

java.io.PrintWriter 1.1

• PrintWriter(String fileName)
constructs a PrintWriter that writes data to the file with the given
file name.

java.nio.file.Path

• static Path of(String pathname) 11
constructs a Path from the given path name.

3.8 Control Flow

Java, like any programming language, supports both conditional statements
and loops to determine control flow. I will start with the conditional
statements, then move on to loops, to end with the switch statement that you
can use to test for many values of a single expression.

 C++ NOTE:
The Java control flow constructs are identical to those in C and C++, with a
few exceptions. There is no goto, but there is a “labeled” version of break
that you can use to break out of a nested loop (where, in C, you perhaps
would have used a goto). Finally, there is a variant of the for loop that is
similar to the range-based for loop in C++ and the foreach loop in C#.

3.8.1 Block Scope

Before learning about control structures, you need to know more about
blocks.

A block, or compound statement, consists of a number of Java statements,
surrounded by a pair of braces. Blocks define the scope of your variables. A
block can be nested inside another block. Here is a block that is nested inside
the block of the main method:

public static void main(String[] args)
{
 int n;
 . . .
 {
 int k;
 . . .
 } // k is only defined up to here
}

You may not declare identically named local variables in two nested blocks.
For example, the following is an error and will not compile:

public static void main(String[] args)
{
 int n;
 . . .
 {
 int k;
 int n; // ERROR--can't redeclare n in inner block
 . . .
 }
}

 C++ NOTE:
In C++, it is possible to redefine a variable inside a nested block. The inner
definition then shadows the outer one. This can be a source of programming
errors; hence, Java does not allow it.

3.8.2 Conditional Statements

The conditional statement in Java has the form

if (condition) statement

The condition must be surrounded by parentheses.

In Java, as in most programming languages, you will often want to execute
multiple statements when a single condition is true. In this case, use a block
statement that takes the form

{

 statement1
 statement2
 . . .
}

For example:

if (yourSales >= target)
{
 performance = "Satisfactory";
 bonus = 100;
}

In this code all the statements surrounded by the braces will be executed
when yourSales is greater than or equal to target (see Figure 3.7).

 NOTE:
A block (sometimes called a compound statement) enables you to have
more than one (simple) statement in any Java programming structure that
otherwise allows for a single (simple) statement.

The more general conditional in Java looks like this (see Figure 3.8):

if (condition) statement1 else statement2

For example:

if (yourSales >= target)
{
 performance = "Satisfactory";
 bonus = 100 + 0.01 * (yourSales - target);
}

Figure 3.7 Flowchart for the if statement

else
{
 performance = "Unsatisfactory";
 bonus = 0;
}

The else part is always optional. An else groups with the closest if. Thus,
in the statement

if (x <= 0) if (x == 0) sign = 0; else sign = -1;

the else belongs to the second if. Of course, it is a good idea to use braces
to clarify this code:

if (x <= 0) { if (x == 0) sign = 0; else sign = -1; }

Repeated if . . . else if . . . alternatives are common (see Figure 3.9).
For example:

Figure 3.8 Flowchart for the if/else statement

if (yourSales >= 2 * target)
{
 performance = "Excellent";
 bonus = 1000;
}
else if (yourSales >= 1.5 * target)
{
 performance = "Fine";
 bonus = 500;
}
else if (yourSales >= target)
{
 performance = "Satisfactory";
 bonus = 100;
}
else
{
 System.out.println("You're fired");
}

Figure 3.9 Flowchart for the if/else if (multiple branches)

3.8.3 Loops

The while loop executes a statement (which may be a block statement) while
a condition is true. The general form is

while (condition) statement

The while loop will never execute if the condition is false at the outset (see
Figure 3.10).

Figure 3.10 Flowchart for the while statement

The program in Listing 3.3 determines how long it will take to save a
specific amount of money for your well-earned retirement, assuming you
deposit the same amount of money per year and the money earns a specified
interest rate. In the example, we are incrementing a counter and updating the

amount currently accumulated in the body of the loop until the total exceeds
the targeted amount.

while (balance < goal)
{
 balance += payment;
 double interest = balance * interestRate / 100;
 balance += interest;
 years++;
}
System.out.println(years + " years.");

(Don’t rely on this program to plan for your retirement. It lacks a few
niceties such as inflation and your life expectancy.)

A while loop tests at the top. Therefore, the code in the block might never be
executed. If you want to make sure a block is executed at least once, you
need to move the test to the bottom, using the do/while loop. Its syntax looks
like this:

do statement while (condition);

This loop executes the statement (which is typically a block) and only then
tests the condition. If it’s true, it repeats the statement and retests the
condition, and so on. The code in Listing 3.4 computes the new balance in
your retirement account and then asks if you are ready to retire:

do
{
 balance += payment;
 double interest = balance * interestRate / 100;
 balance += interest;
 years++;
 // print current balance
 . . .
 // ask if ready to retire and get input
 . . .

}
while (input.equals("N"));

As long as the user answers "N", the loop is repeated (see Figure 3.11). This
program is a good example of a loop that needs to be entered at least once,
because the user needs to see the balance before deciding whether it is
sufficient for retirement.

Figure 3.11 Flowchart for the do/while statement

Listing 3.3 Retirement/Retirement.java

 1 import java.util.*;
 2
 3 /**
 4 * This program demonstrates a <code>while</code> loop.
 5 * @version 1.20 2004-02-10
 6 * @author Cay Horstmann
 7 */
 8 public class Retirement
 9 {10 public static void main(String[] args)
11 {
12 // read inputs
13 Scanner in = new Scanner(System.in);
14
15 System.out.print("How much money do you need to retire?
");
16 double goal = in.nextDouble();
17
18 System.out.print("How much money will you contribute
every year? ");
19 double payment = in.nextDouble();
20
21 System.out.print("Interest rate in %: ");
22 double interestRate = in.nextDouble();
23
24 double balance = 0;
25 int years = 0;
26
27 // update account balance while goal isn't reached
28 while (balance < goal)
29 {
30 // add this year's payment and interest
31 balance += payment;
32 double interest = balance * interestRate / 100;
33 balance += interest;
34 years++;
35 }
36
37 System.out.println("You can retire in " + years + "
years.");

38 }
39 }

Listing 3.4 Retirement2/Retirement2.java

 1 import java.util.*;
 2
 3 /**
 4 * This program demonstrates a <code>do/while</code> loop.
 5 * @version 1.20 2004-02-10
 6 * @author Cay Horstmann
 7 */
 8 public class Retirement2
 9 {
10 public static void main(String[] args)
11 {
12 Scanner in = new Scanner(System.in);
13
14 System.out.print("How much money will you contribute
every year? ");
15 double payment = in.nextDouble();
16
17 System.out.print("Interest rate in %: ");
18 double interestRate = in.nextDouble();
19
20 double balance = 0;
21 int year = 0;
22
23 String input;
24
25 // update account balance while user isn't ready to
retire
26 do
27 {
28 // add this year's payment and interest
29 balance += payment;
30 double interest = balance * interestRate / 100;
31 balance += interest;

32
33 year++;
34
35 // print current balance
36 System.out.printf("After year %d, your balance is
%,.2f%n", year, balance);
37
38 // ask if ready to retire and get input
39 System.out.print("Ready to retire? (Y/N) ");
40 input = in.next();
41 }
42 while (input.equals("N"));
43 }
44 }

3.8.4 Determinate Loops

The for loop is a general construct to support iteration controlled by a
counter or similar variable that is updated after every iteration. As Figure
3.12 shows, the following loop prints the numbers from 1 to 10 on the
screen:

for (int i = 1; i <= 10; i++)
 System.out.println(i);

The first slot of the for statement usually holds the counter initialization.
The second slot gives the condition that will be tested before each new pass
through the loop, and the third slot specifies how to update the counter.

Although Java, like C++, allows almost any expression in the various slots
of a for loop, it is an unwritten rule of good taste that the three slots should
only initialize, test, and update the same counter variable. One can write
very obscure loops by disregarding this rule.

Figure 3.12 Flowchart for the for statement

Even within the bounds of good taste, much is possible. For example, you
can have loops that count down:

for (int i = 10; i > 0; i--)
 System.out.println("Counting down . . . " + i);
System.out.println("Blastoff!");

 CAUTION:
Be careful with testing for equality of floating-point numbers in loops. A
for loop like this one

for (double x = 0; x != 10; x += 0.1) . . .

might never end. Because of roundoff errors, the final value might not be
reached exactly. In this example, x jumps from 9.99999999999998 to
10.09999999999998 because there is no exact binary representation for 0.1.

When you declare a variable in the first slot of the for statement, the scope
of that variable extends until the end of the body of the for loop.

for (int i = 1; i <= 10; i++)
{
 . . .
}
// i no longer defined here

In particular, if you define a variable inside a for statement, you cannot use
its value outside the loop. Therefore, if you wish to use the final value of a
loop counter outside the for loop, be sure to declare it outside the loop
header.

int i;
for (i = 1; i <= 10; i++)
{
 . . .

}
// i is still defined here

On the other hand, you can define variables with the same name in separate
for loops:

for (int i = 1; i <= 10; i++)
{
 . . .
} . . .
for (int i = 11; i <= 20; i++) // OK to define another variable
named i
{
 . . .
}

A for loop is merely a convenient shortcut for a while loop. For example,

for (int i = 10; i > 0; i--)
 System.out.println("Counting down . . . " + i);
int i = 10;
while (i > 0)
{
 System.out.println("Counting down . . . " + i);
 i--;
}

Listing 3.5 shows a typical example of a for loop.

The program computes the odds of winning a lottery. For example, if you
must pick six numbers from the numbers 1 to 50 to win, then there are (50 ×
49 × 48 × 47 × 46 × 45)/(1 × 2 × 3 × 4 × 5 × 6) possible outcomes, so your
chance is 1 in 15,890,700. Good luck!

In general, if you pick k numbers out of n, there are

possible outcomes. The following for loop computes this value:

int lotteryOdds = 1;
for (int i = 1; i <= k; i++)
 lotteryOdds = lotteryOdds * (n - i + 1) / i;

 NOTE:
Section 3.10.3, “The ‘for each’ Loop,” on p. 112 describes the “generalized
for loop” (also called “for each” loop) that makes it convenient to visit all
elements of an array or collection.

Listing 3.5 LotteryOdds/LotteryOdds.java

 1 import java.util.*;
 2
 3 /**
 4 * This program demonstrates a <code>for</code> loop.
 5 * @version 1.20 2004-02-10
 6 * @author Cay Horstmann
 7 */
 8 public class LotteryOdds
 9 {
10 public static void main(String[] args)
11 {
12 Scanner in = new Scanner(System.in);
1314 System.out.print("How many numbers do you need to
draw? ");
15 int k = in.nextInt();
16
17 System.out.print("What is the highest number you can
draw? ");

18 int n = in.nextInt();
19
20 /*
21 * compute binomial coefficient n*(n-1)*(n-2)*...*(n-
k+1)/(1*2*3*...*k)
22 */
23
24 int lotteryOdds = 1;
25 for (int i = 1; i <= k; i++)
26 lotteryOdds = lotteryOdds * (n - i + 1) / i;
27
28 System.out.println("Your odds are 1 in " + lotteryOdds
+ ". Good luck!");
29 }
30 }

3.8.5 Multiple Selections with switch

The if/else construct can be cumbersome when you have to deal with
multiple alternatives for the same expression. The switch statement makes
this easier, particularly with the form that has been introduced in Java 14.

For example, if you set up a menu system with four alternatives like that in
Figure 3.13, you could use code that looks like this:

Scanner in = new Scanner(System.in);
System.out.print("Select an option (1, 2, 3, 4) ");
int choice = in.nextInt();
switch (choice)
{
 case 1 ->
 . . .
 case 2 ->
 . . .
 case 3 ->
 . . .
 case 4 ->
 . . .

 default ->
 System.out.println("Bad input");
}

Figure 3.13 Flowchart for the switch statement

A case label can be

• A constant expression of type char, byte, short, or int
• An enumerated constant
• A string literal
• More than one of these, separated by commas

For example,

String input = . . .;
switch (input.toLowerCase())
{
 case "yes", "y" ->
 . . .
 case "no", "n" ->
 . . .
 default ->
 . . .
}

The “classic” form of the switch statement, which dates all the way back to
the C language, has been supported since Java 1.0. It has the form:

int choice = . . .;
switch (choice)
{
 case 1:
 . . .
 break;
 case 2:
 . . .
 break;
 case 3:
 . . .
 break;

 case 4:
 . . .
 break;
 default:
 // bad input
 . . .
 break;
}

Execution starts at the case label that matches the value on which the
selection is performed and continues until the next break or the end of the
switch. If none of the case labels match, then the default clause is executed,
if it is present.

 CAUTION:
It is possible for multiple alternatives to be triggered. If you forget to add a
break at the end of an alternative, execution falls through to the next
alternative! This behavior is plainly dangerous and a common cause for
errors.

To detect such problems, compile your code with the -Xlint:fallthrough
option, like this:

javac -Xlint:fallthrough Test.java

Then the compiler will issue a warning whenever an alternative does not
end with a break statement.

If you actually want to use the fallthrough behavior, tag the surrounding
method with the annotation @SuppressWarnings("fallthrough"). Then no
warnings will be generated for that method. (An annotation is a mechanism
for supplying information to the compiler or a tool that processes Java
source or class files. Volume II has an in-depth coverage of annotations.)

These two forms of switch are statements. In Section 3.5.9, “Switch
Expressions,” on p. 58, you saw a switch expression, which yields a value. It
doesn’t have the fallthrough behavior.

For symmetry, Java 14 also introduces a switch expression with fallthrough,
for a total of four forms of switch. Table 3.7 shows them all.

In the fallthrough variants, each case ends with a colon. If the cases end with
arrows ->, then there is no fallthrough. You can’t mix colons and arrows in a
single switch statement.

Note the yield keyword with switch expressions. Like break, it terminates
execution. Unlike break, it also yields a value—the value of the expression.

To use statements in a branch of a switch expression without fallthrough,
you must use braces and yield, as in the example in the table that adds a
logging statement to a branch:

case "Spring" ->
 {
 System.out.println("spring time!");
 yield 6;
 }

Each branch of a switch expression must yield a value. Most commonly,
each value follows an -> arrow:

case "Summer", "Winter" -> 6;

If that is not possible, use a yield statement.

Table 3.7 The four forms of switch

 NOTE:
It is legal to throw an exception in a branch of a switch expression. For
example:

default -> throw new IllegalArgumentException("Not a valid
season");

Exceptions are covered in detail in Chapter 7.

 CAUTION:
The point of a switch expression is to produce a value (or to fail with an
exception). You are not allowed to “jump out”:

default -> { return -1; } // ERROR

Specifically, you cannot use return, break, or continue statements in a
switch expression. (See Section 3.8.6, “Statements That Break Control
Flow,” on p. 103 for the latter two.)

With so many variations of switch, which one should you choose?

Prefer switch expressions over statements. If each branch computes the
value for a variable assignment or method call, yield the value with an
expression, and then use it. For example,

numLetters = switch (seasonName)
 {
 case "Spring", "Summer", "Winter" -> 6
 case "Fall" -> 4
 default -> -1
 };

is better than

switch (seasonName)
{
 case "Spring", "Summer", "Winter" ->
 numLetters = 6;
 case "Fall" ->

 numLetters = 4;
 default ->
 numLetters = -1;
}

Only use break or yield if you actually need fallthrough, or if you must add
statements into a switch expression. These situations are exceedingly rare.

3.8.6 Statements That Break Control Flow

Although the designers of Java kept goto as a reserved word, they decided
not to include it in the language. In general, goto statements are considered
poor style. Some programmers feel the anti-goto forces have gone too far
(see, for example, the famous article of Donald Knuth called “Structured
Programming with goto statements”). They argue that unrestricted use of
goto is error-prone but that an occasional jump out of a loop is beneficial.
The Java designers agreed and even added a new statement, the labeled
break, to support this programming style.

Let us first look at the unlabeled break statement. The same break statement
that you use to exit a switch statement can also be used to break out of a
loop. For example:

while (years <= 100)
{
 balance += payment;
 double interest = balance * interestRate / 100;
 balance += interest;
 if (balance >= goal) break; years++;
}

Now the loop is exited if either years > 100 occurs at the top of the loop or
balance >= goal occurs in the middle of the loop. Of course, you could have
computed the same value for years without a break, like this:

while (years <= 100 && balance < goal)
{

 balance += payment;
 double interest = balance * interestRate / 100;
 balance += interest;

 if (balance < goal)
 years++;
}

But note that the test balance < goal is repeated twice in this version. To
avoid this repeated test, some programmers prefer the break statement.

Unlike C++, Java also offers a labeled break statement that lets you break
out of multiple nested loops. Occasionally something weird happens inside a
deeply nested loop. In that case, you may want to break completely out of all
the nested loops. It is inconvenient to program that simply by adding extra
conditions to the various loop tests.

Here’s an example that shows the break statement at work. Notice that the
label must precede the outermost loop out of which you want to break. It
also must be followed by a colon.

Scanner in = new Scanner(System.in);
int n;
read_data:
while (. . .) // this loop statement is tagged with the label
{
 . . .
 for (. . .) // this inner loop is not labeled
 {
 System.out.print("Enter a number >= 0: ");
 n = in.nextInt();
 if (n < 0) // should never happen—can't go on
 break read_data;
 // break out of read_data loop
 . . .
 }
}
// this statement is executed immediately after the labeled

breakif (n < 0) // check for bad situation
{
 // deal with bad situation
}
else
{
 // carry out normal processing
}

If there is a bad input, the labeled break moves past the end of the labeled
block. As with any use of the break statement, you then need to test whether
the loop exited normally or as a result of a break.

 NOTE:
Curiously, you can apply a label to any statement, even an if statement or a
block statement, like this:

label:
{
 . . .

 if (condition) break label; // exits block
 . . .
}
// jumps here when the break statement executes

Thus, if you are lusting after a goto and you can place a block that ends just
before the place to which you want to jump, you can use a break statement!
Naturally, I don’t recommend this approach. Note, however, that you can
only jump out of a block, never into a block.

Finally, there is a continue statement that, like the break statement, breaks
the regular flow of control. The continue statement transfers control to the
header of the innermost enclosing loop. Here is an example:

Scanner in = new Scanner(System.in);
while (sum < goal)
{
 System.out.print("Enter a number: ");
 n = in.nextInt();
 if (n < 0) continue;
 sum += n; // not executed if n < 0
}

If n < 0, then the continue statement jumps immediately to the loop header,
skipping the remainder of the current iteration.

If the continue statement is used in a for loop, it jumps to the “update” part
of the for loop. For example:

for (count = 1; count <= 100; count++)
{
 System.out.print("Enter a number, -1 to quit: ");
 n = in.nextInt();
 if (n < 0) continue;
 sum += n; // not executed if n < 0
}

If n < 0, then the continue statement jumps to the count++ statement.

There is also a labeled form of the continue statement that jumps to the
header of the loop with the matching label.

 TIP:
Many programmers find the break and continue statements confusing.
These statements are entirely optional—you can always express the same
logic without them. None of the programs in this book use break or
continue.

3.9 Big Numbers

If the precision of the basic integer and floating-point types is not sufficient,
you can turn to a couple of handy classes in the java.math package:
BigInteger and BigDecimal. These are classes for manipulating numbers
with an arbitrarily long sequence of digits. The BigInteger class implements
arbitrary-precision integer arithmetic, and BigDecimal does the same for
floating-point numbers.

Use the static valueOf method to turn an ordinary number into a big number:

BigInteger a = BigInteger.valueOf(100);

For longer numbers, use a constructor with a string parameter:

BigInteger reallyBig
 = new
BigInteger("222232244629420445529739893461909967206666939096499
764990979600");

There are also constants BigInteger.ZERO, BigInteger.ONE, BigInteger.TEN,
and, since Java 9, BigInteger.TWO.

 CAUTION:
With the BigDecimal class, you should always use the constructor with a
string parameter. There is a constructor BigDecimal(double) that is
inherently prone to roundoff: new BigDecimal(0.1) has digits
0.1000000000000000055511151231257827021181583404541015625.

Unfortunately, you cannot use the familiar mathematical operators such as +
and * to combine big numbers. Instead, you must use methods such as add
and multiply in the big number classes.

BigInteger c = a.add(b); // c = a + b
BigInteger d = c.multiply(b.add(BigInteger.valueOf(2))); // d =
c * (b + 2)

 C++ NOTE:
Unlike C++, Java has no programmable operator overloading. There was no
way for the programmers of the BigInteger class to redefine the + and *
operators to give the add and multiply operations of the BigInteger classes.
The language designers did overload the + operator to denote concatenation
of strings. They chose not to overload other operators, and they did not give
Java programmers the opportunity to overload operators in their own
classes.

Listing 3.6 shows a modification of the lottery odds program of Listing 3.5,
updated to work with big numbers. For example, if you are invited to
participate in a lottery in which you need to pick 60 numbers out of a
possible 490 numbers, you can use this program to tell you your odds of
winning. They are 1 in
71639584346199555741511622254009293341171761278926349349335101345948

1104668848. Good luck!

The program in Listing 3.5 computed the statement

lotteryOdds = lotteryOdds * (n - i + 1) / i;

When big integers are used for lotteryOdds and n, the equivalent statement
becomes

lotteryOdds = lotteryOdds
 .multiply(n.subtract(BigInteger.valueOf(i - 1)))
 .divide(BigInteger.valueOf(i));

Listing 3.6 BigIntegerTest/BigIntegerTest.java

 1 import java.math.*;
 2 import java.util.*;
 3
 4 /**
 5 * This program uses big numbers to compute the odds of
winning the grand prize in a lottery.
 6 * @version 1.20 2004-02-10
 7 * @author Cay Horstmann
 8 */
 9 public class BigIntegerTest
10 {
11 public static void main(String[] args)
12 {
13 Scanner in = new Scanner(System.in);
14
15 System.out.print("How many numbers do you need to draw?
");
16 int k = in.nextInt();
17
18 System.out.print("What is the highest number you can
draw? ");
19 BigInteger n = in.nextBigInteger();
20
21 /*
22 * compute binomial coefficient n*(n-1)*(n-2)*...*(n-
k+1)/(1*2*3*...*k)
23 */
24
25 BigInteger lotteryOdds = BigInteger.ONE;
26
27 for (int i = 1; i <= k; i++)
28 lotteryOdds = lotteryOdds
29 .multiply(n.subtract(BigInteger.valueOf(i - 1)))
30 .divide(BigInteger.valueOf(i));
31
32 System.out.printf("Your odds are 1 in %s. Good
luck!%n", lotteryOdds);

33 }
34 }

java.math.BigInteger 1.1

• BigInteger add(BigInteger other)
• BigInteger subtract(BigInteger other)
• BigInteger multiply(BigInteger other)
• BigInteger divide(BigInteger other)
• BigInteger mod(BigInteger other)

returns the sum, difference, product, quotient, and remainder of this
big integer and other.

• BigInteger sqrt() 9
yields the square root of this BigInteger.

• int compareTo(BigInteger other)
returns 0 if this big integer equals other, a negative result if this big
integer is less than other, and a positive result otherwise.

• static BigInteger valueOf(long x)
returns a big integer whose value equals x.

java.math.BigDecimal 1.1

• BigDecimal(String digits)
constructs a big decimal with the given digits.

• BigDecimal add(BigDecimal other)
• BigDecimal subtract(BigDecimal other)
• BigDecimal multiply(BigDecimal other)

• BigDecimal divide(BigDecimal other)
• BigDecimal divide(BigDecimal other, RoundingMode mode) 5

returns the sum, difference, product, or quotient of this big decimal
and other. The first divide method throws an exception if the
quotient does not have a finite decimal expansion. To obtain a
rounded result, use the second method. The mode
RoundingMode.HALF_UP is the rounding mode that you learned in
school: round down the digits 0 to 4, round up the digits 5 to 9. It is
appropriate for routine calculations. See the API documentation for
other rounding modes.

• int compareTo(BigDecimal other)
returns 0 if this big decimal equals other, a negative result if this big
decimal is less than other, and a positive result otherwise.

3.10 Arrays

Arrays hold sequences of values of the same type. In the following sections,
you will see how to work with arrays in Java.

3.10.1 Declaring Arrays

An array is a data structure that stores a collection of values of the same
type. You access each individual value through an integer index. For
example, if a is an array of integers, then a[i] is the ith integer in the array.

Declare an array variable by specifying the array type—which is the element
type followed by []—and the array variable name. For example, here is the
declaration of an array a of integers:

int[] a;

However, this statement only declares the variable a. It does not yet initialize
a with an actual array. Use the new operator to create the array.

int[] a = new int[100]; // or var a = new int[100];

This statement declares and initializes an array of 100 integers.

The array length need not be a constant: new int[n] creates an array of
length n.

Once you create an array, you cannot change its length (although you can, of
course, change an individual array element). If you frequently need to
expand the length of arrays while your program is running, you should use
array lists, which are covered in Chapter 5.

 NOTE:
You can define an array variable either as

int[] a;

or as

int a[];

Most Java programmers prefer the former style because it neatly separates
the type int[] (integer array) from the variable name.

Java has a shortcut for creating an array object and supplying initial values:

int[] smallPrimes = { 2, 3, 5, 7, 11, 13 };

Notice that you do not use new with this syntax, and you don’t specify the
length.

A comma after the last value is allowed, which can be convenient for an
array to which you keep adding values over time:

String[] authors =
 {
 "James Gosling",
 "Bill Joy",
 "Guy Steele",
 // add more names here and put a comma after each name
 };

You can declare an anonymous array:

new int[] { 17, 19, 23, 29, 31, 37 }

This expression allocates a new array and fills it with the values inside the
braces. It counts the number of initial values and sets the array length
accordingly. You can use this syntax to reinitialize an array without creating
a new variable. For example,

smallPrimes = new int[] { 17, 19, 23, 29, 31, 37 };

is shorthand for

int[] anonymous = { 17, 19, 23, 29, 31, 37 };
smallPrimes = anonymous;

 NOTE:
It is legal to have arrays of length 0. Such an array can be useful if you write
a method that computes an array result and the result happens to be empty.
Construct an array of length 0 as

new elementType[0]

or

new elementType[] {}

Note that an array of length 0 is not the same as null.

3.10.2 Accessing Array Elements

The array elements are numbered starting from 0. The last valid index is one
less than the length. In the example below, the index values range from 0 to
99. Once the array is created, you can fill the elements in an array, for
example, by using a loop:

int[] a = new int[100];
for (int i = 0; i < 100; i++)
 a[i] = i; // fills the array with numbers 0 to 99

When you create an array of numbers, all elements are initialized with zero.
Arrays of boolean are initialized with false. Arrays of objects are initialized
with the special value null, which indicates that they do not (yet) hold any
objects. This can be surprising for beginners. For example,

String[] names = new String[10];

creates an array of ten strings, all of which are null. If you want the array to
hold empty strings, you must supply them:

for (int i = 0; i < 10; i++) names[i] = "";

 CAUTION:

If you construct an array with 100 elements and then try to access the
element a[100] (or any other index outside the range from 0 to 99), an
“array index out of bounds” exception will occur.

To find the number of elements of an array, use array.length. For example:

for (int i = 0; i < a.length; i++)
 System.out.println(a[i]);

3.10.3 The “for each” Loop

Java has a powerful looping construct that allows you to loop through each
element in an array (or any other collection of elements) without having to
fuss with index values.

The enhanced for loop

for (variable : collection) statement

sets the given variable to each element of the collection and then executes
the statement (which, of course, may be a block). The collection expression
must be an array or an object of a class that implements the Iterable
interface, such as ArrayList. Array lists are covered in Chapter 5 and the
Iterable interface in Chapter 9.

For example,

for (int element : a)
 System.out.println(element);

prints each element of the array a on a separate line.

You should read this loop as “for each element in a”. The designers of the
Java language considered using keywords, such as foreach and in. But this
loop was a late addition to the Java language, and in the end nobody wanted

to break the old code that already contained methods or variables with these
names (such as System.in).

Of course, you could achieve the same effect with a traditional for loop:

for (int i = 0; i < a.length; i++)
 System.out.println(a[i]);

However, the “for each” loop is more concise and less error-prone, as you
don’t have to worry about those pesky start and end index values.

 NOTE:
The loop variable of the “for each” loop traverses the elements of the array,
not the index values.

The “for each” loop is a pleasant improvement over the traditional loop if
you need to process all elements in a collection. However, there are still
plenty of opportunities to use the traditional for loop. For example, you
might not want to traverse the entire collection, or you may need the index
value inside the loop.

 TIP:
There is an even easier way to print all values of an array, using the
toString method of the Arrays class. The call Arrays.toString(a) returns a
string containing the array elements, enclosed in brackets and separated by
commas, such as "[2, 3, 5, 7, 11, 13]". To print the array, simply call

System.out.println(Arrays.toString(a));

3.10.4 Array Copying

You can copy one array variable into another, but then both variables refer to
the same array:

int[] luckyNumbers = smallPrimes;
luckyNumbers[5] = 12; // now smallPrimes[5] is also 12

Figure 3.14 shows the result. If you actually want to copy all values of one
array into a new array, use the copyOf method in the Arrays class:

int[] copiedLuckyNumbers = Arrays.copyOf(luckyNumbers,
luckyNumbers.length);

Figure 3.14 Copying an array variable

The second parameter is the length of the new array. A common use of this
method is to increase the length of an array:

luckyNumbers = Arrays.copyOf(luckyNumbers, 2 *
luckyNumbers.length);

The additional elements are filled with 0 if the array contains numbers, false
if the array contains boolean values. Conversely, if the length is less than the

length of the original array, only the initial values are copied.

 C++ NOTE:
A Java array is quite different from a C++ array on the stack. It is, however,
essentially the same as a pointer to an array allocated on the heap. That is,

int[] a = new int[100]; // Java

is not the same as

int a[100]; // C++

but rather

int* a = new int[100]; // C++

In Java, the [] operator is predefined to perform bounds checking.
Furthermore, there is no pointer arithmetic—you can’t increment a to point
to the next element in the array.

3.10.5 Command-Line Parameters

You have already seen one example of a Java array repeated quite a few
times. Every Java program has a main method with a String[] args

parameter. This parameter indicates that the main method receives an array
of strings— namely, the arguments specified on the command line.

For example, consider this program:

public class Message
{
 public static void main(String[] args)

 {
 if (args.length == 0 || args[0].equals("-h"))
 System.out.print("Hello,");
 else if (args[0].equals("-g"))
 System.out.print("Goodbye,");
 // print the other command-line arguments
 for (int i = 1; i < args.length; i++)
 System.out.print(" " + args[i]);
 System.out.println("!");
 }
}

If the program is called as

java Message -g cruel world

then the args array has the following contents:

args[0]: "-g"
args[1]: "cruel"
args[2]: "world"

The program prints the message

Goodbye, cruel world!

 C++ NOTE:
In the main method of a Java program, the name of the program is not stored
in the args array. For example, when you start up a program as

java Message -h world

from the command line, then args[0] will be "-h" and not "Message" or
"java".

3.10.6 Array Sorting

To sort an array of numbers, you can use one of the sort methods in the
Arrays

class:

int[] a = new int[10000];
. . .
Arrays.sort(a)

This method uses a tuned version of the QuickSort algorithm that is claimed
to be very efficient on most data sets. The Arrays class provides several
other convenience methods for arrays that are included in the API notes at
the end of this section.

The program in Listing 3.7 puts arrays to work. This program draws a
random combination of numbers for a lottery game. For example, if you play
a “choose 6 numbers from 49” lottery, the program might print this:

Bet the following combination. It'll make you rich!
 4
 7
 8
 19
 30
 44

To select such a random set of numbers, first fill an array numbers with the
values 1, 2, . . ., n:

int[] numbers = new int[n];
for (int i = 0; i < numbers.length; i++)
 numbers[i] = i + 1;

A second array holds the numbers to be drawn:

int[] result = new int[k];

Now draw k numbers. The Math.random method returns a random floating-
point number that is between 0 (inclusive) and 1 (exclusive). Multiplying the
result with n yields a random number between 0 and n – 1.

int r = (int) (Math.random() * n);

Set the ith result to be the number at that index. Initially, that is just r + 1,
but as you’ll see presently, the contents of the numbers array are changed
after each draw.

result[i] = numbers[r];

Now, you must be sure never to draw that number again—all lottery
numbers must be distinct. Therefore, overwrite numbers[r] with the last
number in the array and reduce n by 1.

numbers[r] = numbers[n - 1];
n--;

The point is that in each draw we pick an index, not the actual value. The
index points into an array that contains the values that have not yet been
drawn.

After drawing k lottery numbers, sort the result array for a more pleasing
output:

Arrays.sort(result);
for (int r : result)
 System.out.println(r);

Listing 3.7 LotteryDrawing/LotteryDrawing.java

 1 import java.util.*;
 2
 3 /**
 4 * This program demonstrates array manipulation.
 5 * @version 1.20 2004-02-10
 6 * @author Cay Horstmann
 7 */
 8 public class LotteryDrawing
 9 {
10 public static void main(String[] args)
11 {
12 Scanner in = new Scanner(System.in);
13
14 System.out.print("How many numbers do you need to draw?
");
15 int k = in.nextInt();
16
17 System.out.print("What is the highest number you can
draw? ");
18 int n = in.nextInt();
19
20 // fill an array with numbers 1 2 3 . . . n
21 int[] numbers = new int[n];
22 for (int i = 0; i < numbers.length; i++)
23 numbers[i] = i + 1;
24
25 // draw k numbers and put them into a second array
26 int[] result = new int[k];
27 for (int i = 0; i < result.length; i++)
28 {
29 // make a random index between 0 and n - 1
30 int r = (int) (Math.random() * n);

31
32 // pick the element at the random location
33 result[i] = numbers[r];
34
35 // move the last element into the random location
36 numbers[r] = numbers[n - 1];
37 n--;
38 }
39
40 // print the sorted array
41 Arrays.sort(result);
42 System.out.println("Bet the following combination. It'll
make you rich!");
43 for (int r : result)
44 System.out.println(r);
45 }
46 }

java.util.Arrays 1.2

• static String toString(xxx[] a) 5
returns a string with the elements of a, enclosed in brackets and
delimited by commas. In this and the following methods, the
component type xxx of the array can be int, long, short, char, byte,
boolean, float, or double.

• static xxx[] copyOf(xxx[] a, int end) 6
• static xxx[] copyOfRange(xxx[] a, int start, int end) 6

returns an array of the same type as a, of length either end or end –
start, filled with the values of a. If end is larger than a.length, the
result is padded with 0 or false values.

• static void sort(xxx[] a)

sorts the array, using a tuned QuickSort algorithm.
• static int binarySearch(xxx[] a, xxx v)

• static int binarySearch(xxx[] a, int start, int end, xxx v) 6
uses the binary search algorithm to search for the value v in the
sorted array a. If v is found, its index is returned. Otherwise, a
negative value r is returned; –r – 1 is the spot at which v should be
inserted to keep a sorted.

• static void fill(xxx[] a, xxx v)
sets all elements of the array to v.

• static boolean equals(xxx[] a, xxx[] b)

returns true if the arrays have the same length and if the elements at
corresponding indexes match.

3.10.7 Multidimensional Arrays

Multidimensional arrays use more than one index to access array elements.
They are used for tables and other more complex arrangements. You can
safely skip this section until you have a need for this storage mechanism.

Suppose you want to make a table of numbers that shows how much an
investment of $10,000 will grow under different interest rate scenarios in
which interest is paid annually and reinvested (Table 3.8).

Table 3.8 Growth of an Investment at Different Interest Rates

You can store this information in a two-dimensional array (matrix) named
balances.

Declaring a two-dimensional array in Java is simple enough. For example:

double[][] balances;

You cannot use the array until you initialize it. In this case, you can do the
initialization as follows:

balances = new double[NYEARS][NRATES];

In other cases, if you know the array elements, you can use a shorthand
notation for initializing a multidimensional array without a call to new. For
example:

int[][] magicSquare =
 {

 {16, 3, 2, 13},
 {5, 10, 11, 8},
 {9, 6, 7, 12},
 {4, 15, 14, 1}
 };

Once the array is initialized, you can access individual elements by
supplying two pairs of brackets—for example, balances[i][j].

The example program stores a one-dimensional array interest of interest
rates and a two-dimensional array balances of account balances, one for
each year and interest rate. Initialize the first row of the array with the initial
balance:

for (int j = 0; j < balances[0].length; j++)
 balances[0][j] = 10000;

Then compute the other rows, as follows:

for (int i = 1; i < balances.length; i++)
{
 for (int j = 0; j < balances[i].length; j++)
 {
 double oldBalance = balances[i - 1][j];
 double interest = . . .;
 balances[i][j] = oldBalance + interest;
 }
}

Listing 3.8 shows the full program.

 NOTE:
A “for each” loop does not automatically loop through all elements in a two-
dimensional array. Instead, it loops through the rows, which are themselves

one-dimensional arrays. To visit all elements of a two-dimensional array a,
nest two loops, like this:

for (double[] row : a)
 for (double value : row)

 do something with value

 TIP:
To print out a quick-and-dirty list of the elements of a two-dimensional
array, call

System.out.println(Arrays.deepToString(a));

The output is formatted like this:

[[16, 3, 2, 13], [5, 10, 11, 8], [9, 6, 7, 12], [4, 15, 14, 1]]

Listing 3.8 CompoundInterest/CompoundInterest.java

 1 /**
 2 * This program shows how to store tabular data in a 2D array.
 3 * @version 1.40 2004-02-10
 4 * @author Cay Horstmann
 5 */
 6 public class CompoundInterest
 7 {
 8 public static void main(String[] args)
 9 {
10 final double STARTRATE = 10;
11 final int NRATES = 6;
12 final int NYEARS = 10;
13

14 // set interest rates to 10 . . . 15%
15 double[] interestRate = new double[NRATES];
16 for (int j = 0; j < interestRate.length; j++)
17 interestRate[j] = (STARTRATE + j) / 100.0;
18
19 double[][] balances = new double[NYEARS][NRATES];
20
21 // set initial balances to 10000
22 for (int j = 0; j < balances[0].length; j++)
23 balances[0][j] = 10000;
24
25 // compute interest for future years
26 for (int i = 1; i < balances.length; i++)
27 {
28 for (int j = 0; j < balances[i].length; j++)
29 {
30 // get last year's balances from previous row
31 double oldBalance = balances[i - 1][j];
32
33 // compute interest
34 double interest = oldBalance * interestRate[j];
35
36 // compute this year's balances
37 balances[i][j] = oldBalance + interest;
38 }
39 }
40
41 // print one row of interest rates
42 for (int j = 0; j < interestRate.length; j++)
43 System.out.printf("%9.0f%%", 100 * interestRate[j]);
44
45 System.out.println();
46
47 // print balance table
48 for (double[] row : balances)
49 {
50 // print table row
51 for (double b : row)
52 System.out.printf("%10.2f", b);

53
54 System.out.println();
55 }
56 }
57 }

3.10.8 Ragged Arrays

So far, what you have seen is not too different from other programming
languages. But there is actually something subtle going on behind the scenes
that you can sometimes turn to your advantage: Java has no
multidimensional arrays at all, only one-dimensional arrays.
Multidimensional arrays are faked as “arrays of arrays.”

For example, the balances array in the preceding example is actually an
array that contains ten elements, each of which is an array of six floating-
point numbers (Figure 3.15).

The expression balances[i] refers to the ith subarray—that is, the ith row
of the table. It is itself an array, and balances[i][j] refers to the jth element
of that array.

Since rows of arrays are individually accessible, you can actually swap
them!

Figure 3.15 A two-dimensional array

double[] temp = balances[i];
balances[i] = balances[i + 1];
balances[i + 1] = temp;

It is also easy to make “ragged” arrays—that is, arrays in which different
rows have different lengths. Here is the standard example. Let us make an
array in which the element at row i and column j equals the number of
possible outcomes of a “choose j numbers from i numbers” lottery.

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1

As j can never be larger than i, the matrix is triangular. The ith row has i +
1 elements. (It is OK to choose 0 elements; there is one way to make such a
choice.) To build this ragged array, first allocate the array holding the rows:

final int NMAX = 10;
int[][] odds = new int[NMAX + 1][];

Next, allocate the rows:

for (int n = 0; n <= NMAX; n++)
 odds[n] = new int[n + 1];

Now that the array is allocated, you can access the elements in the normal
way, provided you do not overstep the bounds:

for (int n = 0; n < odds.length; n++)
 for (int k = 0; k < odds[n].length; k++)
 {
 // compute lotteryOdds
 . . .
 odds[n][k] = lotteryOdds;
 }

Listing 3.9 gives the complete program.

 C++ NOTE:

In C++, the Java declaration

double[][] balances = new double[10][6]; // Java

is not the same as

double balances[10][6]; // C++

or even

double (*balances)[6] = new double[10][6]; // C++

Instead, an array of ten pointers is allocated:

double** balances = new double*[10]; // C++

Then, each element in the pointer array is filled with an array of six
numbers:

for (i = 0; i < 10; i++)
 balances[i] = new double[6];

Mercifully, this loop is automatic when you ask for a new double[10][6].
When you want ragged arrays, you allocate the row arrays separately.

Listing 3.9 LotteryArray/LotteryArray.java

 1 /**
 2 * This program demonstrates a triangular array.
 3 * @version 1.20 2004-02-10
 4 * @author Cay Horstmann
 5 */
 6 public class LotteryArray
 7 {

 8 public static void main(String[] args)
 9 {
10 final int NMAX = 10;
11
12 // allocate triangular array
13 int[][] odds = new int[NMAX + 1][];
14 for (int n = 0; n <= NMAX; n++)
15 odds[n] = new int[n + 1];
16
17 // fill triangular array
18 for (int n = 0; n < odds.length; n++)
19 for (int k = 0; k < odds[n].length; k++)
20 {
21 /*
22 * compute binomial coefficient n*(n-1)*(n-
2)*...*(n-k+1)/(1*2*3*...*k)
23 */
24 int lotteryOdds = 1;
25 for (int i = 1; i <= k; i++)
26 lotteryOdds = lotteryOdds * (n - i + 1) / i;
27
28 odds[n][k] = lotteryOdds;
29 }
30
31 // print triangular array
32 for (int[] row : odds)
33 {
34 for (int odd : row)
35 System.out.printf("%4d", odd);
36 System.out.println();
37 }
38 }
39 }

You have now seen the fundamental programming structures of the Java
language. The next chapter covers object-oriented programming in Java.

Chapter 4. Objects and Classes

In this chapter

• 4.1 Introduction to Object-Oriented Programming
• 4.2 Using Predefined Classes
• 4.3 Defining Your Own Classes
• 4.4 Static Fields and Methods
• 4.5 Method Parameters
• 4.6 Object Construction
• 4.7 Records
• 4.8 Packages
• 4.9 JAR Files
• 4.10 Documentation Comments
• 4.11 Class Design Hints

In this chapter, I

• Introduce you to object-oriented programming;
• Show you how you can create objects that belong to classes from the

standard Java library; and
• Show you how to write your own classes.

If you do not have a background in object-oriented programming, you will
want to read this chapter carefully. Object-oriented programming requires a
different way of thinking than procedural languages. The transition is not
always easy, but you do need some familiarity with object concepts to go
further with Java.

For experienced C++ programmers, this chapter, like the previous chapter,
presents familiar information; however, there are enough differences
between the two languages that you should read the later sections of this
chapter carefully. You’ll find the C++ notes helpful for making the transition.

4.1 Introduction to Object-Oriented Programming

Object-oriented programming, or OOP for short, is the dominant
programming paradigm these days, having replaced the “structured” or
procedural programming techniques that were developed in the 1970s. Since
Java is object-oriented, you have to be familiar with OOP to become
productive with Java.

An object-oriented program is made of objects. Each object has a specific
functionality, exposed to its users, and a hidden implementation. Many
objects in your programs will be taken “off-the-shelf” from a library; others
will be custom-designed. Whether you build an object or buy it might
depend on your budget or time. But, basically, as long as an object satisfies
your specifications, you don’t care how the functionality is implemented.

Traditional structured programming consists of designing a set of procedures
(or algorithms) to solve a problem. Once the procedures are determined, the
traditional next step was to find appropriate ways to store the data. This is
why the designer of the Pascal language, Niklaus Wirth, called his famous
book on programming Algorithms + Data Structures = Programs (Prentice
Hall, 1976). Notice that in Wirth’s title, algorithms come first, and data
structures second. This reflects the way programmers worked at that time.
First, they decided on the procedures for manipulating the data; then, they
decided what structure to impose on the data to make the manipulations
easier. OOP reverses the order: puts the data first, then looks at the
algorithms to operate on the data.

For small problems, the breakdown into procedures works very well. But
objects are more appropriate for larger problems. Consider a simple web
browser. It might require 2,000 procedures for its implementation, all of
which manipulate a set of global data. In the object-oriented style, there
might be 100 classes with an average of 20 methods per class (see Figure
4.1). This structure is much easier for a programmer to grasp. It is also much

easier to find bugs in. Suppose the data of a particular object is in an
incorrect state. It is far easier to search for the culprit among the 20 methods
that had access to that data item than among 2,000 procedures.

Figure 4.1 Procedural vs. OO programming

4.1.1 Classes

A class specifies how objects are made. Think of classes as cookie cutters;
objects are the cookies themselves. When you construct an object from a
class, you are said to have created an instance of the class.

As you have seen, all code that you write in Java is inside a class. The
standard Java library supplies several thousand classes for such diverse
purposes as user interface design, dates and calendars, and network
programming. Nonetheless, in Java you still have to create your own classes
to describe the objects of your application’s problem domain.

Encapsulation (sometimes called information hiding) is a key concept in
working with objects. Formally, encapsulation is simply combining data and

behavior in one package and hiding the implementation details from the
users of the object. The bits of data in an object are called its instance fields,
and the procedures that operate on the data are called its methods. A specific
object that is an instance of a class will have specific values of its instance
fields. The set of those values is the current state of the object. Whenever
you invoke a method on an object, its state may change.

The key to making encapsulation work is to have methods never directly
access instance fields in a class other than their own. Programs should
interact with object data only through the object’s methods. Encapsulation is
the way to give an object its “black box” behavior, which is the key to reuse
and reliability. This means a class may totally change how it stores its data,
but as long as it continues to use the same methods to manipulate the data,
no other object will know or care.

When you start writing your own classes in Java, another tenet of OOP will
make this easier: Classes can be built by extending other classes. Java, in
fact, comes with a “cosmic superclass” called Object. All other classes
extend this class. You will learn more about the Object class in the next
chapter.

When you extend an existing class, the new class has all the properties and
methods of the class that you extend. You then supply new methods and
instance fields that apply to your new class only. The concept of extending a
class to obtain another class is called inheritance. See the next chapter for
more on inheritance.

4.1.2 Objects

To work with OOP, you should be able to identify three key characteristics of
objects:

• The object’s behavior—what can you do with this object, or what methods
can you apply to it?

• The object’s state—how does the object react when you invoke those
methods?

• The object’s identity—how is the object distinguished from others that may
have the same behavior and state?

All objects that are instances of the same class share a family resemblance by
supporting the same behavior. The behavior of an object is defined by the
methods that you can call.

Next, each object stores information about what it currently looks like. This
is the object’s state. An object’s state may change over time, but not
spontaneously. A change in the state of an object must be a consequence of
method calls. (If an object’s state changed without a method call on that
object, someone broke encapsulation.)

However, the state of an object does not completely describe it, because each
object has a distinct identity. For example, in an order processing system,
two orders are distinct even if they request identical items. Notice that the
individual objects that are instances of a class always differ in their identity
and usually differ in their state.

These key characteristics can influence each other. For example, the state of
an object can influence its behavior. (If an order is “shipped” or “paid,” it
may reject a method call that asks it to add or remove items. Conversely, if
an order is “empty”—that is, no items have yet been ordered—it should not
allow itself to be shipped.)

4.1.3 Identifying Classes

In a traditional procedural program, you start the process at the top, with the
main function. When designing an object-oriented system, there is no “top,”
and newcomers to OOP often wonder where to begin. The answer is:
Identify your classes and then add methods to each class.

A simple rule of thumb in identifying classes is to look for nouns in the
problem analysis. Methods, on the other hand, correspond to verbs.

For example, in an order-processing system, some of the nouns are

• Item

• Order
• Shipping address
• Payment
• Account

These nouns may lead to the classes Item, Order, and so on.

Next, look for verbs. Items are added to orders. Orders are shipped or
canceled. Payments are applied to orders. With each verb, such as “add,”
“ship,” “cancel,” or “apply,” you identify the object that has the major
responsibility for carrying it out. For example, when a new item is added to
an order, the order object should be the one in charge because it knows how
it stores and sorts items. That is, add should be a method of the Order class
that takes an Item object as a parameter.

Of course, the “noun and verb” is but a rule of thumb; only experience can
help you decide which nouns and verbs are the important ones when building
your classes.

4.1.4 Relationships between Classes

The most common relationships between classes are

• Dependence (“uses–a”)

• Aggregation (“has–a”)

• Inheritance (“is–a”)

The dependence, or “uses–a” relationship, is the most obvious and also the
most general. For example, the Order class uses the Account class because
Order objects need to access Account objects to check for credit status. But
the Item class does not depend on the Account class, because Item objects
never need to worry about customer accounts. Thus, a class depends on
another class if its methods use or manipulate objects of that class.

Try to minimize the number of classes that depend on each other. The point
is, if a class A is unaware of the existence of a class B, it is also unconcerned
about any changes to B. (And this means that changes to B do not introduce
bugs into A.) In software engineering terminology, you want to minimize the
coupling between classes.

The aggregation, or “has–a” relationship, is easy to understand because it is
concrete; for example, an Order object contains Item objects. Containment
means that objects of class A contain objects of class B.

 NOTE:
Some methodologists view the concept of aggregation with disdain and
prefer to use a more general “association” relationship. From the point of
view of modeling, that is understandable. But for programmers, the “has–a”
relationship makes a lot of sense. I like to use aggregation for another reason
as well: The standard notation for associations is less clear. See Table 4.1.

The inheritance, or “is–a” relationship, expresses a relationship between a
more special and a more general class. For example, a RushOrder class
inherits from an Order class. The specialized RushOrder class has special
methods for priority handling and a different method for computing shipping
charges, but its other methods, such as adding items and billing, are inherited
from the Order class. In general, if class D extends class C, class D inherits
methods from class C but has more capabilities. (See the next chapter which
discusses this important notion at some length.)

Many programmers use the UML (Unified Modeling Language) notation to
draw class diagrams that describe the relationships between classes. You can
see an example of such a diagram in Figure 4.2. You draw classes as
rectangles, and relationships as arrows with various adornments. Table 4.1
shows the most common UML arrow styles.

Figure 4.2 A class diagram

Table 4.1 UML Notation for Class Relationships

4.2 Using Predefined Classes

You can’t do anything in Java without classes, and you have already seen
several classes at work. However, not all of these show off the typical
features of object orientation. Take, for example, the Math class. You have
seen that you can use methods of the Math class, such as Math.random,
without needing to know how they are implemented—all you need to know
is the name and parameters (if any). That’s the point of encapsulation, and it
will certainly be true of all classes. But the Math class only encapsulates
functionality; it neither needs nor hides data. Since there is no data, you do
not need to worry about making objects and initializing their instance fields
—there aren’t any!

In the next section, we will look at a more typical class, the Date class. You
will see how to construct objects and call methods of this class.

4.2.1 Objects and Object Variables

To work with objects, you first construct them and specify their initial state.
Then you apply methods to the objects.

In the Java programming language, you use constructors to construct new
instances. A constructor is a special method whose purpose is to construct
and initialize objects. Let us look at an example. The standard Java library
contains a Date class. Its objects describe points in time, such as December
31, 1999, 23:59:59 GMT.

 NOTE:
You may be wondering: Why use a class to represent dates rather than (as in
some languages) a built-in type? For example, Visual Basic has a built-in
date type, and programmers can specify dates in the format #12/31/1999#.
On the surface, this sounds convenient—programmers can simply use the
built-in date type without worrying about classes. But actually, how suitable
is the Visual Basic design? In some locales, dates are specified as
month/day/year, in others as day/month/year. Are the language designers

really equipped to foresee these kinds of issues? If they do a poor job, the
language becomes an unpleasant muddle, but unhappy programmers are
powerless to do anything about it. With classes, the design task is offloaded
to a library designer. If the class is not perfect, other programmers can easily
write their own classes to enhance or replace the system classes. (To prove
the point: The Java date library started out a bit muddled, and it has been
redesigned twice.)

Constructors always have the same name as the class name. Thus, the
constructor for the Date class is called Date. To construct a Date object,
combine the constructor with the new operator, as follows:

new Date()

This expression constructs a new object. The object is initialized to the
current date and time.

If you like, you can pass the object to a method:

System.out.println(new Date());

Alternatively, you can apply a method to the object that you just constructed.
One of the methods of the Date class is the toString method. That method
yields a string representation of the date. Here is how you would apply the
toString

method to a newly constructed Date object:

String s = new Date().toString();

In these two examples, the constructed object is used only once. Usually, you
will want to hang on to the objects that you construct so that you can keep
using them. Simply store the object in a variable:

Date rightNow = new Date();

Figure 4.3 shows the object variable rightNow that refers to the newly
constructed object.

Figure 4.3 Creating a new object

There is an important difference between objects and object variables. For
example, the statement

Date startTime; // startTime doesn't refer to any object

defines an object variable, startTime, that can refer to objects of type Date. It
is important to realize that the variable startTime is not an object and, in
fact, does not even refer to an object yet. You cannot use any Date methods
on this variable at this time. The statement

s = startTime.toString(); // not yet

would cause a compile-time error.

You must first initialize the startTime variable. You have two choices. Of
course, you can initialize the variable so that it refers to a newly constructed
object:

startTime = new Date();

Or you can set the variable to refer to an existing object:

startTime = rightNow;

Now both variables refer to the same object (see Figure 4.4).

Figure 4.4 Object variables that refer to the same object

It is important to realize that an object variable doesn’t actually contain an
object. It only refers to an object.

In Java, the value of any object variable is a reference to an object that is
stored elsewhere. The return value of the new operator is also a reference. A
statement such as

Date startTime = new Date();

has two parts. The expression new Date() makes an object of type Date, and
its value is a reference to that newly created object. That reference is then
stored in the startTime variable.

You can explicitly set an object variable to null to indicate that it currently
refers to no object.

startTime = null; . . .
if (startTime != null)
 System.out.println(startTime);

I discuss null in more detail in Section 4.3.6, “Working with null

References,” on p. 149.

 C++ NOTE:
Some people mistakenly believe that Java object variables behave like C++
references. But in C++ there are no null references, and references cannot be
assigned. You should think of Java object variables as analogous to object
pointers in C++. For example,

Date rightNow; // Java

is really the same as

Date* rightNow; // C++

Once you make this association, everything falls into place. Of course, a
Date* pointer isn’t initialized until you initialize it with a call to new. The
syntax is almost the same in C++ and Java.

Date* rightNow = new Date(); // C++

If you copy one variable to another, then both variables refer to the same
date—they are pointers to the same object. The equivalent of the Java null
reference is the C++ NULL pointer.

All Java objects live on the heap. When an object contains another object
variable, it contains just a pointer to yet another heap object.

In C++, pointers make you nervous because they are so error-prone. It is
easy to create bad pointers or to mess up memory management. In Java,

these problems simply go away. If you use an uninitialized pointer, the
runtime system will reliably generate a runtime error instead of producing
random results. You don’t have to worry about memory management,
because the garbage collector takes care of it.

C++ makes quite an effort, with its support for copy constructors and
assignment operators, to allow the implementation of objects that copy
themselves automatically. For example, a copy of a linked list is a new
linked list with the same contents but with an independent set of links. This
makes it possible to design classes with the same copy behavior as the built-
in types. In Java, you must use the clone method to get a complete copy of
an object.

4.2.2 The LocalDate Class of the Java Library

In the preceding examples, we used the Date class that is a part of the
standard Java library. An instance of the Date class has a state—namely, a
particular point in time.

Although you don’t need to know this when you use the Date class, the time
is represented by the number of milliseconds (positive or negative) from a
fixed point, the so-called epoch, which is 00:00:00 UTC, January 1, 1970.
UTC is the Coordinated Universal Time, the scientific time standard which
is, for practical purposes, the same as the more familiar GMT, or Greenwich
Mean Time.

But as it turns out, the Date class is not very useful for manipulating the kind
of calendar information that humans use for dates, such as “December 31,
1999”. This particular description of a day follows the Gregorian calendar,
which is the calendar used in most countries of the world. The same point in
time would be described quite differently in the Chinese or Hebrew lunar
calendars, not to mention the calendar used by your customers from Mars.

 NOTE:

Throughout human history, civilizations grappled with the design of
calendars to attach names to dates and bring order to the solar and lunar
cycles. For a fascinating explanation of calendars around the world, from the
French Revolutionary calendar to the Mayan long count, see Calendrical
Calculations by Nachum Dershowitz and Edward M. Reingold (Cambridge
University Press, 4th ed., 2018).

The library designers decided to separate the concerns of keeping time and
attaching names to points in time. Therefore, the standard Java library
contains two separate classes: the Date class, which represents a point in
time, and the LocalDate class, which expresses days in the familiar calendar
notation. Java 8 introduced quite a few other classes for manipulating
various aspects of date and time—see Chapter 6 of Volume II.

Separating time measurement from calendars is good object-oriented design.
In general, it is a good idea to use different classes to express different
concepts.

You do not use a constructor to construct objects of the LocalDate class.
Instead, use static factory methods that call constructors on your behalf. The
expression

LocalDate.now()

constructs a new object that represents the date at which the object was
constructed.

You can construct an object for a specific date by supplying year, month, and
day:

LocalDate.of(1999, 12, 31)

Of course, you will usually want to store the constructed object in an object
variable:

LocalDate newYearsEve = LocalDate.of(1999, 12, 31);

Once you have a LocalDate object, you can find out the year, month, and day
with the methods getYear, getMonthValue, and getDayOfMonth:

int year = newYearsEve.getYear(); // 1999
int month = newYearsEve.getMonthValue(); // 12
int day = newYearsEve.getDayOfMonth(); // 31

This may seem pointless because they are the very same values that you just
used to construct the object. But sometimes, you have a date that has been
computed, and then you will want to invoke those methods to find out more
about it. For example, the plusDays method yields a new LocalDate that is a
given number of days away from the object to which you apply it:

LocalDate aThousandDaysLater = newYearsEve.plusDays(1000);
year = aThousandDaysLater.getYear(); // 2002
month = aThousandDaysLater.getMonthValue(); // 09
day = aThousandDaysLater.getDayOfMonth(); // 26

The LocalDate class has encapsulated instance fields to maintain the date to
which it is set. Without looking at the source code, it is impossible to know
the representation that the class uses internally. But, of course, the point of
encapsulation is that this doesn’t matter. What matters are the methods that a
class exposes.

 NOTE:
Actually, the Date class also has methods to get the day, month, and year,
called getDay, getMonth, and getYear, but these methods are deprecated. A
method is deprecated when a library designer realizes that the method
should have never been introduced in the first place.

These methods were a part of the Date class before the library designers
realized that it makes more sense to supply separate classes to deal with
calendars. When an earlier set of calendar classes was introduced in Java

1.1, the Date methods were tagged as deprecated. You can still use them in
your programs, but you will get unsightly compiler warnings if you do. It is
a good idea to stay away from using deprecated methods because they may
be removed in a future version of the library.

 TIP:
The JDK provides the jdeprscan tool for checking whether your code uses
deprecated features of the Java API. See
https://docs.oracle.com/en/java/javase/17/docs/specs/man/jdeprscan.h

tml for instructions.

4.2.3 Mutator and Accessor Methods

Have another look at the plusDays method call that you saw in the preceding
section:

LocalDate aThousandDaysLater = newYearsEve.plusDays(1000);

What happens to newYearsEve after the call? Has it been changed to be a
thousand days later? As it turns out, it has not. The plusDays method yields a
new LocalDate object, which is then assigned to the aThousandDaysLater
variable. The original object remains unchanged. We say that the plusDays
method does not mutate the object on which it is invoked. (This is similar to
the toUpperCase method of the String class that you saw in Chapter 3. When
you call toUpperCase on a string, that string stays the same, and a new string
with uppercase characters is returned.)

An earlier version of the Java library had a different class for dealing with
calendars, called GregorianCalendar. Here is how you add a thousand days
to a date represented by that class:

https://docs.oracle.com/en/java/javase/17/docs/specs/man/jdeprscan.html

GregorianCalendar someDay = new GregorianCalendar(1999, 11,
31);
 // odd feature of that class: month numbers go from 0 to 11
someDay.add(Calendar.DAY_OF_MONTH, 1000);

Unlike the LocalDate.plusDays method, the GregorianCalendar.add method
is a mutator method. After invoking it, the state of the someDay object has
changed. Here is how you can find out the new state:

year = someDay.get(Calendar.YEAR); // 2002
month = someDay.get(Calendar.MONTH) + 1; // 09
day = someDay.get(Calendar.DAY_OF_MONTH); // 26

That’s why the variable is called someDay and not newYearsEve—it no longer
is new year’s eve after calling the mutator method.

In contrast, methods that only access objects without modifying them are
sometimes called accessor methods. For example, LocalDate.getYear and
GregorianCalendar.get are accessor methods.

 C++ NOTE:
In C++, the const suffix denotes accessor methods. A method that is not
declared as const is assumed to be a mutator. However, in the Java
programming language, no special syntax distinguishes accessors from
mutators.

I finish this section with a program that puts the LocalDate class to work. The
program displays a calendar for the current month, like this:

Mon Tue Wed Thu Fri Sat Sun
 1
 2 3 4 5 6 7 8
 9 10 11 12 13 14 15

 16 17 18 19 20 21 22
 23 24 25 26* 27 28 29
 30

The current day is marked with an asterisk (*). As you can see, the program
needs to know how to compute the length of a month and the weekday of a
given day.

Let us go through the key steps of the program. First, we construct an object
that is initialized with the current date.

LocalDate date = LocalDate.now();

We capture the current month and day.

int month = date.getMonthValue();
int today = date.getDayOfMonth();

Then we set date to the first of the month and get the weekday of that date.

date = date.minusDays(today - 1); // set to start of month
DayOfWeek weekday = date.getDayOfWeek();
int value = weekday.getValue(); // 1 = Monday, . . . , 7 =
Sunday

The variable weekday is set to an object of type DayOfWeek. We call the
getValue method of that object to get a numerical value for the weekday.
This yields an integer that follows the international convention where the
weekend comes at the end of the week, returning 1 for Monday, 2 for
Tuesday, and so on. Sunday has value 7.

Note that the first line of the calendar is indented, so that the first day of the
month falls on the appropriate weekday. Here is the code to print the header
and the indentation for the first line:

System.out.println("Mon Tue Wed Thu Fri Sat Sun");
for (int i = 1; i < value; i++)
 System.out.print(" ");

Now, we are ready to print the body of the calendar. We enter a loop in
which date traverses the days of the month.

In each iteration, we print the date value. If date is today, the date is marked
with an *. Then, we advance date to the next day. When we reach the
beginning of each new week, we print a new line:

while (date.getMonthValue() == month)
{
 System.out.printf("%3d", date.getDayOfMonth());
 if (date.getDayOfMonth() == today)
 System.out.print("*");
 else
 System.out.print(" ");
 date = date.plusDays(1);
 if (date.getDayOfWeek().getValue() == 1)
System.out.println();
}

When do we stop? We don’t know whether the month has 31, 30, 29, or 28
days. Instead, we keep iterating while date is still in the current month.

Listing 4.1 shows the complete program.

As you can see, the LocalDate class makes it possible to write a calendar
program that takes care of complexities such as weekdays and the varying
month lengths. You don’t need to know how the LocalDate class computes
months and weekdays. You just use the interface of the class—the methods
such as plusDays and getDayOfWeek.

The point of this example program is to show you how you can use the
interface of a class to carry out fairly sophisticated tasks without having to
know the implementation details.

Listing 4.1 CalendarTest/CalendarTest.java

 1 import java.time.*;
 2
 3 /**
 4 * @version 1.5 2015-05-08
 5 * @author Cay Horstmann
 6 */
 7 public class CalendarTest
 8 {
 9 public static void main(String[] args)
10 {
11 LocalDate date = LocalDate.now();
12 int month = date.getMonthValue();
13 int today = date.getDayOfMonth();
14
15 date = date.minusDays(today - 1); // set to start of
month
16 DayOfWeek weekday = date.getDayOfWeek();
17 int value = weekday.getValue(); // 1 = Monday, . . . , 7
= Sunday
18
19 System.out.println("Mon Tue Wed Thu Fri Sat Sun");
20 for (int i = 1; i < value; i++)
21 System.out.print(" ");
22 while (date.getMonthValue() == month)
23 {
24 System.out.printf("%3d", date.getDayOfMonth());
25 if (date.getDayOfMonth() == today)
26 System.out.print("*");
27 else
28 System.out.print(" ");
29 date = date.plusDays(1);
30 if (date.getDayOfWeek().getValue() == 1)
System.out.println();
31 }
32 if (date.getDayOfWeek().getValue() != 1)
System.out.println();

33 }
34 }

java.time.LocalDate 8

• static LocalDate now()
constructs an object that represents the current date.

• static LocalDate of(int year, int month, int day)
constructs an object that represents the given date.

• int getYear()
• int getMonthValue()
• int getDayOfMonth()

gets the year, month, and day of this date.
• DayOfWeek getDayOfWeek()

gets the weekday of this date as an instance of the DayOfWeek class.
Call getValue on the DayOfWeek instance to get a weekday between 1
(Monday) and 7 (Sunday).

• LocalDate plusDays(int n)
• LocalDate minusDays(int n)

yields the date that is n days after or before this date.

4.3 Defining Your Own Classes

In Chapter 3, you started writing simple classes. However, all those classes
had just a single main method. Now the time has come to show you how to
write the kind of “workhorse classes” that are needed for more sophisticated
applications. These classes typically do not have a main method. Instead,
they have their own instance fields and methods. To build a complete
program, you combine several classes, one of which has a main method.

4.3.1 An Employee Class

The simplest form for a class definition in Java is

class ClassName
{

 field1
 field2
 . . .

 constructor1
 constructor2
 . . .

 method1
 method2
 . . .
}

Consider the following, very simplified, version of an Employee class that
might be used by a business in writing a payroll system:

class Employee
{
 // instance fields
 private String name;
 private double salary;
 private LocalDate hireDay;

 // constructor
 public Employee(String n, double s, int year, int month, int
day)
 {
 name = n;
 salary = s;
 hireDay = LocalDate.of(year, month, day);
 }

 // a method

 public String getName()
 {
 return name;
 }

 // more methods
 . . .
}

We break down the implementation of this class, in some detail, in the
sections that follow. First, though, Listing 4.2 is a program that shows the
Employee class in action.

In the program, we construct an Employee array and fill it with three Employee

objects:

Employee[] staff = new Employee[3];

staff[0] = new Employee("Carl Cracker", . . .);
staff[1] = new Employee("Harry Hacker", . . .);
staff[2] = new Employee("Tony Tester", . . .);

Next, we use the raiseSalary method of the Employee class to raise each
employee’s salary by 5%:

for (Employee e : staff)
 e.raiseSalary(5);

Finally, we print out information about each employee, by calling the
getName, getSalary, and getHireDay methods:

for (Employee e : staff)
 System.out.println("name=" + e.getName()
 + ",salary=" + e.getSalary()
 + ",hireDay=" + e.getHireDay());

Note that the example program consists of two classes: the Employee class
and a class EmployeeTest with the public access specifier. The main method
with the instructions that we just described is contained in the EmployeeTest
class.

The name of the source file is EmployeeTest.java because the name of the
file must match the name of the public class. You can only have one public
class in a source file, but you can have any number of nonpublic classes.

Next, when you compile this source code, the compiler creates two class files
in the directory: EmployeeTest.class and Employee.class.

You then start the program by giving the bytecode interpreter the name of the
class that contains the main method of your program:

java EmployeeTest

The bytecode interpreter starts running the code in the main method in the
EmployeeTest class. This code in turn constructs three new Employee objects
and shows you their state.

Listing 4.2 EmployeeTest/EmployeeTest.java

 1 import java.time.*;
 2
 3 /**
 4 * This program tests the Employee class.
 5 * @version 1.13 2018-04-10
 6 * @author Cay Horstmann
 7 */
 8 public class EmployeeTest
 9 {
10 public static void main(String[] args)
11 {
12 // fill the staff array with three Employee objects
13 Employee[] staff = new Employee[3];
14
15 staff[0] = new Employee("Carl Cracker", 75000, 1987, 12,

15);
16 staff[1] = new Employee("Harry Hacker", 50000, 1989, 10,
1);
17 staff[2] = new Employee("Tony Tester", 40000, 1990, 3,
15);
18
19 // raise everyone's salary by 5%
20 for (Employee e : staff)
21 e.raiseSalary(5);
22
23 // print out information about all Employee objects
24 for (Employee e : staff)
25 System.out.println("name=" + e.getName() + ",salary="
+ e.getSalary() + ",hireDay="
26 + e.getHireDay());
27 }
28 }
29
30 class Employee
31 {
32 private String name;
33 private double salary;
34 private LocalDate hireDay;
35
36 public Employee(String n, double s, int year, int month,
int day)
37 {
38 name = n;
39 salary = s;
40 hireDay = LocalDate.of(year, month, day);
41 }
42
43 public String getName()
44 {
45 return name;
46 }
47
48 public double getSalary()
49 {

50 return salary;
51 }
52
53 public LocalDate getHireDay()
54 {
55 return hireDay;
56 }
57
58 public void raiseSalary(double byPercent)
59 {
60 double raise = salary * byPercent / 100;
61 salary += raise;
62 }
63 }

4.3.2 Use of Multiple Source Files

The program in Listing 4.2 has two classes in a single source file. Many
programmers prefer to put each class into its own source file. For example,
you can place the Employee class into a file Employee.java and the
EmployeeTest class into EmployeeTest.java.

If you like this arrangement, you have two choices for compiling the
program. You can invoke the Java compiler with a wildcard:

javac Employee*.java

Then, all source files matching the wildcard will be compiled into class files.
Or, you can simply type

javac EmployeeTest.java

You may find it surprising that the second choice works even though the
Employee.java file is never explicitly compiled. However, when the Java
compiler sees the Employee class being used inside EmployeeTest.java, it will
look for a file named Employee.class. If it does not find that file, it
automatically searches for Employee.java and compiles it. Moreover, if the

timestamp of the version of Employee.java that it finds is newer than that of
the existing Employee.class file, the Java compiler will automatically
recompile the file.

 NOTE:
If you are familiar with the make facility of UNIX (or one of its Windows
cousins, such as nmake), you can think of the Java compiler as having the
make functionality already built in.

4.3.3 Dissecting the Employee Class

In the sections that follow, we will dissect the Employee class. Let’s start with
the methods in this class. As you can see by examining the source code, this
class has one constructor and four methods:

public Employee(String n, double s, int year, int month, int
day)
public String getName()
public double getSalary()
public LocalDate getHireDay()
public void raiseSalary(double byPercent)

All methods of this class are tagged as public. The keyword public means
that any method in any class can call the method. (The four possible access
levels are covered in this and the next chapter.)

Next, notice the three instance fields that will hold the data manipulated
inside an instance of the Employee class.

private String name;
private double salary;
private LocalDate hireDay;

The private keyword makes sure that the only methods that can access these
instance fields are the methods of the Employee class itself. No outside
method can read or write to these fields.

 NOTE:
You could use the public keyword with your instance fields, but it would be
a very bad idea. Having public instance fields would allow any part of the
program to read and modify the instance fields, completely ruining
encapsulation. Any method of any class can modify public fields—and, in
our experience, some code will take advantage of that access privilege when
you least expect it. I strongly recommend to make all your instance fields
private.

Finally, notice that two of the instance fields are themselves objects: The
name

and hireDay fields are references to String and LocalDate objects. This is
quite usual: Classes will often contain instance fields of class type.

4.3.4 First Steps with Constructors

Let’s look at the constructor listed in our Employee class.

public Employee(String n, double s, int year, int month, int
day)
{
 name = n;
 salary = s;
 hireDay = LocalDate.of(year, month, day);
}

As you can see, the name of the constructor is the same as the name of the
class. This constructor runs when you construct objects of the Employee class
—giving the instance fields the initial state you want them to have.

For example, when you create an instance of the Employee class with code
like this:

new Employee("James Bond", 100000, 1950, 1, 1)

you have set the instance fields as follows:

name = "James Bond";
salary = 100000;
hireDay = LocalDate.of(1950, 1, 1); // January 1, 1950

There is an important difference between constructors and other methods. A
constructor can only be called in conjunction with the new operator. You can’t
apply a constructor to an existing object to reset the instance fields. For
example,

james.Employee("James Bond", 250000, 1950, 1, 1) // ERROR

is a compile-time error.

We will have more to say about constructors later in this chapter. For now,
keep the following in mind:

• A constructor has the same name as the class.
• A class can have more than one constructor.
• A constructor can take zero, one, or more parameters.
• A constructor has no return value.
• A constructor is always called with the new operator.

 C++ NOTE:
Constructors work the same way in Java as they do in C++. Keep in mind,
however, that all Java objects are constructed on the heap and that a

constructor must be combined with new. It is a common error of C++
programmers to forget the new operator:

Employee number007("James Bond", 100000, 1950, 1, 1); // C++,
not Java

That works in C++ but not in Java.

 CAUTION:
Be careful not to introduce local variables with the same names as the
instance fields. For example, the following constructor will not set the name
or salary instance fields:

public Employee(String n, double s, . . .)
{
String name = n; // ERROR
double salary = s; // ERROR
 . . .
}

The constructor declares local variables name and salary. These variables are
only accessible inside the constructor. They shadow the instance fields with
the same name. Some programmers accidentally write this kind of code
when they type faster than they think, because their fingers are used to
adding the data type. This is a nasty error that can be hard to track down.
You just have to be careful in all of your methods to not use variable names
that equal the names of instance fields.

4.3.5 Declaring Local Variables with var

As of Java 10, you can declare local variables with the var keyword instead
of specifying their type, provided their type can be inferred from the initial

value. For example, instead of declaring

Employee harry = new Employee("Harry Hacker", 50000, 1989, 10,
1);

you simply write

var harry = new Employee("Harry Hacker", 50000, 1989, 10, 1);

This is nice since it avoids the repetition of the type name Employee.

From now on, I will use the var notation in those cases where the type is
obvious from the right-hand side without any knowledge of the Java API.
But I won’t use var with numeric types such as int, long, or double so that
you don’t have to look out for the difference between 0, 0L, and 0.0. Once
you are more experienced with the Java API, you may want to use the var
keyword more frequently.

Note that the var keyword can only be used with local variables inside
methods. You must always declare the types of parameters and fields.

4.3.6 Working with null References

In Section 4.2.1, “Objects and Object Variables,” on p. 132, you saw that an
object variable holds a reference to an object, or the special value null to
indicate the absence of an object.

This sounds like a convenient mechanism for dealing with special situations,
such as an unknown name or hire date. But you need to be very careful with
null values.

If you apply a method to a null value, a NullPointerException occurs.

LocalDate rightNow = null;
String s = rightNow.toString(); // NullPointerException

This is a serious error, similar to an “index out of bounds” exception. If your
program does not “catch” an exception, it is terminated. Normally, programs
don’t catch these kinds of exceptions but rely on programmers not to cause
them in the first place.

 TIP:
When your program is terminated with a NullPointerException, the stack
trace shows you in which line of your code the problem occurred. Since Java
17, the error message includes the name of the variable or method with the
null value. For example, in a call

String s = e.getHireDay().toString();

the error message tells you whether e was null or getHireDay returned null.

When you define a class, it is a good idea to be clear about which fields can
be null. In our example, we don’t want the name or hireDay field to be null.
(We don’t have to worry about the salary field. It has primitive type and can
never be null.)

The hireDay field is guaranteed to be non-null because it is initialized with a
new LocalDate object. But name will be null if the constructor is called with
a null argument for n.

There are two solutions. The “permissive” approach is to turn a null
argument into an appropriate non-null value:

if (n == null) name = "unknown"; else name = n;

The Objects class has a convenience method for this purpose:

public Employee(String n, double s, int year, int month, int
day)

{
 name = Objects.requireNonNullElse(n, "unknown");
 . . .
}

The “tough love” approach is to reject a null argument:

public Employee(String n, double s, int year, int month, int
day)
{
 name = Objects.requireNonNull(n, "The name cannot be null");
 . . .
}

If someone constructs an Employee object with a null name, then a
NullPointerException occurs. At first glance, that may not seem a useful
remedy. But there are two advantages:

1. The exception report has a description of the problem.
2. The exception report pinpoints the location of the problem. Otherwise, a

NullPointerException would have occurred elsewhere, with no easy way
of tracing it back to the faulty constructor argument.

 NOTE:
Whenever you accept an object reference as a construction parameter, ask
yourself whether you really intend to model values that can be present or
absent. If not, the “tough love” approach is preferred.

4.3.7 Implicit and Explicit Parameters

Methods operate on objects and access their instance fields. For example, the
method

public void raiseSalary(double byPercent)
{
 double raise = salary * byPercent / 100;
 salary += raise;
}

sets a new value for the salary instance field in the object on which this
method is invoked. Consider the call

number007.raiseSalary(5);

The effect is to increase the value of the number007.salary field by 5%. More
specifically, the call executes the following instructions:

double raise = number007.salary * 5 / 100;
number007.salary += raise;

The raiseSalary method has two parameters. The first parameter, called the
implicit parameter, is the object of type Employee that appears before the
method name. The second parameter, the number inside the parentheses after
the method name, is an explicit parameter. (Some people call the implicit
parameter the target or receiver of the method call.)

As you can see, the explicit parameters are explicitly listed in the method
declaration—for example, double byPercent. The implicit parameter does
not appear in the method declaration.

In every method, the keyword this refers to the implicit parameter. If you
like, you can write the raiseSalary method as follows:

public void raiseSalary(double byPercent)
{
 double raise = this.salary * byPercent / 100;
 this.salary += raise;
}

Some programmers prefer that style because it clearly distinguishes between
instance fields and local variables.

 C++ NOTE:
In C++, you generally define methods outside the class:

void Employee::raiseSalary(double byPercent) // C++, not Java
{
 . . .
}

If you define a method inside a class, then it is, automatically, an inline
method.

class Employee
{
 . . .
 int getName() { return name; } // inline in C++
}

In Java, all methods are defined inside the class itself. This does not make
them inline. Finding opportunities for inline replacement is the job of the
Java virtual machine. The just-in-time compiler watches for calls to methods
that are short, commonly called, and not overridden, and optimizes them
away.

4.3.8 Benefits of Encapsulation

Finally, let’s look more closely at the rather simple getName, getSalary, and
getHireDay methods.

public String getName()
{

 return name;
}
public double getSalary()
{
 return salary;
}
public LocalDate getHireDay()
{
 return hireDay;
}

These are obvious examples of accessor methods. As they simply return the
values of instance fields, they are sometimes called field accessors.

Wouldn’t it be easier to make the name, salary, and hireDay fields public,
instead of having separate accessor methods?

However, the name field is read-only. Once you set it in the constructor, there
is no method to change it. Thus, we have a guarantee that the name field will
never be corrupted.

The salary field is not read-only, but it can only be changed by the
raiseSalary method. In particular, should the value ever turn out wrong,
only that method needs to be debugged. Had the salary field been public, the
culprit for messing up the value could have been anywhere.

Sometimes, it happens that you want to get and set the value of an instance
field. Then you need to supply three items:

• A private instance field;
• A public field accessor method; and
• A public field mutator method.

This is a lot more tedious than supplying a single public instance field, but
there are considerable benefits.

First, you can change the internal implementation without affecting any code
other than the methods of the class. For example, if the storage of the name

is changed to

String firstName;
String lastName;

then the getName method can be changed to return

firstName + " " + lastName

This change is completely invisible to the remainder of the program.

Of course, the accessor and mutator methods may need to do a lot of work to
convert between the old and the new data representation. That leads us to our
second benefit: Mutator methods can perform error checking, whereas code
that simply assigns to a field may not go into the trouble. For example, a
setSalary method might check that the salary is never less than 0.

 CAUTION:
Be careful not to write accessor methods that return references to mutable
objects. In a previous edition of this book, I violated that rule in the
Employee class in which the getHireDay method returned an object of class
Date:

class Employee
{
 private Date hireDay;
 . . .
 public Date getHireDay()
 {
 return hireDay; // BAD
 }
 . . .
}

Unlike the LocalDate class, which has no mutator methods, the Date class
has a mutator method, setTime, where you can set the number of
milliseconds.

The fact that Date objects are mutable breaks encapsulation! Consider the
following rogue code:

Employee harry = . . .;
Date d = harry.getHireDay();
double tenYearsInMilliseconds = 10 * 365.25 * 24 * 60 * 60 *
1000;
d.setTime(d.getTime() - (long) tenYearsInMilliseconds);
// let's give Harry ten years of added seniority

The reason is subtle. Both d and harry.hireDay refer to the same object (see
Figure 4.5). Applying mutator methods to d automatically changes the
private state of the Employee object!

If you need to return a reference to a mutable object, you should clone it
first. A clone is an exact copy of an object stored in a new location. Cloning
is discussed in detail in Chapter 6. Here is the corrected code:

Figure 4.5 Returning a reference to a mutable instance field

class Employee
{
 . . .
 public Date getHireDay()
 {
 return (Date) hireDay.clone(); // OK
 }
 . . .
}

As a rule of thumb, always use clone whenever you need to return a copy of
a mutable field.

4.3.9 Class-Based Access Privileges

You know that a method can access the private data of the object on which it
is invoked. What people often find surprising is that a method can access the
private data of all objects of its class. For example, consider a method equals

that compares two employees.

class Employee
{
 . . .
 public boolean equals(Employee other)
 {
 return name.equals(other.name);
 }
}

A typical call is

if (harry.equals(boss)) . . .

This method accesses the private fields of harry, which is not surprising. It
also accesses the private fields of boss. This is legal because boss is an object
of type

Employee, and a method of the Employee class is permitted to access the
private fields of any object of type Employee.

 C++ NOTE:
C++ has the same rule. A method can access the private features of any
object of its class, not just of the implicit parameter.

4.3.10 Private Methods

When implementing a class, we make all instance fields private because
public data are dangerous. But what about the methods? While most methods
are public, private methods are useful in certain circumstances. Sometimes,
you may wish to break up the code for a computation into separate helper
methods. Typically, these helper methods should not be part of the public
interface—they may be too close to the current implementation or require a
special protocol or calling order. Such methods are best implemented as
private.

To implement a private method in Java, simply change the public keyword
to private.

By making a method private, you are under no obligation to keep it available
if you change your implementation. The method may well be harder to
implement or unnecessary if the data representation changes; this is
irrelevant. The point is that as long as the method is private, the designers of
the class can be assured that it is never used elsewhere, so they can simply
drop it. If a method is public, you cannot simply drop it because other code
might rely on it.

4.3.11 Final Instance Fields

You can define an instance field as final. Such a field must be initialized
when the object is constructed. That is, you must guarantee that the field
value has been set after the end of every constructor. Afterwards, the field
may not be modified again. For example, the name field of the Employee class
may be declared as final because it never changes after the object is
constructed—there is no setName method.

class Employee
{
 private final String name;
 . . .
}

The final modifier is particularly useful for fields whose type is primitive or
an immutable class. (A class is immutable if none of its methods ever mutate
its objects. For example, the String class is immutable.)

For mutable classes, the final modifier can be confusing. For example,
consider a field

private final StringBuilder evaluations;

that is initialized in the Employee constructor as

evaluations = new StringBuilder();

The final keyword merely means that the object reference stored in the
evaluations variable will never again refer to a different StringBuilder
object. But the object can be mutated:

public void giveGoldStar()
{
 evaluations.append(LocalDate.now() + ": Gold star!\n");
}

4.4 Static Fields and Methods

In all sample programs that you have seen, the main method is tagged with
the static modifier. We are now ready to discuss the meaning of this
modifier.

4.4.1 Static Fields

If you define a field as static, then the field is not present in the objects of
the class. There is only a single copy of each static field. You can think of
static fields as belonging to the class, not to the individual objects. For
example, let’s suppose we want to assign a unique identification number to
each employee. We add an instance field id and a static field nextId to the
Employee class:

class Employee
{
 private static int nextId = 1;

 private int id;
 . . .
}

Every Employee object now has its own id field, but there is only one nextId
field that is shared among all instances of the class. Let’s put it another way.
If there are 1,000 objects of the Employee class, then there are 1,000 instance
fields id, one for each object. But there is a single static field nextId. Even if
there are no Employee objects, the static field nextId is present. It belongs to
the class, not to any individual object.

 NOTE:
In some object-oriented programming languages, static fields are called
class fields. The term “static” is a meaningless holdover from C++.

In the constructor, we assign the next available ID to the new Employee
object and then increment it:

id = nextId;
nextId++;

Suppose we construct the object harry. Then the id field of harry is set to the
current value of the static field nextId, and the value of the static field is
incremented:

harry.id = Employee.nextId;
Employee.nextId++;

4.4.2 Static Constants

Static variables are quite rare. However, static constants are more common.
For example, the Math class defines a static constant:

public class Math
{
 . . .
 public static final double PI = 3.14159265358979323846;
 . . .
}

You can access this constant in your programs as Math.PI.

If the keyword static had been omitted, then PI would have been an
instance field of the Math class. That is, you would need an object of this
class to access PI, and every Math object would have its own copy of PI.

Another static constant that you have used many times is System.out. It is
declared in the System class as follows:

public class System
{

 . . . public static final PrintStream out = . . .;
 . . .
}

As mentioned several times, it is never a good idea to have public fields,
because everyone can modify them. However, public constants (that is, final
fields) are fine. Since out has been declared as final, you cannot reassign
another print stream to it:

System.out = new PrintStream(. . .); // ERROR--out is final

 NOTE:
If you look at the System class, you will notice a method setOut that sets
System.out to a different stream. You may wonder how that method can
change the value of a final variable. However, the setOut method is a
native method, not implemented in the Java programming language. Native
methods can bypass the access control mechanisms of the Java language.
This is a very unusual workaround that you should not emulate in your
programs.

4.4.3 Static Methods

Static methods are methods that do not operate on objects. For example, the
pow method of the Math class is a static method. The expression

Math.pow(x, a)

computes the power xa. It does not use any Math object to carry out its task.
In other words, it has no implicit parameter.

You can think of static methods as methods that don’t have a this parameter.
(In a nonstatic method, the this parameter refers to the implicit parameter of

the method—see Section 4.3.7, “Implicit and Explicit Parameters,” on p.
150.)

A static method of the Employee class cannot access the id instance field
because it does not operate on an object. However, a static method can
access a static field. Here is an example of such a static method:

public static int advanceId()
{
 int r = nextId; // obtain next available id
 nextId++;
 return r;
}

To call this method, you supply the name of the class:

int n = Employee.advanceId();

Could you have omitted the keyword static for this method? Yes, but then
you would need to have an object reference of type Employee to invoke the
method.

 NOTE:
It is legal to use an object to call a static method. For example, if harry is an
Employee object, then you can call harry.advanceId() instead of
Employee.advanceId(). However, I find that notation confusing. The
advanceId method doesn’t look at harry at all to compute the result. I
recommend that you use class names, not objects, to invoke static methods.

Use static methods in two situations:

• When a method doesn’t need to access the object state because all needed
parameters are supplied as explicit parameters (example: Math.pow).

• When a method only needs to access static fields of the class (example:
Employee.advanceId).

 C++ NOTE:
Static fields and methods have the same functionality in Java and C++.
However, the syntax is slightly different. In C++, you use the :: operator to
access a static field or method outside its scope, such as Math::PI.

The term “static” has a curious history. At first, the keyword static was
introduced in C to denote local variables that don’t go away when a block is
exited. In that context, the term “static” makes sense: The variable stays
around and is still there when the block is entered again. Then static got a
second meaning in C, to denote global variables and functions that cannot be
accessed from other files. The keyword static was simply reused to avoid
introducing a new keyword. Finally, C++ reused the keyword for a third,
unrelated, interpretation—to denote variables and functions that belong to a
class but not to any particular object of the class. That is the same meaning
the keyword has in Java.

4.4.4 Factory Methods

Here is another common use for static methods. Classes such as LocalDate
and NumberFormat use static factory methods that construct objects. You have
already seen the factory methods LocalDate.now and LocalDate.of. Here is
how to obtain formatter objects for various styles:

NumberFormat currencyFormatter =
NumberFormat.getCurrencyInstance();
NumberFormat percentFormatter =
NumberFormat.getPercentInstance();
double x = 0.1;System.out.println(currencyFormatter.format(x));
// prints $0.10
System.out.println(percentFormatter.format(x)); // prints 10%

Why doesn’t the NumberFormat class use a constructor instead? There are two
reasons:

• You can’t give names to constructors. The constructor name is always the
same as the class name. But we want two different names to get the
currency instance and the percent instance.

• When you use a constructor, you can’t vary the type of the constructed
object. But the factory methods actually return objects of the class
DecimalFormat, a subclass that inherits from NumberFormat. (See Chapter 5
for more on inheritance.)

4.4.5 The main Method

Note that you can call static methods without having any objects. For
example, you never construct any objects of the Math class to call Math.pow.

For the same reason, the main method is a static method.

public class Application
{
 public static void main(String[] args)
 {
 // construct objects here
 . . .
 }
}

The main method does not operate on any objects. In fact, when a program
starts, there aren’t any objects yet. The static main method executes, and
constructs the objects that the program needs.

 TIP:
Every class can have a main method. That is a handy trick for adding
demonstration code to a class. For example, you can add a main method to

the Employee class:

class Employee
{
 public Employee(String n, double s, int year, int month, int
day)
 {
 name = n;
 salary = s;
 hireDay = LocalDate.of(year, month, day);
 }
 . . . public static void main(String[] args) // unit test
 {
 var e = new Employee("Romeo", 50000, 2003, 3, 31);
 e.raiseSalary(10);
 System.out.println(e.getName() + " " + e.getSalary());
 }
 . . .
}

To see a demo of the Employee class, simply execute

java Employee

If the Employee class is a part of a larger application, you start the application
with

java Application

and the main method of the Employee class is never executed.

The program in Listing 4.3 contains a simple version of the Employee class
with a static field nextId and a static method advanceId. We fill an array
with three Employee objects and then print the employee information.
Finally, we print the next available identification number, to demonstrate the
static method.

Note that the Employee class also has a static main method for unit testing.
Try running both

java Employee

and

java StaticTest

to execute both main methods.

Listing 4.3 StaticTest/StaticTest.java

 1 /**
 2 * This program demonstrates static methods.
 3 * @version 1.02 2008-04-10
 4 * @author Cay Horstmann
 5 */
 6 public class StaticTest
 7 {
 8 public static void main(String[] args)
 9 {
10 // fill the staff array with three Employee
objects11 var staff = new Employee[3];
12
13 staff[0] = new Employee("Tom", 40000);
14 staff[1] = new Employee("Dick", 60000);
15 staff[2] = new Employee("Harry", 65000);
16
17 // print out information about all Employee objects
18 for (Employee e : staff)
19 {
20 System.out.println("name=" + e.getName() + ",id=" +
e.getId() + ",salary="
21 + e.getSalary());
22 }
23

24 int n = Employee.getNextId(); // calls static method
25 System.out.println("Next available id=" + n);
26 }
27 }
28
29 class Employee
30 {
31 private static int nextId = 1;
32
33 private String name;
34 private double salary;
35 private int id;
36
37 public Employee(String n, double s)
38 {
39 name = n;
40 salary = s;
41 id = advanceId();
42 }
43
44 public String getName()
45 {
46 return name;
47 }
48
49 public double getSalary()
50 {
51 return salary;
52 }
53
54 public int getId()
55 {
56 return id;
57 }
58
59 public static int advanceId()
60 {
61 int r = nextId; // obtain next available id
62 nextId++;

63 return r;
64 }
65
66 public static void main(String[] args) // unit test
67 {
68 var e = new Employee("Harry", 50000);
69 System.out.println(e.getName() + " " + e.getSalary());
70 }
71 }

java.util.Objects 7

• static <T> void requireNonNull(T obj)
• static <T> void requireNonNull(T obj, String message)
• static <T> void requireNonNull(T obj, Supplier<String>

messageSupplier) 8
If obj is null, these methods throw a NullPointerException with no
message or the given message. (Chapter 6 explains how to obtain a
value lazily with a supplier. Chapter 8 explains the <T> syntax.)

• static <T> T requireNonNullElse(T obj, T defaultObj) 9
• static <T> T requireNonNullElseGet(T obj, Supplier<T>

defaultSupplier) 9
returns obj if it is not null, or the default object if obj is null.

4.5 Method Parameters

Let us review the computer science terms that describe how parameters can
be passed to a method (or a function) in a programming language. The term
call by value means that the method gets just the value that the caller
provides. In contrast, call by reference means that the method gets the
location of the variable that the caller provides. Thus, a method can modify
the value stored in a variable passed by reference but not in one passed by

value. These “call by . . .” terms are standard computer science terminology
describing the behavior of method parameters in various programming
languages, not just Java. (There is also a call by name that is mainly of
historical interest, being employed in the Algol programming language, one
of the oldest high-level languages.)

The Java programming language always uses call by value. That means that
the method gets a copy of all parameter values. In particular, the method
cannot modify the contents of any parameter variables passed to it.

For example, consider the following call:

double percent = 10;
harry.raiseSalary(percent);

No matter how the method is implemented, we know that after the method
call, the value of percent is still 10.

Let us look a little more closely at this situation. Suppose a method tried to
triple the value of a method parameter:

public static void tripleValue(double x) // doesn't work
{
 x = 3 * x;
}

Let’s call this method:

double percent = 10;
tripleValue(percent);

However, this does not work. After the method call, the value of percent is
still 10. Here is what happens:

1. x is initialized with a copy of the value of percent (that is, 10). 2. x is
tripled—it is now 30. But percent is still 10 (see Figure 4.6). 3. The
method ends, and the parameter variable x is no longer in use.

There are, however, two kinds of method parameters:

• Primitive types (numbers, boolean values)
• Object references

You have seen that it is impossible for a method to change a primitive type
parameter. The situation is different for object parameters. You can easily
implement a method that triples the salary of an employee:

public static void tripleSalary(Employee x) // works
{
 x.raiseSalary(200);
}

When you call

harry = new Employee(. . .);
tripleSalary(harry);

then the following happens:

Figure 4.6 Modifying a parameter variable has no lasting effect.

1. x is initialized with a copy of the value of harry—that is, an object
reference.

2. The raiseSalary method is applied to that object reference. The Employee
object to which both x and harry refer gets its salary raised by 200
percent.

3. The method ends, and the parameter variable x is no longer in use. Of
course, the object variable harry continues to refer to the object whose
salary was tripled (see Figure 4.7).

As you have seen, it is easily possible—and in fact very common—to
implement methods that change the state of an object parameter. The reason
is simple. The method gets a copy of the object reference, and both the
original and the copy refer to the same object.

Many programming languages (in particular, C++ and Pascal) have two
mechanisms for parameter passing: call by value and call by reference. Some
programmers (and unfortunately even some book authors) claim that Java
uses call by reference for objects. That is false. As this is such a common
misunderstanding, it is worth examining a counterexample in detail.

Let’s try to write a method that swaps two Employee objects:

Figure 4.7 Modifying an object referenced by a parameter has a lasting
effect.

public static void swap(Employee x, Employee y) // doesn't work
{
 Employee temp = x;
 x = y;
 y = temp;
}

If Java used call by reference for objects, this method would work:

var a = new Employee("Alice", . . .);
var b = new Employee("Bob", . . .);
swap(a, b);
// does a now refer to Bob, b to Alice?

However, the method does not actually change the object references that are
stored in the variables a and b. The x and y parameters of the swap method
are initialized with copies of these references. The method then proceeds to
swap these copies.

// x refers to Alice, y to Bob
Employee temp = x;
x = y;
y = temp;
// now x refers to Bob, y to Alice

But ultimately, this is a wasted effort. When the method ends, the parameter
variables x and y are abandoned. The original variables a and b still refer to
the same objects as they did before the method call (see Figure 4.8).

Figure 4.8 Swapping parameter variables has no lasting effect.

This demonstrates that the Java programming language does not use call by
reference for objects. Instead, object references are passed by value.

Here is a summary of what you can and cannot do with method parameters
in Java:

• A method cannot modify a parameter of a primitive type (that is, numbers
or boolean values).

• A method can change the state of an object parameter.
• A method cannot make an object parameter refer to a new object.

The program in Listing 4.4 demonstrates these facts. The program first tries
to triple the value of a number parameter and does not succeed:

Testing tripleValue:
Before: percent=10.0

End of method: x=30.0
After: percent=10.0

It then successfully triples the salary of an employee:

Testing tripleSalary:
Before: salary=50000.0
End of method: salary=150000.0
After: salary=150000.0

After the method, the state of the object to which harry refers has changed.
This is possible because the method modified the state through a copy of the
object reference.

Finally, the program demonstrates the failure of the swap method:

Testing swap:
Before: a=Alice
Before: b=Bob
End of method: x=Bob
End of method: y=Alice
After: a=Alice
After: b=Bob

As you can see, the parameter variables x and y are swapped, but the
variables a and b are not affected.

 C++ NOTE:
C++ has both call by value and call by reference. You tag reference
parameters with &. For example, you can easily implement methods void
tripleValue(double& x) or void swap(Employee& x, Employee& y) that
modify their reference parameters.

Listing 4.4 ParamTest/ParamTest.java

 1 /**
 2 * This program demonstrates parameter passing in Java.
 3 * @version 1.01 2018-04-10
 4 * @author Cay Horstmann
 5 */
 6 public class ParamTest
 7 {
 8 public static void main(String[] args)
 9 {
10 /*
11 * Test 1: Methods can't modify numeric parameters
12 */
13 System.out.println("Testing tripleValue:");
14 double percent = 10;
15 System.out.println("Before: percent=" + percent);
16 tripleValue(percent);
17 System.out.println("After: percent=" + percent);
19 /*
20 * Test 2: Methods can change the state of object
parameters
21 */
22 System.out.println("\nTesting tripleSalary:");
23 var harry = new Employee("Harry", 50000);
24 System.out.println("Before: salary=" +
harry.getSalary());
25 tripleSalary(harry);
26 System.out.println("After: salary=" + harry.getSalary());
27
28 /*
29 * Test 3: Methods can't attach new objects to object
parameters
30 */
31 System.out.println("\nTesting swap:");
32 var a = new Employee("Alice", 70000);
33 var b = new Employee("Bob", 60000);
34 System.out.println("Before: a=" + a.getName());
35 System.out.println("Before: b=" + b.getName());

36 swap(a, b);
37 System.out.println("After: a=" + a.getName());
38 System.out.println("After: b=" + b.getName());
39 }
40
41 public static void tripleValue(double x) // doesn't work
42 {
43 x = 3 * x;
44 System.out.println("End of method: x=" + x);
45 }
46
47 public static void tripleSalary(Employee x) // works
48 {
49 x.raiseSalary(200);
50 System.out.println("End of method: salary=" +
x.getSalary());
51 }
52
53 public static void swap(Employee x, Employee y)
54 {
55 Employee temp = x;
56 x = y;
57 y = temp;
58 System.out.println("End of method: x=" + x.getName());
59 System.out.println("End of method: y=" + y.getName());
60 }
61 }
62
63 class Employee // simplified Employee class
64 {
65 private String name;
66 private double salary;67
68 public Employee(String n, double s)
69 {
70 name = n;
71 salary = s;
72 }
73
74 public String getName()

75 {
76 return name;
77 }
78
79 public double getSalary()
80 {
81 return salary;
82 }
83
84 public void raiseSalary(double byPercent)
85 {
86 double raise = salary * byPercent / 100;
87 salary += raise;
88 }
89 }

4.6 Object Construction

You have seen how to write simple constructors that define the initial state of
your objects. However, since object construction is so important, Java offers
quite a variety of mechanisms for writing constructors. We go over these
mechanisms in the sections that follow.

4.6.1 Overloading

Some classes have more than one constructor. For example, you can
construct an empty StringBuilder object as

var messages = new StringBuilder();

Alternatively, you can specify an initial string:

var todoList = new StringBuilder("To do:\n");

This capability is called overloading. Overloading occurs if several methods
have the same name (in this case, the StringBuilder constructor method) but

different parameters. The compiler must sort out which method to call. It
picks the correct method by matching the parameter types in the headers of
the various methods with the types of the values used in the specific method
call. A compile-time error occurs if the compiler cannot match the
parameters, either because there is no match at all or because there is not one
that is better than all others. (The process of finding a match is called
overloading resolution.)

 NOTE:
Java allows you to overload any method—not just constructor methods.
Thus, to completely describe a method, you need to specify its name
together with its parameter types. This is called the signature of the method.
For example, the String class has four public methods called indexOf. They
have signatures

indexOf(int)
indexOf(int, int)
indexOf(String)
indexOf(String, int)

The return type is not part of the method signature. That is, you cannot have
two methods with the same names and parameter types but different return
types.

4.6.2 Default Field Initialization

If you don’t set a field explicitly in a constructor, it is automatically set to a
default value: numbers to 0, boolean values to false, and object references to
null. Some people consider it poor programming practice to rely on the
defaults. Certainly, it makes it harder for someone to understand your code if
fields are being initialized invisibly.

 NOTE:
This is an important difference between fields and local variables. You must
always explicitly initialize local variables in a method. But in a class, if you
don’t initialize a field, it is automatically initialized to a default (0, false, or
null).

For example, consider the Employee class. Suppose you don’t specify how to
initialize some of the fields in a constructor. By default, the salary field
would be initialized with 0 and the name and hireDay fields would be
initialized with null.

However, that would not be a good idea. If anyone called the getName or
getHireDay method, they would get a null reference that they probably don’t
expect:

LocalDate h = harry.getHireDay();
int year = h.getYear(); // throws exception if h is null

4.6.3 The Constructor with No Arguments

Many classes contain a constructor with no arguments that creates an object
whose state is set to an appropriate default. For example, here is a no-
argument constructor for the Employee class:

public Employee()
{
 name = "";
 salary = 0;
 hireDay = LocalDate.now();
}

If you write a class with no constructors whatsoever, then a no-argument
constructor is provided for you. This constructor sets all the instance fields to
their default values. So, all numeric data contained in the instance fields

would be 0, all boolean values would be false, and all object variables
would be null.

If a class supplies at least one constructor but does not supply a no-argument
constructor, it is illegal to construct objects without supplying arguments.
For example, our original Employee class in Listing 4.2 provided a single
constructor:

public Employee(String n, double s, int year, int month, int
day)

With that class, it was not legal to construct default employees. That is, the
call

e = new Employee();

would have been an error.

 CAUTION:
Please keep in mind that you get a free no-argument constructor only when
your class has no other constructors. If you write your class with even a
single constructor of your own and you want the users of your class to have
the ability to create an instance by a call to

new ClassName()

then you must provide a no-argument constructor. Of course, if you are
happy with the default values for all fields, you can simply supply

public ClassName()
{
}

4.6 Object Construction

 C++ NOTE:
C++ has a special initializer list syntax for constructing fields, such as

Employee::Employee(String n, double s, int y, int m, int d) //
C++
: name(n),
 salary(s),
 hireDay(y, m, d)
{
}

C++ uses this special syntax to avoid unnecessary invocations of no-
argument constructors. In Java, there is no need for that because objects
have no subobjects, only references to other objects.

4.6.4 Explicit Field Initialization

By overloading the constructor methods in a class, you can build many ways
to set the initial state of the instance fields of your classes. It is always a good
idea to make sure that, regardless of the constructor call, every instance field
is set to something meaningful.

You can simply assign a value to any field in the class definition. For
example:

class Employee
{
 private String name = "";
 . . .
}

This assignment is carried out before the constructor executes. This syntax is
particularly useful if all constructors of a class need to set a particular
instance field to the same value.

The initialization value doesn’t have to be a constant value. Here is an
example in which a field is initialized with a method call. Consider the
Employee class where each employee has an id field. You can initialize it as
follows:

class Employee
{
 private static int nextId;
 private int id = advanceId();
 . . .
 private static int advanceId()
 {
 int r = nextId;
 nextId++;
 return r; }
 . . .
}

4.6.5 Parameter Names

When you write very trivial constructors (and you’ll write a lot of them), it
can be somewhat frustrating to come up with parameter names.

We have generally opted for single-letter parameter names:

public Employee(String n, double s)
{
 name = n;
 salary = s;
}

However, the drawback is that you need to read the code to tell what the n
and s parameters mean.

Some programmers prefix each parameter with an “a”:

public Employee(String aName, double aSalary)
{
 name = aName;
 salary = aSalary;
}

That is better. Any reader can immediately figure out the meaning of the
parameters.

Another commonly used trick relies on the fact that parameter variables
shadow instance fields with the same name. For example, if you call a
parameter salary, then salary refers to the parameter, not the instance field.
But you can still access the instance field as this.salary. Recall that this
denotes the implicit parameter—that is, the object being constructed. Here is
an example:

public Employee(String name, double salary)
{
 this.name = name;
 this.salary = salary;
}

 C++ NOTE:
In C++, it is common to prefix instance fields with an underscore or a fixed
letter. (The letters m and x are common choices.) For example, the salary
field might be called _salary, mSalary, or xSalary. Java programmers don’t
usually do that.

4.6.6 Calling Another Constructor

The keyword this refers to the implicit parameter of a method. However,
this keyword has a second meaning.

If the first statement of a constructor has the form this(. . .), then the
constructor calls another constructor of the same class. Here is a typical
example:

public Employee(double s)
{
 // calls Employee(String, double)
 this("Employee #" + nextId, s);
 nextId++;
}

When you call new Employee(60000), the Employee(double) constructor calls
the Employee(String, double) constructor.

Using the this keyword in this manner is useful—you only need to write
common construction code once.

 C++ NOTE:
The this reference in Java is identical to the this pointer in C++. However,
in C++ it is not possible for one constructor to call another. If you want to
factor out common initialization code in C++, you must write a separate
method.

4.6.7 Initialization Blocks

You have already seen two ways to initialize a instance field:

• By setting a value in a constructor
• By assigning a value in the declaration

There is a third mechanism in Java, called an initialization block. Class
declarations can contain arbitrary blocks of code. These blocks are executed
whenever an object of that class is constructed. For example:

class Employee
{
 private static int nextId;
 private int id;
 private String name;
 private double salary;

 // object initialization block {
 id = nextId;
 nextId++;
 }

 public Employee(String n, double s)
 {
 name = n;
 salary = s;
 }

 public Employee()
 {
 name = "";
 salary = 0;
 }
 . . .
}

In this example, the id field is initialized in the object initialization block, no
matter which constructor is used to construct an object. The initialization
block runs first, and then the body of the constructor is executed.

This mechanism is never necessary and is not common. It is usually more
straightforward to place the initialization code inside a constructor.

 NOTE:
It is legal to set fields in initialization blocks even if they are only defined
later in the class. However, to avoid circular definitions, it is not legal to
read from fields that are only initialized later. The exact rules are spelled out
in Section 8.3.3 of the Java Language Specification
(http://docs.oracle.com/javase/specs). The rules are complex enough to
baffle the compiler implementors—early versions of Java implemented them
with subtle errors. Therefore, you should always place initialization blocks
after the field definitions.

With so many ways of initializing instance fields, it can be quite confusing to
give all possible pathways for the construction process. Here is what happens
in detail when a constructor is called:

1. If the first line of the constructor calls a second constructor, then the
second constructor executes with the provided arguments. 2. Otherwise,

• All instance fields are initialized to their default values (0, false, or null).
• All field initializers and initialization blocks are executed, in the order in

which they occur in the class declaration.
3. The body of the constructor is executed.

Naturally, it is always a good idea to organize your initialization code so that
another programmer could easily understand it without having to be a
language lawyer. For example, it would be quite strange and somewhat error-
prone to have a class whose constructors depend on the order in which the
instance fields are declared.

To initialize a static field, either supply an initial value or use a static
initialization block. You have already seen the first mechanism:

private static int nextId = 1;

If the static fields of your class require complex initialization code, use a
static initialization block.

http://docs.oracle.com/javase/specs

Place the code inside a block and tag it with the keyword static. Here is an
example. We want the employee ID numbers to start at a random integer less
than 10,000.

private static Random generator = new Random();
// static initialization block
static
{
 nextId = generator.nextInt(10000);
}

Static initialization occurs when the class is first loaded. Like instance fields,
static fields are 0, false, or null unless you explicitly set them to another
value. All static field initializers and static initialization blocks are executed
in the order in which they occur in the class declaration.

 NOTE:
Amazingly enough, up to JDK 6, it was possible to write a “Hello, World”
program in Java without ever writing a main method.

public class Hello
{
 static
 {
 System.out.println("Hello, World");
 }
}

When you invoked the class with java Hello, the class was loaded, the static
initialization block printed “Hello, World”, and only then was a message
displayed that main is not defined. Since Java 7, the java program first
checks that there is a main method.

This example uses the Random class for generating random numbers. Since
JDK 17, the java.util.random package provides implementations of strong
algorithms with various tradeoffs. Read through the API documentation of
the java.util.random package for advice which algorithm to choose. Then
obtain an instance by providing the algorithm name like this:

RandomGenerator generator =
RandomGenerator.of("L64X128MixRandom");

Generate random numbers by calling generator.nextInt(n) or other
RandomGenerator methods. (RandomGenerator is an interface, a concept
introduced in Chapter 6. You can use all RandomGenerator methods with
objects of the Random class.)

The program in Listing 4.5 shows many of the features discussed in this
section:

• Overloaded constructors
• A call to another constructor with this(. . .)
• A no-argument constructor
• An object initialization block
• A static initialization block
• An instance field initialization

Listing 4.5 ConstructorTest/ConstructorTest.java

 1 import java.util.*;
 2
 3 /**
 4 * This program demonstrates object construction.
 5 * @version 1.02 2018-04-10
 6 * @author Cay Horstmann
 7 */
 8 public class ConstructorTest
 9 {

10 public static void main(String[] args)
11 {
12 // fill the staff array with three Employee objects
13 var staff = new Employee[3];
14
15 staff[0] = new Employee("Harry", 40000);
16 staff[1] = new Employee(60000);
17 staff[2] = new Employee();
18
19 // print out information about all Employee objects
20 for (Employee e : staff)
21 System.out.println("name=" + e.getName() + ",id=" +
e.getId() + ",salary="
22 + e.getSalary());
23 }
24 }
25
26 class Employee
27 {
28 private static int nextId;
29
30 private int id;
31 private String name = ""; // instance field initialization
32 private double salary;
33
34 private static Random generator = new Random();
35
36 // static initialization block
37 static
38 {
39 // set nextId to a random number between 0 and 9999
40 nextId = generator.nextInt(10000);
41 }
42
43 // object initialization block
44 {
45 id = nextId;
46 nextId++;
47 }

48
49 // three overloaded constructors
50 public Employee(String n, double s)
51 {
52 name = n;
53 salary = s;
54 }
55
56 public Employee(double s)
57 {
58 // calls the Employee(String, double) constructor
59 this("Employee #" + nextId, s);
60 }
61
62 // the default constructor
63 public Employee()
64 {
65 // name initialized to ""--see above
66 // salary not explicitly set--initialized to 0
67 // id initialized in initialization block
68 }69
70 public String getName()
71 {
72 return name;
73 }
74
75 public double getSalary()
76 {
77 return salary;
78 }
79
80 public int getId()
81 {
82 return id;
83 }
84 }

java.util.Random 1.0

• Random()
constructs a new random number generator.

java.util.random.RandomGenerator 17

• int nextInt(int n)
returns a random integer between 0 and n – 1.

• static RandomGenerator of(String name)
yields a random generator for the given algorithm name. The
algorithm with name "L64X128MixRandom" is suitable for most
applications.

4.6.8 Object Destruction and the finalize Method

Some object-oriented programming languages, notably C++, have explicit
destructor methods for any cleanup code that may be needed when an object
is no longer used. The most common activity in a destructor is reclaiming the
memory set aside for objects. Since Java does automatic garbage collection,
manual memory reclamation is not needed, so Java does not support
destructors.

Of course, some objects utilize a resource other than memory, such as a file
or a handle to another object that uses system resources. In this case, it is
important that the resource be reclaimed and recycled when it is no longer
needed.

If a resource needs to be closed as soon as you have finished using it, supply
a close method that does the necessary cleanup. You can call the close
method when you are done with the object. In Chapter 7, you will see how
you can ensure that this method is called automatically.

If you can wait until the virtual machine exits, add a “shutdown hook” with
the method Runtime.addShutdownHook. As of Java 9, you can use the Cleaner
class to register an action that is carried out when an object is no longer
reachable (other than by the cleaner). These are uncommon situations in
practice. See the API documentation for details on these two approaches.

 CAUTION:
Do not use the finalize method for cleanup. That method was intended to
be called before the garbage collector sweeps away an object. However, you
simply cannot know when this method will be called, and it is now
deprecated.

4.7 Records

Sometimes, data is just data, and the data hiding that object-oriented
programming provides gets in the way. Consider a class Point that describes
a point in the plane, with x- and y-coordinates.

Sure, you can create a class:

class Point
{
 private final double x;
 private final double y;
 public Point(double x, double y) { this.x = x; this.y = y; }
 public getX() { return x; }
 public getY() { return y; }
 public String toString() { return "Point[x=%d,
y=%d]".formatted(x, y); }
 // More methods ...
}

But does it really buy us anything to hide x and y, and then make the values
available through the getter methods?

Would we ever want to change the implementation of a Point? Sure, there
are polar coordinates, but you would not use them with a graphics API. In
practice, a point in the plane is completely described by its x- and y-
coordinates.

To define such classes more concisely, JDK 14 introduced “records” as a
preview feature. The final version was delivered in JDK 16.

4.7.1 The Record Concept

A record is a special form of a class whose state is immutable and readable
by the public. Here is how you define Point as a record:

record Point(double x, double y) { }

The result is a class with instance fields:

private final double x;
private final double y;

In the Java language specification, the instance fields of a record are called
its components.

The class has a constructor

Point(double x, double y)

and accessor methods

public double x()
public double y()

Note that the accessors are called x and y, not getX and getY. (It is legal in
Java to have an instance field and a method with the same name.)

var p = new Point(3, 4);
System.out.println(p.x() + " " + p.y());

 NOTE:
Java doesn’t follow the get convention because it is a bit messy. For
Boolean fields, it is common to use is instead of get. And the capitalization
of the first letter can be problematic. What should happen if a class has fields
x and X? Some programmers are unhappy because their legacy classes
cannot trivially become records. But in practice, many of those legacy
classes are mutable and therefore not candidates for conversion to records.

In addition to the field accessor methods, every record has three methods
defined automatically: toString, equals, and hashCode. You will learn more
about these methods in the next chapter.

 CAUTION:
You can define your own versions of the automatically provided methods, as
long as they have the same parameter and return types. For example, this
definition is legal:

record Point(double x, double y)
{
 public double x() { return y; } // BAD
}

But it is surely not a good idea.

You can add your own methods to a record:

record Point(double x, double y)
{
 public double distanceFromOrigin() { return Math.hypot(x,
y); }
}

A record, like any class, can have static fields and methods:

record Point(double x, double y)
{
 public static Point ORIGIN = new Point(0, 0);
 public static double distance(Point p, Point q)
 {
 return Math.hypot(p.x - q.x, p.y - q.y);
 }
 ...
}

However, you cannot add instance fields to a record.

record Point(double x, double y)
{
 private double r; // ERROR
 ...
}

 CAUTION:
Instance fields of a record are automatically final. However, they may be
references to mutable objects:

record PointInTime(double x, double y, Date when) { }

Then record instances are mutable:

var pt = new PointInTime(0, 0, new Date());
pt.when().setTime(0);

If you intend record instances to be immutable, don’t use mutable types for
fields.

 TIP:
Use a record instead of a class for immutable data that is completely
represented by a set of variables. Use a class if the data is mutable, or if the
representation may evolve over time. Records are easier to read, more
efficient, and safer in concurrent programs.

4.7.2 Constructors: Canonical, Custom, and Compact

The automatically defined constructor that sets all instance fields is called the
canonical constructor.

You can define additional custom constructors. The first statement of such a
constructor must call another constructor, so that ultimately the canonical
constructor is invoked. Here is an example:

record Point(double x, double y)
{
 public Point() { this(0, 0); }
}

This record has two constructors: the canonical constructor and a no-
argument constructor yielding the origin.

If the canonical constructor needs to do additional work, you can provide
your own implementation:

record Range(int from, int to)
{
 public Range(int from, int to)
 {
 if (from <= to)
 {
 this.from = from;
 this.to = to;
 }
 else
 {
 this.from = to;
 this.to = from;
 }
 }
}

However, you are encouraged to use a compact form when implementing the
canonical constructor. You don’t specify the parameter list:

record Range(int from, int to)
{
 public Range // Compact form
 { if (from > to) // Swap the bounds
 {
 int temp = from;
 from = to;
 to = temp;
 }
 }
}

The body of the compact form is the “prelude” to the canonical constructor.
It merely modifies the parameter variables from and to before they are
assigned to the instance fields this.from and this.to. You cannot read or
modify the instance fields in the body of the compact constructor.

Listing 4.6 RecordTest/RecordTest.java

 1 import java.util.*;
 2
 3 /**
 4 * This program demonstrates records.
 5 * @version 1.0 2021-05-13
 6 * @author Cay Horstmann
 7 */
 8 public class RecordTest
 9 {
10 public static void main(String[] args)
11 {
12 var p = new Point(3, 4);
13 System.out.println("Coordinates of p: " + p.x() + " " +
p.y());
14 System.out.println("Distance from origin: " +
p.distanceFromOrigin());
15 // Same computation with static field and method
16 System.out.println("Distance from origin: " +
Point.distance(Point.ORIGIN, p));
17
18 // A mutable record
19 var pt = new PointInTime(3, 4, new Date());
20 System.out.println("Before: " + pt);
21 pt.when().setTime(0);
22 System.out.println("After: " + pt);
23
24 // Invoking a compact constructor
25
26 var r = new Range(4, 3);
27 System.out.println("r: " + r);
28 }
29 }
30
31 record Point(double x, double y)
32 {
33 // A custom constructor
34 public Point() { this(0, 0); }

35 // A method
36 public double distanceFromOrigin()
37 {
38 return Math.hypot(x, y);
39 }
40 // A static field and method
41 public static Point ORIGIN = new Point();
42 public static double distance(Point p, Point q)
43 {
44 return Math.hypot(p.x - q.x, p.y - q.y);
45 }
46 }
47
48 record PointInTime(double x, double y, Date when) { }
49
50 record Range(int from, int to)
51 {
52 // A compact constructor
53 public Range
54 {
55 if (from > to) // Swap the bounds
56 {
57 int temp = from;
58 from = to;
59 to = temp;
60 }
61 }
62 }

4.8 Packages

Java allows you to group classes in a collection called a package. Packages
are convenient for organizing your work and for separating your work from
code libraries provided by others. In the following sections, you will learn
how to use and create packages.

4.8.1 Package Names

The main reason for using packages is to guarantee the uniqueness of class
names. Suppose two programmers come up with the bright idea of supplying
an Employee class. As long as both of them place their class into different
packages, there is no conflict. In fact, to absolutely guarantee a unique
package name, use an Internet domain name (which is known to be unique)
written in reverse. You then use subpackages for different projects. For
example, consider the domain horstmann.com. When written in reverse order,
it turns into the package name com.horstmann. You can then append a project
name, such as com.horstmann.corejava. If you then place the Employee class
into that package, the “fully qualified” name becomes
com.horstmann.corejava.Employee.

 NOTE:
From the point of view of the compiler, there is absolutely no relationship
between nested packages. For example, the packages java.util and
java.util.jar have nothing to do with each other. Each is its own
independent collection of classes.

4.8.2 Class Importation

A class can use all classes from its own package and all public classes from
other packages.

You can access the public classes in another package in two ways. The first is
simply to use the fully qualified name; that is, the package name followed by
the class name. For example:

java.time.LocalDate today = java.time.LocalDate.now();

That is obviously tedious. A simpler, and more common, approach is to use
the import statement. The point of the import statement is to give you a
shorthand to refer to the classes in the package. Once you add an import, you
no longer have to give the classes their full names.

You can import a specific class or the whole package. You place import
statements at the top of your source files (but below any package statements).
For example, you can import all classes in the java.time package with the
statement

import java.time.*;

Then you can use

LocalDate today = LocalDate.now();

without a package prefix. You can also import a specific class inside a
package:

import java.time.LocalDate;

The java.time.* syntax is less tedious. It has no negative effect on code size.
However, if you import classes explicitly, the reader of your code knows
exactly which classes you use.

 TIP:
In Eclipse, you can select the menu option Source → Organize Imports.
Package statements such as import java.util.*; are automatically expanded
into a list of specific imports such as

import java.util.ArrayList;
import java.util.Date;

This is an extremely convenient feature.

However, note that you can only use the * notation to import a single
package. You cannot use import java.* or import java.*.* to import all

packages with the java prefix.

Most of the time, you just import the packages that you need, without
worrying too much about them. The only time that you need to pay attention
to packages is when you have a name conflict. For example, both the
java.util and java.sql packages have a Date class. Suppose you write a
program that imports both packages.

import java.util.*;
import java.sql.*;

If you now use the Date class, you get a compile-time error:

Date today; // ERROR--java.util.Date or java.sql.Date?

The compiler cannot figure out which Date class you want. You can solve
this problem by adding a specific import statement:

import java.util.*;
import java.sql.*;
import java.util.Date;

What if you really need both Date classes? Then use the full package name
with every class name:

var startTime = new java.util.Date();
var today = new java.sql.Date(. . .);

Locating classes in packages is an activity of the compiler. The bytecodes in
class files always use full package names to refer to other classes.

 C++ NOTE:

C++ programmers sometimes confuse import with #include. The two have
nothing in common. In C++, you must use #include to include the
declarations of external features because the C++ compiler does not look
inside any files except the one that it is compiling and its explicitly included
header files. The Java compiler will happily look inside other files provided
you tell it where to look.

In Java, you can entirely avoid the import mechanism by explicitly naming
all classes, such as java.util.Date. In C++, you cannot avoid the #include
directives.

The only benefit of the import statement is convenience. You can refer to a
class by a name shorter than the full package name. For example, after an
import java.util.* (or import java.util.Date) statement, you can refer to
the java.util.Date class simply as Date.

In C++, the construction analogous to the package mechanism is the
namespace feature. Think of the package and import statements in Java as
the analogs of the namespace and using directives in C++.

4.8.3 Static Imports

A form of the import statement permits the importing of static methods and
fields, not just classes.

For example, if you add the directive

import static java.lang.System.*;

to the top of your source file, then you can use the static methods and fields
of the System class without the class name prefix:

out.println("Goodbye, World!"); // i.e., System.out
exit(0); // i.e., System.exit

You can also import a specific method or field:

import static java.lang.System.out;

In practice, it seems doubtful that many programmers will want to abbreviate
System.out or System.exit. The resulting code seems less clear. On the other
hand,

sqrt(pow(x, 2) + pow(y, 2))

seems much clearer than

Math.sqrt(Math.pow(x, 2) + Math.pow(y, 2))

4.8.4 Addition of a Class into a Package

To place classes inside a package, put the name of the package at the top of
your source file, before the code that defines the classes in the package. For
example, the file Employee.java in Listing 4.8 starts out like this:

package com.horstmann.corejava;
public class Employee
{
 . . .
}

If you don’t put a package statement in the source file, then the classes in that
source file belong to the unnamed package. The unnamed package has no
package name. Up to now, all our example classes were located in the
unnamed package.

Place source files into a subdirectory that matches the full package name. For
example, all source files in the com.horstmann.corejava package should be in
a subdirectory com/horstmann/corejava (com\horstmann\corejava on
Windows). The compiler places the class files into the same directory
structure.

The program in Listings 4.7 and 4.8 is distributed over two packages: The
PackageTest class belongs to the unnamed package, and the Employee class
belongs to the com.horstmann.corejava package. Therefore, the
Employee.java file must be in a subdirectory com/horstmann/corejava. In
other words, the directory structure is as follows:

To compile this program, simply change to the base directory and run the
command

javac PackageTest.java

The compiler automatically finds the file
com/horstmann/corejava/Employee.java and compiles it.

Let’s look at a more realistic example, in which we don’t use the unnamed
package but have classes distributed over several packages
(com.horstmann.corejava and com.mycompany).

In this situation, you still must compile and run classes from the base
directory—that is, the directory containing the com directory:

javac com/mycompany/PayrollApp.java
java com.mycompany.PayrollApp

Note again that the compiler operates on files (with file separators and an
extension .java), whereas the Java interpreter loads a class (with dot
separators).

 TIP:
Starting with the next chapter, we will use packages for the source code.
That way, you can make an IDE project for each chapter instead of each
section.

 CAUTION:
The compiler does not check the directory structure when it compiles source
files. For example, suppose you have a source file that starts with the
directive

package com.mycompany;

You can compile the file even if it is not contained in a subdirectory
com/mycompany. The source file will compile without errors if it doesn’t
depend on other packages. However, the resulting program will not run
unless you first move all class files to the right place. The virtual machine
won’t find the classes if the packages don’t match the directories.

Listing 4.7 PackageTest/PackageTest.java

 1 import com.horstmann.corejava.*;
 2 // the Employee class is defined in that package

 3
 4 import static java.lang.System.*;
 5
 6 /**
 7 * This program demonstrates the use of packages.
 8 * @version 1.11 2004-02-19 9 * @author Cay Horstmann
10 */
11 public class PackageTest
12 {
13 public static void main(String[] args)
14 {
15 // because of the import statement, we don't have to use
16 // com.horstmann.corejava.Employee here
17 var harry = new Employee("Harry Hacker", 50000, 1989,
10, 1);
18
19 harry.raiseSalary(5);
20
21 // because of the static import statement, we don't have
to use System.out here
22 out.println("name=" + harry.getName() + ",salary=" +
harry.getSalary());
23 }
24 }

Listing 4.8 PackageTest/com/horstmann/corejava/Employee.java

 1 package com.horstmann.corejava;
 2
 3 // the classes in this file are part of this package
 4
 5 import java.time.*;
 6
 7 // import statements come after the package statement
 8
 9 /**
10 * @version 1.11 2015-05-08
11 * @author Cay Horstmann

12 */
13 public class Employee
14 {
15 private String name;
16 private double salary;
17 private LocalDate hireDay;
18
19 public Employee(String name, double salary, int year, int
month, int day)
20 {
21 this.name = name;
22 this.salary = salary;
23 hireDay = LocalDate.of(year, month, day);
24 }
25
26 public String getName()
27 {
28 return name;
29 }
30
31 public double getSalary()
32 {
33 return salary;
34 }
35
36 public LocalDate getHireDay()
37 {
38 return hireDay;
39 }
40
41 public void raiseSalary(double byPercent)
42 {
43 double raise = salary * byPercent / 100;
44 salary += raise;
45 }
46 }

4.8.5 Package Access

You have already encountered the access modifiers public and private.
Features tagged as public can be used by any class. Private features can be
used only by the class that defines them. If you don’t specify either public or
private, the feature (that is, the class, method, or variable) can be accessed
by all methods in the same package.

Consider the program in Listing 4.2. The Employee class was not defined as a
public class. Therefore, only the other classes (such as EmployeeTest) in the
same package—the unnamed package in this case—can access it. For
classes, this is a reasonable default. However, for variables, this was an
unfortunate choice. Variables must explicitly be marked private, or they will
default to having package access. This, of course, breaks encapsulation. The
problem is that it is awfully easy to forget to type the private keyword. Here
is an example from the Window class in the java.awt package, which is part of
the source code supplied with the JDK:

public class Window extends Container
{
 String warningString;
 . . .
}

Note that the warningString variable is not private! That means the methods
of all classes in the java.awt package can access this variable and set it to
whatever they like (such as "Trust me!"). Actually, the only methods that
access this variable are in the Window class, so it would have been entirely
appropriate to make the variable private. Perhaps the programmer typed the
code in a hurry and simply forgot the private modifier? Perhaps nobody
cared? After more than twenty years, that variable is still not private. Not
only that—new fields have been added to the class over time, and about half
of them aren’t private either.

