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Preface to the second edition

Differential equations (DEs) are the foundation on which many mathematical models for real-
life applications are built. These equations can seldom be solved in ‘closed’ form: in fact, the
exact solution can rarely be characterized through explicit, and easily computable, mathematical
formulae. Almost invariably one has to resort to appropriate numerical methods, whose scope
is the approximation (or discretization) of the exact differential model and, hence, of the exact
solution.

This is the second edition of a book that first appeared in 2009. It presents in a compre-
hensive and self-contained way some of the most successful numerical methods for handling
DEs, for their analysis and their application to classes of problems that typically show up in the
applications.

Although we mostly deal with partial differential equations (PDEs), both for steady prob-
lems (in multiple space dimensions) and time-dependent problems (with one or several space
variables), part of the material is specifically devoted to ordinary differential equations (ODEs)
for one-dimensional boundary-value problems, especially when the discussion is interesting in
itself or relevant to the PDE case.

The primary concern is on the finite-element (FE) method, which is the most popular dis-
cretization technique for engineering design and analysis. We also address other techniques, al-
beit to a lesser extent, such as finite differences (FD), finite volumes (FV), and spectral methods,
including further ad-hoc methods for specific types of problems. The comparative assessment
of the performance of different methods is discussed, especially when it sheds light on their
mutual interplay.

We also introduce and analyze numerical strategies aimed at reducing the computational
complexity of differential problems: these include operator-splitting and fractional-step meth-
ods for time discretization, preconditioning, techniques for grid adaptivity, domain decomposi-
tion (DD) methods for parallel computing, and reduced-basis (RB) methods for solving para-
metrized PDEs efficiently.

Besides the classical elliptic, parabolic and hyperbolic linear equations, we treat more in-
volved model problems that arise in a host of applicative fields: linear and nonlinear conserva-
tion laws, advection-diffusion equations with dominating advection, Navier-Stokes equations,
saddle-point problems and optimal-control problems.

Here is the contents’ summary of the various chapters.

v



vi Preface

Chapter 1 briefly surveys PDEs and their classification, while Chapter 2 introduces the
main notions and theoretical results of functional analysis that are extensively used throughout
the book.

In Chapter 3 we illustrate boundary-value problems for elliptic equations (in one and sev-
eral dimensions), present their weak or variational formulation, treat boundary conditions and
analyze well-posedness. Several examples of physical interest are introduced.

The book’s first cornerstone is Chapter 4, where we formulate Galerkin’s method for the
numerical discretization of elliptic boundary-value problems and analyze it in an abstract func-
tional setting. We then introduce the Galerkin FE method, first in one dimension, for the reader’s
convenience, and then in several dimensions. We construct FE spaces and FE interpolation
operators, prove stability and convergence results and derive several kinds of error estimates.
Eventually, we present grid-adaptive procedures based on either a priori or a posteriori error
estimates.

The numerical approximation of parabolic problems is explained in Chapter 5: we begin
with semi-discrete (continuous in time) Galerkin approximations, and then consider fully-discrete
approximations based on FD schemes for time discretization. For both approaches stability and
convergence are proven.

Chapters 6, 7 and 8 are devoted to the algorithmic features and the practical implementation
of FE methods. More specifically, Chapter 6 illustrates the main techniques for grid generation,
Chapter 7 surveys the basic algorithms for the solution of ill-conditioned linear algebraic sys-
tems that arise from the approximation of PDEs, and Chapter 8 presents the main operational
phases of a FE code, together with a complete working example.

The basic principles underlying finite-volume methods for the approximation of diffusion-
transport-reaction equations are discussed in Chapter 9. FV methods are commonly used in
computational fluid dynamics owing to their intrinsic, built-in conservation properties.

Chapter 10 addresses the multi-faceted aspects of spectral methods (Galerkin, collocation,
and the spectral-element method), analyzing thoroughly the reasons for their superior accuracy
properties.

Galerkin discretization techniques relying on discontinuous polynomial subspaces are the
subject of Chapter 12. We present, more specifically, the discontinuous Galerkin (DG) method
and the mortar method, together with their use in the context of finite elements or spectral
elements.

Chapter 13 focuses on singularly perturbed elliptic boundary-value problems, in partic-
ular diffusion-transport equations and diffusion-reaction equations, with small diffusion. The
exact solutions to this type of problems can exhibit steep gradients in tiny subregions of the
computational domains, the so-called internal or boundary layers. A great deal of attention is
paid to stabilization techniques meant to prevent the on-rise of oscillatory numerical solutions.
Upwinding techniques are discussed for FD approximations, and their analogy with FE with ar-
tificial diffusion is analyzed. We introduce and discuss other stabilization approaches in the FE
context, as well, which lead to the sub-grid generalized Galerkin methods, the Petrov-Galerkin
methods and Galerkin’s Least-Squares method.

The ensuing three chapters form a thematic unit focusing on the approximation of first-order
hyperbolic equations. Chapter 14 addresses classical FD methods. Stability is investigated us-
ing both the energy method and the Von Neumann analysis. Using the latter we also analyze the
properties of dissipation and dispersion featured by a numerical scheme. Chapter 15 is devoted
to spatial approximation by FE methods, including the DG methods and spectral methods. Spe-
cial emphasis is put on characteristic compatibility conditions for the boundary treatment of
hyperbolic systems. A very quick overview of the numerical approximation of nonlinear con-
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servation laws is found in Chapter 16. Due to the relevance of this particular topic the interested
reader is advised to consult the specific monographs mentioned in the references.

In Chapter 17 we discuss the Navier-Stokes equations for incompressible flows, plus their
numerical approximation by FE, FV and spectral methods. A general stability and convergence
theory is developed for spatial approximation of saddle-point problems, which comprises strate-
gies for stabilization. Next we propose and analyze a number of time-discretization approaches,
among which finite differences, characteristic methods, fractional-step methods and algebraic
factorization techniques. Special attention is devoted to the numerical treatment of interfaces in
the case of multiphase flows.

Chapter 18 discusses the issue of optimal control for elliptic PDEs. The problem is first for-
mulated at the continuous level, where conditions of optimality are obtained using two different
methods. Then we address the interplay between optimization and numerical approximation.
We present several examples, some of them elementary in character, others involving physical
processes of applicative relevance.

Chapter 19 regards domain-decomposition methods. These techniques are specifically de-
vised for parallel computing and for the treatment of multiphysics’ PDE problems. The families
of Schwarz methods (with overlapping subdomains) and Schur methods (with disjoint subdo-
mains) are illustrated, and their convergence properties of optimality (grid invariance) and scal-
ability (subdomain-size invariance) studied. Several examples of domain-decomposition pre-
conditioners are provided and tested numerically.

Finally, in Chapter 20 we introduce the reduced-basis (RB) method for the efficient solution
of PDEs. RB methods allow for the rapid and reliable evaluation of input/output relationships
in which the output is expressed as a functional of a field variable that is the solution of a
parametrized PDE. Parametrized PDEs model several processes relevant in applications such as
steady and unsteady transfer of heat or mass, acoustics, solid and fluid mechanics, to mention
a few. The input-parameter vector variously characterizes the geometric configuration of the
domain, physical properties, boundary conditions or source terms. The combination with an
efficient a posteriori error estimate, and the splitting between offline and online calculations,
are key factors for RB methods to be computationally successful.

Many important topics that would have deserved a proper treatment were touched only
partially (in some cases completely ignored). This depends on the desire to offer a reasonably-
sized textbook on one side, and our own experience on the other. The list of notable omissions
includes, for instance, the approximation of equations for the structural analysis and the prop-
agation of electromagnetic waves. Detailed studies can be found in the references’ specialized
literature.

This text is intended primarily for graduate students in Mathematics, Engineering, Physics
and Computer Science and, more generally, for computational scientists. Each chapter is meant
to provide a coherent teaching unit on a specific subject. The first eight chapters, in particu-
lar, should be regarded as a comprehensive and self-contained treatise on finite elements for
elliptic and parabolic PDEs. Chapters 9–17 represent an advanced course on numerical meth-
ods for PDEs, while the last three chapters contain more subtle and sophisticated topics for the
numerical solution of complex PDE problems.

This work has been used as a textbook for graduate-level courses at the Politecnico di Mi-
lano and the École Polytechnique Fédérale de Lausanne. We would like to thank the many
people – students, colleagues and readers – who contributed, at various stages and in many
different ways, to its preparation and to the improvement of early drafts. A (far from com-
plete) list includes Paola Antonietti, Luca Dedè, Marco Discacciati, Luca Formaggia, Loredana
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Gaudio, Paola Gervasio, Andrea Manzoni, Stefano Micheletti, Nicola Parolini, Anthony T. Pat-
era, Luca Pavarino, Simona Perotto, Gianluigi Rozza, Fausto Saleri, Benjamin Stamm, Alberto
Valli, Alessandro Veneziani, and Cristoph Winkelmann. Special thanks go to Luca Paglieri for
the technical assistance, to Francesca Bonadei of Springer for supporting this project since its
very first Italian edition, and, last but not least, to Silvia Quarteroni for the translation from
Italian and to Simon G. Chiossi for the linguistic revision of the second edition.

Milan and Lausanne, October 2013 Alfio Quarteroni

Preface to the third edition

In this third edition we have added a new chapter on Isogeometric Analysis (Chapter 11), sub-
stantially improved the chapter on Reduced Basis Methods (now Chapter 20), and revised all
the other chapters.

Special thanks go to Luca Dedè and Andrea Manzoni.

Alfio QuarteroniLausanne and Milan, 2017August
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Chapter 1

A brief survey of partial differential equations

The purpose of this chapter is to recall the basic concepts related to partial differential
equations (PDEs, in short). For a wider coverage see [RR04, Eva98, LM68, Sal08].

1.1 Definitions and examples

Partial differential equations are differential equations containing derivatives of the
unknown function with respect to several variables (temporal or spatial). In particu-
lar, if we denote by u the unknown function in the d + 1 independent variables x =
(x1, . . . ,xd)

T and t, we denote by

P(u,g)=F

(
x, t,u,

∂u

∂ t
,

∂u

∂x1
, . . . ,

∂u

∂xd
, . . . ,

∂ p1+···+pd+pt u

∂xp1
1 . . .∂xpd

d ∂ t pt
,g

)
= 0 (1.1)

a generic PDE, g being the set of data on which the PDE depends, while p1, . . . , pd ,
pt ∈ N.

We say that (1.1) is of order q if q is the maximum order of the partial derivatives
appearing in the equation, i.e. the maximum value taken by the integer p1 + p2 +
. . .+ pd + pt .
If (1.1) depends linearly on the unknown u and on its derivatives, the equation is said
to be linear. In the particular case where the derivatives having maximal order only
appear linearly (with coefficients which may depend on lower-order derivatives), the
equation is said to be quasi-linear. It is said to be semi-linear when it is quasi-linear
and the coefficients of the maximal order derivatives only depend on x and t, and not
on the solution u. Finally, if the equation contains no terms which are independent of
the unknown function u, the PDE is said to be homogeneous.

We list below some examples of PDEs frequently encountered in the applied sci-
ences.

Example 1.1. A first-order linear equation is the transport (or advection) equation

∂u

∂ t
+∇ · (βu) = 0, (1.2)

© Springer International Publishing AG 2017 
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2 1 A brief survey of partial differential equations

having denoted by

∇ ·v= div(v) =
d

∑
i=1

∂vi

∂xi
, v = (v1, . . . ,vd)

T ,

the divergence operator. Integrated on a region Ω ⊂ Rd , (1.2) expresses the mass
conservation of a material system (a continuous media) occupying the region Ω . The
u variable is the system’s density, while β(x, t) is the velocity of a particle in the
system that occupies position x at time t. �

Example 1.2. Linear second-order equations include:
the potential equation

−Δu = f , (1.3)

that describes the diffusion of a fluid in a homogeneous and isotropic region Ω ⊂ Rd ,
but also the vertical displacement of an elastic membrane;
the heat (or diffusion) equation

∂u

∂ t
−Δu = f ; (1.4)

the wave equation

∂ 2u

∂ t2 −Δu = 0. (1.5)

We have denoted by

Δu=
d

∑
i=1

∂ 2u

∂x2
i

(1.6)

the Laplace operator (Laplacian). �

Example 1.3. An example of a quasi-linear first-order equation is Burgers’ equation

∂u

∂ t
+u

∂u

∂x1
= 0,

while its variant obtained by adding a second-order perturbation

∂u

∂ t
+ u

∂u

∂x1
= ε

∂ 2u

∂x2
1

, ε > 0,

is an example of a semi-linear equation.
Another second-order, non-linear equation, is(

∂ 2u

∂x2
1

)2

+

(
∂ 2u

∂x2
2

)2

= f .
�
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A function u = u(x1, . . . ,xd , t) is said to be a solution (or a particular integral) of
(1.1) if it makes (1.1) an identity once it is replaced in (1.1) together with all of its
derivatives. The set of all solutions of (1.1) is called the general integral of (1.1).

Example 1.4. The transport equation in the one-dimensional case,

∂u

∂ t
− ∂u

∂x1
= 0, (1.7)

admits a general integral of the form u = w(x1 + t), w being a sufficiently regular
arbitrary function (see Exercise 2). Similarly, the one-dimensional wave equation

∂ 2u

∂ t2 − ∂ 2u

∂x2
1

= 0 (1.8)

admits as a general integral

u(x1, t) = w1(x1 + t)+w2(x1 − t),

w1 and w2 being two sufficiently regular arbitrary functions (see Exercise 3). �

Example 1.5. Let us consider the one-dimensional heat equation

∂u

∂ t
− ∂ 2u

∂x2
1

= 0,

for 0 < < 1 and t > 0, with boundary conditions

u(0, t) = u(1, t) = 0, t > 0

and initial condition u|t=0 = u0. Its solution is

u(x1, t) =
∞

∑
j=1

u0, je
−( jπ)2t sin( jπx1),

where u0 = u|t=0 is the initial datum and

u0, j = 2

1∫
0

u0(x1)sin( jπx1) dx1, j = 1,2, . . . �

1.2 Numerical solution

In general, it is not possible to obtain a solution of (1.1) in closed (explicit) form. In-
deed, the available analytical integration methods (such as the technique of separation
of variables) are of limited applicability. On the other hand, even in the case where a
general integral is known, it is not guaranteed that a particular integral may be deter-
mined. Indeed, in order to obtain the latter, it will be necessary to assign appropriate
conditions on u (and/or its derivatives) at the boundary of the domain Ω .

x1



4 1 A brief survey of partial differential equations

Besides, from the examples provided it is evident that the general integral depends
on a number of arbitrary functions (and not on arbitrary constants, as it happens for
ordinary differential equations), so that the imposition of the boundary conditions will
result in the solution of mathematical problems that are generally rather involved.

Thus, from a theoretical point of view, the analysis of a given PDE is often bound
to investigating existence, uniqueness, and, possibly, regularity of its solutions, but
lacks practical tools for their actual determination.

It follows that it is extremely important to have numerical methods at one’s dis-
posal, that allow to construct an approximation uN of the exact solution u and to eval-
uate (in some suitable norm) the error uN − u when substituting to the exact solution
u the approximate solution uN . In general, N ≥ 1 is a positive integer that denotes
the (finite) dimension of the approximate problem. Schematically, we will obtain the
following situation:

P(u,g) = 0

↓
PN(uN ,gN) = 0

Exact PDE

[numerical methods]

Approximate PDE.

We have denoted by gN an approximation of the set of data g on which the PDE
depends, and with PN the new functional relation characterizing the approximated
problem. For simplicity, one writes u = u(g) and uN = uN(gN).

We will present several numerical methods starting from Chap. 4. Here, we only
recall their main features. A numerical method is convergent if

‖u− uN‖→ 0 as N → ∞

for a given norm. More precisely, we have convergence if and only if

∀ε > 0, ∃N0 = N0(ε)> 0, ∃δ = δ (N0,ε) : ∀N > N0, ∀gN such that ‖g−gN‖< δ ,

‖u(g)− uN(gN)‖ ≤ ε.

(The norm used for the data is not necessarily the same as that used for the solutions.)
A direct verification of the convergence of a numerical method may not be easy. A
verification of its consistency and stability properties is recommendable, instead. A
numerical method is said to be consistent if

PN(u,g)→ 0 as N → ∞, (1.9)

and strongly consistent (or fully consistent) if

PN(u,g) = 0 ∀N ≥ 1. (1.10)

Notice that (1.9) can be equivalently formulated as

PN(u,g)−P(u,g)→ 0 as N → ∞.



1.3 PDE Classification 5

This expresses the property that PN (the approximated PDE) “tends” to P (the exact
one) as N → ∞. Instead, we say that a numerical method is stable if to small perturba-
tions to the data correspond small perturbations to the solution. More precisely,

∀ε > 0, ∃δ = δ (ε)> 0 : ∀δgN : ‖δgN‖< δ ⇒‖δuN‖ ≤ ε, ∀N ≥ 1.

uN + δuN being the solution of the perturbed problem

PN(uN + δuN ,gN + δgN) = 0.

(See also [QSS07, Chap. 2] for an in-depth coverage.)
The fundamental result, as the Lax-Richtmyer equivalence theorem,

Other important properties will obviously influence the choice of a numerical
method, such as its convergence rate (i.e. the order with respect to 1/N with which
the error tends to zero) and its computational cost, that is the computation time and
memory required to implement such method on the computer.

1.3 PDE Classification

Partial differential equations can be classified into three different families: elliptic,
parabolic and hyperbolic equations, for each of which appropriate specific numerical
methods will be considered. For the sake of brevity, here we will limit ourselves to the
case of a linear second-order PDE, with constant coefficients, of the form Lu = G,

Lu=A
∂ 2u

∂x2
1

+B
∂ 2u

∂x1∂x2
+C

∂ 2u

∂x2
2

+D
∂u

∂x1
+E

∂u

∂x2
+Fu, (1.11)

with assigned function G and A,B,C,D,E,F ∈ R. (Notice that any of the xi variables
could represent the temporal variable.) In that case, the classification is carried out
based on the sign of the discriminant, �=B2 −4AC. In particular:

if �< 0 the equation is said to be elliptic,
if �= 0 the equation is said to be parabolic,
if �> 0 the equation is said to be hyperbolic.

Example 1.6. The wave equation (1.8) is hyperbolic, while the potential equation (1.3)
is elliptic. An example of a parabolic problem is given by the heat equation (1.4), but
also by the following diffusion-transport equation

∂u

∂ t
− μΔu+∇ · (βu)= 0

where the constant μ > 0 and the vector field β are given. �

finally guarantees that

Theorem 1.1. If a method is consistent then it is convergent.and stable,

often quoted
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The criterion introduced above makes the classification depend on the sole coefficients
of the highest derivatives and is justified via the following argument. As the reader will
recall, the quadratic algebraic equation

Ax2
1 +Bx1x2 +Cx2

2 +Dx1 +Ex2 +F = G,

represents a hyperbola, a parabola or an ellipse in the Cartesian plane (x1,x2) depend-
ing whether � is positive, null or negative. This parallel motivates the name assigned
to the three classes of partial derivative operators.

Let us investigate the difference between the three classes more attentively. Let
us suppose, without this being restrictive, that D, E , F and G be null. We look for a
change of variables of the form

ξ = αx2 +β x1, η = γx2 + δx1, (1.12)

with α , β , γ and δ to be chosen so that Lu becomes a multiple of ∂ 2u/∂ξ ∂η . Since

Lu = (Aβ 2 +Bαβ +Cα2)
∂ 2u

∂ξ 2

+(2Aβ δ +B(αδ +β γ)+ 2Cαγ)
∂ 2u

∂ξ ∂η
+(Aδ 2 +Bγδ +Cγ2)

∂ 2u

∂η2 ,

(1.13)

we need to require that

Aβ 2 +Bαβ +Cα2 = 0, Aδ 2 +Bγδ +Cγ2 = 0. (1.14)

If A =C = 0, the trivial trasformation ξ = x2, η = x1 (for instance) provides Lu in the
desired form.

Let us then suppose that A or C be not null. It is not restrictive to suppose A 
= 0.
Then, if α 
= 0 and γ 
= 0, we can divide the first equation of (1.14) by α2 and the
second one by γ2. We find two identical quadratic equations for the ratios β/α and
δ/γ . By solving them, we have

β

α
=

1
2A

[
−B±

√
�
]
,

δ

γ
=

1
2A

[
−B±

√
�
]
.

In order for the transformation (1.12) to be non-singular, the quotients β/α and δ/γ
must be different. We must therefore take the positive sign in one case, and the nega-
tive sign in the other. Moreover, we must assume � > 0. If � were indeed null, the
two fractions would still be coincident, while if � were negative none of the two frac-
tions could be real. To conclude, we can take the following values as coefficients of
transformation (1.12):

α = γ = 2A, β =−B+
√
�, δ =−B−

√
�.

Correspondingly, (1.12) becomes

ξ = 2Ax2 +
[−B+

√�]x1, η = 2Ax2 +
[−B−√�]x1,
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and, after the transformation, the original differential problem Lu = 0 becomes

Lu= − 4A� ∂ 2u

∂ξ ∂η
= 0. (1.15)

(For ease of notation, we still denote by u the transformed solution and by L the trans-
formed differential operator.) The case A = 0 and C 
= 0 can be treated in a similar
way by taking ξ = x1, η = x2 − (C/B)x1.
To conclude, the original term Lu can become a multiple of ∂ 2u/∂ξ ∂η based on the
transformation (1.12) if and only if � > 0, and in such case, as we have anticipated,
the problem is said to be hyperbolic. It is easy to verify that the general solution of
problem (1.15) is

u = p(ξ )+q(η),

p and q being arbitrary differentiable functions in one variable. The lines ξ = constant
and η = constant are said to be the characteristics of L and are characterized by
the fact that on these lines, the functions p and q, respectively, remain constant. In
particular, possible discontinuities of the solution u propagate along the characteristic
lines (this will be shown in more detail in Chap. 14). Indeed, if A 
= 0, by identifying
x1 with t and x2 with x, the transformation

x′ = x− B

2A
t, t ′ = t,

transforms the hyperbolic operator L such that

Lu = A
∂ 2u

∂ t2 +B
∂ 2u

∂ t∂x
+C

∂ 2u

∂x2

in a multiple of the wave operator L such that

Lu =
∂ 2u

∂ t2 − c2 ∂ 2u

∂x2 , with c2 =�/4A2.

The latter is the wave operator in a coordinate system moving with velocity −B/2A.
The characteristic lines of the wave operator are the lines verifying(

dt

dx

)2

=
1
c2 ,

that is

dt

dx
=

1
c

and
dt

dx
=−1

c
.

When � = 0, as previously stated L is parabolic. In this case there exists only one
value of β/α in corrispondence of which the coefficient of ∂ 2u/∂ξ 2 in (1.13) becomes
zero: precisely, β/α =−B/(2A). On the other hand, since B/(2A)= 2C/B, this choice
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also implies that the coefficient of ∂ 2u/∂ξ ∂η becomes zero. Hence, the change of
variables

ξ = 2Ax2 −Bx1, η = x1,

transforms the original problem Lu = 0 into the following

Lu =A
∂ 2u

∂η2 = 0,

the general solution of which has the form

u = p(ξ )+ηq(ξ ).

A parabolic operator therefore has only one family of characteristics, precisely ξ =
constant. The discontinuities in the derivatives of u propagate along such characteris-
tic lines.
Finally, if � < 0 (elliptic operators) there does not exist any choice of β/α or δ/γ
that makes the coefficients ∂ 2u/∂ξ 2 and ∂ 2u/∂η2 null. However, the transformation

ξ =
2Ax2 −Bx1√−� , η = x1,

transforms Lu= 0 into

Lu = A

(
∂ 2u

∂ξ 2 +
∂ 2u

∂η2

)
= 0,

i.e. a multiple of the potential equation. The latter has therefore no family of charac-
teristic lines.

1.3.1 Quadratic form associated to a PDE

We can associate to equation (1.11) the so-called principal symbol Sp defined by

Sp(x,q)= −A(x)q2
1−B(x)q1q2 −C(x)q2

2.

This quadratic form can be represented in matrix form as follows:

Sp(x,q) = qT

⎡⎢⎣ −A(x) − 1
2

B(x)

−1
2

B(x) −C(x)

⎤⎥⎦q. (1.16)

A quadratic form is said to be definite if all of the eigenvalues of its associated
matrix have the same sign (either positive or negative); it is indefinite if the matrix has
eigenvalues of both signs; it is degenerate if the matrix is singular.
It can then be said that equation (1.11) is elliptic if its quadratic form (1.16) is definite
(positive or negative), hyperbolic if it is indefinite, and parabolic if it is degenerate.
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The matrices associated to the potential equation (1.3), the (one-dimensional) heat
equation (1.4) and the wave equation (1.5) are given respectively by[

1 0
0 1

]
,

[
0 0
0 1

]
and

[ −1 0
0 1

]
and are positive definite in the first case, singular in the second case, and indefinite in
the third case.

1.4 Exercises

1. Classify the following equations based on their order and linearity:

(a)

[
1+

(
∂u

∂x1

)2
]

∂ 2u

∂x2
2

− 2
∂u

∂x1

∂u

∂x2

∂ 2u

∂x1∂x2
+

[
1+

(
∂u

∂x2

)2
]

∂ 2u

∂x2
1

= 0,

(b) ρ
∂ 2u

∂ t2 +K
∂ 4u

∂x4
1

= f ,

(c)

(
∂u

∂x1

)2

+

(
∂u

∂x2

)2

= f .

[Solution: (a) quasi-linear, second-order; it is Plateau’s equation which governs,
under appropriate hypotheses, the plane motion of a fluid. The u appearing in the
equation is the so-called kinetic potential; (b) linear, fourth-order. It is the vibrating
rod equation, ρ is the rod’s density, while K is a positive quantity that depends on
the geometrical properties of the rod itself; (c) non-linear, first-order.]

2. Reduce the one-dimensional transport equation (1.7) to an equation of the form
∂w/∂y = 0, having set y = x1 − t, and obtain that u = w(x1 + t) is a solution of the
original equation.
[Solution: operate the substitution of variables z = x1 + t, y = x1 − t, u(x1, t) =
w(y,z). In such way ∂u/∂x1 = ∂w/∂ z+∂w/∂y, where ∂u/∂ t = ∂w/∂ z−∂w/∂y,
and thus −2∂w/∂y= 0. Note at this point that the equation obtained thereby admits
a solution w(y,z) that does not depend on y and, using the original variables, we
get u = w(x1 + t).]

3. Prove that the wave equation

∂ 2u

∂ t2 − c2 ∂ 2u

∂x2
1

= 0,

with constant c, admits as a solution u(x1, t) = w1(x1 + ct)+w2(x1 − ct), w1 and
w2 being two sufficiently regular arbitrary functions.
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[Solution: proceed as in Exercise 2, by applying the substitution of variables y =
x1 + ct, z = x1 − ct and setting u(x1, t) = w(y,z).]

4. Verify that the Korteveg-de-Vries equation

∂u

∂ t
+β

∂u

∂x1
+α

∂ 3u

∂x3
1

= 0,

admits a general integral of the form u = acos(kx1 −ωt) with an appropriate ω to
be determined, and a, β and α being assigned constants. This equation describes
the position u of a fluid with respect to a reference position, in the presence of long
wave propagation.
[Solution: the given u satisfies the equation only if ω = kβ −αk3.]

5. Consider the equation

x2
1

∂ 2u

∂x2
1

− x2
2

∂ 2u

∂x2
2

= 0

with x1x2 
= 0. Classify it and determine its characteristic lines.

6. Consider the generic second-order semi-linear differential equation

a(x1,x2)
∂ 2u

∂x2
1

+ 2b(x1,x2)
∂ 2u

∂x1∂x2
+ c(x1,x2)

∂ 2u

∂x2
2

+ f (u,∇u) = 0,

where ∇u =
( ∂u

∂x1
,

∂u

∂x2

)T
is the gradient of u. Write the equation of its charac-

teristic lines and deduce from it the classification of the proposed equation, by
distinguishing the different cases.

7. Set r(x) = |x|= (x2
1 + x2

2)
1/2 and define u(x) = ln(r(x)), x ∈ R2\{0}. Verify that

Δu(x) = 0, x ∈ Ω ,

where Ω is any given open set such that Ω̄ ⊂ R2\{0}.
[Solution: observe that

∂ 2u

∂x2
i

=
1
r2

(
1− 2x2

i

r2

)
, i = 1,2.]



Chapter 2

Elements of functional analysis

In this chapter we recall a number of concepts used extensively in this textbook: func-
tionals and bilinear forms, distributions, Sobolev spaces, Lp spaces. For a more in-
depth reading, the reader can refer to e.g. [Sal08],[Yos74], [Bre86], [LM68], [Ada75].

2.1 Functionals and bilinear forms

Definition 2.1. Given a function space V , we call functional on V an operator
associating a real number to each element of V

F : V �→ R.

The functional is often denoted as F(v)= 〈F,v〉, an expression called duality or crochet.
A functional is said to be linear if it is linear with respect to its argument, that is if

F(λ v+ μw) = λ F(v)+ μF(w) ∀λ ,μ ∈ R, ∀v,w ∈V.

A linear functional is bounded if there is a constant C > 0 such that

|F(v)| ≤C‖v‖V ∀v ∈V. (2.1)

A linear and bounded functional on a Banach space (i.e. a normed and complete
space) is also continuous. We then define the space V ′, called dual of V , as the set of
linear and bounded functionals on V , that is

V ′ = {F : V �→R such that F is linear and bounded }
and we equip it with the norm ‖ · ‖V ′ defined as

‖F‖V ′ = sup
v∈V\{0}

|F(v)|
‖v‖V

. (2.2)

The constant C appearing in (2.1) is greater than or equal to ‖F‖V ′ .

A. Quarteroni, Numerical Models for Differential Problems, MS&A 16, 
DOI 10.1007/978-3-319-49316-9_2 

11© Springer International Publishing AG 2017 
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The following theorem, called identification or representation theorem ([Yos74]),
holds.

Theorem 2.1 (Riesz representation theorem). Let H be a Hilbert space, that
is a Banach space whose norm is induced by a scalar product (·, ·)H. For each
linear and bounded functional f on H there exists a unique element x f ∈ H such
that

f (y) = (y,x f )H ∀y ∈ H, and ‖ f‖H′ = ‖x f ‖H . (2.3)

Conversely, each element x ∈ H identifies a linear and bounded functional fx on
H such that

fx(y) = (y,x)H ∀y ∈ H and ‖ fx‖H′ = ‖x‖H . (2.4)

If H is a Hilbert space, its dual space H ′ of linear and bounded functionals on H is
a Hilbert space too. Moreover, thanks to Theorem 2.1, there exists a bijective and
isometric (i.e. norm-preserving) transformation f ↔ x f between H ′ and H thanks to
which H ′ and H can be identified. We can denote this transformation as follows:

ΛH : H → H ′, x → fx = ΛHx,
Λ−1

H : H ′ → H, f → x f = Λ−1
H x.

(2.5)

We now introduce the notion of fom.

Definition 2.2. Given a normed functional space V we call form an application
which associates to each pair of elements of V a real number

a : V ×V �→ R.

A form is called:

bilinear if it is linear with respect to both its arguments, i.e. if:

a(λ u+ μw,v) = λ a(u,v)+ μa(w,v) ∀λ ,μ ∈ R,∀u,v,w ∈V,

a(u,λ w+ μv) = λ a(u,v)+ μa(u,w) ∀λ ,μ ∈ R,∀u,v,w ∈V ;

continuous if there exists a constant M > 0 such that

|a(u,v)| ≤ M‖u‖V‖v‖V ∀u,v ∈V ; (2.6)

symmetric if

a(u,v) = a(v,u) ∀u,v ∈V ; (2.7)



2.2 Differentiation in linear spaces 13

positive (or positive definite) if

a(v,v)> 0 ∀v ∈V ; (2.8)

coercive if there exists a constant α > 0 such that

a(v,v)≥ α‖v‖2
V ∀v ∈V. (2.9)

Definition 2.3. Let X and Y be two Hilbert spaces. We say that X is contained in
Y with continuous injection if there exists a constant C such that ‖w‖Y ≤C‖w‖X

∀w ∈X. Moreover X is dense in Y if each element belonging to Y can be obtained
as the limit, in the ‖ · ‖Y norm, of a sequence of elements of X.

Given two Hilbert spaces V and H, such that V ⊂ H, the injection of V in H is contin-
uous and moreover V is dense in H. Then, upon identification of H and H ′,

V ⊂ H � H ′ ⊂V ′. (2.10)

For elliptic problems, the spaces V and H will typically be chosen respectively as
H1(Ω) (or one of its subspaces, H1

0 (Ω) or H1
ΓD
(Ω)) and L2(Ω), see Chap. 3.

Definition 2.4. A linear and bounded (hence continuous) operator T between
two functional spaces X and Y is an isomorphism if it maps bijectively the ele-
ments of the spaces X and Y and its inverse T −1 exists. If also X ⊂Y holds, such
isomorphism is called canonical.

2.2 Differentiation in linear spaces

In this section, we briefly report the notions of differentiability and differentiation for
applications on linear functional spaces; for a further analysis of this topic, as well as
an extension of such notions to more general cases, see [KF89].

Let us begin by considering the notion of strong (or Fréchet) differential:

Definition 2.5. Let X and Y be two normed linear spaces and F an application
of X in Y , defined on an open set E ⊂ X; such application is called differentiable
at x ∈ E if there exists a linear and bounded operator Lx : X → Y such that

∀ε > 0, ∃δ > 0 : ||F(x+ h)−F(x)−Lxh||Y ≤ ε ||h||X ∀h ∈ X with ||h||X < δ .
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We call the expression Lxh (or Lx[h]), which generates an element in Y for each
h∈X, strong differential (or Fréchet differential) of the application F at x∈E; the
operator Lx is called strong derivative of the application F at x and is generally
denoted as F ′(x), that is F ′(x) = Lx.

From the definition, we deduce that a differentiable application in x is also continuous
in x. We list below some properties deriving from this definition:

• if F(x) = constant, then F ′(x) is the null operator, that is Lx[h] = 0 ∀h ∈ X ;
• the strong derivative of a continuous linear application F(x) is the application

itself, that is F ′(x) = F(x);
• given two continuous applications F and G of X in Y , if these are differentiable at

x0, so are the applications F +G and αF , for all α ∈ R, and we have:

(F +G)′(x0) = F ′(x0)+G′(x0),

(αF)′(x0) = αF ′(x0).

Consider now the following definition of weak (or Gâteaux) differential:

Definition 2.6. Let F be an application of X in Y; we call weak (or Gâteaux)
differential of the application F at x the limit

DF(x,h) = lim
t→0

F(x+ th)−F(x)

t
∀h ∈ X ,

where t ∈R and the convergence of the limit must be intended with respect to the
norm of the space Y . If the weak differential DF(x,h) is linear (in general it is
not), it can be expressed as

DF(x,h) = F ′
G(x)h ∀h ∈ X .

The linear and bounded operator F ′
G(x) is called weak derivative (or Gâteaux

derivative) of F. Moreover, we have

F(x+ th)−F(x) = tF ′
G(x)h+ o(t) ∀h ∈ X ,

which implies

||F(x+ th)−F(x)− tF ′
G(x)h||= o(t) ∀h ∈ X .

Note that if an application F has a strong derivative, then it also admits a weak deriva-
tive, coinciding with the strong one; the converse instead is not generally true. How-
ever, the following theorem holds (see [KF89]):
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Theorem 2.2. If on a neighbourhood U(x0) of x0 there exists a weak derivative
F ′

G(x) of the application F and such derivative is a function of x on such neigh-
borhood, continuous at x0, then the strong derivative F ′(x0) at x0 exists, too, and
coincides with the weak one, that is F ′(x0) = F ′

G(x0).

2.3 Elements of distributions

In this section we want to recall the main definitions regarding the theory of distribu-
tions and Sobolev spaces, useful for a better comprehension of the subjects introduced
in the textbook. For a more in-depth treatment, see, e.g., the monographs [Bre86],
[Ada75] and [LM68].
Let Ω be an open set of Rn and f : Ω �→ R.

Definition 2.7. By support of a function f we mean the closure of the set where
the function itself takes values different from zero, that is

supp f = {x : f (x) 
= 0}.

A function f : Ω �→R is said to have a compact support in Ω if there exists a compact
set 1 K ⊂ Ω such that supp f ⊂ K.

At this point, we can provide the following definition:

Definition 2.8. D(Ω) is the space of infinitely differentiable functions with com-
pact support in Ω , that is

D(Ω) = { f ∈C∞(Ω) : ∃K ⊂ Ω , compact : supp f ⊂ K}.

We introduce the multi-index notation for the derivatives. Let α = (α1,α2, . . . ,αn)
be an n-tuple of non-negative integers (called multi-index) and let f : Ω �→ R be a
function defined on Ω ⊂ Rn. We will use the following notation

Dα f (x) =
∂ |α | f (x)

∂xα1
1 ∂xα2

2 . . .∂xαn
n
,

|α|= α1 +α2 + . . .+αn being the length of the multi-index coinciding with the order
of differentiation of f .

1 With Ω ⊂Rn, a compact set is a closed and bounded set.
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In the space D(Ω) we can introduce the following notion of convergence:

Definition 2.9. Given a sequence {φk} of functions of D(Ω) we say that these
converge in D(Ω) to a function φ , and we will write φk −→

D(Ω)
φ , if:

1. the supports of the functions φk are all contained in a fixed compact set K of
Ω ;

2. we have uniform convergence of the derivatives of all orders, that is

Dαφk −→ Dαφ ∀α ∈Nn.

We are now able to define the space of distributions on Ω :

Definition 2.10. Let T be a linear transformation from D(Ω) into R and let us
denote by 〈T,ϕ〉 the value taken by T on the element ϕ ∈ D(Ω). We say that T
is continuous if

lim
k→∞

〈T,ϕk〉= 〈T,ϕ〉

where {ϕk}∞
k=1 is an arbitrary sequence of D(Ω) that converges toward ϕ ∈

D(Ω). We call distribution on Ω any linear and continuous transformation T
from D(Ω) into R. The space of distributions on Ω is therefore given by the dual
space D ′(Ω) of D(Ω).

The action of a distribution T ∈ D ′(Ω) on a function φ ∈ D(Ω) will always be de-
noted via the identity pairing 〈T,φ〉.

Example 2.1. Let a be a point of the set Ω . The Dirac delta relative to point a is the
distribution δa defined by the following relation

〈δa,φ〉= φ(a) ∀φ ∈ D(Ω).
�

For another example, see Exercise 4. Also in D ′(Ω) we introduce a notion of
convergence:

Definition 2.11. A sequence of distributions {Tn} converges to a distribution T
in D ′(Ω) if we have

lim
n→∞

〈Tn,φ〉 = 〈T,φ〉 ∀φ ∈ D(Ω).
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2.3.1 Square-integrable functions

We consider the space of square-integrable functions on Ω ⊂ Rn,

L2(Ω) = { f : Ω �→R such that
∫
Ω

( f (x))2 dΩ <+∞}.

More precisely, L2(Ω) is a space of equivalence classes of measurable functions, the
equivalence relation to be intended as follows: v is equivalent to w if and only if v
and w are equal almost everywhere, i.e. they differ at most on a subset of Ω with zero
measure. The expression “almost everywhere in Ω” (in short, a.e. in Ω ) means exactly
“for all the x ∈ Ω , except for a zero-measure set, at most”.
The space L2(Ω) is a Hilbert space whose scalar product is

( f ,g)L2(Ω) =

∫
Ω

f (x)g(x) dΩ .

The norm in L2(Ω) is the one induced by this scalar product, i.e.

‖ f‖L2(Ω) =
√
( f , f )L2(Ω).

To each function f ∈ L2(Ω) we associate a distribution Tf ∈ D ′(Ω) defined in the
following way

〈Tf ,φ〉 =
∫
Ω

f (x)φ(x) dΩ ∀φ ∈ D(Ω).

The following result holds:

Lemma 2.1. The space D(Ω) is dense in L2(Ω).

Due to the latter, it is possible to prove that the correspondence f → Tf is injective,
thus we can identify L2(Ω) with a subset of D ′(Ω), writing

L2(Ω)⊂ D
′(Ω).

Example 2.2. Let Ω = R and let us denote by χ[a,b](x) the characteristic function of
the interval [a,b], defined as

χ[a,b](x) =

{
1 if x ∈ [a,b],
0 otherwise.

Let us then consider the sequence of functions fn(x) = n
2 χ[−1/n,1/n](x) (see Fig. 2.1).
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x1/n-1/n

n/2 n

1/n-1/n x

Fig. 2.1. The characteristic function of the interval [−1/n,1/n] (left) and the triangular function
fn (right)

We want to verify that the sequence {Tfn} of the distributions associated to the former
converges to the distribution δ0, i.e. the Dirac delta relative to the origin. As a matter
of fact, for each function φ ∈ D(Ω), we have

〈Tfn ,φ〉=
∫
R

fn(x)φ(x) dx =
n

2

1/n∫
−1/n

φ(x) dx =
n

2
[Φ(1/n)−Φ(−1/n)],

Φ being a primitive of φ . If we now set h = 1/n, we can write

〈Tfn ,φ〉=
Φ(h)−Φ(−h)

2h
.

When n → ∞, h → 0 and thus, following the definition of derivative, we have

Φ(h)−Φ(−h)

2h
→ Φ ′(0).

By construction Φ ′ = φ , and therefore

〈Tfn ,φ〉 → φ(0) = 〈δ0,φ〉,
having used the definition of δ0 (see Example 2.1).

The same limit can be obtained by taking a sequence of triangular functions (see
Fig. 2.1) or Gaussian functions, instead of rectangular ones (provided that they still
have unit integral).

Finally, we point out that in the usual metrics, such sequences converge to a func-
tion which is null almost everywhere. �

2.3.2 Differentiation in the sense of distributions

Let Ω ⊂ Rn and T ∈ D ′(Ω). Its derivatives ∂T
∂xi

in the sense of distributions are distri-
butions defined in the following way

〈∂T

∂xi
,φ〉 =−〈T, ∂φ

∂xi
〉 ∀φ ∈ D(Ω), i = 1, . . . ,n.
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Fig. 2.2. The Heaviside function (left). On the right, the function of Example 2.6 with k = 1/3.
Note that this function tends to infinity at the origin

In a similar way, we define derivatives of arbitrary order. Precisely, for each multi-
index α= (α1,α2, . . . ,αn), we have that Dα T is a new distribution defined as

〈DαT,φ〉= (−1)|α|〈T,Dαφ〉 ∀φ ∈ D(Ω).

Example 2.3. The Heaviside function on R (see Fig. 2.2) is defined as

H(x) =

{
1 if x > 0,
0 if x ≤ 0.

The derivative of the distribution TH associated to the latter is the Dirac distribution
relative to the origin (see Example 2.1); upon identifying the function H with the
associated distribution TH , we will then write

dH

dx
= δ0. �

Differentiation in the context of distributions enjoys some important properties
that do not hold in the more restricted context of differentiation for functions in clas-
sical terms.

Property 2.1. The set D ′(Ω) is closed with respect to the differentiation opera-
tion (in the sense of distributions), that is each distribution is differentiable in-
finitely many times and its distributional derivatives are themselves distributions.

Property 2.2. Differentiation in D ′(Ω) is a continuous operation, in the sense
that if Tn −→

D ′(Ω)
T for n → ∞, then it also results that DαTn −→

D ′(Ω)
DαT for n → ∞,

for each multi-index α.
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We finally note that differentiation in the sense of distributions is an extension
of the classical differentiation of functions. Indeed, if a function f is differentiable
with continuity (in classical sense) on Ω , then the derivative of the distribution Tf

corresponding to f coincides with the distribution Tf ′ corresponding to the classical
derivative f ′ of f (see Exercise 7).

We will invariably identify a function f of L2(Ω) with the corresponding distribu-
tion Tf of D ′(Ω), writing f in place of Tf . Similarly, when we talk about derivatives,
we will always refer to the latter in the sense of distributions.

2.4 Sobolev spaces

In Sect. 2.3.1 we have noted that the functions of L2(Ω) are particular distributions.
However, this does not guarantee that their derivatives (in the sense of distributions)
are still functions of L2(Ω), as shown in the following example.

Example 2.4. Let Ω ⊂ R and let [a,b]⊂ Ω . Then, the characteristic function of the
interval [a,b] (see Example 2.2) belongs to L2(Ω), while its distributional derivative
dχ[a,b]/dx = δa − δb (see Example 2.3) does not. �

It is therefore reasonable to introduce the following spaces:

Definition 2.12. Let Ω be an open set of Rn and k be a positive integer. We call
Sobolev space of order k on Ω the space formed by the totality of functions of
L2(Ω) whose (distributional) derivatives up to order k belong to L2(Ω):

Hk(Ω) = { f ∈ L2(Ω) : Dα f ∈ L2(Ω) ∀α : |α| ≤ k}.

It follows, obviously, that Hk+1(Ω) ⊂ Hk(Ω) for each k ≥ 0 and this inclusion is
continuous. The space L2(Ω) is sometimes denoted by H0(Ω).

The Sobolev spaces Hk(Ω) are Hilbert spaces with respect to the following scalar
product

( f ,g)k = ∑
|α|≤k

∫
Ω

(Dα f )(Dαg) dΩ ,

from which descend the norms

‖ f‖k = ‖ f‖Hk(Ω) =
√
( f , f )k =

√√√√ ∑
|α|≤k

∫
Ω

(Dαf )2 dΩ . (2.11)

Finally, we define the seminorms

| f |k = | f |Hk(Ω) =

√√√√ ∑
|α|=k

∫
Ω

(Dαf )2 dΩ ,
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so that (2.11) becomes

‖ f‖Hk(Ω) =

√√√√ k

∑
m=0

| f |2Hm(Ω).

Example 2.5. If n = 1 and k = 1 we have:

( f ,g)1 = ( f ,g)H1(Ω) =

∫
Ω

f g dΩ +

∫
Ω

f ′g′ dΩ ;

‖ f‖1 = ‖ f‖H1(Ω) =

√√√√∫
Ω

f 2 dΩ +
∫
Ω

f ′2 dΩ =
√
‖ f‖2

L2(Ω)
+ ‖ f ′‖2

L2(Ω)
;

| f |1 = | f |H1(Ω) =

√√√√∫
Ω

( f ′)2 dΩ = ‖ f ′‖L2(Ω). �

2.4.1 Regularity of the spaces Hkkk(Ω)(Ω)(Ω)

We now want to relate the fact that a function belongs to a space Hk(Ω) with its
continuity properties.

Example 2.6. Let Ω = B(0,1)⊂ R2 be the ball centered at the origin and of radius 1.
Then the function

f (x1,x2) =

∣∣∣∣∣∣ln 1√
x2

1 + x2
2

∣∣∣∣∣∣
k

(2.12)

belongs to H1(Ω) when 0 < k < 1/2, see Fig. 2.2 (right). It develops a singularity at
the origin and therefore it is neither continuous nor bounded. A similar conclusion can
be drawn for

f (x1,x2) = ln(− ln(x2
1 + x2

2)),

this time with Ω = B(0,1/2)⊂ R2. �

Not all of the functions of H1(Ω) are therefore continuous if Ω is an open set of
R2 (or R3). In general, the following result holds:

Property 2.3. If Ω is an open set of Rn, n ≥ 1, provided with a “sufficiently
regular” boundary, then

Hk(Ω)⊂Cm(Ω) if k > m+
n

2
.

In particular, in one spatial dimension (n = 1), the functions of H1(Ω) are contin-
uous (they are indeed absolutely continuous, see [Sal08] and [Bre86]), while in two
or three dimensions they are not necessarily so. Instead, the functions of H2(Ω) are
always continuous for n = 1,2,3.
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2.4.2 The space H1
0(Ω)H1
0(Ω)H1
0(Ω)

If Ω is bounded, the space D(Ω) is not dense in H1(Ω). We can then give the follow-
ing definition:

Definition 2.13. We denote by H1
0(Ω) the closure of D(Ω) in H1(Ω).

The functions of H1
0(Ω) enjoy the following properties:

Property 2.4 (Poincaré inequality). Let Ω be a bounded set in Rn; then there
exists a constant CΩ such that

‖v‖L2(Ω) ≤CΩ |v|H1(Ω) ∀v ∈ H1
0(Ω). (2.13)

Proof. Ω being bounded, we can always find a sphere SD = {x : |x− g| < D} with
centre g and radius D> 0, containing Ω . Since D(Ω) is dense in H1

0(Ω) it is sufficient
to prove the inequality for a function u∈D(Ω). ( In the general case where v∈H1

0(Ω)
it will suffice to build a sequence ui ∈ D(Ω), i = 1,2, . . . converging to v in the norm
of H1(Ω), apply the inequality to the terms of the sequence and pass to the limit.)
Integrating by parts and exploiting the fact that div(x−g) = n,

‖u‖2
L2(Ω) = n−1

∫
Ω

n · |u(x)|2 dΩ =−n−1
∫

Ω
(x− g) ·∇(|u(x)|2)dΩ

=−2n−1
∫

Ω
(x− g) · [u(x)∇u(x)]dΩ ≤ 2n−1‖x−g‖L∞(Ω)‖u‖L2(Ω)‖u‖H1(Ω)

≤ 2n−1D‖u‖L2(Ω)‖u‖H1(Ω).
�

As an immediate consequence, we have that:

Property 2.5. The seminorm |v|H1(Ω) is a norm on the space H1
0(Ω) that turns

out to be equivalent to the norm ‖v‖H1(Ω).

Proof. We recall that two norms, ‖·‖ and ||| · |||, are said to be equivalent if there exist
two positive constants c1 and c2, such that

c1|||v||| ≤ ‖v‖ ≤ c2|||v||| ∀v ∈V.

As ‖v‖1 =
√
| v |21 +‖v‖2

0 it is evident that | v |1≤ ‖v‖1. Conversely, exploiting Prop-
erty 2.4,

‖v‖1 =
√
| v |21 +‖v‖2

0 ≤
√
| v |21 +C2

Ω | v |21 ≤C∗
Ω | v |1,

from which we deduce the equivalence of the two norms. �
In a similar way, we define the spaces Hk

0(Ω) as the closure of D(Ω) in Hk(Ω).
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2.4.3 Trace operators

Let Ω be a domain of Rn. By that we mean:

• an open bounded interval if n = 1;
• an open bounded connected set, with a sufficiently regular boundary ∂Ω . For in-

stance, a polygon if n = 2 (i.e. a domain whose boundary is a finite union of
segments), or a polyhedron if n = 3 (i.e. a domain whose boundary is a finite
union of polygons).

Let v be an element of H1(Ω): the remarks formulated in Sect. 2.4.1 show that it
is not simple to define the “value” of v on the boundary of Ω , a value that we will call
the trace of v on ∂Ω . We exploit the following result:

Theorem 2.3. Let Ω be a domain of Rn provided with a “sufficiently regular”
boundary ∂Ω , and let k ≥ 1. There exists one and only one linear and continuous
application

γ0 : Hk(Ω) �→ L2(∂Ω)

such that γ0v = v|∂Ω , ∀v ∈ Hk ∩C0(Ω); γ0v is called trace of v on ∂Ω . The
continuity of γ0 implies that there exists a constant C > 0 such that

‖γ0v‖L2(Γ ) ≤C‖v‖Hk(Ω).

The result still holds if we consider the trace operator γΓ : Hk(Ω) �→L2(Γ ) where
Γ is a sufficiently regular portion of the boundary of Ω with positive measure.

Owing to this result, Dirichlet boundary conditions make sense when seeking solu-
tions v in Hk(Ω), with k ≥ 1, provided we interpret the boundary value in the sense of
the trace.

Remark 2.1. The trace operator γΓ is not surjective on L2(Γ ). In particular, the set
of functions of L2(Γ ) which are traces of functions of H1(Ω) constitutes a subspace
of L2(Γ ) denoted by H1/2(Γ ) and characterized by intermediate regularity properties
between those of L2(Γ ) and those of H1(Γ ). More generally, for every k ≥ 1 there
exists a unique linear and continuous application γ0 : Hk(Ω) �→ Hk−1/2(Γ ) such that
γ0v = v|Γ for each v ∈ Hk(Ω)∩C0(Ω). •

The trace operators allow for an interesting characterization of the previously de-
fined space H1

0(Ω). Indeed, we have the following property:

Property 2.6. Let Ω be a domain of Rn provided with a sufficiently regular
boundary ∂Ω and let γ0 be the trace operator from H1(Ω) in L2(∂Ω). Then

H1
0(Ω) = Ker(γ0) = {v ∈ H1(Ω) : γ0v = 0}
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In other words, H1
0(Ω) is formed by the functions of H1(Ω) having null trace on

the boundary.

2.5 The spaces L∞(Ω)L∞(Ω)L∞(Ω) and Lp(Ω)Lp(Ω)Lp(Ω), with 1 ≤ p < ∞1 ≤ p < ∞1 ≤ p < ∞

The space L2(Ω) can be generalized in the following way: for each real number p with
1 ≤ p < ∞ we can define the following space of (equivalence classes of) measurable
functions

Lp(Ω) = {v : Ω �→ R such that
∫
Ω

|v(x)|p dΩ < ∞},

whose norm is given by

‖v‖Lp(Ω) =

⎛⎝∫
Ω

|v(x)|pdΩ

⎞⎠1/p

.

Furthermore, we define the space

L1
loc(Ω) = { f : Ω →R such that f |K ∈ L1(K) for each compact set K ⊂ Ω}.

If 1 ≤ p < ∞, then D(Ω) is dense in Lp(Ω).
In the case where p=∞, we define L∞(Ω) to be the space of functions that are bounded
a.e. in Ω . Its norm is defined as follows

‖v‖L∞(Ω) = inf{C ∈R : |v(x)| ≤C, a.e. in Ω} (2.14)

= sup{|v(x)|, a.e. in Ω}. (2.15)

For 1 ≤ p ≤ ∞, the spaces Lp(Ω), provided with the norm ‖ · ‖Lp(Ω), are Banach
spaces.
We recall the Hölder inequality: given v ∈ Lp(Ω) and w ∈ Lp′(Ω) with 1 ≤ p ≤ ∞
and 1

p +
1
p′ = 1, then vw ∈ L1(Ω) and

∫
Ω

|v(x) w(x)|dΩ ≤ ‖v‖Lp(Ω)‖w‖Lp′(Ω)
. (2.16)

The index p′ is called conjugate of p.
If 1 < p < ∞, then Lp(Ω) is a reflexive space: this means that any linear and continu-
ous form ϕ : Lp(Ω)→R can be identified to an element of Lp′(Ω), i.e. there exists a
unique g ∈ Lp′(Ω) such that

ϕ( f ) =
∫
Ω

f (x)g(x) dΩ ∀ f ∈ Lp(Ω).
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If p = 2, then p′ = 2, so the Hölder inequality becomes

(v,w)L2(Ω) ≤ ‖v‖L2(Ω)‖w‖L2(Ω) ∀ v, w ∈ L2(Ω) . (2.17)

As such, it is known as Cauchy-Schwarz inequality. Moreover, the following inequal-
ity holds

‖vw‖L2(Ω) ≤ ‖v‖L4(Ω)‖w‖L4(Ω) ∀v,w ∈ L4(Ω). (2.18)

If Ω ⊂ Rn is a bounded domain, for 1 ≤ p ≤ q ≤ ∞ we have

Lq(Ω) ⊂ Lp(Ω)⊂ L1(Ω)⊂ L1
loc(Ω) .

If Ω is unbounded, we always have

Lp(Ω) ⊂ L1
loc(Ω) ∀ p ≥ 1 .

Moreover, if Ω ⊂ Rn and for n > 1 the boundary ∂Ω is polygonal (more generally, it
is Lipschitz continuous), we have the following continuous inclusions:

if 0 < 2s < n then Hs(Ω)⊂ Lq(Ω) ∀q such that 1 ≤ q ≤ q∗ with q∗ = 2n/(n− 2s);

if 2s = n then Hs(Ω)⊂ Lq(Ω) ∀q such that 1 ≤ q < ∞;

if 2s > n then Hs(Ω)⊂C0(Ω). (2.19)

Finally, we introduce the Sobolev space W k,p(Ω), with k a non-negative integer and
1 ≤ p ≤ ∞, as the space of functions v ∈ Lp(Ω) such that all the distributional deriva-
tives of v of order up to k are in Lp(Ω).

W k,p(Ω) = {v ∈ Lp(Ω) : Dαv ∈ Lp(Ω)

for each non-negative multi-index α such that |α| ≤ k}.
For 1 ≤ p < ∞ this is a Banach space with norm

‖v‖Wk,p(Ω) =

(
∑

|α|≤k

‖Dαv‖p
Lp(Ω)

)1/p

.

Its seminorm |v|W k,p(Ω) is defined similarly, provided we sum over multi-integers α
such that |α|= k.
Note that, for k = 0, W k,p(Ω) = Lp(Ω) and that, for p = 2, W k,2(Ω) = Hk(Ω).

2.6 Adjoint operators of a linear operator

Let X and Y be two Banach spaces and L (X ,Y ) be the space of linear and bounded
operators from X to Y . Given L ∈ L (X ,Y ), the adjoint (or coniugate) operator of L
is the operator L′ : Y ′ → X ′ defined by

X ′ 〈L′ f ,x〉X = Y ′ 〈 f ,Lx〉Y ∀ f ∈ Y ′, x ∈ X . (2.20)
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L′ is a linear and bounded operator between Y ′ and X ′, that is L′ ∈L (Y ′,X ′), moreover
‖L′‖L (Y ′,X ′) = ‖L‖L (X ,Y ), where we have set

‖L‖L (X ,Y ) = sup
x ∈ X
x 
= 0

‖Lx‖Y

‖x‖X
. (2.21)

In the case where X and Y are two Hilbert spaces, an additional adjoint operator,
LT : Y → X , called transpose of L, can be introduced. It is defined by

(LT y,x)X = (y,Lx)Y ∀x ∈ X ,y ∈ Y. (2.22)

Here, (·, ·)X denotes the scalar product of X , while (·, ·)Y denotes the scalar product of
Y . The above definition can be explained as follows: for any given element y ∈Y , the
real-valued function x → (y,Lx)Y is linear and continuous, hence it defines an element
of X ′. By Riesz’s theorem (Theorem 2.1) there exists an element x of X , which we
name LT y, that satisfies (2.22). Such operator belongs to L (Y,X) (that is, it is linear
and bounded from Y to X ) and moreover

‖LT‖L (Y,X) = ‖L‖L (X ,Y ). (2.23)

Thus, in the case where X and Y are two Hilbert spaces, we have two notions of adjoint
operator, L′ and LT . The relationship between the two operators is

ΛX LT = L′ΛY , (2.24)

ΛX and ΛY being Riesz’s canonical isomorphisms from X to X ′ and from Y to Y ′,
respectively (see (2.5)). Indeed, ∀x ∈ X ,y ∈ Y ,

X ′ 〈ΛX LT y,x〉X = (LT y,x)X = (y,Lx)Y = Y ′ 〈ΛY y,Lx〉Y = X ′ 〈L′ΛY y,x〉X .

The identity (2.24) can be equivalently expressed by stating that the diagramme in
Fig. 2.3 is commutative.

YX

L

L
T

ΛX ΛY

X
L

Y

Fig. 2.3. The adjoint operators LT and L′ of the operator L
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2.7 Spaces of time-dependent functions

When considering space-time functions v(x, t), x ∈ Ω ⊂ Rn , n ≥ 1, t ∈ (0,T ), T > 0,
it is natural to introduce the functional space

Lq(0,T ; W k,p(Ω)) =⎧⎨⎩v : (0,T )→W k,p(Ω)such that v is measurable and

T∫
0

‖v(t)‖q
Wk,p(Ω)

dt < ∞

⎫⎬⎭ ,

(2.25)

where k ≥ 0 is a non-negative integer, 1 ≤ q < ∞, 1 ≤ p ≤ ∞, endowed with the norm

‖v‖Lq(0,T ;W k,p(Ω)) =

⎛⎝ T∫
0

‖v(t)‖q
Wk,p(Ω)

dt

⎞⎠1/q

. (2.26)

For every t ∈ (0,T ) we have used the shorthand notation v(t) to indicate the function:

v(t) : Ω →R, v(t)(x) = v(x, t) ∀x ∈ Ω . (2.27)

The spaces L∞(0,T : W k,p(Ω)) and C0([0,T ];W k,p(Ω)) are defined in a similar way.
When dealing with time-dependent initial-boundary value problems, the following

result can be useful to derive a-priori estimates and stability inequalities.

Lemma 2.2 (Gronwall). Let A ∈ L1(t0,T ) be a non-negative function, ϕ a con-
tinuous function on [t0,T ].

i) If g is non-decreasing and ϕ is such that

ϕ(t)≤ g(t)+
∫ t

t0
A(τ)ϕ(τ)dτ ∀t ∈ [t0,T ], (2.28)

then

ϕ(t)≤ g(t)exp

⎛⎝ t∫
t0

A(τ)dτ

⎞⎠ ∀t ∈ [t0,T ]. (2.29)

ii) If g is a non-negative constant and ϕ a non-negative function such that

ϕ2(t)≤ g+

t∫
t0

A(τ)ϕ(τ)dτ ∀t ∈ [t0,T ], (2.30)

then

ϕ(t)≤√
g+

1
2

t∫
t0

A(τ)dτ ∀t ∈ [t0,T ]. (2.31)
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A discrete counterpart of this lemma, useful when dealing with fully discrete (in space
and time) approximations of initial-boundary value problems, is the following

Lemma 2.3 (discrete Gronwall lemma). Assume that kn is a non-negative se-
quence, and that the sequence ϕn satisfies

ϕ0 ≤ g0, ϕn ≤ g0 +
n−1

∑
m=0

pm +
n−1

∑
m=0

kmϕm, n ≥ 1. (2.32)

If g0 ≥ 0 and pm ≥ 0 for m ≥ 0, then

ϕn ≤ (g0 +
n−1

∑
m=0

pm)exp(
n−1

∑
m=0

km), n ≥ 1. (2.33)

For the proof of these two lemmas, see, e.g., [QV94, Chap. 1].

2.8 Exercises

1. Let Ω = (0,1) and, for α > 0, f (x) = x−α . For which α do we have f ∈ Lp(Ω),
1 ≤ p < ∞ ? Is there an α > 0 for which f ∈ L∞(Ω) ?

2. Let Ω = (0, 1
2 ) and f (x) = 1

x(lnx)2 . Show that f ∈ L1(Ω).

3. Prove for which α ∈ R we have that f ∈ L1
loc(0,1), with f (x) = x−α .

4. Let u ∈ L1
loc(Ω). Define Tu ∈ D ′(Ω) as follows

〈Tu,ϕ〉=
∫
Ω

ϕ(x)u(x) dΩ ∀ϕ ∈ D(Ω).

Verify that Tu is indeed a distribution and that the application u → Tu is injective.
We can therefore identify u with Tu and conclude by observing that L1

loc(Ω) ⊂
D′(Ω).

5. Show that the function defined as follows:

f (x) = e1/(x2−1) if x ∈ (−1,1)

f (x) = 0 if x ∈]−∞,−1]∪ [1,+∞[

belongs to D(R).
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6. Prove that for the function f defined in (2.12) we have

‖ f‖2
H1(Ω) = 2π

r∫
0

|logs|2ks ds+ 2πk2

r∫
0

1
s
|logs|2k−2 ds,

hence f belongs to H1(Ω) for every 0 < k < 1
2 .

7. Let ϕ ∈C1(−1,1). Show that the derivative dϕ
dx computed in the classical sense is

equal to dϕ
dx computed in the sense of distributions, after observing that C0(−1,1)⊂

L1
loc(−1,1)⊂ D ′(−1,1).

8. Prove that if Ω = (a,b) the Poincaré inequality (2.13) holds with CΩ = (b −
a)/

√
2.

[Solution: observe that the Cauchy-Schwarz inequality implies

v(x) =

x∫
a

v′(t)dt ≤
⎛⎝ x∫

a

[v′(t)]2dt

⎞⎠1/2⎛⎝ x∫
a

1dt

⎞⎠1/2

≤√
x−a‖v′‖L2(a,b),

whence

‖v‖2
L2(a,b) ≤ ‖v′‖2

L2(a,b)

b∫
a

(x−a)dx].



Chapter 3

Elliptic equations

This chapter is devoted to the introduction of elliptic problems and to their weak for-
mulation. Although our introduction is quite basic, the complete novice to functional
analysis is invited to consult Chapter 2 before reading it.

For the sake of simplicity, we will focus primarily on one-dimensional and two-
dimensional problems. However, the generalization to three-dimensional problems is
(almost always) straightforward.

3.1 An elliptic problem example: the Poisson equation

Consider a domain Ω ⊂ R2, i.e. an open bounded and connected set, and let ∂Ω be
its boundary. We denote by x the spatial variable pair (x1,x2). The problem under
examination is

−Δu = f in Ω , (3.1)

where f = f (x) is a given function and the symbol Δ denotes the Laplacian opera-
tor (1.6) in two dimensions. (3.1) is an elliptic, linear, non-homogeneous (if f 
= 0)
second-order equation. We call (3.1) the strong formulation of the Poisson equation.
We also recall that, in the case where f = 0, equation (3.1) is known as the Laplace
equation.

Physically, u can represent the vertical displacement of an elastic membrane due to
the application of a force with intensity equal to f , or the electric potential distribution
due to an electric charge with density f .

To obtain a unique solution, suitable boundary conditions must be added to (3.1),
that is we need information about the behaviour of the solution u at the domain bound-
ary ∂Ω . For instance, the value of the displacement u on the boundary can be assigned

u = g on ∂Ω , (3.2)

where g is a given function, and in such case we will talk about a Dirichlet problem.
The case where g = 0 is said to be homogeneous.

A. Quarteroni, Numerical Models for Differential Problems, MS&A 16, 
DOI 10.1007/978-3-319-49316-9_3 
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Alternatively, the value of the normal derivative of u can be imposed

∇u ·n =
∂u

∂n
= h on ∂Ω ,

n being the outward unit normal vector on ∂Ω and h an assigned function. The as-
sociated problem is called a Neumann problem and corresponds, in the case of the
membrane problem, to imposing the traction at the boundary of the membrane itself.
Once again, the case h = 0 is said to be homogeneous.

Finally, different types of conditions can be assigned to different portions of the
boundary of the computational domain Ω . For instance, supposing that ∂Ω = ΓD∪ΓN

with
◦

Γ D ∩ ◦
Γ N = /0, the following conditions can be imposed:⎧⎨⎩

u = g on ΓD,

∂u

∂n
= h on ΓN .

The notation
◦

Γ has been used to indicate the interior of Γ . In such a case, the associ-
ated problem is said to be mixed.

Also in the case of homogeneous Dirichlet problems where f is a continuous func-
tion in Ω (the closure of Ω ), it is not guaranteed that problem (3.1), (3.2) admits a
regular solution. For instance, if Ω = (0,1)× (0,1) and f = 1, u may not belong to
the space C2(Ω ). Indeed, if it were so, we would have

−Δu(0,0) =−∂ 2u

∂x2
1

(0,0)− ∂ 2u

∂x2
2

(0,0) = 0,

as the boundary conditions would imply that u(x1,0) = u(0,x2) = 0 for all x1, x2

belonging to [0,1]. Hence u could not satisfy equation (3.1), that is

−Δu = 1 in (0,1)× (0,1).

What can be learned from this counterexample is that, even if f ∈C0(Ω ), it makes no
sense in general to look for a solution u ∈ C2(Ω) to problem (3.1), (3.2), while one
has greater probabilities to find a solution u ∈ C2(Ω)∩C0(Ω ) (a larger space than
C2(Ω) !).

We are therefore interested in finding an alternative formulation to the strong one,
also because, as we will see in the following section, the latter does not allow the
treatment of some physically significant cases. For instance, it is not guaranteed that,
in the presence of non-smooth data, the physical solution lies in the space C2(Ω)∩
C0(Ω), and not even that it lies in C1(Ω)∩C0(Ω ).

3.2 The Poisson problem in the one-dimensional case

Our first step is the introduction of the weak formulation of a simple boundary-value
problem in one dimension.
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3.2.1 Homogeneous Dirichlet problem

Let us consider the homogeneous Dirichlet problem in the one-dimensional interval
Ω = (0,1) {

−u′′(x) = f (x), 0 < x < 1,

u(0) = 0, u(1) = 0.
(3.3)

This problem governs, for instance, the equilibrium configuration of an elastic string
with tension equal to one, fixed at the endpoints, in a small displacement configuration
and subject to a transversal force with intensity f . The overall force acting on the
section (0,x) of the string is

F(x) =
∫ x

0
f (t)dt.

The function u describes the vertical displacement of the string relative to the resting
position u = 0.

The strong formulation (3.3) is in general inadequate. If we consider, for instance,
the case where the elastic string is subject to a charge concentrated in one or more
points (in such case f can be represented via Dirac distributions), the physical solution
exists and is continuous, but not differentiable. Fig. 3.1 shows the case of a unit charge
concentrated only in the point x = 0.5 (left) and in the two points x = 0.4 and x = 0.6
(right). These functions cannot be solutions of (3.3), as the latter would require the

u(x)

1

−1

0.5

−0.25

10.5

0

0

x

x

−0.4

1

−1

1

0

0

x

x

u(x)

0.4 0.6

0.4 0.6

Fig. 3.1. We display on the left the equilibrium configuration of the string corresponding to the
unit charge concentrated in x = 0.5, represented in the upper part of the figure. On the right
we display the one corresponding to two unit charges concentrated in x = 0.4 and x = 0.6, also
represented in the upper part of the figure
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0

f (x)

−1

10

x

x
u(x)

0.4 0.6

−0.01

−0.02

−0.03

−0.04

−0.05

0.4 0.6 1

Fig. 3.2. Displacement relative to the discontinuous charge represented in the upper part of the
figure

solution to have a continuous second derivative. Similar considerations hold in the
case where f is a piecewise constant function. For instance, in the case represented
in Fig. 3.2 of a null load, except for the interval [0.4,0.6] where it is equal to −1, the
analytical solution is only of class C1([0,1]), since it is given by

u(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

− 1
10

x for x ∈ [0,0.4],

1
2

x2 − 1
2

x+
2

25
for x ∈ [0.4,0.6],

− 1
10

(1− x) for x ∈ [0.6,1].

A formulation of the problem alternative to the strong one is therefore necessary to
allow reducing the order of the derivation required for the unknown solution u. We
move from a second-order differential problem to a first-order one in integral form,
which is called the weak formulation of the differential problem.

To this end, we operate a sequence of formal transformations of (3.3), without
worrying at this stage whether all the operations appearing in it are allowed. We start
by multiplying equation (3.3) by a (so far arbitrary) test function v and integrating on
the interval (0,1),

−u′′v = f v ⇒ −
1∫

0

u′′v dx =

1∫
0

f v dx.
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We integrate by parts the first integral, with the purpose of eliminating the second
derivative, in order to impose a lower regularity on the solution. We find

−
1∫

0

u′′v dx =

1∫
0

u′v′ dx− [u′v]10.

Since u is known at the boundary, we can consider only test functions which vanish at
the endpoints of the interval, hence the contribution of the boundary terms vanishes.
In this way, the equation becomes

1∫
0

u′v′ dx =

1∫
0

f v dx. (3.4)

The test function space V must therefore be such that if v ∈V then v(0) = v(1) = 0.
Note that the solution u, being null at the boundary and having the same requirements
of regularity as the test functions, will also be sought in the same space V .

There remains to specify the regularity requirements which must be satisfied by
the space V , so that all the operations introduced make sense. Evidently, if u and
v belonged to C1([0,1]), we would have u′,v′ ∈ C0([0,1]) and therefore the integral
appearing in the left-hand side of (3.4) would make sense. However, the examples in
Fig. 3.1 tell us that the physical solutions might not be continuously differentiable: we
must therefore require a lower regularity. Moreover, even when f ∈C0([0,1]), there is
no garantee that the problem admits solutions in the space

V = {v ∈C1([0,1]) : v(0) = v(1) = 0}. (3.5)

As a matter of fact, when provided with the scalar product

[u,v]
1
=

1∫
0

u′v′dx, (3.6)

this space is not complete, that is, not all of the Cauchy sequences with values in
V converge to an element of V . (Verify as an exercise that (3.6) is indeed a scalar
product.)

Let us then proceed as follows. We recall the definition of the spaces Lp of func-
tions whose p-th power is Lebesgue integrable. For 1 ≤ p < ∞, these are defined as
follows (see Sect. 2.5):

Lp(0,1)={v : (0,1) �→R such that ‖v‖Lp(0,1)=

(∫ 1

0
|v(x)|p dx

)1/p

<+∞}.

For the integral
∫ 1

0 u′v′ dx to be well defined, the minimum requirement on u′ and v′ is
that the product u′v′ lies in L1(0,1). To this end, the following property holds:
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Property 3.1. Given two functions ϕ , ψ : (0,1)→ R, if ϕ2, ψ2 are integrable
then ϕψ is integrable, that is, equivalently,

ϕ , ψ ∈ L2(0,1) =⇒ ϕψ ∈ L1(0,1).

This result is a direct consequence of the Cauchy-Schwarz inequality (2.17):∣∣∣∣∣∣
1∫

0

ϕ(x)ψ(x) dx

∣∣∣∣∣∣≤ ‖ϕ‖L2(0,1)‖ψ‖L2(0,1), (3.7)

where

‖ϕ‖L2(0,1) =

√√√√∫
Ω

|ϕ(x)|2dx (3.8)

is the norm of ϕ in L2(0,1) . Since ‖ϕ‖L2(0,1),‖ψ‖L2(0,1) < ∞ by hypothesis, this
proves that there also exists a (finite) integral of ϕψ .

In order for the integrals appearing in (3.4) to make sense, functions, as well as their
derivatives, must be square integrable. We therefore define the Sobolev space

H1(0,1)={v ∈ L2(0,1) : v′ ∈ L2(0,1)}.

The derivative must be interpreted in the sense of distributions (see Sect. 2.3). We then
choose as V the following subspace of H1(0,1),

H1
0(0,1)={v ∈ H1(0,1) : v(0) = v(1) = 0},

constituted by the functions of H1(0,1) that are null at the endpoints of the interval. If
we suppose f ∈ L2(0,1), the integral on the right-hand side of (3.4) also makes sense.
Problem (3.3) is then reduced to the following problem

find u ∈V = H1
0(0,1) :

1∫
0

u′v′ dx =

1∫
0

f v dx ∀v ∈V. (3.9)

Remark 3.1. The space H1
0(0,1) is the closure, with respect to the scalar product (3.6),

of the space defined in (3.5).
The functions of H1(0,1) are not necessarily differentiable in a traditional sense, that
is H1(0,1) 
⊂ C1([0,1]). For instance, functions that are piecewise continuous on a
partition of the interval (0,1) with derivatives that do not match at all endpoints of
the partition belong to H1(0,1) but not to C1([0,1]). Hence, also continuous but not
differentiable solutions of the previous examples are considered. •
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The weak problem (3.9) turns out to be equivalent to a variational problem, due to
the following result:

Theorem 3.1. The problem

find u ∈V :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
J(u) = min

v∈V
J(v) with

J(v)=
1
2

1∫
0

(v′)2 dx−
1∫

0

f v dx,
(3.10)

is equivalent to problem (3.9), in the sense that u is a solution of (3.9) if and only
if u is a solution of (3.10).

Proof. Suppose that u is a solution of the variational problem (3.10). Then, setting
v = u+ δw, with δ ∈R, we have that

J(u)≤ J(u+ δw) ∀w ∈V.

The function ψ(δ ) = J(u+ δw) is a quadratic function in δ with minimum reached
for δ = 0. Thus,

ψ ′(δ )
∣∣∣
δ=0

=
∂J(u+ δw)

∂δ

∣∣∣
δ=0

= 0.

From the definition of derivative we have

∂J(u+ δw)

∂δ
= lim

δ→0

J(u+ δw)− J(u)

δ
∀w ∈V.

Let us consider the term J(u+ δw):

J(u+ δw) =
1
2

1∫
0

[(u+ δw)′]2 dx−
1∫

0

f (u+ δw) dx

=
1
2

1∫
0

[u′2 + δ 2w′2 + 2δu′w′] dx−
1∫

0

f u dx−
1∫

0

f δw dx

= J(u)+
1
2

1∫
0

[δ 2w′2 + 2δu′w′] dx−
1∫

0

f δw dx.

Hence,

J(u+ δw)− J(u)

δ
=

1
2

1∫
0

[δw′2 +2u′w′] dx−
1∫

0

f w dx.
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Passing to the limit for δ → 0 and setting to 0, we obtain

1∫
0

u′w′ dx−
1∫

0

f w dx = 0 ∀w ∈V,

that is, u satisfies the weak problem (3.9).
Conversely, if u is a solution of (3.9), by setting v = δw, we have in particular that

1∫
0

u′δw′ dx−
1∫

0

f δw dx = 0

and therefore

J(u+ δw) =
1
2

1∫
0

[(u+ δw)′]2 dx−
1∫

0

f (u+ δw) dx

=
1
2

1∫
0

u′2 dx−
1∫

0

f u dx+

1∫
0

u′δw′ dx−
1∫

0

f δw dx+
1
2

1∫
0

δ 2w′2 dx

= J(u)+
1
2

1∫
0

δ 2w′2 dx.

Since

1
2

1∫
0

δ 2w′2 dx ≥ 0 ∀ w ∈V, ∀δ ∈ R,

we deduce that

J(u)≤ J(v) ∀v ∈V,

that is u also satisfies the variational problem (3.10). �

Remark 3.2 (Principle of virtual work). Let us consider again the problem of
studying the configuration assumed by a string fixed at the endpoints and subject to
a forcing term of intensity f , described by equation (3.3). We indicate with v an ad-
missible displacement of the string (that is a null displacement at the endpoints) from
the equilibrium position u. Equation (3.9), expressing the equality between the work
performed by the internal forces and by the external forces in correspondence to the
displacement v, is nothing but the principle of virtual work of mechanics. Moreover, as
in our case there exists a potential (indeed, J(w) defined in (3.10) expresses the global
potential energy corresponding to the configuration w of the system), the principle of
virtual work establishes that any displacement allowed by the equilibrium configura-
tion causes an increment of the system’s potential energy. In this sense, Theorem 3.1
states that the weak solution is also the one minimizing the potential energy. •
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3.2.2 Non-homogeneous Dirichlet problem

In the non-homogeneous case the boundary conditions in (3.3) are replaced by

u(0) = g0, u(1) = g1,

g0 and g1 being two assigned values.
We can reduce to the homogeneous case by noticing that if u is a solution of the

non-homogeneous problem, then the function
◦
u= u− [(1−x)g0 +xg1] is a solution of

the corresponding homogeneous problem (3.3). The function Rg = (1− x)g0 + xg1 is
said lifting (or extension, or prolongation) of the boundary data.

3.2.3 Neumann Problem

Let us now consider the following Neumann problem{
−u′′+σu = f , 0 < x < 1,

u′(0) = h0, u′(1) = h1,

σ being a positive function and h0, h1 two real numbers. We observe that in the case
where σ = 0 the solution of this problem would not be unique, being defined up to an
additive constant. By applying the same procedure followed in the case of the Dirichlet
problem, that is by multiplying the equation by a test function v, integrating on the
interval (0,1) and applying the formula of integration by parts, we get the equation

1∫
0

u′v′ dx+

1∫
0

σuv dx− [u′v]10 =
1∫

0

f v dx.

Let us suppose f ∈ L2(0,1) and σ ∈ L∞(0,1), that is that σ is a bounded function
almost everywhere (a.e.) on (0,1) (see (2.14)). The boundary term is known from the
Neumann conditions. On the other hand, the unknown u is not known at the boundary
in this case, hence it must not be required that v is null at the boundary. The weak
formulation of the Neumann problem is therefore: find u ∈ H1(0,1) such that

1∫
0

u′v′ dx+

1∫
0

σuv dx =

1∫
0

f v dx+ h1v(1)− h0v(0) ∀v ∈ H1(0,1). (3.11)

In the homogeneous case h0 = h1 = 0, the weak problem is characterized by the
same equation as the Dirichlet case, but the space V of test functions is now H1(0,1)
instead of H1

0(0,1).

3.2.4 Mixed homogeneous problem

Analogous considerations hold for the mixed homogeneous problem, that is when we
have a homogeneous Dirichlet condition at one endpoint and a homogeneous Neu-
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mann condition at the other,{ −u′′+σu = f , 0 < x < 1,
u(0) = 0, u′(1) = 0.

(3.12)

In such case it must be required that the test functions are null in x = 0. Setting ΓD =
{0} and defining

H1
ΓD
(0,1)={v ∈ H1(0,1) : v(0) = 0},

the weak formulation of problem (3.12) is: find u ∈ H1
ΓD
(0,1) such that

1∫
0

u′v′ dx+

1∫
0

σuv dx =

1∫
0

f v dx ∀v ∈ H1
ΓD
(0,1),

with f ∈ L2(0,1) and σ ∈ L∞(0,1). The formulation is once again the same as in
the homogeneous Dirichlet problem, however the space where to find the solution
changes.

3.2.5 Mixed (or Robin) boundary conditions

Finally, consider the following problem{
−u′′+σu = f , 0 < x < 1,

u(0) = 0, u′(1)+ γu(1) = r,

where γ > 0 and r are two assigned constants.
Also in this case, we will use test functions that are null at x = 0, the value of u
being thereby known. As opposed to the Neumann case, the boundary term for x = 1,
deriving from the integration by parts, no longer provides a known quantity, but a term
proportional to the unknown u. As a matter of fact, we have

−[u′v]10 =−rv(1)+ γu(1)v(1).