This can be a problem. By default, packages are not closed entities. That is,
anyone can add more classes to a package. Of course, hostile or clueless
programmers can then add code that modifies variables with package access.
For example, in early versions of Java, it was an easy matter to smuggle
another class into the java.awt package. Simply start out the class with

package java.awt;

Then, place the resulting class file inside a subdirectory java/awt somewhere
on the class path, and you have gained access to the internals of the java.awt
package. Through this subterfuge, it was possible to modify warning strings
(see Figure 4.9).

Figure 4.9 Changing the warning string in an applet window

Starting with version 1.2, the JDK implementors rigged the class loader to
explicitly disallow loading of user-defined classes whose package name
starts with "java.". Of course, your own classes don’t benefit from that
protection. Another mechanism, now obsolete, lets a JAR file declare
packages as sealed, preventing third parties from augmenting them.
Nowadays, you should use modules to encapsulate packages. Modules are
discussed in detail in Chapter 9 of Volume II.

4.8.6 The Class Path

As you have seen, classes are stored in subdirectories of the file system. The
path to the class must match the package name.

Class files can also be stored in a JAR (Java archive) file. A JAR file
contains multiple class files and subdirectories in a compressed format,
saving space and improving performance. When you use a third-party library
in your programs, you will usually be given one or more JAR files to
include. You will see in Chapter 11 how to create your own JAR files.

 TIP:
JAR files use the ZIP format to organize files and subdirectories. You can
use any ZIP utility to peek inside JAR files.

To share classes among programs, you need to do the following:

1. Place your class files inside a directory—for example,
/home/user/classdir. Note that this directory is the base directory for
the package tree. If you add the class com.horstmann.corejava.Employee,
then the Employee.class file must be located in the subdirectory
/home/user/classdir/com/horstmann/corejava.

2. Place any JAR files inside a directory—for example,
/home/user/archives.

3. Set the class path. The class path is the collection of all locations that can
contain class files.

In UNIX, the elements on the class path are separated by colons:

/home/user/classdir:.:/home/user/archives/archive.jar

In Windows, they are separated by semicolons:

c:\classdir;.;c:\archives\archive.jar

In both cases, the period denotes the current directory.

This class path contains

• The base directory /home/user/classdir or c:\classdir;
• The current directory (.); and
• The JAR file /home/user/archives/archive.jar or
c:\archives\archive.jar.

Starting with Java 6, you can specify a wildcard for a JAR file directory, like
this:

/home/user/classdir:.:/home/user/archives/'*'

or

c:\classdir;.;c:\archives*

In UNIX, the * must be escaped to prevent shell expansion.

All JAR files (but not .class files) in the archives directory are included in
this class path.

The Java API is always searched for classes; don’t include it explicitly in the
class path.

 CAUTION:
The javac compiler always looks for files in the current directory, but the
java virtual machine launcher only looks into the current directory if the “.”
directory is on the class path. If you have no class path set, it’s not a problem
— the default class path consists of the “.” directory. But if you have set the
class path and forgot to include the “.” directory, your programs will
compile without error, but they won’t run.

The class path lists all directories and archive files that are starting points for
locating classes. Let’s consider our sample class path:

/home/user/classdir:.:/home/user/archives/archive.jar

Suppose the virtual machine searches for the class file of the com.horstmann.
corejava.Employee class. It first looks in the Java API classes. It won’t find
the class file there, so it turns to the class path. It then looks for the following
files:

• /home/user/classdir/com/horstmann/corejava/Employee.class
• com/horstmann/corejava/Employee.class starting from the current

directory
• com/horstmann/corejava/Employee.class inside
/home/user/archives/archive.jar

The compiler has a harder time locating files than does the virtual machine.
If you refer to a class without specifying its package, the compiler first needs
to find out the package that contains the class. It consults all import
directives as possible sources for the class. For example, suppose the source
file contains directives

import java.util.*;
import com.horstmann.corejava.*;

and the source code refers to a class Employee. The compiler then tries to find
java.lang.Employee (because the java.lang package is always imported by
default), java.util.Employee, com.horstmann.corejava.Employee, and
Employee in the current package. It searches for each of these classes in all of
the locations of the class path. It is a compile-time error if more than one
class is found. (Fully qualified class names must be unique, so the order of
the import statements doesn’t matter.)

The compiler goes one step further. It looks at the source files to see if the
source is newer than the class file. If so, the source file is recompiled
automatically. Recall that you can import only public classes from other
packages. A source file can only contain one public class, and the names of
the file and the public class must match. Therefore, the compiler can easily
locate source files for public classes. However, you can import nonpublic

classes from the current package. These classes may be defined in source
files with different names. If you import a class from the current package, the
compiler searches all source files of the current package to see which one
defines the class.

4.8.7 Setting the Class Path

It is best to specify the class path with the option -classpath (or -cp or, as of
Java 9, --class-path):

java -classpath
/home/user/classdir:.:/home/user/archives/archive.jar MyProg

or

java -classpath c:\classdir;.;c:\archives\archive.jar MyProg

The entire command must be typed onto a single line. It is a good idea to
place such a long command line into a shell script or a batch file.

Using the -classpath option is the preferred approach for setting the class
path. An alternate approach is the CLASSPATH environment variable. The
details depend on your shell. With the Bourne Again shell (bash), use the
command

export
CLASSPATH=/home/user/classdir:.:/home/user/archives/archive.jar

With the Windows shell, use

set CLASSPATH=c:\classdir;.;c:\archives\archive.jar

The class path is set until the shell exits.

 CAUTION:
Some people recommend to set the CLASSPATH environment variable
permanently. This is generally a bad idea. People forget the global setting,
and are surprised when their classes are not loaded properly. A particularly
reprehensible example is Apple’s QuickTime installer in Windows. For
several years, it globally set CLASSPATH to point to a JAR file it needed, but
did not include the current directory in the classpath. As a result, countless
Java programmers were driven to distraction when their programs compiled
but failed to run.

 CAUTION:
In the past, some people recommended to bypass the class path altogether,
by dropping all JAR files into the jre/lib/ext directory. That mechanism is
obsolete with Java 9, but it was always bad advice. It was easy to get
confused when long-forgotten classes were loaded from the extension
directory.

 NOTE:
As of Java 9, classes can also be loaded from the module path. Modules and
the module path are discussed in Chapter 9 of Volume II.

4.9 JAR Files

When you package your application, you want to give your users a single
file, not a directory structure filled with class files. Java Archive (JAR) files
were designed for this purpose. A JAR file can contain both class files and

other file types such as image and sound files. Moreover, JAR files are
compressed, using the familiar ZIP compression format.

4.9.1 Creating JAR files

Use the jar tool to make JAR files. (In the default JDK installation, it’s in
the jdk/bin directory.) The most common command to make a new JAR file
uses the following syntax:

jar cvf jarFileName file1 file2 . . .

For example:

jar cvf CalculatorClasses.jar *.class icon.gif

In general, the jar command has the following format:

jar options file1 file2 . . .

Table 4.2 lists all the options for the jar program. They are similar to the
options of the UNIX tar command.

You can package application programs and code libraries into JAR files. For
example, if you want to send mail in a Java program, you use a library that is
packaged in a file javax.mail.jar.

Table 4.2 jar Program Options

4.9.2 The Manifest

In addition to class files, images, and other resources, each JAR file contains
a manifest file that describes special features of the archive.

The manifest file is called MANIFEST.MF and is located in a special META-INF
subdirectory of the JAR file. The minimum legal manifest is quite boring—
just

Manifest-Version: 1.0

Complex manifests can have many more entries. The manifest entries are
grouped into sections. The first section in the manifest is called the main
section. It applies to the whole JAR file. Subsequent entries can specify
properties of named entities such as individual files, packages, or URLs.
Those entries must begin with a Name entry. Sections are separated by blank
lines. For example:

Manifest-Version: 1.0

lines describing this archive

Name: Woozle.class

lines describing this file
Name: com/mycompany/mypkg/

lines describing this package

To edit the manifest, place the lines that you want to add to the manifest into
a text file. Then run

jar cfm jarFileName manifestFileName . . .

For example, to make a new JAR file with a manifest, run

jar cfm MyArchive.jar manifest.mf com/mycompany/mypkg/*.class

To update the manifest of an existing JAR file, place the additions into a text
file and use a command such as

jar ufm MyArchive.jar manifest-additions.mf

 NOTE:
See https://docs.oracle.com/javase/10/docs/specs/jar/jar.html for
more information on the JAR and manifest file formats.

4.9.3 Executable JAR Files

You can use the e option of the jar command to specify the entry point of
your program—the class that you would normally specify when invoking the
java program launcher:

jar cvfe MyProgram.jar com.mycompany.mypkg.MainAppClass files
to add

Alternatively, you can specify the main class of your program in the
manifest, including a statement of the form

Main-Class: com.mycompany.mypkg.MainAppClass

Do not add a .class extension to the main class name.

 CAUTION:
The last line in the manifest must end with a newline character. Otherwise,
the manifest will not be read correctly. It is a common error to produce a text
file containing just the Main-Class line without a line terminator.

With either method, users can simply start the program as

java -jar MyProgram.jar

https://docs.oracle.com/javase/10/docs/specs/jar/jar.html

Depending on the operating system configuration, users may even be able to
launch the application by double-clicking the JAR file icon. Here are
behaviors for various operating systems:

• On Windows, the Java runtime installer creates a file association for the
“.jar” extension that launches the file with the javaw -jar command.
(Unlike the java command, the javaw command doesn’t open a shell
window.)

• On Mac OS X, the operating system recognizes the “.jar” file extension
and executes the Java program when you double-click a JAR file.

However, a Java program in a JAR file does not have the same feel as a
native application. On Windows, you can use third-party wrapper utilities
that turn JAR files into Windows executables. A wrapper is a Windows
program with the familiar .exe extension that locates and launches the Java
virtual machine (JVM) or tells the user what to do when no JVM is found.
There are a number of commercial and open source products, such as
Launch4J (http://launch4j.sourceforge.net) and IzPack
(http://izpack.org).

4.9.4 Multi-Release JAR Files

With the introduction of modules and strong encapsulation of packages,
some previously accessible internal APIs are no longer available. This may
require library providers to distribute different code for different Java
versions. Java 9 introduces multi-release JARs for this purpose.

For backwards compatibility, version-specific class files are placed in the

http://launch4j.sourceforge.net/
http://izpack.org/

Suppose the Application class makes use of the CssParser class. Then the
legacy

Application.class file can be compiled to use
com.sun.javafx.css.CssParser, while the Java 9 version uses
javafx.css.CssParser.

Java 8 knows nothing about the META-INF/versions directory and will simply
load the legacy classes. When the JAR file is read by Java 9, the new version
is used instead.

To add versioned class files, use the --release flag:

jar uf MyProgram.jar --release 9 Application.class

To build a multi-release JAR file from scratch, use the -C option and switch
to a different class file directory for each version:

jar cf MyProgram.jar -C bin/8 . --release 9 -C bin/9
Application.class

When compiling for different releases, use the --release flag and the -d flag
to specify the output directory:

javac -d bin/8 --release 8 . . .

As of Java 9, the -d option creates the directory if it doesn’t exist.

The --release flag is also new with Java 9. In older versions, you needed to
use the -source, -target, and -bootclasspath flags. The JDK now ships with
symbol files for two prior versions of the API. In Java 9, you can compile
with --release set to 9, 8, or 7.

Multi-release JARs are not intended for different versions of a program or
library. The public API of all classes should be the same for both releases.
The sole purpose of multi-release JARs is to enable a particular version of
your program or library to work with multiple JDK releases. If you add
functionality or change an API, you should provide a new version of the JAR
instead.

 NOTE:
Tools such as javap are not retrofitted to handle multi-release JAR files. If
you call

javap -classpath MyProgram.jar Application.class

you get the base version of the class (which, after all, is supposed to have
the same public API as the newer version). If you must look at the newer
version, call

javap -classpath MyProgram.jar\!/META-
INF/versions/9/Application.class

4.9.5 A Note about Command-Line Options

The options of commands in the Java Development Kit have traditionally
used single dashes followed by multiletter option names, such as

java -jar . . .
javac -Xlint:unchecked -classpath . . .

The exception was the jar command, which followed the classic option
format of the tar command without dashes:

jar cvf . . .

Starting with Java 9, the Java tools are moving towards a more common
option format where multiletter option names are preceded by double dashes,
with single-letter shortcuts for common options. For example, the Linux ls
command can be called with a “human-readable” option as

ls --human-readable

or

ls -h

As of Java 9, you can use --version instead of -version and --class-path
instead of -classpath. As you will see in Chapter 9 of Volume II, the --
module-path option has a shortcut -p.

You can find the details in the JEP 293 enhancement request at
http://openjdk.java.net/jeps/293. As part of this cleanup, the authors also
propose to standardize option arguments. Arguments of options with -- and
multiple letters are separated by whitespace or an = sign:

javac --class-path /home/user/classdir . . .

or

javac --class-path=/home/user/classdir . . .

http://openjdk.java.net/jeps/293

Arguments of single-letter options can be separated by whitespace or directly
follow the option:

javac -p moduledir . . .

or

javac -pmoduledir . . .

 CAUTION:
The latter doesn’t currently work, and it also seems like a bad idea in
general. Why invite conflicts with legacy options if the module directory
happens to be arameters or rocessor?

Single-letter options without arguments can be grouped together:

jar -cvf MyProgram.jar -e mypackage.MyProgram */*.class

 CAUTION:
That doesn’t currently work, and it is bound to lead to confusion. Suppose
javac gains a -c option. Does javac -cp mean javac -c -p, or does the
legacy -cp take precedence?

This has created a muddle that will hopefully get cleaned up over time. As
much as I’d like to move away from the archaic jar options, it seems best to
wait until the dust has settled. But if you want to be thoroughly modern, you
can safely use the long options of the jar command:

jar --create --verbose --file jarFileName file1 file2 . . .

Single-letter options also work if you don’t group them:

jar -c -v -f jarFileName file1 file2 . . .

4.10 Documentation Comments

The JDK contains a very useful tool, called javadoc, that generates HTML
documentation from your source files. In fact, the online API documentation
described in Chapter 3 is simply the result of running javadoc on the source
code of the standard Java library.

If you add comments that start with the special delimiter /** to your source
code, you too can easily produce professional-looking documentation. This
is a very nice approach because it lets you keep your code and
documentation in one place. If you put your documentation into a separate
file, then, as you probably know, the code and comments tend to diverge over
time. When documentation comments are in the same file as the source code,
it is an easy matter to update both and run javadoc again.

4.10.1 Comment Insertion

The javadoc utility extracts information for the following items:

• Modules
• Packages
• Public classes and interfaces
• Public and protected fields
• Public and protected constructors and methods

Protected features are introduced in Chapter 5, interfaces in Chapter 6, and
modules in Chapter 9 of Volume II.

You can (and should) supply a comment for each of these features. Each
comment is placed immediately above the feature it describes. A comment
starts with a /** and ends with a */.

Each /** . . . */ documentation comment contains free-form text followed
by tags. A tag starts with an @, such as @since or @param.

The first sentence of the free-form text should be a summary statement. The

javadoc utility automatically generates summary pages that extract these
sentences.

In the free-form text, you can use HTML modifiers such as . . .
for emphasis, . . . for strong emphasis, / for
bulleted lists, and to include an image. To type monospaced
code, use {@code . . . } instead of <code>. . .</code>—then you don’t
have to worry about escaping < characters inside the code.

 NOTE:
If your comments contain links to other files such as images (for example,
diagrams or images of user interface components), place those files into a
subdirectory, named doc-files, of the directory containing the source file.
The javadoc utility will copy the doc-files directories and their contents
from the source directory to the documentation directory. You need to use
the doc-files directory in your link, for example <img src="doc-

files/uml.png" alt="UML diagram"/>.

4.10.2 Class Comments

The class comment must be placed after any import statements, directly
before the class definition.

Here is an example of a class comment:

/**
 * A {@code Card} object represents a playing card, such
 * as "Queen of Hearts". A card has a suit (Diamond, Heart,
 * Spade or Club) and a value (1 = Ace, 2 . . . 10, 11 = Jack,
 * 12 = Queen, 13 = King)
 */
public class Card
{
 . . .
}

 NOTE:
There is no need to add an * in front of every line. For example, the
following comment is equally valid:

/**
 A <code>Card</code> object represents a playing card, such
 as "Queen of Hearts". A card has a suit (Diamond, Heart,
 Spade or Club) and a value (1 = Ace, 2 . . . 10, 11 = Jack,
 12 = Queen, 13 = King).
*/

However, most IDEs supply the asterisks automatically and rearrange them
when the line breaks change.

4.10.3 Method Comments

Each method comment must immediately precede the method that it
describes. In addition to the general-purpose tags, you can use the following
tags:

• @param variable description

This tag adds an entry to the “parameters” section of the current method.
The description can span multiple lines and can use HTML tags. All @param
tags for one method must be kept together.

• @return description

This tag adds a “returns” section to the current method. The description can
span multiple lines and can use HTML tags.

• @throws class description

This tag adds a note that this method may throw an exception. Exceptions
are the topic of Chapter 7.

Here is an example of a method comment:

/**
 * Raises the salary of an employee.
 * @param byPercent the percentage by which to raise the
salary (e.g., 10 means 10%)
 * @return the amount of the raise
 */
public double raiseSalary(double byPercent)
{
 double raise = salary * byPercent / 100;
 salary += raise;
 return raise;
}

4.10.4 Field Comments

You only need to document public fields—generally that means static
constants. For example:

/**
 * The "Hearts" card suit
 */
public static final int HEARTS = 1;

4.10.5 General Comments

The tag @since text makes a “since” entry. The text can be any description of
the version that introduced this feature. For example, @since 1.7.1.

The following tags can be used in class documentation comments:

• @author name

This tag makes an “author” entry. You can have multiple @author tags, one
for each author. Don’t feel compelled to use this tag—your version control
system does a more thorough job tracking authorship.

• @version text

This tag makes a “version” entry. The text can be any description of the
current version.

You can use hyperlinks to other relevant parts of the javadoc documentation,
or to external documents, with the @see and @link tags.

The tag @see reference adds a hyperlink in the “see also” section. It can be
used with both classes and methods. Here, reference can be one of the
following:

package.class#feature label
label
"text"

The first case is the most useful. You supply the name of a class, method, or
variable, and javadoc inserts a hyperlink to the documentation. For example,

@see com.horstmann.corejava.Employee#raiseSalary(double)

makes a link to the raiseSalary(double) method in the
com.horstmann.corejava.Employee class. You can omit the name of the
package, or both the package and class names. Then, the feature will be
located in the current package or class. Note that you must use a #, not a
period, to separate the class from the method or variable name. The Java

compiler itself is highly skilled in determining the various meanings of the
period character as separator between packages, subpackages, classes, inner
classes, and methods and variables. But the javadoc utility isn’t quite as
clever, so you have to help it along.

If the @see tag is followed by a < character, then you need to specify a
hyperlink. You can link to any URL you like. For example:

@see The Core Java
home page

In each of these cases, you can specify an optional label that will appear as
the link anchor. If you omit the label, the user will see the target code name
or URL as the anchor.

If the @see tag is followed by a " character, then the text is displayed in the
“see also” section. For example:

@see "Core Java 2 volume 2"

You can add multiple @see tags for one feature, but you must keep them all
together.

If you like, you can place hyperlinks to other classes or methods anywhere in
any of your documentation comments. Insert a special tag of the form

{@link package.class#feature label}

anywhere in a comment. The feature description follows the same rules as
for the @see tag.

Finally, as of Java 9, you can use the {@index entry} tag to add an entry to
the search box.

4.10.6 Package Comments

Place the class, method, and variable comments directly into the Java source
files, delimited by /** . . . */ documentation comments. However, to
generate package comments, you need to add a separate file in each package
directory. You have two choices:

1. Supply a Java file named package-info.java. The file must contain an
initial Javadoc comment, delimited with /** and */, followed by a
package statement. It should contain no further code or comments.

2. Supply an HTML file named package.html. All text between the tags
<body> . . .</body> is extracted.

4.10.7 Comment Extraction

Here, docDirectory is the name of the directory where you want the HTML
files to go. Follow these steps:

1. Change to the directory that contains the source files you want to
document. If you have nested packages to document, such as
com.horstmann.corejava, you must be working in the directory that
contains the subdirectory com. (This is the directory that contains the
overview.html file, if you supplied one.)

2. Run the command

javadoc -d docDirectory nameOfPackage

for a single package. Or, run

javadoc -d docDirectory nameOfPackage1 nameOfPackage2. . .

to document multiple packages. If your files are in the unnamed package, run
instead

javadoc -d docDirectory *.java

If you omit the -d docDirectory option, the HTML files are extracted to the
current directory. That can get messy, and I don’t recommend it.

The javadoc program can be fine-tuned by numerous command-line options.
For example, you can use the -author and -version options to include the
@author and @version tags in the documentation. (By default, they are
omitted.) Another useful option is -link, to include hyperlinks to standard
classes. For example, if you use the command

javadoc -link http://docs.oracle.com/javase/9/docs/api *.java

all standard library classes are automatically linked to the documentation on
the Oracle web site.

If you use the -linksource option, each source file is converted to HTML
(without color coding, but with line numbers), and each class and method
name turns into a hyperlink to the source.

You can also supply an overview comment for all source files. Place it in a
file such as overview.html and run the javadoc tool with the command line
option -overview filename. All text between the tags <body>. . .</body> is
extracted. The content is displayed when the user selects “Overview” from
the navigation bar.

For additional options, refer to the online documentation of the javadoc
utility at https://docs.oracle.com/javase/9/javadoc/javadoc.htm.

4.11 Class Design Hints

Without trying to be comprehensive or tedious, I want to end this chapter
with some hints that will make your classes more acceptable in well-
mannered OOP circles.

1. Always keep data private.
This is first and foremost; doing anything else violates encapsulation.
You may need to write an accessor or mutator method occasionally, but
you are still better off keeping the instance fields private. Bitter
experience shows that the data representation may change, but how this
data are used will change much less frequently. When data are kept

https://docs.oracle.com/javase/9/javadoc/javadoc.htm

private, changes in their representation will not affect the users of the
class, and bugs are easier to detect.

2. Always initialize data.
Java won’t initialize local variables for you, but it will initialize instance
fields of objects. Don’t rely on the defaults, but initialize all variables
explicitly, either by supplying a default or by setting defaults in all
constructors.

3. Don’t use too many basic types in a class.
The idea is to replace multiple related uses of basic types with other
classes. This keeps your classes easier to understand and to change. For
example, replace the following instance fields in a Customer class:

private String street;
private String city;
private String state;
private int zip;

with a new class called Address. This way, you can easily cope with changes
to addresses, such as the need to deal with international addresses.

4. Not all fields need individual field accessors and mutators.
You may need to get and set an employee’s salary. You certainly won’t
need to change the hiring date once the object is constructed. And, quite
often, objects have instance fields that you don’t want others to get or set,
such as an array of state abbreviations in an Address class.

5. Break up classes that have too many responsibilities.
This hint is, of course, vague: “too many” is obviously in the eye of the
beholder. However, if there is an obvious way to break one complicated
class into two classes that are conceptually simpler, seize the opportunity.
(On the other hand, don’t go overboard; ten classes, each with only one
method, are usually an overkill.)
Here is an example of a bad design:

public class CardDeck // bad design
{
 private int[] value;

 private int[] suit;
 public CardDeck() { . . . }
 public void shuffle() { . . . }
 public int getTopValue() { . . . }
 public int getTopSuit() { . . . }
 public void draw() { . . . }
}

This class really implements two separate concepts: a deck of cards, with
its shuffle and draw methods, and a card, with the methods to inspect its
value and suit. It makes sense to introduce a Card class that represents an
individual card. Now you have two classes, each with its own
responsibilities:

public class CardDeck
{
 private Card[] cards;
 public CardDeck() { . . . }
 public void shuffle() { . . . }
 public Card getTop() { . . . }
 public void draw() { . . . }
}
public class Card
{
 private int value;
 private int suit;
 public Card(int aValue, int aSuit) { . . . }
 public int getValue() { . . . }
 public int getSuit() { . . . }
}

6. Make the names of your classes and methods reflect their responsibilities.
Just as variables should have meaningful names that reflect what they
represent, so should classes. (The standard library certainly contains
some dubious examples, such as the Date class that describes time.)
A good convention is that a class name should be a noun (Order), or a
noun preceded by an adjective (RushOrder) or a gerund (an “-ing” word,
as in BillingAddress). As for methods, follow the standard convention

that accessor methods begin with a lowercase get (getSalary) and
mutator methods use a lowercase set (setSalary).

7. Prefer immutable classes.
The LocalDate class, and other classes from the java.time package, are
immutable—no method can modify the state of an object. Instead of
mutating objects, methods such as plusDays return new objects with the
modified state.
The problem with mutation is that it can happen concurrently when
multiple threads try to update an object at the same time. The results are
unpredictable. When classes are immutable, it is safe to share their
objects among multiple threads.
Therefore, it is a good idea to make classes immutable when you can.
This is particularly easy with classes that represent values, such as a
string or a point in time. Computations can simply yield new values
instead of updating existing ones.
Of course, not all classes should be immutable. It would be strange to
have the raiseSalary method return a new Employee object when an
employee gets a raise.

In this chapter, we covered the fundamentals of objects and classes that make
Java an “object-based” language. In order to be truly object-oriented, a
programming language must also support inheritance and polymorphism.
The Java support for these features is the topic of the next chapter.

Chapter 5. Inheritance

In this chapter

• 5.1 Classes, Superclasses, and Subclasses
• 5.2 Object: The Cosmic Superclass
• 5.3 Generic Array Lists
• 5.4 Object Wrappers and Autoboxing
• 5.5 Methods with a Variable Number of Parameters
• 5.6 Abstract Classes
• 5.7 Enumeration Classes
• 5.8 Sealed Classes
• 5.9 Reflection
• 5.10 Design Hints for Inheritance

Chapter 4 introduced you to classes and objects. In this chapter, you will
learn about inheritance, another fundamental concept of object-oriented
programming. The idea behind inheritance is that you can create new classes
that are built on existing classes. When you inherit from an existing class,
you reuse (or inherit) its methods, and you can add new methods and fields
to adapt your new class to new situations. This technique is essential in Java
programming.

This chapter also covers reflection, the ability to find out more about classes
and their properties in a running program. Reflection is a powerful feature,
but it is undeniably complex. Since reflection is of greater interest to tool
builders than to application programmers, you can probably glance over that
part of the chapter upon first reading and come back to it later.

5.1 Classes, Superclasses, and Subclasses

Let’s return to the Employee class discussed in the previous chapter. Suppose
(alas) you work for a company where managers are treated differently from
other employees. Managers are, of course, just like employees in many
respects. Both employees and managers are paid a salary. However, while
employees are expected to complete their assigned tasks in return for
receiving their salary, managers get bonuses if they actually achieve what
they are supposed to do. This is the kind of situation that cries out for
inheritance. Why? Well, you need to define a new class, Manager, and add
functionality. But you can retain some of what you have already
programmed in the Employee class, and all the fields of the original class can
be preserved. More abstractly, there is an obvious “is–a” relationship
between Manager and Employee. Every manager is an employee: This “is–a”
relationship is the hallmark of inheritance.

 NOTE:
In this chapter, I use the classic example of employees and managers, but I
must ask you to take this example with a grain of salt. In the real world, an
employee can become a manager, so you would want to model being a
manager as a role of an employee, not a subclass. In my example, however,
I assume the corporate world is populated by two kinds of people: those
who are forever employees, and those who have always been managers.

5.1.1 Defining Subclasses

Here is how you define a Manager class that inherits from the Employee class.
Use the Java keyword extends to denote inheritance.

 public class Manager extends Employee
 {

 added methods and fields
 }

 C++ NOTE:
Inheritance is similar in Java and C++. Java uses the extends keyword
instead of the : token. All inheritance in Java is public inheritance; there is
no analog to the C++ features of private and protected inheritance.

The keyword extends indicates that you are making a new class that derives
from an existing class. The existing class is called the superclass, base class,
or parent class. The new class is called the subclass, derived class, or child
class. The terms superclass and subclass are those most commonly used by
Java programmers, although some programmers prefer the parent/child
analogy, which also ties in nicely with the “inheritance” theme.

The Employee class is a superclass, but not because it is superior to its
subclass or contains more functionality. In fact, the opposite is true:
Subclasses have more functionality than their superclasses. For example, as
you will see when we go over the rest of the Manager class code, the Manager
class encapsulates more data and has more functionality than its superclass
Employee.

 NOTE:
The prefixes super and sub come from the language of sets used in
theoretical computer science and mathematics. The set of all employees
contains the set of all managers, and thus is said to be a superset of the set
of managers. Or, to put it another way, the set of all managers is a subset of
the set of all employees.

Our Manager class has a new field to store the bonus, and a new method to
set it:

public class Manager extends Employee
{
 private double bonus;
 . . .
 public void setBonus(double bonus)
 {
 this.bonus = bonus;
 }
}

There is nothing special about these methods and fields. If you have a
Manager object, you can simply apply the setBonus method.

Manager boss = . . .;
boss.setBonus(5000);

Of course, if you have an Employee object, you cannot apply the setBonus
method—it is not among the methods defined in the Employee class.

However, you can use methods such as getName and getHireDay with
Manager objects. Even though these methods are not explicitly defined in the
Manager class, they are automatically inherited from the Employee superclass.

Every Manager object has four fields: name, salary, hireDay, and bonus. The
fields name, salary, and hireDay are taken from the superclass.

 NOTE:
The Java language specification states: “Members of a class that are
declared private are not inherited by subclasses of that class.” This has
confused my readers over the years. The specification uses the word
“inherits” narrowly. It considers the private fields non-inherited because the
Manager class cannot access them directly. Thus, every Manager object has
three fields from the superclass, but the Manager class does not “inherit”
them.

When defining a subclass by extending its superclass, you only need to
indicate the differences between the subclass and the superclass. When
designing classes, you place the most general methods in the superclass and
more specialized methods in its subclasses. Factoring out common
functionality by moving it to a superclass is routine in object-oriented
programming.

 NOTE:
In chapter 4, you learned about records: classes whose state is entirely
defined by the constructor parameters. You cannot extend a record, and a
record cannot extend another class.

5.1.2 Overriding Methods

Some of the superclass methods are not appropriate for the Manager subclass.
In particular, the getSalary method should return the sum of the base salary
and the bonus. You need to supply a new method to override the superclass
method:

public class Manager extends Employee
{
 . . .
 public double getSalary()
 {
 . . .
 }
 . . .
}

How can you implement this method? At first glance, it appears to be simple
— just return the sum of the salary and bonus fields:

public double getSalary()
{
 return salary + bonus; // won't work
}

However, that won’t work. Recall that only the Employee methods have
direct access to the private fields of the Employee class. This means that the
getSalary method of the Manager class cannot directly access the salary
field. If the Manager methods want to access those private fields, they have to
do what every other method does—use the public interface, in this case the
public getSalary method of the Employee class.

So, let’s try again. You need to call getSalary instead of simply accessing
the salary field:

public double getSalary()
{
 double baseSalary = getSalary(); // still won't work
 return baseSalary + bonus;
}

Now, the problem is that the call to getSalary simply calls itself, because the
Manager class has a getSalary method (namely, the method we are trying to
implement). The consequence is an infinite chain of calls to the same
method, leading to a program crash.

We need to indicate that we want to call the getSalary method of the
Employee superclass, not the current class. Use the special keyword super for
this purpose. The call

super.getSalary()

calls the getSalary method of the Employee class. Here is the correct version
of the getSalary method for the Manager class:

public double getSalary()
{
 double baseSalary = super.getSalary();
 return baseSalary + bonus;
}

 NOTE:
Some people think of super as being analogous to the this reference.
However, that analogy is not quite accurate: super is not a reference to an
object. For example, you cannot assign the value super to another object
variable. Instead, super is a special keyword that directs the compiler to
invoke the superclass method.

As you saw, a subclass can add fields, and it can add methods or override
the methods of the superclass. However, inheritance can never take away
any fields or methods.

 C++ NOTE:
Java uses the keyword super to call a superclass method. In C++, you would
use the name of the superclass with the :: operator instead. For example,
the getSalary method of the Manager class would call Employee::getSalary
instead of super.getSalary.

5.1.3 Subclass Constructors

To complete our example, let us supply a constructor.

public Manager(String name, double salary, int year, int month,
int day)

{
 super(name, salary, year, month, day);
 bonus = 0;
}

Here, the keyword super has a different meaning. The instruction

super(name, salary, year, month, day);

is shorthand for “call the constructor of the Employee superclass with n, s,
year, month, and day as parameters.”

Since the Manager constructor cannot access the private fields of the Employee
class, it must initialize them through a constructor. The constructor is
invoked with the special super syntax. The call using super must be the first
statement in the constructor for the subclass.

When a subclass object is constructed without explicit invocation of a super-
class constructor, the superclass must have a no-argument constructor. That
constructor is invoked prior to the subclass construction.

 NOTE:
Recall that the this keyword has two meanings: to denote a reference to the
implicit parameter and to call another constructor of the same class.
Likewise, the super keyword has two meanings: to invoke a superclass
method and to invoke a superclass constructor. When used to invoke
constructors, the this and super keywords are closely related. The
constructor calls can only occur as the first statement in another constructor.
The constructor parameters are either passed to another constructor of the
same class (this) or a constructor of the superclass (super).

 C++ NOTE:
In a C++ constructor, you do not call super, but you use the initializer list
syntax to construct the superclass. The Manager constructor would look like
this in C++:

// C++
Manager::Manager(String name, double salary, int year, int
month, int day)
: Employee(name, salary, year, month, day)
{
 bonus = 0;
}

After you redefine the getSalary method for Manager objects, managers will
automatically have the bonus added to their salaries.

Here’s an example of this at work. We make a new manager and set the
manager’s bonus:

Manager boss = new Manager("Carl Cracker", 80000, 1987, 12,
15);
boss.setBonus(5000);

We make an array of three employees:

var staff = new Employee[3];

We populate the array with a mix of managers and employees:

staff[0] = boss;
staff[1] = new Employee("Harry Hacker", 50000, 1989, 10, 1);
staff[2] = new Employee("Tony Tester", 40000, 1990, 3, 15);

We print out everyone’s salary:

for (Employee e : staff)
 System.out.println(e.getName() + " " + e.getSalary());

This loop prints the following data:

Carl Cracker 85000.0
Harry Hacker 50000.0
Tommy Tester 40000.0

Now staff[1] and staff[2] each print their base salary because they are
Employee objects. However, staff[0] is a Manager object whose getSalary
method adds the bonus to the base salary.

What is remarkable is that the call

e.getSalary()

picks out the correct getSalary method. Note that the declared type of e is
Employee, but the actual type of the object to which e refers can be either
Employee or Manager.

When e refers to an Employee object, the call e.getSalary() calls the
getSalary method of the Employee class. However, when e refers to a
Manager object, then the getSalary method of the Manager class is called
instead. The virtual machine knows about the actual type of the object to
which e refers, and therefore can invoke the correct method.

The fact that an object variable (such as the variable e) can refer to multiple
actual types is called polymorphism. Automatically selecting the appropriate
method at runtime is called dynamic binding. I discuss both topics in more
detail in this chapter.

 C++ NOTE:

In C++, you need to declare a member function as virtual if you want
dynamic binding. In Java, dynamic binding is the default behavior; if you do
not want a method to be virtual, you tag it as final. (I discuss the final
keyword later in this chapter.)

Listing 5.1 contains a program that shows how the salary computation
differs for Employee (Listing 5.2) and Manager (Listing 5.3) objects.

Listing 5.1 inheritance/ManagerTest.java

 1 package inheritance;
 2
 3 /**
 4 * This program demonstrates inheritance.
 5 * @version 1.21 2004-02-21
 6 * @author Cay Horstmann
 7 */
 8 public class ManagerTest
 9 {
10 public static void main(String[] args)
11 {
12 // construct a Manager object
13 var boss = new Manager("Carl Cracker", 80000, 1987,
12, 15);
14 boss.setBonus(5000);
15
16 var staff = new Employee[3];
17
18 // fill the staff array with Manager and Employee
objects
19
20 staff[0] = boss;
21 staff[1] = new Employee("Harry Hacker", 50000, 1989,
10, 1);
22 staff[2] = new Employee("Tommy Tester", 40000, 1990,
3, 15);
23

24 // print out information about all Employee objects
25 for (Employee e : staff)
26 System.out.println("name=" + e.getName() +
",salary=" + e.getSalary());
27 }
28 }

Listing 5.2 inheritance/Employee.java

 1 package inheritance;
 2
 3 import java.time.*;
 4
 5 public class Employee
 6 {
 7 private String name;
 8 private double salary;
 9 private LocalDate hireDay;
10
11 public Employee(String name, double salary, int year, int
month, int day)
12 {
13 this.name = name;
14 this.salary = salary;
15 hireDay = LocalDate.of(year, month, day);
16 }
17
18 public String getName()
19 {
20 return name;
21 }
22
23 public double getSalary()
24 {
25 return salary;
26 }
27
28 public LocalDate getHireDay()

29 {
30 return hireDay;
31 }
32
33 public void raiseSalary(double byPercent)
34 {
35 double raise = salary * byPercent / 100;
36 salary += raise;
37 }
38 }

Listing 5.3 inheritance/Manager.java

 1 package inheritance;
 2
 3 public class Manager extends Employee
 4 {
 5 private double bonus;
 6
 7 /**
 8 * @param name the employee's name
 9 * @param salary the salary
10 * @param year the hire year
11 * @param month the hire month
12 * @param day the hire day
13 */
14 public Manager(String name, double salary, int year, int
month, int day)
15 {
16 super(name, salary, year, month, day);
17 bonus = 0;
18 }
19
20 public double getSalary()
21 {
22 double baseSalary = super.getSalary();
23 return baseSalary + bonus;
24 }

25
26 public void setBonus(double b)
27 {
28 bonus = b;
29 }
30 }

5.1.4 Inheritance Hierarchies

Inheritance need not stop at deriving one layer of classes. We could have an
Executive class that extends Manager, for example. The collection of all
classes extending a common superclass is called an inheritance hierarchy, as
shown in Figure 5.1. The path from a particular class to its ancestors in the
inheritance hierarchy is its inheritance chain.

There is usually more than one chain of descent from a distant ancestor
class. You could form subclasses Programmer or Secretary that extend
Employee, and they would have nothing to do with the Manager class (or with
each other). This process can continue as long as is necessary.

Figure 5.1 Employee inheritance hierarchy

 C++ NOTE:
In C++, a class can have multiple superclasses. Java does not support
multiple inheritance. For ways to recover much of the functionality of
multiple inheritance, see Section 6.1, “Interfaces,” on p. 312.

5.1.5 Polymorphism

A simple rule can help you decide whether or not inheritance is the right
design for your data. The “is–a” rule states that every object of the subclass
is an object of the superclass. For example, every manager is an employee.

Thus, it makes sense for the Manager class to be a subclass of the Employee
class. Naturally, the opposite is not true—not every employee is a manager.

Another way of formulating the “is–a” rule is the substitution principle. That
principle states that you can use a subclass object whenever the program
expects a superclass object.

For example, you can assign a subclass object to a superclass variable.

Employee e;
e = new Employee(. . .); // Employee object expected
e = new Manager(. . .); // OK, Manager can be used as well

In the Java programming language, object variables are polymorphic. A
variable of type Employee can refer to an object of type Employee or to an
object of any subclass of the Employee class (such as Manager, Executive,
Secretary, and so on).

We took advantage of this principle in Listing 5.1:

Manager boss = new Manager(. . .);
Employee[] staff = new Employee[3];
staff[0] = boss;

In this case, the variables staff[0] and boss refer to the same object.
However, staff[0] is considered to be only an Employee object by the
compiler.

That means you can call

boss.setBonus(5000); // OK

but you can’t call

staff[0].setBonus(5000); // ERROR

The declared type of staff[0] is Employee, and the setBonus method is not a
method of the Employee class.

However, you cannot assign a superclass reference to a subclass variable.
For example, it is not legal to make the assignment

Manager m = staff[i]; // ERROR

The reason is clear: Not all employees are managers. If this assignment were
to succeed and m were to refer to an Employee object that is not a manager,
then it would later be possible to call m.setBonus(. . .) and a runtime error
would occur.

 CAUTION:
In Java, arrays of subclass references can be converted to arrays of
superclass references without a cast. For example, consider this array of
managers:

Manager[] managers = new Manager[10];

It is legal to convert this array to an Employee[] array:

Employee[] staff = managers; // OK

Sure, why not, you may think. After all, if managers[i] is a Manager, it is
also an Employee. But actually, something surprising is going on. Keep in
mind that managers and staff are references to the same array. Now
consider the statement

staff[0] = new Employee("Harry Hacker", . . .);

The compiler will cheerfully allow this assignment. But staff[0] and
managers[0] are the same reference, so it looks as if we managed to smuggle

a mere employee into the management ranks. That would be very bad—
calling managers[0].setBonus(1000) would try to access a nonexistent
instance field and would corrupt neighboring memory.

To make sure no such corruption can occur, all arrays remember the element
type with which they were created, and they monitor that only compatible
references are stored into them. For example, the array created as new
Manager[10] remembers that it is an array of managers. Attempting to store
an Employee reference causes an ArrayStoreException.

5.1.6 Understanding Method Calls

It is important to understand exactly how a method call is applied to an
object. Let’s say we call x.f(args), and the implicit parameter x is declared
to be an object of class C. Here is what happens:

1. The compiler looks at the declared type of the object and the method
name. Note that there may be multiple methods, all with the same name,
f, but with different parameter types. For example, there may be a
method f(int) and a method f(String). The compiler enumerates all
methods called f in the class C and all accessible methods called f in the
superclasses of C. (Private methods of the superclass are not accessible.)
Now the compiler knows all possible candidates for the method to be
called.

2. Next, the compiler determines the types of the arguments supplied in the
method call. If among all the methods called f there is a unique method
whose parameter types are a best match for the supplied arguments, that
method is chosen to be called. This process is called overloading
resolution. For example, in a call x.f("Hello"), the compiler picks
f(String) and not f(int). The situation can get complex because of type
conversions (int to double, Manager to Employee, and so on). If the
compiler cannot find any method with matching parameter types or if
multiple methods all match after applying conversions, the compiler
reports an error.

Now the compiler knows the name and parameter types of the method
that needs to be called.

 NOTE:
Recall that the name and parameter type list for a method is called the
method’s signature. For example, f(int) and f(String) are two methods
with the same name but different signatures. If you define a method in a
subclass that has the same signature as a superclass method, you override
the superclass method.

The return type is not part of the signature. However, when you override a
method, you need to keep the return type compatible. A subclass may
change the return type to a subtype of the original type. For example,
suppose the Employee class has a method

public Employee getBuddy() { . . . }

A manager would never want to have a lowly employee as a buddy. To
reflect that fact, the Manager subclass can override this method as

public Manager getBuddy() { . . . } // OK to change return type

We say that the two getBuddy methods have covariant return types.

3. If the method is private, static, final, or a constructor, then the
compiler knows exactly which method to call. (The final modifier is
explained in the next section.) This is called static binding. Otherwise,
the method to be called depends on the actual type of the implicit
parameter, and dynamic binding must be used at runtime. In our
example, the compiler would generate an instruction to call f(String)
with dynamic binding.

4. When the program runs and uses dynamic binding to call a method, the
virtual machine must call the version of the method that is appropriate
for the actual type of the object to which x refers. Let’s say the actual
type is D, a subclass of C. If the class D defines a method f(String), that
method is called. If not, D’s superclass is searched for a method
f(String), and so on.
It would be time-consuming to carry out this search every time a method
is called. Instead, the virtual machine precomputes a method table for
each class. The method table lists all method signatures and the actual
methods to be called.
The virtual machine can build the method table after loading a class, by
combining the methods that it finds in the class file with the method table
of the superclass.
When a method is actually called, the virtual machine simply makes a
table lookup. In our example, the virtual machine consults the method
table for the class D and looks up the method to call for f(String). That
method may be D.f(String) or X.f(String), where X is some superclass
of D.
There is one twist to this scenario. If the call is super.f(param), then the
virtual machine consults the method table of the superclass.

Let’s look at this process in detail in the call e.getSalary() in Listing 5.1.
The declared type of e is Employee. The Employee class has a single method,
called getSalary, with no method parameters. Therefore, in this case, we
don’t worry about overloading resolution.

The getSalary method is not private, static, or final, so it is dynamically
bound. The virtual machine produces method tables for the Employee and
Manager classes. The Employee table shows that all methods are defined in the
Employee class itself:

Employee:
 getName() -> Employee.getName()
 getSalary() -> Employee.getSalary()
 getHireDay() -> Employee.getHireDay()
 raiseSalary(double) -> Employee.raiseSalary(double)

Actually, that isn’t the whole story—as you will see later in this chapter, the
Employee class has a superclass Object from which it inherits a number of
methods. I ignore the Object methods for now.

The Manager method table is slightly different. Three methods are inherited,
one method is redefined, and one method is added.

Manager:
 getName() -> Employee.getName()
 getSalary() -> Manager.getSalary()
 getHireDay() -> Employee.getHireDay()
 raiseSalary(double) -> Employee.raiseSalary(double)
 setBonus(double) -> Manager.setBonus(double)

At runtime, the call e.getSalary() is resolved as follows:

1. First, the virtual machine fetches the method table for the actual type of
e. That may be the table for Employee, Manager, or another subclass of
Employee.

2. Then, the virtual machine looks up the defining class for the getSalary()
signature. Now it knows which method to call.

3. Finally, the virtual machine calls the method.

Dynamic binding has a very important property: It makes programs
extensible without the need for modifying existing code. Suppose a new
class Executive is added and there is the possibility that the variable e refers
to an object of that class. The code containing the call e.getSalary() need
not be recompiled. The Executive.getSalary() method is called
automatically if e happens to refer to an object of type Executive.

 CAUTION:
When you override a method, the subclass method must be at least as
visible as the superclass method. In particular, if the superclass method is
public, the subclass method must also be declared public. It is a common

error to accidentally omit the public specifier for the subclass method. The
compiler then complains that you try to supply a more restrictive access
privilege.

5.1.7 Preventing Inheritance: Final Classes and Methods

Occasionally, you want to prevent someone from forming a subclass of one
of your classes. Classes that cannot be extended are called final classes, and
you use the final modifier in the definition of the class to indicate this. For
example, suppose we want to prevent others from subclassing the Executive
class. Simply declare the class using the final modifier, as follows:

public final class Executive extends Manager
{
 . . .
}

You can also make a specific method in a class final. If you do this, then no
subclass can override that method. (All methods in a final class are
automatically final.) For example:

public class Employee
{
 . . .
 public final String getName()
 {
 return name;
 }
 . . .
}

 NOTE:

Recall that fields can also be declared as final. A final field cannot be
changed after the object has been constructed. However, if a class is
declared final, only the methods, not the fields, are automatically final.

There is only one good reason to make a method or class final: to make sure
its semantics cannot be changed in a subclass. For example, the getTime and
setTime methods of the Calendar class are final. This indicates that the
designers of the Calendar class have taken over responsibility for the
conversion between the Date class and the calendar state. No subclass should
be allowed to mess up this arrangement. Similarly, the String class is a
final class. That means nobody can define a subclass of String. In other
words, if you have a String reference, you know it refers to a String and
nothing but a String.

Some programmers believe that you should declare all methods as final
unless you have a good reason to want polymorphism. In fact, in C++ and
C#, methods do not use polymorphism unless you specifically request it.
That may be a bit extreme, but I agree that it is a good idea to think carefully
about final methods and classes when you design a class hierarchy.

In the early days of Java, some programmers used the final keyword hoping
to avoid the overhead of dynamic binding. If a method is not overridden, and
it is short, then a compiler can optimize the method call away—a process
called inlining. For example, inlining the call e.getName() replaces it with
the field access e.name. This is a worthwhile improvement—CPUs hate
branching because it interferes with their strategy of prefetching instructions
while processing the current one. However, if getName can be overridden in
another class, then the compiler cannot inline it because it has no way of
knowing what the overriding code may do.

Fortunately, the just-in-time compiler in the virtual machine can do a better
job than a traditional compiler. It knows exactly which classes extend a
given class, and it can check whether any class actually overrides a given
method. If a method is short, frequently called, and not actually overridden,
the justin-time compiler can inline it. What happens if the virtual machine
loads another subclass that overrides an inlined method? Then the optimizer
must undo the inlining. That takes time, but it happens rarely.

 NOTE:
Enumerations and records are always final—you cannot extend them.

5.1.8 Casting

Recall from Chapter 3 that the process of forcing a conversion from one type
to another is called casting. The Java programming language has a special
notation for casts. For example,

double x = 3.405;
int nx = (int) x;

converts the value of the expression x into an integer, discarding the
fractional part.

Just as you occasionally need to convert a floating-point number to an
integer, you may need to convert an object reference from one class to
another. Let’s again use the example of an array containing a mix of
Employee and Manager objects:

var staff = new Employee[3];
staff[0] = new Manager("Carl Cracker", 80000, 1987, 12, 15);
staff[1] = new Employee("Harry Hacker", 50000, 1989, 10, 1);
staff[2] = new Employee("Tony Tester", 40000, 1990, 3, 15);

To actually make a cast of an object reference, use a syntax similar to what
you use for casting numeric expressions. Surround the target class name with
parentheses and place it before the object reference you want to cast. For
example:

Manager boss = (Manager) staff[0];

There is only one reason why you would want to make a cast—to use an
object in its full capacity after its actual type has been temporarily forgotten.
For example, in the ManagerTest class, the staff array had to be an array of
Employee objects because some of its elements were regular employees. We
would need to cast the managerial elements of the array back to Manager to
access any of its new variables. (Note that in the sample code for the first
section, I made a special effort to avoid the cast. I initialized the boss
variable with a Manager object before storing it in the array. I needed the
correct type to set the bonus of the manager.)

As you know, in Java every variable has a type. The type describes the kind
of object the variable refers to and what it can do. For example, staff[i]
refers to an Employee object (so it can also refer to a Manager object).

The compiler checks that you do not promise too much when you store a
value in a variable. If you assign a subclass reference to a superclass
variable, you are promising less, and the compiler will simply let you do it.
If you assign a superclass reference to a subclass variable, you are promising
more. Then you must use a cast so that your promise can be checked at
runtime.

What happens if you try to cast down an inheritance chain and are “lying”
about what an object contains?

Manager boss = (Manager) staff[1]; // ERROR

When the program runs, the Java runtime system notices the broken promise
and generates a ClassCastException. If you do not catch the exception, your
program terminates. Thus, it is good programming practice to find out
whether a cast will succeed before attempting it. Simply use the instanceof
operator. For example:

if (staff[i] instanceof Manager)
{ boss = (Manager) staff[i];
 . . .
}

Finally, the compiler will not let you make a cast if there is no chance for the
cast to succeed. For example, the cast

String c = (String) staff[i];

is a compile-time error because String is not a subclass of Employee.

To sum up:

• You can cast only within an inheritance hierarchy.
• Use instanceof to check before casting from a superclass to a subclass.

 NOTE:
The test

x instanceof C

does not generate an exception if x is null. It simply returns false. That
makes sense: null refers to no object, so it certainly doesn’t refer to an
object of type C.

Actually, converting the type of an object by a cast is not usually a good
idea. In our example, you do not need to cast an Employee object to a Manager
object for most purposes. The getSalary method will work correctly on both
objects of both classes. The dynamic binding that makes polymorphism
work locates the correct method automatically.

The only reason to make the cast is to use a method that is unique to
managers, such as setBonus. If for some reason you find yourself wanting to
call setBonus on Employee objects, ask yourself whether this is an indication
of a design flaw in the superclass. It may make sense to redesign the
superclass and add a setBonus method. Remember, it takes only one

uncaught ClassCastException to terminate your program. In general, it is
best to minimize the use of casts and the instanceof operator.

 C++ NOTE:
Java uses the cast syntax from the “bad old days” of C, but it works like the
safe dynamic_cast operation of C++. For example,

Manager boss = (Manager) staff[i]; // Java

is the same as

Manager* boss = dynamic_cast<Manager*>(staff[i]); // C++

with one important difference. If the cast fails, it does not yield a null object
but throws an exception. In this sense, it is like a C++ cast of references.
This is a pain in the neck. In C++, you can take care of the type test and type
conversion in one operation.

Manager* boss = dynamic_cast<Manager*>(staff[i]); // C++
if (boss != NULL) . . .

In Java, you need to use a combination of the instanceof operator and a
cast.

if (staff[i] instanceof Manager)
{
 Manager boss = (Manager) staff[i];
 . . .
}

5.1.9 Pattern Matching for instanceof

The code

if (staff[i] instanceof Manager)
{
 Manager boss = (Manager) staff[i];
 boss.setBonus(5000);
}

is rather verbose. Do we really need to mention the subclass Manager three
times?

As of Java 16, there is an easier way. You can declare the subclass variable
right in the instanceof test:

if (staff[i] instanceof Manager boss)
{
 boss.setBonus(5000);
}

If staff[i] is an instance of the Manager class, then the variable boss is set to
staff[i], and you can use it as a Manager. You skip the cast.

If staff[i] doesn’t refer to a Manager, boss is not set, and the instanceof
operator yields the value false. The body of the if statement is skipped.

 TIP:
In most situations in which you use instanceof, you need to apply a
subclass method. Then use this “pattern-matching” form of instanceof
instead of a cast.

A useless instanceof pattern is an error:

Manager boss = . . .;
if (boss instanceof Employee e) . . . // ERROR: Of course it's
an Employee

 NOTE:
The equally useless

if (boss instanceof Employee) . . .

is allowed, for backwards compatibility with Java 1.0.

When an instanceof pattern introduces a variable, you can use it right away,
in the same expression:

Employee e;
if (e instanceof Manager m && m.getBonus() > 10000) . . .

This works because the right-hand side of an && expression is only evaluated
if the left-hand side is true. If the right-hand side is evaluated, m must have
been bound to a Manager instance.

However, the following is a compile-time error:

if (e instanceof Manager m || m.getBonus() > 10000) . . . //
ERROR

The right-hand side of || is executed when the left-hand side is false, and
then nothing is bound to the variable m.

Here is another example with the conditional operator:

double bonus = e instanceof Manager m ? m.getBonus() : 0;

The variable m is defined in the subexpression after the ?, but not in the
subexpression after the :.

 NOTE:
The variable-declaring instanceof form is called “pattern-matching”
because it is similar to type patterns in switch, a “preview” feature of Java
17. I don’t discuss preview features in detail, but here is an example of the
syntax:

String description = switch (e) {
 case Executive exec -> "An executive with a fancy title of "
+ exec.getTitle();
 case Manager m -> "A manager with a bonus of " +
m.getBonus();
 default -> "A lowly employee with a salary of " +
e.getSalary();
}

As with an instanceof pattern, each type pattern declares a variable.

 CAUTION:
As any local variable, the local variable defined by an instanceof pattern
can shadow a field. For example:

class Value
{
 private double v;
 public boolean equals(Value other)
 {
 if (other instanceof LabeledValue v)

 // v is the same as other
 else
 // v denotes the field
 }
 . . .
}

5.1.10 Protected Access

As you know, fields in a class are best tagged as private, and methods are
usually tagged as public. Any features declared private won’t be accessible
in other classes. As explained at the beginning of this chapter, this is also
true for subclasses: A subclass cannot access the private fields of its
superclass.

There are times, however, when you want to restrict a method to subclasses
only or, less commonly, to allow subclass methods to access a superclass
field. In that case, you declare a class feature as protected. For example, if
the superclass Employee declares the hireDay field as protected instead of
private, then the Manager methods can access it directly.

In Java, a protected field is accessible by any class in the same package.
Now consider an Administrator subclass in a different package. The
methods of the Administrator class can peek inside the hireDay field of
Administrator objects only, not of other Employee objects. This restriction is
made so that you can’t abuse the protected mechanism by forming
subclasses just to gain access to the protected fields.

In practice, use protected fields with caution. Suppose your class is used by
other programmers and you designed it with protected fields. Unknown to
you, other programmers may inherit classes from your class and start
accessing your protected fields. In this case, you can no longer change the
implementation of your class without upsetting those programmers. That is
against the spirit of OOP, which encourages data encapsulation.

Protected methods make more sense. A class may declare a method as
protected if it is tricky to use. This indicates that the subclasses (which,
presumably, know their ancestor well) can be trusted to use the method
correctly, but other classes cannot.

A good example of this kind of method is the clone method of the Object
class—see Chapter 6 for more details.

 C++ NOTE:
As already mentioned, protected features in Java are accessible to all
subclasses as well as to all other classes in the same package. This is
slightly different from the C++ meaning of protected, and it makes the
notion of protected in Java even less safe than in C++.

Here is a summary of the four access control modifiers in Java:

1. Accessible in the class only (private).
2. Accessible by the world (public).
3. Accessible in the package and all subclasses (protected).
4. Accessible in the package—the (unfortunate) default. No modifiers are

needed.

5.2 Object: The Cosmic Superclass

The Object class is the ultimate ancestor—every class in Java extends
Object. However, you never have to write

 public class Employee extends Object

The ultimate superclass Object is taken for granted if no superclass is
explicitly mentioned. Since every class in Java extends Object, it is
important to be familiar with the services provided by the Object class. I go
over the basic ones in this chapter; consult the later chapters or view the

online documentation for what is not covered here. (Several methods of
Object come up only when dealing with concurrency—see Chapter 12.)

5.2.1 Variables of Type Object

You can use a variable of type Object to refer to objects of any type:

 Object obj = new Employee("Harry Hacker", 35000);

Of course, a variable of type Object is only useful as a generic holder for
arbitrary values. To do anything specific with the value, you need to have
some knowledge about the original type and apply a cast:

 Employee e = (Employee) obj;

In Java, only the values of primitive types (numbers, characters, and boolean
values) are not objects.

All array types, no matter whether they are arrays of objects or arrays of
primitive types, are class types that extend the Object class.

 Employee[] staff = new Employee[10];
 obj = staff; // OK
 obj = new int[10]; // OK

 C++ NOTE:
In C++, there is no cosmic root class. However, every pointer can be
converted to a void* pointer.

5.2.2 The equals Method

The equals method in the Object class tests whether one object is considered
equal to another. The equals method, as implemented in the Object class,
determines whether two object references are identical. This is a pretty
reasonable default—if two objects are identical, they should certainly be
equal. For quite a few classes, nothing else is required. For example, it
makes little sense to compare two PrintStream objects for equality.
However, you will often want to implement state-based equality testing, in
which two objects are considered equal when they have the same state.

For example, let us consider two employees equal if they have the same
name, salary, and hire date. (In an actual employee database, it would be
more sensible to compare IDs instead. I use this example to demonstrate the
mechanics of implementing the equals method.)

public class Employee
{
 . . .
 public boolean equals(Object otherObject)
 {
 // a quick test to see if the objects are identical
 if (this == otherObject) return true;
 // must return false if the explicit parameter is null
 if (otherObject == null) return false;
 // if the classes don't match, they can't be equal
 if (getClass() != otherObject.getClass())
 return false;
 // now we know otherObject is a non-null Employee
 Employee other = (Employee) otherObject;
 // test whether the fields have identical values
 return name.equals(other.name)
 && salary == other.salary
 && hireDay.equals(other.hireDay);
 }
}

The getClass method returns the class of an object—we discuss this method
in detail later in this chapter. In our test, two objects can only be equal when
they belong to the same class.

 TIP:
To guard against the possibility that name or hireDay are null, use the
Objects.equals method. The call Objects.equals(a, b) returns true if both
arguments are null, false if only one is null, and calls a.equals(b)
otherwise. With that method, the last statement of the Employee.equals
method becomes

return Objects.equals(name, other.name)
 && salary == other.salary
 && Objects.equals(hireDay, other.hireDay);

When you define the equals method for a subclass, first call equals on the
super-class. If that test doesn’t pass, then the objects can’t be equal. If the
superclass fields are equal, you are ready to compare the instance fields of
the subclass.

public class Manager extends Employee
{
 . . .
 public boolean equals(Object otherObject)
 {
 if (!super.equals(otherObject)) return false;
 // super.equals checked that this and otherObject belong
to the same class
 Manager other = (Manager) otherObject;
 return bonus == other.bonus;
 }
}

 NOTE:

Recall from Chapter 4 that a record is a special form of an immutable class
whose state is entirely defined by the fields set in a “canonical” constructor.
Records automatically define an equals method that compares the fields.
Two record instances are equals when the corresponding field values are
equal.

5.2.3 Equality Testing and Inheritance

How should the equals method behave if the implicit and explicit
parameters don’t belong to the same class? This has been an area of some
controversy. In the preceding example, the equals method returns false if
the classes don’t match exactly. But many programmers use an instanceof
test instead:

if (!(otherObject instanceof Employee)) return false;

This leaves open the possibility that otherObject can belong to a subclass.
However, this approach can get you into trouble. Here is why. The Java
Language Specification requires that the equals method has the following
properties:

1. It is reflexive: For any non-null reference x, x.equals(x) should return
true.

2. It is symmetric: For any references x and y, x.equals(y) should return
true if and only if y.equals(x) returns true.

3. It is transitive: For any references x, y, and z, if x.equals(y) returns true
and y.equals(z) returns true, then x.equals(z) should return true.

4. It is consistent: If the objects to which x and y refer haven’t changed,
then repeated calls to x.equals(y) return the same value.

5. For any non-null reference x, x.equals(null) should return false.

These rules are certainly reasonable. You wouldn’t want a library
implementor to ponder whether to call x.equals(y) or y.equals(x) when
locating an element in a data structure.

However, the symmetry rule has subtle consequences when the parameters
belong to different classes. Consider a call

e.equals(m)

where e is an Employee object and m is a Manager object, both of which
happen to have the same name, salary, and hire date. If Employee.equals uses
an instanceof test, the call returns true. But that means that the reverse call

m.equals(e)

also needs to return true—the symmetry rule does not allow it to return
false or to throw an exception.

That leaves the Manager class in a bind. Its equals method must be willing to
compare itself to any Employee, without taking manager-specific information
into account! All of a sudden, the instanceof test looks less attractive.

Some authors have gone on record that the getClass test is wrong because it
violates the substitution principle. A commonly cited example is the equals
method in the AbstractSet class that tests whether two sets have the same
elements. The AbstractSet class has two concrete subclasses, TreeSet and
HashSet, that use different algorithms for locating set elements. You really
want to be able to compare any two sets, no matter how they are
implemented.

However, the set example is rather specialized. It would make sense to
declare AbstractSet.equals as final, because nobody should redefine the
semantics of set equality. (The method is not actually final. This allows a
subclass to implement a more efficient algorithm for the equality test.)

The way I see it, there are two distinct scenarios:

• If subclasses can have their own notion of equality, then the symmetry
requirement forces you to use the getClass test.

• If the notion of equality is fixed in the superclass, then you can use the
instanceof test and allow objects of different subclasses to be equal to one

another.

In the example with employees and managers, we consider two objects to be
equal when they have matching fields. If we have two Manager objects with
the same name, salary, and hire date, but with different bonuses, we want
them to be different. Therefore, we use the getClass test.

But suppose we used an employee ID for equality testing. This notion of
equality makes sense for all subclasses. Then we could use the instanceof
test, and we should have declared Employee.equals as final.

 NOTE:
The standard Java library contains over 150 implementations of equals
methods, with a mishmash of using instanceof, calling getClass, catching a
ClassCastException, or doing nothing at all. Check out the API
documentation of the java.sql.Timestamp class, where the implementors
note with some embarrassment that they have painted themselves in a
corner. The Timestamp class inherits from java.util.Date, whose equals
method uses an instanceof test, and it is impossible to override equals to be
both symmetric and accurate.

Here is a recipe for writing the perfect equals method:

1. Name the explicit parameter otherObject—later, you will need to cast it
to another variable that you should call other.

2. Test whether this happens to be identical to otherObject:

if (this == otherObject) return true;

This statement is just an optimization. In practice, this is a common case.
It is much cheaper to check for identity than to compare the fields.

3. Test whether otherObject is null and return false if it is. This test is
required.

if (otherObject == null) return false;

4. Compare the classes of this and otherObject. If the semantics of equals
can change in subclasses, use the getClass test:

if (getClass() != otherObject.getClass()) return false;
ClassName other = (ClassName) otherObject;

If the same semantics holds for all subclasses, you can use an instanceof
test:

if (!(otherObject instanceof ClassName other)) return false;

Note that the instanceof test sets other to otherObject if it succeeds. No
cast is necessary.

5. Now compare the fields, as required by your notion of equality. Use ==
for primitive type fields, Objects.equals for object fields. Return true if
all fields match, false otherwise.

return field1 == other.field1
 && Objects.equals(field2, other.field2)
 && . . .;

If you redefine equals in a subclass, include a call to
super.equals(other).

 TIP:
If you have fields of array type, you can use the static Arrays.equals
method to check that the corresponding array elements are equal. Use the
Arrays.deepEquals method for multidimensional arrays.

 CAUTION:
Here is a common mistake when implementing the equals method. Can you
spot the problem?

public class Employee
{
 public boolean equals(Employee other)
 {
 return other != null
 && getClass() == other.getClass()
 && Objects.equals(name, other.name)
 && salary == other.salary
 && Objects.equals(hireDay, other.hireDay);
 }
 . . .
}

This method declares the explicit parameter type as Employee. As a result, it
does not override the equals method of the Object class but defines a
completely unrelated method.

You can protect yourself against this type of error by tagging methods that
are intended to override superclass methods with @Override:

@Override public boolean equals(Object other)

If you made a mistake and are defining a new method, the compiler reports
an error. For example, suppose you add the following declaration to the
Employee class:

@Override public boolean equals(Employee other)

An error is reported because this method doesn’t override any method from
the Object superclass.

java.util.Arrays 1.2

• static boolean equals(xxx[] a, xxx[] b) 5
returns true if the arrays have equal lengths and equal elements in
corresponding positions. The component type xxx of the array can be
Object, int, long, short, char, byte, boolean, float, or double.

java.util.Objects 7

• static boolean equals(Object a, Object b)
returns true if a and b are both null, false if exactly one of them is
null, and a.equals(b) otherwise.

5.2.4 The hashCode Method

A hash code is an integer that is derived from an object. Hash codes should
be scrambled—if x and y are two distinct objects, there should be a high
probability that x.hashCode() and y.hashCode() are different. Table 5.1 lists
a few examples of hash codes that result from the hashCode method of the
String class.

The String class uses the following algorithm to compute the hash code:

int hash = 0;
for (int i = 0; i < length(); i++)
 hash = 31 * hash + charAt(i);

Table 5.1 Hash Codes Resulting from the hashCode Method

The hashCode method is defined in the Object class. Therefore, every object
has a default hash code. That hash code is derived from the object’s memory
address. Consider this example:

var s = "Ok";
var sb = new StringBuilder(s);
System.out.println(s.hashCode() + " " + sb.hashCode());
var t = new String("Ok");
var tb = new StringBuilder(t);
System.out.println(t.hashCode() + " " + tb.hashCode());

Table 5.2 shows the result.

Table 5.2 Hash Codes of Strings and String Builders

Note that the strings s and t have the same hash code because, for strings,
the hash codes are derived from their contents. The string builders sb and tb
have different hash codes because no hashCode method has been defined for
the StringBuilder class and the default hashCode method in the Object class
derives the hash code from the object’s memory address.

If you redefine the equals method, you will also need to redefine the
hashCode method for objects that users might insert into a hash table. (I
discuss hash tables in Chapter 9.)

The hashCode method should return an integer (which can be negative). Just
combine the hash codes of the instance fields so that the hash codes for
different objects are likely to be widely scattered.

For example, here is a hashCode method for the Employee class:

public class Employee
{
 public int hashCode()
 {
 return 7 * name.hashCode()
 + 11 * Double.valueOf(salary).hashCode()
 + 13 * hireDay.hashCode();
 }
 . . .
}

However, you can do better. First, use the null-safe method
Objects.hashCode. It returns 0 if its argument is null and the result of calling
hashCode on the argument otherwise. Also, use the static Double.hashCode
method to avoid creating a Double object:

public int hashCode()
{
 return 7 * Objects.hashCode(name)
 + 11 * Double.hashCode(salary)
 + 13 * Objects.hashCode(hireDay);
}

Even better, when you need to combine multiple hash values, call
Objects.hash with all of them. It will call Objects.hashCode for each
argument and combine the values. Then the Employee.hashCode method is
simply

public int hashCode()
{

 return Objects.hash(name, salary, hireDay);
}

Your definitions of equals and hashCode must be compatible: If x.equals(y)
is true, then x.hashCode() must return the same value as y.hashCode(). For
example, if you define Employee.equals to compare employee IDs, then the
hashCode method needs to hash the IDs, not employee names or memory
addresses.

 TIP:
If you have fields of an array type, you can use the static Arrays.hashCode
method to compute a hash code composed of the hash codes of the array
elements.

 NOTE:
A record type automatically provides a hashCode method that derives a hash
code from the hash codes of the field values.

 CAUTION:
If the instance variables have small ranges of possible values, you need to
achieve as many distinct hash codes as possible. Consider hashing calendar
dates. Computing 7 * year + 11 * month + 13 * day yields many
collisions. In contrast, 31 * 12 * year + 31 * month + day is a “perfect
hash function.” Assuming a reasonable year range, no two dates have the
same hash code. (The actual hashCode method of the LocalDate class, which
supports a range of ±999,999,999 years, is a bit more complex.)

java.lang.Object 1.0

• int hashCode()
returns a hash code for this object. A hash code can be any integer,
positive or negative. Equal objects need to return identical hash
codes.

java.util.Objects 7

• static int hash(Object... objects)
returns a hash code that is combined from the hash codes of all
supplied objects.

• static int hashCode(Object a)
returns 0 if a is null or a.hashCode() otherwise.

java.lang.(Integer|Long|Short|Byte|Double|Float|Character|Boolean)
1.0

• static int hashCode(xxx value) 8
returns the hash code of the given value. Here xxx is the primitive
type corresponding to the given wrapper type.

java.util.Arrays 1.2

• static int hashCode(xxx[] a) 5

computes the hash code of the array a. The component type xxx of
the array can be Object, int, long, short, char, byte, boolean, float,
or double.

5.2.5 The toString Method

Another important method in Object is the toString method that returns a
string representing the value of this object. Here is a typical example. The
toString method of the Point class returns a string like this:

java.awt.Point[x=10,y=20]

Most (but not all) toString methods follow this format: the name of the
class, then the field values enclosed in square brackets. Here is an
implementation of the toString method for the Employee class:

public String toString()
{
 return "Employee[name=" + name
 + ",salary=" + salary
 + ",hireDay=" + hireDay
 + "]";
}

Actually, you can do a little better. Instead of hardwiring the class name into
the toString method, call getClass().getName() to obtain a string with the
class name.

public String toString()
{
 return getClass().getName()
 + "[name=" + name
 + ",salary=" + salary
 + ",hireDay=" + hireDay
 + "]";
}

Such toString method will also work for subclasses.

Of course, the subclass programmer should define its own toString method
and add the subclass fields. If the superclass uses getClass().getName(),
then the subclass can simply call super.toString(). For example, here is a
toString method for the Manager class:

public class Manager extends Employee
{
 . . .
 public String toString()
 {
 return super.toString()
 + "[bonus=" + bonus
 + "]";
 }
}

Now a Manager object is printed as

Manager[name=. . .,salary=. . .,hireDay=. . .][bonus=. . .]

The toString method is ubiquitous for an important reason: Whenever an
object is concatenated with a string by the “+” operator, the Java compiler
automatically invokes the toString method to obtain a string representation
of the object. For example:

var p = new Point(10, 20);
String message = "The current position is " + p;
 // automatically invokes p.toString()

 TIP:

Instead of writing x.toString(), you can write "" + x. This statement
concatenates the empty string with the string representation of x that is
exactly x.toString(). Unlike toString, this statement even works if x is of
primitive type.

If x is any object and you call

System.out.println(x);

then the println method simply calls x.toString() and prints the resulting
string.

The Object class defines the toString method to print the class name and the
hash code of the object. For example, the call

System.out.println(System.out)

produces an output that looks like this:

java.io.PrintStream@2f6684

The reason is that the implementor of the PrintStream class didn’t bother to
override the toString method.

 CAUTION:
Annoyingly, arrays inherit the toString method from Object, with the added
twist that the array type is printed in an archaic format. For example,

int[] luckyNumbers = { 2, 3, 5, 7, 11, 13 };
String s = "" + luckyNumbers;

yields the string "[I@1a46e30". (The prefix [I denotes an array of integers.)
The remedy is to call the static Arrays.toString method instead. The code

String s = Arrays.toString(luckyNumbers);

yields the string "[2, 3, 5, 7, 11, 13]".

To correctly print multidimensional arrays (that is, arrays of arrays), use
Arrays.deepToString.

The toString method is a great tool for logging. Many classes in the
standard class library define the toString method so that you can get useful
information about the state of an object. This is particularly useful in logging
messages like this:

System.out.println("Current position = " + position);

As explained in Chapter 7, an even better solution is to use an object of the

Logger class and call
Logger.global.info("Current position = " + position);

 TIP:
I strongly recommend that you add a toString method to each class that you
write. You, as well as other programmers who use your classes, will be
grateful for the logging support.

However, for record types, a toString method is already provided. It simply
lists the class name and the names and stringified values of the fields.

The program in Listing 5.4 tests the equals, hashCode, and toString methods
for the classes Employee (Listing 5.5) and Manager (Listing 5.6).

Listing 5.4 equals/EqualsTest.java

 1 package equals;
 2
 3 /**
 4 * This program demonstrates the equals method.
 5 * @version 1.12 2012-01-26
 6 * @author Cay Horstmann
 7 */
 8 public class EqualsTest
 9 {
10 public static void main(String[] args)
11 {
12 var alice1 = new Employee("Alice Adams", 75000, 1987,
12, 15);
13 var alice2 = alice1;
14 var alice3 = new Employee("Alice Adams", 75000, 1987,
12, 15);
15 var bob = new Employee("Bob Brandson", 50000, 1989, 10,
1);
16
17 System.out.println("alice1 == alice2: " + (alice1 ==
alice2));
18
19 System.out.println("alice1 == alice3: " + (alice1 ==
alice3));
20
21 System.out.println("alice1.equals(alice3): " +
alice1.equals(alice3));
22
23 System.out.println("alice1.equals(bob): " +
alice1.equals(bob));
24
25 System.out.println("bob.toString(): " + bob);
26
27 var carl = new Manager("Carl Cracker", 80000, 1987, 12,

15);
28 var boss = new Manager("Carl Cracker", 80000, 1987, 12,
15);
29 boss.setBonus(5000);
30 System.out.println("boss.toString(): " + boss);
31 System.out.println("carl.equals(boss): " +
carl.equals(boss));
32 System.out.println("alice1.hashCode(): " +
alice1.hashCode());
33 System.out.println("alice3.hashCode(): " +
alice3.hashCode());
34 System.out.println("bob.hashCode(): " + bob.hashCode());
35 System.out.println("carl.hashCode(): " +
carl.hashCode());
36 }
37 }

Listing 5.5 equals/Employee.java

 1 package equals;
 2
 3 import java.time.*;
 4 import java.util.Objects;
 5
 6 public class Employee
 7 {
 8 private String name;
 9 private double salary;
10 private LocalDate hireDay;
11
12 public Employee(String name, double salary, int year, int
month, int day)
13 {
14 this.name = name;
15 this.salary = salary;
16 hireDay = LocalDate.of(year, month, day);
17 }
18

19 public String getName()
20 {
21 return name;
22 }
23
24 public double getSalary()
25 {
26 return salary;
27 }
28
29 public LocalDate getHireDay()
30 {
31 return hireDay;
32 }
33
34 public void raiseSalary(double byPercent)
35 {
36 double raise = salary * byPercent / 100;
37 salary += raise;
38 }
39
40 public boolean equals(Object otherObject)
41 {
42 // a quick test to see if the objects are identical
43 if (this == otherObject) return true;
44
45 // must return false if the explicit parameter is null
46 if (otherObject == null) return false;
47
48 // if the classes don't match, they can't be equal
49 if (getClass() != otherObject.getClass()) return false;
50
51 // now we know otherObject is a non-null Employee
52 var other = (Employee) otherObject;
53
54 // test whether the fields have identical values
55 return Objects.equals(name, other.name)
56 && salary == other.salary && Objects.equals(hireDay,
other.hireDay);

57 }
58
59 public int hashCode()
60 {
61 return Objects.hash(name, salary, hireDay);
62 }
63
64 public String toString()
65 {
66 return getClass().getName() + "[name=" + name + ",salary="
+ salary + ",hireDay="
67 + hireDay + "]";
68 }
69 }

Listing 5.6 equals/Manager.java

 1 package equals;
 2
 3 public class Manager extends Employee
 4 {
 5 private double bonus;
 6
 7 public Manager(String name, double salary, int year, int
month, int day)
 8 {
 9 super(name, salary, year, month, day);
10 bonus = 0;
11 }
12
13 public double getSalary()
14 {
15 double baseSalary = super.getSalary();
16 return baseSalary + bonus;
17 }
18
19 public void setBonus(double bonus)
20 {

21 this.bonus = bonus;
22 }
23
24 public boolean equals(Object otherObject)
25 {
26 if (!super.equals(otherObject)) return false;
27 var other = (Manager) otherObject;
28 // super.equals checked that this and other belong to the
same class
29 return bonus == other.bonus;
30 }
31
32 public int hashCode()
33 {
34 return java.util.Objects.hash(super.hashCode(), bonus);
35 }
36
37 public String toString()
38 {
39 return super.toString() + "[bonus=" + bonus + "]";
40 }
41 }
42

java.lang.Object 1.0

• Class getClass()
returns a class object that contains information about the object. As
you will see later in this chapter, Java has a runtime representation
for classes that is encapsulated in the Class class.

• boolean equals(Object otherObject)
compares two objects for equality; returns true if the objects point to
the same area of memory, and false otherwise. You should override
this method in your own classes.

• String toString()

returns a string that represents the value of this object. You should
override this method in your own classes.

java.lang.Class 1.0

• String getName()
returns the name of this class.

• Class getSuperclass()
returns the superclass of this class as a Class object.

5.3 Generic Array Lists

In some programming languages—in particular, in C and C++—you have to
fix the sizes of all arrays at compile time. Programmers hate this because it
forces them into uncomfortable tradeoffs. How many employees will be in a
department? Surely no more than 100. What if there is a humongous
department with 150 employees? Do we want to waste 90 entries for every
department with just 10 employees?

In Java, the situation is somewhat better. You can set the size of an array at
runtime.

int actualSize = . . .;
var staff = new Employee[actualSize];

Of course, this code does not completely solve the problem of dynamically
modifying arrays at runtime. Once you set the array size, you cannot change
it easily. Instead, in Java you can deal with this common situation by using
another Java class, called ArrayList. The ArrayList class is similar to an
array, but it automatically adjusts its capacity as you add and remove
elements, without any additional code.

ArrayList is a generic class with a type parameter. To specify the type of
the element objects that the array list holds, you append a class name
enclosed in angle brackets, such as ArrayList<Employee>. You will see in
Chapter 8 how to define your own generic class, but you don’t need to know
any of those technicalities to use the ArrayList type.

The following sections show you how to work with array lists.

5.3.1 Declaring Array Lists

Here is how to declare and construct an array list that holds Employee
objects:

ArrayList<Employee> staff = new ArrayList<Employee>();

As of Java 10, it is a good idea to use the var keyword to avoid duplicating
the class name:

var staff = new ArrayList<Employee>();

It you don’t use the var keyword, you can omit the type parameter on the
right-hand side:

ArrayList<Employee> staff = new ArrayList<>();

This is called the “diamond” syntax because the empty brackets <> resemble
a diamond. Use the diamond syntax together with the new operator. The
compiler checks what happens to the new value. If it is assigned to a
variable, passed into a method, or returned from a method, then the compiler
checks the generic type of the variable, parameter, or method. It then places
that type into the <>. In our example, the new ArrayList<>() is assigned to a
variable of type ArrayList<Employee>. Therefore, the generic type is
Employee.

 CAUTION:
If you declare an ArrayList with var, do not use the diamond syntax. The
declaration

var elements = new ArrayList<>();

yields an ArrayList<Object>.

 NOTE:
Before Java 5, there were no generic classes. Instead, there was a single
ArrayList class, a one-size-fits-all collection holding elements of type
Object. You can still use ArrayList without a <. . .> suffix. It is considered
a “raw” type, with the type parameter erased.

 NOTE:
In even older versions of Java, programmers used the Vector class for
dynamic arrays. However, the ArrayList class is more efficient, and there is
no longer any good reason to use the Vector class.

Use the add method to add new elements to an array list. For example, here
is how you populate an array list with Employee objects:

staff.add(new Employee("Harry Hacker", . . .));
staff.add(new Employee("Tony Tester", . . .));

The array list manages an internal array of object references. Eventually, that
array will run out of space. This is where array lists work their magic: If you
call add and the internal array is full, the array list automatically creates a
bigger array and copies all the objects from the smaller to the bigger array.

If you already know, or have a good guess, how many elements you want to
store, call the ensureCapacity method before filling the array list:

staff.ensureCapacity(100);

That call allocates an internal array of 100 objects. Then, the first 100 calls
to add will not involve any costly reallocation.

You can also pass an initial capacity to the ArrayList constructor:

ArrayList<Employee> staff = new ArrayList<>(100);

 CAUTION:
Allocating an array list as

new ArrayList<>(100) // capacity is 100

is not the same as allocating a new array as

new Employee[100] // size is 100

There is an important distinction between the capacity of an array list and
the size of an array. If you allocate an array with 100 entries, then the array
has 100 slots, ready for use. An array list with a capacity of 100 elements
has the potential of holding 100 elements (and, in fact, more than 100, at the
cost of additional reallocations)—but at the beginning, even after its initial
construction, an array list holds no elements at all.

The size method returns the actual number of elements in the array list. For
example,

staff.size()

returns the current number of elements in the staff array list. This is the
equivalent of

a.length

for an array a.

Once you are reasonably sure that the array list is at its permanent size, you
can call the trimToSize method. This method adjusts the size of the memory
block to use exactly as much storage space as is required to hold the current
number of elements. The garbage collector will reclaim any excess memory.

Once you trim the size of an array list, adding new elements will move the
block again, which takes time. You should only use trimToSize when you
are sure you won’t add any more elements to the array list.

 C++ NOTE:
The ArrayList class is similar to the C++ vector template. Both ArrayList
and vector are generic types. But the C++ vector template overloads the []
operator for convenient element access. Java does not have operator
overloading, so it must use explicit method calls instead. Moreover, C++
vectors are copied by value. If a and b are two vectors, then the assignment
a = b makes a into a new vector with the same length as b, and all elements
are copied from b to a. The same assignment in Java makes both a and b
refer to the same array list.

java.util.ArrayList<E> 1.2

• ArrayList<E>()
constructs an empty array list.

• ArrayList<E>(int initialCapacity)
constructs an empty array list with the specified capacity.

• boolean add(E obj)
appends obj at the end of the array list. Always returns true.

• int size()
returns the number of elements currently stored in the array list. (Of
course, this is never larger than the array list’s capacity.)

• void ensureCapacity(int capacity)
ensures that the array list has the capacity to store the given number
of elements without reallocating its internal storage array.

• void trimToSize()
reduces the storage capacity of the array list to its current size.

5.3.2 Accessing Array List Elements

Unfortunately, nothing comes for free. The automatic growth convenience of
array lists requires a more complicated syntax for accessing the elements.
The reason is that the ArrayList class is not a part of the Java programming
language; it is just a utility class programmed by someone and supplied in
the standard library.

Instead of the pleasant [] syntax to access or change the element of an array,
you use the get and set methods.

For example, to set the ith element, use

staff.set(i, harry);

This is equivalent to

a[i] = harry;

for an array a. (As with arrays, the index values are zero-based.)

 CAUTION:
Do not call list.set(i, x) until the size of the array list is larger than i. For
example, the following code is wrong:

var list = new ArrayList<Employee>(100); // capacity 100, size
0
list.set(0, x); // no element 0 yet

Use the add method instead of set to fill up an array, and use set only to
replace a previously added element.

To get an array list element, use

Employee e = staff.get(i);

This is equivalent to

Employee e = a[i];

 NOTE:
When there were no generic classes, the get method of the raw ArrayList
class had no choice but to return an Object. Consequently, callers of get had
to cast the returned value to the desired type:

Employee e = (Employee) staff.get(i);

The raw ArrayList is also a bit dangerous. Its add and set methods accept
objects of any type. A call

staff.set(i, "Harry Hacker");

compiles without so much as a warning, and you run into grief only when
you retrieve the object and try to cast it. If you use an ArrayList<Employee>
instead, the compiler will detect this error.

You can sometimes get the best of both worlds—flexible growth and
convenient element access—with the following trick. First, make an array
list and add all the elements:

var list = new ArrayList<X>();
while (. . .)
{
 x = . . .;
 list.add(x);
}

When you are done, use the toArray method to copy the elements into an
array:

var a = new X[list.size()];
list.toArray(a);

Sometimes, you need to add elements in the middle of an array list. Use the
add method with an index parameter:

int n = staff.size() / 2;
staff.add(n, e);

The elements at locations n and above are shifted up to make room for the
new entry. If the new size of the array list after the insertion exceeds the

capacity, the array list reallocates its storage array.

Similarly, you can remove an element from the middle of an array list:

Employee e = staff.remove(n);

The elements located above it are copied down, and the size of the array is
reduced by one.

Inserting and removing elements is not terribly efficient. It is probably not
worth worrying about for small array lists. But if you store many elements
and frequently insert and remove in the middle of a collection, consider
using a linked list instead. I explain how to program with linked lists in
Chapter 9.

You can use the “for each” loop to traverse the contents of an array list:

for (Employee e : staff)
 do something with e

This loop has the same effect as

for (int i = 0; i < staff.size(); i++)
{
 Employee e = staff.get(i);

 do something with e
}

Listing 5.7 is a modification of the EmployeeTest program of Chapter 4. The
Employee[] array is replaced by an ArrayList<Employee>. Note the following
changes:

• You don’t have to specify the array size.
• You use add to add as many elements as you like.
• You use size() instead of length to count the number of elements.

• You use a.get(i) instead of a[i] to access an element.

Listing 5.7 arrayList/ArrayListTest.java

 1 package arrayList;
 2
 3 import java.util.*;
 4
 5 /**
 6 * This program demonstrates the ArrayList class.
 7 * @version 1.11 2012-01-26
 8 * @author Cay Horstmann
 9 */
10 public class ArrayListTest
11 {
12 public static void main(String[] args)
13 {
14 // fill the staff array list with three Employee objects
15 var staff = new ArrayList<Employee>();
16
17 staff.add(new Employee("Carl Cracker", 75000, 1987, 12,
15));
18 staff.add(new Employee("Harry Hacker", 50000, 1989, 10,
1));
19 staff.add(new Employee("Tony Tester", 40000, 1990, 3,
15));
20
21 // raise everyone's salary by 5%
22 for (Employee e : staff)
23 e.raiseSalary(5);
24
25 // print out information about all Employee objects
26 for (Employee e : staff)
27 System.out.println("name=" + e.getName() +
",salary=" + e.getSalary() + ",hireDay="
28 + e.getHireDay());
29 }
30 }

java.util.ArrayList<E> 1.2

• E set(int index, E obj)
puts the value obj in the array list at the specified index, returning
the previous contents.

• E get(int index)
gets the value stored at a specified index.

• void add(int index, E obj)
shifts up elements to insert obj at the specified index.

• E remove(int index)
removes the element at the given index and shifts down all elements
above it. The removed element is returned.

5.3.3 Compatibility between Typed and Raw Array Lists

In your own code, you will always want to use type parameters for added
safety. In this section, you will see how to interoperate with legacy code that
does not use type parameters.

Suppose you have the following legacy class:

public class EmployeeDB
{
 public void update(ArrayList list) { . . . }
 public ArrayList find(String query) { . . . }
}

You can pass a typed array list to the update method without any casts.

ArrayList<Employee> staff = . . .;
employeeDB.update(staff);

The staff object is simply passed to the update method.

 CAUTION:
Even though you get no error or warning from the compiler, this call is not
completely safe. The update method might add elements into the array list
that are not of type Employee. When these elements are retrieved, an
exception occurs. This sounds scary, but if you think about it, the behavior
is simply as it was before generics were added to Java. The integrity of the
virtual machine is never jeopardized. In this situation, you do not lose
security, but you also do not benefit from the compile-time checks.

Conversely, when you assign a raw ArrayList to a typed one, you get a
warning.

ArrayList<Employee> result = employeeDB.find(query);// yields
warning

 NOTE:
To see the text of the warning, compile with the option -Xlint:unchecked.

Using a cast does not make the warning go away.

ArrayList<Employee> result = (ArrayList<Employee>)
employeeDB.find(query);
 // yields another warning

Instead, you get a different warning, telling you that the cast is misleading.

This is the consequence of a somewhat unfortunate limitation of generic
types in Java. For compatibility, the compiler translates all typed array lists
into raw ArrayList objects after checking that the type rules were not
violated. In a running program, all array lists are the same—there are no type
parameters in the virtual machine. Thus, the casts (ArrayList) and
(ArrayList<Employee>) carry out identical runtime checks.

There isn’t much you can do about that situation. When you interact with
legacy code, study the compiler warnings and satisfy yourself that the
warnings are not serious.

Once you are satisfied, you can tag the variable that receives the cast with
the @SuppressWarnings("unchecked") annotation, like this:

@SuppressWarnings("unchecked") ArrayList<Employee> result
 = (ArrayList<Employee>) employeeDB.find(query); // yields
another warning

5.4 Object Wrappers and Autoboxing

Occasionally, you need to convert a primitive type like int to an object. All
primitive types have class counterparts. For example, a class Integer
corresponds to the primitive type int. These kinds of classes are usually
called wrappers. The wrapper classes have obvious names: Integer, Long,
Float, Double, Short, Byte, Character, and Boolean. (The first six inherit
from the common superclass Number.) The wrapper classes are immutable—
you cannot change a wrapped value after the wrapper has been constructed.
They are also final, so you cannot subclass them.

Suppose we want an array list of integers. Unfortunately, the type parameter
inside the angle brackets cannot be a primitive type. It is not possible to form
an ArrayList<int>. Here, the Integer wrapper class comes in. It is OK to
declare an array list of Integer objects.

var list = new ArrayList<Integer>();

 CAUTION:
An ArrayList<Integer> is far less efficient than an int[] array because each
value is separately wrapped inside an object. You would only want to use
this construct for small collections when programmer convenience is more
important than efficiency.

Fortunately, there is a useful feature that makes it easy to add an element of
type int to an ArrayList<Integer>. The call

list.add(3);

is automatically translated to

list.add(Integer.valueOf(3));

This conversion is called autoboxing.

 NOTE:
You might think that autowrapping would be more consistent, but the
“boxing” metaphor was taken from C#.

Conversely, when you assign an Integer object to an int value, it is
automatically unboxed. That is, the compiler translates

int n = list.get(i);

into

int n = list.get(i).intValue();

Automatic boxing and unboxing even works with arithmetic expressions.
For example, you can apply the increment operator to a wrapper reference:

Integer n = 3;
n++;

The compiler automatically inserts instructions to unbox the object,
increment the resulting value, and box it back.

In most cases, you get the illusion that the primitive types and their wrappers
are one and the same. There is just one point in which they differ
considerably: identity. As you know, the == operator, applied to wrapper
objects, only tests whether the objects have identical memory locations. The
following comparison would therefore probably fail:

Integer a = 1000;
Integer b = 1000;
if (a == b) . . .

However, a Java implementation may, if it chooses, wrap commonly
occurring values into identical objects, and thus the comparison might
succeed. This ambiguity is not what you want. The remedy is to call the
equals method when comparing wrapper objects.

 NOTE:
The autoboxing specification requires that boolean, byte, char <= 127,
short, and int between -128 and 127 are wrapped into fixed objects. For
example, if a and b had been initialized with 100 in the preceding example,
then the comparison would have had to succeed.

 TIP:

Never rely on the identity of wrapper objects. Don’t compare them with ==
and don’t use them as locks (see Chapter 14).

Don’t use the wrapper class constructors. They are deprecated and
scheduled for removal. For example, use Integer.valueOf(1000), never new
Integer(1000). Or, simply rely on auto-boxing: Integer a = 1000.

There are a couple of other subtleties about autoboxing. First off, since
wrapper class references can be null, it is possible for autounboxing to
throw a NullPointerException:

Integer n = null;
System.out.println(2 * n); // throws NullPointerException

Also, if you mix Integer and Double types in a conditional expression, then
the Integer value is unboxed, promoted to double, and boxed into a Double:

Integer n = 1;
Double x = 2.0;
System.out.println(true ? n : x); // prints 1.0

Finally, let us emphasize that boxing and unboxing is a courtesy of the
compiler, not the virtual machine. The compiler inserts the necessary calls
when it generates the bytecodes of a class. The virtual machine simply
executes those bytecodes.

 NOTE:
A future version of Java will allow user-defined types that are like primitive
types—with values that are not stored inside objects. For example, a value
of a primitive type Point with double fields x and y is simply a 16-byte
block in memory, with two adjacent double values. You can copy it, but you
can’t have a reference to it.

If you need a reference, use an automatically generated companion class
(named Point.ref in current proposals). Boxing and unboxing is automatic,
as with primitive types today.

At some point, the primitive wrapper classes will be unified with those
classes. For example, Double will be an alias for double.ref.

You will often see the number wrappers for another reason. The designers of
Java found the wrappers a convenient place to put certain basic methods,
such as those for converting strings of digits to numbers.

To convert a string to an integer, use the following statement:

int x = Integer.parseInt(s);

This has nothing to do with Integer objects—parseInt is a static method.
But the Integer class was a good place to put it.

The API notes show some of the more important methods of the Integer
class. The other number classes implement corresponding methods.

 CAUTION:
Some people think that the wrapper classes can be used to implement
methods that can modify numeric parameters. However, that is not correct.
Recall from Chapter 4 that it is impossible to write a Java method that
increments an integer parameter because parameters to Java methods are
always passed by value.

public static void triple(int x) // won't work
{
 x = 3 * x; // modifies local variable
}

Could we overcome this by using an Integer instead of an int?

public static void triple(Integer x) // won't work
{
 . . .
}

The problem is that Integer objects are immutable: The information
contained inside the wrapper can’t change. You cannot use these wrapper
classes to create a method that modifies numeric parameters.

java.lang.Integer 1.0

• int intValue()
returns the value of this Integer object as an int (overrides the
intValue method in the Number class).

• static String toString(int i)
returns a new String object representing the number i in base 10.

• static String toString(int i, int radix)
lets you return a representation of the number i in the base specified
by the radix parameter.

• static int parseInt(String s)
• static int parseInt(String s, int radix)

returns the integer whose digits are contained in the string s. The
string must represent an integer in base 10 (for the first method) or in
the base given by the radix parameter (for the second method).

• static Integer valueOf(String s)
• static Integer valueOf(String s, int radix)

returns a new Integer object initialized to the integer whose digits
are contained in the string s. The string must represent an integer in
base 10 (for the first method) or in the base given by the radix
parameter (for the second method).

java.text.NumberFormat 1.1

• Number parse(String s)
returns the numeric value, assuming the specified String represents a
number.

5.5 Methods with a Variable Number of Parameters

It is possible to provide methods that can be called with a variable number of
parameters. (These are sometimes called “varargs” methods.)

You have already seen such a method: printf. For example, the calls

System.out.printf("%d", n);

and

System.out.printf("%d %s", n, "widgets");

both call the same method, even though one call has two parameters and the
other has three.

The printf method is defined like this:

public class PrintStream
{
 public PrintStream printf(String fmt, Object... args)
 {

 return format(fmt, args);
 }
}

Here, the ellipsis ... is part of the Java code. It denotes that the method can
receive an arbitrary number of objects (in addition to the fmt parameter).

The printf method actually receives two parameters: the format string and
an Object[] array that holds all other parameters. (If the caller supplies
integers or other primitive type values, autoboxing turns them into objects.)
It now faces the unenviable task of scanning the fmt string and matching up
the ith format specifier with the value args[i].

In other words, for the implementor of printf, the Object... parameter type
is exactly the same as Object[].

The compiler needs to transform each call to printf, bundling the
parameters into an array and autoboxing as necessary:

System.out.printf("%d %s", new Object[] { Integer.valueOf(n),
"widgets" });

You can define your own methods with variable parameters, and you can
specify any type for the parameters, even a primitive type. Here is a simple
example: a function that computes the maximum of a variable number of
values.

public static double max(double... values)
{
 double largest = Double.NEGATIVE_INFINITY;
 for (double v : values) if (v > largest) largest = v;
 return largest;
}

Simply call the function like this:

double m = max(3.1, 40.4, -5);

The compiler passes a new double[] { 3.1, 40.4, -5 } to the max function.

 NOTE:
It is legal to pass an array as the last parameter of a method with variable
parameters. For example:

System.out.printf("%d %s", new Object[] { Integer.valueOf(1),
"widgets" });

Therefore, you can redefine an existing function whose last parameter is an
array to a method with variable parameters, without breaking any existing
code. For example, MessageFormat.format was enhanced in this way in Java
5. If you like, you can even declare the main method as

public static void main(String... args)

5.6 Abstract Classes

As you move up the inheritance hierarchy, classes become more general and
probably more abstract. At some point, the ancestor class becomes so
general that you think of it more as a basis for other classes than as a class
with specific instances you want to use. Consider, for example, an extension
of our Employee class hierarchy. An employee is a person, and so is a
student. Let us extend our class hierarchy to include classes Person and
Student. Figure 5.2 shows the inheritance relationships between these
classes.

Figure 5.2 Inheritance diagram for Person and its subclasses

Why bother with so high a level of abstraction? There are some attributes
that make sense for every person, such as a name. Both students and
employees have names, and introducing a common superclass lets us factor
out the getName method to a higher level in the inheritance hierarchy.

Now let’s add another method, getDescription, whose purpose is to return a
brief description of the person, such as

an employee with a salary of $50,000.00
a student majoring in computer science

It is easy to implement this method for the Employee and Student classes. But
what information can you provide in the Person class? The Person class
knows nothing about the person except the name. Of course, you could
implement Person.getDescription() to return an empty string. But there is a
better way. If you use the abstract keyword, you do not need to implement
the method at all.

public abstract String getDescription();
 // no implementation required

For added clarity, a class with one or more abstract methods must itself be
declared abstract.

public abstract class Person
{
 . . .
 public abstract String getDescription();
}

In addition to abstract methods, abstract classes can have fields and concrete
methods. For example, the Person class stores the name of the person and
has a concrete method that returns it.

public abstract class Person
{
 private String name;
 public Person(String name)
 {
 this.name = name;
 }
 public abstract String getDescription();
 public String getName()
 {
 return name;
 }
}

 TIP:
Some programmers don’t realize that abstract classes can have concrete
methods. You should always move common fields and methods (whether
abstract or not) to the superclass (whether abstract or not).

Abstract methods act as placeholders for methods that are implemented in
the subclasses. When you extend an abstract class, you have two choices.
You can leave some or all of the abstract methods undefined; then, you must
tag the subclass as abstract as well. Or, you can define all methods, and the
subclass is no longer abstract.

For example, we will define a Student class that extends the abstract Person
class and implements the getDescription method. None of the methods of
the Student class are abstract, so it does not need to be declared as an
abstract class.

A class can even be declared as abstract though it has no abstract methods.

Abstract classes cannot be instantiated. That is, if a class is declared as
abstract, no objects of that class can be created. For example, the
expression

new Person("Vince Vu")

is an error. However, you can create objects of concrete subclasses.

Note that you can still create object variables of an abstract class, but such a
variable must refer to an object of a nonabstract subclass. For example:

Person p = new Student("Vince Vu", "Economics");

Here p is a variable of the abstract type Person that refers to an instance of
the nonabstract subclass Student.

 C++ NOTE:
In C++, an abstract method is called a pure virtual function and is tagged
with a trailing = 0, such as in

class Person // C++
{

public:
 virtual string getDescription() = 0;
 . . .
};

A C++ class is abstract if it has at least one pure virtual function. In C++,
there is no special keyword to denote abstract classes.

Let us define a concrete subclass Student that extends the abstract class
Person:

public class Student extends Person
{
 private String major;
 public Student(String name, String major)
 {
 super(name);
 this.major = major;
 }
 public String getDescription()
 {
 return "a student majoring in " + major;
 }
}

The Student class defines the getDescription method. Therefore, all
methods in the Student class are concrete, and the class is no longer an
abstract class.

The program shown in Listing 5.8 defines the abstract superclass Person
(Listing 5.9) and two concrete subclasses, Employee (Listing 5.10) and
Student (Listing 5.11). We fill an array of Person references with employee
and student objects:

var people = new Person[2];
people[0] = new Employee(. . .);

people[1] = new Student(. . .);

We then print the names and descriptions of these objects:

for (Person p : people)
 System.out.println(p.getName() + ", " + p.getDescription());

Some people are baffled by the call

p.getDescription()

Isn’t this a call to an undefined method? Keep in mind that the variable p
never refers to a Person object because it is impossible to construct an object
of the abstract Person class. The variable p always refers to an object of a
concrete subclass such as Employee or Student. For these objects, the
getDescription method is defined.

Could you have omitted the abstract method altogether from the Person
super-class, simply defining the getDescription methods in the Employee and
Student sub-classes? If you did that, you wouldn’t have been able to invoke
the getDescription method on the variable p. The compiler ensures that you
invoke only methods that are declared in the class.

Abstract methods are an important concept in the Java programming
language. You will encounter them most commonly inside interfaces. For
more information about interfaces, turn to Chapter 6.

Listing 5.8 abstractClasses/PersonTest.java

 1 package abstractClasses;
 2
 3 /**
 4 * This program demonstrates abstract classes.
 5 * @version 1.01 2004-02-21
 6 * @author Cay Horstmann
 7 */
 8 public class PersonTest

 9 {
10 public static void main(String[] args)
11 {
12 var people = new Person[2];
13
14 // fill the people array with Student and Employee
objects
15 people[0] = new Employee("Harry Hacker", 50000, 1989,
10, 1);
16 people[1] = new Student("Maria Morris", "computer
science");
17
18 // print out names and descriptions of all Person
objects
19 for (Person p : people)
20 System.out.println(p.getName() + ", " +
p.getDescription());
21 }
22 }

Listing 5.9 abstractClasses/Person.java

 1 package abstractClasses;
 2
 3 public abstract class Person
 4 {
 5 public abstract String getDescription();
 6 private String name;
 7
 8 public Person(String name)
 9 {
10 this.name = name;
11 }
12
13 public String getName()
14 {
15 return name;

16 }
17 }

Listing 5.10 abstractClasses/Employee.java

 1 package abstractClasses;
 2
 3 import java.time.*;
 4
 5 public class Employee extends Person
 6 {
 7 private double salary;
 8 private LocalDate hireDay;
 9
10 public Employee(String name, double salary, int year, int
month, int day)
11 {
12 super(name);
13 this.salary = salary;
14 hireDay = LocalDate.of(year, month, day);
15 }
16
17 public double getSalary()
18 {
19 return salary;
20 }
21
22 public LocalDate getHireDay()
23 {
24 return hireDay;
25 }
26
27 public String getDescription()
28 {
29 return "an employee with a salary of
$%.2f".formatted(salary);
30 }
31

32 public void raiseSalary(double byPercent)
33 {
34 double raise = salary * byPercent / 100;
35 salary += raise;
36 }
37 }

Listing 5.11 abstractClasses/Student.java

 1 package abstractClasses;
 2
 3 public class Student extends Person
 4 {
 5 private String major;
 6
 7 /**
 8 * @param name the student's name
 9 * @param major the student's major
10 */
11 public Student(String name, String major)
12 {
13 // pass name to superclass constructor
14 super(name);
15 this.major = major;
16 }
17
18 public String getDescription()
19 {
20 return "a student majoring in " + major;
21 }
22 }

5.7 Enumeration Classes

You saw in Chapter 3 how to define enumerated types. Here is a typical
example:

public enum Size { SMALL, MEDIUM, LARGE, EXTRA_LARGE }

The type defined by this declaration is actually a class. The class has exactly
four instances—it is not possible to construct new objects.

Therefore, you never need to use equals for values of enumerated types.
Simply use == to compare them.

You can, if you like, add constructors, methods, and fields to an enumerated
type. Of course, the constructors are only invoked when the enumerated
constants are constructed. Here is an example:

public enum Size
{
 SMALL("S"), MEDIUM("M"), LARGE("L"), EXTRA_LARGE("XL");
 private String abbreviation;
 Size(String abbreviation) { this.abbreviation =
abbreviation; }
 // automatically private
 public String getAbbreviation() { return abbreviation; }
}

The constructor of an enumeration is always private. You can omit the
private modifier, as in the preceding example. It is a syntax error to declare
an enum constructor as public or protected.

All enumerated types are subclasses of the abstract class Enum. They inherit a
number of methods from that class. The most useful one is toString, which
returns the name of the enumerated constant. For example,
Size.SMALL.toString() returns the string "SMALL".

The converse of toString is the static valueOf method. For example, the
statement

Size s = Enum.valueOf(Size.class, "SMALL");

sets s to Size.SMALL.

Each enumerated type has a static values method that returns an array of all
values of the enumeration. For example, the call

Size[] values = Size.values();

returns the array with elements Size.SMALL, Size.MEDIUM, Size.LARGE, and
Size.EXTRA_LARGE.

The ordinal method yields the position of an enumerated constant in the
enum declaration, counting from zero. For example, Size.MEDIUM.ordinal()
returns 1.

The short program in Listing 5.12 demonstrates how to work with
enumerated types.

 NOTE:
The Enum class has a type parameter that I have ignored for simplicity. For
example, the enumerated type Size actually extends Enum<Size>. The type
parameter is used in the compareTo method. (I discuss the compareTo method
in Chapter 6 and type parameters in Chapter 8.)

Listing 5.12 enums/EnumTest.java

 1 package enums;
 2
 3 import java.util.*;
 4
 5 /**
 6 * This program demonstrates enumerated types.
 7 * @version 1.0 2004-05-24
 8 * @author Cay Horstmann
 9 */
10 public class EnumTest
11 {

12 public static void main(String[] args)
13 {
14 var in = new Scanner(System.in);
15 System.out.print("Enter a size: (SMALL, MEDIUM, LARGE,
EXTRA_LARGE) ");
16 String input = in.next().toUpperCase();
17 Size size = Enum.valueOf(Size.class, input);
18 System.out.println("size=" + size);
19 System.out.println("abbreviation=" +
size.getAbbreviation());
20 if (size == Size.EXTRA_LARGE)
21 System.out.println("Good job--you paid attention to
the _.");
22 }
23 }
24
25 enum Size
26 {
27 SMALL("S"), MEDIUM("M"), LARGE("L"), EXTRA_LARGE("XL");
28
29 private Size(String abbreviation) { this.abbreviation =
abbreviation; }
30 public String getAbbreviation() { return abbreviation; }
31
32 private String abbreviation;
33 }

java.lang.Enum<E> 5

• static Enum valueOf(Class enumClass, String name)
returns the enumerated constant of the given class with the given
name.

• String toString()
returns the name of this enumerated constant.

• int ordinal()

returns the zero-based position of this enumerated constant in the
enum declaration.

• int compareTo(E other)
returns a negative integer if this enumerated constant comes before
other, zero if this == other, and a positive integer otherwise. The
ordering of the constants is given by the enum declaration.

5.8 Sealed Classes

Unless a class is declared final, anyone can form a subclass of it. What if you
want to have more control? For example, suppose you need to write your
own JSON library because none of the existing ones does exactly what you
need.

The JSON standard says that a JSON value is an array, number, string,
Boolean value, object, or null. An obvious approach is to model this with
classes JSONArray, JSONNumber, and so on that extend an abstract class
JSONValue:

public abstract class JSONValue
{
 // Methods that apply to all JSON values
}
public final class JSONArray extends JSONValue
{
 . . .
}
public final class JSONNumber extends JSONValue
{
 . . .
}

By declaring the classes JSONArray, JSONNumber, and so on as final, we can
ensure that nobody forms a subclass. But we cannot stop anyone from
forming another subclass of JSONValue.

Why might we want that control? Consider this code:

JSONValue v = . . .;
if (v instanceof JSONArray a) . . .
else if (v instanceof JSONNumber n) . . .
else if (v instanceof JSONString s) . . .
else if (v instanceof JSOBoolean b) . . .
else if (v instanceof JSONObject o) . . .
else . . . // Must be JSONNull

Here, the control flow implies that we know all direct subclasses of
JSONValue. This is not an open-ended hierarchy. The JSON standard won’t
change; if it does, we as the library implementors will add a seventh
subclass. We don’t want anyone else out there mess with the class hierarchy.

In Java, a sealed class controls which classes may inherit from it. Sealed
classes were added as a preview feature in Java 15 and finalized in Java 17.

Here is how to declare the JSONValue class as sealed:

public abstract sealed class JSONValue
 permits JSONArray, JSONNumber, JSONString, JSONBoolean,
JSONObject, JSONNull
{
 . . .
}

It is an error to define a non-permitted subclass:

public class JSONComment extends JSONValue { . . . } // Error

That’s just as well, since JSON doesn’t allow for comments. Sealed classes
thus allow for accurate modeling of domain constraints.

The permitted subclasses of a sealed class must be accessible. They cannot
be private classes that are nested in another class, or package-visible classes
from another package.

For permitted subclasses that are public, the rules are more stringent. They
must be in the same package as the sealed class. However, if you use
modules (see Chapter 9 of Volume II), then they must only be in the same
module.

 NOTE:
A sealed class can be declared without a permits clause. Then all of its
direct subclasses must be declared in the same file. Programmers without
access to that file cannot form subclasses.

A file can have at most one public class, so this arrangement appears to be
only useful if the subclasses are not for use by the public.

However, as you will see in the next chapter, you can use inner classes as
public subclasses.

An important motivation for sealed classes is compile-time checking.
Consider this method of the JSONValue class, which uses a switch expression
with pattern matching (a preview feature in Java 17):

public String type()
{
 return switch (this)
 {
 case JSONArray j -> "array";
 case JSONNumber j -> "number";
 case JSONString j -> "string";
 case JSONBoolean j -> "boolean";
 case JSONObject j -> "object";
 case JSONNull j -> "null";
 // No default needed here
 };
}

The compiler can check that no default clause is needed since all direct
subclasses of JSONValue occur as cases.

 NOTE:
The preceding type method doesn’t look very object-oriented. It would be in
the spirit of OOP to have each of the six classes provide its own type
method, relying on polymorphism instead of a switch. For an open-ended
hierarchy, that is a good approach. But when there is a fixed set of classes, it
is often more convenient to have all alternatives in one method.

At first glance, it appears as if a subclass of a sealed class must be final. But
for exhaustiveness testing, we only need to know all direct subclasses. It is
not a problem if those classes have further subclasses. For example, we can
reorganize our JSON hierarchy as shown in Figure 5.3.

Figure 5.3 The complete hierarchy of classes for representing JSON values

In this hierarchy, JSONValue permits three subclasses:

public abstract sealed class JSONValue permits JSONObject,
JSONArray, JSONPrimitive
{
 . . .
}

The JSONPrimitive class is sealed as well:

public abstract sealed class JSONPrimitive extends JSONValue
 permits JSONString, JSONNumber, JSONBoolean, JSONNull
{
 . . .
}

A subclass of a sealed class must specify whether it is sealed, final, or open
for subclassing. In the latter case, it must be declared as non-sealed.

 NOTE:
The non-sealed keyword is the first Java keyword with a hyphen. This may
well be a future trend. Adding keywords to the language always comes with
a risk. Existing code may no longer compile. For that reason, sealed is a
“contextual” keyword. You can still declare variables or methods named
sealed:

int sealed = 1; // OK to use contextual keyword as identifier

With a hyphenated keyword, one doesn’t have to worry about this. The only
ambiguity is with subtraction:

int non = 0;
non = non-sealed; // Subtraction, not keyword

Why would you ever want a non-sealed subclass? Consider an XML node
class with six direct subclasses:

public abstract sealed class Node permits Element, Text,
Comment,
 CDATASection, EntityReference, ProcessingInstruction
{
 . . .
}

We allow arbitrary subclasses of Element:

public non-sealed class Element extends Node
{
 . . .
}
public class HTMLDivElement extends Element
{
 . . .
}

In this section, you learned about sealed classes. In the next chapter, you will
learn about interfaces, a generalization of abstract classes. Java interfaces
can also have subtypes. Sealed interfaces work exactly the same as sealed
classes, controlling the direct subtypes.

The following sample program fleshes out the JSON hierarchy. The
implementation of JSONObject uses a HashMap, which will be covered in
Chapter 9. In the example, we use interfaces instead of abstract classes so
that JSONNumber and JSONString can be records and the JSONBoolean and
JSONNull classes can be enumerations. Records and enumerations can
implement interfaces, but they cannot extend classes.

Listing 5.13 sealed/SealedTest.java

 1 package sealed;
 2

 3 import java.util.*;
 4
 5 sealed interface JSONValue permits JSONArray, JSONObject,
JSONPrimitive
 6 {
 7 public default String type()
 8 {
 9 if (this instanceof JSONArray) return "array";
10 else if (this instanceof JSONObject) return "object";
11 else if (this instanceof JSONNumber) return "number";
12 else if (this instanceof JSONString) return "string";
13 else if (this instanceof JSONBoolean) return "boolean";
14 else return "null";
15 }
16 }
17
18 final class JSONArray extends ArrayList<JSONValue> implements
JSONValue {}
19
20 final class JSONObject extends HashMap<String, JSONValue>
implements JSONValue
21 {
22 public String toString()
23 {
24 StringBuilder result = new StringBuilder();
25 result.append("{");
26 for (Map.Entry<String, JSONValue> entry : entrySet())
27 {
28 if (result.length() > 1) result.append(",");
29 result.append(" \"");
30 result.append(entry.getKey());
31 result.append("\": ");
32 result.append(entry.getValue());
33 }
34 result.append(" }");
35 return result.toString();
36 }
37 }
38

39 sealed interface JSONPrimitive extends JSONValue
40 permits JSONNumber, JSONString, JSONBoolean, JSONNull
41 {
42 }
43
44 final record JSONNumber(double value) implements JSONPrimitive
45 {
46 public String toString() { return "" + value; }
47 }
48
49 final record JSONString(String value) implements JSONPrimitive
50 {
51 public String toString() { return "\"" +
value.translateEscapes() + "\""; }
52 }
53
54 enum JSONBoolean implements JSONPrimitive
55 {
56 FALSE, TRUE;
57 public String toString() { return
super.toString().toLowerCase(); }
58 }
59
60 enum JSONNull implements JSONPrimitive
61 {
62 INSTANCE;
63 public String toString() { return "null"; }
64 }
65
66 public class SealedTest
67 {
68 public static void main(String[] args)
69 {
70 JSONObject obj = new JSONObject();
71 obj.put("name", new JSONString("Harry"));
72 obj.put("salary", new JSONNumber(90000));
73 obj.put("married", JSONBoolean.FALSE);
74 JSONArray arr = new JSONArray();
75 arr.add(new JSONNumber(13));

76 arr.add(JSONNull.INSTANCE);
77
78 obj.put("luckyNumbers", arr);
79 System.out.println(obj);
80 System.out.println(obj.type());
81 }
82 }

5.9 Reflection

The reflection library gives you a very rich and elaborate toolset to write
programs that manipulate Java code dynamically. Using reflection, Java can
support user interface builders, object-relational mappers, and many other
development tools that dynamically inquire about the capabilities of classes.

A program that can analyze the capabilities of classes is called reflective.
The reflection mechanism is extremely powerful. As the next sections show,
you can use it to

• Analyze the capabilities of classes at runtime
• Inspect objects at runtime—for example, to write a single toString method

that works for all classes
• Implement generic array manipulation code
• Take advantage of Method objects that work just like function pointers in

languages such as C++

Reflection is a powerful and complex mechanism; however, it is of interest
mainly to tool builders, not application programmers. If you are interested in
programming applications rather than tools for other Java programmers, you
can safely skip the remainder of this chapter and return to it later.

5.9.1 The Class Class

While your program is running, the Java runtime system always maintains
what is called runtime type identification on all objects. This information
keeps track of the class to which each object belongs. Runtime type

information is used by the virtual machine to select the correct methods to
execute.

However, you can also access this information by working with a special
Java class. The class that holds this information is called, somewhat
confusingly, Class. The getClass() method in the Object class returns an
instance of Class type.

Employee e; . . .
Class cl = e.getClass();

Just like an Employee object describes the properties of a particular
employee, a Class object describes the properties of a particular class.
Probably the most commonly used method of Class is getName. This returns
the name of the class. For example, the statement

System.out.println(e.getClass().getName() + " " + e.getName());

prints

Employee Harry Hacker

if e is an employee, or

Manager Harry Hacker

if e is a manager.

If the class is in a package, the package name is part of the class name:

var generator = new Random();
Class cl = generator.getClass();
String name = cl.getName(); // name is set to
"java.util.Random"

You can obtain a Class object corresponding to a class name by using the
static forName method.

String className = "java.util.Random";
Class cl = Class.forName(className);

Use this method if the class name is stored in a string that varies at runtime.
This works if className is the name of a class or interface. Otherwise, the
forName method throws a checked exception. See Section 5.9.2, “A Primer
on Declaring Exceptions,” on p. 283 for how to supply an exception handler
whenever you use this method.

A third method for obtaining an object of type Class is a convenient
shorthand. If T is any Java type (or the void keyword), then T.class is the
matching class object. For example:

Class cl1 = Random.class; // if you import java.util.*;
Class cl2 = int.class;
Class cl3 = Double[].class;

Note that a Class object really describes a type, which may or may not be a
class. For example, int is not a class, but int.class is nevertheless an object
of type Class.

 NOTE:
The Class class is actually a generic class. For example, Employee.class is
of type Class<Employee>. I’m not dwelling on this issue because it would
further complicate an already abstract concept. For most practical purposes,
you can ignore the type parameter and work with the raw Class type. See
Chapter 8 for more information on this issue.

 CAUTION:
For historical reasons, the getName method returns somewhat strange names
for array types:
• Double[].class.getName() returns "[Ljava.lang.Double;".
• int[].class.getName() returns "[I".

The virtual machine manages a unique Class object for each type. Therefore,
you can use the == operator to compare class objects. For example:

if (e.getClass() == Employee.class) . . .

This test passes if e is an instance of Employee. Unlike the condition e
instanceof Employee, this test fails if e is an instance of a subclass such as
Manager.

If you have an object of type Class, you can use it to construct instances of
the class. Call the getConstructor method to get an object of type
Constructor, then use the newInstance method to construct an instance. For
example:

var className = "java.util.Random"; // or any other name of a
class with
 // a no-arg constructor
Class cl = Class.forName(className);
Object obj = cl.getConstructor().newInstance();

If the class doesn’t have a constructor without arguments, the
getConstructor method throws an exception. You will see in Section 5.9.7,
“Invoking Arbitrary Methods and Constructors,” on p. 304 how to invoke
other constructors.

 NOTE:
There is a deprecated Class.toInstance method that also constructs an
instance with the no-argument constructor. However, if the constructor
throws a checked exception, the exception is rethrown without being
checked. This violates the compile-time checking of exceptions. In contrast,
Constructor. newInstance wraps any constructor exception into an
InvocationTargetException.

 C++ NOTE:
The newInstance method corresponds to the idiom of a virtual constructor
in C++. However, virtual constructors in C++ are not a language feature but
just an idiom that needs to be supported by a specialized library. The Class
class is similar to the type_info class in C++, and the getClass method is
equivalent to the typeid operator. The Java Class is quite a bit more
versatile than type_info, though. The C++ type_info can only reveal a
string with the name of the type, not create new objects of that type.

java.lang.Class 1.0

• static Class forName(String className)
returns the Class object representing the class with name className.

• Constructor getConstructor(Class... parameterTypes) 1.1
yields an object describing the constructor with the given parameter
types. See Section 5.9.7, “Invoking Arbitrary Methods and
Constructors,” on p. 304 for more information on how to supply
parameter types.

java.lang.reflect.Constructor 1.1

• Object newInstance(Object... params)
constructs a new instance of the constructor’s declaring class,
passing params to the constructor. See Section 5.9.7, “Invoking
Arbitrary Methods and Constructors,” on p. 304 for more
information on how to supply parameters.

java.lang.Throwable 1.0

• void printStackTrace()
prints the Throwable object and the stack trace to the standard error
stream.

5.9.2 A Primer on Declaring Exceptions

I cover exception handling fully in Chapter 7, but in the meantime you will
occasionally encounter methods that threaten to throw exceptions.

When an error occurs at runtime, a program can “throw an exception.”
Throwing an exception is more flexible than terminating the program
because you can provide a handler that “catches” the exception and deals
with it.

If you don’t provide a handler, the program terminates and prints a message
to the console, giving the type of the exception. You may have already seen
exception reports when you accidentally used a null reference or
overstepped the bounds of an array.

There are two kinds of exceptions: unchecked exceptions and checked
exceptions. With checked exceptions, the compiler checks that you, the
programmer, are aware of the exception and are prepared to deal with the
consequences. However, many common exceptions, such as bounds errors,

or accessing a null reference, are unchecked. The compiler does not expect
that you provide a handler—after all, you should spend your mental energy
on avoiding these mistakes rather than coding handlers for them.

But not all errors are avoidable. If an exception can occur despite your best
efforts, then most Java APIs will throw a checked exception. One example is
the Class.forName method. There is no way for you to ensure that a class
with the given name exists. In Chapter 7, you will see several strategies for
exception handling. For now, I just show you the simplest strategy.

Whenever a method contains a statement that might throw a checked
exception, add a throws clause to the method name.

public static void doSomethingWithClass(String name)
 throws ReflectiveOperationException
{
 Class cl = Class.forName(name); // might throw exception

 do something with cl
}

Any method that calls this method also needs a throws declaration. This
includes the main method. If an exception actually occurs, the main method
terminates with a stack trace. (You will learn in Chapter 7 how to catch
exceptions instead of having them terminate your programs.)

You only need to supply a throws clause for checked exceptions. It is easy to
find out which methods throw checked exceptions—the compiler will
complain whenever you call a method that threatens to throw a checked
exception and you don’t supply a handler.

5.9.3 Resources

Classes often have associated data files, such as:

• Image and sound files
• Text files with message strings and button labels

In Java, such an associated file is called a resource.

For example, consider a dialog box that displays a message such as the one
in Figure 5.4.

Figure 5.4 Displaying image and text resources

Of course, the book title and copyright year in the panel will change for the
next edition of the book. To make it easy to track this change, we will put the
text inside a file and not hardcode it as a string.

But where should you put a file such as about.txt? Of course, it would be
convenient to simply place it with the rest of the program files inside a JAR
file.

The Class class provides a useful service for locating resource files. Here are
the necessary steps:

1. Get the Class object of the class that has a resource—for example,
ResourceTest.class.

2. Some methods, such as the getImage method of the ImageIcon class,
accept URLs that describe resource locations. Then you call

URL url = cl.getResource("about.gif");

3. Otherwise, use the getResourceAsStream method to obtain an input
stream for reading the data in the file.

The point is that the Java virtual machine knows how to locate a class, so it
can then search for the associated resource in the same location. For
example, suppose the ResourceTest class is in a package resources. Then
the ResourceTest.class file is located in a resources directory, and you
place an icon file into the same directory.

Instead of placing a resource file inside the same directory as the class file,
you can provide a relative or absolute path such as

data/about.txt
/corejava/title.txt

Automating the loading of files is all the resource loading feature does.
There are no standard methods for interpreting the contents of resource files.
Each program must have its own way of interpreting its resource files.

Another common application of resources is the internationalization of
programs. Language-dependent strings, such as messages and user interface
labels, are stored in resource files, with one file per language. The
internationalization API, which is discussed in Chapter 7 of Volume II,
supports a standard method for organizing and accessing these localization
files.

Listing 5.13 is a program that demonstrates resource loading. (Do not worry
about the code for reading text and displaying dialogs—we cover those
details later.) Compile, build a JAR file, and execute it:

javac resource/ResourceTest.java
jar cvfe ResourceTest.jar resources.ResourceTest \
 resources/*.class resources/*.gif resources/data/*.txt
corejava/*.txt
java -jar ResourceTest.jar

Move the JAR file to a different directory and run it again to check that the
program reads the resource files from the JAR file, not from the current
directory.

Listing 5.14 resources/ResourceTest.java

 1 package resources;
 2
 3 import java.io.*;
 4 import java.net.*;
 5 import java.nio.charset.*;
 6 import javax.swing.*;
 7
 8 /**
 9 * @version 1.5 2018-03-15
10 * @author Cay Horstmann
11 */
12 public class ResourceTest
13 {
14 public static void main(String[] args) throws IOException
15 {
16 Class cl = ResourceTest.class;
17 URL aboutURL = cl.getResource("about.gif");
18 var icon = new ImageIcon(aboutURL);
19
20 InputStream stream =
cl.getResourceAsStream("data/about.txt");
21 var about = new String(stream.readAllBytes(), "UTF-8");
22
23 InputStream stream2 =
cl.getResourceAsStream("/corejava/title.txt");
24 var title = new String(stream2.readAllBytes(),
StandardCharsets.UTF_8).strip();
25
26 JOptionPane.showMessageDialog(
27 null, about, title, JOptionPane.INFORMATION_MESSAGE,
icon);
28 }
29 }

java.lang.Class 1.0

• URL getResource(String name) 1.1
• InputStream getResourceAsStream(String name) 1.1

finds the resource in the same place as the class and then returns a
URL or input stream that you can use for loading the resource.
Returns null if the resource isn’t found, so does not throw an
exception for an I/O error.

5.9.4 Using Reflection to Analyze the Capabilities of Classes

Here is a brief overview of the most important parts of the reflection
mechanism for letting you examine the structure of a class.

The three classes Field, Method, and Constructor in the java.lang.reflect
package describe the fields, methods, and constructors of a class,
respectively. All three classes have a method called getName that returns the
name of the item. The Field class has a method getType that returns an
object, again of type Class, that describes the field type. The Method and
Constructor classes have methods to report the types of the parameters, and
the Method class also reports the return type. All three of these classes also
have a method called getModifiers that returns an integer, with various bits
turned on and off, that describes the modifiers used, such as public and
static. You can then use the static methods in the Modifier class in the
java.lang.reflect package to analyze the integer that getModifiers returns.
Use methods like isPublic, isPrivate, or isFinal in the Modifier class to
tell whether a method or constructor was public, private, or final. All you
have to do is have the appropriate method in the Modifier class work on the
integer that getModifiers returns. You can also use the Modifier.toString
method to print the modifiers.

The getFields, getMethods, and getConstructors methods of the Class class
return arrays of the public fields, methods, and constructors that the class
supports. This includes public members of superclasses. The
getDeclaredFields, getDeclaredMethods, and getDeclaredConstructors

methods of the Class class return arrays consisting of all fields, methods, and
constructors that are declared in the class. This includes private, package,

and protected members, as well as members with package access, but not
members of superclasses.

Listing 5.15 shows you how to print out all information about a class. The
program prompts you for the name of a class and writes out the signatures of
all methods and constructors as well as the names of all instance fields of a
class. For example, if you enter

java.lang.Double

the program prints

public final class java.lang.Double extends java.lang.Number
{
 public java.lang.Double(double);
 public java.lang.Double(java.lang.String);
 public boolean equals(java.lang.Object);
 public static java.lang.String toString(double);
 public java.lang.String toString();
 public static int hashCode(double);
 public int hashCode();
 public static double min(double, double);
 public static double max(double, double);
 public static native long doubleToRawLongBits(double);
 public static long doubleToLongBits(double);
 public static native double longBitsToDouble(long);
 public int compareTo(java.lang.Double);
 public volatile int compareTo(java.lang.Object);
 public static int compare(double, double);
 public byte byteValue();
 public short shortValue();
 public int intValue();
 public long longValue();
 public float floatValue();
 public double doubleValue();
 public static java.lang.Double valueOf(java.lang.String);
 public static java.lang.Double valueOf(double);
 public static java.lang.String toHexString(double);

 public volatile java.lang.Object resolveConstantDesc(
 java.lang.invoke.MethodHandles$Lookup);
 public java.lang.Double
resolveConstantDesc(java.lang.invoke.MethodHandles$Lookup);
 public java.util.Optional describeConstable();
 public boolean isNaN();
 public static boolean isNaN(double);
 public static double sum(double, double);
 public boolean isInfinite();
 public static boolean isInfinite(double);
 public static boolean isFinite(double);
 public static double parseDouble(java.lang.String);
 public static final double POSITIVE_INFINITY;
 public static final double NEGATIVE_INFINITY;
 public static final double NaN;
 public static final double MAX_VALUE;
 public static final double MIN_NORMAL;
 public static final double MIN_VALUE;
 public static final int MAX_EXPONENT;
 public static final int MIN_EXPONENT;
 public static final int SIZE;
 public static final int BYTES;
 public static final java.lang.Class TYPE;
 private final double value;
 private static final long serialVersionUID;
}

What is remarkable about this program is that it can analyze any class that
the Java interpreter can load, not just the classes that were available when
the program was compiled. We will use this program in the next chapter to
peek inside the inner classes that the Java compiler generates automatically.