The weak formulation is therefore: find u ∈ H1
ΓD
(0,1) such that

1∫
0

u′v′ dx+

1∫
0

σuv dx+ γu(1)v(1) =

1∫
0

f v dx+ rv(1) ∀v ∈ H1
ΓD
(0,1).

A boundary condition that is a linear combination between the value of u and the
value of its first derivative is called Robin (or Newton, or third-type) condition.

3.3 The Poisson problem in the two-dimensional case

In this section, we consider the boundary-value problems associated to the Poisson
equation in the two-dimensional case.
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3.3.1 The homogeneous Dirichlet problem

The problem consists in finding u such that{
−Δu = f in Ω ,

u = 0 on ∂Ω ,
(3.13)

where Ω ⊂ R2 is a bounded domain with boundary ∂Ω . We proceed in a similar way
as for the one-dimensional case. By multiplying the differential equation in (3.13) by
an arbitrary function v and integrating on Ω , we find

−
∫
Ω

Δuv dΩ =
∫
Ω

f v dΩ .

At this point, it is necessary to apply the multi-dimensional analogue of the one-dimen-
sional formula of integration by parts. This can be obtained by applying the divergence
(Gauss) theorem by which ∫

Ω

div(a) dΩ =
∫

∂Ω

a ·n dγ, (3.14)

a(x) = (a1(x),a2(x))
T being a sufficiently regular vector-valued function and n(x) =

(n1(x),n2(x))
T the outward unit normal vector on ∂Ω . If we apply (3.14) first to the

function a = (ϕψ ,0)T and then to a = (0,ϕψ)T , we get the relations∫
Ω

∂ϕ

∂xi
ψ dΩ =−

∫
Ω

ϕ
∂ψ

∂xi
dΩ +

∫
∂Ω

ϕψni dγ, i = 1,2. (3.15)

Note also that if we take a = bϕ , where b and ϕ are respectively a vector and a scalar
field, then (3.14) yields∫

Ω

ϕdivbdΩ = −
∫
Ω

b ·∇ϕ dΩ +

∫
∂Ω

b ·nϕ dγ (3.16)

which is called Green formula for the divergence operator.
We exploit (3.15) by keeping into account the fact that Δu = div∇u = ∑2

i=1
∂

∂xi

(
∂u
∂xi

)
.

Supposing that all the integrals make sense, we find

−
∫
Ω

Δuv dΩ = −
2

∑
i=1

∫
Ω

∂

∂xi

(
∂u

∂xi

)
v dΩ

=
2

∑
i=1

∫
Ω

∂u

∂xi

∂v

∂xi
dΩ −

2

∑
i=1

∫
∂Ω

∂u

∂xi
vni dγ

=

∫
Ω

2

∑
i=1

∂u

∂xi

∂v

∂xi
dΩ −

∫
∂Ω

(
2

∑
i=1

∂u

∂xi
ni

)
v dγ.
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We obtain the following relation, called Green formula for the Laplacian

−
∫
Ω

Δuv dΩ =

∫
Ω

∇u ·∇v dΩ −
∫

∂Ω

∂u

∂n
v dγ. (3.17)

Similarly to the one-dimensional case, the homogeneous Dirichlet problem will lead
us to choose test functions that vanish at the boundary, and, consequently, the bound-
ary term that appears in (3.17) will in turn vanish.

Taking this into account, we get the following weak formulation for problem (3.13)

find u ∈ H1
0(Ω) :

∫
Ω

∇u ·∇v dΩ =

∫
Ω

f v dΩ ∀v ∈ H1
0(Ω), (3.18)

f being a function of L2(Ω) and having set

H1(Ω)={v : Ω→R such that v ∈ L2(Ω),
∂v

∂xi
∈ L2(Ω), i = 1,2},

H1
0(Ω)={v ∈ H1(Ω) : v = 0 on ∂Ω}.

The derivatives must be understood in the sense of distributions and the condition
v = 0 on ∂Ω in the sense of the traces (see Chap. 2).
In particular, we observe that if u,v ∈ H1

0(Ω), then ∇u,∇v ∈ [L2(Ω)]2 and therefore
∇u ·∇v ∈ L1(Ω). The latter property is obtained by applying the following inequality

∣∣∣∣∣∣
∫
Ω

∇u ·∇v dΩ

∣∣∣∣∣∣≤ ‖∇u‖L2(Ω)‖∇v‖L2(Ω),

a direct consequence of the Cauchy-Schwarz inequality (2.17).
Hence, the integral appearing in the left side of (3.18) is perfectly meaningful, and

so is the one appearing at the right.
Similarly to the one-dimensional case, it can be shown also in the two-dimensional

case that problem (3.18) is equivalent to the following variational problem

find u ∈V :

⎧⎪⎪⎨⎪⎪⎩
J(u) = inf

v∈V
J(v), with

J(v)=
1
2

∫
Ω

|∇v|2 dΩ −
∫
Ω

f v dΩ ,

having set V = H1
0(Ω).

We can rewrite the weak formulation (3.18) in a more compact way by introducing
the following form

a : V ×V → R, a(u,v)=
∫
Ω

∇u ·∇v dΩ (3.19)
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and the following functional

F : V →R, F(v)=
∫
Ω

f v dΩ

(functionals and forms are introduced in Chap. 2).
Problem (3.18) therefore becomes:

find u ∈V : a(u,v) = F(v) ∀v ∈V.

We notice that a(·, ·) is a bilinear form (that is, linear in to both its arguments), while
F is a linear functional. Then

|F(v)| ≤ ‖ f‖L2(Ω)‖v‖L2(Ω) ≤ ‖ f‖L2(Ω)‖v‖H1(Ω).

Consequently, F is also bounded. Following definition (2.2), its norm is bounded by
‖F‖V ′ ≤ ‖ f‖L2(Ω). Consequently, F belongs to V ′, the dual space of V , that is the set
of linear and continuous functionals defined on V (see Sect. 2.1).

3.3.2 Equivalence, in the sense of distributions, between weak and strong form

of the Dirichlet problem

We want to prove that the equations of problem (3.13) are actually satisfied by the
weak solution, albeit only in the sense of distributions.
To this end, we consider the weak formulation (3.18). Let D(Ω) now be the space of
functions that are infinitely differentiable and with compact support in Ω (see Chap. 2).
We recall that D(Ω)⊂ H1

0(Ω). Hence, by choosing v = ϕ ∈D(Ω) in (3.18), we have∫
Ω

∇u ·∇ϕ dΩ =

∫
Ω

f ϕ dΩ ∀ϕ ∈ D(Ω). (3.20)

By applying Green’s formula (3.17) to the left-hand side of (3.20), we find

−
∫
Ω

Δuϕ dΩ +
∫

∂Ω

∂u

∂n
ϕ dγ =

∫
Ω

f ϕ dΩ ∀ϕ ∈ D(Ω),

where the integrals are to be understood via duality, that is:

−
∫
Ω

Δuϕ dΩ = D ′(Ω)〈−Δu,ϕ〉D(Ω),

∫
∂Ω

∂u

∂n
ϕ dγ = D ′(∂Ω)〈

∂u

∂n
,ϕ〉D(∂Ω).

Since ϕ ∈ D(Ω), the boundary integral is null, so that

D ′(Ω)〈−Δu− f ,ϕ〉D(Ω) = 0 ∀ϕ ∈ D(Ω),
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which corresponds to saying that −Δu− f is the null distribution, that is

−Δu = f in D ′(Ω).

The differential equation (3.13) is therefore verified, as long as we intend the deriva-
tives in the sense of distributions and we interpret the equality between −Δu and f not
in a pointwise sense, but in the sense of distributions (and thus almost everywhere in
Ω ). Finally, the fact that u vanishes on the boundary (in the sense of traces) is a direct
consequence of u being in H1

0(Ω).

3.3.3 The problem with mixed, non homogeneous conditions

The problem we want to solve is now the following⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Δu = f in Ω ,

u = g on ΓD,

∂u

∂n
= φ on ΓN ,

(3.21)

where ΓD and ΓN yield a partition of ∂Ω , that is ΓD ∪ΓN = ∂Ω ,
◦

Γ D ∩ ◦
Γ N = /0 (see

Fig. 3.3).
In the case of the Neumann problem, where ΓD = /0, the data f and φ must verify

the following compatibility condition

−
∫

∂Ω

φ dγ =
∫
Ω

f dΩ (3.22)

in order for the problem to have a solution. Condition (3.22) is deduced by integrating
the differential equation in (3.21) and applying the divergence theorem (3.14)

−
∫
Ω

Δu dΩ =−
∫
Ω

div(∇u) dΩ =−
∫

∂Ω

∂u

∂n
dγ.

Moreover, we observe that also in the case of the Neumann problem, the solution
is defined only up to an additive constant. In order to have uniqueness it would be
sufficient, for example, to find a function with null average in Ω .

Let us now suppose that ΓD 
= /0 in order to ensure the uniqueness of the solution
to the strong problem without conditions of compatibility on the data. Let us also
suppose that f ∈ L2(Ω), g ∈ H1/2(ΓD) and φ ∈ L2(ΓN), having denoted by H1/2(ΓD)
the space of functions of L2(ΓD) that are traces of functions of H1(Ω) (see Sect. 2.4.3).

By Green’s formula (3.17) we obtain from (3.21)∫
Ω

∇u ·∇v dΩ −
∫

∂Ω

∂u

∂n
v dγ =

∫
Ω

f v dΩ . (3.23)



3.3 The Poisson problem in the two-dimensional case 45

Ω

ΓN

ΓD

n

Fig. 3.3. The computational domain Ω

We recall that ∂u/∂n = φ on ΓN , and by exploiting the additivity of integrals, (3.23)
becomes ∫

Ω

∇u ·∇v dΩ −
∫

ΓD

∂u

∂n
v dγ −

∫
ΓN

φ v dγ =

∫
Ω

f v dΩ . (3.24)

By forcing the test function v to vanish on ΓD, the first boundary integral appearing in
(3.24) vanishes. The mixed problem therefore admits the following weak formulation

find u ∈Vg :
∫
Ω

∇u ·∇v dΩ =

∫
Ω

f v dΩ +

∫
ΓN

φ v dγ ∀v ∈V, (3.25)

having denoted by V the space

V = H1
ΓD
(Ω)={v ∈ H1(Ω) : v|ΓD = 0}, (3.26)

and having set

Vg={v ∈ H1(Ω) : v|ΓD = g}.

The formulation (3.25) is not satisfactory, not only because the choice of spaces is
“asymmetrical” (v ∈V , while u ∈Vg), but mainly because Vg is an affine manifold, but
not a subspace of H1(Ω) (indeed, it is not true that linear combinations of elements
of Vg are still elements of Vg).

We then proceed similarly to what we saw in Sect. 3.2.2. We suppose to know a
function Rg, called lifting of the boundary data, such that

Rg ∈ H1(Ω), Rg|ΓD = g.

Furthermore, we suppose that such lifting are continuous, i.e. that

∃C > 0 : ‖Rg‖H1(Ω) ≤C‖g‖H1/2(ΓD)
∀g ∈ H1/2(ΓD).
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We set
◦
u = u− Rg and we begin by observing that

◦
u|ΓD = u|ΓD − Rg|ΓD=0, that is

◦
u ∈ H1

ΓD
(Ω). Moreover, since ∇u = ∇

◦
u+∇Rg, problem (3.25) becomes

find
◦
u ∈ H1

ΓD
(Ω) : a(

◦
u,v) = F(v) ∀v ∈ H1

ΓD
(Ω), (3.27)

having defined the bilinear form a(·, ·) as in (3.19), while the linear functional F now
takes the form

F(v) =
∫
Ω

f v dΩ +
∫

ΓN

φ v dγ −
∫
Ω

∇Rg ·∇v dΩ .

The problem is now symmetrical since the space where the (new) unknown solution
is sought coincides with the test function space.

The Dirichlet conditions are said to be essential as they are imposed explicitly in
the functional space in which the problem is set.

The Neumann conditions are instead said to be natural, as they are satisfied im-
plicitly by the solution of the problem (to this end, see Sect. 3.3.4). This difference in
treatment has important ripercussions on the approximate problems.

Remark 3.3. The reduction of the problem to a “symmetrical” form allows to obtain
a linear system with a symmetric matrix when solving the problem numerically (for
instance via the finite elements method). •

Remark 3.4. Building a lifting Rg of a boundary function with an arbitrary form can
turn out to be problematic. Such task is simpler in the context of a numerical approxi-
mation, where one generally builds a lifting of an approximation of the function g (see
Chap. 4). •

3.3.4 Equivalence, in the sense of distributions, between weak and strong form

of the Neumann problem

Let us consider the nonhomogeneous Neumann problem{ −Δu+σu = f in Ω ,
∂u

∂n
= φ on ∂Ω ,

(3.28)

where σ is a positive constant or, more generally, a function σ ∈ L∞(Ω) such that
σ(x) ≥ α0 a.e. in Ω , for a well-chosen constant α0 > 0. Let us also suppose that
f ∈ L2(Ω) and that φ ∈ L2(∂Ω). By proceeding as in Sect. 3.3.3, the following weak
formulation can be derived:

find u ∈ H1(Ω) :∫
Ω

∇u·∇v dΩ +

∫
Ω

σuv dΩ =

∫
Ω

f v dΩ +

∫
∂Ω

φv dγ ∀v ∈ H1(Ω). (3.29)
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By taking v = ϕ ∈ D(Ω) and counterintegrating by parts, we obtain

D ′(Ω)〈−Δu+σu− f ,ϕ〉D(Ω) = 0 ∀ϕ ∈ D(Ω).

Hence

−Δu+σu = f in D ′(Ω)

i.e.

−Δu+σu− f = 0 a.e. in Ω . (3.30)

In the case where u ∈C2(Ω) the application of Green’s formula (3.17) in (3.29) leads
to ∫

Ω

(−Δu+σu− f )v dΩ +

∫
∂Ω

(
∂u

∂n
−φ)v = 0 ∀v ∈ H1(Ω),

and therefore, by (3.30),

∂u

∂n
= φ on ∂Ω .

In the case where the solution u of (3.29) is only in H1(Ω) the generalized Green
formula can be used, which states that there exists a unique linear and continuous
functional g ∈ (H1/2(∂Ω))′ (called generalized normal derivative), which operates on
the space H1/2(∂Ω) and satisfies

∫
Ω

∇u·∇v dΩ = 〈−Δu,v〉+� g,v � ∀v ∈ H1(Ω).

We have denoted by < · , · > the pairing between H1(Ω) and its dual, and by� · , · �
the pairing between H1/2(∂Ω) and its dual. Clearly g coincides with the classical
normal derivative of u if u has sufficient regularity. For the sake of simplicity we
use the notation ∂u/∂n for the generalized normal derivative in the remainder of this
chapter. We therefore obtain that for v ∈ H1(Ω)

〈−Δu+σu− f ,v〉+� ∂u/∂n−φ ,v �= 0;

using (3.30) we finally conclude that

� ∂u/∂n−φ ,v �= 0 ∀v ∈ H1(Ω)

and thus that ∂u/∂n = φ a.e. on ∂Ω .
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3.4 More general elliptic problems

Let us now consider the problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
−div(μ∇u)+σu = f in Ω ,

u = g on ΓD,

μ
∂u

∂n
= φ on ΓN ,

(3.31)

where ΓD ∪ΓN = ∂Ω with
◦

Γ D ∩ ◦
Γ N = /0. We will suppose that f ∈ L2(Ω), μ ,σ ∈

L∞(Ω). Furthermore, we suppose that there is a μ0 > 0 such that μ(x) ≥ μ0 and
σ(x) ≥ 0 a.e. in Ω . Only in the case where σ =0 we will require that ΓD is non-
empty in order to prevent the solution from losing uniqueness. Finally, we will suppose
that g and φ are sufficiently regular functions on ∂Ω , for instance g ∈ H1/2(ΓD) and
φ ∈ L2(ΓN).

Also in this case, we proceed by multiplying the equation by a test function v and
by integrating (once again formally) on the domain Ω :∫

Ω

[−div(μ∇u)+σu]v dΩ =
∫
Ω

f v dΩ .

By applying Green’s formula we obtain∫
Ω

μ∇u ·∇v dΩ +

∫
Ω

σ uv dΩ −
∫

∂Ω

μ
∂u

∂n
v dγ =

∫
Ω

f v dΩ ,

which can also be rewritten as∫
Ω

μ∇u ·∇v dΩ +
∫
Ω

σ uv dΩ −
∫

ΓD

μ
∂u

∂n
v dγ =

∫
Ω

f v dΩ +
∫

ΓN

μ
∂u

∂n
v dγ.

The function μ∂u/∂n is called conormal derivative of u associated to the operator
−div(μ∇u). On ΓD we impose that the test function v is null, while on ΓN we impose
that the conormal derivative is equal to φ . We obtain∫

Ω

μ∇u ·∇v dΩ +

∫
Ω

σ u v dΩ =

∫
Ω

f v dΩ +

∫
ΓN

φv dγ.

Having denoted by Rg a lifting of g, we set
◦
u = u− Rg. The weak formulation of

problem (3.31) is therefore

find
◦
u ∈ H1

ΓD
(Ω) :∫

Ω

μ∇
◦
u ·∇v dΩ +

∫
Ω

σ
◦
uv dΩ =

∫
Ω

f v dΩ

−
∫
Ω

μ∇Rg ·∇v dΩ −
∫
Ω

σRgv dΩ +

∫
ΓN

φv dγ ∀v ∈ H1
ΓD
(Ω).
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We define the bilinear form

a : V ×V → R, a(u,v)=
∫
Ω

μ∇u ·∇v dΩ +

∫
Ω

σ uv dΩ

and the linear and continuous functional

F : V →R, F(v)= − a(Rg,v)+
∫
Ω

f v dΩ +

∫
ΓN

φv dγ. (3.32)

The previous problem can then be rewritten as

find
◦
u ∈ H1

ΓD
(Ω) : a(

◦
u,v) = F(v) ∀v ∈ H1

ΓD
(Ω). (3.33)

A yet more general problem than (3.31) is the following⎧⎪⎪⎪⎨⎪⎪⎪⎩
Lu = f in Ω ,

u = g on ΓD,

∂u

∂nL
= φ on ΓN ,

where, as usual, ΓD ∪ΓN = ∂Ω ,
◦

Γ D ∩ ◦
Γ N = /0, and having defined

Lu= −
2

∑
i, j=1

∂

∂xi

(
ai j

∂u

∂x j

)
+σu.

The coefficients ai j are functions defined on Ω . The derivative

∂u

∂nL
=

2

∑
i, j=1

ai j
∂u

∂x j
ni (3.34)

is called conormal derivative of u associated to the operator L (it coincides with the
normal derivative when Lu =−Δu).
Let us suppose that σ(x) ∈ L∞(Ω) and that there exists an α0 > 0 such that σ(x)≥α0

a.e. in Ω . Furthermore, let us suppose that the coefficients ai j : Ω̄ →R are continuous
functions ∀i, j = 1,2, and that there exists a positive constant α such that

∀ξ = (ξ1,ξ2)
T ∈ R2

2

∑
i, j=1

ai j(x)ξiξ j ≥ α
2

∑
i=1

ξ 2
i a.e. in Ω . (3.35)

In such case, the weak formulation is still the same as (3.33), the functional F is still
the one introduced in (3.32), while

a(u,v)=
∫
Ω

(
2

∑
i, j=1

ai j
∂u

∂x j

∂v

∂xi
+σuv

)
dΩ . (3.36)
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It can be shown (see Exercise 2) that under the ellipticity hypothesis on the coefficients
(3.35), this bilinear form is continuous and coercive, in the sense of definitions (2.6)
and (2.9). These properties will be exploited in the analysis of the well-posedness of
problem (3.33) (see Sect. 3.4.1).
Elliptic problems for fourth-order operators are proposed in Exercises 4 and 6, while
an elliptic problem deriving from the linear elasticity theory is analyzed in Exercise 7.

Remark 3.5 (Robin conditions). The case where Robin boundary conditions are en-
forced on the whole boundary, say

μ
∂u

∂n
+ γu = 0 on ∂Ω ,

requires more care. In this case the weak form of the problem reads

find u ∈ H1(Ω) : a(u,v) =
∫
Ω

f vdΩ ∀v ∈ H1(Ω),

where a(u,v) =
∫

Ω μ∇u · ∇vdΩ +
∫

Ω γuvdΩ . This bilinear form is not coercive if
γ < 0. The analysis of this problem can be carried out e.g. by means of the Peetre-
Tartar lemma, see [EG04]. •

3.4.1 Existence and uniqueness theorem

The following fundamental result holds (refer to Sect. 2.1 for definitions):

Lemma 3.1 (Lax-Milgram). Let V be a Hilbert space, a(·, ·) : V ×V → R a
continuous and coercive bilinear form, F(·) : V → R a linear and continuous
functional. Then, there exists a unique solution to the problem

find u ∈V : a(u,v) = F(v) ∀v ∈V. (3.37)

Proof. This is based on two classical results of Functional Analysis: the Riesz repre-
sentation theorem (see Theorem 2.1, Chap. 2), and the Banach closed range theorem.
The interested reader can refer to, e.g., [QV94, Chap. 5]. �

The Lax-Milgram lemma thus ensures that the weak formulation of an elliptic
problem is well posed, as long as the hypotheses on the form a(·, ·) and on the func-
tional F(·) hold. Several consequences derive from this lemma. We report one of the
most important in the following corollary.
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Corollary 3.1. The solution of (3.37) is bounded by the data, that is

‖u‖V ≤ 1
α
‖F‖V ′ ,

where α is the coercivity constant of the bilinear form a(·, ·), while ‖F‖V ′ is the
norm of the functional F, see (2.2).

Proof. It is sufficient to choose v = u in (3.37) and then to use the coercivity of the
bilinear form a(·, ·). Indeed, we have

α‖u‖2
V ≤ a(u,u) = F(u).

On the other hand, since F is linear and continuous it is also bounded, and the upper
bound

|F(u)| ≤ ‖F‖V ′ ‖u‖V

holds, hence the claim follows. �
Remark 3.6. If the bilinear form a(·, ·) is additionally symmetric, that is

a(u,v) = a(v,u) ∀u,v ∈V,

then (3.37) is equivalent to the following variational problem (see Exercise 1)⎧⎨⎩ find u ∈V : J(u) = min
v∈V

J(v),

with J(v)=
1
2

a(v,v)−F(v).
(3.38)

•

3.5 Adjoint operator and adjoint problem

In this section we will introduce the concept of adjoint of a given operator in Hilbert
spaces, as well as the adjoint (or dual) problem of a given boundary-value problem.
Then we will show how to obtain dual problems, with associated boundary conditions.
The adjoint problem of a given differential problem plays a fundamental role, for
instance, when establishing error estimates for Galerkin methods, both a priori and a
posteriori (see Sects. 4.5.4 and 4.6.4–4.6.5, respectively), but also for the solution of
optimal-control problems, as we will see in Chapter 18.

Let V be a Hilbert space with scalar product (·, ·)V and norm ‖ · ‖V , and let V ′ be
its dual space. Let a : V ×V → R be a continuous and coercive bilinear form and let
A : V →V ′ be its associated elliptic operator, that is A ∈ L (V,V ′),

V ′ 〈Av,w〉V = a(v,w) ∀v,w ∈V. (3.39)
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Let a∗ : V ×V → R be the bilinear form defined by

a∗(w,v) = a(v,w) ∀v,w ∈V, (3.40)

and consider the operator A∗ : V →V ′ associated to the form a∗(·, ·), that is

V ′ 〈A∗w,v〉V = a∗(w,v) ∀v,w ∈V. (3.41)

Thanks to (3.40) we have the following relation, known as the Lagrange identity

V ′ 〈A∗w,v〉V = V ′ 〈Av,w〉V ∀v,w ∈V. (3.42)

Note that this is precisely the equation that stands at the base of the definition (2.20)
of the adjoint of a given operator A acting between a Hilbert space and its dual. For
coherence with (2.20), we should have noted this operator A′. However, we prefer to
denote it A∗ because the latter notation is more customarily used in the context of
elliptic boundary value problems.

If a(·, ·) is a symmetric form, a∗(·, ·) coincides with a(·, ·) and A∗ with A. In such
case A is said to be self-adjoint; A is said to be normal if AA∗ = A∗A.
Naturally, the identity operator I is self-adjoint (I = I∗), while if an operator is self-
adjoint, then it is also normal.
Some properties of the adjoint operators which are a consequence of the previous
definition, are listed below:

• A being linear and continuous, then also A∗ is, that is A∗ ∈ L (V,V ′);
• ‖A∗‖L (V ,V ′) = ‖A‖L (V ,V ′) (these norms are defined in (2.21));
• (A+B)∗ = A∗+B∗;
• (AB)∗ = B∗A∗;
• (A∗)∗ = A;
• (A−1)∗ = (A∗)−1 (if A is invertible);
• (αA)∗ = αA∗ ∀α ∈ R.

When we need to find the adjoint (or dual) problem of a given (primal) problem,
we will use the Lagrange identity to characterize the differential equation of the dual
problem, as well as its boundary conditions.

We provide an example of such a procedure, starting from a simple one-dimension-
al diffusion transport equation, completed by homogeneous Robin-Dirichlet boundary
conditions {

Av =−v′′+ v′ = f , x ∈ I = (0,1),

v′(0)+β v(0) = 0, v(1) = 0,
(3.43)

assuming β constant. Note that the weak form of this problem is

find u ∈V such that a(u,v) =

1∫
0

f vdx ∀v ∈V, (3.44)
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where V = {v ∈ H1(0,1) : v(1) = 0} and

a : V ×V → R, a(u,v) =

1∫
0

(u′ − u)v′dx− (β +1)u(0)v(0).

By (3.40) we obtain, ∀v,w ∈V ,

a∗(w,v) = a(v,w) =

1∫
0

(v′ − v)w′dx− (β +1)v(0)w(0)

= −
1∫

0

v(w′′+w′)dx+[vw′]10 − (β +1)v(0)w(0)

=

1∫
0

(−w′′ −w′)vdx− [w′(0)+ (β +1)w(0)]v(0).

Since definition (3.41) must hold, we will have

A∗w =−w′′ −w′ in D
′(0,1).

Moreover, as v(0) is arbitrary, w will need to satisfy the boundary conditions

[w′+(β + 1)w](0) = 0, w(1) = 0.

We observe that the transport field of the dual problem has an opposite direction
with respect to that of the primal problem. Moreover, to homogeneous Robin-Dirichlet
boundary conditions for the primal problem (3.43) correspond conditions of exactly
the same nature for the dual problem.

The procedure illustrated for problem (3.43) can clearly be extended to the multi-
dimensional case. In Table 3.1 we provide a list of several differential operators with
boundary conditions, and their corresponding adjoint operators with associated bound-
ary conditions. (On the functions appearing in the table assume all the necessary reg-
ularity for the considered differential operators to be well-defined). We note, in par-
ticular, that to a given type of primal conditions do not necessarily correspond dual
conditions of the same type, and that, for an operator that is not self-adjoint, to a con-
servative (resp. non-conservative) formulation of the primal problem corresponds a
non-conservative (resp. conservative) formulation of the dual one.

3.5.1 The nonlinear case

The extension of the analysis in the previous section to the nonlinear case is not so
immediate. For simplicity, we consider the one-dimensional problem{

A(v)v =−v′′+ vv′ = f , x ∈ I = (0,1),

v(0) = v(1) = 0,
(3.45)
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having denoted by A(v) the operator

A(v)·=− d2·
dx2 + v

d·
dx

. (3.46)

The Lagrange identity (3.42) is now generalized as

V ′ 〈A(v)u,w〉V = V 〈u,A∗(v)w〉V ′ (3.47)

for each u ∈ D(A) and w ∈ D(A∗), D(A) being the domain of A, that is the set of func-
tions of class C2 that are null at x = 0 and x = 1, and D(A∗) the domain of the adjoint
(or dual) operator A∗ whose properties will be identified by imposing (3.47). Starting
from such identity, let us see which adjoint operator A∗ and which dual boundary con-
ditions we get for problem (3.45). By integrating by parts the diffusion term twice and
the transport term of order one once, we obtain

V ′ 〈A(v)u,w〉V = −
1∫

0

u′′ wdx+
1∫

0

vu′ wdx

=

1∫
0

u′ w′ dx−u′ w
∣∣∣1
0
−

1∫
0

(vw)′udx+ vuw
∣∣∣1
0

= −
1∫

0

uw′′ dx+uw′
∣∣∣1
0
−u′ w

∣∣∣1
0
−

1∫
0

(vw)′udx+ vuw
∣∣∣1
0
.

(3.48)

Let us analyze the boundary terms separately, by makin the contribution at both end-
points explicit. In order to guarantee (3.47), we must have

u(1)w′(1)−u(0)w′(0)−u′(1)w(1)+u′(0)w(0)+v(1)u(1)w(1)−v(0)u(0)w(0) = 0

for each u and v ∈ D(A). We observe that the fact that u belongs to D(A) allows us to
ignore, as vanishing, both the first two and the last two summands, so that we end up
having

−u′(1)w(1)+u′(0)w(0) = 0.

Since such relation must hold for each u∈D(A), we must choose homogeneous Dirich-
let conditions for the dual operator, i.e.

w(0) = w(1) = 0. (3.49)

Reverting to (3.48), we then have

V ′ 〈A(v)u,w〉V = −
1∫

0

u′′ wdx+
1∫

0

vu′ wdx

= −
1∫

0

uw′′ dx−
1∫

0

(vw)′udx = V 〈u,A∗(v)w〉V ′ .
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The adjoint operator A∗ of the primal operator A defined in (3.46) therefore reads

d2 d
A∗(v) =

·· − + v
dx2 dx

·

while the dual boundary conditions are provided by (3.49). To conclude, we note that
the dual problem is always linear, even though we started from a nonlinear primal
problem.

For more details on the differentiation and on the analysis of the adjoint problems,
we refer the reader to, e.g., [Mar95].

3.6 Exercises

1. Prove that the weak problem (3.37) is equivalent to the variational problem (3.38)
if the bilinear form is coercive and symmetric.
[Solution: let u ∈ V be the solution of the weak problem and let w be a generic
element of V . Thanks to the bilinearity and to the symmetry of the form, we find

1
J(u+w) = [a(u,u)+2a(u,w)+a(w,w)]− [F(u)+F(w)]

2
1 1

= J(u)+ [a(u,w)−F(w)]+ a(w,w) = J(u)+ a(w,w).
2 2

Thanks to the coercivity we then obtain that J(u+w)≥ J(u)+(α/2)‖w‖2
V , that is

∀v∈V with v= u, J(v)> J(u). Conversely, if u is a minimum for J, then by writing
the extremality condition limδ→0 (J(u+δv)− J(u))/δ = 0 we find (3.37).]

2. Prove that the bilinear form (3.36) is continuous and coercive under the hypotheses
listed in the text on the coefficients.
[Solution: the bilinear form is obviously continuous. Thanks to the hypothesis (3.35)
and to the fact that σ ∈ L∞(Ω) is positive a.e. in Ω , it is also coercive as

a v v ≥ α|v|2 2 2( , ) 1 +α0‖v‖ 2 ≥ min(α,α0)(Ω) L (Ω)
‖vH ‖V ∀v ∈V.

We point out that if V = H1(Ω) then the condition α0 > 0 is necessary for the
bilinear form to be coercive. In the case where V = H1

0(Ω), it is sufficient that
α0 > −α/C2

Ω , CΩ being the constant intervening in the Poincaré inequality (see
(2.13)). In this case, the equivalence between ‖ · ‖H1(Ω and | · |H1) (Ω) can indeed be
exploited. See Property 2.5 of Chapter 2.]

3. Let V = H1
0(0,1), and take a : V ×V → R and F : V → R defined in the following

way:

1 1

F(v) =
∫
(−1−4x)v(x) dx, a(u,v) =

∫
(1+ x)u′(x)v′(x) dx.

0 0
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Prove that the problem: find u ∈V such that a(u,v) = F(v) ∀v ∈V , admits a unique
solution. Moreover, verify that this solution coincides with u(x) = x2 − x.
[Solution: it can be easily shown that the bilinear form is continuous and coercive
in V . Then, since F is a linear and continuous functional, by the Lax-Milgram
lemma we can conclude that there exists a unique solution in V . We verify that the
latter is indeed u(x) = x2 − x. The latter function belongs for sure to V (since it is
continuous and differentiable and such that u(0) = u(1) = 0). Moreover, from the
relation

1 1 1∫
(1+ x)u′(x)v′(x) dx =−

∫
((1+ x)u′(x))′v(x) dx =

∫
(−1−4x)v(x) dx,

0 0 0

valid ∀v ∈ V , we deduce that in order for u to be a solution we must have ((1+
x)u′(x))′ = 1+ 4x almost everywhere in (0,1). Such property holds for the pro-
posed u.]

4. Find the weak formulation of the problem⎧
Δ 2u = f in Ω ,⎨⎪
u = 0 on ∂Ω ,
∂u⎩⎪ = 0 on ∂Ω ,
∂n

Ω ⊂ R2 being a bounded open set with regular boundary ∂Ω , Δ 2· = ΔΔ · the bi-
laplacian operator and f ∈ L2(Ω) an assigned function.
[Solution: the weak formulation, obtained by applying Green’s formula twice to
the bilaplacian operator, is

find u ∈ H2 2(Ω) :
∫

ΔuΔv dΩ =
∫

f v dΩ ∀v ∈ H ( ,0 0 Ω) (3.50)
Ω Ω

where H2 2
0(Ω)={v ∈ H (Ω) : v = 0, ∂v/∂n = 0 on ∂Ω}.]

5. For each function v of the Hilbert space H2
0(Ω), defined in Exercise 4, it can be

shown that the seminorm | · | 2 1/2
H2(Ω 2) defined as |v|H (Ω) =( Ω |Δv| dΩ) is in fact

equivalent to the norm ‖ · ‖H2(Ω). Using such property, pro

∫
ve that problem (3.50)

admits a unique solution.
[Solution: let us set V = H2(0 Ω). Then

a(u,v)=
∫

ΔuΔv dΩ and F(v)=
∫

f v dΩ
Ω Ω

are a bilinear form from V ×V →R and a linear and continuous functional, respec-
tively. To prove existence and uniqueness it is sufficient to invoke the Lax-Milgram
lemma as the bilinear form is coercive and continuous. Indeed, thanks to the equiv-
alence between norm and seminorm, there exist two positive constants α and M
such that

a(u,u) = |u|2V ≥ α‖u‖2
V , |a(u,v)| ≤ M‖u‖V‖v‖V .]
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6. Write the weak formulation of the fourth-order problem⎧ −div μ∇u Δ 2( )+ u+σu = 0 in Ω ,⎨⎪⎪⎪
u = 0 on ∂Ω ,

∂u⎪⎪⎪⎩ = 0 on ∂Ω ,
∂n

by introducing appropriate functional spaces, knowing that Ω ⊂ R2 is a bounded
open set with regular boundary ∂Ω and that μ(x) and σ(x) are known functions
defined on Ω .
[Solution: proceed as in the two previous exercises by supposing that the coeffi-
cients μ and σ lie in L∞(Ω).]

R2 ◦ ◦
7. Let Ω ⊂ be a domain with a smooth boundary ∂Ω =ΓD∪ΓN and Γ D ∩Γ N= 0./

By introducing appropriate functional spaces, find the weak formulation of the
following linear elasticity problem⎧

2 ∂⎪⎪ −∑ σi j(u) = fi in Ω , i = 1,2,⎪
j=1 ∂x j⎨⎪⎪⎪⎪

ui = 0 on ΓD, i = 1,2, (3.51)⎪⎪⎪ 2⎪
∑

⎪ σi j(u)n j = gi on Γ⎪
N , i = 1,2,⎪⎩

j=1

having denoted as usual by n = (n T
1,n2) the outward unit normal vector to ∂Ω ,

by u = (u1,u T
2) the unknown vector, and by f f f T and g g g T= ( 1, 2) = ( 1, 2) two

assigned vector functions. Moreover, it has been set for i, j = 1,2,

1 ∂u ∂u
σi j(u) = λ jdiv i

(u)δi j +2μεi j(u), εi j(u) =
(

+

)
,

2 ∂x j ∂xi

λ and μ being two positive constants and δi j the Kronecker symbol. The system
(3.51) allows to describe the displacement u of an elastic body, homogeneous and
isotropic, that occupies in its equilibrium position the region Ω , under the action
of an external body force whose density is f and of a surface charge distributed on
ΓN with intensity g (see Fig. 3.4).
[Solution: the weak formulation of (3.51) can be found by observing that σi j = σ ji
and by using the following Green formula

2 ∫ 2

∑ σi j(u)εi j(v) dΩ = ∑
∫

σi j(u)n jvi dγ
i, j=1 i, j=1Ω ∂Ω

2 (3.52)

∑
∫ ∂σi j(u)− vi dΩ .

i, j=1 ∂x j
Ω
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Ω
Γ
N ΓD

f

g

Fig. 3.4. A partially constrained body subject to the action of an external charge

By assuming v ∈ V =(H1
ΓD
(Ω))2 (the space of vectorial functions that have com-

ponents vi ∈ H1
ΓD
(Ω) for i = 1,2), the weak formulation reads

find u ∈V such that a(u,v) = F(v) ∀v ∈V,

with

a(u,v) =
∫
Ω

λdiv(u)div(v) dΩ +2μ
2

∑
i, j=1

∫
Ω

εi j(u)εi j(v) dΩ ,

F(v) =
∫
Ω

f ·v dΩ +
∫
ΓN

g ·v dγ.

In order for the integrals to make sense, it will be sufficient to require f ∈ (L2(Ω))2

and g ∈ (L2(ΓN))
2.]

8. Prove, by applying the Lax-Milgram Lemma, that the solution of the weak formu-
lation (3.52) exists and is unique under appropriate conditions on the regularity of
the data and knowing that the following Korn inequality holds:

∃C0 > 0 :
2

∑
i, j=1

∫
Ω

εi j(v)εi j(v) dΩ ≥C0‖v‖2
V ∀v ∈V.

[Solution: consider the weak formulation introduced in the solution to the previous
exercise. The bilinear form defined in (3.52) is continuous and also coercive be-
cause of the Korn inequality. F is a linear and continuous functional; hence, by the
Lax-Milgram lemma, the solution exists and is unique.]



Chapter 4

The Galerkin finite element method

for elliptic problems

In this chapter we describe the numerical solution of the elliptic boundary-value prob-
lems considered in Chapter 3 by introducing the Galerkin method. We then illustrate
the finite element method as a particular case. The latter will be further developed in
the following chapters.

4.1 Approximation via the Galerkin method

As seen in Chapter 3.2, the weak formulation of a generic elliptic problem set on a
domain Ω ⊂Rd , d = 1,2,3, can be written in the following way

find u ∈V : a(u,v) = F(v) ∀v ∈V, (4.1)

V being an appropriate Hilbert space, subspace of H1(Ω), a(·, ·) being a continuous
and coercive bilinear form from V ×V in R, F(·) being a continuous linear functional
from V in R. Under such hypotheses, the Lax-Milgram Lemma of Sect. 3.4.1 ensures
existence and uniqueness of the solution.

Let Vh be a family of spaces that depends on a positive parameter h, such that

Vh ⊂V, dim Vh = Nh < ∞ ∀h > 0.

The approximate problem takes the form

find uh ∈Vh : a(uh,vh) = F(vh) ∀vh ∈Vh (4.2)

and is called Galerkin problem. Denoting with {ϕ j, j = 1,2, . . . ,Nh} a basis of Vh, it
suffices that (4.2) be verified for each function of the basis, as all the functions in the
space Vh are a linear combination of the ϕ j. We will then require that

a(uh,ϕi) = F(ϕi), i = 1,2, . . . ,Nh. (4.3)

A. Quarteroni, Numerical Models for Differential Problems, MS&A 16, 
DOI 10.1007/978-3-319-49316-9_4 
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Obviously, since uh ∈Vh,

uh(x) =
Nh

∑
j=1

u jϕ j(x),

where the u j, j = 1, . . . ,Nh, are unknown coefficients. Equations (4.3) then become

Nh

∑
j=1

u j a(ϕ j,ϕi) = F(ϕi), i = 1,2, . . . ,Nh. (4.4)

We denote by A the matrix (called stiffness matrix) with elements

ai j=a(ϕ j,ϕi)

and by f the vector with components fi = F(ϕi). If we denote by u the vector having
as components the unknown coefficients u j, (4.4) is equivalent to the linear system

Au = f. (4.5)

We point out some characteristics of the stiffness matrix that are independent of the
basis chosen for Vh, but exclusively depend on the properties of the weak problem that
is being approximated. Other properties, instead, such as the condition number or the
sparsity structure, depend on the basis under exam and are therefore addressed in the
sections dedicated to the specific numerical methods. For instance, bases formed by
functions with small support are appealing, as all the elements ai j whose indices are
related to basis functions having supports with empty intersections will be null. More
in general, from a computational viewpoint, the most convenient choices of Vh will
be the ones requiring a modest computational effort for the computation of the matrix
elements as well as the source term f.

Theorem 4.1. The matrix A associated to the Galerkin discretization of an ellip-
tic problem whose bilinear form is coercive is positive definite.

Proof. We recall that a matrix B ∈ Rn×n is said to be positive definite if

vT Bv ≥ 0 ∀v ∈ Rn and also vT Bv = 0 ⇔ v = 0. (4.6)

The correspondence

v = (vi) ∈ RNh ↔ vh(x) =
Nh

∑
j=1

v jφ j ∈Vh (4.7)
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defines a bijection between the spaces RNh and Vh . Given a generic vector v = (vi)
of RNh , thanks to the bilinearity and coercivity of the form a(·, ·), we obtain

vT Av =
Nh

∑
j=1

Nh

∑
i=1

viai jv j =
Nh

∑
j=1

Nh

∑
i=1

via(ϕ j,ϕi)v j

=
Nh

∑
j=1

Nh

∑
i=1

a(v jϕ j,viϕi) = a

(
Nh

∑
j=1

v jϕ j,
Nh

∑
i=1

viϕi

)
= a(vh,vh)≥ α‖vh‖2

V ≥ 0.

Moreover, if vT Av = 0, then, by what we have just obtained, ‖vh‖2
V = 0 too, i.e. vh = 0

and so v = 0. Consequently the claim is proved, as the two conditions in (4.6) are
fulfilled. 	

Furthermore, the following property can be proved (see Exercise 4):

Property 4.1. The matrix A is symmetric if and only if the bilinear form a(·, ·) is
symmetric.

For instance, in the case of the Poisson problem with either Dirichlet (3.18) or
mixed (3.27) boundary conditions, the matrix A is symmetric and positive definite.
The numerical solution of such a system can be efficiently performed using both di-
rect methods such as the Cholesky factorization, and iterative methods such as the
conjugate gradient method (see Chap. 7 and, e.g., [QSS07, Chap. 4]).

4.2 Analysis of the Galerkin method

In this section, we aim at studying the Galerkin method, and in particular at verifying
three of its fundamental properties:

• existence and uniqueness of the discrete solution uh;
• stability of the discrete solution uh;
• convergence of uh to the exact solution u of problem (4.1), as h → 0.

4.2.1 Existence and uniqueness

The Lax-Milgram Lemma stated in Sect. 3.4.1 holds for any Hilbert space, hence in
particular for the space Vh, as the latter is a closed subspace of the Hilbert space V .
Furthermore, the bilinear form a(·, ·) and the functional F(·) are the same as in the
variational problem (4.1). The hypotheses required by the Lemma are therefore ful-
filled. The following result then follows:
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Corollary 4.1. The solution of the Galerkin problem (4.2) exists and is unique.

It is nonetheless instructive to provide a constructive proof of this corollary without
using the Lax-Milgram Lemma. As we have seen, in fact, the Galerkin problem (4.2)
is equivalent to the linear system (4.5). Proving the existence and uniqueness for one
means to prove automatically the existence and uniqueness of the other. We therefore
focus our attention on the linear system (4.5).

The matrix A is invertible as the unique solution of system Au = 0 is the identi-
cally null solution. This immediately descends from the fact that A is positive definite.
Consequently, the linear system (4.5) admits a unique solution, hence also its corre-
sponding Galerkin problem admits a unique solution.

4.2.2 Stability

Corollary 3.1 allows us to provide the following stability result.

Corollary 4.2. The Galerkin method is stable, uniformly with respect to h, by
virtue of the following upper bound for the solution

‖uh‖V ≤ 1
α
‖F‖V ′ .

The stability of the method guarantees that the norm ‖uh‖V of the discrete solution
remains bounded for h tending to zero, uniformly with respect to h. Equivalently,
it guarantees that ‖uh −wh‖V ≤ 1

α ‖F −G‖V ′ , uh and wh being numerical solutions
corresponding to two different data F and G.

4.2.3 Convergence

We now want to prove that the weak solution of the Galerkin problem converges to
the solution of the weak problem (4.1) when h tends to zero. Consequently, by taking
a sufficiently small h, it will be possible to approximate the exact solution u by the
Galerkin solution uh as accurately as desired.

Let us first prove the following consistency property.

Lemma 4.1 (Galerkin orthogonality). The solution uh of the Galerkin method
satisfies

a(u− uh,vh) = 0 ∀vh ∈Vh. (4.8)
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u

uh

u−uh

Vh

Fig. 4.1. Geometric interpretation of the Galerkin orthogonality

Proof. Since Vh ⊂ V , the exact solution u satisfies the weak problem (4.1) for each
element v = vh ∈Vh, hence we have

a(u,vh) = F(vh) ∀vh ∈Vh. (4.9)

By subtracting side by side (4.2) from (4.9), we obtain

a(u,vh)− a(uh,vh) = 0 ∀vh ∈Vh,

from which, thanks to the bilinearity of the form a(·, ·), the claim follows. 	

Let us point out that (4.9) coincides with the definition of strong consistency given
in (1.10).

If a(·, ·) is symmetric, (4.8) is interpreted as the orthogonality condition with re-
spect to the scalar product a(·, ·), between the approximation error, u− uh, and the
subspace Vh. Borrowing terminology from the Euclidean case, the solution uh of the
Galerkin method is said to be the orthogonal projection on Vh of the exact solution u.
Among all elements of Vh, vh is the one minimizing the distance to the exact solution
u in the energy norm, i.e. in the following norm induced by the scalar product a(·, ·):

‖u− uh‖a =
√

a(u−uh,u−uh).

Remark 4.1. The geometric interpretation of the Galerkin method makes sense only
in the case where the form a(·, ·) is symmetric. However, this does not impair the
generality of the method or its consistency property in the case where the bilinear
form is not symmetric. •

Let us now consider the value taken by the bilinear form when both its arguments are
equal to u−uh. If vh is an arbitrary element of Vh we obtain

a(u− uh,u− uh) = a(u−uh,u− vh)+a(u− uh,vh −uh).
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The last term is null by virtue of (4.8), as vh −uh ∈Vh. Moreover

|a(u− uh,u− vh)| ≤ M‖u− uh‖V‖u− vh‖V ,

having exploited the continuity of the bilinear form. On the other hand, by the coer-
civity of a(·, ·) it follows

a(u− uh,u−uh)≥ α‖u− uh‖2
V ,

hence we have

‖u− uh‖V ≤ M

α
‖u− vh‖V ∀vh ∈Vh.

Such inequality holds for all functions vh ∈Vh and therefore we find

‖u− uh‖V ≤ M

α
inf

wh∈Vh
‖u−wh‖V . (4.10)

This fundamental property of the Galerkin method is known as Céa Lemma.
It is then evident that in order for the method to converge, it will be sufficient to require
that, for h tending to zero, the space Vh tends to saturate the entire space V . Precisely,
it must turn out that

lim
h→0

inf
vh∈Vh

‖v− vh‖V = 0 ∀v ∈V. (4.11)

In that case, the Galerkin method is convergent and it can be written that

lim
h→0

‖u−uh‖V = 0.

The space Vh must therefore be carefully chosen in order to guarantee the saturation
property (4.11). Once this requirement is satisfied, convergence will be verified in
any case, independently of how u looks like; conversely, the speed with which the
discrete solution converges to the exact solution, i.e. the order of decay of the error
with respect to h, will depend, in general, on both the choice of Vh and the regularity
of u (see Theorem 4.3).

Remark 4.2. Obviously, inf
vh∈Vh

‖u− vh‖V ≤ ‖u− uh‖V . Consequently, by (4.10), if M
α

is has order 1, the error due to the Galerkin method can be identified with the best
approximation error for u in Vh. In any case, both errors have the same infinitesimal
order with respect to h. •

Remark 4.3. In the case where a(·, ·) is a symmetric bilinear form, and also continu-
ous and coercive, then (4.10) can be improved as follows (see Exercise 5)

‖u− uh‖V ≤
√

M

α
inf

wh∈Vh
‖u−wh‖V . (4.12)

•
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4.3 The finite element method in the one-dimensional case

Let us suppose thatΩ is an interval (a,b). The goal of this section is to create approx-
imations of the space H1(a,b) that depend on a parameter h. To this end, we introduce
a partition Th of (a,b) in N + 1 subintervals Kj = (x j−1,x j), also called elements,
having width h j = x j − x j−1 with

a = x0 < x1 < .. . < xN < xN+1 = b (4.13)

and set h = max j h j.
Since the functions of H1(a,b) are continuous functions on [a,b], we can construct the
following family of spaces

Xr
h =
{

vh ∈C0
(
Ω
)

: vh|Kj ∈ Pr ∀Kj ∈ Th
}
, r = 1,2, . . . (4.14)

having denoted by Pr the space of polynomials with degree lower than or equal to r in
the variable x. The spaces Xr

h are all subspaces of H1(a,b), as they are constituted by
differentiable functions except for at most a finite number of points (the vertices xi of
the partition Th). They represent possible choices for the space Vh, provided that the
boundary conditions are properly incorporated. The fact that the functions of Xr

h are
locally (element-wise) polynomials will make the stiffness matrix easy to compute.

We must now choose a basis {ϕi} for the Xr
h space. It is convenient, by what ex-

posed in Sect. 4.1, that the support of the generic basis function ϕi have non-empty
intersection only with the support of a negligible number of other functions of the
basis. In such way, many elements of the stiffness matrix will be null. It is also conve-
nient that the basis be Lagrangian: in that case, the coefficients of the expansion of a
generic function vh ∈ Xr

h in the basis itself will be the values taken by vh at carefully
chosen points, which we call nodes and which, as we will see, generally form a su-
perset of the vertices of Th. This does not prevent the use of non-Lagrangian bases,
especially in their hierarchical version (as we will see later). We now provide some
examples of bases for the spaces X1

h and X2
h .

4.3.1 The space X1
hX1
hX1
h

This space is constituted by the continuous and piecewise linear functions on a par-
tition Th of (a,b) of the form (4.13). Since only one straight line can pass through
two different points and the functions of X1

h are continuous, the degrees of freedom of
the functions of this space, i.e. the values that must be assigned to define uniquely the
functions themselves, will be equal to the number N+2 of vertices of the partition. In
this case, therefore, nodes and vertices coincide. Consequently, having assigned N+2
basis functionsϕi, i= 0, . . . ,N+1, the whole space X1

h will be completely defined. The
characteristic Lagrangian basis functions are characterized by the following property

ϕi ∈ X1
h such that ϕi(x j) = δi j, i, j = 0,1, . . . ,N +1,

δi j being the Kronecker delta. The function ϕi is therefore piecewise linear and equal
to one at xi and zero at the remaining nodes of the partition (see Fig. 4.2). Its expression
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1

xixi−1 xi+1x0 = a xN+1 = b

ϕi

Fig. 4.2. The basis function of X1
h associated to node xi

is given by:

ϕi(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x− xi−1

xi − xi−1
for xi−1 ≤ x ≤ xi,

xi+1 − x

xi+1 − xi
for xi ≤ x ≤ xi+1,

0 otherwise.

(4.15)

Obviously ϕi has as support the union of the intervals [xi−1,xi] and [xi,xi+1] only, if
i 
= 0 or i 
= N + 1 (for i = 0 or i = N + 1 the support will be limited to the interval
[x0,x1] or [xN ,xN+1], respectively). Consequently, the only basis functions whose sup-
port overlaps with that of ϕi are ϕi−1 and ϕi+1 (and, of course, ϕi). Hence the stiffness
matrix is tridiagonal as ai j = 0 if j 
∈ {i−1, i, i+1}.

As visible in expression (4.15), the two basis functions ϕi and ϕi+1 defined on each
interval [xi,xi+1] basically repeat themselves with no changes, up to a scaling factor
linked to the length of the interval itself. In practice, the two basis functions ϕi and
ϕi+1 can be obtained by transforming two basis functions ϕ̂0 and ϕ̂1 built once and for
all on a reference interval, typically the [0,1] interval.

To this end, it is sufficient to exploit the fact that the generic interval [xi,xi+1] of
the partition of (a,b) can be obtained starting from the interval [0,1] via the linear
transformation φ : [0,1]→ [xi,xi+1] defined as

x = φ(ξ ) = xi + ξ (xi+1 − xi). (4.16)

If we define the two basis functions ϕ̂0 and ϕ̂1 on [0,1] as

ϕ̂0(ξ ) = 1− ξ , ϕ̂1(ξ ) = ξ ,

the basis functions ϕi and ϕi+1 on [xi,xi+1] will simply be given by

ϕi(x) = ϕ̂0(ξ (x)), ϕi+1(x) = ϕ̂1(ξ (x))

since ξ (x) = (x− xi)/(xi+1 − xi) (see Figs. 4.3 and 4.4).
This way of proceeding (defining the basis on a reference element and then trans-

forming it on a specific element) will be of fundamental importance when considering
problems in several dimensions.
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0 1

ϕ̂0

ξ

1

xi xi+1

ϕi

x

1
φ−→

Fig. 4.3. The basis function ϕi in [xi,xi+1] and the corresponding basis function ϕ̂0 on the
reference element

0 1

ϕ̂1

ξ

1

xi xi+1

ϕi+1

x

1
φ−→

Fig. 4.4. The basis function ϕi+1 in [xi,xi+1] and the corresponding basis function ϕ̂1 on the
reference element

4.3.2 The space X2
hX2
hX2
h

The functions of X2
h are piecewise polynomials of degree 2 on each interval of Th and,

consequently, they are determined once the values they take at three distinct points of
each interval Kj are assigned. To guarantee the continuity of the functions of X2

h two
of these points will be the endpoints of the generic interval of Th, the third will be
the midpoint of the latter. The degrees of freedom of the space X2

h are therefore the
values of vh taken at the endpoints of the intervals composing the partition Th and at
their midpoints. We order the nodes starting from x0 = a to x2N+2 = b; in such way the
midpoints correspond to the nodes with odd indices, and the endpoints to the nodes
with even indices (refer to Exercise 6 for alternative numberings).

Exactly as in the previous case the Lagrangian basis for X2
h is the one formed by

the functions

ϕi ∈ X2
h such that ϕi(x j) = δi j, i, j = 0,1, . . . ,2N + 2.

These are therefore piecewise quadratic functions that are equal to 1 at the node to
which they are associated and are null at the remaining nodes. Here is the explicit
expression of the generic basis function associated to the endpoints of the intervals in



70 4 The Galerkin finite element method for elliptic problems

the partition:

(i even) ϕi(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(x− xi−1)(x− xi−2)

(xi − xi−1)(xi − xi−2)
if xi−2 ≤ x ≤ xi,

(xi+1 − x)(xi+2 − x)

(xi+1 − xi)(xi+2 − xi)
if xi ≤ x ≤ xi+2,

0 otherwise.

For the midpoints of the intervals, we have

(i odd) ϕi(x) =

⎧⎪⎨⎪⎩
(xi+1 − x)(x− xi−1)

(xi+1 − xi)(xi − xi−1)
if xi−1 ≤ x ≤ xi+1,

0 otherwise.

See Fig. 4.5 for an example.
As in the case of linear finite elements, in order to describe the basis it is sufficient to
provide the expression of the basis functions on the reference interval [0,1] and then
to transform the latter via (4.16). We have

ϕ̂0(ξ ) = (1− ξ )(1− 2ξ ), ϕ̂1(ξ ) = 4(1− ξ )ξ , ϕ̂2(ξ ) = ξ (2ξ −1).

We represent these functions in Fig. 4.5. Note that the generic basis function ϕ2i+1

relative to node x2i+1 has a support coinciding with the element to which the midpoint
belongs. For its peculiar form, it is known as bubble function.
As previously anticipated, we can also introduce other non-Lagrangian bases. A par-
ticularly interesting one is the one constructed (locally) by the three functions

ψ̂0(ξ ) = 1− ξ , ψ̂1(ξ ) = ξ , ψ̂2(ξ ) = (1− ξ )ξ .

A basis of this kind is said to be hierarchical because, to construct the basis for X2
h ,

it exploits the basis functions of the lower-dimension space, X1
h . It is convenient from

a computational viewpoint if one decides, during the approximation of a problem, to

1 1

0 10.5

ϕi ϕi+1

xi−4 xi−2 xi−1 xi xi+1 xi+2 xi+4

ϕ̂0 ϕ̂1
ϕ̂2

Fig. 4.5. The basis functions of X2
h (on the left) and the corresponding functions on the reference

interval (on the right)
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increase only locally, i.e. only for such elements, the degree of interpolation (that is if
one intends to perform the so-called adaptivity in the degree, or adaptivity of type p).

The Lagrange polynomials are linearly independent by construction. In general,
however, such property must be verified to ensure that the set of chosen polynomials
is effectively a basis. In the case of the functions ψ̂0, ψ̂1 and ψ̂2 we must verify that

if α0ψ̂0(ξ )+α1ψ̂1(ξ )+α2ψ̂2(ξ ) = 0 ∀ξ , then α0 = α1 = α2 = 0.

Indeed, the equation

α0ψ̂0(ξ )+α1ψ̂1(ξ )+α2ψ̂2(ξ ) = α0 + ξ (α1 −α0 +α2)−α2ξ
2 = 0

implies α0 = 0, α2 = 0 and therefore α1 = 0. We notice that the stiffness matrix in the
case of finite elements of degree 2 will be pentadiagonal.

By proceeding in the same way it will be possible to generate bases for Xr
h with

an arbitrary positive integer r: we point out, however, that as the polynomial degree
increases, the number of degrees of freedom increases and so does the computational
cost of solving the linear system (4.5). Moreover, a well known fact from polynomial
interpolation theory, the use of high degrees combined with equispaced node distri-
butions leads to increasingly less stable approximations, in spite of the theoretical
increase in accuracy. A successful remedy is provided by the spectral element ap-
proximation that, using well-chosen nodes (the ones from the Gaussian quadrature),
allows to generate approximations with arbitrarily high accuracy. To this purpose see
Chap. 10.

4.3.3 The approximation with linear finite elements

We now examine how to approximate the following problem:{ −u′′+σu = f , a < x < b,
u(a) = 0, u(b) = 0,

whose weak formulation, as we have seen in the previous chapter, is

find u ∈ H1
0(a,b) :

b∫
a

u′v′ dx+

b∫
a

σuv dx =

b∫
a

f v dx ∀v ∈ H1
0(a,b).

As we did in (4.13), we introduce a decomposition Th of (0,1) in N +1 subintervals
Kj and use linear finite elements. We therefore introduce the space

Vh = {vh ∈ X1
h : vh(a) = vh(b) = 0}, (4.17)

that is the space of piecewise linear functions that vanish at the boundary (a function
of such space has been introduced in Fig. 4.6). This is a subspace of H1

0(a,b).
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xi xNxi−1

hi

xxN+1 = ba = x0

Fig. 4.6. Example of a function of Vh

The corresponding finite element problem is therefore given by

find uh ∈Vh :

b∫
a

u′hv′h dx+

b∫
a

σuhvh dx =

b∫
a

f vh dx ∀vh ∈Vh. (4.18)

We use as a basis of X1
h the set of hat functions defined in (4.15) by caring to consider

only the indices 1 ≤ i ≤ N. By expressing uh as a linear combination of such functions
uh(x) =∑

N
i=1 uiϕi(x), and imposing that (4.18) is satisfied for each element of the basis

of Vh, we obtain a system of N equations

Au = f, (4.19)

where

A = [ai j], ai j =

b∫
a

ϕ ′
jϕ

′
i dx+

b∫
a

σϕ jϕi dx ;

u = [ui]; f = [ fi], fi =

b∫
a

fϕi dx.

Note that ui = uh(xi), 1 ≤ i ≤ N, that is the finite element unknowns are the nodal
values of the finite element solution uh.
To find the numerical solution uh it is now sufficient to solve the linear system (4.19).

In the case of linear finite elements, the stiffness matrix A is not only sparse, but
also results to be tridiagonal. To compute its elements, we proceed as follows. As we
have seen it is not necessary to operate directly on the basis functions on the single
intervals, but it is sufficient to refer to the ones defined on the reference interval: it will
then be enough to transform appropriately the integrals that appear in the definition of
the coefficients of A.

A generic non-null element of the stiffness matrix is given by

ai j =

b∫
a

(ϕ ′
iϕ

′
j +σϕiϕ j)dx =

xi∫
xi−1

(ϕ ′
iϕ

′
j +σϕiϕ j)dx+

xi+1∫
xi

(ϕ ′
iϕ

′
j +σϕiϕ j)dx.
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Let us consider the first summand by supposing j = i−1. Evidently, via the coordinate
transformation (4.16), we can rewrite it as

xi∫
xi−1

(ϕ ′
iϕ

′
i−1 +σϕiϕi−1)dx =

1∫
0

[ϕ ′
i (x(ξ ))ϕ

′
i−1(x(ξ ))+σ(x(ξ ))ϕi(x(ξ ))ϕi−1(x(ξ ))]hi dξ ,

having noted that dx = d(xi−1+ξhi) = hidξ . On the other hand ϕi(x(ξ )) = ϕ̂1(ξ ) and
ϕi−1(x(ξ )) = ϕ̂0(ξ ). We also note that

d

dx
ϕi(x(ξ )) =

dξ

dx
ϕ̂ ′

1(ξ ) =
1
hi
ϕ̂ ′

1(ξ ).

Similarly, we find that ϕ ′
i−1(x(ξ )) = (1/hi)ϕ̂

′
0(ξ ). Hence, the element ai,i−1 becomes

ai,i−1 =

1∫
0

(
1
hi
ϕ̂ ′

1(ξ )ϕ̂
′
0(ξ )+σϕ̂1(ξ )ϕ̂0(ξ )hi

)
dξ .

The advantage of this expression lies in the fact that in the case of constant coefficients,
all the integrals appearing within the matrix A can be computed once and for all.
We will see in the multi-dimensional case that this way of proceeding maintains its
importance also in the case of variable coefficients.

4.3.4 Interpolation operator and interpolation error

Let us set I = (a,b). For each v ∈ C0(I), we call interpolant of v in the space of X1
h ,

determined by the partition Th, the functionΠ 1
h v such that

Π 1
h v(xi) = v(xi) ∀xi node of the partition, i = 0, . . . ,N + 1.

By using the Lagrangian basis {ϕi} of the space X1
h , the interpolant can be expressed

in the following way

Π 1
h v(x) =

N+1

∑
i=0

v(xi)ϕi(x).

Hence, when v and a basis of X1
h are known, the interpolant of v is easy to compute.

The operator Π 1
h : C0(I) �→ X1

h mapping a function v to its interpolant Π 1
h v is called

interpolation operator.
Analogously, we can define the operators Π r

h : C0(I) �→ Xr
h , for all r ≥ 1. Having

denoted byΠ r
Kj

the local interpolation operator mapping a function v to the polynomial

Π r
Kj

v ∈ Pr(Kj), interpolating v at the r + 1 nodes of the element Kj ∈ Th, we define
Π r

hv as

Π r
hv ∈ Xr

h : Π r
hv
∣∣
Kj

=Π r
Kj
(v
∣∣
Kj
) ∀Kj ∈ Th. (4.20)
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Theorem 4.2. Let v ∈ Hr+1(I), for r ≥ 1, and let Π r
hv ∈ Xr

h be its interpolating
function defined in (4.20). The following estimate of the interpolation error holds

|v−Π r
hv|Hk(I) ≤Ck,rhr+1−k|v|Hr+1(I) for k = 0,1. (4.21)

The constants Ck,r are independent of v and h. We recall that H0(I) = L2(I) and
that | · |H0(I) = ‖ · ‖L2(I).

Proof. We prove (4.21) for the case r = 1, and refer to [QV94, Chap. 3] or [Cia78]
for the more general case. We start by observing that if v ∈ Hr+1(I) then v ∈Cr(I). In
particular, for r = 1, v ∈C1(I). Let us set e = v−Π 1

h v. Since e(x j) = 0 for each node
x j, Rolle’s theorem allows to conclude that there exist some ξ j ∈ Kj = (x j−1,x j), with
j = 1, . . . ,N +1, for which we have e′(ξ j) = 0.
Π 1

h v being a linear function in each interval Kj, we obtain that

e′(x) =
∫ x

ξ j

e′′(s)ds =
∫ x

ξ j

v′′(s)ds for x ∈ Kj,

from which we deduce that

|e′(x)| ≤
∫ x j

x j−1

|v′′(s)|ds for x ∈ Kj.

Now, by using the Cauchy-Schwarz inequality we obtain

|e′(x)| ≤
(∫ x j

x j−1

12ds

)1/2(∫ x j

x j−1

|v′′(s)|2ds

)1/2

≤ h1/2
(∫ x j

x j−1

|v′′(s)|2ds

)1/2

.

(4.22)
Hence, ∫ x j

x j−1

|e′(x)|2dx ≤ h2
∫ x j

x j−1

|v′′(s)|2ds. (4.23)

An upper bound for e(x) can be obtained by noting that, for each x ∈ Kj ,

e(x) =
∫ x

x j−1

e′(s)ds,

and therefore, by applying inequality (4.22),

|e(x)| ≤
∫ x j

x j−1

|e′(s)|ds ≤ h3/2
(∫ x j

x j−1

|v′′(s)|2ds

)1/2

.

Hence, ∫ x j

x j−1

|e(x)|2dx ≤ h4
∫ x j

x j−1

|v′′(s)|2ds. (4.24)
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By summing over the indices j from 1 to N + 1 in (4.23) and (4.24) we obtain the
inequalities ⎛⎝ b∫

a

|e′(x)|2dx

⎞⎠1/2

≤ h

⎛⎝ b∫
a

|v′′(x)|2dx

⎞⎠1/2

and ⎛⎝ b∫
a

|e(x)|2dx

⎞⎠1/2

≤ h2

⎛⎝ b∫
a

|v′′(x)|2dx

⎞⎠1/2

respectively, that correspond to the desired estimates (4.21) for r = 1, with Ck,1 = 1
and k = 0,1. 	

4.3.5 Estimate of the finite element error in the H1H1H1 norm

Owing to result (4.21) we can obtain an estimate of the approximation error of the
finite element method.

Theorem 4.3. Let u ∈ V be the exact solution of the variational problem (4.1)
(in our case Ω = I = (a,b)) and uh its approximate solution via the finite ele-
ment method of degree r, i.e. the solution of problem (4.2) where Vh = Xr

h ∩V.
Moreover, let u ∈ Hp+1(I), for a suitable p such that r ≤ p. Then the following
inequality, also called a priori error estimate, holds

‖u− uh‖V ≤ M

α
Chr|u|Hr+1(I), (4.25)

C being a constant independent of u and h.

Proof. From (4.10), by setting wh =Π r
hu we obtain

‖u− uh‖V ≤ M

α
‖u−Π r

hu‖V .

The right-hand side can now be bounded from above via the interpolation error esti-
mate (4.21) for k = 1, from which the claim follows. 	

It follows from the latter theorem that, in order to increase the accuracy, two differ-
ent strategies can be followed: reducing h, i.e. refining the grid, or increasing r, that is
using finite elements of higher degree. However, the latter strategy makes sense only
if the solution u is regular enough: as a matter of fact, from (4.25) we immediately
infer that, if u ∈ V ∩Hp+1(I), the maximum value of r that it makes sense to take
is r = p. Values higher than p do not ensure a better rate of convergence: therefore
if the solution is not very regular it is not convenient to use finite elements of high
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degree, as the greater computational cost is not compensated by an improvement of
the convergence. An interesting case is when the solution only has the minimum reg-
ularity (p = 0). From the relations (4.10) and (4.11) we obtain that there is anyhow
convergence, but estimate (4.25) is no longer valid. It is then impossible to say how
the norm V of the error tends to zero when h decreases. We summarize these situations
in Table 4.1.

Table 4.1. Order of convergence with respect to h for the finite element method for varying
regularity of the solution and degree r of the finite elements. We have highlighted on each
column the result corresponding to the “optimal” choice of the polynomial degree

r u ∈ H1(I) u ∈ H2(I) u ∈ H3(I) u ∈ H4(I) u ∈ H5(I)

1 converges h1 h1 h1 h1

2 converges h1 h2 h2 h2

3 converges h1 h2 h3 h3

4 converges h1 h2 h3 h4

In general, we can state that: if u ∈ Hp+1(I), for a given p > 0, then there exists a
constant C independent of u and h, such that

‖u− uh‖H1(I) ≤Chs|u|Hs+1(I), s = min{r, p}. (4.26)

4.4 Finite elements, simplices and barycentric coordinates

Before introducing finite element spaces in 2D and 3D domains we can attempt to
provide a formal definition of finite element.

4.4.1 An abstract definition of finite element in the Lagrangian case

From the examples we considered we can deduce that there are three ingredients al-
lowing to characterize a finite element in the general case, i.e. independently of the di-
mension:

• the domain of definition K of the element. In the one-dimensional case it is an
interval, in the two-dimensional case it is generally a triangle but it can also be a
quadrilateral; in the three-dimensional case it can be a tetrahedron, a prism or a
hexahedron;

• a space of polynomials Πr of dimension Nr defined on K and a basis {ϕ j}Nr
j=1

of Πr. In the monodimensional case, Πr has been introduced in Sect. 4.3 and
Nr = r+1. For the multidimensional case, see Sect. 4.4.2;

• a set Σ = {γi : Πr → R}Nr
i=1 of functionals on Πr, satisfying γi(ϕ j) = δi j, δi j be-

ing the Kronecker delta. These allow a unique identification of the coefficients
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{α j}Nr
j=1 of the expansion of a polynomial p ∈Πr with respect to the chosen basis,

p(x) = ∑
Nr
j=1α jϕ j(x). As a matter of fact, we have αi = γi(p), i = 1, . . . ,Nr. These

coefficients are called degrees of freedom of the finite element.

In the case of Lagrange finite elements the chosen basis is provided by the La-
grange polynomials and the degree of freedom αi is equal to the value taken by the
polynomial p at a point ai of K, called node, that is we have αi = p(ai), i = 1, . . . ,Nr.
We can then set, with a slight notation abuse, Σ = {a j}Nr

j=1, since knowing the posi-
tion of the nodes allows us to find the degrees of freedom (notice however that this
is not true in general, think only of the case of the hierarchical basis introduced pre-
viously). In the remainder, we will exclusively refer to the case of Lagrange finite
elements.

In the construction of a Lagrange finite element, the choice of nodes is not arbi-
trary. Indeed, the problem of interpolation on a given set K may be ill posed. For this
reason the following definition proves useful:

Definition 4.1. A set Σ = {a j}Nr
j=1 of points of K is called unisolvent on Πr if,

given Nr arbitrary scalars α j , j = 1, . . . ,Nr, there exists a unique function p ∈Πr

such that

p(a j) = α j , j = 1, . . . ,Nr.

In such case, the triple (K,Σ ,Πr) is called Lagrangian finite element. In the case of
Lagrangian finite elements, the element is generally recalled by citing the sole poly-
nomial space: hence the linear finite elements introduced previously are called P1, the
quadratic ones P2, and so forth.

As we have seen in the 1D case, for the finite elements based on the use of local
P1 and P2 polynomial spaces, it is convenient to define the finite element starting from
a reference element K̂; typically this is the interval (0,1). It will tipically be the right
triangle with vertices (0,0), (1,0) and (0,1) in the two-dimensional case (when using
triangular elements). (See Sect. 4.4.2 for the case in arbitrary dimensions.) Hence, via
a transformation φ , we move to the finite element defined on K. The transformation
therefore concerns the finite element as a whole. More precisely, we observe that if
(K̂, Σ̂ ,Π̂r) is a Lagrangian finite element and φ : K̂ → Rd a continuous and injective
map, and we define

K = φ(K̂), Pr = {p : K → R : p◦φ ∈ Π̂r}, Σ = φ(Σ̂ ),

then (K,Σ ,Pr) is still said to be a Lagrangian finite element. The space of polynomials
defined on triangles and tetrahedra can be introduced as follows.
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Fig. 4.7. The unitary simplex in Rd ,d = 1,2,3

4.4.2 Simplexes

If {N0, . . . ,Nd} are d+1 points in Rd , d ≥ 1, and the vectors {N1 −N0, . . . ,Nd −N0}
are linearly independent, then the convex hull of {N0, . . . ,Nd} is called a simplex, and
{N0, . . . ,Nd} area called the vertices of the simplex. The standard simplex of Rd is
the set

K̂d = {x ∈ Rd : xi ≥ 0, 1 ≤ i ≤ d,
d

∑
i=1

xi ≤ 1} (4.27)

and it is a unit interval in R1, a unit triangle in Rd , a unit tetrahedron in Rd (see
Fig. 4.7). Its vertices are ordered in such a way that the Cartesian coordinates of Ni

are all null, except the i-th one that is equal to 1. On a d-dimensional simplex, the
space of polynomials Pr is defined as follows

Pr = {p(x) = ∑
0 ≤ i1 , . . ., id

i1 + · · ·+ id ≤ d

ai1...id xi1
1 . . .xid

d , ai1...id ∈ R}. (4.28)

Then

Nr = dimPr =

(
r+d

r

)
=

1
d!

d

∏
k=1

(r+ k). (4.29)

4.4.3 Barycentric coordinates

For a given simplex K in Rd (see Sect. 4.5.1) it is sometimes convenient to consider a
coordinate frame alternative to the Cartesian one, that of the barycentric coordinates.
The latter are d +1 functions, {λ0, . . . ,λd}, defined as follows

λi : Rd → R , λi(x) = 1− (x−Ni) ·ni

(N j −Ni) ·ni
, 0 ≤ i ≤ d. (4.30)

For every i = 0, . . . ,d let Fi denote the face of K opposite to Ni; Fi is in fact a vertex if
d = 1, an edge if d = 2, a triangle if d = 3. In (4.30), ni denotes the outward normal
to Fi, while N j is an arbitrary vertex belonging to Fi. The definition of λi is however
independent of which vertex of Fi is chosen.
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N0
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N1

N1

N2

N2

N3

P
P

Fig. 4.8. The barycentric coordinate λi of the point P is the ratio |Ki|
|K| between the measure of

the simplex Ki (whose vertices are P and {N j, j 
= i}) and that of the given simplex K (a triangle
on the left, a tetrahedron on the right). The shadowed simplex is K0

Barycentric coordinates have a geometrical meaning. Indeed, for every point P

belonging to K, its barycentric coordinate λi, 0 ≤ i ≤ d, represents the ratio between
the measure of the simplex Ki whose vertices are P and the vertices of K sitting on the
face Fi opposite to the vertex Ni, and the measure of K. See Fig. 4.8.

Remark 4.4. Let us consider the unitary simplex K̂d , whose vertices {N̂0, . . . , N̂d} are
ordered in such a way that all the Cartesian coordinates of N̂i are null, except xi which
is equal to one. Then

λi(x) = xi, 1 ≤ i ≤ d, λ0(x) = 1−
d

∑
i=1
λi(x) . (4.31)

The barycentric coordinate λi is therefore an affine function that is equal to 1 at Ni

and vanishes on the face Fi opposite to Ni.
On a general simplex K in Rd , the following partition of unity property is satisfied

0 ≤ λi(x)≤ 1 ,
d

∑
i=0

λi(x) = 1 ∀x ∈ K. (4.32)

•
A point P belonging to the interior of K has therefore all its barycentric coordinates
positive. This property is useful whenever one has to check which triangle in 2D or
tetrahedron in 3D a given point belongs to, a situation that occurs when using La-
grangian derivatives (see Sect. 17.7.2) or computing suitable quantities (fluxes, stream-
lines, etc.) as a post-processing of finite element computations.

A remarkable property is that the center of gravity of K has all its barycentric
coordinates equal to (d +1)−1. Another remarkable property is that

ϕi = λi, 0 ≤ i ≤ d, (4.33)

where {ϕi, 0 ≤ i ≤ d} are the characteristic Lagrangian functions on the simplex K of
degree r = 1, that is

ϕi ∈ P1(Kd), ϕi(N j) = δi j, 0 ≤ j ≤ d. (4.34)

(See Fig. 4.10, left, for the nodes.)
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For r = 2 the above identity (4.33) does not hold anymore, however the characteristic
Lagrangian functions {ϕi} can still be expressed in terms of the barycentric coordi-
nates {λi} as follows:{

ϕi = λi(2λi − 1), 0 ≤ i ≤ d,
ϕd+i+ j = 4λiλ j, 0 ≤ i < j ≤ d.

(4.35)

For 0 ≤ i ≤ d, ϕi is the characteristic Lagrangian function associated to the vertex Ni,
while for 0 ≤ i < j ≤ d, ϕd+i+ j it is the characteristic Lagrangian function associated
to the midpoint of the edge whose endpoints are the vertices Ni and N j (see Fig. 4.10,
middle).

The previous identities justify the name “coordinates” that is used for the λi’s.

Indeed, if P is a generic point of the simplex K, its Cartesian coordinates {x(P)j ,1 ≤
j ≤ d} can be expressed in terms of the barycentric coordinates {λ (P)

i ,0 ≤ i ≤ d} as
follows

x(P)j =
d

∑
i=0

λ
(P)
i x(i)j , 1 ≤ j ≤ d, (4.36)

where {x(i)j ,1 ≤ j ≤ d} denote the Cartesian coordinates of the i-th vertex Ni of the
simplex K.

4.5 The finite element method in the multi-dimensional case

In this section we extend the finite element method introduced previously for one-
dimensional problems to the case of boundary-value problems in multi-dimensional
regions. We will also specifically refer to the case of simplexes. Many of the results
presented are in any case immediately generalizable to more general finite elements
(see, for instance, [QV94]).

For the sake of simplicity, most often we will consider domains Ω ⊂ R2 with
polygonal shape and meshes (or grids) Th which represent their cover with non-over-
lapping triangles. For this reason, Th is also called a triangulation. We refer to Chap-
ter 6 for a more detailed description of the essential features of a generic grid Th.
In this way, the discretized domain

Ωh = int

( ⋃
K∈Th

K

)
represented by the internal part of the union of the triangles of Th perfectly coincides
with Ω . We recall that we denote by int(A) the internal part of the set A, that is the
region obtained by excluding the boundary from A. In fact, we will not analyze the
error due to the approximation of a non-polygonal domain with a finite element grid
(see Fig. 4.9). The interested reader may consult, for instance, [Cia78] or [SF73].
Hence, from now on we will adopt the symbol Ω to denote without distinction both
the computational domain and its (optional) approximation.
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h

Fig. 4.9. Triangulation of a non-polygonal domain. The mesh induces an approximation Ωh of
the domain Ω such that limh→0 meas(Ω −Ωh) = 0

Also in the multidimensional case, the parameter h is related to the spacing of the
grid. Having set hK = diam(K), for each K ∈Th, where diam(K) = maxx,y∈K |x−y| is
the diameter of element K, we define h = maxK∈Th hK . Moreover, we will impose that
the grid satisfy the following regularity condition. Let ρK be the diameter of the circle
inscribed in the triangle K (also called sphericity of K ); a family of grids {Th,h > 0}
is said to be regular if, for a suitable δ > 0, the condition

hK

ρK
≤ δ ∀K ∈ Th (4.37)

is verified. We observe that condition (4.37) excludes immediately very deformed (i.e.
stretched) triangles, and hence the option of using anisotropic computational grids.

On the other hand, anisotropic grids are often used in the context of fluid dy-
namics problems in the presence of boundary layers. See Remark 4.6, and especially
references [AFG+00, DV02, FMP04]. Additional details on the generation of grids on
two-dimensional domains are provided in Chapter 6.
We denote by Pr the space of polynomials of global degree less than or equal to r, for
r = 1,2, . . . . According to the general formula (4.28) we find

P1 = {p(x1,x2) = a+bx1+ cx2, with a,b,c ∈R},
P2 = {p(x1,x2) = a+bx1+ cx2 + dx1x2 + ex2

1 + f x2
2, with a,b,c,d,e, f ∈R},

...

Pr = {p(x1,x2) = ∑
i, j≥0,i+ j≤r

ai jx
i
1x j

2, with ai j ∈ R}.

According to (4.29), the spaces Pr have dimension (r+1)(r+2)/2. For instance, it
results that dim P1 = 3, dim P2 = 6 and dim P3 = 10, hence on every element of the
grid Th the generic function vh is well defined whenever its value at 3, resp. 6, resp. 10
suitably chosen nodes, is known (see Fig. 4.10). The nodes for linear (r = 1), quadratic
(r = 2), and cubic (r = 3) polynomials on a three dimensional simplex are shown in
Fig. 4.11.
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Fig. 4.10. Nodes for linear (r = 1, left), quadratic (r = 2, center) and cubic (r = 3, right) poly-
nomials on a triangle. Such sets of nodes are unisolvent

Fig. 4.11. Nodes for linear (r = 1, left), quadratic (r = 2, center) and cubic (r = 3, right) poly-
nomials on a tetrahedron (only those on visible faces are shown)

4.5.1 Finite element solution of the Poisson problem

We introduce the space of finite elements

Xr
h =
{

vh ∈C0(Ω ) : vh|K ∈ Pr ∀K ∈ Th
}
, r = 1,2, . . . (4.38)

that is the space of globally continuous functions that are polynomials of degree r on
the single triangles (elements) of the triangulation Th.
Moreover, we define

◦
Xr

h = {vh ∈ Xr
h : vh|∂Ω = 0}. (4.39)

The spaces Xr
h and

◦
X r

h are suitable for the approximation of H1(Ω), resp. H1
0(Ω),

thanks to the following property (for its proof see, e.g., [QV94]):

Property 4.2. A sufficient condition for a function v to belong to H1(Ω) is that
v ∈C0(Ω ) and v ∈ H1(K) ∀K ∈ Th.