Listing 5.15 reflection/ReflectionTest.java

 1 package reflection;
 2
 3 import java.util.*;
 4 import java.lang.reflect.*;

 5 /**
 6 * This program uses reflection to print all features of a
class.
 7 * @version 1.12 2021-06-15
 8 * @author Cay Horstmann
 9 */
10 public class ReflectionTest
11 {
12 public static void main(String[] args)
13 throws ReflectiveOperationException
14 {
15 // read class name from command line args or user input
16 String name;
17 if (args.length > 0) name = args[0];
18 else
19 {
20 var in = new Scanner(System.in);
21 System.out.println("Enter class name (e.g.
java.util.Date): ");
22 name = in.next();
23 }
24
25 // print class modifiers, name and superclass name (if
!= Object)
26 Class cl = Class.forName(name);
27 String modifiers = Modifier.toString(cl.getModifiers());
28 if (modifiers.length() > 0) System.out.print(modifiers +
" ");
29 if (cl.isSealed())
30 System.out.print("sealed ");
31 if (cl.isEnum())
32 System.out.print("enum " + name);
33 else if (cl.isRecord())
34 System.out.print("record " + name);
35 else if (cl.isInterface())
36 System.out.print("interface " + name);
37 else
38 System.out.print("class " + name);
39 Class supercl = cl.getSuperclass();

40 if (supercl != null && supercl != Object.class)
System.out.print(" extends "
41 + supercl.getName());
42
43 printInterfaces(cl);
44 printPermittedSubclasses(cl);
45
46 System.out.print("\n{\n");
47 printConstructors(cl);
48 System.out.println();
49 printMethods(cl);
50 System.out.println();
51 printFields(cl);
52 System.out.println("}");
53 }
54
55 /**
56 * Prints all constructors of a class
57 * @param cl a class
58 */
59 public static void printConstructors(Class cl)
60 {
61 Constructor[] constructors = cl.getDeclaredConstructors();
62
63 for (Constructor c : constructors)
64 {
65 String name = c.getName();
66 System.out.print(" ");
67 String modifiers = Modifier.toString(c.getModifiers());
68 if (modifiers.length() > 0) System.out.print(modifiers +
" ");
69 System.out.print(name + "(");
70
71 // print parameter types
72 Class[] paramTypes = c.getParameterTypes();
73 for (int j = 0; j < paramTypes.length; j++)
74 {
75 if (j > 0) System.out.print(", ");
76 System.out.print(paramTypes[j].getName());

77 }
78 System.out.println(");");
79 }
80 }
81
82 /**
83 * Prints all methods of a class
84 * @param cl a class
85 */
86 public static void printMethods(Class cl)
87 {
88 Method[] methods = cl.getDeclaredMethods();
89
90 for (Method m : methods)
91 {
92 Class retType = m.getReturnType();
93 String name = m.getName();
94
95 System.out.print(" ");
96 // print modifiers, return type and method name
97 String modifiers = Modifier.toString(m.getModifiers());
98 if (modifiers.length() > 0) System.out.print(modifiers
+ " ");
99 System.out.print(retType.getName() + " " + name + "(");
100
101 // print parameter types
102 Class[] paramTypes = m.getParameterTypes();
103 for (int j = 0; j < paramTypes.length; j++)
104 {
105 if (j > 0) System.out.print(", ");
106 System.out.print(paramTypes[j].getName());
107 }
108 System.out.println(");");
109 }
110 }
111
112 /**
113 * Prints all fields of a class
114 * @param cl a class

115 */
116 public static void printFields(Class cl)
117 {
118 Field[] fields = cl.getDeclaredFields();
119
120 for (Field f : fields)
121 {
122 Class type = f.getType();
123 String name = f.getName();
124 System.out.print(" ");
125 String modifiers =
Modifier.toString(f.getModifiers());
126 if (modifiers.length() > 0) System.out.print(modifiers
+ " ");
127 System.out.println(type.getName() + " " + name + ";");
128 }
129 }
130
131 /**
132 * Prints all permitted subtypes of a sealed class
133 * @param cl a class
134 */
135 public static void printPermittedSubclasses(Class cl)
136 {
137 if (cl.isSealed())
138 {
139 Class<?>[] permittedSubclasses =
cl.getPermittedSubclasses();
140 for (int i = 0; i < permittedSubclasses.length; i++)
141 {
142 if (i == 0)
143 System.out.print(" permits ");
144 else
145 System.out.print(", ");
146 System.out.print(permittedSubclasses[i].getName());
147 }
148 }
149 }
150

151 /**
152 * Prints all directly implemented interfaces of a class
153 * @param cl a class
154 */
155 public static void printInterfaces(Class cl)
156 {
157 Class<?>[] interfaces = cl.getInterfaces();
158 for (int i = 0; i < interfaces.length; i++)
159 {
160 if (i == 0)
161 System.out.print(cl.isInterface() ? " extends " : "
implements ");
162 else
163 System.out.print(", ");
164 System.out.print(interfaces[i].getName());
165 }
166 }
167 }

java.lang.Class 1.0

• Field[] getFields() 1.1
• Field[] getDeclaredFields() 1.1
getFields returns an array containing Field objects for the public
fields of this class or its superclasses; getDeclaredField returns an
array of Field objects for all fields of this class. The methods return
an array of length 0 if there are no such fields or if the Class object
represents a primitive or array type.

• Method[] getMethods() 1.1
• Method[] getDeclaredMethods() 1.1

returns an array containing Method objects: getMethods returns public
methods and includes inherited methods; getDeclaredMethods returns
all methods of this class or interface but does not include inherited
methods.

• Constructor[] getConstructors() 1.1
• Constructor[] getDeclaredConstructors() 1.1

returns an array containing Constructor objects that give you all the
public constructors (for getConstructors) or all constructors (for
getDeclaredConstructors) of the class represented by this Class
object.

• isInterface()
returns true if this Class object describes an interface. (See Chapter
6 for interfaces.)

• isEnum() 1.5
returns true if this Class object describes an enum.

• isRecord() 16
returns true if this Class object describes a record.

• RecordComponent[] getRecordComponents() 16
returns an array of RecordComponent objects that describe the record
fields, or null if this class is not a record.

• String getPackageName() 9
gets the name of the package containing this type, or the package of
the element type if this type is an array type, or "java.lang" if this
type is a primitive type.

java.lang.reflect.Field 1.1

java.lang.reflect.Method 1.1

java.lang.reflect.Constructor 1.1

• Class getDeclaringClass()

returns the Class object for the class that defines this constructor,
method, or field.

• Class[] getExceptionTypes() (in Constructor and Method classes)
returns an array of Class objects that represent the types of the
exceptions thrown by the method.

• int getModifiers()
returns an integer that describes the modifiers of this constructor,
method, or field. Use the methods in the Modifier class to analyze
the return value.

• String getName()
returns a string that is the name of the constructor, method, or field.

• Class[] getParameterTypes() (in Constructor and Method classes)
returns an array of Class objects that represent the types of the
parameters.

• Class getReturnType() (in Method class)
returns a Class object that represents the return type.

java.lang.reflect.RecordComponent 16

• String getName()
Class<?> getType()

get the name and type of this record component
• Method getAccessor()

returns the Method object for accessing this record component

java.lang.reflect.Modifier 1.1

• static String toString(int modifiers)
returns a string with the modifiers that correspond to the bits set in
modifiers.

• static boolean isAbstract(int modifiers)
• static boolean isFinal(int modifiers)
• static boolean isInterface(int modifiers)
• static boolean isNative(int modifiers)
• static boolean isPrivate(int modifiers)
• static boolean isProtected(int modifiers)
• static boolean isPublic(int modifiers)
• static boolean isStatic(int modifiers)
• static boolean isStrict(int modifiers)
• static boolean isSynchronized(int modifiers)
• static boolean isVolatile(int modifiers)

tests the bit in the modifiers value that corresponds to the modifier in
the method name.

5.9.5 Using Reflection to Analyze Objects at Runtime

In the preceding section, we saw how we can find out the names and types of
the instance fields of any object:

• Get the corresponding Class object.
• Call getDeclaredFields on the Class object.

In this section, we will go one step further and actually look at the contents
of the fields. Of course, it is easy to look at the contents of a specific field of
an object whose name and type are known when you write a program. But
reflection lets you look at fields of objects that were not known at compile
time.

The key method to achieve this is the get method in the Field class. If f is
an object of type Field (for example, one obtained from getDeclaredFields)
and obj is an object of the class of which f is a field, then f.get(obj) returns
an object whose value is the current value of the field of obj. This is all a bit
abstract, so let’s run through an example.

var harry = new Employee("Harry Hacker", 50000, 10, 1, 1989);
Class cl = harry.getClass();
 // the class object representing Employee
Field f = cl.getDeclaredField("name");
 // the name field of the Employee class
Object v = f.get(harry);
 // the value of the name field of the harry object, i.e.,
 // the String object "Harry Hacker"

Of course, you can also set the values that you can get. The call f.set(obj,
value) sets the field represented by f of the object obj to the new value.

Actually, there is a problem with this code. Since the name field is a private
field, the get and set methods will throw an IllegalAccessException. You
can only use get and set with accessible fields. The security mechanism of
Java lets you find out what fields an object has, but it won’t let you read and
write the values of those fields unless you have permission.

The default behavior of the reflection mechanism is to respect Java access
control. However, you can override access control by invoking the
setAccessible method on a Field, Method, or Constructor object. For
example:

f.setAccessible(true); // now OK to call f.get(harry)

The setAccessible method is a method of the AccessibleObject class, the
common superclass of the Field, Method, and Constructor classes. This
feature is provided for debuggers, persistent storage, and similar
mechanisms. We will use it for a generic toString method later in this
section.

The call to setAccessible throws an exception if the access is not granted.
The access can be denied by the module system (Chapter 9 of Volume II) or
a security manager (Chapter 10 of Volume II). The use of security managers
is not common, and they are deprecated since Java 17. However, as of Java
9, every program contains modules since the Java API is modularized.

For example, the sample program at the end of this section looks into the
internals of ArrayList and Integer objects. When you run it with Java 9 to
Java 16, the following ominous message appears:

WARNING: An illegal reflective access operation has occurred
WARNING: Illegal reflective access by
objectAnalyzer.ObjectAnalyzer (file:/home/cay
 /books/cj11/code/v1ch05/bin/) to field
java.util.ArrayList.serialVersionUID
WARNING: Please consider reporting this to the maintainers of
 objectAnalyzer.ObjectAnalyzer
WARNING: Use --illegal-access=warn to enable warnings of
further illegal
 reflective access operations
WARNING: All illegal access operations will be denied in a
future release

When you run the program with Java 17, an InaccessibleObjectException
exception occurs.

To keep the program running, “open” the java.util and java.lang packages
in the java.base module to the “unnamed module.” The details are in
Chapter 9 of Volume II. Here is the syntax:

java --add-opens java.base/java.util=ALL-UNNAMED \
 --add-opens java.base/java.lang=ALL-UNNAMED \
 objectAnalyzer.ObjectAnalyzerTest

 NOTE:

It is possible that future libraries will use variable handles instead of
reflection for reading and writing fields. A VarHandle is similar to a Field.
You can use it to read or write a specific field of any instance of a specific
class. However, to obtain a VarHandle, the library code needs a Lookup
object:

public Object getFieldValue(Object obj, String fieldName,
Lookup lookup)
 throws NoSuchFieldException, IllegalAccessException
{
 Class<?> cl = obj.getClass();
 Field field = cl.getDeclaredField(fieldName);
 VarHandle handle = MethodHandles.privateLookupIn(cl, lookup)
 .unreflectVarHandle(field);
 return handle.get(obj);
}

This works provided the Lookup object is generated in the module that has
the permission to access the field. Some method in the module simply calls
MethodHandles.lookup(), which yields an object encapsulating the access
rights of the caller. In this way, one module can give permission for
accessing private members to another module. The practical issue is how
those permissions can be given with a minimum of hassle.

While we can still do so, let us look at a generic toString method that works
for any class (see Listing 5.16). The generic toString method uses
getDeclaredFields to obtain all instance fields and the setAccessible
convenience method to make all fields accessible. For each field, it obtains
the name and the value. Each value is turned into a string by recursively
invoking toString.

The generic toString method needs to address a couple of complexities.
Cycles of references could cause an infinite recursion. Therefore, the
ObjectAnalyzer keeps track of objects that were already visited. Also, to
peek inside arrays, you need a different approach. You’ll learn about the
details in the next section.

You can use this toString method to peek inside any object. For example,
the call

var squares = new ArrayList<Integer>();
for (int i = 1; i <= 5; i++) squares.add(i * i);
System.out.println(new ObjectAnalyzer().toString(squares));

yields the printout

java.util.ArrayList[elementData=class java.lang.Object[]
{java.lang.Integer[value=1][][],
java.lang.Integer[value=4][][],java.lang.Integer[value=9][][],
 java.lang.Integer[value=16][][],
java.lang.Integer[value=25][]
[],null,null,null,null,null},size=5][modCount=5][][]

You can use this generic toString method to implement the toString
methods of your own classes, like this:

public String toString()
{
 return new ObjectAnalyzer().toString(this);
}

This is a hassle-free and undoubtedly useful method for supplying a
universal toString method. However, before you get too excited about never
having to implement toString again, remember that the days of uncontrolled
access to internals are numbered.

Listing 5.16 objectAnalyzer/ObjectAnalyzerTest.java

 1 package objectAnalyzer;
 2
 3 import java.util.*;
 4
 5 /**

 6 * This program uses reflection to spy on objects.
 7 * @version 1.13 2018-03-16
 8 * @author Cay Horstmann
 9 */
10 public class ObjectAnalyzerTest
11 {
12 public static void main(String[] args)
13 throws ReflectiveOperationException
14 {
15 var squares = new ArrayList<Integer>();
16 for (int i = 1; i <= 5; i++)
17 squares.add(i * i);
18 System.out.println(new
ObjectAnalyzer().toString(squares));
19 }
20 }

Listing 5.17 objectAnalyzer/ObjectAnalyzer.java

 1 package objectAnalyzer;
 2
 3 import java.lang.reflect.AccessibleObject;
 4 import java.lang.reflect.Array;
 5 import java.lang.reflect.Field;
 6 import java.lang.reflect.Modifier;
 7 import java.util.ArrayList;
 8
 9 public class ObjectAnalyzer
10 {
11 private ArrayList<Object> visited = new ArrayList<>();
12
13 /**
14 * Converts an object to a string representation that lists
all fields.
15 * @param obj an object
16 * @return a string with the object's class name and all
field names and values
17 */

18 public String toString(Object obj)
19 throws ReflectiveOperationException
20 {
21 if (obj == null) return "null";
22 if (visited.contains(obj)) return "...";
23 visited.add(obj);
24 Class cl = obj.getClass();
25 if (cl == String.class) return (String) obj;
26 if (cl.isArray())
27 {
28 String r = cl.getComponentType() + "[]{";
29 for (int i = 0; i < Array.getLength(obj); i++)
30 {
31 if (i > 0) r += ",";
32 Object val = Array.get(obj, i);
33 if (cl.getComponentType().isPrimitive()) r += val;
34 else r += toString(val);
35 }
36 return r + "}";
37 }
38
39 String r = cl.getName();
40 // inspect the fields of this class and all superclasses
41 do
42 {
43 r += "[";
44 Field[] fields = cl.getDeclaredFields();
45 AccessibleObject.setAccessible(fields, true);
46 // get the names and values of all fields
47 for (Field f : fields)
48 {
49 if (!Modifier.isStatic(f.getModifiers()))
50 {
51 if (!r.endsWith("[")) r += ",";
52 r += f.getName() + "=";
53 Class t = f.getType();
54 Object val = f.get(obj);
55 if (t.isPrimitive()) r += val;
56 else r += toString(val);

57 }
58 }
59 r += "]";
60 cl = cl.getSuperclass();
61 }
62 while (cl != null);
63
64 return r;
65 }
66 }

java.lang.reflect.AccessibleObject 1.2

• void setAccessible(boolean flag)
sets or clears the accessibility flag for this accessible object, or
throws an IllegalAccessException if the access is denied.

• boolean trySetAccessible() 9
sets the accessibility flag for this accessible object, or returns false if
the access is denied.

• boolean canAccess(Object obj) 9
checks if the caller can access obj through this field, method, or
constructor object. Pass null for a static field or method, or for a
constructor.

• static void setAccessible(AccessibleObject[] array, boolean

flag)

is a convenience method to set the accessibility flag for an array of
objects.

java.lang.Class 1.1

• Field getField(String name)
• Field[] getFields()

gets the public field with the given name, or an array of all fields.
• Field getDeclaredField(String name)
• Field[] getDeclaredFields()

gets the field that is declared in this class with the given name, or an
array of all fields.

java.lang.reflect.Field 1.1

• Object get(Object obj)
gets the value of the field described by this Field object in the object
obj.

• void set(Object obj, Object newValue)
sets the field described by this Field object in the object obj to a new
value.

5.9.6 Using Reflection to Write Generic Array Code

The Array class in the java.lang.reflect package allows you to create
arrays dynamically. This is used, for example, in the implementation of the
copyOf method in the Arrays class. Recall how this method can be used to
grow an array that has become full.

var a = new Employee[100];
. . .
// array is full
a = Arrays.copyOf(a, 2 * a.length);

How can one write such a generic method? It helps that an Employee[] array
can be converted to an Object[] array. That sounds promising. Here is a first
attempt:

public static Object[] badCopyOf(Object[] a, int newLength) //
not useful
{
 var newArray = new Object[newLength];
 System.arraycopy(a, 0, newArray, 0, Math.min(a.length,
newLength));
 return newArray;
}

However, there is a problem with actually using the resulting array. The type
of array that this code returns is an array of objects (Object[]) because we
created the array using the line of code

new Object[newLength]

An array of objects cannot be cast to an array of employees (Employee[]).
The virtual machine would generate a ClassCastException at runtime. The
point is that, as mentioned earlier, a Java array remembers the type of its
entries—that is, the element type used in the new expression that created it. It
is legal to cast an Employee[] temporarily to an Object[] array and then cast
it back, but an array that started its life as an Object[] array can never be
cast into an Employee[] array. To write this kind of generic array code, we
need to be able to make a new array of the same type as the original array.
For this, we need the methods of the Array class in the java.lang.reflect
package. The key is the static newInstance method of the Array class that
constructs a new array. You must supply the type for the entries and the
desired length as parameters to this method.

Object newArray = Array.newInstance(componentType, newLength);

To actually carry this out, we need to get the length and the component type
of the new array.

We obtain the length by calling Array.getLength(a). The static getLength
method of the Array class returns the length of an array. To get the
component type of the new array:

1. First, get the class object of a.
2. Confirm that it is indeed an array.
3. Use the getComponentType method of the Class class (which is defined

only for class objects that represent arrays) to find the right type for the
array.

4. Conversely, for any Class object representing a class C, the arrayType
method yields the Class object representing C[].

Why is getLength a method of Array but getComponentType a method of
Class? I don’t know—the distribution of the reflection methods seems a bit
ad hoc at times.

Here’s the code:

public static Object goodCopyOf(Object a, int newLength)
{
 Class cl = a.getClass();
 if (!cl.isArray()) return null;
 Class componentType = cl.getComponentType();
 int length = Array.getLength(a);
 Object newArray = Array.newInstance(componentType,
newLength);
 System.arraycopy(a, 0, newArray, 0, Math.min(length,
newLength));
 return newArray;
}

Note that this copyOf method can be used to grow arrays of any type, not just
arrays of objects.

int[] a = { 1, 2, 3, 4, 5 };
a = (int[]) goodCopyOf(a, 10);

To make this possible, the parameter of goodCopyOf is declared to be of type
Object, not an array of objects (Object[]). The integer array type int[] can
be converted to an Object, but not to an array of objects!

Listing 5.18 shows both methods in action. Note that the cast of the return
value of badcopyOf will throw an exception.

Listing 5.18 arrays/CopyOfTest.java

 1 package arrays;
 2
 3 import java.lang.reflect.*;
 4 import java.util.*;
 5
 6 /**
 7 * This program demonstrates the use of reflection for
manipulating arrays.
 8 * @version 1.2 2012-05-04
 9 * @author Cay Horstmann
10 */
11 public class CopyOfTest
12 {
13 public static void main(String[] args)
14 {
15 int[] a = { 1, 2, 3 };
16 a = (int[]) goodCopyOf(a, 10);
17 System.out.println(Arrays.toString(a));
18
19 String[] b = { "Tom", "Dick", "Harry" };
20 b = (String[]) goodCopyOf(b, 10);
21 System.out.println(Arrays.toString(b));
22
23 System.out.println("The following call will generate an
exception.");
24 b = (String[]) badCopyOf(b, 10);
25 }
26
27 /**
28 * This method attempts to grow an array by allocating a new

array and
29 * copying all elements.
30 * @param a the array to grow
31 * @param newLength the new length
32 * @return a larger array that contains all elements of a.
However, the returned
33 * array has type Object[], not the same type as a
34 */
35 public static Object[] badCopyOf(Object[] a, int newLength)
// not useful
36 {
37 var newArray = new Object[newLength];
38 System.arraycopy(a, 0, newArray, 0, Math.min(a.length,
newLength));
39 return newArray;
40 }
41
42 /**
43 * This method grows an array by allocating a new array of the
same type and
44 * copying all elements.
45 * @param a the array to grow. This can be an object array or
a primitive
46 * type array
47 * @return a larger array that contains all elements of a.
48 */
49 public static Object goodCopyOf(Object a, int newLength)
50 {
51 Class cl = a.getClass();
52 if (!cl.isArray()) return null;
53 Class componentType = cl.getComponentType();
54 int length = Array.getLength(a);
55 Object newArray = Array.newInstance(componentType,
newLength);
56 System.arraycopy(a, 0, newArray, 0, Math.min(length,
newLength));
57 return newArray;
58 }
59 }

java.lang.Class 1.1

• boolean isArray()
returns true if this object represents an array type.

• Class<?> getComponentType()
Class<?> componentType() 12
returns the Class describing the component type if this object
represents an array type, or null otherwise.

• Class<?> arrayType() 12
returns the Class describing the array type whose component type is
represented by this object.

java.lang.reflect.Array 1.1

• static Object get(Object array, int index)
• static xxx getXxx(Object array, int index)

(xxx is one of the primitive types boolean, byte, char, double, float,
int, long, or short.) These methods return the value of the given
array that is stored at the given index.

• static void set(Object array, int index, Object newValue)
• static setXxx(Object array, int index, xxx newValue)

(xxx is one of the primitive types boolean, byte, char, double, float,
int, long, or short.) These methods store a new value into the given
array at the given index.

• static int getLength(Object array)
returns the length of the given array.

• static Object newInstance(Class componentType, int length)

• static Object newInstance(Class componentType, int[] lengths)
returns a new array of the given component type with the given
dimensions.

5.9.7 Invoking Arbitrary Methods and Constructors

In C and C++, you can execute an arbitrary function through a function
pointer. On the surface, Java does not have method pointers—that is, ways
of giving the location of a method to another method, so that the second
method can invoke it later. In fact, the designers of Java have said that
method pointers are dangerous and error-prone, and that Java interfaces and
lambda expressions (discussed in the next chapter) are a superior solution.
However, the reflection mechanism allows you to call arbitrary methods.

Recall that you can inspect a field of an object with the get method of the
Field class. Similarly, the Method class has an invoke method that lets you
call the method that is wrapped in the current Method object. The signature
for the invoke method is

Object invoke(Object obj, Object... args)

The first parameter is the implicit parameter, and the remaining objects
provide the explicit parameters.

For a static method, the first parameter is ignored—you can set it to null.

For example, if m1 represents the getName method of the Employee class, the
following code shows how you can call it:

String n = (String) m1.invoke(harry);

If the return type is a primitive type, the invoke method will return the
wrapper type instead. For example, suppose that m2 represents the getSalary
method of the Employee class. Then, the returned object is actually a Double,

and you must cast it accordingly. Use automatic unboxing to turn it into a
double:

double s = (Double) m2.invoke(harry);

How do you obtain a Method object? You can, of course, call
getDeclaredMethods and search through the returned array of Method objects
until you find the method you want. Or, you can call the getMethod method
of the Class class. This is similar to the getField method that takes a string
with the field name and returns a Field object. However, there may be
several methods with the same name, so you need to be careful that you get
the right one. For that reason, you must also supply the parameter types of
the desired method. The signature of getMethod is

Method getMethod(String name, Class... parameterTypes)

For example, here is how you can get method pointers to the getName and
raiseSalary methods of the Employee class:

Method m1 = Employee.class.getMethod("getName");
Method m2 = Employee.class.getMethod("raiseSalary",
double.class);

Use a similar approach for invoking arbitrary constructors. Supply the
constructor’s parameter types to the Class.getConstructor method, and
supply the parameter values to the Constructor.newInstance method:

Class cl = Random.class; // or any other class with a
constructor that
 // accepts a long parameter
Constructor cons = cl.getConstructor(long.class);
Object obj = cons.newInstance(42L);

 NOTE:
The Method and Constructor classes extend the Executable class. As of Java
17, the Executable class is sealed, permitting only Method and Constructor
as subclasses.

Now that you have seen the rules for using Method objects, let’s put them to
work. Listing 5.19 is a program that prints a table of values for a
mathematical function such as Math.sqrt or Math.sin. The printout looks
like this:

public static native double java.lang.Math.sqrt(double)
 1.0000 | 1.0000
 2.0000 | 1.4142
 3.0000 | 1.7321
 4.0000 | 2.0000
 5.0000 | 2.2361
 6.0000 | 2.4495
 7.0000 | 2.6458
 8.0000 | 2.8284
 9.0000 | 3.0000
 10.0000 | 3.1623

The code for printing a table is, of course, independent of the actual function
that is being tabulated.

double dx = (to - from) / (n - 1);
for (double x = from; x <= to; x += dx)
{
 double y = (Double) f.invoke(null, x);
 System.out.printf("%10.4f | %10.4f%n", x, y);
}

Here, f is an object of type Method. The first parameter of invoke is null
because we are calling a static method.

To tabulate the Math.sqrt function, we set f to

Math.class.getMethod("sqrt", double.class)

That is the method of the Math class that has the name sqrt and a single
parameter of type double.

Listing 5.19 shows the complete code of the generic tabulator and a couple
of test runs.

Listing 5.19 methods/MethodTableTest.java

 1 package methods;
 2
 3 import java.lang.reflect.*;
 4
 5 /**
 6 * This program shows how to invoke methods through
reflection.
 7 * @version 1.2 2012-05-04
 8 * @author Cay Horstmann
 9 */
10 public class MethodTableTest
11 {
12 public static void main(String[] args)
13 throws ReflectiveOperationException
14 {
15 // get method pointers to the square and sqrt methods
16 Method square =
MethodTableTest.class.getMethod("square", double.class);
17 Method sqrt = Math.class.getMethod("sqrt",
double.class);
18
19 // print tables of x- and y-values
20 printTable(1, 10, 10, square);
21 printTable(1, 10, 10, sqrt);
22 }
23

24 /**
25 * Returns the square of a number
26 * @param x a number
27 * @return x squared
28 */
29 public static double square(double x)
30 {
31 return x * x;
32 }
33
34 /**
35 * Prints a table with x- and y-values for a method
36 * @param from the lower bound for the x-values
37 * @param to the upper bound for the x-values
38 * @param n the number of rows in the table
39 * @param f a method with a double parameter and double
return value
40 */
41 public static void printTable(double from, double to, int n,
Method f)
42 throws ReflectiveOperationException
43 {
44 // print out the method as table header
45 System.out.println(f);
46
47 double dx = (to - from) / (n - 1);
48
49 for (double x = from; x <= to; x += dx)
50 {
51 double y = (Double) f.invoke(null, x);
52 System.out.printf("%10.4f | %10.4f%n", x, y);
53 }
54 }
55 }

As this example clearly shows, you can do anything with Method objects that
you can do with function pointers in C (or delegates in C#). Just as in C, this
style of programming is usually quite inconvenient, and always error-prone.

What happens if you invoke a method with the wrong parameters? The
invoke method throws an exception.

Also, the parameters and return values of invoke are necessarily of type
Object. That means you must cast back and forth a lot. As a result, the
compiler is deprived of the chance to check your code, so errors surface only
during testing, when they are more tedious to find and fix. Moreover, code
that uses reflection to get at method pointers is significantly slower than code
that simply calls methods directly.

For that reason, I suggest that you use Method objects in your own programs
only when absolutely necessary. Using interfaces and, as of Java 8, lambda
expressions (the subject of the next chapter) is almost always a better idea.
In particular, I echo the developers of Java and suggest not using Method
objects for callback functions. Using interfaces for the callbacks leads to
code that runs faster and is a lot more maintainable.

java.lang.reflect.Method 1.1

• public Object invoke(Object implicitParameter, Object[]

explicitParameters)

invokes the method described by this object, passing the given
parameters and returning the value that the method returns. For static
methods, pass null as the implicit parameter. Pass primitive type
values by using wrappers. Primitive type return values must be
unwrapped.

5.10 Design Hints for Inheritance

I want to end this chapter with some hints that I have found useful when
using inheritance.

1. Place common operations and fields in the superclass.
This is why we put the name field into the Person class instead of
replicating it in the Employee and Student classes.

2. Don’t use protected fields.
Some programmers think it is a good idea to define most instance fields
as protected, “just in case,” so that subclasses can access these fields if
they need to. However, the protected mechanism doesn’t give much
protection, for two reasons. First, the set of subclasses is unbounded—
anyone can form a subclass of your classes and then write code that
directly accesses protected instance fields, thereby breaking
encapsulation. And second, in Java, all classes in the same package have
access to protected fields, whether or not they are subclasses.
However, protected methods can be useful to indicate methods that are
not ready for general use and should be redefined in subclasses.

3. Use inheritance to model the “is–a” relationship.
Inheritance is a handy code-saver, but sometimes people overuse it. For
example, suppose we need a Contractor class. Contractors have names
and hire dates, but they do not have salaries. Instead, they are paid by the
hour, and they do not stay around long enough to get a raise. There is the
temptation to form a subclass Contractor from Employee and add an
hourlyWage field.

public class Contractor extends Employee
{
 private double hourlyWage;
 . . .
}

This is not a good idea, however, because now each contractor object has
both a salary and hourly wage field. It will cause you no end of grief
when you implement methods for printing paychecks or tax forms. You
will end up writing more code than you would have written by not
inheriting in the first place.
The contractor-employee relationship fails the “is–a” test. A contractor is
not a special case of an employee.

4. Don’t use inheritance unless all inherited methods make sense.
Suppose we want to write a Holiday class. Surely every holiday is a day,
and days can be expressed as instances of the GregorianCalendar class,
so we can use inheritance.

class Holiday extends GregorianCalendar { . . . }

Unfortunately, the set of holidays is not closed under the inherited
operations. One of the public methods of GregorianCalendar is add. And
add can turn holidays into nonholidays:

Holiday christmas;
christmas.add(Calendar.DAY_OF_MONTH, 12);

Therefore, inheritance is not appropriate in this example.
Note that this problem does not arise if you extend an immutable class.
Suppose you have an immutable date class, similar to LocalDate but not
final. If you form a Holiday subclass, there is no method that can turn a
holiday into a nonholiday.

5. Don’t change the expected behavior when you override a method.
The substitution principle applies not just to syntax but, more
importantly, to behavior. When you override a method, you should not
unreasonably change its behavior. The compiler can’t help you—it
cannot check whether your redefinitions make sense. For example, you
can “fix” the issue of the add method in the Holiday class by redefining
add, perhaps to do nothing, or to throw an exception, or to move on to
the next holiday.
However, such a fix violates the substitution principle. The sequence of
statements

int d1 = x.get(Calendar.DAY_OF_MONTH);
x.add(Calendar.DAY_OF_MONTH, 1);
int d2 = x.get(Calendar.DAY_OF_MONTH);
System.out.println(d2 - d1);

should have the expected behavior, no matter whether x is of type
GregorianCalendar or Holiday.
Of course, therein lies the rub. Reasonable and unreasonable people can
argue at length about what the expected behavior is. For example, some
authors argue that the substitution principle requires Manager.equals to
ignore the bonus field because Employee.equals ignores it. These
discussions are pointless if they occur in a vacuum. Ultimately, what

matters is that you do not circumvent the intent of the original design
when you override methods in subclasses.

6. Use polymorphism, not type information.
Whenever you find code of the form

if (x is of type 1)
 $$$action1(x);
else if (x is of type 2)
 $$$action2(x);

think polymorphism.
Do action1 and action2 represent a common concept? If so, make the
concept a method of a common superclass or interface of both types.
Then, you can simply call

x.action();

and have the dynamic dispatch mechanism inherent in polymorphism
launch the correct action.
Code that uses polymorphic methods or interface implementations is
much easier to maintain and extend than code using multiple type tests.

7. Don’t overuse reflection.
The reflection mechanism lets you write programs with amazing
generality, by detecting fields and methods at runtime. This capability
can be extremely useful for systems programming, but it is usually not
appropriate in applications. Reflection is fragile—with it, the compiler
cannot help you find programming errors. Any errors are found at
runtime and result in exceptions.

You have now seen how Java supports the fundamentals of object-oriented
programming: classes, inheritance, and polymorphism. In the next chapter, I
will tackle two advanced topics that are very important for using Java
effectively: interfaces and lambda expressions.

Chapter 6. Interfaces, Lambda Expressions, and
Inner Classes

In this chapter

• 6.1 Interfaces
• 6.2 Lambda Expressions
• 6.3 Inner Classes
• 6.4 Service Loaders
• 6.5 Proxies

You have now learned about classes and inheritance, the key concepts of
object-oriented programming in Java. This chapter shows you several
advanced techniques that are commonly used. Despite their less obvious
nature, you will need to master them to complete your Java tool chest.

The first technique, called interfaces, is a way of describing what classes
should do, without specifying how they should do it. A class can implement
one or more interfaces. You can then use objects of these implementing
classes whenever conformance to the interface is required. After discussing
interfaces, we move on to lambda expressions, a concise way to create
blocks of code that can be executed at a later point in time. Using lambda
expressions, you can express code that uses callbacks or variable behavior in
an elegant and concise fashion.

We then discuss the mechanism of inner classes. Inner classes are
technically somewhat complex—they are defined inside other classes, and
their methods can access the fields of the surrounding class. Inner classes are
useful when you design collections of cooperating classes.

This chapter concludes with a discussion of proxies, objects that implement
arbitrary interfaces. A proxy is a very specialized construct that is useful for
building system-level tools. You can safely skip that section on first reading.

6.1 Interfaces

In the following sections, you will learn what Java interfaces are and how to
use them. You will also find out how interfaces have been made more
powerful in recent versions of Java.

6.1.1 The Interface Concept

In the Java programming language, an interface is not a class but a set of
requirements for the classes that want to conform to the interface.

Typically, the supplier of some service states: “If your class conforms to a
particular interface, then I’ll perform the service.” Let’s look at a concrete
example. The sort method of the Arrays class promises to sort an array of
objects, but under one condition: The objects must belong to classes that
implement the Comparable interface.

Here is what the Comparable interface looks like:

public interface Comparable
{
 int compareTo(Object other);
}

In the interface, the compareTo method is abstract—it has no
implementation. A class that implements the Comparable interface needs to
have a compareTo method, and the method must take an Object parameter
and return an integer. Otherwise, the class is also abstract—that is, you
cannot construct any objects.

 NOTE:

As of Java 5, the Comparable interface has been enhanced to be a generic
type.

public interface Comparable<T>
{
 int compareTo(T other); // parameter has type T
}

For example, a class that implements Comparable<Employee> must supply a
method

int compareTo(Employee other)

You can still use the “raw” Comparable type without a type parameter. Then
the compareTo method has a parameter of type Object, and you have to
manually cast that parameter of the compareTo method to the desired type. I
will do just that for a little while so that you don’t have to worry about two
new concepts at the same time.

All methods of an interface are automatically public. For that reason, it is
not necessary to supply the keyword public when declaring a method in an
interface.

Of course, there is an additional requirement that the interface cannot spell
out: When calling x.compareTo(y), the compareTo method must actually be
able to compare the two objects and return an indication whether x or y is
larger. The method is supposed to return a negative number if x is smaller
than y, zero if they are equal, and a positive number otherwise.

This particular interface has a single method. Some interfaces have multiple
methods. As you will see later, interfaces can also define constants. What is
more important, however, is what interfaces cannot supply. Interfaces never
have instance fields. Before Java 8, all methods in an interface were abstract.
As you will see in Section 6.1.4, “Static and Private Methods,” on p. 322 and
Section 6.1.5, “Default Methods,” on p. 323, it is now possible to have other

methods in interfaces. Of course, those methods cannot refer to instance
fields—interfaces don’t have any.

Now, suppose we want to use the sort method of the Arrays class to sort an
array of Employee objects. Then the Employee class must implement the
Comparable interface.

To make a class implement an interface, you carry out two steps:

1. You declare that your class intends to implement the given interface.
2. You supply definitions for all methods in the interface.

To declare that a class implements an interface, use the implements keyword:

class Employee implements Comparable

Of course, now the Employee class needs to supply the compareTo method.
Let’s suppose that we want to compare employees by their salary. Here is an
implementation of the compareTo method:

public int compareTo(Object otherObject)
{
 Employee other = (Employee) otherObject;
 return Double.compare(salary, other.salary);
}

Here, we use the static Double.compare method that returns a negative if the
first argument is less than the second argument, 0 if they are equal, and a
positive value otherwise.

 CAUTION:
In the interface declaration, the compareTo method was not declared public
because all methods in an interface are automatically public. However,
when implementing the interface, you must declare the method as public.

Otherwise, the compiler assumes that the method has package access—the
default for a class. The compiler then complains that you’re trying to supply
a more restrictive access privilege.

We can do a little better by supplying a type parameter for the generic
Comparable interface:

class Employee implements Comparable<Employee>
{
 public int compareTo(Employee other)
 {
 return Double.compare(salary, other.salary);
 }
 . . .
}

Note that the unsightly cast of the Object parameter has gone away.

 TIP:
The compareTo method of the Comparable interface returns an integer. If the
objects are not equal, it does not matter what negative or positive value you
return. This flexibility can be useful when you are comparing integer fields.
For example, suppose each employee has a unique integer id and you want
to sort by the employee ID number. Then you can simply return id -

other.id. That value will be some negative value if the first ID number is
less than the other, 0 if they are the same ID, and some positive value
otherwise. However, there is one caveat: The range of the integers must be
small enough so that the subtraction does not overflow. If you know that the
IDs are not negative or that their absolute value is at most
(Integer.MAX_VALUE - 1) / 2, you are safe. Otherwise, call the static
Integer.compare method.

Of course, the subtraction trick doesn’t work for floating-point numbers.
The difference salary - other.salary can round to 0 if the salaries are

close together but not identical. The call Double.compare(x, y) simply
returns -1 if x < y or 1 if x > y.

 NOTE:
The documentation of the Comparable interface suggests that the compareTo
method should be compatible with the equals method. That is,
x.compareTo(y) should be zero exactly when x.equals(y). Most classes in
the Java API that implement Comparable follow this advice. A notable
exception is BigDecimal. Consider x = new BigDecimal("1.0") and y = new
BigDecimal("1.00"). Then x.equals(y) is false because the numbers differ
in precision. But x.compareTo(y) is zero. Ideally, it shouldn’t be, but there
was no obvious way of deciding which one should come first.

Now you saw what a class must do to avail itself of the sorting service—it
must implement a compareTo method. That’s eminently reasonable. There
needs to be some way for the sort method to compare objects. But why
can’t the Employee class simply provide a compareTo method without
implementing the Comparable interface?

The reason for interfaces is that the Java programming language is strongly
typed. When making a method call, the compiler needs to be able to check
that the method actually exists. Somewhere in the sort method will be
statements like this:

if (a[i].compareTo(a[j]) > 0)
{
 // rearrange a[i] and a[j]
 . . .
}

The compiler must know that a[i] actually has a compareTo method. If a is
an array of Comparable objects, then the existence of the method is assured

because every class that implements the Comparable interface must supply
the method.

 NOTE:
You would expect that the sort method in the Arrays class is defined to
accept a Comparable[] array so that the compiler can complain if anyone
ever calls sort with an array whose element type doesn’t implement the
Comparable interface. Sadly, that is not the case. Instead, the sort method
accepts an Object[] array and uses a clumsy cast:

// approach used in the standard library--not recommended
if (((Comparable) a[i]).compareTo(a[j]) > 0)
{
 // rearrange a[i] and a[j]
 . . .
}

If a[i] does not belong to a class that implements the Comparable interface,
the virtual machine throws an exception.

Listing 6.1 presents the full code for sorting an array of instances of the class
Employee (Listing 6.2).

Listing 6.1 interfaces/EmployeeSortTest.java

 1 package interfaces;
 2
 3 import java.util.*;
 4
 5 /**
 6 * This program demonstrates the use of the Comparable
interface.
 7 * @version 1.30 2004-02-27
 8 * @author Cay Horstmann

 9 */
10 public class EmployeeSortTest
11 {
12 public static void main(String[] args)
13 {
14 var staff = new Employee[3];
15
16 staff[0] = new Employee("Harry Hacker", 35000);
17 staff[1] = new Employee("Carl Cracker", 75000);
18 staff[2] = new Employee("Tony Tester", 38000);
19
20 Arrays.sort(staff);
21
22 // print out information about all Employee objects
23 for (Employee e : staff)
24 System.out.println("name=" + e.getName() + ",salary="
+ e.getSalary());
25 }
26 }

Listing 6.2 interfaces/Employee.java

 1 package interfaces;
 2
 3 public class Employee implements Comparable<Employee>
 4 {
 5 private String name;
 6 private double salary;
 7
 8 public Employee(String name, double salary)
 9 {
10 this.name = name;
11 this.salary = salary;
12 }
13
14 public String getName()
15 {
16 return name;

17 }
18
19 public double getSalary()
20 {
21 return salary;
22 }
23
24 public void raiseSalary(double byPercent)
25 {
26 double raise = salary * byPercent / 100;
27 salary += raise;
28 }
29
30 /**
31 * Compares employees by salary
32 * @param other another Employee object
33 * @return a negative value if this employee has a lower
salary than
34 * otherObject, 0 if the salaries are the same, a positive
value otherwise
35 */
36 public int compareTo(Employee other)
37 {
38 return Double.compare(salary, other.salary);
39 }
40 }

java.lang.Comparable<T> 1.0
• int compareTo(T other)

compares this object with other and returns a negative integer if this
object is less than other, zero if they are equal, and a positive integer
otherwise.

java.util.Arrays 1.2

• static void sort(Object[] a)
sorts the elements in the array a. All elements in the array must
belong to classes that implement the Comparable interface, and they
must all be comparable to each other.

java.lang.Integer 1.0

• static int compare(int x, int y) 7
returns a negative integer if x < y, zero if x and y are equal, and a
positive integer otherwise.

java.lang.Double 1.0

• static int compare(double x, double y) 1.4
returns a negative integer if x < y, zero if x and y are equal, and a
positive integer otherwise.

 NOTE:
According to the language standard: “The implementor must ensure
sgn(x.compareTo(y)) = -sgn(y.compareTo(x)) for all x and y. (This implies
that x.compareTo(y) must throw an exception if y.compareTo(x) throws an
exception.)” Here, sgn is the sign of a number: sgn(n) is –1 if n is negative,
0 if n equals 0, and 1 if n is positive. In plain English, if you flip the
parameters of compareTo, the sign (but not necessarily the actual value) of
the result must also flip.

As with the equals method, problems can arise when inheritance comes into
play.

Since Manager extends Employee, it implements Comparable<Employee> and
not Comparable<Manager>. If Manager chooses to override compareTo, it must
be prepared to compare managers to employees. It can’t simply cast an
employee to a manager:

class Manager extends Employee
{
 public int compareTo(Employee other)
 {
 Manager otherManager = (Manager) other; // NO
 . . .
 }
 . . .
}

That violates the “antisymmetry” rule. If x is an Employee and y is a Manager,
then the call x.compareTo(y) doesn’t throw an exception—it simply
compares x and y as employees. But the reverse, y.compareTo(x), throws a
ClassCastException.

This is the same situation as with the equals method discussed in Chapter 5,
and the remedy is the same. There are two distinct scenarios.

If subclasses have different notions of comparison, then you should outlaw
comparison of objects that belong to different classes. Each compareTo
method should start out with the test

if (getClass() != other.getClass()) throw new
ClassCastException();

If there is a common algorithm for comparing subclass objects, simply
provide a single compareTo method in the superclass and declare it as final.

For example, suppose you want managers to be better than regular
employees, regardless of salary. What about other subclasses such as
Executive and Secretary? If you need to establish a pecking order, supply a
method such as rank in the Employee class. Have each subclass override

rank, and implement a single compareTo method that takes the rank values
into account.

6.1.2 Properties of Interfaces

Interfaces are not classes. In particular, you can never use the new operator to
instantiate an interface:

x = new Comparable(. . .); // ERROR

However, even though you can’t construct interface objects, you can still
declare interface variables.

Comparable x; // OK

An interface variable must refer to an object of a class that implements the
interface:

x = new Employee(. . .); // OK provided Employee implements
Comparable

Next, just as you use instanceof to check whether an object is of a specific
class, you can use instanceof to check whether an object implements an
interface:

if (anObject instanceof Comparable) { . . . }

Just as you can build hierarchies of classes, you can extend interfaces. This
allows for multiple chains of interfaces that go from a greater degree of
generality to a greater degree of specialization. For example, suppose you
had an interface called Moveable.

public interface Moveable
{

 void move(double x, double y);
}

Then, you could imagine an interface called Powered that extends it:

public interface Powered extends Moveable
{
 double milesPerGallon();
}

Although you cannot put instance fields in an interface, you can supply
constants in them. For example:

public interface Powered extends Moveable
{
 double milesPerGallon();
 double SPEED_LIMIT = 95; // a public static final constant
}

Just as methods in an interface are automatically public, fields are always
public static final.

 NOTE:
It is legal to tag interface methods as public, and fields as public static
final. Some programmers do that, either out of habit or for greater clarity.
However, the Java Language Specification recommends that the redundant
keywords not be supplied, and I follow that recommendation.

While each class can have only one superclass, classes can implement
multiple interfaces. This gives you the maximum amount of flexibility in
defining a class’s behavior. For example, the Java programming language
has an important interface built into it, called Cloneable. (This interface is
discussed in detail in Section 6.1.9, “Object Cloning,” on p. 330.) If your

class implements Cloneable, the clone method in the Object class will make
an exact copy of your class’s objects. If you want both cloneability and
comparability, simply implement both interfaces. Use commas to separate
the interfaces that you want to implement:

class Employee implements Cloneable, Comparable

 NOTE:
Records and enumeration classes cannot extend other classes (since they
implicitly extend the Record and Enum class). However, they can implement
interfaces.

 NOTE:
Interfaces can be sealed. As with sealed classes, the direct subtypes (which
can be classes or interfaces) must be declared in a permits clause or be
located in the same source file.

6.1.3 Interfaces and Abstract Classes

If you read the section about abstract classes in Chapter 5, you may wonder
why the designers of the Java programming language bothered with
introducing the concept of interfaces. Why can’t Comparable simply be an
abstract class:

abstract class Comparable // why not?
{
 public abstract int compareTo(Object other);
}

The Employee class would then simply extend this abstract class and supply
the compareTo method:

class Employee extends Comparable // why not?
{
 public int compareTo(Object other) { . . . }
}

There is, unfortunately, a major problem with using an abstract base class to
express a generic property. A class can only extend a single class. Suppose
the Employee class already extends a different class, say, Person. Then it
can’t extend a second class.

class Employee extends Person, Comparable // ERROR

But each class can implement as many interfaces as it likes:

class Employee extends Person implements Comparable // OK

Other programming languages, in particular C++, allow a class to have more
than one superclass. This feature is called multiple inheritance. The
designers of Java chose not to support multiple inheritance, because it makes
the language either very complex (as in C++) or less efficient (as in Eiffel).

Instead, interfaces afford most of the benefits of multiple inheritance while
avoiding the complexities and inefficiencies.

 C++ NOTE:
C++ has multiple inheritance and all the complications that come with it,
such as virtual base classes, dominance rules, and transverse pointer casts.
Few C++ programmers use multiple inheritance, and some say it should
never be used. Other programmers recommend using multiple inheritance
only for the “mix-in” style of inheritance. In the mix-in style, a primary base
class describes the parent object, and additional base classes (the so-called

mix-ins) may supply auxiliary characteristics. That style is similar to a Java
class with a single superclass and additional interfaces.

 TIP:
You have seen the CharSequence interface in chapter 3. Both String and
StringBuilder (as well as a few more esoteric string-like classes) implement
this interface. The interface contains methods that are common to all classes
that manage sequences of characters. A common interface encourages
programmers to write methods that use the CharSequence interface. Those
methods work with instances of String, StringBuilder, and the other string-
like classes.

Sadly, the CharSequence interface is rather paltry. You can get the length,
iterate over the code points or code units, extract subsequences, and
lexicographically compare two sequences. Java 17 adds an isEmpty method.

If you process strings, and those operations suffice for your tasks, accept
CharSequence instances instead of strings.

6.1.4 Static and Private Methods

As of Java 8, you are allowed to add static methods to interfaces. There was
never a technical reason why this should be outlawed. It simply seemed to be
against the spirit of interfaces as abstract specifications.

Up to now, it has been common to place static methods in companion
classes. In the standard library, you’ll find pairs of interfaces and utility
classes such as Collection/Collections or Path/Paths.

You can construct a path to a file or directory from a URI, or from a
sequence of strings, such as Paths.get("jdk-17", "conf", "security"). In
Java 11, equivalent methods are provided in the Path interface:

public interface Path
{
 public static Path of(URI uri) { . . . }
 public static Path of(String first, String... more) { . . . }
 . . .
}

Then the Paths class is no longer necessary.

Similarly, when you implement your own interfaces, there is no longer a
reason to provide a separate companion class for utility methods.

As of Java 9, methods in an interface can be private. A private method can
be static or an instance method. Since private methods can only be used in
the methods of the interface itself, their use is limited to being helper
methods for the other methods of the interface.

6.1.5 Default Methods

You can supply a default implementation for any interface method. You must
tag such a method with the default modifier.

public interface Comparable<T>
{
 default int compareTo(T other) { return 0; }
 // by default, all elements are the same
}

Of course, that is not very useful since every realistic implementation of
Comparable would override this method. But there are other situations where
default methods can be useful. For example, in Chapter 9 you will see an
Iterator interface for visiting elements in a data structure. It declares a
remove method as follows:

public interface Iterator<E>
{
 boolean hasNext();

 E next();
 default void remove() { throw new
UnsupportedOperationException("remove"); }
 . . .
}

If you implement an iterator, you need to provide the hasNext and next
methods. There are no defaults for these methods—they depend on the data
structure that you are traversing. But if your iterator is read-only, you don’t
have to worry about the remove method.

A default method can call other methods. For example, a Collection
interface can define a convenience method

public interface Collection
{
 int size(); // an abstract method
 default boolean isEmpty() { return size() == 0; }
 . . .
}

Then a programmer implementing Collection doesn’t have to worry about
implementing an isEmpty method.

 NOTE:
The Collection interface in the Java API does not actually do this. Instead,
there is a class AbstractCollection that implements Collection and defines
isEmpty in terms of size. Implementors of a collection are advised to extend
AbstractCollection. That technique is obsolete. Just implement the
methods in the interface.

An important use for default methods is interface evolution. Consider, for
example, the Collection interface that has been a part of Java for many
years. Suppose that a long time ago, you provided a class

public class Bag implements Collection

Later, in Java 8, a stream method was added to the interface.

Suppose the stream method was not a default method. Then the Bag class
would no longer compile since it doesn’t implement the new method.
Adding a nondefault method to an interface is not source-compatible.

But suppose you don’t recompile the class and simply use an old JAR file
containing it. The class will still load, even with the missing method.
Programs can still construct Bag instances, and nothing bad will happen.
(Adding a method to an interface is binary compatible.) However, if a
program calls the stream method on a Bag instance, an AbstractMethodError
occurs.

Making the method a default method solves both problems. The Bag class
will again compile. And if the class is loaded without being recompiled and
the stream method is invoked on a Bag instance, the Collection.stream
method is called.

6.1.6 Resolving Default Method Conflicts

What happens if the exact same method is defined as a default method in one
interface and then again as a method of a superclass or another interface?
Languages such as Scala and C++ have complex rules for resolving such
ambiguities. Fortunately, the rules in Java are much simpler. Here they are:

1. Superclasses win. If a superclass provides a concrete method, default
methods with the same name and parameter types are simply ignored.

2. Interfaces clash. If an interface provides a default method, and another
interface contains a method with the same name and parameter types
(default or not), then you must resolve the conflict by overriding that
method.

Let’s look at the second rule. Consider two interfaces with a getName
method:

interface Person
{
 default String getName() { return ""; };
}
interface Named
{
 default String getName() { return getClass().getName() + "_"
+ hashCode(); }
}

What happens if you form a class that implements both of them?

class Student implements Person, Named { . . . }

The class inherits two inconsistent getName methods provided by the Person
and Named interfaces. Instead of choosing one over the other, the Java
compiler reports an error and leaves it up to the programmer to resolve the
ambiguity. Simply provide a getName method in the Student class. In that
method, you can choose one of the two conflicting methods, like this:

class Student implements Person, Named
{
 public String getName() { return Person.super.getName(); }
 . . .
}

Now assume that the Named interface does not provide a default
implementation for getName:

interface Named
{
 String getName();
}

Can the Student class inherit the default method from the Person interface?
This might be reasonable, but the Java designers decided in favor of

uniformity. It doesn’t matter how two interfaces conflict. If at least one
interface provides an implementation, the compiler reports an error, and the
programmer must resolve the ambiguity.

 NOTE:
Of course, if neither interface provides a default for a shared method, then
we are in the situation before Java 8, and there is no conflict. An
implementing class has two choices: implement the method, or leave it
unimplemented. In the latter case, the class is itself abstract.

We just discussed name clashes between two interfaces. Now consider a
class that extends a superclass and implements an interface, inheriting the
same method from both. For example, suppose that Person is a class and
Student is defined as

class Student extends Person implements Named { . . . }

In that case, only the superclass method matters, and any default method
from the interface is simply ignored. In our example, Student inherits the
getName method from Person, and it doesn’t make any difference whether the
Named interface provides a default for getName or not. This is the “class wins”
rule.

The “class wins” rule ensures compatibility with Java 7. If you add default
methods to an interface, it has no effect on code that worked before there
were default methods.

 CAUTION:
You can never make a default method that redefines one of the methods in
the Object class. For example, you can’t define a default method for
toString or equals, even though that might be attractive for interfaces such

as List. As a consequence of the “class wins” rule, such a method could
never win against Object.toString or Object.equals.

6.1.7 Interfaces and Callbacks

A common pattern in programming is the callback pattern. In this pattern,
you specify the action that should occur whenever a particular event
happens. For example, you may want a particular action to occur when a
button is clicked or a menu item is selected. However, as you have not yet
seen how to implement user interfaces, we will consider a similar but
simpler situation.

The javax.swing package contains a Timer class that is useful if you want to
be notified whenever a time interval has elapsed. For example, if a part of
your program contains a clock, you can ask to be notified every second so
that you can update the clock face.

When you construct a timer, you set the time interval and tell it what it
should do whenever the time interval has elapsed.

How do you tell the timer what it should do? In many programming
languages, you supply the name of a function that the timer should call
periodically. However, the classes in the Java standard library take an object-
oriented approach. You pass an object of some class. The timer then calls
one of the methods on that object. Passing an object is more flexible than
passing a function because the object can carry additional information.

Of course, the timer needs to know what method to call. The timer requires
that you specify an object of a class that implements the ActionListener
interface of the java.awt.event package. Here is that interface:

public interface ActionListener
{
 void actionPerformed(ActionEvent event);
}

The timer calls the actionPerformed method when the time interval has
expired.

Suppose you want to print a message “At the tone, the time is . . .”, followed
by a beep, once every second. You would define a class that implements the
ActionListener interface. You would then place whatever statements you
want to have executed inside the actionPerformed method.

class TimePrinter implements ActionListener
{
 public void actionPerformed(ActionEvent event)
 {
 System.out.println("At the tone, the time is "
 + Instant.ofEpochMilli(event.getWhen()));
 Toolkit.getDefaultToolkit().beep();
 }
}

Note the ActionEvent parameter of the actionPerformed method. This
parameter gives information about the event, such as the time when the
event happened. The call event.getWhen() returns the event time, measured
in milliseconds since the “epoch” (January 1, 1970). By passing it to the
static Instant.ofEpochMilli method, we get a more readable description.

Next, construct an object of this class and pass it to the Timer constructor.

var listener = new TimePrinter();
Timer t = new Timer(1000, listener);

The first parameter of the Timer constructor is the time interval that must
elapse between notifications, measured in milliseconds. We want to be
notified every second. The second parameter is the listener object.

Finally, start the timer.

t.start();

Every second, a message like

At the tone, the time is 2017-12-16T05:01:49.550Z

is displayed, followed by a beep.

 CAUTION:
Be sure to import javax.swing.Timer. There is also a java.util.Timer class
that is slightly different.

Listing 6.3 puts the timer and its action listener to work. After the timer is
started, the program puts up a message dialog and waits for the user to click
the OK button to stop. While the program waits for the user, the current time
is displayed every second. (If you omit the dialog, the program would
terminate as soon as the main method exits.)

Listing 6.3 timer/TimerTest.java

 1 package timer;
 2
 3 /**
 4 @version 1.02 2017-12-14
 5 @author Cay Horstmann
 6 */
 7
 8 import java.awt.*;
 9 import java.awt.event.*;
10 import java.time.*;
11 import javax.swing.*;
12
13 public class TimerTest
14 {
15 public static void main(String[] args)
16 {

17 var listener = new TimePrinter();
18
19 // construct a timer that calls the listener once every
second
20 var timer = new Timer(1000, listener);
21 timer.start();
22
23 // keep program running until the user selects "OK"
24 JOptionPane.showMessageDialog(null, "Quit program?");
25 System.exit(0);
26 }
27 }
28
29 class TimePrinter implements ActionListener
30 {
31 public void actionPerformed(ActionEvent event)
32 {
33 System.out.println("At the tone, the time is " +
Instant.ofEpochMilli(event.getWhen()));
34 Toolkit.getDefaultToolkit().beep();
35 }
36 }

javax.swing.JOptionPane 1.2

• static void showMessageDialog(Component parent, Object

message)

displays a dialog box with a message prompt and an OK button. The
dialog is centered over the parent component. If parent is null, the
dialog is centered on the screen.

javax.swing.Timer 1.2

• Timer(int interval, ActionListener listener)

constructs a timer that notifies listener whenever interval

milliseconds have elapsed.
• void start()

starts the timer. Once started, the timer calls actionPerformed on its
listeners.

• void stop()
stops the timer. Once stopped, the timer no longer calls
actionPerformed on its listeners.

java.awt.Toolkit 1.0

• static Toolkit getDefaultToolkit()
gets the default toolkit. A toolkit contains information about the GUI
environment.

• void beep()
emits a beep sound.

6.1.8 The Comparator Interface

In Section 6.1.1, “The Interface Concept,” on p. 312, you have seen how you
can sort an array of objects, provided they are instances of classes that
implement the Comparable interface. For example, you can sort an array of
strings since the String class implements Comparable<String>, and the
String.compareTo method compares strings in dictionary order.

Now suppose we want to sort strings by increasing length, not in dictionary
order. We can’t have the String class implement the compareTo method in
two ways—and at any rate, the String class isn’t ours to modify.

To deal with this situation, there is a second version of the Arrays.sort
method whose parameters are an array and a comparator—an instance of a
class that implements the Comparator interface.

public interface Comparator<T>
{
 int compare(T first, T second);
}

To compare strings by length, define a class that implements
Comparator<String>:

class LengthComparator implements Comparator<String>
{
 public int compare(String first, String second)
 {
 return first.length() - second.length();
 }
}

To actually do the comparison, you need to make an instance:

var comp = new LengthComparator();
if (comp.compare(words[i], words[j]) > 0) . . .

Contrast this call with words[i].compareTo(words[j]). The compare method
is called on the comparator object, not the string itself.

 NOTE:
Even though the LengthComparator object has no state, you still need to
make an instance of it. You need the instance to call the compare method—it
is not a static method.

To sort an array, pass a LengthComparator object to the Arrays.sort method:

String[] friends = { "Peter", "Paul", "Mary" };
Arrays.sort(friends, new LengthComparator());

Now the array is either ["Paul", "Mary", "Peter"] or ["Mary", "Paul",
"Peter"].

You will see in Section 6.2, “Lambda Expressions,” on p. 338 how to use a
Comparator much more easily with a lambda expression.

6.1.9 Object Cloning

In this section, we discuss the Cloneable interface that indicates that a class
has provided a safe clone method. Since cloning is not all that common, and
the details are quite technical, you may just want to glance at this material
until you need it.

To understand what cloning means, recall what happens when you make a
copy of a variable holding an object reference. The original and the copy are
references to the same object (see Figure 6.1). This means a change to either
variable also affects the other.

var original = new Employee("John Public", 50000);
Employee copy = original;
copy.raiseSalary(10); // oops--also changed original

Figure 6.1 Copying and cloning

If you would like copy to be a new object that begins its life being identical
to original but whose state can diverge over time, use the clone method.

Employee copy = original.clone();
copy.raiseSalary(10); // OK--original unchanged

But it isn’t quite so simple. The clone method is a protected method of
Object, which means that your code cannot simply call it. Only the Employee
class can clone Employee objects. There is a reason for this restriction. Think
about the way in which the Object class can implement clone. It knows
nothing about the object at all, so it can make only a field-by-field copy. If
all instance fields in the object are numbers or other basic types, copying the
fields is just fine. But if the object contains references to subobjects, then
copying the field gives you another reference to the same subobject, so the
original and the cloned objects still share some information.

To visualize that, consider the Employee class that was introduced in Chapter
4. Figure 6.2 shows what happens when you use the clone method of the
Object class to clone such an Employee object. As you can see, the default
cloning operation is “shallow”—it doesn’t clone objects that are referenced
inside other objects. (The figure shows a shared Date object. For reasons that
will become clear shortly, this example uses a version of the Employee class
in which the hire day is represented as a Date.)

Figure 6.2 A shallow copy

Does it matter if the copy is shallow? It depends. If the subobject shared
between the original and the shallow clone is immutable, then the sharing is
safe. This certainly happens if the subobject belongs to an immutable class,
such as String. Alternatively, the subobject may simply remain constant
throughout the lifetime of the object, with no mutators touching it and no
methods yielding a reference to it.

Quite frequently, however, subobjects are mutable, and you must redefine
the clone method to make a deep copy that clones the subobjects as well. In
our example, the hireDay field is a Date, which is mutable, so it too must be
cloned. (For that reason, this example uses a field of type Date, not
LocalDate, to demonstrate the cloning process. Had hireDay been an instance
of the immutable LocalDate class, no further action would have been
required.)

For every class, you need to decide whether

1. The default clone method is good enough;
2. The default clone method can be patched up by calling clone on the

mutable subobjects; or
3. clone should not be attempted.

The third option is actually the default. To choose either the first or the
second option, a class must

1. Implement the Cloneable interface; and
2. Redefine the clone method with the public access modifier.

 NOTE:
The clone method is declared protected in the Object class, so that your
code can’t simply call anObject.clone(). But aren’t protected methods
accessible from any subclass, and isn’t every class a subclass of Object?
Fortunately, the rules for protected access are more subtle (see Chapter 5). A
subclass can call a protected clone method only to clone its own objects.
You must redefine clone to be public to allow objects to be cloned by any
method.

In this case, the appearance of the Cloneable interface has nothing to do with
the normal use of interfaces. In particular, it does not specify the clone
method—that method is inherited from the Object class. The interface
merely serves as a tag, indicating that the class designer understands the
cloning process. Objects are so paranoid about cloning that they generate a
checked exception if an object requests cloning but does not implement that
interface.

 NOTE:
The Cloneable interface is one of a handful of tagging interfaces that Java
provides. (Some programmers call them marker interfaces.) Recall that the

usual purpose of an interface such as Comparable is to ensure that a class
implements a particular method or set of methods. A tagging interface has
no methods; its only purpose is to allow the use of instanceof in a type
inquiry:

if (obj instanceof Cloneable) . . .

I recommend that you do not use tagging interfaces in your own programs.

Even if the default (shallow copy) implementation of clone is adequate, you
still need to implement the Cloneable interface, redefine clone to be public,
and call super.clone(). Here is an example:

class Employee implements Cloneable
{
 // public access, change return type
 public Employee clone() throws CloneNotSupportedException
 {
 return (Employee) super.clone();
 }
 . . .
}

 NOTE:
Up to Java 1.4, the clone method always had return type Object. Nowadays,
you can specify the correct return type for your clone methods. This is an
example of covariant return types (see Chapter 5).

The clone method that you just saw adds no functionality to the shallow
copy provided by Object.clone. It merely makes the method public. To
make a deep copy, you have to work harder and clone the mutable instance
fields.

Here is an example of a clone method that creates a deep copy:

class Employee implements Cloneable
{
 . . .
 public Employee clone() throws CloneNotSupportedException
 {
 // call Object.clone()
 Employee cloned = (Employee) super.clone();
 // clone mutable fields
 cloned.hireDay = (Date) hireDay.clone();
 return cloned;

 }
}

The clone method of the Object class threatens to throw a
CloneNotSupportedException—it does that whenever clone is invoked on an
object whose class does not implement the Cloneable interface. Of course,
the Employee and Date classes implement the Cloneable interface, so the
exception won’t be thrown. However, the compiler does not know that.
Therefore, we declared the exception:

public Employee clone() throws CloneNotSupportedException

 NOTE:
Would it be better to catch the exception instead? (See Chapter 7 for details
on catching exceptions.)

public Employee clone()
{
 try
 {
 Employee cloned = (Employee) super.clone();
 . . .

 }
 catch (CloneNotSupportedException e) { return null; }
 // this won't happen, since we are Cloneable
}

This is appropriate for final classes. Otherwise, it is better to leave the
throws specifier in place. That gives subclasses the option of throwing a
CloneNotSupportedException if they can’t support cloning.

You have to be careful about cloning of subclasses. For example, once you
have defined the clone method for the Employee class, anyone can use it to
clone Manager objects. Can the Employee clone method do the job? It depends
on the fields of the Manager class. In our case, there is no problem because
the bonus field has primitive type. But Manager might have acquired fields
that require a deep copy or are not cloneable. There is no guarantee that the
implementor of the subclass has fixed clone to do the right thing. For that
reason, the clone method is declared as protected in the Object class. But
you don’t have that luxury if you want the users of your classes to invoke
clone.

Should you implement clone in your own classes? If your clients need to
make deep copies, then you probably should. Some authors feel that you
should avoid clone altogether and instead implement another method for the
same purpose. I agree that clone is rather awkward, but you’ll run into the
same issues if you shift the responsibility to another method. At any rate,
cloning is less common than you may think. Less than 5 percent of the
classes in the standard library implement clone.

The program in Listing 6.4 clones an instance of the class Employee (Listing
6.5), then invokes two mutators. The raiseSalary method changes the value
of the salary field, whereas the setHireDay method changes the state of the
hireDay field. Neither mutation affects the original object because clone has
been defined to make a deep copy.

 NOTE:
All array types have a clone method that is public, not protected. You can
use it to make a new array that contains copies of all elements. For example:

int[] luckyNumbers = { 2, 3, 5, 7, 11, 13 };
int[] cloned = luckyNumbers.clone();
cloned[5] = 12; // doesn't change luckyNumbers[5]

 NOTE:
Chapter 2 of Volume II shows an alternate mechanism for cloning objects,
using the object serialization feature of Java. That mechanism is easy to
implement and safe, but not very efficient.

Listing 6.4 clone/CloneTest.java

 1 package clone;
 2
 3 /**
 4 * This program demonstrates cloning.
 5 * @version 1.11 2018-03-16
 6 * @author Cay Horstmann
 7 */
 8 public class CloneTest
 9 {
10 public static void main(String[] args) throws
CloneNotSupportedException
11 {
12 var original = new Employee("John Q. Public", 50000);
13 original.setHireDay(2000, 1, 1);
14 Employee copy = original.clone();
15 copy.raiseSalary(10);

16 copy.setHireDay(2002, 12, 31);
17 System.out.println("original=" + original);
18 System.out.println("copy=" + copy);
19 }
20 }

Listing 6.5 clone/Employee.java

 1 package clone;
 2
 3 import java.util.Date;
 4 import java.util.GregorianCalendar;
 5
 6 public class Employee implements Cloneable
 7 {
 8 private String name;
 9 private double salary;
10 private Date hireDay;
11
12 public Employee(String name, double salary)
13 {
14 this.name = name;
15 this.salary = salary;
16 hireDay = new Date();
17 }
18
19 public Employee clone() throws CloneNotSupportedException
20 {
21 // call Object.clone()
22 Employee cloned = (Employee) super.clone();
23
24 // clone mutable fields
25 cloned.hireDay = (Date) hireDay.clone();
26
27 return cloned;
28 }
29
30 /**

31 * Set the hire day to a given date.
32 * @param year the year of the hire day
33 * @param month the month of the hire day
34 * @param day the day of the hire day
35 */
36 public void setHireDay(int year, int month, int day)
37 {
38 Date newHireDay = new GregorianCalendar(year, month -
1, day).getTime();
39
40 // example of instance field mutation
41 hireDay.setTime(newHireDay.getTime());
42 }
43
44 public void raiseSalary(double byPercent)
45 {
46 double raise = salary * byPercent / 100;
47 salary += raise;
48 }
49
50 public String toString()
51 {
52 return "Employee[name=" + name + ",salary=" + salary +
",hireDay=" + hireDay + "]";
53 }
54 }

6.2 Lambda Expressions

In the following sections, you will learn how to use lambda expressions for
defining blocks of code with a concise syntax, and how to write code that
consumes lambda expressions.

6.2.1 Why Lambdas?

A lambda expression is a block of code that you can pass around so it can be
executed later, once or multiple times. Before getting into the syntax (or

even the curious name), let’s step back and observe where we have used
such code blocks in Java.

In Section 6.1.7, “Interfaces and Callbacks,” on p. 326, you saw how to do
work in timed intervals. Put the work into the actionPerformed method of an
ActionListener:

class Worker implements ActionListener
{
 public void actionPerformed(ActionEvent event)
 {
 // do some work
 }
}

Then, when you want to repeatedly execute this code, you construct an
instance of the Worker class. You then submit the instance to a Timer object.

The key point is that the actionPerformed method contains code that you
want to execute later.

Or consider sorting with a custom comparator. If you want to sort strings by
length instead of the default dictionary order, you can pass a Comparator
object to the sort method:

class LengthComparator implements Comparator<String>
{
 public int compare(String first, String second)
 {
 return first.length() - second.length();
 }
}
. . .
Arrays.sort(strings, new LengthComparator());

The compare method isn’t called right away. Instead, the sort method keeps
calling the compare method, rearranging the elements if they are out of order,
until the array is sorted. You give the sort method a snippet of code needed

to compare elements, and that code is integrated into the rest of the sorting
logic, which you’d probably not care to reimplement.

Both examples have something in common. A block of code was passed to
someone—a timer, or a sort method. That code block was called at some
later time.

Up to now, giving someone a block of code hasn’t been easy in Java. You
couldn’t just pass code blocks around. Java is an object-oriented language,
so you had to construct an object belonging to a class that has a method with
the desired code.

In other languages, it is possible to work with blocks of code directly. The
Java designers have resisted adding this feature for a long time. After all, a
great strength of Java is its simplicity and consistency. A language can
become an unmaintainable mess if it includes every feature that yields
marginally more concise code. However, in those other languages it isn’t just
easier to spawn a thread or to register a button click handler; large swaths of
their APIs are simpler, more consistent, and more powerful. In Java, one
could have written similar APIs taking objects of classes that implement a
particular interface, but such APIs would be unpleasant to use.

For some time, the question was not whether to augment Java for functional
programming, but how to do it. It took several years of experimentation
before a design emerged that is a good fit for Java. In the next section, you
will see how you can work with blocks of code in Java.

6.2.2 The Syntax of Lambda Expressions

Consider again the sorting example from the preceding section. We pass
code that checks whether one string is shorter than another. We compute

first.length() - second.length()

What are first and second? They are both strings. Java is a strongly typed
language, and we must specify that as well:

(String first, String second)
 -> first.length() - second.length()

You have just seen your first lambda expression. Such an expression is
simply a block of code, together with the specification of any variables that
must be passed to the code.

Why the name? Many years ago, before there were any computers, the
logician Alonzo Church wanted to formalize what it means for a
mathematical function to be effectively computable. (Curiously, there are
functions that are known to exist, but nobody knows how to compute their
values.) He used the Greek letter lambda (λ) to mark parameters. Had he
known about the Java API, he would have written

λfirst.λsecond.first.length() - second.length()

 NOTE:
Why the letter λ? Did Church run out of other letters of the alphabet?
Actually, the venerable Principia Mathematica used the ^ accent to denote
free variables, which inspired Church to use an uppercase lambda ᴧ for
parameters. But in the end, he switched to the lowercase version. Ever since,
an expression with parameter variables has been called a lambda expression.

What you have just seen is a simple form of lambda expressions in Java:
parameters, the -> arrow, and an expression. If the code carries out a
computation that doesn’t fit in a single expression, write it exactly like you
would have written a method: enclosed in {} and with explicit return
statements. For example,

(String first, String second) ->
 {
 if (first.length() < second.length()) return -1;
 else if (first.length() > second.length()) return 1;

 else return 0;
 }

If a lambda expression has no parameters, you still supply empty
parentheses, just as with a parameterless method:

() -> { for (int i = 100; i >= 0; i--) System.out.println(i); }

If the parameter types of a lambda expression can be inferred, you can omit
them. For example,

Comparator<String> comp
 = (first, second) // same as (String first, String second)
 -> first.length() - second.length();

Here, the compiler can deduce that first and second must be strings because
the lambda expression is assigned to a string comparator. (We will have a
closer look at this assignment in the next section.)

If a method has a single parameter with inferred type, you can even omit the
parentheses:

ActionListener listener = event ->
 System.out.println("The time is "
 + Instant.ofEpochMilli(event.getWhen()));
 // instead of (event) -> . . . or (ActionEvent event) -> .
. .

You never specify the result type of a lambda expression. It is always
inferred from context. For example, the expression

(String first, String second) -> first.length() -
second.length()

can be used in a context where a result of type int is expected.

Finally, you can use var to denote an inferred type. This isn’t common. The
syntax was invented for attaching annotations (see Chapter 8 of Volume II):

(@NonNull var first, @NonNull var second) -> first.length() -
second.length()

 NOTE:
It is illegal for a lambda expression to return a value in some branches but
not in others. For example, (int x) -> { if (x >= 0) return 1; } is
invalid.

The program in Listing 6.6 shows how to use lambda expressions for a
comparator and an action listener.

Listing 6.6 lambda/LambdaTest.java

 1 package lambda;
 2
 3 import java.util.*;
 4 import javax.swing.*;
 5 import javax.swing.Timer;
 6
 7 /**
 8 * This program demonstrates the use of lambda expressions.
 9 * @version 1.0 2015-05-12
10 * @author Cay Horstmann
11 */
12 public class LambdaTest
13 {
14 public static void main(String[] args)
15 {
16 var planets = new String[] { "Mercury", "Venus", "Earth",
"Mars",
17 "Jupiter", "Saturn", "Uranus", "Neptune" };

18 System.out.println(Arrays.toString(planets));
19 System.out.println("Sorted in dictionary order:");
20 Arrays.sort(planets);
21 System.out.println(Arrays.toString(planets));
22 System.out.println("Sorted by length:");
23 Arrays.sort(planets, (first, second) -> first.length() -
second.length());
24 System.out.println(Arrays.toString(planets));
25
26 var timer = new Timer(1000, event ->
27 System.out.println("The time is " + new Date()));
28 timer.start();
29
30 // keep program running until user selects "OK"
31 JOptionPane.showMessageDialog(null, "Quit program?");
32 System.exit(0);
33 }
34 }

6.2.3 Functional Interfaces

As we discussed, there are many existing interfaces in Java that encapsulate
blocks of code, such as ActionListener or Comparator. Lambdas are
compatible with these interfaces.

You can supply a lambda expression whenever an object of an interface with
a single abstract method is expected. Such an interface is called a functional
interface.

 NOTE:
You may wonder why a functional interface must have a single abstract
method. Aren’t all methods in an interface abstract? Actually, it has always
been possible for an interface to redeclare methods from the Object class
such as toString or clone, and these declarations do not make the methods
abstract. (Some interfaces in the Java API redeclare Object methods in order

to attach javadoc comments. Check out the Comparator API for an example.)
More importantly, as you saw in Section 6.1.5, “Default Methods,” on p.
323, interfaces can declare nonabstract methods.

To demonstrate the conversion to a functional interface, consider the
Arrays.sort method. Its second parameter requires an instance of
Comparator, an interface with a single method. Simply supply a lambda:

Arrays.sort(words,
 (first, second) -> first.length() - second.length());

Behind the scenes, the Arrays.sort method receives an object of some class
that implements Comparator<String>. Invoking the compare method on that
object executes the body of the lambda expression. The management of
these objects and classes is completely implementation-dependent, and it can
be much more efficient than using traditional inner classes. It is best to think
of a lambda expression as a function, not an object, and to accept that it can
be passed to a functional interface.

This conversion to interfaces is what makes lambda expressions so
compelling. The syntax is short and simple. Here is another example:

var timer = new Timer(1000, event ->
 {
 System.out.println("At the tone, the time is "
 + Instant.ofEpochMilli(event.getWhen()));
 Toolkit.getDefaultToolkit().beep();
 });

That’s a lot easier to read than the alternative with a class that implements
the ActionListener interface.

In fact, conversion to a functional interface is the only thing that you can do
with a lambda expression in Java. In other programming languages that
support function literals, you can declare function types such as (String,
String) -> int, declare variables of those types, and use the variables to

save function expressions. However, the Java designers decided to stick with
the familiar concept of interfaces instead of adding function types to the
language.

 NOTE:
You can’t even assign a lambda expression to a variable of type Object—
Object is not a functional interface.

The Java API defines a number of very generic functional interfaces in the
java.util.function package. One of the interfaces, BiFunction<T, U, R>,
describes functions with parameter types T and U and return type R. You can
save your string comparison lambda in a variable of that type:

BiFunction<String, String, Integer> comp
 = (first, second) -> first.length() - second.length();

However, that does not help you with sorting. There is no Arrays.sort
method that wants a BiFunction. If you have used a functional programming
language before, you may find this curious. But for Java programmers, it’s
pretty natural. An interface such as Comparator has a specific purpose, not
just a method with given parameter and return types. When you want to do
something with lambda expressions, you still want to keep the purpose of the
expression in mind, and have a specific functional interface for it.

A particularly useful interface in the java.util.function package is
Predicate:

public interface Predicate<T>
{
 boolean test(T t);
 // additional default and static methods
}

The ArrayList class has a removeIf method whose parameter is a Predicate.
It is specifically designed to pass a lambda expression. For example, the
following statement removes all null values from an array list:

list.removeIf(e -> e == null);

Another useful functional interface is Supplier<T>:

public interface Supplier<T>
{
 T get();
}

A supplier has no arguments and yields a value of type T when it is called.
Suppliers are used for lazy evaluation. For example, consider the call

LocalDate hireDay = Objects.requireNonNullElse(day,
 new LocalDate.of(1970, 1, 1));

This is not optimal. We expect that day is rarely null, so we only want to
construct the default LocalDate when necessary. By using the supplier, we
can defer the computation:

LocalDate hireDay = Objects.requireNonNullElseGet(day,
 () -> new LocalDate.of(1970, 1, 1));

The requireNonNullElseGet method only calls the supplier when the value is
needed.

6.2.4 Method References

Sometimes, a lambda expression involves a single method. For example,
suppose you simply want to print the event object whenever a timer event
occurs. Of course, you could call

var timer = new Timer(1000, event ->
System.out.println(event));

It would be nicer if you could just pass the println method to the Timer
constructor. Here is how you do that:

var timer = new Timer(1000, System.out::println);

The expression System.out::println is a method reference. It directs the
compiler to produce an instance of a functional interface, overriding the
single abstract method of the interface to call the given method. In this
example, an ActionListener is produced whose
actionPerformed(ActionEvent e) method calls System.out.println(e).

 NOTE:
Like a lambda expression, a method reference is not an object. It gives rise
to an object when assigned to a variable whose type is a functional interface.

 NOTE:
There are ten overloaded println methods in the PrintStream class (of
which System.out is an instance). The compiler needs to figure out which
one to use, depending on context. In our example, the method reference
System.out::println must be turned into an ActionListener instance with a
method

void actionPerformed(ActionEvent e)

The println(Object x) method is selected from the ten overloaded println
methods since Object is the best match for ActionEvent. When the
actionPerformed method is called, the event object is printed.

Now suppose we assign the same method reference to a different functional
interface:

Runnable task = System.out::println;

The Runnable functional interface has a single abstract method with no
parameters

void run()

In this case, the println() method with no parameters is chosen. Calling
task.run() prints a blank line to System.out.

As another example, suppose you want to sort strings regardless of letter
case. You can pass this method expression:

Arrays.sort(strings, String::compareToIgnoreCase)

As you can see from these examples, the :: operator separates the method
name from the name of an object or class. There are three variants:

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes 346

1. object::instanceMethod

2. Class::instanceMethod

3. Class::staticMethod

In the first variant, the method reference is equivalent to a lambda expression
whose parameters are passed to the method. In the case of
System.out::println, the object is System.out, and the method expression is
equivalent to x -> System.out.println(x).

In the second variant, the first parameter becomes the implicit parameter of
the method. For example, String::compareToIgnoreCase is the same as (x,
y) -> x.compareToIgnoreCase(y).

In the third variant, all parameters are passed to the static method: Math::pow
is equivalent to (x, y) -> Math.pow(x, y).

Table 6.1 walks you through additional examples.

Note that a lambda expression can only be rewritten as a method reference if
the body of the lambda expression calls a single method and doesn’t do
anything else. Consider the lambda expression

s -> s.length() == 0

There is a single method call. But there is also a comparison, so you can’t
use a method reference here.

 NOTE:
When there are multiple overloaded methods with the same name, the
compiler will try to find from the context which one you mean. For
example, there are two versions of the Math.max method, one for integers
and one for double values. Which one gets picked depends on the method
parameters of the functional interface to which Math::max is converted. Just
like lambda expressions, method references don’t live in isolation. They are
always turned into instances of functional interfaces.

 NOTE:
Sometimes, the API contains methods that are specifically intended to be
used as method references. For example, the Objects class has a method
isNull to test whether an object reference is null. At first glance, this

doesn’t seem useful because the test obj == null is easier to read than
Objects.isNull(obj). But you can pass the method reference to any method
with a Predicate parameter. For example, to remove all null references
from a list, you can call

list.removeIf(Objects::isNull);
 // A bit easier to read than list.removeIf(e -> e == null);

Table 6.1 Method Reference Examples

 NOTE:
There is a tiny difference between a method reference with an object and its
equivalent lambda expression. Consider a method reference such as
separator::equals. If separator is null, forming separator::equals

immediately throws a NullPointerException. The lambda expression x ->
separator.equals(x) only throws a NullPointerException if it is invoked.

You can capture the this parameter in a method reference. For example,
this::equals is the same as x -> this.equals(x). It is also valid to use
super. The method expression

super::instanceMethod

uses this as the target and invokes the superclass version of the given
method. Here is an artificial example that shows the mechanics:

class Greeter
{
 public void greet(ActionEvent event)
 {
 System.out.println("Hello, the time is "
 + Instant.ofEpochMilli(event.getWhen()));
 }
}
class RepeatedGreeter extends Greeter
{
 public void greet(ActionEvent event)
 {
 var timer = new Timer(1000, super::greet);
 timer.start();
 }
}

When the RepeatedGreeter.greet method starts, a Timer is constructed that
executes the super::greet method on every timer tick.

6.2.5 Constructor References

Constructor references are just like method references, except that the name
of the method is new. For example, Person::new is a reference to a Person
constructor. Which constructor? It depends on the context. Suppose you have
a list of strings. Then you can turn it into an array of Person objects, by
calling the constructor on each of the strings, with the following invocation:

ArrayList<String> names = . . .;
Stream<Person> stream = names.stream().map(Person::new);
List<Person> people = stream.toList();

We will discuss the details of the stream, map, and toList methods in
Chapter 1 of Volume II. For now, what’s important is that the map method
calls the Person(String) constructor for each list element. If there are
multiple Person constructors, the compiler picks the one with a String
parameter because it infers from the context that the constructor is called
with a string.

You can form constructor references with array types. For example,
int[]::new is a constructor reference with one parameter: the length of the
array. It is equivalent to the lambda expression n -> new int[n].

Array constructor references are useful to overcome a limitation of Java. As
you will see in Chapter 8, it is not possible to construct an array of a generic
type T. (The expression new T[n] is an error since it would be “erased” to new
Object[n]). That is a problem for library authors. For example, suppose we
want to have an array of Person objects. The Stream interface has a toArray
method that returns an Object array:

Object[] people = stream.toArray();

But that is unsatisfactory. The user wants an array of references to Person,
not references to Object. The stream library solves that problem with

constructor references. Pass Person[]::new to the toArray method:

Person[] people = stream.toArray(Person[]::new);

The toArray method invokes this constructor to obtain an array of the correct
type. Then it fills and returns the array.

6.2.6 Variable Scope

Often, you want to be able to access variables from an enclosing method or
class in a lambda expression. Consider this example:

public static void repeatMessage(String text, int delay)
{
 ActionListener listener = event ->
 {
 System.out.println(text);
 Toolkit.getDefaultToolkit().beep();
 };
 new Timer(delay, listener).start();
}

Consider a call

repeatMessage("Hello", 1000); // prints Hello every 1,000
milliseconds

Now look at the variable text inside the lambda expression. Note that this
variable is not defined in the lambda expression. Instead, it is a parameter
variable of the repeatMessage method.

If you think about it, something nonobvious is going on here. The code of
the lambda expression may run long after the call to repeatMessage has
returned and the parameter variables are gone. How does the text variable
stay around?

To understand what is happening, we need to refine our understanding of a
lambda expression. A lambda expression has three ingredients:

1. A block of code
2. Parameters
3. Values for the free variables—that is, the variables that are not

parameters and not defined inside the code

In our example, the lambda expression has one free variable, text. The data
structure representing the lambda expression must store the values for the
free variables—in our case, the string "Hello". We say that such values have
been captured by the lambda expression. (It’s an implementation detail how
that is done. For example, one can translate a lambda expression into an
object with a single method, so that the values of the free variables are
copied into instance variables of that object.)

 NOTE:
The technical term for a block of code together with the values of the free
variables is a closure. If someone gloats that their language has closures,
rest assured that Java has them as well. In Java, lambda expressions are
closures.

As you have seen, a lambda expression can capture the value of a variable in
the enclosing scope. In Java, to ensure that the captured value is well-
defined, there is an important restriction. In a lambda expression, you can
only reference variables whose value doesn’t change. For example, the
following is illegal:

public static void countDown(int start, int delay)
{
 ActionListener listener = event ->
 {
 start--; // ERROR: Can't mutate captured variable
 System.out.println(start);

 };
 new Timer(delay, listener).start();
}

There is a reason for this restriction. Mutating variables in a lambda
expression is not safe when multiple actions are executed concurrently. This
won’t happen for the kinds of actions that we have seen so far, but in
general, it is a serious problem. See Chapter 12 for more information on this
important issue.

It is also illegal to refer, in a lambda expression, to a variable that is mutated
outside. For example, the following is illegal:

public static void repeat(String text, int count)
{
 for (int i = 1; i <= count; i++)
 {
 ActionListener listener = event ->
 {
 System.out.println(i + ": " + text);
 // ERROR: Cannot refer to changing i
 };
 new Timer(1000, listener).start();
 }
}

The rule is that any captured variable in a lambda expression must be
effectively final. An effectively final variable is a variable that is never
assigned a new value after it has been initialized. In our case, text always
refers to the same String object, and it is OK to capture it. However, the
value of i is mutated, and therefore i cannot be captured.

The body of a lambda expression has the same scope as a nested block. The
same rules for name conflicts and shadowing apply. It is illegal to declare a
parameter or a local variable in the lambda that has the same name as a local
variable.

Path first = Path.of("/usr/bin");
Comparator<String> comp
 = (first, second) -> first.length() - second.length();
 // ERROR: Variable first already defined

Inside a method, you can’t have two local variables with the same name, and
therefore, you can’t introduce such variables in a lambda expression either.

When you use the this keyword in a lambda expression, you refer to the
this parameter of the method that creates the lambda. For example, consider

public class Application
{
 public void init()
 {
 ActionListener listener = event ->
 {
 System.out.println(this.toString());
 . . .
 }
 . . .
 }
}

The expression this.toString() calls the toString method of the
Application object, not the ActionListener instance. There is nothing
special about the use of this in a lambda expression. The scope of the
lambda expression is nested inside the init method, and this has the same
meaning anywhere in that method.

6.2.7 Processing Lambda Expressions

Up to now, you have seen how to produce lambda expressions and pass them
to a method that expects a functional interface. Now let us see how to write
methods that can consume lambda expressions.

The point of using lambdas is deferred execution. After all, if you wanted to
execute some code right now, you’d do that, without wrapping it inside a
lambda. There are many reasons for executing code later, such as:

• Running the code in a separate thread
• Running the code multiple times
• Running the code at the right point in an algorithm (for example, the

comparison operation in sorting)
• Running the code when something happens (a button was clicked, data has

arrived, and so on)
• Running the code only when necessary

Let’s look at a simple example. Suppose you want to repeat an action n
times. The action and the count are passed to a repeat method:

repeat(10, () -> System.out.println("Hello, World!"));

To accept the lambda, we need to pick (or, in rare cases, provide) a
functional interface. Table 6.2 lists the most important functional interfaces
that are provided in the Java API. In this case, we can use the Runnable
interface:

public static void repeat(int n, Runnable action)
{
 for (int i = 0; i < n; i++) action.run();
}

Table 6.2 Common Functional Interfaces

Now let’s make this example a bit more sophisticated. We want to tell the
action in which iteration it occurs. For that, we need to pick a functional
interface that has a method with an int parameter and a void return. The
standard interface for processing int values is

public interface IntConsumer
{
 void accept(int value);
}

Here is the improved version of the repeat method:

public static void repeat(int n, IntConsumer action)
{
 for (int i = 0; i < n; i++) action.accept(i);
}

And here is how you call it:

repeat(10, i -> System.out.println("Countdown: " + (9 - i)));

Table 6.3 lists the 34 available specializations for primitive types int, long,
and double. As you will see in Chapter 8, it is more efficient to use these
specializations than the generic interfaces. For that reason, I used an
IntConsumer instead of a Consumer<Integer> in the example of the preceding
section.

Table 6.3 Functional Interfaces for Primitive Types p, q is int, long, double;
P, Q is Int, Long, Double

 TIP:
It is a good idea to use an interface from Tables 6.2 or 6.3 whenever you
can. For example, suppose you write a method to process files that match a
certain criterion. There is a legacy interface java.io.FileFilter, but it is
better to use the standard Predicate<File>. The only reason not to do so
would be if you already have many useful methods producing FileFilter
instances.

 NOTE:
Most of the standard functional interfaces have nonabstract methods for
producing or combining functions. For example, Predicate.isEqual(a) is

the same as a::equals, but it also works if a is null. There are default
methods and, or, negate for combining predicates. For example,
Predicate.isEqual(a). or(Predicate.isEqual(b)) is the same as x ->

a.equals(x) || b.equals(x).

 NOTE:
If you design your own interface with a single abstract method, you can tag
it with the @FunctionalInterface annotation. This has two advantages. The
compiler gives an error message if you accidentally add another abstract
method. And the javadoc page includes a statement that your interface is a
functional interface.

It is not required to use the annotation. Any interface with a single abstract
method is, by definition, a functional interface. But using the
@FunctionalInterface annotation is a good idea.

 NOTE:
Some programmers love chains of method calls, such as

XXX
String input = " 618970019642690137449562111 ";
boolean isPrime =
input.strip().transform(BigInteger::new).isProbablePrime(20);

The transform method of the String class (added in Java 12) applies a
Function to the string and yields the result. You could have equally well
written

boolean prime = new
BigInteger(input.strip()).isProbablePrime(20);

But then your eyes jump inside-out and left-to-right to find out what
happens first and what happens next: Calling strip, then constructing the
BigInteger, and finally testing if it is a probable prime.

I am not sure that the eyes-jumping-inside-out-and-left-to-right is a huge
problem. But if you prefer the orderly left-to-right sequence of chained
method calls, then transform is your friend.

Sadly, it only works for strings. Why isn’t there a
transform(java.util.function. Function) method in the Object class?

The Java API designers weren’t fast enough. They had one chance to do this
right—in Java 8, when the java.util.function.Function interface was
added to the API. Up to that point, nobody could have added a
transform(java.util.function. Function) method to their own classes.
But in Java 12, it was too late. Someone somewhere could have defined
transform(java.util.function.Function) in their class, with a different
meaning. Admittedly, it is unlikely that this ever happened, but there is no
way to know.

That is how Java works. It takes its commitments seriously, and won’t
renege on them for convenience.

6.2.8 More about Comparators

The Comparator interface has a number of convenient static methods for
creating comparators. These methods are intended to be used with lambda
expressions or method references.

The static comparing method takes a “key extractor” function that maps a
type T to a comparable type (such as String). The function is applied to the
objects to be compared, and the comparison is then made on the returned
keys. For example, suppose you have an array of Person objects. Here is
how you can sort them by name:

Arrays.sort(people, Comparator.comparing(Person::getName));

This is certainly much easier than implementing a Comparator by hand.
Moreover, the code is clearer since it is obvious that we want to compare
people by name.

You can chain comparators with the thenComparing method for breaking ties.
For example,

Arrays.sort(people,
 Comparator.comparing(Person::getLastName)
 .thenComparing(Person::getFirstName));

If two people have the same last name, then the second comparator is used.

There are a few variations of these methods. You can specify a comparator
to be used for the keys that the comparing and thenComparing methods
extract. For example, here we sort people by the length of their names:

Arrays.sort(people, Comparator.comparing(Person::getName,
 (s, t) -> Integer.compare(s.length(), t.length())));

Moreover, both the comparing and thenComparing methods have variants that
avoid boxing of int, long, or double values. An easier way of producing the
preceding operation would be

Arrays.sort(people, Comparator.comparingInt(p ->
p.getName().length()));

If your key function can return null, you will like the nullsFirst and
nullsLast adapters. These static methods take an existing comparator and
modify it so that it doesn’t throw an exception when encountering null
values but ranks them as smaller or larger than regular values. For example,
suppose getMiddleName returns a null when a person has no middle name.
Then you can use Comparator.comparing(Person::getMiddleName,

Comparator.nullsFirst(. . .)).

The nullsFirst method needs a comparator—in this case, one that compares
two strings. The naturalOrder method makes a comparator for any class
implementing Comparable. A Comparator.<String>naturalOrder() is what
we need. Here is the complete call for sorting by potentially null middle
names. I use a static import of java.util.Comparator.*, to make the
expression more legible. Note that the type for naturalOrder is inferred.

Arrays.sort(people, comparing(Person::getMiddleName,
nullsFirst(naturalOrder())));

The static reverseOrder method gives the reverse of the natural order. To
reverse any comparator, use the reversed instance method. For example,
naturalOrder(). reversed() is the same as reverseOrder().

6.3 Inner Classes

An inner class is a class that is defined inside another class. Why would you
want to do that? There are two reasons:

• Inner classes can be hidden from other classes in the same package.
• Inner class methods can access the data from the scope in which they are

defined—including the data that would otherwise be private.

Inner classes used to be very important for concisely implementing
callbacks, but nowadays lambda expressions do a much better job. Still,
inner classes can be very useful for structuring your code. The following
sections walk you through all the details.

 C++ NOTE:
C++ has nested classes. A nested class is contained inside the scope of the
enclosing class. Here is a typical example: A linked list class defines a class
to hold the links, and a class to define an iterator position.

class LinkedList
{
public:
 class Iterator // a nested class
 {
 public:
 void insert(int x);
 int erase();
 . . .
 private:
 Link* current;
 LinkedList* owner;
 };
 . . .
private:
 Link* head;
 Link* tail;
};

Nested classes are similar to inner classes in Java. However, the Java inner
classes have an additional feature that makes them richer and more useful
than nested classes in C++. An object that comes from an inner class has an
implicit reference to the outer class object that instantiated it. Through this
pointer, it gains access to the total state of the outer object. For example, in
Java, the Iterator class would not need an explicit pointer to the
LinkedList into which it points.

In Java, static inner classes do not have this added pointer. They are the
Java analog to nested classes in C++.

6.3.1 Use of an Inner Class to Access Object State

The syntax for inner classes is rather complex. For that reason, I present a
simple but somewhat artificial example to demonstrate the use of inner
classes. Let’s refactor the TimerTest example and extract a TalkingClock

class. A talking clock is constructed with two parameters: the interval
between announcements and a flag to turn beeps on or off.

public class TalkingClock
{
 private int interval;
 private boolean beep;
 public TalkingClock(int interval, boolean beep) { . . . }
 public void start() { . . . }
 public class TimePrinter implements ActionListener
 // an inner class
 {
 . . .
 }
}

Note that the TimePrinter class is now located inside the TalkingClock class.
This does not mean that every TalkingClock has a TimePrinter instance
field. As you will see, the TimePrinter objects are constructed by methods of
the TalkingClock class.

Here is the TimePrinter class in greater detail. Note that the
actionPerformed method checks the beep flag before emitting a beep.

public class TimePrinter implements ActionListener
{
 public void actionPerformed(ActionEvent event)
 {
 System.out.println("At the tone, the time is "
 + Instant.ofEpochMilli(event.getWhen()));
 if (beep) Toolkit.getDefaultToolkit().beep();
 }
}

Something surprising is going on. The TimePrinter class has no instance
field or variable named beep. Instead, beep refers to the field of the
TalkingClock object that created this TimePrinter. As you can see, an inner

class method gets to access both its own instance fields and those of the
outer object creating it.

For this to work, an object of an inner class always gets an implicit reference
to the object that created it (see Figure 6.3).

This reference is invisible in the definition of the inner class. However, to
illuminate the concept, let us call the reference to the outer object outer.
Then the actionPerformed method is equivalent to the following:

public void actionPerformed(ActionEvent event)
{
 System.out.println("At the tone, the time is "
 + Instant.ofEpochMilli(event.getWhen()));

 if (outer.beep) Toolkit.getDefaultToolkit().beep();
}

The outer class reference is set in the constructor. The compiler modifies all
inner class constructors, adding a parameter for the outer class reference.
The TimePrinter class defines no constructors; therefore, the compiler
synthesizes a no-argument constructor, generating code like this:

Figure 6.3 An inner class object has a reference to an outer class object.

public TimePrinter(TalkingClock clock) // automatically
generated code
{

 outer = clock;
}

Again, please note that outer is not a Java keyword. We just use it to
illustrate the mechanism involved in an inner class.

When a TimePrinter object is constructed in the start method, the compiler
passes the this reference to the current talking clock into the constructor:

var listener = new TimePrinter(this); // parameter
automatically added

Listing 6.7 shows the complete program that tests the inner class. Have
another look at the access control. Had the TimePrinter class been a regular
class, it would have needed to access the beep flag through a public method
of the TalkingClock class. Using an inner class is an improvement. There is
no need to provide accessors that are of interest only to one other class.

 NOTE:
We could have declared the TimePrinter class as private. Then only
TalkingClock methods would be able to construct TimePrinter objects. Only
inner classes can be private. Regular classes always have either package or
public access.

Listing 6.7 innerClass/InnerClassTest.java

 1 package innerClass;
 2

 3 import java.awt.*;
 4 import java.awt.event.*;
 5 import java.time.*;
 6
 7 import javax.swing.*;
 8
 9 /**
10 * This program demonstrates the use of inner classes.
11 * @version 1.11 2017-12-14
12 * @author Cay Horstmann
13 */
14 public class InnerClassTest
15 {
16 public static void main(String[] args)
17 {
18 var clock = new TalkingClock(1000, true);
19 clock.start();
20
21 // keep program running until the user selects "OK"
22 JOptionPane.showMessageDialog(null, "Quit program?");
23 System.exit(0);
24 }
25 }
26
27 /**
28 * A clock that prints the time in regular intervals.
29 */
30 class TalkingClock
31 {
32 private int interval;
33 private boolean beep;
34
35 /**
36 * Constructs a talking clock
37 * @param interval the interval between messages (in
milliseconds)
38 * @param beep true if the clock should beep
39 */
40 public TalkingClock(int interval, boolean beep)

41 {
42 this.interval = interval;
43 this.beep = beep;
44 }
45
46 /**
47 * Starts the clock.
48 */
49 public void start()
50 {
51 var listener = new TimePrinter();
52 var timer = new Timer(interval, listener);
53 timer.start();
54 }
55
56 public class TimePrinter implements ActionListener
57 {
58 public void actionPerformed(ActionEvent event)
59 {
60 System.out.println("At the tone, the time is "
61 + Instant.ofEpochMilli(event.getWhen()));
62 if (beep) Toolkit.getDefaultToolkit().beep();
63 }
64 }
65 }

6.3.2 Special Syntax Rules for Inner Classes

In the preceding section, we explained the outer class reference of an inner
class by calling it outer. Actually, the proper syntax for the outer reference is
a bit more complex. The expression

OuterClass.this

denotes the outer class reference. For example, you can write the
actionPerformed method of the TimePrinter inner class as

public void actionPerformed(ActionEvent event)
{
 . . .
 if (TalkingClock.this.beep)
Toolkit.getDefaultToolkit().beep();
}

Conversely, you can write the inner object constructor more explicitly, using
the syntax

outerObject.new InnerClass(construction parameters)

For example:

ActionListener listener = this.new TimePrinter();

Here, the outer class reference of the newly constructed TimePrinter object
is set to the this reference of the method that creates the inner class object.
This is the most common case. As always, the this. qualifier is redundant.
However, it is also possible to set the outer class reference to another object
by explicitly naming it. For example, since TimePrinter is a public inner
class, you can construct a TimePrinter for any talking clock:

var jabberer = new TalkingClock(1000, true);
TalkingClock.TimePrinter listener = jabberer.new TimePrinter();

Note that you refer to an inner class as

OuterClass.InnerClass

when it occurs outside the scope of the outer class.

 NOTE:

Any static fields declared in an inner class must be final and initialized with
a compile-time constant. If the field was not a constant, it might not be
unique.

An inner class cannot have static methods. The Java Language
Specification gives no reason for this limitation. It would have been possible
to allow static methods that only access static fields and methods from the
enclosing class. Apparently, the language designers decided that the
complexities outweighed the benefits.

6.3.3 Are Inner Classes Useful? Actually Necessary? Secure?

When inner classes were added to the Java language in Java 1.1, many
programmers considered them a major new feature that was out of character
with the Java philosophy of being simpler than C++. The inner class syntax
is undeniably complex. (It gets more complex as we study anonymous inner
classes later in this chapter.) It is not obvious how inner classes interact with
other features of the language, such as access control and security.

Inner classes are translated into regular class files with $ (dollar signs)
separating the outer and inner class names. For example, the TimePrinter
class inside the TalkingClock class is translated to a class file
TalkingClock$TimePrinter.class. To see this at work, try the following
experiment: run the ReflectionTest program of Chapter 5, and give it the
class TalkingClock$TimePrinter to reflect upon. Alternatively, simply use
the javap utility:

javap -private ClassName

 NOTE:
If you use UNIX, remember to escape the $ character when you supply the
class name on the command line. That is, run the ReflectionTest or javap
program as

java --classpath .:../v1ch05 reflection.ReflectionTest \
 innerClass.TalkingClock\$TimePrinter

or

javap -private innerClass.TalkingClock\$TimePrinter

You will get the following printout:

public class innerClass.TalkingClock$TimePrinter
 implements java.awt.event.ActionListener
{
 final innerClass.TalkingClock this$0;
 public
innerClass.TalkingClock$TimePrinter(innerClass.TalkingClock);
 public void actionPerformed(java.awt.event.ActionEvent);
}

You can plainly see that the compiler has generated an additional instance
field, this$0, for the reference to the outer class. (The name this$0 is
synthesized by the compiler—you cannot refer to it in your code.) You can
also see the TalkingClock parameter for the constructor.

If the compiler can automatically do this transformation, couldn’t you
simply program the same mechanism by hand? Let’s try it. We would make
TimePrinter a regular class, outside the TalkingClock class. When
constructing a TimePrinter object, we pass it the this reference of the object
that is creating it.

class TalkingClock
{
 . . .
 public void start()
 {
 var listener = new TimePrinter(this);

 var timer = new Timer(interval, listener);
 timer.start();
 }
}
class TimePrinter implements ActionListener
{
 private TalkingClock outer;
 . . .
 public TimePrinter(TalkingClock clock)
 {
 outer = clock;
 }
}

Now let us look at the actionPerformed method. It needs to access
outer.beep.

if (outer.beep) . . . // ERROR

Here we run into a problem. The inner class can access the private data of
the outer class, but our external TimePrinter class cannot.

Thus, inner classes are genuinely more powerful than regular classes
because they have more access privileges.

You may well wonder how inner classes manage to acquire those added
access privileges. Before Java 11, inner classes were purely a phenomenon
of the compiler, and the virtual machine did not have any special knowledge
about them. In those days, spying on the TalkingClock class with the
ReflectionTest pro-gram or with javap and the -private option showed:

class TalkingClock
{
 private int interval;
 private boolean beep;
 public TalkingClock(int, boolean);
 static boolean access$0(TalkingClock); // Prior to Java 11

 public void start();
}

Notice the static access$0 method that the compiler added to the outer class.
It returns the beep field of the object that is passed as a parameter. (The
method name might be slightly different, such as access$000, depending on
the compiler.)

That was a potential security risk, and it made life complicated for tools that
analyze class files. As of Java 11, the virtual machine understands nesting
relationships between classes, and the access methods are no longer
generated.

6.3.4 Local Inner Classes

If you look carefully at the code of the TalkingClock example, you will find
that you need the name of the type TimePrinter only once: when you create
an object of that type in the start method.

In a situation like this, you can define the class locally in a single method.

public void start()
{
 class TimePrinter implements ActionListener
 {
 public void actionPerformed(ActionEvent event)
 {
 System.out.println("At the tone, the time is "
 + Instant.ofEpochMilli(event.getWhen()));
 if (beep) Toolkit.getDefaultToolkit().beep();
 }
 }
 var listener = new TimePrinter();
 var timer = new Timer(interval, listener);
 timer.start();
}

Local classes are never declared with an access specifier (that is, public or
private). Their scope is always restricted to the block in which they are
declared.

Local classes have one great advantage: They are completely hidden from
the outside world—not even other code in the TalkingClock class can access
them. No method except start has any knowledge of the TimePrinter class.

6.3.5 Accessing Variables from Outer Methods

Local classes have another advantage over other inner classes. Not only can
they access the fields of their outer classes; they can even access local
variables! However, those local variables must be effectively final. That
means, they may never change once they have been assigned.

Here is a typical example. Let’s move the interval and beep parameters
from the TalkingClock constructor to the start method.

public void start(int interval, boolean beep)
{
 class TimePrinter implements ActionListener
 {
 public void actionPerformed(ActionEvent event)
 {
 System.out.println("At the tone, the time is "
 + Instant.ofEpochMilli(event.getWhen()));
 if (beep) Toolkit.getDefaultToolkit().beep();
 }
 }
 var listener = new TimePrinter();
 var timer = new Timer(interval, listener);
 timer.start();
}

Note that the TalkingClock class no longer needs to store a beep instance
field. It simply refers to the beep parameter variable of the start method.

Maybe this should not be so surprising. The line

if (beep) . . .

is, after all, ultimately inside the start method, so why shouldn’t it have
access to the value of the beep variable?

To see why there is a subtle issue here, let’s consider the flow of control
more closely.

1. The start method is called.
2. The object variable listener is initialized by a call to the constructor of

the inner class TimePrinter.
3. The listener reference is passed to the Timer constructor, the timer is

started, and the start method exits. At this point, the beep parameter
variable of the start method no longer exists.

4. A second later, the actionPerformed method executes if (beep) . . .

For the code in the actionPerformed method to work, the TimePrinter class
must have copied the beep field as a local variable of the start method,
before the beep parameter value went away. That is indeed exactly what
happens. In our example, the compiler synthesizes the name
TalkingClock$1TimePrinter for the local inner class. If you use the
ReflectionTest program or the javap utility again to spy on the
TalkingClock$1TimePrinter class, you will get the following output:

class TalkingClock$1TimePrinter
{
 TalkingClock$1TimePrinter();
 public void actionPerformed(java.awt.event.ActionEvent);
 final boolean val$beep;
 final TalkingClock this$0;
}

When an object is created, the current value of the beep variable is stored in
the val$beep field. As of Java 11, this happens with “nest mate” access.
Previously, the inner class constructor had an additional parameter to set the

field. Either way, the inner class field persists even if the local variable goes
out of scope.

6.3.6 Anonymous Inner Classes

When using local inner classes, you can often go a step further. If you want
to make only a single object of this class, you don’t even need to give the
class a name. Such a class is called an anonymous inner class.

public void start(int interval, boolean beep)
{
 var listener = new ActionListener()
 {
 public void actionPerformed(ActionEvent event)
 {
 System.out.println("At the tone, the time is "
 + Instant.ofEpochMilli(event.getWhen()));
 if (beep) Toolkit.getDefaultToolkit().beep();
 }
 };
 var timer = new Timer(interval, listener);
 timer.start();
}

This syntax is very cryptic indeed. What it means is this: Create a new object
of a class that implements the ActionListener interface, where the required
method actionPerformed is the one defined inside the braces { }.

In general, the syntax is

new SuperType(construction parameters)
 {

inner class methods and data
 }

Here, SuperType can be an interface, such as ActionListener; then, the inner
class implements that interface. SuperType can also be a class; then, the

inner class extends that class.

An anonymous inner class cannot have constructors because the name of a
constructor must be the same as the name of a class, and the class has no
name. Instead, the construction parameters are given to the superclass
constructor. In particular, whenever an inner class implements an interface, it
cannot have any construction parameters. Nevertheless, you must supply a
set of parentheses as in

new InterfaceType()
 {

 methods and data
 }

You have to look carefully to see the difference between the construction of
a new object of a class and the construction of an object of an anonymous
inner class extending that class.

var queen = new Person("Mary");
 // a Person object
var count = new Person("Dracula") { . . . };
 // an object of an inner class extending Person

If the closing parenthesis of the construction parameter list is followed by an
opening brace, then an anonymous inner class is being defined.

 NOTE:
Even though an anonymous class cannot have constructors, you can provide
an object initialization block:

var count = new Person("Dracula")
 {

 { initialization }
 . . .
 };

Listing 6.8 contains the complete source code for the talking clock program
with an anonymous inner class. If you compare this program with Listing
6.7, you will see that in this case, the solution with the anonymous inner
class is quite a bit shorter and, hopefully, with some practice, as easy to
comprehend.

For many years, Java programmers routinely used anonymous inner classes
for event listeners and other callbacks. Nowadays, you are better off using a
lambda expression. For example, the start method from the beginning of
this section can be written much more concisely with a lambda expression
like this:

public void start(int interval, boolean beep)
{
 var timer = new Timer(interval, event -> {
System.out.println(
 "At the tone, the time is " +
Instant.ofEpochMilli(event.getWhen()));
 if (beep) Toolkit.getDefaultToolkit().beep(); });
 timer.start();
}

 NOTE:
If you store an anonymous class instance in a variable defined with var, the
variable knows about added methods or fields:

var bob = new Object() { String name = "Bob"; }
System.out.println(bob.name);

If you declare bob as having type Object, then bob.name does not compile.

The object constructed with new Object() { String name = "Bob"; } has
type “Object with a Sting name field”. This is a non-denotable type—a type
that you cannot express with Java syntax. Nevertheless, the compiler
understands the type, and it can set it as the type for the bob variable.

 NOTE:
The following trick, called double brace initialization, takes advantage of
the inner class syntax. Suppose you want to construct an array list and pass
it to a method:

var friends = new ArrayList<String>();
friends.add("Harry");
friends.add("Tony");
invite(friends);

If you don’t need the array list again, it would be nice to make it
anonymous. But then how can you add the elements? Here is how:

invite(new ArrayList<String>() {{ add("Harry"); add("Tony");
}});

Note the double braces. The outer braces make an anonymous subclass of
ArrayList. The inner braces are an object initialization block (see Chapter
4).

In practice, this trick is rarely useful. More likely than not, the invite
method is willing to accept any List<String>, and you can simply pass
List.of("Harry", "Tony").

 CAUTION:
It is often convenient to make an anonymous subclass that is almost, but not
quite, like its superclass. But you need to be careful with the equals method.
In Chapter 5, I recommended that your equals methods use a test

if (getClass() != other.getClass()) return false;

An anonymous subclass will fail this test.

 TIP:
When you produce logging or debugging messages, you often want to
include the name of the current class, such as

System.err.println("Something awful happened in " +
getClass());

But that fails in a static method. After all, the call to getClass calls
this.getClass(), and a static method has no this. Use the following
expression instead:

new Object(){}.getClass().getEnclosingClass() // gets class of
static method

Here, new Object(){} makes an anonymous object of an anonymous
subclass of Object, and getEnclosingClass gets its enclosing class—that is,
the class containing the static method.

Listing 6.8 anonymousInnerClass/AnonymousInnerClassTest.java

 1 package anonymousInnerClass;
 2
 3 import java.awt.*;
 4 import java.awt.event.*;
 5 import java.time.*;
 6
 7 import javax.swing.*;
 8
 9 /**
10 * This program demonstrates anonymous inner classes.
11 * @version 1.12 2017-12-14
12 * @author Cay Horstmann
13 */
14 public class AnonymousInnerClassTest
15 {
16 public static void main(String[] args)
17 {
18 var clock = new TalkingClock();
19 clock.start(1000, true);
20
21 // keep program running until the user selects "OK"
22 JOptionPane.showMessageDialog(null, "Quit program?");
23 System.exit(0);
24 }
25 }
26
27 /**
28 * A clock that prints the time in regular intervals.
29 */
30 class TalkingClock
31 {
32 /**
33 * Starts the clock.
34 * @param interval the interval between messages (in
milliseconds)
35 * @param beep true if the clock should beep
36 */
37 public void start(int interval, boolean beep)
38 {

39 var listener = new ActionListener()
40 {
41 public void actionPerformed(ActionEvent event)
42 {
43 System.out.println("At the tone, the time is "
44 + Instant.ofEpochMilli(event.getWhen()));
45 if (beep) Toolkit.getDefaultToolkit().beep();
46 }
47 };
48 var timer = new Timer(interval, listener);
49 timer.start();
50 }
51 }

6.3.7 Static Inner Classes

Occasionally, you may want to use an inner class simply to hide one class
inside another—but you don’t need the inner class to have a reference to the
outer class object. You can suppress the generation of that reference by
declaring the inner class static.

Here is a typical example of where you would want to do this. Consider the
task of computing the minimum and maximum value in an array. Of course,
you write one method to compute the minimum and another method to
compute the maximum. When you call both methods, the array is traversed
twice. It would be more efficient to traverse the array only once, computing
both the minimum and the maximum simultaneously.

double min = Double.POSITIVE_INFINITY;
double max = Double.NEGATIVE_INFINITY;
for (double v : values)
{
 if (min > v) min = v;
 if (max < v) max = v;
}

However, the method must return two numbers. We can achieve that by
defining a class Pair that holds two values:

class Pair
{
 private double first;
 private double second;
 public Pair(double f, double s)
 {
 first = f;
 second = s;
 }
 public double getFirst() { return first; }
 public double getSecond() { return second; }
}

The minmax method can then return an object of type Pair.

class ArrayAlg
{
 public static Pair minmax(double[] values)
 {
 . . .
 return new Pair(min, max);
 }
}

The caller of the method uses the getFirst and getSecond methods to
retrieve the answers:

Pair p = ArrayAlg.minmax(d);
System.out.println("min = " + p.getFirst());
System.out.println("max = " + p.getSecond());

Of course, the name Pair is an exceedingly common name, and in a large
project, it is quite possible that some other programmer had the same bright
idea—but made a Pair class that contains a pair of strings. We can solve this

potential name clash by making Pair a public inner class inside ArrayAlg.
Then the class will be known to the public as ArrayAlg.Pair:

ArrayAlg.Pair p = ArrayAlg.minmax(d);

However, unlike the inner classes used in previous examples, we do not
want to have a reference to any other object inside a Pair object. That
reference can be suppressed by declaring the inner class static:

class ArrayAlg
{
 public static class Pair
 {
 . . .
 }
 . . .
}

Of course, only inner classes can be declared static. A static inner class is
exactly like any other inner class, except that an object of a static inner class
does not have a reference to the outer class object that generated it. In our
example, we must use a static inner class because the inner class object is
constructed inside a static method:

public static Pair minmax(double[] d)
{
 . . .
 return new Pair(min, max);
}

Had the Pair class not been declared as static, the compiler would have
complained that there was no implicit object of type ArrayAlg available to
initialize the inner class object.

 NOTE:
Use a static inner class whenever the inner class does not need to access an
outer class object. Some programmers use the term nested class to describe
static inner classes.

 NOTE:
Unlike regular inner classes, static inner classes can have static fields and
methods.

 NOTE:
Classes that are declared inside an interface are automatically static and
public.

 NOTE:
Interfaces, records, and enumerations that are declared inside a class are
automatically static.

Listing 6.9 contains the complete source code of the ArrayAlg class and the
nested Pair class.

Listing 6.9 staticInnerClass/StaticInnerClassTest.java

 1 package staticInnerClass;
 2
 3 /**
 4 * This program demonstrates the use of static inner classes.
 5 * @version 1.02 2015-05-12
 6 * @author Cay Horstmann
 7 */
 8 public class StaticInnerClassTest
 9 {
10 public static void main(String[] args)
11 {
12 var values = new double[20];
13 for (int i = 0; i < values.length; i++)
14 values[i] = 100 * Math.random();
15 ArrayAlg.Pair p = ArrayAlg.minmax(values);
16 System.out.println("min = " + p.getFirst());
17 System.out.println("max = " + p.getSecond());
18 }
19 }
20
21 class ArrayAlg
22 {
23 /**
24 * A pair of floating-point numbers
25 */
26 public static class Pair
27 {
28 private double first;
29 private double second;
30
31 /**
32 * Constructs a pair from two floating-point numbers
33 * @param f the first number
34 * @param s the second number
35 */
36 public Pair(double f, double s)
37 {
38 first = f;
39 second = s;

40 }
41
42 /**
43 * Returns the first number of the pair
44 * @return the first number
45 */
46 public double getFirst()
47 {
48 return first;
49 }
50
51 /**
52 * Returns the second number of the pair
53 * @return the second number
54 */
55 public double getSecond()
56 {
57 return second;
58 }
59 }
60
61 /**
62 * Computes both the minimum and the maximum of an array
63 * @param values an array of floating-point numbers
64 * @return a pair whose first element is the minimum and
whose second element
65 * is the maximum
66 */
67 public static Pair minmax(double[] values)
68 {
69 double min = Double.POSITIVE_INFINITY;
70 double max = Double.NEGATIVE_INFINITY;
71 for (double v : values)
72 {
73 if (min > v) min = v;
74 if (max < v) max = v;
75 }
76 return new Pair(min, max);

77 }
78 }

6.4 Service Loaders

Sometimes, you develop an application with a service architecture. There are
platforms that encourage this approach, such as OSGi (http://osgi.org),
which are used in development environments, application servers, and other
complex applications. Such platforms go well beyond the scope of this book,
but the JDK also offers a simple mechanism for loading services, described
here. This mechanism is well supported by the Java Platform Module
System—see Chapter 9 of Volume II.

Often, when providing a service, a program wants to give the service
designer some freedom of how to implement the service’s features. It can
also be desirable to have multiple implementations to choose from. The
ServiceLoader class makes it easy to load services that conform to a
common interface.

Define an interface (or, if you prefer, a superclass) with the methods that
each instance of the service should provide. For example, suppose your
service provides encryption.

package serviceLoader;
public interface Cipher
{
 byte[] encrypt(byte[] source, byte[] key);
 byte[] decrypt(byte[] source, byte[] key);
 int strength();
}

The service provider supplies one or more classes that implement this
service, for example

package serviceLoader.impl;
public class CaesarCipher implements Cipher
{

http://osgi.org/

 public byte[] encrypt(byte[] source, byte[] key)
 {
 var result = new byte[source.length];
 for (int i = 0; i < source.length; i++)
 result[i] = (byte)(source[i] + key[0]);
 return result;
 }
 public byte[] decrypt(byte[] source, byte[] key)
 {
 return encrypt(source, new byte[] { (byte) -key[0] });
 }
 public int strength() { return 1; }
}

The implementing classes can be in any package, not necessarily the same
package as the service interface. Each of them must have a no-argument
constructor.

Now add the names of the classes to a UTF-8 encoded text file in a file in the
META-INF/services directory whose name matches the fully qualified
interface name. In our example, the file META-

INF/services/serviceLoader.Cipher would contain the line

serviceLoader.impl.CaesarCipher

In this example, we provide a single implementing class. You could also
provide multiple classes and later pick among them.

With this preparation done, the program initializes a service loader as
follows:

public static ServiceLoader<Cipher> cipherLoader =
ServiceLoader.load(Cipher.class);

This should be done just once in the program.

The iterator method of the service loader returns an iterator through all
provided implementations of the service. (See Chapter 9 for more
information about iterators.) It is easiest to use an enhanced for loop to
traverse them. In the loop, pick an appropriate object to carry out the service.

public static Cipher getCipher(int minStrength)
{
 for (Cipher cipher : cipherLoader) // implicitly calls
cipherLoader.iterator()
 {
 if (cipher.strength() >= minStrength) return cipher;
 }
 return null;
}

Alternatively, you can use streams (see Chapter 1 of Volume II) to locate the
desired service. The stream method yields a stream of
ServiceLoader.Provider instances. That interface has methods type and get
for getting the provider class and the provider instance. If you select a
provider by type, then you just call type and no service instances are
unnecessarily instantiated.

public static Optional<Cipher> getCipher2(int minStrength)
{
 return cipherLoader.stream()
 .filter(descr -> descr.type() ==
serviceLoader.impl.CaesarCipher.class)
 .findFirst()
 .map(ServiceLoader.Provider::get);
}

Finally, if you are willing to take any service instance, simply call
findFirst:

Optional<Cipher> cipher = cipherLoader.findFirst();

The Optional class is explained in Chapter 1 of Volume II.

java.util.ServiceLoader<S> 1.6

• static <S> ServiceLoader<S> load(Class<S> service)
creates a service loader for loading the classes that implement the
given service interface.

• Iterator<S> iterator()
yields an iterator that lazily loads the service classes. That is, a class
is loaded whenever the iterator advances.

• Stream<ServiceLoader.Provider<S>> stream() 9
returns a stream of provider descriptors, so that a provider of a
desired class can be loaded lazily.

• Optional<S> findFirst() 9
finds the first available service provider, if any.

java.util.ServiceLoader.Provider<S> 9

• Class<? extends S> type()
gets the type of this provider.

• S get()
gets an instance of this provider.

6.5 Proxies

In the final section of this chapter, we discuss proxies. You can use a proxy
to create, at runtime, new classes that implement a given set of interfaces.
Proxies are only necessary when you don’t yet know at compile time which
interfaces you need to implement. This is not a common situation for
application programmers, so feel free to skip this section if you are not

interested in advanced wizardry. However, for certain systems programming
applications, the flexibility that proxies offer can be very important.

6.5.1 When to Use Proxies

Suppose you want to construct an object of a class that implements one or
more interfaces whose exact nature you may not know at compile time. This
is a difficult problem. To construct an actual class, you can simply use the
newInstance method or use reflection to find a constructor. But you can’t
instantiate an interface. You need to define a new class in a running program.

To overcome this problem, some programs generate code, place it into a file,
invoke the compiler, and then load the resulting class file. Naturally, this is
slow, and it also requires deployment of the compiler together with the
program. The proxy mechanism is a better solution. The proxy class can
create brand-new classes at runtime. Such a proxy class implements the
interfaces that you specify. In particular, the proxy class has the following
methods:

• All methods required by the specified interfaces; and
• All methods defined in the Object class (toString, equals, and so on).

However, you cannot define new code for these methods at runtime. Instead,
you must supply an invocation handler. An invocation handler is an object
of any class that implements the InvocationHandler interface. That interface
has a single method:

Object invoke(Object proxy, Method method, Object[] args)

Whenever a method is called on the proxy object, the invoke method of the
invocation handler gets called, with the Method object and parameters of the
original call. The invocation handler must then figure out how to handle the
call.

6.5.2 Creating Proxy Objects

To create a proxy object, use the newProxyInstance method of the Proxy
class. The method has three parameters:

• A class loader. As part of the Java security model, different class loaders
can be used for platform and application classes, classes that are
downloaded from the Internet, and so on. We will discuss class loaders in
Chapter 9 of Volume II. In this example, we specify the “system class
loader” that loads platform and application classes.

• An array of Class objects, one for each interface to be implemented.
• An invocation handler.

There are two remaining questions. How do we define the handler? And
what can we do with the resulting proxy object? The answers depend, of
course, on the problem that we want to solve with the proxy mechanism.
Proxies can be used for many purposes, such as

• Routing method calls to remote servers
• Associating user interface events with actions in a running program
• Tracing method calls for debugging purposes

In our example program, we use proxies and invocation handlers to trace
method calls. We define a TraceHandler wrapper class that stores a wrapped
object. Its invoke method simply prints the name and parameters of the
method to be called and then calls the method with the wrapped object as the
implicit parameter.

class TraceHandler implements InvocationHandler
{
 private Object target;
 public TraceHandler(Object t)
 {
 target = t;
 }
 public Object invoke(Object proxy, Method m, Object[] args)
 throws Throwable
 {

 // print method name and parameters
 . . .
 // invoke actual method
 return m.invoke(target, args);
 }
}

Here is how you construct a proxy object that causes the tracing behavior
whenever one of its methods is called:

Object value = . . .;
// construct wrapper
var handler = new TraceHandler(value);
// construct proxy for one or more interfaces
var interfaces = new Class[] { Comparable.class};
Object proxy = Proxy.newProxyInstance(
 ClassLoader.getSystemClassLoader(),
 new Class[] { Comparable.class } , handler);

Now, whenever a method from one of the interfaces is called on proxy, the
method name and parameters are printed out and the method is then invoked
on value.

In the program shown in Listing 6.10, we use proxy objects to trace a binary
search. We fill an array with proxies to the integers 1 . . . 1000. Then we
invoke the binarySearch method of the Arrays class to search for a random
integer in the array. Finally, we print the matching element.

var elements = new Object[1000];
// fill elements with proxies for the integers 1 . . . 1000
for (int i = 0; i < elements.length; i++)
{
 Integer value = i + 1;
 elements[i] = Proxy.newProxyInstance(. . .); // proxy for
value;
}
// construct a random integer
Integer key = (int) (Math.random() * elements.length) + 1;

// search for the key
int result = Arrays.binarySearch(elements, key);
// print match if found
if (result >= 0) System.out.println(elements[result]);

The Integer class implements the Comparable interface. The proxy objects
belong to a class that is defined at runtime. (It has a name such as $Proxy0.)
That class also implements the Comparable interface. However, its compareTo
method calls the invoke method of the proxy object’s handler.