Having set Vh =
◦
Xr

h , we can introduce the following finite element problem for the
approximation of the Poisson problem (3.1) with Dirichlet boundary condition (3.2),
in the homogeneous case (that is with g = 0)

find uh ∈Vh :
∫
Ω

∇uh·∇vh dΩ =

∫
Ω

f vh dΩ ∀ vh ∈Vh. (4.40)

As in the one-dimensional case, each function vh ∈ Vh is characterized, uniquely, by
the values it takes at the nodes Ni, with i = 1, . . . ,Nh, of the grid Th (excluding the



4.5 The finite element method in the multi-dimensional case 83

ϕ j

N j

Fig. 4.12. The basis function ϕ j of the space X1
h and its support

boundary nodes where vh = 0); consequently, a basis in the space Vh can be the set of
the characteristic Lagrangian functions ϕ j ∈Vh, j = 1, . . . ,Nh, such that

ϕ j(Ni) = δi j =

{
0 i 
= j,
1 i = j,

i, j = 1, . . . ,Nh. (4.41)

In particular, if r = 1, the nodes are vertices of the elements, with the exception of
those vertices belonging to the boundary of Ω , while the generic function ϕ j is linear
on each triangle and is equal to 1 at the node N j and 0 at all the other nodes of the
triangulation (see Fig. 4.12).
A generic function vh ∈Vh can be expressed through a linear combination of the basis
functions of Vh in the following way

vh(x) =
Nh

∑
i=1

viϕi(x) ∀ x ∈Ω , with vi = vh(Ni). (4.42)

By expressing the discrete solution uh in terms of the basis {ϕ j} via (4.42), uh(x) =

∑
Nh
j=1 u jϕ j(x), with u j = uh(N j), and imposing that it verifies (4.40) for each func-

tion of the basis itself, we find the following linear system of Nh equations in the Nh

unknowns u j, equivalent to problem (4.40),

Nh

∑
j=1

u j

∫
Ω

∇ϕ j ·∇ϕi dΩ =

∫
Ω

fϕi dΩ , i = 1, . . . ,Nh. (4.43)

The stiffness matrix has dimensions Nh ×Nh and is defined as

A = [ai j] with ai j =

∫
Ω

∇ϕ j ·∇ϕi dΩ . (4.44)

Moreover, we introduce the vectors

u = [u j] with u j = uh(N j), f = [ fi] with fi =

∫
Ω

fϕi dΩ . (4.45)
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The linear system (4.43) can then be written as

Au = f. (4.46)

As in the one-dimensional case, the unknowns are the nodal values of the finite ele-
ment solution. It is evident, since the support of the generic function with basis ϕi is
only formed by the triangles having node Ni in common, that A is a sparse matrix. In
particular, the number of non-null elements of A is of the order of Nh, as ai j is different
from zero only if N j and Ni are nodes of the same triangle. A has not necessarily a
definite structure (e.g. banded), as that will depend on how the nodes are numbered.

Let us consider now the case of a non-homogeneous Dirichlet problem represented
by equations (3.1)–(3.2). We have seen in the previous chapter that we can in any case
resort to the homogeneous case through a lifting (also called extension, or prolonga-
tion) of the boundary datum. In the corresponding discrete problem we build a lifting
of a well-chosen approximation of the boundary datum, by proceeding in the follow-
ing way.
We denote by Nh the internal nodes of the grid Th and by Nt

h the total number, includ-
ing the boundary nodes that for the sake of simplicity we will suppose to be numbered
last. The set of boundary nodes will then be formed by {Ni, i = Nh + 1, . . . ,Nt

h}. A
possible approximation gh of the boundary datum g can be obtained by interpolating
g on the space formed by the trace functions on ∂Ω of functions of Xr

h . This can be
written as a linear combination of the traces of the basis functions of Xr

h associated to
the boundary nodes

gh(x) = ∑
Nt

h
i=Nh+1 g(Ni)ϕi(x) ∀x ∈ ∂Ω . (4.47)

Its lifting Rgh ∈ Xr
h is constructed as follows

Rgh(x) =∑
Nt

h
i=Nh+1 g(Ni)ϕi(x) ∀x ∈Ω . (4.48)

In Fig. 4.13 we provide an example of a possible lifting of a non-homogeneous Dirich-
let boundary datum (3.2), in the case where g has a non-constant value. The finite el-
ement formulation of the Poisson problem then becomes:

find
◦
uh∈Vh :∫

Ω

∇
◦
uh ·∇vh dΩ =

∫
Ω

f vh dΩ −
∫
Ω

∇Rgh ·∇vh dΩ ∀ vh ∈Vh. (4.49)

The approximate solution will then be provided by uh =
◦
uh +Rgh .

Notice how the particular lifting we adopted allows for the following algebraic inter-
pretation of (4.49)

Au = f−Bg

where A and f are defined as in (4.44) and (4.45), now with u j =
◦
uh (N j). Having set

Nb
h = Nt

h −Nh (this is the number of boundary nodes), the vector g ∈ RNb
h and the
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Fig. 4.13. Example of lifting of a non-homogeneous Dirichlet boundary datum u = g, g being
variable

matrix B ∈ RNh×Nb
h have, respectively, the components

gi = g(Ni+Nh), i = 1, . . . ,Nb
h ,

bi j =

∫
Ω

∇ϕ j+Nh ·∇ϕi dΩ , i = 1, . . . ,Nh, j = 1, . . . ,Nb
h .

Remark 4.5. The matrices A and B are both sparse. An efficient program will store
exclusively their non-null elements. (See, e.g., [Saa96] for a description of possible
storage formats for sparse matrices, and also Chapter 8). In particular, thanks to the
special lifting we have adopted, in the matrix B, all the lines corresponding to non-
adjacent nodes to a boundary node will be null. (Two grid nodes are said to be adjacent
if there exists an element K ∈ Th to which they both belong.) •

4.5.2 Conditioning of the stiffness matrix

We have seen that the stiffness matrix A = [a(ϕ j,ϕi)] associated to the Galerkin prob-
lem and therefore, in particular, to the finite element method, is positive definite; more-
over A is symmetric if the bilinear form a(·, ·) is symmetric.

For a symmetric and positive definite matrix, its condition number with respect to
the norm ‖.‖2 is given by

K2(A) =
λmax(A)

λmin(A)
,

λmax(A) and λmin(A) being the maximum and minimum eigenvalues, respectively,
of A.
It can be proved that, both in the one-dimensional and the multi-dimensional case, the
following relation holds for the stiffness matrix

K2(A) =Ch−2, (4.50)

where C is a constant independent of the parameter h, but dependent on the degree of
the finite elements being used.
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To prove (4.50), we recall that the eigenvalues of the matrix A verify the relation

Av = λhv,

v being an eigenvector corresponding to the eigenvalue λh. Let vh be the function of
the space Vh whose nodal values are the components vi of v, see (4.7). We suppose
a(·, ·) to be symmetric, so A is symmetric and its eigenvalues are real and positive. We
then have

λh =
(Av,v)

|v|2 =
a(vh,vh)

|v|2 (4.51)

where | · | is the Euclidean vector norm. We suppose that the grid family {Th,h > 0}
is regular (i.e. satisfies (4.37)) and moreover quasi-uniform, i.e. such that there exists
a constant τ > 0 with

min
K∈Th

hK ≥ τ h ∀h > 0.

We now observe that, under the hypotheses made on Th, the following inverse in-
equality holds (for the proof, refer to [QV94])

∃CI > 0 : ∀vh ∈Vh, ‖∇vh‖L2(Ω) ≤CI h−1 ‖vh‖L2(Ω), (4.52)

the constant CI being independent of h. We can now prove that there exist two con-
stants C1,C2 > 0 such that, for each vh ∈Vh as in (4.7), we have

C1 hd |v|2 ≤ ‖vh‖2
L2(Ω) ≤C2 hd |v|2 (4.53)

d being the spatial dimension, with d = 1,2,3. For the proof in the general case we
refer to Proposition 6.3.1. [QV94]. We here limit ourselves to proving the second
inequality in the one-dimensional case (d = 1) and for linear finite elements. Indeed,
on each element Ki = [xi−1,xi], we have∫

Ki

v2
h(x)dx =

∫
Ki

(
vi−1ϕi−1(x)+ viϕi(x)

)2
dx,

with ϕi−1 and ϕi defined according to (4.15). Then, a direct computation shows that∫
Ki

v2
h(x)dx ≤ 2

(
v2

i−1

∫
Ki

ϕ2
i−1(x)dx+ v2

i

∫
Ki

ϕ2
i (x)dx

)
=

2
3

hi
(
v2

i−1 + v2
i

)
with hi = xi − xi−1. The inequality

‖vh‖2
L2(Ω) ≤C h |v|2

with C = 4/3, can be found by simply summing the intervals K and observing that
each nodal contribution vi is counted twice.
On the other hand, from (4.51) we obtain, thanks to the continuity and coercivity of
the bilinear form a(·, ·),

α
‖vh‖2

H1(Ω)

|v|2 ≤ λh ≤ M
‖vh‖2

H1(Ω)

|v|2 ,
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M andα being the continuity and coercivity constants, respectively. Now, ‖vh‖2
H1(Ω)

≥
‖vh‖2

L2(Ω)
by the definition of the norm in H1(Ω), while ‖vh‖H1(Ω) ≤C3 h−1‖vh‖L2(Ω)

(for a well-chosen constantC3 > 0) thanks to (4.52). Thus, by using inequalities (4.53),
we obtain

αC1 hd ≤ λh ≤ MC2
3 C2 h−2 hd .

We therefore have
λmax(A)

λmin(A)
≤ MC2

3 C2

αC1
h−2,

that is (4.50).

When the grid-size h decreases, the condition number of the stiffness matrix in-
creases, and therefore the associated system becomes more and more ill-conditioned.
In particular, if the datum f of the linear system (4.46) is subject to a perturbation δf

(i.e. it is affected by error), the latter in turn affects the solution with a perturbation
δu; then it can be proved that, if there are no perturbations on the matrix A,

|δu |
|u| ≤ K2(A)

|δf|
|f| .

It is evident that the higher the conditioning number is, the more the solution is af-
fected by the perturbation on the data. (On the other hand, notice that the latter is
always affected by perturbations on the data caused by the inevitable roundoff errors
introduced by the computer.)

As a further example we can study how conditioning affects the solution method.
Consider, for instance, solving the linear system (4.46) using the conjugate gradient
method (see Chap. 7). Then a sequence u(k) of approximate solutions is iteratively
constructed, converging to the exact solution u. In particular, we have

‖u(k)−u‖A ≤ 2

(√
K2(A)−1√
K2(A)+1

)k

‖u(0)−u‖A,

having denoted by ‖v‖A =
√

vT Av the so-called “A-norm” of a generic vector v ∈
RNh . If we define

ρ =

√
K2(A)− 1√
K2(A)+1

,

such quantity gives an idea of the convergence rate of the method: the closer ρ is to 0,
the faster the method converges, wilst the closer ρ is to 1, the slower the convergence.
Indeed, following (4.50), the more accurate one wants to be, by decreasing h, the more
ill-conditioned the system will be, and therefore the more “problematic” its solution
will turn out to be.

This calls for the system to be preconditioned, i.e. it is necessary to find an invert-
ible matrix P, called (left) preconditioner, such that

K2(P
−1A)� K2(A)

and then apply the iterative method to the system preconditioned with P, that is P−1Ax=
P−1b (see Chapter 7).
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4.5.3 Estimate of the approximation error in the energy norm

Analogously to the one-dimensional case, for each v ∈ C0(Ω ) we define interpolant
of v in the space of X1

h , determined by the grid Th, the function Π 1
h v such that

Π 1
h v(Ni) = v(Ni) for each nodeNi of Th, i = 1, . . . ,Nh.

If {ϕi} is the Lagrangian basis of the space X1
h , then

Π 1
h v(x) =

Nh

∑
i=1

v(Ni)ϕi(x).

The operator Π 1
h : C0(Ω)→ X1

h , associating to a continuous function v its interpolant
Π 1

h v, is called interpolation operator.
Similarly, we can define an operator Π r

h : C0(Ω ) → Xr
h , for each integer r ≥ 1.

Having denoted by Π r
K the local interpolation operator associated to a continuous

function v the polynomial Π r
Kv ∈ Pr(K), interpolating v in the degrees of freedom of

the element K ∈ Th, we define

Π r
hv ∈ Xr

h : Π r
hv
∣∣
K =Π r

K(v
∣∣
K) ∀K ∈ Th. (4.54)

From now on we will suppose that Th belongs to a family of regular grids of Ω .

In order to obtain an estimate for the approximation error ‖u− uh‖V we follow a
similar procedure to the one used in Theorem 4.3 for the one-dimensional case. The
first step is to derive a suitable estimate for the interpolation error. To this end, we
will obtain useful information starting from the geometric parameters of each triangle
K, i.e. its diameter hK and sphericity ρK . Moreover, we will exploit the affine and
invertible transformation FK : K̂ → K between the reference triangle K̂ and the generic
triangle K (see Fig. 4.14). Such map is defined by FK(x̂) = BK x̂+bK , with BK ∈R2×2

and bK ∈ R2, and satisfies the relation FK(K̂) = K. We recall that the choice of the
reference triangle K̂ is not unique.
We will need some preliminary results.

K
K̂

FK

Fig. 4.14. The map FK between the reference triangle K̂ and the generic triangle K
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Lemma 4.2 (Transformation of the seminorms). For each integer m ≥ 0 and
each v ∈ Hm(K), let v̂ : K̂ → R be the function defined by v̂ = v ◦FK. Then v̂ ∈
Hm(K̂). Moreover, there exists a constant C =C(m)> 0 such that:

|v̂|Hm(K̂) ≤C‖BK‖m |detBK |− 1
2 |v|Hm(K), (4.55)

|v|Hm(K) ≤C‖B−1
K ‖m |detBK | 1

2 |v̂|Hm(K̂), (4.56)

‖ · ‖ being the matrix norm associated to the Euclidean vector norm | · |, i.e.

‖BK‖= sup
ξ∈R2,ξ 
=0

|BKξ|
|ξ| . (4.57)

Proof. Since Cm(K) ⊂ Hm(K) densely, for each m ≥ 0, we can limit ourselves to
proving the previous two inequalities for the functions of Cm(K), then extending by
density the result to the functions of Hm(K). The derivatives in the remainders will
therefore have to be intended in the classical sense. We recall that

|v̂|Hm(K̂) =
(
∑

|α|=m

∫
K̂
|Dαv̂|2 dx̂

)1/2
,

by referring to Chapter 2.3 for the definition of the derivative Dα. By using the chain
rule for the differentiation of composite functions, we obtain

‖Dαv̂‖L2(K̂) ≤C‖BK‖m ∑
|β|=m

‖(Dβv)◦FK‖L2(K̂).

Then
‖Dαv̂‖L2(K̂) ≤C‖BK‖m|detBK |− 1

2 ‖Dαv‖L2(K).

Inequality (4.55) follows after summing on the multi-index α, for |α|= m. The result
(4.56) can be proved by proceeding in a similar way. 	

Lemma 4.3 (Estimates for the norms ‖BK‖‖BK‖‖BK‖ and ‖B−1
K ‖‖B−1
K ‖‖B−1
K ‖). We have the following

upper bounds:

‖BK‖ ≤ hK

ρ̂
, (4.58)

‖B−1
K ‖ ≤ ĥ

ρK
, (4.59)

ĥ and ρ̂ being the diameter and the sphericity of the reference triangle K̂.
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Proof. Thanks to (4.57) we have

‖BK‖= 1
ρ̂

sup
ξ∈R2,|ξ|=ρ̂

|BKξ|.

For each ξ, with |ξ|= ρ̂ , we can find two points x̂ and ŷ ∈ K̂ such that x̂− ŷ= ξ. Since
BKξ = FK(x̂)−FK(ŷ), we have |BKξ| ≤ hK , that is (4.58).
An analogous procedure leads to the result (4.59). 	

What we now need is an estimate in Hm(K̂) of the seminorm of (v−Π r
Kv)◦FK , for

each function v of Hm(K). In the remainder, we denote the interpolant Π r
Kv◦FK with

[Π r
Kv]̂. The nodes of K are NK

i = FK(N̂i), N̂i being the nodes of K̂, and, analogously,
the basis functions ϕ̂i defined on K̂ are determined by the relation ϕ̂i =ϕ

K
i ◦FK , having

denoted by ϕK
i the basis functions associated to the element K. Thus,

[Π r
Kv]̂=Π r

Kv◦FK =
MK

∑
i=1

v(NK
i )ϕ

K
i ◦FK =

MK

∑
i=1

v(FK(N̂i))ϕ̂i =Π r
K̂

v̂,

MK being the number of nodes on K relating to the degree r. Then

|(v−Π r
Kv)◦FK|Hm(K̂) = |v̂−Π r

K̂
v̂|Hm(K̂). (4.60)

In order to estimate the right side of the previous equality, we start by proving the
following result:

Lemma 4.4 (Bramble-Hilbert Lemma). Let L̂ : Hr+1(K̂)→ Hm(K̂), with m ≥ 0
and r ≥ 0, be a linear and continuous transformation such that

L̂(p̂) = 0 ∀p̂ ∈ Pr(K̂). (4.61)

Then, for each v̂ ∈ Hr+1(K̂), we have

|L̂(v̂)|Hm(K̂) ≤ ‖L̂‖
L (Hr+1(K̂),Hm(K̂)) inf

p̂∈Pr(K̂)
‖v̂+ p̂‖Hr+1(K̂), (4.62)

where L (Hr+1(K̂),Hm(K̂)) denotes the space of linear and continuous transfor-
mations l : Hr+1(K̂)→ Hm(K̂), normed by

‖l‖
L (Hr+1(K̂),Hm(K̂)) = sup

v∈Hr+1(K̂),v
=0

‖l(v)‖Hm(K̂))

‖v‖Hr+1(K̂)

. (4.63)

Proof. Let v̂ ∈ Hr+1(K̂). For each p̂ ∈ Pr(K̂), thanks to (4.61) and to definition (4.63)
of the norm, we obtain

|L̂(v̂)|Hm(K̂) = |L̂(v̂+ p̂)|Hm(K̂) ≤ ‖L̂‖
L (Hr+1(K̂),Hm(K̂)) ‖v̂+ p̂‖Hr+1(K̂).

Then (4.62) can be deduced thanks to the fact that p̂ is arbitrary. 	
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The following result (whose proof is given, e.g., in [QV94, Chap. 3]) provides the
last necessary tool to obtain the estimate for the interpolation error that we are seeking.

Lemma 4.5 (Deny-Lions Lemma). For each r ≥ 0 there exists a constant C =
C(r, K̂) such that

inf
p̂∈Pr

‖v̂+ p̂‖Hr+1(K̂) ≤C |v̂|Hr+1(K̂) ∀v̂ ∈ Hr+1(K̂). (4.64)

As a consequence of the two previous lemmas, we can provide the following

Corollary 4.3. Let L̂ : Hr+1(K̂)→ Hm(K̂), with m ≥ 0 and r ≥ 0, be a linear and
continuous transformation such that L̂(p̂) = 0 ∀p̂ ∈ Pr(K̂). Then there exists a
constant C =C(r, K̂) such that, for each v̂ ∈ Hr+1(K̂), we have

|L̂(v̂)|Hm(K̂) ≤C‖L̂‖
L (Hr+1(K̂),Hm(K̂)) |v̂|Hr+1(K̂). (4.65)

We are now able to prove the interpolation error estimate.

Theorem 4.4 (Local estimate of the interpolation error). Let r ≥ 1 and 0 ≤
m ≤ r+1. Then there exists a constant C =C(r,m, K̂)> 0 such that

|v−Π r
Kv|Hm(K) ≤C

hr+1
K

ρm
K

|v|Hr+1(K) ∀v ∈ Hr+1(K). (4.66)

Proof. From Property 2.3 we derive first of all that Hr+1(K) ⊂C0(K), for r ≥ 1. The
interpolation operator Π r

K thus results to be well defined in Hr+1(K). By using in
succession (4.56), (4.60), (4.59) and (4.65) we have

|v−Π r
Kv|Hm(K) ≤C1‖B−1

K ‖m|detBK |
1
2 |v̂−Π r

K̂
v̂|Hm(K̂)

≤C1
ĥm

ρm
K
|detBK |

1
2 |v̂−Π r

K̂
v̂|Hm(K̂)

≤C2
ĥm

ρm
K
|detBK | 1

2 ‖L̂‖
L (Hr+1(K̂),Hm(K̂))|v̂|Hr+1(K̂)

=C3
1
ρm

K
|detBK |

1
2 |v̂|Hr+1(K̂),

where C1 =C1(m), C2 =C2(r,m, K̂) and C3 =C3(r,m, K̂) are suitably chosen constants,
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all independent of h. We note that the result (4.65) has been applied when identifying
L̂ with the operator I−Π r

K̂
, with (I−Π r

K̂
)p̂ = 0, for p̂ ∈ Pr(K̂). Moreover the quantity

ĥm and the norm of the operator L̂ have been included in the constant C3.
At this point, by applying (4.55) and (4.58) we obtain (4.66), that is

|v−Π r
Kv|Hm(K) ≤C4

1
ρm

K
‖BK‖r+1|v|Hr+1(K) ≤C5

hr+1
K

ρm
K

|v|Hr+1(K), (4.67)

C4 =C4(r,m, K̂) and C5 =C5(r,m, K̂) being two well-chosen constants. The quantity
ρ̂ r+1 generated by (4.58) and relating to the sphericity of the reference element has
been directly included in the constant C5. 	

Finally, we can prove the global estimate for the interpolation error:

Theorem 4.5 (Global estimate for the interpolation error). Let m = 0,1 and
r ≥ 1. There exists a constant C =C(r,m, K̂)> 0 such that

|v−Π r
hv|Hm(Ω) ≤C

(
∑

K∈Th

h2(r+1−m)
K |v|2Hr+1(K)

)1/2
∀v ∈ Hr+1(Ω). (4.68)

In particular, we obtain

|v−Π r
hv|Hm(Ω) ≤C hr+1−m|v|Hr+1(Ω) ∀v ∈ Hr+1(Ω). (4.69)

Proof. Thanks to (4.66) and to the regularity condition (4.37), we have

|v−Π r
hv|2Hm(Ω) = ∑

K∈Th

|v−Π r
Kv|2Hm(K)

≤C1 ∑
K∈Th

(
hr+1

K

ρm
K

)2

|v|2Hr+1(K)

=C1 ∑
K∈Th

(
hK

ρK

)2m

h2(r+1−m)
K |v|2Hr+1(K)

≤C1 δ
2m ∑

K∈Th

h2(r+1−m)
K |v|2Hr+1(K),

i.e. (4.68), with C1 =C1(r,m, K̂) and C =C1 δ
2m. (4.69) follows thanks to the fact that

hK ≤ h, for each K ∈ Th, and that for each integer p ≥ 0

|v|Hp(Ω) =
(
∑

K∈Th

|v|2Hp(K)

)1/2
.
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In the m = 0 case, regularity of the grid is not necessary to obtain the estimate
(4.69). This is no longer true for m = 1. As a matter of fact, given a triangle K and a
function v ∈ Hr+1(K), with r ≥ 1, the following inequality holds [QV94],

|v−Π r
hv|Hm(K) ≤ C̃

hr+1
K

ρm
K

|v|Hr+1(K), m = 0,1,

with C̃ independent of v and Th. Hence, in the case m = 1 for a family of regular
grids we obtain (4.69) by setting C = δC̃, δ being the constant appearing in (4.37).
On the other hand, the need for a regularity condition can be proved by considering
the particular case where, for each C > 0, a (non-regular) grid can be constructed for
which inequality (4.69) is not true, as we are about to prove in the following example
which relates to the case r = 1.

Example 4.1. Consider the triangle Kl illustrated in Fig. 4.15, with vertices (0,0),

(1,0), (0.5, l), with l ≤
√

3
2 , and the function v(x1,x2) = x2

1. Clearly v ∈ H2(Kl), and
its linear interpolant on Kl is given by Π 1

h v(x1,x2) = x1 − (4l)−1x2. Since in this case
hKl = 1, inequality (4.69), applied to the single triangle Kl , would yield

|v−Π 1
h v|H1(Kl )

≤C|v|H2(Kl)
. (4.70)

Let us now consider the behaviour of the ratio ηl =
|v−Π1

h v|H1(Kl )

|v|H2(Kl )
when l tends to zero,

that is when the triangle is squeezed. We note that allowing l to tend to zero is equiv-
alent to violating the regularity condition (4.37), because for small enough values of
l, hKl = 1. At the same time, denoting by pKl the perimeter of Kl and by |Kl | we have
the surface of the element Kl , the sphericity of Kl

ρKl =
4|Kl |
pKl

=
2l

1+
√

1+4l2

1

lKl

x1

x2
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Fig. 4.15. The triangle Kl (left) and the behaviour of the relation |v−Π1
h v|H1(Kl)/|v|H2(Kl) as a

function of l (right)
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tends to zero. We have

ηl ≥
‖∂x2(v−Π 1

h v)‖L2(Kl )

|v|H2(Kl )

=

⎛⎝∫Kl

( 1
4l

)2
dx

2l

⎞⎠ 1
2

=
1
8l
.

Hence liml→0ηl =+∞ (see Fig. 4.15). Consequently, there cannot exist a constant C,
independent of Th, for which (4.70) holds. �

The theorem on the interpolation error estimate immediately provides us with an
estimate for the approximation error of the Galerkin method. The proof is analogous
to that of Theorem 4.3 for the one-dimensional case. Indeed, it is sufficient to apply
(4.10) and Theorem 4.5 (for m = 1) to obtain the following error estimate:

Theorem 4.6. Let {Th}h>0 be a family of regular triangulations of the domain
Ω . Let u∈V be the exact solution of the variational problem (4.1) and uh its
approximate solution using the finite element method of degree r. If u∈ Hr+1(Ω),
then the following a priori error estimates hold:

‖u− uh‖H1(Ω) ≤
M

α
C
(
∑

K∈Th

h2r
K |u|2Hr+1(K)

)1/2
, (4.71)

‖u−uh‖H1(Ω) ≤
M

α
Chr|u|Hr+1(Ω), (4.72)

C being a constant independent of h and u.

Also in the multi-dimensional case, in order to increase the accuracy two different
strategies can therefore be followed:

1. decreasing h, i.e. refining the grid;
2. increasing r, i.e. using finite elements of higher degree.

However, the latter approach can only be pursued if the solution u is regular enough.
In general, we can say that if u ∈C0(Ω̄ )∩Hp+1(Ω) for some p > 0, then

‖u− uh‖H1(Ω) ≤Chs|u|Hs+1(Ω), s = min{r, p}, (4.73)

as already observed in the one-dimensional case (see (4.26)). Note that a sufficient
condition for u to be continuous is p > d

2 − 1 (d being the spatial dimension of the
problem, d = 1,2,3). Moreover, it is possible to prove an error estimate in the maxi-
mum norm. For instance, if r = 1, one has

‖u−uh‖L∞(Ω) ≤ Ch2|logh||u|W2,∞(Ω)
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where C is a positive constant independent of h and the last term on the right-hand
side is the seminorm of u in the Sobolev space W 2,∞(Ω) (see Sect. 2.5). For the proof
of this and other error estimates in W k,∞(Ω)-norms see, e.g., [Cia78] and [BS94].

Remark 4.6 (Case of anisotropic grids). The interpolation error estimate (4.66) (and
the consequent discretization error estimate) can be generalized in the case of aniso-
tropic grids. In such case however, the left term of (4.66) takes a more complex ex-
pression: these estimates, in fact, because of their directional nature, must take into
account the information coming from the characteristic directions associated to the
single triangles which replace the “global” information concentrated in the seminorm
|v|Hr+1(K). The interested reader can consult [Ape99, FP01]. Moreover, we refer to
Fig. 4.18 and 13.21 for examples of anisotropic grids. •

4.5.4 Estimate of the approximation error in the L2 norm

The inequality (4.72) provides an estimate of the approximation error in the energy
norm. Analogously, it is possible to obtain an error estimate in the L2 norm. Since the
latter norm is weaker than the former one, one must expect a higher convergence rate
with respect to h.

Lemma 4.6 (Elliptic regularity). Consider the homogeneous Dirichlet problem{ −Δw = g in Ω ,
w = 0 on ∂Ω ,

with g ∈ L2(Ω). If ∂Ω is sufficiently regular (for instance, if ∂Ω is a curve of
class C2, or else if Ω is a convex polygon), then w ∈ H2(Ω), and moreover there
exists a constant C > 0 such that

‖w‖H2(Ω) ≤C‖g‖L2(Ω). (4.74)

For the proof see, e.g., [Bre86, Gri11].

Theorem 4.7. Let u ∈ V be the exact solution of the variational problem (4.1)
and uh its approximate solution obtained with the finite element method of degree
r. Moreover, let u ∈ C0(Ω̄ )∩Hp+1(Ω) for a given p > 0. Then, the following a
priori error estimate in the norm of L2(Ω) holds

‖u−uh‖L2(Ω) ≤Chs+1|u|Hs+1(Ω), s = min{r, p}, (4.75)

C being a constant independent of h and u.

Proof. We will limit ourselves to proving this result for the Poisson problem (3.13),
the weak formulation of which is given in (3.18). Let eh = u−uh be the approximation
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error, and consider the following auxiliary Poisson problem (called adjoint problem,
see Sect. 3.5) with source term given by the error function eh{ −Δφ = eh in Ω ,

φ = 0 on ∂Ω ,
(4.76)

whose weak formulation is

find φ ∈V : a(φ ,v) =
∫
Ω

ehv dΩ ∀ v ∈V, (4.77)

with V = H1
0(Ω). Taking v = eh (∈V ), we have

‖eh‖2
L2(Ω) = a(φ ,eh).

Since the bilinear form is symmetric, by the Galerkin orthogonality (4.8) we have

a(eh,φh) = a(φh,eh) = 0 ∀ φh ∈Vh.

It follows that

‖eh‖2
L2(Ω) = a(φ ,eh) = a(φ −φh,eh). (4.78)

Now, taking φh = Π 1
h φ , applying the Cauchy-Schwarz inequality to the bilinear form

a(·, ·) and using the interpolation error estimate (4.69) we obtain

‖eh‖2
L2(Ω) ≤ |eh|H1(Ω)|φ −φh|H1(Ω) ≤ |eh|H1(Ω)Ch|φ |H2(Ω). (4.79)

Notice that the interpolation operatorΠ 1
h can be applied to φ since, φ ∈ H2(Ω) thanks

to Lemma 4.6 and thus, in particular, φ ∈C0(Ω ), thanks to property 2.3 in Chap. 2.
By applying Lemma 4.6 to the adjoint problem (4.76) we obtain the inequality

|φ |H2(Ω) ≤C‖eh‖L2(Ω), (4.80)

which, applied to (4.79), eventually provides

‖eh‖L2(Ω) ≤Ch|eh|H1(Ω),

where C accounts for all the constants that have appeared so far. By now exploiting
the error estimate in the energy norm (4.72), we obtain (4.75). 	

Let us generalize the result we have just proved for the Poisson problem to the case
of a generic elliptic boundary-value problem approximated with finite elements and
for which an estimate of the approximation error in the energy norm such as (4.72)
holds, and an elliptic regularity property analogous to the one of Lemma 4.6 holds.
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In particular, let us consider the case where the bilinear form a(·, ·) is not necessarily
symmetric. Let u be the exact solution of the problem

find u ∈V : a(u,v) = ( f ,v) ∀v ∈V, (4.81)

and uh the solution of the Galerkin problem

find uh ∈Vh : a(uh,vh) = ( f ,vh) ∀vh ∈Vh.

Finally, suppose that the error estimate (4.72) holds and let us consider the following
problem, which we will call adjoint problem of (4.81): for each g ∈ L2(Ω),

find φ= φ(g) ∈V : a∗(φ ,v) = (g,v) ∀v ∈V, (4.82)

where we have defined (see (3.40)) a∗ : V ×V →R.
Obviously if a is symmetric the two problems coincide, as seen for instance in the
case of problem (4.77).
Let us suppose that for the solution u of the primal problem (4.81) an elliptic regularity
result holds; it can then be verified that the same result is valid for the adjoint problem
(4.82), that is

∃ C > 0 : ‖φ(g)‖H2(Ω) ≤C‖g‖L2(Ω) ∀g ∈ L2(Ω).

In particular, this is true for a generic elliptic problem with Dirichlet or Neumann (but
not mixed) data on a polygonal and convex domainΩ [Gri11]. We now choose g = eh

and denote, for simplicity, φ = φ(eh). Furthermore, having chosen v = eh, we have

‖eh‖2
L2(Ω)

= a(eh,φ).

Since by the elliptic regularity of the adjoint problem φ ∈ H2(Ω), and ‖φ‖H2(Ω) ≤
C‖eh‖L2(Ω) thanks to the Galerkin orthogonality, we have that

‖eh‖2
L2(Ω) = a(eh,φ) = a(eh,φ −Π 1

hφ)

≤ C1‖eh‖H1(Ω) ‖φ −Π 1
hφ‖H1(Ω)

≤ C2‖eh‖H1(Ω) h ‖φ‖H2(Ω)

≤ C3‖eh‖H1(Ω) h ‖eh‖L2(Ω),

where we have exploited the continuity of the form a(·, ·) and the estimate (4.72).
Thus

‖eh‖L2(Ω) ≤C3h‖eh‖H1(Ω),

from which (4.75) follows, using the estimate (4.73) of the error in H1(Ω).
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Fig. 4.16. Behaviour with respect to h of the error in H1(Ω) norm (lines without crosses) and
in L2(Ω) norm (lines with crosses) for linear (solid lines) and quadratic (etched lines) finite
elements for the solution of the problem reported in Example 4.2

Remark 4.7. The technique illustrated above, depending upon the use of the adjoint
problem for the estimate of the L2-norm of the discretization error, is known in the lit-
erature as Aubin-Nitsche trick [Aub67, Nit68]. Several examples of how to determine
the adjoint of a given problem will be presented in Sect. 3.5. •
Example 4.2. We consider the model problem −Δu+u= f inΩ = (0,1)2 with u = g
on ∂Ω . Suppose to choose the source term f and the function g so that the exact
solution of the problem is u(x,y) = sin(2πx)cos(2πy). We solve such a problem with
the Galerkin method with finite elements of degree 1 and 2 on a uniform grid with
step-size h. The graph of Fig. 4.16 shows the behaviour of the error when the grid-size
h decreases, both in the norm L2(Ω) and in that of H1(Ω). As shown by inspecting the
slope of the lines in the figure, the error’s decrease when using L2 norm (crossed lines)
is quadratic if linear finite elements are used (solid line), and cubic when quadratic
finite elements are used (etched line).

With respect to the H1 norm (lines without crosses) instead, there is a linear re-
duction of the erorr with respect to the linear finite elements (solid line), and quadratic
when quadratic finite elements are used (etched line). Fig. 4.17 shows the solution
on the grid with grid-size 1/8 obtained with linear (left) and quadratic (right) finite
elements. �

4.6 Grid adaptivity

In Theorems 4.6 and 4.7 we have derived some a priori estimates for the finite element
approximation error.
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Fig. 4.17. Solutions computed using piecewise linear (left) and piecewise quadratic (right) finite
elements on a uniform grid with grid-size 1/8

Since the parameter h is the maximal length of the finite element edges, if we referred
to (4.72) we could be tempted to refine the grid everywhere in the hope of reducing
the error ‖u− uh‖H1(Ω). However, it is more convenient to refer to (4.71) where the
upper bound is the sum of elemental contributions involving the solution seminorm
|u|Hr+1(K) on each element K and the local grid-size hK .

Indeed, in order to have an efficient grid that minimizes the number of elements nec-
essary to obtain the desired accuracy, we can equidistribute the error on each element
K ∈ Th. In particular, we would like to obtain

hr
K |u|Hr+1(K) � η ∀K ∈ Th,

where η is a well-chosen constant that only depends on the desired accuracy and on
the number of elements of the grid.
A larger contribution from |u|Hr+1(K) (due to a more pronounced variability of u|K) will
need to be balanced either by a smaller local grid-size hK or by a higher polynomial
degree r. In the first case, we will talk about h-adaptivity of the grid, in the second case
of p-adaptivity (where p stands for “polynomial”). In the remainder of this chapter we
will only focus on the first technique. However, we refer to Chap. 10 for the analysis
of error estimates which are better suited for polynomial adaptivity.

The remarks made up to now, although correct, turn out to be of little use as the
solution u is not known. We can therefore proceed according to different strategies.
The first one is to use the a priori error estimate (4.71) by replacing the exact solution u
with a well-chosen approximation, easily computable on each single element. In such
case, we talk about a priori adaptivity.

A second approach is instead based on the use of an a posteriori error estimate
able to link the approximation error to the behaviour of the approximate numerical
solution uh, known after solving the problem numerically. In such case, the optimal
computational grid will be constructed through an iterative process where solution, er-
ror estimate and modification of the computational grid are recomputed until reaching
the requested accuracy. In this case, we talk about a posteriori adaptivity.
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The a priori and a posteriori adaptivity strategies are not mutually exclusive, ac-
tually they can coexist. For instance, having generated an appropriate starting grid
through an a priori adaptivity, the latter can be further refined through a posteriori
analysis.

4.6.1 A priori adaptivity based on derivatives reconstruction

An a priori adaptivity technique is based on estimate (4.71) where the derivatives
of u are carefully approximated on each element, with the purpose of estimating the
local seminorms of u. To do this, an approximate solution uh∗ is used, computed on a
tentative grid with step-size h∗, with h∗ large enough so that the computation is cheap,
but not too large to generate an excessive error in the approximation of the derivatives,
which could affect the effectiveness of the whole procedure.
We exemplify the algorithm for linear finite elements, in which case (4.71) takes the
form

‖u−uh‖H1(Ω) ≤C

(
∑

K∈Th

h2
K |u|2H2(K)

) 1
2

(4.83)

(C accounts for the continuity and coercivity constants of the bilinear form). Our aim
is eventually to solve our problem on a grid Th guaranteeing that the right-hand side
of (4.83) stands below a predefined tolerance ε > 0. Let us suppose that we have
computed a solution, say uh∗ , on a preliminary grid Th∗ with N∗ triangles. We use
uh∗ to approximate the second derivatives of u that intervene in the definition of the
seminorm |u|H2(K). Since uh∗ does not have any continuous second derivatives in Ω , it
is necessary to proceed with an adequate reconstruction technique. For each node Ni

of the grid we consider the set (patch) KNi of the elements sharing Ni as a node (that
is the set of the elements forming the support of ϕi, see Fig. 4.12). We then find the
planes π j

i (x) = a
j
i ·x+b j

i by minimizing

∫
KNi

∣∣∣π j
i (x)−

∂uh∗

∂x j
(x)
∣∣∣2dx, j = 1,2, (4.84)

solving a two-equation system for the coefficients a
j
i and b j

i . This can be regarded as
the local projection phase. We thus build a piecewise linear approximation gh∗ ∈ (X1

h∗)
2

of the gradient ∇uh∗ defined as

[gh∗(x)]
j =∑

i

π j
i (xi)ϕi(x), j = 1,2, (4.85)

where the sum spans over all the nodes Ni of the grid. Once the gradient is recon-
structed we can proceed in two different ways, depending on the type of reconstruc-
tion that we want to obtain for the second derivatives. We recall first of all that the
Hessian matrix associated to a function u is defined by D2(u) = ∇(∇u), that is

[
D2(u)

]
i, j =

∂ 2u

∂xi∂x j
, i, j = 1,2 .
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A piecewise constant approximation of the latter is obtained by setting, for each
K∗ ∈ Th∗ ,

D2
h

∣∣
K∗ =

1
2

(
∇gh∗ +(∇gh∗)

T ) ∣∣
K∗ . (4.86)

Notice the use of the symmetric form of the gradient, which is necessary for Hessian
symmetry.

Should one be interested in a piecewise linear reconstruction of the Hessian, the
same projection technique defined by (4.84) and (4.85) could be directly applied to the
reconstructed gh∗ , by then symmetrizing the matrix obtained in this way via (4.86).
In any case, we are now able to compute an approximation of |u|H2(K∗) on a generic tri-

angle K∗ of Th∗ , an approximation that will obviously be linked to the reconstructed D2
h.

From (4.83) we deduce that, to obtain the approximate solution uh with an error
smaller than or equal to a predefined tolerance ε , we must construct a new grid T new

h
such that

∑
K∈T new

h

h2
K |u|2H2(K) � ∑

K∈T new
h

h2
K

2

∑
i, j=1

‖[D2
h]i j‖2

L2(K) ≤
( ε

C

)2
.

Ideally one would wish the error to be equidistributed on each element K of the new grid.
A possible adaptation procedure then consists in generating the new grid by ap-

propriately partitioning all of the N∗ triangles K∗ of Th∗ for which we have

η2
K∗ = h2

K∗
2

∑
i, j=1

‖[D2
h]i j‖2

L2(K∗) >
1

N∗
( ε

C

)2
. (4.87)

This method is said to be a refinement as it only aims at creating a finer grid than the
initial one, but it clearly does not allow to fully satisfy the equidistribution condition.

More sophisticated algorithms also allow to derefine the grid in presence of the
triangles for which the inequality (4.87) is verified with the sign � (i.e. much smaller
than) instead of >. However, derefinement procedures are of more difficult implemen-
tation than refinement ones. Hence, one often prefers to construct the new grid from
scratch (a procedure called remeshing). For this purpose, on the basis of the error
estimate, the following spacing function H (constant on each element) is introduced

H
∣∣
K∗ =

ε

C
√

N∗
( 2

∑
i, j=1

‖[D2
h]i j‖2

L2(K)

)1/2
|uh∗ |H2(K∗)

∀K∗ ∈ Th∗ (4.88)

and is used to construct the adapted grid by applying one of the grid generation algo-
rithms illustrated in Chap. 6. The adaptation algorithm often requires the function H
to be continuous and linear on each triangle. In this case we can again resort to a local
projection, like that in (4.84).
The adaptation can then be repeated for the solution computed on the new grid, until
inequality (4.87) is inverted on all of the elements.
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Fig. 4.18. The function u (left) and the third adapted grid (right) for Example 4.3

Remark 4.8. The C constant appearing in inequality (4.83) can be estimated by ap-
plying the same inequality to known functions (which makes therefore possible to
compute the exact error). An alternative that does not require explicitly knowing C
consists in realizing the grid that equally distributes the error for a number N∗ of a
priori fixed elements. In this case the value of H computed by setting ε and C to one
in (4.88) is rescaled, by multiplying it by a constant, so that the new grid has a number
N∗ of elements fixed a priori. •

Example 4.3. We consider the function u(x1,x2)= 10x3
1+x3

2+ tan−1(10−4/(sin(5x2)−
2x1)) on the domain Ω = (−1,1)2, which features a strong gradient across the curve
x1 = 0.5sin(x2), as can be observed from Fig. 4.18 on the left. Starting from an initial
structured grid constituted by 50 triangles and using an adaptive procedure guided by
the Hessian of u, we obtain, after 3 iterations, the grid in Fig. 4.18 (right), made of
3843 elements. Most of the triangles are located in the proximity of the functions’
jump: indeed, while few medium-large surface triangles are necessary to describe u
in a satisfactory way in the regions located far enough from the jump, the abrupt
variation of u in presence of discontinuities requires the use of small triangles, i.e. a
reduced discretization grid-size. Furthermore, we note the anisotropic nature of the
grid in Fig. 4.18, visible by the presence of elements whose shape is very stretched
with respect to that of an equilateral triangle (typical of an isotropic grid). Such grid
has been obtained by generalizing the estimator (4.87) to the anisotropic case. The
idea is essentially to exploit the information provided by the components [D2

h]i j sepa-
rately instead of “mixing” them through the L2(K∗) norm. By using the same adaptive
procedure in the isotropic case (i.e. the estimator in (4.87)), we would have obtained,
after 3 iterations, an adapted grid made of 10535 elements. �

4.6.2 A posteriori adaptivity

The procedures described in the previous section can be unsatisfactory because the
recostruction of u’s derivatives starting from uh∗ is often subject to errors that are not
easy to quantify.
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A radical alternative consists in adopting a posteriori estimates of the error. The
latter do not make use of the a priori estimate (4.71) (and consequently of any approx-
imate derivatives of the unknown solution u). Rather, they are obtained as a function
of computable quantities, normally based on the so-called residue of the approximate
solution.

Let us consider problem (4.1) together with its Galerkin approximation (4.2). We
define the residue R ∈V ′ by

〈R,v〉= F(v)−a(uh,v) ∀v ∈V, (4.89)

that is
〈R,v〉= a(u− uh,v) ∀v ∈V. (4.90)

Then
α‖u−uh‖V ≤ ‖R‖V ′ ≤ M‖u−uh‖V . (4.91)

Indeed, using (4.90) and the continuity of a(·, ·),

‖R‖V ′ = sup
v∈V

〈R,v〉
‖v‖V

≤ M‖u−uh‖V .

On the other hand, taking v = u− uh in (4.90) and using the coercitivity of a(·, ·),

α‖u− uh‖2
V ≤ a(u− uh,u− uh) = 〈R,u− uh〉

≤ ‖R‖V ′ ‖u−uh‖V ,

whence the first inequality of (4.91).
Now our goal is to express R in terms of computable quantities on every element K
of the finite element triangulation. For the sake of exposition let us consider, as an
example, the Poisson problem (3.13). Its weak formulation is given by (3.18), while
its approximation using finite elements is described by (4.40), where Vh is the space
◦
X

r

h defined in (4.39). In this specific case, V = H1
0 (Ω), V ′ = H−1(Ω), α = M = 1.

Using the Galerkin orthogonality, together with (4.90) and (4.89), for every v∈H1
0 (Ω)

and every vh ∈Vh, we have

〈R,v〉=
∫
Ω

∇(u−uh) ·∇v dΩ =

∫
Ω

∇(u−uh) ·∇(v− vh) dΩ

=

∫
Ω

f (v− vh) dΩ −
∫
Ω

∇uh ·∇(v− vh) dΩ

=

∫
Ω

f (v− vh) dΩ + ∑
K∈Th

∫
K

Δuh(v− vh) dΩ − ∑
K∈Th

∫
∂K

∂uh

∂n
(v− vh) dγ

= ∑
K∈Th

∫
K

( f +Δuh)(v− vh) dΩ − ∑
K∈Th

∫
∂K

∂uh

∂n
(v− vh) dγ. (4.92)
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We observe that all the local integrals make sense.
Having denoted by e a side of the generic triangle K, we define the jump of the normal
derivative of uh through the internal side e the quantity[

∂uh

∂n

]
e
= ∇uh

∣∣
K1

·n1 +∇uh

∣∣
K2

·n2 =
(
∇uh

∣∣
K1

−∇uh

∣∣
K2

) ·n1, (4.93)

where K1 and K2 are the two triangles sharing the side e, whose normal outgoing
unit vectors are given by n1 and n2 respectively, with n1 = −n2 (see Fig. 4.19). In
order to extend such definition also to the boundary sides, we introduce the so-called
generalized jump, given by

[
∂uh

∂n

]
=

⎧⎪⎨⎪⎩
[
∂uh

∂n

]
e

for e ∈ Eh,

0 for e ∈ ∂Ω ,

(4.94)

where Eh indicates the set of inner sides in the grid. We note that, in the case of linear
finite elements, (4.94) identifies a piecewise constant function defined on all the sides
of the grid Th. Moreover, the definition (4.94) can be suitably modified in the case
where problem (3.13) is completed with boundary conditions that are not necessarily
of Dirichlet type.
Thanks to (4.94) we can therefore write that

− ∑
K∈Th

∫
∂K

∂uh

∂n
(v− vh) dγ =− ∑

K∈Th

∑
e∈∂K

∫
e

∂uh

∂n
(v− vh) dγ

=− ∑
K∈Th

∑
e∈∂K

1
2

∫
e

[
∂uh

∂n

]
(v− vh) dγ =−1

2 ∑K∈Th

∫
∂K

[
∂uh

∂n

]
(v− vh) dγ,

(4.95)

where the factor 1/2 takes into account the fact that each internal side e of the grid
is shared by two elements. Moreover, since v− vh = 0 on the boundary, in (4.94) we
could assign any value different from zero in presence of e ∈ ∂Ω , as the terms of
(4.95) associated to the boundary sides would be null in any case.
By now inserting (4.95) in (4.92) and applying the Cauchy-Schwarz inequality, we

K1

K2

n1

n2

e

Fig. 4.19. Triangles involved in the definition of the jump of the normal derivative of uh through
an internal side e
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obtain

〈R,v〉 ≤ ∑
K∈Th

{
‖ f +Δuh‖L2(K)‖v− vh‖L2(K)

+
1
2

∥∥∥∥[∂uh

∂n

]∥∥∥∥
L2(∂K)

‖v− vh‖L2(∂K)

}
. (4.96)

Now we look for vh ∈Vh that allows to express the norms of v− vh as a function of a
well-chosen norm of v. Moreover, we want this norm to be “local”, i.e. computed over
a region K̃containing K, but as little as possible. If v were continuous, we could take
as vh the Lagrangian interpolant of v and use the previously cited interpolation error
estimates on K. Unfortunately, in our case v ∈ H1(Ω) is not necessarily continuous.
However, if Th is a regular grid, we can introduce the so-called Clément interpolation
operator Rh : H1(Ω)→Vh defined, in the case of linear finite elements, as

Rhv(x) =∑
N j

(Pjv)(N j)ϕ j(x) ∀v ∈ H1(Ω), (4.97)

where Pjv denotes a local L2 projection of v. More precisely it is a linear function
defined on the patch KN j of the grid elements that share the node N j (see Fig. 4.20),
which is determined by the relations∫

KN j

(Pjv− v)ψ dx = 0 for ψ = 1,x1,x2.

As usual, the ϕ j are the characteristic Lagrangian basis functions of the finite element
space under exam.

For each v ∈ H1(Ω) and each K ∈ Th, the following inequalities hold (see, e.g.,
[BG98, BS94, Clé75]):

‖v−Rhv‖L2(K) ≤C1hK |v|H1(K̃),

‖v−Rhv‖L2(∂K) ≤C2h
1
2
K ‖v‖H1(K̃),

where C1 and C2 are two positive constants that depend on the minimal angle of the
elements of the triangulation, while K̃ = {Kj ∈ Th : Kj ∩K 
= /0} represents the union
of K with all the triangles that share an edge or a vertex with it (see Fig. 4.20).

K

K̃ KN j

KN j

N j
N j

δΩ

Fig. 4.20. The set K̃ of elements that have in common with K at least a node of the grid (left),
and the set KN j of the elements that share node N j (middle and right)
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Alternatively to Rhv we could use the local Scott-Zhang interpolation operator,
see [BS94, Sect. 4.8]. The rest of the proof would proceed similarly.

By choosing in (4.96) vh = Rhv, setting C = max(C1,C2) and using the discrete
Cauchy-Schwarz inequality, we obtain

〈R,v〉 ≤C ∑
K∈Th

ρK(uh)‖v‖H1(K̃)

≤C

(
∑

K∈Th

[ρK(uh)]
2

) 1
2
(
∑

K∈Th

‖v‖2
H1(K̃)

) 1
2

.

We have denoted by

ρK(uh) = hK ‖ f +Δuh‖L2(K) +
1
2

h
1
2
K

∥∥∥∥[∂uh

∂n

]∥∥∥∥
L2(∂K)

(4.98)

the so-called local residue, constituted by the internal residue ‖ f +Δuh‖L2(K) and by

the boundary residue
∥∥∥[ ∂uh

∂n

]∥∥∥
L2(∂K)

.

We now observe that, since Th is regular, the number of elements in K̃ is necessarily
bounded by a positive integer independent of h, which we denote by n. Thus,

‖v‖H1(Ω) ≤
(
∑

K∈Th

‖v‖2
H1(K̃)

) 1
2

≤√
n‖v‖H1(Ω).

Because of the Poincaré inequality (2.13),

‖v‖H1(Ω) ≤ C‖v‖H1
0 (Ω) , C =

√
1+C2

Ω

(see the proof of Property 2.5), whence

‖R‖H−1(Ω) = sup
v∈H1

0 (Ω)

〈R,v〉
‖v‖H1

0 (Ω)

≤C
√

n

(
∑

k∈Th

[ρk(uh)]
2

) 1
2

.

Thanks to the first inequality of (4.91) (and the fact that α = 1 in the current case), we
conclude with the following residual-based a posteriori error estimate

‖u− uh‖H1(Ω) ≤C
√

n

(
∑

K∈Th

[ρK(uh)]
2

) 1
2

. (4.99)
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Table 4.2. Cardinality, relative error and normalized estimator associated with the initial grid
and with the first six adaptive grids

iteration Nh ‖u−uh‖H1(Ω)/‖uh‖H1(Ω) η/‖uh‖H1(Ω)

0 324 0.7395 5.8333
1 645 0.3229 3.2467
2 1540 0.1538 1.8093
3 3228 0.0771 0.9782
4 7711 0.0400 0.5188
5 17753 0.0232 0.2888
6 35850 0.0163 0.1955

Notice that ρK(uh) is an effectively computable quantity, being a function of the datum
f , of the geometric parameter hK and of the computed solution uh. The most delicate
point of this analysis is the not-always-immediate estimate of the constants C and n.

The a posteriori estimate (4.99) can, for instance, be used in order to guarantee
that

1
2
ε ≤ ‖u− uh‖H1(Ω)

‖uh‖H1(Ω)

≤ 3
2
ε, (4.100)

ε > 0 being a pre-established tolerance. To this end, via an iterative procedure illus-
trated in Fig. 4.21, we can locally make finer and coarser the grid Th until when, for
each K, the following local inequalities are satisfied

1
4
ε2

N
‖uh‖2

H1(Ω) ≤ [ρK(uh)]
2 ≤ 9

4
ε2

N
‖uh‖2

H1(Ω), (4.101)

having denoted by N the number of elements of the grid Th. This ensures that the
global inequalities (4.100) are satisfied, up to the contribution of the constant C

√
n.

Alternatively, we can construct a well-chosen grid spacing function H, analogously to
what was done in Sect. 4.6.1.

Naturally, the flow diagram reported in Fig. 4.21 can also be used for boundary-
value problems differing from (4.40).

4.6.3 Numerical examples of adaptivity

We illustrate the concept of grid adaptivity on two simple differential problems. For
this purpose, we adopt the iterative procedure reported in Fig. 4.21, although we will
limit ourselves to the sole refinement phase. The coarsening process turns out to be of
more difficult implementation: as a matter of fact, the most commonly used software
only allows to refine the initial grid, hence it will be necessary to choose the latter to
be suitably coarse.
Finally, for both reported examples, the reference estimator for the discretization error
is represented by the right term of (4.99).
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Fig. 4.21. Example of iterative grid adaptation procedure

First example

Let us consider the problem −Δu = f in Ω = (−1,1)2, with homogeneous Dirichlet
conditions on the whole boundary ∂Ω . Moreover, we choose a forcing term f such
that the exact solution is u(x1,x2) = sin(πx1)sin(πx2)exp(10x1). We begin the adap-
tive procedure by starting from a uniform initial grid, made of 324 elements, and with
a tolerance ε = 0.2. The iterative procedure converges after 7 iterations. We report in
Fig. 4.22 the initial grid together with three of the adapted grids obtained in this way,
while Table 4.2 summarizes the number Nh of elements of the grid Th, the relative er-
ror ‖u−uh‖H1(Ω)/‖uh‖H1(Ω) and the normalized estimator η/‖uh‖H1(Ω) on the initial
grid and on the first six adapted grids.
The grids in Fig. 4.22 provide a qualitative feedback on the reliability of the cho-
sen adaptivity procedure: as expected, triangles tend to concentrate in those regions

rKrK (uh) >
1 e
2 N

uh H1(W)  (uh) <
3 e
2 N

uh H1(W)fifi
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Fig. 4.22. Initial grid (top left) and three grids adapted by choosing the adaptive procedure of
Fig. 4.21, at the second (top right), third (bottom left) and fifth (bottom right) iteration

where u attains its extrema. On the other hand, the values in Table 4.2 also allow to
perform a quantitative analysis: both the relative error and the normalized estimator
progressively decrease, when the iterations increase. However, we can notice an av-
erage overestimate of about 10-11 times with respect to the fixed tolerance ε . This
is not unusual and can basically be explained by the fact that the constant C

√
n in

the inequalities (4.100) and (4.101) has been neglected (i.e. set to 1). It is clear that
such choice actually leads to requiring a tolerance ε̃ = ε/(C

√
n), that will therefore

coincide with the original ε only in the case where we have C
√

n ∼ 1. More precise
procedures, taking the constant C

√
n into account, are in any case possible by starting,

e.g., from the (theoretical and numerical) analysis provided in [BDR92, EJ88].

Second example

Let us consider the problem −Δu = 0 in Ω = {x = r(cosθ ,sinθ )T ,r ∈ (0,1), θ ∈
(0, 3

4π)}, with u assigned on the boundary of Ω so that u(r,θ ) = r4/3 sin( 4
3θ ) is the
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Fig. 4.23. Initial grid (left) and twentieth adapted grid (right)

0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Fig. 4.24. Isolines of the linear finite element solution on the initial grid (left) and on the twen-
tieth adapted grid (right)

exact solution. This function features low regularity in a neighborhood of the origin.
Suppose we approximate such problem via the Galerkin method using linear finite
elements on the quasi-uniform grid drawn on in the left of Fig. 4.23, and made of
138 triangles. The distortion in the isolines of uh in the left of Fig. 4.24 shows that
the solution obtained in this way is quite inaccurate near the origin. We now use the
estimator (4.99) to generate an adapted grid which better suits the approximation of
u. By following an adaptive procedure such as the one illustrated in Fig. 4.21 we
obtain after 20 steps the grid made of 859 triangles of in Fig. 4.23 on the right. As
in Fig. 4.24 on the right, the isolines associated to the corresponding discrete solution
denote a higher regularity, an evidence of the improved quality of the solution. As a
comparison, in order to obtain a solution characterized by the same accuracy ε with
respect to the norm H1 of the error (required to be equal to 0.01) on a uniform grid,
2208 triangles are necessary.
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4.6.4 A posteriori error estimates in the L2 norm

Besides (4.99) it is possible to derive an a posteriori estimate of the error in L2 norm.
To this end, we will again resort to the duality technique of Aubin-Nitsche used in
Sect. 4.5.4, and in particular we will consider the adjoint problem (4.76) associated
to the Poisson problem (3.13). Moreover, we will suppose that the domain Ω is suffi-
ciently regular (for instance, a convex polygon) in order to guarantee that the elliptic
regularity result (4.74) stated in Lemma 4.6 is true.

Moreover, we will exploit the following local estimates for the interpolation error
associated with the operatorΠ r

h applied to functions v ∈ H2(Ω)

‖v−Π r
hv‖L2(∂K) ≤ C̃1 h

3
2
K |v|H2(K) (4.102)

(see [BS94] or [Cia78]), and

‖v−Π r
hv‖L2(K) ≤ C̃2 h2

K |v|H2(K). (4.103)

The latter inequality is obtained from (4.67).
Starting from the adjoint problem (4.76) and exploiting the Galerkin orthogonality
(4.8), we have, for each φh ∈Vh,

‖eh‖2
L2(Ω) = ∑

K∈Th

∫
K

f (φ −φh)dΩ − ∑
K∈Th

∫
K

∇uh ·∇(φ −φh)dΩ .

Counterintegrating by parts, we obtain

‖eh‖2
L2(Ω) = ∑

K∈Th

∫
K

( f +Δuh)(φ −φh)dΩ − ∑
K∈Th

∫
∂K

∂uh

∂n
(φ −φh)dγ.

Using the definition (4.94) of generalized jump of the normal derivative of uh across
the triangle edges and setting φh =Π r

hφ , we have

‖eh‖2
L2(Ω)

= ∑
K∈Th

[∫
K

( f +Δuh)(φ −Π r
hφ)dΩ

− 1
2

∫
∂K

[
∂uh

∂n

]
(φ −Π r

hφ)dγ

]
. (4.104)

We estimate the two terms in the right-hand side separately. By using the Cauchy-
Schwarz inequality and (4.103), it follows that∣∣∣∣∫

K

( f +Δuh)(φ −Π r
hφ)dΩ

∣∣∣∣ ≤ ‖ f +Δuh‖L2(K)‖φ −Π r
hφ‖L2(K)

≤ C̃2 h2
K ‖ f +Δuh‖L2(K)|φ |H2(K).

(4.105)
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Moreover, thanks to (4.102) we obtain∣∣∣∣∫
∂K

[
∂uh

∂n

]
(φ −Π r

hφ)dγ

∣∣∣∣ ≤
∥∥∥∥[∂uh

∂n

]∥∥∥∥
L2(∂K)

‖φ −Π r
hφ‖L2(∂K)

≤ C̃1 h
3
2
K

∥∥∥∥[∂uh

∂n

]∥∥∥∥
L2(∂K)

|φ |H2(K).

(4.106)

By now inserting (4.105) and (4.106) in (4.104) and applying the discrete Cauchy-
Schwarz inequality we have

‖eh‖2
L2(Ω)

≤C ∑
K∈Th

hKρK(uh)|φ |H2(K) ≤ C

√
∑

K∈Th

[hKρK(uh)]
2|φ |H2(Ω)

≤ C

√
∑

K∈Th

[hKρK(uh)]
2 ‖eh‖L2(Ω),

with C = max(C̃1,C̃2), having introduced the notation (4.98) and having exploited the
elliptic regularity property (4.80) in the last inequality. We can then conclude that

‖u−uh‖L2(Ω) ≤C

(
∑

K∈Th

h2
K [ρK(uh)]

2

) 1
2

, (4.107)

C > 0 being a constant independent of h.

Remark 4.9. Among the most widespread a posteriori estimates in engineering, we
cite for its simplicity and computational effectiveness the estimator proposed by Zien-
kiewicz and Zhu in the context of a finite element approximation of linear elasticity
problems [ZZ87]. The basic idea of this estimator is very simple. Suppose we want

to control the energy norm
(∫
Ω |∇u−∇uh|2 dΩ

)1/2
of the discretization error asso-

ciated to a finite element approximation of the model problem (3.13). This estimator
replaces the exact gradient ∇u in the latter norm with a corresponding reconstruc-
tion obtained through a suitable post-processing of the discrete solution uh. Over the
years, several “recipes” have been proposed in the literature for the construction of
the gradient ∇u (see, e.g., [ZZ92, Rod94, PWY90, LW94, NZ04, BMMP06]). The
same procedure illustrated in Sect. 4.6.1 that leads to the reconstructed gh∗ defined in
(4.85) can be used here for this purpose. Thus, having chosen a reconstruction, say
GR(uh), of ∇u, the Zienkiewicz and Zhu-type estimator is represented by the quantity

η =
(∫
Ω |GR(uh)−∇uh|2 dΩ

)1/2
. Clearly, to each new definition of GR(uh) corre-

sponds a new error estimator. For this reason, a posteriori error estimators with such
structure are commonly called recovery-based. •

4.6.5 A posteriori estimates of a functional of the error

In the previous section, the adjoint problem (4.76) was used in a purely formal way,
because the error eh, that represents its forcing term, is unknown.
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There exists another family of a posteriori estimators of the error, again based
on the adjoint problem, which, instead, explicitly use the information provided by the
latter (see, e.g., [Ran99]). In such case, an estimate is provided for a suitable functional
J of the error eh, instead of for a suitable norm of eh. This prerogative turns out to be
particularly useful whene one wants to provide significant estimates of the error for
quantities of physical relevance, such as, for instance, resistance or drag in the case
of bodies immersed in fluids, average values of concentration, strains, deformations,
fluxes, etc. For this purpose, it will be sufficient to operate a suitable choice for the
functional J. This type of adaptivity is called goal-oriented. To illustrate this new
paradigm, let us still refer to the Poisson problem (3.13) and assume that we want to
control the error of a given functional J : H1

0 (Ω)→R of the solution u. Let us consider
the following weak formulation of the corresponding adjoint problem

find φ ∈V :
∫
Ω
∇φ ·∇wdΩ = J(w) ∀ w ∈V, (4.108)

with V = H1
0(Ω). By using the Galerkin orthogonality and proceeding as done in the

previous section, we find

J(eh) =

∫
Ω

∇eh ·∇φ dΩ = ∑
K∈Th

[∫
K

( f +Δuh)(φ −φh)dΩ

− 1
2

∫
∂K

[
∂uh

∂n

]
(φ −φh)dγ

]
, (4.109)

where φh ∈Vh is typically a convenient interpolant of φ . By using the Cauchy-Schwarz
inequality on each element K, we obtain

|J(eh)|=
∣∣∣∣∫
Ω

∇eh ·∇φ dΩ

∣∣∣∣
≤ ∑

K∈Th

(
‖ f +Δuh‖L2(K) ‖φ −φh‖L2(K) +

1
2

∥∥∥∥[∂uh

∂n

]∥∥∥∥
L2(∂K)

‖φ −φh‖L2(∂K)

)

≤ ∑
K∈Th

[
ρK(uh)max

(
1

hK
‖φ −φh‖L2(K) ,

1

h1/2
K

‖φ −φh‖L2(∂K)

)]
,

ρK(uh) being defined according to (4.98). We now introduce the so-called local weights

ωK(φ) = max

(
1

hK
‖φ −φh‖L2(K),

1

h1/2
K

‖φ −φh‖L2(∂K)

)
. (4.110)

Thus,

|J(eh)| ≤ ∑
K∈Th

ρK(uh)ωK(φ). (4.111)
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We can observe that, in contrast to the residue-type estimates introduced in
Sects. 4.6.2 and 4.6.4, the estimate (4.111) depends not only on the discrete solu-
tion uh but also on the solution φ of the dual problem. In particular, having considered
the local estimator ρK(uh)ωK(φ), we can say that, while the residue ρK(uh) mea-
sures how the discrete solution approximates the differential problem under exam, the
weight ωK(φ) takes into account how this information is propagated in the domain as
an effect of the chosen functional. Hence, the grids obtained for different choices of
the functional J, i.e. of the forcing term of the adjoint problem (4.108), will be differ-
ent even if we start from the same differential problem (for more details, we refer to
Example 13.12).
Moreover, to make the estimate (4.111) efficient, we proceed by replacing the norms
‖φ −φh‖L2(K) and ‖φ −φh‖L2(∂K) in (4.110) with suitable estimates of the interpola-
tion error, having chosen φh as a suitable interpolant of the dual solution φ .

We point out two particular cases. Choosing J(w) =
∫
Ω weh dΩ in (4.108) we

would find again the estimate (4.107) for the L2-norm of the discretization error, pro-
vided of course that we can guarantee that the elliptic regularity result (4.74), stated in
Lemma 4.6, is true. Instead, if we are interested in controlling eh at a point x of Ω , it
will be indeed sufficient to define J as J(w) = W ′ 〈δx,w〉W , with W = H1

0(Ω)∩C0(Ω)
and δx being Dirac’s delta function at x (see Chapter 2).

Remark 4.10. The a posteriori analysis of this section, as well as that of the previ-
ous Sects. 4.6.2 and 4.6.4, can be extended to the case of more complex differential
problems, like for instance transport and diffusion problems, and more general bound-
ary conditions (see Example 13.12). The procedure remains basically the same. What
changes is the definition of the local residue (4.98) and of the generalized jump (4.94).
Indeed, while ρK(uh) directly depends on the differential formulation of the problem
under exam,

[
∂uh/∂n

]
will need to take into account the conditions assigned on the

boundary. •
For a thorough description of the adaptivity techniques provided up to now and

for a presentation of other possible adaptive techniques, we refer the reader to [Ver96,
Ran99, AO00].

4.7 Exercises

1. Heat transfer in a thin rod.
Let us consider a thin rod of length L, having temperature t0 at the endpoint x = 0
and insulated at the other endpoint x = L. Let us suppose that the cross-section of
the rod has constant area equal to A and that the perimeter of A is p. The temper-
ature t of the rod at a generic point x ∈ (0,L) then satisfies the following mixed
boundary-value problem:{

−kAt ′′+σ pt = 0, x ∈ (0,L),

t(0) = t0, t ′(L) = 0,
(4.112)
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having denoted by k the thermal conductivity coefficient and by σ the convective
transfer coefficient.
Verify that the exact solution of this problem is

t(x) = t0
cosh[m(L− x)]

cosh(mL)
,

with m =
√
σ p/kA. Write the weak formulation of (4.112), then its Galerkin-finite

element approximation. Show how the approximation error in the H1
0(0,L)-norm

depends on the parameters k, σ , p and t0.
Finally, solve this problem using linear and quadratic finite elements on uniform
grids, then evaluate the approximation error.

2. Temperature of a fluid between two parallel plates.
We consider a viscous fluid located between two horizontal parallel plates, at a
distance of 2H. Suppose that the upper plate, which has temperature tsup, moves at
a relative speed of U with respect to the lower one, having temperature tin f . In such
case the temperature t : (0,2H)→ R of the fluid satisfies the following Dirichlet
problem: ⎧⎨⎩ − d2t

dy2 = α(H − y)2, y ∈ (0,2H),

t(0) = tin f , t(2H) = tsup,

where α = 4U2μ
H4k

, k being the thermal conductivity coefficient and μ the viscosity

of the fluid. Find the exact solution t(y), then write the weak formulation and the
Galerkin finite element formulation.
[Solution: the exact solution is

t(y) =− α

12
(H − y)4 +

tin f − tsup

2H
(H − y)+

tin f + tsup

2
+
αH4

12
.]

3. Deformation of a rope.
Let us consider a rope with tension T and unit length, fixed at the endpoints. The
function u(x), measuring the vertical displacement of the rope when subject to a
transversal charge of intensity w, satisfies the following Dirichlet problem:{

−u′′+
k

T
u =

w

T
in (0,1),

u(0) = 0, u(1) = 0,

having indicated with k the elasticity coefficient of the rope. Write the weak for-
mulation and the Galerkin-finite element formulation.

4. Prove Property 4.1.
[Solution: it suffices to observe that ai j = a(ϕ j,ϕi) ∀i, j.]

5. Prove (4.12).
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Fig. 4.25. Left: the sparsity pattern of the Galerkin finite element matrix associated to a dis-
cretization using 10 elements of the one-dimensional Poisson problem with quadratic finite
elements. Unknowns are numbered as explained in Exercise 6. Right: the pattern of the L and
U factors of A. Note that, because of the fill-in, the number of non-null finite elements has
increased from 81 in the matrix to 141 in the factors

[Solution: since the form is symmetric, the procedure contained in Remark 3.2
can be repeated, noting that the solution uh satisfies a(uh,vh) = a(u,vh) for each
vh ∈ Vh. We deduce therefore that uh minimizes J(vh) = a(vh,vh)− 2a(u,vh) and
therefore also J∗(vh) = J(vh)+a(u,u) = a(u−vh,u−vh) (the last equality is made
possible thanks to the symmetry of the bi-linear form). On the other hand,

√
α‖u− vh‖V ≤

√
a(u− vh,u− vh)≤

√
M‖u− vh‖V ,

hence the desired result.]

6. Given a partition of an interval (a,b) into N + 1 sub-intervals, suppose to num-
ber first the endpoints of the single sub-intervals and then their midpoints. Is this
labelling more or less convenient than the one introduced in Sect. 4.3 for the dis-
cretization of the Poisson problem with finite elements in X2

h ? Suppose to solve the
linear system by a factorization method.
[Solution: the obtained matrix still has only five diagonals different from zero, as
the one obtained using the numbering proposed in Sect. 4.3. However, it features
a higher bandwidth. Consequently, in case it is factorized, it is subject to a larger
fill-in, as shown in Fig. 4.25.]

7. Consider the following one-dimensional boundary-value problem:⎧⎪⎨⎪⎩
−(αu′)′+ γu = f , 0 < x < 1,

u = 0 at x = 0,

αu′+ δu = 0 at x = 1,
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where α = α(x), γ = γ(x), f = f (x) are assigned functions with 0 ≤ γ(x)≤ γ1 and
0 < α0 ≤ α(x)≤ α1 ∀x ∈ [0,1], while δ ∈R. Moreover, suppose that f ∈ L2(0,1).
Write the problem’s weak formulation specifying the appropriate functional spaces
and hypotheses on the data to guarantee existence and uniqueness of the solution.
Suppose to find an approximate solution uh using the linear finite element method.
What can be said about the existence, stability and accuracy of uh?
[Solution: we seek u ∈ V = {v ∈ H1(0,1) : v(0) = 0} such that a(u,v) = F(v)
∀v ∈V where

a(u,v) =

1∫
0

αu′v′ dx+

1∫
0

γuv dx+ δu(1)v(1), F(v) =

1∫
0

f v dx.

The existence and uniqueness of the solution of the weak problem are guaranteed
if the hypotheses of the Lax-Milgram lemma hold. The form a(·, ·) is continuous
as we have

|a(u,v)| ≤ 2max(α1,γ1)‖u‖V‖v‖V + |δ | |v(1)| |u(1)|,

from which, considering that u(1) =

1∫
0

u′ dx, we obtain

|a(u,v)| ≤ M‖u‖V‖v‖V with M = 3max(α1,γ1, |δ |).
We have coercivity if δ≥0, for in such case we find

a(u,u)≥ α0‖u′‖2
L2(0,1) + u2(1)δ ≥ α0‖u′‖2

L2(0,1).

To find the inequality in ‖ ·‖V invoking the Poincaré inequality (2.13), it suffices to
prove that

1

1+C2
Ω

‖u‖2
V ≤ ‖u′‖2

L2(0,1),

and then to conclude that

a(u,u)≥ α∗‖u‖2
V with α∗ =

α0

1+C2
Ω

.

The fact that F is a linear and continuous functional can be verified immediately.
The finite element method is a Galerkin method with Vh = {vh ∈ X1

h : vh(0) = 0}.
Consequently, thanks to Corollaries 4.1, 4.2 we deduce that the solution uh exists
and is unique. From the estimate (4.72) we furthermore deduce that, since r = 1,
the error measured in the norm of V will tend to zero linearly with respect to h.]

8. Consider the following two-dimensional boundary-value problem:⎧⎪⎨⎪⎩
−div(α∇u)+ γu = f in Ω ⊂ R2,

u = 0 on ΓD,

α∇u ·n = 0 on ΓN ,
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Ω being a bounded open domain having regular boundary ∂Ω = ΓD ∪ΓN , with
◦
ΓD ∩

◦
ΓN= /0 and unit outgoing normal n; α ∈ L∞(Ω), γ ∈ L∞(Ω), and f ∈ L2(Ω)

are three assigned functions with γ(x)≥ 0 and 0 < α0 ≤ α(x) a.e. in Ω .
Analyze the existence and uniqueness of the weak solution and the stability of
the solution obtained using the Galerkin method. Suppose that u ∈ H4(Ω). Which
polynomial degree would it be convenient to use?
[Solution: the weak problem consists in finding u ∈ V = H1

ΓD
such that a(u,v) =

F(v) ∀v ∈V , where

a(u,v) =
∫
Ω

α∇u∇v dΩ +

∫
Ω

γuv dΩ , F(v) =
∫
Ω

f v dΩ .

The bilinear form is continuous; indeed

|a(u,v)| ≤
∫
Ω

α|∇u||∇v| dΩ +

∫
Ω

|γ||u| |v| dΩ

≤ ‖α‖L∞(Ω)‖∇u‖L2(Ω)‖∇v‖L2(Ω) +‖γ‖L∞(Ω)‖u‖L2(Ω)‖v‖L2(Ω)

≤ M‖u‖V‖v‖V ,

having taken M = 2max{‖α‖L∞(Ω),‖γ‖L∞(Ω)}. Moreover, it is coercive (see the
solution to Exercise 7) with coercivity constant given by α∗ = α0

1+C2
Ω

. Since F is a

linear and bounded functional, owing to the Lax-Milgram lemma the weak solution
exists and is unique. As far as the Galerkin method is concerned, we introduce a
subspace Vh of V with finite dimension. Then there exists a unique solution uh of
the Galerkin problem: find uh ∈Vh such that a(uh,vh) = F(vh) ∀vh ∈Vh. Moreover,
by Corollary 4.2 we have stability. As far as the choice of the optimal polynomial
degree r is concerned, it is sufficient to note that the exponent s appearing in (4.26)
is the minimum between r and p = 3. Hence, it will be convenient to use elements
of degree 3.]
The fundamental steps of a finite element code can be summarized as follows:
(a) input the data;
(b) build the grid Th = {K};
(c) build the local matrices AK and the right-hand side elements fK ;
(d) assemble the global matrix A and the one of the source term f;
(e) solve the linear system Au = f;
(f) post-process the results.
Suppose we use linear finite elements and consider the patch of elements in Fig. 4.26.

a) Referring to steps (c) and (d), explicitly write the matrix TK allowing to pass
from the local matrix AK to the global matrix A via a transformation of the kind
T T

K AKTK . What is the dimension of TK?
b) What sparsity pattern characterizes the matrix A associated to the patch of

elements in Fig. 4.26?
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K2

1

3
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6

5

Fig. 4.26. Patch of elements for the assembly of the global matrix A

c) Write the elements of the matrix A explicitly as a function of the elements of
the local matrices AK .

d) In the case of a general grid Th with NV vertices and NT triangles, what dimen-
sion does the global matrix A have in the case of linear and quadratic finite
elements, respectively?

For a more exaustive treatment of this subject, we refer to Chapter 12.

9. Prove the results summarized in Table 3.1 by using the Lagrange identity (3.42).



Chapter 5

Parabolic equations

In this chapter we consider parabolic equations of the form

∂u

∂ t
+Lu = f , x ∈Ω , t > 0, (5.1)

where Ω is a domain of Rd , d = 1,2,3, f = f (x, t) is a given function, L = L(x) is
a generic elliptic operator acting on the unknown u = u(x, t). When solved only for
a bounded temporal interval, say for 0 < t < T , the region QT = Ω × (0,T ) is called
cylinder in the space Rd ×R+ (see Fig. 5.1). In the case where T =+∞, Q = {(x, t) :
x ∈Ω , t > 0} will be an infinite cylinder.
Equation (5.1) must be completed by assigning an initial condition

u(x,0) = u0(x), x ∈Ω , (5.2)

t

x1

x2T

Ω
∂Ω

Fig. 5.1. The cylinder QT =Ω × (0,T ), Ω ⊂ R2
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together with boundary conditions, which can take the following form:

u(x, t) = ϕ(x, t), x ∈ ΓD and t > 0,

∂u(x, t)

∂n
= ψ(x, t), x ∈ ΓN and t > 0,

(5.3)

where u0, ϕ andψ are given functions and {ΓD,ΓN} provides a boundary partition, that

is ΓD ∪ΓN = ∂Ω ,
◦
ΓD ∩ ◦

Γ N = /0. For obvious reasons, ΓD is called Dirichlet boundary
and ΓN Neumann boundary.
In the one-dimensional case, the problem:

∂u

∂ t
−ν ∂

2u

∂x2 = f , 0 < x < d, t > 0,

u(x,0) = u0(x), 0 < x < d,

u(0, t) = u(d, t) = 0, t > 0,

(5.4)

describes the evolution of the temperature u(x, t) at point x and time t of a metal
bar of length d occupying the interval [0,d], whose thermal conductivity is ν and
whose endpoints are kept at a constant temperature of zero degrees. The function
u0 describes the initial temperature, while f represents the heat generated (per unit
length) by the bar. For this reason, (5.4) is called heat equation. For a particular case,
see Example 1.5 of Chapter 1.

5.1 Weak formulation and its approximation

In order to solve problem (5.1)–(5.3) numerically, we will introduce a weak formula-
tion, as we did to handle elliptic problems.
We proceed formally, by multiplying for each t > 0 the differential equation by a test
function v = v(x) and integrating on Ω . We set V = H1

ΓD
(Ω) (see (3.26)) and for each

t > 0 we seek u(t) ∈V such that∫
Ω

∂u(t)

∂ t
v dΩ + a(u(t),v) =

∫
Ω

f (t)v dΩ ∀v ∈V, (5.5)

where u(0) = u0, a(·, ·) is the bilinear form associated to the elliptic operator L, and
where we have supposed for simplicity ϕ = 0 and ψ = 0. The modification of (5.5) in
the case where ϕ 
= 0 and ψ 
= 0 is left to the reader.
A sufficient condition for the existence and uniqueness of the solution to problem (5.5)
is that the following hypotheses hold:
the bilinear form a(·, ·) is continuous and weakly coercive, that is

∃λ≥0, ∃α > 0 : a(v,v)+λ‖v‖2
L2(Ω) ≥ α‖v‖2

V ∀v ∈V,

yielding for λ = 0 the standard definition of coercivity.
Moreover, we require u0 ∈ L2(Ω) and f ∈ L2(Q).
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Then, problem (5.5) admits a unique solution u ∈ L2(R+;V )∩C0(R+;L2(Ω)), with
V = H1

ΓD
(Ω).

For the definition of these functional spaces, see Sect. 2.7. For the proof, see [QV94,
Sect. 11.1.1].
Some a priori estimates of the solution u will be provided in the following section.

We now consider the Galerkin approximation of problem (5.5):
for each t > 0, find uh(t) ∈Vh such that∫

Ω

∂uh(t)

∂ t
vh dΩ + a(uh(t),vh) =

∫
Ω

f (t)vh dΩ ∀vh ∈Vh (5.6)

with uh(0) = u0h, where Vh ⊂V is a suitable space of finite dimension and u0h is a con-
venient approximation of u0 in the space Vh. Such problem is called semi-discretization
of (5.5), as the temporal variable has not yet been discretized.
To provide an algebraic interpretation of (5.6) we introduce a basis {ϕ j} for Vh (as we
did in the previous chapters), and we observe that it suffices that (5.6) is verified for
the basis functions in order to be satisfied by all the functions of the subspace. More-
over, since for each t > 0 the solution to the Galerkin problem belongs to the subspace
as well, we will have

uh(x, t) =
Nh

∑
j=1

u j(t)ϕ j(x),

where the coefficients {u j(t)} represent the unknowns of problem (5.6).
Denoting by u̇ j(t) the derivatives of the function u j(t) with respect to time, (5.6)

becomes∫
Ω

Nh

∑
j=1

u̇ j(t)ϕ jϕi dΩ + a

(
Nh

∑
j=1

u j(t)ϕ j,ϕi

)
=

∫
Ω

f (t)φi dΩ , i = 1,2, . . . ,Nh,

that is

Nh

∑
j=1

u̇ j(t)
∫
Ω

ϕ jϕi dΩ

︸ ︷︷ ︸
mi j

+
Nh

∑
j=1

u j(t)a(ϕ j,ϕi)︸ ︷︷ ︸
ai j

=

∫
Ω

f (t)φi dΩ

︸ ︷︷ ︸
fi(t)

, i = 1,2, . . . ,Nh. (5.7)

If we define the vector of unknowns u = (u1(t), u2(t), . . . ,uNh(t))
T , the mass ma-

trix M = [mi j], the stiffness matrix A = [ai j] and the right-hand side vector f =
( f1(t), f2(t), . . . , fNh (t))

T , the system (5.7) can be rewritten in matrix form as

Mu̇(t)+Au(t) = f(t).

For the numerical solution of this ODE system, many finite difference methods are
available. See, e.g., [QSS07, Chap. 11]. Here we limit ourselves to considering the so-
called θ -method. The latter discretizes the temporal derivative by a simple difference
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quotient and replaces the other terms with a linear combination of the value at time tk

and of the value at time tk+1, depending on the real parameter θ (0 ≤ θ ≤ 1),

M
uk+1 −uk

Δ t
+A[θuk+1 +(1−θ )uk] = θ fk+1 +(1−θ )fk. (5.8)

As usual, the real positive parameter Δ t = tk+1 − tk, k = 0,1, . . . , denotes the dis-
cretization step (here assumed to be constant), while the superscript k indicates that
the quantity under consideration refers to the time tk. Let us see some particular cases
of (5.8):

• for θ = 0 we obtain the forward Euler (or explicit Euler) method

M
uk+1 −uk

Δ t
+Auk = fk

which is accurate to order one with respect to Δ t;
• for θ = 1 we have the backward Euler (or implicit Euler) method

M
uk+1 −uk

Δ t
+Auk+1 = fk+1,

also of first order with respect to Δ t;
• for θ = 1/2 we have the Crank-Nicolson (or trapezoidal) method

M
uk+1 −uk

Δ t
+

1
2

A
(

uk+1 +uk
)
=

1
2

(
fk+1 + fk

)
which is of second order in Δ t. (More precisely, θ = 1/2 is the only value for
which we obtain a second-order method.)

Let us consider the two extremal cases, θ = 0 and θ = 1. For both, we obtain a
system of linear equations: if θ = 0, the system to solve has matrix M

Δ t , in the second
case it has matrix M

Δ t +A. We observe that the M matrix is invertible, being positive
definite (see Exercise 1).

In the θ = 0 case, if we make M diagonal, we actually decouple the system. This
operation is performed by the so-called lumping of the mass matrix (see Sect. 13.5).
However, this scheme is not unconditionally stable (see Sect. 5.4) and in the case
where Vh is a subspace of finite elements we have the following stability condition
(see Sect.~5.4)

∃c > 0 : Δ t ≤ ch2 ∀h > 0,

so Δ t icannot be chosen irrespective of h.
In case θ > 0, the system will have the form Kuk+1 = g, where g is the source

term and K = M
Δ t + θA. Such matrix is however invariant in time (the operator L,

and therefore the matrix A, being independent of time); if the space mesh does not
change, it can then be factorized once and for all at the beginning of the process.
Since M is symmetric, if A is symmetric too, the K matrix associated to the system
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Fig. 5.2. Solution of the heat equation for the problem of Example 5.1

will also be symmetric. Hence, we can use, for instance, the Cholesky factorization,
K=H HT , H being lower triangular. At each time step, we will therefore have to solve
two triangular systems in Nh unknowns:

Hy = g,
HT uk+1 = y

(see Chap. 7 and also [QSS07, Chap. 3]).

Example 5.1. Let us suppose to solve the heat equation ∂u
∂ t − 0.1Δu = 0 on the do-

main Ω ⊂ R2 of Fig. 5.2 (left), which is the union of two circles of radius 0.5 and
center (−0.5,0) resp. (0.5,0)). We assign Dirichlet conditions on the whole boundary
taking u(x, t) = 1 for the points on ∂Ω for which x1 ≥ 0 and u(x, t) = 0 if x1 < 0.
The initial condition is u(x,0) = 1 for x1 ≥ 0 and null elsewhere. In Fig. 5.2, we re-
port the solution obtained at time t = 1. We have used linear finite elements in space
and the implicit Euler method in time with Δ t = 0.01. As it can be seen, the initial
discontinuity has been regularized, in accordance with the boundary conditions. �

5.2 A priori estimates

Let us consider problem (5.5); since the corresponding equations must hold for each
v ∈ V , it will be legitimate to set v = u(t) (t being given), solution of the problem
itself, yielding∫

Ω

∂u(t)

∂ t
u(t) dΩ +a(u(t),u(t)) =

∫
Ω

f (t)u(t) dΩ ∀t > 0. (5.9)

Considering the individual terms, we have∫
Ω

∂u(t)

∂ t
u(t) dΩ =

1
2
∂

∂ t

∫
Ω
|u(t)|2dΩ =

1
2
∂

∂ t
‖u(t)‖2

L2(Ω). (5.10)
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If we assume for simplicity that the bilinear form is coercive (with coercivity constant
equal to α), we obtain

a(u(t),u(t))≥ α‖u(t)‖2
V ,

while thanks to the Cauchy-Schwarz inequality, we find

( f (t),u(t))≤ ‖ f (t)‖L2(Ω)‖u(t)‖L2(Ω). (5.11)

In the remainder, we will often use Young’s inequality

∀a,b ∈ R, ab ≤ εa2 +
1

4ε
b2 ∀ε > 0, (5.12)

which descends from the elementary inequality(√
ε a− 1

2
√
ε

b

)2

≥ 0.

Using first Poincaré’ inequality (2.13) and Young’s inequality, we obtain

1
2

d
dt ‖u(t)‖2

L2(Ω)
+α‖∇u(t)‖2

L2(Ω)
≤ ‖ f (t)‖L2(Ω)‖u(t)‖L2(Ω)

≤ C2
Ω

2α ‖ f (t)‖2
L2(Ω)

+ α
2 ‖∇u(t)‖2

L2(Ω)
.

(5.13)

Then, by integrating in time we obtain, for all t > 0,

‖u(t)‖2
L2(Ω) +α

∫ t

0
‖∇u(s)‖2

L2(Ω)ds ≤ ‖u0‖2
L2(Ω) +

C2
Ω

α

∫ t

0
‖ f (s)‖2

L2(Ω)ds. (5.14)

This is an a priori energy estimate. Different kinds of a priori estimates can be
obtained as follows. Note that

1
2

d

dt
‖u(t)‖2

L2(Ω) = ‖u(t)‖L2(Ω)

d

dt
‖u(t)‖L2(Ω).

Then from (5.9), using (5.10) and (5.11) we obtain (still using the Poincaré in-
equality)

‖u(t)‖L2(Ω)

d

dt
‖u(t)‖L2(Ω) +

α

CΩ
‖u(t)‖L2(Ω)‖∇u(t)‖L2(Ω)

≤ ‖ f (t)‖L2(Ω)‖u(t)‖L2(Ω), t > 0.

If ‖u(t)‖L2(Ω) 
= 0 (otherwise we should proceed differently, even though the final
result is still true) we can divide by ‖u(t)‖L2(Ω) and integrate in time to obtain

‖u(t)‖L2(Ω) ≤ ‖u0‖L2(Ω) +

∫ t

0
‖ f (s)‖L2(Ω)ds, t > 0. (5.15)
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This is a further a priori estimate.
Let us now use the first inequality in (5.13) and integrate in time to yield

‖u(t)‖2
L2(Ω) + 2α

∫ t

0
‖∇u(s)‖2ds

≤ ‖u0‖2
L2(Ω) + 2

∫ t

0
‖ f (s)‖L2(Ω)‖u(s)‖L2(Ω)ds

≤ ‖u0‖2
L2(Ω) + 2

∫ t

0
‖ f (s)‖L2(Ω) · (‖u0‖2

L2(Ω) +

∫ s

0
‖ f (τ)‖L2(Ω)dτ)ds

(using (5.15))

= ‖u0‖2
L2(Ω) + 2

∫ t

0
‖ f (s)‖L2(Ω)‖u0‖L2(Ω) + 2

∫ t

0
‖ f (s)‖L2(Ω)

∫ s

0
‖ f (τ)‖L2(Ω)dτ

= (‖u0‖L2(Ω) +

∫ t

0
‖ f (s)‖ds)2. (5.16)

The latter equality follows upon noticing that

‖ f (s)‖L2(Ω)

∫ s

0
‖ f (τ)‖L2(Ω)dτ =

d

ds
(
∫ s

0
‖ f (τ)‖L2(Ω)dτ)

2.

We therefore conclude with the additional a priori estimate

(‖u(t)‖2
L2(Ω)

+2α
∫ t

0
‖∇u(s)‖2

L2(Ω)ds)
1
2

≤ ‖u0‖L2(Ω) +

∫ t

0
‖ f (s)‖L2(Ω)ds, t > 0.

(5.17)

We have seen that we can formulate the Galerkin problem (5.6) for problem (5.5)
and that the latter, under suitable hypotheses, admits a unique solution. Similarly to
what we did for problem (5.5) we can prove the following a priori (stability) estimates
for the solution to problem (5.6):

‖uh(t)‖2
L2(Ω) +α

∫ t

0
‖∇uh(s)‖2

L2(Ω)ds

≤ ‖u0h‖2
L2(Ω) +

C2
Ω

α

∫ t

0
‖ f (s)‖2

L2(Ω)ds, t > 0. (5.18)

For its proof we can take, for every t > 0, vh = uh(t) and proceed as we did to ob-
tain (5.13). Then, by recalling that the initial data is uh(0) = u0h, we can deduce the
following discrete counterparts of (5.15) and (5.17):

‖uh(t)‖L2(Ω) ≤ ‖u0h(t)‖L2(Ω) +

∫ t

0
‖ f (s)‖L2(Ω)ds, t > 0 (5.19)

and

(‖uh(t)‖2
L2(Ω) + 2α

∫ t

0
‖∇uh(s)‖2

L2(Ω)ds)
1
2

≤ ‖u0h‖L2(Ω) +

∫ t

0
‖ f (s)‖L2(Ω)ds, t > 0. (5.20)
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5.3 Convergence analysis of the semi-discrete problem

Let us consider problem (5.5) and its approximation (5.6). We want to prove the con-
vergence of uh to u in suitable norms.
By the coercivity hypotheses we can write

α‖(u−uh)(t)‖2
H1(Ω) ≤ a((u− uh)(t),(u−uh)(t))

= a((u− uh)(t),(u− vh)(t))

+a((u−uh)(t),(vh − uh)(t)) ∀vh : vh(t) ∈Vh, ∀t > 0.

For the sake of clarity, we suppress the dependence from t. By subtracting equation
(5.6) from equation (5.5) and setting wh = vh − uh we have(

∂ (u− uh)

∂ t
,wh

)
+ a(u− uh,wh) = 0,

where (v,w) =
∫
Ω vw is the scalar product of L2(Ω). Then

α‖u− uh‖2
H1(Ω) ≤ a(u− uh,u− vh)−

(
∂ (u− uh)

∂ t
,wh

)
. (5.21)

We analyze the two right-hand side terms separately:

• using the continuity of the form a(·, ·) and Young’s inequality, we obtain

a(u− uh,u− vh)≤ M‖u−uh‖H1(Ω)‖u− vh‖H1(Ω)

≤ α

2
‖u−uh‖2

H1(Ω) +
M2

2α
‖u− vh‖2

H1(Ω);

• writing wh in the form wh = (vh −u)+ (u−uh) we obtain

−
(
∂ (u− uh)

∂ t
,wh

)
=

(
∂ (u− uh)

∂ t
,u− vh

)
− 1

2
d

dt
‖u−uh‖2

L2(Ω). (5.22)

Replacing these two results in (5.21), we obtain

1
2

d

dt
‖u−uh‖2

L2(Ω) +
α

2
‖u− uh‖2

H1(Ω) ≤
M2

2α
‖u− vh‖2

H1(Ω) + (
∂ (u− uh)

∂ t
,u− vh).

Multiplying both sides by 2 and integrating in time between 0 and t we find

‖(u−uh)(t)‖2
L2(Ω) +α

t∫
0

‖(u−uh)(s)‖2
H1(Ω) ds ≤ ‖(u−uh)(0)‖2

L2(Ω)

+
M2

α

t∫
0

‖(u− vh)(s)‖2
H1(Ω) ds+ 2

t∫
0

(
∂

∂ s
(u−uh)(s),(u− vh)(s)

)
ds. (5.23)
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Integrating by parts and using Young’s inequality, we obtain

t∫
0

(
∂

∂ s
(u−uh)(s),(u− vh)(s)

)
ds =−

t∫
0

(
(u− uh)(s),

∂

∂ s
((u− vh)(s))

)
ds

+((u−uh)(t),(u− vh)(t))− ((u− uh)(0),(u− vh)(0))

≤
t∫

0

‖(u−uh)(s)‖L2(Ω) ‖
∂ ((u− vh)(s))

∂ s
‖L2(Ω) ds+

1
4
‖(u−uh)(t)‖2

L2(Ω)

+‖(u− vh)(t)‖2
L2(Ω)

+
1
2
‖(u− uh)(0)‖2

L2(Ω) +
1
2
‖u(0)− vh(0)‖2

L2(Ω).

From (5.23) we thus obtain

1
2
‖(u−uh)(t)‖2

L2(Ω) +α

t∫
0

‖(u− uh)(s)‖2
H1(Ω) ds

≤ 2‖(u− uh)(0)‖2
L2(Ω)

+
M2

α

t∫
0

‖(u− vh)(s)‖2
H1(Ω) ds

+ 2

t∫
0

‖(u− uh)(s)‖L2(Ω)‖
∂ ((u− vh)(s))

∂ s
‖L2(Ω) ds

+2‖(u− vh)(t)‖2
L2(Ω)

+ ‖u(0)− vh(0)‖2
L2(Ω)

.

(5.24)

Let us now suppose that Vh is the space of finite elements of degree r, more precisely
Vh = {vh ∈ Xr

h : vh|ΓD = 0}, and let us choose, at each t, vh(t) =Π r
hu(t), the interpolant

of u(t) in Vh (see (4.20)). Thanks to (4.69) we have, assuming that u is sufficiently
regular,

h‖u(t)−Π r
hu(t)‖H1(Ω) +‖u(t)−Π r

hu(t)‖L2(Ω) ≤C2hr+1|u(t)|Hr+1(Ω).

Let us consider and bound from above some of the summands of the right-hand side
of inequality (5.24):

E1 = 2‖(u− uh)(0)‖2
L2(Ω) ≤C1h2r|u0|2Hr(Ω).

E2 =
M2

α

t∫
0

‖u(s)− vh(s)‖2
H1(Ω) ds ≤C2h2r

t∫
0

|u(s)|2Hr+1(Ω) ds,

E3 = 2‖u(t)− vh(t)‖2
L2(Ω) ≤C3h2r|u(t)|2Hr(Ω),

E4 = ‖u(0)− vh(0)‖2
L2(Ω) ≤C4h2r|u(0)|2Hr(Ω).

Consequently,

E1 +E2 +E3 +E4 ≤Ch2rN(u),
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where N(u) is a suitable function depending on u and on ∂u
∂ t , and C is a suitable positive

constant. Finally

E5(s) = ‖∂ (u(s)− vh(s))

∂ s
‖L2(Ω) ≤C5hr

∣∣∣∂u(s)

∂ s

∣∣∣
Hr(Ω)

.

In this way, from (5.24) we obtain the inequality

‖(u−uh)(t)‖2
L2(Ω) + 2α

t∫
0

‖(u− uh)(s)‖2
H1(Ω) ds

≤Ch2rN(u)+4C5hr

t∫
0

∣∣∣∂u(s)

∂ s

∣∣∣
Hr(Ω)

‖(u− uh)(s)‖L2(Ω)ds.

Applying the Gronwall lemma (Lemma 2.2 ii)), we obtain the a priori error estimate{
‖(u−uh)(t)‖2

L2(Ω) +2α
∫ t

0
‖u− uh‖2

H1(Ω)

}1/2

≤ C̄hr
(√

N(u)+

t∫
0

∣∣∣∂u(s)

∂ s

∣∣∣
Hr(Ω)

ds

)
(5.25)

for a suitable positive constant C̄ and for all t > 0.
An alternative proof that does not make use of Gronwall’ lemma can be carried out
as follows. If we subtract (5.6) from (5.5) and set Eh = u− uh, we obtain that (the
dependence of Eh on t is understood)(

∂Eh

∂ t
,vh

)
+ a(Eh,vh) = 0 ∀vh ∈Vh, ∀t > 0.

If, for the sake of simplicity, we suppose that a(·, ·) is symmetric, we can define
the orthogonal projection operator

Π r
1,h : V →Vh : ∀w ∈V, a(Π r

1,hw−w,vh) = 0 ∀vh ∈Vh. (5.26)

Using the results seen in Chap. 3, we can prove (see [QV94, Sect. 3.5]) that there
exists a constant C > 0 such that, ∀w ∈V ∩Hr+1(Ω),

‖Π r
1,hw−w‖H1(Ω) + h−1‖Π r

1,hw−w‖L2(Ω) ≤Chp|w|Hp+1(Ω),0 ≤ p ≤ r. (5.27)

Then we set

Eh = σh + eh = (u−Π r
1,hu)+ (Π r

1,hu− uh). (5.28)

Note that the orthogonal projection error σh can be bounded by inequality (5.27)
and that eh is an element of the subspace Vh. Then

(
∂eh

∂ t
,vh)+ a(eh,vh) =−(

∂σh

∂ t
,vh)− a(σh,vh) ∀vh ∈Vh, ∀t > 0.
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If we take at every t > 0, vh = eh(t), and proceed as done in Sect. 5.2 to deduce
the a priori estimates on the semi-discrete solution uh, we obtain

1
2

d
dt ‖eh(t)‖2

L2(Ω)
+α‖∇eh(t)‖2

L2(Ω)

≤ |a(σh(t),eh(t))|+ |( ∂∂ tσh(t),eh(t))|.
(5.29)

Using the continuity of the bilinear form a(·, ·) (M being the continuity constant)
and Young’s inequality (5.12), we obtain

|a(σh(t),eh(t))| ≤ α

4
‖∇eh(t)‖2

L2(Ω) +
M2

α
‖∇σh(t)‖2

L2(Ω).

Moreover, using the Poincaré inequality and once more the Young’s inequality it
follows that

|( ∂
∂ t
σh(t),eh(t))| ≤ ‖ ∂

∂ t
σh(t)‖L2(Ω)CΩ‖∇eh(t)‖L2(Ω)

≤ α

4
‖∇eh(t)‖2

L2(Ω) +
C2
Ω

α
‖ ∂
∂ t
σh(t)‖2

L2(Ω).

Using these bounds in (5.29) we obtain, after integrating with respect to t:

‖eh(t)‖2
L2(Ω)

+α
∫ t

0
‖∇eh(t)‖2

L2(Ω)
ds

≤ ‖eh(0)‖2
L2(Ω) +

2M2

α

∫ t

0
‖∇σh(s)‖2

L2(Ω)ds+
2C2

Ω

α

∫ t

0
‖ ∂
∂ t
σh(s)‖2

L2(Ω)ds, t > 0.

At this point we can use (5.27) to bound the errors on the right-hand side:

‖∇σh(t)‖L2(Ω) ≤Chr|u(t)|Hr+1(Ω) ,∥∥∥∥ ∂∂ t
σh(t)

∥∥∥∥
L2(Ω)

=

∥∥∥∥(∂u

∂ t
−Π r

1,h
∂u

∂ t

)
(t)

∥∥∥∥
L2(Ω)

≤Chr

∣∣∣∣∂u(t)

∂ t

∣∣∣∣
Hr(Ω)

.

Finally, note that ‖eh(0)‖L2(Ω) ≤Chr|u0|Hr(Ω), still using (5.27).
Since, for any norm ‖ · ‖,

‖u− uh‖ ≤ ‖σh‖+‖eh‖
(owing to 5.28), using the previous estimates we can conclude that there exists a con-
stant C > 0 independent of both t and h such that

{‖u(t)−uh(t)‖2
L2(Ω) +α

∫ t

0
‖∇u(s)−∇uh(s)‖2

L2(Ω)ds}1/2

≤Chr{|u0|2Hr(Ω) +

∫ t

0
|u(s)|2Hr+1(Ω)ds+

∫ t

0
|∂u(s)

∂ s
|2Hr+1(Ω)ds}1/2.

Further error estimates are proven, e.g. in [QV94, Chap. 11].
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5.4 Stability analysis of the θ -method

We now analyze the stability of the fully discretized problem.
Applying the θ -method to the Galerkin problem (5.6) we obtain(

uk+1
h − uk

h

Δ t
,vh

)
+ a
(
θuk+1

h +(1−θ )uk
h,vh

)
= θFk+1(vh)+ (1−θ )Fk(vh) ∀vh ∈Vh, (5.30)

for each k ≥ 0, with u0
h = u0h; Fk indicates that the functional is evaluated at time tk.

We will limit ourselves to the case where F = 0 and start to consider the case of the
implicit Euler method (θ = 1) that is(

uk+1
h − uk

h

Δ t
,vh

)
+ a
(

uk+1
h ,vh

)
= 0 ∀vh ∈Vh.

By choosing vh = uk+1
h , we obtain

(uk+1
h ,uk+1

h )+Δ t a
(

uk+1
h ,uk+1

h

)
= (uk

h,u
k+1
h ).

By exploiting the following inequalities

a(uk+1
h ,uk+1

h )≥ α‖uk+1
h ‖2

V , (uk
h,u

k+1
h )≤ 1

2
‖uk

h‖2
L2(Ω) +

1
2
‖uk+1

h ‖2
L2(Ω),

the former deriving from the coercivity of the bilinear form a(·, ·), and the latter from
the Cauchy-Schwarz and Young inequalities, we obtain

‖uk+1
h ‖2

L2(Ω) + 2αΔ t‖uk+1
h ‖2

V ≤ ‖uk
h‖2

L2(Ω). (5.31)

By summing over k from 0 to n− 1 we deduce that

‖un
h‖2

L2(Ω) +2αΔ t
n−1

∑
k=0

‖uk+1
h ‖2

V ≤ ‖u0h‖2
L2(Ω).

Observing that ‖uk+1
h ‖V ≥ ‖uk+1

h ‖L2(Ω), we deduce from (5.31) that for each given
Δ t > 0,

lim
k→∞

‖uk
h‖L2(Ω) = 0,

that is the backward Euler method is absolutely stable without any restriction on the
time step Δ t.

When f 
= 0, using the discrete Gronwall lemma (see Sect. 2.7) it can be proved
in a similar way that

‖un
h‖2

L2(Ω) +2αΔ t
n

∑
k=1

‖uk
h‖2

V ≤C(tn)

(
‖u0h‖2

L2(Ω) +
n

∑
k=1

Δ t‖ f k‖2
L2(Ω)

)
. (5.32)
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Such relation is similar to (5.20), provided that the integrals
∫ t

0 ·ds are approximated
by a composite numerical integration formula with time step Δ t [QSS07].

Before analyzing the general case where θ is an arbitrary parameter ranging be-
tween 0 and 1, we introduce the following definition.
We say that the scalar λ is an eigenvalue of the bilinear form a(·, ·) : V ×V �→ R and
that w ∈V is its corresponding eigenfunction if it turns out that

a(w,v) = λ (w,v) ∀v ∈V.

If the bilinear form a(·, ·) is symmetric and coercive, it has positive, real eigenvalues
forming an infinite sequence; moreover, its eigenfunctions form a basis of the space V .

The eigenvalues and eigenfunctions of a(·, ·) can be approximated by finding the
pairs λh ∈ R and wh ∈Vh which satisfy

a(wh,vh) = λh(wh,vh) ∀vh ∈Vh. (5.33)

From an algebraic viewpoint, problem (5.33) can be formulated as follows

Aw = λhMw,

where A is the stiffness matrix and M the mass matrix. We are therefore dealing with
a generalized eigenvalue problem.

Such eigenvalues are all positive and Nh in number (Nh being as usual the dimen-
sion of the subspace Vh); after ordering them in ascending order, λ 1

h ≤ λ 2
h ≤ . . .≤ λNh

h ,
we have

λ
Nh
h → ∞ for Nh → ∞.

Moreover, the corresponding eigenfunctions form a basis for the subspace Vh and can
be chosen to be orthonormal with respect to the scalar product of L2(Ω). This means
that, denoting by wi

h the eigenfunction corresponding to the eigenvalue λ i
h, we have

(wi
h,w

j
h) = δi j ∀i, j = 1, . . . ,Nh. Thus, each function vh ∈ Vh can be represented as

follows

vh(x) =
Nh

∑
j=1

v jw
j
h(x)

and, thanks to the eigenfunction orthonormality,

‖vh‖2
L2(Ω) =

Nh

∑
j=1

v2
j . (5.34)

Let us consider an arbitrary θ ∈ [0,1] and let us limit ourselves to the case where
the bilinear form a(·, ·) is symmetric (otherwise, although the final stability result
holds in general, the following proof would not work, as the eigenfunctions would not
necessarily form a basis). Since uk

h ∈Vh, we can write

uk
h(x) =

Nh

∑
j=1

uk
jw

j
h(x).
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We observe that in this modal expansion, the uk
j no longer represent the nodal values

of uk
h. If we now set F = 0 in (5.30) and take vh = wi

h, we find

1
Δ t

Nh

∑
j=1

[uk+1
j − uk

j]
(

wj
h,w

i
h

)
+

Nh

∑
j=1

[θuk+1
j +(1−θ )uk

j]a(w
j
h,w

i
h) = 0,

for each i = 1, . . . ,Nh. For each pair i, j = 1, . . . ,Nh we have

a(wj
h,w

i
h) = λ j

h (w
j
h,w

i
h) = λ j

hδi j = λ i
h,

and thus, for each i = 1, . . . ,Nh,

uk+1
i −uk

i

Δ t
+[θuk+1

i +(1−θ )uk
i ]λ

i
h = 0.

Solving now for uk+1
i , we find

uk+1
i = uk

i
1− (1−θ )λ i

hΔ t

1+θλ i
hΔ t

.

Recalling (5.34), we can conclude that for the method to be absolutely stable, we must
impose the inequality ∣∣∣∣1− (1−θ )λ i

hΔ t

1+θλ i
hΔ t

∣∣∣∣< 1,

that is

−1−θλ i
hΔ t < 1− (1−θ )λ i

hΔ t < 1+θλ i
hΔ t.

Hence,

− 2

λ i
hΔ t

−θ < θ − 1 < θ .

The second inequality is always verified, while the first one can be rewritten as

2θ − 1 >− 2

λ i
hΔ t

.

If θ ≥ 1/2, the left-hand side is non-negative, while the right-hand side is negative, so
the inequality holds for each Δ t. Instead, if θ < 1/2, the inequality is satisfied (hence
the method is stable) only if

Δ t <
2

(1− 2θ )λ i
h

. (5.35)

As such relation must hold for all the eigenvalues λ i
h of the bilinear form, it will suffice

to require that it holds for the largest among them, which we have supposed to be λNh
h .
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To summarize, we have:

• if θ ≥ 1/2, the θ -method is unconditionally absolutely stable, i.e. it is absolutely
stable for each Δ t;

• if θ < 1/2, the θ -method is absolutely stable only for Δ t ≤ 2

(1−2θ)λ
Nh
h

.

Thanks to the definition of eigenvalue (5.33) and to the continuity property of a(·, ·),
we deduce

λ
Nh
h =

a(wNh ,wNh)

‖wNh‖2
L2(Ω)

≤ M‖wNh‖2
V

‖wNh‖2
L2(Ω)

≤ M(1+C2h−2).

The constant C > 0 which appears in the latter step derives from the following inverse
inequality

∃C > 0 : ‖∇vh‖L2(Ω) ≤Ch−1‖vh‖L2(Ω) ∀vh ∈Vh,

for whose proof we refer to [QV94, Chap. 3].
Hence, for h small enough, λNh

h ≤ Ch−2. In fact, we can prove that λNh
h is indeed of

the order of h−2, that is

λ
Nh
h = maxiλ

i
h � ch−2.

Keeping this into account, we obtain that for θ < 1/2 the method is absolutely stable
only if

Δ t ≤C(θ )h2, (5.36)

where C(θ ) denotes a positive constant depending on θ . The latter relation implies
that for θ < 1/2, Δ t cannot be chosen arbitrarily but is bound to the choice of h.

5.5 Convergence analysis of the θ -method

We can prove the following convergence theorem

Theorem 5.1. Under the hypothesis that u0, f and the exact solution are suffi-
ciently regular, the following a priori error estimate holds: ∀n ≥ 1,

‖u(tn)−un
h‖2

L2(Ω)
+ 2αΔ t

n

∑
k=1

‖u(tk)− uk
h‖2

V ≤C(u0, f ,u)(Δ t p(θ) + h2r),

where p(θ ) = 2 if θ 
= 1/2, p(1/2) = 4 and C depends on its arguments but not
on h and Δ t.

Proof. The proof is carried out by comparing the solution of the fully discretized prob-
lem (5.30) with that of the semi-discrete problem (5.6), using the stability result (5.32)
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as well as the decay rate of the truncation error of the time discretization. For simplic-
ity, we will limit ourselves to considering the backward Euler method (corresponding
to θ = 1)

1
Δ t

(uk+1
h − uk

h,vh)+ a(uk+1
h ,vh) = ( f k+1,vh) ∀vh ∈Vh. (5.37)

We refer the reader to [QV94], Sect. 11.3.1, for the proof in the general case.
Let Π r

1,h be the orthogonal projector operator introduced in (5.26). Then

‖u(tk)−uk
h‖L2(Ω) ≤ ‖u(tk)−Π r

1,hu(tk)‖L2(Ω) + ‖Π r
1,hu(tk)− uk

h‖L2(Ω). (5.38)

The first term can be estimated by referring to (5.27). To analyze the second term,
where εk

h = uk
h −Π r

1,hu(tk), we obtain

1
Δ t

(εk+1
h − εk

h ,vh)+a(εk+1
h ,vh) = (δ k+1,vh) ∀vh ∈Vh, (5.39)

having set,

(δ k+1,vh) = ( f k+1,vh)− 1
Δ t

(Π r
1,h(u(t

k+1)− u(tk)),vh)−a(u(tk+1),vh) (5.40)

and having exploited on the last summand the orthogonality (5.26) of the operator
Π r

1,h. The sequence {εk
h , k = 0,1 . . .} satisfies problem (5.39), which is similar to

(5.37) (provided that we take δ k+1 instead of f k+1). By adapting the stability estimate
(5.32), we obtain, for each n ≥ 1,

‖εn
h‖2

L2(Ω) +2αΔ t
n

∑
k=1

‖εk
h‖2

V ≤C(tn)

(
‖ε0

h‖2
L2(Ω) +

n

∑
k=1

Δ t‖δ k‖2
L2(Ω)

)
. (5.41)

The norm associated to the initial time-level can easily be estimated: for instance,
if u0h = Π r

hu0 is the finite element interpolant of u0, by suitably using the estimates
(4.69) and (5.27) we obtain

‖ε0
h‖L2(Ω) = ‖u0h −Π r

1,hu0‖L2(Ω)

≤ ‖Π r
hu0 − u0‖L2(Ω) + ‖u0 −Π r

1,hu0‖L2(Ω) ≤C hr |u0|Hr(Ω).
(5.42)

Let us now focus on estimating the norm ‖δ k‖L2(Ω). Thanks to (5.5),

( f k+1,vh)− a(u(tk+1),vh) =

(
∂u(tk+1)

∂ t
,vh

)
.

This allows us to rewrite (5.40) as

(δ k+1,vh) =

(
∂u(tk+1)

∂ t
,vh

)
− 1
Δ t

(Π r
1,h(u(t

k+1)−u(tk)),vh) (5.43)

=

(
∂u(tk+1)

∂ t
− u(tk+1)− u(tk)

Δ t
,vh

)
+

((
I −Π r

1,h

)(u(tk+1)− u(tk)

Δ t

)
,vh

)
.
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Using the Taylor formula with the remainder in integral form, we have

∂u(tk+1)

∂ t
− u(tk+1)− u(tk)

Δ t
=

1
Δ t

tk+1∫
tk

(s− tk)
∂ 2u

∂ s2 (s)ds, (5.44)

having made suitable regularity requirements on the function u with respect to the
temporal variable. By now using the fundamental theorem of calculus and exploiting
the commutativity between the projection operator Π r

1,h and the temporal derivative,
we obtain

(
I−Π r

1,h

)(
u(tk+1)−u(tk)

)
=

tk+1∫
tk

(
I −Π r

1,h

)(∂u

∂ s

)
(s)ds. (5.45)

By choosing vh = δ k+1 in (5.43), thanks to (5.44) and (5.45), we can deduce the
following upper bound

‖δ k+1‖L2(Ω)

≤
∥∥∥ 1
Δ t

tk+1∫
tk

(s− tk)
∂ 2u

∂ s2 (s)ds
∥∥∥

L2(Ω)
+
∥∥∥ 1
Δ t

tk+1∫
tk

(
I −Π r

1,h

)(∂u

∂ s

)
(s)ds

∥∥∥
L2(Ω)

≤
tk+1∫
tk

∥∥∥∂ 2u

∂ s2 (s)
∥∥∥

L2(Ω)
ds+

1
Δs

tk+1∫
tk

∥∥∥(I −Π r
1,h

)(∂u

∂ s

)
(s)
∥∥∥

L2(Ω)
ds.

(5.46)
By reverting to the stability estimate (5.41) and exploiting (5.42) and the estimate
(5.46) with suitably scaled indices, we have

‖εn
h‖2

L2(Ω)
≤ C(tn)

(
h2r |u0|2Hr(Ω) +

n

∑
k=1

Δ t

[( tk∫
tk−1

∥∥∥∂ 2u

∂ s2 (s)
∥∥∥

L2(Ω)
ds

)2

+
1
Δ t2

( tk∫
tk−1

∥∥∥(I−Π r
1,h

)(∂u

∂ s

)
(s)
∥∥∥

L2(Ω)
ds

)2 ])
,

Then, using the Cauchy-Schwarz inequality and estimate (5.27) for the projection
operatorΠ r

1,h, we obtain

‖εn
h‖2

L2(Ω) ≤C(tn)

(
h2r |u0|2Hr(Ω) +

n

∑
k=1

Δ t

[
Δ t

tk∫
tk−1

∥∥∥∂ 2u

∂ s2 (s)
∥∥∥2

L2(Ω)
ds

+
1
Δ t2

( tk∫
tk−1

hr
∣∣∣∂u

∂ s
(s)
∣∣∣
Hr(Ω)

ds

)2 ])
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≤C(tn)

(
h2r |u0|2Hr(Ω) +Δ t2

n

∑
k=1

tk∫
tk−1

∥∥∥∂ 2u

∂ s2 (s)
∥∥∥2

L2(Ω)
ds

+
1
Δ t

h2r
n

∑
k=1

Δ t

tk∫
tk−1

∣∣∣∂u

∂ s
(s)
∣∣∣2
Hr(Ω)

ds

)
. (5.47)

The result now follows using (5.38) and estimate (5.27). 	

More stability and convergence estimates can be found in [Tho84].

5.6 Exercises

1. Verify that the mass matrix M introduced in (5.7) is positive definite.

2. Prove the stability condition (10.42) for the pseudo-spectral approximation of equa-
tion (5.4) (after replacing the interval (0,1) with (−1,1)).
[Solution: proceed as done in Sect. 5.4 for the finite element case and use the prop-
erties given in Lemma 10.2 and 10.3.]

3. Consider the problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂ t
− ∂

∂x

(
α
∂u

∂x

)
−βu = 0 in QT = (0,1)× (0,∞),

u = u0 for x ∈ (0,1), t = 0,

u = η for x = 0, t > 0,

α
∂u

∂x
+ γu = 0 for x = 1, t > 0,

where α = α(x), u0 = u0(x) are given functions and β , γ , η ∈R (with positive β ).

a) Prove existence and uniqueness of the weak solution for varying γ , providing
suitable limitations on the coefficients and suitable regularity hypotheses on
the functions α and u0.

b) Introduce the spatial semi-discretization of the problem using the Galerkin-
finite element method, and carry out its stability and convergence analysis.

c) In the case where γ = 0, approximate the same problem with the explicit Euler
method in time and carry out its stability analysis.
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4. Consider the following problem: find u(x, t), 0 ≤ x ≤ 1, t ≥ 0, such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂ t
+
∂v

∂x
= 0, 0 < x < 1, t > 0,

v+α(x)
∂u

∂x
− γ(x)u = 0, 0 < x < 1, t > 0,

v(1, t) = β (t), u(0, t) = 0, t > 0,

u(x,0) = u0(x), 0 < x < 1,

where α, γ, β ,u0 are given functions.

a) Introduce an approximation based on finite elements of degree two in x and the
implicit Euler method in time and prove its stability.

b) How will the error behave as a function of the parameters h and Δ t?
c) Suggest a way to provide an approximation for v starting from the one for u as

well as its approximation error.

5. Consider the following (diffusion-transport-reaction) initial-boundary value prob-
lem: find u : (0,1)× (0,T)→ R such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂ t
− ∂

∂x

(
α
∂u

∂x

)
+
∂

∂x
(βu)+ γu = 0, 0 < x < 1, 0 < t < T,

u = 0 for x = 0, 0 < t < T,

α
∂u

∂x
+ δu = 0 for x = 1, 0 < t < T,

u(x,0) = u0(x), 0 < x < 1, t = 0,

where α = α(x), β = β (x), γ = γ(x), δ = δ (x), u0 = u0(x), x ∈ [0,1] are given
functions.

a) Write its weak formulation.
b) In addition to the hypotheses:

a. ∃β0, α0, α1 > 0 : ∀x ∈ (0,1) α1 ≥ α(x) ≥ α0, β (x)≤ β0,

b. 1
2β

′(x)+ γ(x)≥ 0 ∀x ∈ (0,1),

provide further possible hypotheses on the data so that the problem is well-
posed. Moreover, give an a priori estimate of the solution. Treat the same prob-
lem with non-homogeneous Dirichlet data u = g for x = 0 and 0 < t < T .

c) Consider a semi-discretization based on the linear finite elements method and
prove its stability.

d) Finally, provide a full discretization where the temporal derivative is approxi-
mated using the implicit Euler scheme and prove its stability.
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6. Consider the heat equation⎧⎪⎪⎨⎪⎪⎩
∂u

∂ t
− ∂ 2u

∂x2 = 0, −1 < x < 1, t > 0,

u(x,0) = u0(x), −1 < x < 1,
u(−1, t) = u(1, t) = 0, t > 0,

and approximate it by the G-NI method in space and the backward Euler finite
difference method in time. Then carry out the stability analysis.

7. Consider the following fourth-order initial-boundary value problem:
find u :Ω × (0,T )→ R such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂u

∂ t
− div(μ∇u)+Δ2u+σu = 0 in Ω × (0,T ),

u(x,0) = u0 in Ω ,

∂u

∂n
= u = 0 on ΣT = ∂Ω × (0,T),

where Ω ⊂ R2 is a bounded open domain with "regular" boundary ∂Ω , Δ2 = ΔΔ
is the bi-harmonic operator, μ(x), σ(x) and u0(x) are known functions defined in
Ω . It is known that√√√√∫

Ω

|Δu|2dΩ � ‖u‖H2(Ω) ∀ u ∈ H2
0(Ω) ,

that is the two norms ‖u‖H2(Ω) and ‖Δu‖L2(Ω) are equivalent on the space

H2
0(Ω) = {u ∈ H2(Ω) : u = ∂u/∂n = 0 on ∂Ω}. (5.48)

a) Write its weak formulation and verify that the solution exists and is unique,
formulating suitable regularity hypotheses on the data.

b) Consider a semi-discretization based on triangular finite elements and provide
the minimum degree that such elements must have in order to solve the given
problem adequately. (Use the following property (see, e.g., [QV94]): if Th is
a regular triangulation of Ω and vh|K is a polynomial for each K ∈ Th, then

vh ∈ H2(Ω) if and only if vh ∈ C1(Ω), that is vh and its first derivatives are
continuous across the interfaces of the elements of Th .)



Chapter 6

Generation of 1D and 2D grids

As we have seen, the finite element method for the solution of partial differential
equations requires a “triangulation” of the computational domain, i.e. a partition of
the domain in simpler geometric entities (for instance, triangles or quadrangles in two
dimensions, tetrahedra, prisms or hexahedra in three dimensions), called the elements,
which verify a number of conditions. Similar partitions stand at the base of other
approximation methods, such as the finite volume method (see Chapter 9) and the
spectral element method (see Chapter 10). The set of all elements is the so-called
computational grid (or, simply, grid, or mesh).

In this chapter, for simplicity, we focus on the main partitioning techniques for
one- and two-dimensional domains, with no ambition of completeness. If necessary,
we will refer the reader to the relevant specialized literature. We will deal only with
the case of polygonal domains; for computational domains with curved boundaries,
the interested reader can consult [Cia78], [BS94], [GB98]. The techniques exposed
for the 2D case can be extended to three-dimensional domains.

6.1 Grid generation in 1D

Suppose that the computational domain Ω be an interval (a,b). The most elementary
partition in sub-intervals is the one where the step h is constant. Having chosen the
number of elements, say N, we set h = b−a

N and introduce the points xi = x0 + ih, with
x0 = a and i = 0, . . . ,N. Such points {xi} are called “vertices” in analogy to the two-
dimensional case, where they will actually be the vertices of the triangles whose union
covers the domain Ω . The partition thus obtained is called grid. The latter is uniform
as it is composed by elements of the same length.

In the more general case, we will use non-uniform grids, possibly generated ac-
cording to a given law. Among the possible different procedures, we illustrate a fairly
general one. Let a strictly positive function H : [a,b]→ R+, called spacing function,
be assigned and let us consider the problem of generating a partition of the interval
[a,b] having N+1 vertices xi. The value H (x) represents the desired spacing in corre-

A. Quarteroni, Numerical Models for Differential Problems, MS&A 16, 
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spondence of the point x. For instance, if H = h (constant), with h = (b−a)/M for a
given integer M, we fall exactly in the preceding case of the uniform grid, with N =M.
More generally, we compute N =

∫ b
a H −1(x)dx and we set N =max(1, [N ]), where

[N ] denotes the integer part of N , i.e. the largest positive integer smaller than or
equal to N . Note that the resulting grid will have at least one element. Then we set
κ = N

N
and look for the points xi such that

κ
∫ xi

a
H

−1(x)dx = i,

for i = 0, . . . ,N. The constant κ is a positive correction factor, with a value as close as
possible to 1, whose purpose is to guarantee that N is indeed an integer. In fact, for a
given H , the number N of elements is itself an unknown of the problem. Instead, the
H −1 function defines a density function: to higher values of H −1 correspond denser
nodes, and conversely, to smaller values of H −1 correspond sparser nodes.

Obviously, if we wish to construct a grid with a given number N of elements, as
well as a given variation on [a,b], is sufficient to renormalize the spacing function so
that the integral on (a,b) of the corresponding density is exactly equal to N. In any
case, to compute the points xi, it is useful to introduce the following Cauchy problem

y′(x) = κH
−1(x), x ∈ (a,b), with y(a) = 0.

The points xi will then be defined by the relation y(xi) = i, for i = 1, . . . ,N − 1. Then,
it will automatically follow that x0 = a and xN = b. We will then be able to use a
numerical solution method to find the roots of the functions f j(x) = y(x)− j, for each
value of j ∈ {1, . . . ,N −1} (see e.g. [QSS07]).

Besides being quite general, this procedure can be easily extended to the genera-
tion of vertices on the curved boundary of a two-dimensional domain, as we will see
in Sect. 6.4.2.

In the case where H does not exhibit excessive variations in the interval (a,b), we
can also use a simplified procedure which consists in computing a set of preliminary
points x̃i, for i = 0, . . . ,N, defined as follows:

1. Set x̃0 = a and define x̃i = x̃i−1 +H (x̃i−1), i = 1,2, . . . , until finding the value M
such that x̃M ≥ b and x̃M−1 < b;

2. if x̃M −b ≤ b− x̃M−1 set N = M, otherwise define N = M−1.

Then the final set of vertices are obtained by setting

xi = xi−1 + kH (x̃i−1), i = 1, . . . ,N,

with x0 = a and k = (b− xN−1)/(xN − xN−1).
The MATLAB program mesh_1d allows to construct a grid on an interval with

endpoints a and b with step specified in the macro H, using the previous simplified
algorithm. For instance, with the following MATLAB commands:

a = 0; b = 1; H = ’0.1’;

coord = mesh_1d(a,b,H);

we create a uniform grid on [0,1] with 10 sub-intervals with step h = 0.1.
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Fig. 6.1. On the left-hand side, the behaviour of the grid step (on the x-axis) associated to the
function H = ’1/(exp(4*x)+2)’, on the right-hand side the one relating to the function H =

’.1*(x<3) + .05*(x>5) + .05’. The graph also reports the corresponding vertex distribu-
tions

Setting H=′ 1/(exp(4∗x)+2)′ we obtain a grid that becomes finer when approaching
the second endpoint of the interval, while for H=′ .1∗ (x< .3)+ .05∗ (x> .5)+ .05′
we obtain a grid with a discontinuously varying step (see Fig. 6.1).

Program 1 – mesh_1d: Constructs a one-dimensonal grid on an interval [a,b]
following the spacing function H

function coord = mesh_1d(a,b,H)

coord = a;

while coord(end) < b

x = coord(end);

xnew = x + eval(H);

coord = [coord, xnew];

end

if (coord(end) - b) > (b - coord(end-1))

coord = coord(1:end-1);

end

coord_old = coord;

kappa = (b - coord(end-1))/(coord(end) - coord(end-1));

coord = a;

for i = 1:length(coord_old)-1

x = coord_old(i);

coord(i+1) = x + kappa*eval(H);

end

We point out that in case H is determined by an error estimate, Program 1 will
allow to perform grid adaptivity.
We now tackle the problem of constructing the grid for two-dimensional domains.
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6.2 Grid of a polygonal domain

Given a bounded polygonal domain Ω in R2, we can associate it with a grid (or parti-
tion) Th of Ω in polygons K such that

Ω =
⋃

K∈Th

K,

where Ω is the closure of Ω , and

• ◦
K 
= /0 ∀K ∈ Th;

• ◦
K1 ∩

◦
K2= /0 for each K1,K2 ∈ Th such that K1 
= K2;

• if F = K1 ∩K2 
= /0 with K1,K2 ∈ Th and K1 
= K2, then F is either a whole edge or
a vertex of the grid;

• having denoted by hK the diameter of K for each K ∈Th , we define h=maxK∈Th hK .

We have denoted by
◦
K= K \ ∂K the interior of K. The grid Th is also called mesh, or

sometimes triangulation (in a broad sense) of Ω .
The constraints imposed on the grid by the first two conditions are obvious: in

particular, the second one requires that given two distinct elements, their interiors do
not overlap. The third condition limits the admissible triangulations to the so-called
conforming ones. To illustrate the concept, we represent in Fig. 6.2 a conforming (left)
and nonconforming (right) triangulation. In the remainder, we will only consider con-
forming triangulations. However, there exist very specific finite element approxima-
tions, not considered in the present book, which use nonconforming grids, i.e. grids
that do not satisfy the third condition. These methods are therefore more flexible, at
least as far as the choice of the computational grid is concerned. They allow, among
other things, the coupling of grids constructed from elements of different nature, for
instance triangles, quadrilaterals and, more generally, polygons in 2D and polyhedra in
3D. This is for instance the case of the so-called virtual elements [Bre15], or mimetic
finite differences [BLM14].

The fourth condition links the parameter h to the maximum diameter of the ele-
ments of Th.

For reasons linked to the interpolation error theory recalled in Chapter 4, we will
only consider regular triangulations Th, i.e. the ones for which, for each element K ∈

Fig. 6.2. Example of conforming (left) and nonconforming (right) grid
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Fig. 6.3. Diameter and sphericity for a triangular (left) and quadrilateral element (right)

Th, the ratio between the diameter hK and the sphericity ρK (i.e. the diameter of the
inscribed circle) is less that a given constant. More precisely, the grids satisfy Property
(4.37). Fig. 6.3 illustrates the meaning of diameter and sphericity for a triangular or
quadrilateral element.

In actual applications, it is customary to distinguish between structured and un-
structured grids. Structured grids basically use quadrangular elements and are char-
acterized by the fact that access to the vertices adjacent to a given node (or to the
elements adjacent to a given element) is immediate. Indeed, it is possible to estab-
lish a bijective relationship between the vertices of the grid and the pairs of integer
numbers (i, j), i = 1, . . . , Ni, j = 1, . . . , Nj such that, given the node of indices (i, j),
the four adjacent vertices are in correspondence with the indices (i− 1, j), (i+ 1, j),
(i, j − 1) and (i, j + 1). The total number of vertices is therefore NiNj. An analogous
association can be established between the elements of the grid and the pairs (I,J), I =
1, . . . , Ni −1, J = 1, . . . , Nj −1. Moreover, it is possible to identify directly the ver-
tices corresponding to each element, without having to memorize the connectivity
matrix explicitly (the latter is the matrix which, for each element, provides its vertex
numbering). Fig. 6.4 (left) illustrates such situation.

In a computer code, pairs of indices are typically replaced by a numbering formed
by a single integer that is biunivocally associated to the indices described above. For
instance, for the numbering of vertices, we can choose to associate the integer number
k = i+( j−1)Ni to each pair (i, j), and, conversely, we uniquely associate to the vertex
k the indices i = ((k − 1) mod Ni)+ 1 and j = ((k − 1)divNi)+ 1, where mod and
div denote the remainder and the quotient of the integer division.

In unstructured grids, the association between an element of the grid and its ver-
tices must instead be stored in the connectivity matrix explicitly.

Code developed for structured grids can benefit from the “structure” of the grid,
and, for an equal number of elements, it will normally produce a more efficient al-
gorithm, both in terms of memory and in terms of computational time, with respect
to a similar scheme on a non-structured grid. In contrast, non-structured grids offer a
greater flexibility both from the viewpoint of a triangulation of domains of complex
shape and for the possibility to locally refine/derefine the grid. Fig. 6.4 (right) shows
an example of a non-structured grid whose spacing has been adapted to the specific

h

h
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K

ρK
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problem under exam. Such localized refinements would be more difficult to obtain
using a structured type of grid.

Non-structured two-dimensional grids are generally formed by triangles, although
it is possible to have quadrangular non-structured grids.

6.3 Generation of structured grids

The most elementary idea to generate a structured grid on a domain Ω of arbitrary

shape consists in finding a regular and invertible map M between the square Ω̂ =
[0,1]× [0,1] (which we will call reference square) and Ω . Note that the map must
be regular up to the boundary (a requirement that can in some cases be relaxed). We
proceed by generating a uniform - say - reticulation in the reference square, then we

use the mapping M to transform the coordinates of the vertices in Ω̂ into the corre-
sponding ones in Ω .

There are different aspects of this procedure to be considered with due care.

1. Finding the map M is often difficult. Moreover, such map is not unique. In general
it is preferable that the latter is as regular as possible.

2. A uniform mesh of the reference square does not generally provide an optimal grid
in Ω . Indeed, we usually want to control the distribution of vertices in Ω , and
generally this can only be done by generating non-uniform grids on the reference
square, whose spacing will depend both on the desired spacing in Ω and on the
chosen map M .

3. Even if the mapping is regular (for instance of class C1), the elements of the grid
produced in Ω are not necessarily admissible, as the latter are not the image un-
der M of the corresponding elements in Ω̂ . For instance, if we desire piecewise
bilinear (Q1) finite elements in Ω , the edges of the latter will need to be parallel to
the Cartesian axes, while the image of a mesh Q1 on the reference square produces

i=I, j=J

(I,J)
(i,j+1) (i+1,j+1)

(i,j) (i+1,j)

0.5 0 0.5 1 1.5
1
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0.4

0.2
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0.2

0.4
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1

Fig. 6.4. (Left) (I,J)-Numbering of the vertices of an element in a structured grid. (Right) A
non-structured triangular grid in an external region of an airfoil, adapted to improve the accuracy
of the numerical solution for a given flow condition
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Fig. 6.5. Construction of a structured grid: on the left-hand side, identification of the map on the
boundary; on the right-hand side, grid corresponding to a uniform partitioning of the reference
square into 24×24 elements

curved edges in Ω if the mapping is nonlinear. In other words, the map is made
effective only on the vertices, not on the edges, of the grid of Ω̂ .

An option to construct the map M consists in using the transfinite interpolation
(10.3) that will be illustrated in Chap. 10. Such methodology is however not always
easily applicable. We will therefore illustrate in the remainder a more general method-
ology, which we will apply to a specific example, and refer to the specific literature
[TWM85, TSW99] for further examples and details.

Suppose we have a domainΩ whose boundary can be divided in four consecutive
parts Γ1, . . . , Γ4, as illustrated in Fig. 6.5 for a particularly simple domain. Moreover,
suppose we can describe such portions of ∂Ω via four parametric curves g1, . . . , g4

oriented as in the figure, where the parameter s varies between 0 and 1 on each curve.
This construction allows us to create a bijective map between the sides of the reference
square and the domain boundary. Indeed, we will associate each curve to the corre-
sponding side of the square, as exemplified in Fig. 6.5. We now need to understand
how to extend the mapping to the whole Ω̂ .

Remark 6.1. Note that the curves gi, i = 1, . . . ,4, are generally not differentiable on
all of (0,1), but can exhibit a finite number of “corners” where dgi

ds is undefined. In
Fig. 6.5, for instance, the curve g2 is not differentiable at the “corner” marked by a
small black square. •
An option to construct the map M : x̂ = (x̂, ŷ) �→ x(x,y) consists in solving the fol-
lowing elliptic system in Ω̂ :

−∂
2x

∂ x̂2 − ∂ 2x

∂ ŷ2 = 0 in Ω̂ = (0,1)2, (6.1)

with boundary conditions

x(x̂,0) = g1(x̂), x(x̂,1) = g3(x̂), x̂ ∈ (0,1),

x(1, ŷ) = g2(ŷ), x(0, ŷ) = g4(ŷ), ŷ ∈ (0,1).
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Fig. 6.6. Triangulation of a non-convex domain. Identification of the boundary map and mesh
obtained by solving the elliptic problem (6.1)

The vertices of a grid in the reference square can then be transformed into the ver-
tices of a grid in Ω . Note that the solution of problem (6.1) will generally be found
by using a numerical method, for instance via a finite difference (or finite element)
scheme. Moreover, to abide by the geometry of the boundary of Ω suitably, it is nec-
essary to ensure that a vertex is generated at each “edge”. In Fig. 6.5 (right) we illus-
trate the result of this methodology to the domain in Fig. 6.5 (left). It can be noted that
the grid corresponding to a regular partition of the reference square is not particularly
satisfactory if, for instance, we want to have a higher distribution of vertices at the
edge.

Moreover, the methodology described above is not applicable to non-convex do-
mains. Indeed, let us consider Fig. 6.6 where we show an L-shaped domain, with
the corresponding boundary partition, and the grid obtained by solving problem (6.1)
starting from a regular partition of the reference domain. It is evident that such grid is
unacceptable.

To solve such problems, we can proceed in several (not mutually exclusive) ways:

• we use in Ω̂ a non-uniform grid, that accounts for the geometric features of Ω ;
• we use a different map M , obtained, for instance, by solving the following new

differential problem instead of (6.1)

−α ∂
2x

∂ x̂2 −β ∂
2x

∂ ŷ2 + γx = f in Ω̂ , (6.2)

where α > 0, β > 0, γ ≥ 0 and f are suitable functions of x̂ and ŷ. They are chosen
depending on the geometry ofΩ and in order to control the vertex distribution;

• we partition Ω in sub-domains that are triangulated separately. This technique is
normally known as blockwise structured grid generation. If we wish the global
grid to be conforming, we need to be very careful on how to distribute the number
of vertices on the boundaries of the interfaces between the different sub-domains.
The problem can become extremely complex when the number of sub-domains is
very large.
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Methods of the type illustrated above are called elliptic schemes of grid generation,
as they are based on the solution of elliptic equations, such as (6.1) and (6.2).

The interested reader is referred to the above-cited specialized literature.

6.4 Generation of non-structured grids

We will here consider the generation of non-structured grids with triangular elements.
The two main algorithms used for this purpose are the Delaunay triangulation and the
advancing front technique.

6.4.1 Delaunay triangulation

A triangulation of a set of n points of R2 is a Delaunay triangulation if the disc cir-
cumscribed to each triangle contains no vertex (see Fig. 6.7).

A Delaunay triangulation features the following properties:

1. given a set of points, the Delaunay triangulation is unique, except for specific situ-
ations where M points (with M > 3) lie on a circle;

2. among all possible triangulations, the Delaunay triangulation is the one maximiz-
ing the minimum angle of the grid triangles (this is called the max-min regularity
property);

3. the set composed by the union of triangles is the convex figure of minimum surface
that encloses the given set of points (and is called convex hull).

The third property makes the Delaunay algorithm inapplicable to non-convex domains,
at least in its original form.

However, there exists a variant, called Constrained Delaunay Triangulation (CDT),
that allows to fix a priori a set of the grid edges to generate: the resulting grid nec-
essarily associates such edges to some triangle. In particular, we can a priori impose
those edges which define the boundary of the grid.

K P

Fig. 6.7. On the left-hand side, an example of Delaunay grid on a triangular shaped convex
domain. It can be easily verified that the circle circumscribed to each triangle does not include
any vertex of the grid. On the right-hand side, a detail of a grid which does not satisfy the
Delaunay condition: indeed, the vertex P falls inside the circle circumscribed to the triangle K
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In order to better specify the concept of CDT, we state beforehand the following defi-
nition: given two points P1 and P2, we will say that these are reciprocally visible if the
segment P1P2 passes through none of the boundary sides (or, more generally, the edges
we want to fix a priori). A constrained Delaunay triangulation satisfies the following
property: the interior of the circle circumscribed to each triangle K contains no vertex
visible from an internal point to K.

Once again, it can be proved that such triangulation is unique and satisfies the max-
min regularity property. The CDT is therefore not a proper Delaunay triangulation, as
some of its triangles could contain vertices belonging to the initial set. In any case,
the vertices are only the original ones specified in the set, and no further vertices are
added. However, two variants are possible: the Conforming Delaunay Triangulation
and the Conforming Constrained Delaunay Triangulation (or CCDT). The former is a
triangulation where each triangle is a Delaunay triangulation, but each edge to be fixed
can be further subdivided in sub-segments; in this case, new vertices can be added
to obtain shorter segments. The additional vertices are often necessary to guarantee
the max-min Delaunay property and at the same time to ensure that each prescribed
side is correctly represented. The second variant represents a triangulation where the
triangles are of the constrained Delaunay type. Also in this case, we can add additional
vertices, and the edges to be fixed cannot be divided in smaller segments. In the latter
case, however, the aim is not to guarantee that the edges are preserved, but to improve
the triangles’ quality.

Among the available software for the generation of Delaunay grids, or their vari-
ants, Triangle [She] allows to generate Delaunay triangulations, with the option to
modulate the regularity of the resulting grids in terms of maximal and minimal angles
of the triangles. The geometry is given as input to Triangle in the form of a graph,
called Planar Straight Line Graph (PSLG). Such codification is written in an input
file with extension .poly: the latter basically contains a list of vertices and edges, but
can also include information on cavities or concavities present in the geometry.

A sample .poly file is reported below.

# A box with eight vertices in 2D, no attribute, one boundary marker

8 2 0 1

# Vertices of the external box
1 0 0 0

2 0 3 0

3 3 0 0
4 3 3 0

# Vertices of the internal box

5 1 1 0
6 1 2 0

7 2 1 0

8 2 2 0
# Five sides with a boundary marker

5 1
1 1 2 5 # Left side of the external box

# Sides of the square cavity
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2 5 7 0

3 7 8 0

4 8 6 10
5 6 5 0

# One hole in the center of the internal box

1
1 1.5 1.5

The example above illustrates a geometry representing a square with a square hole.
The first part of the file lists the vertices, while the second one defines the sides to
fix. The first line declares that eight vertices are going to follow, that the spatial di-
mension of the grid is two (we are in R2), that no other attribute is associated to the
vertices and that a boundary marker is defined on each point. The attributes represent
possible physical properties relating to the mesh nodes, such as conductibility and vis-
cosity values, etc. The boundary markers are integer-valued flags which can be used
within a computational code to assign suitable boundary conditions at different ver-
tices. The following lines display the eight vertices, with their abscissae and ordinates,
followed by the boundary marker value, zero in this case. The first line of the second
part declares that there are five sides ensuing, and that on each of them a value will
be specified for the boundary marker. Then, five boundary sides follow one another,
specified by their respective endpoints, and by the value of the boundary marker. In
the final section of the file, a hole is defined by specifying the center coordinates, in
the last line, preceded by the progressive numbering (in this case, limited to 1) of the
holes.

The constrained Delaunay grid associated to this geometry, say box.poly, is ob-
tained via the command

triangle -pc box

The parameter -p declares that the input file is a .poly, while the option -c prevents
that the concavities are removed, as would normally happen without it. De facto, this
option forces the triangulation of the convex hull of the PSLG graph. The result will
be the creation of three files, box.1.poly, box.1.node and box.1.ele. The first
file contains the description of the sides of the produced triangulation, the second one
contains the node description, and the latter defines the connectivity of the generated
elements. For the sake of conciseness, we will not describe the format of these three
files in detail. Finally, we point out that the numerical value, 1 in this example, that
separates the name of these three files from their respective extensions, plays the role
of an iteration counter: Triangle can indeed successively refine or modify the trian-
gulations produced time after time. The resulting triangulation is depicted in Fig. 6.8.

A software attached to Triangle, called Show Me, allows to visualize the outputs
of Triangle. For instance, Fig 6.8 (left) is obtained via the command

showme box

To obtain a constrained conforming triangulation we must specify the command
triangle with other parameters, such as -q, -a or -u. The first one imposes a con-
straint on the minimum angle, the second one fixes a maximum value for the surface
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Fig. 6.8. Delaunay triangulation of a square with a square hole: CDT on the left-hand side,
CCDT on the right-hand side

of the triangles, while the third one forces the dimension of the triangles, typically
through an external function which the user must provide. For example, via the com-
mand

triangle -pcq20 box

we obtain the constrained conforming Delaunay triangulation reported in Fig. 6.8
(right), characterized by a minimum angle of 20◦. Finally, the conforming Delaunay
triangulation is obtained by further specifying the option -D. A more complex example
is represented in Fig. 6.9. The command used

triangle -pca0.01q30 naca

fixes the minimum angle to 30◦ and the maximum surface of the generated triangles
to 0.01. The initial PSLG file naca.poly describes the geometry via 65 vertices, as
many sides and one cavity. The final mesh consists of 711 vertices, 1283 elements and
137 edges on the boundary.

We refer to the wide on-line documentation and to the detailed help of Triangle
for several further usage options of the software.

Fig. 6.9. Delaunay triangulation of a naca 4415 airfoil
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Returning to the properties of Delaunay grids, the Delaunay triangulation does
not allow to control the aspect ratio (maximum over minimum edge) of the generated
elements, exactly because of the above-mentioned max-min property. On the other
hand, in some situations it can be useful to generate “stretched” triangles in a given
direction, for instance if we want to represent properly a boundary layer. To this end,
the algorithm called generalized Delaunay triangulation has been developed, where
the condition on the circumscribed triangle is replaced by an analogous condition on
the ellipse circumscribed to the triangle under exam. In this way, by suitably ruling the
length and orientation of the axes of each ellipse, we can generate elements stretched
in the desired direction.

The most currently used algorithms for the generation of Delaunay grids are incre-
mental, i.e. they generate a sequence of Delaunay grids by adding a vertex at a time.
Hence, it is necessary to find procedures providing the new vertices in accordance with
the desired grid spacing, and stopping such procedure as soon as the grid generated
this way results to be unsatisfactory. For further details, [GB98] and [TSW99, Chap.
16] can be consulted, among others. A detailed description of the geometric properties
of the constrained Delaunay triangulation, both for domains of R2 and of R3, can be
found in [BE92].

6.4.2 Advancing front technique

We roughly described another widely used technique used for the generation of non-
structured grids, the advancing front technique. A necessary ingredient is the knowl-
edge of the desired spacing to be generated for the grid elements. Let us then suppose
that a spacing function H , defined on Ω , provides for each point P of Ω the dimen-
sions of the grid desired in that point, for instance, through the diameter hK of the
elements that must be generated in a neighborhood of P. If we want to control the
shape aspect of the generated elements, H will have a more complex shape. In fact,
it will be a positive definite symmetric tensor, i.e. H :Ω → R2×2 such that, for each
point P of the domain, the (perpendicular) eigenvectors of H denote the direction
of maximum and minimum stretching of the triangles that will need to be generated
in the neighborhood of P, while the eigenvalues (more precisely, the square roots of
the eigenvalue inverses), characterize the two corresponding spacings (see [GB98]).
In the remainder, we will only consider the case where H is a scalar function.

The first operation to perform is to generate the vertices along the domain bound-
ary. Let us suppose that ∂Ω is described as the union of parametric curves gi(s),
i = 1, . . .N, for instance splines or polygonal splits. For simplicity, we assume that,
for each curve, the parameter s varies between 0 and 1. If we wish to generate Ni + 1
vertices along the curve gi it is sufficient to create a vertex for all the values of s for
which the function

fi(s) =
∫ s

0
H

−1(gi(τ))
∣∣∣dgi

ds
(τ)
∣∣∣dτ
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New node

Chosen edge

Front New front

Fig. 6.10. Advancement of the front. The previously triangulated part of the domain has been
shaded

takes integer values. More precisely, the curvilinear coordinates s( j)
i of the nodes to

generate along the curve gi satisfy the relations

fi(s
( j)
i ) = j, j = 0, · · · ,Ni with the constraints s(0)i = 0,s(Ni)

i = 1.

The procedure is similar to the one described in Sect. 6.1. Note that the term | dgi
ds |

accounts for the intrinsic metric of the curve.
This being done, the advancing front process can start. The latter is described

by a data structure that contains the list of the sides defining the boundary between
the already triangulated portion of Ω and the one yet to be. At the beginning of the
process, the front contains the boundary sides.

During the process of grid generation, each side of the front is available to create
a new element, which is constructed by connecting the chosen side with a new or
previously existing vertex of the grid. The choice whether to use an existing vertex
or to create a new one depends on several factors, among which the compatibility
between the dimension and the shape of the element that would be generated and
the ones provided by the spacing function H . Moreover, the new element must not
intersect any side of the front.

Once the new element has been generated, its new sides will be “added” to the
front so that the latter describes the new boundary between the triangulated and non-
triangulated part, while the initial side is removed from the data list. In this way, during
the generation process the front will progress from the already triangulated zones to-
ward the zone yet to be triangulated (see Fig. 6.10).

The general advancing front algorithm hence consists of the following steps:

1. define the boundary of the domain to be triangulated;
2. initialize the front by a piecewise linear curve conforming to the boundary;
3. choose the side to be removed from the front using some criterion (typically the

choice of the shortest side provides good quality meshes);
4. for the side, say AB, chosen this way:
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a) select the “candidate” vertex C, i.e. the point inside the domain whose distance
from AB is prescribed by the desired spacing function H ;

b) seek an already existing point C′ on the front in a suitable neighbourhood of C.
If the search is successful, C′ becomes the new candidate point C. Continue the
search;

c) establish whether the triangle ABC intersects some other side of the front. If so,
select a new candidate point from the front and start back from step 4.b);

5. add the new point C, the new edges and the new triangle ABC to the corresponding
lists;

6. erase the edge AB from the front and add the new edges;
7. if the front is non-empty, continue from point 3.

It is obvious that if we wish the computational cost to be a linear function of
the number of generated elements, it will be necessary to make the above-described
operations as independent as possible from the number of dimensions of the grid we
are generating and, in particular, from the dimensions of the advancing front. Such
an objective is not trivial, especially because operations such as the control of the
intersection of a new triangle, or the search for the vertices of the front close to a
generic point, span the whole front. We refer for this to the specialized literature, and
in particular to Chaps. 14 and 17 of [TSW99].

As previously pointed out in the algorithm description, the quality of the generated
grid depends on the procedure of choice of the front edge on which to generate the new
triangle. In particular, a frequently adopted technique consists in choosing the side
with the smallest length: intuitively, this also allows to satisfy non-uniform spacing
requirements, without risking that the zones where a more dense node distributions is
required are overwritten by triangles associated to a coarser spacing. An example of
mesh obtained through such technique, in correspondence of the choice H (x1,x2) =
e4sin(8πx1)e−2x2 , is represented in Fig. 6.11.

By implementing the suitable tricks and data structures, the advancing algorithm
provides a grid whose spacing is coherent with the requested one, with computational
times almost proportional to the number of generated elements.

The advancing front technique can also be used for the generation of quadrangular
grids.

6.5 Regularization techniques

Once the grid has been generated, a post-processing can be necessary in order to im-
prove its regularity. Some methods allow to transform the grid via operations that
improve the triangles’ shape. In particular, we will examine regularization techniques
that modify either the topological features (by diagonal exchange) or the geometrical
features (by node displacement).
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Fig. 6.11. Advancing front technique. Example of non-uniform spacing
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Fig. 6.12. The two configurations obtained via diagonal exchange in the convex quadrilateral
formed by two adjacent elements. The two configurations are compared based on an optimality
criterion

6.5.1 Diagonal swap

The exchange of diagonals is a technique allowing to modify the topology of the grid
without changing the position and number of its vertices. Such technique is based
on the fact that a quadrilateral can be subdivided into a couple of triangles sharing a
common side in two different ways (see Fig. 6.12).
In general, diagonal exchange is used to improve the quality of non-structured grids
by following a given optimality criterion. Suppose, for example, the goal is to avoid
angles that are too big, as when the sum of two opposite angles is bigger than π .
Exchanging the diagonals would in this case solve the problem.

A general scheme for a possible diagonal exchange algorithm is obtained by defin-
ing the optimality criterion at the element level, under the form of an appropriate non-
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negative function S : K →R+∪{0} that takes value 0 when K has the “optimal” shape
and dimension. For instance, we can use

S(K) =

∣∣∣∣ |K|
∑3

i=1 |eK
i |2

−
√

3
12

∣∣∣∣, (6.3)

where |K| denotes the size of K, eK
i represents a generic side of K and |eK

i | is its length.
Using this function, we privilege triangles that are close to being equilateral, for which
S(K) = 0. Thus, we will generally obtain a grid as regular as possible, which does not
take the spacing into account. With reference to Fig. 6.12, the algorithm will proceed
as follows:

1. Cycle 0: set the exchanged side counter to zero: swap = 0;
2. span all internal sides e of the current mesh;
3. if the two triangles adjacent to e form a convex quadrilateral:

a) compute G = S2(K1)+ S2(K2)−
[
S2(K∗

1 )+S2(K∗
2 )
]
;

b) if G≥ τ , with τ > 0 a predetermined, then execute the diagonal exchange (hence
modify the current grid) and set swap = swap+ 1;

4. if swap > 0 start back from Cycle 0. Otherwise, the procedure terminates.

It can be easily verified that this algorithm necessarily terminates in a finite number of
steps because, for each diagonal exchange, the positive quantity ∑K S2(K), where the
sum is extended to all the triangles of the current grid, is reduced by the finite quantity
G (note that, although the grid is modified, at each diagonal exchange the number of
elements and sides remains unchanged).

Remark 6.2. It is not always a good option to construct the optimality function S at
the element level. For instance, based on the available data structures, S can also be
associated to the nodes or to the sides of the grid. •

The diagonal exchange technique is also the basis for a widely used algorithm (the
Lawson algorithm) for the Delaunay triangulation. It can indeed be proved that starting
from any triangulation of a convex domain, the corresponding Delaunay triangulation
(which, we recall, is unique) can be obtained through a finite number of diagonal
exchanges. Moreover, the maximum number of necessary swaps for this purpose can
be determined a priori and is a function of the number of grid vertices. The technique
(and convergence results) can be extended to constrained Delaunay triangulations,
through a suitable modification of the algorithm. We refer to the specialized literature,
for instance [GB98], for the details.

6.5.2 Node displacement

Another method to improve the quality of the grid consists in moving its points with-
out modifying its topology. Let us consider an internal vertex P and the polygon KP

constituted by the union of the grid elements containing it. The set KP is often called
“patch” associated to P and has been considered in Sect. 4.6. For an example, see
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Fig. 4.20, right. A regularization technique, called Laplacian regularization, or barycen-
trization, consists in moving P to the center of gravity of KP, that is in computing its
new position xP as follows:

xP = |KP|−1
∫

KP

xdx

(see Fig. 6.13). This procedure will obviously be iterated on all the internal vertices of
the mesh and repeated several times. In case of convergence, the final grid is the one
minimizing the quantity

∑
P

∫
KP

(xP −x)2dx, (6.4)

where the sum is extended to all the internal vertices of the grid. The name of such
procedure derives from the known property of harmonic functions (those in the kernel
of the Laplacian) which take in a point of the domain a value equal to that of the
average on a closed curve containing the point.

The final grid will generally depend on the order with which the vertices are dis-
placed, one after the other. Moreover, note that this procedure can provide an unac-

P

P

Fig. 6.13. Displacement of a point to the center of gravity of the convex polygon KP formed by
the union of the elements containing P

ceptable grid if KP is a concave polygon, as xP can fall out of the polygon. We present
an extension of the procedure that is suitable for generic patches of elements. Consider
Fig. 6.14, which shows a concave patch KP. We define CP as the locus of points of KP

“visible” to all boundary points of KP, that is CP = {A ∈KP : AB ⊂KP,∀B ∈ ∂KP};
note that CP is always convex. The modification of the regularization algorithm con-
sists in placing P not in the center of gravity of KP, but in that of CP, as illustrated in
Fig. 6.14. Clearly, in the case of convex patches, we have CP =KP. The set CP can be
constructed in a computationally efficient manner by using suitable algorithms, whose
description is beyond the scope of this book.

Another option consists in displacing the vertex to the center of gravity of the
boundary of KP (or CP in the case of concave patches), i.e. in setting

xP = |∂KP|−1
∫
∂KP

xdx.
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P

P

Fig. 6.14. Modification of the Laplacian regularization algorithm for concave patches. On the
left-hand side, the initial patch; on the right-hand side, the modification due to regularization.
We have shaded the concave polygon CP
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Fig. 6.15. Example of regularization through both diagonal exchange and node displacement

This is equivalent to minimizing the square of the distance between the vertex P and
the sides forming the patch boundary.

A further technique, often found in the literature, consists in displacing each inter-
nal vertex to the center of gravity of the vertices belonging to the associated patch, i.e.
in computing the new position of each internal vertex P via

xP =
(
∑

N∈KP
N 
=P

xN

)/(
∑

N∈KP
N 
=P

1
)
,

where the sum is extended to all the vertices N belonging to the patch. Despite be-
ing the simplest methodology, the latter often yields bad results, in particular if the
distribution of vertices inside the patch is very irregular. Moreover, it is more diffi-
cult to extend it to concave patches. Thus the two previous procedures are preferable.
In Fig. 6.15 we present an example of successive application of both of the above-
described regularization techniques. Note that the regularization algorithms presented
here tend to uniform the grid, and therefore to prevent its thickenings or coarsenings
due for instance to grid adaptivity procedures such as the ones described in Chap.
4. However, it is possible to modify them to account for a non-uniform spacing. For
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instance, a weighted barycentrization can be used, i.e. by setting

xP =

(∫
KP

μ(x)dx

)−1∫
KP

μ(x)xdx,

where the strictly positive weight function μ depends on the grid spacing function.
In the case of non-uniform spacing, μ will take larger values in the zones where the
grid must be finer. When choosing for instance μ = H −1 the resulting grid (approxi-
mately) minimizes

∑
P

∫
KP

[
H

−1(x)(xP − x)
]2

dx,

where the sum is extended to the internal vertices.
Also concerning the diagonal exchange procedure we can take the spacing into ac-

count when evaluating the “optimal” configuration, for instance by suitably changing
the definition of function S(K) in (6.3).



Chapter 7

Algorithms for the solution of linear systems

This chapter serves as a quick and elementary introduction of some of the basic al-
gorithms that are used to solve a system of linear algebraic equations. For a more
thorough presentation we advise the reader to refer to, e.g., [QSS07, Chaps. 3 and 4],
[Saa96] and [vdV03].

A system of m linear equations in n unknowns is a set of algebraic relations of the
form

n

∑
j=1

ai jx j = bi, i = 1, . . . ,m (7.1)

x j being the unknowns, ai j the system’s coefficients and bi given numbers. System
(7.1) will more commonly be written in matrix form

Ax = b, (7.2)

having denoted by A = (ai j) ∈ Rm×n the coefficient matrix, b=(bi) ∈ Rm being the
right hand side vector and x=(xi) ∈ Rn the unknown vector. We call solution of (7.2)
any n-tuple of values xi verifying (7.1).

In the following sections we recall some numerical techniques for the solution of
(7.2) in the case where m = n; we will obviously suppose that A is non-singular, i.e.
that det(A) 
= 0. Numerical methods are called direct if they lead to the solution of
the system in a finite number of operations, or iterative if they require a (theoretically)
infinite number.

7.1 Direct methods

The solution of a linear system can be found through the Gauss elimination method
(GEM), where the initial system Ax=b is reduced in n steps to an equivalent system
(i.e. having the same solution) of the form A(n)x = b(n), where A(n) = U is a nonsin-
gular upper triangular matrix and b(n) is a new source term. It will be possible to solve
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the latter system with a computational cost of the order of n2 operations, through the
following backward substitution algorithm:

xn =
b(n)n

unn
,

xi =
1
uii

(
b(n)i −

n

∑
j=i+1

ui jx j

)
, i = n−1, . . . ,1.

(7.3)

Denoting by A(1)x = b(1) the original system, the kth step of GEM is achieved via the
following formulae:

mik =
a(k)ik

a(k)kk

, i = k+1, . . . ,n,

a(k+1)
i j = a(k)i j −mika(k)k j , i, j = k+1, . . . ,n

b(k+1)
i = b(k)i −mikb(k)k , i = k+1, . . . ,n.

(7.4)

We note that in this way, the elements a(k+1)
i j with j = k and i = k+ 1, . . . ,n are null.

The elements mik are called multipliers, while the denominators a(k)kk are named pivotal
elements. The GEM can obviously be achieved only if all the pivotal elements are
non null. This happens, for instance, for symmetric positive definite matrices and for
strict diagonal dominant ones. In general, it will be necessary to resort to the pivoting
method, i.e. to the swapping of rows (and/or columns) of A(k), in order to ensure that

the element a(k)kk be non-null.
To complete the Gauss eliminations, we need 2(n−1)n(n+ 1)/3+n(n−1) flops, to
which we must add n2 flops to solve the upper triangular system Ux = b(n) via the
backward substitution method. Hence, about (2n3/3+2n2) flops are needed to solve
the linear system via the GEM. More simply, by neglecting lower order terms in n, it
can be said that the Gaussian elimination process requires 2n3/3 flops.

The GEM is equivalent to factorizing the matrix A, i.e. to rewriting A as the prod-
uct LU of two matrices. The matrix U, upper triangular, coincides with the matrix
A(n) obtained at the end of the elimination process. The matrix L is lower triangular,
its diagonal elements are equal to 1 while the ones located in the remaining lower
triangular portion are equal to the multipliers.

Once the matrices L and U are known, the solution of the initial linear system
simply involves the (successive) solution of the two triangular systems

Ly = b, Ux = y.

Obviously, the computational cost of the factorization process is the same as the one
required by the GEM. The advantages of such a reinterpretation are evident: as L and
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U depend on A only, and not on the known term, the same factorization can be used
to solve different linear systems having the same matrix A, but a variable known term
b (think for instance of the discretization of a linear parabolic problem by an implicit
method where at each time step it is necessary to solve a system with the same matrix
all the time, but with a different constant term). Consequently, as the computational
cost is concentrated in the elimination procedure, we have in this way a considerable
reduction in the number of operations when we want to solve several linear systems
having the same matrix.