 NOTE:
As you saw earlier in this chapter, the Integer class actually implements
Comparable<Integer>. However, at runtime, all generic types are erased and
the proxy is constructed with the class object for the raw Comparable class.

The binarySearch method makes calls like this:

if (elements[i].compareTo(key) < 0) . . .

Since we filled the array with proxy objects, the compareTo calls the invoke
method of the TraceHandler class. That method prints the method name and
parameters and then invokes compareTo on the wrapped Integer object.

Finally, at the end of the sample program, we call

System.out.println(elements[result]);

The println method calls toString on the proxy object, and that call is also
redirected to the invocation handler.

Here is the complete trace of a program run:

500.compareTo(288)
250.compareTo(288)
375.compareTo(288)
312.compareTo(288)
281.compareTo(288)
296.compareTo(288)
288.compareTo(288)
288.toString()

You can see how the binary search algorithm homes in on the key by cutting
the search interval in half in every step. Note that the toString method is
proxied even though it does not belong to the Comparable interface—as you
will see in the next section, certain Object methods are always proxied.

Listing 6.10 proxy/ProxyTest.java

 1 package proxy;
 2
 3 import java.lang.reflect.*;
 4 import java.util.*;
 5
 6 /**
 7 * This program demonstrates the use of proxies.
 8 * @version 1.02 2021-06-16
 9 * @author Cay Horstmann
10 */
11 public class ProxyTest
12 {
13 public static void main(String[] args)
14 {
15 var elements = new Object[1000];
16
17 // fill elements with proxies for the integers 1 . . .
1000
18 for (int i = 0; i < elements.length; i++)
19 {
20 Integer value = i + 1;
21 var handler = new TraceHandler(value);

22 Object proxy = Proxy.newProxyInstance(
23 ClassLoader.getSystemClassLoader(),
24 new Class[] { Comparable.class }, handler);
25 elements[i] = proxy;
26 }
27
28 // construct a random integer
29 Integer key = (int) (Math.random() * elements.length) +
1;
30
31 // search for the key
32 int result = Arrays.binarySearch(elements, key);
33
34 // print match if found
35 if (result >= 0) System.out.println(elements[result]);
36 }
37 }
38
39 /**
40 * An invocation handler that prints out the method name and
parameters, then
41 * invokes the original method
42 */
43 class TraceHandler implements InvocationHandler
44 {
45 private Object target;
46
47 /**
48 * Constructs a TraceHandler
49 * @param t the implicit parameter of the method call
50 */
51 public TraceHandler(Object t)
52 {
53 target = t;
54 }
55
56 public Object invoke(Object proxy, Method m, Object[] args)
throws Throwable
57 {

58 // print implicit argument
59 System.out.print(target);
60 // print method name
61 System.out.print("." + m.getName() + "(");
62 // print explicit arguments
63 if (args != null)
64 {
65 for (int i = 0; i < args.length; i++)
66 {
67 System.out.print(args[i]);
68 if (i < args.length - 1) System.out.print(", ");
69 }
70 }
71 System.out.println(")");
72
73 // invoke actual method
74 return m.invoke(target, args);
75 }
76 }

6.5.3 Properties of Proxy Classes

Now that you have seen proxy classes in action, let’s go over some of their
properties. Remember that proxy classes are created on the fly in a running
program. However, once they are created, they are regular classes, just like
any other classes in the virtual machine.

All proxy classes extend the class Proxy. A proxy class has only one instance
field—the invocation handler, which is defined in the Proxy superclass. Any
additional data required to carry out the proxy objects’ tasks must be stored
in the invocation handler. For example, when we proxied Comparable objects
in the program shown in Listing 6.10, the TraceHandler wrapped the actual
objects.

All proxy classes override the toString, equals, and hashCode methods of
the Object class. Like all proxy methods, these methods simply call invoke
on the invocation handler. The other methods of the Object class (such as
clone and getClass) are not redefined.

The names of proxy classes are not defined. The Proxy class in Oracle’s
virtual machine generates class names that begin with the string $Proxy.

There is only one proxy class for a particular class loader and ordered set of
interfaces. That is, if you call the newProxyInstance method twice with the
same class loader and interface array, you get two objects of the same class.
You can also obtain that class with the getProxyClass method:

Class proxyClass = Proxy.getProxyClass(null, interfaces);

A proxy class is always public and final. If all interfaces that the proxy
class implements are public, the proxy class does not belong to any
particular package. Otherwise, all non-public interfaces must belong to the
same package, and the proxy class will also belong to that package.

You can test whether a particular Class object represents a proxy class by
calling the isProxyClass method of the Proxy class.

 NOTE:
Calling a default method of a proxy triggers the invocation handler. To
actually invoke the method, use the static invokeDefault method of the
InvocationHandler interface. For example, here is an invocation handler
that calls the default methods and passes the abstract methods to another
target.

InvocationHandler handler = (proxy, method, args) ->
 {
 if (method.isDefault())
 return InvocationHandler.invokeDefault(proxy, method,
args)
 else
 return method.invoke(target, args);
 }

java.lang.reflect.InvocationHandler 1.3

• Object invoke(Object proxy, Method method, Object[] args)
define this method to contain the action that you want carried out
whenever a method was invoked on the proxy object.

• static Object invokeDefault(Object proxy, Method method,

Object... args) 16
Invokes a default method of the proxy instance with the given
arguments, bypassing the invocation handler.

java.lang.reflect.Proxy 1.3

• static Class<?> getProxyClass(ClassLoader loader, Class<?>...
interfaces)

returns the proxy class that implements the given interfaces.
• static Object newProxyInstance(ClassLoader loader, Class<?>[]
interfaces, InvocationHandler handler)

constructs a new instance of the proxy class that implements the
given interfaces. All methods call the invoke method of the given
handler object.

• static boolean isProxyClass(Class<?> cl)
returns true if cl is a proxy class.

This ends the final chapter on the object-oriented features of the Java
programming language. Interfaces, lambda expressions, and inner classes are
concepts that you will encounter frequently, whereas cloning, service
loaders, and proxies are advanced techniques that are of interest mainly to
library designers and tool builders, not application programmers. You are
now ready to learn how to deal with exceptional situations in your programs
in Chapter 7.

Chapter 7. Exceptions, Assertion, and Logging

In this chapter

• 7.1 Dealing with Errors
• 7.2 Catching Exceptions
• 7.3 Tips for Using Exceptions
• 7.4 Using Assertions
• 7.5 Logging
• 7.6 Debugging Tips

In a perfect world, users would never enter data in the wrong form, files they
choose to open would always exist, and code would never have bugs. So far,
I’ve mostly presented code as if we all lived in this kind of perfect world. It
is now time to turn to the mechanisms the Java programming language has
for dealing with the real world of bad data and buggy code.

Encountering errors is unpleasant. If a user loses all the work he or she did
during a program session because of a programming mistake or some
external circumstance, that user may forever turn away from your program.
At the very least, you must:

• Notify the user of an error;
• Save all work; and
• Allow users to gracefully exit the program.

For exceptional situations, such as bad input data with the potential to bomb
the program, Java uses a form of error trapping called, naturally enough,
exception handling. Exception handling in Java is similar to that in C++ or
Delphi. The first part of this chapter covers Java’s exceptions.

During testing, you need to run lots of checks to make sure your program
does the right thing. But those checks can be time-consuming and
unnecessary after testing has completed. You could just remove the checks

and stick them back in when additional testing is required—but that is
tedious. The second part of this chapter shows you how to use the assertion
facility for selectively activating checks.

When your program does the wrong thing, you can’t always communicate
with the user or terminate. Instead, you may want to record the problem for
later analysis. The third part of this chapter discusses the standard Java
logging framework.

7.1 Dealing with Errors

Suppose an error occurs while a Java program is running. The error might be
caused by a file containing wrong information, a flaky network connection,
or (I hate to mention it) use of an invalid array index or an object reference
that hasn’t yet been assigned to an object. Users expect that programs will
act sensibly when errors happen. If an operation cannot be completed
because of an error, the program ought to either

• Return to a safe state and enable the user to execute other commands; or
• Allow the user to save all work and terminate the program gracefully.

This may not be easy to do, because the code that detects (or even causes)
the error condition is usually far removed from the code that can roll back
the data to a safe state or save the user’s work and exit cheerfully. The
mission of exception handling is to transfer control from where the error
occurred to an error handler that can deal with the situation. To handle
exceptional situations in your program, you must take into account the errors
and problems that may occur. What sorts of problems do you need to
consider?

• User input errors. In addition to the inevitable typos, some users like to
blaze their own trail instead of following directions. Suppose, for example,
that a user asks to connect to a URL that is syntactically wrong. Your code
should check the syntax, but suppose it does not. Then the network layer will
complain.

• Device errors. Hardware does not always do what you want it to. The
printer may be turned off. A web page may be temporarily unavailable.

Devices will often fail in the middle of a task. For example, a printer may
run out of paper during printing.

• Physical limitations. Disks can fill up; you can run out of available
memory.

• Code errors. A method may not perform correctly. For example, it could
deliver wrong answers or use other methods incorrectly. Computing an
invalid array index, trying to find a nonexistent entry in a hash table, or
trying to pop an empty stack are all examples of a code error.

The traditional reaction to an error in a method is to return a special error
code that the calling method analyzes. For example, methods that read
information back from files often return a -1 end-of-file value marker rather
than a standard character. This can be an efficient method for dealing with
many exceptional conditions. Another common return value to denote an
error condition is the null reference.

Unfortunately, it is not always possible to return an error code. There may be
no obvious way of distinguishing valid and invalid data. A method returning
an integer cannot simply return -1 to denote the error; the value -1 might be
a perfectly valid result.

Instead, as I mentioned back in Chapter 5, Java allows every method an
alternative exit path if it is unable to complete its task in the normal way. In
this situation, the method does not return a value. Instead, it throws an object
that encapsulates the error information. Note that the method exits
immediately; it does not return its normal (or any) value. Moreover,
execution does not resume at the code that called the method; instead, the
exception-handling mechanism begins its search for an exception handler
that can deal with this particular error condition.

Exceptions have their own syntax and are part of a special inheritance
hierarchy. I’ll take up the syntax first and then give a few hints on how to use
this language feature effectively.

7.1.1 The Classification of Exceptions

In the Java programming language, an exception object is always an instance
of a class derived from Throwable. As you will soon see, you can create your
own exception classes if those built into Java do not suit your needs.

Figure 7.1 is a simplified diagram of the exception hierarchy in Java.

Figure 7.1 Exception hierarchy in Java

Notice that all exceptions descend from Throwable, but the hierarchy
immediately splits into two branches: Error and Exception.

The Error hierarchy describes internal errors and resource exhaustion
situations inside the Java runtime system. You should not throw an object of
this type. There is little you can do if such an internal error occurs, beyond
notifying the user and trying to terminate the program gracefully. These
situations are quite rare.

When doing Java programming, focus on the Exception hierarchy. The
Exception hierarchy also splits into two branches: exceptions that derive
from RuntimeException and those that do not. The general rule is this: A
RuntimeException happens because you made a programming error. Any
other exception occurs because a bad thing, such as an I/O error, happened to
your otherwise good program.

Exceptions that inherit from RuntimeException include such problems as

• A bad cast
• An out-of-bounds array access
• A null pointer access

Exceptions that do not inherit from RuntimeException include

• Trying to read past the end of a file
• Trying to open a file that doesn’t exist
• Trying to find a Class object for a string that does not denote an existing

class

The rule “If it is a RuntimeException, it was your fault” works pretty well.
You could have avoided that ArrayIndexOutOfBoundsException by testing the
array index against the array bounds. The NullPointerException would not
have happened had you checked whether the variable was null before using
it.

How about a file that doesn’t exist? Can’t you first check whether the file
exists, and then open it? Well, the file might be deleted right after you
checked for its existence. Thus, the notion of “existence” depends on the
environment, not just on your code.

The Java Language Specification calls any exception that derives from the
class Error or the class RuntimeException an unchecked exception. All other
exceptions are called checked exceptions. This is useful terminology that I
also adopt in this book. The compiler checks that you provide exception
handlers for all checked exceptions.

 NOTE:
The name RuntimeException is somewhat confusing. Of course, all of the
errors we are discussing occur at runtime. The name originated in
prehistoric times, when the “runtime” of Oak, the predecessor of Java,
generated out-of-bounds exceptions and null pointer exceptions. Presumably
I/O exceptions were produced by some other component.

 C++ NOTE:
If you are familiar with the (much more limited) exception hierarchy of the
standard C++ library, you may be really confused at this point. C++ has two
fundamental exception classes, runtime_error and logic_error. The
logic_error class is the equivalent of Java’s RuntimeException and also
denotes logical errors in the program. The runtime_error class is the base
class for exceptions caused by unpredictable problems. It is equivalent to
those exceptions in Java that are not of type RuntimeException.

7.1.2 Declaring Checked Exceptions

A Java method can throw an exception if it encounters a situation it cannot
handle. The idea is simple: A method will not only tell the Java compiler
what values it can return, it is also going to tell the compiler what can go
wrong. For example, code that attempts to read from a file knows that the file
might not exist or that it might be empty. The code that tries to process the
information in a file therefore will need to notify the compiler that it can
throw some sort of IOException.

The place in which you advertise that your method can throw an exception is
the header of the method; the header changes to reflect the checked
exceptions the method can throw. For example, here is the declaration of one

of the constructors of the FileInputStream class from the standard library.
(See Chapter 1 of Volume II for more on input and output.)

public FileInputStream(String name) throws
FileNotFoundException

The declaration says that this constructor produces a FileInputStream object
from a String parameter but that it also can go wrong in a special way—by
throwing a FileNotFoundException. If this sad state should come to pass, the
constructor call will not initialize a new FileInputStream object but instead
will throw an object of the FileNotFoundException class. If it does, the
runtime system will begin to search for an exception handler that knows how
to deal with FileNotFoundException objects.

When you write your own methods, you don’t have to advertise every
possible throwable object that your method might actually throw. To
understand when (and what) you have to advertise in the throws clause of
the methods you write, keep in mind that an exception is thrown in any of
the following four situations:

• You call a method that throws a checked exception—for example, the
FileInputStream constructor.

• You detect an error and throw a checked exception with the throw
statement (the throw statement is covered in the next section).

• You make a programming error, such as a[-1] = 0 that gives rise to an
unchecked exception (in this case, an ArrayIndexOutOfBoundsException).

• An internal error occurs in the virtual machine or runtime library.

If either of the first two scenarios occurs, you must tell the programmers who
will use your method about the possibility of an exception. Why? Any
method that throws an exception is a potential death trap. If no handler
catches the exception, the current thread of execution terminates.

As with Java methods that are part of the supplied classes, you declare that
your method may throw an exception with an exception specification in the
method header.

class MyAnimation
{
 . . .
 public Image loadImage(String s) throws IOException
 {
 . . .
 }
}

If a method might throw more than one checked exception type, you must
list all exception classes in the header. Separate them by commas, as in the
following example:

class MyAnimation
{
 . . .
 public Image loadImage(String s) throws
FileNotFoundException, EOFException
 {
 . . .
 }
}

However, you do not need to advertise internal Java errors—that is,
exceptions inheriting from Error. Any code could potentially throw those
exceptions, and they are entirely beyond your control.

Similarly, you should not advertise unchecked exceptions inheriting from

RuntimeException.
class MyAnimation
{
 . . .
 void drawImage(int i) throws ArrayIndexOutOfBoundsException
// bad style
 {
 . . .

 }
}

These runtime errors are completely under your control. If you are so
concerned about array index errors, you should spend your time fixing them
instead of advertising the possibility that they can happen.

In summary, a method must declare all the checked exceptions that it might
throw. Unchecked exceptions are either beyond your control (Error) or result
from conditions that you should not have allowed in the first place
(RuntimeException). If your method fails to faithfully declare all checked
exceptions, the compiler will issue an error message.

Of course, as you have already seen in quite a few examples, instead of
declaring the exception, you can also catch it. Then the exception won’t be
thrown out of the method, and no throws specification is necessary. You will
see later in this chapter how to decide whether to catch an exception or to
enable someone else to catch it.

 CAUTION:
If you override a method from a superclass, the checked exceptions that the
subclass method declares cannot be more general than those of the
superclass method. (It is OK to throw more specific exceptions, or not to
throw any exceptions in the subclass method.) In particular, if the superclass
method throws no checked exception at all, neither can the subclass. For
example, if you override JComponent.paintComponent, your paintComponent
method must not throw any checked exceptions, because the superclass
method doesn’t throw any.

When a method in a class declares that it throws an exception that is an
instance of a particular class, it may throw an exception of that class or of
any of its subclasses. For example, the FileInputStream constructor could
have declared that it throws an IOException. In that case, you would not
have known what kind of IOException it is; it could be a plain IOException

or an object of one of the various subclasses, such as
FileNotFoundException.

 C++ NOTE:
The throws specifier is the same as the throw specifier in C++, with one
important difference. In C++, throw specifiers are enforced at runtime, not at
compile time. That is, the C++ compiler pays no attention to exception
specifications. But if an exception is thrown in a function that is not part of
the throw list, the unexpected function is called, and, by default, the program
terminates.

Also, in C++, a function may throw any exception if no throw specification
is given. In Java, a method without a throws specifier may not throw any
checked exceptions at all.

7.1.3 How to Throw an Exception

Now, suppose something terrible has happened in your code. You have a
method, readData, that is reading in a file whose header promised

Content-length: 1024

but you got an end of file after 733 characters. You may decide this situation
is so abnormal that you want to throw an exception.

You need to decide what exception type to throw. Some kind of IOException
would be a good choice. Perusing the Java API documentation, you find an
EOFException with the description “Signals that an EOF has been reached
unexpectedly during input.” Perfect. Here is how you throw it:

throw new EOFException();

or, if you prefer,

var e = new EOFException();
throw e;

Here is how it all fits together:

String readData(Scanner in) throws EOFException
{
 . . .
 while (. . .)
 {
 if (!in.hasNext()) // EOF encountered
 {
 if (n < len)
 throw new EOFException();
 }
 . . .
 }
 return s;
}

The EOFException has a second constructor that takes a string argument. You
can put this to good use by describing the exceptional condition more
carefully.

String gripe = "Content-length: " + len + ", Received: " + n;
throw new EOFException(gripe);

As you can see, throwing an exception is easy if one of the existing
exception classes works for you. In this case:

1. Find an appropriate exception class.
2. Make an object of that class.
3. Throw it.

Once a method throws an exception, it does not return to its caller. This
means you do not have to worry about cooking up a default return value or
an error code.

 C++ NOTE:
Throwing an exception is the same in C++ and in Java, with one small
difference. In Java, you can throw only objects of subclasses of Throwable.
In C++, you can throw values of any type.

7.1.4 Creating Exception Classes

Your code may run into a problem which is not adequately described by any
of the standard exception classes. In this case, it is easy enough to create
your own exception class. Just derive it from Exception, or from a child
class of

Exception such as IOException. It is customary to give both a default
constructor and a constructor that contains a detailed message. (The
toString method of the Throwable superclass returns a string containing that
detailed message, which is handy for debugging.)

class FileFormatException extends IOException
{
 public FileFormatException() {}
 public FileFormatException(String gripe)
 {
 super(gripe);
 }
}

Now you are ready to throw your very own exception type.

String readData(Scanner in) throws FileFormatException
{
 . . .
 while (. . .)
 {
 if (ch == -1) // EOF encountered
 {
 if (n < len)
 throw new FileFormatException();
 }
 . . .
 }
 return s;
}

java.lang.Throwable 1.0

• Throwable()
constructs a new Throwable object with no detailed message.

• Throwable(String message)
constructs a new Throwable object with the specified detailed
message. By convention, all derived exception classes support both a
default constructor and a constructor with a detailed message.

• String getMessage()
gets the detailed message of the Throwable object.

7.2 Catching Exceptions

You now know how to throw an exception. It is pretty easy: You throw it and
you forget it. Of course, some code has to catch the exception. Catching
exceptions requires more planning. That’s what the next sections will cover.

7.2.1 Catching an Exception

If an exception occurs that is not caught anywhere, the program will
terminate and print a message to the console, giving the type of the
exception and a stack trace. However, GUI programs may catch exceptions,
print stack trace messages, and then go back to the user interface processing
loop. (When you are debugging a GUI program, it is a good idea to keep the
console on the screen and not minimized.)

To catch an exception, set up a try/catch block. The simplest form of the
try

block is as follows:

try
{

 code
 more code
 more code
}

catch (ExceptionType e)
{

 handler for this type
}

If any code inside the try block throws an exception of the class specified in
the catch clause, then

1. The program skips the remainder of the code in the try block.
2. The program executes the handler code inside the catch clause.

If none of the code inside the try block throws an exception, then the
program skips the catch clause.

If any of the code in a method throws an exception of a type other than the
one named in the catch clause, this method exits immediately. (Hopefully,
one of its callers has already provided a catch clause for that type.)

To show this at work, here’s some fairly typical code for reading in data:

public void read(String filename)
{
 try
 {
 var in = new FileInputStream(filename);
 int b;
 while ((b = in.read()) != -1)
 {
 process input
 }
 }
 catch (IOException exception)
 {
 exception.printStackTrace();
 }
}

Notice that most of the code in the try clause is straightforward: It reads and
processes bytes until it encounters the end of the file. As you can see by
looking at the Java API, there is the possibility that the read method will
throw an IOException. In that case, we skip out of the entire while loop,
enter the catch clause, and generate a stack trace. For a toy program, that
seems like a reasonable way to deal with this exception. What other choice
do you have?

Often, the best choice is to do nothing at all and simply pass the exception
on to the caller. If an error occurs in the read method, let the caller of the
read method worry about it! If we take that approach, then we have to
advertise the fact that the method may throw an IOException.

public void read(String filename) throws IOException
{
 var in = new FileInputStream(filename);
 int b;
 while ((b = in.read()) != -1)
 {

 process input
 }
}

Remember, the compiler strictly enforces the throws specifiers. If you call a
method that throws a checked exception, you must either handle it or pass it
on.

Which of the two is better? As a general rule, you should catch those
exceptions that you know how to handle and propagate those that you do not
know how to handle.

When you propagate an exception, you must add a throws specifier to alert
the caller that an exception may be thrown.

Look at the Java API documentation to see what methods throw which
exceptions. Then decide whether you should handle them or add them to the
throws list. There is nothing embarrassing about the latter choice. It is better
to direct an exception to a competent handler than to squelch it.

Please keep in mind that, as mentioned earlier, there is one exception to this
rule. If you are writing a method that overrides a superclass method which
throws no exceptions (such as paintComponent in JComponent), then you must
catch each checked exception in your method’s code. You are not allowed to
add more throws specifiers to a subclass method than are present in the
superclass method.

 C++ NOTE:
Catching exceptions is almost the same in Java and in C++. Strictly
speaking, the analog of

catch (Exception e) // Java

is

catch (Exception& e) // C++

There is no analog to the C++ catch (. . .). This is not needed in Java
because all exceptions derive from a common superclass.

7.2.2 Catching Multiple Exceptions

You can catch multiple exception types in a try block and handle each type
differently. Use a separate catch clause for each type, as in the following
example:

try
{
 code that might throw exceptions
}
catch (FileNotFoundException e)
{
 emergency action for missing files
}
catch (UnknownHostException e)
{
 emergency action for unknown hosts
}
catch (IOException e)
{
 emergency action for all other I/O problems
}

The exception object may contain information about the nature of the
exception. To find out more about the object, try

e.getMessage()

to get the detailed error message (if there is one), or

e.getClass().getName()

to get the actual type of the exception object.

As of Java 7, you can catch multiple exception types in the same catch
clause. For example, suppose that the action for missing files and unknown
hosts is the same. Then you can combine the catch clauses:

try
{
 code that might throw exceptions
}
 catch (FileNotFoundException | UnknownHostException e)
{
 emergency action for missing files and unknown hosts
}
 catch (IOException e)
{
 emergency action for all other I/O problems
}

This feature is only needed when catching exception types that are not
subclasses of one another.

 NOTE:
When you catch multiple exceptions, the exception variable is implicitly
final. For example, you cannot assign a different value to e in the body of
the clause

catch (FileNotFoundException | UnknownHostException e) { . . . }

 NOTE:
Catching multiple exceptions doesn’t just make your code look simpler but
also more efficient. The generated bytecodes contain a single block for the
shared catch clause.

7.2.3 Rethrowing and Chaining Exceptions

You can throw an exception in a catch clause. Typically, you do this when
you want to change the exception type. If you build a subsystem that other
programmers use, it makes a lot of sense to use an exception type that
indicates a failure of the subsystem. An example of such an exception type is
the ServletException. The code that executes a servlet may not want to
know in minute detail what went wrong, but it definitely wants to know that
the servlet was at fault.

Here is how you can catch an exception and rethrow it:

try
{
 access the database
}
catch (SQLException e)
{
 throw new ServletException("database error: " +
e.getMessage());
}

Here, the ServletException is constructed with the message text of the
exception.

However, it is a better idea to set the original exception as the “cause” of the
new exception:

try
{
 access the database
}
catch (SQLException original)
{
 var e = new ServletException("database error");
 e.initCause(original);
 throw e;
}

When the exception is caught, the original exception can be retrieved:

Throwable original = caughtException.getCause();

This wrapping technique is highly recommended. It allows you to throw
high-level exceptions in subsystems without losing the details of the original
failure.

 TIP:
The wrapping technique is also useful if a checked exception occurs in a
method that is not allowed to throw a checked exception. You can catch the
checked exception and wrap it into a runtime exception.

Sometimes, you just want to log an exception and rethrow it without any
change:

try
{

 access the database
}
catch (Exception e)
{

 logger.log(level, message, e);
 throw e;
}

Before Java 7, there was a problem with this approach. Suppose the code is
inside a method

public void updateRecord() throws SQLException

The Java compiler looked at the throw statement inside the catch block, then
at the type of e, and complained that this method might throw any
Exception, not just a SQLException. This has now been improved. The
compiler now tracks the fact that e originates from the try block. Provided
that the only checked exceptions in that block are SQLException instances,
and provided that e is not changed in the catch block, it is valid to declare
the enclosing method as throws SQLException.

7.2.4 The finally Clause

When your code throws an exception, it stops processing the remaining code
in your method and exits the method. This is a problem if the method has
acquired some local resource, which only this method knows about, and that
resource must be cleaned up. One solution is to catch all exceptions, carry
out the cleanup, and rethrow the exceptions. But this solution is tedious
because you need to clean up the resource allocation in two places—in the
normal code and in the exception code. The finally clause can solve this
problem.

 NOTE:
Since Java 7, there is a more elegant solution, the try-with-resources
statement that you will see in the following section. We discuss the finally
mechanism in detail because it is the conceptual foundation. But in practice,
you will probably use try-with-resources statements more often than
finally clauses.

The code in the finally clause executes whether or not an exception was
caught. In the following example, the program will close the input stream
under all circumstances:

var in = new FileInputStream(. . .);
try
{
 // 1

 code that might throw exceptions
 // 2
}
catch (IOException e){
 // 3

 show error message
 // 4
}
finally
{
 // 5
 in.close();
}
// 6

Let us look at the three possible situations in which the program will execute
the finally clause.

1. The code throws no exceptions. In this case, the program first executes
all the code in the try block. Then, it executes the code in the finally
clause. Afterwards, execution continues with the first statement after the
finally clause. In other words, execution passes through points 1, 2, 5,
and 6. 2. The code throws an exception that is caught in a catch clause—
in our case, an IOException. For this, the program executes all code in
the try block, up to the point at which the exception was thrown. The
remaining code in the try block is skipped. The program then executes
the code in the matching catch clause, and then the code in the finally
clause.

If the catch clause does not throw an exception, the program executes
the first line after the finally clause. In this scenario, execution passes
through points 1, 3, 4, 5, and 6.
If the catch clause throws an exception, then the exception is thrown
back to the caller of this method, and execution passes through points 1,
3, and 5 only.

3. The code throws an exception that is not caught in any catch clause.
Here, the program executes all code in the try block until the exception
is thrown. The remaining code in the try block is skipped. Then, the
code in the finally clause is executed, and the exception is thrown back
to the caller of this method. Execution passes through points 1 and 5
only.

You can use the finally clause without a catch clause. For example,
consider the following try statement:

InputStream in = . . .;
try
{
 code that might throw exceptions
}
finally
{
 in.close();
}

The in.close() statement in the finally clause is executed whether or not
an exception is encountered in the try block. Of course, if an exception is
encountered, it is rethrown and must be caught in another catch clause.

InputStream in = . . .;
try
{
 try
 {

 code that might throw exceptions
 }

 finally
 {
 in.close();
 }
}
catch (IOException e)
{

 show error message
}

The inner try block has a single responsibility: to make sure that the input
stream is closed. The outer try block has a single responsibility: to ensure
that errors are reported. Not only is this solution clearer, it is also more
functional: Errors in the finally clause are reported.

 CAUTION:
A finally clause can yield unexpected results when it contains return
statements. Suppose you exit the middle of a try block with a return
statement. Before the method returns, the finally block is executed. If the
finally block also contains a return statement, then it masks the original
return value. Consider this example:

public static int parseInt(String s)
{
 try
 {
 return Integer.parseInt(s);
 }
 finally
 {
 return 0; // ERROR
 }
}

It looks as if in the call parseInt("42"), the body of the try block returns
the integer 42. However, the finally clause is executed before the method
actually returns and causes the method to return 0, ignoring the original
return value.

And it gets worse. Consider the call parseInt("zero"). The
Integer.parseInt method throws a NumberFormatException. Then the
finally clause is executed, and the return statement swallows the
exception!

The body of the finally clause is intended for cleaning up resources. Don’t
put statements that change the control flow (return, throw, break, continue)
inside a finally clause.

7.2.5 The try-with-Resources Statement

As of Java 7, there is a useful shortcut to the code pattern

open a resource
try
{

 work with the resource
}
finally
{

 close the resource
}

provided the resource belongs to a class that implements the AutoCloseable
interface. That interface has a single method

void close() throws Exception

 NOTE:
There is also a Closeable interface. It is a subinterface of AutoCloseable,
also with a single close method. However, that method is declared to throw
an IOException.

In its simplest variant, the try-with-resources statement has the form

try (Resource res = . . .)
{

 work with res
}

When the try block exits, then res.close() is called automatically. Here is a
typical example—reading all words of a file:

try (var in = new Scanner(Path.of("in.txt"),
StandardCharsets.UTF_8))
{
 while (in.hasNext())
 System.out.println(in.next());
}

When the block exits normally, or when there was an exception, the
in.close() method is called, exactly as if you had used a finally block.

You can specify multiple resources. For example,

try (var in = new Scanner(Path.of("in.txt"),
StandardCharsets.UTF_8);
 var out = new PrintWriter("out.txt",
StandardCharsets.UTF_8))
{
 while (in.hasNext())

 out.println(in.next().toUpperCase());
}

No matter how the block exits, both in and out are closed. If you
programmed this by hand, you would have needed two nested try/finally
statements.

As of Java 9, you can provide previously declared effectively final variables
in the try header:

public static void printAll(String[] lines, PrintWriter out)
{
 try (out)
 { // effectively final variable
 for (String line : lines)
 out.println(line);
 } // out.close() called here
}

A difficulty arises when the try block throws an exception and the close
method also throws an exception. The try-with-resources statement handles
this situation quite elegantly. The original exception is rethrown, and any
exceptions thrown by close methods are considered “suppressed.” They are
automatically caught and added to the original exception with the
addSuppressed method. If you are interested in them, call the getSuppressed
method which yields an array of the suppressed expressions from close
methods.

You don’t want to program this by hand. Use the try-with-resources
statement whenever you need to close a resource.

 NOTE:
A try-with-resources statement can itself have catch clauses and even a
finally clause. These are executed after closing the resources.

7.2.6 Analyzing Stack Trace Elements

A stack trace is a listing of all pending method calls at a particular point in
the execution of a program. You have almost certainly seen stack trace
listings—they are displayed whenever a Java program terminates with an
uncaught exception.

You can access the text description of a stack trace by calling the
printStackTrace

method of the Throwable class.

var t = new Throwable();
var out = new StringWriter(); t.printStackTrace(new
PrintWriter(out));
String description = out.toString();

A more flexible approach is the StackWalker class that yields a stream of
StackWalker.StackFrame instances, each describing one stack frame. You
can iterate over the stack frames with this call:

StackWalker walker = StackWalker.getInstance();

walker.forEach(frame -> analyze frame)

If you want to process the Stream<StackWalker.StackFrame> lazily, call

walker.walk(stream -> process stream)

Stream processing is described in detail in Chapter 1 of Volume II.

The StackWalker.StackFrame class has methods to obtain the file name and
line number, as well as the class object and method name, of the executing
line of code. The toString method yields a formatted string containing all of
this information.

 NOTE:
Prior to Java 9, the Throwable.getStackTrace method yielded a
StackTraceElement[] array with similar information as the stream of
StackWalker. StackFrame instances. However, that call is less efficient since
it captures the entire stack even though the caller may only need a few
frames, and it only provides access to the class names, but not the class
objects, of the pending methods.

Listing 7.1 prints the stack trace of a recursive factorial function. For
example, if you compute factorial(3), the printout is

factorial(3):
stackTrace.StackTraceTest.factorial(StackTraceTest.java:20)
stackTrace.StackTraceTest.main(StackTraceTest.java:36)factorial
(2):
stackTrace.StackTraceTest.factorial(StackTraceTest.java:20)
stackTrace.StackTraceTest.factorial(StackTraceTest.java:26)
stackTrace.StackTraceTest.main(StackTraceTest.java:36)
factorial(1):
stackTrace.StackTraceTest.factorial(StackTraceTest.java:20)
stackTrace.StackTraceTest.factorial(StackTraceTest.java:26)
stackTrace.StackTraceTest.factorial(StackTraceTest.java:26)
stackTrace.StackTraceTest.main(StackTraceTest.java:36)
return 1
return 2
return 6

Listing 7.1 stackTrace/StackTraceTest.java

 1 package stackTrace;
 2
 3 import java.util.*;
 4
 5 /**
 6 * A program that displays a trace feature of a recursive

method call.
 7 * @version 1.10 2017-12-14
 8 * @author Cay Horstmann
 9 */
10 public class StackTraceTest
11 {
12 /**
13 * Computes the factorial of a number
14 * @param n a non-negative integer
15 * @return n! = 1 * 2 * . . . * n
16 */
17 public static int factorial(int n)
18 {
19 System.out.println("factorial(" + n + "):");
20 var walker = StackWalker.getInstance();
21 walker.forEach(System.out::println);
22 int r;
23 if (n <= 1) r = 1;
24 else r = n * factorial(n - 1);
25 System.out.println("return " + r);
26 return r;
27 }
28
29 public static void main(String[] args)
30 {
31 try (var in = new Scanner(System.in))
32 {33 System.out.print("Enter n: ");
34 int n = in.nextInt();
35 factorial(n);
36 }
37 }
38 }

java.lang.Throwable 1.0

• Throwable(Throwable cause) 1.4

• Throwable(String message, Throwable cause) 1.4
constructs a Throwable with a given cause.

• Throwable initCause(Throwable cause) 1.4
sets the cause for this object or throws an exception if this object
already has a cause. Returns this.

• Throwable getCause() 1.4
gets the exception object that was set as the cause for this object, or
null if no cause was set.

• StackTraceElement[] getStackTrace() 1.4
gets the trace of the call stack at the time this object was constructed.

• void addSuppressed(Throwable t) 7 adds a “suppressed” exception
to this exception. This happens in a try-with-resources statement
where t is an exception thrown by a close method.

• Throwable[] getSuppressed() 7 gets all “suppressed” exceptions of
this exception. Typically, these are exceptions thrown by a close
method in a try-with-resources statement.

java.lang.Exception 1.0

• Exception(Throwable cause) 1.4
• Exception(String message, Throwable cause)

constructs an Exception with a given cause.

java.lang.RuntimeException 1.0

• RuntimeException(Throwable cause) 1.4
• RuntimeException(String message, Throwable cause) 1.4

constructs a RuntimeException with a given cause.

java.lang.StackWalker 9

• static StackWalker getInstance()
• static StackWalker getInstance(StackWalker.Option option)
• static StackWalker getInstance(Set<StackWalker.Option>

options)

gets a StackWalker instance. The options include
RETAIN_CLASS_REFERENCE, SHOW_HIDDEN_FRAMES, and
SHOW_REFLECT_FRAMES from the StackWalker.Option enumeration.

• forEach(Consumer<? super StackWalker.StackFrame> action)
carries out the given action on each stack frame, starting with the
most recently called method.

• walk(Function<? super Stream<StackWalker.StackFrame>,?

extends T> function)

applies the given function to the stream of stack frames and returns
the result of the function.

java.lang.StackWalker.StackFrame 9

• String getFileName()
gets the name of the source file containing the execution point of this
element, or null if the information is not available.

• int getLineNumber()
gets the line number of the source file containing the execution point
of this element, or -1 if the information is not available.

• String getClassName()

gets the fully qualified name of the class whose method contains the
execution point of this element.

• String getDeclaringClass()
gets the Class object of the method containing the execution point of
this element. An exception is thrown if the stack walker was not
constructed with the RETAIN_CLASS_REFERENCE option.

• String getMethodName()
gets the name of the method containing the execution point of this
element. The name of a constructor is <init>. The name of a static
initializer is <clinit>. You can’t distinguish between overloaded
methods with the same name.

• boolean isNativeMethod()
returns true if the execution point of this element is inside a native
method.

• String toString()
returns a formatted string containing the class and method name and
the file name and line number, if available.

java.lang.StackTraceElement 1.4

• String getFileName()
gets the name of the source file containing the execution point of this
element, or null if the information is not available.

• int getLineNumber()
gets the line number of the source file containing the execution point
of this element, or -1 if the information is not available.

• String getClassName()
gets the fully qualified name of the class containing the execution
point of this element.

• String getMethodName()
gets the name of the method containing the execution point of this
element. The name of a constructor is <init>. The name of a static
initializer is <clinit>. You can’t distinguish between overloaded
methods with the same name.

• boolean isNativeMethod()
returns true if the execution point of this element is inside a native
method.

• String toString()
returns a formatted string containing the class and method name and
the file name and line number, if available.

7.3 Tips for Using Exceptions

There is a certain amount of controversy about the proper use of exceptions.
Some programmers believe that all checked exceptions are a nuisance,
others can’t seem to throw enough of them. I think that exceptions (even
checked exceptions) have their place, so I offer you these tips for their
proper use.

1. Exception handling is not supposed to replace a simple test.
As an example of this, here’s code that tries 10,000,000 times to pop an
empty stack. It first does this by finding out whether the stack is empty.

if (!s.empty()) s.pop();

Next, we force it to pop the stack no matter what and catch the
EmptyStackException that tells us we should not have done that.

try
{
 s.pop();
}catch (EmptyStackException e)

{
}

On my test machine, the version that calls isEmpty ran in 646
milliseconds. The version that catches the EmptyStackException ran in
21,739 milliseconds.
As you can see, it took far longer to catch an exception than to perform a
simple test. The moral is: Use exceptions for exceptional circumstances
only.

2. Do not micromanage exceptions.
Some programmers wrap every statement in a separate try block.

PrintStream out;
Stack s;
for (i = 0; i < 100; i++)
{
 try
 {
 n = s.pop();
 }
 catch (EmptyStackException e)
 {
 // stack was empty
 }
 try
 {
 out.writeInt(n);
 }
 catch (IOException e)
 {
 // problem writing to file
 }
}

This approach blows up your code dramatically. Think about the task that
you want the code to accomplish. Here, we want to pop 100 numbers off a
stack and save them to a file. (Never mind why—it is just a toy example.)
There is nothing we can do if a problem rears its ugly head. If the stack is

empty, it will not become occupied. If the file contains an error, the error will
not magically go away. It therefore makes sense to wrap the entire task in a
try block. If any one operation fails, you can then abandon the task.

try
{
 for (i = 0; i < 100; i++) {
 n = s.pop();
 out.writeInt(n);
 }
}
catch (IOException e)
{
 // problem writing to file
}
catch (EmptyStackException e)
{
 // stack was empty
}

This code looks much cleaner. It fulfills one of the promises of exception
handling: to separate normal processing from error handling.

3. Make good use of the exception hierarchy.
Don’t just throw a RuntimeException. Find an appropriate subclass or
create your own.
Don’t just catch Throwable. It makes your code hard to read and
maintain.
Respect the difference between checked and unchecked exceptions.
Checked exceptions are inherently burdensome—don’t throw them for
logic errors. (For example, the reflection library gets this wrong. Callers
often need to catch exceptions that they know can never happen.)
Do not hesitate to turn an exception into another exception that is more
appropriate. For example, when you parse an integer in a file, catch the
NumberFormatException and turn it into a subclass of IOException or
MySubsystemException.

4. Do not squelch exceptions.

In Java, there is a tremendous temptation to shut up exceptions. If you’re
writing a method that calls a method that might throw an exception once
a century, the compiler whines because you have not declared the
exception in the throws list of your method. You do not want to put it in
the

throws list because then the compiler will whine about all the methods that
call your method. So you just shut it up:

public Image loadImage(String s)
{
 try
 {
 code that threatens to throw checked exceptions
 }
 catch (Exception e) {} // so there
}

Now your code will compile without a hitch. It will run fine, except
when an exception occurs. Then, the exception will be silently ignored.
If you believe that exceptions are at all important, you should make some
effort to handle them right.

5. When you detect an error, “tough love” works better than indulgence.
Some programmers worry about throwing exceptions when they detect
errors. Maybe it would be better to return a dummy value rather than
throw an exception when a method is called with invalid parameters? For
example, should Stack.pop return null, or throw an exception when a
stack is empty? I think it is better to throw a EmptyStackException at the
point of failure than to have a NullPointerException occur at later time.

6. Propagating exceptions is not a sign of shame.
Some programmers feel compelled to catch all exceptions that are
thrown. If they call a method that throws an exception, such as the
FileInputStream constructor or the readLine method, they instinctively
catch the exception that may be generated. In many situations, it is
actually better to propagate the exception instead of catching it:

public void readStuff(String filename) throws IOException //
not a sign of shame!
{
 var in = new FileInputStream(filename,
StandardCharsets.UTF_8);
 . . .
}

Higher-level methods are often better equipped to inform the user of errors
or to abandon unsuccessful commands.

7. Use standard methods for reporting null-pointer and out-of-bounds
exceptions.
The Objects class has methods

requireNonNull
checkIndex
checkFromToIndex
checkFromIndexSize

for these common checks. Use them for parameter validation:

public void putData(int position, Object newValue)
{
 Objects.checkIndex(position, data.length);
 Objects.requireNonNull(newValue);
 . . .
}

If the method is called with an invalid index or a null argument, an
exception is thrown, using the familiar message that the Java library
uses.

8. Don’t show stack traces to end users.
If your program encounters an unexpected exception, it may seem a good
idea to display the stack trace so the users can report it, making it easier
for you to pinpoint the issue. However, stack traces can contain

implementation details that you do not want to reveal to potential
attackers, such as the versions of libraries that you are using.
Log the stack trace so that you can retrieve it, but only display a
summary message to your users.

 NOTE:
Rules 5 and 6 can be summarized as “throw early, catch late.”

7.4 Using Assertions

Assertions are a commonly used idiom of defensive programming. In the
following sections, you will learn how to use them effectively.

7.4.1 The Assertion Concept

Suppose you are convinced that a particular property is fulfilled, and you
rely on that property in your code. For example, you may be computing

double y = Math.sqrt(x);

You are certain that x is not negative. Perhaps it is the result of another
computation that can’t have a negative result, or it is a parameter of a
method that requires its callers to supply only positive inputs. Still, you want
to double-check rather than allow confusing “not a number” floating-point
values creep into your computation. You could, of course, throw an
exception:

if (x < 0) throw new IllegalArgumentException("x < 0");

But this code stays in the program, even after testing is complete. If you
have lots of checks of this kind, the program may run quite a bit slower than
it should.

The assertion mechanism allows you to put in checks during testing and to
have them automatically removed in the production code.

The Java language has a keyword assert. There are two forms:

assert condition;

and

assert condition : expression;

Both statements evaluate the condition and throw an AssertionError if it is
false. In the second statement, the expression is passed to the constructor of
the AssertionError object and turned into a message string.

 NOTE:
The sole purpose of the expression part is to produce a message string. The
AssertionError object does not store the actual expression value, so you
can’t query it later. As the JDK documentation states, doing so “would
encourage programmers to attempt to recover from assertion failure, which
defeats the purpose of the facility.”

To assert that x is non-negative, you can simply use the statement

assert x >= 0;

Or you can pass the actual value of x into the AssertionError object, so that
it gets displayed later.

assert x >= 0 : x;

 C++ NOTE:
The assert macro of the C language turns the assertion condition into a
string that is printed if the assertion fails. For example, if assert(x >= 0)
fails, it prints that "x >= 0" is the failing condition. In Java, the condition is
not automatically part of the error report. If you want to see it, you have to
pass it as a string into the AssertionError object: assert x >= 0 : "x >=
0".

7.4.2 Assertion Enabling and Disabling

By default, assertions are disabled. Enable them by running the program
with the -enableassertions or -ea option:

java -enableassertions MyApp

Note that you do not have to recompile your program to enable or disable
assertions. Enabling or disabling assertions is a function of the class loader.
When assertions are disabled, the class loader strips out the assertion code so
that it won’t slow execution.

You can even turn on assertions in specific classes or in entire packages. For
example:

7.4 Using Assertions

java -ea:MyClass -ea:com.mycompany.mylib MyApp

This command turns on assertions for the class MyClass and all classes in the
com.mycompany.mylib package and its subpackages. The option -ea... turns
on assertions in all classes of the unnamed package.

You can also disable assertions in certain classes and packages with the -
disableassertions or -da option:

java -ea:... -da:MyClass MyApp

Some classes are not loaded by a class loader but directly by the virtual
machine. You can use these switches to selectively enable or disable
assertions in those classes.

However, the -ea and -da switches that enable or disable all assertions do
not apply to the “system classes” without class loaders. Use the -

enablesystemassertions/-esa switch to enable assertions in system classes.

It is also possible to programmatically control the assertion status of class
loaders. See the API notes at the end of this section.

 NOTE:
The source code for the Java library has over four hundred assertions that
are commented out. Some programmers comment out assertions after
testing because otherwise they take up space in the class files. If you are
concerned about that, you can conditionally include them as follows:

public static final boolean asserts = true; // Recompile with
false for production
...
if (asserts) assert x >= 0;

7.4.3 Using Assertions for Parameter Checking

The Java language gives you three mechanisms to deal with system failures:

• Throwing an exception
• Logging
• Using assertions

When should you choose assertions? Keep these points in mind:

• Assertion failures are intended to be fatal, unrecoverable errors.
• Assertion checks are turned on only during development and testing. (This

is sometimes jokingly described as “wearing a life jacket when you are
close to shore, and throwing it overboard once you are in the middle of the
ocean.”)

Therefore, you would not use assertions for signaling recoverable conditions
to another part of the program or for communicating problems to the
program user. Assertions should only be used to locate internal program
errors during testing.

Let’s look at a common scenario—the checking of method parameters.
Should you use assertions to check for illegal index values or null

references? To answer that question, you have to look at the documentation
of the method. Suppose you implement a sorting method.

/**
 Sorts the specified range of the specified array in
ascending numerical order.
 The range to be sorted extends from fromIndex, inclusive, to
toIndex, exclusive.
 @param a the array to be sorted.
 @param fromIndex the index of the first element (inclusive)
to be sorted.
 @param toIndex the index of the last element (exclusive) to
be sorted.
 @throws IllegalArgumentException if fromIndex > toIndex
 @throws ArrayIndexOutOfBoundsException if fromIndex < 0 or
toIndex > a.length
*/
static void sort(int[] a, int fromIndex, int toIndex)

The documentation states that the method throws an exception if the index
values are incorrect. That behavior is part of the contract that the method
makes with its callers. If you implement the method, you have to respect that

contract and throw the indicated exceptions. It would not be appropriate to
use assertions instead.

Should you assert that a is not null? That is not appropriate either. The
method documentation is silent on the behavior of the method when a is
null. The callers have the right to assume that the method will return
successfully in that case and not throw an assertion error.

However, suppose the method contract had been slightly different:

@param a the array to be sorted (must not be null).

Now the callers of the method have been put on notice that it is illegal to call
the method with a null array. Then the method may start with the assertion

assert a != null;

Computer scientists call this kind of contract a precondition. The original
method had no preconditions on its parameters—it promised a well-defined
behavior in all cases. The revised method has a single precondition: that a is
not null. If the caller fails to fulfill the precondition, then all bets are off and
the method can do anything it wants. In fact, with the assertion in place, the
method has a rather unpredictable behavior when it is called illegally. It
sometimes throws an assertion error, and sometimes a null pointer exception,
depending on how its class loader is configured.

7.4.4 Using Assertions for Documenting Assumptions

Often, programmers use comments to document their underlying
assumptions. Consider this example from
http://docs.oracle.com/javase/8/docs/technotes/guides/language/asser

t.html:

if (i % 3 == 0)
 . . .
else if (i % 3 == 1)

http://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html

 . . .
else // (i % 3 == 2)
 . . .

In this case, it makes a lot of sense to use an assertion instead.

if (i % 3 == 0)
 . . .
else if (i % 3 == 1)
 . . .
else
{
 assert i % 3 == 2;
 . . .
}

Of course, it would make even more sense to think through the issue
thoroughly. What are the possible values of i % 3? If i is positive, the
remainders must be 0, 1, or 2. If i is negative, then the remainders can be -1
or -2. Thus, the real assumption is that i is not negative. A better assertion
would be

assert i >= 0;

before the if statement.

At any rate, this example shows a good use of assertions as a self-check for
the programmer. As you can see, assertions are a tactical tool for testing and
debugging. In contrast, logging is a strategic tool for the entire lifecycle of a
program. We will examine logging in the next section.

java.lang.ClassLoader 1.0

• void setDefaultAssertionStatus(boolean b) 1.4

enables or disables assertions for all classes loaded by this class
loader that don’t have an explicit class or package assertion status.

• void setClassAssertionStatus(String className, boolean b) 1.4
enables or disables assertions for the given class and its inner classes.

• void setPackageAssertionStatus(String packageName, boolean b)
1.4
enables or disables assertions for all classes in the given package and
its subpackages.

• void clearAssertionStatus() 1.4
removes all explicit class and package assertion status settings and
disables assertions for all classes loaded by this class loader.

7.5 Logging

Every Java programmer is familiar with the process of inserting calls to
System.out.println into troublesome code to gain insight into program
behavior. Of course, once you have figured out the cause of trouble, you
remove the print statements, only to put them back in when the next problem
surfaces. The logging API is designed to overcome this problem. Here are
the principal advantages of the API:

• It is easy to suppress all log records or just those below a certain level, and
just as easy to turn them back on.

• Suppressed logs are very cheap, so there is only a minimal penalty for
leaving the logging code in your application.

• Log records can be directed to different handlers—for displaying in the
console, writing to a file, and so on.

• Both loggers and handlers can filter records. Filters can discard boring log
entries, using any criteria supplied by the filter implementor.

• Log records can be formatted in different ways—for example, in plain text
or XML.

• Applications can use multiple loggers, with hierarchical names such as
com.mycompany.myapp, similar to package names.

• The logging configuration is controlled by a configuration file.

 NOTE:
Many applications use other logging frameworks, such as Log4J 2
(https://logging.apache.org/log4j/2.x) and Logback
(https://logback.qos.ch), that offer higher performance than the standard
Java logging framework. These frameworks have slightly different APIs.
Logging façades such as SLF4J (https://www.slf4j.org) and Commons
Logging (https://commons.apache.org/proper/commons-logging) provide a
unified API so that you can replace the logging framework without
rewriting your application. To make matters more confusing, Log4J 2 can
also be a façade to components that use SLF4J. In this book, I cover the
standard Java logging framework. It is good enough for many purposes, and
learning its API will prepare you for understanding the alternatives.

 NOTE:
As of Java 9, the Java platform has a separate lightweight logging system
that does not depend on the java.logging module (which contains the
standard Java logging framework). This system is intended only for use in
the Java API. If the java.logging module is present, log messages are
automatically forwarded to it. Third-party log frameworks can provide
adapters to receive platform logging messages. I do not cover platform
logging since it is not meant to be used by application programmers.

7.5.1 Basic Logging

For simple logging, use the global logger and call its info method:

https://logging.apache.org/log4j/2.x
https://logback.qos.ch/
https://www.slf4j.org/
https://commons.apache.org/proper/commons-logging

Logger.getGlobal().info("File->Open menu item selected");

By default, the record is printed like this:

May 10, 2013 10:12:15 PM LoggingImageViewer fileOpen
INFO: File->Open menu item selected

But if you call

Logger.getGlobal().setLevel(Level.OFF);

at an appropriate place (such as the beginning of main), all logging is
suppressed.

7.5.2 Advanced Logging

Now that you have seen “logging for dummies,” let’s go on to industrial-
strength logging. In a professional application, you wouldn’t want to log all
records to a single global logger. Instead, you can define your own loggers.

Call the getLogger method to create or retrieve a logger:

private static final Logger myLogger =
Logger.getLogger("com.mycompany.myapp");

 TIP:
A logger that is not referenced by any variable can be garbage-collected. To
prevent this, save a reference to the logger with a static variable, as in the
example above.

Similar to package names, logger names are hierarchical. In fact, they are
more hierarchical than packages. There is no semantic relationship between

a package and its parent, but logger parents and children share certain
properties. For example, if you set the log level on the logger
"com.mycompany", then the child loggers inherit that level.

There are seven logging levels:

• SEVERE
• WARNING
• INFO
• CONFIG
• FINE
• FINER
• FINEST

By default, the top three levels are actually logged. You can set a different
level—for example,

logger.setLevel(Level.FINE);

Now FINE and all levels above it are logged.

You can also use Level.ALL to turn on logging for all levels or Level.OFF to
turn all logging off.

There are logging methods for all levels, such as

logger.warning(message);
logger.fine(message);

and so on. Alternatively, you can use the log method and supply the level,
such as

logger.log(Level.FINE, message);

 TIP:
The default logging configuration logs all records with the level of INFO or
higher. Therefore, you should use the levels CONFIG, FINE, FINER, and FINEST
for debugging messages that are useful for diagnostics but meaningless to
the user.

 CAUTION:
If you set the logging level to a value finer than INFO, you also need to
change the log handler configuration. The default log handler suppresses
messages below INFO. See the next section for details.

The default log record shows the name of the class and method that contain
the logging call, as inferred from the call stack. However, if the virtual
machine optimizes execution, accurate call information may not be
available. You can use the logp method to give the precise location of the
calling class and method. The method signature is

void logp(Level l, String className, String methodName, String
message)

There are convenience methods for tracing execution flow:

void entering(String className, String methodName)
void entering(String className, String methodName, Object
param)
void entering(String className, String methodName, Object[]
params)
void exiting(String className, String methodName)
void exiting(String className, String methodName, Object
result)

For example:

int read(String file, String pattern)
{
 logger.entering("com.mycompany.mylib.Reader", "read",
 new Object[] { file, pattern });
 . . .
 logger.exiting("com.mycompany.mylib.Reader", "read", count);
 return count;
}

These calls generate log records of level FINER that start with the strings
ENTRY and RETURN.

 NOTE:
At some point in the future, the logging methods with an Object[]
parameter will be rewritten to support variable parameter lists (“varargs”).
Then, you will be able to make calls such as
logger.entering("com.mycompany.mylib.Reader", "read", file,

pattern).

A common use for logging is to log unexpected exceptions. Two
convenience methods include a description of the exception in the log
record.

void throwing(String className, String methodName, Throwable t)
void log(Level l, String message, Throwable t)

Typical uses are

if (. . .)
{
 var e = new IOException(". . .");

 logger.throwing("com.mycompany.mylib.Reader", "read", e);
 throw e;
}

and

try
{
 . . .
}
catch (IOException e)
{
 Logger.getLogger("com.mycompany.myapp").log(Level.WARNING,
"Reading image", e);
}

The throwing call logs a record with level FINER and a message that starts
with THROW.

7.5.3 Changing the Log Manager Configuration

You can change various properties of the logging system by editing a
configuration file. The default configuration file is located at jdk/conf/
logging.properties (or at jre/lib/logging.properties prior to Java 9).

conf/logging.properties

(or at jre/lib/logging.properties prior to Java 9).

To use another file, set the java.util.logging.config.file property to the
file location by starting your application with

java -Djava.util.logging.config.file=configFile MainClass

To change the default logging level, edit the configuration file and modify
the line

.level=INFO

You can specify the logging levels for your own loggers by adding lines such
as

com.mycompany.myapp.level=FINE

That is, append the .level suffix to the logger name.

As you will see later in this section, the loggers don’t actually send the
messages to the console—that is the job of the handlers. Handlers also have
levels. To see FINE messages on the console, you also need to set

java.util.logging.ConsoleHandler.level=FINE

 CAUTION:
The settings in the log manager configuration are not system properties.
Starting a program with -Dcom.mycompany.myapp.level=FINE does not have
any effect on the logger.

The log manager is initialized during VM startup, before main executes. If
you want to customize the logging properties but didn’t start your
application with the -Djava.util.logging.config.file command-line
option, call System.setProperty("java.util.logging.config.file", file)
in your program. But then you must also call
LogManager.getLogManager().readConfiguration() to reinitialize the log
manager.

As of Java 9, you can instead update the logging configuration by calling

LogManager.getLogManager().updateConfiguration(mapper);

A new configuration is read from the location specified by the
java.util.logging.config.file system property. Then the mapper is
applied to resolve the values for all keys in the old or new configuration. The
mapper is a Function<String,BiFunction<String,String,String>>. It maps
keys in the existing configuration to replacement functions. Each
replacement function receives the old and new values associated with the
key (or null if there is no associated value), and produces a replacement, or
null if the key should be dropped in the update.

That sounds rather complex, so let’s walk through a couple of examples. A
useful mapping scheme would be to merge the old and new configurations,
preferring the new value when a key is present in both the old and new
configurations. Then the mapper is

key -> ((oldValue, newValue) -> newValue == null ? oldValue :
newValue)

Or perhaps you want to only update the keys that start with com.mycompany
and leave the others unchanged:

key -> key.startsWith("com.mycompany")
 ? ((oldValue, newValue) -> newValue)
 : ((oldValue, newValue) -> oldValue)

It is also possible to change logging levels in a running program by using the
jconsole program. See
www.oracle.com/technetwork/articles/java/jconsole-

1564139.html#LoggingControl for information.

 NOTE:
The logging properties file is processed by the
java.util.logging.LogManager class. It is possible to specify a different log
manager by setting the java.util. logging.manager system property to the
name of a subclass. Alternatively, you can keep the standard log manager

http://www.oracle.com/technetwork/articles/java/jconsole-1564139.html#LoggingControl

and still bypass the initialization from the logging properties file. Set the
java.util.logging.config.class system property to the name of a class
that sets log manager properties in some other way. See the API
documentation for the LogManager class for more information.

7.5.4 Localization

You may want to localize logging messages so that they are readable for
international users. Internationalization of applications is the topic of
Chapter 7 of Volume II. Briefly, here are the points to keep in mind when
localizing logging messages.

Localized applications contain locale-specific information in resource
bundles. A resource bundle consists of a set of mappings for various locales
(such as United States or Germany). For example, a resource bundle may
map the string "readingFile" into strings "Reading file" in English or
"Achtung! Datei wird eingelesen" in German.

A program may contain multiple resource bundles—for example, one for
menus and another for log messages. Each resource bundle has a name (such
as "com.mycompany.logmessages"). To add mappings to a resource bundle,
supply a file for each locale. English message mappings are in a file
com/mycompany/logmessages_en.properties, and German message mappings
are in a file com/mycompany/logmessages_de.properties. (The en and de are
the language codes.) You place the files together with the class files of your
application, so that the ResourceBundle class will automatically locate them.
These files are plain text files, consisting of entries such as

readingFile=Achtung! Datei wird eingelesen
renamingFile=Datei wird umbenannt
. . .

When requesting a logger, you can specify a resource bundle:

Logger logger = Logger.getLogger(loggerName,
"com.mycompany.logmessages");

Then specify the resource bundle key, not the actual message string, for the
log message:

logger.info("readingFile");

You often need to include arguments into localized messages. A message
may contain placeholders: {0}, {1}, and so on. For example, to include the
file name with a log message, use the placeholder like this:

Reading file {0}.
Achtung! Datei {0} wird eingelesen.

Then, to pass values into the placeholders, call one of the following
methods:

logger.log(Level.INFO, "readingFile", fileName);
logger.log(Level.INFO, "renamingFile", new Object[] { oldName,
newName });

Alternatively, as of Java 9, you can specify the resource bundle object (and
not the name) in the logrb method:

logger.logrb(Level.INFO, bundle, "renamingFile", oldName,
newName);

 NOTE:
This is the only logging method that uses variable arguments for the
message parameters.

7.5.5 Handlers

By default, loggers send records to a ConsoleHandler that prints them to the
System.err stream. Specifically, the logger sends the record to the parent
handler, and the ultimate ancestor (with name "") has a ConsoleHandler.

Like loggers, handlers have a logging level. For a record to be logged, its
logging level must be above the threshold of both the logger and the handler.
The log manager configuration file sets the logging level of the default
console handler as

java.util.logging.ConsoleHandler.level=INFO

To log records with level FINE, change both the default logger level and the
handler level in the configuration. Alternatively, you can bypass the
configuration file altogether and install your own handler.

Logger logger = Logger.getLogger("com.mycompany.myapp");
logger.setLevel(Level.FINE);
logger.setUseParentHandlers(false);
var handler = new ConsoleHandler();
handler.setLevel(Level.FINE);
logger.addHandler(handler);

By default, a logger sends records both to its own handlers and to the
handlers of the parent. Our logger is a child of the primordial logger (with
name "") that sends all records with level INFO and above to the console. We
don’t want to see those records twice, however, so we set the
useParentHandlers property to false.

To send log records elsewhere, add another handler. The logging API
provides two useful handlers for this purpose: a FileHandler and a
SocketHandler. The SocketHandler sends records to a specified host and
port. Of greater interest is the FileHandler that collects records in a file.

You can simply send records to a default file handler, like this:

var handler = new FileHandler();
logger.addHandler(handler);

The records are sent to a file javan.log in the user’s home directory, where n
is a number to make the file unique. If a system has no concept of the user’s
home directory (for example, in Windows 95/98/ME), then the file is stored
in a default location such as C:\Windows. By default, the records are
formatted in XML. A typical log record has the form

<record>
 <date>2002-02-04T07:45:15</date>
 <millis>1012837515710</millis>
 <sequence>1</sequence>
 <logger>com.mycompany.myapp</logger>
 <level>INFO</level>
 <class>com.mycompany.mylib.Reader</class>
 <method>read</method>
 <thread>10</thread>
 <message>Reading file corejava.gif</message>
</record>

You can modify the default behavior of the file handler by setting various
parameters in the log manager configuration (see Table 7.1) or by using
another constructor (see the API notes at the end of this section).

You probably don’t want to use the default log file name. Therefore, you
should use another pattern, such as %h/myapp.log. (See Table 7.2 for an
explanation of the pattern variables.)

If multiple applications (or multiple copies of the same application) use the
same log file, you should turn the append flag on. Alternatively, use %u in the
file name pattern so that each application creates a unique copy of the log.

It is also a good idea to turn file rotation on. Log files are kept in a rotation
sequence, such as myapp.log.0, myapp.log.1, myapp.log.2, and so on.
Whenever a file exceeds the size limit, the oldest log is deleted, the other
files are renamed, and a new file with generation number 0 is created.

Table 7.1 File Handler Configuration Parameters

Table 7.2 Log File Pattern Variables

 TIP:
Some programmers use logging as an aid for the technical support staff. If a
program misbehaves in the field, the user can send back the log files for
inspection. In that case, you should turn the append flag on, use rotating
logs, or both.

You can also define your own handlers by extending the Handler or the
StreamHandler class. We define such a handler in the example program at the
end of this section. That handler displays the records in a window (see
Figure 7.2).

Figure 7.2 A log handler that displays records in a window

The handler extends the StreamHandler class and installs a stream whose
write

methods display the stream output in a text area.

class WindowHandler extends StreamHandler
{
 public WindowHandler()
 {
 . . .
 var output = new JTextArea();
 setOutputStream(new
 OutputStream()
 {
 public void write(int b) {} // not called
 public void write(byte[] b, int off, int len)
 {
 output.append(new String(b, off, len));
 }
 });
 } . . .
}

There is just one problem with this approach—the handler buffers the
records and only writes them to the stream when the buffer is full. Therefore,
we override the publish method to flush the buffer after each record:

class WindowHandler extends StreamHandler
{
 . . .
 public void publish(LogRecord record)
 {
 super.publish(record);
 flush();
 }
}

If you want to write more exotic stream handlers, extend the Handler class
and define the publish, flush, and close methods.

7.5.6 Filters

By default, records are filtered according to their logging levels. Each logger
and handler can have an optional filter to perform additional filtering. To
define a filter, implement the Filter interface and define the method

boolean isLoggable(LogRecord record)

Analyze the log record, using any criteria that you desire, and return true for
those records that should be included in the log. For example, a particular
filter may only be interested in the messages generated by the entering and
exiting methods. The filter should then call record.getMessage() and check
whether it starts with ENTRY or RETURN.

To install a filter into a logger or handler, simply call the setFilter method.
Note that you can have at most one filter at a time.

7.5.7 Formatters

The ConsoleHandler and FileHandler classes emit the log records in text and
XML formats. However, you can define your own formats as well. You need
to extend the Formatter class and override the method

String format(LogRecord record)

Format the information in the record in any way you like and return the
resulting string. In your format method, you may want to call the method

String formatMessage(LogRecord record)

That method formats the message part of the record, substituting parameters
and applying localization.

Many file formats (such as XML) require a head and tail parts that surround
the formatted records. To achieve this, override the methods

String getHead(Handler h)
String getTail(Handler h)

Finally, call the setFormatter method to install the formatter into the
handler.

7.5.8 A Logging Recipe

With so many options for logging, it is easy to lose track of the
fundamentals. The following recipe summarizes the most common
operations.

1. For a simple application, choose a single logger. It is a good idea to give
the logger the same name as your main application package, such as
com.mycompany.myprog. You can always get the logger by calling

Logger logger = Logger.getLogger("com.mycompany.myprog");

For convenience, you may want to add static fields

private static final Logger logger =
Logger.getLogger("com.mycompany.myprog");

to classes with a lot of logging activity.
2. The default logging configuration logs all messages of level INFO or

higher to the console. Users can override the default configuration, but as
you have seen, the process is a bit involved. Therefore, it is a good idea
to install a more reasonable default in your application.
The following code ensures that all messages are logged to an
application-specific file. Place the code into the main method of your
application.

if (System.getProperty("java.util.logging.config.class") ==
null
 && System.getProperty("java.util.logging.config.file") ==
null)
{
 try
 {
 Logger.getLogger("").setLevel(Level.ALL);
 final int LOG_ROTATION_COUNT = 10;
 var handler = new FileHandler("%h/myapp.log", 0,
LOG_ROTATION_COUNT);
 Logger.getLogger("").addHandler(handler);
 }
 catch (IOException e)
 {
 logger.log(Level.SEVERE, "Can't create log file handler",
e);
 }
}

3. Now you are ready to log to your heart’s content. Keep in mind that all
messages with level INFO, WARNING, and SEVERE show up on the console.
Therefore, reserve these levels for messages that are meaningful to the
users of your program. The level FINE is a good choice for logging
messages that are intended for programmers.

Whenever you are tempted to call System.out.println, emit a log
message instead:

logger.fine("File open dialog canceled");

It is also a good idea to log unexpected exceptions. For example:

try
{
 . . .
}
catch (SomeException e)
{
 logger.log(Level.FINE, "explanation", e);
}

Listing 7.2 puts this recipe to use with an added twist: Logging messages are
also displayed in a log window.

Listing 7.2 logging/LoggingImageViewer.java

 1 package logging;
 2
 3 import java.awt.*;
 4 import java.awt.event.*;
 5 import java.io.*;
 6 import java.util.logging.*;
 7 import javax.swing.*;
 8
 9 /**
10 * A modification of the image viewer program that logs
various events.
11 * @version 1.03 2015-08-20
12 * @author Cay Horstmann
13 */
14 public class LoggingImageViewer
15 {
16 public static void main(String[] args)

17 {
18 if
(System.getProperty("java.util.logging.config.class") == null
19 &&
System.getProperty("java.util.logging.config.file") == null)
20 {21 try
22 {
23 Logger.getLogger("com.horstmann.corejava").setL
evel(Level.ALL);
24 final int LOG_ROTATION_COUNT = 10;
25 var handler = new
FileHandler("%h/LoggingImageViewer.log", 0,
LOG_ROTATION_COUNT);
26 Logger.getLogger("com.horstmann.corejava").addH
andler(handler);
27 }
28 catch (IOException e)
29 {
30 Logger.getLogger("com.horstmann.corejava").log(
Level.SEVERE,
31 "Can't create log file handler", e);
32 }
33 }
34
35 EventQueue.invokeLater(() ->
36 {
37 var windowHandler = new WindowHandler();
38 windowHandler.setLevel(Level.ALL);
39 Logger.getLogger("com.horstmann.corejava").addH
andler(windowHandler);
40
41 var frame = new ImageViewerFrame();
42 frame.setTitle("LoggingImageViewer");
43 frame.setDefaultCloseOperation(JFrame.EXIT_ON_C
LOSE);
44
45 Logger.getLogger("com.horstmann.corejava").fine
("Showing frame");
46 frame.setVisible(true);

47 });
48 }
49 }
50
51 /**
52 * The frame that shows the image.
53 */
54 class ImageViewerFrame extends JFrame
55 {
56 private static final int DEFAULT_WIDTH = 300;
57 private static final int DEFAULT_HEIGHT = 400;
58
59 private JLabel label;
60 private static Logger logger =
Logger.getLogger("com.horstmann.corejava");
61
62 public ImageViewerFrame()
63 {
64 logger.entering("ImageViewerFrame", "<init>");
65 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
66
67 // set up menu bar
68 var menuBar = new
JMenuBar();69 setJMenuBar(menuBar);
70
71 var menu = new JMenu("File");
72 menuBar.add(menu);
73
74 var openItem = new JMenuItem("Open");
75 menu.add(openItem);
76 openItem.addActionListener(new FileOpenListener());
77
78 var exitItem = new JMenuItem("Exit");
79 menu.add(exitItem);
80 exitItem.addActionListener(new ActionListener()
81 {
82 public void actionPerformed(ActionEvent event)
83 {
84 logger.fine("Exiting.");

85 System.exit(0);
86 }
87 });
88
89 // use a label to display the images
90 label = new JLabel();
91 add(label);
92 logger.exiting("ImageViewerFrame", "<init>");
93 }
94
95 private class FileOpenListener implements ActionListener
96 {
97 public void actionPerformed(ActionEvent event)
98 {
99 logger.entering("ImageViewerFrame.FileOpenListener",
"actionPerformed", event);
100
101 // set up file chooser
102 var chooser = new JFileChooser();
103 chooser.setCurrentDirectory(new File("."));
104
105 // accept all files ending with .gif
106 chooser.setFileFilter(new
javax.swing.filechooser.FileFilter()
107 {
108 public boolean accept(File f)
109 {
110 return
f.getName().toLowerCase().endsWith(".gif") || f.isDirectory();
111 }
112
113 public String getDescription()
114 {
115 return "GIF Images";
116 }
117 });
118
119 // show file chooser dialog
120 int r =

chooser.showOpenDialog(ImageViewerFrame.this);
121
122 // if image file accepted, set it as icon of the
label
123 if (r == JFileChooser.APPROVE_OPTION)
124 {
125 String name =
chooser.getSelectedFile().getPath();
126 logger.log(Level.FINE, "Reading file {0}", name);
127 label.setIcon(new ImageIcon(name));
128 }
129 else logger.fine("File open dialog canceled.");
130 logger.exiting("ImageViewerFrame.FileOpenListener",
"actionPerformed");
131 }
132 }
133 }
134
135 /**
136 * A handler for displaying log records in a window.
137 */
138 class WindowHandler extends StreamHandler
139 {
140 private JFrame frame;
141
142 public WindowHandler()
143 {
144 frame = new JFrame();
145 var output = new JTextArea();
146 output.setEditable(false);
147 frame.setSize(200, 200);
148 frame.add(new JScrollPane(output));
149 frame.setFocusableWindowState(false);
150 frame.setVisible(true);
151 setOutputStream(new OutputStream()
152 {
153 public void write(int b)
154 {
155 } // not called

156
157 public void write(byte[] b, int off, int len)
158 {
159 output.append(new String(b, off, len));
160 }
161 });
162 }
163
164 public void publish(LogRecord record)
165 {
166 if (!frame.isVisible()) return;
167 super.publish(record);
168 flush();
169 }
170 }

java.util.logging.Logger 1.4

• Logger getLogger(String loggerName)
• Logger getLogger(String loggerName, String bundleName)

gets the logger with the given name. If the logger doesn’t exist, it is
created. Localized messages are located in the resource bundle
whose name is bundleName.

• void severe(String message)
• void warning(String message)
• void info(String message)
• void config(String message)
• void fine(String message)
• void finer(String message)
• void finest(String message)

logs a record with the level indicated by the method name and the
given message.

• void entering(String className, String methodName)
• void entering(String className, String methodName, Object

param)

• void entering(String className, String methodName, Object[]
param)

• void exiting(String className, String methodName)
• void exiting(String className, String methodName, Object

result)

logs a record that describes entering or exiting a method with the
given parameter(s) or return value.

• void throwing(String className, String methodName, Throwable
t)

logs a record that describes throwing of the given exception object.
• void log(Level level, String message)
• void log(Level level, String message, Object obj)
• void log(Level level, String message, Object[] objs)
• void log(Level level, String message, Throwable t)

logs a record with the given level and message, optionally including
objects or a throwable. To include objects, the message must contain
formatting placeholders ({0}, {1}, and so on).

• void logp(Level level, String className, String methodName,
String message)

• void logp(Level level, String className, String methodName,
String message, Object obj)

• void logp(Level level, String className, String methodName,
String message, Object[] objs)

• void logp(Level level, String className, String methodName,
String message, Throwable t)

logs a record with the given level, precise caller information, and
message, optionally including objects or a throwable.

• void logrb(Level level, String className, String methodName,
ResourceBundle bundle, String message, Object... params) 9

• void logrb(Level level, String className, String methodName,
ResourceBundle bundle, String message, Throwable thrown) 9
logs a record with the given level, precise caller information,
resource bundle, and message, followed by objects or a throwable.

• Level getLevel()
• void setLevel(Level l)

gets and sets the level of this logger.
• Logger getParent()
• void setParent(Logger l)

gets and sets the parent logger of this logger.
• Handler[] getHandlers()

gets all handlers of this logger.
• void addHandler(Handler h)
• void removeHandler(Handler h)

adds or removes a handler for this logger.
• boolean getUseParentHandlers()
• void setUseParentHandlers(boolean b)

gets and sets the “use parent handler” property. If this property is
true, the logger forwards all logged records to the handlers of its
parent.

• Filter getFilter()
• void setFilter(Filter f)

gets and sets the filter of this logger.

java.util.logging.Handler 1.4

• abstract void publish(LogRecord record)
sends the record to the intended destination.

• abstract void flush()
flushes any buffered data.

• abstract void close()
flushes any buffered data and releases all associated resources.

• Filter getFilter()
• void setFilter(Filter f)

gets and sets the filter of this handler.
• Formatter getFormatter()
• void setFormatter(Formatter f)

gets and sets the formatter of this handler.
• Level getLevel()
• void setLevel(Level l)

gets and sets the level of this handler.

java.util.logging.ConsoleHandler 1.4

• ConsoleHandler()
constructs a new console handler.

java.util.logging.FileHandler 1.4

• FileHandler(String pattern)
• FileHandler(String pattern, boolean append)

• FileHandler(String pattern, int limit, int count)
• FileHandler(String pattern, int limit, int count, boolean

append)

• FileHandler(String pattern, long limit, int count, boolean

append) 9
constructs a file handler. See Table 7.2 for the pattern format. limit
is the approximate maximum number of bytes before a new log file
is opened. count is the number of files in a rotation sequence. If
append is true, records should be appended to an existing log file.

java.util.logging.LogRecord 1.4

• Level getLevel()
gets the logging level of this record.

• String getLoggerName()
gets the name of the logger that is logging this record.

• ResourceBundle getResourceBundle()
• String getResourceBundleName()

gets the resource bundle, or its name, to be used for localizing the
message, or null if none is provided.

• String getMessage()
gets the “raw” message before localization or formatting.

• Object[] getParameters()
gets the parameter objects, or null if none is provided.

• Throwable getThrown()
gets the thrown object, or null if none is provided.

• String getSourceClassName()
• String getSourceMethodName()

gets the location of the code that logged this record. This information
may be supplied by the logging code or automatically inferred from
the runtime stack. It might be inaccurate if the logging code supplied
the wrong value or if the running code was optimized so that the
exact location cannot be inferred.

• long getMillis()
gets the creation time, in milliseconds since 1970.

• Instant getInstant() 9
gets the creation time as a java.time.Instant (see Chapter 6 of
Volume II).

• long getSequenceNumber()
gets the unique sequence number of this record.

• long getLongThreadID() 16
gets the unique ID for the thread in which this record was created.
These IDs are assigned by the LogRecord class and have no
relationship to other thread IDs. (The getThreadID method returns
int IDs. It is now deprecated because a long-running program might
generate more than Integer.MAX_VALUE log records.)

java.util.logging.LogManager 1.4

• static LogManager getLogManager()
gets the global LogManager instance.

• void readConfiguration()
• void readConfiguration(InputStream in)

reads the logging configuration from the file specified by the system
property java.util.logging.config.file, or the given input stream.

• void updateConfiguration(InputStream in,

Function<String,BiFunction<String,String,String>> mapper) 9

• void

updateConfiguration(Function<String,BiFunction<String,String,

String>> mapper) 9
merges the logging configuration with the file specified by the
system property java.util.logging.config.file or the given input
stream. See Section 7.5.3, “Changing the Log Manager
Configuration,” on p. 424 for a description of the mapper parameter.

java.util.logging.Filter 1.4

• boolean isLoggable(LogRecord record)
returns true if the given log record should be logged.

java.util.logging.Formatter 1.4

• abstract String format(LogRecord record)
returns the string that results from formatting the given log record.

• String getHead(Handler h)
• String getTail(Handler h)

returns the strings that should appear at the head and tail of the
document containing the log records. The Formatter superclass
defines these methods to return the empty string; override them if
necessary.

• String formatMessage(LogRecord record)
returns the localized and formatted message part of the log record.

7.6 Debugging Tips

Suppose you wrote your program and made it bulletproof by catching and
properly handling all exceptions. Then you run it, and it does not work right.
Now what? (If you never have this problem, you can skip the remainder of
this chapter.)

Of course, it is best if you have a convenient and powerful debugger.
Debuggers are available as a part of professional development environments
such as Eclipse, IntelliJ, and NetBeans. In this section, I offer a number of
tips that may be worth trying before you launch the debugger.

1. You can print or log the value of any variable with code like this:

System.out.println("x=" + x);

or

Logger.getGlobal().info("x=" + x);

If x is a number, it is converted to its string equivalent. If x is an object,
Java calls its toString method. To get the state of the implicit parameter
object, print the state of the this object.

Logger.getGlobal().info("this=" + this);

Most of the classes in the Java library are very conscientious about
overriding the toString method to give you useful information about the
class. This is a real boon for debugging. You should make the same
effort in your classes.

2. One seemingly little-known but very useful trick is putting a separate
main method in each class. Inside it, you can put a unit test stub that lets
you test the class in isolation.

public class MyClass
{

methods and fields
 . . .
 public static void main(String[] args)
 {

 test code

 }
}

Make a few objects, call all methods, and check that each of them does
the right thing. You can leave all these main methods in place and launch
the Java virtual machine separately on each of the files to run the tests.
When you run an applet, none of these main methods are ever called.
When you run an application, the Java virtual machine calls only the
main method of the startup class.

3. If you liked the preceding tip, you should check out JUnit from
http://junit.org. JUnit is a very popular unit testing framework that
makes it easy to organize suites of test cases. Run the tests whenever you
make changes to a class, and add another test case whenever you find a
bug.

4. A logging proxy is an object of a subclass that intercepts method calls,
logs them, and then calls the superclass. For example, if you have trouble
with the nextDouble method of the Random class, you can create a proxy
object as an instance of an anonymous subclass:

var generator = new Random()
 {
 public double nextDouble()
 {
 double result = super.nextDouble();
 Logger.getGlobal().info("nextDouble: " + result);
 return result;
 }
 };

Whenever the nextDouble method is called, a log message is generated.
To find out who called the method, generate a stack trace.

5. You can get a stack trace from any exception object with the
printStackTrace method in the Throwable class. The following code
catches any exception, prints the exception object and the stack trace,
and rethrows the exception so it can find its intended handler.

try
{

http://junit.org/

 . . .
}
catch (Throwable t)
{
 t.printStackTrace();
 throw t;
}

You don’t even need to catch an exception to generate a stack trace.
Simply insert the statement

Thread.dumpStack();

anywhere into your code to get a stack trace.
6. Normally, the stack trace is displayed on System.err. If you want to log

or display the stack trace, here is how you can capture it into a string:

var out = new StringWriter();
new Throwable().printStackTrace(new PrintWriter(out));
String description = out.toString();

7. It is often handy to trap program errors in a file. However, errors are sent
to System.err, not System.out. Therefore, you cannot simply trap them
by running

java MyProgram > errors.txt

Instead, capture the error stream as

java MyProgram 2> errors.txt

To capture both System.err and System.out in the same file, use

java MyProgram 1> errors.txt 2>&1

This works in bash and the Windows shell.
8. Having the stack traces of uncaught exceptions show up in System.err is

not ideal. These messages are confusing to end users if they happen to
see them, and they are not available for diagnostic purposes when you
need them. A better approach is to log them to a file. You can change the

handler for uncaught exceptions with the static
Thread.setDefaultUncaughtExceptionHandler method:

Thread.setDefaultUncaughtExceptionHandler(
 new Thread.UncaughtExceptionHandler()
 {
 public void uncaughtException(Thread t, Throwable e)
 {

 save information in log file
 };
 });

9. To watch class loading, launch the Java virtual machine with the -
verbose flag. You will get a printout such as the following:

[0.012s][info][class,load] opened: /opt/jdk-11.0.1/lib/modules
[0.034s][info][class,load] java.lang.Object source:
jrt:/java.base
[0.035s][info][class,load] java.io.Serializable source:
jrt:/java.base
[0.035s][info][class,load] java.lang.Comparable source:
jrt:/java.base
[0.035s][info][class,load] java.lang.CharSequence source:
jrt:/java.base
[0.035s][info][class,load] java.lang.String source:
jrt:/java.base
[0.036s][info][class,load] java.lang.reflect.AnnotatedElement
source: jrt:/java.base
[0.036s][info][class,load] java.lang.reflect.GenericDeclaration
source: jrt:/java.base
[0.036s][info][class,load] java.lang.reflect.Type source:
jrt:/java.base
[0.036s][info][class,load] java.lang.Class source:
jrt:/java.base
[0.036s][info][class,load] java.lang.Cloneable source:
jrt:/java.base
[0.037s][info][class,load] java.lang.ClassLoader source:
jrt:/java.base
[0.037s][info][class,load] java.lang.System source:
jrt:/java.base

[0.037s][info][class,load] java.lang.Throwable source:
jrt:/java.base
[0.037s][info][class,load] java.lang.Error source:
jrt:/java.base
[0.037s][info][class,load] java.lang.ThreadDeath source:
jrt:/java.base
[0.037s][info][class,load] java.lang.Exception source:
jrt:/java.base[0.037s][info][class,load]
java.lang.RuntimeException source: jrt:/java.base
[0.038s][info][class,load] java.lang.SecurityManager source:
jrt:/java.base . . .

This can occasionally be helpful to diagnose class path problems.

10. The -Xlint option tells the compiler to spot common code problems. For
example, if you compile with the command

javac -Xlint sourceFiles

the compiler will report missing break statements in switch statements.
(The term “lint” originally described a tool for locating potential
problems in C programs, but is now generically applied to any tools that
flag constructs that are questionable but not illegal.)

You will get messages such as

warning: [fallthrough] possible fall-through into case

The string in square brackets identifies the warning category. You can enable
and disable each category. Since most of them are quite useful, it seems best
to leave them all in place and disable only those that you don’t care about,
like this:

javac -Xlint:all,-fallthrough,-serial sourceFiles

You get a list of all warnings from the command

javac --help -X

11. The Java VM has support for monitoring and management of Java
applications, allowing the installation of agents in the virtual machine
that track memory consumption, thread usage, class loading, and so on.
This feature is particularly important for large and long-running Java
programs, such as application servers. As a demonstration of these
capabilities, the JDK ships with a graphical tool called jconsole that
displays statistics about the performance of a virtual machine (see Figure
7.3). Start your program, then start jconsole and pick your program from
the list of running Java programs.
The console gives you a wealth of information about your running
program. See www.oracle.com/technetwork/articles/java/jconsole-

1564139.html for more information.
12. Java Mission Control is a professional-level profiling and diagnostics

tool, available at https://adoptopenjdk.net/jmc.html. Like jconsole,
Java Mission Control can attach to a running virtual machine. It can also
analyze the output from Java Flight Recorder, a tool that collects
diagnostic and profiling data from a running Java application. See
https://github.com/thegreystone/jmc-tutorial for a comprehensive
tutorial.

http://www.oracle.com/technetwork/articles/java/jconsole-1564139.html
https://adoptopenjdk.net/jmc.html
https://github.com/thegreystone/jmc-tutorial

Figure 7.3 The jconsole program

This chapter introduced you to exception handling and logging. You also
saw useful hints for testing and debugging. The next two chapters cover
generic programming and its most important application: the Java
collections framework.

Chapter 8. Generic Programming

In this chapter

• 8.1 Why Generic Programming?
• 8.2 Defining a Simple Generic Class
• 8.3 Generic Methods
• 8.4 Bounds for Type Variables
• 8.5 Generic Code and the Virtual Machine
• 8.6 Restrictions and Limitations
• 8.7 Inheritance Rules for Generic Types
• 8.8 Wildcard Types
• 8.9 Reflection and Generics

Generic classes and methods have type parameters. This allows them to
describe precisely what should happen when they are instantiated with
specific types. Prior to generic classes, programmers had to use the Object
for writing code that works with multiple types. This was both cumbersome
and unsafe.

With the introduction of generics, Java has an expressive type system that
allows designers to describe in detail how types of variables and methods
should vary. In straightforward situations, you will find it simple to
implement generic code. In more advanced cases, it can get quite complex—
for implemetors. The goal is to provide classes and methods that other
programmers can use without surprises.

The introduction of generics in Java 5 constitutes the most significant change
in the Java programming language since its initial release. A major design
goal was to be backwards compatible with earlier releases. As a result, Java
generics have some uncomfortable limitations. You will learn about the
benefits and challenges of generic programming in this chapter.

8.1 Why Generic Programming?

Generic programming means writing code that can be reused for objects of
many different types. For example, you don’t want to program separate
classes to collect String and File objects. And you don’t have to—the single
class ArrayList collects objects of any class. This is one example of generic
programming.

Actually, Java had an ArrayList class before it had generic classes. Let us
investigate how the mechanism for generic programming has evolved, and
what that means for users and implementors.

8.1.1 The Advantage of Type Parameters

Before generic classes were added to Java, generic programming was
achieved with inheritance. The ArrayList class simply maintained an array
of Object references:

public class ArrayList // before generic classes
{
 private Object[] elementData;
 . . .
 public Object get(int i) { . . . }
 public void add(Object o) { . . . }
}

This approach has two problems. A cast is necessary whenever you retrieve
a value:

ArrayList files = new ArrayList(); . . .
String filename = (String) files.get(0);

Moreover, there is no error checking. You can add values of any class:

files.add(new File(". . ."));

This call compiles and runs without error. Elsewhere, casting the result of
get to a String will cause an error.

Generics offer a better solution: type parameters. The ArrayList class now
has a type parameter that indicates the element type:

var files = new ArrayList<String>();

This makes your code easier to read. You can tell right away that this
particular array list contains String objects.

 NOTE:
If you declare a variable with an explicit type instead of var, you can omit
the type parameter in the constructor by using the “diamond” syntax:

ArrayList<String> files = new ArrayList<>();

The omitted type is inferred from the type of the variable.

Java 9 expands the use of the diamond syntax to situations where it was
previously not accepted. For example, you can now use diamonds with
anonymous subclasses:

ArrayList<String> passwords = new ArrayList<>() // diamond OK
in Java 9
 {
 public String get(int n) { return
super.get(n).replaceAll(".", "*"); }
 };

The compiler can make good use of the type information too. No cast is
required for calling get. The compiler knows that the return type is String,
not Object:

String filename = files.get(0);

The compiler also knows that the add method of an ArrayList<String> has a
parameter of type String. That is a lot safer than having an Object
parameter. Now the compiler can check that you don’t insert objects of the
wrong type. For example, the statement

files.add(new File(". . .")); // can only add String objects to
an ArrayList<String>

will not compile. A compiler error is much better than a class cast exception
at runtime.

This is the appeal of type parameters: They make your programs easier to
read and safer.

8.1.2 Who Wants to Be a Generic Programmer?

It is easy to use a generic class such as ArrayList. Most Java programmers
will simply use types such as ArrayList<String> as if they had been built
into the language, just like String[] arrays. (Of course, array lists are better
than arrays because they can expand automatically.)

However, it is not so easy to implement a generic class. The programmers
who use your code will want to plug in all sorts of classes for your type
parameters. They will expect everything to work without onerous restrictions
and confusing error messages. Your job as a generic programmer, therefore,
is to anticipate all the potential future uses of your class.

How hard can this get? Here is a typical issue that the designers of the
standard class library had to grapple with. The ArrayList class has a method
addAll to add all elements of another collection. A programmer may want to
add all elements from an ArrayList<Manager> to an ArrayList<Employee>.
But, of course, doing it the other way round should not be legal. How do you
allow one call and disallow the other? The Java language designers invented
an ingenious new concept, the wildcard type, to solve this problem. Wildcard

types are rather abstract, but they allow a library builder to make methods as
flexible as possible.

Generic programming falls into three skill levels. At a basic level, you just
use generic classes—typically, collections such as ArrayList—without
thinking how and why they work. Most application programmers will want
to stay at that level until something goes wrong. You may, however,
encounter a confusing error message when mixing different generic classes,
or when interfacing with legacy code that knows nothing about type
parameters; at that point, you’ll need to learn enough about Java generics to
solve problems systematically rather than through random tinkering. Finally,
of course, you may want to implement your own generic classes and
methods.

Application programmers probably won’t write lots of generic code. The
JDK developers have already done the heavy lifting and supplied type
parameters for all the collection classes. As a rule of thumb, only code that
traditionally involved lots of casts from very general types (such as Object
or the Comparable interface) will benefit from using type parameters.

In this chapter, I will show you everything you need to know to implement
your own generic code. However, I expect that most readers will use this
knowledge primarily for help with troubleshooting and to satisfy their
curiosity about the inner workings of the parameterized collection classes.

8.2 Defining a Simple Generic Class

A generic class is a class with one or more type variables. In this chapter, a
simple Pair class is used as an example. This class allows us to focus on
generics without being distracted by data storage details. Here is the code for
the generic Pair class:

public class Pair<T>
{
 private T first;
 private T second;

 public Pair() { first = null; second = null; }

 public Pair(T first, T second) { this.first = first;
this.second = second; }

 public T getFirst() { return first; }
 public T getSecond() { return second; }

 public void setFirst(T newValue) { first = newValue; }
 public void setSecond(T newValue) { second = newValue; }
}

The Pair class introduces a type variable T, enclosed in angle brackets < >,
after the class name. A generic class can have more than one type variable.
For example, we could have defined the Pair class with separate types for
the first and second field:

public class Pair<T, U> { . . . }

The type variables are used throughout the class definition to specify method
return types and the types of fields and local variables. For example:

private T first; // uses the type variable

 NOTE:
It is common practice to use uppercase letters for type variables, and to keep
them short. The Java library uses the variable E for the element type of a
collection, K and V for key and value types of a table, and T (and the
neighboring letters U and S, if necessary) for “any type at all.”

You instantiate the generic type by substituting types for the type variables,
such as

Pair<String>

You can think of the result as an ordinary class with constructors

Pair<String>()
Pair<String>(String, String)

and methods

String getFirst()
String getSecond()void setFirst(String)
void setSecond(String)

In other words, the generic class acts as a factory for ordinary classes.

The program in Listing 8.1 puts the Pair class to work. The static minmax
method traverses an array and simultaneously computes the minimum and
maximum values. It uses a Pair object to return both results. Recall that the
compareTo method compares two strings, returning 0 if the strings are
identical, a negative integer if the first string comes before the second in
dictionary order, and a positive integer otherwise.

 C++ NOTE:
Superficially, generic classes in Java are similar to template classes in C++.
The only obvious difference is that Java has no special template keyword.
However, as you will see throughout this chapter, there are substantial
differences between these two mechanisms.

Listing 8.1 pair1/PairTest1.java

 1 package pair1;
 2
 3 /**
 4 * @version 1.01 2012-01-26
 5 * @author Cay Horstmann

 6 */
 7 public class PairTest1
 8 {
 9 public static void main(String[] args)
10 {
11 String[] words = { "Mary", "had", "a", "little", "lamb"
};
12 Pair<String> mm = ArrayAlg.minmax(words);
13 System.out.println("min = " + mm.getFirst());
14 System.out.println("max = " + mm.getSecond());
15 }
16 }
17
18 class ArrayAlg
19 {
20 /**
21 * Gets the minimum and maximum of an array of strings.
22 * @param a an array of strings
23 * @return a pair with the min and max values, or null if a
is null or empty
24 */
25 public static Pair<String> minmax(String[] a)
26 {
27 if (a == null || a.length == 0) return null;
28 String min = a[0];29 String max = a[0];
30 for (int i = 1; i < a.length; i++)
31 {
32 if (min.compareTo(a[i]) > 0) min = a[i];
33 if (max.compareTo(a[i]) < 0) max = a[i];
34 }
35 return new Pair<>(min, max);
36 }
37 }

8.3 Generic Methods

In the preceding section, you have seen how to define a generic class. You
can also define a single method with type parameters.

class ArrayAlg
{
 public static <T> T getMiddle(T... a)
 {
 return a[a.length / 2];
 }
}

This method is defined inside an ordinary class, not inside a generic class.
However, it is a generic method, as you can see from the angle brackets and
the type variable. Note that the type variables are inserted after the modifiers
(public static, in our case) and before the return type.

You can define generic methods both inside ordinary classes and inside
generic classes.

When you call a generic method, you can place the actual types, enclosed in
angle brackets, before the method name:

String middle = ArrayAlg.<String>getMiddle("John", "Q.",
"Public");

In this case (and indeed in most cases), you can omit the <String> type
parameter from the method call. The compiler has enough information to
infer the method that you want. It matches the type of the arguments against
the generic type T... and deduces that T must be String. That is, you can
simply call

String middle = ArrayAlg.getMiddle("John", "Q.", "Public");

In almost all cases, type inference for generic methods works smoothly.
Occasionally, the compiler gets it wrong, and you’ll need to decipher an
error report. Consider this example:

double middle = ArrayAlg.getMiddle(3.14, 1729, 0);

The error message complains, in cryptic terms that vary from one compiler
version to another, that there are two ways of interpreting this code, both
equally valid. In a nutshell, the compiler autoboxed the parameters into a
Double and two Integer objects, and then it tried to find a common supertype
of these classes. It actually found two: Number and the Comparable interface,
which is itself a generic type. In this case, the remedy is to write all
parameters as double values.

 TIP:
Peter von der Ahé recommends this trick if you want to see which type the
compiler infers for a generic method call: Purposefully introduce an error
and study the resulting error message. For example, consider the call
ArrayAlg.getMiddle("Hello", 0, null). Assign the result to a JButton,
which can’t possibly be right. You will get an error report:

found:
java.lang.Object&java.io.Serializable&java.lang.Comparable<?
extends
java.lang.Object&java.io.Serializable&java.lang.Comparable<?>>

In plain English, you can assign the result to Object, Serializable, or
Comparable.

 C++ NOTE:
In C++, you place the type parameters after the method name. That can lead
to nasty parsing ambiguities. For example, g(f<a,b>(c)) can mean “call g
with the result of f<a,b>(c)”, or “call g with the two boolean values f<a and
b>(c)”.

8.4 Bounds for Type Variables

Sometimes, a class or a method needs to place restrictions on type variables.
Here is a typical example. We want to compute the smallest element of an
array:

class ArrayAlg
{
 public static <T> T min(T[] a) // almost correct
 {
 if (a == null || a.length == 0) return null;
 T smallest = a[0];
 for (int i = 1; i < a.length; i++)
 if (smallest.compareTo(a[i]) > 0) smallest = a[i];
 return smallest;
 }
}

But there is a problem. Look inside the code of the min method. The variable
smallest has type T, which means it could be an object of an arbitrary class.
How do we know that the class to which T belongs has a compareTo method?
The solution is to restrict T to a class that implements the Comparable
interface—a standard interface with a single method, compareTo. You can
achieve this by giving a bound for the type variable T:

public static <T extends Comparable> T min(T[] a) . . .

Actually, the Comparable interface is itself a generic type. For now, ignore
that complexity and the warnings that the compiler generates. Section 8.8,
“Wild-card Types,” on p. 475 discusses how to properly use type parameters
with the Comparable interface.

Now, the generic min method can only be called with arrays of classes that
implement the Comparable interface, such as String, LocalDate, and so on.
Calling min with a Rectangle array is a compile-time error because the
Rectangle class does not implement Comparable.

 C++ NOTE:
In C++, you cannot restrict the types of template parameters. If a
programmer instantiates a template with an inappropriate type, an (often
obscure) error message is reported inside the template code.

You may wonder why I use the extends keyword rather than the implements
keyword in this situation—after all, Comparable is an interface. The notation

<T extends BoundingType>

expresses that T should be a subtype of the bounding type. Both T and the
bounding type can be either a class or an interface. The extends keyword
was chosen because it is a reasonable approximation of the subtype concept,
and the Java designers did not want to add a new keyword (such as sub) to
the language.

A type variable or wildcard can have multiple bounds. For example:

T extends Comparable & Serializable

The bounding types are separated by ampersands (&) because commas are
used to separate type variables.

As with Java inheritance, you can have as many interface supertypes as you
like, but at most one of the bounds can be a class. If you have a class as a
bound, it must be the first one in the bounds list.

In the next sample program (Listing 8.2), we rewrite the minmax method to
be generic. The method computes the minimum and maximum of a generic
array, returning a Pair<T>.

Listing 8.2 pair2/PairTest2.java

 1 package pair2;
 2
 3 import java.time.*;
 4
 5 /**
 6 * @version 1.02 2015-06-21
 7 * @author Cay Horstmann
 8 */
 9 public class PairTest2
10 {
11 public static void main(String[] args)
12 {
13 LocalDate[] birthdays =
14 {
15 LocalDate.of(1906, 12, 9), // G. Hopper
16 LocalDate.of(1815, 12, 10), // A. Lovelace
17 LocalDate.of(1903, 12, 3), // J. von Neumann
18 LocalDate.of(1910, 6, 22), // K. Zuse
19 };
20 Pair<LocalDate> mm = ArrayAlg.minmax(birthdays);
21 System.out.println("min = " + mm.getFirst());
22 System.out.println("max = " + mm.getSecond());
23 }
24 }
25
26 class ArrayAlg
27 {
28 /**
29 Gets the minimum and maximum of an array of objects of
type T.
30 @param a an array of objects of type T
31 @return a pair with the min and max values, or null if a
is null or empty
32 */
33 public static <T extends Comparable> Pair<T> minmax(T[] a)
34 {
35 if (a == null || a.length == 0) return null;
36 T min = a[0];
37 T max = a[0];

38 for (int i = 1; i < a.length; i++)
39 {
40 if (min.compareTo(a[i]) > 0) min = a[i];
41 if (max.compareTo(a[i]) < 0) max = a[i];
42 }
43 return new Pair<>(min, max);
44 }
45 }

8.5 Generic Code and the Virtual Machine

The virtual machine does not have objects of generic types—all objects
belong to ordinary classes. An earlier version of the generics implementation
was even able to compile a program that used generics into class files that
executed on 1.0 virtual machines! In the following sections, you will see
how the compiler “erases” type parameters, and what implication that
process has for Java programmers.

8.5.1 Type Erasure

Whenever you define a generic type, a corresponding raw type is
automatically provided. The name of the raw type is simply the name of the
generic type, with the type parameters removed. The type variables are
erased and replaced by their bounding types (or Object for variables without
bounds).

For example, the raw type for Pair<T> looks like this:

public class Pair
{
 private Object first;
 private Object second;

 public Pair(Object first, Object second)
 {
 this.first = first;
 this.second = second;

 }

 public Object getFirst() { return first; }
 public Object getSecond() { return second; }

 public void setFirst(Object newValue) { first = newValue; }
 public void setSecond(Object newValue) { second = newValue;
}
}

Since T is an unbounded type variable, it is simply replaced by Object.

The result is an ordinary class, just as you might have implemented it before
generics were added to Java.

Your programs may contain different kinds of Pair, such as Pair<String> or
Pair<LocalDate>, but erasure turns them all into raw Pair types.

 C++ NOTE:
In this regard, Java generics are very different from C++ templates. C++
produces different types for each template instantiation—a phenomenon
called “template code bloat.” Java does not suffer from this problem.

The raw type replaces type variables with the first bound, or Object if no
bounds are given. For example, the type variable in the class Pair<T> has no
explicit bounds, hence the raw type replaces T with Object. Suppose we
declare a slightly different type:

public class Interval<T extends Comparable & Serializable>
implements Serializable
{
 private T lower;
 private T upper;
 . . .

 public Interval(T first, T second)
 {
 if (first.compareTo(second) <= 0) { lower = first; upper
= second; }
 else { lower = second; upper = first; }
 }
}

The raw type Interval looks like this:

public class Interval implements Serializable
{
 private Comparable lower;
 private Comparable upper;
 . . .
 public Interval(Comparable first, Comparable second) { . . .
}
}

 NOTE:
You may wonder what happens if you switch the bounds: class Interval<T
extends Serializable & Comparable>. In that case, the raw type replaces T
with Serializable, and the compiler inserts casts to Comparable when
necessary. For efficiency, you should therefore put tagging interfaces (that
is, interfaces without methods) at the end of the bounds list.

8.5.2 Translating Generic Expressions

When you program a call to a generic method, the compiler inserts casts
when the return type has been erased. For example, consider the sequence of
statements

Pair<Employee> buddies = . . .;
Employee buddy = buddies.getFirst();

The erasure of getFirst has return type Object. The compiler automatically
inserts the cast to Employee. That is, the compiler translates the method call
into two virtual machine instructions:

• A call to the raw method Pair.getFirst
• A cast of the returned Object to the type Employee

Casts are also inserted when you access a generic field. Suppose the first
and second fields of the Pair class were public. (Not a good programming
style, perhaps, but it is legal Java.) Then the expression

Employee buddy = buddies.first;

also has a cast inserted in the resulting bytecodes.

8.5.3 Translating Generic Methods

Type erasure also happens for generic methods. Programmers usually think
of a generic method such as

public static <T extends Comparable> T min(T[] a)

as a whole family of methods, but after erasure, only a single method is left:

public static Comparable min(Comparable[] a)

Note that the type parameter T has been erased, leaving only its bounding
type Comparable.

Erasure of methods brings up a couple of complexities. Consider this
example:

class DateInterval extends Pair<LocalDate>
{
 public void setSecond(LocalDate second)
 {
 if (second.compareTo(getFirst()) >= 0)
 super.setSecond(second);
 }
 . . .
}

A date interval is a pair of LocalDate objects, and we’ll want to override the
methods to ensure that the second value is never smaller than the first. This
class is erased to

class DateInterval extends Pair // after erasure
{
 public void setSecond(LocalDate second) { . . . }
 . . .
}

Perhaps surprisingly, there is another setSecond method, inherited from
Pair, namely

public void setSecond(Object second)

This is clearly a different method because it has a parameter of a different
type—Object instead of LocalDate. But it shouldn’t be different. Consider
this sequence of statements:

var interval = new DateInterval(. . .);
Pair<LocalDate> pair = interval; // OK--assignment to
superclass
pair.setSecond(aDate);

Our expectation is that the call to setSecond is polymorphic and that the
appropriate method is called. Since pair refers to a DateInterval object, that

should be DateInterval.setSecond. The problem is that the type erasure
interferes with polymorphism. To fix this problem, the compiler generates a
bridge method in the DateInterval class:

public void setSecond(Object second) { setSecond((LocalDate)
second); }

To see why this works, let us carefully follow the execution of the statement

pair.setSecond(aDate)

The variable pair has declared type Pair<LocalDate>, and that type only has
a single method called setSecond, namely setSecond(Object). The virtual
machine calls that method on the object to which pair refers. That object is
of type DateInterval. Therefore, the method
DateInterval.setSecond(Object) is called. That method is the synthesized
bridge method. It calls DateInterval.setSecond(LocalDate), which is what
we want.

Bridge methods can get even stranger. Suppose the DateInterval class also
overrides the getSecond method:

class DateInterval extends Pair<LocalDate>
{
 public LocalDate getSecond() { return (LocalDate)
super.getSecond(); }
 . . .
}

In the DateInterval class, there are two getSecond methods:

LocalDate getSecond() // defined in DateInterval
Object getSecond() // overrides the method defined in Pair to
call the first method

You could not write Java code like that; it would be illegal to have two
methods with the same parameter types—here, with no parameters.
However, in the virtual machine, the parameter types and the return type
specify a method. Therefore, the compiler can produce bytecodes for two
methods that differ only in their return type, and the virtual machine will
handle this situation correctly.

 NOTE:
Bridge methods are not limited to generic types. You already saw in Chapter
5 that it is legal for a method to specify a more restrictive return type when
overriding another method. For example:

public class Employee implements Cloneable
{
 public Employee clone() throws CloneNotSupportedException {
. . . }
}

The Object.clone and Employee.clone methods are said to have covariant
return types.

Actually, the Employee class has two clone methods:

Employee clone() // defined above
Object clone() // synthesized bridge method, overrides
Object.clone

The synthesized bridge method calls the newly defined method.

In summary, you need to remember these facts about translation of Java
generics:

• There are no generics in the virtual machine, only ordinary classes and
methods.

• All type parameters are replaced by their bounds.
• Bridge methods are synthesized to preserve polymorphism.
• Casts are inserted as necessary to preserve type safety.

8.5.4 Calling Legacy Code

When Java generics were designed, a major goal was to allow
interoperability between generics and legacy code. Let us look at a concrete
example of such legacy. The Swing user interface toolkit provides a JSlider
class whose “ticks” can be customized with labels that contain text or
images. The labels are set with the call

void setLabelTable(Dictionary table)

The Dictionary class maps integers to labels. Before Java 5, that class was
implemented as a map of Object instances. Java 5 made Dictionary into a
generic class, but JSlider was never updated. At this point, Dictionary
without type parameters is a raw type. This is where compatibility comes in.

When you populate the dictionary, you can use the generic type.

Dictionary<Integer, Component> labelTable = new Hashtable<>();
labelTable.put(0, new JLabel(new ImageIcon("nine.gif")));
labelTable.put(20, new JLabel(new ImageIcon("ten.gif")));
. . .

When you pass the Dictionary<Integer, Component> object to
setLabelTable, the compiler issues a warning.

slider.setLabelTable(labelTable); // warning

After all, the compiler has no assurance about what the setLabelTable might
do to the Dictionary object. That method might replace all the keys with

strings. That breaks the guarantee that the keys have type Integer, and future
operations may cause bad cast exceptions.

You should ponder it and ask what the JSlider is actually going to do with
this Dictionary object. In our case, it is pretty clear that the JSlider only
reads the information, so you can ignore the warning.

Now consider the opposite case, in which you get an object of a raw type
from a legacy class. You can assign it to a variable whose type uses generics,
but of course you will get a warning. For example:

Dictionary<Integer, Components> labelTable =
slider.getLabelTable(); // warning

That’s OK—review the warning and make sure that the label table really
contains Integer and Component objects. Of course, there never is an
absolute guarantee. A malicious coder might have installed a different
Dictionary in the slider. But again, the situation is no worse than it was
before generics. In the worst case, your program will throw an exception.

After you are done pondering the warning, you can use an annotation to
make it disappear. You can annotate a local variable:

@SuppressWarnings("unchecked")
Dictionary<Integer, Components> labelTable =
slider.getLabelTable(); // no warning

Or you can annotate an entire method, like this:

@SuppressWarnings("unchecked")
public void configureSlider() { . . . }

This annotation turns off checking for all code inside the method.

8.6 Restrictions and Limitations

In the following sections, I discuss a number of restrictions that you need to
consider when working with Java generics. Most of these restrictions are a
consequence of type erasure.

8.6.1 Type Parameters Cannot Be Instantiated with Primitive Types

You cannot substitute a primitive type for a type parameter. Thus, there is no
Pair<double>, only Pair<Double>. The reason is, of course, type erasure.
After erasure, the Pair class has fields of type Object, and you can’t use
them to store double values.

This is an annoyance, to be sure, but it is consistent with the separate status
of primitive types in the Java language. It is not a fatal flaw—there are only
eight primitive types, and you can always handle them with separate classes
and methods when wrapper types are not an acceptable substitute.

8.6.2 Runtime Type Inquiry Only Works with Raw Types

Objects in the virtual machine always have a specific nongeneric type.
Therefore, all type inquiries yield only the raw type. For example,

if (a instanceof Pair<String>) // ERROR

could only test whether a is a Pair of any type. The same is true for the test

if (a instanceof Pair<T>) // ERROR

or the cast

Pair<String> p = (Pair<String>) a; // warning--can only test
that a is a Pair

To remind you of the risk, you will get a compiler error (with instanceof) or
warning (with casts) when you try to inquire whether an object belongs to a
generic type.

In the same spirit, the getClass method always returns the raw type. For
example:

Pair<String> stringPair = . . .;
Pair<Employee> employeePair = . . .;
if (stringPair.getClass() == employeePair.getClass()) // they
are equal

The comparison yields true because both calls to getClass return
Pair.class.

8.6.3 You Cannot Create Arrays of Parameterized Types

You cannot instantiate arrays of parameterized types, such as

var table = new Pair<String>[10]; // ERROR

What’s wrong with that? After erasure, the type of table is Pair[]. You can
convert it to Object[]:

Object[] objarray = table;

An array remembers its component type and throws an ArrayStoreException
if you try to store an element of the wrong type:

objarray[0] = "Hello"; // ERROR--component type is Pair

But erasure renders this mechanism ineffective for generic types. The
assignment

objarray[0] = new Pair<Employee>();

would pass the array store check but still result in a type error. For this
reason, arrays of parameterized types are outlawed.

Note that only the creation of these arrays is outlawed. You can declare a
variable of type Pair<String>[]. But you can’t initialize it with a new
Pair<String>[10].

 NOTE:
You can declare arrays of wildcard types and then cast them:

var table = (Pair<String>[]) new Pair<?>[10];

The result is not safe. If you store a Pair<Employee> in table[0] and then
call a String method on table[0].getFirst(), you get a
ClassCastException.

 TIP:
If you need to collect parameterized type objects, simply use an ArrayList:
ArrayList<Pair<String>> is safe and effective.

8.6.4 Varargs Warnings

In the preceding section, you saw that Java doesn’t support arrays of generic
types. In this section, I discuss a related issue: passing instances of a generic
type to a method with a variable number of arguments.

Consider this simple method with variable arguments:

public static <T> void addAll(Collection<T> coll, T... ts)
{
 for (T t : ts) coll.add(t);
}

Recall that the parameter ts is actually an array that holds all supplied
arguments.

Now consider this call:

Collection<Pair<String>> table = . . .;
Pair<String> pair1 = . . .; Pair<String> pair2 = . . .;
addAll(table, pair1, pair2);

In order to call this method, the Java virtual machine must make an array of
Pair<String>, which is against the rules. However, the rules have been
relaxed for this situation, and you only get a warning, not an error.

You can suppress the warning in one of two ways. You can add the
annotation @SuppressWarnings("unchecked") to the method containing the
call to addAll. Or, as of Java 7, you can annotate the addAll method itself
with @SafeVarargs:

@SafeVarargs
public static <T> void addAll(Collection<T> coll, T... ts)

This method can now be called with generic types. You can use this
annotation for any methods that merely read the elements of the parameter
array, which is bound to be the most common use case.

The @SafeVarargs can only be used with constructors and methods that are
static, final, or (as of Java 9) private. Any other method could be
overridden, making the annotation meaningless.

 NOTE:
You can use the @SafeVarargs annotation to defeat the restriction against
generic array creation, using this method:

@SafeVarargs static <E> E[] array(E... array) { return array; }

Now you can call

Pair<String>[] table = array(pair1, pair2);

This seems convenient, but there is a hidden danger. The code

Object[] objarray = table;
objarray[0] = new Pair<Employee>();

will run without an ArrayStoreException (because the array store only
checks the erased type), and you’ll get an exception elsewhere when you
work with table[0].

8.6.5 You Cannot Instantiate Type Variables

You cannot use type variables in an expression such as new T(. . .). For
example, the following Pair<T> constructor is illegal:

public Pair() { first = new T(); second = new T(); } // ERROR

Type erasure would change T to Object, and surely you don’t want to call new
Object().

The best workaround, available since Java 8, is to make the caller provide a
constructor expression. For example:

Pair<String> p = Pair.makePair(String::new);

The makePair method receives a Supplier<T>, the functional interface for a
function with no arguments and a result of type T:

public static <T> Pair<T> makePair(Supplier<T> constr)
{

 return new Pair<>(constr.get(), constr.get());
}

A more traditional workaround is to construct generic objects through
reflection, by calling the Constructor.newInstance method.

Unfortunately, the details are a bit complex. You cannot call

first = T.class.getConstructor().newInstance(); // ERROR

The expression T.class is not legal because it would erase to Object.class.
Instead, you must design the API so that you are handed a Class object, like
this:

public static <T> Pair<T> makePair(Class<T> cl)
{
 try
 {
 return new Pair<>(cl.getConstructor().newInstance(),
 cl.getConstructor().newInstance());
 }
 catch (Exception e) { return null; }
}

This method could be called as follows:

Pair<String> p = Pair.makePair(String.class);

Note that the Class class is itself generic. For example, String.class is an
instance (indeed, the sole instance) of Class<String>. Therefore, the
makePair method can infer the type of the pair that it is making.

8.6.6 You Cannot Construct a Generic Array

Just as you cannot instantiate a single generic instance, you cannot
instantiate an array. The reasons are different—an array is, after all, filled

with null values, which would seem safe to construct. But an array also
carries a type, which is used to monitor array stores in the virtual machine.
That type is erased. For example, consider

public static <T extends Comparable> T[] minmax(T... a)
{
 T[] mm = new T[2]; // ERROR
 . . .
}

Type erasure would cause this method to always construct an array
Comparable[2].

If the array is only used as a private instance field of a class, you can declare
the element type of the array to be the erased type and use casts. For
example, the ArrayList class could be implemented as follows:

public class ArrayList<E>
{
 private Object[] elements;
 . . .
 @SuppressWarnings("unchecked") public E get(int n) { return
(E) elements[n]; }
 public void set(int n, E e) { elements[n] = e; } // no cast
needed
}

The actual implementation is not quite as clean:

public class ArrayList<E>
{
 private E[] elements;
 . . .
 public ArrayList() { elements = (E[]) new Object[10]; }
}

Here, the cast E[] is an outright lie, but type erasure makes it undetectable.

This technique does not work for our minmax method since we are returning a
T[] array, and a runtime error results if we lie about its type. Suppose we
implement

public static <T extends Comparable> T[] minmax(T... a)
{
 var result = new Comparable[2]; // array of erased type
 . . .
 return (T[]) result; // compiles with warning
}

The call

String[] names = ArrayAlg.minmax("Tom", "Dick", "Harry");

compiles without any warning. A ClassCastException occurs when the
Comparable[] reference is cast to String[] after the method returns.

In this situation, it is best to ask the user to provide an array constructor
expression:

String[] names = ArrayAlg.minmax(String[]::new, "Tom", "Dick",
"Harry");

The constructor expression String[]::new denotes a function that, given the
desired length, constructs a String array of that length.

The method uses that parameter to produce an array of the correct type:

public static <T extends Comparable> T[]
minmax(IntFunction<T[]> constr, T... a)
{
 T[] result = constr.apply(2);
 . . .
}

A more old-fashioned approach is to use reflection and call
Array.newInstance:

public static <T extends Comparable> T[] minmax(T... a)
{
 var result = (T[])
Array.newInstance(a.getClass().getComponentType(), 2);
 . . .
}

The toArray method of the ArrayList class is not so lucky. It needs to
produce a T[] array, but it doesn’t have the component type. Therefore, there
are two variants:

Object[] toArray()
T[] toArray(T[] result)

The second method receives an array parameter. If the array is large enough,
it is used. Otherwise, a new array of sufficient size is created, using the
component type of result.

8.6.7 Type Variables Are Not Valid in Static Contexts of Generic Classes

You cannot reference type variables in static fields or methods. For example,
the following clever idea won’t work:

public class Singleton<T>
{
 private static T singleInstance; // ERROR

 public static T getSingleInstance() // ERROR
 {
 if (singleInstance == null) construct new instance of T
 return singleInstance;
 }
}

If this could be done, then a program could declare a Singleton<Random> to
share a random number generator and a Singleton<JFileChooser> to share a
file chooser dialog. But it can’t work. After type erasure there is only one
Singleton class, and only one singleInstance field. For that reason, static
fields and methods with type variables are simply outlawed.

8.6.8 You Cannot Throw or Catch Instances of a Generic Class

You can neither throw nor catch objects of a generic class. In fact, it is not
even legal for a generic class to extend Throwable. For example, the
following definition will not compile:

public class Problem<T> extends Exception { /* . . . */ }
 // ERROR--can't extend Throwable

You cannot use a type variable in a catch clause. For example, the following
method will not compile:

public static <T extends Throwable> void doWork(Class<T> t)
{
 try
 {
 do work
 }
 catch (T e) // ERROR--can't catch type variable
 {
 Logger.global.info(. . .);
 }
}

However, it is OK to use type variables in exception specifications. The
following method is legal:

public static <T extends Throwable> void doWork(T t) throws T
// OK
{
 try

 {
 do work
 }
 catch (Throwable realCause)
 {
 t.initCause(realCause);
 throw t;
 }
}

8.6.9 You Can Defeat Checked Exception Checking

A bedrock principle of Java exception handling is that you must provide a
handler for all checked exceptions. You can use generics to defeat this
scheme. The key ingredient is this method:

@SuppressWarnings("unchecked")
static <T extends Throwable> void throwAs(Throwable t) throws T
{ throw (T) t;
}

Suppose this method is contained in an interface Task. When you have a
checked exception e and call

Task.<RuntimeException>throwAs(e);

then the compiler will believe that e becomes an unchecked exception. The
following turns all exceptions into those that the compiler believes to be
unchecked:

try
{

 do work
}
catch (Throwable t)
{

 Task.<RuntimeException>throwAs(t);
}

Let’s use this to solve a vexing problem. To run code in a thread, you have to
place it into the run method of a class that implements the Runnable
interface. But that method is not allowed to throw checked exceptions. We
will provide an adaptor from a Task, whose run method is allowed to throw
arbitrary exceptions, to a Runnable:

interface Task
{
 void run() throws Exception;

 @SuppressWarnings("unchecked")
 static <T extends Throwable> void throwAs(Throwable t)
throws T
 {
 throw (T) t;
 }

 static Runnable asRunnable(Task task)
 {
 return () ->
 {
 try
 {
 task.run();
 }
 catch (Exception e)
 {
 Task.<RuntimeException>throwAs(e);
 }
 }; }
}

For example, this program runs a thread that will throw a checked exception:

public class Test
{
 public static void main(String[] args)
 {
 var thread = new Thread(Task.asRunnable(() ->
 {
 Thread.sleep(1000);
 System.out.println("Hello, World!");
 throw new Exception("Check this out!");
 }));
 thread.start();
 }
}

The Thread.sleep method is declared to throw an InterruptedException,
and we no longer have to catch it. Since we don’t interrupt the thread, that
exception won’t be thrown. However, the program throws a checked
exception. When you run the program, you will get a stack trace.

What’s so remarkable about that? Normally, you have to catch all checked
exceptions inside the run method of a Runnable and wrap them into
unchecked exceptions—the run method is declared to throw no checked
exceptions.

But here, we don’t wrap. We simply throw the exception, tricking the
compiler into believing that it is not a checked exception.

Using generic classes, erasure, and the @SuppressWarnings annotation, we
were able to defeat an essential part of the Java type system.

8.6.10 Beware of Clashes after Erasure

It is illegal to create conditions that cause clashes when generic types are
erased. Here is an example. Suppose we add an equals method to the Pair
class, like this:

public class Pair<T>
{
 public boolean equals(T value) { return first.equals(value)
&& second.equals(value); }
 . . .
}

Consider a Pair<String>. Conceptually, it has two equals methods:

boolean equals(String) // defined in Pair<T>
boolean equals(Object) // inherited from Object

But the intuition leads us astray. The erasure of the method

boolean equals(T)

is

boolean equals(Object)

which clashes with the Object.equals method.

The remedy is, of course, to rename the offending method.

The generics specification cites another rule: “To support translation by
erasure, we impose the restriction that a class or type variable may not at the
same time be a subtype of two interface types which are different
parameterizations of the same interface.” For example, the following is
illegal:

class Employee implements Comparable<Employee> { . . . }
class Manager extends Employee implements Comparable<Manager> {
. . . } // ERROR

Manager would then implement both Comparable<Employee> and
Comparable<Manager>, which are different parameterizations of the same

interface.

It is not obvious what this restriction has to do with type erasure. After all,
the nongeneric version

class Employee implements Comparable { . . . }
class Manager extends Employee implements Comparable { . . . }

is legal. The reason is far more subtle. There would be a conflict with the
synthesized bridge methods. A class that implements Comparable<X> gets a
bridge method

public int compareTo(Object other) { return compareTo((X)
other); }

You cannot have two such methods for different types X.

8.7 Inheritance Rules for Generic Types

When you work with generic classes, you need to learn a few rules about
inheritance and subtypes. Let’s start with a situation which many
programmers find unintuitive. Consider a class and a subclass, such as
Employee and Manager. Is Pair<Manager> a subtype of Pair<Employee>?
Perhaps surprisingly, the answer is “no.” For example, the following code
will not compile:

Pair<Employee> buddies = new Pair<Manager>(ceo, cfo); //
illegal

In general, there is no relationship between Pair<S> and Pair<T>, no matter
how S and T are related (see Figure 8.1).

Figure 8.1 No inheritance relationship between Pair classes

This seems like a cruel restriction, but it is necessary for type safety.
Suppose we were allowed to convert a Pair<Manager> to a Pair<Employee>.
Consider this code:

var managerBuddies = new Pair<Manager>(ceo, cfo);
Pair<Employee> employeeBuddies = managerBuddies; // illegal,
but suppose it wasn't
employeeBuddies.setFirst(lowlyEmployee);

Clearly, the last statement is legal. But employeeBuddies and managerBuddies
refer to the same object. We now managed to pair up the CFO with a lowly
employee, which should not be possible for a Pair<Manager>.

 NOTE:
You just saw an important difference between generic types and Java arrays.
You can assign a Manager[] array to a variable of type Employee[]:

Manager[] managerBuddies = { ceo, cfo };
Employee[] employeeBuddies = managerBuddies; // OK

However, arrays come with special protection. If you try to store a lowly
employee into employeeBuddies[0], the virtual machine throws an
ArrayStoreException.

You can always convert a parameterized type to a raw type. For example,
Pair<Employee> is a subtype of the raw type Pair. This conversion is
necessary for interfacing with legacy code.

Can you convert to the raw type and then cause a type error? Unfortunately,
you can. Consider this example:

var managerBuddies = new Pair<Manager>(ceo, cfo);
Pair rawBuddies = managerBuddies; // OK
rawBuddies.setFirst(new File(". . .")); // only a compile-time
warning

This sounds scary. However, keep in mind that you are no worse off than
you were with older versions of Java. The security of the virtual machine is
not at stake. When the foreign object is retrieved with getFirst and assigned
to a Manager variable, a ClassCastException is thrown, just as in the good
old days. You merely lose the added safety that generic programming
normally provides.

Finally, generic classes can extend or implement other generic classes. In
this regard, they are no different from ordinary classes. For example, the
class ArrayList<T> implements the interface List<T>. That means an
ArrayList<Manager> can be converted to a List<Manager>. However, as you
just saw, an ArrayList<Manager> is not an ArrayList<Employee> or
List<Employee>. Figure 8.2 shows these relationships.

Figure 8.2 Subtype relationships among generic list types

8.8 Wildcard Types

It was known for some time among researchers of type systems that a rigid
system of generic types is quite unpleasant to use. The Java designers
invented an ingenious (but nevertheless safe) “escape hatch”: the wildcard
type. The following sections show you how to work with wildcards.

8.8.1 The Wildcard Concept

In a wildcard type, a type parameter is allowed to vary. For example, the
wildcard type

Pair<? extends Employee>

denotes any generic Pair type whose type parameter is a subclass of
Employee, such as Pair<Manager>, but not Pair<String>.

Let’s say you want to write a method that prints out pairs of employees, like
this:

public static void printBuddies(Pair<Employee> p)
{
 Employee first = p.getFirst();
 Employee second = p.getSecond();
 System.out.println(first.getName() + " and " +
second.getName() + " are buddies.");
}

As you saw in the preceding section, you cannot pass a Pair<Manager> to
that method, which is rather limiting. But the solution is simple—use a
wildcard type:

public static void printBuddies(Pair<? extends Employee> p)

The type Pair<Manager> is a subtype of Pair<? extends Employee> (see
Figure 8.3).

Can we use wildcards to corrupt a Pair<Manager> through a Pair<? extends
Employee> reference?

var managerBuddies = new Pair<Manager>(ceo, cfo);
Pair<? extends Employee> wildcardBuddies = managerBuddies; //

OK
wildcardBuddies.setFirst(lowlyEmployee); // compile-time error

No corruption is possible. The call to setFirst is a type error. To see why,
let us have a closer look at the type Pair<? extends Employee>. Its methods
look like this:

? extends Employee getFirst()
void setFirst(? extends Employee)

Figure 8.3 Subtype relationships with wildcards

It is impossible to call the setFirst method! Consider the call
wildcardBuddies.setFirst(lowlyEmployee) The compiler knows that the
parameter of setFirst has some specific type, which extends Employee. Is
that specific type Employee? Is it Manager, or some other subclass? There is
no way for the compiler to know. Therefore, the compiler cannot accept
lowlyEmployee. For the same reason, the call

wildcardBuddies.setFirst(cio), where cio is a Manager instance, also fails.
The compiler must reject all arguments to setFirst other than null.

The getFirst method continues to work. The return value of getFirst is an
instance of some specific type, which is a subtype of Employee. The compiler
doesn’t know what that specific type is, but it can guarantee that the
assignment to an Employee reference is safe.

This is the key idea behind bounded wildcards. We now have a way of
distinguishing between the safe accessor methods and the unsafe mutator
methods.

8.8.2 Supertype Bounds for Wildcards

Wildcard bounds are similar to type variable bounds, but they have an added
capability—you can specify a supertype bound, like this:

? super Manager

This wildcard is restricted to all supertypes of Manager. (It was a stroke of
good luck that the existing super keyword describes the relationship so
accurately.)

Why would you want to do this? A wildcard with a supertype bound gives
you a behavior that is opposite to that of the wildcards described in Section
8.8, “Wildcard Types,” on p. 475. You can supply parameters to methods,
but you can’t use the return values. For example, Pair<? super Manager> has
methods that can be described as follows:

void setFirst(? super Manager)
? super Manager getFirst()

This is not actual Java syntax, but it shows what the compiler knows. The
setFirst parameter type, denoted as ? super Manager, is some specific type
T, and Manager is a subtype of T. There are exactly three choices for T:
Object, Employee, or Manager. (There would have been more choices if
Manager or Employee had implemented interfaces.) However, the compiler

cannot know which of these choices applies. Therefore, the compiler cannot
accept a call with an argument of type Employee or Object. After all, T might
have been Manager. It is only possible to pass an object of type Manager or a
subtype such as Executive.