If A is a positive-definite, symmetric matrix, the LU factorization can be con-
veniently specialized. Indeed, there exists only one upper triangular matrix H with
positive elements on the diagonal such that

A = HTH. (7.5)

Equation (7.5) is the so-called Cholesky factorization. The elements hi j of HT are
given by the following formulae: h11 =

√
a11 and, for i = 2, . . . ,n:

hi j =

(
ai j −

j−1

∑
k=1

hikh jk

)
/h j j, j = 1, . . . , i−1,

hii =

(
aii −

i−1

∑
k=1

h2
ik

)1/2

.

This algorithm only requires about n3/3 flops, i.e. it saves about twice the computing
time of the LU factorization and about half the memory.

Let us now consider the particular case of a linear system with non-singular tridi-
agonal matrix A of the form

A =

⎡⎢⎢⎢⎢⎢⎣
a1 c1 0
b2 a2

. . .
. . . cn−1

0 bn an

⎤⎥⎥⎥⎥⎥⎦ .

In this case, the matrices L and U of the LU factorization of A are bidiagonal matrices
of the type

L =

⎡⎢⎢⎢⎢⎣
1 0
β2 1

. . .
. . .

0 βn 1

⎤⎥⎥⎥⎥⎦ , U =

⎡⎢⎢⎢⎢⎢⎣
α1 c1 0

α2
. . .
. . . cn−1

0 αn

⎤⎥⎥⎥⎥⎥⎦ .
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The unknown coefficients αi and βi can be easily computed by the following equa-
tions:

α1 = a1, βi =
bi

αi−1
, αi = ai −βici−1, i = 2, . . . ,n.

This algorithm is named Thomas’ algorithm and can be seen as a particular kind of
LU factorization without pivoting.

7.2 Iterative methods

Iterative methods aim at constructing the solution x of a linear system as the limit
of a sequence {x(n)} of vectors. To obtain the single elements of the sequence, com-
puting the residue r(n) = b−Ax(n) of the system is required. In the case where the
matrix is full and of order n, the computational cost of an iterative method is there-
fore of the order of n2 operations per iteration. Such cost must be compared with the
approximately 2n3/3 operations required by a direct method. Consequently, iterative
methods are competitive with direct methods only if the number of necessary itera-
tions to reach convergence (within a given tolerance) is independent of n or depends
on n in a sub-linear way.

Other considerations in the choice between an iterative method and a direct one
intervene as soon as the matrix is sparse.

7.2.1 Classical iterative methods

A general strategy to construct iterative methods is based on an additive decomposi-
tion, called splitting, starting from a matrix A of the form A=P−N, where P and N are
two suitable matrices and P is non-singular. For reasons which will become evident in
the remainder, P is also called preconditioning matrix or preconditioner.

Precisely, given x(0), we obtain x(k) for k ≥ 1 by solving the new systems

Px(k+1) = Nx(k) +b, k ≥ 0 (7.6)

or, equivalently,

x(k+1) = Bx(k) +P−1b, k ≥ 0 (7.7)

having denoted by B = P−1N the iteration matrix.
We are interested in convergent iterative methods, i.e. such that lim

k→∞
e(k) = 0 for

each choice of the initial vector x(0), having denoted by e(k) = x(k)−x the error. With
a recursive argument we find

e(k) = Bke(0), ∀k = 0,1, . . . (7.8)

so can conclude that an iterative method of the form (7.6) is convergent if and only if
ρ(B) < 1, ρ(B) being the spectral radius of the iteration matrix B, i.e. the maximum
modulus of the eigenvalues of B.
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Equation (7.6) can also be formulated in the form

x(k+1) = x(k) +P−1r(k), (7.9)

having denoted by

r(k) = b−Ax(k) (7.10)

the residue at step k. Equation (7.9) thus expresses the fact that to update the solution
at step k+1, it is necessary to solve a linear system with matrix P. Hence, beside being
non-singular, P must be invertible at a low computational cost if we want to prevent
the overall cost of the scheme from increasing excessively (obviously, in the limit case
where P is equal to A and N=0, method (7.9) converges in only one iteration, but at
the cost of a direct method).

Let us now see how to accelerate the convergence of the iterative methods (7.6) by
exploiting the latter form. We denote by

RP = I−P−1A

the iteration matrix associated to method (7.9). Equation (7.9) can be generalized by
introducing a suitable relaxation (or acceleration) parameter α . In this way, we obtain
the stationary Richardson methods (or, simply, Richardson methods), of the form

x(k+1) = x(k) +αP−1r(k), k ≥ 0. (7.11)

More generally, supposing α to be dependent on the iteration index, we obtain the
non-stationary Richardson methods given by

x(k+1) = x(k) +αkP−1r(k), k ≥ 0. (7.12)

If we set α = 1, we can recover two classical iterative methods: the Jacobi method
if P = D(A) (the diagonal part of A), the Gauss-Seidel method if P = L(A) (the lower
triangular part of A).
The iteration matrix at step k for such methods is given by

R(αk) = I−αkP−1A,

(note that the latter depends on k). In the case where P=I, the methods under exam will
be called non preconditioned.

We can rewrite (7.12) (and therefore also (7.11)) in a form of greater computa-
tional interest. Indeed, having set z(k) = P−1r(k) (the so-called preconditioned residue),
we have that x(k+1) = x(k) +αkz(k) and r(k+1) = b − Ax(k+1) = r(k) − αkAz(k). To
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summarize, a non-stationary Richardson method at step k+ 1 requires the following
operations:

solving the linear system Pz(k) = r(k),

computing the acceleration parameter αk,

updating the solution x(k+1) = x(k) +αkz(k),

updating the residue r(k+1) = r(k)−αkAz(k).

(7.13)

As far as the convergence of the stationary Richardson method (for which αk = α , for
each k ≥ 0) is concerned, the following result holds:

Property 7.1. If P is a non-singular matrix, the stationary Richardson method
(7.11) is convergent if and only if

2Reλi

α|λi|2 > 1 ∀i = 1, . . . ,n, (7.14)

λi being the eigenvalues of P−1A.
Moreover, if we suppose that P−1A has positive real eigenvalues, ordered in such
a way that λ1 ≥ λ2 ≥ . . .≥ λn > 0, then the stationary Richardson method (7.11)
converges if and only if 0 < α < 2/λ1. Having set

αopt =
2

λ1 +λn
, (7.15)

the spectral radius of the iteration matrix Rα is minimal if α = αopt , with

ρopt = min
α

[ρ(Rα)] =
λ1 −λn

λ1 +λn
. (7.16)

If P and A are both symmetric and positive definite, it can be proved that the Richard-
son method converges monotonically with respect to the vector norms ‖ ·‖2 and ‖ ·‖A.
We recall that ‖v‖2 = (∑n

i=1 v2
i )

1/2 and ‖v‖A = (∑n
i, j=1 viai jv j)

1/2.
In this case, thanks to (7.16), we can relate ρopt with the condition number introduced
in Sect. 4.5.2 in the following way:

ρopt =
K2(P−1A)− 1
K2(P−1A)+ 1

, αopt =
2‖A−1P‖2

K2(P−1A)+ 1
. (7.17)

The importance of the choice of the preconditioner P in a Richardson method is there-
fore clear. We refer to Chap. 4 of [QSS07] for some examples of preconditioners.
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7.2.2 Gradient and conjugate gradient methods

The optimal expression of the acceleration parameter α , indicated in (7.15), turns out
to be of little practical utility, as it requires knowing the maximum and minimum
eigenvalues of the matrix P−1A. In the particular case of positive definite symmetric
matrices, it is however possible to evaluate the optimal acceleration parameter in a
dynamic way, that is as a function of quantities computed by the method itself at step
k, as we show below.

First of all, we observe that in the case where A is a symmetric positive defi-
nite matrix, solving system (7.2) is equivalent to finding the minimum x ∈ Rn of the
quadratic form

Φ(y) =
1
2

yT Ay− yT b,

called energy of system (7.2).
The problem is thus reduced to determining the minimum point x of Φ starting from
a point x(0) ∈Rn and, consequently, choosing suitable directions along which to move
to approach the solution x as quickly as possible. The optimal direction, joining x(0)

and x, is obviously unknown a priori: we will therefore have to move from x(0) along
another direction d(0) and fix a new point x(1) on the latter, then repeat the procedure
until convergence.

At the generic step k we will then determine x(k+1) as

x(k+1) = x(k) +αkd(k), (7.18)

αk being the value fixing the length of the step along d(k). The most natural idea,
consisting in taking as downhill direction that of the greatest increase of Φ , given by
r(k) =−∇Φ(x(k)), leads to the gradient or steepest descent method.
The latter leads to the following algorithm: given x(0) ∈ Rn, and having set r(0) =
b−Ax(0), for k = 0,1, . . . until convergence, we compute

αk =
r(k)

T
r(k)

r(k)
T

Ar(k)
,

x(k+1) = x(k) +αkr(k),

r(k+1) = r(k)−αkAr(k).

Its preconditioned version takes the following form: given x(0) ∈ Rn, and having set
r(0) = b−Ax(0), z(0) = P−1r(0), for k = 0,1, ... until convergence, we compute

αk =
z(k)

T
r(k)

z(k)
T

Az(k)
,

x(k+1) = x(k) +αkz(k).

r(k+1) = r(k)−αkAz(k),

Pz(k+1) = r(k+1).
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As far as the convergence properties of the descent method are concerned, the follow-
ing result holds

Theorem 7.1. If A is symmetric and positive definite, the gradient method con-
verges for each value of the initial datum x(0) and

‖e(k+1)‖A ≤ K2(A)−1
K2(A)+1

‖e(k)‖A, k = 0,1, . . . (7.19)

where ‖ · ‖A is the previously defined energy norm.

A similar result, with K2(A) replaced by K2(P−1A), holds also in the case of the
preconditioned gradient method, as long as we assume that P is also symmetric and
positive definite.

An even more effective alternative consists in using the conjugate gradient method,
where the descent directions no longer coincide with that of the residue. In particular,
having set p(0) = r(0), we seek directions of the form

p(k+1) = r(k+1)−βkp(k), k = 0,1, . . . (7.20)

where the parameters βk ∈ R are to be determined so that

(Ap( j))T p(k+1) = 0, j = 0,1, . . . ,k. (7.21)

Directions of this type are called A-orthogonal (or A-conjugated). The method in the
preconditioned case then takes the form: given x(0) ∈ Rn, having set r(0) = b−Ax(0),
z(0) = P−1r(0) and p(0) = z(0), the k-th iteration, with k = 0,1 . . . , is

αk =
p(k)T

r(k)

(Ap(k))T p(k)
,

x(k+1) = x(k) +αkp(k),

r(k+1) = r(k)−αkAp(k),

Pz(k+1) = r(k+1),

βk =
(Ap(k))T z(k+1)

p(k)T
Ap(k)

,

p(k+1) = z(k+1)−βkp(k).

The parameter αk is chosen in order to guarantee that the error ‖e(k+1)‖A be min-
imized along the descent direction p(k). The parameter βk, instead, is chosen so that
the new direction p(k+1) is A-conjugate to p(k), that is (Ap(k))T p(k+1) = 0. Indeed, it
can be proved (thanks to the induction principle) that if the latter relation is verified,
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then so are all the ones in (7.21) relative to j = 0, ...,k−1. For a complete justification
of the method, see e.g. [QSS07, Chap. 4] or [Saa96].
It can be proved that the conjugate gradient method converges in exact arithmetics in
at most n steps, and that

‖e(k)‖A ≤ 2ck

1+ c2k ‖e(0)‖A, (7.22)

with

c =

√
K2(P−1A)− 1√
K2(P−1A)+ 1

. (7.23)

In the absence of roundoff errors, the CG method can therefore be seen as a direct
method as it terminates after a finite number of operations.
On the other hand, for matrices of large dimension, it is usually applied as an itera-
tive method and is arrested as soon as an error estimator (as for instance the relative
residue) is less than a given tolerance.
Thanks to (7.23), the dependence on the reduction factor of the error on the matrix
condition number is more favourable than the one of the gradient method (due to the
presence of the square root of K2(P−1A)).

It can be noted that the number of iterations required for convergence (up to a pre-
scribed tolerance) is proportional to 1

2

√
K2(P−1A) for the preconditioned conjugate

gradient method, a clear improvement with respect to 1
2 K2(P−1A) for the precondi-

tioned gradient method. Of course, the PCG method is costlier per iteration, both in
CPU time and storage.

7.2.3 Krylov subspace methods

Generalizations of the gradient method in the case where the matrix A is not symmet-
ric lead to the so-called Krylov methods. Notable examples are the GMRES method
and the conjugate bigradient method BiCG, as well as its stabilized version, the
BiCGSTAB method. The interested reader can consult [QSS07, Chap. 4], [Saa96]
and [vdV03].

Here we briefly review the GMRES (generalized minimal residual) method. We
start by a revisitation of the Richardson method (7.13) with P= I; the residual at the
k-th step can be related to the initial residual by

r(k) =
k−1

∏
j=0

(I−α jA)r(0) = pk(A)r(0), (7.24)

where pk(A) is a polynomial in A of degree k. If we introduce the space

Km(A;v) = span{v,Av, . . . ,Am−1v}, (7.25)

it follows from (7.24) that r(k) ∈ Kk+1(A;r(0)). The space defined in (7.25) is called
the Krylov subspace of order m associated with the matrix A and the vector v. It is a
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subspace of Rn that can be written as u = pm−1(A)v, where pm−1 is a polynomial in
A of degree ≤ m−1.

Similarly, the k-th iterate of the Richardson method can be represented as follows

x(k) = x(0) +
k−1

∑
j=0
α jr

( j),

whence x(k) belongs to the space

Wk = {v = x(0) + y, y ∈ Kk(A;r(0))}. (7.26)

Notice also that ∑k−1
j=0α jr

( j) is a polynomial in A of degree less than k− 1. In the non-
preconditioned Richardson method we are thus looking for an approximate solution to
x in the space Wk. More generally, one can devise methods that search for approximate
solutions of the form

x(k) = x(0) + qk−1(A)r(0), (7.27)

where qk−1 is a polynomial selected in such a way that x(k) is, in a sense that must be
made precise, the best approximation of x in Wk. A method that looks for a solution of
the form (7.27) is called a Krylov method.

A first question concerning Krylov subspace iterations is whether the dimension
of Km(A;v) increases as the order m grows. A partial answer is provided below.

Property 7.2. Let A ∈ Rn×n and v ∈ Rn. The Krylov subspace Km(A;v) has di-
mension equal to m iff the degree of v with respect to A, denoted by degA(v),
is not less than m; the degree of v is defined as the minimum degree of a monic
nonnull polynomial p in A for which p(A)v = 0.

The dimension of Km(A;v) is thus equal to the minimum between m and the degree
of v with respect to A and, as a consequence, the dimension of the Krylov subspaces
is a nondecreasing function of m. The degree of v cannot be greater than n due to the
Cayley-Hamilton theorem (see [QSS07, Sect. 1.7]).

Example 7.1. Consider the 4 × 4 matrix A = tridiag4(−1,2,−1). The vector v =
[1,1,1,1]T has degree 2 with respect to A since p2(A)v= 0 with p2(A) = I4−3A+A2

(I4 is the 4×4 identity matrix), while there is no monic polynomial p1 of degree 1 for
which p1(A)v = 0. All Krylov subspaces from K2(A;v) on have therefore dimension
equal to 2. The vector w = [1,1,−1,1]T has, instead, degree 4 with respect to A. �

For a fixed m, it is possible to compute an orthonormal basis for Km(A;v) using
the so-called Arnoldi algorithm.

Setting v1 = v/‖v‖2, this method generates an orthonormal basis {vi} for Km(A;v1)
using the Gram-Schmidt procedure (see [QSS07, Sect. 3.4.3]). For k = 1, . . . ,m, the
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Arnoldi algorithm computes

hik = vT
i Avk, i = 1,2, . . . ,k,

wk = Avk −
k

∑
i=1

hikvi, hk+1,k = ‖wk‖2.
(7.28)

If wk = 0 the process terminates and in such a case we say that a breakdown of the
algorithm has occurred; otherwise, we set vk+1 =wk/‖wk‖2 and the algorithm restarts,
incrementing k by 1.

It can be shown that if the method terminates at step m then the vectors v1, . . . ,vm

form a basis for Km(A;v). In such a case, if we denote by Vm ∈Rn×m the matrix whose
columns are the vectors vi, we have

VT
mAVm = Hm, VT

m+1AVm = Ĥm, (7.29)

where Ĥm ∈ R(m+1)×m is the upper Hessenberg matrix whose entries hi j are given by
(7.28), and Hm ∈Rm×m is the restriction of Ĥm to the first m rows and m columns.

The algorithm terminates at an intermediate step k <m iff degA(v1) = k. As for the
stability of the procedure, all the considerations valid for the Gram-Schmidt method
hold. For more efficient and stable computational variants of (7.28), we refer to [Saa96].

We are now ready to solve the linear system (7.2) by a Krylov method. We look for
the iterate x(k) under the form (7.27); for a given r(0), x(k) is in the unique element in
Wk which satisfies a criterion of minimal distance from x. The criterion for selecting
x(k) is precisely the distinguishing feature of a Krylov method.

The most natural idea consists in searching for x(k) ∈Wk as the vector which min-
imizes the Euclidean norm of the error. This approach, however, does not work in
practice since x(k) would depend on the (unknown) solution x. Two alternative strate-
gies can be pursued:

1. compute x(k) ∈Wk by enforcing that the residual r(k) is orthogonal to any vector in
Kk(A;r(0)), i.e., we look for x(k) ∈Wk such that

vT (b−Ax(k)) = 0 ∀v ∈ Kk(A;r(0)); (7.30)

2. compute x(k) ∈Wk by minimizing the Euclidean norm of the residual ‖r(k)‖2, i.e.

‖b−Ax(k)‖2 = min
v∈Wk

‖b−Av‖2. (7.31)

Alternative 1 leads to the Arnoldi method (more commonly known as FOM, full or-
thogonalization method), while Alternative 2 yields the GMRES (generalized minimal
residual) method.

We shall assume that k steps of the Arnoldi algorithm have been carried out, so that
an orthonormal basis for Kk(A;r(0)) has been generated and stored into the column
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vectors of the matrix Vk with v1 = r(0)/‖r(0)‖2. In such a case the new iterate x(k) can
always be written as

x(k) = x(0) +Vkz(k), (7.32)

where z(k) must be selected according to a suitable criterion that we are going to
specify. Consequently we have

r(k) = r(0)−AVkz(k). (7.33)

Since r(0) = v1‖r(0)‖2, and using (7.29), relation (7.33) becomes

r(k) = Vk+1(‖r(0)‖2e1 − Ĥkz(k)), (7.34)

where e1 is the first vector of the canonical basis of Rk+1. Therefore, in the GMRES
method the solution at step k can be computed through (7.32), provided

z(k) minimizes ‖ ‖r(0)‖2e1 − Ĥkz(k)‖2 (7.35)

(we note that the matrix Vk+1 appearing in (7.34) does not alter the value of ‖ · ‖2,
since it is orthogonal).

Similarly to the CG method, the GMRES method enjoys a finite termination property,
that is it terminates at most after n iterations, yielding the exact solution (in exact arith-
metic). Indeed, the kth iterate minimizes the residual in the Krylov subspace Kk. Since
every subspace is contained in the next one, the residual decreases monotonically. Af-
ter n iterations, where n is the size of the matrix A, the Krylov space Kn is the whole
of Rn and hence the GMRES method arrives at the exact solution. Premature stops are
due to a breakdown in Arnoldi’s orthonormalization algorithm. More precisely, we
have the following result.

Property 7.3. A breakdown occurs for the GMRES method at a step m (with
m < n) if and only if the computed solution x(m) coincides with the exact solution
to the system.

However, the idea is that after a small number of iterations (relatively to n), the vector
x(k) is already a good approximation of the exact solution. This is confirmed by the
convergence results that we describe later in this section.

To improve the efficiency of the GMRES algorithm it is necessary to devise a stopping
criterion which does not require the explicit evaluation of the residual at each step.
This is possible, provided that the linear system with upper Hessenberg matrix Ĥk is
appropriately solved.

In practice, the matrix Ĥk in (7.29) is transformed into an upper triangular ma-
trix Rk ∈ R(k+1)×k with rk+1,k = 0 and such that QT

k Rk = Ĥk, where Qk is a matrix
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obtained as the product of k Givens rotations. Then, since Qk is orthogonal, mini-
mizing ‖‖r(0)‖2e1 − Ĥkz(k)‖2 is equivalent to minimizing ‖fk −Rkz(k)‖2, with fk =
Qk‖r(0)‖2e1. It can also be shown that the k + 1-th component of fk is, in absolute
value, the Euclidean norm of the residual at the k-th step.

As FOM, the GMRES method entails a high computational effort and a large
amount of memory, unless convergence occurs after few iterations. For this reason,
two variants of the algorithm are available, one named GMRES(m) and based on the
restart after m steps, with x(m) as initial guess, the other named Quasi-GMRES or
QGMRES and based on stopping the Arnoldi orthogonalization process. It is worth
noting that these two methods do not enjoy Property 7.3.

The convergence analysis of GMRES is not trivial, and we report just some ele-
mentary results here. If A is positive definite, i.e., its symmetric part AS has positive
eigenvalues, then the k-th residual decreases according to the following bound

‖r(k)‖2 ≤ sink(β )‖r(0)‖2 , (7.36)

where cos(β ) = λmin(LS)/‖L‖ with β ∈ [0,π/2). Moreover, GMRES(m) converges
for all m ≥ 1. In order to obtain a bound on the residual at a step k ≥ 1, let us assume
that the matrix A is diagonalizable

A = TΛT−1 ,

where Λ is the diagonal matrix of the eigenvalues {λ j} j=1,...,n, and T = [ω1, . . . ,ωn]
is the matrix whose columns are the right eigenvectors of A. Under these assumptions,
the residual norm after k steps of GMRES satisfies

‖r(k)‖ ≤ K2(T )δ‖r(0)‖ ,

where K2(T ) = ‖T‖2‖T−1‖2 is the condition number of T and

δ = min
p∈Pk,p(0)=1

max
1≤i≤k

|p(λi)| .

Moreover, suppose that the initial residual is well represented by the first m eigen-
vectors, i.e., r0 = ∑m

j=1α jω
j + e, with ‖e‖ small in comparison to ‖∑m

j=1α jω
j‖, and

assume that if some complex ω j appears in the previous sum, then its conjugate ω j

appears as well. Then
‖r(k)‖ ≤ K2(T )ck‖e‖ ,

ck = max
p>k

k

∏
j=1

∣∣∣∣λp −λ j

λ j

∣∣∣∣ .
Very often, ck is of order one; hence, k steps of GMRES reduce the residual norm to
the order of ‖e‖ provided that κ2(T ) is not too large.

In general, as highlighted from the previous estimate, the eigenvalue information
alone is not enough, and information on the eigensystem is also needed. If the eigen-
system is orthogonal, as for normal matrices, then K2(T ) = 1, and the eigenvalues
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retain all the information about convergence. Otherwise, upper bounds for ‖r(k)‖ can
be provided in terms of both spectral and pseudospectral information, as well as the
so-called field of values of A

F (A) = {v∗Av | ‖v‖= 1}.

If 0 /∈ F (A), then estimate (7.36) can be improved by replacing λmin(AS) with
dist(0,F (A)).

An extensive discussion on the convergence of GMRES and GMRES(m) can be
found in [Saa96], [Emb99], [Emb03], [TE05], and [vdV03].

The GMRES method can of course be implemented for a preconditioned system. We
provide here an implementation of the preconditioned GMRES method with a left
preconditioner P.

Preconditioned GMRES (PGMRES) Method

Initialize
x(0), Pr(0) = f−Ax(0), β = ‖r(0)‖2, x(1) = r(0)/β .

Iterate
For j = 1, . . . ,k Do

Compute Pw( j) = Ax( j)

For i = 1, . . . , j Do
gi j = (x(i))T w( j)

w( j) = w( j)− gi jxi

End Do
g j+1, j = ‖w( j)‖2

(i f g j+1, j = 0 set k = j and Goto (1))
x( j+1) = w( j)/g j+1, j

End Do
Vk = [x(1), . . . ,x(k)], Ĥk = {gi j}, 1 ≤ j ≤ k, 1 ≤ i ≤ j+1;
(1) Compute z(k) , the minimizer of ‖βe1 − Ĥkz‖
Set x(k) = x(0) +Vkz(k)

(7.37)

More generally, as proposed by Saad (1996), a variable preconditioner Pk can be
used at the k-th iteration, yielding the so-called flexible GMRES method. This is espe-
cially interesting in those situations where the preconditioner is not explicitly given,
but implicitly defined, for instance, as an approximate Jacobian in a Newton iteration
or by a few steps of an inner iteration process (see Chapter 17). Another meaningful
case is the one of domain decomposition preconditioners (of either Schwarz or Schur
type) where the preconditioning step involves one or several substeps of local solves
in the subdomains (see Chapter 19).

Several considerations for the practical implementation of GMRES, its relation
with FOM, how to restart GMRES, and the Householder version of GMRES can be
found in [Saa96].
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Remark 7.1 (Projection methods). Denoting by Yk and Lk two generic m-dimensional
subspaces of Rn, we call projection method a process which generates an approximate
solution x(k) at step k, enforcing that x(k) ∈ Yk and that the residual r(k) = b−Ax(k)

be orthogonal to Lk. If Yk = Lk, the projection process is said to be orthogonal, and
oblique otherwise (see [Saa96]).

Krylov methods are projection methods. For instance, the Arnoldi method is an or-
thogonal projection method where Lk =Yk =Kk(A;r(0)), while the GMRES method is
an oblique projection method with Yk = Kk(A;r(0)) and Lk = AYk. It is worth noticing
that some classical methods introduced in previous sections fall into this category. For
example, the Gauss-Seidel method is an orthogonal projection method where at the
k-th step Kk(A;r(0)) = span{ek}, with k = 1, . . . ,n. The projection steps are carried
out cyclically from 1 to n until convergence. •

7.2.4 The Multigrid method

The geometric Multigrid (MG) method is an iterative algorithm to solve the algebraic
system associated to a certain grid by making use of one or several additional coarser
grids. For the sake of simplicity, we describe only the case of a two-grid algorithm.
Thus we suppose that (7.2) represents the algebraic system arising from, say, a finite
element approximation of a boundary-value problem on a (fine) grid Th. For the sake
of clarity we can rewrite (7.2) as

Ahuh = bh (7.38)

where, as usual, h = maxk∈Th diam(K), Ah is the stiffness FE matrix, bh is the right
hand side, uh the vector of nodal values. Let TH represent a coarse grid such that
Th can be regarded as a refinement of TH , for instance so that the vertices of Th are
obtained as the midpoints of edges from TH . In that case, h = H/2.
The generic iteration of the MG algorithm on these two grids consists of:

1. Pre-smoothing step:
perform m1 (≥ 1) iterations on the fine grid using an iterative algorithm (e.g. Jacobi,
or Gauss-Seidel, or Richardson),

u
(l)
h = Sh(u

(l−1)
h ,bh) l = 1, . . . ,m1,

for a suitable u
(0)
h ;

2. Residual computation:

rh = bh −Ahu
(m1)
h ;

3. Restriction to the coarse grid:

rH = IH
h rh

where IH
h : RNh → RNH is a fine-to-coarse operator, Nh is the number of unknowns

of the fine-grid problem, NH that of the coarse-grid one;
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4. Solution of the coarse-grid problem:

AHeH = rH

where AH is the stiffness matrix associated with the FE discretization on the coarse
grid TH ;

5. Coarse-grid correction:

u
(m1+1)
h = u

(m1)
h + Ih

HeH ,

where Ih
H : RNH → RNh is a coarse-to-fine operator;

6. Post-smoothing step:
Perform m2 (≥ 1) iterations on the fine grid:

u
(l)
h = Sh(u

(l−1)
h ,bh) l = m1 + 1, . . . ,m1 +m2 +1.

The two inter-grid operators (i.e. matrices) are typically adjoint to each other.
Let Vh be the finite element space associated with Th, VH that associated with TH .

For every w ∈ RNH , let wH = ∑
NH
i=1 wiϕ

H
i be the corresponding FE function in VH .

Similarly, for every v ∈ RNh , let vh = ∑
Nh
j=1 v jϕ

h
j be the corresponding FE function in

Vh (see (4.7)). Here ϕh
i (resp. ϕH

j ) indicate the Lagrangian basis functions in Vh (resp.

VH). Let I h
H : VH →Vh be the operator corresponding to Ih

H , that is

I
h

HwH = vh iff Ih
Hw = v.

Typically I h
H is the natural injection, in the sense that

I
h

HwH = wH ∀wH ∈VH .

This means that their nodal values (I h
H wH)(N

h
j) = wH(N

h
j) are the same at all nodes

Nh
j of Th. The entries of Ih

H are therefore (Ih
H)i j = ϕ

H
i (Nh

j), j = 1, . . . ,Nh, i = · · · ,NH .

The operator IH
h is the weighted transpose of Ih

H , that is

(IH
h v,w)H = (v, Ih

Hw)h ∀v ∈ RNh ,∀ w ∈ RNH ,

where we have introduced the weigthed (mesh-dependent) inner products:

(v,w)h = h2
Nh

∑
j=1

v jwj ∀ v,w ∈ RNh ,

(x,y)H = H2
NH

∑
i=1

xiyi ∀ x,y ∈ RNH .

A simple algebraic calculation shows that

(IH
h )i j =

h2

H2 (I
h
H) ji, i = 1, . . . ,NH , j = . . . ,Nh,
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that is

IH
h =

h2

H2 (I
h
H)

T .

What we have described is a two-grid V-cycle algorithm. As a matter of fact, a pictorial
representation of one step of this algorithm, where the fine is a high level whereas the
coarse is a low level, looks like a “V” workflow.
This iterative algorithm can be associated with the following iteration matrix

MG = Sm2
h (Ih − Ih

H(AH)
−1IH

h Ah)S
m1
h , (7.39)

where Ih ∈RNh×Nh is the identity matrix and Sh is the smoothing iteration matrix (e.g.,
the Richardson matrix RP or R(αk) on the fine grid).

The convergence analysis of the two-grid V-cycle algorithm, as well as that of the
more general multi-grid case with either V- or W-cycle, is carried out, e.g., in [Hac]
and, for finite element discretization, in [BS94].



Chapter 8

Elements of finite element programming

In this chapter we focus more deeply on a number of aspects relating to the translation
of the finite-element method into computer code. This implementation process can
hide some pitfalls. Beyond the syntactic requirements of a given programming lan-
guage, the need for a high computational efficiency leads to an implementation that is
generally not the immediate translation of what has been seen during the theoretical
presentation. Efficiency depends on many factors, including the language used and the
architecture on which one works1. Personal experience can play a role as fundamental
as learning from a textbook. Moreover, although spending time searching for a bug in
the code or for a more efficient data structure can sometimes appear to be a waste of
time, it (almost) never is. For this reason, we wish to propose the present chapter as
a sort of “guideline” for trials that the reader can perform on his own, rather than a
chapter to be studied in the traditional sense.

A final note about the chapter style. The approach followed here is to provide
general guidelines: obviously, each problem has specific features that can be exploited
in a careful way for a yet more efficient implementation.

8.1 Working steps of a finite element code

The execution of a Finite-Element computation can be logically split into four working
steps (Fig. 8.1).

1. Pre-processing. This step consists in setting up the problem and coding its compu-
tational domain, which, as seen in Chapter 4, requires the construction of the mesh
(or grid). In general, setting aside the trivial cases (for instance in one dimension),
the construction of an adequate mesh is a numerical problem of considerable inter-

1 Currently, engineering applications involving scientific computing are running on parallel
architectures with hundreds or thousands of Central Processor Units (CPUs) or Graphical
Processor Units (GPUs), and this requires specific coding techniques. This topic is beyond
the scope of the present book.
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Fig. 8.1. Working steps of a finite element code

est, for which ad hoc techniques have been developed. Generally, this operation is
performed by dedicated programs or modules within a solver, where great effort
has been recently devolved to the aspect of interface and interfacing with CAD
(Computer Aided Design) software. Chapter 6 is dedicated to the fundamental
techniques for grid generation.

2. Assembly. In this phase, we construct the “functional” data structures, starting
from the “geometric” ones obtained by the mesh and by the user’s choices con-
cerning the desired type of finite elements to be used. Moreover, based on the
problem we want to solve and on its boundary conditions, we compute the stiff-
ness matrix associated to the discretization (see Chapters 4 and 13). In an un-
steady problem, this operation may need to be included in the time advancing
loop, when the matrix depends on time (like for instance for the linearization of
nonlinear problems, see Chapters 5 and 17). Strictly speaking, the term “assem-
bly” refers to the construction of the matrix of the linear system, moving from
the local computation performed on the reference element to the global one that
concurs to determine the matrix associated to the discretized problem. Fig. 8.2
summarizes the different operations during the assembly phase for the prepara-
tion of the algebraic system.

3. Solution of the algebraic system. The core of the solution of any finite-element
computation is represented by the solution of a linear system. As previously said,
this will eventually be part of a temporal cycle (based on an implicit discretization
method) or of an iterative cycle arising from the linearization of a nonlinear prob-
lem. The choice of the solution method is generally left to the user. For this reason,
it is very important that the user understands the problem under exam, which, as
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ϕ̂i, i = 1, 2, 3∫
Ã b̃
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Fig. 8.2. Scheme of the assembly. The geometric and topological information (top table), suit-
ably stored, describes the grid. Through the mapping on the reference element, we compute the
discretization matrix Ã and of the term b̃, first by proceeding element by element (local com-
putation) and then, by exploiting the additivity of integration operation, we update the global
matrix. The symbols representing each element of the matrix are obtained through the overlap
of the symbols used to define each element of the mesh. Finally, we implement the boundary
conditions, which ideally remove the degrees of freedom with associated Dirichlet conditions,
getting to the final structures A and b. As we will see, the operation is often implemented in a
different way

we have seen in Chapter 4, has implications on the structure of the matrix (for in-
stance, symmetry and positivity); on the other hand she/he should be aware of the
available methods to perform an optimal choice (which rarely is the default one).
This is why in Chapter 7 we recalled the main properties of numerical methods
for the solution of linear systems.
Nowadays, a host of very efficient computational libraries exist for the solution of
various types of linear systems, hence the trend in the coding phase is generally to
include such libraries rather than implementing from scratch. Among others, we
remind PetSC (see [Pet]), UMFPACK [UMF], and TriLinos [Tri].

4. Post-processing. Since the amount of numerical data generated by a finite-element
code might be huge, a post-processing is often necessary in order to present re-
sults that are concise and in a usable format. However, this may not be a trivial



182 8 Elements of finite element programming

task. In particular, a reckless post-processing for the a posteriori computation of
differential quantities (e.g. stresses from displacements, fluxes or vorticity from
velocities, etc ...) can introduce unacceptable overhead errors.

Since grid generation techniques were addressed in Chap. 6, and we saw the algo-
rithms for the solution of linear systems in Chap. 7, the main focus of this chapter will
be on the Assembly phase (Sect. 8.4).

Before dealing with this subject, though, in Sect. 8.2 we will deal with quadrature
formula for the numerical computation of integrals, while sparse matrix storing will
be discussed in Sect. 8.3.

As far as the Post-processing step is concerned, we refer to the specific literature,
and recall that the techniques used above have been introduced in Chap. 4 for the
computation of a posteriori estimates.

Eventually, Sect. 8.6 will discuss a complete example.

8.1.1 The code in a nutshell

There are many programming languages and environments available today, character-
ized by different philosophies and objectives. When facing the implementation of a
numerical method, it is necessary to make a pondered choice in this respect. Amongst
the most useful programming environments for the construction of prototypes, Matlab
is certainly an excellent tool under many viewpoints, although, as with all interpreted
languages, it is weaker under the computational efficiency profile. Another environ-
ment targeted to the solution of differential problems in 2D through the finite-element
method is FreeFem++ (see www.freefem.org). This environment comprises all four
phases indicated above in a single package (free and usable under different operat-
ing systems). Its particularly captivating syntax reduces the gap between coding and
theoretical formulation by bringing the former significantly closer to the latter. This
operation has a clear “educational” merit, which is to quickly produce simulations also
for non trivial problems. However, the computational costs and the difficulty of im-
plementing new strategies that require an extension of the syntax can be penalizing in
actual cases of interest. In [FSV12] several solved examples and problems are solved
with FreeFem++.

Among compiled programming languages, Fortran (Fortran 77 in particular) is
traditionally the one that has had the biggest success in the numerical domain, be-
cause it generates very efficient executable codes. Recently, the abstraction feature
that is intrinsic to the object-oriented programming philosophy has proven to be very
suitable for finite element programming. The level of abstraction made possible by
far-reaching mathematical tools seems to find an excellent counterpart in the abstrac-
tion of object-oriented programming, based on the design of data types made by the
user (more than on operations to perform, as in procedural programming) and on their
polymorphism (see e.g. [LL00, Str00]). However, the computational cost of such an
abstraction has sometimes reduced the interest for a theoretically attractive program-
ming style. The latter is often operationally weak for science problems, where com-
putational efficiency is (almost) always crucial. This has required the development of

http://www.freefem.org
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more sophisticated programming techniques (for instance, Expression Templates),
that avoid the cost associated to the interpretation of abstract objects to become too
heavy during code execution (see e.g. [Vel95, Fur97, Pru06, DV09]). Hence, besides
Fortran, languages like C++ (born as an object-oriented improvement of the language
C) are nowadays more and more frequent in the scientific domain; amongst others, we
recall FEniCS OpenFOAM and LifeV..

In the code excerpts presented below we will refer to C++. An accurate examina-
tion of the code (which we will henceforth call “Programs” for simplicity) requires
some basic knowledge of C++, for which we refer to [LL00]. However, as we want
to use this chapter as a basis for autonomous experiments, it is not essential to master
the C++ syntax to understand the text; a mild familiarity with its basic syntax will be
enough for the reader who might prefer a different language.

8.2 Numerical computation of integrals

The effective numerical computation of the integrals in the finite element formulation
is typically performed via quadrature formulae. For an introduction to the subject of
numerical quadrature, we refer to basic numerical analysis textbooks (e.g. [QSS07]).
Here, it will suffice to recall that a generic quadrature formula has the form∫

K

f (x)dx ≈
nqn

∑
iq=1

f (xiq)wiq

where K denotes the region over which we integrate (typically an element of the finite
element grid), nqn is the number of quadrature nodes for the selected formula, xiq are
the coordinates of the quadrature nodes and wiq are the weights. Typically, the accu-
racy of the formula and its computational cost grow with the number of quadrature
nodes. As we will see in Chapter 10, Sects. 10.2.2 and 10.2.3, the formulae which
guarantee the best accuracy for the same number of nodes are the Gaussian ones.

The computation of integrals is generally performed on the reference element
(where the expression of basis functions is known) through a suitable change of vari-
able (Sect. 4.3).

Let us denote with x̂i and xi (for i = 1, . . . ,d) the coordinates on the reference ele-
ment K̂ and those on the generic element K, respectively. Integration in the reference
space will then require the knowledge of the Jacobian matrices JK(x̂) of the geometric
transformation FK that maps the reference element K̂ on the element K (see Fig. 4.14),

JK(x̂) =

[
∂xi

∂ x̂ j
(x̂)

]d

i, j=1
.

We then have∫
K

f (x)dx =

∫
K̂

f̂ (x̂)|detJK(x̂)|dx̂ ≈∑
q

f̂ (x̂q)|detJK(x̂q)|ŵq, (8.1)
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where f̂ = f ◦FK , and ŵq are the weights on the reference element. In case of integrals
involving derivatives, denoting with ĴK(x) the Jacobian matrix associated to F−1

K , i.e.

ĴK(x) =

[
∂ x̂i

∂x j
(x)

]d

i, j=1
,

we have, for j = 1, . . . ,d,

∂ f

∂xi
(x) =

d

∑
j=1

∂ f̂

∂ x̂ j
(x̂)

∂ x̂ j

∂xi
(x), ∇x f (x) =

[
ĴK(x)

]T
∇x̂ f̂ (x̂).

We can prove that [
ĴK(x)

]T
=

1
detJK(x̂)

Jco f
K (x̂),

Jco f
K (x̂) being the matrix of the cofactors of the elements of JK(x̂), i.e. (in the two-

dimensional case)

Jco f
K (x̂) =

⎡⎢⎣ ∂x2

∂ x̂2
(x̂) −∂x2

∂ x̂1
(x̂)

−∂x1

∂ x̂2
(x̂)

∂x1

∂ x̂1
(x̂)

⎤⎥⎦ .
The gradient of the function f can thus be expressed in terms of the variables in the
reference space as following

∇x f (x) =
1

detJK(x̂)
Jco f

K (x̂)∇x̂ f̂ (x̂).

Denoting with α and β the indices of two generic basis functions, the typical element
of the stiffness matrix can therefore be computed as follows:∫

K

∇xϕα(x)∇xϕβ (x)dx =∫
K̂

(
Jco f

K (x̂)∇x̂ϕ̂α(x̂)
)(

Jco f
K (x̂)∇x̂ϕ̂β (x̂)

) 1
|detJK(x̂)|dx̂ �

∑
q

[
ŵq

|detJK(x̂q)|
d

∑
j=1

(
d

∑
l=1

[
Jco f

K (x̂q)
]

jl

∂ ϕ̂α
∂ x̂l

(x̂q)

)(
d

∑
m=1

[
Jco f

K (x̂q)
]

jm

∂ ϕ̂β
∂ x̂m

(x̂q)

)]
.

(8.2)

Note that the matrices JK , and consequently the matrices Jco f
K , are constant on the

element K if K is a triangle or a rectangle in 2D (a tetrahedron or a parallelepiped in
3D) with no curved boundaries.

The class coding a quadrature formula stores quadrature nodes and their associ-
ated weights. In the effective integral computation we will then obtain the necessary
mapping information for the actual computation, which depends on the geometry of K.
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The choice of a quadrature formula responds to two (conflicting) needs:

1. On one hand, the higher the accuracy is, the smaller is the integration error even-
tually affecting the overall quality of the numerical computation; a proper choice
of the quadrature rule, based on the concept of degree of exactness, may make
the numerical integration error vanish. We control for problems whose differential
operator has constant (or polynomial) coefficients.

2. On the other hand, a larger number of nqn nodes and in increase of the computa-
tional cost of assembly is necessary to obtain an increase of accuracy.

The appropriate synthesis of these two needs evidently depends on the require-
ments of the problem we want to solve, as well as on the accuracy and speed specifi-
cations to execute the computation.

8.2.1 Numerical integration using barycentric coordinates

The numerical evaluation of integrals on simplexes (intervals in 1D, triangles in 2D,
tetrahedra in 3D) can profit from the use of the barycentric coordinates that were
introduced in Sect. 4.4.3. To start with, we observe that the following exact integration
formulas hold (see, e.g., [Aki94, Chap. 9] or [Hug00, Chap. 3]):

in 1D ∫
K̂1

λ a
0λ

b
1 dω =

a!b!
(a+b+ 1)!

lenght(K̂1).

in 2D ∫
K̂2

λ a
0 λ

b
1 λ

c
2 dω =

a!b!c!
(a+b+ c+2)!

2Area(K̂2),

in 3D ∫
K̂3

λ a
0 λ

b
1 λ

c
2λ

d
3 dω =

a!b!c!d!
(a+ b+ c+d+3)!

6Vol(K̂3),

More in general,

∫
K̂d

d

∏
i=0
λ ni

i dω =
∏d

i=0 ni!

(
d

∑
i=0

ni + d)!

d!|K̂d| (8.3)

where K̂d is a d-dimensional standard simplex, |K̂d | denotes its measure, {ni, 0 ≤ i ≤
d} is a set of non-negative integers.

These formulas are useful when dealing with finite-element approximations of the
boundary-value problems for the exact computation of polynomial integrals in the
characteristic Lagrangian basis functions.

For the sake of an example, Table 8.1 shows the weights and nodes for some popu-
lar quadrature formulas in 2D. Table 8.2 gives some formulas for a tetrahedron. These
formulas are symmetric: we must consider all possible permutations of the barycentric
coordinates to obtain the full list of nodes.
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Fig. 8.3. The barycentric coordinate λi of the point P represents the ratio between the volume
of the tetrahedron having as vertices P and the vertices of the face opposite to Ni (in the figure,
right, we have shadowed the tetrahedron with vertices P,N1,N2,N3 opposite N0) and the total
volume of the tetrahedron

Table 8.1. Nodes and weights for the quadrature formulae on triangles. The nodes are expressed
through their barycentric coordinates. The weights do not take into account the measure of the
reference element (which is equal to 1/2 in this case)

nqn barycentric coordinates λ j m w j r

1 1/3 1/3 1/3 1 1 1
3 1 0 0 3 1/3 1
3 2/3 1/3 1/3 3 1/3 1
4 1/3 1/3 1/3 1 −0.5625 2

0.6 0.2 0.2 3 0.52083
6 0.65902762237 0.23193336855 0.10903900907 6 1/6 2
6 0.81684757298 0.09157621351 0.09157621351 3 0.10995174366 3

0.10810301817 0.44594849092 0.44594849092 3 0.22338158968

Table 8.2. Nodes and weights for quadrature formulae on tetrahedra. The nodes are expressed
using their barycentric coordinates. The weights do not take into account the measure of the
reference element (equal to 1/6 in this case)

nqn barycentric coordinates λ j m w j r

1 1/4 1/4 1/4 1/4 1 1 1
4 0.58541020 0.13819660 0.13819660 0.13819660 4 1/4 2
5 1/4 1/4 1/4 1/4 1 −16/20 3

1/2 1/6 1/6 1/6 4 9/20

For the reader’s convenience we have written, next to the total number nqn of
nodes, the multiplicity m of each quadrature node, i.e. the number of nodes generated
by the permutations. We have also provided the exactness degree r, that is the largest
positive integer r for which all polynomials of degree ≤ r are integrated exactly by the
quadrature formula at hand.
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Let us see two simple examples. Suppose we want to compute

I =
∫
K

f (x)dx =
∫
K̂

f̂ (x̂)|J|(x̂)dx̂.

Using the weights and nodes of the first row of the table, we obtain

I � 1
2

f̂ (
1
3
,

1
3
)J(

1
3
,

1
3
) = Area(K) f (x),

where the coefficient 1/2 represents the area of the reference element, and x is the
node with barycentric coordinates λ1 = λ2 = λ3 = 1/3 corresponding to the center
of gravity of the triangle. The corresponding formula is the well-known composite
midpoint formula.

To use the formula in the second row we note that m = 3, hence we have indeed 3
quadrature nodes whose barycentric coordinates are obtained via cyclic permutation:

(λ0 = 1,λ1 = 0,λ2 = 0), (λ0 = 0,λ1 = 1,λ2 = 0), (λ0 = 0,λ1 = 0,λ2 = 1).

Hence for each triangle K we obtain

∫
K

f (x)dx � 1
2

1
3

[
f̂ (0,0)|detJ(0,0)|+ f̂ (1,0)|detJ(1,0)|+ f̂ (0,1)|detJ(0,1)|

]
= Area(K)

2

∑
i=0

1
3

f (Ni) ,

N0,N1,N2 being the vertices of the triangle K, corresponding to the barycentric coor-
dinates (0,0), (1,0) and (0,1) respectively. The corresponding formula therefore yields
the composite trapezoidal formula. Both formulae have exactness degree equal to 1.

Other quadrature formulae for the computation of integrals for different finite ele-
ments can be found in [Hug00], [Str71], [FSV12].

Remark 8.1. When using quadrilateral or prismatic elements, nodes and weights of
the quadrature formulae can be obtained as the tensor product of the Gauss quadrature
formulae for the one-dimensional interval, see Sect. 10.2 (and also [CHQZ06]). •

8.3 Storage of sparse matrices

As seen in Chapter 4, finite element matrices are sparse. The distribution of non-null
elements is retained by the so-called sparsity pattern (also called graph) of the matrix.
The pattern depends on the computational grid, on the finite element type and on the
numbering of the nodes adopted. The efficient storage of a matrix therefore consists in
the storage of its non-null elements, according to the positioning given by the pattern.
The discretization of different differential problems sharing the same computational
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grid and the same type of finite elements leads to matrices with the same graph. Hence
in an object-oriented programming logic it can be useful to separate the storage of
the graph (which can become a “data type” defined by the user, i.e. a class) from
the storage of the values of each matrix. In this way, a matrix can be seen as a data
structure for the storage of its values, together with a pointer to the graph associated to
it. The pointer only stores the position in the memory where the pattern is stored, hence
occupying a minimal amount of memory. Different matrices may therefore share the
same graph, without useless storage duplications of the pattern.

In practice, there are several techniques to store sparse matrices efficiently, i.e. the
position and value of non-null elements. At this juncture we should observe that, in
this context, the adjective “efficient” does not only refer to the lower memory occupa-
tion that can be achieved, but also to the speed in accessing memory for each element.
A storage format requiring the least possible memory waste is likely to be slower in
accessing a desired value. Indeed, a higher storage compactness is typically obtained
after finding the position in the memory by accessing the data structures that store the
graph. The more intermediate passages are necessary, the longer the access time to
the desired element will be. Precisely for the need of finding the right compromise,
different storage techniques have been proposed in the literature, with different pre-
rogatives. A review of these, with many comments and remarks, can be found e.g. in
[FSV12], Appendix A. Here we just recall a widely used format for the storage of
sparse square matrices, i.e. the CSR (Compact Sparse Row) format.

We denote by n the size of the matrix to be stored and by nz the number of its
non-null elements. In the CSR format, a matrix is identified by three vectors. Two –
denoted hereafter R and C – have integer values and form the so-called pattern, i.e. the
graph of the sparsity of the matrix, which depends on the mesh and the finite element
space; the third vector A contains the non-zero entries of the matrix. More precisely,
A has size nz and it stores the entries in a row-wise order. The vector C has size nz,
as well. The entry C(k) contains the column of the entry A(k). Finally, the vector R
has size n and contains pointers to the vector C, indicating the beginning of each row.
In other terms, R(k) contains the position of the vector J (and A) where row k of the
matrix begins. To be more concrete, we illustrate this on an example (see Fig. 8.4)
where n = 5 and nz = 17.

0 1 2 3 4

A =

⎡⎢⎢⎢⎢⎣
a 0 f 0 g
0 b k m 0
h l c 0 r
0 n 0 d p
i 0 s q e

⎤⎥⎥⎥⎥⎦
0
1
2
3
4

We point out that the numbering of rows and columns in matrices and vectors starts
from 0, following the C++ syntax.

The vectors representing this matrix in CSR format are reported in Fig. 8.4. Here,
the different background colors in the vectors refer to the different rows of the matrix,
and the lines connect the pointers of the vector R to the corresponding entries in the
other vectors. In this way, if we want to retrieve a nonzero entry – for instance, in the
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Fig. 8.4. Vectors representing the CSR format of Matrix A

second row – we start from position R(1) (because of the C++ numbering) through
the entry R(2)− 1, since R(2) points to the beginning of the third row. The entries
A(R(1) , . . . ,R(2)−1) are the values of the second row, whose corresponding columns
are in C(R(1) , . . . ,R(2)−1). In this way it is relatively easy to access a matrix row-
wise, whereas the column-wise access is more involved. The column-wise format CSC
(Compressed Sparse Colum) is similarly formulated. In some libraries, an even more
compact format called Modified Sparse Row (MSR) is used for square matrices. In
[FSV12] the latter format is extended to accommodate both row-wise and column-
wise matrix access with the same computational cost.

8.4 Assembly

The assembly is the sequence of different operations leading to the construction of
the matrix associated to the discretized problem. For doing this, we need two types of
information:

1. geometric, typically contained in the mesh file;
2. functional, relative to the representation of the solution via finite elements.

In Fig. 8.5 we report possible reference geometries with their local vertex num-
bering. Tetrahedra represent the 3D extension of the triangular elements considered in
Chapter 4. Prismatic elements extend in 3D the quadrilateral geometric elements in
2D which will be introduced in Chapter 10, see e.g. [Hug00, Chap. 3], for a complete
description.
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Fig. 8.5. Illustration of some reference elements available in LifeV with (conventional) local
numbering of nodes

Geometric and functional information, suitably coded, is then used to construct the
matrix of the discretized problem. As opposed to what would seem natural in the defi-
nition of Lagrangian finite elements, the matrix is constructed over cyclic permutations
of the elements instead of nodes. The reason for this element-oriented approach, as op-
posed to the node-oriented one, is essentially linked to computational efficiency mat-
ters. The analytical expression of a base function associated to a node varies on each
element sharing that node. Prior to the computation of the integrals, it would be neces-
sary to cycle over the nodes and detect the analytical expression of the appropriate ba-
sis functions to each element. Hence, we would have to cycle on the nodes and locate
the analytic expression of the appropriate basis function for each different element,
before carrying out the computation of the integrals. In terms of code, this means that
the body of the cycle must be filled with conditional branches, that is instructions of
the type if...then...elseif...then...else... within the assembly cycle. These are “costly”
operations in computational terms, especially if they lie within a cycle (and thus are
carried out several times), as is clear from the large number of micro-assembler in-
structions required in the compilation phase to expand a conditional branch, with re-
spect to any other instruction, see e.g. [HVZ97]. As we will see, by exploiting the
additivity of integration, the element-oriented approach allows to bypass this obstacle
in a smart way.
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In particular (see Chap. 4) the construction of the problem matrix can take place
in two conceptual steps, within a cycle on the grid elements:

1. construction of the matrix and of the right-hand side that discretize the differential
operator on the element at hand (local matrix and vector);

2. update of the global matrix and the right-hand side, by exploiting the additivity of
the integration operation.

There also exist different approaches to the problem: in some cases, the matrix is
not constructed, but its effects are directly computed when it multiplies a vector, as
happens when the linear system is solved by iterative methods; for reasons of space,
here we deal with the more standard approach.

As previously noted, the construction of the local matrix is carried out by integrat-
ing on the reference element K̂, using suitable quadrature formulae. Once the matrix
and known terms have been constructed, the boundary conditions are imposed; in par-
ticular, imposing Dirichlet conditions does not necessarily require the technique seen
in Sects. 3.2.2 and 4.5, which consisted in removing the degrees of freedom associated
to such conditions after the lift is constructed.

This should explain why assembly is a complicated phase. In the following sec-
tions we will discuss the above aspects, though in little detail for reasons of space.
First, we will treat the data structures for the coding of geometric (Sect. 8.4.1) and
functional (Sect. 8.4.2) information. The computation of the geometric mapping be-
tween reference element and current element provides the opportunity of introducing
isoparametric elements (Sect. 8.4.3). The effective computation of the local matrix
and known term and their use in the construction of the global system are treated in
Sect. 8.4.4. Finally, in Sect. 8.4.5 we will mention implementation techniques for the
lifting of the boundary datum.

8.4.1 Coding geometrical information

In terms of data structures, the mesh can be seen as a collection of geometric elements
and topological information. The former can be constructed by aggregating classes
for the definition of points (i.e. zero-dimensional geometric elements), edges (one-
dimensional geometric elements), faces (2D) and finally volumes (3D).

Starting from base classes coding these geometrical entities, a mesh will be a class
collecting the elements. In fact the geometric structure should be supplemented by the
following elements:

1. topological information allowing to characterize the elements in the grid, i.e. the
connectivity among nodes, with respect to a conventional numbering of the lat-
ter. The convention for the possible elements in LifeV is illustrated in Fig. 8.5; to
“visit” the elements of a grid efficiently, we can also add to each given element
information on the adjacent elements;

2. specific information allowing to locate the degrees of freedom on the boundary;
this simplifies handling the boundary condition prescription; note that we typically
associate to each boundary geometric element an indicator that will subsequently
be associated to a specific boundary condition.
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Starting from the reference geometric class, we then retrieve the current geometric
elements, according to the possible mappings treated in Sect. 8.4.3. For instance Pro-
gram 2 gives a portion of a class for a linear (affine) tetrahedron built upon a tetrahedric
basic reference shape with some functional information on the associated degrees of
freedom.

Program 2 – LinearTetra: Class for the coding of tetrahedra obtained via affine
geometric transformation of the reference element

class LinearTetra:

public Tetra

{

public:

typedef Tetra BasRefSha;

typedef LinearTriangle GeoBShape;

static const UInt numPoints = 4;

static const UInt nbPtsPerVertex = 1;

static const UInt nbPtsPerEdge = 0;

static const UInt nbPtsPerFace = 0;

static const UInt nbPtsPerVolume = 0;

}

Currently, no standards are available for the mesh file format. Each mesh genera-
tor has its own format. Typically, we expect such a file to contain the vertex coordi-
nates, the connectivity associating the vertices to the geometric elements and the list
of boundary elements, with corresponding indicator to be used for defining boundary
conditions. The functions with the data serving as boundary conditions, instead, are
generally assigned separately.

Remark 8.2. Multi-physics or multi-model problems are becoming a relevant com-
ponent of scientific computation: think for instance of fluid-structure interaction prob-
lems, or the coupling of problems where the full (and computationally costlier) differ-
ential model is used only in a specific region of interest, and coupled it with simpler
models in the remaining regions. These applications and, more generally, the need
to develop parallel computation algorithms, have motivated the development of tech-
niques for the solution of differential problems through domain decomposition (see
Chap. 19 and the more comprehensive presentations [QV99, TW05]). In this case,
the resulting mesh is the collection of subdomain meshes, together with topological
information about subdomain interfaces. In this chapter, however, we will refer to
single-domain problems only. •
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8.4.2 Coding of functional information

As seen in Chapter 4, basis functions are defined on a reference element. For instance,
for tetrahedra, this element coincides with the unit simplex (see Fig. 8.5). The coding
of a reference element will basically include pointers to functions for determining
basis functions and their derivatives.

In Program 3 we report the functions for the definition of linear finite elements on
tetrahedra. For the sake of space, we provide the code for the first derivatives of the
first basis functions only.

Program 3 – fctP13D: Basis functions for a linear tetrahedric element

Real fct1_P1_3D( cRRef x, cRRef y, cRRef z ){return 1 -x - y - z;}

Real fct2_P1_3D( cRRef x, cRRef, cRRef ){return x;}

Real fct3_P1_3D( cRRef, cRRef y, cRRef ){return y;}

Real fct4_P1_3D( cRRef, cRRef, cRRef z ){return z;}

Real derfct1_1_P1_3D( cRRef, cRRef, cRRef ){return -1;}

Real derfct1_2_P1_3D( cRRef, cRRef, cRRef ){return -1;}

Real derfct1_3_P1_3D( cRRef, cRRef, cRRef ){return -1;}

....

Once the reference element is instantiated, functional information will be avail-
able both for the representation of the solution and for the definition of the geometric
mapping between reference element and current element, as we explain in the follow-
ing section.

Having defined the geometric element and the type of finite elements we want
to use, we are now able to construct the problem’s degrees of freedom. This means
assigning to each mesh element the numbering of the degrees of freedom lying on the
element and the pattern of the local matrix; the latter is generally full, although it can
always contain null elements.

8.4.3 Mapping between reference and physical element

In Chapter 4 we saw how convenient it is to write basis functions, quadrature formu-
lae and, therefore, compute integrals with respect to a reference element. It can thus
be interesting to examine some practical methods to construct and code such coordi-
nate change. For further details, we refer to [Hug00]. Let us now limit ourselves to
considering the case of triangular and tetrahedric elements.

A first type of coordinate transformation is the affine one. Basically, the mapping
between x̂ and x can be expressed via a matrix B and a vector c (see Sect. 4.5.3 and
Fig. 8.6)

x = Bx̂+ c. (8.4)

In this way, we trivially have that J = B (constant on each element). If the node dis-
tribution generated by the grid generator is correct, the determinant of J is always
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x̃
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P0

P1

P2

P3

Fig. 8.6. Mapping between the reference tetrahedron and the current one. The top map is affine,
the bottom one quadratic

positive, which guarantees there are no degenerate cases (for instance, four vertices
on the same plane in a tetrahedron) and that there are no incorrect permutations in the
nodes corresponding to the mapping. The expressions of B and c can be obtained from
those of the node coordinates. Indeed, let us suppose that the nodes, numbered locally
1,2,3,4, of the reference tetrahedron correspond to the nodes of the mesh numbered as
i,k, l,m, respectively.

We then have:⎧⎪⎪⎨⎪⎪⎩
xi = c1 yi = c2 yi = c3

xk = b11 + xi yk = b12 + yi zk = b13 + yi

xl = b21 + xi yl = b22 + yi zl = b23 + yi

xm = b31 + xi ym = b32 + yi zm = b33 + yi

(8.5)

from which we obtain the expressions for B and c.
However, there exists a more efficient way to represent the transformation: being

element-wise linear, it can be represented via the basis functions of linear Lagrangian
finite elements. Indeed, we can write:

x =
3

∑
j=0

Xjϕ̂ j(x̂, ŷ, ẑ), y =
3

∑
j=0

Yjϕ̂ j(x̂, ŷ, ẑ), z =
3

∑
j=0

Zjϕ̂ j(x̂, ŷ, ẑ). (8.6)

The elements of the Jacobian matrix of the transformation are immediately computed:

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
∑
j=1

Xj
∂ ϕ̂ j

∂ x̂

4
∑
j=1

Xj
∂ ϕ̂ j

∂ ŷ

4
∑
j=1

Xj
∂ ϕ̂ j

∂ ẑ

4
∑
j=1

Yj
∂ ϕ̂ j

∂ x̂

4
∑
j=1

Yj
∂ ϕ̂ j

∂ ŷ

4
∑
j=1

Yj
∂ ϕ̂ j

∂ ẑ

4
∑
j=1

Zj
∂ ϕ̂ j

∂ x̂

4
∑
j=1

Zj
∂ ϕ̂ j

∂ ŷ

4
∑
j=1

Zj
∂ ϕ̂ j

∂ ẑ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8.7)
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ŷ
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P0 P1

P2P3

Fig. 8.7. Mapping between the reference quadrilateral and the current element: affine (top),
isoparametric (middle), hybrid (bottom). The latter is constructed with 5 nodes, in order to have
a biquadratic transformation for the nodes of a single side

When in a Lagrangian finite element the same basis functions are used for the def-
inition of the geometric mapping, we say that we are dealing with iso-parametric
elements (see Figs. 8.6 and 8.7). In the case at hand, this is a consequence of hav-
ing chosen linear finite elements and affine geometric transformations. When we take
finite elements of degree higher than 1, we can consider two kinds of mapping:

• affine finite elements: in this case, the geometric transformation is still described
by the affine transformations (8.6), although the functional information relative to
the solution is described by quadratic functions of higher degree; the boundary of
the discretized domain Ωh, in this case, is still polygonal (polyhedral);

• isoparametric finite elements: the geometric transformation is described by the
same basis functions used to represent the solution; hence the elements in the
physical space Oxyz will generally have curved sides;

The definition of a quadratic mapping starting from the tetrahedric reference ele-
ment allows for instance to create tetrahedric quadratic geometric elements, coded in
the class QuadraticTetra reported in Program 4.

Program 4 – QuadraticTetra: Class for the definition of quadratic tetrahedric
elements

class QuadraticTetra: public Tetra

{

public:

typedef Tetra BasRefSha;

typedef QuadraticTriangle GeoBShape;

static const UInt numPoints = 10;
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static const UInt nbPtsPerVertex = 1;

static const UInt nbPtsPerEdge = 1;

static const UInt nbPtsPerFace = 0;

static const UInt nbPtsPerVolume = 0;

};

Having established the type of reference element and the geometrical mappings, it
is possible to construct the collection of “current” elements. The current element can
be coded as in Program 5.

Program 5 – CurrentFE: Class for the definition of the current element

class CurrentFE

{

private:

void _comp_jacobian();

void _comp_jacobian_and_det();

void _comp_inv_jacobian_and_det();

void _comp_quad_point_coor();

template <class GEOELE>

void _update_point( const GEOELE& geoele );

//! compute phiDer

void _comp_phiDer();

//! compute the second derivative phiDer2

void _comp_phiDer2();

//! compute phiDer and phiDer2

void _comp_phiDerDer2();

UInt _currentId;

public:

CurrentFE( const RefFE& _refFE, const GeoMap& _geoMap, const QuadRule& _qr );

const int nbGeoNode;

const int nbNode;

const int nbCoor;

const int nbQuadPt;

const int nbDiag;

const int nbUpper;

const int nbPattern;

const RefFE& refFE;

const GeoMap& geoMap;

const QuadRule& qr;

};
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As it can be seen, the class contains information relating to the reference element,
to the geometric mapping that generates it and to the quadrature formula that will be
used for the computation of the integrals.

In particular, (8.7) proves to be very efficient in the coding phase, which we report
in Program 6. The computation of the Jacobian is carried out at the quadrature nodes
required for the integral computation (Sec. 8.2).

Program 6 – comp-jacobian: Section of the class storing the current elements
which computes the Jacobian of the transformation between current element and
reference element

void CurrentFE::_comp_jacobian()

{

Real fctDer;

// GeoMap derivatives:

for ( int ig = 0;ig < nbQuadPt;ig++ )

{

for ( int icoor = 0;icoor < nbCoor;icoor++ )

{

for ( int jcoor = 0;jcoor < nbCoor;jcoor++ )

{

fctDer = 0.;

for ( int j = 0;j < nbGeoNode;j++ )

{

fctDer += point( j, icoor ) * dPhiGeo( j, jcoor, ig );

}

jacobian( icoor, jcoor, ig ) = fctDer;}}}

}

In the case of quadrilateral and prismatic elements, several of the previous con-
cepts can be extended, by referring e.g. to bilinear or biquadratic mappings. How-
ever, guaranteeing that the map is invertible is more difficult: for more details, see
[FSV12].

There are cases where it can be convenient to use finite elements of different degree
with respect to different coordinates. This is possible using quadrilateral structured
grids, where we can construct an element having a biquadratic polynomial on one
side, and bilinear polynomials on the remaining sides. In the case of an isoparametric
coding of the geometrical mapping, this leads to having, say, quadrilateral elements
with three straight sides and one curved side. To this end, we point out that [Hug00,
Chap. 4], reports the “incremental” implementation of a quadrilateral element that,
starting from a four-node bilinear setting, is enriched by other degrees of freedom up
to the biquadratic 9-node element.
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8.4.4 Construction of local and global systems

This phase is the core of the construction of the discretization of differential operators.
As an example, let us take the code in Program 7, which constructs the discretization
of the elliptic differential equation μ�u+σu= f .

The overall operation is articulated in a cycle over all the elements of the mesh
aMesh. After setting to zero the elementary matrix and vector, these structures are
filled incrementally, first with the discretization of the stiffness (diffusion) operator
and then with the mass operator (reaction). The source subroutine handles the local
right-hand side vector. The assemb subroutines handle the update of the computation
in the global matrix, as previously indicated in Fig. 8.2.

In this phase, to avoid checking whether a degree of freedom is on the boundary
using conditional branches within the loop, we ignore boundary conditions.

Program 7 – assemble: Code for assembling the discretization of a diffusion-
reaction problem −μ�u+σu= f , where f is denoted by sourceFct

Real mu=1., sigma=0.5;

ElemMat elmat(fe.nbNode,1,1);

ElemVec elvec(fe.nbNode,1);

for(UInt i = 1; i<=aMesh.numVolumes(); i++){

fe.updateFirstDerivQuadPt(aMesh.volumeList(i));

//<- computes the necessary information for numerical integration

elmat.zero();

elvec.zero();

stiff(mu,elmat,fe);

mass(sigma,elmat,fe);

source(sourceFct,elvec,fe,0);

assemb_mat(A,elmat,fe,dof,0,0);

assemb_vec(F,elvec,fe,dof,0);

}

Let us see in detail a possible implementation of the local computation and of the
global update separately.

Computation of the local matrices

Program 8 reports the implementation of the computation of the local matrix of the
diffusion operator and of the right-hand side of the linear system.

In particular, we first assemble the diagonal contributions and then the extra-dia-
gonal ones of the local matrix, thus looping over the quadrature nodes. The “core”
loop operation is:

s += fe.phiDer( iloc, icoor, ig ) * fe.phiDer( jloc, icoor, ig )

* fe.weightDet( ig )*coef;

−
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The instruction

mat( iloc, jloc ) += s;

updates the term i, j of the local matrix incrementally: upon call of the ensuing sub-
routine mass(), the contribution of the reaction operator will be added to the one
previously computed.

We proceed in a similar way in source for the computation of the local vector of
known terms.

Program 8 – stiff-source: Subroutines for the computation of the second deriva-
tive and local-level computation of the right-hand side

void stiff( Real coef,

ElemMat& elmat, const CurrentFE& fe,

const Dof& dof,

const ScalUnknown<Vector>& U,Real t)

{

int iblock=0,jblock=0;

ElemMat::matrix_view mat = elmat.block( 0,0 ); //initialize local matrix

int iloc, jloc, i, icoor, ig, iu;

double s, coef_s, x, y, z;

ID eleId=fe.currentId();

// Diagonal elements

for ( i = 0;i < fe.nbDiag;i++ )

{

iloc = fe.patternFirst( i );s = 0;

for ( ig = 0;ig < fe.nbQuadPt;ig++ ) // numerical integration

{

fe.coorQuadPt(x,y,z,ig);// definition of the quadrature formula

for ( icoor = 0;icoor < fe.nbCoor;icoor++ ) // core of the assembly

s += fe.phiDer( iloc, icoor, ig ) * fe.phiDer( iloc, icoor, ig )

* fe.weightDet( ig )*coef(t,x,y,z,uPt);

}

mat( iloc, iloc ) += s;

}

//Extra-diagonal elements

for ( i = fe.nbDiag;i < fe.nbDiag + fe.nbUpper;i++ )

{

iloc = fe.patternFirst( i );

jloc = fe.patternSecond( i );s = 0;

for ( ig = 0;ig < fe.nbQuadPt;ig++ )

{

fe.coorQuadPt(x,y,z,ig);

for ( icoor = 0;icoor < fe.nbCoor;icoor++ )

s += fe.phiDer( iloc, icoor, ig ) * fe.phiDer( jloc, icoor, ig ) *

fe.weightDet( ig )*coef;

}
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coef_s = s;

mat( iloc, jloc ) += coef_s; //incremental

mat( jloc, iloc ) += coef_s; //local matrix update

// recall that the operator is SYMMETRIC!

}}

void source( Real (*fct)(Real,Real,Real,Real,Real),

ElemVec& elvec, const CurrentFE& fe,

const Dof& dof,

const ScalUnknown<Vector>& U,Real t)

{

int iblock=0;

int i, ig;

ElemVec::vector_view vec = elvec.block( iblock );

Real s;

ID eleId=fe.currentId();

int iu;

for ( i = 0;i < fe.nbNode;i++ )

{

s = 0.0;

for ( ig = 0;ig < fe.nbQuadPt;ig++ )

{

s += fe.phi( i, ig ) *

fct(t, fe.quadPt( ig, 0 ),fe.quadPt( ig, 1 ),fe.quadPt( ig, 2 )) *

fe.weightDet( ig );

}

vec( i ) += s; //right hand side computation }}

Update of the global matrix

Program 9 contains the update of the global matrix starting from the local ones. The
crucial point is the identification of the position of the nodes that compose the current
element, on which we have just computed the local matrix within the global one. This
operation is performed by looking up the dof.localToGlobal Tables, which contain
this type of operation.

For the update of the right-hand side, we perform a similar operation. Obviously,
the additivity of the integral requires the operation to be performed by adding the
different contributions: this explains the += in the update of the vector (corresponding
to V[ig]=V[ig]+ vec( i ) and to the analogous term in M.setmatinc, which stands for
set matrix incrementally.

Program 9 – assemb: Assembly of the global matrix and of the right-hand side

template <typename Matrix, typename DOF>

void

assemb_mat( Matrix& M, ElemMat& elmat, const CurrentFE& fe, const DOF& dof)
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ElemMat::matrix_view mat = elmat.block(0,0);

UInt totdof = dof.numTotalDof();

int i, j, k;

UInt ig, jg;

UInt eleId = fe.currentId();

for ( k = 0 ; k < fe.nbPattern ; k++ )

i = fe.patternFirst( k );

j = fe.patternSecond( k );

ig = dof.localToGlobal( eleId, i + 1 ) - 1;

jg = dof.localToGlobal( eleId, j + 1 ) - 1;

M.set_mat_inc( ig, jg, mat( i, j ) );

template <typename DOF, typename Vector, typename ElemVec>

void

assemb_vec( Vector& V, ElemVec& elvec, const CurrentFE& fe, const DOF& dof)

UInt totdof = dof.numTotalDof();

typename ElemVec::vector_view vec = elvec.block( iblock );

int i;

UInt ig;

UInt eleId = fe.currentId();

for ( i = 0 ; i < fe.nbNode ; i++ )

ig = dof.localToGlobal( eleId, i + 1 ) - 1;

V[ ig ] += vec( i );

8.4.5 Boundary conditions prescription

The need to store sparse matrices efficiently must be compensated by the need to
access and manipulate the matrix itself, as we have previously noticed for the CSR
format, for instance in the phase of setting the boundary conditions. In a finite element
code, the matrix is typically assembled regardless of boundary conditions, so as not
to introduce conditional branches within the assembly. Boundary conditions are then
introduced by modifying the algebraic system. Imposing Neumann and Robin-type
conditions basically translates into the computation of suitable boundary integrals (or,
in one-dimensional cases, of values evaluated at the boundary). For instance, Pro-
gram 10 implements the computation of integrals on the surface for Neumann-type
conditions specified in function Bcb. The integral requires a suitable quadrature for-
mula that allows to update the known term b. The structure bdLocalToGlobal allows
to transfer the information for each boundary element having Neumann degrees of
freedom at the global right-hand side.
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Program 10 – BcNaturalManage: Subroutine for handling Neumann-type bound-
ary conditions

template <typename VectorType, typename MeshType, typename DataType>

void bcNaturalManage( VectorType& b, const MeshType& mesh, const Dof& dof, \\

const BCBase& BCb, CurrentBdFE& bdfem, const DataType& t )

{

UInt nDofF = bdfem.nbNode;

UInt totalDof = dof.numTotalDof();

UInt nComp = BCb.numberOfComponents();

const IdentifierNatural* pId;

ID ibF, idDof, icDof, gDof;

Real sum;

DataType x, y, z;

// Loop on the type of boundary conditions

for ( ID i = 1; i <= BCb.list_size(); ++i )

{

pId = static_cast< const IdentifierNatural* >( BCb( i ) );

// Number of current boundary face

ibF = pId->id();

// definition of information on the face

bdfem.updateMeas( mesh.boundaryFace( ibF ) );

// Loop on degrees of freedom per face

for ( ID idofF = 1; idofF <= nDofF; ++idofF )

{

// Loop on the involved unknown components

for ( ID j = 1; j <= nComp; ++j )

{

//global Dof

idDof = pId->bdLocalToGlobal( idofF ) + ( BCb.component( j ) - 1 ) * totalDof;

// Loop on quadrature nodes

for ( int l = 0; l < bdfem.nbQuadPt; ++l )

{

bdfem.coorQuadPt( x, y, z, l ); // quadrature point coordinates

// Contribution in the known term

b[ idDof - 1 ] += bdfem.phi( int( idofF - 1 ), l ) * BCb( t, x, y, z, BCb.component( j ) ) *

bdfem.weightMeas( l );

}}}}}

Handling Dirichlet (essential) boundary conditions is more complex (see Fig. 8.2).
There are various strategies for this operation, some of which are treated in [FSV12].
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The most coherent approach to what is prescribed by the theory consists in removing
the rows and columns referring to the nodes associated to the Dirichlet boundary con-
ditions from the system obtained during assembly, thus correcting the known term by
using the values of the Dirichlet datum we want to impose.

In fact, this coincides with the operation of lifting the boundary datum through
a piecewise polynomial function of the chosen degree for the finite elements, and
whose support is limited to the only layer of elements of the triangulation that face the
boundary (see Fig. 4.13 in Sect. 4.5.1)

This way of proceeding has the advantage of reducing the dimension of the prob-
lem to the effective number of degrees of freedom, however its practical implemen-
tation is problematic. Indeed, while for 1D problems, due to the natural ordering of
degrees of freedom, the optional rows and columns to be removed are always the first
and last one, for multi-dimensional problems the implementation involves eliminating
rows and columns whose numbering can be arbitrary, a difficult operation to handle
efficiently. It must also be noted that this operation substantially modifies the pat-
tern of the matrix, and this can be inconvenient in case we want to share the latter
among several matrices in order to save memory. For this reason, we prefer to con-
sider the Dirichlet condition to be imposed at a given node kD as an equation of the
form ukD = gkD replacing the kD-th row of the original system. To avoid modifying the
matrix pattern, this substitution must be inserted by annihilating the extra-diagonal
row elements, except for the diagonal one, which is set to 1, while the corresponding
entry in the right-hand side is set to gkD .

This operation only requires row-wise access to the matrix, for which the CSR
format is particularly efficient.

8.5 Integration in time

Among the different methods to integrate in time, we analyzed the θ method in the pre-
vious chapters, and pointed out a number of other methods, in particular BDF (Back-
ward Difference Formulas) methods implemented in LifeV. An introduction of these
methods can be found in [QSS07]. We here recall some of their basic aspects.

Given the system of ordinary differential equations:

M
du

dt
= f−Au

and the associated initial datum u(t = 0) = u0, a BDF method is an implicit multi-step
method of the form

α0

Δ t
MUn+1 +AUn+1 = fn+1 +

p

∑
j=1

α j

Δ t
Un+1− j, (8.8)

for suitable p ≥ 1, where the coefficients are determined so that:

∂U

∂ t
|t=tn+1 =

α0

Δ t
Un+1 −

p

∑
j=1

α j

Δ t
Un+1− j +O(Δ t p).
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Table 8.3. Coefficients αi for the BDF methods (p = 1,2,3) and coefficients βi for time-
extrapolation

p α0 α1 α2 α3 β0 β1 β2

1 1 1 – – 1 – –
2 3/2 2 −1/2 – 2 −1 –
3 11/6 3 −3/2 1/3 3 −3 1

Here, Δ t > 0 is the time-step, tn = nΔ t, and Un stands for U at time tn. In Table 8.3
(left) we report the coefficients for p = 1 (implicit Euler method), 2,3.

If the matrix A is a function of u, that is when problem (8.8) is nonlinear, BDF
methods, being implicit, can be very costly, for they require at each time step the
solution of the nonlinear algebraic system in Un+1

α0

Δ t
MUn+1 +A(Un+1)Un+1 = fn+1 +

p

∑
j=1

α j

Δ t
Un+1− j.

A possible trade-off that significantly reduces computational costs, without switching
to a completely explicit method (whose stability properties can in general be unsatis-
factory), is to solve the linear system

α0

Δ t
MUn+1 +A(U∗)Un+1 = fn+1 +

p

∑
j=1

α j

Δ t
Un+1− j

where U∗ approximates Un+1 using the solutions known from the previous steps. We
basically set

U∗ =
p

∑
j=0
β jU

n− j = Un+1 +O(Δ t p),

for suitable “extrapolation” coefficients β j. The objective is to reduce the computa-
tional costs without dramatically reducing neither the region of absolute stability of
the implicit scheme nor the overall accuracy of the time-advancing scheme. Table 8.3
reports the coefficients β j.

The coding of a BDF time integrator can at this point be performed using a dedi-
cated class, reported in Program 11, whose members are:

1. the indicator of the order p which also states the dimension of the vectors α and β;
2. the vectors α and β;
3. the unknowns matrix given by aligning the vectors Un,Un−1, . . .Un+1−p. The size

of each vector, i.e. the number of rows of such matrix (which has p columns) is
stored in the size index.

Having assembled the matrices A and M, the time-advancing scheme will be per-
formed by computing the matrix α0

Δ t M +A, the right-hand side fn+1 +∑
p
j=1

α j
Δ t Un+1− j

and solving system (8.8). In particular, in the implementation presented in Program 11,
the function time der computes the term ∑

p
j=1

α j
Δ t Un+1− j by accessing the vector α
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and the unknowns matrix. In case the problem is nonlinear, we can access to the
vector β via the function extrap().

Having computed the solution at the new time step, the unknowns matrix has to
“make room for it”, by shifting all of its columns to the right, so that the first column
is the solution just computed. This operation is performed by the function shift right,
which basically copies the next-to-last column of unknowns into the last one, the
third from the bottom into the second-last one and so on until the solution computed
is fully stored.

Program 11 – Bdf: Base class for costructing Bdf time integration methods

class Bdf

{

public:

Bdf( const UInt p );

~Bdf();

void initialize_unk( Vector u0 );

void shift_right( Vector const& u_curr );

Vector time_der( Real dt ) const;

Vector extrap() const;

double coeff_der( UInt i ) const;

double coeff_ext( UInt i ) const;

const std::vector<Vector>& unk() const;

void showMe() const;

private:

UInt _M_order;

UInt _M_size;

Vector _M_alpha;

Vector _M_beta;

std::vector<Vector> _M_unknowns;

};

Bdf::Bdf( const UInt p )

:

_M_order( p ),

_M_size( 0 ),

_M_alpha( p + 1 ),

_M_beta( p )

{

if ( n <= 0 || n > BDF_MAX_ORDER )

{

// Error handling for requesting a wrong or non-implemented order

....

}
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switch ( p )

{

case 1:

_M_alpha[ 0 ] = 1.; // implicit Euler

_M_alpha[ 1 ] = 1.;

_M_beta[ 0 ] = 1.; // u at time n+1 approximated by u at time n

break;

case 2:

_M_alpha[ 0 ] = 3. / 2.;

_M_alpha[ 1 ] = 2.;

_M_alpha[ 2 ] = -1. / 2.;

_M_beta[ 0 ] = 2.;

_M_beta[ 1 ] = -1.;

break;

case 3:

_M_alpha[ 0 ] = 11. / 6.;

_M_alpha[ 1 ] = 3.;

_M_alpha[ 2 ] = -3. / 2.;

_M_alpha[ 3 ] = 1. / 3.;

_M_beta[ 0 ] = 3.;

_M_beta[ 1 ] = -3.;

_M_beta[ 2 ] = 1.;

break;

}

_M_unknowns.resize( p ); //number of columns of matrix _M_unknowns}

8.6 A complete example

We conclude this chapter with the listing of a program written for the solution of the
parabolic diffusion-reaction problem:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂ u

∂ t
− μ(t)�u+σ(t)u= f , x ∈Ω , 0 < t ≤ 10,

u = g1, x ∈ Γ10 ∪Γ11, 0 < t ≤ 10,
u = g2, x ∈ Γ20 ∪Γ21, 0 < t ≤ 10,
∇u ·n = 0, x ∈ Γ50, 0 < t ≤ 10,
u = u0, x ∈Ω , t = 0,

whereΩ is a cubic domain and ∂Ω = Γ10∪Γ11 ∪Γ20 ∪Γ21 ∪Γ50. Precisely, the numer-
ical codes on the various boundary portions are:

Γ20 : x = 0, 0 < y < 1, 0 < z < 1;
Γ21 : x = 0, (y = 0, 0 < z < 1)∪ (y = 1, 0 < z < 1)

∪(z = 0, 0 < y < 1)∪ (z = 0, 0 < y < 1);
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Γ10 : x = 1, 0 < y < 1, 0 < z < 1;
Γ11 : x = 1, (y = 0, 0 < z < 1)∪ (y = 1, 0 < z < 1)

∪(z = 0, 0 < y < 1)∪ (z = 0, 0 < y < 1);
Γ50 : ∂Ω\{Γ20 ∪Γ21 ∪Γ10 ∪Γ11} .

In particular, μ(t) = t2, σ(t) = 2, g1(x,y,z, t) = g2(x,y,z, t) = t2 + x2, u0(x,y,z) = 0,
f = 2t + 2x2. The exact solution is precisely t2 + x2 and the test is made on a cubic
grid of 6007 elements with quadratic affine tetrahedra, for a total of 9247 degrees of
freedom. The time step is Δ t = 0.5, the order of the BDF scheme is 3.

Program 12 contains the main program for this example (originally based on the
library LifeV) and has been enriched by comments to help the reading, although obvi-
ously not everything will be immediately clear just by reading the preceding sections.
Coherently with the spirit with which this chapter has been designed, we invite the
reader to try to write her/his own code or run the tutorials of libraries such as LifeV,
FEniCS or OpenFOAM.

Program 12 – main.cpp: Solution of a parabolic problem on a cubic domain

int main() {

using namespace std;

{

// ===================================================

// Definition of the boundary conditions (associated with a file main.hpp)

// ===================================================

BCFunctionBase gv1(g1); // Function g1

BCFunctionBase gv2(g2); // Function g2

BCHandler BCh(2); // Two boundary conditions are imposed

// To the two conditions, we associate the numerical codes 10 and 20

// contained in the computational grid

BCh.addBC("Dirichlet1", 10, Essential, Scalar, gv1);

BCh.addBC("Dirichlet2", 20, Essential, Scalar, gv2);

// ===================================================

// Information on the geometric mapping and on the numerical integration

// ===================================================

const GeoMap& geoMap = geoLinearTetra;

const QuadRule& qr = quadRuleTetra64pt;

const GeoMap& geoMapBd = geoLinearTria;

const QuadRule& qrBd = quadRuleTria3pt;

//P2 elements

const RefFE& refFE = feTetraP2;

const RefFE& refBdFE = feTriaP2;
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// ================================

// Structure of the mesh

// ================================

RegionMesh3D<LinearTetra> aMesh;

GetPot datafile( "data" ); //information on the mesh file

// and other information is contained in a file named ‘‘data’’

long int m=1;

std::string mesh_type = datafile( "mesh_type", "INRIA" );

string mesh_dir = datafile( "mesh_dir", "." );

string fname=mesh_dir+datafile( "mesh_file", "cube_6007.mesh" );

readMppFile(aMesh,fname,m); // grid reading

aMesh.updateElementEdges();

aMesh.updateElementFaces();

aMesh.showMe();

// =======================================

// Definition of the current finite element, equipped with

// geometric mapping and quadrature rule

// =======================================

CurrentFE fe(refFE,geoMap,qr);

CurrentBdFE feBd(refBdFE,geoMapBd,qrBd);

// ========================================

// Definition of the degrees of freedom (DOF) of the problem

// and of the specific boundary conditions

// ========================================

Dof dof(refFE);

dof.update(aMesh);

BCh.bdUpdate( aMesh, feBd, dof );

UInt dim = dof.numTotalDof();

dof.showMe();

// ================================

// Initialization of the unknown vectors

// U and of known term F

// ================================

ScalUnknown<Vector> U(dim), F(dim);

U=ZeroVector( dim );

F=ZeroVector( dim );

// ===============================================

// Definition of the parameters for the integration in time
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// always specified in ‘‘data’’ and read from there

// ===============================================

Real Tfin = datafile( "bdf/endtime", 10.0 );

Real delta_t = datafile( "bdf/timestep", 0.5 );

Real t0 = 0.;

UInt ord_bdf = datafile( "bdf/order", 3 );;

Bdf bdf(ord_bdf);

Real coeff=bdf.coeff_der(0)/delta_t;

bdf.showMe();

// ======================================================

// Construction of the pattern and of the time-independent matrices

// ======================================================

// pattern for stiff operator

CSRPatt pattA(dof);

CSRMatr<double> A(pattA);

CSRMatr<double> M(pattA);

M.zeros();

cout << "*** Matrix computation : "<<endl;

chrono.start();

//

SourceFct sourceFct;

ElemMat elmat(fe.nbNode,1,1);

ElemVec elvec(fe.nbNode,1);

for(UInt i = 1; i<=aMesh.numVolumes(); i++){

fe.updateJacQuadPt(aMesh.volumeList(i));

elmat.zero();

mass(1.,elmat,fe);

assemb_mat(M,elmat,fe,dof,0,0); // Mass matrix M

}

// =====================================

// TIME LOOP

// =====================================

int count=0;

bdf.initialize_unk(u0,aMesh,refFE,fe,dof,t0,delta_t,1);

for (Real t=t0+delta_t;t<=Tfin;t+=delta_t)

{

A.zeros();

F=ZeroVector( F.size() );

// =========================================
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// Assembly and

// Update of the known term with the solution of

// the preceding steps

// =========================================

Real visc=nu(t);// mu and sigma depend on time

Real s=sigma(t);

for(UInt i = 1; i<=aMesh.numVolumes(); i++){

fe.updateFirstDerivQuadPt(aMesh.volumeList(i));

elmat.zero();

elvec.zero();

mass(coeff+s,elmat,fe);

stiff(visc,elmat,fe);

source(sourceFct,elvec,fe,t,0);

assemb_mat(A,elmat,fe,dof,0,0);

assemb_vec(F,elvec,fe,dof,0);

}

// Handling of the right hand side

F += M*bdf.time_der(delta_t);

// ========================================

// Prescription of the boundary conditions

// =======================================

chrono.start();

bcManage(A,F,aMesh,dof,BCh,feBd,1.,t);

chrono.stop();

chrono.start();

Linear_solve(U.giveVec(), F.giveVec(), options, params, NULL,

(int *)pattA.giveRaw_bindx(), NULL, NULL, NULL,

A.giveRaw_value(), data_org,

status, proc_config);

// ======================================

// Writing of the post-processing file

// ======================================

count++;

index << count;

wr_medit_ascii_scalar( "U" + index.str() + ".bb", U.giveVec(), dim );

wr_medit_ascii( "U" + index.str() + ".mesh", aMesh);

// ==================================================

// In this test case we know the analytic solution

// (specified in main.hpp)

// and we want to compute the errors in different norms

// ==================================================
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AnalyticalSol analyticSol;

Real normL2=0., normL2diff=0., normL2sol=0.;

Real normH1=0., normH1diff=0., normH1sol=0.;

for(UInt i=1; i<=aMesh.numVolumes(); ++i){

fe.updateFirstDeriv(aMesh.volumeList(i));

normL2 += elem_L2_2(U,fe,dof);

normL2sol += elem_L2_2(analyticSol,fe,t,( UInt )U.nbcomp());

normL2diff += elem_L2_diff_2(U,analyticSol,fe, dof, t,( UInt )U.nbcomp());

normH1 += elem_H1_2(U,fe,dof);

normH1sol += elem_H1_2(analyticSol,fe,t,U.nbcomp());

normH1diff += elem_H1_diff_2(U,analyticSol,fe,dof,t,U.nbcomp());

}

normL2 = sqrt(normL2);

normL2sol = sqrt(normL2sol);

normL2diff = sqrt(normL2diff);

normH1 = sqrt(normH1);

normH1sol = sqrt(normH1sol);

normH1diff = sqrt(normH1diff);

bdf.shift_right(U);

} // END OF TIME LOOP

}

return EXIT_SUCCESS;

}

This is what we have obtained after running the code

‖U‖L2 = 0.655108
‖sol‖L2 = 0.655108
‖U − sol‖L2 = 1.49398e-09
‖U − sol‖L2/‖sol‖L2 = 2.28051e-09
‖U‖H1 = 1.32759
‖sol‖H1 = 1.32759
‖U − sol‖H1 = 8.09782e-09
‖U − sol‖H1/‖sol‖H1 = 6.09963e-09

Note that the errors are to be attributed exclusively to the linear system’s solution:
as the exact solution is a parabolic function in time and space, the choice of finite ele-
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ments of degree 2 and of the BDF scheme of order 3 guarantees that the discretization
errors are non-null. Fig. 8.8 illustrates the results visualized by Medit.

Fig. 8.8. Results of the simulation after 5 (left) and 20 (right) time steps



Chapter 9

The finite volume method

The finite volume method is a very popular method for the space discretization of
partial differential problems in conservation form. For an in-depth presentation of the
method, we suggest the monographs [LeV02a], [Wes01] and [Tor09].
As a paradigm to describe the method and illustrate its main features, let us consider
the following scalar equation

∂u

∂ t
+ div(F(u)) = s(u), x ∈Ω , t > 0 (9.1)

where u : (x, t) → R denotes the unknown, x ∈ Ω ⊂ Rd (d = 1,2,3), F is a given
vector function, linear or nonlinear, called flux, s is a given source function. If the flux
F contains terms depending on the first derivatives of u, the differential problem is
a second-order one. The differential equation (9.1) must be completed by the initial
condition u(x,0) = u0(x), x ∈Ω for t = 0, as well as by suitable boundary conditions,
on the whole boundary ∂Ω if problem (9.1) is a second-order one, or just on a subset
∂Ω in of ∂Ω (the inflow boundary) in the case of first-order problems. As we will see
in Chapter 16 (see Sect. 16.1 and Sect. 16.4), this type of differential equations are
called conservation laws.

The diffusion-transport equations that will be addressed in Chapter 13, the pure
transport equations of Chapters 14–16, and the parabolic ones examined in Chapter 5,
can all be considered as special cases of (9.1). Indeed, all partial differential equations
deriving from physical conservation laws can be expressed in conservation form.

Typically, the finite volume method operates on equations written in conservation
form such as (9.1).

With some additional effort, we can obviously consider the vector case, where the
unknown u and the source s are vector functions with p components, while the flux F

is now a tensor with dimension p×d. In particular, also the Navier-Stokes equations
and the Euler equations for compressible flows that will be considered in Sect. 16.4
can be rewritten in conservative form. A finite volume approximation of free-surface
incompressible flows for real life applications will be discussed in Sect. 17.11.

A. Quarteroni, Numerical Models for Differential Problems, MS&A 16, 
DOI 10.1007/978-3-319-49316-9_9 

213© Springer International Publishing AG 2017 
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Fig. 9.1. A control volume in 2D (left) and 3D (right)

9.1 Some basic principles

The preliminary step towards a finite volume discretization of (9.1) consists in iden-
tifying a set of polyhedra Ωi ⊂ Ω with diameter less than h, called control volumes
(or control cells), i = 1, . . . ,M, such that ∪iΩ i = Ω (we will assume for simplicity
that the domain Ω is polygonal, otherwise ∪iΩ i will be its approximation). See Fig.
9.1 for an example of control volume. We will furthermore suppose the cells to be
pairwise disjoint, this being the most commonly used case, although such restriction
is not required, in principle, by the method.

Equation (9.1) is integrated on each Ωi; using the divergence theorem we obtain
the system of ordinary differential equations

∂

∂ t

∫
Ωi

udΩ +
∫
∂Ωi

F(u) ·ni dγ =
∫
Ωi

s(u)dΩ , i = 1, . . . ,M. (9.2)

We have denoted by ni the unit outward normal of ∂Ωi. In two dimensions, let us
denote by Li the number of straight sides of Ωi (in Fig. 9.1 Li = 5) and by ni j, j =
1, . . . ,Li, the (constant) outward unit normal vector to the side li j of ∂Ωi. Then (9.2)
can be rewritten as

∂

∂ t

∫
Ωi

udΩ +
Li

∑
j=1

∫
li j

F(u) ·ni j dγ =
∫
Ωi

s(u)dΩ , i = 1, . . . ,M. (9.3)

Several issues have to be addressed:

• which geometrical shape should the control volumes have;
• how to represent the unknown u in each control volume, that is which are its de-

grees of freedom and where should they be placed;
• how to approximate the (volume and surface) integrals;
• how to represent the flux F(u) on each side, as a function of the values of the

unknown u on the control volumes adjacent to the side.

For the construction of the control volumes, we usually start from a triangulation Th

of the domain into polygons called elements, say {Km}, of the same kind. Typically
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Fig. 9.2. An example of blockwise structured mesh

these are triangles or quadrilaterals in 2D, tetrahedra or hexahedra in 3D, as we saw in
Chapter 4 when using finite elements. The grid can be structured, blockwise-structured
(with either disjoint or overlapping blocks), or unstructured. Structured grids are in
general bounded to domains of relatively simple shape, in order for the whole domain,
or each block in which it is subdivided, to be mapped to a rectangle or a cube. In Fig.
9.2 we display a block structured grid on the surface of the appendages of a yacht.

Once the domain has been triangulated, we have two possibilities.
In the so-called cell-centered method, the elements {Km} of Th directly serve as con-
trol volumes. Consequently, the unknowns are associated to an internal point on each
element, typically the barycenter, called node. However, this apparently natural choice
of control volumes has a disadvantage: as there are no nodes lying on the boundary
of Ω , imposing the boundary conditions will require special actions, which we will
examine later on. To account for such inconvenient, we can construct control volumes
around the elements of Th, where we will place the unknowns. This yields to the so-
called vertex-centered schemes.
Sometimes, in multifield problems with several unknowns, both techniques are used at
the same time to place different unknowns at different nodes. In this case, we will say
that staggered grids are used; we will present a remarkable example in Sect. 17.11,
devoted to the discretization of Navier-Stokes equations.

A basic example on a structured quadrangular grid is reported in Fig. 9.3, where
we also show the control volumes for cell-centered and vertex-centered schemes. The
latter are defined by the squares

ΩV
i = {x ∈Ω : ‖x−xi‖∞ < h/2}, Ωi =ΩV

i ∩Ω ,

where {xi} are the vertices of the squares {Km} of the initial grid Th, which coincide
in this case with the nodes of the control volumes, and h is the uniform length of the
element edges.

These two choices do not exhaust the options encountered in the practice. Some-
times the variables are placed on each edge (or face, in 3D) of the grid Th, and the
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xi

∂Ω
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∂Ω

Fig. 9.3. Control volumes (in grey) generated by a partition of a square domain Ω with square
finite elements of edge h. Left: cell-centered case. Right: vertex-centered case

corresponding control volume is formed by the elements of Th adjacent to the edge
(or face).

In general terms, a finite volume approach is simple to implement: the discretiza-
tion cells can be chosen in a very general form, the solution is typically assumed to
be a constant function in each control volume, the Neumann boundary conditions are
imposed in a natural way, and the very formulation of the problem expresses the lo-
cal conservation of the amount

∫
Ωi

u dΩ . The potential drawbacks are the objective
difficulty in drawing high-order schemes, the need to treat essential (Dirichlet) bound-
ary conditions, in particular for the cell-centered methods; finally, the mathematical
analysis is less simple than in the case of Galerkin methods, as a direct application of
variational techniques used for the former is not straightforward.

It should however be mentioned that some special instances of finite volume ap-
proximations can be recovered starting from the discontinuous Galerkin method that
will be introduced in Chapter 12. See, e.g., [EGH00], [Riv08].

9.2 Construction of control volumes for vertex-centered schemes

In the case the original triangulation Th is made of triangular unstructured elements in
2D or tetrahedric ones in 3D, the construction of control volumes around the vertices
of Th is not straightforward. In principle, we could choose as control volumeΩi the set
of all elements containing the vertex xi. However, this would generate control volumes
with non-null intersection, a permitted-but not desirable-situation.
We can thus take advantage of some geometrical concepts. Let us consider for example
a bounded polygonal domain Ω ⊂ R2, and let {xi}i∈P be a set of points, which we
will call nodes, of Ω . Here P denotes a set of indexes. These points are typically the
ones where we intend to provide an approximation of the solution u. We associate to
each node the polygon

ΩV
i = {x ∈R2 : |x−xi|< |x−x j| ∀ j ∈ P, j 
= i}, (9.4)

with i ∈ P . The set {ΩV
i , i ∈ P} is called Voronoi diagram, or Voronoi tessella-

tion, associated to the set of points {xi}i∈P ; ΩV
i is called i-th Voronoi polygon. For
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Fig. 9.4. A Voronoi diagram

an example see Fig. 9.4. The polygons thus obtained are convex, but not necessar-
ily bounded (consider for instance the ones adjacent to the boundary). Their vertices
are called Voronoi vertices; a vertex is said regular when it is the meeting point of
three Voronoi polygons, and degenerate when it is shared by at least four polygons. A
Voronoi diagram with only regular vertices is in turn called regular.

At this point, we can define the control volumes Ωi introduced in the previous
section as

Ωi =ΩV
i ∩Ω , i ∈ P. (9.5)

For each i ∈ P , we denote by Pi the set of indexes of the nodes adjacent to xi,
i.e.

Pi = { j ∈ P\{i} : ∂Ωi ∩∂Ω j 
= /0}.
Moreover, we denote by li j = ∂Ωi∩∂Ω j , j ∈Pi, a side of the boundary ofΩi shared
by an adjacent control volume, and by mi j its length. If the Voronoi diagram is regu-
lar, we have mi j > 0. In this case, if we connect each node xi with the nodes of Pi,
we obtain a triangulation of Ω coinciding with the Delaunay triangulation (see Sect.
6.4.1) of the convex hull of the nodes. In case there are degenerate vertices in the
Voronoi tessellation, from this procedure we can still obtain a Delaunay triangulation,
provided we triangulate suitably the polygons Ωi constructed around the degener-
ate vertices. Clearly, if Ω is convex, the above-described process directly provides a
Delaunay triangulation of Ω , see e.g. Fig. 9.5. The inverse procedure is also possi-
ble, noting that the vertices of the Voronoi diagram correspond to the centres of the

Ωi

Kj

Fig. 9.5. Delaunay triangulation (right) obtained from a Voronoi diagram (left). The dots indi-
cate the nodes {xi}i∈P
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Kj

Ωi

Fig. 9.6. Voronoi diagram (right) obtained starting from a Delaunay triangulation (left)

circles circumscribed to the triangles (the circumcenters) of the corresponding Delau-
nay triangulation. The triangle axes thus form the sides of the tessellation. The latter
therefore represents a possible set of control volumes associated to a given Delaunay
triangulation (see e.g. Fig. 9.6).

The Voronoi diagram and the Delaunay triangulation are dual to one another: Voro-
noi vertices correspond one-to-one to elements (triangles) of the Delaunay triangula-
tion, and, conversely, Delaunay vertices correspond to the polygons of the tessellation,
hence to the nodes.

There are two interesting properties which are worth highlighting. The first one is
that the center of the circumscribed circle to an acute triangle K lies within the closure
of K. Hence if the Delaunay triangulation has no obtuse angles, the vertices of the
corresponding Voronoi diagram are all contained inΩ . The second is that if we denote
by vi, i = 1,2,3, the vertices of the non-obtuse triangle K, and by Ωi,K = Ωi ∩K the
portion of the control volumeΩi included in K, then we have the following inequalities
between the measures of K and Ωi,K

1
4
|K| ≤ |Ωi,K | ≤ 1

2
|K|, i = 1,2,3. (9.6)

An alternative to the construction based on the Voronoi diagram, which does not
require a Delaunay triangulation, consists in starting from a triangulation Th of Ω
formed by any kind of triangles including obtuse ones. If K is the generic triangle of
Th with vertices vi, i = 1,2,3, we now define

Ωi,K = {x ∈ K : λ j(x)< λi(x), j 
= i}

where λ j are the barycentric coordinates of K (see Sect. 4.4.3 for their definition). An
example is shown in Fig. 9.7. At this point, the control volumes can be defined in the
following way

Ωi = int
( ⋃
{K : vi∈∂K}

Ω i,K

)
, i ∈ P,

where int(D) denotes the interior of the closed set D . The family {Ωi, i ∈P} defines
the so-called median dual grid (sometimes also named Donald diagram). See Fig. 9.8
for an example. Consequently, we can define the quantities li j, mi j and Pi as for the
Voronoi diagram. Now the elements li j are not necessarily straight segments.
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Fig. 9.7. A triangle K, its center of gravity G = 1
3 (v1 +v2 +v3), and the polygons Ωi,K

K j
Ωi

Fig. 9.8. Triangulation of the domain (left) and median dual grid, or Donald diagram (right)

9.3 Discretization of a diffusion-transport-reaction problem

Let us consider for the sake of an example equation (9.1) where

F(u) =−μ∇u+bu, s(u) = f −σ u. (9.7)

This is a time-dependent diffusion-transport-reaction equation written in conserva-
tion form, similar to the one described at the beginning of Chapter 13. The functions
f ,μ ,σ and b are given, and fulfill the hypotheses made at the beginning of Chapter
13. As in the case of problem (13.1), we will suppose for simplicity that u satisfies
a homogeneous Dirichlet boundary condition, u = 0 on ∂Ω . Let us suppose that Ω
is partitioned by a Voronoi diagram and consider the corresponding Delaunay trian-
gulation (an instance is provided in Fig. 9.5). What follows can in fact be extended
to other types of finite volumes; for that, it will be sufficient to consider the set of the
inner indexes only, Pint = {i ∈P : xi ∈Ω}, because u vanishes on the boundary. In-
tegrating the assigned equation on the control volume Ωi as we did in (9.3) and using
the divergence theorem, we find

∂

∂ t

∫
Ωi

udΩ +
Li

∑
j=1

∫
li j

(
− μ ∂u

∂ni j
+b ·ni j u

)
dγ =

∫
Ωi

(
f −σ u

)
dΩ , i ∈ Pint . (9.8)

In order to approximate the line integrals, a typical strategy consists in approximating
the functions μ and b ·ni j using piecewise constants, and precisely

μ
∣∣
li j
� μi j = const > 0, b ·ni j

∣∣
li j
� bi j = const. (9.9)
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xi

x j

li j

Fig. 9.9. The segment li j

Such constants can represent either the value of the corresponding function at the
midpoint of segment li j, or the mean value on the same side, that is

μi j =
1

mi j

∫
li j

μ dγ, bi j =
1

mi j

∫
li j

b ·ni j dγ.

As far as the normal derivatives are concerned, an option consists in approximating
them using incremental ratios of the type

∂u

∂ni j
� u(x j)−u(xi)

|x j −xi|
(see e.g. Fig. 9.9). This formula is exact if u is linear on the segment connecting xi and
x j. Finally, regarding the approximation of the integral of u on li j, we replace u

∣∣
li j

by

a constant obtained by a linear convex combination, that is

u
∣∣
li j
� ρi j u(xi)+ (1−ρi j)u(x j),

with ρi j ∈ [0,1] a parameter to be defined. Using the previous approximations, and
denoting by ui the approximation of the unknown value u(xi), we can derive from
(9.8) the following approximate equations

mi
dui

dt
+

Li

∑
j=1

mi j {−μi j
u j − ui

δi j
+ bi j [ρi j ui +(1−ρi j)u j ]}

+miσi ui = mi fi, i ∈ P,

(9.10)

having denoted by mi the measure of Ωi, by σi and fi the values of σ and f at xi and
by δi j the distance between xi and x j. Note that (9.10) can be written in the form

mi
dui

dt
+

Li

∑
j=1

mi j Hi j(ui,u j)+ miσi ui = mi fi, (9.11)

where Hi j is the so-called numerical flux representing the contribution of the approx-
imation of the flux through the side li j. The concept of numerical flux is relevant also
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in the context of finite difference schemes for hyperbolic equations, as we will see
in Chapters 14 (Sect. 14.3) and 16 (Sect. 16.3). Some of the features of the numerical
flux also translate into scheme properties. For instance, to have a conservative scheme,
it will be necessary that Hi j(ui,u j) =−Hji(u j,ui).

9.4 Analysis of the finite volume approximation

The system of equations (9.10) can be rewritten in the form of a discrete variational

problem by proceeding in the following way. For each i = 1, . . . ,
◦

M, the i-th equation
is multiplied by a real number vi then by summing over the index i we obtain

◦
M

∑
i=1

mi vi
dui

dt
+

◦
M

∑
i=1

vi

Li

∑
j=1

mi j {−μi j
u j − ui

δi j
+ bi j [ρi j ui +(1−ρi j)u j ]}

+

◦
M

∑
i=1

miσi vi ui =

◦
M

∑
i=1

mi vi fi.

(9.12)

Let us now denote by Vh the space of piecewise-linear continuous functions with re-
spect to the Delaunay triangulation Th, which vanish at the boundary ∂Ω (see (4.17)).
From a set of values vi we can univocally reconstruct a function vh ∈ Vh that interpo-
lates such values at the nodes xi, that is (see (4.7))

vh ∈Vh : vh(xi) = vi, i = 1, . . . ,
◦

M .

In a similar way, let uh ∈ Vh be the function interpolating the values ui at xi. Then,
(9.12) is rewritten equivalently in the following discrete variational form: for each
t > 0, find uh = uh(t) ∈Vh such that

(
∂

∂ t
uh,vh)h + ah(uh,vh) = ( f ,vh)h ∀vh ∈Vh, (9.13)

having introduced the internal scalar product (wh,vh)h = ∑
◦

M
i=1 mi vi wi and having de-

noted by ah(uh,vh) the bilinear form appearing in the left-hand side of (9.12). We have
thus interpreted the finite volume approximation as a particular case of the generalized
Galerkin method for the assigned problem (see Sect. 10.4.1, in particular (10.47)). As
far as the choice of the coefficients ρi j for the linear combination is concerned, an op-
tion is to use ρi j = 1/2, which corresponds to using a finite difference of the centered
type for the convective term. As we will see in Chapter 14, this strategy is adequate
when the so called local Péclet number

Pei j =
bi jδi j

μi j

(see (13.22)) is less than 1 for every pair i, j. If this is not the case, a more careful
choice of the coefficients ρi j for the convex combination is required. In general, ρi j =
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ϕ(Pei j), where ϕ is a function of the local Péclet number with values in [0,1], that
can be chosen as follows: if ϕ(z) = 1/2 [sign(z)+ 1] gives a stabilization of upwind
type, while choosing ϕ(z) = 1− (1− z/(ez − 1))/z we will have a stabilization of
exponential-fitting type. (A similar kind of stabilization will be used in Sect. 13.6 in
the context of finite difference approximation of diffusion-transport equations.) By
this choice, we can show that the bilinear form ah(·, ·) is Vh-elliptic, uniformly with
respect to h, under the usual hypothesis that the coefficients of the problem satisfy the
positivity condition 1/2div(b)+σ ≥ β0 = const ≥ 0.

Precisely, in this case, supposing further that μ ≥ μ0 = const > 0,

ah(vh,vh)≥ μ0 |vh|2H1(Ω) +β0 (vh,vh)h.

Moreover, as (vh,vh)h is uniformly equivalent to the exact L2-scalar product (vh,vh)
for functions of Vh, this ensures the stability of problem (9.13). Finally, the method is
linearly convergent with respect to h. In particular

‖u− uh‖H1(Ω) ≤C h
(‖u‖H2(Ω) + |∇ f |L∞(Ω)

)
under the assumption that the norms on the right are bounded. For the proof, see
e.g. [KA00]. We suggest the same reference for an analysis of other properties of the
method, such as monotonicity and conservation.

9.5 Implementation of boundary conditions

As previously stated, the differential problem under exam must be completed by suit-
able boundary conditions. For a problem written in conservation form, natural bound-
ary conditions would be to impose the fluxes, i.e.

F(u) ·n = h on ΓN ⊂ ∂Ω .

For their implementation in the framework of finite volumes it is sufficient to act on
the numerical flux relating to the boundary sides, imposing

Hik = H(ui,uk) = h(xik) if lik ⊂ ΓN ,

where xik is a suitable point (typically the midpoint) of lik.
On the other hand, essential (Dirichlet) conditions of the form

u = g on ΓD ⊂ ∂Ω ,

are immediate to implement in the context of vertex-centered schemes, for it is suf-
ficient to add the corresponding equation for the nodes lying on ΓD. As previously
noted, the matter is more complicated for cell-centered schemes, as in this case there
are no nodes on the boundary. An option is to impose the conditions weakly, in a simi-
lar way to what we will illustrate, although in a different context, in Sect. 15.3.1. This
is a matter of suitably modifying the numerical fluxes on the sides, imposing

Hik = H(ui,g(xik)) if lik ⊂ ΓD .
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xi
lik

Fig. 9.10. The numerical flux on the side lik belonging to the Dirichlet boundary is computed in
order to implement the boundary condition

Fig. 9.10 illustrates the situation for a cell-centered control volume adjacent to the
boundary.

In practice, however, Dirichlet boundary conditions for cell-centered finite vol-
umes are often implemented using the so-called ghost nodes. For each side lik on the
boundary, we generate additional nodes, external to the domain, to which the corre-
sponding boundary values are assigned. In this way, the computation of numerical
fluxes is formally the same also for the boundary sides.



Chapter 10

Spectral methods

As we have seen in Chapter 4, when we approximate boundary-value problems using
the finite element method, the order of convergence is anyhow limited by the degree of
the polynomials used, also in the case where solutions are very regular. In this chapter
we will introduce spectral methods, for which the convergence rate is only limited by
the regularity of the solution of the problem (and is exponential for analytical solu-
tions). For a detailed analysis we refer to [CHQZ06, CHQZ07, Fun92, BM92].

10.1 The spectral Galerkin method for elliptic problems

The main feature that distinguishes finite elements from spectral methods in their clas-
sical “single-domain” version, is that the latter use global polynomials on the compu-
tational domainΩ , instead of piecewise polynomials. This is no longer true in the case
of the spectral element method.

For each positive integer N, we denote by QN the space of polynomials with real
coefficients and degree less than or equal to N with respect to each of the variables.
Thus in one dimension we will denote by

QN(I)=

{
v(x) =

N

∑
k=0

akxk, ak ∈ R

}
(10.1)

the space of polynomials of degree≤N on the interval I ⊂R, while in two dimensions,

QN(Ω)=

{
v(x) =

N

∑
k,m=0

akm xk
1xm

2 , akm ∈ R

}
(10.2)

will denote the same space, but on the open set Ω ⊂R2. We note that while in one di-
mensionQN = PN , in several dimensions this does not happen. In particular, dim QN =
(N +1)2, while, as already seen in Sect. 4.4.1, dim PN = (N +1)(N+2)/2.

Suppose we want to approximate the solution u of an elliptic problem which ad-
mits the variational formulation (4.1). Using a spectral Galerkin method (SM), the

A. Quarteroni, Numerical Models for Differential Problems, MS&A 16, 
DOI 10.1007/978-3-319-49316-9_10

225© Springer International Publishing AG 2017 
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ΓD ΓD

Fig. 10.1. Acceptable (left) and unacceptable (right) Dirichlet boundaries for the spectral
method SM

space V will be approximated by a space VN ⊂ QN and the approximate solution will
consequently be indicated by uN . In particular, if we suppose that V is H1

ΓD
(Ω) (the

space defined in (3.27)), VN will denote the set of polynomials of QN that vanish on
the boundary portion ΓD where a Dirichlet condition is prescribed, that is

VN = {vN ∈QN : vN |ΓD = 0}.

It is evident that VN ⊂ V . The spectral Galerkin method SM will therefore be formu-
lated on the subspace VN . However, there is an issue in the definition of VN : in the
multi-dimensional case it is indeed not possible (in general) to require that a poly-
nomial vN vanishes only on an arbitrary part of the boundary of Ω . For instance, if
Ω is the square (−1,1)2, it is impossible to construct a polynomial that is null only
on a portion of a boundary edge without it being null on the whole edge (see Fig.
10.1). This does not prevent a polynomial from vanishing on one whole side of the
square or on all sides without necessarily being null in the whole of Ω (for instance,
v2(x) = (1− x2

1)(1− x2
2) is null only on the boundary of Ω ).

For this reason, in the two-dimensional case we limit our attention to square domains
(or, more generally, to domains that are reducible, through appropriate transformation,
to the reference square Ω̂ = (−1,1)2) and we suppose that the boundary’s portion ΓD

is formed by the union of one or more sides of the domain.
However, the spectral method can be extended to the case of a domainΩ composed by
the union of quadrilaterals Ωk, each of which can be reduced to the reference square
Ω̂ via an invertible transformation ϕk : Ω̂ → Ωk (see Fig. 10.2), leading to the so-
called spectral element method (SEM), that was introduced by A.T. Patera [Pat84]. It
is evident that in such a context it will be possible to require that the solution vanish on
portions of the boundary given by the union of sides of the quadrilateral, but naturally
not on portions of sides (see Fig. 10.2). In the SEM case, the discrete space has the
following form

VC
N = {vN ∈C0(Ω) : vN |Ωk ◦ϕk ∈QN(Ω̂)}.

Example 10.1. A particularly important two-dimensional mapping is the transfinite
interpolation (called Gordon-Hall transformation as well as Coons patch). The map-

pingϕk is in this case expressed as a function of the invertible mappingsπ(i)
k :(−1,1)→

Γi (for i = 1, . . . ,4) that define the four sides of the computational domain Ωk (see
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ΓD Ωk
ϕk Ω̂

Fig. 10.2. Decomposition of the solution domain and acceptable boundary conditions for the
SEM

Fig. 10.3). The transformation takes the following form

ϕk(ξ ,η) =
1−η

2
π1

k (ξ )+
1+η

2
π3

k (ξ )

+
1− ξ

2
[π4

k (η)−
1+η

2
π4

k (1)−
1−η

2
π4

k (−1)]

+
1+ ξ

2
[π2

k (η)−
1+η

2
π2

k (1)−
1−η

2
π2

k (−1)].

(10.3)

The transfinite interpolation therefore allows to consider computational domains Ω
characterized by domains with non-straight edges. For more examples of transforma-
tions, see [CHQZ07]. �

The approximation of problem (4.1) using the Galerkin spectral method (SM) is
the following

find uN ∈VN : a(uN ,vN) = F(vN) ∀vN ∈VN ,

while the spectral element one (SEM) will be

find uN ∈VC
N : aC(uN ,vN) = FC(vN) ∀vN ∈VC

N , (10.4)

ϕk

Γ4

Γ3

Γ2

Γ1

ΩkΩ̂

ξ

η

Fig. 10.3. The transformation ϕk in the case of the transfinite interpolation
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where
aC(uN ,vN) =∑

k

aΩk(uN ,vN), FC(vN) =∑
k

FΩk(vN),

aΩk(·, ·) and FΩk(·) being the restrictions of a(·, ·) and F(·) to Ωk.
Since these methods represent a special instance of the Galerkin method (4.2), the

analysis made in Sect. 4.2 continues to hold and in particular, the existence, unique-
ness, stability and convergence results can be applied.

Moreover, it can be proved that for SM and SEM spectral methods the following
a priori error estimates hold:

Theorem 10.1. Let u ∈ V be the exact solution of the variational problem (4.1)
and suppose that u ∈ Hs+1(Ω), for some s ≥ 0. If uN is the corresponding ap-
proximate solution obtained via the SM, the following estimate holds

‖u− uN‖H1(Ω) ≤CsN
−s‖u‖Hs+1(Ω),

N being the degree of the approximating polynomials and Cs a constant that does
not depend on N, but can depend on s. If uN is, instead, the solution obtained via
SEM , then we have

‖u−uN‖H1(Ω) ≤CsH
min(N,s)N−s‖u‖Hs+1(Ω),

H being the maximum length of the sides of the macroelementsΩk.

As opposed to what happens for the finite element method, a greater regularity of
the solution leads to an increase in convergence rate, even supposing that the polyno-
mial degree N is fixed. In particular, if u is analytical, the order of convergence of the
spectral method becomes more than algebraic, i.e. exponential: more precisely,

∃γ > 0 : ‖u− uN‖H1(Ω) ≤C exp(−γN).

Also in the case where u has finite regularity, it is still possible to obtain from the
spectral method the maximal convergence rate allowed by the regularity of the exact
solution: this is a clear advantage of spectral methods over finite elements.
The main limitation (in two or three dimensions) of classical spectral methods is that
they can only handle simple geometries: rectangles or quadrilaterals which can be
mapped into a square via an invertible transformation. However, as previously men-
tioned, they can be extended, via the SEM, to the case where the domain is given by
the union of quadrilaterals, possibly with curved sides.

A further disadvantage of classical spectral methods lies in the fact that the as-
sociated stiffness matrix A is full in the one-dimensional case, or anyhow much less
sparse than the one for finite elements in high dimensions, because the basis functions
of such methods have global (and not local) support, see Sects. 10.2 and 10.3. The
associated system of equations is generally more costly to solve.

Finally, the computational cost required to compute the elements of the stiffness
matrix of the right-hand side must not be underestimated, as we are dealing with high



10.2 Orthogonal polynomials and Gaussian numerical integration 229

degree polynomials. We will sort out this issue in the next section by using well-chosen
Gaussian numerical integration.

Remark 10.1. In Sect. 10.5 at the end of this chapter, we will provide the algebraic
formulation of the SEM for a one-dimensional problem. In particular, we will intro-
duce the basis functions for the space VC

N of composite polynomials. •
Remark 10.2. The SEM formulation is not so different from the p version of the finite
element method. In both cases, the number of subdomainsΩk is fixed while the local
degree of polynomials (called N in the case of SEM, p in the finite element case) is
increased locally, in order to improve the accuracy of the numerical approximation.
For further details, we refer the interested reader to [CHQZ07, Sch98]. •

10.2 Orthogonal polynomials and Gaussian numerical integration

In this section we introduce the mathematical ingredients that allow to construct nu-
merical integration formulae of Gaussian type. As previously anticipated, such formu-
lae are the basis of pseudo-spectral methods, but also of spectral element methods that
make use of numerical integration formulae.

10.2.1 Orthogonal Legendre polynomials

Let us consider a function f : (−1,1) → R. We recall that the space L2(−1,1) is
defined by (see Sect. 2.3.1)

L2(−1,1) =

{
f : (−1,1)→ R : ‖ f‖L2(−1,1) =

( 1∫
−1

f 2(x) dx

)1/2

<∞

}
.

Its scalar product is given by

( f ,g) =

1∫
−1

f (x)g(x)dx.

The orthogonal Legendre polynomials Lk ∈ Pk, for k = 0,1, . . ., constitute a sequence
for which the following orthogonality property is satisfied

(Lk,Lm) =

{
0 if m 
= k,

(k+ 1
2 )

−1 if m = k.

They are linearly independent and form a basis for L2(−1,1). Consequently, each
function f ∈ L2(−1,1) admits the series expansion

f (x) =
∞

∑
k=0

f̂kLk(x) (10.5)
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known as Legendre series. This is a modal representation of f . The Legendre coeffi-
cients f̂k can easily be computed by exploiting the orthogonality of Legendre polyno-
mials. Indeed, we have

( f ,Lk) =

1∫
−1

f (x)Lk(x) dx =

1∫
−1

( ∞

∑
i=0

f̂i Li(x)Lk(x)

)
dx

=
∞

∑
i=0

( 1∫
−1

Li(x)Lk(x) dx

)
f̂i = f̂k ‖Lk‖2

L2(−1,1).

Hence,

f̂k = ( f ,Lk)/‖Lk‖2
L2(−1,1) = (k+

1
2
)

1∫
−1

f (x)Lk(x)dx (10.6)

from which the so-called Parseval identity immediately descends

‖ f‖2
L2(−1,1) =

∞

∑
k=0

( f̂k)
2‖Lk‖2

L2(−1,1).

It is possible to compute the Legendre polynomials recursively via the following
three-term relation:

L0 = 1, L1 = x,

Lk+1 =
2k+1
k+ 1

xLk − k

k+1
Lk−1, k = 1,2, . . .

(In Fig. 10.4, the graphs of the polynomials Lk, with k = 2, . . . ,5, are drawn). The
Legendre series of any f ∈ L2(−1,1) converges to f in L2(−1,1) norm. Denoting by

fN(x) =
N

∑
k=0

f̂kLk(x)

the N-th truncation of the Legendre series of f , this means that

lim
N→∞

‖ f − fN‖L2(−1,1) = 0, (10.7)

that is

lim
N→∞

∥∥∥ ∞

∑
k=N+1

f̂kLk

∥∥∥
L2(−1,1)

= 0.

Thanks to the Parseval identity, we have that

‖ f − fN‖2
L2(−1,1) =

∞

∑
k=N+1

( f̂k)
2‖Lk‖2

L2(−1,1) =
∞

∑
k=N+1

( f̂k)
2

k+ 1
2

,
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Fig. 10.4. The Legendre polynomials of degree k = 2,3,4,5

hence condition (10.7) is equivalent to

lim
N→∞

∞

∑
k=N+1

( f̂k)
2

k+ 1
2

= 0.

Moreover, it can be proved that if f ∈ Hs(−1,1), for some s ≥ 1, then it is possible to
find a suitable constant Cs > 0, independent of N, such that

‖ f − fN‖L2(−1,1) ≤Cs

(
1
N

)s

‖ f (s)‖L2(−1,1),

i.e. we have convergence of order s, with respect to 1/N.

At this point, we can prove that fN is the orthogonal projection of f on QN with
respect to the scalar product of L2(−1,1), that is

( f − fN , p) = 0 ∀ p ∈QN . (10.8)

First of all we note that

( f − fN ,Lm) =

( ∞

∑
k=N+1

f̂kLk,Lm

)
=

∞

∑
k=N+1

f̂k(Lk,Lm).

Since the polynomials Lk, with 0 ≤ k ≤ N, form a basis for the space QN , every poly-
nomial p ∈ QN can be expanded with respect to this basis. Equation (10.8) follows
noticing that for m ≤ N, (Lk,Lm) = 0 ∀k ≥ N + 1 because of orthogonality.

In particular, from (10.8) it follows that fN is the function which minimizes the dis-
tance of f from QN , that is

‖ f − fN‖L2(−1,1) ≤ ‖ f − p‖L2(−1,1) ∀ p ∈QN . (10.9)
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For this purpose, we start by observing that

‖ f − fN‖2
L2(−1,1) = ( f − fN , f − fN) = ( f − fN , f − p)+ ( f − fN , p− fN)

for each p ∈ QN and that ( f − fN , p− fN) = 0 by the orthogonality property (10.8).
Consequently,

‖ f − fN‖2
L2(−1,1) = ( f − fN , f − p) ∀ p ∈QN ,

from which, applying the Cauchy-Schwarz inequality, we obtain

‖ f − fN‖2
L2(−1,1) ≤ ‖ f − fN‖L2(−1,1) ‖ f − p‖L2(−1,1) ∀ p ∈QN ,

i.e. (10.9).

10.2.2 Gaussian integration

Gaussian integration formulae are the ones which, having fixed the number of quadra-
ture nodes, allow to obtain the highest exactness degree (see [QSS07]). The latter is
the highest integer r such that all polynomials of degree less than or equal to r are
integrated exactly by the formula at hand. We will start by introducing such formulae
on the interval (−1,1), and then extend them to the case of a generic interval.

We denote by N the number of nodes. We call Gauss-Legendre quadrature nodes
the zeroes {x̄1, . . . , x̄N} of the Legendre polynomial LN . In the presence of such a set
of nodes, we will consider the following quadrature formula (called interpolatory of
Gauss-Legendre)

IGL
N−1 f =

1∫
−1

ΠGL
N−1 f (x) dx, (10.10)

ΠGL
N−1 f being the polynomial of degree N − 1 interpolating f at the nodes x̄1, . . . , x̄N .

We denote by ψk ∈QN−1, k = 1, ...,N, the characteristic Lagrange polynomials asso-
ciated to the Gauss-Legendre nodes,

ψk(x̄ j) = δk j , j = 1, ..,N.

The quadrature formula (10.10) then takes the following expression

1∫
−1

f (x) dx � IGL
N−1 f =

N

∑
k=1

ᾱk f (x̄k), with ᾱk =

1∫
−1

ψk(x)dx,

and is called Gauss-Legendre quadrature formula (GL).

To find the nodes t̄k and the weights δ̄k characterizing such formula on a generic inter-
val [a,b], it will be sufficient to refer to the relation

t̄k =
b− a

2
x̄k +

a+ b

2
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for the former, while, for the latter, it can easily be verified that

δ̄k =
b−a

2
ᾱk.

The exactness degree of these formulae is equal to 2N − 1 (and is the maximum pos-
sible for formulae with N − 1 nodes). This means that

b∫
a

f (x)dx =
N

∑
k=1

δ̄k f (t̄k) ∀ f ∈Q2N−1.

10.2.3 Gauss-Legendre-Lobatto formulae

A feature of the Gauss-Legendre integration formulae is to have all quadrature nodes
internal to the integration interval. In the case of differential problems this makes the
imposition of boundary conditions on the end points of the interval problematic.

To overcome such difficulty, the so-called Gauss-Lobatto formulae are introduced,
particularly the Gauss-Legendre-Lobatto (GLL) formulae. There, nodes, relative to the
interval (−1,1), are represented by the end points of the interval themselves and by
the maximum and minimum points of the Legendre polynomial of degree N, i.e. by
the zeroes of the first derivative of the polynomial LN .
We denote such nodes by {x0 =−1,x1, . . . ,xN−1,xN = 1}. Therefore, we have

L′
N(xi) = 0, for i = 1, . . . ,N − 1. (10.11)

(In this chapter the symbol “′” denotes a derivative with respect to x.) Let ψi be the
corresponding characteristic polynomials, that is

ψi ∈QN : ψi(x j) = δi j, 0 ≤ i, j ≤ N, (10.12)

whose analytical expression is given by

ψi(x) =
−1

N(N +1)
(1− x2)L′

N(x)

(x− xi)LN(xi)
, i = 0, . . . ,N (10.13)

(see Fig. 10.5 for the graphs of the characteristic polynomialsψi, for i = 0, . . . ,4 in the
case where N = 4). The functions ψi(x) are the counterpart of the Lagrangian basis
functions {ϕi} of the finite elements introduced in Sect. 4.3. Given a function f ∈
C0([−1,1]), its interpolation polynomialΠGLL

N f ∈QN at the GLL nodes is identified
by the relation

ΠGLL
N f (xi) = f (xi), 0 ≤ i ≤ N . (10.14)

It has the following expression

ΠGLL
N f (x) =

N

∑
i=0

f (xi)ψi(x). (10.15)
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Fig. 10.5. The characteristic polynomials ψi, i = 0, . . . ,4 of degree 4 corresponding to the
Gauss-Legendre-Lobatto nodes

It can be proved, thanks to the non-uniform distribution of the nodes {xi}, thatΠGLL
N f

converges towards f when N →∞. Moreover, the following error estimate is satisfied:
if f ∈ Hs(−1,1), for some s ≥ 1,

‖ f −ΠGLL
N f‖L2(−1,1) ≤Cs

(
1
N

)s

‖ f (s)‖L2(−1,1), (10.16)

where Cs is a constant depending on s but not on N. More generally (see [CHQZ06]),

‖ f −ΠGLL
N f‖Hk(−1,1) ≤Cs

(
1
N

)s−k

‖ f‖Hs(−1,1), s ≥ 1, k = 0,1. (10.17)

In Fig. 10.6 (left), we show the convergence curves for the interpolation error of two
different functions.
By using ΠGLL

N f instead of ΠGLL
N−1 f we can define the following Gauss-Legendre-

Lobatto (GLL) integration formula, in alternative to (10.10)

IGLL
N f =

1∫
−1

ΠGLL
N f (x)dx =

N

∑
k=0

αk f (xx). (10.18)

The new weights are αi =
∫ 1
−1ψi(x) dx and take the following expression

αi =
2

N(N + 1)
1

L2
N(xi)

. (10.19)

The GLL formula has exactness degree equal to 2N−1, that is it integrates exactly all
polynomials of degree ≤ 2N − 1,

1∫
−1

f (x)dx = IGLL
N f ∀ f ∈Q2N−1. (10.20)
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Fig. 10.6. Behaviour of the interpolation (left) and integration (right) error in the GLL nodes
as a function of the degree N for the two functions f1(x) = cos(4πx) (•) and f2(x) =
4cos(4x)exp(sin(4x)) (�) on the interval (−1,1)

This is the maximum degree obtainable when N + 1 nodes are used, 2 of which as-
signed a priori. Moreover, using the interpolation estimate (10.16), the following inte-
gration error estimate can be proved: if f ∈ Hs(−1,1), with s ≥ 1,∣∣∣∣ 1∫

−1

f (x) dx− IGLL
N f

∣∣∣∣≤Cs

(
1
N

)s

‖ f (s)‖L2(−1,1),

where Cs is independent of N but can depend, in general, on s. This means that the
more regular the function f is, the higher is the order of convergence of the integration
formula. In Fig. 10.6 (right) we report the integration error for two different functions
(the same ones considered for the left graph).
If we now consider a generic interval (a,b) instead of (-1,1), nodes and weights in
(a,b) take the following expression

tk =
b− a

2
xk +

a+ b

2
, δk =

b− a

2
αk.

Formula (10.20) generalizes as follows

b∫
a

f (x)dx �
N

∑
k=0

δk f (tk). (10.21)

The properties of exactness and accuracy remain unchanged.

10.3 G-NI methods in one dimension

Let us consider the following one-dimensional elliptic problem with homogeneous
Dirichlet data {

Lu =−(μu′)′+σu = f , −1 < x < 1,

u(−1) = 0, u(1) = 0,
(10.22)
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μ(x) ≥ μ0 > 0 and σ(x) ≥ 0, in order to have an associated bilinear form that is
coercive in H1

0(−1,1).
The spectral Galerkin method (SM) is written as

find uN ∈VN :

1∫
−1

μu′Nv′N dx+

1∫
−1

σuNvN dx =

1∫
−1

f vN dx ∀ vN ∈VN , (10.23)

with
VN = {vN ∈QN : vN(−1) = vN(1) = 0}. (10.24)

The G-NI (Galerkin with Numerical Integration) method is obtained by approximat-
ing the integrals in (10.23) via the GLL integration formulae. This amounts to substi-
tuting the scalar product ( f ,g) in L2(−1,1) by the discrete GLL scalar product (for
continuous functions)

( f ,g)N =
N

∑
i=0
αi f (xi)g(xi), (10.25)

where the xi and the αi are defined according to (10.11) and (10.19). Hence, the G-NI
method is written as

find u∗N ∈VN : (μu∗N
′,v′N)N +(σu∗N ,vN)N = ( f ,vN)N ∀ vN ∈VN . (10.26)

Due to the numerical integration, in general u∗N 
= uN , that is the solutions of the SM
and G-NI methods do not coincide.

However, thanks to the exactness property (10.20), we will have

( f ,g)N = ( f ,g) ∀ f ,g : f g ∈Q2N−1. (10.27)

If we consider the particular case where in (10.22) μ is a constant and σ = 0, the G-NI
problem becomes

μ(u∗′N ,v
′
N)N = ( f ,vN)N . (10.28)

In some very particular cases, the spectral and the G-NI methods coincide. This is
for instance the case of (10.28), where f is a polynomial with degree equal at most
to N − 1. It is simple to verify that the two methods coincide thanks to the exactness
relation (10.27).

Generalizing to the case of more complex differential formulations having differ-
ent boundary conditions (Neumann, or mixed), the G-NI problem is written as

find u∗N ∈VN : aN(u
∗
N ,vN) = FN(vN) ∀ vN ∈VN , (10.29)

where aN(·, ·) and FN(·) are obtained starting from the bilinear form a(·, ·) and from
the known term F(·) of the spectral Galerkin problem, by substituting the exact inte-
grals with the GLL integration formulae. VN is the space of polynomials of degree N
that vanish on the boundary points (provided that there are any) on which Dirichlet
conditions are imposed.
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Observe that, due of the fact that the bilinear form aN(·, ·) and the functional FN(·)
are no longer the ones associated to the initial problem, what we obtain is no longer a
Galerkin approximation method, and the relative theoretical results cannot be applied
(in particular, the Céa lemma, see Lemma 4.1).
In general, a method derived from a Galerkin method, either spectral or with finite
elements, where numerical integrals replace exact ones, will be called generalized
Galerkin method (GG). For the corresponding analysis we will resort to the Strang
lemma (see Sect. 10.4.1 and also [Cia78, QV94]) .

10.3.1 Algebraic interpretation of the G-NI method

The functionsψi, with i = 1,2, . . . ,N−1, introduced in Sect. 10.2.3 consititute a basis
for the space VN , as they are all null in x0 =−1 and xN = 1. We can therefore provide
for the solution u∗N of the G-NI problem (10.29) the nodal representation

u∗N(x) =
N−1

∑
i=1

u∗N(xi)ψi(x).

In analogy with the finite-element method, this means we identify the unknowns of
our problem with the values taken by u∗N at the nodes xi (now coinciding with the
Gauss-Legendre-Lobatto nodes). Moreover, for problem (10.29) to be verified for each
vN ∈ VN , it will be sufficient that it be verified for each basis function ψi. We will
therefore have

N−1

∑
j=1

u∗N(x j)aN(ψ j,ψi) = FN(ψi), i = 1,2, . . . ,N −1,

which we can rewrite

N−1

∑
j=1

ai ju
∗
N(x j) = fi, i = 1,2, . . . ,N −1,

that is, in matrix form,
Au∗

N = f (10.30)

where

A = (ai j) with ai j = aN(ψ j ,ψi), f = ( fi) with fi = FN(ψi),

and where u∗
N denotes the vector of unknown coefficients u∗N(x j), for j = 1, . . . ,N −1.

In the particular case of problem (10.26), we would obtain

ai j = (μψ ′
j,ψ

′
i )N +αiσ(xi)δi j , fi = ( f ,ψi)N = αi f (xi),

for each i, j = 1, . . . ,N−1. The matrix in 1D is full due to the presence of the diffusive
term. Indeed, the reactive term only contributes to the diagonal. In more dimensions,
the matrix A has a block structure, and the diagonal blocks are full. See Fig. 10.7,



238 10 Spectral methods

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

nz = 637
0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

nz = 18225

Fig. 10.7. Pattern of the matrix A for the G-NI method, the 2D (left) and 3D (right) case: nz
denotes the number of non-null elements in the matrix

reporting the pattern relating to matrix A in 2D and 3D. Finally, we observe that the
condition number we would get in the absence of numerical integration results is,
in general, much larger, namely O(N4). Moreover, the matrix A turns out to be ill-
conditioned, with condition number O(N3). For the solution of system (10.30) it is
therefore convenient to resort, especially in 2D and 3D, to a suitably preconditioned
iterative method. By choosing as a preconditioner the matrix of linear finite elements
associated to the same bilinear form a(·, ·) and to the GLL nodes, we obtain a pre-
conditioned matrix whose conditioning is independent of N ([CHQZ06]). At the top
of Fig. 10.8 we report the condition number (as a function of N) of the matrix A and
of the matrix obtained by preconditioning A with different preconditioning matrices:
the diagonal matrix of A, the one obtained from A through the incomplete Cholesky
factorization, the one obtained using linear finite elements by approximating integrals
with the composite trapezoidal formula, and finally the exact one from finite elements.
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Fig. 10.8. Condition number (left) and iteration number (right), for different types of precondi-
tioners
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At the bottom of Fig. 10.8 we report the number of necessary iterations for the conju-
gate gradient method to converge in the different cases.

10.3.2 Conditioning of the stiffness matrix in the G-NI method

We seek estimates for the eigenvalues λN of the stiffness matrix A of the G-NI method

Au = λNu.

In the case of the simple second derivative operator, we have A = (ai j), with ai j =
(ψ ′

j,ψ
′
i )N = (ψ ′

j,ψ
′
i ), ψ j being the j-th characteristic Lagrange function associated to

the node x j. Then,

λN =
uT Au

uT u
=

‖uN
x ‖2

L2(−1,1)

uT u
, (10.31)

uN ∈ VN being the only polynomial of the space VN defined in (10.24) satisfying
uN(x j) = u j, for j = 1, . . . ,N −1, where u = (u j). By setting

u j =

x j∫
−1

uN
x (s)ds,

thanks to the Cauchy-Schwarz inequality we obtain the bound

|u j| ≤
( x j∫
−1

|(uN)′(s)|2 ds

)1/2( x j∫
−1

ds

)1/2

≤
√

2‖(uN)′‖L2(−1,1).

Hence

uT u =
N−1

∑
j=1

u2
j ≤ 2(N − 1)‖(uN)′‖2

L2(−1,1),

which, thanks to (10.31), provides the lower bound

λN ≥ 1
2(N − 1)

. (10.32)

An upper bound for λN can be obtained by recurring to the following inverse inequal-
ity for algebric polynomials (see [CHQZ06], Sect. 5.4.1)

∀ p ∈VN , ‖p′‖L2(−1,1) ≤
√

2N

( 1∫
−1

p2(x)

1− x2 dx

)1/2

. (10.33)

Then

‖(uN)′‖2
L2(−1,1) ≤ 2N2

1∫
−1

[uN(x)]2

1− x2 dx = 2N2
N−1

∑
j=1

[uN(x j)]
2

1− x2
j

α j, (10.34)
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where we use the exactness of the GLL integration formula (see (10.20)), as
[uN ]2/(1− x2) ∈ P2N−2. Since for the coefficients α j the following asymptotic es-
timate holds: α j/(1− x2

j) ≤ C, for a suitable constant C independent of N, we can
conclude, thanks to (10.31) and (10.34), that

λN ≤ 2C N2. (10.35)

It can finally be proved that both estimates (10.32) and (10.35) are optimal as far as
the asymptotic behaviour with respect to N is concerned.

10.3.3 Equivalence between G-NI and collocation methods

We want to prove that the G-NI method con be interpreted as a collocation method, i.e.
one imposing the differential equation only at selected points of the computational in-
terval. Let us consider once again the homogeneous Dirichlet problem (10.22), whose
associated G-NI problem is written is the form (10.26).
We would like to counterintegrate by parts equation (10.26), but in order to do that, we
must first rewrite the discrete scalar products as integrals. Let ΠGLL

N : C0([−1,1]) �→
QN be the interpolation operator introduced in Sect. 10.2.3, which maps a continu-
ous function to the corresponding interpolating polynomial at the Gauss-Legendre-
Lobatto nodes.
Since the GLL integration formula uses the values of the function only at the integra-
tion nodes and since the function and its G-NI interpolant coincide there, we have

N

∑
i=0
αi f (xi) =

N

∑
i=0
αiΠ

GLL
N f (xi) =

1∫
−1

ΠGLL
N f (x)dx,

where the latter equality descends from (10.20) as ΠGLL
N f is integrated exactly, being

a polynomial of degree N.
The discrete scalar product thus becomes a scalar product in L2(−1,1), in the case
where one of the two functions is a polynomial of degree strictly less than N, i.e.

( f ,g)N = (ΠGLL
N f ,g)N = (ΠGLL

N f ,g) ∀ g ∈QN−1. (10.36)

In this case, indeed, ΠGLL
N f ∈ QN , (ΠGLL

N f )g ∈ Q2N−1 and therefore the integral is
computed exactly. Integrating by parts the exact integrals, we obtain1

(μu′N ,v
′
N)N = (ΠGLL

N (μu′N),v
′
N)N = (ΠGLL

N (μu′N),v
′
N)

= −([ΠGLL
N (μu′N)]

′,vN)+[Π
GLL
N (μu′N) vN ]

1
−1

= −([ΠGLL
N (μu′N)]

′,vN)N ,

where the last equality holds because vN vanishes at the boundary and the terms which
appear in the scalar product yield a polynomial whose total degree is equal to 2N −1.

1 From now on, for simplicity of notation, we will denote the G-NI solution by uN (instead of
u∗N ), since there is no longer the risk to confuse it with the spectral solution.
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At this point, we can rewrite the G-NI problem as follows

find uN ∈VN : (LNuN ,vN)N = ( f ,vN)N ∀ vN ∈VN , (10.37)

where we have defined

LNuN =−[ΠGLL
N (μu′N)]

′+σuN. (10.38)

By imposing that (10.37) is valid for each basis function ψi, we obtain

(LNuN ,ψi)N = ( f ,ψi)N , i = 1,2, . . . ,N − 1.

Now we examine the i-th equation. The first term is

−([ΠGLL
N (μu′N)]

′,ψi)N =−
N

∑
j=0

α j[Π
GLL
N (μu′N)]

′(x j)ψi(x j)

=−αi[Π
GLL
N (μu′N)]

′(xi),

since ψi(x j) = δi j. Analogously, for the second term we have

(σuN ,ψi)N =
N

∑
j=0

α jσ(x j)uN(x j)ψi(x j) = αiσ(xi)uN(xi).

Finally, the right-hand side becomes

( f ,ψi)N =
N

∑
j=0

α j f (x j)ψi(x j) = αi f (xi).

Dividing by αi the equation thus found, we obtain the following equivalent formula-
tion of the G-NI problem{

LNuN(xi) = f (xi), i = 1,2, . . . ,N −1,

uN(x0) = 0, uN(xN) = 0.
(10.39)

This is called a collocation problem as it is equivalent to placing at the internal nodes
xi the assigned differential equation (after approximating the operator L by LN), and
satisfying the boundary conditions at the boundary nodes.

We now introduce the interpolation derivative, DN(Φ), of a continuous function
Φ , as being the derivative of the interpolating polynomial ΠGLL

N Φ defined according
to (10.14), i.e.

DN(Φ) = D[ΠGLL
N Φ], (10.40)

D being the symbol of exact differentiation. If we consider the differential operator
L and replace all derivatives with the corresponding interpolation derivatives, we ob-
tain a new operator, called pseudo-spectral operator LN , that coincides with the one
defined in (10.38). It follows that the G-NI method, introduced here as a generalized
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Galerkin method, can also be interpreted as a collocation method that operates directly
on the differential part of the problem, analogously to what happens, for instance, in
the case of finite differences. In this sense, finite differences can be considered as a
less accurate version of the G-NI method, as the derivatives are approximated using
formulae that use a small number of nodal values.
If the initial operator had been

Lu = (−μu′)′+(bu)′+σu,

then the corresponding pseudo-spectral operator would have been

LNuN =−DN(μu′N)+DN(buN)+σuN . (10.41)

Had the boundary conditions for problem (10.22) been of Neumann type,(
μu′
)
(−1) = g−,

(
μu′
)
(1) = g+,

the spectral Galerkin method would be formulated as follows

find uN ∈QN :

1∫
−1

μu′Nv′N dx+

1∫
−1

σuNvN dx =

1∫
−1

f vN dx + g+ vN(1) − g− vN(−1) ∀ vN ∈QN ,

while the G-NI method would become

find uN ∈QN : (μu′N ,v
′
N)N +(σuN ,vN)N =

( f ,vN)N + g+ vN(1) − g− vN(−1) ∀ vN ∈QN .

Its interpretation as a collocation method becomes: find uN ∈QN such that

LNuN(xi) = f (xi), i = 1, . . . ,N −1,(
LNuN(x0)− f (x0)

)− 1
α0

((
μ u′N

)
(−1)− g−

)
= 0,(

LNuN(xN)− f (xN)
)
+

1
αN

((
μ u′N

)
(1)− g+

)
= 0,

where LN is defined in (10.38). Note that at the boundary nodes the Neumann condi-
tion is satisfied up to the equation residual LNuN − f multiplied by the coefficient of
the GLL formula, which is an infinitesimal of order 2 with respect to 1/N.
In Fig. 10.9 (taken from [CHQZ06]) we report the error in the H1(−1,1)-norm (left)
and the absolute value of the difference

(
μ u′N

)
(±1)−g± (right), that can be regarded

as the error made on the fulfillment of the Neumann boundary condition, for different
values of N. Both errors decay exponentially when N increases. Moreover, we report
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Fig. 10.9. Error in H1(−1,1) (left) and error on the Neumann datum (right) for varying N

the errors obtained by using the Galerkin finite element approximations of degree
r = 1,2,3.

Finally, it can be useful to observe that the interpolation derivative (10.40) can
be represented through a matrix D ∈ R(N+1)×(N+1), called matrix of the interpolation
derivative, associating to any vector v∈RN+1 of nodal values vi =Φ(xi), i = 0, . . . ,N,
the vector w = Dv whose components are the nodal values of the polynomial DN(Φ),
i.e. wi = (DN(Φ))(xi), i = 0, . . . ,N. The elements of D are (see [CHQZ06])

Di j = ψ ′
j(xi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LN(xi)

LN(x j)

1
xi − x j

, i, j = 0, . . . ,N, i 
= j,

− (N +1)N
4

, i = j = 0,

(N + 1)N
4

, i = j = N,

0 otherwise,

where d0 = dN = 2 and d j = 1 for j = 1, . . . ,N −1.

10.3.4 G-NI for parabolic equations

When we consider time-dependent problems, the spectral G-NI method can be used
for the spatial approximation. For the discretization of the time derivative we can then
apply a finite difference scheme. In this section, we consider one specific instance, the
θ -method that was introduced in Sect. 5.1.

The θ -method applied to the G-NI spatial discretization of the homogeneous
Dirichlet problem (5.4), defined on the space interval −1 < x < 1, is formulated as
follows:
for each k ≥ 0, find uk

N ∈VN = {vN ∈QN : vN(−1) = vN(1) = 0} such that(
uk+1

N −uk
N

Δ t
,vN

)
N
+ aN(θuk+1

N +(1−θ )uk
N,vN)

= θ ( f k+1,vN)N +(1−θ )( f k,vN)N ∀vN ∈VN ,
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with u0
N = u0,N ∈ VN being a convenient approximation of u0 (for instance, the in-

terpolant ΠGLL
N u0 introduced in (10.14)). As usual, (·, ·)N denotes the discrete scalar

product obtained using the Gauss-Legendre-Lobatto (GLL) numerical integration for-
mula, while aN(·, ·) is the approximation of the bilinear form a(·, ·) obtained by re-
placing the exact integrals with the above-mentioned numerical integration formula.
By proceeding as we did in Sect. 5.4 for finite element spatial discretizations, it can
be proved that also in this case, the θ -method is unconditionally stable if θ ≥ 1

2 , while
for θ < 1

2 a sufficient condition for absolute stability if

Δ t ≤C(θ )N−4. (10.42)

Indeed, the proof can be checked by repeating the same steps we followed earlier in
the case of the finite element approximation. In particular, we define the eigenvalue-
eigenfunction pairs (λ j,w

j
N) of the bilinear form aN(·, ·), for each j = 1, . . . ,N − 1,

through the relation

wj
N ∈VN : aN(w

j
N ,vN) = λ j (w

j
N ,vN) ∀vN ∈VN .

Hence

λ j =
aN(w

j
N ,w

j
N)

‖wj
N‖2

N

.

Using the continuity of the bilinear form aN(·, ·), we find

λ j ≤
M ‖wj

N‖2
H1(−1,1)

‖wj
N‖2

N

.

We now recall the following inverse inequality for algebraic polynomials ([CHQZ06])

∃ CI > 0 : ‖v′N‖2
L2(−1,1) ≤CI ‖vN‖2

L2(−1,1) ∀vN ∈QN .

Then

λ j ≤
C2

I MN4 ‖wj
N‖2

L2(−1,1)

‖wj
N‖2

N

.

Recalling the equivalence property (10.54), we conclude that

λ j ≤ 3C2
I MN4 ∀ j = 1, . . . ,N −1.

Inequality (10.42) is now obtained using the stability condition (5.35) (with the finite
element eigenvalues {λ i

h} replaced by the λ j’s). Moreover, we have the following
convergence estimate, for n ≥ 1 and Ω = (−1,1),

‖u(tn)− un
N‖L2(Ω) ≤ C̃(tn)

[
N−r
(
|u0|Hr(Ω) +

tn∫
0

∣∣∣∂u

∂ t
(s)
∣∣∣
Hr(Ω)

ds

+|u(tn)|Hr(Ω)

)
+Δ t

tn∫
0

∥∥∥∂ 2u

∂ t2 (s)
∥∥∥

L2(Ω)
ds
]
.

For the proof, refer to [CHQZ06, Chap. 7].
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10.4 Generalization to the two-dimensional case

Let us consider as a domain the unit square Ω = (−1,1)2. Since Ω is the tensor
product of the one-dimensional interval (−1,1), it is natural to choose as nodes

xi j = (xi,x j), i, j = 0, . . . ,N,

whose coordinates both coincide with the one-dimensional GLL nodes xi, while we
take as weights the product of the corresponding one-dimensional weights

αi j = αiα j , i, j = 0, . . . ,N.

The Gauss-Legendre-Lobatto (GLL) integration formula in two dimensions is there-
fore defined by ∫

Ω

f (x) dx �
N

∑
i, j=0

αi j f (xi j),

while the discrete scalar product is given by

( f ,g)N =
N

∑
i, j=0

αi j f (xi j)g(xi j). (10.43)

Analogously to the one-dimensional case it can be proved that the integration formula
(10.43) is exact whenever the integrand function is a polynomial of degree at most
2N −1. In particular, this implies that

( f ,g)N = ( f ,g) ∀ f ,g such that f g ∈Q2N−1.

In this section, for each N, QN denotes the space of polynomials of degree less than
or equal to N with respect to each of the variables, introduced in (10.2).
We now consider as an example the problem{

Lu =−div(μ∇u)+σu = f in Ω = (−1,1)2,

u = 0 on ∂Ω .

By assuming that μ(x) ≥ μ0 > 0 and σ(x) ≥ 0, the corresponding bilinear form is
coercive in H1

0(Ω). Its G-NI approximation is given by

find uN ∈VN : aN(uN ,vN) = FN(vN) ∀ vN ∈VN ,

where
VN = {v ∈QN : v|∂Ω = 0},

aN(u,v) = (μ∇u,∇v)N +(σu,v)N

and
FN(vN) = ( f ,vN)N .
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As shown in the one-dimensional case, also in higher dimensions the G-NI formu-
lation is equivalent to a collocation method where the operator L is replaced by LN ,
the pseudo-spectral operator obtained by approximating each derivative by the corre-
sponding interpolation derivative (10.40).
In the case of spectral element methods, we will need to generalize the GLL numerical
integration formula on each elementΩk. This can be done thanks to the transformation
ϕk : Ω̂ → Ωk (see Fig. 10.2). Indeed, we can first of all generate the GLL nodes on
the generic element Ωk, by setting

x
(k)
i j =ϕk(xi j), i, j = 0, . . . ,N,

then defining the corresponding weights

α
(k)
i j = αi j |detJk|= αi j

|Ωk|
4

, i, j = 0, . . . ,N,

having denoted by Jk the Jacobian of the transformation ϕk and by |Ωk| the measure
of Ωk. The GLL integration formula on Ωk hence becomes

∫
Ωk

f (x) dx � IGLL
N,k ( f ) =

N

∑
i, j=0

α
(k)
i j f (x(k)i j ). (10.44)

The spectral element formulation with Gaussian numerical integration, which we will
denote by SEM-NI, becomes

find uN ∈VC
N : aC,N(uN ,vN) = FC,N(vN) ∀ vN ∈VC

N . (10.45)

We have set
aC,N(uN ,vN) =∑

k

aΩk,N(uN ,vN)

where aΩk,N(uN ,vN) is the approximation of aΩk(uN ,vN) obtained by approximating
each integral on Ωk that appears in its bilinear form via the GLL numerical integra-
tion formula in Ωk (10.44). The term FC,N is defined in a similar way, and precisely
FC,N(vN) = ∑k FΩk,N(vN), where FΩk,N is obtained, in turn, by replacing

∫
Ωk

f vN dx

with the formula IGLL
N,k ( f vN) for each k.

Remark 10.3. Fig. 10.10 summarizes rather schematically the origin of the different
approximation schemes evoked up to now. In the case of finite differences, we have
denoted by LΔ the discretization of the operator through finite difference schemes
applied to the various derivatives appearing in the definition of L. •

10.4.1 Convergence of the G-NI method

As observed in the one-dimensional case, the G-NI method can be considered as a
generalized Galerkin method. For the latter, the analysis of convergence is based on
the following general result:
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Lemma 10.1 (Strang). Consider the problem

find u ∈V : a(u,v) = F(v) ∀ v ∈V, (10.46)

where V is a Hilbert space with norm ‖ · ‖V , F ∈V ′ a linear and bounded func-
tional on V and a(·, ·) : V ×V → R a bilinear, continuous and coercive form
on V .
Consider an approximation of (10.46) that can be formulated through the follow-
ing generalized Galerkin problem

find uh ∈Vh : ah(uh,vh) = Fh(vh) ∀vh ∈Vh, (10.47)

{Vh, h > 0} being a family of finite-dimensional subspaces of V .
Let us suppose that the discrete bilinear form ah(·, ·) is continuous on Vh ×Vh,
and uniformly coercive on Vh, that is

∃α∗ > 0 independent of h such that ah(vh,vh)≥ α∗‖vh‖2
V ∀ vh ∈Vh.

Furthermore, let us suppose that Fh is a linear and bounded functional on Vh.
Then:

1. there exists a unique solution uh to problem (10.47);
2. such solution depends continuously on the data, i.e. we have

‖uh‖V ≤ 1
α∗ sup

vh∈Vh\{0}

Fh(vh)

‖vh‖V
;

3. finally, the following a priori error estimate holds

‖u−uh‖V ≤ inf
wh∈Vh

{(
1+

M

α∗

)
‖u−wh‖V

+
1
α∗ sup

vh∈Vh\{0}

|a(wh,vh)− ah(wh,vh)|
‖vh‖V

}

+
1
α∗ sup

vh∈Vh\{0}

|F(vh)−Fh(vh)|
‖vh‖V

,

(10.48)

M being the continuity constant of the bilinear form a(·, ·).

Proof. The assumptions of the Lax-Milgram lemma for problem (10.47) are satisfied,
so the solution of such problem exists and is unique. Moreover,

‖uh‖V ≤ 1
α∗ ‖Fh‖V ′

h
,

‖Fh‖V ′
h
= sup

vh∈Vh\{0}

Fh(vh)

‖vh‖V
being the norm of the dual space V ′

h of Vh.
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STRONG FORM

Lu = f
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u ∈ V : a(u, v) = F (v) ∀v ∈ V
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Lu := div(F(u)) = f

Finite Volumes∮
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Fig. 10.10. Reference frame for the main numerical methods addressed in this book

Let us now prove the error inequality (10.48). Let wh be any function of the subspace
Vh. Setting σh = uh −wh ∈Vh, we have:

α∗‖σh‖2
V ≤ ah(σh,σh) [by the coercivity of ah]

= ah(uh,σh)− ah(wh,σh)

= Fh(σh)− ah(wh,σh) [thanks to (10.47)]

= Fh(σh)−F(σh)+ F(σh)− ah(wh,σh)

= [Fh(σh)−F(σh)]+ a(u,σh)−ah(wh,σh) [thanks to (10.46)]

= [Fh(σh)−F(σh)]+ a(u−wh,σh)+ [a(wh,σh)− ah(wh,σh)]. (10.49)
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If σh �= 0, (10.49) can be divided by α∗‖σh‖V , to give

‖σh‖V ≤ 1
α∗

{ |a(u−wh,σh)|
‖σh‖V

+
|a(wh,σh)− ah(wh,σh)|

‖σh‖V

+
|Fh(σh)−F(σh)|

‖σh‖V

}

≤ 1
α∗

{
M‖u−wh‖V + sup

vh∈Vh\{0}

|a(wh,vh)− ah(wh,vh)|
‖vh‖V

+ sup
vh∈Vh\{0}

|Fh(vh)−F(vh)|
‖vh‖V

}
[by the continuity of a].

If σh = 0 such inequality is still valid (it states that 0 is smaller than a sum of positive
terms), although the proof breaks down.

We can now estimate the error between the solution u of (10.46) and the solution
uh of (10.47). Since u−uh = (u−wh)−σh, we obtain

‖u−uh‖V ≤ ‖u−wh‖V + ‖σh‖V ≤ ‖u−wh‖V

+
1
α∗

{
M‖u−wh‖V + sup

vh∈Vh\{0}

|a(wh,vh)− ah(wh,vh)|
‖vh‖V

+ sup
vh∈Vh\{0}

|Fh(vh)−F(vh)|
‖vh‖V

}

=

(
1+

M

α∗

)
‖u−wh‖V +

1
α∗ sup

vh∈Vh\{0}

|a(wh,vh)− ah(wh,vh)|
‖vh‖V

+
1
α∗ sup

vh∈Vh\{0}

|Fh(vh)−F(vh)|
‖vh‖V

.

If the previous inequality holds ∀wh ∈Vh, it also holds when taking the infimum when
wh varies in Vh. Hence, we obtain (10.48). �

By observing the right-hand side of inequality (10.48), we can recognize three dif-
ferent contributions to the approximation error u− uh: the first is the best approxima-
tion error, the second is the error deriving from the approximation of the bilinear form
a(·, ·) using the discrete bilinear form ah(·, ·), and the third is the error arising from
the approximation of the linear functional F(·) by the discrete linear functional Fh(·).

Remark 10.4. If in the preceding proof we choose wh = u∗h, u∗h being the solution to
the Galerkin problem

u∗h ∈Vh : a(u∗h,vh) = F(vh) ∀ vh ∈Vh,
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then the term a(u−wh,σh) is null thanks to (10.46), (4.1). It is therefore possible to
obtain the following estimate, alternative to (10.48)

‖u−uh‖V ≤ ‖u− u∗h‖V

+
1
α∗ sup

vh∈Vh\{0}

|a(u∗h,vh)−ah(u∗h,vh)|
‖vh‖V

+
1
α∗ sup

vh∈Vh\{0}

|F(vh)−Fh(vh)|
‖vh‖V

.

The latter highlights the fact that the error due to the generalized Galerkin method can
be bounded by the error of the Galerkin method plus the errors induced by the use of
numerical integration for the computation of both a(·, ·) and F(·). •

We now want to apply Strang’s lemma to the G-NI method, to verify its conver-
gence. For simplicity we will only consider the one-dimensional case. Obviously, Vh

will be replaced by VN , uh by uN , vh by vN and wh by wN .
First of all, we begin by computing the error of the GLL numerical integration formula

E(g,vN) = (g,vN)− (g,vN)N ,

g and vN being a generic continuous function and a generic polynomial of QN , re-
spectively. By introducing the interpolation polynomial ΠGLL

N g defined according to
(10.14), we obtain

E(g,vN) = (g,vN)− (ΠGLL
N g,vN)N

= (g,vN)− (ΠGLL
N−1g,vN) + (

∈QN−1︷ ︸︸ ︷
ΠGLL

N−1g,

∈QN︷︸︸︷
vN )︸ ︷︷ ︸

∈Q2N−1

−(ΠGLL
N g,vN)N

= (g,vN)− (ΠGLL
N−1g,vN)

+ (ΠGLL
N−1g,vN)N − (ΠGLL

N g,vN)N [by (10.27)]

= (g−ΠGLL
N−1g,vN) + (ΠGLL

N−1g−ΠGLL
N g,vN)N .

(10.50)

The first summand of the right-hand side can be bounded from above using the Cauchy-
Schwarz inequality as follows

|(g−ΠGLL
N−1g,vN)| ≤ ‖g−ΠGLL

N−1g‖L2(−1,1)‖vN‖L2(−1,1). (10.51)

To find an upper bound for the second summand, we must first introduce the two
following lemmas, for the proof of which we refer to [CHQZ06]:
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Lemma 10.2. The discrete scalar product (·, ·)N defined in (10.25) is a scalar
product on QN and, as such, it satisfies the Cauchy-Schwarz inequality

|(ϕ ,ψ)N | ≤ ‖ϕ‖N‖ψ‖N, (10.52)

where the discrete norm ‖ · ‖N is given by

‖ϕ‖N =
√
(ϕ ,ϕ)N ∀ ϕ ∈QN . (10.53)

Lemma 10.3. The “continuous” norm of L2(−1,1) and the “discrete” norm ‖ ·
defined in (10.53) verify the inequalities

‖vN‖L2(−1,1) ≤ ‖vN‖N ≤
√

3‖vN‖L2(−1,1) ∀ vN ∈QN , (10.54)

hence they are uniformly equivalent on QN.

By using first (10.53) and then (10.54) we obtain

|(Π GLL
N−1g−Π GLL

N g,vN)N | ≤ ‖Π GLL
N−1g−Π GLL

N g‖N ‖vN‖N

≤ 3
[
‖Π GLL

N−1g−g‖L2(−1,1) +‖Π GLL
N g−g‖L2(−1,1)

]
‖vN‖L2(−1,1).