Conversely, if you call getFirst, there is no guarantee about the type of the
returned object. You can only assign it to an Object.

Here is a typical example. We have an array of managers and want to put the
manager with the lowest and highest bonus into a Pair object. What kind of
Pair? A Pair<Employee> should be fair game or, for that matter, a
Pair<Object> (see Figure 8.4). The following method will accept any
appropriate Pair:

public static void minmaxBonus(Manager[] a, Pair<? super
Manager> result)
{
 if (a.length == 0) return;
 Manager min = a[0];
 Manager max = a[0];
 for (int i = 1; i < a.length; i++)
 {
 if (min.getBonus() > a[i].getBonus()) min = a[i];
 if (max.getBonus() < a[i].getBonus()) max = a[i];
 }
 result.setFirst(min);
 result.setSecond(max);
}

Intuitively speaking, wildcards with supertype bounds let you write to a
generic object, while wildcards with subtype bounds let you read from a
generic object.

Figure 8.4 A wildcard with a supertype bound

Here is another use for supertype bounds. The Comparable interface is itself a
generic type. It is declared as follows:

public interface Comparable<T>
{
 public int compareTo(T other);
}

Here, the type variable indicates the type of the other parameter. For
example, the String class implements Comparable<String>, and its
compareTo method is declared as

public int compareTo(String other)

This is nice—the explicit parameter has the correct type. Before the interface
was generic, other was an Object, and a cast was necessary in the
implementation of the method.

Now that Comparable is a generic type, perhaps we should have done a better
job with the minmax method of the ArrayAlg class? We could have declared it
as

public static <T extends Comparable<T>> Pair<T> minmax(T[] a)

This looks more thorough than just using T extends Comparable, and it
would work fine for many classes. For example, if you compute the
minimum of a String array, then T is the type String, and String is a
subtype of Comparable<String>. But we run into a problem when processing
an array of LocalDate objects. As it happens, LocalDate implements
ChronoLocalDate, and ChronoLocalDate extends
Comparable<ChronoLocalDate>. Thus, LocalDate implements
Comparable<ChronoLocalDate> but not Comparable<LocalDate>.

In a situation such as this one, supertypes come to the rescue:

public static <T extends Comparable<? super T>> Pair<T>
minmax(T[] a)

Now the compareTo method has the form

int compareTo(? super T)

Maybe it is declared to take an object of type T, or—for example, when T is
LocalDate—a supertype of T. At any rate, it is safe to pass an object of type T
to the compareTo method.

To the uninitiated, a declaration such as <T extends Comparable<? super T>>
is bound to look intimidating. This is unfortunate, because the intent of this

declaration is to help application programmers by removing unnecessary
restrictions on the call parameters. Application programmers with no interest
in generics will probably learn quickly to gloss over these declarations and
just take for granted that library programmers will do the right thing. If you
are a library programmer, you’ll need to get used to wildcards, or your users
will curse you and throw random casts at their code until it compiles.

 NOTE:
Another common use for supertype bounds is an argument type of a
functional interface. For example, the Collection interface has a method

default boolean removeIf(Predicate<? super E> filter)

The method removes all elements that fulfill the given predicate. For
example, if you hate employees with odd hash codes, you can remove them
like this:

ArrayList<Employee> staff = . . .;
Predicate<Object> oddHashCode = obj -> obj.hashCode() %2 != 0;
staff.removeIf(oddHashCode);

You want to be able to pass a Predicate<Object>, not just a
Predicate<Employee>. The super wildcard makes that possible.

8.8.3 Unbounded Wildcards

You can even use wildcards with no bounds at all—for example, Pair<?>. At
first glance, this looks identical to the raw Pair type. Actually, the types are
very different. The type Pair<?> has methods such as

? getFirst()
void setFirst(?)

The return value of getFirst can only be assigned to an Object. The
setFirst method can never be called, not even with an Object. That’s the
essential difference between Pair<?> and Pair: you can call the setFirst
method of the raw Pair class with any Object.

 NOTE:
You can call setFirst(null).

Why would you ever want such a wimpy type? It is useful for very simple
operations. For example, the following method tests whether a pair contains
a null reference. It never needs the actual type.

public static boolean hasNulls(Pair<?> p)
{
 return p.getFirst() == null || p.getSecond() == null;
}

You could have avoided the wildcard type by turning hasNulls into a generic
method:

public static <T> boolean hasNulls(Pair<T> p)

However, the version with the wildcard type seems easier to read.

8.8.4 Wildcard Capture

Let us write a method that swaps the elements of a pair:

public static void swap(Pair<?> p)

A wildcard is not a type variable, so we can’t write code that uses ? as a
type. In other words, the following would be illegal:

? t = p.getFirst(); // ERROR
p.setFirst(p.getSecond());
p.setSecond(t);

That’s a problem because we need to temporarily hold the first element when
we do the swapping. Fortunately, there is an interesting solution to this
problem. We can write a helper method, swapHelper, like this:

public static <T> void swapHelper(Pair<T> p)
{
 T t = p.getFirst();
 p.setFirst(p.getSecond());
 p.setSecond(t);
}

Note that swapHelper is a generic method, whereas swap is not—it has a fixed
parameter of type Pair<?>.

Now we can call swapHelper from swap:

public static void swap(Pair<?> p) { swapHelper(p); }

In this case, the parameter T of the swapHelper method captures the wildcard.
It isn’t known what type the wildcard denotes, but it is a definite type, and
the definition of <T>swapHelper makes perfect sense when T denotes that
type.

Of course, in this case, we were not compelled to use a wildcard. We could
have directly implemented <T> void swap(Pair<T> p) as a generic method
without wildcards. However, consider this example in which a wildcard type
occurs naturally in the middle of a computation:

public static void maxminBonus(Manager[] a, Pair<? super
Manager> result)
{
 minmaxBonus(a, result);

 PairAlg.swapHelper(result); // OK--swapHelper captures
wildcard type
}

Here, the wildcard capture mechanism cannot be avoided.

Wildcard capture is only legal in very limited circumstances. The compiler
must be able to guarantee that the wildcard represents a single, definite type.
For example, the T in ArrayList<Pair<T>> can never capture the wildcard in
ArrayList<Pair<?>>. The array list might hold two Pair<?>, each of which
has a different type for ?.

The test program in Listing 8.3 gathers up the various methods discussed in
the preceding sections so you can see them in context.

Listing 8.3 pair3/PairTest3.java

 1 package pair3;
 2
 3 /**
 4 * @version 1.01 2012-01-26
 5 * @author Cay Horstmann
 6 */
 7 public class PairTest3
 8 {
 9 public static void main(String[] args)
10 {
11 var ceo = new Manager("Gus Greedy", 800000, 2003, 12,
15);
12 var cfo = new Manager("Sid Sneaky", 600000, 2003, 12,
15);
13 var buddies = new Pair<Manager>(ceo, cfo);
14 printBuddies(buddies);
15
16 ceo.setBonus(1000000);
17 cfo.setBonus(500000);
18 Manager[] managers = { ceo, cfo };
19

20 var result = new Pair<Employee>();
21 minmaxBonus(managers, result);
22 System.out.println("first: " +
result.getFirst().getName()
23 + ", second: " + result.getSecond().getName());
24 maxminBonus(managers, result);
25 System.out.println("first: " +
result.getFirst().getName()
26 + ", second: " + result.getSecond().getName());
27 }
28
29 public static void printBuddies(Pair<? extends Employee> p)
30 {
31 Employee first = p.getFirst();
32 Employee second = p.getSecond();
33 System.out.println(first.getName() + " and " +
second.getName() + " are buddies.");
34 }
35
36 public static void minmaxBonus(Manager[] a, Pair<? super
Manager> result)
37 {
38 if (a.length == 0) return;
39 Manager min = a[0];
40 Manager max = a[0];
41 for (int i = 1; i < a.length; i++)
42 {
43 if (min.getBonus() > a[i].getBonus()) min = a[i];
44 if (max.getBonus() < a[i].getBonus()) max = a[i];
45 }
46 result.setFirst(min);
47 result.setSecond(max);
48 }49
50 public static void maxminBonus(Manager[] a, Pair<? super
Manager> result)
51 {
52 minmaxBonus(a, result);
53 PairAlg.swapHelper(result); // OK--swapHelper captures
wildcard type

54 }
55 // can't write public static <T super manager> . . .
56 }
57
58 class PairAlg
59 {
60 public static boolean hasNulls(Pair<?> p)
61 {
62 return p.getFirst() == null || p.getSecond() == null;
63 }
64
65 public static void swap(Pair<?> p) { swapHelper(p); }
66
67 public static <T> void swapHelper(Pair<T> p)
68 {
69 T t = p.getFirst();
70 p.setFirst(p.getSecond());
71 p.setSecond(t);
72 }
73 }

8.9 Reflection and Generics

Reflection lets you analyze arbitrary objects at runtime. If the objects are
instances of generic classes, you don’t get much information about the
generic type parameters because they have been erased. In the following
sections, you will learn what you can nevertheless find out about generic
classes with reflection.

8.9.1 The Generic Class Class

The Class class is now generic. For example, String.class is actually an
object (in fact, the sole object) of the class Class<String>.

The type parameter is useful because it allows the methods of Class<T> to be
more specific about their return types. The following methods of Class<T>
take advantage of the type parameter:

T newInstance()
T cast(Object obj)
T[] getEnumConstants()
Class<? super T> getSuperclass()Constructor<T>
getConstructor(Class... parameterTypes)
Constructor<T> getDeclaredConstructor(Class... parameterTypes)

The newInstance method returns an instance of the class, obtained from the
no-argument constructor. Its return type can now be declared to be T, the
same type as the class that is being described by Class<T>. That saves a cast.

The cast method returns the given object, now declared as type T if its type
is indeed a subtype of T. Otherwise, it throws a BadCastException.

The getEnumConstants method returns null if this class is not an enum class
or an array of the enumeration values which are known to be of type T.

Finally, the getConstructor and getDeclaredConstructor methods return a
Constructor<T> object. The Constructor class has also been made generic so
that its newInstance method has the correct return type.

java.lang.Class<T> 1.0

• T newInstance()
returns a new instance constructed with the no-argument constructor.

• T cast(Object obj)
returns obj if it is null or can be converted to the type T, or throws a
BadCastException otherwise.

• T[] getEnumConstants() 5
returns an array of all values if T is an enumerated type, null
otherwise.

• Class<? super T> getSuperclass()

returns the superclass of this class, or null if T is not a class or the
class Object.

• Constructor<T> getConstructor(Class... parameterTypes) 1.1
• Constructor<T> getDeclaredConstructor(Class...

parameterTypes) 1.1
gets the public constructor, or the constructor with the given
parameter types.

java.lang.reflect.Constructor<T> 1.1

• T newInstance(Object... parameters)
returns a new instance constructed with the given parameters.

8.9.2 Using Class<T> Parameters for Type Matching

It is sometimes useful to match the type variable of a Class<T> parameter in
a generic method. Here is the canonical example:

public static <T> Pair<T> makePair(Class<T> c) throws
InstantiationException,
 IllegalAccessException
{
 return new Pair<>(c.newInstance(), c.newInstance());
}

If you call

makePair(Employee.class)

then Employee.class is an object of type Class<Employee>. The type
parameter T of the makePair method matches Employee, and the compiler can

infer that the method returns a Pair<Employee>.

8.9.3 Generic Type Information in the Virtual Machine

One of the notable features of Java generics is the erasure of generic types in
the virtual machine. Perhaps surprisingly, the erased classes still retain some
faint memory of their generic origin. For example, the raw Pair class knows
that it originated from the generic class Pair<T>, even though an object of
type Pair can’t tell whether it was constructed as a Pair<String> or
Pair<Employee>.

Similarly, consider a method

public static Comparable min(Comparable[] a)

that is the erasure of a generic method

public static <T extends Comparable<? super T>> T min(T[] a)

You can use the reflection API to determine that

• The generic method has a type parameter called T;
• The type parameter has a subtype bound that is itself a generic type;
• The bounding type has a wildcard parameter;
• The wildcard parameter has a supertype bound; and
• The generic method has a generic array parameter.

In other words, you can reconstruct everything about generic classes and
methods that their implementors declared. However, you won’t know how
the type parameters were resolved for specific objects or method calls.

In order to express generic type declarations, use the interface Type in the
java.lang.reflect package. The interface has the following subtypes:

• The Class class, describing concrete types

• The TypeVariable interface, describing type variables (such as T extends
Comparable<? super T>)

• The WildcardType interface, describing wildcards (such as ? super T)
• The ParameterizedType interface, describing generic class or interface

types (such as Comparable<? super T>)
• The GenericArrayType interface, describing generic arrays (such as T[])

Figure 8.5 shows the inheritance hierarchy. Note that the last four subtypes
are interfaces—the virtual machine instantiates suitable classes that
implement these interfaces.

Figure 8.5 The Type interface and its descendants

Listing 8.4 uses the generic reflection API to print out what it discovers
about a given class. If you run it with the Pair class, you get this report:

class Pair<T> extends java.lang.Object
public T getFirst()
public T getSecond()
public void setFirst(T)
public void setSecond(T)

If you run it with ArrayAlg in the PairTest2 directory, the report displays the
following method:

public static <T extends java.lang.Comparable> Pair<T>
minmax(T[])

Listing 8.4 genericReflection/GenericReflectionTest.java

 1 package genericReflection;
 2
 3 import java.lang.reflect.*;
 4 import java.util.*; 5
 6 /**
 7 * @version 1.12 2021-05-30
 8 * @author Cay Horstmann
 9 */
10 public class GenericReflectionTest
11 {
12 public static void main(String[] args)
13 {
14 // read class name from command line args or user input
15 String name;
16 if (args.length > 0) name = args[0];
17 else
18 {
19 try (var in = new Scanner(System.in))
20 {
21 System.out.println("Enter class name (e.g.,
java.util.Collections): ");
22 name = in.next();
23 }
24 }
25
26 try
27 {
28 // print generic info for class and public methods
29 Class<?> cl = Class.forName(name);
30 printClass(cl);

31 for (Method m : cl.getDeclaredMethods())
32 printMethod(m);
33 }
34 catch (ClassNotFoundException e)
35 {
36 e.printStackTrace();
37 }
38 }
39
40 public static void printClass(Class<?> cl)
41 {
42 System.out.print(cl);
43 printTypes(cl.getTypeParameters(), "<", ", ", ">",
true);
44 Type sc = cl.getGenericSuperclass();
45 if (sc != null)
46 {
47 System.out.print(" extends ");
48 printType(sc, false);
49 }
50 printTypes(cl.getGenericInterfaces(), " implements ", ",
", "", false);
51 System.out.println();
52 }
5354 public static void printMethod(Method m)
55 {
56 String name = m.getName();
57 System.out.print(Modifier.toString(m.getModifiers()));
58 System.out.print(" ");
59 printTypes(m.getTypeParameters(), "<", ", ", "> ",
true);
60
61 printType(m.getGenericReturnType(), false);
62 System.out.print(" ");
63 System.out.print(name);
64 System.out.print("(");
65 printTypes(m.getGenericParameterTypes(), "", ", ", "",
false);
66 System.out.println(")");

67 }
68
69 public static void printTypes(Type[] types, String pre,
String sep, String suf,
70 boolean isDefinition)
71 {
72 if (pre.equals(" extends ") && Arrays.equals(types, new
Type[] { Object.class }))
73 return;
74 if (types.length > 0) System.out.print(pre);
75 for (int i = 0; i < types.length; i++)
76 {
77 if (i > 0) System.out.print(sep);
78 printType(types[i], isDefinition);
79 }
80 if (types.length > 0) System.out.print(suf);
81 }
82
83 public static void printType(Type type, boolean
isDefinition)
84 {
85 if (type instanceof Class t)
86 {
87 System.out.print(t.getName());
88 }
89 else if (type instanceof TypeVariable t)
90 {
91 System.out.print(t.getName());
92 if (isDefinition)
93 printTypes(t.getBounds(), " extends ", " & ", "",
false);
94 }
95 else if (type instanceof WildcardType t)
96 {
97 System.out.print("?");
98 printTypes(t.getUpperBounds(), " extends ", " & ",
"", false);
99 printTypes(t.getLowerBounds(), " super ", " & ", "",
false);

100 }101 else if (type instanceof ParameterizedType
t)
102 {
103 Type owner = t.getOwnerType();
104 if (owner != null)
105 {
106 printType(owner, false);
107 System.out.print(".");
108 }
109 printType(t.getRawType(), false);
110 printTypes(t.getActualTypeArguments(), "<", ", ",
">", false);
111 }
112 else if (type instanceof GenericArrayType t)
113 {
114 System.out.print("");
115 printType(t.getGenericComponentType(),
isDefinition);
116 System.out.print("[]");
117 }
118 }
119 }

8.9.4 Type Literals

Sometimes, you want to drive program behavior by the type of a value. For
example, in a persistence mechanism, you may want the user to specify a
way of saving an object of a particular class. This is typically implemented
by associating the Class object with an action.

However, with generic classes, erasure poses a problem. How can you have
different actions for, say, ArrayList<Integer> and ArrayList<String> when
both erase to the same raw ArrayList type?

There is a trick that can offer relief in some situations. You can capture an
instance of the Type interface that you encountered in the preceding section.
Construct an anonymous subclass like this:

var type = new TypeLiteral<ArrayList<Integer>>(){} // note the
{}

The TypeLiteral constructor captures the generic supertype:

class TypeLiteral
{
 public TypeLiteral()
 {
 Type parentType = getClass().getGenericSuperclass();
 if (parentType instanceof ParameterizedType paramType)
 type = paramType.getActualTypeArguments()
[0]; else
 throw new UnsupportedOperationException(
 "Construct as new TypeLiteral<. . .>(){}");
 }
 . . .
}

If we have a generic type available at runtime, we can match it against the
TypeLiteral. We can’t get a generic type from an object—it is erased. But,
as you have seen in the preceding section, generic types of fields and method
parameters survive in the virtual machine.

Injection frameworks such as CDI and Guice use type literals to control
injection of generic types. The example program in the book’s companion
code shows a simpler example. Given an object, we enumerate its fields,
whose generic types are available, and look up associated formatting actions.

We format an ArrayList<Integer> by separating the values with spaces, an
ArrayList<Character> by joining the characters to a string. Any other array
lists are formatted by ArrayList.toString.

Listing 8.5 genericReflection/TypeLiterals.java

 1 package genericReflection;
 2

 3 /**
 4 @version 1.02 2021-05-30
 5 @author Cay Horstmann
 6 */
 7
 8 import java.lang.reflect.*;
 9 import java.util.*;
10 import java.util.function.*;
11
12 /**
13 * A type literal describes a type that can be generic, such
as
14 * ArrayList<String>.
15 */
16 class TypeLiteral<T>
17 {
18 private Type type;
19
20 /**
21 * This constructor must be invoked from an anonymous
subclass
22 * as new TypeLiteral<. . .>(){}.
23 */
24 public TypeLiteral()
25 {26 Type parentType =
getClass().getGenericSuperclass();
27 if (parentType instanceof ParameterizedType paramType)
28 type = paramType.getActualTypeArguments()[0];
29 else
30 throw new UnsupportedOperationException(
31 "Construct as new TypeLiteral<. . .>(){}");
32 }
33
34 private TypeLiteral(Type type)
35 {
36 this.type = type;
37 }
38
39 /**

40 * Yields a type literal that describes the given type.
41 */
42 public static TypeLiteral<?> of(Type type)
43 {
44 return new TypeLiteral<Object>(type);
45 }
46
47 public String toString()
48 {
49 if (type instanceof Class clazz) return clazz.getName();
50 else return type.toString();
51 }
52
53 public boolean equals(Object otherObject)
54 {
55 return otherObject instanceof TypeLiteral otherLiteral
56 && type.equals(otherLiteral.type);
57 }
58
59 public int hashCode()
60 {
61 return type.hashCode();
62 }
63 }
64
65 /**
66 * Formats objects, using rules that associate types with
formatting functions.
67 */
68 class Formatter
69 {
70 private Map<TypeLiteral<?>, Function<?, String>> rules = new
HashMap<>();
71
72 /**
73 * Add a formatting rule to this formatter.
74 * @param type the type to which this rule applies75 *
@param formatterForType the function that formats objects of this
type

76 */
77 public <T> void forType(TypeLiteral<T> type, Function<T,
String> formatterForType)
78 {
79 rules.put(type, formatterForType);
80 }
81
82 /**
83 * Formats all fields of an object using the rules of this
formatter.
84 * @param obj an object
85 * @return a string with all field names and formatted
values
86 */
87 public String formatFields(Object obj)
88 throws IllegalArgumentException,
IllegalAccessException
89 {
90 var result = new StringBuilder();
91 for (Field f : obj.getClass().getDeclaredFields())
92 {
93 result.append(f.getName());
94 result.append("=");
95 f.setAccessible(true);
96 Function<?, String> formatterForType =
rules.get(TypeLiteral.of(f.getGenericType()));
97 if (formatterForType != null)
98 {
99 // formatterForType has parameter type ?. Nothing
can be passed to its apply
100 // method. Cast makes the parameter type to Object
so we can invoke it.
101 @SuppressWarnings("unchecked")
102 Function<Object, String> objectFormatter
103 = (Function<Object, String>) formatterForType;
104 result.append(objectFormatter.apply(f.get(obj)));
105 }
106 else
107 result.append(f.get(obj).toString());

108 result.append("\n");
109 }
110 return result.toString();
111 }
112 }
113
114 public class TypeLiterals
115 {
116 public static class Sample
117 {
118 ArrayList<Integer> nums;
119 ArrayList<Character> chars;
120 ArrayList<String> strings;121 public Sample()
122 {
123 nums = new ArrayList<>();
124 nums.add(42); nums.add(1729);
125 chars = new ArrayList<>();
126 chars.add('H'); chars.add('i');
127 strings = new ArrayList<>();
128 strings.add("Hello"); strings.add("World");
129 }
130 }
131
132 private static <T> String join(String separator,
ArrayList<T> elements)
133 {
134 var result = new StringBuilder();
135 for (T e : elements)
136 {
137 if (result.length() > 0) result.append(separator);
138 result.append(e.toString());
139 }
140 return result.toString();
141 }
142
143 public static void main(String[] args) throws Exception
144 {
145 var formatter = new Formatter();
146 formatter.forType(new TypeLiteral<ArrayList<Integer>>()

{},
147 lst -> join(" ", lst));
148 formatter.forType(new TypeLiteral<ArrayList<Character>>
(){},
149 lst -> "\"" + join("", lst) + "\"");
150 System.out.println(formatter.formatFields(new
Sample()));
151 }
152 }

java.lang.Class<T> 1.0

• TypeVariable[] getTypeParameters() 5
gets the generic type variables if this type was declared as a generic
type, or an array of length 0 otherwise.

• Type getGenericSuperclass() 5
gets the generic type of the superclass that was declared for this type,
or null if this type is Object or not a class type.

• Type[] getGenericInterfaces() 5
gets the generic types of the interfaces that were declared for this
type, in declaration order, or an array of length 0 if this type doesn’t
implement interfaces.

java.lang.reflect.Method 1.1

• TypeVariable[] getTypeParameters() 5
gets the generic type variables if this method was declared as a
generic method, or an array of length 0 otherwise.

• Type getGenericReturnType() 5
gets the generic return type with which this method was declared.

• Type[] getGenericParameterTypes() 5
gets the generic parameter types with which this method was
declared. If the method has no parameters, an array of length 0 is
returned.

java.lang.reflect.TypeVariable 5

• String getName()
gets the name of this type variable.

• Type[] getBounds()
gets the subclass bounds of this type variable, or an array of length 0
if the variable is unbounded.

java.lang.reflect.WildcardType 5

• Type[] getUpperBounds()
gets the subclass (extends) bounds of this type variable, or an array
of length 0 if the variable has no subclass bounds.

• Type[] getLowerBounds()
gets the superclass (super) bounds of this type variable, or an array
of length 0 if the variable has no superclass bounds.

java.lang.reflect.ParameterizedType 5

• Type getRawType()
gets the raw type of this parameterized type.

• Type[] getActualTypeArguments()
gets the type parameters with which this parameterized type was
declared.

• Type getOwnerType()
gets the outer class type if this is an inner type, or null if this is a
top-level type.

java.lang.reflect.GenericArrayType 5

• Type getGenericComponentType()
gets the generic component type with which this array type was
declared.

You now know how to use generic classes and how to program your own
generic classes and methods if the need arises. Just as importantly, you know
how to decipher the generic type declarations that you may encounter in the
API documentation and in error messages. For an exhaustive discussion of
everything there is to know about Java generics, turn to Angelika Langer’s
excellent list of frequently (and not so frequently) asked questions at
http://angelikalanger.com/GenericsFAQ/JavaGenericsFAQ.html.

In the next chapter, you will see how the Java collections framework puts
generics to work.

http://angelikalanger.com/GenericsFAQ/JavaGenericsFAQ.html

Chapter 9. Collections

In this chapter

• 9.1 The Java Collections Framework
• 9.2 Interfaces in the Collections Framework
• 9.3 Concrete Collections
• 9.4 Maps
• 9.5 Copies and Views
• 9.6 Algorithms
• 9.7 Legacy Collections

The data structures that you choose can make a big difference when you try
to implement methods in a natural style or are concerned with performance.
Do you need to search quickly through thousands (or even millions) of
sorted items? Do you need to rapidly insert and remove elements in the
middle of an ordered sequence? Do you need to establish associations
between keys and values?

This chapter shows how the Java library can help you accomplish the
traditional data structuring needed for serious programming. In college
computer science programs, a course called Data Structures usually takes a
semester to complete, and there are many, many books devoted to this
important topic. Our coverage differs from that of a college course; we will
skip the theory and just look at how to use the collection classes in the
standard library.

9.1 The Java Collections Framework

The initial release of Java supplied only a small set of classes for the most
useful data structures: Vector, Stack, Hashtable, BitSet, and the Enumeration
interface that provides an abstract mechanism for visiting elements in an
arbitrary container. That was certainly a wise choice—it takes time and skill
to come up with a comprehensive collection class library.

With the advent of Java 1.2, the designers felt that the time had come to roll
out a full-fledged set of data structures. They faced a number of conflicting
design challenges. They wanted the library to be small and easy to learn.
They did not want the complexity of the Standard Template Library (or STL)
of C++, but they wanted the benefit of “generic algorithms” that STL
pioneered. They wanted the legacy classes to fit into the new framework. As
all designers of collections libraries do, they had to make some hard choices,
and they came up with a number of idiosyncratic design decisions along the
way. In this section, we will explore the basic design of the Java collections
framework, demonstrate how to put it to work, and explain the reasoning
behind some of the more controversial features.

9.1.1 Separating Collection Interfaces and Implementation

As is common with modern data structure libraries, the Java collection
library separates interfaces and implementations. Let us look at that
separation with a familiar data structure, the queue.

A queue interface specifies that you can add elements at the tail end of the
queue, remove them at the head, and find out how many elements are in the
queue. You use a queue when you need to collect objects and retrieve them
in a “first in, first out” fashion (see Figure 9.1).

Figure 9.1 A queue

A minimal form of a queue interface might look like this:

public interface Queue<E> // a simplified form of the interface
in the standard library
{
 void add(E element);
 E remove();
 int size();
}

The interface tells you nothing about how the queue is implemented. Of the
two common implementations of a queue, one uses a “circular array” and
one uses a linked list (see Figure 9.2).

Figure 9.2 Queue implementations

Each implementation can be expressed by a class that implements the Queue
interface.

public class CircularArrayQueue<E> implements Queue<E> // not
an actual library class
{
 private int head;
 private int tail;

 CircularArrayQueue(int capacity) { . . . } public void
add(E element) { . . . }
 public E remove() { . . . }
 public int size() { . . . }
 private E[] elements;
}

public class LinkedListQueue<E> implements Queue<E> // not an
actual library class
{
 private Link head;
 private Link tail;

 LinkedListQueue() { . . . }
 public void add(E element) { . . . }
 public E remove() { . . . }
 public int size() { . . . }
}

 NOTE:
The Java library doesn’t actually have classes named CircularArrayQueue
and LinkedListQueue. I use these classes as examples to explain the
conceptual distinction between collection interfaces and implementations. If

you need a circular array queue, use the ArrayDeque class. For a linked list
queue, simply use the LinkedList class—it implements the Queue interface.

When you use a queue in your program, you don’t need to know which
implementation is actually used once the collection has been constructed.
Therefore, it makes sense to use the concrete class only when you construct
the collection object. Use the interface type to hold the collection reference.

Queue<Customer> expressLane = new CircularArrayQueue<>(100);
expressLane.add(new Customer("Harry"));

With this approach, if you change your mind, you can easily use a different
implementation. You only need to change your program in one place—in the
constructor call. If you decide that a LinkedListQueue is a better choice after
all, your code becomes

Queue<Customer> expressLane = new LinkedListQueue<>();
expressLane.add(new Customer("Harry"));

Why would you choose one implementation over another? The interface
says nothing about the efficiency of an implementation. A circular array is
somewhat more efficient than a linked list, so it is generally preferable.
However, as usual, there is a price to pay.

The circular array is a bounded collection—it has a finite capacity. If you
don’t have an upper limit on the number of objects that your program will
collect, you may be better off with a linked list implementation after all.

When you study the API documentation, you will find another set of classes
whose name begins with Abstract, such as AbstractQueue. These classes are
intended for library implementors. In the (perhaps unlikely) event that you
want to implement your own queue class, you will find it easier to extend
AbstractQueue than to implement all the methods of the Queue interface.

9.1.2 The Collection Interface

The fundamental interface for collection classes in the Java library is the
Collection interface. The interface has two fundamental methods:

public interface Collection<E>
{
 boolean add(E element);
 Iterator<E> iterator();
 . . .
}

There are several methods in addition to these two; we will discuss them
later.

The add method adds an element to the collection. The add method returns
true if adding the element actually changes the collection, and false if the
collection is unchanged. For example, if you try to add an object to a set and
the object is already present, the add request has no effect because sets reject
duplicates.

The iterator method returns an object that implements the Iterator
interface. You can use the iterator object to visit the elements in the
collection one by one. We discuss iterators in the next section.

9.1.3 Iterators

The Iterator interface has four methods:

public interface Iterator<E>
{
 E next();
 boolean hasNext();
 void remove();
 default void forEachRemaining(Consumer<? super E> action);
}

By repeatedly calling the next method, you can visit the elements from the
collection one by one. However, if you reach the end of the collection, the

next method throws a NoSuchElementException. Therefore, you need to call
the hasNext method before calling next. That method returns true if the
iterator object still has more elements to visit. If you want to inspect all
elements in a collection, request an iterator and then keep calling the next
method while hasNext returns true. For example:

Collection<String> c = . . .;
Iterator<String> iter = c.iterator();
while (iter.hasNext())
{
 String element = iter.next();

do something with element
}

You can write such a loop more concisely as the “for each” loop:

for (String element : c)
{

do something with element
}

The compiler simply translates the “for each” loop into a loop with an
iterator.

The “for each” loop works with any object that implements the Iterable
interface, an interface with a single abstract method:

public interface Iterable<E>
{
 Iterator<E> iterator();
 . . .
}

The Collection interface extends the Iterable interface. Therefore, you can
use the “for each” loop with any collection in the standard library.

Instead of writing a loop, you can call the forEachRemaining method with a
lambda expression that consumes an element. The lambda expression is
invoked with each element of the iterator, until there are none left.

iterator.forEachRemaining(element -> do something with element);

The order in which the elements are visited depends on the collection type. If
you iterate over an ArrayList, the iterator starts at index 0 and increments
the index in each step. However, if you visit the elements in a HashSet, you
will get them in an essentially random order. You can be assured that you
will encounter all elements of the collection during the course of the
iteration, but you cannot make any assumptions about their ordering. This is
usually not a problem because the ordering does not matter for computations
such as computing totals or counting matches.

 NOTE:
Old-timers will notice that the next and hasNext methods of the Iterator
interface serve the same purpose as the nextElement and hasMoreElements
methods of an Enumeration. The designers of the Java collections library
could have chosen to make use of the Enumeration interface. But they
disliked the cumbersome method names and instead introduced a new
interface with shorter method names.

There is an important conceptual difference between iterators in the Java
collections library and iterators in other libraries. In traditional collections
libraries, such as the Standard Template Library of C++, iterators are
modeled after array indexes. Given such an iterator, you can look up the
element that is stored at that position, much like you can look up an array
element a[i] if you have an array index i. Independently of the lookup, you
can advance the iterator to the next position. This is the same operation as
advancing an array index by calling i++, without performing a lookup.
However, the Java iterators do not work like that. The lookup and position

change are tightly coupled. The only way to look up an element is to call
next, and that lookup advances the position.

Instead, think of Java iterators as being between elements. When you call
next, the iterator jumps over the next element, and it returns a reference to
the element that it just passed (see Figure 9.3).

 NOTE:
Here is another useful analogy. You can think of Iterator.next as the
equivalent of InputStream.read. Reading a byte from a stream
automatically “consumes” the byte. The next call to read consumes and
returns the next byte from the input. Similarly, repeated calls to next let you
read all elements in a collection.

The remove method of the Iterator interface removes the element that was
returned by the last call to next. In many situations, that makes sense—you
need to see the element before you can decide that it is the one that should be
removed. But if you want to remove an element in a particular position, you
still need to skip past the element. For example, here is how you remove the
first element in a collection of strings:

Iterator<String>
it = c.iterator(); it.next(); // skip over the first element
it.remove(); // now remove it

Figure 9.3 Advancing an iterator

More importantly, there is a dependency between the calls to the next and

remove methods. It is illegal to call remove if it wasn’t preceded by a call to
next. If you try, an IllegalStateException is thrown.

If you want to remove two adjacent elements, you cannot simply call

it.remove();
it.remove(); // ERROR

Instead, you must first call next to jump over the element to be removed.

it.remove();
it.next();
it.remove(); // OK

9.1.4 Generic Utility Methods

The Collection and Iterator interfaces are generic, which means you can
write utility methods that operate on any kind of collection. For example,
here is a generic method that tests whether an arbitrary collection contains a
given element:

public static <E> boolean contains(Collection<E> c, Object obj)
{ for (E element : c)
 if (element.equals(obj))
 return true;
 return false;
}

The designers of the Java library decided that some of these utility methods
are so useful that the library should make them available. That way, library
users don’t have to keep reinventing the wheel. The contains method is one
such method.

In fact, the Collection interface declares quite a few useful methods that all
implementing classes must supply. Among them are

int size()
boolean isEmpty()
boolean contains(Object obj)
boolean containsAll(Collection<?> c)
boolean equals(Object other)
boolean addAll(Collection<? extends E> from)
boolean remove(Object obj)
boolean removeAll(Collection<?> c)
void clear()
boolean retainAll(Collection<?> c)
Object[] toArray()

Many of these methods are self-explanatory; you will find full
documentation in the API notes at the end of this section.

Of course, it is a bother if every class that implements the Collection
interface has to supply so many routine methods. To make life easier for
implementors, the library supplies a class AbstractCollection that leaves the
fundamental methods size and iterator abstract but implements the routine
methods in terms of them. For example:

public abstract class AbstractCollection<E>
 implements Collection<E>
{
 . . .
 public abstract Iterator<E> iterator();

 public boolean contains(Object obj)
 {
 for (E element : this) // calls iterator()
 if (element.equals(obj))
 return true;
 return false;
 }
 . . .
}

A concrete collection class can now extend the AbstractCollection class. It
is up to the concrete collection class to supply an iterator method, but the
contains method has been taken care of by the AbstractCollection

superclass. However, if the subclass has a more efficient way of
implementing contains, it is free to do so.

This approach is a bit outdated. It would be nicer if the methods were default
methods of the Collection interface. This has not happened. However,
several default methods have been added. Most of them deal with streams
(discussed in Volume II). In addition, there is a useful method

default boolean removeIf(Predicate<? super E> filter)

for removing elements that fulfill a condition.

java.util.Collection<E> 1.2

• Iterator<E> iterator()
returns an iterator that can be used to visit the elements in the
collection.

• int size()
returns the number of elements currently stored in the collection.

• boolean isEmpty()
returns true if this collection contains no elements.

• boolean contains(Object obj)
returns true if this collection contains an object equal to obj.

• boolean containsAll(Collection<?> other)
returns true if this collection contains all elements in the other
collection.

• boolean add(E element)
adds an element to the collection. Returns true if the collection
changed as a result of this call.

• boolean addAll(Collection<? extends E> other)
adds all elements from the other collection to this collection. Returns
true if the collection changed as a result of this call.

• boolean remove(Object obj)
removes an object equal to obj from this collection. Returns true if a
matching object was removed.

• boolean removeAll(Collection<?> other)

removes from this collection all elements from the other collection.
Returns true if the collection changed as a result of this call.

• default boolean removeIf(Predicate<? super E> filter) 8
removes all elements for which filter returns true. Returns true if
the collection changed as a result of this call.

• void clear()
removes all elements from this collection.

• boolean retainAll(Collection<?> other)
removes all elements from this collection that do not equal one of the
elements in the other collection. Returns true if the collection
changed as a result of this call.

• Object[] toArray()
returns an array of the objects in the collection.

• <T> T[] toArray(IntFunction<T[]> generator) 11
returns an array of the objects in the collection. The array is
constructed with the generator, which is typically a constructor
expression T[]::new.

java.util.Iterator<E> 1.2

• boolean hasNext()
returns true if there is another element to visit.

• E next()
returns the next object to visit. Throws a NoSuchElementException if
the end of the collection has been reached.

• void remove()
removes the last visited object. This method must immediately
follow an element visit. If the collection has been modified since the
last element visit, this method throws an IllegalStateException.

• default void forEachRemaining(Consumer<? super E> action) 8
visits elements and passes them to the given action until no elements
remain or the action throws an exception.

9.2 Interfaces in the Collections Framework

The Java collections framework defines a number of interfaces for different
types of collections, shown in Figure 9.4.

Figure 9.4 The interfaces of the collections framework

There are two fundamental interfaces for collections: Collection and Map. As
you already saw, you insert elements into a collection with a method

boolean add(E element)

However, maps hold key/value pairs, and you use the put method to insert
them:

V put(K key, V value)

To read elements from a collection, visit them with an iterator. However, you
can read values from a map with the get method:

V get(K key)

A List is an ordered collection. Elements are added into a particular position
in the container. An element can be accessed in two ways: by an iterator or
by an integer index. The latter is called random access because elements can
be visited in any order. In contrast, when using an iterator, one must visit
them sequentially.

The List interface defines several methods for random access:

void add(int index, E element)
void remove(int index)
E get(int index)
E set(int index, E element)

The ListIterator interface is a subinterface of Iterator. It defines a method
for adding an element before the iterator position:

void add(E element)

Frankly, this aspect of the collections framework is poorly designed. In
practice, there are two kinds of ordered collections, with very different

performance tradeoffs. An ordered collection that is backed by an array has
fast random access, and it makes sense to use the List methods with an
integer index. In contrast, a linked list, while also ordered, has slow random
access, and it is best traversed with an iterator. It would have been an easy
matter to provide two interfaces.

 NOTE:
To avoid carrying out random access operations for linked lists, Java 1.4
introduced a tagging interface, RandomAccess. That interface has no methods,
but you can use it to test whether a particular collection supports efficient
random access:

if (c instanceof RandomAccess)
{

 use random access algorithm
}
else
{

 use sequential access algorithm
}

The Set interface is identical to the Collection interface, but the behavior of
the methods is more tightly defined. The add method of a set should reject
duplicates. The equals method of a set should be defined so that two sets are
identical if they have the same elements, but not necessarily in the same
order. The hashCode method should be defined so that two sets with the same
elements yield the same hash code.

Why make a separate interface if the method signatures are the same?
Conceptually, not all collections are sets. Making a Set interface enables
programmers to write methods that accept only sets.

The SortedSet and SortedMap interfaces expose the comparator object used
for sorting, and they define methods to obtain views of subsets of the

collections. We discuss these in Section 9.5, “Copies and Views,” on p. 548.

Finally, Java 6 introduced interfaces NavigableSet and NavigableMap that
contain additional methods for searching and traversal in sorted sets and
maps. (Ideally, these methods should have simply been included in the
SortedSet and SortedMap interface.) The TreeSet and TreeMap classes
implement these interfaces.

9.3 Concrete Collections

Table 9.1 shows the collections in the Java library and briefly describes the
purpose of each collection class. (For simplicity, I omit the thread-safe
collections that will be discussed in Chapter 12.)

All classes in Table 9.1 implement the Collection interface, with the
exception of the classes with names ending in Map. Those classes implement
the Map interface instead. We will discuss maps in Section 9.4, “Maps,” on p.
535.

Figure 9.5 shows the relationships between these classes.

Table 9.1 Concrete Collections in the Java Library

Figure 9.5 Classes in the collections framework

9.3.1 Linked Lists

We already used arrays and their dynamic cousin, the ArrayList class, for
many examples in this book. However, arrays and array lists suffer from a
major drawback. Removing an element from the middle of an array is
expensive since all array elements beyond the removed one must be moved
toward the beginning of the array (see Figure 9.6). The same is true for
inserting elements in the middle.

Figure 9.6 Removing an element from an array

Another well-known data structure, the linked list, solves this problem.
Where an array stores object references in consecutive memory locations, a
linked list stores each object in a separate link. Each link also stores a
reference to the next link in the sequence. In the Java programming
language, all linked lists are actually doubly linked; that is, each link also
stores a reference to its predecessor (see Figure 9.7).

Figure 9.7 A doubly linked list

Removing an element from the middle of a linked list is an inexpensive
operation—only the links around the element to be removed need to be
updated (see Figure 9.8).

Figure 9.8 Removing an element from a linked list

Perhaps you once took a data structures course in which you learned how to
implement linked lists. You may have bad memories of tangling up the links
when removing or adding elements in the linked list. If so, you will be
pleased to learn that the Java collections library supplies a class LinkedList
ready for you to use.

The following code example adds three elements and then removes the
second one:

var staff = new LinkedList<String>();
staff.add("Amy");
staff.add("Bob");
staff.add("Carl");
Iterator<String> iter = staff.iterator();
String first = iter.next(); // visit first element
String second = iter.next(); // visit second element
iter.remove(); // remove last visited element

There is, however, an important difference between linked lists and generic
collections. A linked list is an ordered collection in which the position of the
objects matters. The LinkedList.add method adds the object to the end of the
list. But you will often want to add objects somewhere in the middle of a list.
This position-dependent add method is the responsibility of an iterator, since
iterators describe positions in collections. Using iterators to add elements
makes sense only for collections that have a natural ordering. For example,
the set data type that we discuss in the next section does not impose any
ordering on its elements. Therefore, there is no add method in the Iterator
inter-face. Instead, the collections library supplies a subinterface
ListIterator that contains an add method:

interface ListIterator<E> extends Iterator<E>
{
 void add(E element);
 . . .
}

Unlike Collection.add, this method does not return a boolean—it is
assumed that the add operation always modifies the list.

In addition, the ListIterator interface has two methods that you can use for
traversing a list backwards.

E previous()
boolean hasPrevious()

Like the next method, the previous method returns the object that it skipped
over.

The listIterator method of the LinkedList class returns an iterator object
that implements the ListIterator interface.

ListIterator<String> iter = staff.listIterator();

The add method adds the new element before the iterator position. For
example, the following code skips past the first element in the linked list and
adds "Juliet" before the second element (see Figure 9.9):

var staff = new LinkedList<String>();
staff.add("Amy");
staff.add("Bob");
staff.add("Carl");
ListIterator<String> iter = staff.listIterator();
iter.next(); // skip past first element
iter.add("Juliet");

If you call the add method multiple times, the elements are simply added in
the order in which you supplied them. They are all added in turn before the
current iterator position.

When you use the add operation with an iterator that was freshly returned
from the listIterator method and that points to the beginning of the linked
list, the newly added element becomes the new head of the list. When the
iterator has passed the last element of the list (that is, when hasNext returns
false), the added element becomes the new tail of the list. If the linked list
has n elements, there are n + 1 spots for adding a new element. These spots
correspond to the n + 1 possible positions of the iterator. For example, if a
linked list contains three elements, A, B, and C, there are four possible
positions (marked as |) for inserting a new element:

Figure 9.9 Adding an element to a linked list

|ABC
A|BC
AB|C
ABC|

 NOTE:
Be careful with the “cursor” analogy. The remove operation does not work
exactly like the Backspace key. Immediately after a call to next, the remove
method indeed removes the element to the left of the iterator, just like the
Backspace key would. However, if you have just called previous, the
element to the right will be removed. And you can’t call remove twice in a
row.

Unlike the add method, which depends only on the iterator position, the
remove method depends on the iterator state.

Finally, a set method replaces the last element, returned by a call to next or
previous, with a new element. For example, the following code replaces the
first element of a list with a new value:

ListIterator<String> iter = list.listIterator();
String oldValue = iter.next(); // returns first element
iter.set(newValue); // sets first element to newValue

As you might imagine, if an iterator traverses a collection while another
iterator is modifying it, confusing situations can occur. For example, suppose
an iterator points before an element that another iterator has just removed.
The iterator is now invalid and should no longer be used. The linked list
iterators have been designed to detect such modifications. If an iterator finds
that its collection has been modified by another iterator or by a method of the
collection itself, it throws a ConcurrentModificationException. For
example, consider the following code:

List<String> list = . . .;
ListIterator<String> iter1 = list.listIterator();
ListIterator<String> iter2 = list.listIterator();
iter1.next();
iter1.remove();
iter2.next(); // throws ConcurrentModificationException

The call to iter2.next throws a ConcurrentModificationException since
iter2 detects that the list was modified externally.

To avoid concurrent modification exceptions, follow this simple rule: You
can attach as many iterators to a collection as you like, provided that all of
them are only readers. Alternatively, you can attach a single iterator that can
both read and write.

Concurrent modification detection is done in a simple way. The collection
keeps track of the number of mutating operations (such as adding and
removing elements). Each iterator keeps a separate count of the number of
mutating operations that it was responsible for. At the beginning of each
iterator method, the iterator simply checks whether its own mutation count
equals that of the collection. If not, it throws a
ConcurrentModificationException.

 NOTE:
There is, however, a curious exception to the detection of concurrent
modifications. The linked list only keeps track of structural modifications to
the list, such as adding and removing links. The set method does not count
as a structural modification. You can attach multiple iterators to a linked list,
all of which call set to change the contents of existing links. This capability
is required for a number of algorithms in the Collections class that we
discuss later in this chapter.

Now you have seen the fundamental methods of the LinkedList class. Use a
ListIterator to traverse the elements of the linked list in either direction
and to add and remove elements.

As you saw in Section 9.2, “Interfaces in the Collections Framework,” on p.
508, many other useful methods for operating on linked lists are declared in
the Collection interface. These are, for the most part, implemented in the
AbstractCollection superclass of the LinkedList class. For example, the
toString method invokes toString on all elements and produces one long

string of the format [A, B, C]. This is handy for debugging. Use the
contains method to check whether an element is present in a linked list. For
example, the call staff.contains("Harry") returns true if the linked list
already contains a string equal to the string "Harry".

The library also supplies a number of methods that are, from a theoretical
perspective, somewhat dubious. Linked lists do not support fast random
access. If you want to see the nth element of a linked list, you have to start at
the beginning and skip past the first n – 1 elements. There is no shortcut. For
that reason, programmers don’t usually use linked lists in situations where
elements need to be accessed by an integer index.

Nevertheless, the LinkedList class supplies a get method that lets you access
a particular element:

LinkedList<String> list = . . .;
String obj = list.get(n);

Of course, this method is not very efficient. If you find yourself using it, you
are probably using a wrong data structure for your problem.

You should never use this illusory random access method to step through a
linked list. The code

for (int i = 0; i < list.size(); i++)

do something with list.get(i);

is staggeringly inefficient. Each time you look up another element, the
search starts again from the beginning of the list. The LinkedList object
makes no effort to cache the position information.

 NOTE:
The get method has one slight optimization: If the index is at least size() /
2, the search for the element starts at the end of the list.

The list iterator interface also has a method to tell you the index of the
current position. In fact, since Java iterators conceptually point between
elements, it has two of them: The nextIndex method returns the integer
index of the element that would be returned by the next call to next; the
previousIndex method returns the index of the element that would be
returned by the next call to previous. Of course, that is simply one less than
nextIndex. These methods are efficient—an iterator keeps a count of its
current position. Finally, if you have an integer index n, then
list.listIterator(n) returns an iterator that points just before the element
with index n. That is, calling next yields the same element as list.get(n);
obtaining that iterator is inefficient.

If you have a linked list with only a handful of elements, you don’t have to
be overly paranoid about the cost of the get and set methods. But then, why
use a linked list in the first place? The only reason to use a linked list is to
minimize the cost of insertion and removal in the middle of the list. If you
have only a few elements, you can just use an ArrayList.

I recommend that you simply stay away from all methods that use an integer
index to denote a position in a linked list. If you want random access into a
collection, use an array or ArrayList, not a linked list.

The program in Listing 9.1 puts linked lists to work. It simply creates two
lists, merges them, then removes every second element from the second list,
and finally tests the removeAll method. I recommend that you trace the
program flow and pay special attention to the iterators. You may find it
helpful to draw diagrams of the iterator positions, like this:

|ACE |BDFG
A|CE |BDFG
AB|CE B|DFG
. . .

Note that the call

System.out.println(a);

prints all elements in the linked list a by invoking the toString method in
AbstractCollection.

Listing 9.1 linkedList/LinkedListTest.java

 1 package linkedList;
 2
 3 import java.util.*;
 4
 5 /**
 6 * This program demonstrates operations on linked lists.
 7 * @version 1.12 2018-04-10
 8 * @author Cay Horstmann
 9 */
10 public class LinkedListTest
11 {
12 public static void main(String[] args)
13 {
14 var a = new LinkedList<String>();
15 a.add("Amy");
16 a.add("Carl");
17 a.add("Erica");
18
19 var b = new LinkedList<String>();
20 b.add("Bob");
21 b.add("Doug");
22 b.add("Frances");
23 b.add("Gloria");
24
25 // merge the words from b into a
26
27 ListIterator<String> aIter = a.listIterator();
28 Iterator<String> bIter = b.iterator();
29
30 while (bIter.hasNext())
31 {
32 if (aIter.hasNext()) aIter.next();
33 aIter.add(bIter.next());
34 }

35
36 System.out.println(a);
37
38 // remove every second word from b
39
40 bIter = b.iterator();
41 while (bIter.hasNext())
42 {
43 bIter.next(); // skip one element
44 if (bIter.hasNext())
45 {46 bIter.next(); // skip next element
47 bIter.remove(); // remove that element
48 }
49 }
50
51 System.out.println(b);
52
53 // bulk operation: remove all words in b from a
54
55 a.removeAll(b);
56
57 System.out.println(a);
58 }
59 }

java.util.List<E> 1.2

• ListIterator<E> listIterator()
returns a list iterator for visiting the elements of the list.

• ListIterator<E> listIterator(int index)
returns a list iterator for visiting the elements of the list whose first
call to next will return the element with the given index.

• void add(int i, E element)
adds an element at the specified position.

• void addAll(int i, Collection<? extends E> elements)
adds all elements from a collection to the specified position.

• E remove(int i)
removes and returns the element at the specified position.

• E get(int i)
gets the element at the specified position.

• E set(int i, E element)
replaces the element at the specified position with a new element and
returns the old element.

• int indexOf(Object element)
returns the position of the first occurrence of an element equal to the
specified element, or -1 if no matching element is found.

• int lastIndexOf(Object element)
returns the position of the last occurrence of an element equal to the
specified element, or -1 if no matching element is found.

java.util.ListIterator<E> 1.2

• void add(E newElement)
adds an element before the current position.

• void set(E newElement)
replaces the last element visited by next or previous with a new
element. Throws an IllegalStateException if the list structure was
modified since the last call to next or previous.

• boolean hasPrevious()
returns true if there is another element to visit when iterating
backwards through the list.

• E previous()

returns the previous object. Throws a NoSuchElementException if the
beginning of the list has been reached.

• int nextIndex()
returns the index of the element that would be returned by the next
call to next.

• int previousIndex()
returns the index of the element that would be returned by the next
call to previous.

java.util.LinkedList<E> 1.2

• LinkedList()
constructs an empty linked list.

• LinkedList(Collection<? extends E> elements)
constructs a linked list and adds all elements from a collection.

• void addFirst(E element)
• void addLast(E element)

adds an element to the beginning or the end of the list.
• E getFirst()
• E getLast()

returns the element at the beginning or the end of the list.
• E removeFirst()
• E removeLast()

removes and returns the element at the beginning or the end of the
list.

9.3.2 Array Lists

In the preceding section, you saw the List interface and the LinkedList class
that implements it. The List interface describes an ordered collection in
which the position of elements matters. There are two protocols for visiting
the elements: through an iterator and by random access with methods get
and set. The latter is not appropriate for linked lists, but of course get and
set make a lot of sense for arrays. The collections library supplies the
familiar ArrayList class that also implements the List interface. An
ArrayList encapsulates a dynamically reallocated array of objects.

 NOTE:
If you are a veteran Java programmer, you may have used the Vector class
whenever you need a dynamic array. Why use an ArrayList instead of a
Vector? For one simple reason: All methods of the Vector class are
synchronized. It is safe to access a Vector object from two threads. But if
you access a vector from only a single thread—by far the more common
case—your code wastes quite a bit of time with synchronization. In contrast,
the ArrayList methods are not synchronized. I recommend that you use an
ArrayList instead of a Vector whenever you don’t need synchronization.

9.3.3 Hash Sets

Linked lists and arrays let you specify the order in which you want to
arrange the elements. However, if you are looking for a particular element
and don’t remember its position, you need to visit all elements until you find
a match. That can be time consuming if the collection contains many
elements. If you don’t care about the ordering of the elements, there are data
structures that let you find elements much faster. The drawback is that those
data structures give you no control over the order in which the elements
appear. These data structures organize the elements in an order that is
convenient for their own purposes.

A well-known data structure for finding objects quickly is the hash table. A
hash table computes an integer, called the hash code, for each object. A hash
code is somehow derived from the instance fields of an object, preferably in

such a way that objects with different data yield different codes. Table 9.2
lists a few examples of hash codes that result from the hashCode method of
the String class.

If you define your own classes, you are responsible for implementing your
own hashCode method—see Chapter 5 for more information. Your
implementation needs to be compatible with the equals method: If
a.equals(b), then a and b must have the same hash code.

Table 9.2 Hash Codes Resulting from the hashCode Method

What’s important for now is that hash codes can be computed quickly and
that the computation depends only on the state of the object that needs to be
hashed, not on the other objects in the hash table.

In Java, hash tables are implemented as arrays of linked lists. Each list is
called a bucket (see Figure 9.10). To find the place of an object in the table,
compute its hash code and reduce it modulo the total number of buckets. The
resulting number is the index of the bucket that holds the element. For
example, if an object has hash code 76268 and there are 128 buckets, then
the object is placed in bucket 108 (because the remainder 76268 % 128 is
108). Perhaps you are lucky and there is no other element in that bucket.
Then, you simply insert the element into that bucket. Of course, sometimes
you will hit a bucket that is already filled. This is called a hash collision.
Then, compare the new object with all objects in that bucket to see if it is
already present. If the hash codes are reasonably randomly distributed and
the number of buckets is large enough, only a few comparisons should be
necessary.

Figure 9.10 A hash table

 NOTE:
As of Java 8, the buckets change from linked lists into balanced binary trees
when they get full. This improves performance if a hash function was
poorly chosen and yields many collisions, or if malicious code tries to flood
a hash table with many values that have identical hash codes.

 TIP:
If at all possible, the keys of a hash table should belong to a class that
implements the Comparable interface. Then you are guaranteed not to suffer
poor performance due to poorly distributed hash codes.

If you want more control over the performance of the hash table, you can
specify the initial bucket count. The bucket count gives the number of

buckets used to collect objects with identical hash values. If too many
elements are inserted into a hash table, the number of collisions increases
and retrieval performance suffers.

If you know how many elements, approximately, will eventually be in the
table, you can set the bucket count. Typically, you should set it to
somewhere between 75% and 150% of the expected element count. Some
researchers believe that it is a good idea to make the bucket count a prime
number to prevent a clustering of keys. The evidence for this isn’t
conclusive, however. The standard library uses bucket counts that are powers
of 2, with a default of 16. (Any value you supply for the table size is
automatically rounded to the next power of 2.)

Of course, you do not always know how many elements you need to store, or
your initial guess may be too low. If the hash table gets too full, it needs to
be rehashed. To rehash the table, a table with more buckets is created, all
elements are inserted into the new table, and the original table is discarded.
The load factor determines when a hash table is rehashed. For example, if
the load factor is 0.75 (which is the default) and the table is more than 75%
full, it is automatically rehashed with twice as many buckets. For most
applications, it is reasonable to leave the load factor at 0.75.

Hash tables can be used to implement several important data structures. The
simplest among them is the set type. A set is a collection of elements without
duplicates. The add method of a set first tries to find the object to be added,
and adds it only if it is not yet present.

The Java collections library supplies a HashSet class that implements a set
based on a hash table. You add elements with the add method. The contains
method is redefined to make a fast lookup to see if an element is already
present in the set. It checks only the elements in one bucket and not all
elements in the collection.

The hash set iterator visits all buckets in turn. Since hashing scatters the
elements around in the table, they are visited in a seemingly random order.
You would only use a HashSet if you don’t care about the ordering of the
elements in the collection.

The sample program at the end of this section (Listing 9.2) reads words from
System.in, adds them to a set, and finally prints out the first twenty words in
the set. For example, you can feed the program the text from Alice in
Wonder-land (which you can obtain from www.gutenberg.org) by launching
it from a command shell as

java SetTest < alice30.txt

The program reads all words from the input and adds them to the hash set. It
then iterates through the unique words in the set and finally prints out a
count. (Alice in Wonderland has 5,909 unique words, including the copyright
notice at the beginning.) The words appear in random order.

 CAUTION:
Be careful when you mutate set elements. If the hash code of an element
were to change, the element would no longer be in the correct position in the
data structure.

Listing 9.2 set/SetTest.java

 1 package set;
 2
 3 import java.util.*;
 4
 5 /**
 6 * This program uses a set to print all unique words in
System.in.
 7 * @version 1.12 2015-06-21
 8 * @author Cay Horstmann
 9 */
10 public class SetTest
11 {
12 public static void main(String[] args)

http://www.gutenberg.org/

13 {
14 var words = new HashSet<String>();
15 long totalTime = 0;
16
17 try (var in = new Scanner(System.in))
18 {
19 while (in.hasNext())
20 {
21 String word = in.next();
22 long callTime = System.currentTimeMillis();
23 words.add(word);
24 callTime = System.currentTimeMillis() - callTime;
25 totalTime += callTime;
26 }
27 }
28
29 Iterator<String> iter = words.iterator();
30 for (int i = 1; i <= 20 && iter.hasNext(); i++)
31 System.out.println(iter.next());
32 System.out.println(". . .");
33 System.out.println(words.size() + " distinct words. " +
totalTime + " milliseconds.");
34 }
35 }

java.util.HashSet<E> 1.2

• HashSet()
constructs an empty hash set.

• HashSet(Collection<? extends E> elements)
constructs a hash set and adds all elements from a collection.

• HashSet(int initialCapacity)
constructs an empty hash set with the specified capacity (number of
buckets).

• HashSet(int initialCapacity, float loadFactor)
constructs an empty hash set with the specified capacity and load
factor. If the ratio size/capacity exceeds the load factor, the hash
table will be rehashed into a larger one.

java.lang.Object 1.0

• int hashCode()
returns a hash code for this object. A hash code can be any integer,
positive or negative. The definitions of equals and hashCode must be
compatible: If x.equals(y) is true, then x.hashCode() must be the
same value as y.hashCode().

9.3.4 Tree Sets

The TreeSet class is similar to the hash set, with one added improvement. A
tree set is a sorted collection. You insert elements into the collection in any
order. When you iterate through the collection, the values are automatically
presented in sorted order. For example, suppose you insert three strings and
then visit all elements that you added.

var sorter = new TreeSet<String>();
sorter.add("Bob");
sorter.add("Amy");
sorter.add("Carl");
for (String s : sorter) System.out.println(s);

Then, the values are printed in sorted order: Amy Bob Carl. As the name of
the class suggests, the sorting is accomplished by a tree data structure. (The
current implementation uses a red-black tree. For a detailed description of
red-black trees see, for example, Introduction to Algorithms by Thomas
Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein, The MIT
Press, 2009.) Every time an element is added to a tree, it is placed into its

proper sorting position. Therefore, the iterator always visits the elements in
sorted order.

Adding an element to a tree is slower than adding it to a hash table—see
Table 9.3 for a comparison. But it is still much faster than checking for
duplicates in an array or linked list. If the tree contains n elements, then an
average of log2 n comparisons are required to find the correct position for
the new element. For example, if the tree already contains 1,000 elements,
adding a new element requires about 10 comparisons.

 NOTE:
In order to use a tree set, you must be able to compare the elements. The
elements must implement the Comparable interface, or you must supply a
Comparator when constructing the set. (The Comparable and Comparator
interfaces were introduced in Chapter 6.)

Table 9.3 Adding Elements into Hash and Tree Sets

If you look back at Table 9.3, you may well wonder if you should always use
a tree set instead of a hash set. After all, adding elements does not seem to
take much longer, and the elements are automatically sorted. The answer
depends on the data that you are collecting. If you don’t need the data sorted,
there is no reason to pay for the sorting overhead. More important, with
some data it is much more difficult to come up with a sort order than a hash
function. A hash function only needs to do a reasonably good job of
scrambling the objects, whereas a comparison function must tell objects
apart with complete precision.

To make this distinction more concrete, consider the task of collecting a set
of rectangles. If you use a TreeSet, you need to supply a
Comparator<Rectangle>. How do you compare two rectangles? By area?
That doesn’t work. You can have two different rectangles with different
coordinates but the same area. The sort order for a tree must be a total
ordering. Any two elements must be comparable, and the comparison can
only be zero if the elements are equal. There is such a sort order for
rectangles (the lexicographic ordering on its coordinates), but it is unnatural
and cumbersome to compute. In contrast, a hash function is already defined
for the Rectangle class. It simply hashes the coordinates.

 NOTE:
As of Java 6, the TreeSet class implements the NavigableSet interface. That
interface adds several convenient methods for locating elements and for
backward traversal. See the API notes for details.

The program in Listing 9.3 builds two tree sets of Item objects. The first one
is sorted by part number, the default sort order of Item objects. The second
set is sorted by description, using a custom comparator.

Listing 9.3 treeSet/TreeSetTest.java

 1 package treeSet;
 2
 3 import java.util.*;
 4
 5 /**
 6 * This program sorts a set of Item objects by comparing their
descriptions.
 7 * @version 1.13 2018-04-10
 8 * @author Cay Horstmann
 9 */
10 public class TreeSetTest
11 {

12 public static void main(String[] args)
13 {
14 var parts = new TreeSet<Item>();
15 parts.add(new Item("Toaster", 1234));
16 parts.add(new Item("Widget", 4562));
17 parts.add(new Item("Modem", 9912));
18 System.out.println(parts);
19
20 var sortByDescription = new TreeSet<Item>
(Comparator.comparing(Item::getDescription));
21
22 sortByDescription.addAll(parts);
23 System.out.println(sortByDescription);
24 }
25 }

Listing 9.4 treeSet/Item.java

 1 package treeSet;
 2
 3 import java.util.*;
 4
 5 /**
 6 * An item with a description and a part number.
 7 */
 8 public class Item implements Comparable<Item>
 9 {
10 private String description;
11 private int partNumber;
12
13 /**
14 * Constructs an item.
15 * @param aDescription the item's description
16 * @param aPartNumber the item's part number
17 */
18 public Item(String aDescription, int aPartNumber)
19 {
20 description = aDescription;

21 partNumber = aPartNumber;
22 }
23
24 /**
25 * Gets the description of this item.
26 * @return the description
27 */
28 public String getDescription()
29 {
30 return description;
31 }
32
33 public String toString()
34 {
35 return "[description=" + description + ", partNumber=" +
partNumber + "]";
36 }
37
38 public boolean equals(Object otherObject)
39 {
40 if (this == otherObject) return true;
41 if (otherObject == null) return false;
42 if (getClass() != otherObject.getClass()) return false;
43 var other = (Item) otherObject;
44 return Objects.equals(description, other.description) &&
partNumber == other.partNumber;
45 }
46
47 public int hashCode()
48 {49 return Objects.hash(description, partNumber);
50 }
51
52 public int compareTo(Item other)
53 {
54 int diff = Integer.compare(partNumber,
other.partNumber);
55 return diff != 0 ? diff :
description.compareTo(other.description);

56 }
57 }

java.util.TreeSet<E> 1.2

• TreeSet()
• TreeSet(Comparator<? super E> comparator)

constructs an empty tree set.
• TreeSet(Collection<? extends E> elements)
• TreeSet(SortedSet<E> s)

constructs a tree set and adds all elements from a collection or sorted
set (in the latter case, using the same ordering).

java.util.SortedSet<E> 1.2

• Comparator<? super E> comparator()
returns the comparator used for sorting the elements, or null if the
elements are compared with the compareTo method of the Comparable
interface.

• E first()
• E last()

returns the smallest or largest element in the sorted set.

java.util.NavigableSet<E> 6

• E higher(E value)

• E lower(E value)
returns the least element > value or the largest element < value, or
null if there is no such element.

• E ceiling(E value)
• E floor(E value)

returns the least element ≢ value or the largest element ≤ value, or
null if there is no such element.

• E pollFirst()
• E pollLast()

removes and returns the smallest or largest element in this set, or
null if the set is empty.

• Iterator<E> descendingIterator()
returns an iterator that traverses this set in descending direction.

9.3.5 Queues and Deques

As we already discussed, a queue lets you efficiently add elements at the tail
and remove elements from the head. A double-ended queue, or deque, lets
you efficiently add or remove elements at the head and tail. Adding elements
in the middle is not supported. Java 6 introduced a Deque interface. It is
implemented by the ArrayDeque and LinkedList classes, both of which
provide deques whose size grows as needed. In Chapter 12, you will see
bounded queues and deques.

java.util.Queue<E> 5

• boolean add(E element)
• boolean offer(E element)

adds the given element to the tail of this queue and returns true,
provided the queue is not full. If the queue is full, the first method

throws an IllegalStateException, whereas the second method
returns false.

• E remove()
• E poll()

removes and returns the element at the head of this queue, provided
the queue is not empty. If the queue is empty, the first method throws
a NoSuchElementException, whereas the second method returns null.

• E element()
• E peek()

returns the element at the head of this queue without removing it,
provided the queue is not empty. If the queue is empty, the first
method throws a NoSuchElementException, whereas the second
method returns null.

java.util.Deque<E> 6

• void addFirst(E element)
• void addLast(E element)
• boolean offerFirst(E element)
• boolean offerLast(E element)

adds the given element to the head or tail of this deque. If the deque
is full, the first two methods throw an IllegalStateException,
whereas the last two methods return false.

• E removeFirst()
• E removeLast()
• E pollFirst()
• E pollLast()

removes and returns the element at the head of this deque, provided
the deque is not empty. If the deque is empty, the first two methods

throw a NoSuchElementException, whereas the last two methods
return null.

• E getFirst()
• E getLast()
• E peekFirst()
• E peekLast()

returns the element at the head of this deque without removing it,
provided the deque is not empty. If the deque is empty, the first two
methods throw a NoSuchElementException, whereas the last two
methods return null.

java.util.ArrayDeque<E> 6

• ArrayDeque()
• ArrayDeque(int initialCapacity)

constructs an unbounded deque with an initial capacity of 16 or the
given initial capacity.

9.3.6 Priority Queues

A priority queue retrieves elements in sorted order after they were inserted in
arbitrary order. That is, whenever you call the remove method, you get the
smallest element currently in the priority queue. However, the priority queue
does not sort all its elements. If you iterate over the elements, they are not
necessarily sorted. The priority queue makes use of an elegant and efficient
data structure called a heap. A heap is a self-organizing binary tree in which
the add and remove operations cause the smallest element to gravitate to the
root, without wasting time on sorting all elements.

Just like a TreeSet, a priority queue can either hold elements of a class that
implements the Comparable interface or a Comparator object you supply in

the constructor.

A typical use for a priority queue is job scheduling. Each job has a priority.
Jobs are added in random order. Whenever a new job can be started, the
highest priority job is removed from the queue. (Since it is traditional for
priority 1 to be the “highest” priority, the remove operation yields the
minimum element.)

Listing 9.5 shows a priority queue in action. Unlike iteration in a TreeSet,
the iteration here does not visit the elements in sorted order. However,
removal always yields the smallest remaining element.

Listing 9.5 priorityQueue/PriorityQueueTest.java

 1 package priorityQueue;
 2
 3 import java.util.*;
 4 import java.time.*;
 5
 6 /**
 7 * This program demonstrates the use of a priority queue.
 8 * @version 1.02 2015-06-20
 9 * @author Cay Horstmann
10 */
11 public class PriorityQueueTest
12 {
13 public static void main(String[] args)
14 {
15 var pq = new PriorityQueue<LocalDate>();
16 pq.add(LocalDate.of(1906, 12, 9)); // G. Hopper
17 pq.add(LocalDate.of(1815, 12, 10)); // A. Lovelace
18 pq.add(LocalDate.of(1903, 12, 3)); // J. von Neumann
19 pq.add(LocalDate.of(1910, 6, 22)); // K. Zuse
20
21 System.out.println("Iterating over elements . . .");
22 for (LocalDate date : pq)
23 System.out.println(date);
24 System.out.println("Removing elements . . .");

25 while (!pq.isEmpty())
26 System.out.println(pq.remove());
27 }
28 }

java.util.PriorityQueue 5

• PriorityQueue()
• PriorityQueue(int initialCapacity)

constructs a priority queue for storing Comparable objects.
• PriorityQueue(int initialCapacity, Comparator<? super E> c)

constructs a priority queue and uses the specified comparator for
sorting its elements.

9.4 Maps

A set is a collection that lets you quickly find an existing element. However,
to look up an element, you need to have an exact copy of the element to find.
That isn’t a very common lookup—usually, you have some key information,
and you want to look up the associated element. The map data structure
serves that purpose. A map stores key/value pairs. You can find a value if
you provide the key. For example, you may store a table of employee
records, where the keys are the employee IDs and the values are Employee
objects. In the following sections, you will learn how to work with maps.

9.4.1 Basic Map Operations

The Java library supplies two general-purpose implementations for maps:
HashMap and TreeMap. Both classes implement the Map interface.

A hash map hashes the keys, and a tree map uses an ordering on the keys to
organize them in a search tree. The hash or comparison function is applied

only to the keys. The values associated with the keys are not hashed or
compared.

Should you choose a hash map or a tree map? As with sets, hashing is
usually a bit faster, and it is the preferred choice if you don’t need to visit the
keys in sorted order.

Here is how you set up a hash map for storing employees:

var staff = new HashMap<String, Employee>(); // HashMap
implements Map
var harry = new Employee("Harry Hacker");
staff.put("987-98-9996", harry);
. . .

Whenever you add an object to a map, you must supply a key as well. In our
case, the key is a string, and the corresponding value is an Employee object.

To retrieve an object, you must use (and, therefore, remember) the key.

var id = "987-98-9996";
Employee e = staff.get(id); // gets harry

If no information is stored in the map with the particular key specified, get
returns null.

The null return value can be inconvenient. Sometimes, you have a good
default that can be used for keys that are not present in the map. Then use
the getOrDefault method.

Map<String, Integer> scores = . . .;
int score = scores.getOrDefault(id, 0); // gets 0 if the id is
not present

Keys must be unique. You cannot store two values with the same key. If you
call the put method twice with the same key, the second value replaces the

first one. In fact, put returns the previous value associated with its key
parameter.

The remove method removes an element with a given key from the map. The
size method returns the number of entries in the map.

The easiest way of iterating over the keys and values of a map is the forEach
method. Provide a lambda expression that receives a key and a value. That
expression is invoked for each map entry in turn.

scores.forEach((k, v) ->
 System.out.println("key=" + k + ", value=" + v));

Listing 9.6 illustrates a map at work. We first add key/value pairs to a map.
Then, we remove one key from the map, which removes its associated value
as well. Next, we change the value that is associated with a key and call the
get method to look up a value. Finally, we iterate through the entry set.

Listing 9.6 map/MapTest.java

 1 package map;
 2
 3 import java.util.*;
 4
 5 /**
 6 * This program demonstrates the use of a map with key type
String and value type Employee.
 7 * @version 1.12 2015-06-21
 8 * @author Cay Horstmann
 9 */
10 public class MapTest
11 {
12 public static void main(String[] args)13 {
14 var staff = new HashMap<String, Employee>();
15 staff.put("144-25-5464", new Employee("Amy Lee"));
16 staff.put("567-24-2546", new Employee("Harry Hacker"));
17 staff.put("157-62-7935", new Employee("Gary Cooper"));
18 staff.put("456-62-5527", new Employee("Francesca

Cruz"));
19
20 // print all entries
21
22 System.out.println(staff);
23
24 // remove an entry
25
26 staff.remove("567-24-2546");
27
28 // replace an entry
29
30 staff.put("456-62-5527", new Employee("Francesca
Miller"));
31
32 // look up a value
33
34 System.out.println(staff.get("157-62-7935"));
35
36 // iterate through all entries
37
38 staff.forEach((k, v) ->
39 System.out.println("key=" + k + ", value=" + v));
40 }
41 }

java.util.Map<K, V> 1.2

• V get(Object key)
gets the value associated with the key; returns the object associated
with the key, or null if the key is not found in the map.
Implementing classes may forbid null keys.

• default V getOrDefault(Object key, V defaultValue)
gets the value associated with the key; returns the object associated
with the key, or defaultValue if the key is not found in the map.

• V put(K key, V value)
puts the association of a key and a value into the map. If the key is
already present, the new object replaces the old one previously
associated with the key. This method returns the old value of the key,
or null if the key was not previously present. Implementing classes
may forbid null keys or values.

• void putAll(Map<? extends K, ? extends V> entries)
adds all entries from the specified map to this map.

• boolean containsKey(Object key)
returns true if the key is present in the map.

• boolean containsValue(Object value)
returns true if the value is present in the map.

• default void forEach(BiConsumer<? super K,? super V> action) 8
applies the action to all key/value pairs of this map.

java.util.HashMap<K, V> 1.2

• HashMap()
• HashMap(int initialCapacity)
• HashMap(int initialCapacity, float loadFactor)

constructs an empty hash map with the specified capacity and load
factor (a number between 0.0 and 1.0 that determines at what
percentage of fullness the hash table will be rehashed into a larger
one). The default load factor is 0.75.

java.util.TreeMap<K,V> 1.2

• TreeMap()
constructs an empty tree map for keys that implement the Comparable
interface.

• TreeMap(Comparator<? super K> c)
constructs a tree map and uses the specified comparator for sorting
its keys.

• TreeMap(Map<? extends K, ? extends V> entries)
constructs a tree map and adds all entries from a map.

• TreeMap(SortedMap<? extends K, ? extends V> entries)
constructs a tree map, adds all entries from a sorted map, and uses
the same element comparator as the given sorted map.

java.util.SortedMap<K, V> 1.2

• Comparator<? super K> comparator()
returns the comparator used for sorting the keys, or null if the keys
are compared with the compareTo method of the Comparable interface.

• K firstKey()
• K lastKey()

returns the smallest or largest key in the map.

9.4.2 Updating Map Entries

A tricky part of dealing with maps is updating an entry. Normally, you get
the old value associated with a key, update it, and put back the updated
value. But you have to worry about the special case of the first occurrence of
a key. Consider using a map for counting how often a word occurs in a file.
When we see a word, we’d like to increment a counter like this:

counts.put(word, counts.get(word) + 1);

That works, except in the case when word is encountered for the first time.
Then get returns null, and a NullPointerException occurs.

A simple remedy is to use the getOrDefault method:

counts.put(word, counts.getOrDefault(word, 0) + 1);

Another approach is to first call the putIfAbsent method. It only puts a value
if the key was previously absent (or mapped to null).

counts.putIfAbsent(word, 0);
counts.put(word, counts.get(word) + 1); // now we know that get
will succeed

But you can do better than that. The merge method simplifies this common
operation. The call

counts.merge(word, 1, Integer::sum);

associates word with 1 if the key wasn’t previously present, and otherwise
combines the previous value and 1, using the Integer::sum function.

The API notes describe other methods for updating map entries that are less
commonly used.

java.util.Map<K, V> 1.2

• default V merge(K key, V value, BiFunction<? super V,? super
V,? extends V> remappingFunction) 8
If key is associated with a non-null value v, applies the function to v
and value and either associates key with the result or, if the result is

null, removes the key. Otherwise, associates key with value. Returns
get(key).

• default V compute(K key, BiFunction<? super K,? super V,?

extends V> remappingFunction) 8
Applies the function to key and get(key). Either associates key with
the result or, if the result is null, removes the key. Returns get(key).

• default V computeIfPresent(K key, BiFunction<? super K,?

super V,? extends V> remappingFunction) 8
If key is associated with a non-null value v, applies the function to
key and v and either associates key with the result or, if the result is
null, removes the key. Returns get(key).

• default V computeIfAbsent(K key, Function<? super K,? extends
V> mappingFunction) 8
Applies the function to key unless key is associated with a non-null
value. Either associates key with the result or, if the result is null,
removes the key. Returns get(key).

• default void replaceAll(BiFunction<? super K,? super V,?

extends V> function) 8
Calls the function on all entries. Associates keys with non-null
results and removes keys with null results.

• default V putIfAbsent(K key, V value) 8
If key is absent or associated with null, associates it with value and
returns null. Otherwise returns the associated value.

9.4.3 Map Views

The collections framework does not consider a map itself as a collection.
(Other frameworks for data structures consider a map as a collection of
key/value pairs, or as a collection of values indexed by the keys.) However,
you can obtain views of the map—objects that implement the Collection
interface or one of its subinterfaces.

There are three views: the set of keys, the collection of values (which is not a
set), and the set of key/value pairs. The keys and key/value pairs form a set
because there can be only one copy of a key in a map. The methods

Set<K> keySet()
Collection<V> values()
Set<Map.Entry<K, V>> entrySet()

return these three views. (The elements of the entry set are objects of a class
implementing the Map.Entry interface.)

Note that the keySet is not a HashSet or TreeSet, but an object of some other
class that implements the Set interface. The Set interface extends the
Collection interface. Therefore, you can use a keySet as you would use any
collection.

For example, you can enumerate all keys of a map:

Set<String> keys = map.keySet();
for (String key : keys)
{

do something with key
}

If you want to look at both keys and values, you can avoid value lookups by
enumerating the entries. Use the following code skeleton:

for (Map.Entry<String, Employee> entry : staff.entrySet())
{
 String k = entry.getKey();
 Employee v = entry.getValue();

do something with k, v
}

 TIP:
You can avoid the cumbersome Map.Entry by using a var declaration.

for (var entry : map.entrySet())
{

 do something with entry.getKey(), entry.getValue()
}

Or simply use the forEach method:

map.forEach((k, v) ->
 {

 do something with k, v
 });

If you invoke the remove method of the iterator on the key set view, you
actually remove the key and its associated value from the map. However,
you cannot add an element to the key set view. It makes no sense to add a
key without also adding a value. If you try to invoke the add method, it
throws an UnsupportedOperationException. The entry set view has the same
restriction, even though it would make conceptual sense to add a new
key/value pair.

java.util.Map<K, V> 1.2

• Set<Map.Entry<K, V>> entrySet()
returns a set view of Map.Entry objects, the key/value pairs in the
map. You can remove elements from this set and they are removed
from the map, but you cannot add any elements.

• Set<K> keySet()
returns a set view of all keys in the map. You can remove elements
from this set and the keys and associated values are removed from

the map, but you cannot add any elements.
• Collection<V> values()

returns a collection view of all values in the map. You can remove
elements from this set and the removed value and its key are
removed from the map, but you cannot add any elements.

java.util.Map.Entry<K, V> 1.2

• K getKey()
• V getValue()

returns the key or value of this entry.
• V setValue(V newValue)

changes the value in the associated map to the new value and returns
the old value.

• static <K, V> Map.Entry<K,V> copyOf(Map.Entry<? extends K,?
extends V> map) 17
yields a copy of the given map entry. Unlike the elements of a map’s
entry set, the copy is not “live.” Calling setValue does not update
any map.

9.4.4 Weak Hash Maps

The collection class library has several map classes for specialized needs
that we briefly discuss in this and the following sections.

The WeakHashMap class was designed to solve an interesting problem. What
happens with a value whose key is no longer used anywhere in your
program? Suppose the last reference to a key has gone away. Then, there is
no longer any way to refer to the value object. But, as no part of the program
has the key any more, the key/value pair cannot be removed from the map.

Why can’t the garbage collector remove it? Isn’t it the job of the garbage
collector to remove unused objects?

Unfortunately, it isn’t quite so simple. The garbage collector traces live
objects. As long as the map object is live, all buckets in it are live and won’t
be reclaimed. Thus, your program should take care to remove unused values
from long-lived maps. Or, you can use a WeakHashMap instead. This data
structure cooperates with the garbage collector to remove key/value pairs
when the only reference to the key is the one from the hash table entry.

Here are the inner workings of this mechanism. The WeakHashMap uses weak
references to hold keys. A WeakReference object holds a reference to another
object—in our case, a hash table key. Objects of this type are treated in a
special way by the garbage collector. Normally, if the garbage collector finds
that a particular object has no references to it, it simply reclaims the object.
However, if the object is reachable only by a WeakReference, the garbage
collector still reclaims the object, but places the weak reference that led to it
into a queue. The operations of the WeakHashMap periodically check that
queue for newly arrived weak references. The arrival of a weak reference in
the queue signifies that the key was no longer used by anyone and has been
collected. The WeakHashMap then removes the associated entry.

9.4.5 Linked Hash Sets and Maps

The LinkedHashSet and LinkedHashMap classes remember in which order you
inserted items. That way, you can avoid the seemingly random order of items
in a hash table. As entries are inserted into the table, they are joined in a
doubly linked list (see Figure 9.11).

Figure 9.11 A linked hash table

For example, consider the following map insertions from Listing 9.6:

var staff = new LinkedHashMap<String, Employee>();
staff.put("144-25-5464", new Employee("Amy Lee"));
staff.put("567-24-2546", new Employee("Harry Hacker"));
staff.put("157-62-7935", new Employee("Gary Cooper"));
staff.put("456-62-5527", new Employee("Francesca Cruz"));

Then, staff.keySet().iterator() enumerates the keys in this order:

144-25-5464
567-24-2546
157-62-7935
456-62-5527

and staff.values().iterator() enumerates the values in this order:

Amy Lee
Harry Hacker Gary Cooper Francesca Cruz

A linked hash map can alternatively use access order, not insertion order, to
iterate through the map entries. Every time you call get or put, the affected
entry is removed from its current position and placed at the end of the linked
list of entries. (Only the position in the linked list of entries is affected, not
the hash table bucket. An entry always stays in the bucket that corresponds
to the hash code of the key.) To construct such a hash map, call

LinkedHashMap<K, V>(initialCapacity, loadFactor, true)

Access order is useful for implementing a “least recently used” discipline for
a cache. For example, you may want to keep frequently accessed entries in
memory and read less frequently accessed objects from a database. When
you don’t find an entry in the table, and the table is already pretty full, you
can get an iterator into the table and remove the first few elements that it
enumerates. Those entries were the least recently used ones.

You can even automate that process. Form a subclass of LinkedHashMap and
override the method

protected boolean removeEldestEntry(Map.Entry<K, V> eldest)

Adding a new entry then causes the eldest entry to be removed whenever
your method returns true. For example, the following cache is kept at a size
of at most 100 elements:

var cache = new LinkedHashMap<K, V>(128, 0.75F, true)
 { protected boolean removeEldestEntry(Map.Entry<K, V>
eldest)
 {
 return size() > 100;
 }
 };

Alternatively, you can consider the eldest entry to decide whether to remove
it. For example, you may want to check a time stamp stored with the entry.

9.4.6 Enumeration Sets and Maps

The EnumSet is an efficient set implementation with elements that belong to
an enumerated type. Since an enumerated type has a finite number of
instances, the EnumSet is internally implemented simply as a sequence of
bits. A bit is turned on if the corresponding value is present in the set.

The EnumSet class has no public constructors. Use a static factory method to
construct the set:

enum Weekday { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,
SATURDAY, SUNDAY };
EnumSet<Weekday> always = EnumSet.allOf(Weekday.class);
EnumSet<Weekday> never = EnumSet.noneOf(Weekday.class);
EnumSet<Weekday> workday = EnumSet.range(Weekday.MONDAY,
Weekday.FRIDAY);
EnumSet<Weekday> mwf = EnumSet.of(Weekday.MONDAY,
Weekday.WEDNESDAY, Weekday.FRIDAY);

You can use the usual methods of the Set interface to modify an EnumSet.

An EnumMap is a map with keys that belong to an enumerated type. It is
simply and efficiently implemented as an array of values. You need to
specify the key type in the constructor:

var personInCharge = new EnumMap<Weekday, Employee>
(Weekday.class);

 NOTE:
In the API documentation for EnumSet, you will see odd-looking type
parameters of the form E extends Enum<E>. This simply means “E is an

enumerated type.” All enumerated types extend the generic Enum class. For
example, Weekday extends Enum<Weekday>.

9.4.7 Identity Hash Maps

The IdentityHashMap has a quite specialized purpose. Here, the hash values
for the keys should not be computed by the hashCode method but by the
System.identityHashCode method. That’s the method that Object.hashCode
uses to compute a hash code from the object’s memory address. Also, for
comparison of objects, the IdentityHashMap uses ==, not equals.

In other words, different key objects are considered distinct even if they
have equal contents. This class is useful for implementing object traversal
algorithms, such as object serialization, in which you want to keep track of
which objects have already been traversed.

java.util.WeakHashMap<K, V> 1.2

• WeakHashMap()
• WeakHashMap(int initialCapacity)
• WeakHashMap(int initialCapacity, float loadFactor)

constructs an empty hash map with the specified capacity and load
factor.

java.util.LinkedHashSet<E> 1.4

• LinkedHashSet()
• LinkedHashSet(int initialCapacity)
• LinkedHashSet(int initialCapacity, float loadFactor)

constructs an empty linked hash set with the specified capacity and
load factor.

java.util.LinkedHashMap<K, V> 1.4

• LinkedHashMap()
• LinkedHashMap(int initialCapacity)
• LinkedHashMap(int initialCapacity, float loadFactor)
• LinkedHashMap(int initialCapacity, float loadFactor, boolean
accessOrder)

constructs an empty linked hash map with the specified capacity,
load factor, and ordering. The accessOrder parameter is true for
access order, false for insertion order.

• protected boolean removeEldestEntry(Map.Entry<K, V> eldest)
should be overridden to return true if you want the eldest entry to
be removed. The eldest parameter is the entry whose removal is
being contemplated. This method is called after an entry has been
added to the map. The default implementation returns false—old
elements are not removed by default. However, you can redefine this
method to selectively return true—for example, if the eldest entry
fits a certain condition or if the map exceeds a certain size.

java.util.EnumSet<E extends Enum<E>> 5

• static <E extends Enum<E>> EnumSet<E> allOf(Class<E>

enumType)

returns a mutable set that contains all values of the given enumerated
type.

• static <E extends Enum<E>> EnumSet<E> noneOf(Class<E>

enumType)

returns a mutable set that is initially empty.
• static <E extends Enum<E>> EnumSet<E> range(E from, E to)

returns a mutable set that contains all values between from and to
(inclusive).

• static <E extends Enum<E>> EnumSet<E> of(E e)
. . .

• static <E extends Enum<E>> EnumSet<E> of(E e1, E e2, E e3, E
e4, E e5)

• static <E extends Enum<E>> EnumSet<E> of(E first, E... rest)
returns a mutable set containing the given elements which must not
be null.

• public static <E extends Enum<E>> EnumSet<E>

copyOf(EnumSet<E> s)

public static <E extends Enum<E>> EnumSet<E>

copyOf(Collection<E> c)

creates a mutable set initially containing the given elements. In the
second method, c must either be an EnumSet or be nonempty (in order
to determine the element type).

java.util.EnumMap<K extends Enum<K>, V> 5

• EnumMap(Class<K> keyType)
constructs an empty mutable map whose keys have the given type.

java.util.IdentityHashMap<K, V> 1.4

• IdentityHashMap()
• IdentityHashMap(int expectedMaxSize)

constructs an empty identity hash map whose capacity is the smallest
power of 2 exceeding 1.5 × expectedMaxSize. (The default for
expectedMaxSize is 21.)

java.lang.System 1.0

• static int identityHashCode(Object obj) 1.1
returns the same hash code (derived from the object’s memory
address) that Object.hashCode computes, even if the class to which
obj belongs has redefined the hashCode method.

9.5 Copies and Views

If you look at Figures 9.4 and 9.5, you might think it is overkill to have lots
of interfaces and abstract classes to implement a modest number of concrete
collection classes. However, these figures don’t tell the whole story. By
using views, you can obtain other objects that implement the Collection or
Map inter-faces. You saw one example of this with the keySet method of the
map classes. At first glance, it appears as if the method creates a new set,
fills it with all the keys of the map, and returns it. However, that is not the
case. Instead, the keySet method returns an object of a class that implements
the Set interface and whose methods manipulate the original map. Such a
collection is called a view.

The technique of views has a number of useful applications in the collections
framework. We will discuss these applications in the following sections.

9.5.1 Small Collections

Java 9 introduces static methods yielding a set or list with given elements,
and a map with given key/value pairs.

For example,

List<String> names = List.of("Peter", "Paul", "Mary");
Set<Integer> numbers = Set.of(2, 3, 5);

yield a list and a set with three elements. For a map, you specify the keys
and values, like this:

Map<String, Integer> scores = Map.of("Peter", 2, "Paul", 3,
"Mary", 5);

The elements, keys, or values may not be null. Set and map keys may not be
duplicated:

numbers = Set.of(13, null); // Error—null element
scores = Map.of("Peter", 4, "Peter", 2); // Error—duplicate key

 CAUTION:
No guarantee is made about the iteration order of these sets and maps. In
fact, the order is deliberately scrambled with a seed that is randomized at
each virtual machine startup. Look at these two jshell runs:

$ jshell -q
jshell> Set.of("Peter", "Paul", "Mary")
$1 ==> [Peter, Mary, Paul]
jshell> /exit
$ jshell -q
jshell> Set.of("Peter", "Paul", "Mary")
$1 ==> [Paul, Mary, Peter]

Some Java programmers write programs whose correctness depends on the
assumption that implementation details will never change. That can make it
very difficult for the library implementors to make useful implementation

changes. In this case, the message is clear—don’t write programs that
assume anything about the element order.

The List and Set interfaces have eleven of methods with zero to ten
arguments, and an of method with a variable number of arguments. The
specializations are provided for efficiency.

For the Map interface, it is not possible to provide a version with variable
arguments since the argument types alternate between the key and value
types. There is a static method ofEntries that accepts an arbitrary number of
Map.Entry<K, V> objects, which you can create with the static entry method.
For example,

import static java.util.Map.*;
. . .
Map<String, Integer> scores = ofEntries(
 entry("Peter", 2),
 entry("Paul", 3),
 entry("Mary", 5));

The of and ofEntries methods produce objects of classes that have an
instance variable for each element, or that are backed by an array.

These collection objects are unmodifiable. Any attempt to change their
contents results in an UnsupportedOperationException.

If you want a mutable collection, you can pass the unmodifiable collection to
the constructor:

var names = new ArrayList<>(List.of("Peter", "Paul", "Mary"));
// A mutable list of names

The method call

Collections.nCopies(n, anObject)

returns an immutable object that implements the List interface and gives the
illusion of having n elements, each of which appears as anObject.

For example, the following call creates a List containing 100 strings, all set
to "DEFAULT":

List<String> settings = Collections.nCopies(100, "DEFAULT");

There is very little storage cost—the object is stored only once.

 NOTE:
The of methods were introduced in Java 9. Previously, there was a static
Arrays.asList method that returns a list that is mutable but not resizable.
That is, you can call set but not add or remove on the list. There are also
legacy methods Collections.emptySet and Collections.singleton.

 NOTE:
The Collections class contains a number of utility methods with parameters
or return values that are collections. Do not confuse it with the Collection
interface.

 TIP:
Java doesn’t have a Pair class, and some programmers use a Map.Entry as a
poor man’s pair. Before Java 9, this was painful—you had to construct a new
AbstractMap.SimpleImmutableEntry<>(first, second). Nowadays, you can
call Map.entry(first, second).

9.5.2 Unmodifiable Copies and Views

To make an unmodifiable copy of a collection, use the copyOf method of the
collection type:

ArrayList<String> names = . . .;
Set<String> nameSet = Set.copyOf(names); // The names as an
unmodifiable set
List<String> nameList = List.copyOf(names); // The names as an
unmodifiable list

Each copyOf method makes a copy of the collection. If the original collection
is modified, the copy is not affected.

If the original collection happens to be unmodifiable and of the correct type,
then copyOf simply returns it:

Set<String> names = Set.of("Peter", "Paul", "Mary");
Set<String> nameSet = Set.copyOf(names); // No need to make a
copy: names == nameSet

The Collections class has methods that produce unmodifiable views of
collections. These views add a runtime check to an existing collection. If an
attempt to modify the unmodifiable collection is detected, an exception is
thrown.

However, if the original collection changes, the view reflects those changes.
That is what makes views different from copies.

You obtain unmodifiable views by eight methods:

Collections.unmodifiableCollection
Collections.unmodifiableList Collections.unmodifiableSet
Collections.unmodifiableSortedSet
Collections.unmodifiableNavigableSet
Collections.unmodifiableMap Collections.unmodifiableSortedMap
Collections.unmodifiableNavigableMap

Each method is defined to work on an interface. For example,
Collections.unmodifiableList works with an ArrayList, a LinkedList, or
any other class that implements the List interface.

For example, suppose you want to let some part of your code look at, but not
touch, the contents of a collection. Here is what you could do:

var staff = new LinkedList<String>();
 . . .
lookAt(Collections.unmodifiableList(staff));

The Collections.unmodifiableList method returns an object of a class
implementing the List interface. Its accessor methods retrieve values from
the staff collection. Of course, the lookAt method can call all methods of
the List interface, not just the accessors. But all mutator methods (such as
add) have been redefined to throw an UnsupportedOperationException

instead of forwarding the call to the underlying collection.

The unmodifiable view does not make the collection itself immutable. You
can still modify the collection through its original reference (staff, in our
case). And you can still call mutator methods on the elements of the
collection.

The views wrap the interface and not the actual collection object, so you
only have access to those methods that are defined in the interface. For
example, the LinkedList class has convenience methods, addFirst and
addLast, that are not part of the List interface. These methods are not
accessible through the unmodifiable view.

 CAUTION:
The unmodifiableCollection method (as well as the
synchronizedCollection and checkedCollection methods discussed later in
this section) returns a collection whose equals method does not invoke the
equals method of the underlying collection. Instead, it inherits the equals
method of the Object class, which just tests whether the objects are

identical. If you turn a set or list into just a collection, you can no longer test
for equal contents. The view acts in this way because equality testing is not
well defined at this level of the hierarchy. The views treat the hashCode
method in the same way.

However, the unmodifiableSet and unmodifiableList methods use the
equals and hashCode methods of the underlying collections.

9.5.3 Subranges

You can form subrange views for a number of collections. For example,
suppose you have a list staff and want to extract elements 10 to 19. Use the
subList method to obtain a view into the subrange of the list:

List<Employee> group2 = staff.subList(10, 20);

The first index is inclusive, the second exclusive—just like the parameters
for the substring operation of the String class.

You can apply any operations to the subrange, and they automatically reflect
the entire list. For example, you can erase the entire subrange:

group2.clear(); // staff reduction

The elements get automatically cleared from the staff list, and group2
becomes empty.

For sorted sets and maps, you use the sort order, not the element position, to
form subranges. The SortedSet interface declares three methods:

SortedSet<E> subSet(E from, E to)
SortedSet<E> headSet(E to)
SortedSet<E> tailSet(E from)

These return the subsets of all elements that are larger than or equal to from
and strictly smaller than to. For sorted maps, the similar methods

SortedMap<K, V> subMap(K from, K to)
SortedMap<K, V> headMap(K to)
SortedMap<K, V> tailMap(K from)

return views into the maps consisting of all entries in which the keys fall into
the specified ranges.

The NavigableSet interface introduced in Java 6 gives more control over
these subrange operations. You can specify whether the bounds are included:

NavigableSet<E> subSet(E from, boolean fromInclusive, E to,
boolean toInclusive)
NavigableSet<E> headSet(E to, boolean toInclusive)
NavigableSet<E> tailSet(E from, boolean fromInclusive)

9.5.4 Checked Views

Checked views are intended as debugging support for a problem that can
occur with generic types. As explained in Chapter 8, it is actually possible to
smuggle elements of the wrong type into a generic collection. For example:

var strings = new ArrayList<String>();
ArrayList rawList = strings; // warning only, not an error,
 // for compatibility with legacy
code
rawList.add(new Date()); // now strings contains a Date object!

The erroneous add command is not detected at runtime. Instead, a class cast
exception will happen later when another part of the code calls get and casts
the result to a String.

A checked view can detect this problem. Define a safe list as follows:

List<String> safeStrings = Collections.checkedList(strings,
String.class);

The view’s add method checks that the inserted object belongs to the given
class and immediately throws a ClassCastException if it does not. The
advantage is that the error is reported at the correct location:

ArrayList rawList = safeStrings;
rawList.add(new Date()); // checked list throws a
ClassCastException

 CAUTION:
The checked views are limited by the runtime checks that the virtual
machine can carry out. For example, if you have an
ArrayList<Pair<String>>, you cannot protect it from inserting a Pair<Date>
since the virtual machine has a single “raw” Pair class.

9.5.5 Synchronized Views

If you access a collection from multiple threads, you need to ensure that the
collection is not accidentally damaged. For example, it would be disastrous
if one thread tried to add to a hash table while another thread was rehashing
the elements.

Instead of implementing thread-safe collection classes, the library designers
used the view mechanism to make regular collections thread-safe. For
example, the static synchronizedMap method in the Collections class can
turn any map into a Map with synchronized access methods:

var map = Collections.synchronizedMap(new HashMap<String,
Employee>());

You can now access the map object from multiple threads. The methods such
as get and put are synchronized—each method call must be finished
completely before another thread can call another method. We discuss the
issue of synchronized access to data structures in greater detail in Chapter
12.

9.5.6 A Note on Optional Operations

A view usually has some restriction—it may be read-only, it may not be able
to change the size, or it may support removal but not insertion (as is the case
for the key view of a map). A restricted view throws an
UnsupportedOperationException if you attempt an inappropriate operation.

In the API documentation for the collection and iterator interfaces, many
methods are described as “optional operations.” This seems to be in conflict
with the notion of an interface. After all, isn’t the purpose of an interface to
lay out the methods that a class must implement? Indeed, this arrangement is
unsatisfactory from a theoretical perspective. A better solution might have
been to design separate interfaces for read-only views and views that can’t
change the size of a collection. However, that would have tripled the number
of interfaces, which the designers of the library found unacceptable.

Should you extend the technique of “optional” methods to your own
designs? I think not. Even though collections are used frequently, the coding
style for implementing them is not typical for other problem domains. The
designers of a collection class library have to resolve a particularly brutal set
of conflicting requirements. Users want the library to be easy to learn,
convenient to use, completely generic, idiot-proof, and at the same time as
efficient as hand-coded algorithms. It is plainly impossible to achieve all
these goals simultaneously, or even to come close. But in your own
programming problems, you will rarely encounter such an extreme set of
constraints. You should be able to find solutions that do not rely on the
extreme measure of “optional” interface operations.

java.util.List 1.2

• static <E> List<E> of() 9
• static <E> List<E> of(E e1) 9
. . .

• static <E> List<E> of(E e1, E e2, E e3, E e4, E e5, E e6, E
e7, E e8, E e9, E e10) 9

• static <E> List<E> of(E... elements) 9
yields an unmodifiable list of the given elements, which must not be
null.

• static <E> List<E> copyOf(Collection<? extends E> coll) 10
yields an unmodifiable copy of the given collection.

java.util.Set 1.2

• static <E> Set<E> of() 9
• static <E> Set<E> of(E e1) 9
. . .

• static <E> Set<E> of(E e1, E e2, E e3, E e4, E e5, E e6, E
e7, E e8, E e9, E e10) 9

• static <E> Set<E> of(E... elements) 9
yields an unmodifiable set of the given elements, which must not be
null.

• static <E> Set<E> copyOf(Collection<? extends E> coll) 10
yields an unmodifiable copy of the given collection.

java.util.Map 1.2

• static <K, V> Map<K, V> of() 9

• static <K, V> Map<K, V> of(K k1, V v1) 9
. . .

• static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V v3,
K k4, V v4, K k5, V v5, K k6, V v6, K k7, V v7, K k8, V v8, K

k9, V v9, K k10, V v10) 9
yields an unmodifiable map of the given keys and values, which
must not be null.

• static <K,V> Map.Entry<K,V> entry(K k, V v) 9
yields an unmodifiable map entry of the given key and value, which
must not be null.

• static <K,V> Map<K,V> ofEntries(Map.Entry<? extends K,?

extends V>... entries) 9
yields an unmodifiable map of the given entries.

• static <K, V> Map<K,V> copyOf(Map<? extends K,? extends V>
map) 10
yields an unmodifiable copy of the given map.

java.util.Collections 1.2

• static <E> Collection unmodifiableCollection(Collection<E> c)
• static <E> List unmodifiableList(List<E> c)
• static <E> Set unmodifiableSet(Set<E> c)
• static <E> SortedSet unmodifiableSortedSet(SortedSet<E> c)
• static <E> SortedSet unmodifiableNavigableSet(NavigableSet<E>
c) 8

• static <K, V> Map unmodifiableMap(Map<K, V> c)
• static <K, V> SortedMap unmodifiableSortedMap(SortedMap<K, V>
c)

• static <K, V> SortedMap

unmodifiableNavigableMap(NavigableMap<K, V> c) 8
constructs a view of the collection; the view’s mutator methods
throw an UnsupportedOperationException.

• static <E> Collection<E> synchronizedCollection(Collection<E>
c)

• static <E> List synchronizedList(List<E> c)
• static <E> Set synchronizedSet(Set<E> c)
• static <E> SortedSet synchronizedSortedSet(SortedSet<E> c)
• static <E> NavigableSet

synchronizedNavigableSet(NavigableSet<E> c) 8
• static <K, V> Map<K, V> synchronizedMap(Map<K, V> c)
• static <K, V> SortedMap<K, V>

synchronizedSortedMap(SortedMap<K, V> c)

• static <K, V> NavigableMap<K, V>

synchronizedNavigableMap(NavigableMap<K, V> c) 8
constructs a view of the collection; the view’s methods are
synchronized.

• static <E> Collection checkedCollection(Collection<E> c,

Class<E> elementType)

• static <E> List checkedList(List<E> c, Class<E> elementType)
• static <E> Set checkedSet(Set<E> c, Class<E> elementType)
• static <E> SortedSet checkedSortedSet(SortedSet<E> c,

Class<E> elementType)

• static <E> NavigableSet checkedNavigableSet(NavigableSet<E>

c, Class<E> elementType) 8
• static <K, V> Map checkedMap(Map<K, V> c, Class<K> keyType,
Class<V> valueType)

• static <K, V> SortedMap checkedSortedMap(SortedMap<K, V> c,
Class<K> keyType, Class<V> valueType)

• static <K, V> NavigableMap

checkedNavigableMap(NavigableMap<K, V> c, Class<K> keyType,

Class<V> valueType) 8
• static <E> Queue<E> checkedQueue(Queue<E> queue, Class<E>

elementType) 8
constructs a view of the collection; the view’s methods throw a
ClassCastException if an element of the wrong type is inserted.

• static <E> List<E> nCopies(int n, E value)
yields an unmodifiable list with n identical values.

• static <E> List<E> singletonList(E value)
• static <E> Set<E> singleton(E value)
• static <K, V> Map<K, V> singletonMap(K key, V value)

yields a singleton list, set, or map. As of Java 9, use one of the of
methods instead.

• static <E> List<E> emptyList()
• static <T> Set<T> emptySet()
• static <E> SortedSet<E> emptySortedSet()
• static NavigableSet<E> emptyNavigableSet()
• static <K,V> Map<K,V> emptyMap()
• static <K,V> SortedMap<K,V> emptySortedMap()
• static <K,V> NavigableMap<K,V> emptyNavigableMap()
• static <T> Enumeration<T> emptyEnumeration()
• static <T> Iterator<T> emptyIterator()
• static <T> ListIterator<T> emptyListIterator()

yields an empty collection, map, or iterator.

java.util.Arrays 1.2

• static <E> List<E> asList(E... array)
returns a list view of the elements in an array that is modifiable but
not resizable.

java.util.List<E> 1.2

• List<E> subList(int firstIncluded, int firstExcluded)
returns a list view of the elements within a range of positions.

java.util.SortedSet<E> 1.2

• SortedSet<E> subSet(E firstIncluded, E firstExcluded)
• SortedSet<E> headSet(E firstExcluded)
• SortedSet<E> tailSet(E firstIncluded)

returns a view of the elements within a range.

java.util.NavigableSet<E> 6

• NavigableSet<E> subSet(E from, boolean fromIncluded, E to,

boolean toIncluded)

• NavigableSet<E> headSet(E to, boolean toIncluded)
• NavigableSet<E> tailSet(E from, boolean fromIncluded)

returns a view of the elements within a range. The boolean flags
determine whether the bounds are included in the view.

java.util.SortedMap<K, V> 1.2

• SortedMap<K, V> subMap(K firstIncluded, K firstExcluded)
• SortedMap<K, V> headMap(K firstExcluded)
• SortedMap<K, V> tailMap(K firstIncluded)

returns a map view of the entries whose keys are within a range.

java.util.NavigableMap<K, V> 6

• NavigableMap<K, V> subMap(K from, boolean fromIncluded, K to,
boolean toIncluded)

• NavigableMap<K, V> headMap(K from, boolean fromIncluded)
• NavigableMap<K, V> tailMap(K to, boolean toIncluded)

returns a map view of the entries whose keys are within a range. The
boolean flags determine whether the bounds are included in the view.

9.6 Algorithms

In addition to implementing collection classes, the Java collections
framework also provides a number of useful algorithms. In the following
sections, you will see how to use these algorithms and how to write your
own algorithms that work well with the collections framework.

9.6.1 Why Generic Algorithms?

Generic collection interfaces have a great advantage—you only need to
implement your algorithms once. For example, consider a simple algorithm
to compute the maximum element in a collection. Traditionally,
programmers would implement such an algorithm as a loop. Here is how
you can find the largest element of an array.

if (a.length == 0) throw new NoSuchElementException();
T largest = a[0];for (int i = 1; i < a.length; i++)
 if (largest.compareTo(a[i]) < 0)
 largest = a[i];

Of course, to find the maximum of an array list, you would write the code
slightly differently.

if (v.size() == 0) throw new NoSuchElementException();
T largest = v.get(0);
for (int i = 1; i < v.size(); i++)
 if (largest.compareTo(v.get(i)) < 0)
 largest = v.get(i);

What about a linked list? You don’t have efficient random access in a linked
list, but you can use an iterator.

if (l.isEmpty()) throw new NoSuchElementException();
Iterator<T> iter = l.iterator();
T largest = iter.next();
while (iter.hasNext())
{
 T next = iter.next();
 if (largest.compareTo(next) < 0)
 largest = next;
}

These loops are tedious to write, and just a bit error-prone. Is there an offby-
one error? Do the loops work correctly for empty containers? For containers
with only one element? You don’t want to test and debug this code every
time, but you also don’t want to implement a whole slew of methods, such as
these:

static <T extends Comparable> T max(T[] a)
static <T extends Comparable> T max(ArrayList<T> v)
static <T extends Comparable> T max(LinkedList<T> l)

That’s where the collection interfaces come in. Think of the minimal
collection interface that you need to efficiently carry out the algorithm.
Random access with get and set comes higher in the food chain than simple
iteration. As you have seen in the computation of the maximum element in a
linked list, random access is not required for this task. Computing the
maximum can be done simply by iterating through the elements. Therefore,
you can implement the max method to take any object that implements the
Collection interface.

public static <T extends Comparable> T max(Collection<T> c)
{
 if (c.isEmpty()) throw new NoSuchElementException();
 Iterator<T> iter = c.iterator();
 T largest = iter.next(); while (iter.hasNext())
 {
 T next = iter.next();
 if (largest.compareTo(next) < 0)
 largest = next;
 }
 return largest;
}

Now you can compute the maximum of a linked list, an array list, or an
array, with a single method.

That’s a powerful concept. In fact, the standard C++ library has dozens of
useful algorithms, each operating on a generic collection. The Java library is
not quite so rich, but it does contain the basics: sorting, binary search, and
some utility algorithms.

9.6.2 Sorting and Shuffling

Computer old-timers will sometimes reminisce about how they had to use
punched cards and to actually program, by hand, algorithms for sorting.
Nowadays, of course, sorting algorithms are part of the standard library for
most programming languages, and the Java programming language is no
exception.

The sort method in the Collections class sorts a collection that implements
the List interface.

var staff = new LinkedList<String>();

fill collection Collections.sort(staff);

This method assumes that the list elements implement the Comparable
interface. If you want to sort the list in some other way, you can use the sort
method of the List interface and pass a Comparator object. Here is how you
can sort a list of employees by salary:

staff.sort(Comparator.comparingDouble(Employee::getSalary));

If you want to sort a list in descending order, use the static convenience
method Comparator.reverseOrder(). It returns a comparator that returns
b.compareTo(a). For example,

staff.sort(Comparator.reverseOrder())

sorts the elements in the list staff in reverse order, according to the ordering
given by the compareTo method of the element type. Similarly,

staff.sort(Comparator.comparingDouble(Employee::getSalary).reve
rsed())

sorts by descending salary.

You may wonder how the sort method sorts a list. Typically, when you look
at a sorting algorithm in a book on algorithms, it is presented for arrays and
uses random element access. However, random access in a linked list is
inefficient. You can actually sort linked lists efficiently by using a form of
merge sort. However, the implementation in the Java programming language
does not do that. It simply dumps all elements into an array, sorts the array,
and then copies the sorted sequence back into the list.

The sort algorithm used in the collections library is a bit slower than Quick-
Sort, the traditional choice for a general-purpose sorting algorithm.
However, it has one major advantage: It is stable, that is, it doesn’t switch
equal elements. Why do you care about the order of equal elements? Here is
a common scenario. Suppose you have an employee list that you already
sorted by name. Now you sort by salary. What happens to employees with
equal salary? With a stable sort, the ordering by name is preserved. In other
words, the outcome is a list that is sorted first by salary, then by name.

Collections need not implement all of their “optional” methods, so all
methods that receive collection parameters must describe when it is safe to
pass a collection to an algorithm. For example, you clearly cannot pass an
unmodifiableList list to the sort algorithm. What kind of list can you pass?
According to the documentation, the list must be modifiable but need not be
resizable.

The terms are defined as follows:

• A list is modifiable if it supports the set method.
• A list is resizable if it supports the add and remove operations.

The Collections class has an algorithm shuffle that does the opposite of
sorting—it randomly permutes the order of the elements in a list. For
example:

ArrayList<Card> cards = . . .;
Collections.shuffle(cards);

If you supply a list that does not implement the RandomAccess interface, the
shuffle method copies the elements into an array, shuffles the array, and
copies the shuffled elements back into the list.

The program in Listing 9.7 fills an array list with 49 Integer objects
containing the numbers 1 through 49. It then randomly shuffles the list and
selects the first six values from the shuffled list. Finally, it sorts the selected
values and prints them.

Listing 9.7 shuffle/ShuffleTest.java

 1 package shuffle;
 2
 3 import java.util.*;
 4
 5 /**
 6 * This program demonstrates the random shuffle and sort
algorithms.
 7 * @version 1.12 2018-04-10
 8 * @author Cay Horstmann
 9 */
10 public class ShuffleTest
11 {
12 public static void main(String[] args)
13 {
14 var numbers = new ArrayList<Integer>();
15 for (int i = 1; i <= 49; i++)
16 numbers.add(i);
17 Collections.shuffle(numbers);
18 List<Integer> winningCombination = numbers.subList(0,
6);
19 Collections.sort(winningCombination);
20 System.out.println(winningCombination);
21 }
22 }

java.util.Collections 1.2

• static <T extends Comparable<? super T>> void sort(List<T>
elements)

sorts the elements in the list, using a stable sort algorithm. The
algorithm is guaranteed to run in O(n log n) time, where n is the
length of the list.

• static void shuffle(List<?> elements)

• static void shuffle(List<?> elements, Random r)
randomly shuffles the elements in the list. This algorithm runs in O(n
a(n)) time, where n is the length of the list and a(n) is the average
time to access an element.

java.util.List<E> 1.2

• default void sort(Comparator<? super T> comparator) 8
sorts this list, using the given comparator.

java.util.Comparator<T> 1.2

• static <T extends Comparable<? super T>> Comparator<T>

reverseOrder() 8
yields a comparator that reverses the ordering provided by the
Comparable interface.

• default Comparator<T> reversed() 8
yields a comparator that reverses the ordering provided by this
comparator.

9.6.3 Binary Search

To find an object in an array, you normally visit all elements until you find a
match. However, if the array is sorted, you can look at the middle element
and check whether it is larger than the element that you are trying to find. If
so, keep looking in the first half of the array; otherwise, look in the second
half. That cuts the problem in half, and you keep going in the same way. For
example, if the array has 1024 elements, you will locate the match (or
confirm that there is none) after 10 steps, whereas a linear search would have

taken you an average of 512 steps if the element is present, and 1024 steps to
confirm that it is not.

The binarySearch of the Collections class implements this algorithm. Note
that the collection must already be sorted, or the algorithm will return the
wrong answer. To find an element, supply the collection (which must
implement the List interface—more on that in the note below) and the
element to be located. If the collection is not sorted by the compareTo
element of the Comparable interface, supply a comparator object as well.

i = Collections.binarySearch(c, element);
i = Collections.binarySearch(c, element, comparator);

A non-negative return value from the binarySearch method denotes the
index of the matching object. That is, c.get(i) is equal to element under the
comparison order. If the value is negative, then there is no matching element.
However, you can use the return value to compute the location where you
should insert element into the collection to keep it sorted. The insertion
location is

insertionPoint = -i - 1;

It isn’t simply -i because then the value of 0 would be ambiguous. In other
words, the operation

if (i < 0)
 c.add(-i - 1, element);

adds the element in the correct place.

To be worthwhile, binary search requires random access. If you have to
iterate one by one through half of a linked list to find the middle element,
you have lost all advantage of the binary search. Therefore, the binarySearch
algorithm reverts to a linear search if you give it a linked list.

java.util.Collections 1.2

• static <T extends Comparable<? super T>> int

binarySearch(List<T> elements, T key)

• static <T> int binarySearch(List<T> elements, T key,

Comparator<? super T> c)

searches for a key in a sorted list, using a binary search if the
element type implements the RandomAccess interface, and a linear
search in all other cases. The methods are guaranteed to run in
O(a(n) log n) time, where n is the length of the list and a(n) is the
average time to access an element. The methods return either the
index of the key in the list, or a negative value i if the key is not
present in the list. In that case, the key should be inserted at index -i
- 1 for the list to stay sorted.

9.6.4 Simple Algorithms

The Collections class contains several simple but useful algorithms. Among
them is the example from the beginning of this section—finding the
maximum value of a collection. Others include copying elements from one
list to another, filling a container with a constant value, and reversing a list.

Why supply such simple algorithms in the standard library? Surely most
programmers could easily implement them with simple loops. I like the
algorithms because they make life easier for the programmer reading the
code. When you read a loop that was implemented by someone else, you
have to decipher the original programmer’s intentions. For example, look at
this loop:

for (int i = 0; i < words.size(); i++)
 if (words.get(i).equals("C++")) words.set(i, "Java");

Now compare the loop with the call

Collections.replaceAll(words, "C++", "Java");

When you see the method call, you know right away what the code does.

The API notes at the end of this section describe the simple algorithms in the
Collections class.

The default methods Collection.removeIf and List.replaceAll that are just
a bit more complex. You provide a lambda expression to test or transform
elements. For example, here we remove all short words and change the
remaining ones to lowercase:

words.removeIf(w -> w.length() <= 3);
words.replaceAll(String::toLowerCase);

java.util.Collections 1.2

• static <T extends Comparable<? super T>> T min(Collection<T>
elements)

• static <T extends Comparable<? super T>> T max(Collection<T>
elements)

• static <T> min(Collection<T> elements, Comparator<? super T>
c)

• static <T> max(Collection<T> elements, Comparator<? super T>
c)

returns the smallest or largest element in the collection. (The
parameter bounds are simplified for clarity.)

• static <T> void copy(List<? super T> to, List<T> from)
copies all elements from a source list to the same positions in the
target list. The target list must be at least as long as the source list.

• static <T> void fill(List<? super T> l, T value)
sets all positions of a list to the same value.

• static <T> boolean addAll(Collection<? super T> c, T...

values) 5
adds all values to the given collection and returns true if the
collection changed as a result.

• static <T> boolean replaceAll(List<T> l, T oldValue, T

newValue) 1.4
replaces all elements equal to oldValue with newValue.

• static int indexOfSubList(List<?> l, List<?> s) 1.4
• static int lastIndexOfSubList(List<?> l, List<?> s) 1.4

returns the index of the first or last sublist of l equaling s, or -1 if no
sublist of l equals s. For example, if l is [s, t, a, r] and s is [t,
a, r], then both methods return the index 1.

• static void swap(List<?> l, int i, int j) 1.4
swaps the elements at the given offsets.

• static void reverse(List<?> l)
reverses the order of the elements in a list. For example, reversing
the list [t, a, r] yields the list [r, a, t]. This method runs in O(n)
time, where n is the length of the list.

• static void rotate(List<?> l, int d) 1.4
rotates the elements in the list, moving the entry with index i to
position (i + d) % l.size(). For example, rotating the list [t, a,
r] by 2 yields the list [a, r, t]. This method runs in O(n) time,
where n is the length of the list.

• static int frequency(Collection<?> c, Object o) 5
returns the count of elements in c that equal the object o.

• boolean disjoint(Collection<?> c1, Collection<?> c2) 5
returns true if the collections have no elements in common.

java.util.Collection<T> 1.2

• default boolean removeIf(Predicate<? super E> filter) 8
removes all matching elements.

java.util.List<E> 1.2

• default void replaceAll(UnaryOperator<E> op) 8
applies the operation to all elements of this list.

9.6.5 Bulk Operations

There are several operations that copy or remove elements “in bulk.” The
call

coll1.removeAll(coll2);

removes all elements from coll1 that are present in coll2. Conversely,

coll1.retainAll(coll2);

removes all elements from coll1 that are not present in coll2. Here is a
typical application.

Suppose you want to find the intersection of two sets—the elements that two
sets have in common. First, make a new set to hold the result.

var result = new HashSet<String>(firstSet);

Here, we use the fact that every collection has a constructor whose
parameter is another collection that holds the initialization values.

Now, use the retainAll method:

result.retainAll(secondSet);

It retains all elements that occur in both sets. You have formed the
intersection without programming a loop.

You can carry this idea further and apply a bulk operation to a view. For
example, suppose you have a map that maps employee IDs to employee
objects and you have a set of the IDs of all employees that are to be
terminated.

Map<String, Employee> staffMap = . . .;
Set<String> terminatedIDs = . . .;

Simply form the key set and remove all IDs of terminated employees.

staffMap.keySet().removeAll(terminatedIDs);

Since the key set is a view into the map, the keys and associated employee
names are automatically removed from the map.

By using a subrange view, you can restrict bulk operations to sublists and
subsets. For example, suppose you want to add the first ten elements of a list
to another container. Form a sublist to pick out the first ten:

relocated.addAll(staff.subList(0, 10));

The subrange can also be a target of a mutating operation.

staff.subList(0, 10).clear();

9.6.6 Converting between Collections and Arrays

Large portions of the Java platform API were designed before the collections
framework was created. As a result, you will occasionally need to translate
between traditional arrays and the more modern collections.

If you have an array that you need to turn into a collection, the List.of
method serves this purpose. For example:

String[] names = . . .;
List<String> staff = List.of(names);

Obtaining an array from a collection is a bit trickier. You can use the toArray
method:

Object[] names = staff.toArray();

But the result is an array of objects. Even if you know that your collection
contained objects of a specific type, you cannot use a cast:

String[] names = (String[]) staff.toArray(); // ERROR

The array returned by the toArray method was created as an Object[] array,
and you cannot change its type. Instead, pass an array constructor expression
to the toArray method. The returned array is then created as the correct
array type:

>String[] values = staff.toArray(String[]::new);

 NOTE:
Prior to JDK 11, you had to use another form of the toArray method,
passing an array of the correct type:

String[] values = staff.toArray(new String[0]);

This toArray method constructs another array of the same type. Or, if the
array has sufficient length, it is reused:

staff.toArray(new String[staff.size()]);

In this case, no new array is created.

9.6.7 Writing Your Own Algorithms

If you write your own algorithm (or, in fact, any method that has a collection
as a parameter), you should work with interfaces, not concrete
implementations, whenever possible. For example, suppose you want to
process items. Of course, you can implement a method like this:

public void processItems(ArrayList<Item> items)
{
 for (Item item : items)

do something with item
}

However, you now constrained the caller of your method—the caller must
supply the items in an ArrayList. If the items happen to be in another
collection, they first need to be repackaged. It is much better to accept a
more general collection.

You should ask yourself this: What is the most general collection interface
that can do the job? Do you care about the order? Then you should accept a
List. But if the order doesn’t matter, you can accept collections of any kind:

public void processItems(Collection<Item> items)
{
 for (Item item : items)

do something with item
}

Now, anyone can call this method with an ArrayList or a LinkedList, or
even with an array wrapped in a call to the List.of method.

 TIP:
In this case, you can do even better by accepting an Iterable<Item>. The
Iterable interface has a single abstract method iterator which the
enhanced for loop uses behind the scenes. The Collection interface extends
Iterable.

Conversely, if your method returns multiple elements, you don’t want to
constrain yourself against future improvements. For example, consider

public ArrayList<Item> lookupItems(. . .)
{
 var result = new ArrayList<Item>();
 . . .
 return result;
}

This method promises to return an ArrayList, even though the caller almost
certainly doesn’t care what kind of lists it is. If instead you return a List, you
can at any time add a branch that returns an empty or singleton list by calling

List.of.

 NOTE:
If it is such a good idea to use collection interfaces as parameter and return
type, why doesn’t the Java library follow this rule consistently? For
example, the JComboBox class has two constructors:

JComboBox(Object[] items)
JComboBox(Vector<?> items)

The reason is simply timing. The Swing library was created before the
collections library.

9.7 Legacy Collections

A number of “legacy” container classes have been present since the first
release of Java, before there was a collections framework.

They have been integrated into the collections framework—see Figure 9.12.
I will briefly introduce them in the following sections.

Figure 9.12 Legacy classes in the collections framework

9.7.1 The Hashtable Class

The classic Hashtable class serves the same purpose as the HashMap class and
has essentially the same interface. Just like methods of the Vector class, the
Hashtable methods are synchronized. If you do not require compatibility
with legacy code, you should use a HashMap instead. If you need concurrent
access, use a ConcurrentHashMap—see Chapter 12.

9.7.2 Enumerations

The legacy collections use the Enumeration interface for traversing
sequences of elements. The Enumeration interface has two methods,
hasMoreElements and nextElement. These are entirely analogous to the
hasNext and next methods of the Iterator interface.

If you find this interface with legacy classes, you can use Collections.list
to collect the elements in an ArrayList. For example, the LogManager class is
only willing to reveal logger names as an Enumeration. Here is how you can
get them all:

ArrayList<String> loggerNames =
Collections.list(LogManager.getLoggerNames());

Alternatively, as of Java 9, you can turn an enumeration into an iterator:

LogManager.getLoggerNames().asIterator().forEachRemaining(n ->
{ . . . });

You will occasionally encounter a legacy method that expects an
enumeration parameter. The static method Collections.enumeration yields
an enumeration object that enumerates the elements in the collection. For
example:

List<InputStream> streams = . . .;
var in = new
SequenceInputStream(Collections.enumeration(streams));
 // the SequenceInputStream constructor expects an
enumeration

 NOTE:
In C++, it is quite common to use iterators as parameters. Fortunately, on
the Java platform, very few programmers use this idiom. It is much smarter
to pass around the collection than to pass an iterator. The collection object is
more useful. The recipients can always obtain the iterator from the
collection when they need to do so, plus they have all the collection
methods at their disposal. However, you will find enumerations in some
legacy code because they were the only available mechanism for generic
collections until the collections framework appeared in Java 1.2.

java.util.Enumeration<E> 1.0

• boolean hasMoreElements()
returns true if there are more elements yet to be inspected.

• E nextElement()
returns the next element to be inspected. Do not call this method if
hasMoreElements() returned false.

• default Iterator<E> asIterator() 9
yields an iterator that iterates over the enumerated elements.

java.util.Collections 1.2

• static <T> Enumeration<T> enumeration(Collection<T> c)
returns an enumeration that enumerates the elements of c.

• public static <T> ArrayList<T> list(Enumeration<T> e)
returns an array list containing the elements enumerated by e.

9.7.3 Property Maps

A property map is a map structure of a special type. It has three particular
characteristics:

• The keys and values are strings.
• The map can easily be saved to a file and loaded from a file.
• There is a secondary table for default values.

The Java platform class that implements a property map is called
Properties. Property maps are useful in specifying configuration options for
programs. For example:

var settings = new Properties();
settings.setProperty("width", "600.0");
settings.setProperty("filename",
"/home/cay/books/cj12/code/v1ch09/raven.html");

Use the store method to save map list of properties to a file. Here, we just
save the property map in the file program.properties. The second argument
is a comment that is included in the file.

var out = new FileWriter("program.properties",
StandardCharsets.UTF_8);
settings.store(out, "Program Properties");

The sample set gives the following output:

#Program Properties
#Sun Dec 31 12:54:19 PST 2017
top=227.0
left=1286.0
width=423.0
height=547.0
filename=/home/cay/books/cj12/code/v1ch09/raven.html

To load the properties from a file, use

var in = new FileReader("program.properties",
StandardCharsets.UTF_8);
settings.load(in);

 CAUTION:
If you use the load and store methods with input/output streams, then the
archaic jISO 8859–1 character encoding is used, and characters > U+00FF
are saved as Unicode escapes. For UTF-8, use readers/writers, as in the code
snippets above.

The System.getProperties method yields a Properties object to describe
system information. For example, the home directory has the key
"user.home". You can read it with the getProperties method that yields the
key as a string:

String userDir = System.getProperty("user.home");

 CAUTION:
For historical reasons, the Properties class implements Map<Object,

Object>. Therefore, you can use the get and put methods of the Map
interface. But the get method returns the type Object, and the put method
allows you to insert any object. It is best to stick with the getProperty and
setProperty methods that work with strings, not objects.

To get the Java version of the virtual machine, look up the "java.version"
property. You get a string such as "17.0.1" (but "1.8.0" up to Java 8.)

 TIP:
As you can see, the version numbering changed in Java 9. This seemingly
small change broke a good number of tools that had relied on the old
format. If you parse the version string, be sure to read JEP 322 at
http://openjdk.java.net/jeps/322 to see how version strings will be
formatted in the future—or at least, until the numbering scheme changes
again.

The Properties class has two mechanisms for providing defaults. First,
whenever you look up the value of a string, you can specify a default that
should be used automatically when the key is not present.

String filename = settings.getProperty("filename", "");

If there is a "filename" property in the property map, filename is set to that
string. Otherwise, filename is set to the empty string.

If you find it too tedious to specify the default in every call to getProperty,
you can pack all the defaults into a secondary property map and supply that
map in the constructor of your primary property map.

var defaultSettings = new Properties();
defaultSettings.setProperty("width", "600");
defaultSettings.setProperty("height", "400");
defaultSettings.setProperty("filename", "");
. . .
var settings = new Properties(defaultSettings);

Yes, you can even specify defaults to defaults if you give another property
map parameter to the defaultSettings constructor, but it is not something
one would normally do.

http://openjdk.java.net/jeps/322

The companion code has a sample program that shows how you can use
properties for storing and loading program state. The program uses the
ImageViewer program from Chapter 2 and remembers the frame position,
size, and last loaded file. Run the program, load a file, and move and resize
the window. Then close the program and reopen it to see that it remembers
your file and your favorite window placement. You can also manually edit
the file .corejava/ImageViewer.properties in your home directory.