Using such inequality and (10.51), from (10.50) we can obtain the following upper
bound

|E(g,vN)| ≤
[
4‖Π GLL

N−1g−g‖L2(−1,1) +3‖Π GLL
N g−g‖L2(−1,1)

]
‖vN‖L2(−1,1).

Using the interpolation estimate (10.17), we have that

|E(g,vN)| ≤C

[(
1

N − 1

)s

+

(
1
N

)s ]
‖g‖Hs(−1,1)‖vN‖L2(−1,1),

provided that g ∈ Hs(−1,1), for some s ≥ 1. Finally, as for each N ≥ 2, 1/(N −1)≤
2/N, the Gauss-Legendre-Lobatto integration error results to be bound as

|E(g,vN)| ≤C

(
1
N

)s

‖g‖Hs(−1,1)‖vN‖L2(−1,1), (10.55)

for each g ∈ Hs(−1,1) and for each polynomial vN ∈QN .

At this point we are ready to evaluate the various contributions that intervene in
(10.48). We anticipate that this analysis will be carried out in the case where suitable
simplifying hypotheses are introduced on the differential problem under exam. We

‖N
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begin with the simplest term, i.e. the one associated with the functional F , supposing
to consider a problem with homogeneous Dirichlet boundary conditions, in order to
obtain F(vN) = ( f ,vN) and FN(vN) = ( f ,vN)N . Provided that f ∈ Hs(−1,1) for some
s ≥ 1, then,

sup
vN∈VN\{0}

|F(vN)−FN(vN)|
‖vN‖V

= sup
vN∈VN\{0}

|( f ,vN)− ( f ,vN)N |
‖vN‖V

= sup
vN∈VN\{0}

|E( f ,vN)|
‖vN‖V

≤ sup
vN∈VN\{0}

C

(
1
N

)s

‖ f‖Hs(−1,1)‖vN‖L2(−1,1)

‖vN‖V

≤C

(
1
N

)s

‖ f‖Hs(−1,1),

(10.56)

having exploited relation (10.55) and having bounded the norm in L2(−1,1) by that
in Hs(−1,1).

As for the contribution arising from the approximation of the bilinear form,

sup
vN∈VN\{0}

|a(wN ,vN)− aN(wN ,vN)|
‖vN‖V

,

we cannot explicitly evaluate it without referring to a particular differential prob-
lem. We then choose, as an example, the one-dimensional diffusion-reaction problem
(10.22), supposing moreover that μ and σ are constant. Incidentally, such problem
satisfies homogeneous Dirichlet boundary conditions, in accordance with what was
requested for deriving estimate (10.56). In such case, the associated bilinear form is

a(u,v) = (μu′,v′) + (σu,v),

while its G-NI approximation is given by

aN(u,v) = (μu′,v′)N +(σu,v)N .

We must then evaluate

a(wN ,vN)− aN(wN ,vN) = (μw′
N ,v

′
N)− (μw′

N ,v
′
N)N +(σwN ,vN)− (σwN ,vN)N .

Since w′
Nv′N ∈ Q2N−2, if we suppose that μ is constant, the product μw′

Nv′N is inte-
grated exactly by the GLL integration formula, that is (μw′

N ,v
′
N)− (μw′

N ,v
′
N)N = 0.

We now observe that

(σwN ,vN)− (σwN ,vN)N =E(σwN ,vN) = E(σ(wN − u),vN)+E(σu,vN),

and therefore, using (10.55), we obtain

|E(σ(wN −u),vN)| ≤C

(
1
N

)
‖σ(wN − u)‖H1(−1,1)‖vN‖L2(−1,1),
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|E(σu,vN)| ≤C

(
1
N

)s

‖σu‖Hs(−1,1)‖vN‖L2(−1,1).

On the other hand, since σ is also constant, setting wN = ΠGLL
N u and using (10.17),

we obtain

‖σ(wN −u)‖H1(−1,1) ≤C‖u−ΠGLL
N u‖H1(−1,1) ≤C

(
1
N

)s−1

‖u‖Hs(−1,1).

Hence,

sup
vN∈VN\{0}

|a(wN ,vN)− aN(wN ,vN)|
‖vN‖V

≤C∗
(

1
N

)s

‖u‖Hs(−1,1). (10.57)

We still need to estimate the first summand of (10.48). Having chosen wN = ΠGLL
N u

and exploiting (10.17) again, we obtain that

‖u−wN‖V =‖u−ΠGLL
N u‖H1(−1,1) ≤C

(
1
N

)s

‖u‖Hs+1(−1,1) (10.58)

provided that u ∈ Hs+1(−1,1), for a suitable s ≥ 1. To conclude, thanks to (10.56),
(10.57) and (10.58), from (10.48) applied to the G-NI approximation of problem
(10.22), and under the previous hypotheses, we find the following error estimate

‖u−uN‖H1(−1,1) ≤C

(
1
N

)s(
‖ f‖Hs(−1,1) +‖u‖Hs+1(−1,1)

)
.

The convergence analysis just carried out for the model problem (10.22) can be
generalized (with a few technical difficulties) to the case of more complex differential
problems and different boundary conditions.

Example 10.2 (Problem with regularity depending on a parameter). Let us con-
sider the following (trivial but instructive) problem⎧⎨⎩

−u′′ = 0, x ∈ (0,1],
−u′′ =−α(α− 1)(x−1)α−2, x ∈ (1,2),
u(0) = 0, u(2) = 1,

with α ∈N. The exact solution is null in (0,1) and equals (x−1)α for x ∈ (1,2). Thus
it belongs to Hα(0,2), but not to Hα+1(0,2). We report in Table 10.1 the behaviour of
the error in H1(0,2) norm with respect to N using a G-NI method for three different
values of α . As it can be seen, when the regularity increases, so does the order of
convergence of the spectral method with respect to N, as stated by the theory. In the
same table we report the results obtained using linear finite elements (this time N de-
notes the number of elements). The order of convergence of the finite element method
remains linear in either case. �
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Table 10.1. Behaviour of the error of the G-NI spectral method for varying polynomial degree
N and solution regularity index (left). Behaviour of the error of the linear finite element method
for varying number of intervals N and solution regularity index (right)

N α = 2 α = 3 α = 4

4 0.5931 0.2502 0.2041
8 0.3064 0.0609 0.0090
16 0.1566 0.0154 7.5529 ·10−4

32 0.0792 0.0039 6.7934 ·10−5

N α = 2 α = 3

4 0.4673 0.5768
8 0.2456 0.3023

16 0.1312 0.1467
32 0.0745 0.0801
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Fig. 10.11. The grid (left) and the solution isolines obtained using the spectral finite element
method (right) for the problem in Example 10.3

Example 10.3. Let us take the second example illustrated in Sect. 4.6.3, this time
using the spectral element method. Let us consider a partition of the domain into
four spectral elements of degree 8 as shown in the left of Fig. 10.11. The solution
obtained (Fig. 10.11, left) does not exhibit any inaccuracy in proximity of the origin, as
opposed to the solution obtained using finite elements in the absence of grid adaptivity
(compare with Fig. 4.24, left). �

10.5 G-NI and SEM-NI methods for a one-dimensional model

problem

Let us consider the one-dimensional diffusion-reaction problem

−[(1+ x2)u′(x)]′+ cos(x2)u(x) = f (x), x ∈ (−1,1), (10.59)

together with mixed-type boundary conditions

u(−1) = 0, u′(1) = 1.

The goal of this section is to discuss in detail how to formulate the G-NI and SEM-
NI approximations. For the former, we will also provide the corresponding matrix
formulation as well as a stability analysis.
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10.5.1 The G-NI method

The weak formulation of problem (10.59) is:

find u ∈V : a(u,v) = F(v) ∀v ∈V,

V = {v∈ H1(−1,1) : v(−1) = 0}, a : V ×V −→R and F : V −→R being the bilinear
form and the linear functional, respectively, defined by

a(u,v) =

1∫
−1

(1+ x2)u′(x)v′(x)dx+

1∫
−1

cos(x2)u(x)v(x)dx,

F(v) =

1∫
−1

f (x)v(x)dx+2v(1).

The spectral-Galerkin formulation (SM) takes the following form

find uN ∈VN such that a(uN ,vN) = F(vN) ∀vN ∈VN , (10.60)

with
VN = {vN ∈QN : vN(−1) = 0} ⊂V. (10.61)

In order to obtain the corresponding G-NI formulation, it is sufficient to approximate
in (10.60) all scalar products on L2(−1,1) with the GLL discrete scalar product de-
fined in (10.25). We then have

find u∗N ∈VN : aN(u
∗
N ,vN) = FN(vN) ∀vN ∈VN , (10.62)

having set

aN(u,v) =
(
(1+ x2)u′,v′

)
N +
(

cos(x2)u,v
)

N

=
N

∑
i=0

(1+ x2
i )u′(xi)v′(xi)αi +

N

∑
i=1

cos(x2
i )u(xi)v(xi)αi

(10.63)

and

FN(v) = ( f ,v)N +2v(1) =
N

∑
i=1

f (xi)v(xi)αi +2v(1). (10.64)

Note that this requires f to be continuous. We observe that the index i of the last sum in
(10.63) and of the sum in (10.64) starts from 1, instead of 0, since v(x0) = v(−1) = 0.
Moreover, the formulations SM (10.60) and G-NI (10.62) never coincide. Consider,
for instance, the diffusive term (1+ x2)(u∗N)

′ v′N : this is a polynomial of degree 2N.
Since the GLL integration formula has exactness degree 2N-1, the discrete scalar prod-
uct (10.25) will not return the exact value of the corresponding continuous scalar prod-
uct
(
(1+ x2)(u∗N)

′,v′N
)
.

To obtain the matrix formulation of the G-NI approximation, we denote by ψi, for
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i = 1, . . . ,N, the characteristic polynomials associated to all GLL nodes except to the
one where a Dirichlet boundary condition is assigned, x0 = −1. Such polynomials
constitute a basis for the space VN introduced in (10.61). This allows us, in the first
place, to write the solution u∗N of the G-NI formulation as

u∗N(x) =
N

∑
j=1

u∗N(x j)ψ j(x).

Secondly, we can choose in (10.62) vN = ψi, i = 1, . . . ,N, obtaining

aN(u
∗
N ,ψi) = FN(ψi), i = 1, . . . ,N,

i.e.
N

∑
j=1

u∗N(x j)aN(ψ j,ψi) = FN(ψi), i = 1, . . . ,N.

In matrix form,
Au∗

N = f,

having u∗
N = (u∗N(xi)), A = (ai j), with

ai j = aN(ψ j ,ψi) =
N

∑
k=0

(1+ x2
k)ψ

′
j(xk)ψ

′
i (xk)αk +

N

∑
k=1

cos(x2
k)ψ j(xk)ψi(xk)αk

=
N

∑
k=0

(1+ x2
k)ψ

′
j(xk)ψ

′
i (xk)αk + cos(x2

i )αi δi j,

and

f = ( fi), con fi = FN(ψi) = ( f ,ψi)N + 2ψi(1)

=
N

∑
k=1

f (xk)ψi(xk)αk + 2ψi(1)

=

{
αi f (xi) for i = 1, . . . ,N −1,

αN f (1)+2 for i = N.

We recall that the matrix A, besides being ill-conditioned, is full due to the presence
of the diffusive term.
Finally, we can verify that the G-NI method (10.62) can be reformulated as a suitable
collocation method. To this end, we wish to rewrite the discrete formulation (10.62)
in continuous form in order to counterintegrate by parts, i.e. to return to the initial
differential operator. In order to do this, we will resort to the interpolation operator
ΠGLL

N defined in (10.15), recalling in addition that the discrete scalar product (10.25)
coincides with the continuous one on L2(−1,1) if the product of the two integrand
functions is a polynomial of degree ≤ 2N − 1 (see (10.36)).
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We then accurately rewrite the first summand of aN(u∗N ,vN), ignoring the ∗ to simplify
the notation. Thanks to (10.36) and integrating by parts, we have(

(1+ x2)u′N ,v
′
N

)
N

=
(
ΠGLL

N

(
(1+ x2)u′N

)
,v′N
)

N =
(
ΠGLL

N

(
(1+ x2)u′N

)
,v′N
)

=−([ΠGLL
N

(
(1+ x2)u′N

)
]′,vN

)
+ΠGLL

N

(
(1+ x2)u′N

)
(1)vN(1)

=−([ΠGLL
N

(
(1+ x2)u′N

)
]′,vN

)
N +ΠGLL

N

(
(1+ x2)u′N

)
(1)vN(1).

Hence, we can reformulate (10.62) as

find uN ∈VN :
(
LNuN ,vN

)
N = ( f ,vN)N

+
(
2−ΠGLL

N

(
(1+ x2)u′N

)
(1)
)

vN(1) ∀vN ∈VN ,
(10.65)

with

LNuN =−[ΠGLL
N

(
(1+ x2)u′N

)]′
+ cos(x2)uN =−DN

(
(1+ x2)u′N

)
+ cos(x2)uN ,

DN being the interpolation derivative introduced in (10.40). We now choose (10.65)
vN = ψi. For i = 1, . . . ,N −1, we have(

LNuN ,ψi
)

N =
(− [ΠGLL

N

(
(1+ x2)u′N

)]′
,ψi
)

N +
(

cos(x2)uN ,ψi
)

N

=−
N−1

∑
j=1
α j
[
ΠGLL

N

(
(1+ x2)u′N

)]′
(x j)ψi(x j)+

N−1

∑
j=1
α j cos(x2

j)uN(x j)ψi(x j)

=−αi
[
ΠGLL

N

(
(1+ x2)u′N

)]′
(xi)+αi cos(x2

i )uN(xi) = ( f ,ψi)N

=
N−1

∑
j=1

α j f (x j)ψi(x j) = αi f (xi),

that is, exploiting the definition of the LN operator and dividing everything by αi,

LNuN(xi) = f (xi), i = 1, . . . ,N − 1. (10.66)

Having set vN = ψN in (10.65), we obtain instead(
LNuN ,ψN

)
N =−αN

[
ΠGLL

N

(
(1+ x2)u′N

)]′
(xN)+αN cos(x2

N)uN(xN)

= ( f ,ψN)N + 2−ΠGLL
N

(
(1+ x2)u′N

)
(1)

= αN f (xN)+2−ΠGLL
N

(
(1+ x2)u′N

)
(1),

or, dividing all by αN ,

LNuN(xN) = f (xN)+
1
αN

(
2−ΠGLL

N

(
(1+ x2)u′N

)
(1)
)
. (10.67)

Equations (10.66) and (10.67) therefore provide the collocation in all the nodes (ex-
cept the potential boundary ones where Dirichlet conditions are assigned) of the given
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differential problem, after approximating of the differential operator L using opera-
tor LN .

Finally, we analyze the stability of formulation (10.62). Since we are dealing
with a generalized Galerkin-type of approach, we will have to resort to the Strang
Lemma 10.1. This guarantees that, for the solution u∗N of (10.62), the estimate

‖u∗N‖V ≤ 1
α∗ sup

vN∈VN\{0}

|FN(vN)|
‖vN‖V

(10.68)

holds, α∗ being the (uniform) coercivity constant associated to the discrete bilinear
form aN(·, ·). We apply this result to problem (10.59), by computing first of all α∗.
By exploiting the definition (10.53) of the discrete norm ‖ · ‖N and the equivalence
relation (10.54), we have

aN(uN ,uN) =
(
(1+ x2)u′N ,u

′
N

)
N +
(

cos(x2)uN ,uN
)

N

≥ (u′N ,u′N)N + cos(1)
(
uN ,uN

)
N = ‖u′N‖2

N + cos(1)‖uN‖2
N

≥ ‖u′N‖2
L2(−1,1) + cos(1)‖uN‖2

L2(−1,1) ≥ cos(1)‖uN‖2
V ,

having moreover exploited the relations

min
j
(1+ x2

j) ≥ min
x∈[−1,1]

(1+ x2) = 1,

min
j

cos(x2
j) ≥ min

x∈[−1,1]
cos(x2) = cos(1).

This allows us to identify α∗ using the value cos(1). At this point, we can evaluate the
quotient |FN(vN)|/‖vN‖V in (10.68). Indeed, we have

|FN(vN)|= |( f ,vN
)

N + 2vN(1)| ≤ ‖ f‖N ‖vN‖N + 2 |vN(1)|

≤ √
3‖ f‖N ‖vN‖V + 2

∣∣∣ 1∫
−1

v′N(x)dx
∣∣∣≤√

3‖ f‖N ‖vN‖V + 2
√

2‖vN‖V ,

having once more used the equivalence property (10.54) together with the Cauchy-
Schwarz inequality in its discrete (10.52) and continuous (3.7) versions. We can thus
conclude that

|FN(vN)|
‖vN‖V

≤
√

3‖ f‖N +2
√

2 ,

that is, returning to the stability estimate (10.68),

‖u∗N‖V ≤ 1
cos(1)

[√
3‖ f‖N +2

√
2
]
.

Finally, we note that ‖ f‖N ≤ 2‖ f‖C0([−1,1])∀ f ∈C0([−1,1]).



10.5 G-NI and SEM-NI methods for a one-dimensional model problem 259

10.5.2 The SEM-NI method

Starting from problem (10.59), we now want to consider its SEM-NI formulation,
i.e. a spectral element formulation that uses the integration formulae of type GLL
in each element. Moreover, we propose to provide a basis for the space where such
formulation will be implemented.
We first introduce a partition of the interval (−1,1) in M (≥ 2) disjoint sub-intervals
Ωm = (xm−1,xm), with m = 1, . . . ,M, denoting by hm = xm − xm−1 the width of the m-
th interval, and setting h = maxm hm. The SEM formulation of problem (10.59) takes
the form

find uN ∈VC
N : a(uN ,vN) = F(vN) ∀vN ∈VC

N , (10.69)

with

VC
N = {vN ∈C0([−1,1]) : vN

∣∣
Ωm

∈QN , ∀m = 1, . . . ,M, vN(−1) = 0}.

We note that the functional space VC
N of the SEM approach loses the “global” nature

that is instead typical of a SM formulation. Similarly to what happens in the case
of finite element approximations, we now have piecewise polynomial functions. By
exploiting the partition {Ωm}, we can rewrite formulation (10.69) in the following
way

find uN ∈VC
N :

M

∑
m=1

aΩm(uN ,vN) =
M

∑
m=1

FΩm(vN) ∀vN ∈VC
N , (10.70)

where

aΩm(uN ,vN) = a(uN ,vN)
∣∣
Ωm

=

∫ xm

xm−1

(1+ x2)u′N(x)v′N(x)dx+
∫ xm

xm−1

cos(x2)uN(x)vN(x)dx,

while

FΩm(vN) = F(vN)
∣∣
Ωm

=
∫ xm

xm−1

f (x)vN(x)dx+2vN(1)δmM.

The SEM-NI formulation can be obtained at this point by approximating in (10.70)
the continuous scalar products by the discrete GLL scalar product (10.25):

find u∗N ∈VC
N :

M

∑
m=1

aN,Ωm(u
∗
N ,vN) =

M

∑
m=1

FN,Ωm(vN) ∀vN ∈VC
N ,

where
aN,Ωm(u,v) =

(
(1+ x2)u′,v′

)
N,Ωm

+
(

cos(x2)u,v
)

N,Ωm
,

FN,Ωm(v) =
(

f ,v
)

N,Ωm
+2v(1)δmM,

(
u,v
)

N,Ωm
=

N

∑
i=0

u(x(m)
i )v(x(m)

i )α
(m)
i ,
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x(m)
i being the i-th GLL node of the sub-intervalΩm and α(m)

i the corresponding inte-
gration weight.

Starting from the reference element Ω̂ = (−1,1) (which, in the case under exam,
coincides with the domain Ω of problem (10.59)) and calling

ϕm(ξ ) =
hm

2
ξ +

xm + xm−1

2
, ξ ∈ [−1,1],

the affine map from Ω̂ into Ωm, for m = 1, . . . ,M, we will have

x(m)
i = ϕm(xi), α

(m)
i =

hm

2
αi , i = 0, ...,N (10.71)

that is x(m)
i is the image, through the mapping ϕm, of the i-th GLL node of Ω̂ .

We introduce, on each Ωm, the set {ψ(m)
i }N

i=0 of basis functions, such that

ψ
(m)
i (x) = ψi(ϕ

−1
m (x)) ∀x ∈Ωm,

ψi being the characteristic polynomial introduced in (10.12) and (10.13) associated to
node xi of GLL in Ω̂ . Having now a basis for each sub-interval Ωm, we can write the
solution uN of the SEM on each Ωm as

uN(x) =
N

∑
i=0

u(m)
i ψ

(m)
i (x) ∀x ∈Ωm, (10.72)

where u(m)
i = uN(x

(m)
i ).

Since we want to define a global basis for the space VC
N , we start by defining the basis

functions associated to the internal nodes ofΩm, for m = 1, . . . ,M. For this purpose, it

will be sufficient to extend trivially, outside Ωm, each basis function ψ(m)
i , yielding

ψ̃
(m)
i (x) =

{
ψ

(m)
i (x), x ∈Ωm

0, otherwise.

These are, overall, (N − 1)M functions that behave as shown in Fig. 10.12. For each
end node xm of the Ωm sub-domains, with m = 1, . . . ,M − 1, we define instead the
basis function

ψ∗
m(x) =

⎧⎪⎪⎨⎪⎪⎩
ψ

(m)
N (x), x ∈Ωm

ψ
(m+1)
0 (x), x ∈Ωm+1

0, otherwise,

obtained by “pasting” ψ(m)
N and ψ(m+1)

0 together (see Fig. 10.13). In particular, we
observe that ψ∗

0 is not needed, since a homogeneous Dirichlet condition is assigned

at x0 = −1, whereas we need ψ∗
M that we indicate with ψ(M)

N . Thus, by the choice of
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1

x x xx x0 Mm 1 mi
(m)

i
~(m)

Fig. 10.12. basis function ψ̃(m)
i associated to the internal node x(m)

i

1

xMxm 1x
0 xm xm+1

m
*

Fig. 10.13. basis function ψ∗
m associated to the internal node xm

boundary conditions made, there exist M basis functions associated to the endpoints
of the sub-intervals Ωm. (Had Dirichlet conditions been applied at both endpoints of
Ω , we would have had the (M−1) functions ψ∗

m, m = 1, ...,M− 1.)
Hence, we have n = (N − 1)M+M basis functions for the space VC

N altogether. Each
function uN ∈VC

N can then be expressed in the following way

uN(x) =
M

∑
m=1

uΓmψ
∗
m(x)+

M

∑
m=1

N−1

∑
i=1

u(m)
i ψ̃

(m)
i (x),

with uΓm = uN(xm) and u(m)
i defined as in (10.72). This way, the Dirichlet boundary

condition is respected.

10.6 Spectral methods on triangles and tetrahedra

As we have seen, the use of spectral methods on quadrilaterals in two dimensions
(or parallelepipeds in three dimensions) is made possible by the use of tensor prod-
ucts of one-dimensional functions (on the reference interval [−1,1]) and of the one-
dimensional Gaussian numerical integration formulae. Since a few years, however, we
are witnessing a growth of interest in the use of spectral-type methods also on geome-
tries that do not have tensor product structure, such as, for instance, triangles in 2D
and tetrahedra, prisms or pyramids in 3D.

We briefly describe Dubiner’s pioneering idea [Dub91] to introduce polynomial bases
of high degree on triangles, later extended in [KS05] to the three-dimensional case.
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T̂

-1

-1 1

1

x1

x2

Q̂

-1

-1

1

1
ξ1

ξ2

Fig. 10.14. Transformation of the reference triangle T̂ into the reference square Q̂. The slanting
segments are transformed into vertical segments

We consider the reference triangle

T̂ = {(x1,x2) ∈ R2 : −1 < x1,x2 ; x1 + x2 < 0}
and the reference square

Q̂ = {(ξ1,ξ2) ∈ R2 : −1 < ξ1,ξ2 < 1}.
The transformation

(x1,x2)→ (ξ1,ξ2), ξ1 = 2
1+ x1

1− x2
− 1, ξ2 = x2 (10.73)

is a bijection between T̂ and Q̂. Its inverse is given by

(ξ1,ξ2)→ (x1,x2), x1 =
1
2
(1+ ξ1)(1− ξ2)− 1, x2 = ξ2.

As highlighted in Fig. 10.14, the mapping (x1,x2)→ (ξ1,ξ2) sends the ray in T̂ issuing
from the vertex (−1,1) and passing through the point (x1,−1) to the vertical segment
of Q̂ of equation ξ1 = x1. The latter therefore becomes singular in (−1,1). For this
reason we call (ξ1,ξ2) the collapsed Cartesian coordinates of the point of the triangles
having coordinates (x1,x2).

We denote by {J(α ,β )k (ξ ), k ≥ 0} the family of Jacobi polynomials that are orthogonal
with respect to the weight w(ξ ) = (1− ξ )α(1+ ξ )β , for α,β ≥ 0. Hence,

∀k ≥ 0, J(α ,β )k ∈ Pk and

1∫
−1

J(α ,β )k (ξ )J(α ,β )m (ξ )w(ξ )dξ = 0 ∀ m �= k. (10.74)

We observe that, for α = β = 0, J(0,0)k coincides with the k-th Legendre polynomial Lk.
For each pair of integers k = (k1,k2) we define the so-called warped tensor product
basis on Q̂

Φk(ξ1,ξ2) =Ψk1(ξ1)Ψk1,k2(ξ2), (10.75)
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withΨk1(ξ1) = J(0,0)k1
(ξ1) andΨk1,k2(ξ2) = (1− ξ2)

k1J(2k1+1,0)
k2

(ξ2). Note that Φk is a
polynomial of degree k1 in ξ1 and k1 + k2 in ξ2.
By now applying mapping (10.73), we find the following function defined on T̂

ϕk(x1,x2) =Φk(ξ1,ξ2) = J(0,0)k1

(
2

1+ x1

1− x2
− 1
)
(1− x2)

k1 J(2k1+1,0)
k2

(x2). (10.76)

This is a polynomial of total degree k1 +k2 in the variables x1, x2, i.e. ϕk ∈ Pk1+k2(T̂ ).
The orthogonality of the Jacobi polynomials (10.74), for each m �= k, allows to prove
that ∫

T̂

ϕk(x1,x2)ϕm(x1,x2)dx1 dx2 =
1
2

( 1∫
−1

J(0,0)k1
(ξ1)J(0,0)m1 (ξ1)dξ1

)
·

( 1∫
−1

J(2k1+1,0)
k2

(ξ2)J(2m1+1,0)
m2 (ξ2)(1− ξ2)

k1+m1+1 dξ2

)
= 0.

(10.77)

Hence, {ϕk : 0 ≤ k1,k2, k1+k2 ≤ N} constitutes an orthogonal (modal) basis for the
space of polynomials PN(T̂ ), with dimension 1

2(N + 1)(N +2).
The orthogonality property is undoubtedly convenient as it allows to diagonalize the
mass matrix (see Chap. 5). However, with the modal basis described above, imposing
the boundary conditions (in case the computational domain is a triangle T̂ ), as well
as satisfying the continuity conditions on the interelements (in case spectral element
methods with triangular elements are used) results to be uncomfortable. A possible
remedy consists in adapting such basis by generating a new one, which we will denote
by {ϕba

k }; ba stands for boundary adapted. In order to obtain it, we will start by

replacing the one-dimensional Jacobi basis J(α ,0)k (ξ ) (with α = 0 or 2k+1) with the
adapted basis constituted by:

• two boundary functions: 1+ξ
2 and 1−ξ

2 ;

• (N − 1) bubble functions:
( 1+ξ

2

)( 1−ξ
2

)
J(α ,β )k−2 (ξ ), k = 2, . . . ,N, for suitable fixed

α,β ≥ 1.

These one-dimensional bases are then used as in (10.75) instead of the non-adapted
Jacobi polynomials. This way, we find vertex-type, edge-type and bubble functions.
Precisely:

• vertex-type functions:

ΦV1(ξ1,ξ2) =
(1− ξ1

2

)(1− ξ2

2

)
(vertex V1 = (−1,−1)),

ΦV2(ξ1,ξ2) =
(1+ ξ1

2

)(1− ξ2

2

)
(vertex V2 = (1,−1)),

ΦV3(ξ1,ξ2) =
1+ ξ2

2
(vertex V3 = (−1,1));
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Fig. 10.15. Basis functions of degree N = 5: boundary-adapted bases on the square (first from
the top) and on the triangle (second from top) associated to the values β = 1 and δ = 0; Jacobi

basis J
(α ,β )
k on the square (second from the bottom) corresponding to the values α = β = 0

(Legendre case); Dubiner basis functions {Φk} on the triangle (bottom)



10.7 Exercises 265

• edge-type functions:

ΦV1V2
K1

(ξ1,ξ2) =
(1− ξ1

2

)(1+ ξ1

2

)
J(β ,β )k1−2 (ξ1)

(1− ξ2

2

)k1
, 2 ≤ k1 ≤ N,

ΦV1V3
K2

(ξ1,ξ2) =
(1− ξ1

2

)(1− ξ2

2

)(1+ ξ2

2

)
J(β ,β )k2−2 (ξ2), 2 ≤ k2 ≤ N,

Φ
V2V3
K2

(ξ1,ξ2) =
(1+ ξ1

2

)(1− ξ2

2

)(1+ ξ2

2

)
J(β ,β )k2−2 (ξ2), 2 ≤ k2 ≤ N;

• bubble-type functions:

Φ
β
k1,k2

(ξ1,ξ2) =
(1− ξ1

2

)(1+ ξ1

2

)
J(β ,β )k1−2 (ξ1)·(1− ξ2

2

)k1
(1+ ξ2

2

)
J(2k1−1+δ ,β )

k2−2 (ξ2),

2 ≤ k1,k2, k1 + k2 ≤ N.

Although the choice β = δ = 2 ensures the orthogonality of the bubble functions,
generally we prefer the choice β = 1, δ = 0, which guarantees a good sparsity of
the mass and stiffness matrices and an acceptable condition number for the stiffness
matrix for second-order differential operators.
In Fig. 10.15 we report some examples of bases on triangles corresponding to different
choices of β and δ and different values of the degree N.
Using these modal bases, we can now set up a spectral Galerkin approximation
for a boundary-value problem set on the triangle T̂ , or a SEM-type method on
a domain Ω partitioned in triangular elements. We refer the interested reader to
[CHQZ06, CHQZ07, KS05].

10.7 Exercises

1. Prove inequality (10.52).

2. Prove property (10.54).

3. Write the weak formulation of problem{ −((1+ x)u′(x))′+ u(x) = f (x), 0 < x < 1,

u(0) = α, u(1) = β ,

and the linear system resulting from its discretization using the G-NI method.

4. Approximate the problem{ −u′′(x)+u′(x) = x2, −1 < x < 1,

u(−1) = 1, u′(1) = 0,
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using the G-NI method and analyze its stability and convergence.

5. Write the G-NI approximation of the problem{
Lu(x) =−(μ(x)u′(x))′+(b(x)u(x))′+σ(x)u(x) = f (x), −1 < x < 1,

μ(±1)u′(±1) = 0.

Find the conditions on the data under which the pseudo-spectral approximation is
stable. Moreover, verify that the following relations hold:

LNuN(x j) = f (x j), j = 1, . . . ,N −1,

μ(1)u′N(1) = αN( f −LNuN)(1),

μ(−1)u′N(−1) =−α0( f −LNuN)(−1),

LN being the pseudo-spectral operator defined in (10.41).

6. Consider the problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−μΔu+b ·∇u−σu= f in Ω = (−1,1)2,

u(x) = u0 for x1 =−1,

u(x) = u1 for x1 = 1,

∇u(x) ·n(x) = 0 for x2 =−1 and x2 = 1,

where x = (x1,x2)
T , n is the outgoing normal ofΩ , μ = μ(x), b = b(x), σ = σ(x),

f = f (x) are assigned functions, and u0, u1 are given constants.
Provide sufficient conditions on the data to guarantee the existence and uniqueness
of the weak solution, and give an a priori estimate. Then approximate the weak
problem using the G-NI method, providing an analysis of its stability and conver-
gence.

7. Prove the stability condition (10.42) in the case of the pseudo-spectral approxima-
tion of the equation (5.4) (replacing the interval (0,1) with (−1,1)).
[Solution: follow a similar procedure to that explained in Sect. 5.4 for the finite
element solution and invoke the properties reported in Lemmas 10.2 and 10.3.]

8. Consider the parabolic heat equation⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂u

∂ t
− ∂ 2u

∂x2 = 0, −1 < x < 1, t > 0,

u(x,0) = u0(x), −1 < x < 1,

u(−1, t) = u(1, t) = 0, t > 0.

Approximate it using the G-NI method in space and the implicit Euler method in
time and its stability study.



Chapter 11

Isogeometric analysis

Isogeometric Analysis – commonly abbreviated as IGA – is a strategy for the spa-
tial approximation of PDEs based on the so–called isogeometric concept. Extensively
developed in the last years starting from the seminal work of T.J.R. Hughes and col-
laborators [HCB05] in 2005, IGA originally aimed at restoring the centrality of the
geometric representation of the computational domain in the numerical approxima-
tion of PDEs. IGA was developed with the promise to close the current gap between
Computer Aided Design (CAD) procedures and computational modeling of PDEs (as
outlined e.g. in Sec. 8.1) by recognizing that the meshing procedure of the compu-
tational domain is indeed a major bottleneck in Engineering practice. Since CAD
systems mostly employ B–splines or NURBS [dB01, PT97] basis functions for the
geometric representation of the computational domains, IGA considers the same B–
splines or NURBS bases for the construction of the finite dimensional space in which
the approximate solutions of the PDEs lay; this strategy is commonly indicated as
NURBS–based IGA [CHB09, HCB05]. Other, more general or flexible geometric rep-
resentations based on splines, as e.g. T–splines, locally refined splines, etc.. [BCC+10,
BCS10, SBV+11, SLSH12, SZBN03, TSHH17], can be used for IGA, even if their de-
velopment and usage are still not straightforward and represent active research fields.

While the original, driving factor in the IGA development has been the efficiency
of the whole design–through–analysis computational pipeline in parallel with the ge-
ometric accuracy – namely “exactness” – in the representation of the computational
domain, the employment of B–splines and NURBS basis functions is especially suited
for the spatial approximation of several families of PDEs, also in virtue of the regular-
ity properties of these basis functions.

The most widespread IGA construction is NURBS–based IGA in the framework
of the Galerkin method [CHB09, EBBH09, HCB05]. We refer the interested reader to
e.g. [ABC+08, ABBS17, ABKF11, BBHH10, BCZH06, BHS12, BSV14, BVS+12,
CHR07, DBH12, DCV+16, dFRV11, GCBH08, SDS+12, ZBG+07] for an overview
of applications to problems in Computational Mechanics, a list which is far from being
exhaustive.

A. Quarteroni, Numerical Models for Differential Problems, MS&A 16, 
DOI 10.1007/978-3-319-49316-9_11

267© Springer International Publishing AG 2017 
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In this chapter we provide a brief overview of NURBS–based IGA in the frame-
work of the Galerkin method starting from the definition of B–splines and NURBS
basis functions and geometries, the isogeometric concept, the Galerkin method, and
the approximation properties of the method.

11.1 B–splines and NURBS

B–splines and NURBS (Non Rational Uniform B–splines) – a generalization of B–
splines – are widely used in CAD. B–splines are a particular family of splines func-
tions – constituted by piecewise polynomials – with minimal support for a given poly-
nomial degree.

11.1.1 B–splines basis functions

Univariate B–splines basis functions are built over a parameter domain Ω̂ ⊂R starting
from the so–called knot vector Ξ , a set of non–decreasing real values in the parame-

ter space R. Specifically, Ξ =
{
ξ̂1, ξ̂2, . . . , ξ̂n+p+1

}
, where ξ̂i for i = 1, . . . ,n+ p+1

is the ith knot, n is the number of basis functions composing the B–splines basis,
and p ≥ 0 the polynomial degree; in this manner, the parameter domain Ω̂ reads as

Ω̂ =
(
ξ̂1, ξ̂n+p+1

)
. As ξ̂1 ≤ ξ̂2 ≤ ·· · ≤ ξ̂n+p+1, knots can be repeated for which a

multiplicity m j ≥ 1 associated to each knot value j = 1, . . . , ñ, for some ñ ≤ n+ p+1;
by convention, the multiplicity of each knot value is 1 ≤ mj ≤ p+ 1. In particular,
we consider the case of open knot vectors, for which the multiplicity of the first and

last knot values in Ξ is m1 = mñ = p+ 1. Pairs of knots delimit knot spans
(
ξ̂i, ξ̂i+1

)
in Ω̂ , for i = 1, . . . ,n+ p; in particular, knot spans of null size are allowed by con-
struction in the case knot values have multiplicity mj ≥ 1. For open knot vectors, the

knot spans internal to Ω̂ , i.e.
{(
ξ̂i, ξ̂i+1

)}n

i=p+1
can be interpreted as mesh elements

whose number is nel; then, one has the relation n = nel + p among the number of such
mesh elements, the number of basis functions, and the polynomial degree. Finally, we
denote by ĥ the characteristic mesh size of the elements partitioning Ω̂ .

For a given knot vector Ξ =
{
ξ̂1, ξ̂2, . . . , ξ̂n+p+1

}
, the univariate B–splines basis

functions N̂i : Ω̂ → R, for i = 1, . . . ,n, are piecewise polynomials of degree p built
by means of the Cox–de Boor recursion formula [PT97]:

N̂i,0(ξ ) =

{
1 for ξ ∈ [ξ̂i, ξ̂i+1),
0 otherwise

N̂i,k(ξ ) =
ξ − ξ̂i

ξ̂i+k − ξ̂i

N̂i,k−1(ξ )+
ξ̂i+1 − ξ

ξ̂i+k+1 − ξ̂i+i

N̂i+1,k−1(ξ ) for k = 1, . . . p;

when the ratio 0
0 appears in the above formula, it is, by convention, replaced by 0.

For the sake of simplicity, we denote the basis functions N̂i,p(ξ ) simply as N̂i(ξ ),
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the dependence on the degree p being understood. The properties of B–splines are
uniquely determined from the knot vector Ξ , including their number n and degree p,
as well as their support and regularity, which are strictly related to the multiplicity of
the knot values. In particular, each basis function N̂i has support in p+1 knot spans,
regardless of their size; moreover, p+ 1 basis functions have support in each knot
span (or mesh element). B–splines basis functions are positive definite, specifically
one has N̂i(ξ ) ≥ 0 for all ξ ∈ Ω̂ and for any i = 1, . . . ,n; in addition, they constitute
a partition of unity, i.e. ∑n

i=1 N̂i(ξ ) ≡ 1 for all ξ ∈ Ω̂ . B–splines basis functions are
piecewise polynomials, hence they are C∞–continuous in each knot span (mesh ele-
ment), but only Cp−m–continuous across each knot value of multiplicity m ≥ 1. This
last property is widely exploited in NURBS–based IGA as it is peculiar of these basis
functions. For example, B–splines of degree p= 1 are only C0–continuous across each
mesh element (internal knot value) in Ω̂ . Basis functions of degree p = 2 are either
C0– or C1–continuous across mesh elements depending on the multiplicity m = 2 or
m = 1 of the associated internal knot value, respectively. In general, basis functions of
degree p are C0–, C1–, . . . , or Cp−1–continuous across mesh elements depending on
the multiplicity m = p, p−1, . . . ,1 of the associated knot values, respectively. Exam-
ples of univariate B–splines basis functions are reported in Fig. 11.1.

Bivariate, trivariate, and in general multivariate B–splines basis functions of di-

mension κ ≥ 1 are built through the tensor product rule. The knot vectors Ξα =
{
ξ̂ α1 ,

ξ̂ α2 , . . . , ξ̂ αnα+pα+1

}
are defined for each parametric directionα = 1, . . . ,κ , with nα and

pα the corresponding number of basis functions and degree; then, univariate B–splines
basis functions N̂α

i : Ω̂ → R are built separately from each knot vector Ξα for α =
1, . . . ,κ . By using the tensor product combination of knot vectors, the parameter do-

main reads Ω̂ =⊗κ
α=1

(
ξ̂ α1 , ξ̂ αnα+pα+1

)
⊂Rκ with mesh elements⊗κ

α=1

(
ξ̂ αiα , ξ̂

α
iα+1

)
⊂

Rκ , whose characteristic mesh size is denoted with ĥ. By introducing the multi–index
i = (i1, . . . , iκ) for some 1 ≤ iα ≤ nα and 1 ≤ α ≤ κ , the multivariate B–splines basis
functions N̂i : Ω̂ → R are built by exploiting the tensor product rule as

N̂i(ξ ) =
κ

∏
α=1

N̂α
iα (ξ

α),

where ξ =
(
ξ 1, . . . ,ξκ

) ∈ Ω̂ . The total number of multivariate B–splines basis func-
tions is n = ∏κ

α=1 nα ; by assuming a suitable reordering, the multi–index notation is
dropped henceforth in favor of the scalar one, for which multivariate B–splines are
indicated as N̂i : Ω̂ → R for i = 1, . . . ,n. At this stage, we simply recall that mul-
tivariate B–splines basis functions are positive and still form a partition of unity in
Ω̂ . Regarding the properties of support and regularity of these basis functions across
the mesh elements edges, these are inherited from the independent univariate basis
functions along each parametric direction α = 1, . . . ,κ from which they are built.
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Ξ =
{{0}2,1/4,1/2,3/4,{1}2

}
, p = 1,

nel = 4, n = 5, C0–continuous

Ξ ={
{0}3,{1/4}2 ,{1/2}2 ,{3/4}2 ,{1}3

}
,

p = 2, nel = 4, n = 9, C0–continuous

Ξ =
{{0}3,1/4,1/2,3/4,{1}3

}
, p = 2,

nel = 4, n = 6, C1–continuous

Ξ =
{
{0}3,1/4,1/2,{3/4}2 ,{1}3

}
, p = 2,

nel = 4, n = 7, C1–continuous and
C0–continuous across the knot 3

4

Ξ ={
{0}4,{1/4}2 ,{1/2}2 ,{3/4}2 ,{1}4

}
,

p = 3, nel = 4, n = 10, C1–continuous

Ξ =
{{0}4,1/4,1/2,3/4,{1}4

}
, p = 3,

nel = 4, n = 7, C2–continuous

Fig. 11.1. Examples of univariate B–splines basis functions; knot vectors Ξ , degree p, number
of elements nel , number of basis functions n, and global continuity Ck are indicated
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11.1.2 B–splines curves, surfaces, and solids

B–splines geometries are obtained as geometrical mappings from the parameter do-
main Ω̂ in the parameter space Rκ (Ω̂ ⊂ Rκ ) into the physical space Rd , with 1 ≤
κ ≤ d. For example, for κ = 1 and d = 3, one obtains curves in 3D, for κ = 2 and
d = 3 a surface, while for κ = d = 3 a solid object. Other than from the B–splines

basis functions
{

N̂i(ξ )
}n

i=1
, obtained from the knot vectors Ξα for α = 1, . . . ,κ , B–

splines geometries are built from the control points {Pi}n
i=1 ∈Rd , a set of points in the

physical space. Each control point is associated to a B–splines basis function. Con-
trol points are ordered accordingly based on the tensor product rule, a construction
which identifies the so–called control polygon in Rd . Then, a B–splines geometry is
determined by the geometrical mapping φ : Ω̂ → Rd , with φ : ξ �→ x, as

φ (ξ ) =
n

∑
i=1

Pi N̂i(ξ ), (11.1)

which defines the physical domain Ω identifying the geometry in the physical space
Rd . We illustrate in Figs. 11.2 and 11.3 some examples of B–splines geometries.

Regularity properties of a B–splines geometry are inherited from those of the B–
splines basis functions which they are built from, other than the location of control
points in the physical space. We remark that smooth graphical representations of Ω –
known as (high order) geometric continuity – can be obtained by particular choices of
the control points positions even if the B–splines basis functions are onlyC0–continuous.
However, particular choices of the control points positions may lead to degenerate ge-

Fig. 11.2. B–splines curve in 2D (κ = 1 and d = 2) obtained from n = 6 B–splines basis func-
tions of degree p = 2, built from the knot vector Ξ =

{{0}3,1/4,1/2,3/4,{1}3
}

, and the

control points P1 = (1,0)T , P2 = (1/2,1)T , P3 = (0,1)T , P4 = (−3/4,1/2)T , P5 = (−1,0)T ,
and P6 = (0,−1/4)T . The control points and control polygon are highlighted in red



272 11 Isogeometric analysis

Fig. 11.3. B–splines surface in 3D (κ = 2 and d = 3) obtained from n = 8 bivariate B–splines
basis functions. These are built from the univariate B–splines associated to the knot vectors
Ξ 1 =

{{0}2,{1}2
}

and Ξ 2 =
{{0}3, 1

2 ,{1}3
}

and have degrees 1 and 2, respectively. The con-

trol points are P1 = (1,0,0)T , P2 = (1/2,1/4,0)T , P3 = (1/4,1/2,0)T , and P4 = (0,1,0)T

along the parametric direction α = 1, while P5 = (3/2,0,0)T , P6 = (5/4,3/4,1)T , P7 =
(3/4,5/4,1)T , and P8 = (0,3/2,0)T along the parametric direction α = 2. The control points
and control polygon are highlighted in red

ometric representations which however we do not consider in this chapter [PT97].

11.1.3 NURBS basis functions and geometries

Geometric representations based on B–splines are flexible but do not allow to ex-
actly represent conic sections, a wide family of geometries commonly used in com-
puter graphics and design including circular arcs, cylindrical shapes, and spheres. To
achieve both flexibility and accuracy in geometric representations, NURBS have been
introduced [PT97] and nowadays represent a widely used tool in computer graphics.

Univariate NURBS basis functions are obtained by associating to an univariate B–

splines basis
{

N̂i(ξ )
}n

i=1
, built from the knot vector Ξ , a set of n real numbers called

weights, say {wi}n
i=1 ∈R. By introducing the weighting functionW (ξ )=∑n

j=1 N̂j(ξ )wj,

the univariate NURBS basis functions R̂i : Ω̂ →R, with Ω̂ ⊂R, read

R̂i(ξ ) =
N̂i(ξ )wi

W (ξ )
=

N̂i(ξ )wi

∑n
j=1 N̂j(ξ )wj

for i = 1, . . . ,n.

Each NURBS basis function is a piecewise rational function defined in the parameter
domain Ω̂ ; even if they are not piecewise polynomials, the degree p is convention-
ally referred to as the polynomial degree of the B–splines basis functions from which
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w = (1,1,1,1/3,1,1) w = (1,1,1,3,1,1)

Fig. 11.4. Examples of univariate NURBS basis functions with knot vector Ξ ={{0}3,1/4,1/2,3/4,{1}3
}

, degree p = 2, number of elements nel = 4, number of basis func-
tions n = 6, and globally C1–continuous; NURBS weights are indicated in the vector w

these are generated. In this chapter, we will assume that the weights are strictly posi-
tive, i.e. wi > 0 for all i = 1, . . . ,n, whence the properties of NURBS are immediately
inherited from those of the generating B–splines, including the regularity (continuity)
properties; as a matter of fact, B–splines are a particular case of NURBS for which
the weights are all equal, by convention wi = 1 for all i = 1, . . . ,n. Some examples of
univariate NURBS basis functions are reported in Fig. 11.4.

By exploiting the tensor product construction of multivariate B–splines basis func-
tions, which straightforwardly extends to the corresponding weights, and by using a
suitable reordering of the basis functions, multivariate NURBS basis functions R̂i :
Ω̂ →R, with Ω̂ ⊂ Rκ , read

R̂i(ξ ) =
N̂i(ξ )wi

W (ξ )
=

N̂i(ξ )wi

∑n
j=1 N̂j(ξ )wj

for i = 1, . . . ,n.

Analogously to B–splines, by associating to each basis
{

R̂i(ξ )
}n

i=1
a set of control

points {Pi}n
i=1, a NURBS geometry is determined by the geometric mapping φ : Ω̂→

Rd as

φ (ξ ) =
n

∑
i=1

Pi R̂i(ξ ), (11.2)

with the physical domainΩ identified by the NURBS mapping. An example of NURBS
geometry is shown in Fig. 11.5.

In this chapter, we simply consider B–splines and NURBS geometric representa-
tions for which κ ≡ d, i.e. the parametric and physical spaces coincide. We assume that
the Jacobian Ĵ(ξ ) = dφ

dξ (ξ ) of the geometric mapping (11.1) or (11.2) is well defined in

Ω̂ and that det
(
Ĵ(ξ )
)
> 0 a.e. in Ω̂ with the measure of the set

{
ξ ∈Ω̂ : det

(
Ĵ(ξ )

)
=0
}

equal to zero in the topology of Rd . Finally, we assume that the mapping (11.1) is in-
vertible a.e. in Ω̂ and that the inverse of Ĵ exists and is regular in each element of
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Fig. 11.5. Example of a NURBS surface: the cylindrical shell. The control points and control
net are highlighted in red

the mesh; the inverse of the geometric mapping is φ−1 : x �→ ξ . The geometric map-
ping (11.2) also allows to map the mesh in the parametric domain Ω̂ , whose charac-
teristic size is ĥ, into the mesh in the physical domainΩ with characteristic size h; an
example is depicted in Fig. 11.6.

Fig. 11.6. NURBS geometric mapping φ(ξ ) from the parameter domain Ω̂ ⊂R2 into the phys-
ical domain Ω ⊂ R2; the physical mesh is determined by the parametric one through φ(ξ )
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Ξ =
{{0}3,{1}3

}
, p = 2, nel = 1, and

n = 3; h0 = 1.
Ξ =

{{0}3,1/2,{1}3
}

, p = 2, nel = 2,
and n = 4; h1 = 0.5.

Ξ =
{{0}3,1/4,1/2,3/4,{1}3

}
, p = 2,

nel = 4, and n = 6; h2 = 0.25.
Ξ =

{{0}3,1/8, . . . ,7/8,{1}3
}

, p = 2,
nel = 8, and n = 10; h3 = 0.125.

Fig. 11.7. Example of successive h–refinements originating from an univariate B–splines basis
of degree p = 2 with nel = 1 and h0 = 1 (top–left); the sequentially h–refined B–splines bases
give rise to sequences of nested function spaces

11.1.4 NURBS function spaces and hpk–refinements

The NURBS basis
{

R̂i(ξ )
}n

i=1
in the parameter domain Ω̂ defines a NURBS function

space over Ω̂ , say N̂h, of dimension n

N̂h = span
{

R̂i(ξ ), i = 1, . . . ,n
}
. (11.3)

Because of the invertibility of the geometric mapping (11.2) (for κ = d), NURBS
basis functions can be defined in the physical domain Ω (the geometry itself) as Ri :
Ω→R, with Ri(x)= R̂i(φ

−1(x)). Hence, the NURBS function space over the physical
domain Ω ⊂Rd reads

Nh = span{Ri(x), i = 1, . . . ,n}= span
{

R̂i(φ
−1(x)), i = 1, . . . ,n

}
. (11.4)
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Ξ =
{{0}2,1/2,{1}2

}
, p0 = 1, nel = 2,

and n = 3; h = 0.5
Ξ =

{
{0}3,{1/2}2 ,{1}3

}
, p1 = 2,

nel = 2, and n = 5; h = 0.5

Ξ =
{
{0}4,{1/2}3 ,{1}4

}
, p2 = 3,

nel = 2, and n = 7; h = 0.5

Ξ =
{
{0}5,{1/2}4 ,{1}5

}
, p3 = 4,

nel = 2, and n = 9; h = 0.5

Fig. 11.8. Example of successive p–refinements originating from an univariate B–splines basis
of degree p0 = 1 with nel = 2 (top–left); the sequentially p–refined B–splines bases give rise to
sequences of nested function spaces

NURBS spaces can be enriched by means of three different strategies. The so–
called h– and p–refinements are analogous to the ones performed with C0–continuous
Lagrangian basis functions which stand at the basis of both the Finite Element and
Spectral Element Methods presented in Chapters 4 and 10, respectively. A third one
however, called k–refinement and peculiar of NURBS basis functions, is particularly
useful for the construction of regular function spaces [CHB09, HCB05]. We provide
hereafter a short and simplified overview of the hpk–refinements for univariate B–
splines basis functions, while we refer the reader to [ABC+08, CHR07, EBBH09,
HRS08] for a more comprehensive description of the topic.

• h–refinement (mesh refinement). It consists of inserting additional knots in the
original knot vector Ξ , without replicating existing knot values. Each new knot
increases the number of new basis functions by a single unit. A uniform knot
insertion yields a uniform mesh refinement. An example is reported in Fig. 11.7.
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• p–refinement (increasing the polynomial degree). The polynomial degree p of the
B–splines basis functions is increased to p+ 1 by increasing the multiplicity of
each knot value in Ξ by one unit; consequently, the number of basis functions is
increased by the number of actual mesh elements nel . The regularity of the original
basis functions is preserved along the application of the procedure. An example is
highlighted in Fig. 11.8.

• k–refinement. It consists of performing, on a knot vector without internal knots,
firstly order elevations followed by knot insertions. The regularity of the basis
functions is maximum, Cp−1, across each internal knot value and their number
only increases by one unit for each k–refinement step. An example is depicted in
Fig. 11.9.

We remark that h– and p–refinements generate sequences of enriched NURBS func-
tion spaces Nh1 , Nh2 , . . . which are nested into each other and the original one Nh,
i.e. Nh ⊂ Nh1 ⊂ Nh2 ⊂ ·· · . Conversely, k–refinements provide sequences of NURBS

Ξ =
{{0}2,{1}2

}
, p = 1, nel = 1, and

n = 2; h = 0.5
Ξ =

{{0}3,1/4,1/2,3/4,{1}3
}

, p = 2,
nel = 4, and n = 6; h = 0.25

Ξ =
{{0}4,1/4,1/2,3/4,{1}4

}
, p = 3,

nel = 4, and n = 7; h = 0.25
Ξ =

{{0}5,1/4,1/2,3/4,{1}5
}

, p = 4,
nel = 4, and n = 8; h = 0.25

Fig. 11.9. Example of three levels of k–refinements applied to an univariate B–splines basis of
degree p = 1 with nel = 1 (top–left); the k–refined B–splines bases do not give rise to sequences
of nested function spaces
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function spaces Nh1 , Nh2 , . . . with functions endowed with increasing regularity, but
not nested into each other, i.e. Nh ⊂ Nh1 , Nh ⊂ Nh2 , . . . , but Nh1 �⊂ Nh2 , etc.

Refinements or, equivalently, enrichments of NURBS function spaces are typically
used as a starting point to enhance the representations of the geometry at hand, e.g.
to add more detailed features by moving control points. If the enriched NURBS basis
is also used for a geometric representation of Ω , a key point is that such geometric
representation is preserved while performing the refinement. This means that Ω must

be equally represented by the original NURBS basis
{

R̂i(ξ )
}n

i=1
and the enriched one{

R̂i(ξ )
}n

i=1
. Specifically, in order to preserve the geometric mapping along the en-

richment of the NURBS basis functions, both a new set of control points
{

Pi
}n

i=1 and

of NURBS weights {wi}n
i=1 must be contextually generated such that, from Eq. (11.2),

one has φ(ξ ) = ∑n
i=1 Pi R̂i(ξ ) =∑n

i=1 Pi R̂i(ξ ).
Concepts about hpk–refinements straightforwardly extend to multivariate NURBS

basis functions.

11.1.5 Construction of NURBS geometries: an example

We consider as example the construction of a curve, specifically an arc centered in the
origin, spanning 90 degrees in R2, and featuring a smooth kink. We start by construct-
ing the arc that will be later “adapted" to our curve. Albeit this is not the unique option
to build the curve, we hereby summarize its construction according to this principle in
the following steps, also depicted in Fig. 11.10:

• Step 1. We build the univariate B–splines basis functions of degree p = 2 from the
knot vectorΞ =

{{0}3,{1}3
}

to guarantee a minimum regularity to the basis func-

tions; this yields n = 3 B–splines basis functions
{

N̂i(ξ )
}n

i=1
. Correspondingly,

we place in the physical space R2 n = 3 control points P1 = (1,0)T , P2 = (1,1)T ,
and P3 = (0,1)T ; this yields a B–splines curve, but not yet the arc since this cannot
be exactly represented under this construction.

• Step 2(a). In order to obtain the arc, we associate the non–unitary weight w2 =
1√
2

to the B–splines basis function N̂2(ξ ), thus yielding a NURBS basis
{

R̂i(ξ )
}3

i=1
.

• Step 2(b). By using the same control points of step 2, we obtain the arc spanning 90

degrees and centered in the origin; we notice that in this case w2 = arccos
(

90◦
2

)
.

• Step 3(a). As we need to modify the arc with a smooth kink, we enrich the NURBS

basis
{

R̂i(ξ )
}3

i=1
by inserting new knots in the knot vector Ξ , thus yielding Ξ ={{0}3, 9

21 ,
10
21 ,

11
21 ,

12
21 ,{1}3

}
. In virtue of this h–refinement step, we obtain a new

NURBS basis
{

R̂i(ξ )
}n

i=1
of degree p = 2, n = 7, and globally C1–continuous;

• Step 3(b). Following step 3(a), a new set of control points
{

Pi
}n

i=1 is generated to
preserve the geometric representation of the arc.
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Step 1 Step 2(a)

Step 2(b) Step 3(a)

Step 3(b) Step 4

Fig. 11.10. Construction of a NURBS curve: arc with a kink

• Step 4. Finally, the position of the control point P4 is modified, e.g. as P4 =
(1

2 ,
1
2

)T
,

to obtain the desired curve.
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11.2 The isogeometric concept

The commonly indicated NURBS–based IGA [CHB09, HCB05] relies on the very
same NURBS (or B–splines) basis functions first used to represent the computational
domain of a PDE also to build later the finite dimensional trial space where the numer-
ical solution is sought for. This is specifically referred to as the isogeometric concept
[CHB09].

Let us consider for example the linear elliptic problem of Eq. (4.1) in weak for-
mulation. According to the isogeometric concept, the computational domain Ω ⊂ Rd

is represented by means of NURBS basis functions – exactly in most of the cases of
practical interest – through the NURBS geometric mapping φ : Ω̂ →Rd of Eq. (11.2),
where φ (ξ ) = ∑n

i=1 Pi R̂i(ξ ); Ω̂ ⊂ Rd is called parameter domain. Then, we look for
an approximate solution in the parameter domain ûh : Ω̂ →R such that

ûh(ξ ) =
n

∑
i=1

Ui R̂i(ξ ),

where {Ui}n
i=1 is the so–called set of control variables. Since we assume that the

NURBS mapping (11.2) is invertible a.e. in Ω̂ , we write the approximate solution in
the computational (physical) domain uh : Ω →R as

uh(x) =
n

∑
i=1

Ui Ri(x) =
n

∑
i=1

Ui R̂i(φ
−1(x)). (11.5)

It follows that ûh ∈ N̂h and, equivalently, uh ∈Nh, with N̂h and Nh the NURBS spaces
of Eqs. (11.3) and (11.4), respectively. Thanks to the invertibility of the NURBS map-
ping (11.2), we have uh(x) = ûh(φ

−1(x)) for which ûh(ξ ) is often simply indicated as
uh(x).

According to the isogeometric concept, the approximation properties of the NURBS
space are inherited from those of the NURBS basis functions already used to represent
the computational domain Ω wherein the solution of the PDE is defined. We remark
however that the solution uh can be sought in a NURBS space N h enriched with
respect to the space Nh already used to represent Ω provided that N h ⊂ Nh; such
enrichment is obtained by means of suitable hpk–refinements.

We observe that the isogeometric mapping is quite general and not strictly limited
to the NURBS mapping (11.2); indeed, other geometric mappings can be used, e.g.
those based on other types of splines [TSHH17] or T–splines [BCC+10, SLSH12],
provided that the associated basis is complete and H1(Ω)–conformal for a second
order elliptic PDE.

The strategy of using the same representation, through suitable basis functions, of
the trial solution uh and the computational domain has already been extensively ex-
ploited in the so–called isoparametric finite element method [Cia78, Hug00]. How-
ever, in this case, the basis functions – let them be for example polynomials of degree
r, say {ϕr

i (x)}Nr
i=1 ∈ Pr – are determined by the choice of the finite element approxima-

tion, or equivalently by the finite element space Xr
h (4.38). Then, the computational do-

main Ω is approximated by the computational mesh Ωh = int
(∪K∈Th K

)
, intended as
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Linear, r = 1 Quadratic, r = 2

Fig. 11.11. Isoparametric finite elements in R2; mappings from the reference element K̂ into
the mesh element K

the union of non–overlapping mesh elements K; see Fig. 4.9. According to the isopara-
metric concept, each mesh element K ∈ Th is built from the reference one, say K̂, by
means of a geometric mapping in the form of Eq. (11.2) by using the polynomial basis
{ϕ̂r

i (ξ )}Nr
i=1 ∈ Pr. In this manner, if r ≥ 2, mesh elements as triangles in R2 may be

endowed with “curved” edges to better approximate the computational domainΩ . For
example, if r = 1, we have P1 = {p(ξ1,ξ2) = a+ bξ1+ cξ2, with a,b,c ∈ R}, while
for r = 2, we haveP2 =

{
p(ξ1,ξ2) = a+bξ1+ cξ2 +dξ1ξ2 + eξ 2

1 + fξ 2
2 , with a,b,c,

d,e, f ∈ R}, with obvious choice of the basis functions {ϕ̂r
i (ξ )}Nr

i=1 ∈ Pr. If the geo-
metric mapping is based on polynomials of degree r = 1, then the reference triangle
K̂ is mapped into a mesh element K as a triangle with straight edges according to a

mapping φ1(ξ ) using the basis
{
ϕ̂1

i (ξ )
}3

i=1. Instead, if r = 2, the reference triangle

K̂ can be mapped into a mesh element K with curved edges (sections of parabola)

through a mapping φ 2(ξ ) using
{
ϕ̂1

i (ξ )
}6

i=1; see Fig. 11.11. As a matter of fact, the
finite element method presented in Chapter 4 is a particular case of the isoparamet-
ric finite element method just introduced for which the geometric mapping of each

mesh element K from K̂ is φ 1(ξ ) – i.e. using the basis functions
{
ϕ̂1

i (ξ )
}3

i=1 ∈ P1 –
regardless of the polynomial degree r ≥ 1 used to build the finite element space Xr

h .
We remark that the isoparametric concept can also be exploited with the spectral

element method presented in Sec. 10.1 and Fig. 10.2 for square mesh elements, as well
as, with the Gordon–Hall transformation introduced in Example 10.1 and Fig. 10.3.

Differently from the isoparametric concept, the isogeometric one essentially lets
the geometrical representation of Ω to determine the basis functions for the trial so-
lution. This choice naturally leads to incorporate the exact geometric representation
of Ω in the computation of the solution of the PDE, whereas the isoparametric con-
cepts generally generates a new computational domainΩh, suitable for the “analysis",
which is only an approximation of Ω . Another distinguishing feature of the isogeo-
metric concept is that the computational domainΩ is exactly represented as a whole,
in general; conversely, in the isoparametric one, the geometric mapping generates a
set of mesh elements K ∈ Th whose union determinesΩh.

11.3 NURBS–based IGA: the Galerkin method

We briefly introduce IGA with NURBS basis functions in the framework of the Galerkin
method as presented in Chapter 3.
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11.3.1 The Poisson problem

The NURBS function space Nh of Eq. (11.4) is suitable for approximating the space
H1(Ω) according to Property 4.1. In addition, we define

◦
N h= {vh ∈ Nh : vh|∂Ω = 0} ,

and we indicate with Nh its dimension, i.e. Nh = dim
( ◦
N h

)
. For example, if d =

1,
◦

N h= span{Ri(x), i = 2, . . . ,n−1} by observing that univariate NURBS basis
functions are interpolatory at the images of the knot values ξ1 and ξn+p+1. More in
general, for d = 1,2 or 3, by assuming a suitable reordering of the n NURBS basis
functions such that Ri(x) = 0 for all x ∈ ∂Ω with index i = Nh + 1, . . . ,n, we can

write
◦

N h= span{Ri(x), i = 1, . . . ,Nh}. Again, the NURBS space
◦

N h is suitable
for approximating the space H1

0 (Ω).
Let us consider the Poisson problem (3.1) defined in the computational domain

Ω ⊂ Rd , for d = 1,2,3, and endowed with the Dirichlet boundary conditions (3.2) on
∂Ω in the homogeneous case, i.e. g = 0 on ∂Ω ⊂ Rd−1. In this respect, we assume
that the computational domain Ω is exactly represented by the NURBS basis func-
tions of the space Nh through the geometric mapping φ(ξ ) of Eq. (11.2); as a matter
of fact, according to the isogeometric concept, the NURBS space Nh – together with
the corresponding control points {Pi}n

i=1 ∈ Rd – is specifically built to exactly repre-
sent Ω and typically enriched through hpk–refinements preserving its geometric rep-
resentation. Then, by referring to the weak formulation (3.18), for which the solution

u ∈ H1
0 (Ω), and by setting Vh =

◦
N h, we obtain the NURBS–based IGA approximation

of the problem in the framework of the Galerkin method

find uh ∈Vh :
∫
Ω
∇uh ·∇vh dΩ =

∫
Ω

f vh dΩ ∀vh ∈Vh. (11.6)

We remark that the approximate solution uh (11.7) of the previous problem is rewritten
as

uh(x) =
Nh

∑
i=1

Ui Ri(x) (11.7)

in virtue of the reordering of the NURBS basis functions previously introduced.

Remark 11.1. The NURBS basis {Ri}n
i=1 is a modal basis as opposed to the finite

element Lagrangian basis that is instead nodal. In other words, if we assume that a
control point Pi lays in Ω , the value taken by the approximate solution uh in such con-
trol point does not coincide in general with the corresponding control variable Ui, i.e.
uh(Pi) �=Ui. Moreover, some of the control points used to build the computational do-
main may even lay outsideΩ , as seen e.g. in Fig. 11.6. In those cases, the approximate
solution at these points is not defined.

Let us now consider the Poisson problem (3.1) with non-homogeneous Dirichlet
boundary conditions (3.2) on ∂Ω for which g∈ L2(∂Ω) is a non-zero function. Again,
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we resort to the homogeneous case through a lifting of the boundary datum g and its
discrete counterpart. Let us denote with N ∂Ω

h the space formed by the trace functions
on ∂Ω of functions of Nh, which incidentally is still a NURBS space. As we consider
NURBS basis functions built from open knot vectors, we write the approximation of
g on ∂Ω as

gh(x) =
n

∑
i=Nh+1

Gi Ri(x) ∀x ∈ ∂Ω ,

where the non-zero basis functions at the boundary ∂Ω are reordered to carry in-
dexes i = Nh + 1, . . . ,n and {Gi}n

i=Nh+1 is the set of corresponding control variables.

As the NURBS basis functions of N ∂Ω
h are not interpolatory, the control variables

{Gi}n
i=Nh+1 can not be determined in general through interpolation of the datum g

on ∂Ω . However, a non-rigorous, but efficient approach consists in “interpolating"
the datum at the control points, i.e. in setting Gi ≈ g(Pi), if Pi ∈ ∂Ω , for i = Nh +
1, . . . ,n [CHB09]. Alternatively, the approximate datum gh can be built by means of
the L2(∂Ω) projection of g onto the NURBS space N ∂Ω

h . Once the approximate da-
tum gh is built, its lifting Rgh ∈ Nh is constructed as

Rgh(x) =
n

∑
i=Nh+1

Gi Ri(x) ∀x ∈Ω .

By setting Vh =
◦

N h, the NURBS–based IGA approximation of the problem reads

find
◦
uh∈Vh :

∫
Ω
∇

◦
uh ·∇vh dΩ =

∫
Ω

f vh dΩ ∀vh ∈Vh,

with the approximate solution uh recovered as uh =
◦
uh +Rgh .

We observe that Neumann, Robin, and in general natural boundary conditions (see
Secs. 3.3 and 3.4) are embedded in the weak formulation of the problem and are
treated in the same manner as other Galerkin methods.

Remark 11.2. For computational purposes, problems approximated by IGA are recast
in the parametric domain Ω̂ by means of the so-called “pull-back" operation thanks to
the invertibility of the NURBS geometric mapping φ (ξ ) of Eq. (11.2) [CHB09]; see

also Fig. 11.6. For the Poisson problem (11.6), by setting V̂h =
◦

N̂ h from Eq. (11.3)
with obvious choice of notation, we obtain

find ûh ∈ V̂h :
∫
Ω̂

(
Ĵ−T∇ûh

)
·
(

Ĵ−T∇v̂h

)
ĵ dΩ̂ =

∫
Ω̂

f̂ v̂h ĵ dΩ̂ ∀v̂h ∈ V̂h. (11.8)

where f̂ = f ◦ φ , Ĵ : Ω̂ → Rd×d is the Jacobian of the geometric mapping, and

ĵ = det
(

Ĵ
)

its determinant, which is positive a.e. in Ω̂ ⊂ Rd , as in this case we

assumed κ = d.
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11.3.2 Algebraic aspects

Let us refer for simplicity to the Poisson problem (11.6) in weak formulation with
homogeneous Dirichlet boundary conditions on ∂Ω . By expressing the approximate
solution uh as in Eq. (11.7) and then fulfilling Eq. (11.6) for each test functions vh

equal to the NURBS basis functions of Vh, we have the equivalent problem

find
{

Uj
}Nh

j=1 :
Nh

∑
j=1

Uj

∫
Ω
∇R j ·∇Ri dΩ =

∫
Ω

f Ri dΩ ∀i = 1, . . . ,Nh. (11.9)

This yields a linear system in the form of Eq. (4.46), i.e.

Au = f,

where the stiffness matrix A ∈ RNh×Nh is such that

A = [Ai j] with Ai j =
∫
Ω
∇R j ·∇Ri dΩ , (11.10)

the solution vector u ∈RNh contains the control variables, i.e u = [Uj], and the source
f ∈ RNh vector reads f = [ fi] with fi =

∫
Ω f Ri dΩ .

At the computational level, the assembling of the matrix A and vector f is “pulled–
back" into the parametric domain Ω̂ , as anticipated in Remark 11.2. Moreover, such
calculation is made inexactly, using suitable quadrature formulas. Typically, the Gauss–
Legendre quadrature rules [QSS07] are applied element by element on the mesh with
the rule–of–thumb of using p+ 1 quadrature nodes per parametric direction. Nev-
ertheless, more efficient quadrature rules, tailored for NURBS basis functions and
exploiting their properties of high order continuity across mesh edges, have been pro-
posed e.g. in [ACH+12, HRS10]. We remark however that, albeit the NURBS geo-
metric representation of the computational domain Ω is exact, the assembly of A and
f is not in general; indeed, quadrature rules as the Gauss–Legendre one allow the
exact evaluation of the integrals involved in the weak formulation of the problem –
see e.g. Eq. (11.10) – only for B–splines, which are piecewise polynomials, but not
for NURBS, which are instead rational functions. Still, quadrature errors do not harm
in most of the cases the overall accuracy of NURBS–based IGA. Indeed, they are
generally negligible or decay at very high rates, for example when using p+1 Gauss–
Legendre quadrature nodes per parametric direction (this is again a rule-of-thumb).

The properties of the stiffness matrix A (11.10) directly follow from those of the
NURBS basis functions used for its construction – as discussed in Sec. 11.1 – and
the nature of the differential problem to be approximated. In particular, univariate
NURBS basis functions are sequentially ordered in R; similarly, bivariate and trivari-
ate NURBS basis functions correspondingly possess an ordered structure in virtue of
their construction based on the tensor product rule of univariate basis functions. This
infers that the NURBS mesh is structured and all the connectivity structures (as the
so–called ID array) are simultaneously determined when the NURBS basis is built. It
follows that the matrix A is banded. In general, the matrix A is also sparse; indeed,
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1D, C1–continuous, n = 7 1D, C0–continuous, n = 11

2D, C1–continuous, n = 49 3D, C1–continuous, n = 343

Fig. 11.12. Examples of stiffness matrices for NURBS basis functions of degree p = 2 in 1D,
2D, and 3D with nel = 5 along each parametric direction

by recalling the notation of Sec. 11.1.1, this occurs if nα � pα for α = 1, . . . ,κ . The
maximum number of non-zero entries in each row of A is

κ

∏
α=1

(2pα +1),

where pα is the polynomial degree along each parametric direction. This is indepen-
dent of the continuity order of the NURBS basis functions – i.e. let them be C0 or Cp−1

– as their support only depends on the polynomial degree p. Hence, the maximum size
of band of the stiffness matrix is the same for the isoparametric finite element method
on structured meshes and for NURBS–based IGA.

We report some examples of stiffness matrices assembled by means of NURBS
basis functions in Fig. 11.12.

The stiffness matrix A = [a(R j,Ri)] of Eq. (11.10) stems from the NURBS–based
IGA approximation of the Poisson problem in the framework of the Galerkin method;
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p = 2 p = 3

p = 4 p = 5

Fig. 11.13. Condition number K2(A) of the stiffness matrix A – with Dirichlet boundary condi-
tions – in the 1D case, Ω = (0,1), for the spectral element method with numerical integration
(SEM–NI) and for Cp−1–continuous NURBS–based IGA under h–refinement for different val-
ues of p. The number of degrees of freedom is Nh = p/h+ 1 for SEM and Nh = 1/h+ p for
IGA with Cp−1 B–splines

hence, it is positive definite as the bilinear form a(·, ·) is coercive. In addition, A is
symmetric since the form a(·, ·) is symmetric. Moreover, its conditioning number be-
haves as in Eq. (4.50), K2(A) � C h−2, provided that h is “sufficiently” small, with
the constant C dependent on the polynomial degree p and the order of continuity of
the NURBS basis functions. We report in Fig. 11.13 some examples to illustrate the
behavior of the condition number under h–refinement.

Regarding the condition number K2(A) under p–refinement, this may “quickly"
grow with p for Cp−1–continuous NURBS basis functions. Specifically, for a stiff-
ness matrix A assembled for a d–dimensional problem, with d ≥ 2, the following
bound K2(A) ≤ C(h) p2d+2 4d p (which however does not seem to be sharp) was pro-
vided in [GSD14]. In particular, the condition number of the matrix A associated to
NURBS–based IGA does not enjoy the same properties of the spectral element method
with or without numerical integration presented in Sec. 10.3.1, for which one has in-
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h = 1 h = 1/32

Fig. 11.14. Condition number K2(A) of the stiffness matrix A – with Dirichlet boundary condi-
tions – in the 1D case, Ω = (0,1), for the spectral element method with numerical integration
(SEM–NI) under h–refinement and Cp−1–continuous NURBS–based IGA under k–refinement
for h = 1 and h = 1/32. The number of degrees of freedom is Nh = p/h+ 1 for SEM and
Nh = 1/h+ p for IGA with Cp−1 B–splines

stead K2(A) = O(p4) and O(p3), respectively. We report in Fig. 11.14 an example
illustrating the behavior of the condition number under p–refinement for a 1D case.

11.3.3 A priori error estimates

We provide the error estimates associated to NURBS–based IGA in the framework of
the Galerkin method under h–refinement. Specifically, we refer to the Poisson problem
of Sec. 11.3.1, for which u ∈ H1

0 (Ω), by assuming that f and ∂Ω are “sufficiently"
regular.

We report, from [BBC+06] and [TDQ14] a result for the a priori error estimate
in H1 norm. Its proof follows analogously to its finite element counterparts of Theo-
rems 4.3 and 4.6; however, it makes use of an operator that is not interpolatory, but
rather a suitable L2 projector on the NURBS subspace Nh.

Theorem 11.3 (A priori error estimate in H1 norm). Let u ∈ Hr+1(Ω), with r ≥ 0,
be the solution of the Poisson problem and uh ∈Vh its NURBS–based IGA approxima-
tion using the NURBS space of basis function of degree p and at least Ckmin –continuous
in Ω , with kmin ≥ 0. Then, the following error estimate under h–refinement holds

‖u− uh‖H1(Ω) ≤C hs ‖u‖Hr+1(Ω), (11.11)

where s = min{p,r} and C is a positive constant independent of both the mesh size h
and the solution u.

By using the Aubin-Nitsche’s argument as in Sec. 4.5.4 and Theorem 4.7 for the
finite element method, we have the following L2–error estimate for the Poisson prob-
lem.
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Theorem 11.4 (A priori error estimate in L2 norm). Under the same assumptions
of Theorem 11.3, the following error estimate under h–refinement holds

‖u− uh‖L2(Ω) ≤C hs+1 ‖u‖Hr+1(Ω), (11.12)

where s = min{p,r} and C is a positive constant independent of both the mesh size h
and the solution u.

The previous results (11.11) and (11.12) show that the errors associated to the
NURBS–based IGA approximation converge under h–refinement with orders β or γ ,
respectively, which are determined only by the polynomial degree p of the NURBS
space Nh and the regularity of the solution u. The convergence orders therefore do not
depend on the regularity of the NURBS basis functions of Nh, provided that these are
at least C0–continuous in Ω . Moreover, the convergence rates are the same that one
would obtain by approximating u by means of the finite element method. Specifically,
if u ∈ Hr(Ω) for a sufficiently large r (r ≥ p+ 1), then the convergence rates of the
errors under h–refinement are p and p+ 1 in norms H1 and L2, respectively.

Results for a priori error estimates under p– and k–refinements are presented in
[BBRS11]. Here, we limit ourselves to recall that the errors associated to NURBS–
based IGA behave as for the hp–version of the finite element method, i.e. as the spec-
tral element method of Chapter 10. Specifically, a priori error estimates under p–
refinement are characterized in a similar fashion of Theorem 10.1; in this respect, if
the exact solution u of the PDE is analytical, then the order of convergence of the er-
rors associated to NURBS–based IGA is more than algebraic, i.e. it can be interpreted
as being exponential (Sec. 10.1).

11.3.4 A numerical example: the Poisson problem

We consider hereby the solution of a simple Poisson problem in order to highlight
some of the features and properties of NURBS–based IGA.

Fig. 11.15. Poisson problem: computational domain Ω (left) and exact solution u (right)
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Fig. 11.16. Poisson problem: sequence of h–refined meshes of Ω

Let us start by considering the NURBS geometry in Fig. 11.15, which it is exactly
represented by means of NURBS basis functions of degree p = 2 (here we use basis
functions with the same polynomial degree p along the two parametric directions α =
1,2). Such NURBS geometry defines the computational domainΩ = (1,2)×(0,π/2)
in polar coordinates (r,θ ).

We consider now the Poisson problem (3.13) with homogeneous Dirichlet bound-
ary conditions. The source term f is chosen such that the exact solution of the Poisson
problem in Ω is u = sin(π/3(r2−1)) sin(4θ ); the polar coordinates are used with the
sole purpose of representing it in a compact fashion. The exact solution u is depicted
in Fig. 11.15.

We solve the Poisson problem by means of NURBS–based IGA using NURBS ba-
sis functions of degrees p = 2 and 3 which are Cp−1 and C0–continuous in Ω . Specif-
ically, we evaluate the H1 and L2–errors under h–refinement, i.e. over sequences of
successively refined meshes, as in Fig. 11.16, which lead to sequences of enriched,
but nested NURBS function spaces Nh as described in Sec. 11.1.4. We therefore con-
sider NURBS basis functions as those depicted in the univariate case in Fig. 11.1. In
Fig. 11.17 we report the H1 and L2–errors under h–refinement for which we high-
light the convergence rates expected from the corresponding a priori error estimates
of Theorems 11.3 and 11.4. We remark in particular that the convergence rates of
the H1 and L2–errors are p and p+ 1, respectively; this result is independent of the
order of continuity of the NURBS basis functions, let them be either Cp−1 or C0–
continuous. However, the number Nh of basis functions involved in the computation is
much larger for the C0 NURBS than for their Cp−1 counterpart, for a given number of
mesh elements (and hence h). High order continuous NURBS (Cp−1) require therefore
a smaller number of degrees of freedom Nh to achieve the same levels of errors of the
C0 basis functions.

11.3.5 Eigenvalue analysis

We consider the solution of an eigenvalue problem as a further test of comparison
between the approximation properties of NURBS–based IGA, the spectral element
method with numerical integration, and the standard finite element method. Let us
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Fig. 11.17. Poisson problem: behavior of the H1 and L2–errors under h–refinement for NURBS
basis functions of degrees p= 2 and 3 which are Cp−1 and C0–continuous; the errors are plotted
both against the characteristic mesh size h and the number Nh of degrees of freedom

introduce the 1D eigenvalue problem in Ω = (0,1)

find ωn ∈ R and un ∈V : a(un,v) = ω2
n m(un,v) ∀v ∈V,

where a(w,v) =
∫ 1

0 w′ v′ dx, m(w,v) =
∫ 1

0 wvdx, and V = H1(0,1), which admits an
infinite number of eigenvalues ω2

n , with ωn = nπ for n = 0,1,2 . . .. By setting the
finite dimensional space Vh =Nh, the NURBS space of Eq. (11.4) with dimension Nh,
we obtain the NURBS–based IGA approximation of the eigenvalue problem

find ωn,h ∈R and un,h ∈Vh : a(un,h,vh) = ω2
n,h m(un,h,vh) ∀v ∈Vh.