Properties are simple tables without a hierarchical structure. It is common to
introduce a fake hierarchy with key names such as window.main.color,
window.main.title, and so on. But the Properties class has no methods that
help organize such a hierarchy. If you store complex configuration
information, you should use the Preferences class instead—see Chapter 10.

java.util.Properties 1.0

• Properties()
creates an empty property map.

• Properties(Properties defaults)
creates an empty property map with a map of defaults.

• String getProperty(String key)
gets a property. Returns the string associated with the key, or the
string associated with the key in the default table if it wasn’t present
in the table, or null if the key wasn’t present in the default table
either.

• String getProperty(String key, String defaultValue)
gets a property with a default value if the key is not found. Returns
the string associated with the key, or the default string if it wasn’t
present in the table.

• Object setProperty(String key, String value)
sets a property. Returns the previously set value of the given key.

• Set<String> stringPropertyNames() 6

returns a set of all keys, including the keys from the default map.
• void load(Reader in) throws IOException 6

loads a property map from a reader.
• void store(Writer out, String header) 6

saves a property map to a writer. The header is in the first line of the
stored file.

java.lang.System 1.0

• Properties getProperties()
retrieves all system properties. The application must have permission
to retrieve all properties, or a security exception is thrown.

• String getProperty(String key)
retrieves the system property with the given key name. The
application must have permission to retrieve the property, or a
security exception is thrown. The following properties can always be
retrieved:

java.version
java.vendor
java.vendor.url
java.home
java.class.path
java.library.path
java.class.version
os.name
os.version
os.arch
file.separator
path.separator
line.separator
java.io.tempdir
user.name

user.home
user.dir
java.compiler
java.specification.version
java.specification.vendor
java.specification.name
java.vm.specification.version
java.vm.specification.vendor
java.vm.specification.name
java.vm.version
java.vm.vendor
java.vm.name

9.7.4 Stacks

Since version 1.0, the standard library had a Stack class with the familiar
push and pop methods. However, the Stack class extends the Vector class,
which is not satisfactory from a theoretical perspective—you can apply such
un-stack-like operations as insert and remove to insert and remove values
anywhere, not just at the top of the stack.

java.util.Stack<E> 1.0

• E push(E item)
pushes item onto the stack and returns item.

• E pop()
pops and returns the top item of the stack. Don’t call this method if
the stack is empty.

• E peek()
returns the top of the stack without popping it. Don’t call this method
if the stack is empty.

9.7.5 Bit Sets

The Java platform’s BitSet class stores a sequence of bits. (It is not a set in
the mathematical sense—bit vector or bit array would have been more
appropriate terms.) Use a bit set if you need to store a sequence of bits (for
example, flags) efficiently. A bit set packs the bits into bytes, so it is far more
efficient to use a bit set than an ArrayList of Boolean objects.

The BitSet class gives you a convenient interface for reading, setting, and
resetting individual bits. Using this interface avoids the masking and other
bitfiddling operations that are necessary if you store bits in int or long
variables.

For example, for a BitSet named bucketOfBits,

bucketOfBits.get(i)

returns true if the ith bit is on, and false otherwise. Similarly,

bucketOfBits.set(i)

turns the ith bit on. Finally,

bucketOfBits.clear(i)

turns the ith bit off.

 C++ NOTE:
The C++ bitset template has the same functionality as the Java platform
BitSet.

9.7 Legacy Collections

java.util.BitSet 1.0

• BitSet(int initialCapacity)
constructs a bit set.

• int cardinality() 1.4
returns the number of bits that are set, or, when considered as a set of
integers, the number of elements.

• int length() 1.2
returns the “logical length” (1 plus the index of the highest set bit).
This is useful for iterating over the elements.

• int size()
returns the number of bits currently available in the internal data
structure, not the number of set elements.

• boolean get(int bit)
gets a bit.

• void set(int bit)
sets a bit.

• void clear(int bit)
clears a bit.

• void and(BitSet set)
logically ANDs this bit set with another.

• void or(BitSet set)
logically ORs this bit set with another.

• void xor(BitSet set)
logically XORs this bit set with another.

• void andNot(BitSet set)
clears all bits in this bit set that are set in the other bit set.

• IntStream stream() 8
yields a stream of the index values of the bits that are set, or, when
considered as a set of integers, a stream of the elements.

As an example of using bit sets, I want to show you an implementation of
the “sieve of Eratosthenes” algorithm for finding prime numbers. (A prime
number is a number like 2, 3, or 5 that is divisible only by itself and 1, and
the sieve of Eratosthenes was one of the first methods discovered to
enumerate these fundamental building blocks.) This isn’t a terribly good
algorithm for finding the primes, but for some reason it has become a
popular benchmark for compiler performance. (It isn’t a good benchmark
either, because it mainly tests bit operations.)

Oh well, I bow to tradition and present an implementation. This program
counts all prime numbers between 2 and 2,000,000. (There are 148,933
primes in this interval, so you probably don’t want to print them all out.)

Without going into too many details of this program, the idea is to march
through a bit set with 2 million bits. First, we turn on all the bits. After that,
we turn off the bits that are multiples of numbers known to be prime. The
positions of the bits that remain after this process are themselves prime
numbers. Listing 9.8 lists this program in the Java programming language,
and Listing 9.9 is the C++ code.

 NOTE:
Even though the sieve isn’t a good benchmark, I couldn’t resist timing the
two implementations of the algorithm. Here are the timing results with an
Intel i5–8265U processor and 16 GB of RAM, running Ubuntu 20.04:
• C++ (g++ 9.3.0): 115 milliseconds
• Java (Java 17): 31 milliseconds

I have run this test for eleven editions of Core Java, and in the last seven
editions, Java easily beat C++. In all fairness, if one cranks up the

optimization level in the C++ compiler, it beats Java with a time of 14
milliseconds. Java could only match that if the program ran long enough to
trigger the Hotspot just-in-time compiler.

Listing 9.8 sieve/Sieve.java

 1 package sieve;
 2
 3 import java.util.*;
 4
 5 /**
 6 * This program runs the Sieve of Erathostenes benchmark.
It computes all primes
 7 * up to 2,000,000.
 8 * @version 1.22 2021-06-17
 9 * @author Cay Horstmann
10 */
11 public class Sieve
12 {13 public static void main(String[] s)
14 {
15 int n = 2000000;
16 long start = System.currentTimeMillis();
17 var bitSet = new BitSet(n + 1);
18 int i;
19 for (i = 2; i <= n; i++)
20 bitSet.set(i);
21 i = 2;
22 while (i * i <= n)
23 {
24 if (bitSet.get(i))
25 {
26 int k = i * i;
27 while (k <= n)
28 {
29 bitSet.clear(k);
30 k += i;
31 }

32 }
33 i++;
34 }
35 long end = System.currentTimeMillis();
36 System.out.println(bitSet.cardinality() + " primes");
37 System.out.println((end - start) + " milliseconds");
38 }
39 }

Listing 9.9 sieve/sieve.cpp

 1 /**
 2 * @version 1.22 2021-06-17
 3 * @author Cay Horstmann
 4 */
 5
 6 #include <bitset>
 7 #include <iostream>
 8 #include <ctime>
 9
10 using namespace std;
11
12 int main()
13 {
14 const int N = 2000000;
15 clock_t cstart = clock();
16
17 bitset<N + 1> b;
18 int i;
19 for (i = 2; i <= N; i++)
20 b.set(i);
21 i = 2;
22 while (i * i <= N)
23 {
24 if (b.test(i))
25 {
26 int k = i * i;
27 while (k <= N)

28 {
29 b.reset(k);
30 k += i;
31 }
32 }
33 i++;
34 }
35
36 clock_t cend = clock();
37 double millis = 1000.0 * (cend - cstart) / CLOCKS_PER_SEC;
38
39 cout << b.count() << " primes\n" << millis << "
milliseconds\n";
40
41 return 0;
42 }

This completes our tour through the Java collections framework. As you
have seen, the Java library offers a wide variety of collection classes for your
programming needs. In the next chapter, you will learn how to write
graphical user interfaces.

Chapter 10. Graphical User Interface
Programming

In this chapter

• 10.1 A History of Java User Interface Toolkits
• 10.2 Displaying Frames
• 10.3 Displaying Information in a Component
• 10.4 Event Handling
• 10.5 The Preferences API

Java was born at a time when most computer users interacted with desktop
applications that have a graphical user interface (GUI). Nowadays, browser-
based and mobile applications are far more common, but there are still times
when it is useful to provide a desktop application. Moreover, many teachers
and students enjoy learning Java through GUI applications. In this and the
following chapter, I discuss the basics of user interface programming with
the Swing toolkit. If, on the other hand, you are not interested in writing GUI
programs, you can safely skip these two chapters.

10.1 A History of Java User Interface Toolkits

When Java 1.0 was introduced, it contained a class library, called the
Abstract Window Toolkit (AWT), for basic GUI programming. The basic
AWT library deals with user interface elements by delegating their creation
and behavior to the native GUI toolkit on each target platform (Windows,
Linux, Macintosh, and so on). For example, if you used the original AWT to
put a text box on a Java window, an underlying “peer” text box actually
handled the text input. The resulting program could then, in theory, run on
any of these platforms, with the “look-and-feel” of the target platform.

The peer-based approach worked well for simple applications, but it soon
became apparent that it was fiendishly difficult to write a high-quality
portable graphics library depending on native user interface elements. User
interface elements such as menus, scrollbars, and text fields can have subtle
differences in behavior on different platforms. It was hard, therefore, to give
users a consistent and predictable experience with this approach. Moreover,
some graphical environments (such as X11/Motif) do not have as rich a
collection of user interface components as does Windows or the Macintosh.
This further limits a portable library based on a “lowest common
denominator” approach. As a result, GUI applications built with the AWT
simply did not look as nice as native Windows or Macintosh applications,
nor did they have the kind of functionality that users of those platforms had
come to expect. More depress-ingly, there were different bugs in the AWT
user interface library on the different platforms. Developers complained that
they had to test their applications on each platform—a practice derisively
called “write once, debug everywhere.”

In 1996, Netscape created a GUI library they called the IFC (Internet
Foundation Classes) that used an entirely different approach. User interface
elements, such as buttons, menus, and so on, were painted onto blank
windows. The only functionality required from the underlying windowing
system was a way to put up a window and to paint on it. Thus, Netscape’s
IFC widgets looked and behaved the same no matter which platform the
program ran on. Sun Microsystems worked with Netscape to perfect this
approach, creating a user interface library with the code name “Swing.”
Swing was available as an extension to Java 1.1 and became a part of the
standard library in Java 1.2.

Swing is now the official name for the non-peer-based GUI toolkit.

 NOTE:
Swing is not a complete replacement for the AWT—it is built on top of the
AWT architecture. Swing simply gives you more capable user interface
components. Whenever you write a Swing program, you use the foundations
of the AWT—in particular, event handling. From now on, I will say

“Swing” when I mean the “painted” user interface classes, and “AWT”
when I refer to the underlying mechanisms of the windowing toolkit, such
as event handling.

Swing has to work hard painting every pixel of the user interface. When
Swing was first released, users complained that it was slow. (You can still
get a feel for the problem if you run Swing applications on hardware such as
a Raspberry Pi.) After a while, desktop computers got faster, and users
complained that Swing was ugly—indeed, it had fallen behind the native
widgets that had been spruced up with animations and fancy effects. More
ominously, Adobe Flash was increasingly used to create user interfaces with
even flashier effects that didn’t use the native controls at all.

In 2007, Sun Microsystems introduced an entirely different user interface
toolkit, called JavaFX, as a competitor to Flash. It ran on the Java VM but
had its own programming language, called JavaFX Script. The language was
optimized for programming animations and fancy effects. Programmers
complained about the need to learn a new language, and they stayed away in
droves. In 2011, Oracle released a new version, JavaFX 2.0, that had a Java
API and no longer needed a separate programming language. Starting with
Java 7 update 6, JavaFX has been bundled with the JDK and JRE. However,
as this book is being written, Oracle has declared that JavaFX will no longer
be bundled with Java, starting with version 11.

Since this is a book about the core Java language and APIs, I will focus on
Swing for user interface programming.

10.2 Displaying Frames

A top-level window (that is, a window that is not contained inside another
window) is called a frame in Java. The AWT library has a class, called
Frame, for this top level. The Swing version of this class is called JFrame and
extends the Frame class. The JFrame is one of the few Swing components that
is not painted on a canvas. Thus, the decorations (buttons, title bar, icons,
and so on) are drawn by the user’s windowing system, not by Swing.

 CAUTION:
Most Swing component classes start with a “J”: JButton, JFrame, and so on.
There are classes such as Button and Frame, but they are AWT components.
If you accidentally omit a “J”, your program may still compile and run, but
the mixture of Swing and AWT components can lead to visual and
behavioral inconsistencies.

10.2.1 Creating a Frame

In this section, we will go over the most common methods for working with
a Swing JFrame. Listing 10.1 lists a simple program that displays an empty
frame on the screen, as illustrated in Figure 10.1.

Figure 10.1 The simplest visible frame

Listing 10.1 simpleFrame/SimpleFrameTest.java

 1 package simpleFrame;
 2
 3 import java.awt.*;
 4 import javax.swing.*;
 5
 6 /**

 7 * @version 1.34 2018-04-10
 8 * @author Cay Horstmann
 9 */
10 public class SimpleFrameTest
11 {
12 public static void main(String[] args)
13 {
14 EventQueue.invokeLater(() ->
15 {
16 var frame = new SimpleFrame();
17 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE)
;
18 frame.setVisible(true);
19 });
20 }
21 }
22
23 class SimpleFrame extends JFrame
24 {
25 private static final int DEFAULT_WIDTH = 300;
26 private static final int DEFAULT_HEIGHT = 200;
27
28 public SimpleFrame()
29 {
30 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
31 }
32 }

Let’s work through this program, line by line.

The Swing classes are placed in the javax.swing package. The package
name javax indicates a Java extension package, not a core package. For
historical reasons, Swing is considered an extension. However, it is present
in every Java implementation since version 1.2.

By default, a frame has a rather useless size of 0 × 0 pixels. We define a
subclass SimpleFrame whose constructor sets the size to 300 × 200 pixels.
This is the only difference between a SimpleFrame and a JFrame.

In the main method of the SimpleFrameTest class, we construct a SimpleFrame
object and make it visible.

There are two technical issues that we need to address in every Swing
program.

First, all Swing components must be configured from the event dispatch
thread, the thread of control that passes events such as mouse clicks and
keystrokes to the user interface components. The following code fragment is
used to execute statements in the event dispatch thread:

EventQueue.invokeLater(() ->
{

 statements
});

 NOTE:
You will see many Swing programs that do not initialize the user interface
in the event dispatch thread. It used to be perfectly acceptable to carry out
the initialization in the main thread. Sadly, as Swing components got more
complex, the developers of the JDK were no longer able to guarantee the
safety of that approach. The probability of an error is extremely low, but you
would not want to be one of the unlucky few who encounter an intermittent
problem. It is better to do the right thing, even if the code looks rather
mysterious.

Next, we define what should happen when the user closes the application’s
frame. For this particular program, we want the program to exit. To select
this behavior, we use the statement

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

In other programs with multiple frames, you would not want the program to
exit just because the user closed one of the frames. By default, a frame is
hidden when the user closes it, but the program does not terminate. (It might
have been nice if the program terminated once the last frame becomes
invisible, but that is not how Swing works.)

Simply constructing a frame does not automatically display it. Frames start
their life invisible. That gives the programmer the chance to add components
into the frame before showing it for the first time. To show the frame, the
main method calls the setVisible method of the frame.

After scheduling the initialization statements, the main method exits. Note
that exiting main does not terminate the program—just the main thread. The
event dispatch thread keeps the program alive until it is terminated, either by
closing the frame or by calling the System.exit method.

The running program is shown in Figure 10.1—it is a truly boring top-level
window. As you can see in the figure, the title bar and the surrounding
decorations, such as resize corners, are drawn by the operating system and
not the Swing library. The Swing library draws everything inside the frame.
In this program, it just fills the frame with a default background color.

10.2.2 Frame Properties

The JFrame class itself has only a few methods for changing how frames
look. Of course, through the magic of inheritance, most of the methods for
working with the size and position of a frame come from the various
superclasses of JFrame. Here are some of the most important methods:

• The setLocation and setBounds methods for setting the position of the
frame

• The setIconImage method, which tells the windowing system which icon to
display in the title bar, task switcher window, and so on

• The setTitle method for changing the text in the title bar
• The setResizable method, which takes a boolean to determine if a frame

will be resizeable by the user

Figure 10.2 illustrates the inheritance hierarchy for the JFrame class.

Figure 10.2 Inheritance hierarchy for the frame and component classes in
AWT and Swing

As the API notes indicate, the Component class (which is the ancestor of all
GUI objects) and the Window class (which is the superclass of the Frame class)
are where you need to look for the methods to resize and reshape frames. For
example, the setLocation method in the Component class is one way to
reposition a component. If you make the call

setLocation(x, y)

the top left corner is located x pixels across and y pixels down, where (0, 0)
is the top left corner of the screen. Similarly, the setBounds method in
Component lets you resize and relocate a component (in particular, a JFrame)
in one step, as

setBounds(x, y, width, height)

Many methods of component classes come in getter/setter pairs, such as the
following methods of the Frame class:

public String getTitle()
public void setTitle(String title)

Such a getter/setter pair is called a property. A property has a name and a
type. The name is obtained by changing the first letter after the get or set to
lowercase. For example, the Frame class has a property with name title and
type String.

Conceptually, title is a property of the frame. When we set the property, we
expect the title to change on the user’s screen. When we get the property, we
expect to get back the value that we have set.

There is one exception to the get/set convention: For properties of type
boolean, the getter starts with is. For example, the following two methods
define the resizable property:

public boolean isResizable()
public void setResizable(boolean resizable)

To determine an appropriate size for a frame, first find out the screen size.
Call the static getDefaultToolkit method of the Toolkit class to get the
Toolkit object. (The Toolkit class is a dumping ground for a variety of
methods interfacing with the native windowing system.) Then call the
getScreenSize method, which returns the screen size as a Dimension object.
A Dimension object simultaneously stores a width and a height, in public (!)
instance variables width and height. Then you can use a suitable percentage
of the screen size to size the frame. Here is the code:

Toolkit kit = Toolkit.getDefaultToolkit();
Dimension screenSize = kit.getScreenSize();
int screenWidth = screenSize.width;
int screenHeight = screenSize.height;
setSize(screenWidth / 2, screenHeight / 2);

You can also supply frame icon:

Image img = new ImageIcon("icon.gif").getImage();
setIconImage(img);

java.awt.Component 1.0

• boolean isVisible()
• void setVisible(boolean b)

gets or sets the visible property. Components are initially visible,
with the exception of top-level components such as JFrame.

• void setSize(int width, int height) 1.1
resizes the component to the specified width and height.

• void setLocation(int x, int y) 1.1

moves the component to a new location. The x and y coordinates use
the coordinates of the container if the component is not a top-level
component, or the coordinates of the screen if the component is top
level (for example, a JFrame).

• void setBounds(int x, int y, int width, int height) 1.1
moves and resizes this component.

• Dimension getSize() 1.1
• void setSize(Dimension d) 1.1

gets or sets the size property of this component.

java.awt.Window 1.0

• void setLocationByPlatform(boolean b) 5
gets or sets the locationByPlatform property. When the property is
set before this window is displayed, the platform picks a suitable
location.

java.awt.Frame 1.0

• boolean isResizable()
• void setResizable(boolean b)

gets or sets the resizable property. When the property is set, the user
can resize the frame.

• String getTitle()
• void setTitle(String s)

gets or sets the title property that determines the text in the title bar
for the frame.

• Image getIconImage()

• void setIconImage(Image image)
gets or sets the iconImage property that determines the icon for the
frame. The windowing system may display the icon as part of the
frame decoration or in other locations.

java.awt.Toolkit 1.0

• static Toolkit getDefaultToolkit()
returns the default toolkit.

• Dimension getScreenSize()
gets the size of the user’s screen.

javax.swing.ImageIcon 1.2

• ImageIcon(String filename)
constructs an icon whose image is stored in a file.

• Image getImage()
gets the image of this icon.

10.3 Displaying Information in a Component

In this section, I will show you how to display information inside a frame
(Figure 10.3).

You could draw the message string directly onto a frame, but that is not
considered good programming practice. In Java, frames are really designed
to be containers for components, such as a menu bar and other user interface
elements. You normally draw on another component which you add to the
frame.

Figure 10.3 A frame that displays information

The structure of a JFrame is surprisingly complex. Look at Figure 10.4 which
shows the makeup of a JFrame. As you can see, four panes are layered in a
JFrame. The root pane, layered pane, and glass pane are of no interest to us;
they are required to organize the menu bar and content pane and to
implement the look-and-feel. The part that most concerns Swing
programmers is the content pane. Any components that you add to a frame
are automatically placed into the content pane:

Component c = . . .;
frame.add(c); // added to the content pane

In our case, we want to add a single component to the frame onto which we
will draw our message. To draw on a component, you define a class that
extends JComponent and override the paintComponent method in that class.

The paintComponent method takes one parameter of type Graphics. A
Graphics object remembers a collection of settings for drawing images and
text, such as the font you set or the current color. All drawing in Java must
go through a Graphics object. It has methods that draw patterns, images, and
text.

Here’s how to make a component onto which you can draw:

class MyComponent extends JComponent
{
 public void paintComponent(Graphics g)
 {

 code for drawing
 }
}

Each time a window needs to be redrawn, no matter what the reason, the
event handler notifies the component. This causes the paintComponent
methods of all components to be executed.

Figure 10.4 Internal structure of a JFrame

Never call the paintComponent method yourself. It is called automatically
whenever a part of your application needs to be redrawn, and you should not
interfere with this automatic process.

What sorts of actions trigger this automatic response? For example, painting
occurs when the user increases the size of the window, or minimizes and
then restores the window. If the user popped up another window that covered
an existing window and then made the overlaid window disappear, the
window that was covered is now corrupted and will need to be repainted.
(The graphics system does not save the pixels underneath.) And, of course,
when the window is displayed for the first time, it needs to process the code
that specifies how and where it should draw the initial elements.

 TIP:
If you need to force repainting of the screen, call the repaint method
instead of paintComponent. The repaint method will cause paintComponent
to be called for all components, with a properly configured Graphics object.

As you saw in the code fragment above, the paintComponent method takes a
single parameter of type Graphics. Measurement on a Graphics object for
screen display is done in pixels. The (0, 0) coordinate denotes the top left
corner of the component on whose surface you are drawing.

The Graphics class has various drawing methods, and displaying text is
considered a special kind of drawing. Our paintComponent method looks like
this:

public class NotHelloWorldComponent extends JComponent
{
 public static final int MESSAGE_X = 75;
 public static final int MESSAGE_Y = 100;
 public void paintComponent(Graphics g)
 {
 g.drawString("Not a Hello, World program", MESSAGE_X,

MESSAGE_Y);
 }
 . . .
}

Finally, a component should tell its users how big it would like to be.
Override the getPreferredSize method and return an object of the Dimension
class with the preferred width and height:

public class NotHelloWorldComponent extends JComponent
{
 private static final int DEFAULT_WIDTH = 300;
 private static final int DEFAULT_HEIGHT = 200;
 . . .
 public Dimension getPreferredSize()
 {
 return new Dimension(DEFAULT_WIDTH, DEFAULT_HEIGHT);
 }
}

When you fill a frame with one or more components, and you simply want to
use their preferred size, call the pack method instead of the setSize method:

class NotHelloWorldFrame extends JFrame
{
 public NotHelloWorldFrame()
 {
 add(new NotHelloWorldComponent());
 pack();
 }
}

Listing 10.2 shows the complete code.

Listing 10.2 notHelloWorld/NotHelloWorld.java

 1 package notHelloWorld;
 2
 3 import javax.swing.*;
 4 import java.awt.*;
 5
 6 /**
 7 * @version 1.34 2018-04-10
 8 * @author Cay Horstmann
 9 */
10 public class NotHelloWorld
11 {
12 public static void main(String[] args)
13 {
14 EventQueue.invokeLater(() ->
15 {
16 var frame = new NotHelloWorldFrame();
17 frame.setTitle("NotHelloWorld");
18 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE)
;
19 frame.setVisible(true);
20 });
21 }
22 }
23
24 /**
25 * A frame that contains a message panel.
26 */
27 class NotHelloWorldFrame extends JFrame
28 {
29 public NotHelloWorldFrame()
30 {
31 add(new NotHelloWorldComponent());
32 pack();
33 }
34 }
35
36 /**
37 * A component that displays a message.
38 */

39 class NotHelloWorldComponent extends JComponent
40 {
41 public static final int MESSAGE_X = 75;
42 public static final int MESSAGE_Y = 100;
43
44 private static final int DEFAULT_WIDTH = 300;
45 private static final int DEFAULT_HEIGHT = 200;
46
47 public void paintComponent(Graphics g)
48 {
49 g.drawString("Not a Hello, World program", MESSAGE_X,
MESSAGE_Y);
50 }
51
52 public Dimension getPreferredSize()
53 {
54 return new Dimension(DEFAULT_WIDTH, DEFAULT_HEIGHT);
55 }
56 }

javax.swing.JFrame 1.2

• Component add(Component c)
adds and returns the given component to the content pane of this
frame.

java.awt.Component 1.0

• void repaint()
causes a repaint of the component “as soon as possible.”

• Dimension getPreferredSize()
is the method to override to return the preferred size of this
component.

javax.swing.JComponent 1.2

• void paintComponent(Graphics g)
is the method to override to describe how your component needs to
be painted.

java.awt.Window 1.0

• void pack()
resizes this window, taking into account the preferred sizes of its
components.

10.3.1 Working with 2D Shapes

Starting with Java 1.0, the Graphics class has methods to draw lines,
rectangles, ellipses, and so on. But those drawing operations are very
limited. We will instead use the shape classes from the Java 2D library.

To use this library, you need to obtain an object of the Graphics2D class. This
class is a subclass of the Graphics class. Ever since Java 1.2, methods such
as paintComponent automatically receive an object of the Graphics2D class.
Simply use a cast, as follows:

public void paintComponent(Graphics g)
{
 Graphics2D g2 = (Graphics2D) g;
 . . .
}

The Java 2D library organizes geometric shapes in an object-oriented
fashion. In particular, there are classes to represent lines, rectangles, and

ellipses:

Line2D
Rectangle2D
Ellipse2D

These classes all implement the Shape interface. The Java 2D library
supports more complex shapes—arcs, quadratic and cubic curves, and
general paths—that we do not discuss in this chapter.

To draw a shape, you first create an object of a class that implements the
Shape interface and then call the draw method of the Graphics2D class. For
example:

Rectangle2D rect = . . .;
g2.draw(rect);

The Java 2D library uses floating-point coordinates, not integers, for pixels.
Internal calculations are carried out with single-precision float quantities.
Single precision is sufficient—after all, the ultimate purpose of the
geometric computations is to set pixels on the screen or printer. As long as
any roundoff errors stay within one pixel, the visual outcome is not affected.

However, manipulating float values is sometimes inconvenient for the
programmer because Java is adamant about requiring casts when converting
double values into float values. For example, consider the following
statement:

float f = 1.2; // ERROR--possible loss of precision

This statement does not compile because the constant 1.2 has type double,
and the compiler is nervous about loss of precision. The remedy is to add an
F suffix to the floating-point constant:

float f = 1.2F; // OK

Now consider this statement:

float f = r.getWidth(); // ERROR

This statement does not compile either, for the same reason. The getWidth
method returns a double. This time, the remedy is to provide a cast:

float f = (float) r.getWidth(); // OK

These suffixes and casts are a bit of a pain, so the designers of the 2D library
decided to supply two versions of each shape class: one with float

coordinates for frugal programmers, and one with double coordinates for the
lazy ones. (In this book, we fall into the second camp and use double
coordinates whenever we can.)

The library designers chose a curious mechanism for packaging these
choices. Consider the Rectangle2D class. This is an abstract class with two
concrete subclasses, which are also static inner classes:

Rectangle2D.Float
Rectangle2D.Double

Figure 10.5 shows the inheritance diagram.

Figure 10.5 2D rectangle classes

It is best to ignore the fact that the two concrete classes are static inner
classes—that is just a gimmick to avoid names such as FloatRectangle2D
and DoubleRectangle2D.

When you construct a Rectangle2D.Float object, you supply the coordinates
as float numbers. For a Rectangle2D.Double object, you supply them as
double numbers.

var floatRect = new Rectangle2D.Float(10.0F, 25.0F, 22.5F,
20.0F);
var doubleRect = new Rectangle2D.Double(10.0, 25.0, 22.5,
20.0);

The construction parameters denote the top left corner, width, and height of
the rectangle.

The Rectangle2D methods use double parameters and return values. For
example, the getWidth method returns a double value, even if the width is
stored as a float in a Rectangle2D.Float object.

 TIP:
Simply use the Double shape classes to avoid dealing with float values
altogether. However, if you are constructing thousands of shape objects,
consider using the Float classes to conserve memory.

What we just discussed for the Rectangle2D classes holds for the other shape
classes as well. Furthermore, there is a Point2D class with subclasses
Point2D.Float and Point2D.Double. Here is how to make a point object:

var p = new Point2D.Double(10, 20);

The classes Rectangle2D and Ellipse2D both inherit from the common
superclass RectangularShape. Admittedly, ellipses are not rectangular, but
they have a bounding rectangle (see Figure 10.6).

Figure 10.6 The bounding rectangle of an ellipse

The RectangularShape class defines over 20 methods that are common to
these shapes, among them such useful methods as getWidth, getHeight,
getCenterX, and getCenterY (but, sadly, at the time of this writing, not a
getCenter method that would return the center as a Point2D object).

Finally, a couple of legacy classes from Java 1.0 have been fitted into the
shape class hierarchy. The Rectangle and Point classes, which store a
rectangle and a point with integer coordinates, extend the Rectangle2D and
Point2D classes.

Figure 10.7 shows the relationships between the shape classes. However, the
Double and Float subclasses are omitted. Legacy classes are marked with a
gray fill.

Figure 10.7 Relationships between the shape classes

Rectangle2D and Ellipse2D objects are simple to construct. You need to
specify

• The x and y coordinates of the top left corner; and
• The width and height.

For ellipses, these refer to the bounding rectangle. For example,

var e = new Ellipse2D.Double(150, 200, 100, 50);

constructs an ellipse that is bounded by a rectangle with the top left corner at
(150, 200), width of 100, and height of 50.

When constructing an ellipse, you usually know the center, width, and
height, but not the corner points of the bounding rectangle (which don’t even
lie on the ellipse). The setFrameFromCenter method uses the center point, but
it still requires one of the four corner points. Thus, you will usually end up
constructing an ellipse as follows:

var ellipse
 = new Ellipse2D.Double(centerX - width / 2, centerY - height
/ 2, width, height);

To construct a line, you supply the start and end points, either as Point2D
objects or as pairs of numbers:

var line = new Line2D.Double(start, end);

or

var line = new Line2D.Double(startX, startY, endX, endY);

The program in Listing 10.3 draws a rectangle, the ellipse that is enclosed in
the rectangle, a diagonal of the rectangle, and a circle that has the same
center as the rectangle. Figure 10.8 shows the result.

Figure 10.8 Drawing geometric shapes

Listing 10.3 draw/DrawTest.java

 1 package draw;
 2
 3 import java.awt.*;
 4 import java.awt.geom.*;
 5 import javax.swing.*;
 6
 7 /**
 8 * @version 1.34 2018-04-10
 9 * @author Cay Horstmann
10 */
11 public class DrawTest
12 {
13 public static void main(String[] args)
14 {
15 EventQueue.invokeLater(() ->

16 {
17 var frame = new DrawFrame();
18 frame.setTitle("DrawTest");
19 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOS
E);
20 frame.setVisible(true);
21 });
22 }
23 }
24
25 /**
26 * A frame that contains a panel with drawings.
27 */
28 class DrawFrame extends JFrame
29 {
30 public DrawFrame()
31 {
32 add(new DrawComponent());
33 pack();
34 }
35 }
36
37 /**
38 * A component that displays rectangles and ellipses.
39 */
40 class DrawComponent extends JComponent
41 {
42 private static final int DEFAULT_WIDTH = 400;
43 private static final int DEFAULT_HEIGHT = 400;
44
45 public void paintComponent(Graphics g)
46 {
47 var g2 = (Graphics2D) g;
48
49 // draw a rectangle
50
51 double leftX = 100;
52 double topY = 100;
53 double width = 200;

54 double height = 150;
55
56 var rect = new Rectangle2D.Double(leftX, topY, width,
height);
57 g2.draw(rect);
58
59 // draw the enclosed ellipse
60
61 var ellipse = new Ellipse2D.Double();
62 ellipse.setFrame(rect);
63 g2.draw(ellipse);
64
65 // draw a diagonal line
66
67 g2.draw(new Line2D.Double(leftX, topY, leftX + width,
topY + height));
68
69 // draw a circle with the same center
70
71 double centerX = rect.getCenterX();
72 double centerY = rect.getCenterY();
73 double radius = 150;
74
75 var circle = new Ellipse2D.Double();
76 circle.setFrameFromCenter(centerX, centerY, centerX +
radius, centerY + radius);
77 g2.draw(circle);
78 }
79
80 public Dimension getPreferredSize()
81 {
82 return new Dimension(DEFAULT_WIDTH, DEFAULT_HEIGHT);
83 }
84 }

java.awt.geom.RectangularShape 1.2

• double getCenterX()

• double getCenterY()
• double getMinX()
• double getMinY()
• double getMaxX()
• double getMaxY()

returns the center, minimum, or maximum x or y value of the
enclosing rectangle.

• double getWidth()
• double getHeight()

returns the width or height of the enclosing rectangle.
• double getX()
• double getY()

returns the x or y coordinate of the top left corner of the enclosing
rectangle.

java.awt.geom.Rectangle2D.Double 1.2

• Rectangle2D.Double(double x, double y, double w, double h)
constructs a rectangle with the given top left corner, width, and
height.

java.awt.geom.Ellipse2D.Double 1.2

• Ellipse2D.Double(double x, double y, double w, double h)
constructs an ellipse whose bounding rectangle has the given top left
corner, width, and height.

java.awt.geom.Point2D.Double 1.2

• Point2D.Double(double x, double y)
constructs a point with the given coordinates.

java.awt.geom.Line2D.Double 1.2

• Line2D.Double(Point2D start, Point2D end)
• Line2D.Double(double startX, double startY, double endX,

double endY)

constructs a line with the given start and end points.

10.3.2 Using Color

The setPaint method of the Graphics2D class lets you select a color that is
used for all subsequent drawing operations on the graphics context. For
example:

g2.setPaint(Color.RED);
g2.drawString("Warning!", 100, 100);

You can fill the interiors of closed shapes (such as rectangles or ellipses)
with a color. Simply call fill instead of draw:

Rectangle2D rect = . . .;
g2.setPaint(Color.RED);
g2.fill(rect); // fills rect with red

To draw in multiple colors, select a color, draw or fill, then select another
color, and draw or fill again.

 NOTE:
The fill method paints one fewer pixel to the right and the bottom. For
example, if you draw a new Rectangle2D.Double(0, 0, 10, 20), then the
drawing includes the pixels with x = 10 and y = 20. If you fill the same
rectangle, those pixels are not painted.

Define colors with the Color class. The java.awt.Color class offers
predefined constants for the following 13 standard colors:

BLACK, BLUE, CYAN, DARK_GRAY, GRAY, GREEN, LIGHT_GRAY,
MAGENTA, ORANGE, PINK, RED, WHITE, YELLOW

You can specify a custom color by creating a Color object by its red, green,
and blue components, each a value between 0 and 255:

g2.setPaint(new Color(0, 128, 128)); // a dull blue-green
g2.drawString("Welcome!", 75, 125);

 NOTE:
In addition to solid colors, you can call setPaint with instances of classes
that implement the Paint interface. This enables drawing with gradients and
textures.

To set the background color, use the setBackground method of the Component
class, an ancestor of JComponent.

var component = new MyComponent();
component.setBackground(Color.PINK);

There is also a setForeground method. It specifies the default color that is
used for drawing on the component.

java.awt.Color 1.0

• Color(int r, int g, int b)
creates a color object with the given red, green, and blue components
between 0 and 255.

java.awt.Graphics2D 1.2

• Paint getPaint()
• void setPaint(Paint p)

gets or sets the paint property of this graphics context. The Color
class implements the Paint interface. Therefore, you can use this
method to set the paint attribute to a solid color.

• void fill(Shape s)
fills the shape with the current paint.

java.awt.Component 1.0

• Color getForeground()
• Color getBackground()
• void setForeground(Color c)
• void setBackground(Color c)

gets or sets the foreground or background color.

10.3.3 Using Fonts

The “Not a Hello World” program at the beginning of this chapter displayed
a string in the default font. Sometimes, you will want to show your text in a
different font. You can specify a font by its font face name. A font face name
is composed of a font family name, such as “Helvetica”, and an optional
suffix such as “Bold”. For example, the font faces “Helvetica” and
“Helvetica Bold” are both considered to be part of the family named
“Helvetica.”

To find out which fonts are available on a particular computer, call the
getAvailableFontFamilyNames method of the GraphicsEnvironment class.
The method returns an array of strings containing the names of all available
fonts. To obtain an instance of the GraphicsEnvironment class that describes
the graphics environment of the user’s system, use the static
getLocalGraphicsEnvironment method. The following program prints the
names of all fonts on your system:

import java.awt.*;
public class ListFonts
{
 public static void main(String[] args)
 {
 String[] fontNames = GraphicsEnvironment
 .getLocalGraphicsEnvironment()
 .getAvailableFontFamilyNames();
 for (String fontName : fontNames)
 System.out.println(fontName);
 }
}

The AWT defines five logical font names:

SansSerif
Serif
Monospaced
Dialog
DialogInput

These names are always mapped to some fonts that actually exist on the
client machine. For example, on a Windows system, SansSerif is mapped to
Arial.

In addition, the Oracle JDK always includes three font families named
“Lucida Sans,” “Lucida Bright,” and “Lucida Sans Typewriter.”

To draw characters in a font, you must first create an object of the class Font.
Specify the font face name, the font style, and the point size. Here is an
example of how you construct a Font object:

var sansbold14 = new Font("SansSerif", Font.BOLD, 14);

The third argument is the point size. Points are commonly used in
typography to indicate the size of a font. There are 72 points per inch.

You can use a logical font name in place of the font face name in the Font
constructor. Specify the style (plain, bold, italic, or bold italic) by setting the
second Font constructor argument to one of the following values:

Font.PLAIN
Font.BOLD
Font.ITALIC
Font.BOLD + Font.ITALIC

The font is plain with a font size of 1 point. Use the deriveFont method to
get a font of the desired size:

Font f = f1.deriveFont(14.0F);

 CAUTION:
There are two overloaded versions of the deriveFont method. One of them
(with a float parameter) sets the font size, the other (with an int parameter)
sets the font style. Thus, f1.deriveFont(14) sets the style and not the size!

(The result is an italic font because it happens that the binary representation
of 14 has the ITALIC bit but not the BOLD bit set.)

Here’s the code that displays the string “Hello, World!” in the standard sans
serif font on your system, using 14-point bold type:

var sansbold14 = new Font("SansSerif", Font.BOLD, 14);
g2.setFont(sansbold14);
var message = "Hello, World!";
g2.drawString(message, 75, 100);

Next, let’s center the string in its component instead of drawing it at an
arbitrary position. We need to know the width and height of the string in
pixels. These dimensions depend on three factors:

• The font used (in our case, sans serif, bold, 14 point);
• The string (in our case, “Hello, World!”); and
• The device on which the font is drawn (in our case, the user’s screen).

To obtain an object that represents the font characteristics of the screen
device, call the getFontRenderContext method of the Graphics2D class. It
returns an object of the FontRenderContext class. Simply pass that object to
the getStringBounds method of the Font class:

FontRenderContext context = g2.getFontRenderContext();
Rectangle2D bounds = sansbold14.getStringBounds(message,
context);

The getStringBounds method returns a rectangle that encloses the string.

To interpret the dimensions of that rectangle, you should know some basic
typesetting terms (see Figure 10.9). The baseline is the imaginary line
where, for example, the bottom of a character like ‘e’ rests. The ascent is the
distance from the baseline to the top of an ascender, which is the upper part
of a letter like ‘b’ or ‘k’, or an uppercase character. The descent is the

distance from the baseline to a descender, which is the lower portion of a
letter like ‘p’ or ‘g’.

Figure 10.9 Typesetting terms illustrated

Leading is the space between the descent of one line and the ascent of the
next line. (The term has its origin from the strips of lead that typesetters used
to separate lines.) The height of a font is the distance between successive
baselines, which is the same as descent + leading + ascent.

The width of the rectangle that the getStringBounds method returns is the
horizontal extent of the string. The height of the rectangle is the sum of
ascent, descent, and leading. The rectangle has its origin at the baseline of
the string. The top y coordinate of the rectangle is negative. Thus, you can
obtain string width, height, and ascent as follows:

double stringWidth = bounds.getWidth();
double stringHeight = bounds.getHeight();
double ascent = -bounds.getY();

If you need to know the descent or leading, use the getLineMetrics method
of the Font class. That method returns an object of the LineMetrics class,
which has methods to obtain the descent and leading:

LineMetrics metrics = f.getLineMetrics(message, context);
float descent = metrics.getDescent();
float leading = metrics.getLeading();

 NOTE:
When you need to compute layout dimensions outside the paintComponent
method, you can’t obtain the font render context from the Graphics2D object.
Instead, call the getFontMetrics method of the JComponent class and then
call getFontRenderContext.

FontRenderContext context =
getFontMetrics(f).getFontRenderContext();

To show that the positioning is accurate, the sample program in Listing 10.4
centers the string in the frame and draws the baseline and the bounding
rectangle. Figure 10.10 shows the screen display.

Figure 10.10 Drawing the baseline and string bounds

Listing 10.4 font/FontTest.java

 1 package font;
 2
 3 import java.awt.*;
 4 import java.awt.font.*;
 5 import java.awt.geom.*;

 6 import javax.swing.*;
 7
 8 /**
 9 * @version 1.35 2018-04-10
10 * @author Cay Horstmann
11 */
12 public class FontTest
13 {
14 public static void main(String[] args)
15 {
16 EventQueue.invokeLater(() ->
17 {
18 var frame = new FontFrame();
19 frame.setTitle("FontTest");
20 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOS
E);
21 frame.setVisible(true);
22 });
23 }
24 }
25
26 /**
27 * A frame with a text message component.
28 */
29 class FontFrame extends JFrame
30 {
31 public FontFrame()
32 {
33 add(new FontComponent());
34 pack();
35 }
36 }
37
38 /**
39 * A component that shows a centered message in a box.
40 */
41 class FontComponent extends JComponent
42 {
43 private static final int DEFAULT_WIDTH = 300;

44 private static final int DEFAULT_HEIGHT = 200;
45
46 public void paintComponent(Graphics g)
47 {
48 var g2 = (Graphics2D) g;
49
50 String message = "Hello, World!";
51
52 var f = new Font("Serif", Font.BOLD, 36);
53 g2.setFont(f);
54
55 // measure the size of the message
56
57 FontRenderContext context = g2.getFontRenderContext();
58 Rectangle2D bounds = f.getStringBounds(message, context);
59
60 // set (x,y) = top left corner of text
61
62 double x = (getWidth() - bounds.getWidth()) / 2;
63 double y = (getHeight() - bounds.getHeight()) / 2;
64
65 // add ascent to y to reach the baseline
66
67 double ascent = -bounds.getY();
68 double baseY = y + ascent;
69
70 // draw the message
71
72 g2.drawString(message, (int) x, (int) baseY);
73
74 g2.setPaint(Color.LIGHT_GRAY);
75
76 // draw the baseline
77
78 g2.draw(new Line2D.Double(x, baseY, x +
bounds.getWidth(), baseY));
79
80 // draw the enclosing rectangle
81

82 var rect = new Rectangle2D.Double(x, y,
bounds.getWidth(), bounds.getHeight());
83 g2.draw(rect);
84 }
85
86 public Dimension getPreferredSize()
87 {
88 return new Dimension(DEFAULT_WIDTH, DEFAULT_HEIGHT);
89 }
90 }

java.awt.Font 1.0

• Font(String name, int style, int size)
creates a new font object. The font name is either a font face name
(such as "Helvetica Bold") or a logical font name (such as "Serif",
"SansSerif"). The style is one of Font.PLAIN, Font.BOLD,
Font.ITALIC, or Font.BOLD + Font.ITALIC.

• String getFontName()
gets the font face name (such as "Helvetica Bold").

• String getFamily()
gets the font family name (such as "Helvetica").

• String getName()
gets the logical name (such as "SansSerif") if the font was created
with a logical font name; otherwise, gets the font face name.

• Rectangle2D getStringBounds(String s, FontRenderContext

context) 1.2
returns a rectangle that encloses the string. The origin of the
rectangle falls on the baseline. The top y coordinate of the rectangle
equals the negative of the ascent. The height of the rectangle equals
the sum of ascent, descent, and leading. The width equals the string
width.

• LineMetrics getLineMetrics(String s, FontRenderContext

context) 1.2
returns a line metrics object to determine the extent of the string.

• Font deriveFont(int style) 1.2
• Font deriveFont(float size) 1.2
• Font deriveFont(int style, float size) 1.2

returns a new font that is equal to this font, except that it has the
given size and style.

java.awt.font.LineMetrics 1.2

• float getAscent()
gets the font ascent—the distance from the baseline to the tops of
uppercase characters.

• float getDescent()
gets the font descent—the distance from the baseline to the bottoms
of descenders.

• float getLeading()
gets the font leading—the space between the bottom of one line of
text and the top of the next line.

• float getHeight()
gets the total height of the font—the distance between the two
baselines of text (descent + leading + ascent).

java.awt.Graphics2D 1.2

• FontRenderContext getFontRenderContext()

gets a font render context that specifies font characteristics in this
graphics context.

• void drawString(String str, float x, float y)
draws a string in the current font and color.

javax.swing.JComponent 1.2

• FontMetrics getFontMetrics(Font f) 5
gets the font metrics for the given font. The FontMetrics class is a
precursor to the LineMetrics class.

java.awt.FontMetrics 1.0

• FontRenderContext getFontRenderContext() 1.2
gets a font render context for the font.

10.3.4 Displaying Images

You can use the ImageIcon class to read an image from a file:

Image image = new ImageIcon(filename).getImage();

Now the variable image contains a reference to an object that encapsulates
the image data. Display the image with the drawImage method of the
Graphics class.

public void paintComponent(Graphics g)
{
 . . .

 g.drawImage(image, x, y, null);
}

We can take this a little bit further and tile the window with the graphics
image. The result looks like the screen shown in Figure 10.11. We do the
tiling in the paintComponent method. We first draw one copy of the image in
the top left corner and then use the copyArea call to copy it into the entire
window:

for (int i = 0; i * imageWidth <= getWidth(); i++)
 for (int j = 0; j * imageHeight <= getHeight(); j++)
 if (i + j > 0)
 g.copyArea(0, 0, imageWidth, imageHeight, i *
imageWidth, j * imageHeight);

Figure 10.11 Window with tiled graphics image

java.awt.Graphics 1.0

• boolean drawImage(Image img, int x, int y, ImageObserver

observer)

• boolean drawImage(Image img, int x, int y, int width, int
height, ImageObserver observer)

draws an unscaled or scaled image. Note: This call may return before
the image is drawn. The imageObserver object is notified of the
rendering progress. This was a useful feature in the distant past.
Nowadays, just pass a null observer.

• void copyArea(int x, int y, int width, int height, int dx,
int dy)

copies an area of the screen. The dx and dy parameters are the
distance from the source area to the target area.

10.4 Event Handling

Any operating environment that supports GUIs constantly monitors events
such as keystrokes or mouse clicks. These events are then reported to the
programs that are running. Each program then decides what, if anything, to
do in response to these events.

10.4.1 Basic Event Handling Concepts

In the Java AWT, event sources (such as buttons or scrollbars) have methods
that allow you to register event listeners—objects that carry out the desired
response to the event.

When an event listener is notified about an event, information about the
event is encapsulated in an event object. In Java, all event objects ultimately
derive from the class java.util.EventObject. Of course, there are
subclasses for each event type, such as ActionEvent and WindowEvent.

Different event sources can produce different kinds of events. For example, a
button can send ActionEvent objects, whereas a window can send
WindowEvent objects.

To sum up, here’s an overview of how event handling in the AWT works:

• An event listener is an instance of a class that implements a listener
interface.

• An event source is an object that can register listener objects and send them
event objects.

• The event source sends out event objects to all registered listeners when
that event occurs.

• The listener objects then uses the information in the event object to
determine their reaction to the event.

Figure 10.12 shows the relationship between the event handling classes and
interfaces.

Here is an example for specifying a listener:

ActionListener listener = . . .;
var button = new JButton("OK");
button.addActionListener(listener);

Figure 10.12 Relationship between event sources and listeners

Now the listener object is notified whenever an “action event” occurs in the
button. For buttons, as you might expect, an action event is a button click.

To implement the ActionListener interface, the listener class must have a
method called actionPerformed that receives an ActionEvent object as a
parameter.

class MyListener implements ActionListener
{
 . . .
 public void actionPerformed(ActionEvent event)
 {
 // reaction to button click goes here
 . . .
 }
}

Whenever the user clicks the button, the JButton object creates an
ActionEvent object and calls listener.actionPerformed(event), passing that
event object. An event source such as a button can have multiple listeners. In
that case, the button calls the actionPerformed methods of all listeners
whenever the user clicks the button.

Figure 10.13 shows the interaction between the event source, event listener,
and event object.

Figure 10.13 Event notification

10.4.2 Example: Handling a Button Click

As a way of getting comfortable with the event delegation model, let’s work
through all the details needed for the simple example of responding to a
button click. For this example, we will show a panel populated with three
buttons. Three listener objects are added as action listeners to the buttons.

With this scenario, each time a user clicks on any of the buttons on the panel,
the associated listener object receives an ActionEvent that indicates a button
click. In our sample program, the listener object will then change the
background color of the panel.

Before I can show you the program that listens to button clicks, I need to
explain how to create buttons and how to add them to a panel.

To create a button, specify a label string, an icon, or both in the button
constructor. Here are two examples:

var yellowButton = new JButton("Yellow");
var blueButton = new JButton(new ImageIcon("blue-ball.gif"));

Call the add method to add the buttons to a panel:

var yellowButton = new JButton("Yellow");
var blueButton = new JButton("Blue");
var redButton = new JButton("Red");

buttonPanel.add(yellowButton);
buttonPanel.add(blueButton);
buttonPanel.add(redButton);

Figure 10.14 shows the result.

Figure 10.14 A panel filled with buttons

Next, we need to add code that listens to these buttons. This requires classes
that implement the ActionListener interface, which, as I just mentioned, has
one method: actionPerformed, whose signature looks like this:

public void actionPerformed(ActionEvent event)

The way to use the ActionListener interface is the same in all situations:
The actionPerformed method (which is the only method in ActionListener)
takes an object of type ActionEvent as a parameter. This event object gives
you information about the event that happened.

When a button is clicked, we want the background color of the panel to
change to a particular color. We store the desired color in our listener class.

class ColorAction implements ActionListener
{
 private Color backgroundColor;
 public ColorAction(Color c)
 {
 backgroundColor = c;
 }
 public void actionPerformed(ActionEvent event)
 {
 // set panel background color
 . . .
 }
}

We then construct one object for each color and set the objects as the button
listeners.

var yellowAction = new ColorAction(Color.YELLOW);
var blueAction = new ColorAction(Color.BLUE);
var redAction = new ColorAction(Color.RED);

yellowButton.addActionListener(yellowAction);
blueButton.addActionListener(blueAction);
redButton.addActionListener(redAction);

For example, if a user clicks on the button marked “Yellow”, the
actionPerformed method of the yellowAction object is called. Its
backgroundColor instance field is set to Color.YELLOW, and it can now
proceed to set the panel’s background color.

Just one issue remains. The ColorAction object doesn’t have access to the
buttonPanel variable. You can solve this problem in two ways. You can store
the panel in the ColorAction object and set it in the ColorAction constructor.
Or, more conveniently, you can make ColorAction into an inner class of the
ButtonFrame class. Its methods can then access the outer panel automatically.

Listing 10.5 contains the complete frame class. Whenever you click one of
the buttons, the appropriate action listener changes the background color of
the panel.

Listing 10.5 button/ButtonFrame.java

 1 package button;
 2
 3 import java.awt.*;
 4 import java.awt.event.*;
 5 import javax.swing.*;
 6
 7 /**
 8 * A frame with a button panel.
 9 */
10 public class ButtonFrame extends JFrame
11 {
12 private JPanel buttonPanel;
13 private static final int DEFAULT_WIDTH = 300;
14 private static final int DEFAULT_HEIGHT = 200;
15
16 public ButtonFrame()
17 {

18 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
19
20 // create buttons
21 var yellowButton = new JButton("Yellow");
22 var blueButton = new JButton("Blue");
23 var redButton = new JButton("Red");
24
25 buttonPanel = new JPanel();
26
27 // add buttons to panel
28 buttonPanel.add(yellowButton);
29 buttonPanel.add(blueButton);
30 buttonPanel.add(redButton);
31
32 // add panel to frame
33 add(buttonPanel);
34
35 // create button actions
36 var yellowAction = new ColorAction(Color.YELLOW);
37 var blueAction = new ColorAction(Color.BLUE);
38 var redAction = new ColorAction(Color.RED);
39
40 // associate actions with buttons
41 yellowButton.addActionListener(yellowAction);
42 blueButton.addActionListener(blueAction);
43 redButton.addActionListener(redAction);
44 }
45
46 /**
47 * An action listener that sets the panel's background
color.
48 */
49 private class ColorAction implements ActionListener
50 {
51 private Color backgroundColor;
52
53 public ColorAction(Color c)
54 {
55 backgroundColor = c;

56 }
57
58 public void actionPerformed(ActionEvent event)
59 {
60 buttonPanel.setBackground(backgroundColor);
61 }
62 }
63 }

javax.swing.JButton 1.2

• JButton(String label)
• JButton(Icon icon)
• JButton(String label, Icon icon)

constructs a button. The label string can be plain text or HTML; for
example, "<html>Ok</html>".

java.awt.Container 1.0

• Component add(Component c)
adds the component c to this container.

10.4.3 Specifying Listeners Concisely

In the preceding section, we defined a class for the event listener and
constructed three objects of that class. It is not all that common to have
multiple instances of a listener class. Most commonly, each listener carries
out a separate action. In that case, there is no need to make a separate class.
Simply use a lambda expression:

exitButton.addActionListener(event -> System.exit(0));

Now consider the case in which we have multiple related actions, such as the
color buttons of the preceding section. In such a case, implement a helper
method:

public void makeButton(String name, Color backgroundColor)
{
 var button = new JButton(name);
 buttonPanel.add(button);
 button.addActionListener(event ->
 buttonPanel.setBackground(backgroundColor));
}

Note that the lambda expression refers to the parameter variable
backgroundColor.

Then we simply call

makeButton("yellow", Color.YELLOW);
makeButton("blue", Color.BLUE);
makeButton("red", Color.RED);

Here, we construct three listener objects, one for each color, without
explicitly defining a class. Each time the helper method is called, it makes an
instance of a class that implements the ActionListener interface. Its
actionPerformed action references the backGroundColor value that is, in fact,
stored with the listener object. However, all this happens without you having
to explicitly define listener classes, instance variables, or constructors that
set them.

 NOTE:
In older code, you will often see the use of anonymous classes:

exitButton.addActionListener(new ActionListener()
 {
 public void actionPerformed(new ActionEvent)

 {
 System.exit(0);
 }
 });

Of course, this rather verbose code is no longer necessary. Using a lambda
expression is simpler and clearer.

10.4.4 Adapter Classes

Not all events are as simple to handle as button clicks. Suppose you want to
monitor when the user tries to close the main frame in order to put up a
dialog and exit the program only when the user agrees.

When the user tries to close a window, the JFrame object is the source of a
WindowEvent. If you want to catch that event, you must have an appropriate
listener object and add it to the frame’s list of window listeners.

WindowListener listener = . . .;
frame.addWindowListener(listener);

The window listener must be an object of a class that implements the
WindowListener interface. There are actually seven methods in the
WindowListener interface. The frame calls them as the responses to seven
distinct events that could happen to a window. The names are self-
explanatory, except that “iconified” is usually called “minimized” under
Windows. Here is the complete WindowListener interface:

public interface WindowListener
{
 void windowOpened(WindowEvent e);
 void windowClosing(WindowEvent e);
 void windowClosed(WindowEvent e);
 void windowIconified(WindowEvent e);
 void windowDeiconified(WindowEvent e);

 void windowActivated(WindowEvent e);
 void windowDeactivated(WindowEvent e);
}

Of course, we can define a class that implements the interface, add a call to
System.exit(0) in the windowClosing method, and write do-nothing
functions for the other six methods. However, typing code for six methods
that don’t do anything is the kind of tedious busywork that nobody likes. To
simplify this task, each of the AWT listener interfaces that have more than
one method comes with a companion adapter class that implements all the
methods in the interface but does nothing with them. For example, the
WindowAdapter class has seven do-nothing methods. You extend the adapter
class to specify the desired reactions to some, but not all, of the event types
in the interface. (An interface such as ActionListener that has only a single
method does not need an adapter class.)

Here is how we can define a window listener that overrides the
windowClosing method:

class Terminator extends WindowAdapter
{
 public void windowClosing(WindowEvent e)
 {

 if (user agrees)
 System.exit(0);
 }
}

Now you can register an object of type Terminator as the event listener:

var listener = new Terminator();
frame.addWindowListener(listener);

 NOTE:

Nowadays, one would implement do-nothing methods of the
WindowListener interface as default methods. However, Swing was invented
many years before there were default methods.

java.awt.event.WindowListener 1.1

• void windowOpened(WindowEvent e)
is called after the window has been opened.

• void windowClosing(WindowEvent e)
is called when the user has issued a window manager command to
close the window. Note that the window will close only if its hide or
dispose method is called.

• void windowClosed(WindowEvent e)
is called after the window has closed.

• void windowIconified(WindowEvent e)
is called after the window has been iconified.

• void windowDeiconified(WindowEvent e)
is called after the window has been deiconified.

• void windowActivated(WindowEvent e)
is called after the window has become active. Only a frame or dialog
can be active. Typically, the window manager decorates the active
window—for example, by highlighting the title bar.

• void windowDeactivated(WindowEvent e)
is called after the window has become deactivated.

java.awt.event.WindowStateListener 1.4

• void windowStateChanged(WindowEvent event)

is called after the window has been maximized, iconified, or restored
to normal size.

10.4.5 Actions

It is common to have multiple ways to activate the same command. The user
can choose a certain function through a menu, a keystroke, or a button on a
toolbar. This is easy to achieve in the AWT event model: link all events to
the same listener. For example, suppose blueAction is an action listener
whose actionPerformed method changes the background color to blue. You
can attach the same object as a listener to several event sources:

• A toolbar button labeled “Blue”
• A menu item labeled “Blue”
• A keystroke Ctrl+B

The color change command will now be handled in a uniform way, no matter
whether it was caused by a button click, a menu selection, or a key press.

The Swing package provides a very useful mechanism to encapsulate
commands and to attach them to multiple event sources: the Action

interface. An action is an object that encapsulates

• A description of the command (as a text string and an optional icon); and
• Parameters that are necessary to carry out the command (such as the

requested color in our example).

The Action interface has the following methods:

void actionPerformed(ActionEvent event)
void setEnabled(boolean b)
boolean isEnabled()
void putValue(String key, Object value)
Object getValue(String key)
void addPropertyChangeListener(PropertyChangeListener listener)

void removePropertyChangeListener(PropertyChangeListener
listener)

The first method is the familiar method in the ActionListener interface; in
fact, the Action interface extends the ActionListener interface. Therefore,
you can use an Action object whenever an ActionListener object is
expected.

The next two methods let you enable or disable the action and check whether
the action is currently enabled. When an action is attached to a menu or
toolbar and the action is disabled, the option is grayed out.

The putValue and getValue methods let you store and retrieve arbitrary
name/value pairs in the action object. A couple of important predefined
strings, namely Action.NAME and Action.SMALL_ICON, store action names and
icons into an action object:

action.putValue(Action.NAME, "Blue");
action.putValue(Action.SMALL_ICON, new ImageIcon("blue-
ball.gif"));

Table 10.1 shows all predefined action table names.

If the action object is added to a menu or toolbar, the name and icon are
automatically retrieved and displayed in the menu item or toolbar button.
The SHORT_DESCRIPTION value turns into a tooltip.

The final two methods of the Action interface allow other objects, in
particular menus or toolbars that trigger the action, to be notified when the
properties of the action object change. For example, if a menu is added as a
property change listener of an action object and the action object is
subsequently disabled, the menu is called and can gray out the action name.

Note that Action is an interface, not a class. Any class implementing this
interface must implement the seven methods we just discussed. Fortunately,
a friendly soul has provided a class AbstractAction that implements all
methods except for actionPerformed. That class takes care of storing all

name/value pairs and managing the property change listeners. You simply
extend AbstractAction and supply an actionPerformed method.

Table 10.1 Predefined Action Table Names

Let’s build an action object that can execute color change commands. We
store the name of the command, an icon, and the desired color. We store the
color in the table of name/value pairs that the AbstractAction class provides.
Here is the code for the ColorAction class. The constructor sets the
name/value pairs, and the actionPerformed method carries out the color
change action.

public class ColorAction extends AbstractAction
{
 public ColorAction(String name, Icon icon, Color c)
 {
 putValue(Action.NAME, name);

 putValue(Action.SMALL_ICON, icon);
 putValue("color", c);
 putValue(Action.SHORT_DESCRIPTION, "Set panel color to "
+ name.toLowerCase());
 }
 public void actionPerformed(ActionEvent event)
 {
 Color c = (Color) getValue("color");
 buttonPanel.setBackground(c);
 }
}

Our test program creates three objects of this class, such as

var blueAction = new ColorAction("Blue", new ImageIcon("blue-
ball.gif"), Color.BLUE);

Next, let’s associate this action with a button. That is easy because we can
use a JButton constructor that takes an Action object.

var blueButton = new JButton(blueAction);

That constructor reads the name and icon from the action, sets the short
description as the tooltip, and sets the action as the listener. You can see the
icons and a tooltip in Figure 10.15.

As demonstrated in the next chapter, it is just as easy to add the same action
to a menu.

Figure 10.15 Buttons display the icons from the action objects.

Finally, we want to add the action objects to keystrokes so that an action is
carried out when the user types a keyboard command. To associate actions
with keystrokes, you first need to generate objects of the KeyStroke class.
This convenience class encapsulates the description of a key. To generate a
KeyStroke object, don’t call a constructor but instead use the static
getKeyStroke method of the KeyStroke class.

KeyStroke ctrlBKey = KeyStroke.getKeyStroke("ctrl B");

To understand the next step, you need to understand the concept of keyboard
focus. A user interface can have many buttons, menus, scrollbars, and other
components. When you hit a key, it is sent to the component that has focus.
That component is usually (but not always) visually distinguished. For
example, in the Java look-and-feel, a button with focus has a thin rectangular
border around the button text. You can use the Tab key to move the focus
between components. When you press the space bar, the button with focus is
clicked. Other keys carry out different actions; for example, the arrow keys
can move a scrollbar.

However, in our case, we do not want to send the keystroke to the
component that has focus. Otherwise, each of the buttons would need to
know how to handle the Ctrl+Y, Ctrl+B, and Ctrl+R keys.

This is a common problem, and the Swing designers came up with a
convenient solution. Every JComponent has three input maps, each mapping
KeyStroke objects to associated actions. The three input maps correspond to
three different conditions (see Table 10.2).

Table 10.2 Input Map Conditions

Keystroke processing checks these maps in the following order:

1. Check the WHEN_FOCUSED map of the component with input focus. If the
keystroke exists and its corresponding action is enabled, execute the
action and stop processing.

2. Starting from the component with input focus, check the
WHEN_ANCESTOR_OF_FOCUSED_COMPONENT maps of its parent components. As
soon as a map with the keystroke and a corresponding enabled action is
found, execute the action and stop processing.

3. Look at all visible and enabled components, in the window with input
focus, that have this keystroke registered in a WHEN_IN_FOCUSED_WINDOW
map. Give these components (in the order of their keystroke registration)
a chance to execute the corresponding action. As soon as the first
enabled action is executed, stop processing.

To obtain an input map from the component, use the getInputMap method.
Here is an example:

InputMap imap = panel.getInputMap(JComponent.WHEN_FOCUSED);

The WHEN_FOCUSED condition means that this map is consulted when the
current component has the keyboard focus. In our situation, that isn’t the
map we want. One of the buttons, not the panel, has the input focus. Either
of the other two map choices works fine for inserting the color change
keystrokes. We use WHEN_ANCESTOR_OF_FOCUSED_COMPONENT in our example
program.

The InputMap doesn’t directly map KeyStroke objects to Action objects.
Instead, it maps to arbitrary objects, and a second map, implemented by the
ActionMap class, maps objects to actions. That makes it easier to share the
same actions among keystrokes that come from different input maps.

Thus, each component has three input maps and one action map. To tie them
together, you need to come up with names for the actions. Here is how you
can tie a key to an action:

imap.put(KeyStroke.getKeyStroke("ctrl Y"), "panel.yellow");
ActionMap amap = panel.getActionMap();
amap.put("panel.yellow", yellowAction);

It is customary to use the string "none" for a do-nothing action. That makes
it easy to deactivate a key:

imap.put(KeyStroke.getKeyStroke("ctrl C"), "none");

 CAUTION:
The JDK documentation suggests using the action name as the action’s key.
I don’t think that is a good idea. The action name is displayed on buttons
and menu items; thus, it can change at the whim of the UI designer and may
be translated into multiple languages. Such unstable strings are poor choices
for lookup keys, so I recommend that you come up with action names that
are independent of the displayed names.

To summarize, here is what you do to carry out the same action in response
to a button, a menu item, or a keystroke:

1. Implement a class that extends the AbstractAction class. You may be
able to use the same class for multiple related actions.

2. Construct an object of the action class.
3. Construct a button or menu item from the action object. The constructor

will read the label text and icon from the action object.
4. For actions that can be triggered by keystrokes, you have to carry out

additional steps. First, locate the top-level component of the window,
such as a panel that contains all other components.

5. Then, get the WHEN_ANCESTOR_OF_FOCUSED_COMPONENT input map of the
top-level component. Make a KeyStroke object for the desired keystroke.
Make an action key object, such as a string that describes your action.
Add the pair (keystroke, action key) into the input map.

6. Finally, get the action map of the top-level component. Add the pair
(action key, action object) into the map.

javax.swing.Action 1.2

• boolean isEnabled()
• void setEnabled(boolean b)

gets or sets the enabled property of this action.
• void putValue(String key, Object value)

places a key/value pair inside the action object. The key can be any
string, but several names have predefined meanings—see Table 10.1.

• Object getValue(String key)
returns the value of a stored name/value pair.

javax.swing.KeyStroke 1.2

• static KeyStroke getKeyStroke(String description)
constructs a keystroke from a human-readable description (a
sequence of whitespace-delimited strings). The description starts
with zero or more modifiers (shift, control, ctrl, meta, alt,
altGraph) and ends with either the string typed, followed by a one-
character string (for example, "typed a"), or an optional event
specifier (pressed or released, with pressed being the default),
followed by a key code. The key code, when prefixed with VK_,
should correspond to a KeyEvent constant; for example, "INSERT"
corresponds to KeyEvent.VK_INSERT.

javax.swing.JComponent 1.2

• ActionMap getActionMap() 1.3
returns the map that associates action map keys (which can be
arbitrary objects) with Action objects.

• InputMap getInputMap(int flag) 1.3
gets the input map that maps key strokes to action map keys. The
flag is one of the values in Table 10.2.

10.4.6 Mouse Events

You do not need to handle mouse events explicitly if you just want the user
to be able to click on a button or menu. These mouse operations are handled
internally by the various components in the user interface. However, if you
want to enable the user to draw with the mouse, you will need to trap the
mouse move, click, and drag events.

In this section, I will show you a simple graphics editor application that
allows the user to place, move, and erase squares on a canvas (see Figure
10.16).

Figure 10.16 A mouse test program

When the user clicks a mouse button, three listener methods are called:
mousePressed when the mouse is first pressed, mouseReleased when the
mouse is released, and, finally, mouseClicked. If you are only interested in
complete clicks, you can ignore the first two methods. By using the getX and
getY methods on the MouseEvent argument, you can obtain the x and y
coordinates of the mouse pointer when the mouse was clicked. To
distinguish between single, double, and triple (!) clicks, use the
getClickCount method.

In our sample program, we supply both a mousePressed and a mouseClicked
methods. When you click on a pixel that is not inside any of the squares that
have been drawn, a new square is added. We implemented this in the
mousePressed method so that the user receives immediate feedback and does
not have to wait until the mouse button is released. When a user double-
clicks inside an existing square, it is erased. We implemented this in the
mouseClicked method because we need the click count.

public void mousePressed(MouseEvent event)
{
 current = find(event.getPoint());
 if (current == null) // not inside a square
 add(event.getPoint());
}
public void mouseClicked(MouseEvent event)

{
 current = find(event.getPoint());
 if (current != null && event.getClickCount() >= 2)
 remove(current);
}

As the mouse moves over a window, the window receives a steady stream of
mouse movement events. Note that there are separate MouseListener and
MouseMotionListener interfaces. This is done for efficiency—there are a lot
of mouse events as the user moves the mouse around, and a listener that just
cares about mouse clicks will not be bothered with unwanted mouse moves.

Our test application traps mouse motion events to change the cursor to a
different shape (a cross hair) when it is over a square. This is done with the
getPredefinedCursor method of the Cursor class. Table 10.3 lists the
constants to use with this method along with what the cursors look like
under Windows.

Table 10.3 Sample Cursor Shapes

Here is the mouseMoved method of the MouseMotionListener in our example
program:

public void mouseMoved(MouseEvent event)
{
 if (find(event.getPoint()) == null)
 setCursor(Cursor.getDefaultCursor());
 else
 setCursor(Cursor.getPredefinedCursor(Cursor.CROSSHAIR_CUR
SOR));
}

If the user presses a mouse button while the mouse is in motion,
mouseDragged calls are generated instead of mouseMoved calls. Our test
application lets a user drag the square under the cursor. We simply update
the currently dragged rectangle to be centered under the mouse position.
Then, we repaint the canvas to show the new mouse position.

public void mouseDragged(MouseEvent event)
{
 if (current != null)
 {
 int x = event.getX();
 int y = event.getY();
 current.setFrame(x - SIDELENGTH / 2, y - SIDELENGTH / 2,
SIDELENGTH, SIDELENGTH);
 repaint();
 }
}

 NOTE:
The mouseMoved method is only called as long as the mouse stays inside the
component. However, the mouseDragged method keeps getting called even
when the mouse is being dragged outside the component.

There are two other mouse event methods: mouseEntered and mouseExited.
These methods are called when the mouse enters or exits a component.

Finally, let’s see how to listen to mouse events. Mouse clicks are reported
through the mouseClicked method, which is part of the MouseListener
interface. Many applications are only interested in mouse clicks and not in
mouse moves; with the mouse move events occurring so frequently, the
mouse move and drag events are defined in a separate interface called
MouseMotionListener.

In our program we are interested in both types of mouse events. We define
two inner classes: MouseHandler and MouseMotionHandler. The MouseHandler
class extends the MouseAdapter class because it defines only two of the five
MouseListener methods. (The MouseAdapter class defines all of them as do-
nothing methods.) The MouseMotionHandler implements the
MouseMotionListener and defines both methods of that interface. Listing
10.6 is the program listing.

Listing 10.6 mouse/MouseComponent.java

 1 package mouse;
 2
 3 import java.awt.*;
 4 import java.awt.event.*;
 5 import java.awt.geom.*;
 6 import java.util.*;
 7 import javax.swing.*;
 8
 9 /**
10 * A component with mouse operations for adding and removing
squares.
11 */
12 public class MouseComponent extends JComponent
13 {
14 private static final int DEFAULT_WIDTH = 300;
15 private static final int DEFAULT_HEIGHT = 200;
16
17 private static final int SIDELENGTH = 10;
18 private ArrayList<Rectangle2D> squares;
19 private Rectangle2D current; // the square containing the
mouse cursor
20
21 public MouseComponent()
22 {
23 squares = new ArrayList<>();
24 current = null;
25
26 addMouseListener(new MouseHandler());
27 addMouseMotionListener(new MouseMotionHandler());
28 }
29
30 public Dimension getPreferredSize()
31 {
32 return new Dimension(DEFAULT_WIDTH, DEFAULT_HEIGHT);
33 }
34
35 public void paintComponent(Graphics g)

36 {
37 var g2 = (Graphics2D) g;
38
39 // draw all squares
40 for (Rectangle2D r : squares)
41 g2.draw(r);
42 }
43
44 /**
45 * Finds the first square containing a point.
46 * @param p a point
47 * @return the first square that contains p
48 */
49 public Rectangle2D find(Point2D p)
50 {
51 for (Rectangle2D r : squares)
52 {
53 if (r.contains(p)) return r;
54 }
55 return null;
56 }
57
58 /**
59 * Adds a square to the collection.
60 * @param p the center of the square
61 */
62 public void add(Point2D p)
63 {
64 double x = p.getX();
65 double y = p.getY();
66
67 current = new Rectangle2D.Double(x - SIDELENGTH / 2, y -
SIDELENGTH / 2,
68 SIDELENGTH, SIDELENGTH);
69 squares.add(current);
70 repaint();
71 }
72
73 /**

74 * Removes a square from the collection.
75 * @param s the square to remove
76 */
77 public void remove(Rectangle2D s)
78 {
79 if (s == null) return;
80 if (s == current) current = null;
81 squares.remove(s);
82 repaint();
83 }
84
85 private class MouseHandler extends MouseAdapter
86 {
87 public void mousePressed(MouseEvent event)
88 {
89 // add a new square if the cursor isn't inside a square
90 current = find(event.getPoint());
91 if (current == null) add(event.getPoint());
92 }
93
94 public void mouseClicked(MouseEvent event)
95 {
96 // remove the current square if double clicked
97 current = find(event.getPoint());
98 if (current != null && event.getClickCount() >= 2)
remove(current);
99 }
100 }
101
102 private class MouseMotionHandler implements
MouseMotionListener
103 {
104 public void mouseMoved(MouseEvent event)
105 {
106 // set the mouse cursor to cross hairs if it is
inside a rectangle
107
108 if (find(event.getPoint()) == null)
setCursor(Cursor.getDefaultCursor());

109 else
setCursor(Cursor.getPredefinedCursor(Cursor.CROSSHAIR_CURSOR));
110 }
111
112 public void mouseDragged(MouseEvent event)
113 {
114 if (current != null)
115 {
116 int x = event.getX();
117 int y = event.getY();
118
119 // drag the current rectangle to center it at (x,
y)
120 current.setFrame(x - SIDELENGTH / 2, y -
SIDELENGTH / 2, SIDELENGTH, SIDELENGTH);
121 repaint();
122 }
123 }
124 }
125 }

java.awt.event.MouseEvent 1.1

• int getX()
• int getY()
• Point getPoint()

returns the x (horizontal) and y (vertical) coordinates of the point
where the event happened, measured from the top left corner of the
component that is the event source.

• int getClickCount()
returns the number of consecutive mouse clicks associated with this
event. (The time interval for what constitutes “consecutive” is
system-dependent.)

java.awt.Component 1.0

• public void setCursor(Cursor cursor) 1.1
sets the cursor image to the specified cursor.

10.4.7 The AWT Event Hierarchy

The EventObject class has a subclass AWTEvent, which is the parent of all
AWT event classes. Figure 10.17 shows the inheritance diagram of the AWT
events.

Figure 10.17 Inheritance diagram of AWT event classes

Some of the Swing components generate event objects of yet more event
types; these directly extend EventObject, not AWTEvent.

The event objects encapsulate information about the event that the event
source communicates to its listeners. When necessary, you can then analyze
the event objects that were passed to the listener object, as we did in the
button example with the getSource and getActionCommand methods.

Some of the AWT event classes are of no practical use for the Java
programmer. For example, the AWT inserts PaintEvent objects into the
event queue, but these objects are not delivered to listeners. Java
programmers don’t listen to paint events; instead, they override the
paintComponent method to control re-painting. The AWT also generates a
number of events that are needed only by systems programmers, to provide
input systems for ideographic languages, automated testing robots, and so
on.

The AWT makes a useful distinction between low-level and semantic events.
A semantic event is one that expresses what the user is doing, such as
“clicking that button”; an ActionEvent is a semantic event. Low-level events
are those events that make this possible. In the case of a button click, this is a
mouse down, a series of mouse moves, and a mouse up (but only if the
mouse up is inside the button area). Or it might be a keystroke, which
happens if the user selects the button with the Tab key and then activates it
with the space bar. Similarly, adjusting a scrollbar is a semantic event, but
dragging the mouse is a low-level event.

Here are the most commonly used semantic event classes in the
java.awt.event package:

• ActionEvent (for a button click, a menu selection, selecting a list item, or
Enter typed in a text field)

• AdjustmentEvent (the user adjusted a scrollbar)
• ItemEvent (the user made a selection from a set of checkbox or list items)

Five low-level event classes are commonly used:

• KeyEvent (a key was pressed or released)

• MouseEvent (the mouse button was pressed, released, moved, or dragged)
• MouseWheelEvent (the mouse wheel was rotated)
• FocusEvent (a component got focus or lost focus)
• WindowEvent (the window state changed)

Table 10.4 shows the most important AWT listener interfaces, events, and
event sources.

Table 10.4 Event Handling Summary

10.5 The Preferences API

I end this chapter with a discussion of the java.util.prefs API. In a desktop
program, you will often want to store user preferences, such as the last file
that the user worked on, the last window location, and so on.

As you have seen in Chapter 9, the Properties class makes it simple to load
and save configuration information of a program. However, using property
files has these disadvantages:

• Some operating systems have no concept of a home directory, making it
difficult to find a uniform location for configuration files.

• There is no standard convention for naming configuration files, increasing
the likelihood of name clashes as users install multiple Java applications.

Some operating systems have a central repository for configuration
information. The best-known example is the registry in Microsoft Windows.
The Preferences class provides such a central repository in a platform-
independent manner. In Windows, the Preferences class uses the registry for
storage; on Linux, the information is stored in the local file system instead.
Of course, the repository implementation is transparent to the programmer
using the Preferences class.

The Preferences repository has a tree structure, with node path names such
as /com/mycompany/myapp. As with package names, name clashes are
avoided as long as programmers start the paths with reversed domain names.
In fact, the designers of the API suggest that the configuration node paths
match the package names in your program.

Each node in the repository has a separate table of key/value pairs that you
can use to store numbers, strings, or byte arrays. No provision is made for
storing serializable objects. The API designers felt that the serialization
format is too fragile for long-term storage. Of course, if you disagree, you
can save serialized objects in byte arrays.

For additional flexibility, there are multiple parallel trees. Each program user
has one tree; an additional tree, called the system tree, is available for
settings that are common to all users. The Preferences class uses the

operating system’s notion of the “current user” for accessing the appropriate
user tree.

To access a node in the tree, start with the user or system root:

Preferences root = Preferences.userRoot();

or

Preferences root = Preferences.systemRoot();

Then access the node. You can simply provide a node path name:

Preferences node = root.node("/com/mycompany/myapp");

A convenient shortcut gets a node whose path name equals the package
name of a class. Simply take an object of that class and call

Preferences node =
Preferences.userNodeForPackage(obj.getClass());

or

Preferences node =
Preferences.systemNodeForPackage(obj.getClass());

Typically, obj will be the this reference.

Once you have a node, you can access the key/value table with methods

String get(String key, String defval)
int getInt(String key, int defval)
long getLong(String key, long defval)
float getFloat(String key, float defval)
double getDouble(String key, double defval)

boolean getBoolean(String key, boolean defval)
byte[] getByteArray(String key, byte[] defval)

Note that you must specify a default value when reading the information, in
case the repository data is not available. Defaults are required for several
reasons. The data might be missing because the user never specified a
preference. Certain resource-constrained platforms might not have a
repository, and mobile devices might be temporarily disconnected from the
repository.

Conversely, you can write data to the repository with put methods such as

put(String key, String value)
putInt(String key, int value)

and so on.

You can enumerate all keys stored in a node with the method

String[] keys()

There is currently no way to find out the type of the value of a particular key.

 NOTE:
Node names and keys are limited to 80 characters, and string values to 8192
characters.

Central repositories such as the Windows registry traditionally suffer from
two problems:

• They turn into a “dumping ground” filled with obsolete information.
• Configuration data gets entangled into the repository, making it difficult to

move preferences to a new platform.

The Preferences class has a solution for the second problem. You can export
the preferences of a subtree (or, less commonly, a single node) by calling the
methods

void exportSubtree(OutputStream out)
void exportNode(OutputStream out)

The data are saved in XML format. You can import them into another
repository by calling

void importPreferences(InputStream in)

Here is a sample file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE preferences SYSTEM
"http://java.sun.com/dtd/preferences.dtd">
<preferences EXTERNAL_XML_VERSION="1.0">
 <root type="user">
 <map/>
 <node name="com">
 <map/>
 <node name="horstmann">
 <map/>
 <node name="corejava">
 <map>
 <entry key="height" value="200.0"/>
 <entry key="left" value="1027.0"/>
 <entry key="filename"
value="/home/cay/books/cj11/code/v1ch11/raven.html"/>
 <entry key="top" value="380.0"/>
 <entry key="width" value="300.0"/>
 </map>
 </node>
 </node>
 </node>

 </root>
</preferences>

If your program uses preferences, you should give your users the opportunity
of exporting and importing them, so they can easily migrate their settings
from one computer to another. The program in Listing 10.7 demonstrates
this technique. The program simply saves the window location and the last
loaded filename. Try resizing the window, then export your preferences,
move the window, exit, and restart the application. The window will be just
like you left it when you exited. Import your preferences, and the window
reverts to its prior location.

Listing 10.7 preferences/ImageViewer.java

 1 package preferences;
 2
 3 import java.awt.EventQueue;
 4 import java.awt.event.*;
 5 import java.io.*;
 6 import java.util.prefs.*;
 7 import javax.swing.*;
 8
 9 /**
10 * A program to test preference settings. The program
remembers the
11 * frame position, size, and last selected file.
12 * @version 1.10 2018-04-10
13 * @author Cay Horstmann
14 */
15 public class ImageViewer
16 {
17 public static void main(String[] args)
18 {
19 EventQueue.invokeLater(() ->
20 {
21 var frame = new ImageViewerFrame();
22 frame.setTitle("ImageViewer");
23 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOS

E);
24 frame.setVisible(true);
25 });
26 }
27 }
28
29 /**
30 * An image viewer that restores position, size, and image
from user
31 * preferences and updates the preferences upon exit.
32 */
33 class ImageViewerFrame extends JFrame
34 {
35 private static final int DEFAULT_WIDTH = 300;
36 private static final int DEFAULT_HEIGHT = 200;
37 private String image;
38
39 public ImageViewerFrame()
40 {
41 Preferences root = Preferences.userRoot();
42 Preferences node =
root.node("/com/horstmann/corejava/ImageViewer");
43 // get position, size, title from properties
44 int left = node.getInt("left", 0);
45 int top = node.getInt("top", 0);
46 int width = node.getInt("width", DEFAULT_WIDTH);
47 int height = node.getInt("height", DEFAULT_HEIGHT);
48 setBounds(left, top, width, height);
49 image = node.get("image", null);
50 var label = new JLabel();
51 if (image != null) label.setIcon(new ImageIcon(image));
52
53 addWindowListener(new WindowAdapter()
54 {
55 public void windowClosing(WindowEvent event)
56 {
57 node.putInt("left", getX());
58 node.putInt("top", getY());
59 node.putInt("width", getWidth());

60 node.putInt("height", getHeight());
61 if (image != null) node.put("image", image);
62 }
63 });
64
65 // use a label to display the images
66 add(label);
67
68 // set up the file chooser
69 var chooser = new JFileChooser();
70 chooser.setCurrentDirectory(new File("."));
71
72 // set up the menu bar
73 var menuBar = new JMenuBar();
74 setJMenuBar(menuBar);
75
76 var menu = new JMenu("File");
77 menuBar.add(menu);
78
79 var openItem = new JMenuItem("Open");
80 menu.add(openItem);
81 openItem.addActionListener(event ->
82 {
83 // show file chooser dialog
84 int result = chooser.showOpenDialog(null);
85
86 // if file selected, set it as icon of the label
87 if (result == JFileChooser.APPROVE_OPTION)
88 {
89 image = chooser.getSelectedFile().getPath();
90 label.setIcon(new ImageIcon(image));
91 }
92 });
93
94 var exitItem = new JMenuItem("Exit");
95 menu.add(exitItem);
96 exitItem.addActionListener(event -> System.exit(0));
97 }
98 }

java.util.prefs.Preferences 1.4

• Preferences userRoot()
returns the root preferences node of the user of the calling program.

• Preferences systemRoot()
returns the systemwide root preferences node.

• Preferences node(String path)
returns a node that can be reached from the current node by the given
path. If path is absolute (that is, starts with a /), then the node is
located starting from the root of the tree containing this preference
node. If there isn’t a node with the given path, it is created.

• Preferences userNodeForPackage(Class cl)
• Preferences systemNodeForPackage(Class cl)

returns a node in the current user’s tree or the system tree whose
absolute node path corresponds to the package name of the class cl.

• String[] keys()
returns all keys belonging to this node.

• String get(String key, String defval)
• int getInt(String key, int defval)
• long getLong(String key, long defval)
• float getFloat(String key, float defval)
• double getDouble(String key, double defval)
• boolean getBoolean(String key, boolean defval)
• byte[] getByteArray(String key, byte[] defval)

returns the value associated with the given key or the supplied
default value if no value is associated with the key, the associated
value is not of the correct type, or the preferences store is
unavailable.

• void put(String key, String value)
• void putInt(String key, int value)
• void putLong(String key, long value)
• void putFloat(String key, float value)
• void putDouble(String key, double value)
• void putBoolean(String key, boolean value)
• void putByteArray(String key, byte[] value)

stores a key/value pair with this node.
• void exportSubtree(OutputStream out)

writes the preferences of this node and its children to the specified
stream.

• void exportNode(OutputStream out)
writes the preferences of this node (but not its children) to the
specified stream.

• void importPreferences(InputStream in)
imports the preferences contained in the specified stream.

This concludes our introduction into graphical user interface programming.
The next chapter shows you how to work with the most common Swing
components.

Chapter. 11 User Interface Components with
Swing

In this chapter

• 11.1 Swing and the Model-View-Controller Design Pattern
• 11.2 Introduction to Layout Management
• 11.3 Text Input
• 11.4 Choice Components
• 11.5 Menus
• 11.6 Sophisticated Layout Management
• 11.7 Dialog Boxes

The previous chapter was written primarily to show you how to use the
event model in Java. In the process, you took the first steps toward learning
how to build a graphical user interface. This chapter shows you the most
important tools you’ll need to build more full-featured GUIs.

We start out with a tour of the architectural underpinnings of Swing.
Knowing what goes on “under the hood” is important in understanding how
to use some of the more advanced components effectively. I then show you
the most common user interface components in Swing, such as text fields,
radio buttons, and menus. Next, you will learn how to use layout managers
to arrange these components. Finally, you’ll see how to implement dialog
boxes in Swing.

This chapter covers the basic Swing components such as text components,
buttons, and sliders. These are the essential user interface components that
you will need most frequently. We will cover advanced Swing components
in Volume II.

11.1 Swing and the Model-View-Controller Design Pattern

Let’s step back for a minute and think about the pieces that make up a user
interface component such as a button, a checkbox, a text field, or a
sophisticated tree control. Every component has three characteristics:

• Its content, such as the state of a button (pushed in or not), or the text in a
text field

• Its visual appearance (color, size, and so on)
• Its behavior (reaction to events)

Even a seemingly simple component such as a button exhibits some
moderately complex interaction among these characteristics. Obviously, the
visual appearance of a button depends on the look-and-feel. A Metal button
looks different from a Windows button or a Motif button. In addition, the
appearance depends on the button state; when a button is pushed in, it needs
to be redrawn to look different. The state depends on the events that the
button receives. When the user depresses the mouse inside the button, the
button is pushed in.

Of course, when you use a button in your programs, you simply consider it
as a button; you don’t think too much about the inner workings and
characteristics. That, after all, is the job of the programmer who
implemented the button. However, programmers who implement buttons and
all other user interface components are motivated to think a little harder
about them, so that they work well no matter what look-and-feel is in effect.

To do this, the Swing designers turned to a well-known design pattern: the
model-view-controller (MVC) pattern. This design pattern tells us to provide
three separate objects:

• The model, which stores the content
• The view, which displays the content
• The controller, which handles user input

The pattern specifies precisely how these three objects interact. The model
stores the content and has no user interface. For a button, the content is
pretty trivial—just a small set of flags that tells whether the button is
currently pushed in or out, whether it is active or inactive, and so on. For a
text field, the content is a bit more interesting. It is a string object that holds
the current text. This is not the same as the view of the content—if the
content is larger than the text field, the user sees only a portion of the text
displayed (see Figure 11.1).

Figure 11.1 Model and view of a text field

The model must implement methods to change the content and to discover
what the content is. For example, a text model has methods to add or remove
characters in the current text and to return the current text as a string. Again,
keep in mind that the model is completely nonvisual. It is the job of a view
to draw the data stored in the model.

 NOTE:
The term “model” is perhaps unfortunate because we often think of a model
as a representation of an abstract concept. Car and airplane designers build
models to simulate real cars and planes. But that analogy really leads you
astray when thinking about the model-view-controller pattern. In this design
pattern, the model stores the complete content, and the view gives a
(complete or incomplete) visual representation of the content. A better
analogy might be the model who poses for an artist. It is up to the artist to
look at the model and create a view. Depending on the artist, that view
might be a formal portrait, an impressionist painting, or a cubist drawing
with strangely contorted limbs.

One of the advantages of the model-view-controller pattern is that a model
can have multiple views, each showing a different part or aspect of the full
content. For example, an HTML editor can offer two simultaneous views of
the same content: a WYSIWYG view and a “raw tag” view (see Figure
11.2). When the model is updated through the controller of one of the views,
it tells both attached views about the change. When the views are notified,
they refresh themselves automatically. Of course, for a simple user interface
component such as a button, you won’t have multiple views of the same
model.

Figure 11.2 Two separate views of the same model

The controller handles the user-input events, such as mouse clicks and
keystrokes. It then decides whether to translate these events into changes in
the model or the view. For example, if the user presses a character key in a

text box, the controller calls the “insert character” command of the model.
The model then tells the view to update itself. The view never knows why
the text changed. But if the user presses a cursor key, the controller may tell
the view to scroll. Scrolling the view has no effect on the underlying text, so
the model never knows that this event happened.

Figure 11.3 shows the interactions among model, view, and controller
objects.

For most Swing components, the model class implements an interface whose
name ends in Model; in this case, the interface is called ButtonModel. Classes
implementing that interface can define the state of the various kinds of
buttons. Actually, buttons aren’t all that complicated, and the Swing library
contains a single class, called DefaultButtonModel, that implements this
interface.

You can get a sense of the sort of data maintained by a button model by
looking at the properties of the ButtonModel interface—see Table 11.1.

Figure 11.3 Interactions among model, view, and controller objects

Table 11.1 Properties of the ButtonModel Interface

Each JButton object stores a button model object which you can retrieve.

var button = new JButton("Blue");
ButtonModel model = button.getModel();

In practice, you won’t care—the minutiae of the button state are only of
interest to the view that draws it. All the important information—such as
whether a button is enabled—is available from the JButton class. (Of course,
the JButton then asks its model to retrieve that information.)

Have another look at the ButtonModel interface to see what isn’t there. The
model does not store the button label or icon. There is no way to find out
what’s on the face of a button just by looking at its model. (Actually, as you
will see in Section 11.4.2, “Radio Buttons,” on p. 670, this purity of design
is the source of some grief for the programmer.)

It is also worth noting that the same model (namely, DefaultButtonModel) is
used for push buttons, radio buttons, checkboxes, and even menu items. Of
course, each of these button types has different views and controllers. When
using the Metal look-and-feel, the JButton uses a class called BasicButtonUI

for the view and a class called ButtonUIListener as controller. In general,
each Swing component has an associated view object that ends in UI. But not
all Swing components have dedicated controller objects.

So, having read this short introduction to what is going on under the hood in
a JButton, you may be wondering: Just what is a JButton really? It is simply
a wrapper class inheriting from JComponent that holds the
DefaultButtonModel object, some view data (such as the button label and
icons), and a BasicButtonUI object that is responsible for the button view.

11.2 Introduction to Layout Management

Before we go on to discussing individual Swing components, such as text
fields and radio buttons, let’s briefly cover how to arrange these components
inside a frame.

Of course, Java development environments have drag-and-drop GUI
builders. Nevertheless, it is important to know exactly what goes on “under
the hood” because even the best of these tools will usually require hand-
tweaking.

11.2.1 Layout Managers

Let’s start by reviewing the program from Listing 10.4 that used buttons to
change the background color of a frame.

The buttons are contained in a JPanel object and are managed by the flow
layout manager, the default layout manager for a panel. Figure 11.4 shows
what happens when you add more buttons to the panel. As you can see, a
new row is started when there is no more room.

Figure 11.4 A panel with six buttons managed by a flow layout

Moreover, the buttons stay centered in the panel, even when the user resizes
the frame (see Figure 11.5).

Figure 11.5 Changing the panel size rearranges the buttons automatically.

In general, components are placed inside containers, and a layout manager
determines the positions and sizes of components in a container.

Buttons, text fields, and other user interface elements extend the class
Component. Components can be placed inside containers, such as panels.
Containers can themselves be put inside other containers, so the class

Container extends Component. Figure 11.6 shows the inheritance hierarchy
for Component.

Figure 11.6 Inheritance hierarchy for the Component class

 NOTE:
Unfortunately, the inheritance hierarchy is somewhat unclean in two
respects. First, top-level windows, such as JFrame, are subclasses of
Container and hence Component, but they cannot be placed inside other
containers. Moreover, JComponent is a subclass of Container, not Component.

Therefore one can add other components into a JButton. (However, those
components would not be displayed.)

Each container has a default layout manager, but you can always set your
own. For example, the statement

panel.setLayout(new GridLayout(4, 4));

uses the GridLayout class to lay out the components in four rows and four
columns. When you add components to the container, the add method of the
container passes the component and any placement directions to the layout
manager.

java.awt.Container 1.0

• void setLayout(LayoutManager m)
sets the layout manager for this container.

• Component add(Component c)
• Component add(Component c, Object constraints) 1.1

adds a component to this container and returns the component
reference.

java.awt.FlowLayout 1.0

• FlowLayout()
• FlowLayout(int align)
• FlowLayout(int align, int hgap, int vgap)

constructs a new FlowLayout. The align parameter is one of LEFT,
CENTER, or RIGHT.

11.2.2 Border Layout

The border layout manager is the default layout manager of the content pane
of every JFrame. Unlike the flow layout manager, which completely controls
the position of each component, the border layout manager lets you choose
where you want to place each component. You can choose to place the
component in the center, north, south, east, or west of the content pane (see
Figure 11.7).

Figure 11.7 Border layout

For example:

frame.add(component, BorderLayout.SOUTH);

The edge components are laid out first, and the remaining available space is
occupied by the center. When the container is resized, the dimensions of the
edge components are unchanged, but the center component changes its size.
Add components by specifying a constant CENTER, NORTH, SOUTH, EAST, or WEST
of the BorderLayout class. Not all of the positions need to be occupied. If
you don’t supply any value, CENTER is assumed.

 NOTE:
The BorderLayout constants are defined as strings. For example,
BorderLayout.SOUTH is defined as the string "South". This is safer than using
strings. If you accidentally misspell a string, for example,
frame.add(component, "south"), the compiler won’t catch that error.

Unlike the flow layout, the border layout grows all components to fill the
available space. (The flow layout leaves each component at its preferred
size.) This is a problem when you add a button:

frame.add(yellowButton, BorderLayout.SOUTH); // don't

Figure 11.8 shows what happens when you use the preceding code fragment.
The button has grown to fill the entire southern region of the frame. And, if
you were to add another button to the southern region, it would just displace
the first button.

Figure 11.8 A single button managed by a border layout

To solve this problem, use additional panels. For example, look at Figure
11.9. The three buttons at the bottom of the screen are all contained in a
panel. The panel is put into the southern region of the content pane.

Figure 11.9 Panel placed at the southern region of the frame

To achieve this configuration, first create a new JPanel object, then add the
individual buttons to the panel. The default layout manager for a panel is a
FlowLayout, which is a good choice for this situation. Add the individual
buttons to the panel, using the add method you have seen before. The
position and size of the buttons is under the control of the FlowLayout
manager. This means the buttons stay centered within the panel and do not
expand to fill the entire panel area. Finally, add the panel to the content pane
of the frame.

var panel = new JPanel();
panel.add(yellowButton);
panel.add(blueButton);
panel.add(redButton);
frame.add(panel, BorderLayout.SOUTH);

The border layout expands the size of the panel to fill the entire southern
region.

java.awt.BorderLayout 1.0

• BorderLayout()

• BorderLayout(int hgap, int vgap)
constructs a new BorderLayout.

11.2.3 Grid Layout

The grid layout arranges all components in rows and columns like a
spreadsheet. All components are given the same size. The calculator
program in Figure 11.10 uses a grid layout to arrange the calculator buttons.
When you resize the window, the buttons grow and shrink, but all buttons
have identical sizes.

Figure 11.10 A calculator

In the constructor of the grid layout object, you specify how many rows and
columns you need.

panel.setLayout(new GridLayout(4, 4));

Add the components, starting with the first entry in the first row, then the
second entry in the first row, and so on.

panel.add(new JButton("1"));
panel.add(new JButton("2"));

Of course, few applications have as rigid a layout as the face of a calculator.
In practice, small grids (usually with just one row or one column) can be
useful to organize partial areas of a window. For example, if you want to
have a row of buttons of identical sizes, you can put the buttons inside a
panel that is governed by a grid layout with a single row.

java.awt.GridLayout 1.0

• GridLayout(int rows, int columns)
• GridLayout(int rows, int columns, int hgap, int vgap)

constructs a new GridLayout. One of rows and columns (but not both)
may be zero, denoting an arbitrary number of components per row or
column.

11.3 Text Input

We are finally ready to start introducing the Swing user interface
components. Let’s begin with the components that let a user input and edit
text. You can use the JTextField and JTextArea components for text input. A
text field can accept only one line of text; a text area can accept multiple
lines of text. A JPasswordField accepts one line of text without showing the
contents.

All three of these classes inherit from a class called JTextComponent. You
will not be able to construct a JTextComponent yourself because it is an
abstract class. On the other hand, as is so often the case in Java, when you go
searching through the API documentation, you may find that the methods
you are looking for are actually in the parent class JTextComponent rather
than the derived class. For example, the methods that get or set the text in a
text field or text area are actually in JTextComponent.

javax.swing.text.JTextComponent 1.2

• String getText()
• void setText(String text)

gets or sets the text of this text component.
• boolean isEditable()
• void setEditable(boolean b)

gets or sets the editable property that determines whether the user
can edit the content of this text component.

11.3.1 Text Fields

The usual way to add a text field to a window is to add it to a panel or other
container—just as you would add a button:

var panel = new JPanel();
var textField = new JTextField("Default input", 20);
panel.add(textField);

This code adds a text field and initializes it by placing the string "Default
input" inside it. The second parameter of this constructor sets the width. In
this case, the width is 20 “columns.” Unfortunately, a column is a rather
imprecise measurement. One column is the expected width of one character
in the font you are using for the text. The idea is that if you expect the inputs
to be n characters or less, you are supposed to specify n as the column width.
In practice, this measurement doesn’t work out too well, and you should add
1 or 2 to the maximum input length to be on the safe side. Also, keep in
mind that the number of columns is only a hint to the AWT that gives the
preferred size. If the layout manager needs to grow or shrink the text field, it
can adjust its size. The column width that you set in the JTextField
constructor is not an upper limit on the number of characters the user can
enter. The user can still type in longer strings, but the input scrolls when the
text exceeds the length of the field. Users tend to find scrolling text fields
irritating, so you should size the fields generously. If you need to reset the
number of columns at runtime, you can do that with the setColumns method.

 TIP:
After changing the size of a text box with the setColumns method, call the
revalidate method of the surrounding container.

textField.setColumns(10);
panel.revalidate();

The revalidate method recomputes the size and layout of all components in
a container. After you use the revalidate method, the layout manager
resizes the container, and the changed size of the text field will be visible.

The revalidate method belongs to the JComponent class. It doesn’t
immediately resize the component but merely marks it for resizing. This
approach avoids repetitive calculations if multiple components request to be
resized. However, if you want to recompute all components inside a JFrame,
you have to call the validate method—JFrame doesn’t extend JComponent.

In general, users add text (or edit an existing text) in a text field. Quite often
these text fields start out blank. To make a blank text field, just leave out the
string as a parameter for the JTextField constructor:

var textField = new JTextField(20);

You can change the content of the text field at any time by using the setText
method from the JTextComponent parent class mentioned in the previous
section. For example:

textField.setText("Hello!");

And, as was mentioned in the previous section, you can find out what the
user typed by calling the getText method. This method returns the exact text
that the user has typed. To trim any extraneous leading and trailing spaces
from the data in a text field, apply the trim method to the return value of
getText:

String text = textField.getText().strip();

To change the font in which the user text appears, use the setFont method.

javax.swing.JTextField 1.2

• JTextField(int cols)
constructs an empty JTextField with the specified number of
columns.

• JTextField(String text, int cols)
constructs a new JTextField with an initial string and the specified
number of columns.

• int getColumns()
• void setColumns(int cols)

gets or sets the number of columns that this text field should use.

javax.swing.JComponent 1.2

• void revalidate()
causes the position and size of a component to be recomputed.

• void setFont(Font f)
sets the font of this component.

java.awt.Component 1.0

• void validate()

recomputes the position and size of a component. If the component is
a container, the positions and sizes of its components are
recomputed.

• Font getFont()
gets the font of this component.

11.3.2 Labels and Labeling Components

Labels are components that hold text. They have no decorations (for
example, no boundaries). They also do not react to user input. You can use a
label to identify components. For example, unlike buttons, text fields have
no label to identify them. To label a component that does not itself come
with an identifier:

1. Construct a JLabel component with the correct text.
2. Place it close enough to the component you want to identify so that the

user can see that the label identifies the correct component.

The constructor for a JLabel lets you specify the initial text or icon and,
optionally, the alignment of the content. Use constants from the
SwingConstants interface to specify alignment. That interface defines a
number of useful constants such as LEFT, RIGHT, CENTER, NORTH, EAST, and so
on. The JLabel class is one of several Swing classes that implement this
interface. Therefore, you can specify a right-aligned label either as

var label = new JLabel("User name: ", SwingConstants.RIGHT);

or

var label = new JLabel("User name: ", JLabel.RIGHT);

The setText and setIcon methods let you set the text and icon of the label at
runtime.

 TIP:
You can use both plain and HTML text in buttons, labels, and menu items. I
don’t recommend HTML in buttons—it interferes with the look-and-feel.
But HTML in labels can be very effective. Simply surround the label string
with <html>. . .</html>, like this:

label = new JLabel("<html>Required entry:</html>");

Note that the first component with an HTML label may take some time to be
displayed because the rather complex HTML rendering code must be
loaded.

Labels can be positioned inside a container like any other component. This
means you can use the techniques you have seen before to place your labels
where you need them.

javax.swing.JLabel 1.2

• JLabel(String text)
• JLabel(Icon icon)
• JLabel(String text, int align)
• JLabel(String text, Icon icon, int align)

constructs a label. The align parameter is one of the SwingConstants
constants LEFT (default), CENTER, or RIGHT.

• String getText()
• void setText(String text)

gets or sets the text of this label.
• Icon getIcon()
• void setIcon(Icon icon)

gets or sets the icon of this label.

11.3.3 Password Fields

Password fields are a special kind of text fields. To prevent nosy bystanders
from seeing your password, the characters that the user enters are not
actually displayed. Instead, each typed character is represented by an echo
character, such as a bullet (•). Swing supplies a JPasswordField class that
implements such a text field.

The password field is another example of the power of the model-view-
controller architecture pattern. The password field uses the same model to
store the data as a regular text field, but its view has been changed to display
all characters as echo characters.

javax.swing.JPasswordField 1.2

• JPasswordField(String text, int columns)
constructs a new password field.

• void setEchoChar(char echo)
sets the echo character for this password field. This is advisory; a
particular look-and-feel may insist on its own choice of echo
character. A value of 0 resets the echo character to the default.

• char[] getPassword()
returns the text contained in this password field. For stronger
security, you should overwrite the content of the returned array after
use. (The password is not returned as a String because a string
would stay in the virtual machine until it is garbage-collected.)

11.3.4 Text Areas

Sometimes, you need to collect user input that is more than one line long. As
mentioned earlier, you can use the JTextArea component for this. When you
place a text area component in your program, a user can enter any number of
lines of text, using the Enter key to separate them. Each line ends with a
'\n'. Figure 11.11 shows a text area at work.

In the constructor for the JTextArea component, specify the number of rows
and columns for the text area. For example,

textArea = new JTextArea(8, 40); // 8 lines of 40 columns each

where the columns parameter works as before—and you still need to add a
few more columns for safety’s sake. Also, as before, the user is not restricted
to the number of rows and columns; the text simply scrolls when the user
inputs too much. You can also use the setColumns method to change the
number of columns and the setRows method to change the number of rows.
These numbers only indicate the preferred size—the layout manager can still
grow or shrink the text area.

Figure 11.11 Text components

If there is more text than the text area can display, the remaining text is
simply clipped. You can avoid clipping long lines by turning on line
wrapping:

textArea.setLineWrap(true); // long lines are wrapped

This wrapping is a visual effect only; the text in the document is not changed
—no automatic '\n' characters are inserted into the text.

11.3.5 Scroll Panes

In Swing, a text area does not have scrollbars. If you want scrollbars, you
have to place the text area inside a scroll pane.

textArea = new JTextArea(8, 40);
var scrollPane = new JScrollPane(textArea);

The scroll pane now manages the view of the text area. Scrollbars
automatically appear if there is more text than the text area can display, and
they vanish again if text is deleted and the remaining text fits inside the area.
The scrolling is handled internally by the scroll pane—your program does
not need to process scroll events.

This is a general mechanism that works for any component, not just text
areas. To add scrollbars to a component, put them inside a scroll pane.

Listing 11.1 demonstrates the various text components. This program shows
a text field, a password field, and a text area with scrollbars. The text field
and password field are labeled. Click on “Insert” to insert the field contents
into the text area.

 NOTE:
The JTextArea component displays plain text only, without special fonts or
formatting. To display formatted text (such as HTML), you can use the

JEditorPane class that is discussed in Volume II.

Listing 11.1 text/TextComponentFrame.java

 1 package text;
 2
 3 import java.awt.BorderLayout;
 4 import java.awt.GridLayout;
 5
 6 import javax.swing.JButton;
 7 import javax.swing.JFrame;
 8 import javax.swing.JLabel;
 9 import javax.swing.JPanel;
10 import javax.swing.JPasswordField;
11 import javax.swing.JScrollPane;
12 import javax.swing.JTextArea;
13 import javax.swing.JTextField;
14 import javax.swing.SwingConstants;
15
16 /**
17 * A frame with sample text components.
18 */
19 public class TextComponentFrame extends JFrame
20 {
21 public static final int TEXTAREA_ROWS = 8;
22 public static final int TEXTAREA_COLUMNS = 20;
23
24 public TextComponentFrame()
25 {
26 var textField = new JTextField();
27 var passwordField = new JPasswordField();
28
29 var northPanel = new JPanel();
30 northPanel.setLayout(new GridLayout(2, 2));
31 northPanel.add(new JLabel("User name: ",
SwingConstants.RIGHT));
32 northPanel.add(textField);

33 northPanel.add(new JLabel("Password: ",
SwingConstants.RIGHT));
34 northPanel.add(passwordField);
35
36 add(northPanel, BorderLayout.NORTH);
37
38 var textArea = new JTextArea(TEXTAREA_ROWS,
TEXTAREA_COLUMNS);
39 var scrollPane = new JScrollPane(textArea);
40
41 add(scrollPane, BorderLayout.CENTER);
42
43 // add button to append text into the text area
44
45 var southPanel = new JPanel();
46
47 var insertButton = new JButton("Insert");
48 southPanel.add(insertButton);
49 insertButton.addActionListener(event ->
50 textArea.append("User name: " + textField.getText() + "
Password: "
51 + new String(passwordField.getPassword()) + "\n"));
52
53 add(southPanel, BorderLayout.SOUTH);
54 pack();
55 }
56 }

javax.swing.JTextArea 1.2

• JTextArea()
• JTextArea(int rows, int cols)
• JTextArea(String text, int rows, int cols)

constructs a new text area.
• void setColumns(int cols)

tells the text area the preferred number of columns it should use.
• void setRows(int rows)

tells the text area the preferred number of rows it should use.
• void append(String newText)

appends the given text to the end of the text already in the text area.
• void setLineWrap(boolean wrap)

turns line wrapping on or off.
• void setWrapStyleWord(boolean word)

If word is true, long lines are wrapped at word boundaries. If it is
false, long lines are broken without taking word boundaries into
account.

• void setTabSize(int c)
sets tab stops every c columns. Note that the tabs aren’t converted to
spaces but cause alignment with the next tab stop.

javax.swing.JScrollPane 1.2

• JScrollPane(Component c)

creates a scroll pane that displays the content of the specified
component. Scrollbars are supplied when the component is larger than
the view.

11.4 Choice Components

You now know how to collect text input from users, but there are many
occasions where you would rather give users a finite set of choices than have
them enter the data in a text component. Using a set of buttons or a list of
items tells your users what choices they have. (It also saves you the trouble

of error checking.) In this section, you will learn how to program
checkboxes, radio buttons, lists of choices, and sliders.

11.4.1 Checkboxes

If you want to collect just a “yes” or “no” input, use a checkbox component.
Checkboxes automatically come with labels that identify them. The user can
check the box by clicking inside it and turn off the checkmark by clicking
inside the box again. Pressing the space bar when the focus is in the
checkbox also toggles the checkmark.

Figure 11.12 shows a simple program with two checkboxes, one for turning
the italic attribute of a font on or off, and the other for boldface. Note that
the second checkbox has focus, as indicated by the rectangle around the
label. Each time the user clicks one of the checkboxes, the screen is
refreshed, using the new font attributes.

Figure 11.12 Checkboxes

Checkboxes need a label next to them to identify their purpose. Give the
label text in the constructor:

bold = new JCheckBox("Bold");

Use the setSelected method to turn a checkbox on or off. For example:

bold.setSelected(true);

The isSelected method then retrieves the current state of each checkbox. It
is false if unchecked, true if checked.

When the user clicks on a checkbox, this triggers an action event. As always,
you attach an action listener to the checkbox. In our program, the two
checkboxes share the same action listener.

ActionListener listener = . . .;
bold.addActionListener(listener);
italic.addActionListener(listener);

The listener queries the state of the bold and italic checkboxes and sets the
font of the panel to plain, bold, italic, or both bold and italic.

ActionListener listener = event ->
 {
 int mode = 0;
 if (bold.isSelected()) mode += Font.BOLD;
 if (italic.isSelected()) mode += Font.ITALIC;
 label.setFont(new Font(Font.SERIF, mode, FONTSIZE));
 };

Listing 11.2 is the program listing for the checkbox example.

Listing 11.2 checkBox/CheckBoxFrame.java

 1 package checkBox;
 2
 3 import java.awt.*;
 4 import java.awt.event.*;
 5 import javax.swing.*;
 6
 7 /**
 8 * A frame with a sample text label and check boxes for

selecting font
 9 * attributes.
10 */
11 public class CheckBoxFrame extends JFrame
12 {
13 private JLabel label;
14 private JCheckBox bold;
15 private JCheckBox italic;
16 private static final int FONTSIZE = 24;
17
18 public CheckBoxFrame()
19 {
20 // add the sample text label
21
22 label = new JLabel("The quick brown fox jumps over the
lazy dog.");
23 label.setFont(new Font("Serif", Font.BOLD, FONTSIZE));
24 add(label, BorderLayout.CENTER);
25
26 // this listener sets the font attribute of
27 // the label to the check box state
28
29 ActionListener listener = event ->
30 {
31 int mode = 0;
32 if (bold.isSelected()) mode += Font.BOLD;
33 if (italic.isSelected()) mode += Font.ITALIC;
34 label.setFont(new Font("Serif", mode, FONTSIZE));
35 };
36
37 // add the check boxes
38 var buttonPanel = new JPanel();
39
40 bold = new JCheckBox("Bold");
41 bold.addActionListener(listener);
42 bold.setSelected(true);
43 buttonPanel.add(bold);
44
45 italic = new JCheckBox("Italic");

46 italic.addActionListener(listener);
47 buttonPanel.add(italic);
48
49 add(buttonPanel, BorderLayout.SOUTH);
50 pack();
51 }
52 }

javax.swing.JCheckBox 1.2

• JCheckBox(String label)
• JCheckBox(String label, Icon icon)

constructs a checkbox that is initially unselected.
• JCheckBox(String label, boolean state)

constructs a checkbox with the given label and initial state.
• boolean isSelected()
• void setSelected(boolean state)

gets or sets the selection state of the checkbox.

11.4.2 Radio Buttons

In the previous example, the user could check either, both, or neither of the
two checkboxes. In many cases, we want the user to check only one of
several boxes. When another box is checked, the previous box is
automatically unchecked. Such a group of boxes is often called a radio
button group because the buttons work like the station selector buttons on a
radio. When you push in one button, the previously depressed button pops
out. Figure 11.13 shows a typical example. We allow the user to select a font
size from among the choices—Small, Medium, Large, or Extra large—but,
of course, we will allow selecting only one size at a time.

Figure 11.13 A radio button group

Implementing radio button groups is easy in Swing. You construct one
object of type ButtonGroup for every group of buttons. Then, you add objects
of type JRadioButton to the button group. The button group object is
responsible for turning off the previously set button when a new button is
clicked.

var group = new ButtonGroup();

var smallButton = new JRadioButton("Small", false);
group.add(smallButton);

var mediumButton = new JRadioButton("Medium", true);
group.add(mediumButton);
. . .

The second argument of the constructor is true for the button that should be
checked initially and false for all others. Note that the button group controls
only the behavior of the buttons; if you want to group the buttons for layout
purposes, you also need to add them to a container such as a JPanel.

If you look again at Figures 11.12 and 11.13, you will note that the
appearance of the radio buttons is different from that of checkboxes.
Checkboxes are square and contain a checkmark when selected. Radio
buttons are round and contain a dot when selected.

The event notification mechanism for radio buttons is the same as for any
other buttons. When the user checks a radio button, the button generates an
action event. In our example program, we define an action listener that sets
the font size to a particular value:

ActionListener listener = event ->
 label.setFont(new Font("Serif", Font.PLAIN, size));

Compare this listener setup to that of the checkbox example. Each radio
button gets a different listener object. Each listener object knows exactly
what it needs to do—set the font size to a particular value. With checkboxes,
we used a different approach: Both checkboxes have the same action listener
that calls a method looking at the current state of both checkboxes.

Could we follow the same approach here? We could have a single listener
that computes the size as follows:

if (smallButton.isSelected()) size = 8;
else if (mediumButton.isSelected()) size = 12;
. . .

However, we prefer to use separate action listener objects because they tie
the size values more closely to the buttons.

 NOTE:
If you have a group of radio buttons, you know that only one of them is
selected. It would be nice to be able to quickly find out which, without
having to query all the buttons in the group. The ButtonGroup object
controls all buttons, so it would be convenient if this object could give us a
reference to the selected button. Indeed, the ButtonGroup class has a
getSelection method, but that method doesn’t return the radio button that is
selected. Instead, it returns a ButtonModel reference to the model attached to
the button. Unfortunately, none of the ButtonModel methods are very
helpful. The ButtonModel interface inherits a method getSelectedObjects

from the ItemSelectable interface that, rather uselessly, returns null. The
getActionCommand method looks promising because the “action command”
of a radio button is its text label. But the action command of its model is
null. Only if you explicitly set the action commands of all radio buttons
with the setActionCommand method do the action command values of the
models also get set. Then you can retrieve the action command of the
currently selected button with
buttonGroup.getSelection().getActionCommand().

Listing 11.3 is the complete program for font size selection that puts a set of
radio buttons to work.

Listing 11.3 radioButton/RadioButtonFrame.java

 1 package radioButton;
 2
 3 import java.awt.*;
 4 import java.awt.event.*;
 5 import javax.swing.*;
 6
 7 /**
 8 * A frame with a sample text label and radio buttons for
selecting font sizes.
 9 */
10 public class RadioButtonFrame extends JFrame
11 {
12 private JPanel buttonPanel;
13 private ButtonGroup group;
14 private JLabel label;
15 private static final int DEFAULT_SIZE = 36;
16
17 public RadioButtonFrame()
18 {
19 // add the sample text label
20
21 label = new JLabel("The quick brown fox jumps over the
lazy dog.");

22 label.setFont(new Font("Serif", Font.PLAIN,
DEFAULT_SIZE));
23 add(label, BorderLayout.CENTER);
24
25 // add the radio buttons
26
27 buttonPanel = new JPanel();
28 group = new ButtonGroup();
29
30 addRadioButton("Small", 8);
31 addRadioButton("Medium", 12);
32 addRadioButton("Large", 18);
33 addRadioButton("Extra large", 36);
34
35 add(buttonPanel, BorderLayout.SOUTH);
36 pack();
37 }
38
39 /**
40 * Adds a radio button that sets the font size of the sample
text.
41 * @param name the string to appear on the button
42 * @param size the font size that this button sets
43 */
44 public void addRadioButton(String name, int size)
45 {
46 boolean selected = size == DEFAULT_SIZE;
47 var button = new JRadioButton(name, selected);
48 group.add(button);
49 buttonPanel.add(button);
50
51 // this listener sets the label font size
52
53 ActionListener listener = event -> label.setFont(new
Font("Serif", Font.PLAIN, size));
54
55 button.addActionListener(listener);
56 }
57 }

javax.swing.JRadioButton 1.2

• JRadioButton(String label, Icon icon)
constructs a radio button that is initially unselected.

• JRadioButton(String label, boolean state)
constructs a radio button with the given label and initial state.

javax.swing.ButtonGroup 1.2

• void add(AbstractButton b)
adds the button to the group.

• ButtonModel getSelection()
returns the button model of the selected button.

javax.swing.ButtonModel 1.2

• String getActionCommand()
returns the action command for this button model.

javax.swing.AbstractButton 1.2

• void setActionCommand(String s)
sets the action command for this button and its model.

11.4.3 Borders

If you have multiple groups of radio buttons in a window, you will want to
visually indicate which buttons are grouped. Swing provides a set of useful
borders for this purpose. You can apply a border to any component that
extends JComponent. The most common usage is to place a border around a
panel and fill that panel with other user interface elements, such as radio
buttons.

You can choose from quite a few borders, but you need to follow the same
steps for all of them.

1. Call a static method of the BorderFactory to create a border. You can
choose among the following styles (see Figure 11.14):
• Lowered bevel
• Raised bevel
• Etched
• Line
• Matte
• Empty (just to create some blank space around the component)

Figure 11.14 Testing border types

2. If you like, add a title to your border by passing your border to
BorderFactory.createTitledBorder.

3. If you really want to go all out, combine several borders with a call to
BorderFactory.createCompoundBorder.

4. Add the resulting border to your component by calling the setBorder
method of the JComponent class.

For example, here is how you add an etched border with a title to a panel:

Border etched = BorderFactory.createEtchedBorder();
Border titled = BorderFactory.createTitledBorder(etched, "A
Title");
panel.setBorder(titled);

Different borders have different options for setting border widths and colors;
see the API notes for details. True border enthusiasts will appreciate that
there is also a SoftBevelBorder class for beveled borders with softened
corners and that a LineBorder can have rounded corners as well. You can
construct these borders only by using one of the class constructors—there is
no BorderFactory method for them.

javax.swing.BorderFactory 1.2

• static Border createLineBorder(Color color)
• static Border createLineBorder(Color color, int thickness)

creates a simple line border.
• static MatteBorder createMatteBorder(int top, int left, int
bottom, int right, Color color)

• static MatteBorder createMatteBorder(int top, int left, int
bottom, int right, Icon tileIcon)

creates a thick border that is filled with a color or a repeating icon.
• static Border createEmptyBorder()
• static Border createEmptyBorder(int top, int left, int

bottom, int right)

creates an empty border.
• static Border createEtchedBorder()
• static Border createEtchedBorder(Color highlight, Color

shadow)

• static Border createEtchedBorder(int type)
• static Border createEtchedBorder(int type, Color highlight,
Color shadow)

creates a line border with a 3D effect. The type parameter is one of
EtchedBorder.RAISED, EtchedBorder.LOWERED.

• static Border createBevelBorder(int type)
• static Border createBevelBorder(int type, Color highlight,

Color shadow)

• static Border createLoweredBevelBorder()
• static Border createRaisedBevelBorder()

creates a border that gives the effect of a lowered or raised surface.
The type parameter is one of BevelBorder.RAISED,
BevelBorder.LOWERED.

• static TitledBorder createTitledBorder(String title)
• static TitledBorder createTitledBorder(Border border)
• static TitledBorder createTitledBorder(Border border, String
title)

• static TitledBorder createTitledBorder(Border border, String
title, int justification, int position)

• static TitledBorder createTitledBorder(Border border, String
title, int justification, int position, Font font)

• static TitledBorder createTitledBorder(Border border, String
title, int justification, int position, Font font, Color

color)

creates a titled border with the specified properties. The
justification parameter is one of the TitledBorder constants LEFT,

CENTER, RIGHT, LEADING, TRAILING, or DEFAULT_JUSTIFICATION (left),
and position is one of ABOVE_TOP, TOP, BELOW_TOP, ABOVE_BOTTOM,
BOTTOM, BELOW_BOTTOM, or DEFAULT_POSITION (top).

• static CompoundBorder createCompoundBorder(Border

outsideBorder, Border insideBorder)

combines two borders to a new border.

javax.swing.border.SoftBevelBorder 1.2

• SoftBevelBorder(int type)
• SoftBevelBorder(int type, Color highlight, Color shadow)

creates a bevel border with softened corners. The type parameter is
one of SoftBevelBorder.RAISED, SoftBevelBorder.LOWERED.

javax.swing.border.LineBorder 1.2

• public LineBorder(Color color, int thickness, boolean

roundedCorners)

creates a line border with the given color and thickness. If
roundedCorners is true, the border has rounded corners.

javax.swing.JComponent 1.2

• void setBorder(Border border)
sets the border of this component.

11.4.4 Combo Boxes

If you have more than a handful of alternatives, radio buttons are not a good
choice because they take up too much screen space. Instead, you can use a
combo box. When the user clicks on this component, a list of choices drops
down, and the user can then select one of them (see Figure 11.15).

If the drop-down list box is set to be editable, you can edit the current
selection as if it were a text field. For that reason, this component is called a
combo box—it combines the flexibility of a text field with a set of predefined
choices. The JComboBox class provides a combo box component.

As of Java 7, the JComboBox class is a generic class. For example, a
JComboBox<String> holds objects of type String, and a JComboBox<Integer>
holds integers.

Call the setEditable method to make the combo box editable. Note that
editing affects only the selected item. It does not change the list of choices in
any way.

Figure 11.15 A combo box

You can obtain the current selection, which may have been edited if the
combo box is editable, by calling the getSelectedItem method. However, for

an editable combo box, that item may have any type, depending on the editor
that takes the user edits and turns the result into an object. (See Volume II,
Chapter 6 for a discussion of editors.) If your combo box isn’t editable, you
are better off calling

combo.getItemAt(combo.getSelectedIndex())

which gives you the selected item with the correct type.

In the example program, the user can choose a font style from a list of styles
(Serif, SansSerif, Monospaced, etc.). The user can also type in another font.

Add the choice items with the addItem method. In our program, addItem is
called only in the constructor, but you can call it any time.

var faceCombo = new JComboBox<String>();
faceCombo.addItem("Serif");
faceCombo.addItem("SansSerif");
. . .

This method adds the string to the end of the list. You can add new items
anywhere in the list with the insertItemAt method:

faceCombo.insertItemAt("Monospaced", 0); // add at the
beginning

You can add items of any type—the combo box invokes each item’s
toString method to display it.

If you need to remove items at runtime, use the removeItem or removeItemAt
method, depending on whether you supply the item to be removed or its
position.

faceCombo.removeItem("Monospaced");
faceCombo.removeItemAt(0); // remove first item

The removeAllItems method removes all items at once.

 TIP:
If you need to add a large number of items to a combo box, the addItem
method will perform poorly. Instead, construct a DefaultComboBoxModel,
populate it by calling addElement, and then call the setModel method of the
JComboBox class.

When the user selects an item from a combo box, the combo box generates
an action event. To find out which item was selected, call getSource on the
event parameter to get a reference to the combo box that sent the event. Then
call the getSelectedItem method to retrieve the currently selected item. You
will need to cast the returned value to the appropriate type, usually String.

ActionListener listener = event ->
 label.setFont(new Font(
 faceCombo.getItemAt(faceCombo.getSelectedIndex()),
 Font.PLAIN,
 DEFAULT_SIZE));

Listing 11.4 shows the complete program.

Listing 11.4 comboBox/ComboBoxFrame.java

 1 package comboBox;
 2
 3 import java.awt.BorderLayout;
 4 import java.awt.Font;
 5
 6 import javax.swing.JComboBox;
 7 import javax.swing.JFrame;
 8 import javax.swing.JLabel;
 9 import javax.swing.JPanel;
10

11 /**
12 * A frame with a sample text label and a combo box for
selecting font faces.
13 */
14 public class ComboBoxFrame extends JFrame
15 {
16 private JComboBox<String> faceCombo;
17 private JLabel label;
18 private static final int DEFAULT_SIZE = 24;
19
20 public ComboBoxFrame()
21 {
22 // add the sample text label
23
24 label = new JLabel("The quick brown fox jumps over the
lazy dog.");
25 label.setFont(new Font("Serif", Font.PLAIN,
DEFAULT_SIZE));
26 add(label, BorderLayout.CENTER);
27
28 // make a combo box and add face names
29
30 faceCombo = new JComboBox<>();
31 faceCombo.addItem("Serif");
32 faceCombo.addItem("SansSerif");
33 faceCombo.addItem("Monospaced");
34 faceCombo.addItem("Dialog");
35 faceCombo.addItem("DialogInput");
36
37 // the combo box listener changes the label font to the
selected face name
38
39 faceCombo.addActionListener(event ->
40 label.setFont(
41 new
Font(faceCombo.getItemAt(faceCombo.getSelectedIndex()),
42 Font.PLAIN, DEFAULT_SIZE)));
43
44 // add combo box to a panel at the frame's southern

border
45
46 var comboPanel = new JPanel();
47 comboPanel.add(faceCombo);
48 add(comboPanel, BorderLayout.SOUTH);
49 pack();
50 }
51 }

javax.swing.JComboBox 1.2

• boolean isEditable()
• void setEditable(boolean b)

gets or sets the editable property of this combo box.
• void addItem(Object item)

adds an item to the item list.
• void insertItemAt(Object item, int index)

inserts an item into the item list at a given index.
• void removeItem(Object item)

removes an item from the item list.
• void removeItemAt(int index)

removes the item at an index.
• void removeAllItems()

removes all items from the item list.
• Object getSelectedItem()

returns the currently selected item.

11.4.5 Sliders

Combo boxes let users choose from a discrete set of values. Sliders offer a
choice from a continuum of values—for example, any number between 1
and 100.

The most common way of constructing a slider is as follows:

var slider = new JSlider(min, max, initialValue);

If you omit the minimum, maximum, and initial values, they are initialized
with 0, 100, and 50, respectively.

Or if you want the slider to be vertical, use the following constructor call:

var slider = new JSlider(SwingConstants.VERTICAL, min, max,
initialValue);

These constructors create a plain slider, such as the top slider in Figure
11.16. You will see presently how to add decorations to a slider.

As the user slides the slider bar, the value of the slider moves between the
minimum and the maximum values. When the value changes, a ChangeEvent
is sent to all change listeners. To be notified of the change, call the
addChangeListener method and install an object that implements the
functional ChangeListener interface. In the callback, retrieve the slider
value:

ChangeListener listener = event ->
 {
 JSlider slider = (JSlider) event.getSource();
 int value = slider.getValue();
 . . .
 };

You can embellish the slider by showing ticks. For example, in the sample
program, the second slider uses the following settings:

Figure 11.16 Sliders

slider.setMajorTickSpacing(20);
slider.setMinorTickSpacing(5);

The slider is decorated with large tick marks every 20 units and small tick
marks every 5 units. The units refer to slider values, not pixels.

These instructions only set the units for the tick marks. To actually have the
tick marks appear, call

slider.setPaintTicks(true);

The major and minor tick marks are independent. For example, you can set
major tick marks every 20 units and minor tick marks every 7 units, but that

will give you a very messy scale.

You can force the slider to snap to ticks. Whenever the user has finished
dragging a slider in snap mode, it is immediately moved to the closest tick.
You activate this mode with the call

slider.setSnapToTicks(true);

 CAUTION:
The “snap to ticks” behavior doesn’t work as well as you might imagine.
Until the slider has actually snapped, the change listener still reports slider
values that don’t correspond to ticks. And if you click next to the slider—an
action that normally advances the slider a bit in the direction of the click—a
slider with “snap to ticks” does not move to the next tick.

You can display tick mark labels for the major tick marks by calling

slider.setPaintLabels(true);

For example, with a slider ranging from 0 to 100 and major tick spacing of
20, the ticks are labeled 0, 20, 40, 60, 80, and 100.

You can also supply other tick mark labels, such as strings or icons (see
Figure 11.16). The process is a bit convoluted. You need to fill a hash table
with keys of type Integer and values of type Component. You then call the
setLabelTable method. The components are placed under the tick marks.
Usually, JLabel objects are used. Here is how you can label ticks as A, B, C,
D, E, and F:

var labelTable = new Hashtable<Integer, Component>();
labelTable.put(0, new JLabel("A"));
labelTable.put(20, new JLabel("B"));
. . .

labelTable.put(100, new JLabel("F"));
slider.setLabelTable(labelTable);

Listing 11.5 also shows a slider with icons as tick labels.

 TIP:
If your tick marks or labels don’t show, double-check that you called
setPaintTicks(true) and setPaintLabels(true).

The fourth slider in Figure 11.16 has no track. To suppress the “track” in
which the slider moves, call

slider.setPaintTrack(false);

The fifth slider has its direction reversed by a call to

slider.setInverted(true);

The example program in Listing 11.5 shows all these visual effects with a
collection of sliders. Each slider has a change event listener installed that
places the current slider value into the text field at the bottom of the frame.

Listing 11.5 slider/SliderFrame.java

 1 package slider;
 2
 3 import java.awt.*;
 4 import java.util.*;
 5 import javax.swing.*;
 6 import javax.swing.event.*;
 7
 8 /**
 9 * A frame with many sliders and a text field to show slider

values.
10 */
11 public class SliderFrame extends JFrame
12 {
13 private JPanel sliderPanel;
14 private JTextField textField;
15 private ChangeListener listener;
16
17 public SliderFrame()
18 {
19 sliderPanel = new JPanel();
20 sliderPanel.setLayout(new GridBagLayout());
21
22 // common listener for all sliders
23 listener = event ->
24 {
25 // update text field when the slider value changes
26 JSlider source = (JSlider) event.getSource();
27 textField.setText("" + source.getValue());
28 };
29
30 // add a plain slider
31
32 var slider = new JSlider();
33 addSlider(slider, "Plain");
34
35 // add a slider with major and minor ticks
36
37 slider = new JSlider();
38 slider.setPaintTicks(true);
39 slider.setMajorTickSpacing(20);
40 slider.setMinorTickSpacing(5);
41 addSlider(slider, "Ticks");
42
43 // add a slider that snaps to ticks
44
45 slider = new JSlider();
46 slider.setPaintTicks(true);
47 slider.setSnapToTicks(true);

48 slider.setMajorTickSpacing(20);
49 slider.setMinorTickSpacing(5);
50 addSlider(slider, "Snap to ticks");
51
52 // add a slider with no track
53
54 slider = new JSlider();
55 slider.setPaintTicks(true);
56 slider.setMajorTickSpacing(20);
57 slider.setMinorTickSpacing(5);
58 slider.setPaintTrack(false);
59 addSlider(slider, "No track");
60
61 // add an inverted slider
62
63 slider = new JSlider();
64 slider.setPaintTicks(true);
65 slider.setMajorTickSpacing(20);
66 slider.setMinorTickSpacing(5);
67 slider.setInverted(true);
68 addSlider(slider, "Inverted");
69
70 // add a slider with numeric labels
71
72 slider = new JSlider();
73 slider.setPaintTicks(true);
74 slider.setPaintLabels(true);
75 slider.setMajorTickSpacing(20);
76 slider.setMinorTickSpacing(5);
77 addSlider(slider, "Labels");
78
79 // add a slider with alphabetic labels
80
81 slider = new JSlider();
82 slider.setPaintLabels(true);
83 slider.setPaintTicks(true);
84 slider.setMajorTickSpacing(20);
85 slider.setMinorTickSpacing(5);
86

87 var labelTable = new Hashtable<Integer, Component>();
88 labelTable.put(0, new JLabel("A"));
89 labelTable.put(20, new JLabel("B"));
90 labelTable.put(40, new JLabel("C"));
91 labelTable.put(60, new JLabel("D"));
92 labelTable.put(80, new JLabel("E"));
93 labelTable.put(100, new JLabel("F"));
94
95 slider.setLabelTable(labelTable);
96 addSlider(slider, "Custom labels");
97
98 // add a slider with icon labels
99
100 slider = new JSlider();
101 slider.setPaintTicks(true);
102 slider.setPaintLabels(true);
103 slider.setSnapToTicks(true);
104 slider.setMajorTickSpacing(20);
105 slider.setMinorTickSpacing(20);
106
107 labelTable = new Hashtable<Integer, Component>();
108
109 // add card images
110
111 labelTable.put(0, new JLabel(new
ImageIcon("nine.gif")));
112 labelTable.put(20, new JLabel(new
ImageIcon("ten.gif")));
113 labelTable.put(40, new JLabel(new
ImageIcon("jack.gif")));
114 labelTable.put(60, new JLabel(new
ImageIcon("queen.gif")));
115 labelTable.put(80, new JLabel(new
ImageIcon("king.gif")));
116 labelTable.put(100, new JLabel(new
ImageIcon("ace.gif")));
117
118 slider.setLabelTable(labelTable);
119 addSlider(slider, "Icon labels");

120
121 // add the text field that displays the slider value
122
123 textField = new JTextField();
124 add(sliderPanel, BorderLayout.CENTER);
125 add(textField, BorderLayout.SOUTH);
126 pack();
127 }
128
129 /**
130 * Adds a slider to the slider panel and hooks up the
listener
131 * @param slider the slider
132 * @param description the slider description
133 */
134 public void addSlider(JSlider slider, String description)
135 {
136 slider.addChangeListener(listener);
137 var panel = new JPanel();
138 panel.add(slider);
139 panel.add(new JLabel(description));
140 panel.setAlignmentX(Component.LEFT_ALIGNMENT);
141 var gbc = new GridBagConstraints();
142 gbc.gridy = sliderPanel.getComponentCount();
143 gbc.anchor = GridBagConstraints.WEST;
144 sliderPanel.add(panel, gbc);
145 }
146 }

javax.swing.JSlider 1.2

• JSlider()
• JSlider(int direction)
• JSlider(int min, int max)
• JSlider(int min, int max, int initialValue)

• JSlider(int direction, int min, int max, int initialValue)
constructs a horizontal slider with the given direction and minimum,
maximum, and initial values. The direction parameter is one of
SwingConstants.HORIZONTAL or SwingConstants.VERTICAL. The
default is horizontal. Defaults for the minimum, initial, and
maximum are 0, 50, and 100.

• void setPaintTicks(boolean b)
displays ticks if b is true.

• void setMajorTickSpacing(int units)
• void setMinorTickSpacing(int units)

sets major or minor ticks at multiples of the given slider units.
• void setPaintLabels(boolean b)

displays tick labels if b is true.
• void setLabelTable(Dictionary table)

sets the components to use for the tick labels. Each key/value pair in
the table has the form Integer.valueOf(value)/component.

• void setSnapToTicks(boolean b)
if b is true, then the slider snaps to the closest tick after each
adjustment.

• void setPaintTrack(boolean b)
if b is true, a track is displayed in which the slider runs.

11.5 Menus

This chapter started by introducing the most common components that you
might want to place into a window, such as various kinds of buttons, text
fields, and combo boxes. Swing also supports another type of user interface
element—pull-down menus that are familiar from GUI applications.

A menu bar at the top of a window contains the names of the pull-down
menus. Clicking on a name opens the menu containing menu items and

submenus. When the user clicks on a menu item, all menus are closed and a
message is sent to the program. Figure 11.17 shows a typical menu with a
submenu.

Figure 11.17 A menu with a submenu

11.5.1 Menu Building

Building menus is straightforward. First, create a menu bar:

var menuBar = new JMenuBar();

A menu bar is just a component that you can add anywhere you like.
Normally, you want it to appear at the top of a frame. You can add it there
with the setJMenuBar method:

frame.setJMenuBar(menuBar);

For each menu, you create a menu object:

var editMenu = new JMenu("Edit");

Add the top-level menus to the menu bar:

menuBar.add(editMenu);

Add menu items, separators, and submenus to the menu object:

var pasteItem = new JMenuItem("Paste");
editMenu.add(pasteItem);
editMenu.addSeparator();
JMenu optionsMenu = . . .; // a submenu
editMenu.add(optionsMenu);

You can see separators in Figure 11.17 below the Paste and Read-only menu
items.

When the user selects a menu item, an action event is triggered. You need to
install an action listener for each menu item:

ActionListener listener = . . .;
pasteItem.addActionListener(listener);

The method JMenu.add(String s) conveniently adds a menu item to the end
of a menu. For example:

editMenu.add("Paste");

The add method returns the created menu item, so you can capture it and add
the listener, as follows:

JMenuItem pasteItem = editMenu.add("Paste");
pasteItem.addActionListener(listener);

It often happens that menu items trigger commands that can also be activated
through other user interface elements such as toolbar buttons. In Section
10.4.5, “Actions,” on p. 623, you saw how to specify commands through
Action objects. You define a class that implements the Action interface,
usually by extending the AbstractAction convenience class, specify the

menu item label in the constructor of the AbstractAction object, and
override the actionPerformed method to hold the menu action handler. For
example:

var exitAction = new AbstractAction("Exit") // menu item text
goes here
 {
 public void actionPerformed(ActionEvent event)
 {
 // action code goes here
 System.exit(0);
 }
 };

You can then add the action to the menu:

JMenuItem exitItem = fileMenu.add(exitAction);

This command adds a menu item to the menu, using the action name. The
action object becomes its listener. This is just a convenient shortcut for

var exitItem = new JMenuItem(exitAction);
fileMenu.add(exitItem);

javax.swing.JMenu 1.2

• JMenu(String label)
constructs a menu with the given label.

• JMenuItem add(JMenuItem item)
adds a menu item (or a menu).

• JMenuItem add(String label)
adds a menu item with the given label to this menu and returns the
item.

• JMenuItem add(Action a)
adds a menu item with the given action to this menu and returns the
item.

• void addSeparator()
adds a separator line to the menu.

• JMenuItem insert(JMenuItem menu, int index)
adds a new menu item (or submenu) to the menu at a specific index.

• JMenuItem insert(Action a, int index)
adds a new menu item with the given action at a specific index.

• void insertSeparator(int index)
adds a separator to the menu.

• void remove(int index)
• void remove(JMenuItem item)

removes a specific item from the menu.

javax.swing.JMenuItem 1.2

• JMenuItem(String label)
constructs a menu item with a given label.

• JMenuItem(Action a) 1.3
constructs a menu item for the given action.

javax.swing.AbstractButton 1.2

• void setAction(Action a) 1.3
sets the action for this button or menu item.

javax.swing.JFrame 1.2

• void setJMenuBar(JMenuBar menubar)
sets the menu bar for this frame.

11.5.2 Icons in Menu Items

Menu items are very similar to buttons. In fact, the JMenuItem class extends
the AbstractButton class. Just like buttons, menus can have just a text label,
just an icon, or both. You can specify the icon with the JMenuItem(String,
Icon) or JMenuItem(Icon) constructor, or you can set it with the setIcon
method that the JMenuItem class inherits from the AbstractButton class. Here
is an example:

var cutItem = new JMenuItem("Cut", new ImageIcon("cut.gif"));

In Figure 11.17, you can see icons next to several menu items. By default,
the menu item text is placed to the right of the icon. If you prefer the text to
be placed on the left, call the setHorizontalTextPosition method that the
JMenuItem class inherits from the AbstractButton class. For example, the call

cutItem.setHorizontalTextPosition(SwingConstants.LEFT);

moves the menu item text to the left of the icon.

You can also add an icon to an action:

cutAction.putValue(Action.SMALL_ICON, new
ImageIcon("cut.gif"));

Whenever you construct a menu item out of an action, the Action.NAME value
becomes the text of the menu item and the Action.SMALL_ICON value
becomes the icon.

Alternatively, you can set the icon in the AbstractAction constructor:

cutAction = new
 AbstractAction("Cut", new ImageIcon("cut.gif"))
 {
 public void actionPerformed(ActionEvent event)
 {
 . . .
 }
 };

javax.swing.JMenuItem 1.2

• JMenuItem(String label, Icon icon)
constructs a menu item with the given label and icon.

javax.swing.AbstractButton 1.2

• void setHorizontalTextPosition(int pos)
sets the horizontal position of the text relative to the icon. The pos
parameter is SwingConstants.RIGHT (text is to the right of icon) or
SwingConstants.LEFT.

javax.swing.AbstractAction 1.2

• AbstractAction(String name, Icon smallIcon)

constructs an abstract action with the given name and icon.

11.5.3 Checkbox and Radio Button Menu Items

Checkbox and radio button menu items display a checkbox or radio button
next to the name (see Figure 11.17). When the user selects the menu item,
the item automatically toggles between checked and unchecked.

Apart from the button decoration, treat these menu items just as you would
any others. For example, here is how you create a checkbox menu item:

var readonlyItem = new JCheckBoxMenuItem("Read-only");
optionsMenu.add(readonlyItem);

The radio button menu items work just like regular radio buttons. You must
add them to a button group. When one of the buttons in a group is selected,
all others are automatically deselected.

var group = new ButtonGroup();
var insertItem = new JRadioButtonMenuItem("Insert");
insertItem.setSelected(true);
var overtypeItem = new JRadioButtonMenuItem("Overtype");
group.add(insertItem);
group.add(overtypeItem);
optionsMenu.add(insertItem);
optionsMenu.add(overtypeItem);

With these menu items, you don’t necessarily want to be notified when the
user selects the item. Instead, you can simply use the isSelected method to
test the current state of the menu item. (Of course, that means you should
keep a reference to the menu item stored in an instance field.) Use the
setSelected method to set the state.

javax.swing.JCheckBoxMenuItem 1.2

• JCheckBoxMenuItem(String label)
constructs the checkbox menu item with the given label.

• JCheckBoxMenuItem(String label, boolean state)
constructs the checkbox menu item with the given label and the
given initial state (true is checked).

javax.swing.JRadioButtonMenuItem 1.2

• JRadioButtonMenuItem(String label)
constructs the radio button menu item with the given label.

• JRadioButtonMenuItem(String label, boolean state)
constructs the radio button menu item with the given label and the
given initial state (true is checked).

javax.swing.AbstractButton 1.2

• boolean isSelected()
• void setSelected(boolean state)

gets or sets the selection state of this item (true is checked).

11.5.4 Pop-Up Menus

A pop-up menu is a menu that is not attached to a menu bar but floats
somewhere (see Figure 11.18).

Figure 11.18 A pop-up menu

Create a pop-up menu just as you create a regular menu, except that a pop-
up menu has no title.

var popup = new JPopupMenu();

Then, add your menu items as usual:

var item = new JMenuItem("Cut");
item.addActionListener(listener);
popup.add(item);

Unlike the regular menu bar that is always shown at the top of the frame,
you must explicitly display a pop-up menu by using the show method.
Specify the parent component and the location of the pop-up, using the
coordinate system of the parent. For example:

popup.show(panel, x, y);

Usually, you want to pop up a menu when the user clicks a particular mouse
button—the so-called pop-up trigger. In Windows and Linux, the pop-up
trigger is the nonprimary (usually, the right) mouse button. To pop up a

menu when the user clicks on a component, using the pop-up trigger, simply
call the method

component.setComponentPopupMenu(popup);

Very occasionally, you may place a component inside another component
that has a pop-up menu. The child component can inherit the parent
component’s pop-up menu by calling

child.setInheritsPopupMenu(true);

javax.swing.JPopupMenu 1.2

• void show(Component c, int x, int y)
shows the pop-up menu over the component c with the top left
corner at (x, y) (in the coordinate space of c).

• boolean isPopupTrigger(MouseEvent event) 1.3
returns true if the mouse event is the pop-up menu trigger.

java.awt.event.MouseEvent 1.1

• boolean isPopupTrigger()
returns true if this mouse event is the pop-up menu trigger.

javax.swing.JComponent 1.2

• JPopupMenu getComponentPopupMenu() 5
• void setComponentPopupMenu(JPopupMenu popup) 5

gets or sets the pop-up menu for this component.
• boolean getInheritsPopupMenu() 5
• void setInheritsPopupMenu(boolean b) 5

gets or sets the inheritsPopupMenu property. If the property is set and
this component’s pop-up menu is null, it uses its parent’s pop-up
menu.

11.5.5 Keyboard Mnemonics and Accelerators

It is a real convenience for the experienced user to select menu items by
keyboard mnemonics. You can create a keyboard mnemonic for a menu item
by specifying a mnemonic letter in the menu item constructor:

var aboutItem = new JMenuItem("About", 'A');

The keyboard mnemonic is displayed automatically in the menu, with the
mnemonic letter underlined (see Figure 11.19). For example, in the item
defined in the last example, the label will be displayed as “About” with an
underlined letter ‘A’. When the menu is displayed, the user just needs to
press the A key, and the menu item is selected. (If the mnemonic letter is not
part of the menu string, then typing it still selects the item, but the mnemonic
is not displayed in the menu. Naturally, such invisible mnemonics are of
dubious utility.)

Figure 11.19 Keyboard mnemonics

Sometimes, you don’t want to underline the first letter of the menu item that
matches the mnemonic. For example, if you have a mnemonic ‘A’ for the
menu item “Save As,” then it makes more sense to underline the second ‘A’
(Save As). You can specify which character you want to have underlined by
calling the setDisplayedMnemonicIndex method.

If you have an Action object, you can add the mnemonic as the value of the
Action.MNEMONIC_KEY key, as follows:

aboutAction.putValue(Action.MNEMONIC_KEY,
Integer.valueOf('A'));

You can supply a mnemonic letter only in the constructor of a menu item,
not in the constructor for a menu. To attach a mnemonic to a menu, call the
setMnemonic method:

var helpMenu = new JMenu("Help");
helpMenu.setMnemonic('H');

To select a top-level menu from the menu bar, press the Alt key together
with the mnemonic letter. For example, press Alt+H to select the Help menu
from the menu bar.

Keyboard mnemonics let you select a submenu or menu item from the
currently open menu. In contrast, accelerators are keyboard shortcuts that let
you select menu items without ever opening a menu. For example, many
programs attach the accelerators Ctrl+O and Ctrl+S to the Open and Save
items in the File menu. Use the setAccelerator method to attach an
accelerator key to a menu item. The setAccelerator method takes an object
of type Keystroke. For example, the following call attaches the accelerator
Ctrl+O to the openItem menu item:

openItem.setAccelerator(KeyStroke.getKeyStroke("ctrl O"));

Typing the accelerator key combination automatically selects the menu
option and fires an action event, as if the user had selected the menu option
manually.

You can attach accelerators only to menu items, not to menus. Accelerator
keys don’t actually open the menu. Instead, they directly fire the action event
associated with a menu.

Conceptually, adding an accelerator to a menu item is similar to the
technique of adding an accelerator to a Swing component. However, when
the accelerator is added to a menu item, the key combination is
automatically displayed in the menu (see Figure 11.20).

 NOTE:
Under Windows, Alt+F4 closes a window. But this is not an accelerator to
be programmed in Java. It is a shortcut defined by the operating system.
This key combination will always trigger the WindowClosing event for the
active window regardless of whether there is a Close item on the menu.

Figure 11.20 Accelerators

javax.swing.JMenuItem 1.2

• JMenuItem(String label, int mnemonic)
constructs a menu item with a given label and mnemonic.

• void setAccelerator(KeyStroke k)
sets the keystroke k as accelerator for this menu item. The
accelerator key is displayed next to the label.

javax.swing.AbstractButton 1.2

• void setMnemonic(int mnemonic)
sets the mnemonic character for the button. This character will be
underlined in the label.

• void setDisplayedMnemonicIndex(int index) 1.4
sets the index of the character to be underlined in the button text. Use
this method if you don’t want the first occurrence of the mnemonic
character to be underlined.

11.5.6 Enabling and Disabling Menu Items

Occasionally, a particular menu item should be selected only in certain
contexts. For example, when a document is opened in read-only mode, the
Save menu item is not meaningful. Of course, we could remove the item
from the menu with the JMenu.remove method, but users would react with
some surprise to menus whose content keeps changing. Instead, it is better to
deactivate the menu items that lead to temporarily inappropriate commands.
A deactivated menu item is shown in gray and cannot be selected (see Figure
11.21).

Figure 11.21 Disabled menu items

To enable or disable a menu item, use the setEnabled method:

saveItem.setEnabled(false);

There are two strategies for enabling and disabling menu items. Each time
circumstances change, you can call setEnabled on the relevant menu items
or actions. For example, as soon as a document has been set to read-only
mode, you can locate the Save and Save As menu items and disable them.
Alternatively, you can disable items just before displaying the menu. To do
this, you must register a listener for the “menu selected” event. The
javax.swing.event package defines a MenuListener interface with three
methods:

void menuSelected(MenuEvent event)
void menuDeselected(MenuEvent event)
void menuCanceled(MenuEvent event)

The menuSelected method is called before the menu is displayed. It can
therefore be used to disable or enable menu items. The following code
shows how to disable the Save and Save As actions whenever the Read Only
checkbox menu item is selected:

public void menuSelected(MenuEvent event)
{
 saveAction.setEnabled(!readonlyItem.isSelected());
 saveAsAction.setEnabled(!readonlyItem.isSelected());
}

 CAUTION:
Disabling menu items just before displaying the menu is a clever idea, but it
does not work for menu items that also have accelerator keys. Since the
menu is never opened when the accelerator key is pressed, the action is
never disabled, and is still triggered by the accelerator key.

javax.swing.JMenuItem 1.2

• void setEnabled(boolean b)
enables or disables the menu item.

javax.swing.event.MenuListener 1.2

• void menuSelected(MenuEvent e)
is called when the menu has been selected, before it is opened.

• void menuDeselected(MenuEvent e)
is called when the menu has been deselected, after it has been closed.

• void menuCanceled(MenuEvent e)
is called when the menu has been canceled, for example, by a user
clicking outside the menu.

Listing 11.6 is a sample program that generates a set of menus. It shows all
the features that you saw in this section: nested menus, disabled menu items,
checkbox and radio button menu items, a pop-up menu, and keyboard
mnemonics and accelerators.

Listing 11.6 menu/MenuFrame.java

 1 package menu;
 2
 3 import java.awt.event.*;
 4 import javax.swing.*;
 5
 6 /**
 7 * A frame with a sample menu bar.
 8 */
 9 public class MenuFrame extends JFrame
10 {
11 private static final int DEFAULT_WIDTH = 300;
12 private static final int DEFAULT_HEIGHT = 200;
13 private Action saveAction;
14 private Action saveAsAction;
15 private JCheckBoxMenuItem readonlyItem;
16 private JPopupMenu popup;
17
18 /**
19 * A sample action that prints the action name to
System.out.
20 */
21 class TestAction extends AbstractAction
22 {
23 public TestAction(String name)
24 {
25 super(name);
26 }
27
28 public void actionPerformed(ActionEvent event)
29 {
30 System.out.println(getValue(Action.NAME) + "

selected.");
31 }
32 }
33
34 public MenuFrame()
35 {
36 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
37
38 var fileMenu = new JMenu("File");
39 fileMenu.add(new TestAction("New"));
40
41 // demonstrate accelerators
42
43 var openItem = fileMenu.add(new TestAction("Open"));
44 openItem.setAccelerator(KeyStroke.getKeyStroke("ctrl
O"));
45
46 fileMenu.addSeparator();
47
48 saveAction = new TestAction("Save");
49 JMenuItem saveItem = fileMenu.add(saveAction);
50 saveItem.setAccelerator(KeyStroke.getKeyStroke("ctrl
S"));
51
52 saveAsAction = new TestAction("Save As");
53 fileMenu.add(saveAsAction);
54 fileMenu.addSeparator();
55
56 fileMenu.add(new AbstractAction("Exit")
57 {
58 public void actionPerformed(ActionEvent event)
59 {
60 System.exit(0);
61 }
62 });
63
64 // demonstrate checkbox and radio button menus
65
66 readonlyItem = new JCheckBoxMenuItem("Read-only");

67 readonlyItem.addActionListener(new ActionListener()
68 {
69 public void actionPerformed(ActionEvent event)
70 {
71 boolean saveOk = !readonlyItem.isSelected();
72 saveAction.setEnabled(saveOk);
73 saveAsAction.setEnabled(saveOk);
74 }
75 });
76
77 var group = new ButtonGroup();
78
79 var insertItem = new JRadioButtonMenuItem("Insert");
80 insertItem.setSelected(true);
81 var overtypeItem = new
JRadioButtonMenuItem("Overtype");
82
83 group.add(insertItem);
84 group.add(overtypeItem);
85
86 // demonstrate icons
87
88 var cutAction = new TestAction("Cut");
89 cutAction.putValue(Action.SMALL_ICON, new
ImageIcon("cut.gif"));
90 var copyAction = new TestAction("Copy");
91 copyAction.putValue(Action.SMALL_ICON, new
ImageIcon("copy.gif"));
92 var pasteAction = new TestAction("Paste");
93 pasteAction.putValue(Action.SMALL_ICON, new
ImageIcon("paste.gif"));
94
95 var editMenu = new JMenu("Edit");
96 editMenu.add(cutAction);
97 editMenu.add(copyAction);
98 editMenu.add(pasteAction);
99
100 // demonstrate nested menus
101

102 var optionMenu = new JMenu("Options");
103
104 optionMenu.add(readonlyItem);
105 optionMenu.addSeparator();
106 optionMenu.add(insertItem);
107 optionMenu.add(overtypeItem);
108
109 editMenu.addSeparator();
110 editMenu.add(optionMenu);
111
112 // demonstrate mnemonics
113
114 var helpMenu = new JMenu("Help");
115 helpMenu.setMnemonic('H');
116
117 var indexItem = new JMenuItem("Index");
118 indexItem.setMnemonic('I');
119 helpMenu.add(indexItem);
120
121 // you can also add the mnemonic key to an action
122 var aboutAction = new TestAction("About");
123 aboutAction.putValue(Action.MNEMONIC_KEY,
Integer.valueOf('A'));
124 helpMenu.add(aboutAction);
125
126 // add all top-level menus to menu bar
127
128 var menuBar = new JMenuBar();
129 setJMenuBar(menuBar);
130
131 menuBar.add(fileMenu);
132 menuBar.add(editMenu);
133 menuBar.add(helpMenu);
134
135 // demonstrate pop-ups
136
137 popup = new JPopupMenu();
138 popup.add(cutAction);
139 popup.add(copyAction);

140 popup.add(pasteAction);
141
142 var panel = new JPanel();
143 panel.setComponentPopupMenu(popup);
144 add(panel);
145 }
146 }

11.5.7 Toolbars

A toolbar is a button bar that gives quick access to the most commonly used
commands in a program (see Figure 11.22).

Figure 11.22 A toolbar

What makes toolbars special is that you can move them elsewhere. You can
drag the toolbar to one of the four borders of the frame (see Figure 11.23).
When you release the mouse button, the toolbar is dropped into the new
location (see Figure 11.24).

Figure 11.23 Dragging the toolbar

Figure 11.24 The toolbar has been dragged to another border

 NOTE:
Toolbar dragging works if the toolbar is inside a container with a border
layout, or any other layout manager that supports the North, East, South, and
West constraints.

The toolbar can even be completely detached from the frame. A detached
toolbar is contained in its own frame (see Figure 11.25). When you close the
frame containing a detached toolbar, the toolbar jumps back into the original
frame.

Figure 11.25 Detaching the toolbar

Toolbars are straightforward to program. Add components into the toolbar:

var toolbar = new JToolBar();
toolbar.add(blueButton);

The JToolBar class also has a method to add an Action object. Simply
populate the toolbar with Action objects, like this:

toolbar.add(blueAction);

The small icon of the action is displayed in the toolbar.

You can separate groups of buttons with a separator:

toolbar.addSeparator();

For example, the toolbar in Figure 11.22 has a separator between the third
and fourth button.

Then, add the toolbar to the frame:

add(toolbar, BorderLayout.NORTH);

You can also specify a title for the toolbar that appears when the toolbar is
undocked:

toolbar = new JToolBar(titleString);

By default, toolbars are initially horizontal. To have a toolbar start out
vertical, use

toolbar = new JToolBar(SwingConstants.VERTICAL)

or

toolbar = new JToolBar(titleString, SwingConstants.VERTICAL)

Buttons are the most common components inside toolbars. But there is no
restriction on the components that you can add to a toolbar. For example,
you can add a combo box to a toolbar.

11.5.8 Tooltips

A disadvantage of toolbars is that users are often mystified by the meanings
of the tiny icons in toolbars. To solve this problem, user interface designers
invented tooltips. A tooltip is activated when the cursor rests for a moment
over a button. The tooltip text is displayed inside a colored rectangle. When
the user moves the mouse away, the tooltip disappears. (See Figure 11.26.)

Figure 11.26 A tooltip

In Swing, you can add tooltips to any JComponent simply by calling the
setToolTipText method:

exitButton.setToolTipText("Exit");

Alternatively, if you use Action objects, you associate the tooltip with the
SHORT_DESCRIPTION key:

exitAction.putValue(Action.SHORT_DESCRIPTION, "Exit");

javax.swing.JToolBar 1.2

• JToolBar()
• JToolBar(String titleString)
• JToolBar(int orientation)
• JToolBar(String titleString, int orientation)

constructs a toolbar with the given title string and orientation.
orientation is one of SwingConstants.HORIZONTAL (the default) or
SwingConstants.VERTICAL.

• JButton add(Action a)
constructs a new button inside the toolbar with name, icon, short
description, and action callback from the given action, and adds the
button to the end of the toolbar.

• void addSeparator()
adds a separator to the end of the toolbar.

javax.swing.JComponent 1.2

• void setToolTipText(String text)
sets the text that should be displayed as a tooltip when the mouse
hovers over the component.

11.6 Sophisticated Layout Management

So far we’ve been using only the border layout, flow layout, and grid layout
for the user interface of our sample applications. For more complex tasks,
this is not going to be enough.

Since Java 1.0, the AWT includes the grid bag layout that lays out
components in rows and columns. The row and column sizes are flexible,
and components can span multiple rows and columns. This layout manager
is very flexible, but also very complex. The mere mention of the words “grid
bag layout” has been known to strike fear in the hearts of Java programmers.

In an unsuccessful attempt to design a layout manager that would free
programmers from the tyranny of the grid bag layout, the Swing designers
came up with the box layout. According to the JDK documentation of the
BoxLayout class: “Nesting multiple panels with different combinations of
horizontal and vertical [sic] gives an effect similar to GridBagLayout, without
the complexity.” However, as each box is laid out independently, you cannot
use box layouts to arrange neighboring components both horizontally and
vertically.

Java 1.4 saw yet another attempt to design a replacement for the grid bag
layout—the spring layout where you use imaginary springs to connect the
components in a container. As the container is resized, the springs stretch or
shrink, thereby adjusting the positions of the components. This sounds
tedious and confusing, and it is. The spring layout quickly sank into
obscurity.

The NetBeans IDE combines a layout tool (called “Matisse”) and a layout
manager. A user interface designer uses the tool to drop components into a
container and to indicate which components should line up. The tool
translates the designer’s intentions into instructions for the group layout
manager. This is much more convenient than writing the layout management
code by hand.

In the coming sections, I will cover the grid bag layout because it is
commonly used and is still the easiest mechanism for programmatically
producing layout code. I will show you a strategy that makes grid bag
layouts relatively painless in common situations.

Finally, you will see how to write your own layout manager.

11.6.1 The Grid Bag Layout

The grid bag layout is the mother of all layout managers. You can think of a
grid bag layout as a grid layout without the limitations. In a grid bag layout,
the rows and columns can have variable sizes. You can join adjacent cells to
make room for larger components. (Many word processors, as well as
HTML, provide similar capabilities for tables: You can start out with a grid
and then merge adjacent cells as necessary.) The components need not fill
the entire cell area, and you can specify their alignment within cells.

Consider the font selector of Figure 11.27. It consists of the following
components:

• Two combo boxes to specify the font face and size
• Labels for these two combo boxes
• Two checkboxes to select bold and italic

• A text area for the sample string

Figure 11.27 A font selector

Now, chop up the container into a grid of cells, as shown in Figure 11.28.
(The rows and columns need not have equal size.) Each checkbox spans two
columns, and the text area spans four rows.

Figure 11.28 Dialog box grid used in design

To describe the layout to the grid bag manager, use the following procedure:

1. Create an object of type GridBagLayout. You don’t need to tell it how
many rows and columns the underlying grid has. Instead, the layout
manager will try to guess it from the information you give it later.

2. Set this GridBagLayout object to be the layout manager for the
component.

3. For each component, create an object of type GridBagConstraints. Set
field values of the GridBagConstraints object to specify how the
components are laid out within the grid bag.

4. Finally, add each component with its constraints by using the call

add(component, constraints);

Here’s an example of the code needed. (We’ll go over the various constraints
in more detail in the sections that follow—so don’t worry if you don’t know
what some of the constraints do.)

var layout = new GridBagLayout();
panel.setLayout(layout);
var constraints = new GridBagConstraints();
constraints.weightx = 100;
constraints.weighty = 100;
constraints.gridx = 0;
constraints.gridy = 2;
constraints.gridwidth = 2;
constraints.gridheight = 1;
panel.add(component, constraints);

The trick is knowing how to set the state of the GridBagConstraints object.
We’ll discuss this object in the sections that follow.

11.6.1.1 The gridx, gridy, gridwidth, and gridheight Parameters

The gridx, gridy, gridwidth, and gridheight constraints define where the
component is located in the grid. The gridx and gridy values specify the
column and row positions of the upper left corner of the component to be

added. The gridwidth and gridheight values determine how many columns
and rows the component occupies.

The grid coordinates start with 0. In particular, gridx = 0 and gridy = 0
denotes the top left corner. The text area in our example has gridx = 2,
gridy = 0 because it starts in column 2 (that is, the third column) of row 0. It
has gridwidth = 1 and gridheight = 4 because it spans one column and
four rows.

11.6.1.2 Weight Fields

You always need to set the weight fields (weightx and weighty) for each area
in a grid bag layout. If you set the weight to 0, the area never grows or
shrinks beyond its initial size in that direction. In the grid bag layout for
Figure 11.27, we set the weightx field of the labels to be 0. This allows the
labels to keep constant width when you resize the window. On the other
hand, if you set the weights for all areas to 0, the container will huddle in the
center of its allotted area instead of stretching to fill it.

Conceptually, the problem with the weight parameters is that weights are
properties of rows and columns, not individual cells. But you need to specify
them for cells because the grid bag layout does not expose the rows and
columns. The row and column weights are computed as the maxima of the
cell weights in each row or column. Thus, if you want a row or column to
stay at a fixed size, you need to set the weights of all components in it to
zero.

Note that the weights don’t actually give the relative sizes of the columns.
They tell what proportion of the “slack” space should be allocated to each
area if the container exceeds its preferred size. This isn’t particularly
intuitive. I recommend that you set all weights at 100. Then, run the program
and see how the layout looks. Resize the dialog to see how the rows and
columns adjust. If you find that a particular row or column should not grow,
set the weights of all components in it to zero. You can tinker with other
weight values, but it is usually not worth the effort.

11.6.1.3 The fill and anchor Parameters

If you don’t want a component to stretch out and fill the entire area, set the
fill constraint. You have four possibilities for this parameter: the valid
values are GridBagConstraints.NONE, GridBagConstraints.HORIZONTAL,
GridBagConstraints.VERTICAL, and GridBagConstraints.BOTH.

If the component does not fill the entire area, you can specify where in the
area you want it by setting the anchor field. The valid values are
GridBagConstraints.CENTER (the default), GridBagConstraints.NORTH,
GridBagConstraints.NORTHEAST, GridBagConstraints.EAST, and so on.

11.6.1.4 Padding

You can surround a component with additional blank space by setting the
insets field of GridBagConstraints. Set the left, top, right, and bottom
values of the Insets object to the amount of space that you want to have
around the component. This is called the external padding.

The ipadx and ipady values set the internal padding. These values are added
to the minimum width and height of the component. This ensures that the
component does not shrink down to its minimum size.

11.6.1.5 Alternative Method to Specify the gridx, gridy, gridwidth, and gridheight
Parameters

The AWT documentation recommends that instead of setting the gridx and
gridy values to absolute positions, you set them to the constant
GridBagConstraints.RELATIVE. Then, add the components to the grid bag
layout in a standardized order, going from left to right in the first row, then
moving along the next row, and so on.

You would still specify the number of rows and columns spanned, by giving
the appropriate gridheight and gridwidth fields. However, if the component
extends to the last row or column, you don’t need to specify the actual
number, but the constant GridBagConstraints.REMAINDER. This tells the
layout manager that the component is the last one in its row.

This scheme does seem to work. But it sounds really goofy to hide the actual
placement information from the layout manager and hope that it will

rediscover it.

11.6.1.6 A Grid Bag Layout Recipe

In practice, the following recipe makes grid bag layouts relatively trouble-
free:

1. Sketch out the component layout on a piece of paper.
2. Find a grid such that the small components are each contained in a cell

and the larger components span multiple cells.
3. Label the rows and columns of your grid with 0, 1, 2, 3, . . . You can now

read off the gridx, gridy, gridwidth, and gridheight values.
4. For each component, ask yourself whether it needs to fill its cell

horizontally or vertically. If not, how do you want it aligned? This tells
you the fill and anchor parameters.

5. Set all weights to 100. However, if you want a particular row or column
to always stay at its default size, set the weightx or weighty to 0 in all
components that belong to that row or column.

6. Write the code. Carefully double-check your settings for the
GridBagConstraints. One wrong constraint can ruin your whole layout.

7. Compile, run, and enjoy.

11.6.1.7 A Helper Class to Tame the Grid Bag Constraints

The most tedious aspect of the grid bag layout is writing the code that sets
the constraints. Most programmers write helper functions or a small helper
class for this purpose. I present such a class after the complete code for the
font dialog example. This class has the following features:

• Its name is short: GBC instead of GridBagConstraints.
• It extends GridBagConstraints, so you can use shorter names such as
GBC.EAST for the constants.

• Use a GBC object when adding a component, such as

add(component, new GBC(1, 2));

• There are two constructors to set the most common parameters: gridx and
gridy, or gridx, gridy, gridwidth, and gridheight.

add(component, new GBC(1, 2, 1, 4));

• There are convenient setters for the fields that come in x/y pairs:

add(component, new GBC(1, 2).setWeight(100, 100));

• The setter methods return this, so you can chain them:

add(component, new GBC(1, 2).setAnchor(GBC.EAST).setWeight(100,
100));

• The setInsets methods construct the Insets object for you. To get one-
pixel insets, simply call

add(component, new GBC(1, 2).setAnchor(GBC.EAST).setInsets(1));

Listing 11.7 shows the frame class for the font dialog example. The GBC
helper class is in Listing 11.8. Here is the code that adds the components to
the grid bag:

add(faceLabel, new GBC(0, 0).setAnchor(GBC.EAST));
add(face, new GBC(1, 0).setFill(GBC.HORIZONTAL).setWeight(100,
0).setInsets(1));
add(sizeLabel, new GBC(0, 1).setAnchor(GBC.EAST));
add(size, new GBC(1, 1).setFill(GBC.HORIZONTAL).setWeight(100,
0).setInsets(1));
add(bold, new GBC(0, 2, 2,
1).setAnchor(GBC.CENTER).setWeight(100, 100));
add(italic, new GBC(0, 3, 2,
1).setAnchor(GBC.CENTER).setWeight(100, 100));
add(sample, new GBC(2, 0, 1,
4).setFill(GBC.BOTH).setWeight(100, 100));

Once you understand the grid bag constraints, this kind of code is fairly easy
to read and debug.

Listing 11.7 gridbag/FontFrame.java

 1 package gridbag;
 2
 3 import java.awt.Font;
 4 import java.awt.GridBagLayout;
 5 import java.awt.event.ActionListener;
 6
 7 import javax.swing.BorderFactory;
 8 import javax.swing.JCheckBox;
 9 import javax.swing.JComboBox;
10 import javax.swing.JFrame;
11 import javax.swing.JLabel;
12 import javax.swing.JTextArea;
13
14 /**
15 * A frame that uses a grid bag layout to arrange font
selection components.
16 */
17 public class FontFrame extends JFrame
18 {
19 public static final int TEXT_ROWS = 10;
20 public static final int TEXT_COLUMNS = 20;
21
22 private JComboBox<String> face;
23 private JComboBox<Integer> size;
24 private JCheckBox bold;
25 private JCheckBox italic;
26 private JTextArea sample;
27
28 public FontFrame()
29 {
30 var layout = new GridBagLayout();
31 setLayout(layout);
32
33 ActionListener listener = event -> updateSample();
34
35 // construct components
36

37 var faceLabel = new JLabel("Face: ");
38
39 face = new JComboBox<>(new String[] { "Serif",
"SansSerif", "Monospaced",
40 "Dialog", "DialogInput" });
41
42 face.addActionListener(listener);
43
44 var sizeLabel = new JLabel("Size: ");
45
46 size = new JComboBox<>(new Integer[] { 8, 10, 12, 15,
18, 24, 36, 48 });
47
48 size.addActionListener(listener);
49
50 bold = new JCheckBox("Bold");
51 bold.addActionListener(listener);
52
53 italic = new JCheckBox("Italic");
54 italic.addActionListener(listener);
55
56 sample = new JTextArea(TEXT_ROWS, TEXT_COLUMNS);
57 sample.setText("The quick brown fox jumps over the lazy
dog");
58 sample.setEditable(false);
59 sample.setLineWrap(true);
60 sample.setBorder(BorderFactory.createEtchedBorder());
61
62 // add components to grid, using GBC convenience class
63
64 add(faceLabel, new GBC(0, 0).setAnchor(GBC.EAST));
65 add(face, new GBC(1,
0).setFill(GBC.HORIZONTAL).setWeight(100, 0).setInsets(1));
66 add(sizeLabel, new GBC(0, 1).setAnchor(GBC.EAST));
67 add(size, new GBC(1,
1).setFill(GBC.HORIZONTAL).setWeight(100, 0).setInsets(1));
68 add(bold, new GBC(0, 2, 2,
1).setAnchor(GBC.CENTER).setWeight(100, 100));
69 add(italic, new GBC(0, 3, 2,

1).setAnchor(GBC.CENTER).setWeight(100, 100));
70 add(sample, new GBC(2, 0, 1,
4).setFill(GBC.BOTH).setWeight(100, 100));
71 pack();
72 updateSample();
73 }
74
75 public void updateSample()
76 {
77 var fontFace = (String) face.getSelectedItem();
78 int fontStyle = (bold.isSelected() ? Font.BOLD : 0)
79 + (italic.isSelected() ? Font.ITALIC : 0);
80 int fontSize = size.getItemAt(size.getSelectedIndex());
81 var font = new Font(fontFace, fontStyle, fontSize);
82 sample.setFont(font);
83 sample.repaint();
84 }
85 }

Listing 11.8 gridbag/GBC.java

 1 package gridbag;
 2
 3 import java.awt.*;
 4
 5 /**
 6 * This class simplifies the use of the GridBagConstraints
class.
 7 * @version 1.01 2004-05-06
 8 * @author Cay Horstmann
 9 */
10 public class GBC extends GridBagConstraints
11 {
12 /**
13 * Constructs a GBC with a given gridx and gridy position and
all other grid
14 * bag constraint values set to the default.
15 * @param gridx the gridx position

16 * @param gridy the gridy position
17 */
18 public GBC(int gridx, int gridy)
19 {
20 this.gridx = gridx;
21 this.gridy = gridy;
22 }
23
24 /**
25 * Constructs a GBC with given gridx, gridy, gridwidth,
gridheight and all
26 * other grid bag constraint values set to the default.
27 * @param gridx the gridx position
28 * @param gridy the gridy position
29 * @param gridwidth the cell span in x-direction
30 * @param gridheight the cell span in y-direction
31 */
32 public GBC(int gridx, int gridy, int gridwidth, int
gridheight)
33 {
34 this.gridx = gridx;
35 this.gridy = gridy;
36 this.gridwidth = gridwidth;
37 this.gridheight = gridheight;
38 }
39
40 /**
41 * Sets the anchor.
42 * @param anchor the anchor value
43 * @return this object for further modification
44 */
45 public GBC setAnchor(int anchor)
46 {
47 this.anchor = anchor;
48 return this;
49 }
50
51 /**
52 * Sets the fill direction.

53 * @param fill the fill direction
54 * @return this object for further modification
55 */
56 public GBC setFill(int fill)
57 {
58 this.fill = fill;
59 return this;
60 }
61
62 /**
63 * Sets the cell weights.
64 * @param weightx the cell weight in x-direction
65 * @param weighty the cell weight in y-direction
66 * @return this object for further modification
67 */
68 public GBC setWeight(double weightx, double weighty)
69 {
70 this.weightx = weightx;
71 this.weighty = weighty;
72 return this;
73 }
74
75 /**
76 * Sets the insets of this cell.
77 * @param distance the spacing to use in all directions
78 * @return this object for further modification
79 */
80 public GBC setInsets(int distance)
81 {
82 this.insets = new Insets(distance, distance, distance,
distance);
83 return this;
84 }
85
86 /**
87 * Sets the insets of this cell.
88 * @param top the spacing to use on top
89 * @param left the spacing to use to the left
90 * @param bottom the spacing to use on the bottom

91 * @param right the spacing to use to the right
92 * @return this object for further modification
93 */
94 public GBC setInsets(int top, int left, int bottom, int
right)
95 {
96 this.insets = new Insets(top, left, bottom, right);
97 return this;
98 }
99
100 /**
101 * Sets the internal padding
102 * @param ipadx the internal padding in x-direction
103 * @param ipady the internal padding in y-direction
104 * @return this object for further modification
105 */
106 public GBC setIpad(int ipadx, int ipady)
107 {
108 this.ipadx = ipadx;
109 this.ipady = ipady;
110 return this;
111 }
112 }

java.awt.GridBagConstraints 1.0

• int gridx, gridy
specifies the starting column and row of the cell. The default is 0.

• int gridwidth, gridheight
specifies the column and row extent of the cell. The default is 1.

• double weightx, weighty
specifies the capacity of the cell to grow. The default is 0.

• int anchor

indicates the alignment of the component inside the cell. You can
choose between absolute positions:

NORTHEAST NORTH NORTHWEST
WEST CENTER EAST
SOUTHWEST SOUTH SOUTHEAST

or their orientation-independent counterparts:

FIRST_LINE_END LINE_START LAST_LINE_END
PAGE_START CENTER PAGE_END
FIRST_LINE_START LAST_LINE_START LINE_END

Use the latter if your application may be localized for right-to-left or
top-to-bottom text. The default is CENTER.

• int fill
specifies the fill behavior of the component inside the cell: one of
NONE, BOTH, HORIZONTAL, or VERTICAL. The default is NONE.

• int ipadx, ipady
specifies the “internal” padding around the component. The default is
0.

• Insets insets
specifies the “external” padding along the cell boundaries. The
default is no padding.

• GridBagConstraints(int gridx, int gridy, int gridwidth, int
gridheight, double weightx, double weighty, int anchor, int

fill, Insets insets, int ipadx, int ipady) 1.2
constructs a GridBagConstraints with all its fields specified in the
arguments. This constructor should only be used by automatic code
generators because it makes your source code very hard to read.

11.6.2 Custom Layout Managers

You can design your own LayoutManager class that manages components in a
special way. As a fun example, let’s arrange all components in a container to
form a circle (see Figure 11.29).

Your own layout manager must implement the LayoutManager interface. You
need to override the following five methods:

void addLayoutComponent(String s, Component c)
void removeLayoutComponent(Component c)
Dimension preferredLayoutSize(Container parent)
Dimension minimumLayoutSize(Container parent)
void layoutContainer(Container parent)

Figure 11.29 Circle layout

The first two methods are called when a component is added or removed. If
you don’t keep any additional information about the components, you can
make them do nothing. The next two methods compute the space required
for the minimum and the preferred layout of the components. These are
usually the same quantity. The fifth method does the actual work and
invokes setBounds on all components.

 NOTE:

The AWT has a second interface, called LayoutManager2, with ten methods
to implement rather than five. The main point of the LayoutManager2
interface is to allow you to use the add method with constraints. For
example, the BorderLayout and GridBagLayout implement the
LayoutManager2 interface.

Listing 11.9 shows the code for the CircleLayout manager which, uselessly
enough, lays out the components along a circle inside the parent. The frame
class of the sample program is in Listing 11.10.

Listing 11.9 circleLayout/CircleLayout.java

 1 package circleLayout;
 2
 3 import java.awt.*;
 4
 5 /**
 6 * A layout manager that lays out components along a circle.
 7 */
 8 public class CircleLayout implements LayoutManager
 9 {
10 private int minWidth = 0;
11 private int minHeight = 0;
12 private int preferredWidth = 0;
13 private int preferredHeight = 0;
14 private boolean sizesSet = false;
15 private int maxComponentWidth = 0;
16 private int maxComponentHeight = 0;
17
18 public void addLayoutComponent(String name, Component comp)
19 {
20 }
21
22 public void removeLayoutComponent(Component comp)
23 {
24 }
25

26 public void setSizes(Container parent)
27 {
28 if (sizesSet) return;
29 int n = parent.getComponentCount();
30
31 preferredWidth = 0;
32 preferredHeight = 0;
33 minWidth = 0;
34 minHeight = 0;
35 maxComponentWidth = 0;
36 maxComponentHeight = 0;
37
38 // compute the maximum component widths and heights
39 // and set the preferred size to the sum of the component
sizes
40 for (int i = 0; i < n; i++)
41 {
42 Component c = parent.getComponent(i);
43 if (c.isVisible())
44 {
45 Dimension d = c.getPreferredSize();
46 maxComponentWidth = Math.max(maxComponentWidth,
d.width);
47 maxComponentHeight = Math.max(maxComponentHeight,
d.height);
48 preferredWidth += d.width;
49 preferredHeight += d.height;
50 }
51 }
52 minWidth = preferredWidth / 2;
53 minHeight = preferredHeight / 2;
54 sizesSet = true;
55 }
56
57 public Dimension preferredLayoutSize(Container parent)
58 {
59 setSizes(parent);
60 Insets insets = parent.getInsets();
61 int width = preferredWidth + insets.left + insets.right;

62 int height = preferredHeight + insets.top +
insets.bottom;
63 return new Dimension(width, height);
64 }
65
66 public Dimension minimumLayoutSize(Container parent)
67 {
68 setSizes(parent);
69 Insets insets = parent.getInsets();
70 int width = minWidth + insets.left + insets.right;
71 int height = minHeight + insets.top + insets.bottom;
72 return new Dimension(width, height);
73 }
74
75 public void layoutContainer(Container parent)
76 {
77 setSizes(parent);
78
79 // compute center of the circle
80
81 Insets insets = parent.getInsets();
82 int containerWidth = parent.getSize().width - insets.left
- insets.right;
83 int containerHeight = parent.getSize().height -
insets.top - insets.bottom;
84
85 int xcenter = insets.left + containerWidth / 2;
86 int ycenter = insets.top + containerHeight / 2;
87
88 // compute radius of the circle
89
90 int xradius = (containerWidth - maxComponentWidth) / 2;
91 int yradius = (containerHeight - maxComponentHeight) / 2;
92 int radius = Math.min(xradius, yradius);
93
94 // lay out components along the circle
95
96 int n = parent.getComponentCount();
97 for (int i = 0; i < n; i++)

98 {
99 Component c = parent.getComponent(i);
100 if (c.isVisible())
101 {
102 double angle = 2 * Math.PI * i / n;
103
104 // center point of component
105 int x = xcenter + (int) (Math.cos(angle) * radius);
106 int y = ycenter + (int) (Math.sin(angle) * radius);
107
108 // move component so that its center is (x, y)
109 // and its size is its preferred size
110 Dimension d = c.getPreferredSize();
111 c.setBounds(x - d.width / 2, y - d.height / 2,
d.width, d.height);
112 }
113 }
114 }
115 }

Listing 11.10 circleLayout/CircleLayoutFrame.java

 1 package circleLayout;
 2
 3 import javax.swing.*;
 4
 5 /**
 6 * A frame that shows buttons arranged along a circle.
 7 */
 8 public class CircleLayoutFrame extends JFrame
 9 {
10 public CircleLayoutFrame()
11 {
12 setLayout(new CircleLayout());
13 add(new JButton("Yellow"));
14 add(new JButton("Blue"));
15 add(new JButton("Red"));
16 add(new JButton("Green"));

17 add(new JButton("Orange"));
18 add(new JButton("Fuchsia"));
19 add(new JButton("Indigo"));
20 pack();
21 }
22 }

java.awt.LayoutManager 1.0

• void addLayoutComponent(String name, Component comp)
adds a component to the layout.

• void removeLayoutComponent(Component comp)
removes a component from the layout.

• Dimension preferredLayoutSize(Container cont)
returns the preferred size dimensions for the container under this
layout.

• Dimension minimumLayoutSize(Container cont)
returns the minimum size dimensions for the container under this
layout.

• void layoutContainer(Container cont)
lays out the components in a container.

11.7 Dialog Boxes

In GUI applications, you usually want separate dialog boxes to pop up to
give information to, or get information from, the user.

Just as with most windowing systems, AWT distinguishes between modal
and modeless dialog boxes. A modal dialog box won’t let users interact with
the remaining windows of the application until he or she deals with it. Use a
modal dialog box when you need information from the user before you can
proceed with execution. For example, when the user wants to read a file, a

modal file dialog box is the one to pop up. The user must specify a file name
before the program can begin the read operation. Only when the user closes
the modal dialog box can the application proceed.

A modeless dialog box lets the user enter information in both the dialog box
and the remainder of the application. One example of a modeless dialog is a
toolbar. The toolbar can stay in place as long as needed, and the user can
interact with both the application window and the toolbar as needed.

Let’s start this section with the simplest dialogs—modal dialogs with just a
single message. Swing has a convenient JOptionPane class that lets you put
up a simple dialog without writing any special dialog box code. Next, you
will see how to write more complex dialogs by implementing your own
dialog windows. Finally, you will see how to transfer data from your
application into a dialog and back.

We’ll conclude the discussion of dialog boxes by looking at the Swing
JFileChooser.

11.7.1 Option Dialogs

Swing has a set of ready-made simple dialogs that suffice to ask the user for
a single piece of information. The JOptionPane has four static methods to
show these simple dialogs:

Figure 11.30 shows a typical dialog. As you can see, the dialog has the
following components:

• An icon

• A message
• One or more option buttons

Figure 11.30 An option dialog

The input dialog has an additional component for user input. This can be a
text field into which the user can type an arbitrary string, or a combo box
from which the user can select one item.

The exact layout of these dialogs and the choice of icons for standard
message types depend on the pluggable look-and-feel.

The icon on the left side depends on one of five message types:

ERROR_MESSAGE
INFORMATION_MESSAGE
WARNING_MESSAGE
QUESTION_MESSAGE
PLAIN_MESSAGE

The PLAIN_MESSAGE type has no icon. Each dialog type also has a method that
lets you supply your own icon instead.

For each dialog type, you can specify a message. This message can be a
string, an icon, a user interface component, or any other object. Here is how
the message object is displayed:

Of course, supplying a message string is by far the most common case.
Supplying a Component gives you ultimate flexibility because you can make
the paintComponent method draw anything you want.

The buttons at the bottom depend on the dialog type and the option type.
When calling showMessageDialog and showInputDialog, you get only a
standard set of buttons (OK and OK/Cancel, respectively). When calling
showConfirmDialog, you can choose among four option types:

DEFAULT_OPTION
YES_NO_OPTION
YES_NO_CANCEL_OPTION
OK_CANCEL_OPTION

With the showOptionDialog you can specify an arbitrary set of options. You
supply an array of objects for the options. Each array element is rendered as
follows:

The return values of these functions are as follows:

The showConfirmDialog and showOptionDialog return integers to indicate
which button the user chose. For the option dialog, this is simply the index
of the chosen option or the value CLOSED_OPTION if the user closed the dialog
instead of choosing an option. For the confirmation dialog, the return value
can be one of the following:

OK_OPTION
CANCEL_OPTION
YES_OPTION
NO_OPTION
CLOSED_OPTION

This all sounds like a bewildering set of choices, but in practice it is simple.
Follow these steps:

1. Choose the dialog type (message, confirmation, option, or input).
2. Choose the icon (error, information, warning, question, none, or custom).
3. Choose the message (string, icon, custom component, or a stack of

them).
4. For a confirmation dialog, choose the option type (default, Yes/No,

Yes/No/Cancel, or OK/Cancel).
5. For an option dialog, choose the options (strings, icons, or custom

components) and the default option.
6. For an input dialog, choose between a text field and a combo box.
7. Locate the appropriate method to call in the JOptionPane API.

For example, suppose you want to show the dialog in Figure 11.30. The
dialog shows a message and asks the user to confirm or cancel. Thus, it is a
confirmation dialog. The icon is a question icon. The message is a string.
The option type is OK_CANCEL_OPTION. Here is the call you would make:

int selection = JOptionPane.showConfirmDialog(parent,
 "Message", "Title",
 JOptionPane.OK_CANCEL_OPTION,
 JOptionPane.QUESTION_MESSAGE);
if (selection == JOptionPane.OK_OPTION) . . .

 TIP:
The message string can contain newline ('\n') characters. Such a string is
displayed in multiple lines.

javax.swing.JOptionPane 1.2

• static void showMessageDialog(Component parent, Object

message, String title, int messageType, Icon icon)

• static void showMessageDialog(Component parent, Object

message, String title, int messageType)

• static void showMessageDialog(Component parent, Object

message)

• static void showInternalMessageDialog(Component parent,

Object message, String title, int messageType, Icon icon)

• static void showInternalMessageDialog(Component parent,

Object message, String title, int messageType)

• static void showInternalMessageDialog(Component parent,

Object message)

shows a message dialog or an internal message dialog. (An internal
dialog is rendered entirely within its owner’s frame.) The parent
component can be null. The message to show on the dialog can be a
string, icon, component, or an array of them. The messageType

parameter is one of ERROR_MESSAGE, INFORMATION_MESSAGE,
WARNING_MESSAGE, QUESTION_MESSAGE, PLAIN_MESSAGE.

• static int showConfirmDialog(Component parent, Object

message, String title, int optionType, int messageType, Icon

icon)

• static int showConfirmDialog(Component parent, Object

message, String title, int optionType, int messageType)

• static int showConfirmDialog(Component parent, Object

message, String title, int optionType)

• static int showConfirmDialog(Component parent, Object

message)

• static int showInternalConfirmDialog(Component parent, Object
message, String title, int optionType, int messageType, Icon

icon)

• static int showInternalConfirmDialog(Component parent, Object
message, String title, int optionType, int messageType)

• static int showInternalConfirmDialog(Component parent, Object
message, String title, int optionType)

• static int showInternalConfirmDialog(Component parent, Object
message)

shows a confirmation dialog or an internal confirmation dialog. (An
internal dialog is rendered entirely within its owner’s frame.) Returns
the option selected by the user (one of OK_OPTION, CANCEL_OPTION,
YES_OPTION, NO_OPTION), or CLOSED_OPTION if the user closed the
dialog. The parent component can be null. The message to show on
the dialog can be a string, icon, component, or an array of them. The
messageType parameter is one of ERROR_MESSAGE,
INFORMATION_MESSAGE, WARNING_MESSAGE, QUESTION_MESSAGE,
PLAIN_MESSAGE, and optionType is one of DEFAULT_OPTION,
YES_NO_OPTION, YES_NO_CANCEL_OPTION, OK_CANCEL_OPTION.

• static int showOptionDialog(Component parent, Object message,
String title, int optionType, int messageType, Icon icon,

Object[] options, Object default)

• static int showInternalOptionDialog(Component parent, Object
message, String title, int optionType, int messageType, Icon

icon, Object[] options, Object default)

shows an option dialog or an internal option dialog. (An internal
dialog is rendered entirely within its owner’s frame.) Returns the
index of the option selected by the user, or CLOSED_OPTION if the user
canceled the dialog. The parent component can be null. The
message to show on the dialog can be a string, icon, component, or
an array of them. The messageType parameter is one of
ERROR_MESSAGE, INFORMATION_MESSAGE, WARNING_MESSAGE,
QUESTION_MESSAGE, PLAIN_MESSAGE, and optionType is one of
DEFAULT_OPTION, YES_NO_OPTION, YES_NO_CANCEL_OPTION,
OK_CANCEL_OPTION. The options parameter is an array of strings,
icons, or components.

• static Object showInputDialog(Component parent, Object

message, String title, int messageType, Icon icon, Object[]

values, Object default)

• static String showInputDialog(Component parent, Object

message, String title, int messageType)

• static String showInputDialog(Component parent, Object

message)

• static String showInputDialog(Object message)
• static String showInputDialog(Component parent, Object

message, Object default) 1.4
• static String showInputDialog(Object message, Object default)

1.4
• static Object showInternalInputDialog(Component parent,

Object message, String title, int messageType, Icon icon,

Object[] values, Object default)

• static String showInternalInputDialog(Component parent,

Object message, String title, int messageType)

• static String showInternalInputDialog(Component parent,

Object message)

shows an input dialog or an internal input dialog. (An internal dialog
is rendered entirely within its owner’s frame.) Returns the input
string typed by the user, or null if the user canceled the dialog. The
parent component can be null. The message to show on the dialog
can be a string, icon, component, or an array of them. The
messageType parameter is one of ERROR_MESSAGE,
INFORMATION_MESSAGE, WARNING_MESSAGE, QUESTION_MESSAGE,
PLAIN_MESSAGE.

11.7.2 Creating Dialogs

In the last section, you saw how to use the JOptionPane class to show a
simple dialog. In this section, you will see how to create such a dialog by
hand.

Figure 11.31 shows a typical modal dialog box—a program information box
that is displayed when the user clicks the About button.

Figure 11.31 An About dialog box

To implement a dialog box, you extend the JDialog class. This is essentially
the same process as extending JFrame for the main window for an
application. More precisely:

1. In the constructor of your dialog box, call the constructor of the
superclass JDialog.

2. Add the user interface components of the dialog box.
3. Add the event handlers.
4. Set the size for the dialog box.

When you call the superclass constructor, you will need to supply the owner
frame, the title of the dialog, and the modality.

The owner frame controls where the dialog is displayed. You can supply
null as the owner; then, the dialog is owned by a hidden frame.

The modality specifies which other windows of your application are blocked
while the dialog is displayed. A modeless dialog does not block other
windows. A modal dialog blocks all other windows of the application
(except for the children of the dialog). You would use a modeless dialog for
a toolbox that the user can always access. On the other hand, you would use
a modal dialog if you want to force the user to supply required information
before continuing.

Here’s the code for a dialog box:

public AboutDialog extends JDialog
{
 public AboutDialog(JFrame owner)
 {
 super(owner, "About DialogTest", true);
 add(new JLabel(
 "<html><h1><i>Core Java</i></h1><hr>By Cay
Horstmann</html>"),
 BorderLayout.CENTER);
 var panel = new JPanel();
 var ok = new JButton("OK");
 ok.addActionListener(event -> setVisible(false));
 panel.add(ok);
 add(panel, BorderLayout.SOUTH);
 setSize(250, 150);

 }
}

As you can see, the constructor adds user interface elements—in this case,
labels and a button. It adds a handler to the button and sets the size of the
dialog.

To display the dialog box, create a new dialog object and make it visible:

var dialog = new AboutDialog(this);
dialog.setVisible(true);

Actually, in the sample code below, we create the dialog box only once, and
we can reuse it whenever the user clicks the About button.

if (dialog == null) // first time
 dialog = new AboutDialog(this);
dialog.setVisible(true);

When the user clicks the OK button, the dialog box should close. This is
handled in the event handler of the OK button:

ok.addActionListener(event -> setVisible(false));

When the user closes the dialog by clicking the Close button, the dialog is
also hidden. Just as with a JFrame, you can override this behavior with the
setDefaultCloseOperation method.

Listing 11.11 is the code for the frame class of the test program. Listing
11.12 shows the dialog class.

Listing 11.11 dialog/DialogFrame.java

 1 package dialog;
 2
 3 import javax.swing.JFrame;

 4 import javax.swing.JMenu;
 5 import javax.swing.JMenuBar;
 6 import javax.swing.JMenuItem;
 7
 8 /**
 9 * A frame with a menu whose File->About action shows a
dialog.
10 */
11 public class DialogFrame extends JFrame
12 {
13 private static final int DEFAULT_WIDTH = 300;
14 private static final int DEFAULT_HEIGHT = 200;
15 private AboutDialog dialog;
16
17 public DialogFrame()
18 {
19 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
20
21 // construct a File menu
22
23 var menuBar = new JMenuBar();
24 setJMenuBar(menuBar);
25 var fileMenu = new JMenu("File");
26 menuBar.add(fileMenu);
27
28 // add About and Exit menu items
29
30 // the About item shows the About dialog
31
32 var aboutItem = new JMenuItem("About");
33 aboutItem.addActionListener(event ->
34 {
35 if (dialog == null) // first time
36 dialog = new AboutDialog(DialogFrame.this);
37 dialog.setVisible(true); // pop up dialog
38 });
39 fileMenu.add(aboutItem);
40
41 // the Exit item exits the program

42
43 var exitItem = new JMenuItem("Exit");
44 exitItem.addActionListener(event -> System.exit(0));
45 fileMenu.add(exitItem);
46 }
47 }

Listing 11.12 dialog/AboutDialog.java

 1 package dialog;
 2
 3 import java.awt.BorderLayout;
 4
 5 import javax.swing.JButton;
 6 import javax.swing.JDialog;
 7 import javax.swing.JFrame;
 8 import javax.swing.JLabel;
 9 import javax.swing.JPanel;
10
11 /**
12 * A sample modal dialog that displays a message and waits for
the user to click
13 * the OK button.
14 */
15 public class AboutDialog extends JDialog
16 {
17 public AboutDialog(JFrame owner)
18 {
19 super(owner, "About DialogTest", true);
20
21 // add HTML label to center
22
23 add(
24 new JLabel(
25 "<html><h1><i>Core Java</i></h1><hr>By Cay
Horstmann</html>"),
26 BorderLayout.CENTER);
27

28 // OK button closes the dialog
29
30 var ok = new JButton("OK");
31 ok.addActionListener(event -> setVisible(false));
32
33 // add OK button to southern border
34
35 var panel = new JPanel();
36 panel.add(ok);
37 add(panel, BorderLayout.SOUTH);
38
39 pack();
40 }
41 }

javax.swing.JDialog 1.2

• public JDialog(Frame parent, String title, boolean modal)
constructs a dialog. The dialog is not visible until it is explicitly
shown.

11.7.3 Data Exchange

The most common reason to put up a dialog box is to get information from
the user. You have already seen how easy it is to make a dialog box object:
Give it initial data and call setVisible(true) to display the dialog box on
the screen. Now let’s see how to transfer data in and out of a dialog box.

Consider the dialog box in Figure 11.32 that could be used to obtain a user
name and a password to connect to some online service.

Figure 11.32 Password dialog box

Your dialog box should provide methods to set default data. For example,
the PasswordChooser class of the example program has a method, setUser, to
place default values into the next fields:

public void setUser(User u)
{
 username.setText(u.getName());
}

Once you set the defaults (if desired), show the dialog by calling
setVisible(true). The dialog is now displayed.

The user then fills in the information and clicks the OK or Cancel button.
The event handlers for both buttons call setVisible(false), which
terminates the call to setVisible(true). Alternatively, the user may close
the dialog. If you did not install a window listener for the dialog, the default
window closing operation applies: The dialog becomes invisible, which also
terminates the call to setVisible(true).

The important issue is that the call to setVisible(true) blocks until the user
has dismissed the dialog. This makes it easy to implement modal dialogs.

You want to know whether the user has accepted or canceled the dialog. Our
sample code sets the ok flag to false before showing the dialog. Only the

event handler for the OK button sets the ok flag to true; that’s how you
retrieve the user input from the dialog.

 NOTE:
Transferring data out of a modeless dialog is not as simple. When a
modeless dialog is displayed, the call to setVisible(true) does not block
and the program continues running while the dialog is displayed. If the user
selects items on a modeless dialog and then clicks OK, the dialog needs to
send an event to some listener in the program.

The example program contains another useful improvement. When you
construct a JDialog object, you need to specify the owner frame. However,
quite often you want to show the same dialog with different owner frames. It
is better to pick the owner frame when you are ready to show the dialog, not
when you construct the PasswordChooser object.

The trick is to have the PasswordChooser extend JPanel instead of JDialog.
Build a JDialog object on the fly in the showDialog method:

public boolean showDialog(Frame owner, String title)
{
 ok = false;
 if (dialog == null || dialog.getOwner() != owner)
 {
 dialog = new JDialog(owner, true);
 dialog.add(this);
 dialog.pack();
 }
 dialog.setTitle(title);
 dialog.setVisible(true);
 return ok;
}

Note that it is safe to have owner equal to null.

You can do even better. Sometimes, the owner frame isn’t readily available.
It is easy enough to compute it from any parent component, like this:

Frame owner;
if (parent instanceof Frame)
 owner = (Frame) parent;
else
 owner = (Frame)
SwingUtilities.getAncestorOfClass(Frame.class, parent);

We use this enhancement in our sample program. The JOptionPane class also
uses this mechanism.

Many dialogs have a default button, which is automatically selected if the
user presses a trigger key (Enter in most look-and-feel implementations).
The default button is specially marked, often with a thick outline.

Set the default button in the root pane of the dialog:

dialog.getRootPane().setDefaultButton(okButton);

If you follow the suggestion of laying out the dialog in a panel, then you
must be careful to set the default button only after you wrapped the panel
into a dialog. The panel dialog itself has no root pane.

Listing 11.13 is for the frame class of the program that illustrates the data
flow into and out of a dialog box. Listing 11.14 shows the dialog class.

Listing 11.13 dataExchange/DataExchangeFrame.java

 1 package dataExchange;
 2
 3 import java.awt.*;
 4 import java.awt.event.*;
 5 import javax.swing.*;
 6
 7 /**

 8 * A frame with a menu whose File->Connect action shows a
password dialog.
 9 */
10 public class DataExchangeFrame extends JFrame
11 {
12 public static final int TEXT_ROWS = 20;
13 public static final int TEXT_COLUMNS = 40;
14 private PasswordChooser dialog = null;
15 private JTextArea textArea;
16
17 public DataExchangeFrame()
18 {
19 // construct a File menu
20
21 var mbar = new JMenuBar();
22 setJMenuBar(mbar);
23 var fileMenu = new JMenu("File");
24 mbar.add(fileMenu);
25
26 // add Connect and Exit menu items
27
28 var connectItem = new JMenuItem("Connect");
29 connectItem.addActionListener(new ConnectAction());
30 fileMenu.add(connectItem);
31
32 // the Exit item exits the program
33
34 var exitItem = new JMenuItem("Exit");
35 exitItem.addActionListener(event -> System.exit(0));
36 fileMenu.add(exitItem);
37
38 textArea = new JTextArea(TEXT_ROWS, TEXT_COLUMNS);
39 add(new JScrollPane(textArea), BorderLayout.CENTER);
40 pack();
41 }
42
43 /**
44 * The Connect action pops up the password dialog.
45 */

46 private class ConnectAction implements ActionListener
47 {
48 public void actionPerformed(ActionEvent event)
49 {
50 // if first time, construct dialog
51
52 if (dialog == null) dialog = new PasswordChooser();
53
54 // set default values
55 dialog.setUser(new User("yourname", null));
56
57 // pop up dialog
58 if (dialog.showDialog(DataExchangeFrame.this,
"Connect"))
59 {
60 // if accepted, retrieve user input
61 User u = dialog.getUser();
62 textArea.append("user name = " + u.getName() + ",
password = "
63 + (new String(u.getPassword())) + "\n");
64 }
65 }
66 }
67 }

Listing 11.14 dataExchange/PasswordChooser.java

 1 package dataExchange;
 2
 3 import java.awt.BorderLayout;
 4 import java.awt.Component;
 5 import java.awt.Frame;
 6 import java.awt.GridLayout;
 7
 8 import javax.swing.JButton;
 9 import javax.swing.JDialog;
10 import javax.swing.JLabel;
11 import javax.swing.JPanel;

12 import javax.swing.JPasswordField;
13 import javax.swing.JTextField;
14 import javax.swing.SwingUtilities;
15
16 /**
17 * A password chooser that is shown inside a dialog.
18 */
19 public class PasswordChooser extends JPanel
20 {
21 private JTextField username;
22 private JPasswordField password;
23 private JButton okButton;
24 private boolean ok;
25 private JDialog dialog;
26
27 public PasswordChooser()
28 {
29 setLayout(new BorderLayout());
30
31 // construct a panel with user name and password fields
32
33 var panel = new JPanel();
34 panel.setLayout(new GridLayout(2, 2));
35 panel.add(new JLabel("User name:"));
36 panel.add(username = new JTextField(""));
37 panel.add(new JLabel("Password:"));
38 panel.add(password = new JPasswordField(""));
39 add(panel, BorderLayout.CENTER);
40
41 // create Ok and Cancel buttons that terminate the
dialog
42
43 okButton = new JButton("Ok");
44 okButton.addActionListener(event ->
45 {
46 ok = true;
47 dialog.setVisible(false);
48 });
49

50 var cancelButton = new JButton("Cancel");
51 cancelButton.addActionListener(event ->
dialog.setVisible(false));
52
53 // add buttons to southern border
54
55 var buttonPanel = new JPanel();
56 buttonPanel.add(okButton);
57 buttonPanel.add(cancelButton);
58 add(buttonPanel, BorderLayout.SOUTH);
59 }
60
61 /**
62 * Sets the dialog defaults.
63 * @param u the default user information
64 */
65 public void setUser(User u)
66 {
67 username.setText(u.getName());
68 }
69
70 /**
71 * Gets the dialog entries.
72 * @return a User object whose state represents the dialog
entries
73 */
74 public User getUser()
75 {
76 return new User(username.getText(),
password.getPassword());
77 }
78
79 /**
80 * Show the chooser panel in a dialog.
81 * @param parent a component in the owner frame or null
82 * @param title the dialog window title
83 */
84 public boolean showDialog(Component parent, String title)
85 {

86 ok = false;
87
88 // locate the owner frame
89
90 Frame owner = null;
91 if (parent instanceof Frame)
92 owner = (Frame) parent;
93 else
94 owner = (Frame)
SwingUtilities.getAncestorOfClass(Frame.class, parent);
95
96 // if first time, or if owner has changed, make new
dialog
97
98 if (dialog == null || dialog.getOwner() != owner)
99 {
100 dialog = new JDialog(owner, true);
101 dialog.add(this);
102 dialog.getRootPane().setDefaultButton(okButton);
103 dialog.pack();
104 }
105
106 // set title and show dialog
107
108 dialog.setTitle(title);
109 dialog.setVisible(true);
110 return ok;
111 }
112 }

javax.swing.SwingUtilities 1.2

• Container getAncestorOfClass(Class c, Component comp)
returns the innermost parent container of the given component that
belongs to the given class or one of its subclasses.

javax.swing.JComponent 1.2

• JRootPane getRootPane()
gets the root pane enclosing this component, or null if this
component does not have an ancestor with a root pane.

javax.swing.JRootPane 1.2

• void setDefaultButton(JButton button)
sets the default button for this root pane. To deactivate the default
button, call this method with a null parameter.

javax.swing.JButton 1.2

• boolean isDefaultButton()
returns true if this button is the default button of its root pane.

11.7.4 File Dialogs

In an application, you often want to be able to open and save files. A good
file dialog box that shows files and directories and lets the user navigate the
file system is hard to write, and you definitely don’t want to reinvent that
wheel. Fortunately, Swing provides a JFileChooser class that allows you to
display a file dialog box similar to the one that most native applications use.
JFileChooser dialogs are always modal. Note that the JFileChooser class is
not a subclass of JDialog. Instead of calling setVisible(true), call
showOpenDialog to display a dialog for opening a file, or call showSaveDialog
to display a dialog for saving a file. The button for accepting a file is then

automatically labeled Open or Save. You can also supply your own button
label with the showDialog method. Figure 11.33 shows an example of the file
chooser dialog box.

Figure 11.33 A file chooser dialog box

Here are the steps to put up a file dialog box and recover what the user
chooses from the box:

1. Make a JFileChooser object. Unlike the constructor for the JDialog
class, you do not supply the parent component. This allows you to reuse
a file chooser dialog with multiple frames.
For example:

var chooser = new JFileChooser();

 TIP:
Reusing a file chooser object is a good idea because the JFileChooser
constructor can be quite slow, especially on Windows when the user has
many mapped network drives.

2. Set the directory by calling the setCurrentDirectory method.
For example, to use the current working directory

chooser.setCurrentDirectory(new File("."));

you need to supply a File object. File objects are explained in detail in
Chapter 2 of Volume II. All you need to know for now is that the
constructor File(String filename) turns a file or directory name into a
File object.

3. If you have a default file name that you expect the user to choose, supply
it with the setSelectedFile method:

chooser.setSelectedFile(new File(filename));

4. To enable the user to select multiple files in the dialog, call the
setMultiSelectionEnabled method. This is, of course, entirely optional
and not all that common.

chooser.setMultiSelectionEnabled(true);

5. If you want to restrict the display of files in the dialog to those of a
particular type (for example, all files with extension .gif), you need to
set a file filter. We discuss file filters later in this section.

6. By default, a user can select only files with a file chooser. If you want the
user to select directories, use the setFileSelectionMode method. Call it
with JFileChooser.FILES_ONLY (the default),
JFileChooser.DIRECTORIES_ONLY, or
JFileChooser.FILES_AND_DIRECTORIES.

7. Show the dialog box by calling the showOpenDialog or showSaveDialog
method. You must supply the parent component in these calls:

int result = chooser.showOpenDialog(parent);

or

int result = chooser.showSaveDialog(parent);

The only difference between these calls is the label of the “approve
button”—the button that the user clicks to finish the file selection. You
can also call the showDialog method and pass an explicit text for the
approve button:

int result = chooser.showDialog(parent, "Select");

These calls return only when the user has approved, canceled, or
dismissed the file dialog. The return value is
JFileChooser.APPROVE_OPTION, JFileChooser.CANCEL_OPTION, or
JFileChooser.ERROR_OPTION.

8. Get the selected file or files with the getSelectedFile() or
getSelectedFiles() method. These methods return either a single File
object or an array of File objects. If you just need the name of the file
object, call its getPath method. For example:

String filename = chooser.getSelectedFile().getPath();

For the most part, these steps are simple. The major difficulty with using a
file dialog is to specify a subset of files from which the user should choose.
For example, suppose the user should choose a GIF image file. Then, the file
chooser should only display files with the extension .gif. It should also give
the user some kind of feedback that the displayed files are of a particular
category, such as “GIF Images.” But the situation can be more complex. If
the user should choose a JPEG image file, the extension can be either .jpg or
.jpeg. Instead of a way to codify these complexities, the designers of the file
chooser provided a more elegant mechanism: to restrict the displayed files,
supply an object that extends the abstract class
javax.swing.filechooser.FileFilter. The file chooser passes each file to
the file filter and displays only those files that the filter accepts.

At the time of this writing, two such subclasses are supplied: the default
filter that accepts all files, and a filter that accepts all files with a given

extension. However, it is easy to write ad-hoc file filters. Simply implement
the two abstract methods of the FileFilter superclass:

public boolean accept(File f);
public String getDescription();

The first method tests whether a file should be accepted. The second method
returns a description of the file type that can be displayed in the file chooser
dialog.

 NOTE:
An unrelated FileFilter interface in the java.io package has a single
method, boolean accept(File f). It is used in the listFiles method of the
File class to list files in a directory. I do not know why the designers of
Swing didn’t extend this interface—perhaps the Java class library has now
become so complex that even the programmers at Sun were no longer aware
of all the standard classes and interfaces.

You will need to resolve the name conflict between these two identically
named types if you import both the java.io and the
javax.swing.filechooser packages. The simplest remedy is to import
javax.swing.filechooser.FileFilter, not javax.swing.filechooser.*.

Once you have a file filter object, use the setFileFilter method of the
JFileChooser class to install it into the file chooser object:

chooser.setFileFilter(new FileNameExtensionFilter("Image
files", "gif", "jpg"));

You can install multiple filters to the file chooser by calling

chooser.addChoosableFileFilter(filter1);
chooser.addChoosableFileFilter(filter2);
. . .

The user selects a filter from the combo box at the bottom of the file dialog.
By default, the “All files” filter is always present in the combo box. This is a
good idea—just in case a user of your program needs to select a file with a
nonstandard extension. However, if you want to suppress the “All files”
filter, call

chooser.setAcceptAllFileFilterUsed(false)

 CAUTION:
If you reuse a single file chooser for loading and saving different file types,
call

chooser.resetChoosableFilters()

to clear any old file filters before adding new ones.

Finally, you can customize the file chooser by providing special icons and
file descriptions for each file that the file chooser displays. Do this by
supplying an object of a class extending the FileView class in the
javax.swing.filechooser package. This is definitely an advanced technique.
Normally, you don’t need to supply a file view—the pluggable look-and-feel
supplies one for you. But if you want to show different icons for special file
types, you can install your own file view. You need to extend the FileView
class and implement five methods:

Icon getIcon(File f)
String getName(File f)
String getDescription(File f)

String getTypeDescription(File f)
Boolean isTraversable(File f)

Then, use the setFileView method to install your file view into the file
chooser.

The file chooser calls your methods for each file or directory that it wants to
display. If your method returns null for the icon, name, or description, the
file chooser then consults the default file view of the look-and-feel. That is
good, because it means you need to deal only with the file types for which
you want to do something different.

The file chooser calls the isTraversable method to decide whether to open a
directory when a user clicks on it. Note that this method returns a Boolean
object, not a boolean value! This seems weird, but it is actually convenient—
if you aren’t interested in deviating from the default file view, just return
null. The file chooser will then consult the default file view. In other words,
the method returns a Boolean to let you choose among three options: true
(Boolean.TRUE), false (Boolean.FALSE), or don’t care (null).

The example program contains a simple file view class. That class shows a
particular icon whenever a file matches a file filter. We use it to display a
palette icon for all image files.

class FileIconView extends FileView
{
 private FileFilter filter;
 private Icon icon;
 public FileIconView(FileFilter aFilter, Icon anIcon)
 {
 filter = aFilter;
 icon = anIcon;
 }
 public Icon getIcon(File f)
 {
 if (!f.isDirectory() && filter.accept(f))
 return icon;
 else return null;

 }
}

Install this file view into your file chooser with the setFileView method:

chooser.setFileView(new FileIconView(filter,
 new ImageIcon("palette.gif")));

The file chooser will then show the palette icon next to all files that pass the
filter and use the default file view to show all other files. Naturally, we use
the same filter that we set in the file chooser.

Finally, you can customize a file dialog by adding an accessory component.
For example, Figure 11.34 shows a preview accessory next to the file list.
This accessory displays a thumbnail view of the currently selected file.

An accessory can be any Swing component. In our case, we extend the
JLabel class and set its icon to a scaled copy of the graphics image:

Figure 11.34 A file dialog with a preview accessory

class ImagePreviewer extends JLabel
{
 public ImagePreviewer(JFileChooser chooser)
 {
 setPreferredSize(new Dimension(100, 100));
 setBorder(BorderFactory.createEtchedBorder());
 }
 public void loadImage(File f)
 {
 var icon = new ImageIcon(f.getPath());
 if(icon.getIconWidth() > getWidth())
 icon = new
ImageIcon(icon.getImage().getScaledInstance(
 getWidth(), -1, Image.SCALE_DEFAULT));
 setIcon(icon);
 repaint();
 }
}

There is just one challenge. We want to update the preview image whenever
the user selects a different file. The file chooser uses the “JavaBeans”
mechanism of notifying interested listeners whenever one of its properties
changes. The selected file is a property that you can monitor by installing a
PropertyChangeListener. Here is the code that you need to trap the
notifications:

chooser.addPropertyChangeListener(event ->
{
 if (event.getPropertyName() ==
JFileChooser.SELECTED_FILE_CHANGED_PROPERTY)
 {
 var newFile = (File) event.getNewValue();
 // update the accessory
 . . .
 }
});

javax.swing.JFileChooser 1.2

• JFileChooser()
creates a file chooser dialog box that can be used for multiple frames.

• void setCurrentDirectory(File dir)
sets the initial directory for the file dialog box.

• void setSelectedFile(File file)
• void setSelectedFiles(File[] file)

sets the default file choice for the file dialog box.
• void setMultiSelectionEnabled(boolean b)

sets or clears the multiple selection mode.
• void setFileSelectionMode(int mode)

lets the user select files only (the default), directories only, or both
files and directories. The mode parameter is one of
JFileChooser.FILES_ONLY, JFileChooser.DIRECTORIES_ONLY, and
JFileChooser.FILES_AND_DIRECTORIES.

• int showOpenDialog(Component parent)
• int showSaveDialog(Component parent)
• int showDialog(Component parent, String approveButtonText)

shows a dialog in which the approve button is labeled “Open”,
“Save”, or with the approveButtonText string. Returns
APPROVE_OPTION, CANCEL_OPTION (if the user selected the cancel button
or dismissed the dialog), or ERROR_OPTION (if an error occurred).

• File getSelectedFile()
• File[] getSelectedFiles()

gets the file or files that the user selected (or returns null if the user
didn’t select any file).

• void setFileFilter(FileFilter filter)

sets the file mask for the file dialog box. All files for which
filter.accept returns true will be displayed. Also, adds the filter to
the list of choosable filters.

• void addChoosableFileFilter(FileFilter filter)
adds a file filter to the list of choosable filters.

• void setAcceptAllFileFilterUsed(boolean b)
includes or suppresses an “All files” filter in the filter combo box.

• void resetChoosableFileFilters()
clears the list of choosable filters. Only the “All files” filter remains
unless it is explicitly suppressed.

• void setFileView(FileView view)
sets a file view to provide information about the files that the file
chooser displays.

• void setAccessory(JComponent component)
sets an accessory component.

javax.swing.filechooser.FileFilter 1.2

• boolean accept(File f)
returns true if the file chooser should display this file.

• String getDescription()
returns a description of this file filter—for example, "Image files
(*.gif,*.jpeg)".

javax.swing.filechooser.FileNameExtensionFilter 6

• FileNameExtensionFilter(String description, String...

extensions)

constructs a file filter with the given description that accepts all
directories and all files whose names end in a period followed by one
of the given extension strings.

javax.swing.filechooser.FileView 1.2

• String getName(File f)
returns the name of the file f, or null. Normally, this method simply
returns f.getName().

• String getDescription(File f)
returns a human-readable description of the file f, or null. For
example, if f is an HTML document, this method might return its
title.

• String getTypeDescription(File f)
returns a human-readable description of the type of the file f, or
null. For example, if f is an HTML document, this method might
return a string "Hypertext document".

• Icon getIcon(File f)
returns an icon for the file f, or null. For example, if f is a JPEG file,
this method might return a thumbnail icon.

• Boolean isTraversable(File f)
returns Boolean.TRUE if f is a directory that the user can open. This
method might return Boolean.FALSE if a directory is conceptually a
compound document. Like all FileView methods, this method can
return null to signify that the file chooser should consult the default
view instead.

This ends our discussion of Swing programming. Turn to Volume II for more
advanced Swing components and sophisticated graphics techniques.

Chapter 12. Concurrency

In this chapter

• 12.1 What Are Threads?
• 12.2 Thread States
• 12.3 Thread Properties
• 12.4 Synchronization
• 12.5 Thread-Safe Collections
• 12.6 Tasks and Thread Pools
• 12.7 Asynchronous Computations
• 12.8 Processes

You are probably familiar with multitasking—your operating system’s
ability to have more than one program working at what seems like the same
time. For example, you can print while editing or downloading your email.
Nowadays, you are likely to have a computer with more than one CPU, but
the number of concurrently executing processes is not limited by the number
of CPUs. The operating system assigns CPU time slices to each process,
giving the impression of parallel activity.

Multithreaded programs extend the idea of multitasking by taking it one
level lower: Individual programs will appear to do multiple tasks at the same
time. Each task is executed in a thread, which is short for thread of control.
Programs that can run more than one thread at once are said to be
multithreaded.

So, what is the difference between multiple processes and multiple threads?
The essential difference is that while each process has a complete set of its
own variables, threads share the same data. This sounds somewhat risky, and
indeed it can be, as you will see later in this chapter. However, shared
variables make communication between threads more efficient and easier to
program than interprocess communication. Moreover, on some operating

systems, threads are more “lightweight” than processes—it takes less
overhead to create and destroy individual threads than it does to launch new
processes.

Multithreading is extremely useful in practice. For example, a browser
should be able to simultaneously download multiple images. A web server
needs to be able to serve concurrent requests. Graphical user interface (GUI)
programs have a separate thread for gathering user interface events from the
host operating environment. This chapter shows you how to add
multithreading capability to your Java applications.

Fair warning: Concurrent programming can get very complex. In this
chapter, I cover all the tools that an application programmer is likely to need.
However, for more intricate system-level programming, we suggest that you
turn to a more advanced reference, such as Java Concurrency in Practice by
Brian Goetz et al. (Addison-Wesley Professional, 2006).

12.1 What Are Threads?

Let us start by looking at a simple program that uses two threads. This
program moves money between bank accounts. We make use of a Bank class
that stores the balances of a given number of accounts. The transfer method
transfers an amount from one account to another. See Listing 12.2 for the
implementation.

In the first thread, we will move money from account 0 to account 1. The
second thread moves money from account 2 to account 3.

Here is a simple procedure for running a task in a separate thread:

1. Place the code for the task into the run method of a class that implements
the Runnable interface. That interface is very simple, with a single
method:

public interface Runnable
{
 void run();
}

Since Runnable is a functional interface, you can make an instance with a
lambda expression:

Runnable r = () ->
 {

 task code
 };

2. Construct a Thread object from the Runnable:

var t = new Thread(r);

3. Start the thread:

t.start();

To make a separate thread for transferring money, we only need to place the
code for the transfer inside the run method of a Runnable, and then start a
thread:

Runnable r = () ->
 {
 try
 {
 for (int i = 0; i < STEPS; i++)
 {
 double amount = MAX_AMOUNT * Math.random();
 bank.transfer(0, 1, amount);
 Thread.sleep((int) (DELAY * Math.random()));
 }
 }
 catch (InterruptedException e)
 {
 }
 };
var t = new Thread(r);
t.start();

For a given number of steps, this thread transfers a random amount, and then
sleeps for a random delay.

We need to catch an InterruptedException that the sleep method threatens
to throw. We will discuss this exception in Section 12.3.1, “Interrupting
Threads,” on p. 757. Typically, interruption is used to request that a thread
terminates. Accordingly, our run method exits when an
InterruptedException occurs.

Our program starts a second thread as well that moves money from account
2 to account 3. When you run this program, you get a printout like this:

Thread[Thread-1,5,main] 606.77 from 2 to 3 Total
Balance: 400000.00
Thread[Thread-0,5,main] 98.99 from 0 to 1 Total
Balance: 400000.00
Thread[Thread-1,5,main] 476.78 from 2 to 3 Total
Balance: 400000.00
Thread[Thread-0,5,main] 653.64 from 0 to 1 Total
Balance: 400000.00
Thread[Thread-1,5,main] 807.14 from 2 to 3 Total
Balance: 400000.00
Thread[Thread-0,5,main] 481.49 from 0 to 1 Total
Balance: 400000.00Thread[Thread-0,5,main] 203.73 from 0 to 1
Total Balance: 400000.00
Thread[Thread-1,5,main] 111.76 from 2 to 3 Total
Balance: 400000.00
Thread[Thread-1,5,main] 794.88 from 2 to 3 Total
Balance: 400000.00
. . .

As you can see, the output of the two threads is interleaved, showing that
they run concurrently. In fact, sometimes the output is a little messier when
two output lines are interleaved.

That’s all there is to it! You now know how to run tasks concurrently. The
remainder of this chapter tells you how to control the interaction between
threads.

The complete code is shown in Listing 12.1.

 NOTE:
You can also define a thread by forming a subclass of the Thread class, like
this:

class MyThread extends Thread
{
 public void run()
 {
 task code
 }
}

Then you construct an object of the subclass and call its start method.
However, this approach is no longer recommended. You should decouple
the task that is to be run in parallel from the mechanism of running it. If you
have many tasks, it is too expensive to create a separate thread for each of
them. Instead, you can use a thread pool—see Section 12.6.2, “Executors,”
on p. 818.

 CAUTION:
Do not call the run method of the Thread class or the Runnable object.
Calling the run method directly merely executes the task in the same thread
—no new thread is started. Instead, call the Thread.start method. It creates
a new thread that executes the run method.

Listing 12.1 threads/ThreadTest.java

 1 package threads;
 2
 3 /**
 4 * @version 1.30 2004-08-01
 5 * @author Cay Horstmann
 6 */ 7 public class ThreadTest
 8 {
 9 public static final int DELAY = 10;
10 public static final int STEPS = 100;
11 public static final double MAX_AMOUNT = 1000;
12
13 public static void main(String[] args)
14 {
15 var bank = new Bank(4, 100000);
16 Runnable task1 = () ->
17 {
18 try
19 {
20 for (int i = 0; i < STEPS; i++)
21 {
22 double amount = MAX_AMOUNT * Math.random();
23 bank.transfer(0, 1, amount);
24 Thread.sleep((int) (DELAY * Math.random()));
25 }
26 }
27 catch (InterruptedException e)
28 {
29 }
30 };
31
32 Runnable task2 = () ->
33 {
34 try
35 {
36 for (int i = 0; i < STEPS; i++)
37 {
38 double amount = MAX_AMOUNT * Math.random();
39 bank.transfer(2, 3, amount);
40 Thread.sleep((int) (DELAY * Math.random()));

41 }
42 }
43 catch (InterruptedException e)
44 {
45 }
46 };
47
48 new Thread(task1).start();
49 new Thread(task2).start();
50 }
51 }

Listing 12.2 threads/Bank.java

 1 package threads;
 2
 3 import java.util.*;
 4
 5 /**
 6 * A bank with a number of bank accounts.
 7 */
 8 public class Bank
 9 {
10 private final double[] accounts;
11
12 /**
13 * Constructs the bank.
14 * @param n the number of accounts
15 * @param initialBalance the initial balance for each
account
16 */
17 public Bank(int n, double initialBalance)
18 {
19 accounts = new double[n];
20 Arrays.fill(accounts, initialBalance);
21 }
22
23 /**

24 * Transfers money from one account to another.
25 * @param from the account to transfer from
26 * @param to the account to transfer to
27 * @param amount the amount to transfer
28 */
29 public void transfer(int from, int to, double amount)
30 {
31 if (accounts[from] < amount) return;
32 System.out.print(Thread.currentThread());
33 accounts[from] -= amount;
34 System.out.printf(" %10.2f from %d to %d", amount, from,
to);
35 accounts[to] += amount;
36 System.out.printf(" Total Balance: %10.2f%n",
getTotalBalance());
37 }
38
39 /**
40 * Gets the sum of all account balances.
41 * @return the total balance
42 */
43 public double getTotalBalance()
44 {
45 double sum = 0;
46
47 for (double a : accounts)
48 sum += a;49
50 return sum;
51 }
52
53 /**
54 * Gets the number of accounts in the bank.
55 * @return the number of accounts
56 */
57 public int size()
58 {
59 return accounts.length;
60 }
61 }

java.lang.Thread 1.0

• Thread(Runnable target)
constructs a new thread that calls the run() method of the specified
target.

• void start()
starts this thread, causing the run() method to be called. This method
will return immediately. The new thread runs concurrently.

• void run()
calls the run method of the associated Runnable.

• static void sleep(long millis)
sleeps for the given number of milliseconds.

java.lang.Runnable 1.0

• void run()
must be overridden and supplied with instructions for the task that
you want to have executed.

12.2 Thread States

Threads can be in one of six states:

• New
• Runnable
• Blocked
• Waiting

• Timed waiting
• Terminated

Each of these states is explained in the sections that follow.

To determine the current state of a thread, simply call the getState method.

12.2.1 New Threads

When you create a thread with the new operator—for example, new

Thread(r)—the thread is not yet running. This means that it is in the new
state. When a thread is in the new state, the program has not started
executing code inside of it. A certain amount of bookkeeping needs to be
done before a thread can run.

12.2.2 Runnable Threads

Once you invoke the start method, the thread is in the runnable state. A
runnable thread may or may not actually be running. It is up to the operating
system to give the thread time to run. (The Java specification does not call
this a separate state, though. A running thread is still in the runnable state.)

Once a thread is running, it doesn’t necessarily keep running. In fact, it is
desirable that running threads occasionally pause so that other threads have a
chance to run. The details of thread scheduling depend on the services that
the operating system provides. Preemptive scheduling systems give each
runnable thread a slice of time to perform its task. When that slice of time is
exhausted, the operating system preempts the thread and gives another
thread an opportunity to work (see Figure 12.2). When selecting the next
thread, the operating system takes into account the thread priorities—see
Section 12.3.5, “Thread Priorities,” on p. 763 for more information.

All modern desktop and server operating systems use preemptive
scheduling. However, small devices such as cell phones may use cooperative
scheduling. In such a device, a thread loses control only when it calls the
yield method, or when it is blocked or waiting.

On a machine with multiple processors, each processor can run a thread, and
you can have multiple threads run in parallel. Of course, if there are more
threads than processors, the scheduler still has to do time slicing.

Always keep in mind that a runnable thread may or may not be running at
any given time. (This is why the state is called “runnable” and not
“running.”)

java.lang.Thread 1.0

• static void yield()
causes the currently executing thread to yield to another thread. Note
that this is a static method.

12.2.3 Blocked and Waiting Threads

When a thread is blocked or waiting, it is temporarily inactive. It doesn’t
execute any code and consumes minimal resources. It is up to the thread
scheduler to reactivate it. The details depend on how the inactive state was
reached.

• When the thread tries to acquire an intrinsic object lock (but not a Lock in
the java.util.concurrent library) that is currently held by another thread,
it becomes blocked. (We discuss java.util.concurrent locks in Section
12.4.3, “Lock Objects,” on p. 769 and intrinsic object locks in Section
12.4.5, “The synchronized Keyword,” on p. 778.) The thread becomes
unblocked when all other threads have relinquished the lock and the thread
scheduler has allowed this thread to hold it.

• When the thread waits for another thread to notify the scheduler of a
condition, it enters the waiting state. We discuss conditions in Section
12.4.4, “Condition Objects,” on p. 772. This happens by calling the
Object.wait or Thread.join method, or by waiting for a Lock or Condition
in the java.util.concurrent library. In practice, the difference between the
blocked and waiting state is not significant.

• Several methods have a timeout parameter. Calling them causes the thread
to enter the timed waiting state. This state persists either until the timeout
expires or the appropriate notification has been received. Methods with
timeout include Thread.sleep and the timed versions of Object.wait,
Thread.join, Lock.tryLock, and Condition.await.

Figure 12.1 shows the states that a thread can have and the possible
transitions from one state to another. When a thread is blocked or waiting
(or, of course, when it terminates), another thread will be scheduled to run.
When a thread is reactivated (for example, because its timeout has expired or
it has succeeded in acquiring a lock), the scheduler checks to see if it has a
higher priority than the currently running threads. If so, it preempts one of
the current threads and picks a new thread to run.

Figure 12.1 Thread states

12.2.4 Terminated Threads

A thread is terminated for one of two reasons:

• It dies a natural death because the run method exits normally.
• It dies abruptly because an uncaught exception terminates the run method.

In particular, you can kill a thread by invoking its stop method. That method
throws a ThreadDeath error object that kills the thread. However, the stop
method is deprecated, and you should never call it in your own code.

java.lang.Thread 1.0

• void join()
waits for the specified thread to terminate.

• void join(long millis)
waits for the specified thread to die or for the specified number of
milliseconds to pass.

• Thread.State getState() 5
gets the state of this thread: one of NEW, RUNNABLE, BLOCKED, WAITING,
TIMED_WAITING, or TERMINATED.

• void stop()
stops the thread. This method is deprecated.

• void suspend()
suspends this thread’s execution. This method is deprecated for
removal.

• void resume()
resumes this thread. This method is only valid after suspend() has
been invoked. This method is deprecated for removal.

12.3 Thread Properties

In the following sections, we discuss miscellaneous properties of threads: the
interrupted status, daemon threads, handlers for uncaught exceptions, as well

as some legacy features that you should not use.

12.3.1 Interrupting Threads

A thread terminates when its run method returns—by executing a return
statement, after executing the last statement in the method body, or if an
exception occurs that is not caught in the method. In the initial release of
Java, there also was a stop method that another thread could call to
terminate a thread. However, that method is now deprecated. We discuss the
reason in Section 12.4.12, “Why the stop and suspend Methods Are
Deprecated,” on p. 793.

Other than with the deprecated stop method, there is no way to force a
thread to terminate. However, the interrupt method can be used to request
termination of a thread.

When the interrupt method is called on a thread, the interrupted status of
the thread is set. This is a boolean flag that is present in every thread. Each
thread should occasionally check whether it has been interrupted.

To find out whether the interrupted status was set, first call the static
Thread.currentThread method to get the current thread, and then call the
isInterrupted method:

while (!Thread.currentThread().isInterrupted() && more work to
do)
{
 do more work
}

However, if a thread is blocked, it cannot check the interrupted status. This
is where the InterruptedException comes in. When the interrupt method is
called on a thread that blocks on a call such as sleep or wait, the blocking
call is terminated by an InterruptedException. (There are blocking I/O calls
that cannot be interrupted; you should consider interruptible alternatives. See
Chapters 2 and 4 of Volume II for details.)

There is no language requirement that a thread which is interrupted should
terminate. Interrupting a thread simply grabs its attention. The interrupted
thread can decide how to react to the interruption. Some threads are so
important that they should handle the exception and continue. But quite
commonly, a thread will simply want to interpret an interruption as a request
for termination. The run method of such a thread has the following form:

Runnable r = () ->
 {
 try
 {
 . . .

 while (!Thread.currentThread().isInterrupted() && more
work to do)
 {

 do more work
 }
 }
 catch(InterruptedException e)
 {
 // thread was interrupted during sleep or wait
 }
 finally
 {

 cleanup, if required
 }
 // exiting the run method terminates the thread
 };

The isInterrupted check is neither necessary nor useful if you call the sleep
method (or another interruptible method) after every work iteration. If you
call the sleep method when the interrupted status is set, it doesn’t sleep.
Instead, it clears the status (!) and throws an InterruptedException.
Therefore, if your loop calls sleep, don’t check the interrupted status.
Instead, catch the InterruptedException, like this:

Runnable r = () ->
 {

 try
 {
 . . .

 while (more work to do)
 {

 do more work
 Thread.sleep(delay);
 }
 }
 catch(InterruptedException e)
 {
 // thread was interrupted during sleep
 }
 finally
 {

 cleanup, if required
 }
 // exiting the run method terminates the thread
 };

 NOTE:
There are two very similar methods, interrupted and isInterrupted. The
interrupted method is a static method that checks whether the current
thread has been interrupted. Furthermore, calling the interrupted method
clears the interrupted status of the thread. On the other hand, the
isInterrupted method is an instance method that you can use to check
whether any thread has been interrupted. Calling it does not change the
interrupted status.

You’ll find lots of published code in which the InterruptedException is
squelched at a low level, like this:

void mySubTask()
{

 . . .
 try
 {
 sleep(delay);
 }
 catch (InterruptedException e)
 {
 }
 // don't ignore!
 . . .
}

Don’t do that! If you can’t think of anything good to do in the catch clause,
you still have two reasonable choices:

• In the catch clause, call Thread.currentThread().interrupt() to set the
interrupted status. Then the caller can test it.

void mySubTask()
{
 . . .
 try
 {
 sleep(delay);
 }
 catch (InterruptedException e)
 {
 Thread.currentThread().interrupt();
 }
 . . .
}

• Or, even better, tag your method with throws InterruptedException and
drop the try block. Then the caller (or, ultimately, the run method) can
catch it.

void mySubTask() throws InterruptedException
{
 . . .

 sleep(delay);
 . . .
}

java.lang.Thread 1.0

• void interrupt()
sends an interrupt request to a thread. The interrupted status of the
thread is set to true. If the thread is currently blocked by a call to
sleep, then an InterruptedException is thrown.

• static boolean interrupted()
tests whether the current thread (that is, the thread that is executing
this instruction) has been interrupted. Note that this is a static
method. The call has a side effect—it resets the interrupted status of
the current thread to false.

• boolean isInterrupted()
tests whether a thread has been interrupted. Unlike the static
interrupted method, this call does not change the interrupted status
of the thread.

• static Thread currentThread()
returns the Thread object representing the currently executing thread.

12.3.2 Daemon Threads

You can turn a thread into a daemon thread by calling

t.setDaemon(true);

There is nothing demonic about such a thread. A daemon is simply a thread
that has no other role in life than to serve others. Examples are timer threads
that send regular “timer ticks” to other threads or threads that clean up stale

cache entries. When only daemon threads remain, the virtual machine exits.
There is no point in keeping the program running if all remaining threads are
daemons.

java.lang.Thread 1.0

• void setDaemon(boolean isDaemon)
marks this thread as a daemon thread or a user thread. This method
must be called before the thread is started.

12.3.3 Thread Names

By default, threads have catchy names such as Thread-2. You can set any
name with the setName method:

var t = new Thread(runnable);
t.setName("Web crawler");

That can be useful in thread dumps.

12.3.4 Handlers for Uncaught Exceptions

The run method of a thread cannot throw any checked exceptions, but it can
be terminated by an unchecked exception. In that case, the thread dies.

However, there is no catch clause to which the exception can be propagated.
Instead, just before the thread dies, the exception is passed to a handler for
uncaught exceptions.

The handler must belong to a class that implements the Thread.

UncaughtExceptionHandler interface. That interface has a single method,

void uncaughtException(Thread t, Throwable e)

You can install a handler into any thread with the
setUncaughtExceptionHandler method. You can also install a default handler
for all threads with the static method setDefaultUncaughtExceptionHandler
of the Thread class. A replacement handler might use the logging API to
send reports of uncaught exceptions into a log file.

If you don’t install a default handler, the default handler is null. However, if
you don’t install a handler for an individual thread, the handler is the
thread’s ThreadGroup object.

 NOTE:
A thread group is a collection of threads that can be managed together. By
default, all threads that you create belong to the same thread group, but it is
possible to establish other groupings. Since there are now better features for
operating on collections of threads, I recommend that you do not use thread
groups in your programs.

The ThreadGroup class implements the Thread.UncaughtExceptionHandler
interface. Its uncaughtException method takes the following action:

1. If the thread group has a parent, then the uncaughtException method of
the parent group is called.

2. Otherwise, if the Thread.getDefaultUncaughtExceptionHandler method
returns a non-null handler, it is called.

3. Otherwise, if the Throwable is an instance of ThreadDeath, nothing
happens.

4. Otherwise, the name of the thread and the stack trace of the Throwable
are printed on System.err.

That is the stack trace that you have undoubtedly seen many times in your
programs.

java.lang.Thread 1.0

• static void

setDefaultUncaughtExceptionHandler(Thread.UncaughtExceptionHa

ndler handler) 5
• static Thread.UncaughtExceptionHandler

getDefaultUncaughtExceptionHandler() 5
sets or gets the default handler for uncaught exceptions.

• void

setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler

handler) 5
• Thread.UncaughtExceptionHandler getUncaughtExceptionHandler()

5
sets or gets the handler for uncaught exceptions. If no handler is
installed, the thread group object is the handler.

java.lang.Thread.UncaughtExceptionHandler 5

• void uncaughtException(Thread t, Throwable e)
defined to log a custom report when a thread is terminated with an
uncaught exception.

java.lang.ThreadGroup 1.0

• void uncaughtException(Thread t, Throwable e)
calls this method of the parent thread group if there is a parent, or
calls the default handler of the Thread class if there is a default
handler, or otherwise prints a stack trace to the standard error stream.

(However, if e is a ThreadDeath object, the stack trace is suppressed.
ThreadDeath objects are generated by the deprecated stop method.)

12.3.5 Thread Priorities

In the Java programming language, every thread has a priority. By default, a
thread inherits the priority of the thread that constructed it. You can increase
or decrease the priority of any thread with the setPriority method. You can
set the priority to any value between MIN_PRIORITY (defined as 1 in the
Thread class) and MAX_PRIORITY (defined as 10). NORM_PRIORITY is defined as
5.

Whenever the thread scheduler has a chance to pick a new thread, it prefers
threads with higher priority. However, thread priorities are highly system-
dependent. When the virtual machine relies on the thread implementation of
the host platform, the Java thread priorities are mapped to the priority levels
of the host platform, which may have more or fewer thread priority levels.

For example, Windows has seven priority levels. Some of the Java priorities
will map to the same operating system level. In the Oracle JVM for Linux,
thread priorities are ignored altogether—all threads have the same priority.

Thread priorities may have been useful in early versions of Java that didn’t
use operating systems threads. You should not use them nowadays.

java.lang.Thread 1.0

• void setPriority(int newPriority)
sets the priority of this thread. The priority must be between
Thread.MIN_PRIORITY and Thread.MAX_PRIORITY. Use
Thread.NORM_PRIORITY for normal priority.

• static int MIN_PRIORITY
is the minimum priority that a Thread can have. The minimum
priority value is 1.

• static int NORM_PRIORITY
is the default priority of a Thread. The default priority is 5.

• static int MAX_PRIORITY
is the maximum priority that a Thread can have. The maximum
priority value is 10.

12.4 Synchronization

In most practical multithreaded applications, two or more threads need to
share access to the same data. What happens if two threads have access to
the same object and each calls a method that modifies the state of the object?
As you might imagine, the threads can step on each other’s toes. Depending
on the order in which the data were accessed, corrupted objects can result.
Such a situation is often called a race condition.

12.4.1 An Example of a Race Condition

To avoid corruption of shared data by multiple threads, you must learn how
to synchronize the access. In this section, you’ll see what happens if you do
not use synchronization. In the next section, you’ll see how to synchronize
data access.

In the next test program, we continue working with our simulated bank.
Unlike the example in Section 12.1, “What Are Threads?,” on p. 748, we
randomly select the source and destination of the transfer. Since this will
cause problems, let us look more carefully at the code for the transfer
method of the Bank class.

public void transfer(int from, int to, double amount)
 // CAUTION: unsafe when called from multiple threads
{
 System.out.print(Thread.currentThread());
 accounts[from] -= amount;
 System.out.printf(" %10.2f from %d to %d", amount, from,
to);

 accounts[to] += amount;
 System.out.printf(" Total Balance: %10.2f%n",
getTotalBalance());
}

Here is the code for the Runnable instances. The run method keeps moving
money out of a given bank account. In each iteration, the run method picks a
random target account and a random amount, calls transfer on the bank
object, and then sleeps.

Runnable r = () ->
 {
 try
 {
 while (true)
 {
 int toAccount = (int) (bank.size() *
Math.random());
 double amount = MAX_AMOUNT * Math.random();
 bank.transfer(fromAccount, toAccount,
amount); Thread.sleep((int) (DELAY *
Math.random()));
 }
 }
 catch (InterruptedException e)
 {
 }
 };

When this simulation runs, we do not know how much money is in any one
bank account at any time. But we do know that the total amount of money in
all the accounts should remain unchanged because all we do is move money
from one account to another.

At the end of each transaction, the transfer method recomputes the total and
prints it.

This program never finishes. Just press Ctrl+C to kill the program.

Here is a typical printout:

. . .
Thread[Thread-11,5,main] 588.48 from 11 to 44 Total
Balance: 100000.00
Thread[Thread-12,5,main] 976.11 from 12 to 22 Total
Balance: 100000.00
Thread[Thread-14,5,main] 521.51 from 14 to 22 Total
Balance: 100000.00
Thread[Thread-13,5,main] 359.89 from 13 to 81 Total
Balance: 100000.00
. . .
Thread[Thread-36,5,main] 401.71 from 36 to 73 Total
Balance: 99291.06
Thread[Thread-35,5,main] 691.46 from 35 to 77 Total
Balance: 99291.06
Thread[Thread-37,5,main] 78.64 from 37 to 3 Total
Balance: 99291.06
Thread[Thread-34,5,main] 197.11 from 34 to 69 Total
Balance: 99291.06
Thread[Thread-36,5,main] 85.96 from 36 to 4 Total
Balance: 99291.06
. . .
Thread[Thread-4,5,main]Thread[Thread-33,5,main] 7.31 from
31 to 32 Total Balance:
99979.24
 627.50 from 4 to 5 Total Balance: 99979.24
. . .

As you can see, something is very wrong. For a few transactions, the bank
balance remains at $100,000, which is the correct total for 100 accounts of
$1,000 each. But after some time, the balance changes slightly. When you
run this program, errors may happen quickly, or it may take a very long time
for the balance to become corrupted. This situation does not inspire
confidence, and you would probably not want to deposit your hard-earned
money in such a bank.

See if you can spot the problems with the code in Listing 12.3 and the Bank
class in Listing 12.2. We will unravel the mystery in the next section.

Listing 12.3 unsynch/UnsynchBankTest.java

 1 package unsynch;
 2
 3 /**
 4 * This program shows data corruption when multiple threads
access a data structure.
 5 * @version 1.32 2018-04-10
 6 * @author Cay Horstmann
 7 */
 8 public class UnsynchBankTest
 9 {
10 public static final int NACCOUNTS = 100;
11 public static final double INITIAL_BALANCE = 1000;
12 public static final double MAX_AMOUNT = 1000;
13 public static final int DELAY = 10;
14
15 public static void main(String[] args)
16 {
17 var bank = new Bank(NACCOUNTS, INITIAL_BALANCE);
18 for (int i = 0; i < NACCOUNTS; i++)
19 {
20 int fromAccount = i;
21 Runnable r = () ->
22 {
23 try
24 {
25 while (true)
26 {
27 int toAccount = (int) (bank.size() *
Math.random());
28 double amount = MAX_AMOUNT *
Math.random();
29 bank.transfer(fromAccount, toAccount,
amount);
30 Thread.sleep((int) (DELAY *

Math.random()));
31 }
32 }
33 catch (InterruptedException e)
34 {
35 }
36 };
37 var t = new Thread(r);
38 t.start();
39 }
40 }
41 }

12.4.2 The Race Condition Explained

In the previous section, we ran a program in which several threads updated
bank account balances. After a while, errors crept in and some amount of
money was either lost or spontaneously created. This problem occurs when
two threads are simultaneously trying to update an account. Suppose two
threads simultaneously carry out the instruction

accounts[to] += amount;

The problem is that these are not atomic operations. The instruction might be
processed as follows:

1. Load accounts[to] into a register.
2. Add amount.
3. Move the result back to accounts[to].

Now, suppose the first thread executes Steps 1 and 2, and then it is
preempted. Suppose the second thread awakens and updates the same entry
in the account array. Then, the first thread awakens and completes its Step 3.

That action wipes out the modification of the other thread. As a result, the
total is no longer correct (see Figure 12.2).

Figure 12.2 Simultaneous access by two threads

Our test program detects this corruption. (Of course, there is a slight chance
of false alarms if the thread is interrupted as it is performing the tests!)

 NOTE:
You can actually peek at the virtual machine bytecodes that execute each
statement in our class. Run the command

javap -c -v Bank

to decompile the Bank.class file. For example, the line

accounts[to] += amount;

is translated into the following bytecodes:

aload_0
getfield #2; //Field accounts:[D
iload_2
dup2
daload
dload_3
dadd
dastore

What these codes mean does not matter. The point is that the increment
command is made up of several instructions, and the thread executing them
can be interrupted at any instruction.

What is the chance of this corruption occurring? On a modern processor with
multiple cores, the risk of corruption is quite high. I boosted the chance of
observing the problem on a single-core processor by interleaving the print
statements with the statements that update the balance.

If you omit the print statements, the risk of corruption is lower because each
thread does so little work before going to sleep again, and it is unlikely that
the scheduler will preempt it in the middle of the computation. However, the
risk of corruption does not go away completely. If you run lots of threads on
a heavily loaded machine, the program will still fail even after you have
eliminated the print statements. The failure may take a few minutes or hours
or days to occur. Frankly, there are few things worse in the life of a
programmer than an error that only manifests itself irregularly.

The real problem is that the work of the transfer method can be interrupted
in the middle. If we could ensure that the method runs to completion before

the thread loses control, the state of the bank account object would never be
corrupted.

12.4.3 Lock Objects

There are two mechanisms for protecting a code block from concurrent
access. The Java language provides a synchronized keyword for this
purpose, and Java 5 introduced the ReentrantLock class. The synchronized
keyword automatically provides a lock as well as an associated “condition,”
which makes it powerful and convenient for most cases that require explicit
locking. However, I believe that it is easier to understand the synchronized
keyword after you have seen locks and conditions in isolation. The
java.util.concurrent framework provides separate classes for these
fundamental mechanisms, which I explain here and in Section 12.4.4,
“Condition Objects,” on p. 772. Once you have understood these building
blocks, I present the synchronized keyword in Section 12.4.5, “The
synchronized Keyword,” on p. 778.

The basic outline for protecting a code block with a ReentrantLock is:

myLock.lock(); // a ReentrantLock object
try
{

 critical section
}
finally
{
 myLock.unlock(); // make sure the lock is unlocked even if
an exception is thrown
}

This construct guarantees that only one thread at a time can enter the critical
section. As soon as one thread locks the lock object, no other thread can get
past the lock statement. When other threads call lock, they are deactivated
until the first thread unlocks the lock object.

 CAUTION:
It is critically important that the unlock operation is enclosed in a finally
clause. If the code in the critical section throws an exception, the lock must
be unlocked. Otherwise, the other threads will be blocked forever.

 NOTE:
When you use locks, you cannot use the try-with-resources statement. First
off, the unlock method isn’t called close. But even if it was renamed, the
try-with-resources statement wouldn’t work. Its header expects the
declaration of a new variable. But when you use a lock, you want to keep
using the same variable that is shared among threads.

Let us use a lock to protect the transfer method of the Bank class.

public class Bank
{
 private Lock bankLock = new ReentrantLock();
 . . .
 public void transfer(int from, int to, int amount)
 {
 bankLock.lock();
 try
 {
 System.out.print(Thread.currentThread());
 accounts[from] -= amount;
 System.out.printf(" %10.2f from %d to %d", amount,
from, to);
 accounts[to] += amount;
 System.out.printf(" Total Balance: %10.2f%n",
getTotalBalance());
 }
 finally

 {
 bankLock.unlock();
 }
 }
}

Suppose one thread calls transfer and gets preempted before it is done.
Suppose a second thread also calls transfer. The second thread cannot
acquire the lock and is blocked in the call to the lock method. It is
deactivated and must wait for the first thread to finish executing the transfer
method. When the first thread unlocks the lock, then the second thread can
proceed (see Figure 12.3).

Try it out. Add the locking code to the transfer method and run the program
again. You can run it forever, and the bank balance will not become
corrupted.

Note that each Bank object has its own ReentrantLock object. If two threads
try to access the same Bank object, then the lock serves to serialize the
access. However, if two threads access different Bank objects, each thread
acquires a different lock and neither thread is blocked. This is as it should
be, because the threads cannot interfere with one another when they
manipulate different Bank instances.

The lock is called reentrant because a thread can repeatedly acquire a lock
that it already owns. The lock has a hold count that keeps track of the nested
calls to the lock method. The thread has to call unlock for every call to lock
in order to relinquish the lock. Because of this feature, code protected by a
lock can call another method that uses the same locks.

For example, the transfer method calls the getTotalBalance method, which
also locks the bankLock object, which now has a hold count of 2. When the
getTotalBalance method exits, the hold count is back to 1. When the
transfer method exits, the hold count is 0, and the thread relinquishes the
lock.

Figure 12.3 Comparison of unsynchronized and synchronized threads

In general, you will want to protect blocks of code that update or inspect a
shared object, so you can be assured that these operations run to completion
before another thread can use the same object.

 CAUTION:
Be careful to ensure that the code in a critical section is not bypassed by
throwing an exception. If an exception is thrown before the end of the

section, the finally clause will relinquish the lock, but the object may be in
a damaged state.

java.util.concurrent.locks.Lock 5

• void lock()
acquires this lock; blocks if the lock is currently owned by another
thread.

• void unlock()
releases this lock.

java.util.concurrent.locks.ReentrantLock 5

• ReentrantLock()
constructs a reentrant lock that can be used to protect a critical
section.

• ReentrantLock(boolean fair)
constructs a lock with the given fairness policy. A fair lock favors
the thread that has been waiting for the longest time. However, this
fairness guarantee can be a significant drag on performance.
Therefore, by default, locks are not required to be fair.

 CAUTION:
It sounds nice to be fair, but fair locks are a lot slower than regular locks.
You should only enable fair locking if you truly know what you are doing
and have a specific reason to consider fairness essential for your program.

Even if you use a fair lock, you have no guarantee that the thread scheduler
is fair. If the thread scheduler chooses to neglect a thread that has been
waiting a long time for the lock, it doesn’t get the chance to be treated fairly
by the lock.

12.4.4 Condition Objects

Often, a thread enters a critical section only to discover that it can’t proceed
until a condition is fulfilled. Use a condition object to manage threads that
have acquired a lock but cannot do useful work. In this section, I introduce
the implementation of condition objects in the Java library. (For historical
reasons, condition objects are often called condition variables.)

Let us refine our simulation of the bank. We do not want to transfer money
out of an account that does not have the funds to cover the transfer. Note that
we cannot use code like

if (bank.getBalance(from) >= amount)
 bank.transfer(from, to, amount);

It is entirely possible that the current thread will be deactivated between the
successful outcome of the test and the call to transfer.

if (bank.getBalance(from) >= amount)
 // thread might be deactivated at this point
 bank.transfer(from, to, amount);

By the time the thread is running again, the account balance may have fallen
below the withdrawal amount. You must make sure that no other thread can
modify the balance between the test and the transfer action. You do so by
protecting both the test and the transfer action with a lock:

public void transfer(int from, int to, int amount)
{
 bankLock.lock();

 try
 {
 while (accounts[from] < amount)
 {
 // wait
 . . .
 }
 // transfer funds
 . . .
 }
 finally
 {
 bankLock.unlock();
 }
}

Now, what do we do when there is not enough money in the account? We
wait until some other thread has added funds. But this thread has just gained
exclusive access to the bankLock, so no other thread has a chance to make a
deposit. This is where condition objects come in.

A lock object can have one or more associated condition objects. You obtain
a condition object with the newCondition method. It is customary to give
each condition object a name that evokes the condition that it represents. For
example, here we set up a condition object to represent the “sufficient funds”
condition.

class Bank
{
 private Condition sufficientFunds;
 . . .
 public Bank()
 {
 . . .
 sufficientFunds = bankLock.newCondition();
 }
}

If the transfer method finds that sufficient funds are not available, it calls

sufficientFunds.await();

The current thread is now deactivated and gives up the lock. This lets in
another thread that can, we hope, increase the account balance.

There is an essential difference between a thread that is waiting to acquire a
lock and a thread that has called await. Once a thread calls the await
method, it enters a wait set for that condition. The thread is not made
runnable when the lock is available. Instead, it stays deactivated until
another thread has called the signalAll method on the same condition.

When another thread has transferred money, it should call

sufficientFunds.signalAll();

This call reactivates all threads waiting for the condition. When the threads
are removed from the wait set, they are again runnable and the scheduler will
eventually activate them again. At that time, they will attempt to reenter the
object. As soon as the lock is available, one of them will acquire the lock
and continue where it left off, returning from the call to await.

At this time, the thread should test the condition again. There is no guarantee
that the condition is now fulfilled—the signalAll method merely signals to
the waiting threads that it may be fulfilled at this time and that it is worth
checking for the condition again.

 NOTE:
In general, a call to await should be inside a loop of the form

while (!(OK to proceed))
 condition.await();

It is crucially important that some other thread calls the signalAll method
eventually. When a thread calls await, it has no way of reactivating itself. It
puts its faith in the other threads. If none of them bother to reactivate the
waiting thread, it will never run again. This can lead to unpleasant deadlock
situations. If all other threads are blocked and the last active thread calls
await without unblocking one of the others, it also blocks. No thread is left
to unblock the others, and the program hangs.

When should you call signalAll? The rule of thumb is to call signalAll
whenever the state of an object changes in a way that might be advantageous
to waiting threads. For example, whenever an account balance changes, the
waiting threads should be given another chance to inspect the balance. In our
example, we call signalAll when we have finished the funds transfer.

public void transfer(int from, int to, int amount)
{
 bankLock.lock();
 try
 {
 while (accounts[from] < amount)
 sufficientFunds.await();
 // transfer funds . . .
 sufficientFunds.signalAll();
 }
 finally
 {
 bankLock.unlock();
 }
}

Note that the call to signalAll does not immediately activate a waiting
thread. It only unblocks the waiting threads so that they can compete for
entry into the object after the current thread has relinquished the lock.

Another method, signal, unblocks only a single thread from the wait set,
chosen at random. That is more efficient than unblocking all threads, but
there is a danger. If the randomly chosen thread finds that it still cannot

proceed, it becomes blocked again. If no other thread calls signal again, the
system deadlocks.

 CAUTION:
A thread can only call await, signalAll, or signal on a condition if it owns
the lock of the condition.

If you run the sample program in Listing 12.4, you will notice that nothing
ever goes wrong. The total balance stays at $100,000 forever. No account
ever has a negative balance. (Again, press Ctrl+C to terminate the program.)
You may also notice that the program runs a bit slower—that is the price you
pay for the added bookkeeping involved in the synchronization mechanism.

In practice, using conditions correctly can be quite challenging. Before you
start implementing your own condition objects, you should consider using
one of the constructs described in Section 12.5, “Thread-Safe Collections,”
on p. 797.

Listing 12.4 synch/Bank.java

 1 package synch;
 2
 3 import java.util.*;
 4 import java.util.concurrent.locks.*;
 5
 6 /**
 7 * A bank with a number of bank accounts that uses locks for
serializing access.
 8 */
 9 public class Bank10 {
11 private final double[] accounts;
12 private Lock bankLock;
13 private Condition sufficientFunds;
14

15 /**
16 * Constructs the bank.
17 * @param n the number of accounts
18 * @param initialBalance the initial balance for each
account
19 */
20 public Bank(int n, double initialBalance)
21 {
22 accounts = new double[n];
23 Arrays.fill(accounts, initialBalance);
24 bankLock = new ReentrantLock();
25 sufficientFunds = bankLock.newCondition();
26 }
27
28 /**
29 * Transfers money from one account to another.
30 * @param from the account to transfer from
31 * @param to the account to transfer to
32 * @param amount the amount to transfer
33 */
34 public void transfer(int from, int to, double amount)
throws InterruptedException
35 {
36 bankLock.lock();
37 try
38 {
39 while (accounts[from] < amount)
40 sufficientFunds.await();
41 System.out.print(Thread.currentThread());
42 accounts[from] -= amount;
43 System.out.printf(" %10.2f from %d to %d", amount,
from, to);
44 accounts[to] += amount;
45 System.out.printf(" Total Balance: %10.2f%n",
getTotalBalance());
46 sufficientFunds.signalAll();
47 }
48 finally
49 {

50 bankLock.unlock();
51 }
52 }
53
54 /**
55 * Gets the sum of all account balances.
56 * @return the total balance
57 */58 public double getTotalBalance()
59 {
60 bankLock.lock();
61 try
62 {
63 double sum = 0;
64
65 for (double a : accounts)
66 sum += a;
67
68 return sum;
69 }
70 finally
71 {
72 bankLock.unlock();
73 }
74 }
75
76 /**
77 * Gets the number of accounts in the bank.
78 * @return the number of accounts
79 */
80 public int size()
81 {
82 return accounts.length;
83 }
84 }

java.util.concurrent.locks.Lock 5

• Condition newCondition()

returns a condition object associated with this lock.

java.util.concurrent.locks.Condition 5

• void await()
puts this thread on the wait set for this condition.

• void signalAll()
unblocks all threads in the wait set for this condition.

• void signal()
unblocks one randomly selected thread in the wait set for this
condition.

12.4.5 The synchronized Keyword

In the preceding sections, you saw how to use Lock and Condition objects.
Before going any further, let us summarize the key points about locks and
conditions:

• A lock protects sections of code, allowing only one thread to execute the
code at a time.

• A lock manages threads that are trying to enter a protected code segment.
• A lock can have one or more associated condition objects.
• Each condition object manages threads that have entered a protected code

section but that cannot proceed.

The Lock and Condition interfaces give programmers a high degree of
control over locking. However, in most situations, you don’t need that
control—you can use a mechanism that is built into the Java language. Ever
since version 1.0, every object in Java has an intrinsic lock. If a method is
declared with the synchronized keyword, the object’s lock protects the entire

method. That is, to call the method, a thread must acquire the intrinsic object
lock.

In other words,

public synchronized void method()
{

 method body
}

is the equivalent of

public void method()
{

 this.intrinsicLock.lock();
 try
 {

 method body
 }
 finally
 {

 this.intrinsicLock.unlock();
 }
}

For example, instead of using an explicit lock, we can simply declare the
transfer method of the Bank class as synchronized.

The intrinsic object lock has a single associated condition. The wait method
adds a thread to the wait set, and the notifyAll/notify methods unblock
waiting threads. In other words, calling wait or notifyAll is the equivalent
of

intrinsicCondition.await();
intrinsicCondition.signalAll();

 NOTE:
The wait, notifyAll, and notify methods are final methods of the Object
class. The Condition methods had to be named await, signalAll, and
signal so that they don’t conflict with those methods.

For example, you can implement the Bank class in Java like this:

class Bank
{
 private double[] accounts;

 public synchronized void transfer(int from, int to, int
amount)
 throws InterruptedException
 {
 while (accounts[from] < amount)
 wait(); // wait on intrinsic object lock's single
condition
 accounts[from] -= amount;
 accounts[to] += amount;
 notifyAll(); // notify all threads waiting on the
condition
 }

 public synchronized double getTotalBalance()
 {
 . . .
 }
}

As you can see, using the synchronized keyword yields code that is much
more concise. Of course, to understand this code, you have to know that
each object has an intrinsic lock, and that the lock has an intrinsic condition.
The lock manages the threads that try to enter a synchronized method. The
condition manages the threads that have called wait.

 TIP:
Synchronized methods are relatively straightforward. However, beginners
often struggle with conditions. Before you use wait/notifyAll, you should
consider using one of the constructs described in Section 12.5, “Thread-Safe
Collections,” on p. 797.

It is also legal to declare static methods as synchronized. If such a method is
called, it acquires the intrinsic lock of the associated class object. For
example, if the Bank class has a static synchronized method, then the lock of
the Bank.class object is locked when it is called. As a result, no other thread
can call this or any other synchronized static method of the same class.

The intrinsic locks and conditions have some limitations. Among them:

• You cannot interrupt a thread that is trying to acquire a lock.
• You cannot specify a timeout when trying to acquire a lock.
• Having a single condition per lock can be inefficient.

What should you use in your code—Lock and Condition objects or
synchronized methods? Here is my recommendation:

• It is best to use neither Lock/Condition nor the synchronized keyword. In
many situations, you can use one of the mechanisms of the
java.util.concurrent package that do all the locking for you. For
example, in Section 12.5.1, “Blocking Queues,” on p. 797, you will see
how to use a blocking queue to synchronize threads that work on a
common task. You should also explore parallel streams—see Chapter 1 of
Volume II.

• If the synchronized keyword works for your situation, by all means, use it.
You’ll write less code and have less room for error. Listing 12.5 shows the
bank example, implemented with synchronized methods.

• Use Lock/Condition if you really need the additional power that these
constructs give you.

Listing 12.5 synch2/Bank.java

 1 package synch2;
 2
 3 import java.util.*;
 4
 5 /**
 6 * A bank with a number of bank accounts that uses
synchronization primitives.
 7 */
 8 public class Bank
 9 {
10 private final double[] accounts;
11
12 /**
13 * Constructs the bank.
14 * @param n the number of accounts
15 * @param initialBalance the initial balance for each
account
16 */17 public Bank(int n, double initialBalance)
18 {
19 accounts = new double[n];
20 Arrays.fill(accounts, initialBalance);
21 }
22
23 /**
24 * Transfers money from one account to another.
25 * @param from the account to transfer from
26 * @param to the account to transfer to
27 * @param amount the amount to transfer
28 */
29 public synchronized void transfer(int from, int to, double
amount)
30 throws InterruptedException
31 {
32 while (accounts[from] < amount)

33 wait();
34 System.out.print(Thread.currentThread());
35 accounts[from] -= amount;
36 System.out.printf(" %10.2f from %d to %d", amount,
from, to);
37 accounts[to] += amount;
38 System.out.printf(" Total Balance: %10.2f%n",
getTotalBalance());
39 notifyAll();
40 }
41
42 /**
43 * Gets the sum of all account balances.
44 * @return the total balance
45 */
46 public synchronized double getTotalBalance()
47 {
48 double sum = 0;
49
50 for (double a : accounts)
51 sum += a;
52
53 return sum;
54 }
55
56 /**
57 * Gets the number of accounts in the bank.
58 * @return the number of accounts
59 */
60 public int size()
61 {
62 return accounts.length;
63 }
64 }

java.lang.Object 1.0

• void notifyAll()
unblocks the threads that called wait on this object. This method can
only be called from within a synchronized method or block. The
method throws an IllegalMonitorStateException if the current
thread is not the owner of the object’s lock.

• void notify()
unblocks one randomly selected thread among the threads that called
wait on this object. This method can only be called from within a
synchronized method or block. The method throws an
IllegalMonitorStateException if the current thread is not the owner
of the object’s lock.

• void wait()
causes a thread to wait until it is notified. This method can only be
called from within a synchronized method or block. It throws an
IllegalMonitorStateException if the current thread is not the owner
of the object’s lock.

• void wait(long millis)
• void wait(long millis, int nanos)

causes a thread to wait until it is notified or until the specified
amount of time has passed. These methods can only be called from
within a synchronized method or block. They throw an
IllegalMonitorStateException if the current thread is not the owner
of the object’s lock. The number of nanoseconds may not exceed
1,000,000.

12.4.6 Synchronized Blocks

As we just discussed, every Java object has a lock. A thread can acquire the
lock by calling a synchronized method. There is a second mechanism for
acquiring the lock: by entering a synchronized block. When a thread enters a
block of the form

synchronized (obj) // this is the syntax for a synchronized
block
{

 critical section
}

then it acquires the lock for obj.

You will sometimes find “ad hoc” locks, such as

public class Bank
{
 private double[] accounts;
 private Lock lock = new Object(); . . .
 public void transfer(int from, int to, int amount)
 {
 synchronized (lock) // an ad-hoc lock
 {
 accounts[from] -= amount;
 accounts[to] += amount;
 }
 System.out.println(. . .);
 }
}

Here, the lock object is created only to use the lock that every Java object
possesses.

 CAUTION:
With synchronized blocks, be careful about the lock object. For example,
this will not work:

private final String lock = "LOCK";
. . .
synchronized (lock) { . . . } // Don't lock on string literal!

If this occurs twice in the same program, the locks are the same object since
string literals are shared. This can lead to a deadlock.

Also, stay away from using primitive type wrappers as locks:

private final Integer lock = new Integer(42); // Don't lock on
wrappers

The constructor call new Integer(0) is deprecated, and you don’t want a
maintenance programmer to change the call to Integer.valueOf(42). If
done twice with the same magic number, the lock will be accidentally
shared.

If you need to modify a static field, lock on the specific class, not on the
value returned by getClass():

synchronized (MyClass.class) { staticCounter++; } // OK
synchronized (getClass()) { staticCounter++; } // Don't

If the method containing this code is called from a subclass, then
getClass() returns a different Class object! You are no longer guaranteed
mutual exclusion!

In general, if you must use synchronized blocks, know your lock object! You
must use the same lock for all protected access paths, and nobody else must
use your lock.

Sometimes, programmers use the lock of an object to implement additional
atomic operations—a practice known as client-side locking. Consider, for
example, the Vector class, which is a list whose methods are synchronized.
Now suppose we stored our bank balances in a Vector<Double>. Here is a
naive implementation of a transfer method:

public void transfer(Vector<Double> accounts, int from, int to,
int amount) // ERROR
{
 accounts.set(from, accounts.get(from) - amount);
 accounts.set(to, accounts.get(to) + amount);
 System.out.println(. . .);
}

The get and set methods of the Vector class are synchronized, but that
doesn’t help us. It is entirely possible for a thread to be preempted in the
transfer

method after the first call to get has been completed. Another thread may
then store a different value into the same position. However, we can hijack
the lock:

public void transfer(Vector<Double> accounts, int from, int to,
int amount)
{
 synchronized (accounts)
 {
 accounts.set(from, accounts.get(from) - amount);
 accounts.set(to, accounts.get(to) + amount);
 }
 System.out.println(. . .);
}

This approach works, but it is entirely dependent on the fact that the Vector
class uses the intrinsic lock for all of its mutator methods. However, is this
really a fact? The documentation of the Vector class makes no such promise.
You have to carefully study the source code and hope that future versions do
not introduce unsynchronized mutators. As you can see, client-side locking
is very fragile and not generally recommended.

 NOTE:

The Java virtual machine has built-in support for synchronized methods.
However, synchronized blocks are compiled into a lengthy sequence of
bytecodes to manage the intrinsic lock.

12.4.7 The Monitor Concept

Locks and conditions are powerful tools for thread synchronization, but they
are not very object-oriented. For many years, researchers have looked for
ways to make multithreading safe without forcing programmers to think
about explicit locks. One of the most successful solutions is the monitor
concept that was pioneered by Per Brinch Hansen and Tony Hoare in the
1970s. In the terminology of Java, a monitor has these properties:

• A monitor is a class with only private fields.
• Each object of that class has an associated lock.
• All methods are locked by that lock. In other words, if a client calls
obj.method(), then the lock for obj is automatically acquired at the
beginning of the method call and relinquished when the method returns.
Since all fields are private, this arrangement ensures that no thread can
access the fields while another thread manipulates them.

• The lock can have any number of associated conditions.

Earlier versions of monitors had a single condition, with a rather elegant
syntax. You can simply call await accounts[from] >= amount without using
an explicit condition variable. However, research showed that indiscriminate
retesting of conditions can be inefficient. This problem is solved with
explicit condition variables, each managing a separate set of threads.

The Java designers loosely adapted the monitor concept. Every object in
Java has an intrinsic lock and an intrinsic condition. If a method is declared
with the synchronized keyword, it acts like a monitor method. The condition
variable is accessed by calling wait/notifyAll/notify.

However, a Java object differs from a monitor in three important ways,
compromising thread safety:

• Fields are not required to be private.
• Methods are not required to be synchronized.
• The intrinsic lock is available to clients.

This disrespect for security enraged Per Brinch Hansen. In a scathing review
of the multithreading primitives in Java, he wrote: “It is astounding to me
that Java’s insecure parallelism is taken seriously by the programming
community, a quarter of a century after the invention of monitors and
Concurrent Pascal. It has no merit” [Java’s Insecure Parallelism, ACM
SIGPLAN Notices 34:38–45, April 1999].

12.4.8 Volatile Fields

Sometimes, it seems excessive to pay the cost of synchronization just to read
or write an instance field or two. After all, what can go wrong?
Unfortunately, with modern processors and compilers, there is plenty of
room for error.

• Computers with multiple processors can temporarily hold memory values
in registers or local memory caches. As a consequence, threads running in
different processors may see different values for the same memory
location!

• Compilers can reorder instructions for maximum throughput. Compilers
won’t choose an ordering that changes the meaning of the code, but they
make the assumption that memory values are only changed when there are
explicit instructions in the code. However, a memory value can be changed
by another thread!

If you use locks to protect code that can be accessed by multiple threads, you
won’t have these problems. Compilers are required to respect locks by
flushing local caches as necessary and not inappropriately reordering
instructions. The details are explained in the Java Memory Model and
Thread Specification developed by JSR 133 (see
www.jcp.org/en/jsr/detail?id=133). Much of the specification is highly
complex and technical, but the document also contains a number of clearly

http://www.jcp.org/en/jsr/detail?id=133

explained examples. A more accessible overview article by Brian Goetz is
available at www.ibm.com/developerworks/library/j-jtp02244.

 NOTE:
Brian Goetz coined the following “synchronization motto”: “If you write a
variable which may next be read by another thread, or you read a variable
which may have last been written by another thread, you must use
synchronization.”

The volatile keyword offers a lock-free mechanism for synchronizing
access to an instance field. If you declare a field as volatile, then the
compiler and the virtual machine take into account that the field may be
concurrently updated by another thread.

For example, suppose an object has a boolean flag done that is set by one
thread and queried by another thread. As we already discussed, you can use
a lock:

private boolean done;
public synchronized boolean isDone() { return done; }
public synchronized void setDone() { done = true; }

Perhaps it is not a good idea to use the intrinsic object lock. The isDone and
setDone methods can block if another thread has locked the object. If that is
a concern, one can use a separate lock just for this variable. But this is
getting to be a lot of trouble.

In this case, it is reasonable to declare the field as volatile:

private volatile boolean done;
public boolean isDone() { return done; }
public void setDone() { done = true; }

The compiler will insert the appropriate code to ensure that a change to the
done variable in one thread is visible from any other thread that reads the
variable.

 CAUTION:
Volatile variables do not provide any atomicity. For example, the method

public void flipDone() { done = !done; } // not atomic

is not guaranteed to flip the value of the field. There is no guarantee that the
reading, flipping, and writing is uninterrupted.

12.4.9 Final Variables

As you saw in the preceding section, you cannot safely read a field from
multiple threads unless you use locks or the volatile modifier.

There is one other situation in which it is safe to access a shared field—when
it is declared final. Consider

final var accounts = new HashMap<String, Double>();

Other threads get to see the accounts variable after the constructor has
finished.

Without using final, there would be no guarantee that other threads would
see the updated value of accounts—they might all see null, not the
constructed HashMap.

Of course, the operations on the map are not thread-safe. If multiple threads
mutate and read the map, you still need synchronization.

12.4.10 Atomics

You can declare shared variables as volatile provided you perform no
operations other than assignment.

There are a number of classes in the java.util.concurrent.atomic package
that use efficient machine-level instructions to guarantee atomicity of other
operations without using locks. For example, the AtomicInteger class has
methods incrementAndGet and decrementAndGet that atomically increment or
decrement an integer. For example, you can safely generate a sequence of
numbers like this:

public static AtomicLong nextNumber = new AtomicLong();
// in some thread. . .
long id = nextNumber.incrementAndGet();

The incrementAndGet method atomically increments the AtomicLong and
returns the post-increment value. That is, the operations of getting the value,
adding 1, setting it, and producing the new value cannot be interrupted. It is
guaranteed that the correct value is computed and returned, even if multiple
threads access the same instance concurrently.

There are methods for atomically setting, adding, and subtracting values, but
if you want to make a more complex update, you have to use the
compareAndSet method. For example, suppose you want to keep track of the
largest value that is observed by different threads. The following won’t
work:

public static AtomicLong largest = new AtomicLong();
// in some thread. . .
largest.set(Math.max(largest.get(), observed)); // ERROR--race
condition!

This update is not atomic. Instead, provide a lambda expression for updating
the variable, and the update is done for you. In our example, we can call

largest.updateAndGet(x -> Math.max(x, observed));

or

largest.accumulateAndGet(observed, Math::max);

The accumulateAndGet method takes a binary operator that is used to
combine the atomic value and the supplied argument.

There are also methods getAndUpdate and getAndAccumulate that return the
old value.

 NOTE:
These methods are also provided for the classes AtomicInteger,
AtomicIntegerArray, AtomicIntegerFieldUpdater, AtomicLongArray,
AtomicLongFieldUpdater, AtomicReference, AtomicReferenceArray, and
AtomicReferenceFieldUpdater.

When you have a very large number of threads accessing the same atomic
values, performance suffers because the optimistic updates require too many
retries. The LongAdder and LongAccumulator classes solve this problem. A
LongAdder is composed of multiple variables whose collective sum is the
current value. Multiple threads can update different summands, and new
summands are automatically provided when the number of threads increases.
This is efficient in the common situation where the value of the sum is not
needed until after all work has been done. The performance improvement
can be substantial.

If you anticipate high contention, you should simply use a LongAdder instead
of an AtomicLong. The method names are slightly different. Call increment to
increment a counter or add to add a quantity, and sum to retrieve the total.

var adder = new LongAdder();
for (. . .)
 pool.submit(() ->
 {
 while (. . .)

 {
 . . .
 if (. . .) adder.increment();
 }
 });
. . .
long total = adder.sum();

 NOTE:
Of course, the increment method does not return the old value. Doing that
would undo the efficiency gain of splitting the sum into multiple summands.

The LongAccumulator generalizes this idea to an arbitrary accumulation
operation. In the constructor, you provide the operation, as well as its neutral
element. To incorporate new values, call accumulate. Call get to obtain the
current value. The following has the same effect as a LongAdder:

var adder = new LongAccumulator(Long::sum, 0);
// in some thread. . .
adder.accumulate(value);

Internally, the accumulator has variables a1, a2, . . ., an. Each variable is
initialized with the neutral element (0 in our example).

When accumulate is called with value v, then one of them is atomically
updated as ai = ai op v, where op is the accumulation operation written in
infix form. In our example, a call to accumulate computes ai = ai + v for
some i.

The result of get is a1 op a2 op . . . op an. In our example, that is the sum of
the accumulators, a1 + a2 + . . . + an.

If you choose a different operation, you can compute maximum or
minimum. In general, the operation must be associative and commutative.
That means that the final result must be independent of the order in which
the intermediate values were combined.

There are also DoubleAdder and DoubleAccumulator that work in the same
way, except with double values.

12.4.11 Deadlocks

Locks and conditions cannot solve all problems that might arise in
multithreading. Consider the following situation:

1. Account 1: $200
2. Account 2: $300
3. Thread 1: Transfer $300 from Account 1 to Account 2
4. Thread 2: Transfer $400 from Account 2 to Account 1

As Figure 12.4 indicates, Threads 1 and 2 are clearly blocked. Neither can
proceed because the balances in Accounts 1 and 2 are insufficient.

Figure 12.4 A deadlock situation

It is possible that all threads get blocked because each is waiting for more
money. Such a situation is called a deadlock.

In our program, a deadlock cannot occur for a simple reason. Each transfer
amount is for, at most, $1,000. Since there are 100 accounts and a total of
$100,000 in them, at least one of the accounts must have at least $1,000 at
any time. The thread moving money out of that account can therefore
proceed.

But if you change the run method of the threads to remove the $1,000
transaction limit, deadlocks can occur quickly. Try it out. Set NACCOUNTS to
10. Construct each transfer runnable with a max value of 2 *

INITIAL_BALANCE and run the program. The program will run for a while and
then hang.

 TIP:
When the program hangs, press Ctrl+\. You will get a thread dump that lists
all threads. Each thread has a stack trace, telling you where it is currently
blocked. Alternatively, run jconsole, as described in Chapter 7, and consult
the Threads panel (see Figure 12.5).

Figure 12.5 The Threads panel in jconsole

Another way to create a deadlock is to make the ith thread responsible for
putting money into the ith account, rather than for taking it out of the ith
account. In this case, there is a chance that all threads will gang up on one
account, each trying to remove more money from it than it contains. Try it
out. In the SynchBankTest program, turn to the run method of the
TransferRunnable class. In the call to transfer, flip fromAccount and
toAccount. Run the program and see how it deadlocks almost immediately.

Here is another situation in which a deadlock can occur easily. Change the
signalAll method to signal in the SynchBankTest program. You will find
that the program eventually hangs. (Again, set NACCOUNTS to 10 to observe the

effect more quickly.) Unlike signalAll, which notifies all threads that are
waiting for added funds, the signal method unblocks only one thread. If that
thread can’t proceed, all threads can be blocked. Consider the following
sample scenario of a developing deadlock:

1. Account 1: $1,990
2. All other accounts: $990 each
3. Thread 1: Transfer $995 from Account 1 to Account 2
4. All other threads: Transfer $995 from their account to another account

Clearly, all threads but Thread 1 are blocked, because there isn’t enough
money in their accounts.

Thread 1 proceeds. Afterward, we have the following situation:

1. Account 1: $995
2. Account 2: $1,985
3. All other accounts: $990 each

Then, Thread 1 calls signal. The signal method picks a thread at random to
unblock. Suppose it picks Thread 3. That thread is awakened, finds that there
isn’t enough money in its account, and calls await again. But Thread 1 is
still running. A new random transaction is generated, say,

1. Thread 1: Transfer $997 from Account 1 to Account 2

Now, Thread 1 also calls await, and all threads are blocked. The system has
deadlocked.

The culprit here is the call to signal. It only unblocks one thread, and it may
not pick the thread that is essential to make progress. (In our scenario,
Thread 2 must proceed to take money out of Account 2.)

Unfortunately, there is nothing in the Java programming language to avoid
or break these deadlocks. You must design your program to ensure that a
deadlock situation cannot occur.

12.4.12 Why the stop and suspend Methods Are Deprecated

The initial release of Java defined a stop method that simply terminates a
thread, and a suspend method that blocks a thread until another thread calls
resume. The stop and suspend methods have something in common: Both
attempt to control the behavior of a given thread without the thread’s
cooperation.

The stop, suspend, and resume methods have been deprecated. The stop
method is inherently unsafe, and experience has shown that the suspend
method frequently leads to deadlocks. In this section, you will see why these
methods are problematic and what you can do to avoid problems.

Let us turn to the stop method first. This method terminates all pending
methods, including the run method. When a thread is stopped, it
immediately gives up the locks on all objects that it has locked. This can
leave objects in an inconsistent state. For example, suppose a
TransferRunnable is stopped in the middle of moving money from one
account to another, after the withdrawal and before the deposit. Now the
bank object is damaged. Since the lock has been relinquished, the damage is
observable from the other threads that have not been stopped.

When a thread wants to stop another thread, it has no way of knowing when
the stop method is safe and when it leads to damaged objects. Therefore, the
method has been deprecated. You should interrupt a thread when you want it
to stop. The interrupted thread can then stop when it is safe to do so.

 NOTE:
Some authors claim that the stop method has been deprecated because it can
cause objects to be permanently locked by a stopped thread. However, that
claim is not valid. A stopped thread exits all synchronized methods it has
called—technically, by throwing a ThreadDeath exception. As a
consequence, the thread relinquishes the intrinsic object locks that it holds.

Next, let us see what is wrong with the suspend method. Unlike stop,
suspend won’t damage objects. However, if you suspend a thread that owns a
lock, then the lock is unavailable until the thread is resumed. If the thread
that calls the suspend method tries to acquire the same lock, the program
deadlocks: The suspended thread waits to be resumed, and the suspending
thread waits for the lock.

This situation occurs frequently in graphical user interfaces. Suppose we
have a graphical simulation of our bank. A button labeled Pause suspends
the transfer threads, and a button labeled Resume resumes them.

pauseButton.addActionListener(event ->
 {
 for (int i = 0; i < threads.length; i++)
 threads[i].suspend(); // don't do this
 });

resumeButton.addActionListener(event ->
 {
 for (int i = 0; i < threads.length; i++)
 threads[i].resume();
 });

Suppose a paintComponent method paints a chart of each account, calling a
getBalances method to get an array of balances.

As you will see in Section 12.7.3, “Long-Running Tasks in User Interface
Callbacks,” on p. 839, both the button actions and the repainting occur in the
same thread, the event dispatch thread. Consider the following scenario:

1. One of the transfer threads acquires the lock of the bank object.
2. The user clicks the Pause button.
3. All transfer threads are suspended; one of them still holds the lock on the

bank object.
4. For some reason, the account chart needs to be repainted.
5. The paintComponent method calls the getBalances method.
6. That method tries to acquire the lock of the bank object.

Now the program is frozen.

The event dispatch thread can’t proceed because the lock is owned by one of
the suspended threads. Thus, the user can’t click the Resume button, and the
threads won’t ever resume.

If you want to safely suspend a thread, introduce a variable
suspendRequested and test it in a safe place of your run method—in a place
where your thread doesn’t lock objects that other threads need. When your
thread finds that the suspendRequested variable has been set, it should keep
waiting until it becomes available again.

12.4.13 On-Demand Initialization

Sometimes, you have a data structure that you only want to initialize when it
is first needed. And you want to ensure that initialization happens exactly
once. Instead of designing your own mechanism, make use of the fact that
the virtual machine executes a static initializer exactly once when the class is
first used. The virtual machine ensures this with a lock, so you don’t have to
program your own.

public class OnDemandData
{
 // private constructor to ensure only one object is
constructed
 private OnDemandData()
 {
 . . .
 }

 public static OnDemandData getInstance()
 {
 return Holder.INSTANCE;
 }

 // only initialized on first use, i.e. in the first call to
getInstance
 private static Holder

 {
 // VM guarantees that this happens at most once
 static final OnDemandData INSTANCE = new OnDemandData();
 }
}

 CAUTION:
To use this idiom, you must ensure that the constructor doesn’t throw any
exceptions. The virtual machine will not make a second attempt to initialize
the holder class.

12.4.14 Thread-Local Variables

In the preceding sections, we discussed the risks of sharing variables
between threads. Sometimes, you can avoid sharing by giving each thread its
own instance, using the ThreadLocal helper class. For example, the
SimpleDateFormat class is not thread-safe. Suppose we have a static variable

public static final SimpleDateFormat dateFormat = new
SimpleDateFormat("yyyy-MM-dd");

If two threads execute an operation such as

String dateStamp = dateFormat.format(new Date());

then the result can be garbage since the internal data structures used by the
dateFormat can be corrupted by concurrent access. You could use
synchronization, which is expensive, or you could construct a local
SimpleDateFormat object whenever you need it, but that is also wasteful.

To construct one instance per thread, use the following code:

public static final ThreadLocal<SimpleDateFormat> dateFormat
 = ThreadLocal.withInitial(() -> new SimpleDateFormat("yyyy-
MM-dd"));

To access the actual formatter, call

String dateStamp = dateFormat.get().format(new Date());

The first time you call get in a given thread, the lambda in the constructor is
called. From then on, the get method returns the instance belonging to the
current thread.

A similar problem is the generation of random numbers in multiple threads.
The java.util.Random class is thread-safe. But it is still inefficient if
multiple threads need to wait for a single shared generator.

You could use the ThreadLocal helper to give each thread a separate
generator, but Java 7 provides a convenience class for you. Simply make a
call such as

int random = ThreadLocalRandom.current().nextInt(upperBound);

The call ThreadLocalRandom.current() returns a random number generator
instance that is unique to the current thread.

Thread-local variables are also sometimes used to make objects available to
all methods that collaborate on a task, without having to pass the object from
one caller to another. Suppose, for example, that you want to share a
database connection. Declare a variable

public static final ThreadLocal<Connection> connection =
ThreadLocal.withInitial(() -> null);

When the task starts, initialize the connection for this thread:

connection.set(connect(url, username, password));

The task calls some methods, all within the same thread, and eventually one
of them needs the connection:

var result = connection.get().executeQuery(query);

Note that the same call may happen on multiple threads. Each of them gets
its own connection object.

 CAUTION:
In the preceding example, it is crucially important that only one task uses
the thread. When executing tasks with a thread pool, you don’t want to
make your database connection available to the other tasks that share the
same thread.

java.lang.ThreadLocal<T> 1.2

• T get()
gets the current value of this thread. If get is called for the first time,
the value is obtained by calling initialize.

• void set(T t)
sets a new value for this thread.

• void remove()
removes the value for this thread.

• static <S> ThreadLocal<S> withInitial(Supplier<? extends S>
supplier) 8
creates a thread-local variable whose initial value is produced by
invoking the given supplier.

java.util.concurrent.ThreadLocalRandom 7

• static ThreadLocalRandom current()
returns an instance of the Random class that is unique to the current
thread.

12.5 Thread-Safe Collections

If multiple threads concurrently modify a data structure, such as a hash table,
it is easy to damage that data structure. (See Chapter 9 for more information
on hash tables.) For example, one thread may begin to insert a new element.
Suppose it is preempted in the middle of rerouting the links between the
hash table’s buckets. If another thread starts traversing the same list, it may
follow invalid links and create havoc, perhaps throwing exceptions or
getting trapped in an infinite loop.

You can protect a shared data structure by supplying a lock, but it is usually
easier to choose a thread-safe implementation instead. In the following
sections, we discuss the other thread-safe collections that the Java library
provides.

12.5.1 Blocking Queues

Many threading problems can be formulated elegantly and safely by using
one or more queues. Producer threads insert items into the queue, and
consumer threads retrieve them. The queue lets you safely hand over data
from one thread to another. For example, consider our bank transfer
program. Instead of accessing the bank object directly, the transfer threads
insert transfer instruction objects into a queue. Another thread removes the
instructions from the queue and carries out the transfers. Only that thread has
access to the internals of the bank object. No synchronization is necessary.
(Of course, the implementors of the thread-safe queue classes had to worry
about locks and conditions, but that was their problem, not yours.)

A blocking queue causes a thread to block when you try to add an element
when the queue is currently full or to remove an element when the queue is
empty. Blocking queues are a useful tool for coordinating the work of
multiple threads. Worker threads can periodically deposit intermediate
results into a blocking queue. Other worker threads remove the intermediate
results and modify them further. The queue automatically balances the
workload. If the first set of threads runs slower than the second, the second
set blocks while waiting for the results. If the first set of threads runs faster,
the queue fills up until the second set catches up. Table 12.1 shows the
methods for blocking queues.

Table 12.1 Blocking Queue Methods

The blocking queue methods fall into three categories that differ by the
action they perform when the queue is full or empty. If you use the queue as
a thread management tool, use the put and take methods. The add, remove,
and element operations throw an exception when you try to add to a full
queue or get the head of an empty queue. Of course, in a multithreaded

program, the queue might become full or empty at any time, so you will
instead want to use the offer, poll, and peek methods. These methods
simply return with a failure indicator instead of throwing an exception if
they cannot carry out their tasks.

 NOTE:
The poll and peek methods return null to indicate failure. Therefore, it is
illegal to insert null values into these queues.

There are also variants of the offer and poll methods with a timeout. For
example, the call

boolean success = q.offer(x, 100, TimeUnit.MILLISECONDS);

tries for 100 milliseconds to insert an element to the tail of the queue. If it
succeeds, it returns true; otherwise, it returns false when it times out.
Similarly, the call

Object head = q.poll(100, TimeUnit.MILLISECONDS);

tries for 100 milliseconds to remove the head of the queue. If it succeeds, it
returns the head; otherwise, it returns null when it times out.

The put method blocks if the queue is full, and the take method blocks if the
queue is empty. These are the equivalents of offer and poll with no timeout.

The java.util.concurrent package supplies several variations of blocking
queues. By default, the LinkedBlockingQueue has no upper bound on its
capacity, but a maximum capacity can be optionally specified. The
LinkedBlockingDeque is a double-ended version. The ArrayBlockingQueue is
constructed with a given capacity and an optional parameter to require
fairness. If fairness is specified, then the longest-waiting threads are given

preferential treatment. As always, fairness exacts a significant performance
penalty, and you should only use it if your problem specifically requires it.

The PriorityBlockingQueue is a priority queue, not a first-in/first-out queue.
Elements are removed in order of their priority. The queue has unbounded
capacity, but retrieval will block if the queue is empty. (See Chapter 9 for
more information on priority queues.)

A DelayQueue contains objects that implement the Delayed interface:

interface Delayed extends Comparable<Delayed>
{
 long getDelay(TimeUnit unit);
}

The getDelay method returns the remaining delay of the object. A negative
value indicates that the delay has elapsed. Elements can only be removed
from a DelayQueue if their delay has elapsed. You also need to implement the
compareTo method. The DelayQueue uses that method to sort the entries.

Java 7 adds a TransferQueue interface that allows a producer thread to wait
until a consumer is ready to take on an item. When a producer calls

q.transfer(item);

the call blocks until another thread removes it. The LinkedTransferQueue
class implements this interface.

The program in Listing 12.6 shows how to use a blocking queue to control a
set of threads. The program searches through all files in a directory and its
subdirectories, printing lines that contain a given keyword.

A producer thread enumerates all files in all subdirectories and places them
in a blocking queue. This operation is fast, and the queue would quickly fill
up with all files in the file system if it was not bounded.

We also start a large number of search threads. Each search thread takes a
file from the queue, opens it, prints all lines containing the keyword, and
then takes the next file. We use a trick to terminate the application when no
further work is required. In order to signal completion, the enumeration
thread places a dummy object into the queue. (This is similar to a dummy
suitcase with a label “last bag” in a baggage claim belt.) When a search
thread takes the dummy, it puts it back and terminates.

Note that no explicit thread synchronization is required. In this application,
we use the queue data structure as a synchronization mechanism.

Listing 12.6 blockingQueue/BlockingQueueTest.java

 1 package blockingQueue;
 2
 3 import java.io.*;
 4 import java.nio.charset.*;
 5 import java.nio.file.*;
 6 import java.util.*;
 7 import java.util.concurrent.*;
 8 import java.util.stream.*;
 9
10 /**
11 * @version 1.03 2018-03-17
12 * @author Cay Horstmann
13 */
14 public class BlockingQueueTest
15 {
16 private static final int FILE_QUEUE_SIZE = 10;
17 private static final int SEARCH_THREADS = 100;
18 private static final Path DUMMY = Path.of("");
19 private static BlockingQueue<Path> queue = new
ArrayBlockingQueue<>(FILE_QUEUE_SIZE);
20
21 public static void main(String[] args)
22 {
23 try (var in = new Scanner(System.in))
24 {

25 System.out.print("Enter base directory (e.g.
/opt/jdk-11-src): ");
26 String directory = in.nextLine();
27 System.out.print("Enter keyword (e.g. volatile): ");
28 String keyword = in.nextLine();
29
30 Runnable enumerator = () -> {
31 try
32 {
33 enumerate(Path.of(directory));
34 queue.put(DUMMY);
35 }
36 catch (IOException e)
37 {
38 e.printStackTrace();
39 }
40 catch (InterruptedException e)
41 {
42 }
43 };
44
45 new Thread(enumerator).start();
46 for (int i = 1; i <= SEARCH_THREADS; i++) {
47 Runnable searcher = () -> {
48 try
49 {
50 boolean done = false;
51 while (!done)
52 {
53 Path file = queue.take();
54 if (file == DUMMY)
55 {
56 queue.put(file);
57 done = true;
58 }
59 else search(file, keyword);
60 }
61 }
62 catch (IOException e)

63 {
64 e.printStackTrace();
65 }66 catch (InterruptedException
e)
67 {
68 }
69 };
70 new Thread(searcher).start();
71 }
72 }
73 }
74
75 /**
76 * Recursively enumerates all files in a given directory
and its subdirectories.
77 * See Chapters 1 and 2 of Volume II for the stream and
file operations.
78 * @param directory the directory in which to start
79 */
80 public static void enumerate(Path directory) throws
IOException, InterruptedException
81 {
82 try (Stream<Path> children = Files.list(directory))
83 {
84 for (Path child : children.toList())
85 {
86 if (Files.isDirectory(child))
87 enumerate(child);
88 else
89 queue.put(child);
90 }
91 }
92 }
93
94 /**
95 * Searches a file for a given keyword and prints all
matching lines.
96 * @param file the file to search
97 * @param keyword the keyword to search for

98 */
99 public static void search(Path file, String keyword) throws
IOException
100 {
101 try (var in = new Scanner(file, StandardCharsets.UTF_8))
102 {
103 int lineNumber = 0;
104 while (in.hasNextLine())
105 {
106 lineNumber++;
107 String line = in.nextLine();
108 if (line.contains(keyword))
109 System.out.printf("%s:%d:%s%n", file,
lineNumber, line);
110 }
111 }
112 }
113 }

java.util.concurrent.ArrayBlockingQueue<E> 5

• ArrayBlockingQueue(int capacity)
• ArrayBlockingQueue(int capacity, boolean fair)

constructs a blocking queue with the given capacity and fairness
settings. The queue is implemented as a circular array.

java.util.concurrent.LinkedBlockingQueue<E> 5

java.util.concurrent.LinkedBlockingDeque<E> 6

• LinkedBlockingQueue()
• LinkedBlockingDeque()

constructs an unbounded blocking queue or deque, implemented as a
linked list.

• LinkedBlockingQueue(int capacity)
• LinkedBlockingDeque(int capacity)

constructs a bounded blocking queue or deque with the given
capacity, implemented as a linked list.

java.util.concurrent.DelayQueue<E extends Delayed> 5

• DelayQueue()
constructs an unbounded blocking queue of Delayed elements. Only
elements whose delay has expired can be removed from the queue.

java.util.concurrent.Delayed 5

• long getDelay(TimeUnit unit)
gets the delay for this object, measured in the given time unit.

java.util.concurrent.PriorityBlockingQueue<E> 5

• PriorityBlockingQueue()
• PriorityBlockingQueue(int initialCapacity)
• PriorityBlockingQueue(int initialCapacity, Comparator<? super
E> comparator)

constructs an unbounded blocking priority queue implemented as a
heap. The default for the initial capacity is 11. If the comparator is
not specified, the elements must implement the Comparable interface.

java.util.concurrent.BlockingQueue<E> 5

• void put(E element)
adds the element, blocking if necessary.

• E take()
removes and returns the head element, blocking if necessary.

• boolean offer(E element, long time, TimeUnit unit)
adds the given element and returns true if successful, blocking if
necessary until the element has been added or the time has elapsed.

• E poll(long time, TimeUnit unit)
removes and returns the head element, blocking if necessary until an
element is available or the time has elapsed. Returns null upon
failure.

java.util.concurrent.BlockingDeque<E> 6

• void putFirst(E element)
• void putLast(E element)

adds the element, blocking if necessary.
• E takeFirst()
• E takeLast()

removes and returns the head or tail element, blocking if necessary.
• boolean offerFirst(E element, long time, TimeUnit unit)
• boolean offerLast(E element, long time, TimeUnit unit)

adds the given element and returns true if successful, blocking if
necessary until the element has been added or the time has elapsed.

• E pollFirst(long time, TimeUnit unit)
• E pollLast(long time, TimeUnit unit)

removes and returns the head or tail element, blocking if necessary
until an element is available or the time has elapsed. Returns null
upon failure.

java.util.concurrent.TransferQueue<E> 7

• void transfer(E element)
• boolean tryTransfer(E element, long time, TimeUnit unit)

transfers a value, or tries transferring it with a given timeout,
blocking until another thread has removed the item. The second
method returns true if successful.

12.5.2 Efficient Maps, Sets, and Queues

The java.util.concurrent package supplies efficient implementations for
maps, sorted sets, and queues: ConcurrentHashMap, ConcurrentSkipListMap,
ConcurrentSkipListSet, and ConcurrentLinkedQueue.

These collections use sophisticated algorithms that minimize contention by
allowing concurrent access to different parts of the data structure.

Unlike most collections, the size method of these classes does not
necessarily operate in constant time. Determining the current size of one of
these collections usually requires traversal.

 NOTE:

Some applications use humongous concurrent hash maps, so large that the
size method is insufficient because it returns an int. What is one to do with
a map that has over two billion entries? The mappingCount method returns
the size as a long.

The collections return weakly consistent iterators. That means that the
iterators may or may not reflect all modifications that are made after they
were constructed, but they will not return a value twice and they will not
throw a ConcurrentModificationException.

 NOTE:
In contrast, an iterator of a collection in the java.util package throws a
ConcurrentModificationException when the collection has been modified
after construction of the iterator.

The concurrent hash map can efficiently support a large number of readers
and a bounded number of writers.

 NOTE:
A hash map keeps all entries with the same hash code in the same “bucket.”
Some applications use poor hash functions, and as a result all entries end up
in a small number of buckets, severely degrading performance. Even
generally reasonable hash functions, such as that of the String class, can be
problematic. For example, an attacker can slow down a program by crafting
a large number of strings that hash to the same value. In recent Java
versions, the concurrent hash map organizes the buckets as trees, not lists,
when the key type implements Comparable, guaranteeing O(log n)
performance.

java.util.concurrent.ConcurrentLinkedQueue<E> 5

• ConcurrentLinkedQueue<E>()
constructs an unbounded, nonblocking queue that can be safely
accessed by multiple threads.

java.util.concurrent.ConcurrentSkipListSet<E> 6

• ConcurrentSkipListSet<E>()
• ConcurrentSkipListSet<E>(Comparator<? super E> comp)

constructs a sorted set that can be safely accessed by multiple
threads. The first constructor requires that the elements implement
the Comparable interface.

java.util.concurrent.ConcurrentHashMap<K, V> 5

java.util.concurrent.ConcurrentSkipListMap<K, V> 6

• ConcurrentHashMap<K, V>()
• ConcurrentHashMap<K, V>(int initialCapacity)
• ConcurrentHashMap<K, V>(int initialCapacity, float

loadFactor, int concurrencyLevel)

constructs a hash map that can be safely accessed by multiple
threads. The default for the initial capacity is 16. If the average load
per bucket exceeds the load factor, the table is resized. The default is
0.75. The concurrency level is the estimated number of concurrent
writer threads.

• ConcurrentSkipListMap<K, V>()
• ConcurrentSkipListSet<K, V>(Comparator<? super K> comp)

constructs a sorted map that can be safely accessed by multiple
threads. The first constructor requires that the keys implement the
Comparable interface.

12.5.3 Atomic Update of Map Entries

The original version of ConcurrentHashMap only had a few methods for
atomic updates, which made for somewhat awkward programming. Suppose
we want to count how often certain features are observed. As a simple
example, suppose multiple threads encounter words, and we want to count
their frequencies.

Can we use a ConcurrentHashMap<String, Long>? Consider the code for
incrementing a count. Obviously, the following is not thread-safe:

Long oldValue = map.get(word);
Long newValue = oldValue == null ? 1 : oldValue + 1;
map.put(word, newValue); // ERROR--might not replace oldValue

Another thread might be updating the exact same count at the same time.

 NOTE:
Some programmers are surprised that a supposedly thread-safe data
structure permits operations that are not thread-safe. But there are two
entirely different considerations. If multiple threads modify a plain HashMap,
they can destroy the internal structure (an array of linked lists). Some of the
links may go missing, or even go in circles, rendering the data structure
unusable. That will never happen with a ConcurrentHashMap. In the example
above, the code for get and put will never corrupt the data structure. But,
since the sequence of operations is not atomic, the result is not predictable.

In old versions of Java, it was necessary to use the replace method, which
atomically replaces an old value with a new one, provided that no other
thread has come before and replaced the old value with something else. You
had to keep doing it until the attempt succeeded:

do
{
 oldValue = map.get(word);
 newValue = oldValue == null ? 1 : oldValue + 1;
}
while (!map.replace(word, oldValue, newValue));

An alternative was to use a ConcurrentHashMap<String, AtomicLong> and the
following update code:

map.putIfAbsent(word, new AtomicLong());
map.get(word).incrementAndGet();

Unfortunately, a new AtomicLong is constructed for each increment, whether
or not it is needed.

Nowadays, the Java API provides methods that make atomic updates more
convenient. The compute method is called with a key and a function to
compute the new value. That function receives the key and the associated
value, or null if there is none, and it computes the new value. For example,
here is how we can update a map of integer counters:

map.compute(word, (k, v) -> v == null ? 1 : v + 1);

 NOTE:
You cannot have null values in a ConcurrentHashMap. There are many
methods that use a null value as an indication that a given key is not present
in the map.

There are also variants computeIfPresent and computeIfAbsent that only
compute a new value when there is already an old one, or when there isn’t
yet one. A map of LongAdder counters can be updated with

map.computeIfAbsent(word, k -> new LongAdder()).increment();

That is almost like the call to putIfAbsent that you saw before, but the
LongAdder constructor is only called when a new counter is actually needed.

You often need to do something special when a key is added for the first
time. The merge method makes this particularly convenient. It has a
parameter for the initial value that is used when the key is not yet present.
Otherwise, the function that you supplied is called, combining the existing
value and the initial value. (Unlike compute, the function does not process
the key.)

map.merge(word, 1L, (existingValue, newValue) -> existingValue
+ newValue);

or simply

map.merge(word, 1L, Long::sum);

It doesn’t get more concise than that.

 NOTE:
If the function that is passed to compute or merge returns null, the existing
entry is removed from the map.

 CAUTION:

When you use compute or merge, keep in mind that the function that you
supply should not do a lot of work. While that function runs, some other
updates to the map may be blocked. Of course, that function should also not
update other parts of the map.

The program in Listing 12.7 uses a concurrent hash map to count all words
in the Java files of a directory tree.

Listing 12.7 concurrentHashMap/CHMDemo.java

 1 package concurrentHashMap;
 2
 3 import java.io.*;
 4 import java.nio.file.*; 5 import java.util.*;
 6 import java.util.concurrent.*;
 7 import java.util.stream.*;
 8
 9 /**
10 * This program demonstrates concurrent hash maps.
11 * @version 1.0 2018-01-04
12 * @author Cay Horstmann
13 */
14 public class CHMDemo
15 {
16 public static ConcurrentHashMap<String, Long> map = new
ConcurrentHashMap<>();
17
18 /**
19 * Adds all words in the given file to the concurrent hash
map.
20 * @param file a file
21 */
22 public static void process(Path file)
23 {
24 try (var in = new Scanner(file))
25 {
26 while (in.hasNext())

27 {
28 String word = in.next();
29 map.merge(word, 1L, Long::sum);
30 }
31 }
32 catch (IOException e)
33 {
34 e.printStackTrace();
35 }
36 }
37
38 /**
39 * Returns all descendants of a given directory--see
Chapters 1 and 2 of Volume II
40 * @param rootDir the root directory
41 * @return a set of all descendants of the root directory
42 */
43 public static Set<Path> descendants(Path rootDir) throws
IOException
44 {
45 try (Stream<Path> entries = Files.walk(rootDir))
46 {
47 return entries.collect(Collectors.toSet());
48 }
49 }
50
51 public static void main(String[] args)
52 throws InterruptedException, ExecutionException,
IOException
53 {
54 int processors =
Runtime.getRuntime().availableProcessors();
55 ExecutorService executor =
Executors.newFixedThreadPool(processors);
56 Path pathToRoot = Path.of(".");
57 for (Path p : descendants(pathToRoot))
58 {
59 if (p.getFileName().toString().endsWith(".java"))
60 executor.execute(() -> process(p));

61 }
62 executor.shutdown();
63 executor.awaitTermination(10, TimeUnit.MINUTES);
64 map.forEach((k, v) ->
65 {
66 if (v >= 10)
67 System.out.println(k + " occurs " + v + "
times");
68 });
69 }
70 }

12.5.4 Bulk Operations on Concurrent Hash Maps

The Java API provides bulk operations on concurrent hash maps that can
safely execute even while other threads operate on the map. The bulk
operations traverse the map and operate on the elements they find as they go
along. No effort is made to freeze a snapshot of the map in time. Unless you
happen to know that the map is not being modified while a bulk operation
runs, you should treat its result as an approximation of the map’s state.

There are three kinds of operations:

• search applies a function to each key and/or value, until the function yields
a non-null result. Then the search terminates and the function’s result is
returned.

• reduce combines all keys and/or values, using a provided accumulation
function.

• forEach applies a function to all keys and/or values.

Each operation has four versions:

• operationKeys: operates on keys.
• operationValues: operates on values.
• operation: operates on keys and values.
• operationEntries: operates on Map.Entry objects.

With each of the operations, you need to specify a parallelism threshold. If
the map contains more elements than the threshold, the bulk operation is
parallelized. If you want the bulk operation to run in a single thread, use a
threshold of Long.MAX_VALUE. If you want the maximum number of threads to
be made available for the bulk operation, use a threshold of 1.

Let’s look at the search methods first. Here are the versions:

U searchKeys(long threshold, BiFunction<? super K, ? extends U>
f)
U searchValues(long threshold, BiFunction<? super V, ? extends
U> f)
U search(long threshold, BiFunction<? super K, ? super V,?
extends U> f)
U searchEntries(long threshold, BiFunction<Map.Entry<K, V>, ?
extends U> f)

For example, suppose we want to find the first word that occurs more than
1,000 times. We need to search keys and values:

String result = map.search(threshold, (k, v) -> v > 1000 ? k :
null);

Then result is set to the first match, or to null if the search function returns
null for all inputs.

The forEach methods have two variants. The first one simply applies a
consumer function for each map entry, for example

map.forEach(threshold,
 (k, v) -> System.out.println(k + " -> " + v));

The second variant takes an additional transformer function, which is
applied first, and its result is passed to the consumer:

map.forEach(threshold,
 (k, v) -> k + " -> " + v, // transformer

 System.out::println); // consumer

The transformer can be used as a filter. Whenever the transformer returns
null, the value is silently skipped. For example, here we only print the
entries with large values:

map.forEach(threshold,
 (k, v) -> v > 1000 ? k + " -> " + v : null, // filter and
transformer
 System.out::println); // the nulls are not passed to the
consumer

The reduce operations combine their inputs with an accumulation function.
For example, here is how you can compute the sum of all values:

Long sum = map.reduceValues(threshold, Long::sum);

As with forEach, you can also supply a transformer function. Here we
compute the length of the longest key:

Integer maxlength = map.reduceKeys(threshold,
 String::length, // transformer
 Integer::max); // accumulator

The transformer can act as a filter, by returning null to exclude unwanted
inputs. Here, we count how many entries have value > 1000:

Long count = map.reduceValues(threshold,
 v -> v > 1000 ? 1L : null,
 Long::sum);

 NOTE:

If the map is empty, or all entries have been filtered out, the reduce
operation returns null. If there is only one element, its transformation is
returned, and the accumulator is not applied.

There are specializations for int, long, and double outputs with suffixes
ToInt, ToLong, and ToDouble. You need to transform the input to a primitive
value and specify a default value and an accumulator function. The default
value is returned when the map is empty.

long sum = map.reduceValuesToLong(threshold,
 Long::longValue, // transformer to primitive type
 0, // default value for empty map
 Long::sum); // primitive type accumulator

 CAUTION:
These specializations act differently from the object versions where there is
only one element to be considered. Instead of returning the transformed
element, it is accumulated with the default. Therefore, the default must be
the neutral element of the accumulator.

12.5.5 Concurrent Set Views

Suppose you want a large, thread-safe set instead of a map. There is no
ConcurrentHashSet class, and you know better than trying to create your
own. Of course, you can use a ConcurrentHashMap with bogus values, but
then you get a map, not a set, and you can’t apply operations of the Set
interface.

The static newKeySet method yields a Set<K> that is actually a wrapper
around a ConcurrentHashMap<K, Boolean>. (All map values are
Boolean.TRUE, but you don’t actually care since you just use it as a set.)

Set<String> words = ConcurrentHashMap.<String>newKeySet();

Of course, if you have an existing map, the keySet method yields the set of
keys. That set is mutable. If you remove the set’s elements, the keys (and
their values) are removed from the map. But it doesn’t make sense to add
elements to the key set, because there would be no corresponding values to
add. There is a second keySet method to ConcurrentHashMap, with a default
value, to be used when adding elements to the set:

Set<String> words = map.keySet(1L);
words.add("Java");

If "Java" wasn’t already present in words, it now has a value of one.

12.5.6 Copy on Write Arrays

The CopyOnWriteArrayList and CopyOnWriteArraySet are thread-safe
collections in which all mutators make a copy of the underlying array. This
arrangement is useful if the threads that iterate over the collection greatly
outnumber the threads that mutate it. When you construct an iterator, it
contains a reference to the current array. If the array is later mutated, the
iterator still has the old array, but the collection’s array is replaced. As a
consequence, the older iterator has a consistent (but potentially outdated)
view that it can access without any synchronization expense.

12.5.7 Parallel Array Algorithms

The Arrays class has a number of parallelized operations. The static
Arrays.parallelSort method can sort an array of primitive values or
objects. For example,

var contents = new String(Files.readAllBytes(
 Path.of("alice.txt")), StandardCharsets.UTF_8); // read file
into string
String[] words = contents.split("[\\P{L}]+"); // split along

nonletters
Arrays.parallelSort(words);

When you sort objects, you can supply a Comparator.

Arrays.parallelSort(words,
Comparator.comparing(String::length));

With all methods, you can supply the bounds of a range, such as

Arrays.parallelSort(words.length / 2, words.length); // sort
the upper half

 NOTE:
At first glance, it seems a bit odd that these methods have parallel in their
name, since the user shouldn’t care how the sorting happens. However, the
API designers wanted to make it clear that the sorting is parallelized. That
way, users are on notice to avoid comparators with side effects.

The parallelSetAll method fills an array with values that are computed
from a function. The function receives the element index and computes the
value at that location.

Arrays.parallelSetAll(values, i -> i % 10);
 // fills values with 0 1 2 3 4 5 6 7 8 9 0 1 2 . . .

Clearly, this operation benefits from being parallelized. There are versions
for all primitive type arrays and for object arrays.

Finally, there is a parallelPrefix method that replaces each array element
with the accumulation of the prefix for a given associative operation. Huh?
Here is an example. Consider the array [1, 2, 3, 4, . . .] and the ×

operation. After executing Arrays.parallelPrefix(values, (x, y) -> x *
y), the array contains

[1, 1 × 2, 1 × 2 × 3, 1 × 2 × 3 × 4, . . .]

Perhaps surprisingly, this computation can be parallelized. First, join
neighboring elements, as indicated here:

[1, 1 × 2, 3, 3 × 4, 5, 5 × 6, 7, 7 × 8]

The gray values are left alone. Clearly, one can make this computation in
parallel in separate regions of the array. In the next step, update the indicated
elements by multiplying them with elements that are one or two positions
below:

[1, 1 × 2, 1 × 2 × 3, 1 × 2 × 3 × 4, 5, 5 × 6, 5 × 6 × 7, 5 × 6
× 7 × 8]

This, again, can be done in parallel. After log n steps, the process is
complete. This is a win over the straightforward linear computation if
sufficient processors are available. On special-purpose hardware, this
algorithm is commonly used, and users of such hardware are quite ingenious
in adapting it to a variety of problems.

12.5.8 Older Thread-Safe Collections

Ever since the initial release of Java, the Vector and Hashtable classes
provided thread-safe implementations of a dynamic array and a hash table.
These classes are now considered obsolete, having been replaced by the
ArrayList and HashMap classes. Those classes are not thread-safe. Instead, a
different mechanism is supplied in the collections library. Any collection
class can be made thread-safe by means of a synchronization wrapper:

List<E> synchArrayList = Collections.synchronizedList(new
ArrayList<E>());

Map<K, V> synchHashMap = Collections.synchronizedMap(new
HashMap<K, V>());

The methods of the resulting collections are protected by a lock, providing
thread-safe access.

You should make sure that no thread accesses the data structure through the
original unsynchronized methods. The easiest way to ensure this is not to
save any reference to the original object. Simply construct a collection and
immediately pass it to the wrapper, as we did in our examples.

You still need to use “client-side” locking if you want to iterate over the
collection while another thread has the opportunity to mutate it:

synchronized (synchHashMap)
{
 Iterator<K> iter = synchHashMap.keySet().iterator();
 while (iter.hasNext()) . . .;
}

You must use the same code if you use a “for each” loop because the loop
uses an iterator. Note that the iterator actually fails with a
ConcurrentModificationException if another thread mutates the collection
while the iteration is in progress. The synchronization is still required so that
the concurrent modification can be reliably detected.

You are usually better off using the collections defined in the
java.util.concurrent package instead of the synchronization wrappers. In
particular, the ConcurrentHashMap has been carefully implemented so that
multiple threads can access it without blocking each other, provided they
access different buckets. One exception is an array list that is frequently
mutated. In that case, a synchronized ArrayList can outperform a
CopyOnWriteArrayList.

java.util.Collections 1.2

• static <E> Collection<E> synchronizedCollection(Collection<E>
c)

• static <E> List synchronizedList(List<E> c)
• static <E> Set synchronizedSet(Set<E> c)
• static <E> SortedSet synchronizedSortedSet(SortedSet<E> c)
• static <K, V> Map<K, V> synchronizedMap(Map<K, V> c)
• static <K, V> SortedMap<K, V>

synchronizedSortedMap(SortedMap<K, V> c)

constructs a view of the collection whose methods are synchronized.

12.6 Tasks and Thread Pools

Constructing a new thread is somewhat expensive because it involves
interaction with the operating system. If your program creates a large
number of short-lived threads, you should not map each task to a separate
thread, but use a thread pool instead. A thread pool contains a number of
threads that are ready to run. You give a Runnable to the pool, and one of the
threads calls the run method. When the run method exits, the thread doesn’t
die but stays around to serve the next request.

In the following sections, you will see the tools that the Java concurrency
framework provides for coordinating concurrent tasks.

12.6.1 Callables and Futures

A Runnable encapsulates a task that runs asynchronously; you can think of it
as an asynchronous method with no parameters and no return value. A
Callable is similar to a Runnable, but it returns a value. The Callable
interface is a parameterized type, with a single method call.

public interface Callable<V>
{
 V call() throws Exception;
}

The type parameter is the type of the returned value. For example, a
Callable<Integer> represents an asynchronous computation that eventually
returns an Integer object.

A Future holds the result of an asynchronous computation. You start a
computation, give someone the Future object, and forget about it. The owner
of the Future object can obtain the result when it is ready.

The Future<V> interface has the following methods:

V get()
V get(long timeout, TimeUnit unit)
void cancel(boolean mayInterrupt)
boolean isCancelled()
boolean isDone()

A call to the first get method blocks until the computation is finished. The
second get method also blocks, but it throws a TimeoutException if the call
timed out before the computation finished. If the thread running the
computation is interrupted, both methods throw an InterruptedException. If
the computation has already finished, get returns immediately.

The isDone method returns false if the computation is still in progress, true
if it is finished.

You can cancel the computation with the cancel method. If the computation
has not yet started, it is canceled and will never start. If the computation is
currently in progress, it is interrupted if the mayInterrupt parameter is true.

 CAUTION:
Canceling a task involves two steps. The underlying thread must be located
and interrupted. And the task implementation (in the call method) must
sense the interruption and abandon its work. If a Future object does not
know on which thread the task is executed, or if the task does not monitor

the interrupted status of the thread on which it executes, cancellation will
have no effect.

One way to execute a Callable is to use a FutureTask, which implements
both the Future and Runnable interfaces, so that you can construct a thread
for running it:

Callable<Integer> task = . . .;
var futureTask = new FutureTask<Integer>(task);
var t = new Thread(futureTask); // it's a Runnable t.start();
. . .
Integer result = futureTask.get(); // it's a Future

More commonly, you will pass a Callable to an executor. That is the topic of
the next section.

java.util.concurrent.Callable<V> 5

• V call()
runs a task that yields a result.

java.util.concurrent.Future<V> 5

• V get()
• V get(long time, TimeUnit unit)

gets the result, blocking until it is available or the given time has
elapsed. The second method throws a TimeoutException if it was
unsuccessful.

• boolean cancel(boolean mayInterrupt)

attempts to cancel the execution of this task. If the task has already
started and the mayInterrupt parameter is true, it is interrupted.
Returns true if the cancellation was successful.

• boolean isCancelled()
returns true if the task was canceled before it completed.

• boolean isDone()
returns true if the task completed, through normal completion,
cancellation, or an exception.

java.util.concurrent.FutureTask<V> 5

• FutureTask(Callable<V> task)
• FutureTask(Runnable task, V result)

constructs an object that is both a Future<V> and a Runnable.

12.6.2 Executors

The Executors class has a number of static factory methods for constructing
thread pools; see Table 12.2 for a summary.

Table 12.2 Executors Factory Methods

The newCachedThreadPool method constructs a thread pool that executes
each task immediately, using an existing idle thread when available and
creating a new thread otherwise. The newFixedThreadPool method constructs
a thread pool with a fixed size. If more tasks are submitted than there are idle
threads, the un-served tasks are placed on a queue. They are run when other
tasks have completed. The newSingleThreadExecutor is a degenerate pool of
size 1 where a single thread executes the submitted tasks, one after another.
These three methods return an object of the ThreadPoolExecutor class that
implements the ExecutorService interface.

Use a cached thread pool when you have threads that are short-lived or
spend a lot of time blocking. However, if you have threads that are working
hard without blocking, you don’t want to run a large number of them
together. For optimum speed, the number of concurrent threads is the
number of processor cores. In such a situation, you should use a fixed thread
pool that bounds the total number of concurrent threads.

The single-thread executor is useful for performance analysis. If you
temporarily replace a cached or fixed thread pool with a single-thread pool,

you can measure how much slower your application runs without the benefit
of concurrency.

 NOTE:
Java EE provides a ManagedExecutorService subclass that is suitable for
concurrent tasks in a Java EE environment. Similarly, web frameworks such
as Play provide executor services that are intended for tasks within the
framework.

You can submit a Runnable or Callable to an ExecutorService with one of
the following methods:

Future<T> submit(Callable<T> task)
Future<?> submit(Runnable task)
Future<T> submit(Runnable task, T result)

The pool will run the submitted task at its earliest convenience. When you
call submit, you get back a Future object that you can use to get the result or
cancel the task.

The second submit method returns an odd-looking Future<?>. You can use
such an object to call isDone, cancel, or isCancelled, but the get method
simply returns null upon completion.

The third version of submit yields a Future whose get method returns the
given result object upon completion.

When you are done with a thread pool, call shutdown. This method initiates
the shutdown sequence for the pool. An executor that is shut down accepts
no new tasks. When all tasks are finished, the threads in the pool die.
Alternatively, you can call shutdownNow. The pool then cancels all tasks that
have not yet begun.

Here, in summary, is what you do to use a thread pool:

1. Call the static newCachedThreadPool or newFixedThreadPool method of
the Executors class.

2. Call submit to submit Callable or Runnable objects.
3. Hang on to the returned Future objects so that you can get the results or

cancel the tasks.
4. Call shutdown when you no longer want to submit any tasks.

The ScheduledExecutorService interface has methods for scheduled or
repeated execution of tasks. It is a generalization of java.util.Timer that
allows for thread pooling. The newScheduledThreadPool and
newSingleThreadScheduledExecutor methods of the Executors class return
objects that implement the ScheduledExecutorService

interface.

You can schedule a Runnable or Callable to run once, after an initial delay.
You can also schedule a Runnable to run periodically. See the API notes for
details.

java.util.concurrent.Executors 5

• ExecutorService newCachedThreadPool()
returns a cached thread pool that creates threads as needed and
terminates threads that have been idle for 60 seconds.

• ExecutorService newFixedThreadPool(int threads)
returns a thread pool that uses the given number of threads to execute
tasks.

• ExecutorService newSingleThreadExecutor()
returns an executor that executes tasks sequentially in a single
thread.

• ScheduledExecutorService newScheduledThreadPool(int threads)

returns a thread pool that uses the given number of threads to
schedule tasks.

• ScheduledExecutorService newSingleThreadScheduledExecutor()
returns an executor that schedules tasks in a single thread.

java.util.concurrent.ExecutorService 5

• Future<T> submit(Callable<T> task)
• Future<T> submit(Runnable task, T result)
• Future<?> submit(Runnable task)

submits the given task for execution.
• void shutdown()

shuts down the service, completing the already submitted tasks but
not accepting new submissions.

java.util.concurrent.ThreadPoolExecutor 5

• int getLargestPoolSize()
returns the largest size of the thread pool during the life of this
executor.

java.util.concurrent.ScheduledExecutorService 5

• ScheduledFuture<V> schedule(Callable<V> task, long time,

TimeUnit unit)

• ScheduledFuture<?> schedule(Runnable task, long time,

TimeUnit unit)

schedules the given task after the given time has elapsed.
• ScheduledFuture<?> scheduleAtFixedRate(Runnable task, long

initialDelay, long period, TimeUnit unit)

schedules the given task to run periodically, every period units, after
the initial delay has elapsed.

• ScheduledFuture<?> scheduleWithFixedDelay(Runnable task, long
initialDelay, long delay, TimeUnit unit)

schedules the given task to run periodically, with delay units
between completion of one invocation and the start of the next, after
the initial delay has elapsed.

12.6.3 Controlling Groups of Tasks

You have seen how to use an executor service as a thread pool to increase
the efficiency of task execution. Sometimes, an executor is used for a more
tactical reason—simply to control a group of related tasks. For example, you
can cancel all tasks in an executor with the shutdownNow method.

The invokeAny method submits all objects in a collection of Callable objects
and returns the result of a completed task. You don’t know which task that is
—presumably, it is the one that finished most quickly. Use this method for a
search problem in which you are willing to accept any solution. For
example, suppose that you need to factor a large integer—a computation that
is required for breaking the RSA cipher. You could submit a number of
tasks, each attempting a factorization with numbers in a different range. As
soon as one of these tasks has an answer, your computation can stop.

The invokeAll method submits all objects in a collection of Callable
objects, blocks until all of them complete, and returns a list of Future objects
that represent the solutions to all tasks. You can process the results of the
computation, when they are available, like this:

List<Callable<T>> tasks = . . .;
List<Future<T>> results = executor.invokeAll(tasks);
for (Future<T> result : results)
 processFurther(result.get());

In the for loop, the first call result.get() blocks until the first result is
available. That is not a problem if all tasks finish in about the same time.
However, it may be worth obtaining the results in the order in which they are
available. This can be arranged with the ExecutorCompletionService.

Start with an executor, obtained in the usual way. Then construct an
ExecutorCompletionService. Submit tasks to the completion service. The
service manages a blocking queue of Future objects, containing the results
of the submitted tasks as they become available. Thus, a more efficient
organization for the preceding computation is the following:

var service = new ExecutorCompletionService<T>(executor);
for (Callable<T> task : tasks) service.submit(task);
for (int i = 0; i < tasks.size(); i++)
 processFurther(service.take().get());

The program in Listing 12.8 shows how to use callables and executors. In
the first computation, we count how many files in a directory tree contain a
given word. We make a separate task for each file:

Set<Path> files = descendants(Path.of(start));
var tasks = new ArrayList<Callable<Long>>();
for (Path file : files)
{
 Callable<Long> task = () -> occurrences(word, file);
 tasks.add(task);
}

Then we pass the tasks to an executor service:

ExecutorService executor = Executors.newCachedThreadPool();
List<Future<Long>> results = executor.invokeAll(tasks);

To get the combined count, we add all results, blocking until they are
available:

long total = 0;
for (Future<Long> result : results)
 total += result.get();

The program also displays the time spent during the search. Unzip the source
code for the JDK somewhere and run the search. Then replace the executor
service with a single-thread executor and try again to see whether the
concurrent computation was faster.

In the second part of the program, we search for the first file that contains the
given word. We use invokeAny to parallelize the search. Here, we have to be
more careful about formulating the tasks. The invokeAny method terminates
as soon as any task returns. So we cannot have the search tasks return a
boolean to indicate success or failure. We don’t want to stop searching when
a task failed. Instead, a failing task throws a NoSuchElementException. Also,
when one task has succeeded, the others are canceled. Therefore, we monitor
the interrupted status. If the underlying thread is interrupted, the search task
prints a message before terminating, so that you can see that the cancellation
is effective.

public static Callable<Path> searchForTask(String word, Path
path)
{
 return () ->
 {
 try (var in = new Scanner(path))
 {
 while (in.hasNext())
 {
 if (in.next().equals(word)) return path;
 if (Thread.currentThread().isInterrupted())

 {
 System.out.println("Search in " + path + "
canceled.");
 return null;
 }
 }
 throw new NoSuchElementException();
 }
 };
}

For informational purposes, this program prints out the largest pool size
during execution. This information is not available through the
ExecutorService interface. For that reason, we had to cast the pool object to
the ThreadPoolExecutor class.

 TIP:
As you read through this program, you can appreciate how useful executor
services are. In your own programs, you should use executor services to
manage threads instead of launching threads individually.

Listing 12.8 executors/ExecutorDemo.java

 1 package executors;
 2
 3 import java.io.*;
 4 import java.nio.file.*;
 5 import java.time.*;
 6 import java.util.*;
 7 import java.util.concurrent.*;
 8 import java.util.stream.*;
 9
10 /**
11 * This program demonstrates the Callable interface and

executors.
12 * @version 1.01 2021-05-3013 * @author Cay Horstmann
14 */
15 public class ExecutorDemo
16 {
17 /**
18 * Counts occurrences of a given word in a file.
19 * @return the number of times the word occurs in the given
word
20 */
21 public static long occurrences(String word, Path path)
22 {
23 try (var in = new Scanner(path))
24 {
25 int count = 0;
26 while (in.hasNext())
27 if (in.next().equals(word)) count++;
28 return count;
29 }
30 catch (IOException ex)
31 {
32 return 0;
33 }
34 }
35
36 /**
37 * Returns all descendants of a given directory--see
Chapters 1 and 2 of Volume II.
38 * @param rootDir the root directory
39 * @return a set of all descendants of the root directory
40 */
41 public static Set<Path> descendants(Path rootDir) throws
IOException
42 {
43 try (Stream<Path> entries = Files.walk(rootDir))
44 {
45 return entries.filter(Files::isRegularFile)
46 .collect(Collectors.toSet());
47 }

48 }
49
50 /**
51 * Yields a task that searches for a word in a file.
52 * @param word the word to search
53 * @param path the file in which to search
54 * @return the search task that yields the path upon
success
55 */
56 public static Callable<Path> searchForTask(String word,
Path path)
57 {
58 return () -> {
59 try (var in = new Scanner(path))
60 {61 while (in.hasNext())
62 {
63 if (in.next().equals(word)) return path;
64 if (Thread.currentThread().isInterrupted())
65 {
66 System.out.println("Search in " + path + "
canceled.");
67 return null;
68 }
69 }
70 throw new NoSuchElementException();
71 }
72 };
73 }
74
75 public static void main(String[] args)
76 throws InterruptedException, ExecutionException,
IOException
77 {
78 try (var in = new Scanner(System.in))
79 {
80 System.out.print("Enter base directory (e.g. /opt/jdk-
9-src): ");
81 String start = in.nextLine();
82 System.out.print("Enter keyword (e.g. volatile): ");

83 String word = in.nextLine();
84
85 Set<Path> files = descendants(Path.of(start));
86 var tasks = new ArrayList<Callable<Long>>();
87 for (Path file : files)
88 {
89 Callable<Long> task = () -> occurrences(word, file);
90 tasks.add(task);
91 }
92 ExecutorService executor =
Executors.newCachedThreadPool();
93 // use a single thread executor instead to see if
multiple threads
94 // speed up the search
95 // ExecutorService executor =
Executors.newSingleThreadExecutor();
96
97 Instant startTime = Instant.now();
98 List<Future<Long>> results = executor.invokeAll(tasks);
99 long total = 0;
100 for (Future<Long> result : results)
101 total += result.get();
102 Instant endTime = Instant.now();
103 System.out.println("Occurrences of " + word + ": " +
total);
104 System.out.println("Time elapsed: "
105 + Duration.between(startTime, endTime).toMillis() +
" ms");
106
107 var searchTasks = new ArrayList<Callable<Path>>();
108 for (Path file : files)
109 searchTasks.add(searchForTask(word,
file));110 Path found = executor.invokeAny(searchTasks);
111 System.out.println(word + " occurs in: " + found);
112
113 if (executor instanceof ThreadPoolExecutor tpExecutor)
114 // the single thread executor isn't
115 System.out.println("Largest pool size: "
116 + tpExecutor.getLargestPoolSize();

117 executor.shutdown();
118 }
119 }
120 }

java.util.concurrent.ExecutorService 5

• T invokeAny(Collection<Callable<T>> tasks)
• T invokeAny(Collection<Callable<T>> tasks, long timeout,

TimeUnit unit)

executes the given tasks and returns the result of one of them. The
second method throws a TimeoutException if a timeout occurs.

• List<Future<T>> invokeAll(Collection<Callable<T>> tasks)
• List<Future<T>> invokeAll(Collection<Callable<T>> tasks, long
timeout, TimeUnit unit)

executes the given tasks and returns the results of all of them. The
second method throws a TimeoutException if a timeout occurs.

java.util.concurrent.ExecutorCompletionService<V> 5

• ExecutorCompletionService(Executor e)
constructs an executor completion service that collects the results of
the given executor.

• Future<V> submit(Callable<V> task)
• Future<V> submit(Runnable task, V result)

submits a task to the underlying executor.
• Future<V> take()

removes the next completed result, blocking if no completed results
are available.

• Future<V> poll()
• Future<V> poll(long time, TimeUnit unit)

removes and returns the next completed result, or returns null if no
completed results are available. The second method waits for the
given time.

12.6.4 The Fork-Join Framework

Some applications use a large number of threads that are mostly idle. An
example would be a web server that uses one thread per connection. Other
applications use one thread per processor core, in order to carry out
computationally intensive tasks, such as image or video processing. The
fork-join framework, which appeared in Java 7, is designed to support the
latter. Suppose you have a processing task that naturally decomposes into
subtasks, like this:

if (problemSize < threshold)

solve problem directly
else
{

break problem into subproblems
recursively solve each subproblem
combine the results
}

One example is image processing. To enhance an image, you can transform
the top half and the bottom half. If you have enough idle processors, those
operations can run in parallel. (You will need to do a bit of extra work along
the strip that separates the two halves, but that’s a technical detail.)

Here, we discuss a simpler example. Suppose we want to count how many
elements of an array fulfill a particular property. We cut the array in half,
compute the counts of each half, and add them up.

To put the recursive computation in a form that is usable by the framework,
supply a class that extends RecursiveTask<T> (if the computation produces a
result of type T) or RecursiveAction (if it doesn’t produce a result). Override
the compute method to generate and invoke subtasks, and to combine their
results.

class Counter extends RecursiveTask<Integer>
{
 . . .
 protected Integer compute()
 {
 if (to - from < THRESHOLD)
 {
 solve problem directly
 }
 else
 {
 int mid = from + (to - from) / 2;
 var first = new Counter(values, from, mid, filter);
 var second = new Counter(values, mid, to,
filter); invokeAll(first, second);
 return first.join() + second.join();
 }
 }
}

Here, the invokeAll method receives a number of tasks and blocks until all
of them have completed. The join method yields the result. Here, we apply
join

to each subtask and return the sum.

 NOTE:
There is also a get method for getting the current result, but it is less
attractive since it can throw checked exceptions that we are not allowed to

throw in the compute method.

Listing 12.9 shows the complete example.

Behind the scenes, the fork-join framework uses an effective heuristic, called
work stealing, for balancing the workload among available threads. Each
worker thread has a deque (double-ended queue) for tasks. A worker thread
pushes subtasks onto the head of its own deque. (Only one thread accesses
the head, so no locking is required.) When a worker thread is idle, it “steals”
a task from the tail of another deque. Since large subtasks are at the tail, such
stealing is rare.

 CAUTION:
Fork-join pools are optimized for nonblocking workloads. If you add many
blocking tasks into a fork-join pool, you can starve it. It is possible to
overcome this by having tasks implement the ForkJoinPool.ManagedBlocker
interface, but this is an advanced technique that we won’t discuss.

Listing 12.9 forkJoin/ForkJoinTest.java

 1 package forkJoin;
 2
 3 import java.util.concurrent.*;
 4 import java.util.function.*;
 5
 6 /**
 7 * This program demonstrates the fork-join framework.
 8 * @version 1.02 2021-06-17
 9 * @author Cay Horstmann
10 */
11 public class ForkJoinTest
12 {13 public static void main(String[] args)
14 {

15 final int SIZE = 10000000;
16 var numbers = new double[SIZE];
17 for (int i = 0; i < SIZE; i++) numbers[i] =
Math.random();
18 var counter = new Counter(numbers, 0, numbers.length, x
-> x > 0.5);
19 var pool = new ForkJoinPool();
20 pool.invoke(counter);
21 System.out.println(counter.join());
22 }
23 }
24
25 class Counter extends RecursiveTask<Integer>
26 {
27 public static final int THRESHOLD = 1000;
28 private double[] values;
29 private int from;
30 private int to;
31 private DoublePredicate filter;
32
33 public Counter(double[] values, int from, int to,
DoublePredicate filter)
34 {
35 this.values = values;
36 this.from = from;
37 this.to = to;
38 this.filter = filter;
39 }
40
41 protected Integer compute()
42 {
43 if (to - from < THRESHOLD)
44 {
45 int count = 0;
46 for (int i = from; i < to; i++)
47 {
48 if (filter.test(values[i])) count++;
49 }
50 return count;

51 }
52 else
53 {
54 int mid = from + (to - from) / 2;
55 var first = new Counter(values, from, mid, filter);
56 var second = new Counter(values, mid, to, filter);
57 invokeAll(first, second);
58 return first.join() + second.join();
59 }
60 }
61 }

12.7 Asynchronous Computations

So far, our approach to concurrent computation has been to break up a task,
and then wait until all pieces have completed. But waiting is not always a
good idea. In the following sections, you will see how to implement wait-
free, or asynchronous, computations.

12.7.1 Completable Futures

When you have a Future object, you need to call get to obtain the value,
blocking until the value is available. The CompletableFuture class
implements the Future interface, and it provides a second mechanism for
obtaining the result. You register a callback that will be invoked (in some
thread) with the result once it is available.

CompletableFuture<String> f = . . .;
f.thenAccept(s -> Process the result string s);

In this way, you can process the result without blocking once it is available.

There are a few API methods that return CompletableFuture objects. For
example, you can fetch a web page asynchronously with the HttpClient
class that you will encounter in Chapter 4 of Volume II:

HttpClient client = HttpClient.newHttpClient();
HttpRequest request =
HttpRequest.newBuilder(URI.create(urlString)).GET().build();
CompletableFuture<HttpResponse<String>> f = client.sendAsync(
 request, BodyHandlers.ofString());

It is nice if there is a method that produces a ready-made CompletableFuture,
but most of the time, you need to make your own. To run a task
asynchronously and obtain a CompletableFuture, you don’t submit it directly
to an executor service. Instead, you call the static method
CompletableFuture.supplyAsync. Here is how to read the web page without
the benefit of the HttpClient class:

public CompletableFuture<String> readPage(URL url)
{
 return CompletableFuture.supplyAsync(() ->
 {
 try
 {
 return new String(url.openStream().readAllBytes(),
"UTF-8");
 }
 catch (IOException e)
 {
 throw new UncheckedIOException(e);
 } }, executor);
}

If you omit the executor, the task is run on a default executor (namely the
executor returned by ForkJoinPool.commonPool()). You usually don’t want
to do that.

 CAUTION:

Note that the first argument of the supplyAsync method is a Supplier<T>, not
a Callable<T>. Both interfaces describe functions with no arguments and a
return value of type T, but a Supplier function cannot throw a checked
exception. As you can see from the code above, that was not an inspired
choice.

A CompletableFuture can complete in two ways: either with a result, or with
an uncaught exception. In order to handle both cases, use the whenComplete
method. The supplied function is called with the result (or null if none) and
the exception (or null if none).

f.whenComplete((s, t) ->
 {
 if (t == null)
 {

Process the result s;
 }
 else
 {

Process the Throwable t;
 }
 });

The CompletableFuture is called completable because you can manually set
a completion value. (In other concurrency libraries, such an object is called a
promise.) Of course, when you create a CompletableFuture with
supplyAsync, the completion value is implicitly set when the task has
finished. But setting the result explicitly gives you additional flexibility. For
example, two tasks can work simultaneously on computing an answer:

var f = new CompletableFuture<Integer>();
executor.execute(() ->
 {
 int n = workHard(arg);
 f.complete(n);
 });

executor.execute(() ->
 {
 int n = workSmart(arg);
 f.complete(n);
 });

To instead complete a future with an exception, call

Throwable t = . . .;
f.completeExceptionally(t);

 NOTE:
It is safe to call complete or completeExceptionally on the same future in
multiple threads. If the future is already completed, these calls have no
effect.

The isDone method tells you whether a Future object has been completed
(normally or with an exception). In the preceding example, the workHard and
workSmart methods can use that information to stop working when the result
has been determined by the other method.

 CAUTION:
Unlike a plain Future, the computation of a CompletableFuture is not
interrupted when you invoke its cancel method. Canceling simply sets the
Future object to be completed exceptionally, with a CancellationException.
In general, this makes sense since a CompletableFuture may not have a
single thread that is responsible for its completion. However, this restriction
also applies to CompletableFuture instances returned by methods such as
supplyAsync, which could in principle be interrupted.

12.7.2 Composing Completable Futures

Nonblocking calls are implemented through callbacks. The programmer
registers a callback for the action that should occur after a task completes. Of
course, if the next action is also asynchronous, the next action after that is in
a different callback. Even though the programmer thinks in terms of “first do
step 1, then step 2, then step 3,” the program logic can become dispersed in
“callback hell.” It gets even worse when one has to add error handling.
Suppose step 2 is “the user logs in.” You may need to repeat that step since
the user can mistype the credentials. Trying to implement such a control flow
in a set of callbacks, or to understand it once it has been implemented, can
be quite challenging.

The CompletableFuture class solves this problem by providing a mechanism
for composing asynchronous tasks into a processing pipeline.

For example, suppose we want to extract all images from a web page. Let’s
say we have a method

public CompletableFuture<String> readPage(URL url)

that yields the text of a web page when it becomes available. If the method

public List<URL> getImageURLs(String page)

yields the URLs of images in an HTML page, you can schedule it to be
called when the page is available:

CompletableFuture<String> contents = readPage(url);
CompletableFuture<List<URL>> imageURLs =
contents.thenApply(this::getLinks);

The thenApply method doesn’t block either. It returns another future. When
the first future has completed, its result is fed to the getImageURLs method,
and the return value of that method becomes the final result.

With completable futures, you just specify what you want to have done and
in which order. It won’t all happen right away, of course, but what is
important is that all the code is in one place.

Conceptually, CompletableFuture is a simple API, but there are many
variants of methods for composing completable futures. Let us first look at
those that deal with a single future (see Table 12.3). In the table, I use a
shorthand notation for the ponderous functional interfaces, writing T -> U
instead of Function<? super T, U>. These aren’t actual Java types, of
course.

For each method shown, there are also two Async variants that I don’t show.
One of them uses the common ForkJoinPool, and the other has an Executor
parameter.

You have already seen the thenApply method. Suppose f is a function that
receives values of type T and returns values of type U. The calls

CompletableFuture<U> future.thenApply(f);
CompletableFuture<U> future.thenApplyAsync(f, executor);

return a future that applies the function f to the result of future when it is
available. The second call runs f with yet another executor.

The thenCompose method, instead of taking a function mapping the type T to
the type U, receives a function mapping T to CompletableFuture<U>. That
sounds rather abstract, but it can be quite natural. Consider the action of
reading a web page from a given URL. Instead of supplying a method

public String blockingReadPage(URL url)

it is more elegant to have that method return a future:

public CompletableFuture<String> readPage(URL url)

Now, suppose we have another method that gets the URL from user input,
perhaps from a dialog that won’t reveal the answer until the user has clicked

the OK button. That, too, is an event in the future:

public CompletableFuture<URL> getURLInput(String prompt)

Here we have two functions T -> CompletableFuture<U> and U ->

CompletableFuture<V>. Clearly, they compose to a function T ->

CompletableFuture<V> if the second function is called when the first one has
completed. That is exactly what thenCompose does.

In the preceding section, you saw the whenComplete method for handling
exceptions. There is also a handle method that requires a function processing
the result or exception and computing a new result. In many cases, it is
simpler to call the exceptionally method instead. That method computes a
dummy value when an exception occurs:

CompletableFuture<List<URL>> imageURLs = readPage(url)
 .exceptionally(ex -> "<html></html>")
 .thenApply(this::getImageURLs)

You can handle a timeout in the same way:

CompletableFuture<List<URL>> imageURLs = readPage(url)
 .completeOnTimeout("<html></html>", 30, TimeUnit.SECONDS)
 .thenApply(this::getImageURLs)

Alternatively, you can throw an exception on timeout:

CompletableFuture<String> = readPage(url).orTimeout(30,
TimeUnit.SECONDS)

The methods in Table 12.3 with void result are normally used at the end of a
processing pipeline.

Now let us turn to methods that combine multiple futures (see Table 12.4).

The first three methods run a CompletableFuture<T> and a
CompletableFuture<U> action concurrently and combine the results.

The next three methods run two CompletableFuture<T> actions concurrently.
As soon as one of them finishes, its result is passed on, and the other result is
ignored.

Finally, the static allOf and anyOf methods take a variable number of
completable futures and yield a CompletableFuture<Void> that completes
when all of them, or any one of them, completes. The allOf method does not
yield a result. The anyOf method does not terminate the remaining tasks.

Table 12.3 Adding an Action to a CompletableFuture<T> Object

 NOTE:
Technically speaking, the methods in this section accept parameters of type
CompletionStage, not CompletableFuture. The CompletionStage interface
describes how to compose asynchronous computations, whereas the Future
interface focuses on the result of a computation. A CompletableFuture is
both a CompletionStage and a Future.

Listing 12.10 shows a complete program that reads a web page, scans it for
images, loads the images and saves them locally. Note how all time-
consuming methods return a CompletableFuture. To kick off the
asynchronous computation, we use a little trick. Rather than calling the
readPage method directly, we make a completed future with the URL
argument, and then compose that future with this::readPage. That way, the
pipeline has a very uniform appearance:

CompletableFuture.completedFuture(url)
 .thenComposeAsync(this::readPage, executor)
 .thenApply(this::getImageURLs)
 .thenCompose(this::getImages)
 .thenAccept(this::saveImages);

Table 12.4 Combining Multiple Composition Objects

Listing 12.10 completableFutures/CompletableFutureDemo.java

 1 package completableFutures;
 2
 3 import java.awt.image.*;
 4 import java.io.*;
 5 import java.net.*;
 6 import java.nio.charset.*;
 7 import java.util.*;
 8 import java.util.concurrent.*;
 9 import java.util.regex.*;
10
11 import javax.imageio.*;
12

13 public class CompletableFutureDemo
14 {
15 private static final Pattern IMG_PATTERN = Pattern.compile(
16 "[<]\\s*[iI][mM][gG]\\s*[^>]*[sS][rR][cC]\\s*[=]\\s*
['\"]([^'\"]*)['\"][^>]*[>]");
17 private ExecutorService executor =
Executors.newCachedThreadPool();
18 private URL urlToProcess;
19
20 public CompletableFuture<String> readPage(URL url)
21 {22 return CompletableFuture.supplyAsync(() ->
23 {
24 try
25 {
26 var contents = new
String(url.openStream().readAllBytes(),
27 StandardCharsets.UTF_8);
28 System.out.println("Read page from " + url);
29 return contents;
30 }
31 catch (IOException e)
32 {
33 throw new UncheckedIOException(e);
34 }
35 }, executor);
36 }
37
38 public List<URL> getImageURLs(String webpage) // not time-
consuming
39 {
40 try
41 {
42 var result = new ArrayList<URL>();
43 Matcher matcher = IMG_PATTERN.matcher(webpage);
44 while (matcher.find())
45 {
46 var url = new URL(urlToProcess, matcher.group(1));
47 result.add(url);
48 }

49 System.out.println("Found URLs: " + result);
50 return result;
51 }
52 catch (IOException e)
53 {
54 throw new UncheckedIOException(e);
55 }
56 }
57
58 public CompletableFuture<List<BufferedImage>>
getImages(List<URL> urls)
59 {
60 return CompletableFuture.supplyAsync(() ->
61 {
62 try
63 {
64 var result = new ArrayList<BufferedImage>();
65 for (URL url : urls)
66 {
67 result.add(ImageIO.read(url));
68 System.out.println("Loaded " + url);
69 }
70 return result;71 }
72 catch (IOException e)
73 {
74 throw new UncheckedIOException(e);
75 }
76 }, executor);
77 }
78
79 public void saveImages(List<BufferedImage> images)
80 {
81 System.out.println("Saving " + images.size() + " images");
82 try
83 {
84 for (int i = 0; i < images.size(); i++)
85 {
86 String filename = "/tmp/image" + (i + 1) + ".png";
87 ImageIO.write(images.get(i), "PNG", new

File(filename));
88 }
89 }
90 catch (IOException e)
91 {
92 throw new UncheckedIOException(e);
93 }
94 executor.shutdown();
95 }
96
97 public void run(URL url)
98 throws IOException, InterruptedException
99 {
100 urlToProcess = url;
101 CompletableFuture.completedFuture(url)
102 .thenComposeAsync(this::readPage, executor)
103 .thenApply(this::getImageURLs)
104 .thenCompose(this::getImages)
105 .thenAccept(this::saveImages);
106
107 /*
108 // or use the HTTP client:
109
110 HttpClient client = HttpClient.newBuilder().build();
111 HttpRequest request =
HttpRequest.newBuilder(urlToProcess.toURI()).GET()
112 .build();
113 client.sendAsync(request, BodyProcessors.ofString())
114 .thenApply(HttpResponse::body)
115 .thenApply(this::getImageURLs)
116 .thenCompose(this::getImages)
117 .thenAccept(this::saveImages);
118 */119 }
120
121 public static void main(String[] args)
122 throws IOException, InterruptedException
123 {
124 new CompletableFutureDemo().run(new
URL("http://horstmann.com/index.html"));

125 }
126 }

12.7.3 Long-Running Tasks in User Interface Callbacks

One of the reasons to use threads is to make your programs more responsive.
This is particularly important in an application with a user interface. When
your program needs to do something time-consuming, you cannot do the
work in the user-interface thread, or the user interface will be frozen.
Instead, fire up another worker thread.

For example, if you want to read a file when the user clicks a button, don’t
do this:

var open = new JButton("Open");
open.addActionListener(event ->
 { // BAD--long-running action is executed on UI thread
 var in = new Scanner(file);
 while (in.hasNextLine())
 {
 String line = in.nextLine();
 . . .
 }
 });

Instead, do the work in a separate thread.

open.addActionListener(event ->
 { // GOOD--long-running action in separate thread
 Runnable task = () ->
 {
 var in = new Scanner(file);
 while (in.hasNextLine())
 {
 String line = in.nextLine();
 . . .
 }

 };
 executor.execute(task);
 });

However, you cannot directly update the user interface from the worker
thread that executes the long-running task. User interfaces such as Swing,
JavaFX, or Android are not thread-safe. You cannot manipulate user
interface elements from multiple threads, or they risk becoming corrupted. In
fact, JavaFX and Android check for this, and throw an exception if you try to
access the user interface from a thread other than the UI thread.

Therefore, you need to schedule any UI updates to happen on the UI thread.
Each user interface library provides some mechanism to schedule a Runnable
for execution on the UI thread. For example, in Swing, you call

EventQueue.invokeLater(() -> label.setText(percentage + "%
complete"));

It is tedious to implement user feedback in a worker thread, so each user
interface library provides some kind of helper class for managing the details,
such as SwingWorker in Swing, Task in JavaFX, and AsyncTask in Android.
You specify actions for the long-running task (which is run on a separate
thread), as well as progress updates and the final disposition (which are run
on the UI thread).

The program in Listing 12.11 has commands for loading a text file and for
canceling the file loading process. You should try the program with a long
file, such as the full text of The Count of Monte Cristo, supplied in the
gutenberg directory of the book’s companion code. The file is loaded in a
separate thread. While the file is being read, the Open menu item is disabled
and the Cancel item is enabled (see Figure 12.6). After each line is read, a
line counter in the status bar is updated. After the reading process is
complete, the Open menu item is reenabled, the Cancel item is disabled, and
the status line text is set to Done.

Figure 12.6 Loading a file in a separate thread

This example shows the typical UI activities of a background task:

• After each work unit, update the UI to show progress.
• After the work is finished, make a final change to the UI.

The SwingWorker class makes it easy to implement such a task. Override the
doInBackground method to do the time-consuming work and occasionally
call publish to communicate work progress. This method is executed in a
worker thread. The publish method causes a process method to execute in
the event dispatch thread to deal with the progress data. When the work is
complete, the done method is called in the event dispatch thread so that you
can finish updating the UI.

Whenever you want to do some work in the worker thread, construct a new
worker. (Each worker object is meant to be used only once.) Then call the
execute method. You will typically call execute on the event dispatch
thread, but that is not a requirement.

It is assumed that a worker produces a result of some kind; therefore,
SwingWorker<T, V> implements Future<T>. This result can be obtained by the
get method of the Future interface. Since the get method blocks until the
result is available, you don’t want to call it immediately after calling
execute. It is a good idea to call it only when you know that the work has
been completed. Typically, you call get from the done method. (There is no
requirement to call get. Sometimes, processing the progress data is all you
need.)

Both the intermediate progress data and the final result can have arbitrary
types. The SwingWorker class has these types as type parameters. A
SwingWorker<T, V> produces a result of type T and progress data of type V.

To cancel the work in progress, use the cancel method of the Future
interface. When the work is canceled, the get method throws a
CancellationException.

As already mentioned, the worker thread’s call to publish will cause calls to
process on the event dispatch thread. For efficiency, the results of several
calls to publish may be batched up in a single call to process. The process
method receives a List<V> containing all intermediate results.

Let us put this mechanism to work for reading in a text file. As it turns out, a
JTextArea is quite slow. Appending lines from a long text file (such as all
lines in The Count of Monte Cristo) takes considerable time.

To show the user that progress is being made, we want to display the number
of lines read in a status line. Thus, the progress data consist of the current
line number and the current line of text. We package these into a trivial inner
class:

private class ProgressData
{
 public int number;
 public String line;
}

The final result is the text that has been read into a StringBuilder. Thus, we
need a SwingWorker<StringBuilder, ProgressData>.

In the doInBackground method, we read a file, a line at a time. After each
line, we call publish to publish the line number and the text of the current
line.

@Override public StringBuilder doInBackground() throws
IOException, InterruptedException
{
 int lineNumber = 0;
 var in = new Scanner(new FileInputStream(file),
StandardCharsets.UTF_8);
 while (in.hasNextLine())
 {
 String line = in.nextLine();
 lineNumber++;
 text.append(line).append("\n");
 var data = new ProgressData();
 data.number = lineNumber;
 data.line = line;
 publish(data);
 Thread.sleep(1); // to test cancellation; no need to do
this in your programs
 }
 return text;
}

We also sleep for a millisecond after every line so that you can test
cancellation without getting stressed out, but you wouldn’t want to slow
down your own programs by sleeping. If you comment out this line, you will
find that The Count of Monte Cristo loads quite quickly, with only a few
batched user interface updates.

In the process method, we ignore all line numbers but the last one, and we
concatenate all lines for a single update of the text area.

@Override public void process(List<ProgressData> data)
{
 if (isCancelled()) return;
 var b = new StringBuilder();
 statusLine.setText("" + data.get(data.size() - 1).number);
 for (ProgressData d : data) b.append(d.line).append("\n");
 textArea.append(b.toString());
}

In the done method, the text area is updated with the complete text, and the
Cancel menu item is disabled.

Note how the worker is started in the event listener for the Open menu item.

This simple technique allows you to execute time-consuming tasks while
keeping the user interface responsive.

Listing 12.11 swingWorker/SwingWorkerTest.java

 1 package swingWorker;
 2
 3 import java.awt.*;
 4 import java.io.*;
 5 import java.nio.charset.*;
 6 import java.util.*;
 7 import java.util.List;
 8 import java.util.concurrent.*;
 9
10 import javax.swing.*;
11
12 /**
13 * This program demonstrates a worker thread that runs a
potentially time-consuming task.
14 * @version 1.12 2018-03-17
15 * @author Cay Horstmann
16 */
17 public class SwingWorkerTest
18 {

19 public static void main(String[] args) throws Exception
20 {
21 EventQueue.invokeLater(() ->
22 {
23 var frame = new SwingWorkerFrame();
24 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOS
E);
25 frame.setVisible(true);
26 });
27 }
28 }
29
30 /**
31 * This frame has a text area to show the contents of a text
file, a menu to open a file and
32 * cancel the opening process, and a status line to show the
file loading progress.
33 */
34 class SwingWorkerFrame extends JFrame
35 {
36 private JFileChooser chooser;
37 private JTextArea textArea;
38 private JLabel statusLine;
39 private JMenuItem openItem;
40 private JMenuItem cancelItem;41 private
SwingWorker<StringBuilder, ProgressData> textReader;
42 public static final int TEXT_ROWS = 20;
43 public static final int TEXT_COLUMNS = 60;
44
45 public SwingWorkerFrame()
46 {
47 chooser = new JFileChooser();
48 chooser.setCurrentDirectory(new File("."));
49
50 textArea = new JTextArea(TEXT_ROWS, TEXT_COLUMNS);
51 add(new JScrollPane(textArea));
52
53 statusLine = new JLabel(" ");
54 add(statusLine, BorderLayout.SOUTH);

55
56 var menuBar = new JMenuBar();
57 setJMenuBar(menuBar);
58
59 var menu = new JMenu("File");
60 menuBar.add(menu);
61
62 openItem = new JMenuItem("Open");
63 menu.add(openItem);
64 openItem.addActionListener(event -> {
65 // show file chooser dialog
66 int result = chooser.showOpenDialog(null);
67
68 // if file selected, set it as icon of the label
69 if (result == JFileChooser.APPROVE_OPTION)
70 {
71 textArea.setText("");
72 openItem.setEnabled(false);
73 textReader = new
TextReader(chooser.getSelectedFile());
74 textReader.execute();
75 cancelItem.setEnabled(true);
76 }
77 });
78
79 cancelItem = new JMenuItem("Cancel");
80 menu.add(cancelItem);
81 cancelItem.setEnabled(false);
82 cancelItem.addActionListener(event ->
textReader.cancel(true));
83 pack();
84 }
85
86 private class ProgressData
87 {
88 public int number;
89 public String line;
90 }
91

92 private class TextReader extends SwingWorker<StringBuilder,
ProgressData>
93 {
94 private File file;
95 private StringBuilder text = new StringBuilder();
96
97 public TextReader(File file)
98 {
99 this.file = file;
100 }
101
102 // the following method executes in the worker thread; it
doesn't touch Swing components
103
104 public StringBuilder doInBackground() throws IOException,
InterruptedException
105 {
106 int lineNumber = 0;
107 try (var in = new Scanner(new FileInputStream(file),
StandardCharsets.UTF_8))
108 {
109 while (in.hasNextLine())
110 {
111 String line = in.nextLine();
112 lineNumber++;
113 text.append(line).append("\n");
114 var data = new ProgressData();
115 data.number = lineNumber;
116 data.line = line;
117 publish(data);
118 Thread.sleep(1); // to test cancellation; no
need to do this in your programs
119 }
120 }
121 return text;
122 }
123
124 // the following methods execute in the event dispatch
thread

125
126 public void process(List<ProgressData> data)
127 {
128 if (isCancelled()) return;
129 var builder = new StringBuilder();
130 statusLine.setText("" + data.get(data.size() -
1).number);
131 for (ProgressData d : data)
builder.append(d.line).append("\n");
132 textArea.append(builder.toString());
133 }
134
135 public void done()136 {
137 try
138 {
139 StringBuilder result = get();
140 textArea.setText(result.toString());
141 statusLine.setText("Done");
142 }
143 catch (InterruptedException ex)
144 {
145 }
146 catch (CancellationException ex)
147 {
148 textArea.setText("");
149 statusLine.setText("Cancelled");
150 }
151 catch (ExecutionException ex)
152 {
153 statusLine.setText("" + ex.getCause());
154 }
155
156 cancelItem.setEnabled(false);
157 openItem.setEnabled(true);
158 }
159 };
160 }

javax.swing.SwingWorker<T, V> 6

• abstract T doInBackground()
is the method to override to carry out the background task and to
return the result of the work.

• void process(List<V> data)
is the method to override to process intermediate progress data in the
event dispatch thread.

• void publish(V... data)
forwards intermediate progress data to the event dispatch thread. Call
this method from doInBackground.

• void execute()
schedules this worker for execution on a worker thread.

• SwingWorker.StateValue getState()
gets the state of this worker, one of PENDING, STARTED, or DONE.

12.8 Processes

Up to now, you have seen how to execute Java code in separate threads
within the same program. Sometimes, you need to execute another program.
For this, use the ProcessBuilder and Process classes. The Process class
executes a command in a separate operating system process and lets you
interact with its standard input, output, and error streams. The
ProcessBuilder class lets you configure a Process object.

 NOTE:
The ProcessBuilder class is a more flexible replacement for the
Runtime.exec calls.

12.8.1 Building a Process

Start by specifying the command that you want to execute. You can supply a
List<String> or simply the strings that make up the command.

var builder = new ProcessBuilder("gcc", "myapp.c");

 CAUTION:
The first string must be an executable command, not a shell builtin. For
example, to run the dir command in Windows, you need to build a process
with strings "cmd.exe", "/C", and "dir".

Each process has a working directory, which is used to resolve relative
directory names. By default, a process has the same working directory as the
virtual machine, which is typically the directory from which you launched
the java

program. You can change it with the directory method:

builder = builder.directory(path.toFile());

 NOTE:
Each of the methods for configuring a ProcessBuilder returns itself, so that
you can chain commands. Ultimately, you will call

Process p = new ProcessBuilder(command).directory(file).…
start();

Next, you will want to specify what should happen to the standard input,
output, and error streams of the process. By default, each of them is a pipe
that you can access with

OutputStream processIn = p.getOutputStream();
InputStream processOut = p.getInputStream();
InputStream processErr = p.getErrorStream();

Note that the input stream of the process is an output stream in the JVM!
You write to that stream, and whatever you write becomes the input of the
process. Conversely, you read what the process writes to the output and error
streams. For you, they are input streams.

You can specify that the input, output, and error streams of the new process
should be the same as the JVM. If the user runs the JVM in a console, any
user input is forwarded to the process, and the process output shows up in
the console. Call

builder.inheritIO()

to make this setting for all three streams. If you only want to inherit some of
the streams, pass the value

ProcessBuilder.Redirect.INHERIT

to the redirectInput, redirectOutput, or redirectError methods. For
example,

builder.redirectOutput(ProcessBuilder.Redirect.INHERIT);

You can redirect the process streams to files by supplying File objects:

builder.redirectInput(inputFile)
 .redirectOutput(outputFile)
 .redirectError(errorFile)

The files for output and error are created or truncated when the process
starts. To append to existing files, use

builder.redirectOutput(ProcessBuilder.Redirect.appendTo(outputF
ile));

It is often useful to merge the output and error streams, so you see the
outputs and error messages in the sequence in which the process generates
them. Call

builder.redirectErrorStream(true)

to activate the merging. If you do that, you can no longer call redirectError
on the ProcessBuilder or getErrorStream on the Process.

You may also want to modify the environment variables of the process.
Here, the builder chain syntax breaks down. You need to get the builder’s
environment (which is initialized by the environment variables of the
process running the JVM), then put or remove entries.

Map<String, String> env = builder.environment();
env.put("LANG", "fr_FR");
env.remove("JAVA_HOME");
Process p = builder.start();

If you want to pipe the output of one process into the input of another (as
with the | operator in a shell), Java 9 offers a startPipeline method. Pass a
list of process builders and read the result from the last process. Here is an
example, enumerating the unique extensions in a directory tree:

List<Process> processes = ProcessBuilder.startPipeline(List.of(
 new ProcessBuilder("find", "/opt/jdk-17"),
 new ProcessBuilder("grep", "-o", "\\.[^./]*$"),
 new ProcessBuilder("sort"),
 new ProcessBuilder("uniq")
));

Process last = processes.get(processes.size() - 1);
var result = new String(last.getInputStream().readAllBytes());

Of course, this particular task would be more efficiently solved by making
the directory walk in Java instead of running four processes. Chapter 2 of
Volume II will show you how to do that.

12.8.2 Running a Process

After you have configured the builder, invoke its start method to start the
process. If you configured the input, output, and error streams as pipes, you
can now write to the input stream and read the output and error streams. For
example,

Process process = new ProcessBuilder("/bin/ls", "-l")
 .directory(Path.of("/tmp").toFile())
 .start();
try (var in = new Scanner(process.getInputStream()))
{
 while (in.hasNextLine())
 System.out.println(in.nextLine());
}

 CAUTION:
There is limited buffer space for the process streams. You should not flood
the input, and you should read the output promptly. If there is a lot of input
and output, you may need to produce and consume it in separate threads.

To wait for the process to finish, call

int result = process.waitFor();

or, if you don’t want to wait indefinitely,

long delay = . . .;
if (process.waitFor(delay, TimeUnit.SECONDS))
{
 int result = process.exitValue(); . . .
}
else
{
 process.destroyForcibly();
}

The first call to waitFor returns the exit value of the process (by convention,
0 for success or a nonzero error code). The second call returns true if the
process didn’t time out. Then you need to retrieve the exit value by calling
the exitValue method.

Instead of waiting for the process to finish, you can just leave it running and
occasionally call isAlive to see whether it is still alive. To kill the process,
call destroy or destroyForcibly. The difference between these calls is
platform-dependent. On UNIX, the former terminates the process with
SIGTERM, the latter with SIGKILL. (The supportsNormalTermination method
returns true if the destroy method can terminate the process normally.)

Finally, you can receive an asynchronous notification when the process has
completed. The call process.onExit() yields a CompletableFuture<Process>
that you can use to schedule any action.

process.onExit().thenAccept(
 p -> System.out.println("Exit value: " + p.exitValue()));

12.8.3 Process Handles

To get more information about a process that your program started, or any
other process that is currently running on your machine, use the
ProcessHandle interface. You can obtain a ProcessHandle in four ways:

1. Given a Process object p, p.toHandle() yields its ProcessHandle.

2. Given a long operating system process ID, ProcessHandle.of(id) yields
the handle of that process.

3. ProcessHandle.current() is the handle of the process that runs this Java
virtual machine.

4. ProcessHandle.allProcesses() yields a Stream<ProcessHandle> of all
operating system processes that are visible to the current process.

Given a process handle, you can get its process ID, its parent process, its
children, and descendants:

long pid = handle.pid();
Optional<ProcessHandle> parent = handle.parent();
Stream<ProcessHandle> children = handle.children();
Stream<ProcessHandle> descendants = handle.descendants();

 NOTE:
The Stream<ProcessHandle> instances that are returned by the allProcesses,
children, and descendants methods are just snapshots in time. Any of the
processes in the stream might be terminated by the time you get around to
seeing them, and other processes may have started that are not in the stream.

The info method yields a ProcessHandle.Info object with methods for
obtaining information about the process.

Optional<String[]> arguments()
Optional<String> command()
Optional<String> commandLine()
Optional<String> startInstant()
Optional<String> totalCpuDuration()
Optional<String> user()

All of these methods return Optional values since it is possible that a
particular operating system may not be able to report the information.

For monitoring or forcing process termination, the ProcessHandle interface
has the same isAlive, supportsNormalTermination, destroy,
destroyForcibly, and onExit methods as the Process class. However, there
is no equivalent to the waitFor method.

java.lang.ProcessBuilder 5

• ProcessBuilder(String... command)
• ProcessBuilder(List<String> command)

constructs a process builder with the given command and arguments.
• ProcessBuilder directory(File directory)

sets the working directory for the process.
• ProcessBuilder inheritIO() 9

makes the process use the standard input, output, and error of the
virtual machine.

• ProcessBuilder redirectErrorStream(boolean

redirectErrorStream)

if redirectErrorStream is true, the standard error of the process is
merged into the standard output.

• ProcessBuilder redirectInput(File file) 7
• ProcessBuilder redirectOutput(File file) 7
• ProcessBuilder redirectError(File file) 7

redirects the standard input, output, or error of the process to the
given file.

• ProcessBuilder redirectInput(ProcessBuilder.Redirect source) 7
• ProcessBuilder redirectOutput(ProcessBuilder.Redirect

destination) 7
• ProcessBuilder redirectError(ProcessBuilder.Redirect

destination) 7

redirects the standard input, output, or error of the process, where
destination is one of:
• Redirect.PIPE—the default behavior, access via the Process object
• Redirect.INHERIT—the stream from the virtual machine
• Redirect.DISCARD
• Redirect.from(file)
• Redirect.to(file)
• Redirect.appendTo(file)

• Map<String,String> environment()
yields a mutable map for setting environment variables for the
process.

• Process start()
starts the process and yields its Process object.

• static List<Process> startPipeline(List<ProcessBuilder>

builders) 9
starts a pipeline of processes, connecting the standard output of each
process to the standard input of the next one.

java.lang.Process 1.0

• abstract OutputStream getOutputStream()
gets a stream for writing to the input stream of the process.

• abstract InputStream getInputStream()
• abstract InputStream getErrorStream()

gets an input stream for reading the output or error stream of the
process.

• abstract int waitFor()

waits for the process to finish and yields the exit value.
• boolean waitFor(long timeout, TimeUnit unit) 8

waits for the process to finish, but no longer than the given timeout.
Returns true if the process exited.

• abstract int exitValue()
returns the exit value of the process. By convention, a non-zero exit
value indicates an error.

• boolean isAlive() 8
checks whether this process is still alive.

• abstract void destroy()
• Process destroyForcibly() 8

terminates this process, either normally or forcefully.
• boolean supportsNormalTermination() 9

checks whether this process can be terminated normally or must be
destroyed forcefully.

• ProcessHandle toHandle() 9
yields the ProcessHandle describing this process.

• CompletableFuture<Process> onExit() 9
yields a CompletableFuture that is executed when this process exits.

java.lang.ProcessHandle 9

• static Optional<ProcessHandle> of(long pid)
• static Stream<ProcessHandle> allProcesses()
• static ProcessHandle current()

yields the process handle(s) of the process with the given PID, of all
processes, or the process of the virtual machine.

• Stream<ProcessHandle> children()
• Stream<ProcessHandle> descendants()

yields the process handles of the children or descendants of this
process.

• long pid()
yields the PID of this process.

• ProcessHandle.Info info()
yields detail information about this process.

java.lang.ProcessHandle.Info 9

• Optional<String[]> arguments()
• Optional<String> command()
• Optional<String> commandLine()
• Optional<Instant> startInstant()
• Optional<Instant> totalCpuDuration()
• Optional<String> user()

yield the given detail information if available.

You have now reached the end of Volume I of Core Java. This volume
covered the fundamentals of the Java programming language and the parts of
the standard library that you need for most programming projects. I hope
that you enjoyed your tour through the Java fundamentals and that you found
useful information along the way. For advanced topics, such as the Java
platform module system, networking, advanced user interface and graphics
programming, security, and internationalization, please turn to Volume II.

Appendix A

This appendix lists all keywords and keyword-like words of the Java
language. A “restricted keyword” is a keyword only in a module declaration,
and otherwise an identfiier. A “restricted identifier” is an identifier unless it
is used in certain positions. For example, var is always an identifier unless it
is used where a type is expected. The symbols null, false, and true are not
keywords but literals.

Table A.1 Java Keywords

	Title Page
	Contents
	Table of Contents
	Preface
	Acknowledgments
	Chapter 1: An Introduction to Java
	1.1 Java as a Programming Platform
	1.2 The Java “White Paper” Buzzwords
	1.2.1 Simple
	1.2.2 Object-Oriented
	1.2.3 Distributed
	1.2.4 Robust
	1.2.5 Secure
	1.2.6 Architecture-Neutral
	1.2.7 Portable
	1.2.8 Interpreted
	1.2.9 High-Performance
	1.2.10 Multithreaded
	1.2.11 Dynamic

	1.3 Java Applets and the Internet
	1.4 A Short History of Java
	1.5 Common Misconceptions about Java

	Chapter 2: The Java Programming Environment
	2.1 Installing the Java Development Kit
	2.1.1 Downloading the JDK
	2.1.2 Setting up the JDK
	2.1.3 Installing Source Files and Documentation

	2.2 Using the Command-Line Tools
	2.3 Using an Integrated Development Environment
	2.4 JShell

	Chapter 3: Fundamental Programming Structures in Java
	3.1 A Simple Java Program
	3.2 Comments
	3.3 Data Types
	3.3.1 Integer Types
	3.3.2 Floating-Point Types
	3.3.3 The char Type
	3.3.4 Unicode and the char Type
	3.3.5 The boolean Type

	3.4 Variables and Constants
	3.4.1 Declaring Variables
	3.4.2 Initializing Variables
	3.4.3 Constants
	3.4.4 Enumerated Types

	3.5 Operators
	3.5.1 Arithmetic Operators
	3.5.2 Mathematical Functions and Constants
	3.5.3 Conversions between Numeric Types
	3.5.4 Casts
	3.5.5 Assignment
	3.5.6 Increment and Decrement Operators
	3.5.7 Relational and boolean Operators
	3.5.8 The Conditional Operator
	3.5.9 Switch Expressions
	3.5.10 Bitwise Operators
	3.5.11 Parentheses and Operator Hierarchy

	3.6 Strings
	3.6.1 Substrings
	3.6.2 Concatenation
	3.6.3 Strings Are Immutable
	3.6.4 Testing Strings for Equality
	3.6.5 Empty and Null Strings
	3.6.6 Code Points and Code Units
	3.6.7 The String API
	3.6.8 Reading the Online API Documentation
	3.6.9 Building Strings
	3.6.10 Text Blocks

	3.7 Input and Output
	3.7.1 Reading Input
	3.7.2 Formatting Output
	3.7.3 File Input and Output

	3.8 Control Flow
	3.8.1 Block Scope
	3.8.2 Conditional Statements
	3.8.3 Loops
	3.8.4 Determinate Loops
	3.8.5 Multiple Selections with switch
	3.8.6 Statements That Break Control Flow

	3.9 Big Numbers
	3.10 Arrays
	3.10.1 Declaring Arrays
	3.10.2 Accessing Array Elements
	3.10.3 The “for each” Loop
	3.10.4 Array Copying
	3.10.5 Command-Line Parameters
	3.10.6 Array Sorting
	3.10.7 Multidimensional Arrays
	3.10.8 Ragged Arrays

	Chapter 4: Objects and Classes
	4.1 Introduction to Object-Oriented Programming
	4.1.1 Classes
	4.1.2 Objects
	4.1.3 Identifying Classes
	4.1.4 Relationships between Classes

	4.2 Using Predefined Classes
	4.2.1 Objects and Object Variables
	4.2.2 The LocalDate Class of the Java Library
	4.2.3 Mutator and Accessor Methods

	4.3 Defining Your Own Classes
	4.3.1 An Employee Class
	4.3.2 Use of Multiple Source Files
	4.3.3 Dissecting the Employee Class
	4.3.4 First Steps with Constructors
	4.3.5 Declaring Local Variables with var
	4.3.6 Working with null References
	4.3.7 Implicit and Explicit Parameters
	4.3.8 Benefits of Encapsulation
	4.3.9 Class-Based Access Privileges
	4.3.10 Private Methods
	4.3.11 Final Instance Fields

	4.4 Static Fields and Methods
	4.4.1 Static Fields
	4.4.2 Static Constants
	4.4.3 Static Methods
	4.4.4 Factory Methods
	4.4.5 The main Method

	4.5 Method Parameters
	4.6 Object Construction
	4.6.1 Overloading
	4.6.2 Default Field Initialization
	4.6.3 The Constructor with No Arguments
	4.6.4 Explicit Field Initialization
	4.6.5 Parameter Names
	4.6.6 Calling Another Constructor
	4.6.7 Initialization Blocks
	4.6.8 Object Destruction and the finalize Method

	4.7 Records
	4.7.1 The Record Concept
	4.7.2 Constructors: Canonical, Custom, and Compact

	4.8 Packages
	4.8.1 Package Names
	4.8.2 Class Importation
	4.8.3 Static Imports
	4.8.4 Addition of a Class into a Package
	4.8.5 Package Access
	4.8.6 The Class Path
	4.8.7 Setting the Class Path

	4.9 JAR Files
	4.9.1 Creating JAR files
	4.9.2 The Manifest
	4.9.3 Executable JAR Files
	4.9.4 Multi-Release JAR Files
	4.9.5 A Note about Command-Line Options

	4.10 Documentation Comments
	4.10.1 Comment Insertion
	4.10.2 Class Comments
	4.10.3 Method Comments
	4.10.4 Field Comments
	4.10.5 General Comments
	4.10.6 Package Comments
	4.10.7 Comment Extraction

	4.11 Class Design Hints

	Chapter 5: Inheritance
	5.1 Classes, Superclasses, and Subclasses
	5.1.1 Defining Subclasses
	5.1.2 Overriding Methods
	5.1.3 Subclass Constructors
	5.1.4 Inheritance Hierarchies
	5.1.5 Polymorphism
	5.1.6 Understanding Method Calls
	5.1.7 Preventing Inheritance: Final Classes and Methods
	5.1.8 Casting
	5.1.9 Pattern Matching for instanceof
	5.1.10 Protected Access

	5.2 Object: The Cosmic Superclass
	5.2.1 Variables of Type Object
	5.2.2 The equals Method
	5.2.3 Equality Testing and Inheritance
	5.2.4 The hashCode Method
	5.2.5 The toString Method

	5.3 Generic Array Lists
	5.3.1 Declaring Array Lists
	5.3.2 Accessing Array List Elements
	5.3.3 Compatibility between Typed and Raw Array Lists

	5.4 Object Wrappers and Autoboxing
	5.5 Methods with a Variable Number of Parameters
	5.6 Abstract Classes
	5.7 Enumeration Classes
	5.8 Sealed Classes
	5.9 Reflection
	5.9.1 The Class Class
	5.9.2 A Primer on Declaring Exceptions
	5.9.3 Resources
	5.9.4 Using Reflection to Analyze the Capabilities of Classes
	5.9.5 Using Reflection to Analyze Objects at Runtime
	5.9.6 Using Reflection to Write Generic Array Code
	5.9.7 Invoking Arbitrary Methods and Constructors

	5.10 Design Hints for Inheritance

	Chapter 6: Interfaces, Lambda Expressions, and Inner Classes
	6.1 Interfaces
	6.1.1 The Interface Concept
	6.1.2 Properties of Interfaces
	6.1.3 Interfaces and Abstract Classes
	6.1.4 Static and Private Methods
	6.1.5 Default Methods
	6.1.6 Resolving Default Method Conflicts
	6.1.7 Interfaces and Callbacks
	6.1.8 The Comparator Interface
	6.1.9 Object Cloning

	6.2 Lambda Expressions
	6.2.1 Why Lambdas?
	6.2.2 The Syntax of Lambda Expressions
	6.2.3 Functional Interfaces
	6.2.4 Method References
	6.2.5 Constructor References
	6.2.6 Variable Scope
	6.2.7 Processing Lambda Expressions
	6.2.8 More about Comparators

	6.3 Inner Classes
	6.3.1 Use of an Inner Class to Access Object State
	6.3.2 Special Syntax Rules for Inner Classes
	6.3.3 Are Inner Classes Useful? Actually Necessary? Secure?
	6.3.4 Local Inner Classes
	6.3.5 Accessing Variables from Outer Methods
	6.3.6 Anonymous Inner Classes
	6.3.7 Static Inner Classes

	6.4 Service Loaders
	6.5 Proxies
	6.5.1 When to Use Proxies
	6.5.2 Creating Proxy Objects
	6.5.3 Properties of Proxy Classes

	Chapter 7: Exceptions, Assertions, and Logging
	7.1 Dealing with Errors
	7.1.1 The Classification of Exceptions
	7.1.2 Declaring Checked Exceptions
	7.1.3 How to Throw an Exception
	7.1.4 Creating Exception Classes

	7.2 Catching Exceptions
	7.2.1 Catching an Exception
	7.2.2 Catching Multiple Exceptions
	7.2.3 Rethrowing and Chaining Exceptions
	7.2.4 The finally Clause
	7.2.5 The try-with-Resources Statement
	7.2.6 Analyzing Stack Trace Elements

	7.3 Tips for Using Exceptions
	7.4 Using Assertions
	7.4.1 The Assertion Concept
	7.4.2 Assertion Enabling and Disabling
	7.4.3 Using Assertions for Parameter Checking
	7.4.4 Using Assertions for Documenting Assumptions

	7.5 Logging
	7.5.1 Basic Logging
	7.5.2 Advanced Logging
	7.5.3 Changing the Log Manager Configuration
	7.5.4 Localization
	7.5.5 Handlers
	7.5.6 Filters
	7.5.7 Formatters
	7.5.8 A Logging Recipe

	7.6 Debugging Tips

	Chapter 8: Generic Programming
	8.1 Why Generic Programming?
	8.1.1 The Advantage of Type Parameters
	8.1.2 Who Wants to Be a Generic Programmer?

	8.2 Defining a Simple Generic Class
	8.3 Generic Methods
	8.4 Bounds for Type Variables
	8.5 Generic Code and the Virtual Machine
	8.5.1 Type Erasure
	8.5.2 Translating Generic Expressions
	8.5.3 Translating Generic Methods
	8.5.4 Calling Legacy Code

	8.6 Restrictions and Limitations
	8.6.1 Type Parameters Cannot Be Instantiated with Primitive Types
	8.6.2 Runtime Type Inquiry Only Works with Raw Types
	8.6.3 You Cannot Create Arrays of Parameterized Types
	8.6.4 Varargs Warnings
	8.6.5 You Cannot Instantiate Type Variables
	8.6.6 You Cannot Construct a Generic Array
	8.6.7 Type Variables Are Not Valid in Static Contexts of Generic Classes
	8.6.8 You Cannot Throw or Catch Instances of a Generic Class
	8.6.9 You Can Defeat Checked Exception Checking
	8.6.10 Beware of Clashes after Erasure

	8.7 Inheritance Rules for Generic Types
	8.8 Wildcard Types
	8.8.1 The Wildcard Concept
	8.8.2 Supertype Bounds for Wildcards
	8.8.3 Unbounded Wildcards
	8.8.4 Wildcard Capture

	8.9 Reflection and Generics
	8.9.1 The Generic Class Class
	8.9.2 Using Class<T> Parameters for Type Matching
	8.9.3 Generic Type Information in the Virtual Machine
	8.9.4 Type Literals

	Chapter 9: Collections
	9.1 The Java Collections Framework
	9.1.1 Separating Collection Interfaces and Implementation
	9.1.2 The Collection Interface
	9.1.3 Iterators
	9.1.4 Generic Utility Methods

	9.2 Interfaces in the Collections Framework
	9.3 Concrete Collections
	9.3.1 Linked Lists
	9.3.2 Array Lists
	9.3.3 Hash Sets
	9.3.4 Tree Sets
	9.3.5 Queues and Deques
	9.3.6 Priority Queues

	9.4 Maps
	9.4.1 Basic Map Operations
	9.4.2 Updating Map Entries
	9.4.3 Map Views
	9.4.4 Weak Hash Maps
	9.4.5 Linked Hash Sets and Maps
	9.4.6 Enumeration Sets and Maps
	9.4.7 Identity Hash Maps

	9.5 Copies and Views
	9.5.1 Small Collections
	9.5.2 Unmodifiable Copies and Views
	9.5.3 Subranges
	9.5.4 Checked Views
	9.5.5 Synchronized Views
	9.5.6 A Note on Optional Operations

	9.6 Algorithms
	9.6.1 Why Generic Algorithms?
	9.6.2 Sorting and Shuffling
	9.6.3 Binary Search
	9.6.4 Simple Algorithms
	9.6.5 Bulk Operations
	9.6.6 Converting between Collections and Arrays
	9.6.7 Writing Your Own Algorithms

	9.7 Legacy Collections
	9.7.1 The Hashtable Class
	9.7.2 Enumerations
	9.7.3 Property Maps
	9.7.4 Stacks
	9.7.5 Bit Sets

	Chapter 10: Graphical User Interface Programming
	10.1 A History of Java User Interface Toolkits
	10.2 Displaying Frames
	10.2.1 Creating a Frame
	10.2.2 Frame Properties

	10.3 Displaying Information in a Component
	10.3.1 Working with 2D Shapes
	10.3.2 Using Color
	10.3.3 Using Fonts
	10.3.4 Displaying Images

	10.4 Event Handling
	10.4.1 Basic Event Handling Concepts
	10.4.2 Example: Handling a Button Click
	10.4.3 Specifying Listeners Concisely
	10.4.4 Adapter Classes
	10.4.5 Actions
	10.4.6 Mouse Events
	10.4.7 The AWT Event Hierarchy

	10.5 The Preferences API

	Chapter 11: User Interface Components with Swing
	11.1 Swing and the Model-View-Controller Design Pattern
	11.2 Introduction to Layout Management
	11.2.1 Layout Managers
	11.2.2 Border Layout
	11.2.3 Grid Layout

	11.3 Text Input
	11.3.1 Text Fields
	11.3.2 Labels and Labeling Components
	11.3.3 Password Fields
	11.3.4 Text Areas
	11.3.5 Scroll Panes

	11.4 Choice Components
	11.4.1 Checkboxes
	11.4.2 Radio Buttons
	11.4.3 Borders
	11.4.4 Combo Boxes
	11.4.5 Sliders

	11.5 Menus
	11.5.1 Menu Building
	11.5.2 Icons in Menu Items
	11.5.3 Checkbox and Radio Button Menu Items
	11.5.4 Pop-Up Menus
	11.5.5 Keyboard Mnemonics and Accelerators
	11.5.6 Enabling and Disabling Menu Items
	11.5.7 Toolbars
	11.5.8 Tooltips

	11.6 Sophisticated Layout Management
	11.6.1 The Grid Bag Layout
	11.6.2 Custom Layout Managers

	11.7 Dialog Boxes
	11.7.1 Option Dialogs
	11.7.2 Creating Dialogs
	11.7.3 Data Exchange
	11.7.4 File Dialogs

	Chapter 12: Concurrency
	12.1 What Are Threads?
	12.2 Thread States
	12.2.1 New Threads
	12.2.2 Runnable Threads
	12.2.3 Blocked and Waiting Threads
	12.2.4 Terminated Threads

	12.3 Thread Properties
	12.3.1 Interrupting Threads
	12.3.2 Daemon Threads
	12.3.3 Thread Names
	12.3.4 Handlers for Uncaught Exceptions
	12.3.5 Thread Priorities

	12.4 Synchronization
	12.4.1 An Example of a Race Condition
	12.4.2 The Race Condition Explained
	12.4.3 Lock Objects
	12.4.4 Condition Objects
	12.4.5 The synchronized Keyword
	12.4.6 Synchronized Blocks
	12.4.7 The Monitor Concept
	12.4.8 Volatile Fields
	12.4.9 Final Variables
	12.4.10 Atomics
	12.4.11 Deadlocks
	12.4.12 Why the stop and suspend Methods Are Deprecated
	12.4.13 On-Demand Initialization
	12.4.14 Thread-Local Variables

	12.5 Thread-Safe Collections
	12.5.1 Blocking Queues
	12.5.2 Efficient Maps, Sets, and Queues
	12.5.3 Atomic Update of Map Entries
	12.5.4 Bulk Operations on Concurrent Hash Maps
	12.5.5 Concurrent Set Views
	12.5.6 Copy on Write Arrays
	12.5.7 Parallel Array Algorithms
	12.5.8 Older Thread-Safe Collections

	12.6 Tasks and Thread Pools
	12.6.1 Callables and Futures
	12.6.2 Executors
	12.6.3 Controlling Groups of Tasks
	12.6.4 The Fork-Join Framework

	12.7 Asynchronous Computations
	12.7.1 Completable Futures
	12.7.2 Composing Completable Futures
	12.7.3 Long-Running Tasks in User Interface Callbacks

	12.8 Processes
	12.8.1 Building a Process
	12.8.2 Running a Process
	12.8.3 Process Handles

	Appendix