The approximate eigenvalues are
{
ω2

n,h

}Nh

n=0
, which we assume to be ordered (increas-

ingly) in R. As our NURBS–based IGA formulation is a Galerkin method – either with
exact integration for NURBS or with a rule-of-thumb Gauss–Legendre quadrature for
B–splines – one obtains for this symmetric eigenvalue problem ([Cia78, Hug00]) that

ωn ≤ ωn,h ∀n = 0,1, . . . ,Nh.
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Fig. 11.18. Normalized spectra for the spectral element method with numerical integration
(SEM–NI), the finite element method (FEM), and both Cp−1– and C0–continuous NURBS–
based IGA (with B–splines) for different values of p. The number of degrees of freedom is
Nh = pnel +1 for SEM, FEM, and C0 NURBS–based IGA, while Nh = nel + p for Cp−1 IGA;
we vary nel – yielding h= 1/nel forΩ = (0,1) – such that Nh � 1024, for all the methods under
consideration, for p = 1, . . . ,5

This property is not guaranteed for methods employing non–exact quadrature for-
mulas or methods not enjoying the properties of the Galerkin framework, as for the
spectral element method with numerical integration of Sec. 10.3; indeed, the latter is
no longer a Galerkin approximation method when the bilinear forms a(·, ·) and m(·, ·)
are evaluated in an approximate fashion.

We report in Fig. 11.18 the normalized spectra, i.e. the plots of the ratios
ωn,h
ωn

vs.
n

Nh
for n = 1, . . . ,Nh, where Nh is the dimension of the finite dimensional space Vh. We

compare the spectra obtained by means of NURBS–based IGA with both Cp−1 and C0

B–splines basis functions of degree p = 1, . . . ,5, as well as through the correspond-
ing approximations based on the spectral element method with numerical integration
and the standard finite element method. Albeit normalized, our comparison comprises
about the same number of degrees of freedom Nh for all the approximation methods,
which is obtained by suitably changing the number of mesh elements nel for each
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values of the polynomial degree p such that Nh � 1024. As we can observe, IGA us-
ing Cp−1–continuous B–splines provides by far the best approximation of the whole
spectrum, with accuracy improving by elevating the degree p of the basis functions.
Conversely, the spectral element method with numerical integration, the standard fi-
nite element method, and IGA with C0–continuous B–splines exhibit approximations
worsening in the largest part of the spectrum as the polynomial degree p increases.

11.4 Current developments and perspectives

IGA is nowadays a very active research field both in terms of applications and method-
ological developments. For the latter, we limit ourselves to mention the exploitation of
the properties of high order continuity of the B–splines and NURBS basis functions
in the framework of the Galerkin method ([CHR07, EBBH09]), which are particularly
suited for high order PDEs [BDQ15, TDQ14], PDEs involving sharp but smooth inter-
faces as phase field models [GCBH08, GHNC10, GN12, LDE+13, LH16], and prob-
lems of linear wave propagation (e.g., elastodynamics equations) for which control-
ling numerical dissipation and dispersion is crucial for accurate simulations [CHR07,
CRBH06, DJQ15, HER14, HRS08].

The “exactness" of the geometric representation guaranteed by NURBS is partic-
ularly suited for problems in computational fluid dynamics involving boundary layers
[BCZH06, HAB11], mechanical problems undergoing large deformations [BBHH11,
LEB+10], contact problems in structural analysis [LWH14], beams and shell analy-
ses [BBHH10, DS11, KBH+10, LZZ13], and in general surface and geometric PDEs
[BDQ15, BDQ16, DQ15]. Shape optimization is another notable example in which
the NURBS geometric representation is easily exploited [KSWB14, NAG10, NG13,
Qia10, WFC08]. Indeed, NURBS control point and weights provide a direct access
to control the shape of the computational domain wherein the PDEs are defined; we
refer the reader to Chapter 18 for an overview of optimization problems.

Computational efficiency and accuracy in IGA approximations are also pursued
through more efficient quadrature formulas for B–splines and NURBS basis functions
to be used in the framework of the Galerkin method [ACH+12, HCSH17, HRS10,
SHH14]. In this respect, collocation techniques for the approximation of PDEs are also
seeing a remarkable development [ABH+10, BLR12, GL16, MST17, RH15, SER+13].

Other than NURBS, more general geometric representations have been consid-
ered and are currently under development. Among these, significant efforts are dedi-
cated to use and fit geometric representations based on T–splines [SZBN03] – largely
used in the computer graphics industry – into the isogeometric concept, due to their
flexibility with respect to NURBS basis functions [BCC+10, BCS10]. Adaptive IGA
[DJS10, KVvdZvB14, SDS+12, VGJS11] is also a very active research field and in-
volves, other than hierarchical refinements, the development of hierarchical, truncated
hierarchical, and locally refined B–splines [BC13, GJS12, JKD14] as well as hierar-
chical and modified T–splines [ESLT15, SLSH12, WZLH17].



Chapter 12

Discontinuous element methods

(DG and mortar)

Up to now we have considered Galerkin methods with subspaces of continuous poly-
nomial functions, either within the finite element method (Chapter 3) or the spectral
element method (Chapter 10). This chapter deals with approximation techniques based
on subspaces of polynomials that are discontinuous between elements. We will, in par-
ticular, introduce the so-called Discontinuous Galerkin method (DG) and the mortar
method. We will carry out this for the Poisson problem first, and then generalize to
the case of diffusion and transport problems (see Chapter 13). To maintain the presen-
tation general we will consider a partition of the computational domain into disjoint
subdomains that may be either finite or spectral elements.

12.1 The discontinuous Galerkin method (DG) for the Poisson

problem

Let us consider the Poisson problem together with homogeneous Dirichlet boundary
conditions (3.13) in a domainΩ ⊂R2 divided in the union of M disjoint elementsΩm,
m = 1, . . . ,M. We wish to attain an alternative weak formulation to the usual one, that
will serve as starting point for the DG method. To simplify the discussion we assume
the exact solution to be sufficiently regular, for instance u ∈ H1

0 (Ω)∩H2(Ω), so that
all operations below make sense. Define the space

W 0 = {v ∈W : v|∂Ω = 0} ,
where

W = {v ∈ L2(Ω) : v|Ωm ∈ H1(Ωm), m = 1, . . . ,M}. (12.1)

By Green’s formula we have, for every v ∈W 0,

M

∑
m=1

(−�u,v)Ωm =
M

∑
m=1

(
(∇u,∇v)Ωm −

∫
∂Ωm

v∇u ·nm

)
, (12.2)

where nm is the outward unit normal to ∂Ωm and (·, ·)Ωm denotes the scalar product
of L2(Ωm). Calling Eδ the union of all internal edges, i.e. the interfaces separating
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Ω−

Ω+

n−

n+

e

Fig. 12.1. An “edge” e separating two neighbouring subdomains (or elements)

the subdomains (outermost edges may be neglected as v vanishes on them), we can
rearrange terms to obtain

−
M

∑
m=1

∫
∂Ωm

v∇u ·nm =− ∑
e∈Eδ

∫
e
(v+∇u+ ·n++ v−∇u− ·n−)|e , (12.3)

in which the signs “+” and “−” label the information according to the two possible
normal orientations (see, e.g., Fig. 12.1).

We will use the following notation to denote mean values and jumps on elements’
edges:

{v}= v++ v−

2
, [v] = v+n++ v−n− ,

{{∇w}}= (∇w)+ +(∇w)−

2
, [[∇w]] = (∇w)+ ·n++(∇w)− ·n− .

Notice how the above convention guarantees that the definition of the jump opera-
tor will not depend on how subdomains (elements) are numbered. A little algebraic
manipulation eventually gives

v+∇u+ ·n++ v−∇u− ·n− = 2[v] · {{∇u}}− (v+∇u− ·n++ v−∇u+ ·n−)
= 2[v] · {{∇u}}+ 2[[∇u]]{v}
− (v+∇u+ ·n++ v−∇u− ·n−)

and so
v+∇u+ ·n++ v−∇u− ·n− = [v] · {{∇u}}+[[∇u]]{v} . (12.4)

Using (12.3) and (12.4), from (12.2) we obtain that the solution to the Poisson problem
(3.13) satisfies: u ∈W 0 s.t.

M

∑
m=1

(∇u,∇v)Ωm − ∑
e∈Eδ

∫
e
([v] · {{∇u}}+[[∇u]]{v})=

M

∑
m=1

( f ,v)Ωm ∀v ∈W 0.



12.1 The discontinuous Galerkin method (DG) for the Poisson problem 295

Now we introduce the discrete space

Wδ = {vδ ∈W : vδ |Ωm ∈ Pr(Ωm),m = 1, ...,M},

Pr(Ωm) being a space of “polynomials” on Ωm. More precisely, Pr(Ωm) = Pr if Ωm

is a simplex (2D triangle or 3D tetrahedron), while Pr(Ωm) =Qr ◦Fm(Ωm) if Ωm is a
spectral element (a quadrilateral in 2D, a parallelepiped in 3D, cf. Ch. 10). Here Fm is
the map that transformsΩm into the unit cube Ω̂ = [−1,1]d(d = 2,3). At last, let W 0

δ
be the following subspace of Wδ

W 0
δ = {vδ ∈Wδ : vδ |δΩ = 0}.

Note that the term [[∇u]]{v} in (12.3) is null because if u ∈ H1
0 (Ω)∩H2(Ω) then

[[∇u]] = 0 on every edge e ∈ Eδ . This fact together with expression (12.1) motivates
the following DG approximation for problem (3.13): find uδ ∈W 0

δ satisfying

M

∑
m=1

(∇uδ ,∇vδ )Ωm − ∑
e∈Eδ

∫
e
[vδ ] · {{∇uδ}}− τ ∑

e∈Eδ

∫
e
[uδ ] · {{∇vδ}}

+ ∑
e∈Eδ

γ|e|−1
∫

e
[uδ ] · [vδ ] =

M

∑
m=1

( f ,vδ )Ωm ∀vδ ∈W 0
δ , (12.5)

where γ = γ(r) is a suitable positive constant (depending on the local polynomial
degree), |e| is the length of e ∈ Eδ and τ is a suitable fixed number. The additional
new terms τ[uδ ] · {{∇vδ}} and γ|e|−1[uδ ] · [vδ ] do not undermine strong consistency
(since [u] = 0 if u is the exact Poisson solution), beside warranting greater generality
and improved stability features.

Formulation (12.5), introduced at the end of the 70s, is called Interior Penalty
(IP) ([Whe78, Arn82]). In case τ = 1, the method preserves the symmetry and the re-
sulting formulation is known as SIPG method (Symmetric Interior Penalty Galerkin)
[Whe78, Arn82]. For τ �= 1 the bilinear form is no longer symmetric, and the special
values τ = −1 and τ = 0 respectively lead to the NIPG method (Non-symmetric In-
terior Penalty Galerkin) [RWG99] and the IIPG method (Incomplete Interior Penalty
Galerkin) [DSW04]. Whereas the former is stable for any given γ > 0, SIPG and IIPG
require, in order to reach a stable formulation, a sufficiently large penalty parameter
γ .

Several variants of formulation (12.5) have been proposed within the context of
approximations by finite elements. Here we will only briefly describe the most classi-
cal situations, and refer to the article [ABCM02] of Arnold, Brezzi, Cockburn, Marini
both for a general overview and a detailed study of stability and convergence.

A first version consists in replacing the last term on the left side of (12.5) with the
following stabilization term

∑
e∈Eδ

γ

∫
e
re([uδ ]) · re([vδ ]) . (12.6)
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Above re(·) is a suitable extension operator that, from the jump of a function [vδ ]
across e ∈ Eδ , generates a function re([vδ ]) with non-zero support on the elements
having e as edge. See [BRM+97] and [ABCM02] for full details.

A second variant (cf. [Ste98]) replaces the averages {{∇w}} in (12.5) by the aver-
ages with relaxation

{{∇w}}θ = θ∇w++(1−θ )∇w−, 0 ≤ θ ≤ 1 .

Up to this point we have imposed the homogeneous Dirichlet condition “strongly”.
In order to add the boundary constraints, say u= g on ∂Ω , in weak form (“à la Nitsche”
[Nit71]), as is more natural for DG-like approximations, we write the discrete formula-
tion (12.5) in Wδ rather than in W 0

δ , and add on the left side the following contributions
to the boundary edges e ⊆ ∂Ω

− ∑
e⊆∂Ω

∫
e
vδ∇uδ ·n− τ ∑

e⊆∂Ω

∫
e
(uδ − gδ)∇vδ ·n

+ ∑
e⊆∂Ω

γ|e|−1
∫

e
(uδ − gδ)vδ , uδ ,vδ ∈Wδ .

The positive constant γ = γ(r) is the same of (12.5), and gδ is a convenient approx-
imation of g. The first term, arising naturally from integration by parts, ensures the
method is strongly consistent, while the second term makes the formulation symmet-
ric if τ = 1 and non-symmetric if τ = −1,0. The last term penalizes the trace of the
discrete solution uδ and makes it “approach” the Dirichlet datum. Observe once again
that these terms do not affect the method’s strong consistency.

The DG formulation with boundary conditions imposed weakly thus becomes:
find uδ ∈Wδ such that

M

∑
m=1

(∇uδ ,∇vδ )Ωm−∑
e∈Eδ

∫
e
[vδ ] · {{∇uδ}}−τ ∑

e∈Eδ

∫
e
[uδ ] · {{∇vδ}}+∑

e∈Eδ

γ|e|−1
∫

e
[uδ ] · [vδ ]

− ∑
e⊆∂Ω

∫
e
vδ∇uδ ·n− τ ∑

e⊆∂Ω

∫
e
uδ∇vδ ·n+ ∑

e⊆∂Ω
γ|e|−1

∫
e
uδvδ

=
M

∑
m=1

( f ,vδ )Ωm − τ ∑
e⊆∂Ω

∫
e
gδ∇vδ ·n+ ∑

e⊆∂Ω
γ|e|−1

∫
e
gδvδ ∀vδ ∈Wδ . (12.7)

We shall refer to the latter formulation as the DG-N method (N for Nitsche). Clearly,
if the Dirichlet datum g is zero the last two terms on the right will not show up.

Concerning the accuracy of method (12.7) for discretizing the Poisson problem
(3.13) with homogeneous Dirichlet boundary conditions, let us introduce the so-called
energy norm

|||uδ |||=
(

M

∑
m=1

∫
Ωm

|∇uδ |2 + ∑
e∈Eδ

γ|e|−1
∫

e
[uδ ]

2 + ∑
e⊆∂Ω

γ|e|−1
∫

e
|uδ |2

)1/2

. (12.8)
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For formulation (12.5), where boundary conditions are imposed strongly, the last term
is missing. It can be proved that if the exact solution is sufficiently regular, the SIPG
method (τ = 1) converges with optimal convergence rate both for the L2(Ω) norm and
for (12.8), as long as the penalty parameter γ is large enough. Better said, for finite
elements of degree r one has

h|||u−uδ |||+‖u− uδ‖L2(Ω) ≤Chr+1|u|Hr+1(Ω), (12.9)

where C is an appropriate positive number that depends on r (for a proof see
[ABCM02], for example). As always, r is the polynomial degree employed on each el-
ement Ωm. For the non-symmetric methods NIPG and IIPG, as these schemes are not
strongly consistent on the adjoint problem, one cannot get optimal L2 estimates. In
many cases, nevertheless, both methods exhibit optimal rates of convergence when
the degree of the approximation is odd and grids are sufficiently regular (see e.g.
[OBB98]).

For all variants of the DG-N method we have seen one can prove that if u ∈
Hs+1(Ω), s ≥ 1, and if the polynomial degree r satisfies r ≥ s, the error can be es-
timated in energy norm (12.8) as follows

|||u− uδ ||| ≤C

(
h

r

)s

r1/2|u|Hs+1(Ω), (12.10)

where C is a suitable positive constant that does not depend on r. For the SIPG method
(τ = 1) and the IIPG method (τ = 0) estimate (12.10) holds as long as the penalty pa-
rameter γ is taken large enough. In particular, convergence in r is exponential when
the exact solution u is analytic. Let us also remark, by comparison with the known
results for spectral elements, that (12.10) is sub-optimal with respect to the approxi-
mation degree r, due to the presence of the factor r1/2. More details can be found in
[RWG99, RWG01, HSS02, PS03], for instance.

In certain special situations one can attain optimal estimates in r. For the two-
dimensional case with quadrilateral grids, for example, [GS05] provides optimal es-
timates in energy norm under the assumption that the solutions belongs locally to an
enriched Sobolev space. Different estimates, were proved in [SW10] without extra
regularity hypotheses, but under homogeneous Dirichlet boundary conditions.

We close the section by observing that sometimes formulation (12.7) is stable even
without the penalty term for jumps, i.e. choosing γ = 0 for the internal edges and for
the external ones as well. Rivière, Wheeler and Girault [RWG99] proved that the non-
symmetric version (τ = −1), known in the literature as the Baumann-Oden method
[OBB98], is stable and provides optimal estimates of the error (in energy norm) if the
approximation degree r satisfies r ≥ 2. In that case one uses a special interpolation uI

of u, called Morley interpolation, for which {{∇h(u−uI)}}= 0 on each edge. In the ar-
ticle of Brezzi and Marini [BM06] (see also [BS08]) it was proved that the Baumann-
Oden method (in its non-symmetric incarnation, with τ =−1) in two dimensions with
triangular grids is stable, provided we add to the space of linear polynomials a bubble
function for each element. The Baumann-Oden method was shown in [ABM09] to
be stable (always in 2 dimensions) when adding to linear polynomials n− 2 bubbles
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Fig. 12.2. Study of the convergence of method (12.5) (τ = 1, γ = 10r2). Left: errors in energy
norm (12.8) and L2(Ω) norm (r = 1, structured triangular grids). Right: errors in energy norm
from biquadratic and bi-cubic elements on a sequence of Cartesian grids

for each element, for decompositions involving n-gons (polygons with n edges). At
last, we mention that Burman et al. [BEMS07] proved the 1-dimensional symmetric
variant (τ = 1) need not be stabilized if r ≥ 2.

To learn more on DG-type methods the reader should consult, for example, [Riv08],
[HW08], [ABCM02], [Woh01].

We present now some numerical results obtained by the discontinuous Galerkin
method the homogeneous Dirichlet problem (3.13) on Ω = (0,1)2, where the forcing
term f is such that the exact solution reads u(x1,x2) = (x1 − x2

1)exp(3x1)sin(2πx2).
We discussed method (12.5) with τ = 1 and penalty constant γ = 10r2. This choice
makes sure that the SIPG method is well posed. Then the {Ωm} are nothing but the
finite elements (triangles) and r is the polynomial degree on each element. In the en-
suing numerical experiments Eδ is thus the union of all inner edges in the grid. Errors
were computed in L2(Ω) norm and in the energy norm (12.8). Fig. 12.2 (left) shows
the (normalized) errors computed on a sequence of triangular grids made by linear
elements (r = 1). As predicted by (12.9), the error tends to zero linearly in energy
norm and quadratically in L2(Ω). In Fig. 12.2 (right) we can read the (normalized)
errors computed on a sequence of Cartesian grids with biquadratic elements (r = 2)
and bi-cubic ones (r = 3). The approximation error in norm (12.8) tends to zero when
h → 0, and the convergence order equals r.

In the framework of spectral elements we can attain a DG-SEM formulation start-
ing from a partition of Ω in quadrilaterals, using formulation (12.7), and replacing
the volume integrals (·, ·)Ωm with local GLL quadrature formulae; similarly for the
integrals extended over the edges of spectral elements.
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12.2 The mortar method

An alternative to the DG technique is based on the so-called mortar method, originat-
ing in the framework of spectral element methods (SEM).

Let us consider again the Poisson problem (3.13) in a domainΩ ⊂R2 with homo-
geneous Dirichlet boundary conditions.
Define on Ω a partition into pairwise-disjoint non-empty open subregions Ωi ⊂ Ω ,
i = 1, . . . ,M such that Ω = ∪M

i=1Ω i. Then let Γi j = Γji = ∂Ωi ∩ ∂Ω j be the interface
betweenΩi andΩ j, 1 ≤ i �= j ≤ M, and defineΓ =∪i jΓi j to be their union (Fig. 12.3).

Solving (3.13) by a mortar method means finding a discrete solution uδ that, inside
every subregionΩi, is continuous and polynomial (globally or locally), and that fulfills
a continuity condition on the interface Γ , called weak or integral: namely, that for
every i, j with 1 ≤ i �= j ≤ M∫

Γi j

(uδ |Ωi − uδ |Ω j )ψ = 0 ∀ψ ∈ Λ̃ , (12.11)

where Λ̃ is a suitable finite-dimensional space that depends on the discretization cho-
sen on the Ωi. To (12.11) are then added strong continuity constraints at certain points
lying on the interface Γ .

Note that equations (12.11) do not force the solution’s jump to vanish on the in-
terface, but they prescribe that its L2 projection on Λ̃ be zero. Consequently, in con-
trast to what happens for an approximation of Galerkin type (see Chaps. 4 and 10),
uδ �∈ H1

0 (Ω) in general, but rather uδ ∈W (see (12.1)).
To simplify the discussion, let us consider a partition of Ω in M = 2 subregions

Ω1, Ω2 and call Γ the interface, so that Γ = Γ12 = Γ21. In Ωi, i = 1,2, we define a
further partition Ti =∪kTi,k in triangles or quadrilaterals Ti,k as explained in Sect. 6.2.

If the elements Ti,k are quadrilaterals we also require each Ti,k to be the image
of the reference element T̂ = (−1,1)2 under a smooth bijection ϕi,k, see Sect. 10.1.
Given polynomial interpolation degrees Ni ≥ 1 in each Ωi, define

VNi(Ti,k) = {v ∈C0(Ti,k) : v◦ϕi,k ∈QNi(T̂ )}

where QN(T̂ ) is the space of degree N polynomials in every variable in the reference
element T̂ (cf. definition (10.2)).

Ω1Ω1

Ω2Ω2

Ω3Ω3

Ω4

Ω4
Ω5

Ω6Ω7
Γ34

Γ36

Fig. 12.3. Two possible partitions of the domain Ω , with only one interface Γi j drawn
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For a triangular partition, instead, we consider the finite-element spaces of Sect. 4.5,
and for i = 1,2 and any Ti,k ∈ Ti set

Xδi
(Ti,k) =

{
Pri(Ti,k) for finite elements of degree ri on triangles,
VNi(Ti,k) for spectral elements of degree Ni on quadrilaterals.

(12.12)

The parameter δi implicitly depends on the degree (ri or Ni) and on the maximum
diameter h of the elements of Ti.
The finite-dimensional spaces induced by the local discretizations in Ωi, i = 1,2, are
then

Vi,δi
= {vδ ∈C0(Ω i) : vδ |Ti,k ∈ Xδi

(Ti,k), ∀Ti,k ∈ Ti}, (12.13)

and the discrete solution uδ must be seeked in

Yδ = {vδ ∈ L2(Ω) : v(i)δ = vδ |Ωi
∈Vi,δi

, for i = 1,2}.

As the space Yδ does not retain the information on how to match the functions v(i)
δ

on the interface, we must introduce a subspace Vδ ⊂Yδ of functions satisfying (12.11)
and search for the mortar solution uδ inside Vδ .

Let us observe first that the choice of mesh and polynomial degree in one subdo-
main is completely independent of the choice in the other subdomain, as Figure 12.4
explains.
On the left we have a spectral discretization in either Ωi, where the edges of the ele-
ments of Ω 1 ∩Γ and Ω 2 ∩Γ coincide but the degrees N1, N2 differ (hence interpolat-
ing nodes are different from quadrature nodes, too). In such cases we conventionally
speak of polynomial nonconformity.
The middle Figure 12.4 shows a discretization (by spectral elements in both spaces
Ωi) with the same polynomial degree in every spectral element ofΩ1 andΩ2, but now
the edges of spectral elements in Ω 1 ∩Γ and Ω 2 ∩Γ do not coincide. We are then in
presence of geometrical nonconformity.
At last, in Figure 12.4, right, we have a discretization by spectral elements on Ω1 and
triangular finite elements in Ω2.

Indicate with Mi the set of nodes induced by the discretization chosen in Ωi. In
the spectral case these are images on every Ti,k of the Gauss-Legendre-Lobatto points
defined on T̂ (see Sect. 10.2.3). The same discretizations induce two distinct sets of
nodes (not necessarily disjoint) on Γ which we indicate by M Γ

i = Mi ∩Γ , and two
sets U Γ

i of degrees of freedom on Γ , whose elements are the values of the functions

u(i)δ at the nodes of M Γ
i .

Of the two sets of degrees of freedom on Γ , one, called mortar or master set, is
picked to play an active role in the problem’s formulation, meaning that its degrees
of freedom are primal unknowns for the problem. The other set, called non-mortar
or slave, characterizes the space Λ̃ onto which the continuity condition projects. The
degrees of freedom of the sets U Γ

1 and U Γ
2 will depend on each other via a linear

relationship dictated by the integral conditions (12.11).

Label with m,s ∈ {1,2} the master set U Γ
m and the slave set U Γ

s respectively, and
let Nmaster, Nslave be their cardinalities. The subscripts m and s pass on to subdomains,
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Ω1

Ω2

Γ

Ω1

Ω2

Γ

Ω1

Ω2

Γ

Fig. 12.4. Left: discretization by quadrilateral spectral elements with nonconformity of poly-
nomial type; middle: geometric nonconformity by spectral elements; right: discretization by
spectral elements and finite elements

polynomial degrees and all other quantities in the picture, so for instance we will have
Ωm, Nm and so on for the master domain, Ωs, Ns for the slave domain. In our study
U Γ

1 plays the master role, while U Γ
2 that of the slave.

The choice of finite or spectral elements for the discretization of the problem re-
quires separate arguments from now on. So let us suppose to only have either spectral
elements or finite elements in both Ω1, Ω2, for the time being; we will see in Section
12.8 how to treat the mixed case.

12.2.1 Characterization of the space of constraints by spectral elements

Denote by E Γ
s the collection of edges of spectral elements in the slave domainΩs that

lie on Γ , and set

Λ̃δ = span{ψ ∈ L2(Γ ) : ψ |e ∈ PNs−2 ∀e ∈ E
Γ
s } (12.14)

and

Pδ = {p ∈ M
Γ
s : p is the endpoint of an edge e ∈ E

Γ
s }. (12.15)

For the definition of Λ̃δ to make any sense we have to take Ns ≥ 2. (The case Ns = 1
can be reduced to the finite element formulation of type Q1.)

We want to characterize the space Λ̃δ in terms of a basis whose L2(Γ )-functions
have support on one edge only e ∈ E Γ

s , and that on this edge coincide with Lagrange’s
characteristic polynomials of degree Ns − 2 associated to the Ns − 1 Gauss-Legendre
quadrature nodes on e (see [CHQZ06, formula (2.3.10)]). Figure 12.5, left, shows a
function ψl of the basis of Λ̃δ supported on the second edge of E Γ

s and associated to
the first Gauss-Legendre node in e.

It is straightforward to see that the dimension of Λ̃δ equals (Ns − 1) times the
cardinality of E Γs , and that dim(Λ̃δ )+dim(Pδ ) = Nslave. In the example of Fig. 12.6
we fixed Ns = 4, so dim(Pδ ) = 3, dim(Λ̃δ ) = 6 and Nslave = 9.
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12.2.2 Characterization of the space of constraints by finite elements

Now we denote by E Γ
s the set of edges of Ωs that lie on Γ , as in Fig. 12.7, left, and by

E Γ
s,δ the edges of the triangles Ts,k of the slave set on Γ (Figure 12.7, right).

The set Pδ is defined as in (12.15), whilst the projection space of the solution’s jump
is

Λ̃δ = span
{

ψ ∈ L2(Γ ) : ψ |e ∈ Prs(e) ∀e ∈ E Γ
s,δ such that e∩Pδ = /0,

ψ |e ∈ Prs−1(e) ∀e ∈ E Γ
s,δ such that e∩Pδ �= /0

}
,

(12.16)

where Pr(e) are degree r polynomials in one variable on the interval e.
Figure 12.7, right, depicts a generic function of the space Λ̃δ over a rectification

of the interface Γ .
To characterize a basis for (12.16) in presence of finite elements P1, we indicate

by xe
j ( j = 1, . . . ,Ns + 1) the nodes belonging to M Γ

s ∩ e, where e is an edge of E Γ
s

(see Figure 12.7, left).

ψl

e = 2p1 p2 p3

ψl

e = 2p1 p2 p3

Fig. 12.5. Left: a function in Λ̃δ for a spectral element discretization; right: functions in Λ̃δ for
a finite element discretization

Ωm

Ωs

Γ

p1

p2

p3

Fig. 12.6. The black dots on Γ represent the nodes of the slave set M Γ
s

Fig. 12.7. Left: a decomposition of Ω with finite element discretization; right: a function of the
space (12.16) on a rectification of the interface Γ

edge

edge
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The basis functions of Λ̃δ are functions in L2(Γ ) that have one edge e ∈ E Γ
s as

support, and are associated to the inner nodes of e; for j = 3, . . . ,Ns −1 they coincide
with the piecewise-linear functions of the Lagrangian basis associated to nodes xe

j,
while for j = 2 (resp. j = Ns) the function ψ j equals 1 on the segment [xe

1,x
e
2] (resp.

[xe
Ne
,xe

Ne+1]) and on the rest of e it coincides with the piecewise-linear characteristic
Lagrange function for node xe

2 (resp. xe
Ns

).
Figure 12.5, right, shows basis functions ψl of the space (12.16), with support on the
second edge of E Γ

s .

12.3 Mortar formulation for the Poisson problem

At this juncture we can characterize the space Vδ in which to look for the mortar solu-
tion to problem (3.13). We will say a function vδ ∈Yδ satisfies the mortar conditions if:⎧⎨⎩

∫
Γ
(v(m)
δ − v(s)δ )ψ = 0 ∀ψ ∈ Λ̃δ ,

v(m)
δ (p) = v(s)δ (p) ∀p ∈ Pδ

(12.17)

and we also set

Vδ = {vδ ∈ Yδ : vδ satisfies conditions (12.17) and vδ = 0 on ∂Ω} . (12.18)

The mortar formulation of (3.13) is thus

find uδ ∈Vδ :
2

∑
i=1

ai(u
(i)
δ
,v(i)
δ
) =

2

∑
i=1

∫
Ωi

f v(i)
δ

∀vδ ∈Vδ , (12.19)

where ai(u
(i)
δ ,v(i)δ ) is the restriction toΩi of the bilinear form a(uδ ,vδ ), or possibly of a

discretization of it by quadrature formulae of Gaussian type whenever a Galerkin-type
formulation with numerical integration is used (G-NI, see Chapter 10).

The mortar solution therefore satisfies a weak continuity condition on each slave
edge (e ∈ E Γ

s ) of the interface Γ , and a pointwise matching condition at the endpoints
(p ∈ Pδ ) of slave edges. In [Bel99, BM94] an alternative mortar formulation was pro-
posed where conditions (12.17)2 are absent. This formulation is not very favourable,
computationally-speaking, for domains in R3.

When dealing with a spectral approximation, if the partitions in Ωm and Ωs are
geometrically conforming on Γ and the spectral interpolation degree Nm on the mas-
ter domain is not larger than the slave degree Ns, then conditions (12.17) force strong
continuity on all of Γ . Only if Nm > Ns is the solution uδ discontinuous on the inter-
face. The literature labels as mortar or nonconforming only this latter approximation,
in which the discrete solution uδ does not belong to the same space as the continuous
solution.

For finite element approximations, even when the interpolation degrees inΩm and
Ωs are equal, we have nonconformity each time the sets M Γ

m and M Γ
s differ.
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Whenever we adopt the spectral element discretization it can be proved ([BMP94])
that if the solution u of the continuous problem (3.13) and the function f are regular
enough on each subdomain Ωi, i.e. u|Ωi

∈ Hσi(Ωi) with σi >
3
2 and f|Ωi

∈ Hρi(Ωi)
with ρi > 1, i = 1, . . . ,M, then

|||u−uδ ||| ≤C

(
M

∑
i=1

N1−σi
i ‖u|Ωi

‖Hσi (Ωi) +N−ρi
i ‖ f|Ωi

‖Hρi (Ωi)

)
, (12.20)

where |||v||| represents the so-called H1 broken norm, meaning

|||v|||=
(

M

∑
i=1

‖v|Ωi
‖2

H1(Ωi)

)1/2

.

For finite elements, calling hi the maximum diameter of the triangles Ti,k, one can
prove that if u|Ωi

∈ Hσi(Ωi) with σi >
3
2 , then

|||u− uδ ||| ≤C
M

∑
i=1

hmin{σi,ri+1}−1
i ‖u|Ωi

‖Hσi (Ωi). (12.21)

12.4 Choosing basis functions

To solve problem (12.19), let us discuss how one can define the basis functions vδ ∈
Vδ . Denote with

• ϕ
(m)
k′ , k′ = 1, . . . ,NΩm , Lagrange’s characteristic functions in Ωm associated to the

nodes of Mm \M Γ
m ; these belong to the space Vm,δm and vanish identically on Γ ;

• ϕ
(s)
k′′ , k′′ = 1, . . . ,NΩs , Lagrange’s characteristic functions in Ωs associated to the

nodes of Ms \M Γ
s ; they belong to Vs,δs and are null on Γ ;

• μ
(m)
k , k = 1, . . . ,Nmaster , Lagrange’s characteristic functions in Ωm associated to

the nodes of M Γ
m ; they belong to Vm,δm and vanish at the nodes of Mm \M Γ

m ;

• μ
(s)
j , j = 1, . . . ,Nslave, Lagrange’s characteristic functions in Ωs associated to the

nodes of M Γ
s ; these belong to Vs,δs and are zero on the nodes of Ms \M Γ

s ;
• μk, k = 1, . . . ,Nmaster, the basis functions associated to active (or master) nodes of

Γ and thus defined

μk =

⎧⎨⎩ μ
(m)
k ∈Vm,δm such that μ (m)

k (x) = 0 ∀x ∈ Mm \M Γ
m

μ̃
(s)
k ∈Vs,δs such that μ̃ (s)

k (x) = 0 ∀x ∈ Ms \M Γ
s ,

(12.22)

where μ̃ (s)
k are Nmaster functions in Vs,δs that we can write as linear combinations

of the μ (s)
j via a rectangular matrix Ξ = [ξ jk]

μ̃
(s)
k =

Nslave

∑
j=1

ξ jkμ
(s)
j , for k = 1, . . . ,Nmaster. (12.23)
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Fig. 12.8. Restriction to the interface of three functions μk for a spectral element approximation.
In grey the trace associated to master degrees of freedom, in black the slave trace

It is easy to check that

Vδ = span{ϕ(m)
k′ , ϕ

(s)
k′′ , μk}. (12.24)

Figure 12.8 shows the restrictions to Γ of three different functions μk for a spectral
element discretization. On the left we have the function μk associated to a node in M Γ

m
but not in M Γ

s for a geometrically nonconforming partition; on the right the same
but for a conforming partition. In the middle the function μk associated to a node in
M Γ

m ∩M Γ
s .

While we can eliminate the functions ϕ(m)
k′ and ϕ(s)

k′′ associated to the nodes of

∂Ω by using the Dirichlet conditions, we keep all μ (m)
k , μ (s)

j and μk, because the

functions μ̃ (s)
k also depend on the μ (s)

j associated to the nodes of ∂Ω ∩ ∂Γ if the
Dirichlet conditions are non-homogeneous.

As the functions ϕ(m)
k′ and ϕ(s)

k′′ vanish on Γ , imposing vδ ∈ Vδ , i.e. the mortar
conditions (12.17), is the same as asking that for k = 1, . . . ,Nmaster⎧⎨⎩

∫
Γ
(μ

(m)
k − μ̃ (s)

k )ψ� = 0 ∀ψ� ∈ Λ̃δ
μ
(m)
k (p) = μ̃

(s)
k (p) ∀p ∈ Pδ .

(12.25)

Equivalently, by (12.23),⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Nslave

∑
j=1

ξ jk

∫
Γ
μ
(s)
j ψ� =

∫
Γ
μ
(m)
k ψ� ∀ψ� ∈ Λ̃δ

Nslave

∑
j=1

ξ jkμ
(s)
j (p) = μ

(m)
k (p) ∀p ∈ Pδ ,

(12.26)

still for k = 1, . . . ,Nmaster.
System (12.26) may be rewritten in the matrix form

Nslave

∑
j=1

ξ jkP� j =Φ�k (12.27)

where P is a square matrix of dimension Nslave, and Φ a rectangular matrix with
Nslave rows and Nmaster columns whose entries arise from the relations in (12.26).
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P is non-singular, because the pair PN−2 − PN satisfies an inf-sup condition in
case of spectral element approximation (see [BM92]); and similarly for finite elements
([Bel99]), where we have an inf-sup condition on Λ̃δ −P1 .

Therefore the matrix Ξ can be found by solving the linear system

PΞ =Φ. (12.28)

The computation of the entries P� j =
∫
Γ μ

(s)
j ψ� andΦ�k =

∫
Γ μ

(m)
k ψ� using suitably

accurate quadrature formulae is crucial in order to ensure optimal error estimates (see
(12.20) and (12.21)).

12.5 Choosing quadrature formulae for spectral elements

The entries P� j depend only on the discretization in the slave domain, so we may
rewrite

P� j =

∫
Γ
μ
(s)
j ψ� = ∑

e∈E Γs

∫
e
μ
(s)
j ψ�

and use the GLL quadrature formulae with Ns + 1 nodes on each edge e ∈ E Γ
s . These

formulae are exact to degree 2Ns − 1, and since μ (s)
j |e ∈ PNs and ψ�|e ∈ PNs−2, they

compute the terms P� j exactly.
To compute the elements Φ�k we need to specify whether there is geometric con-

formity on Γ or not. If yes, the set E Γ
m (the edges of the elements in Ωm lying on Γ )

coincides with E Γ
s and we can write

Φ�k =

∫
Γ
μ
(m)
k ψ� = ∑

e∈E Γs

∫
e
μ
(m)
k ψ�.

Since μ (m)
k |e ∈ PNm and ψ�|e ∈ PNs−2 on each edge e ∈ E Γ

s , to compute exactly the
integrals on e ∈ E Γ

s we can use the Gauss-Legendre quadrature formulae on Nq + 1
nodes with Nq = max{Ns,Nm}, because these formulae are exact to degree 2Nq +1.

In a geometrically nonconforming setting, on the other hand, E Γ
s and E Γ

m do not
coincide and composite integration over the edges of E Γ

s (or E Γ
m ) always induces

a big quadrature error. Suppose, in fact, we choose a partition associated to E Γm to

compute the integrals Φ�k. For each e ∈ E Γ
m we have μ (m)

k |e ∈ PNm , but not necessarily
ψ�|e ∈ PNs−2; quite the opposite, actually, for ψ� might be discontinuous on e ∈ E Γ

m
(Figure 12.9). A similar thing happens if we take the partition of E Γ

s instead of that of
E Γ

m .
So let us build a new partition E Γ

f , that will be finer than either E Γ
m and E Γ

s and

whose every edge ẽ ∈ E Γ
f is contained in one edge only of E Γ

m and one only of E Γ
s

(Figure 12.9). Then we can write

Φ�k =
∫
Γ
μ
(m)
k ψ� = ∑

ẽ∈E Γf

∫
ẽ
μ
(m)
k ψ�,



12.6 Choosing quadrature formulae for finite elements 307

E Γs

E Γm

E Γf

ψ�

Fig. 12.9. The partitions E Γs , E Γm , E Γf on Γ and a function ψ�|e in case of spectral element
approximation with Ns = 3

and since μ (m)
k |ẽ ∈ PNm and ψ�|ẽ ∈ PNs−2 on each ẽ ∈ E Γ

f , we can use on the edges ẽ
a Gauss-Legendre quadrature formula (see [CHQZ06] over Nq + 1 nodes with Nq =
max{Ns,Nm}, and so compute the Φ�k exactly.

12.6 Choosing quadrature formulae for finite elements

Let us consider the case of finite elements P1, and recall that E Γ
s denotes the set

of edges of Γ , while E Γ
s,δ is the set of edges of the triangles Ts,k ∈ Ts lying on Γ

(Figure 12.7).
The elements P� j, depending only on the discretization of the slave domain, are

now
P� j =

∫
Γ
μ
(s)
j ψ� = ∑

e∈E Γs,δ

∫
e
μ
(s)
j ψ�,

and as on each edge e ∈ E Γ
s,δ the product μ (s)

j ψ� is polynomial of degree ≤ 2, we can

integrate exactly on edges e ∈ E Γ
s,δ using Simpson’s formula (see, e.g., [QSS07]).

To compute the elementsΦ�k we proceed in analogy to what we did in the spectral
case without geometric conformity on Γ .

Build a partition E Γ
f finer than E Γ

m and E Γ
s,δ , such that each side ẽ ∈ E Γf lies only

on one edge of E Γ
m and one edge of E Γ

s,δ , with the result that

Φ�k =

∫
Γ
μ
(m)
k ψ� = ∑

ẽ∈E Γf

∫
ẽ
μ
(m)
k ψ�.

Both μ (m)
k |ẽ and ψ�|ẽ have degree not exceeding 1 on each ẽ ∈ E Γ

f , and we can
integrate exactly on each edge ẽ via Simpson’s formula.

When finite elements of higher degree appear, the procedure is similar, with the
proviso of replacing Simpson’s formula with a more accurate one, like a Gauss-Legen-
dre formula.

The case of quadrilateral finite elements of type Q1 is treated in the same manner
of finite elements P1, because the traces on Γ of Lagrangian basis functions Q1 and
P1 coincide, and the space Λ̃δ is defined alike for both elements.
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12.7 Solving the linear system of the mortar method

The coefficients ξi j found by solving system (12.28) ensure that the functions μk of
(12.22)–(12.23) satisfy the constraints of the space Vδ , and once the master degrees of

freedom λ
(m)
k ∈ Um are known it is possible to compute the slave degrees of freedom

λ
(s)
j ∈ Us using

λ(s) = Ξλ(m) (12.29)

where λ(s) = [λ
(s)
j ]

Nslave
j=1 and λ(m) = [λ

(m)
k ]Nmaster

k=1 .
When the discretization is conforming on Γ , the matrix Ξ coincides with the iden-

tity matrix of dimension Nmaster = Nslave.
By (12.24) every function in Vδ can be written

vδ (x) =
N1

∑
k′=1

u(m)
k′ ϕ

(m)
k′ (x)+

N2

∑
k′′=1

u(s)k′′ ϕ
(s)
k′′ (x)+

Nmaster

∑
k=1

λ
(m)
k μk(x).

Now varying vδ ∈ span{ϕ(m)
k′ , ϕ

(s)
k′′ , μk} and defining vectors u(m) = [u(m)

k′ ]T , u(s) =

[u(s)k′′ ]
T , the mortar system (12.19) reads

⎡⎢⎢⎣
Amm 0 Am,Γm

0 Ass As,ΓsΞ

AΓm,m ΞT AΓs,s AΓm,Γm +ΞT AΓs,ΓsΞ

⎤⎥⎥⎦
⎡⎢⎢⎣

u(m)

u(s)

λ(m)

⎤⎥⎥⎦=

⎡⎢⎢⎣
fm

fs

fΓm +ΞT fΓs

⎤⎥⎥⎦ . (12.30)

Above, for i ∈ {m,s}, we introduced the matrices (Aii) jk = ai(ϕ
(i)
k ,ϕ

(i)
j ), (Ai,Γi) jk =

ai(μ
(i)
k ,ϕ

(i)
j ), (AΓi ,i)k j = ai(ϕ

(i)
j ,μ

(i)
k ), (AΓi,Γi)k� = ai(μ

(i)
� ,μ

(i)
k ) and the vectors (fi) j =∫

Ωi
fϕ(i)

j , (fΓi)� =
∫
Ωi

fμ (i)
� for the basis functions associated to the nodes of Ωi not on

the boundary ∂Ω .
The matrix Ξ depends solely on the chosen discretization and is built once the

discretization’s parameters have been fixed.
System (12.30) can be solved by one of the direct of iterative methods seen in

Chapter 7. Instead of solving the overall system (12.30), one can solve its Schur com-
plement for the vector λ(m), which consists in eliminating the unknowns u(m), u(s)

from the system (see Section 19.3.1 for a thorough description). Let us define the
following matrices (called local Schur complements)

Σi = AΓi ,Γi −AΓi,iA
−1
ii Ai,Γi , for i = m,s, (12.31)

and set

Σ = Σm +ΞTΣsΞ , χ = (fΓm −A−1
mmfm)+Ξ

T (fΓs −A−1
ss fs),
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Now we follow the recipe:

• compute master degrees of freedom on Γ by solving

Σλ(m) = χ; (12.32)

• determine slave degrees of freedom on Γ using the linear relationship (12.29);
• solve problems Aiiu

(i) = fi−Ai,Γiλ
(i), i = 1,2, independently. This is equivalent to

solving two Dirichlet problems with prescribed trace on Γ .

Equation (12.32) is the discrete counterpart to the Steklov-Poincaré equation
(19.26) (see Chap. 19) that expresses the continuity of fluxes through the interface,
rather than strong continuity if the discretization on Γ is conforming, or weak conti-
nuity if the formulation on Γ is of mortar type.

System (12.32) is typically solved by iterative methods (such as the Conjugate
Gradient, Bi-CGStab or GMRES), since local Schur complements Σi are not assem-
bled explicitly due to the presence of the matrices A−1

ii .
Various preconditioners have been proposed for the algebraic system resulting from

the mortar formulation; for example in [AMW99] a preconditioner for (12.32) is based
on the decomposition of the space of mortar traces in the direct sum of subspaces as-
sociated to the traces of the interfaces (in case of many subdomains) and on a coarse
space that allows to reduce the lower frequences of the error. At present, as there are
only two subdomains and one interface, we have preconditioned system (12.32) with
the matrix Σm defined in (12.31). For a spectral element discretization it turns out to
be optimal, in the sense that the number of iterations required by the iterative method
to solve (12.32) up to a given tolerance is independent of the degrees Ni (i = m,s) on
the master and slave domains (Figure 12.13). For finite element approximations the
preconditioner Σm lowers the number of iterations needed for the method to converge,
but now this number does depend on the discretization parameter h, as one can see
from the results of Figure 12.14.

12.8 The mortar method for combined finite and spectral elements

Until this point we have looked at situations where the spaces Xi,δi
(i =m,s) of (12.12)

are of the same kind on both domainsΩm, Ωs, that is to say both of spectral type or of
finite element type. Now we consider the case when we choose Xm,δm of finite element
type while Xs,δs of spectral element type, or the other way around.

First of all, notice that the spaces Vi,δi
, i = m,s, are naturally defined by the Xi,δi

.

The definition of the space of constraints Λ̃δ is strictly related to the discretization
adopted on the slave space, so Λ̃δ will be defined as in (12.14) if the discretization in
Ωs is spectral, or as in (12.16) with finite elements. The corresponding basis functions
ψl will abide by the definitions of Sections 12.2.1 or 12.2.2 respectvely.

Now we need to accurately compute the integrals appearing in (12.26) that define
the entries of the matrices P and Φ .

Computing the P� j is only a matter of the discretization chosen on the slave do-
main, so it is carried out as explained in Section 12.5 (for spectral elements in Ωs)
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μ
(m)
k μ

(s)
j ψl

Fig. 12.10. The restrictions to Γ of μ(m)
k , μ(s)j and the functions ψl in the spectral master / slave

finite elements case

μ
(m)
k μ

(s)
j

ψl

Fig. 12.11. The restrictions to Γ of μ(m)
k , μ(s)j and the functions ψl in the master finite elements

/ spectral slave case

or Section 12.6 (for finite elements). Computing the Φ�k requires more care, for it in-

volves both discretizations in Ωs (via the functions ψl) and in Ωm (via the μ (m)
k ). We

will keep the two situations separate and discuss only finite elements of type P1.
Case 1: spectral master / slave finite elements.

The restrictions of the functions μ (m)
k to the edges e of E Γ

m are polynomials of degree
Nm, while the restrictions of the ψl to the edges of E Γ

s,δ are polynomials of degree 1

at most (Figure 12.10). Let us produce a finer partition E Γ
f than either E Γ

m and E Γs,δ so

that on every ẽ ∈ E Γ
f the restrictions of μ (m)

k , ψl are polynomials. The degree of the

product μ (m)
k ψl is at most Nm +1, and to compute each integral

∫
ẽ μ

(m)
k ψl exactly we

can use Gauss-Legendre quadrature formulae on Nq + 1 quadrature nodes in ẽ, with
Nq = Nm/2 if Nm is even and Nq = (Nm +1)/2 if Nm is odd.

Case 2: master finite elements / spectral slave.

The restrictions of the μ (m)
k to the edges e of E Γ

m,δ (the set of all edges of the triangles
Tm,k onΓ ) are polynomials of degree one at most, while the restrictions of the ψl to the
edges of E Γ

s are polynomials of degree Ns −2 (Figure 12.11). We generate a partition

E Γ
f that is finer than E Γ

m,δ and than E Γ
s , so that on every ẽ ∈ E Γ

f the restrictions of μ (m)
k

and ψl are polynomial. The degree of the product μ (m)
k ψl is at most Ns + 1, and to

compute each
∫

ẽ μ
(m)
k ψl exactly we may employ Gauss-Legendre quadrature formulae

with Nq +1 quadrature nodes in ẽ, where Nq = Ns/2 if Ns is even and Nq = (Ns +1)/2
if odd.

Once P and Φ have been computed, we use (12.28) to compute Ξ and then solve
the linear system (12.30) (or, equivalently, (12.32), as described in Section 12.7).

Concerning the analysis of the approximation error we have optimal convergence
([BMP94]), a result that generalizes estimates (12.20) and (12.21). Among the do-
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mains Ωi (i = 1, . . . ,M) we distinguish those with spectral discretization Ω es
i , i =

1, . . . ,Mes, from those with finite element discretizationΩ e f
i , i = 1, . . . ,Me f .

If the solution u to the continuous problem (3.13) and the function f are regular
enough on each subdomain Ωi, i.e. u|Ωi

∈ Hσi(Ωi) with σi >
3
2 and f|Ω es

i
∈ Hρi(Ω es

i )
with ρi > 1 for all i = 1, . . . ,Mes, then

|||u−uδ ||| ≤C
( Mes

∑
i=1

N1−σi
i ‖u|Ωi

‖Hσi (Ω es
i ) +N−ρi

i ‖ f|Ωi
‖Hρi (Ω es

i )

+
Me f

∑
i=1

hmin{σi,ri+1}−1
i ‖u|Ωi

‖
Hσi (Ω

e f
i )

)
.

(12.33)

12.9 Generalization of the mortar method to multi-domain

decompositions

Suppose we decompose the domain Ω in more than two subdomains. The previous
sections’ study of one interface must be repeated for every single interface of the
decomposition. Hence for every interface Γi j we have to choose which between Ωi

and Ω j is the master and which the slave, and then we must impose system (12.25)

on Γi j. So for every interface Γi j there is a “local” constraint space Λ̃δ that depends on
the slave domain chosen on Γi j, and the overall, global space of constraints will be the
Cartesian product of the local ones. At the vertices of the subdomainsΩi lying on the
closure of Γ one imposes a continuity condition, in analogy to (12.25)2. Observe that
a domain might be master for one interface and slave for another one, as in Figure
12.3, right:Ω3 could for example be master for Γ36 and slave for Γ35 and Γ32.

The problems arising from a complicated decomposition crop up concretely in the
construction of the matrices P andΦ , in the procedure for solving efficiently PΞ =Φ ,
and in the choice of a good preconditioner for the final algebraic system. The mortar
formulation should therefore be limited to the case of a small number of interfaces.

12.10 Numerical results for the mortar method

Consider the Poisson problem{ −Δu = f in Ω = (0,2)2

u = g on ∂Ω ,
(12.34)

where f and g are such that the exact solution reads u(x,y) = sin(πxy)+1. Subdivide
Ω in two subdomains Ω1 = (0,1)× (0,2) and Ω2 = (1,2)× (0,2), on both of which
we introduce a further uniform partition into rectangles, and then discretize by spectral
elements.

Figure 12.12 displays the errors in broken norm between the mortar solution and
the exact one, once Ω1 has been appointed master. On the left the slave’s degree Ns =
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Fig. 12.12. Errors in broken norm for the solution to problem (12.34). Ωs = 2 × 2 spectral
elements. On the left the degree Ns = 14 on the slave domain Ωs is fixed, on the right the degree
Nm = 14 on the master domain Ωm is fixed

N2 = 14 is fixed, and the master’s degree Nm = N1 varies, whilst on the right N1 = 14
is fixed in the master domain and the slave degree varies. The two curves refer to
different partitions on the subdomains: the first one is geometrically conforming with
2× 2 spectral elements in each Ωi, the second has 2 × 3 spectral elements in Ωm

and 2× 2 in Ωs. In both cases the error converges exponentially until the error in the
domain with fixed spectral degree prevails.

Figure 12.13 gives the number of iterations the preconditioned Bi-CGStab method
needs in order to solve system (12.32), using Σm as preconditioner and with fixed
tolerance ε = 10−12 in the stopping test. Note that for a conforming discretization,
convergence is reached after one iteration, while in the nonconforming setting more
iterations are necessary, although their number is independent of the polynomial de-
grees Nm and Ns.

Figure 12.14 shows the numerical results for an approximation of problem (12.34)
by finite elements P1, both in the master domain Ω1 and in the slave domain Ω2. The
functions f , g and the subdomains are as in the previous case. In both Ωi we assumed
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Fig. 12.13. Iterations of preconditioned Bi-CGstab to solve problem (12.34). Ωm = 2×2 spec-
tral elements. The degree is fixed on the slave domain Ωs on the left, on the master domain Ωm

on the right
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Fig. 12.14. Absolute errors in norm H1 and in broken norm for the mortar approximation spec-
tral master /slave finite elements

uniform triangulations made of 2ni × 2ni triangles, with nm �= ns: precisely, nm = 2k
and ns = 3(k+2) for k = 5,10,20,40.

In Figure 12.14 one can read the absolute errors in norm H1(Ωi) and the broken-
norm error between the exact solution and the mortar solution, as the mesh size hi

varies: they decrease linearly with respect to hi, in agreement with estimate (12.21).
The number of iterations required by the preconditioned Bi-CGStab method, with pre-
conditioner Σm and with given tolerance ε = 10−12 in the stopping test, is independent
of hi, and turns out to be ≤ 6.

In Figure 12.15 we have the absolute errors in norm H1(Ωi) and the error in bro-
ken norm between exact and mortar solutions, as the mesh size hs varies inΩs, relative
to the approximation of problem (12.34) with spectral elements on the master domain
and finite elements (P1 or Q2) on the slave domain. The functions f , g and the subdo-
mains are defined as in the previous cases.
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Fig. 12.15. Absolute errors in norm H1 and broken norm for the mortar approximation spectral
master /slave finite elements. On the left Q6 −P1, on the right Q8 −Q2. In both cases the error
line in broken norm overlaps and practically hides the curve in norm H1(Ωs)
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Fig. 12.16. Absolute errors in norm H1 and broken norm for the mortar approximation master
finite elements/spectral slave

The errors on the left refer to a partition ofΩm in 3×3 spectral elements of degree
Nm = 6, of Ωs in 2ns × 2ns equal triangles, with ns = 20,40,80,160 (hs = 2/ns). The
errors on the right refer to a partition of Ωm in 3× 3 spectral elements of degree
Nm = 8, and of Ωs in ns ×ns equal quadrilaterals, with ns = 10,20,40,80 (hs = 2/ns).

We remark that the error in the slave domain of finite elements decreases like hrs
s

(rs is the polynomial degree of the finite elements), whereas the error in the master
domain does not reach the spectral case’s accuracy because it is sensitive of the worse
accuracy on the slave domain. However, it decreases as hrs+1

s and the error in broken
norm agrees with estimate (12.21).

The preconditioned Bi-CGStab method with preconditionerΣm needs a number of
iterations, given a tolerance ε = 10−12 in the stopping test, that decreases slightly with
hs in both tests, and ranges from 8 iterations for hs = 1/10 to 5 for hs = 1/40.

In Figure 12.16 the numerical results for the approximation of problem (12.34)
are shown, with finite elements P1 on the master domain and spectral elements on the
slave domain. The functions f , g and the subdomains are defined as in above cases.
The domainΩs is divided in 4×4 spectral elements of degree Ns = 6, while in Ωm we
have uniform triangulations of 2nm ×2nm triangles, with nm = 20,40,80,160.

In particular one can see the behaviour of absolute errors in norm H1(Ωi) and
broken-norm, between the exact and the mortar solution, as the mesh-size hs varies in
Ωs. With mortar approximation on master domain and spectral approximation on slave
domain, both errors in Ωm and Ωs decrease linearly with hm. Here, too, the number of
iterations of the preconditioned Bi-CGStab method with preconditioner Σm, given a
tolerance ε = 10−12 in the stopping test, does not depend on hi and is ≤ 8 in all tests.



Chapter 13

Diffusion-transport-reaction equations

In this chapter we consider problems of the following form:{
Lu = −div(μ∇u)+b ·∇u+σu= f in Ω ,
u = 0 on ∂Ω ,

(13.1)

where μ ,σ , f and b are given functions (or constants). In the most general case, we
will suppose that μ ∈ L∞(Ω) with μ(x) ≥ μ0 > 0, σ ∈ L2(Ω) with σ(x) ≥ 0 a.e. in
Ω , b ∈ [L∞(Ω)]2 with div(b) ∈ L2(Ω), and f ∈ L2(Ω).
In many practical applications, the diffusion term −div(μ∇u) is dominated by the
convection term b ·∇u (also called transport term) or by the reaction term σu (also
called the absorption term when σ is non-negative). In such cases, as we will see,
the solution can give rise to boundary layers, that is regions, generally close to the
boundary of Ω , where the solution is characterized by strong gradients.
To derive such models, and to capture the analogy with random walk processes, see
e.g. [Sal08, Chap. 2.]

In this chapter we analyze the conditions ensuring the existence and uniqueness
of the solution to problem (13.1). We also consider the Galerkin method, illustrate its
difficulties in providing stable solutions in the presence of boundary layers, and finally
propose alternative discretization methods for the approximation of (13.1).

13.1 Weak problem formulation

Let V = H1
0(Ω). By introducing the bilinear form a : V ×V 
→R,

a(u,v) =
∫
Ω

μ∇u ·∇v dΩ +

∫
Ω

vb ·∇u dΩ +

∫
Ω

σuv dΩ ∀u,v ∈V, (13.2)

the weak formulation of problem (13.1) becomes

find u ∈V : a(u,v) = ( f ,v) ∀v ∈V. (13.3)

A. Quarteroni, Numerical Models for Differential Problems, MS&A 16, 
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In order to prove the existence and uniqueness of the solution of (13.3) we will put
ourselves in the condition to apply the Lax-Milgram lemma.

To verify the coercivity of the bilinear form a(·, ·), we proceed separately on the
single terms composing (13.2).
For the first term we have ∫

Ω

μ∇v ·∇v dΩ ≥ μ0‖∇v‖2
L2(Ω). (13.4)

As v ∈ H1
0(Ω), the Poincaré inequality holds (see (2.13)); then

‖v‖2
H1(Ω) = ‖v‖2

L2(Ω) + ‖∇v‖2
L2(Ω) ≤ (1+C2

Ω )‖∇v‖2
L2(Ω)

and therefore it follows from (13.4) that∫
Ω

μ∇v ·∇v dΩ ≥ μ0

1+C2
Ω

‖v‖2
H1(Ω).

We now move to the convective term. Using Green’s formula (3.16) yields∫
Ω

vb ·∇v dΩ =
1
2

∫
Ω

b ·∇(v2) dΩ =−1
2

∫
Ω

v2div(b) dΩ +
1
2

∫
∂Ω

b ·nv2 dγ

= −1
2

∫
Ω

v2div(b) dΩ ,

as v = 0 on ∂Ω , whence∫
Ω

vb ·∇v dΩ +
∫
Ω

σv2 dΩ =
∫
Ω

v2(−1
2

div(b)+σ) dΩ .

The last integral is certainly positive if we suppose that

−1
2

div(b)+σ ≥ 0 a.e. in Ω . (13.5)

Consequently, the bilinear form a(·, ·) is coercive, as

a(v,v)≥ α‖v‖2
H1(Ω) ∀v ∈V, with α =

μ0

1+C2
Ω

. (13.6)

To prove that the bilinear form a(·, ·) is continuous, that is it satisfies (2.6), we bound
the first term on the right-hand side of (13.2) as follows∣∣∣∣∣∣

∫
Ω

μ∇u ·∇v dΩ

∣∣∣∣∣∣ ≤ ‖μ‖L∞(Ω)‖∇u‖L2(Ω)‖∇v‖L2(Ω)

≤ ‖μ‖L∞(Ω)‖u‖H1(Ω)‖v‖H1(Ω).

(13.7)
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We have used the Hölder and Cauchy-Schwarz inequalities (see Sect. 2.5), as well as
the inequality ‖∇w‖L2(Ω) ≤ ‖w‖H1(Ω) ∀w ∈ H1(Ω). For the second term, proceeding
in a similar way we find∣∣∣∣∣∣

∫
Ω

vb ·∇u dΩ

∣∣∣∣∣∣ ≤ ‖b‖L∞(Ω)‖v‖L2(Ω)‖∇u‖L2(Ω)

≤ ‖b‖L∞(Ω)‖v‖H1(Ω)‖u‖H1(Ω).

(13.8)

Finally, for the third term we have, thanks again to the Cauchy-Schwarz inequality,∣∣∣∣∣∣
∫
Ω

σuv dΩ

∣∣∣∣∣∣≤C2‖σ‖L2(Ω)‖uv‖L2(Ω) ≤C2‖σ‖L2(Ω)‖u‖H1(Ω)‖v‖H1(Ω). (13.9)

Indeed, ‖uv‖L2(Ω) ≤‖u‖L4(Ω)‖v‖L4(Ω) ≤C2‖u‖H1(Ω)‖v‖H1(Ω), having applied inequal-
ity (2.18) and exploited inclusions (2.19), with C being the inclusion constant.
Summing (13.7), (13.8) and (13.9) term by term, the continuity property (2.6) follows
by taking, e.g.,

M = ‖μ‖L∞(Ω) + ‖b‖L∞(Ω) +C2‖σ‖L2(Ω). (13.10)

On the other hand, the right-hand side of (13.3) defines a bounded and linear functional
thanks to the Cauchy-Schwarz inequality and to the Poincaré inequality (2.13).
As the Lax-Milgram lemma hypotheses are verified (see Lemma 3.1), it follows that
the solution of the weak problem (13.3) exists and is unique. Moreover, the following
a priori estimates hold

‖u‖H1(Ω) ≤
1
α
‖ f‖L2(Ω), ‖∇u‖L2(Ω) ≤

CΩ
μ0

‖ f‖L2(Ω),

as consequences of (13.4), (13.6) and (2.4). The first follows from Corollary 3.1, the
second one can easily be proven starting from equation a(u,u) = ( f ,u) and using the
Cauchy-Schwarz and Poincaré inequalities as well as (13.4) and (13.5).

The Galerkin approximation of problem (13.3) is

find uh ∈Vh : a(uh,vh) = ( f ,vh) ∀vh ∈Vh, (13.11)

where {Vh,h > 0} is a suitable family of subspaces of H1
0(Ω). By replicating the proof

carried out above for the exact problem (13.3), the following estimates can be proved:

‖uh‖H1(Ω) ≤
1
α
‖ f‖L2(Ω), ‖∇uh‖L2(Ω) ≤

CΩ
μ0

‖ f‖L2(Ω).

These prove, in particular, that the gradient of the discrete solution (as well as that of
the weak solution u) could be as large as μ0 is small.
Moreover, the Galerkin error inequality (4.10) gives

‖u− uh‖V ≤ M

α
inf

vh∈Vh
‖u− vh‖V . (13.12)
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By the definitions of α and M (see (13.6) and (13.10)), the upper-bounding constant
M/α becomes as large (and, correspondingly, the estimate (13.12) meaningless) as the
ratio ‖b‖L∞(Ω)/‖μ‖L∞(Ω) (resp. the ratio ‖σ‖L2(Ω)/‖μ‖L∞(Ω)) grows, which happens
when the convective (resp. reactive) term dominates over diffusive one.

In such cases the Galerkin method can give inaccurate solutions, unless – as we
will see – an extremely small discretization step h is used.

Remark 13.1. Problem (13.1) is known as the non-conservative form of the diffusion-
transport(-reaction) problem, the conservative form being{

Lu = div(−μ∇u+bu)+σu= f in Ω
u = 0 on ∂Ω

(13.13)

If b is constant, the two formulations (13.1) and (13.13) are equivalent. The bilin-
ear form associated to (13.13) is

a(u,v) =
∫
Ω
(μ∇u−bu) ·∇vdΩ +

∫
Ω
σuvdΩ ∀u,v ∈V. (13.14)

It can be easily verified that the condition which ensures the coercivity of this bilinear
form is

1
2

div(b)+σ ≥ 0 a.e. in Ω . (13.15)

Under these assumptions, the conclusions drawn for problem (13.1) (and for its ap-
proximations) also hold for problem (13.13). •

In order to evaluate more precisely the behaviour of the numerical solution pro-
vided by the Galerkin method, we analyze a one-dimensional problem.

13.2 Analysis of a one-dimensional diffusion-transport problem

Let us consider the following one-dimensional diffusion-transport problem{ −μu′′+ bu′ = 0, 0 < x < 1,
u(0) = 0, u(1) = 1,

(13.16)

μ and b being two positive constants.
Its weak formulation is

find u ∈ H1(0,1) : a(u,v) = 0 ∀v ∈ H1
0(0,1), (13.17)

with u(0)= 0, u(1)= 1, and a(u,v)=
∫ 1

0 (μu′v′+bu′v)dx. Following what indicated in
Sect. 3.2.2, we can reformulate (13.17) by introducing a suitable lifting (or extension)
of the boundary data. In this particular case, we can choose Rg = x. Having then set
◦
u= u−Rg = u− x, we can reformulate (13.17) in the following way

find
◦
u∈ H1

0(0,1) : a(
◦
u,v) = F(v) ∀v ∈ H1

0(0,1), (13.18)
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where F(v) =−a(x,v) =−∫ 1
0 bv dx represents the contribution due to the data lifting.

We define the global Péclet number as the ratio

Peg =
bL

2μ
, (13.19)

L being the linear dimension of the domain (1 in our case). This ratio provides a
measure of how the convective term dominates the diffusive one. As such it plays
the same role as the Reynolds number in the Navier-Stokes equations, which we will
see in Chapter 17. For a negative b, its absolute value should be used in the previous
definition.

We start by computing the exact solution of such problem. Its associated charac-
teristic equation

−μλ 2 + bλ = 0

has two roots, λ1 = 0 and λ2 = b/μ . The general solution is therefore

u(x) =C1eλ1x +C2eλ2x =C1 +C2e
b
μ x
.

By imposing the boundary conditions we find the constants C1 and C2, and therefore
the solution

u(x) =
exp( b

μ x)− 1

exp( b
μ )−1

.

Using the Taylor expansion for the exponentials, if b/μ� 1 we obtain

u(x) =
1+ b

μ x+ · · ·− 1

1+ b
μ + · · ·− 1

�
b
μ x
b
μ

= x.

Thus, the solution lies near the straight line interpolating the boundary data (which is
the solution corresponding to the case b = 0).
Conversely, if b/μ� 1 the exponentials are very large, hence

u(x)�
exp( b

μ x)

exp( b
μ )

= exp

(
− b

μ
(1− x)

)
,

and the solution is close to zero on almost all of the interval, except for a neighborhood
of the point x = 1, where it tends to 1 exponentially. Such neighborhood has a width
of the order of μ/b and is therefore very small: the solution exhibits a boundary layer
of width O( μb ) in proximity of x = 1 (see Fig. 13.1), where the derivative behaves like
b/μ , and is therefore unbounded if μ → 0.

Let us now suppose to use the Galerkin finite element method with piecewise-
linear polynomials to approximate (13.17): find uh ∈ X1

h s.t.{
a(uh,vh) = 0 ∀vh ∈

◦
X

1

h ,
uh(0) = 0, uh(1) = 1,

(13.20)
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Fig. 13.1. Behaviour of the solution of problem (13.16) when varying the ratio b/μ . For com-
pleteness, we also highlight the solutions relating to the case where b is negative

where, denoting by xi, for i = 0, . . .M, the vertices of the partition introduced on (0,1),
we have set, coherently with (4.14),

Xr
h = {vh ∈C0([0,1]) : vh

∣∣∣
[xi−1,xi ]

∈ Pr, i = 1, . . . ,M},
◦
Xr

h = {vh ∈ Xr
h : vh(0) = vh(1) = 0},

for r ≥ 1. Having chosen, for each i = 1, . . . ,M−1, vh = ϕi (the i-th basis function of
X1

h ), we have ∫ 1

0
μu′hϕ ′

i dx+
∫ 1

0
bu′hϕi dx = 0.

Put differently, if we suppose the support of ϕi to be equal to [xi−1,xi+1] and writing

uh = u jϕ j(x), we have

μ

⎡⎣ui−1

xi∫
xi−1

ϕ ′
i−1ϕ ′

i dx+ ui

xi+1∫
xi−1

(ϕ ′
i )

2 dx+ui+1

xi+1∫
xi

ϕ ′
i+1ϕ ′

i dx

⎤⎦
+b

⎡⎣ui−1

xi∫
xi−1

ϕ ′
i−1ϕi dx+ ui

xi+1∫
xi−1

ϕ ′
i ϕi dx+ui+1

xi+1∫
xi

ϕ ′
i+1ϕi dx

⎤⎦= 0,

∀i = 1, . . . ,M− 1. If the partition is uniform, that is x0 = 0 and xi = xi−1 + h, with
i = 1, . . . ,M, observing that ϕ ′

i (x) =
1
h if xi−1 < x < xi, ϕ ′

i (x) = − 1
h if xi < x < xi+1,

for i = 1, . . . ,M −1, we obtain

μ

(
−ui−1

1
h
+ui

2
h
−ui+1

1
h

)
+ b

(
−ui−1

1
h

h

2
+ui+1

1
h

h

2

)
= 0,

∑
=1

1M−

j
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that is

μ

h
(−ui−1 +2ui− ui+1)+

1
2

b(ui+1 − ui−1) = 0, i = 1, . . . ,M−1. (13.21)

Rearranging the terms we find(
b

2
− μ

h

)
ui+1 +

2μ
h

ui−
(

b

2
+
μ

h

)
ui−1 = 0, i = 1, . . . ,M− 1.

Dividing by μ/h and defining the local (or “grid”) Péclet number

Pe=
|b|h
2μ

, (13.22)

we finally have

(Pe−1)ui+1 + 2ui− (Pe+ 1)ui−1 = 0, i = 1, . . . ,M −1. (13.23)

This is a linear difference equation that admits exponential solutions of the form ui =
ρ i (see [QSS07]). Replacing such expression into (13.23), we obtain

(Pe−1)ρ2 + 2ρ− (Pe+ 1) = 0,

from which we get the two roots

ρ1,2 =
−1±√

1+Pe2 −1
Pe− 1

=

{
(1+Pe)/(1−Pe),

1.

Thanks to the linearity of (13.23), the general solution of such equation takes the form

ui = A1ρ
i
1 +A2ρ

i
2,

with A1 and A2 two arbitrary constants. By imposing the boundary conditions u0 = 0
and uM = 1, we find

A1 =−A2 and A2 =

(
1−
(

1+Pe

1−Pe

)M)−1

.

To conclude, the solution of problem (13.20) has the following nodal values

ui =

1−
(

1+Pe

1−Pe

)i

1−
(

1+Pe

1−Pe

)M , i = 0, . . . ,M.

We observe that, if Pe > 1, the term within brackets is negative and the approximate
solution becomes oscillatory, whereas the exact solution that is monotone! This phe-
nomenon is displayed in Fig. 13.2 where the solution of (13.23), for different values of
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Fig. 13.2. Finite element solution of the diffusion-transport problem (13.16) with Peg = 50 for
different values of the local Péclet number

the local Péclet number, is compared to the exact solution for a case where the global
Péclet number is equal to 50. As it can be observed, the higher the Péclet number
gets, the more the behaviour of the approximate solution differs from that of the exact
solution, with oscillations that become more and more noticeable in proximity of the
boundary layer.
The most obvious remedy to this misbehaviour would be to choose a sufficiently small
grid-size h, in order to ensure Pe< 1. However, this strategy is not always convenient:
for instance, if b = 1 and μ = 1/5000, we should take h < 1/2500, that is introduce at
least 2500 intervals on (0,1)! In particular, such strategy would require an unreason-
ably high number of nodal points for boundary-value problems in several dimensions.
A more suitable remedy consists in using an a-priori adaptive procedure that refines
the grid only in proximity of the boundary layer. Several strategies are availabel for this
purpose. Among the better known, we mention the so-called type B (for Bakhvâlov)
or type S (for Shishkin) grids. See e.g. [GRS07].
Alternative grid adaptive strategies, both a-priori and a-posteriori, especially useful
for multidimensional problems, are those described in Sect. 4.6.

13.3 Analysis of a one-dimensional diffusion-reaction problem

Let us now consider a one-dimensional diffusion-reaction problem:{ −μu′′+σu = 0, 0 < x < 1,
u(0) = 0, u(1) = 1,

(13.24)

with μ and σ positive constants, whose solution is

u(x) =
sinh(αx)

sinh(α)
=

eαx − e−αx

eα − e−α
, with α =

√
σ/μ.
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Also in this case, if σ/μ � 1 there is a boundary layer for x → 1, with thickness
of order

√
μ/σ , where the first derivative becomes unbounded for μ → 0 (note, for

instance, the exact solution for the case displayed in Fig. 13.3). Also in this case, it is
interesting to define the global Péclet number, which takes the form

Peg =
σL2

6μ
,

L still being the linear dimension of the domain (1 in our case).
The Galerkin finite element approximation of (13.24) reads

find uh ∈ Xr
h such that a(uh,vh) = 0 ∀vh ∈

◦
Xr

h , (13.25)

for r ≥ 1, with uh(0) = 0 and uh(1) = 1 and a(uh,vh) =
∫ 1

0 (μu′hv′h +σuhvh)dx. Equiv-

alently, by setting
◦
uh= uh − x, and F(vh) =−a(x,vh) =−∫ 1

0 σxvhdx, we have

find
◦
uh∈Vh such that a(

◦
uh,vh) = F(vh) ∀vh ∈Vh, (13.26)

with Vh =
◦
Xr

h . For the sake of simplicity, let us consider problem (13.25) with piecewise
linear elements (that is r = 1) on a uniform partition. The equation associated to the
generic basis function vh = ϕi, i = 1, . . . ,M− 1, is

1∫
0

μu′hϕ
′
i dx+

1∫
0

σuhϕi dx = 0.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.5

0

0.5

1

Exact
Pe =  5.56
Pe =  1.18
Pe =  0.27

Fig. 13.3. Comparison between the numerical solution and the exact solution of the diffusion-
reaction problem (13.24) with Peg = 200. The numerical solution has been obtained using the
Galerkin-linear finite elements method on uniform grids
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By carrying out our computation in a similar way to what we did in the previous
section, and observing that∫ xi

xi−1

ϕi−1ϕi dx =
h

6
,

∫ xi+1

xi−1

ϕ2
i dx =

2
3

h,
∫ xi+1

xi

ϕiϕi+1 dx =
h

6
,

we obtain

μ

(
−ui−1

1
h
+ui

2
h
− ui+1

1
h

)
+σ

(
ui−1

h

6
+ ui

2
3

h+ ui+1
h

6

)
= 0, (13.27)

that is (
h

6
σ − μ

h

)
ui+1 +

(
2
3
σh+

2μ
h

)
ui +

(
h

6
σ − μ

h

)
ui−1 = 0.

Dividing by μ/h and defining the following local Péclet number

Pe=
σh2

6μ
, (13.28)

we finally have

(Pe−1)ui+1 + 2(1+2Pe)ui +(Pe− 1)ui−1 = 0, i = 1, . . . ,M− 1.

This three-term difference equation admits the following solutions for each i =
0, . . . ,M,

ui =

[
1+2Pe+

√
3Pe(Pe+ 2)

1−Pe

]i

−
[

1+2Pe−√3Pe(Pe+2)
1−Pe

]i

[
1+2Pe+

√
3Pe(Pe+ 2)

1−Pe

]M

−
[

1+ 2Pe−√3Pe(Pe+2)

1−Pe

]M ,

again oscillatory when Pe> 1.
The problem is therefore critical when σ

μ�1, that is when the diffusion coefficient is
very small with respect to the reaction one (see the example reported in Fig. 13.3).

13.4 Finite elements and finite differences (FD)

We want to analyze the behaviour of the finite difference method (FD, in short) applied
to the solution of diffusion-transport and diffusion-reaction problems, and highlight
analogies and differences with the finite element method (FE, in short). We will limit
ourselves to the one-dimensional case and we will consider a uniform mesh.

Let us consider problem (13.16) once more and let us approximate it via finite
differences. In order to generate a local discretization error of the same magnitude
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for both terms, we will approximate the derivatives by using the following centred
incremental ratios:

u′(xi) =
u(xi+1)−u(xi−1)

2h
+O(h2), i = 1, . . . ,M−1, (13.29)

u′′(xi) =
u(xi+1)−2u(xi)+ u(xi−1)

h2 +O(h2), i = 1, . . . ,M− 1. (13.30)

In both cases, as highlighted, the remainder is an infinitesimal with respect to the step
size h, as it can be easily proven by invoking the truncated Taylor series (see, e.g.,
[QSS07]). By replacing in (13.16) the exact derivatives with these incremental ratios
(thus ignoring the infinitesimal error), we find the following scheme⎧⎨⎩ −μ ui+1 −2ui+ ui−1

h2 + b
ui+1−ui−1

2h
= 0, i = 1, . . . ,M−1,

u0 = 0, uM = 1.
(13.31)

For each i, the unknown ui provides an approximation for the nodal value u(xi). Mul-
tiplying by h, we obtain the same equation (13.21) obtained using the finite element
method with piecewise linear polynomials on the same uniform grid.

Let us now consider the diffusion-reaction problem (13.24). Proceeding in an anal-
ogous way, its approximation using finite differences yields⎧⎨⎩ −μ ui+1 − 2ui+ ui−1

h2 +σui = 0, i = 1, . . . ,M−1,

u0 = 0, uM = 1.
(13.32)

The above equation is different from (13.27), which was obtained using linear finite el-
ements: instead the reaction term, appearing in (13.32) with the diagonal contribution
σui, yields in (13.27) the sum of three different contributions

σ

(
ui−1

h

6
+ ui

2
3

h+ ui+1
h

6

)
.

Hence the two methods FE and FD are not equivalent in this case. We observe that the
solution obtained using the FD scheme (13.32) does not display oscillations, whichever
value is chosen for the discretization step h. As a matter of fact, the solution of (13.32) is

ui = (ρM
1 −ρM

2 )−1(ρ i
1 −ρ i

2),

with

ρ1,2 =
γ

2
±
(
γ2

4
− 1

) 1
2

and γ = 2+
σh2

μ
.

The i-th powers now have a positive basis, guaranteeing a monotone behaviour of the
sequence {ui}. This differs from what we have seen in Sect. 13.3 for the FE, for which

it is necessary to choose h ≤
√

6μ
σ to guarantee that the local Péclet number (13.28)

is less than 1. See the example reported in Fig. 13.4 for a comparison between a finite
element approximation and a finite difference approximation.
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Fig. 13.4. Comparison between the numerical solutions of the one-dimensional diffusion-
transport equation (13.24) with Peg = 2000 obtained using the Galerkin-linear finite element
method (FEM) and the finite difference method (FD), for different values of the local Péclet
number

13.5 The mass-lumping technique

In the case of the reaction-diffusion problem, we can obtain the same result as with
finite differences by using linear finite elements, provided that we resort to the so-
called mass-lumping technique, thanks to which the mass matrix

M = (mi j), mi j =

1∫
0

ϕ jϕi dx,

which is tridiagonal, is approximated using a diagonal matrix ML, called condensed
or lumped matrix. To this end we use the following trapezoidal quadrature formula on
each interval (xi,xi+1), for each i = 0, . . . ,M −1

xi+1∫
xi

f (x) dx � h

2
( f (xi)+ f (xi+1)).

Thanks to the properties of finite element basis functions, we then find:

∫ xi

xi−1

ϕi−1ϕi dx � h
2 [ϕi−1(xi−1)ϕi(xi−1)+ϕi−1(xi)ϕi(xi)] = 0,∫ xi+1

xi−1

ϕ2
i dx = 2

∫ xi
xi−1

ϕ2
i dx � 2 h

2

[
ϕ2

i(xi−1)+ϕ
2

i(xi)
]
= h,∫ xi+1

xi

ϕiϕi+1 dx � h
2 [ϕi(xi)ϕi+1(xi)+ϕi(xi+1)ϕi+1(xi+1)] = 0.

Using the previous formulae to approximate the mass matrix coefficients, we get to
the following diagonal matrix ML whose elements are the sums of the elements of
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each row of M, i.e.

ML = diag(m̃ii), with m̃ii =
i+1

∑
j=i−1

mi j. (13.33)

Note that, thanks to the following partition of unity property of the basis functions

M

∑
j=0
ϕ j(x) = 1 ∀x ∈[0,1], (13.34)

the elements of ML take the following expression on the interval [0,1]

m̃ii =

1∫
0

ϕi dx, i = 0, . . . ,M.

Their values are reported in Exercise 3 for finite elements of degree 1,2,3.
If the terms of order zero are replaced in the following way

∫ 1

0
σ uhϕi dx = σ

M−1

∑
j=1

u j

∫ 1

0
ϕ jϕi dx = σ

M−1

∑
j=1

mi j u j � σ m̃ii ui,

the finite element problem produces solutions coinciding with those of finite differ-
ences, hence monotone solutions for each value of h. Moreover, replacing M with ML

does not reduce the order of accuracy of the method.

The process of mass lumping (13.33) can be generalized to the two-dimensional
case when linear elements are used. For quadratic finite elements, instead, the above-
mentioned procedure consisting in summing by rows would generate a singular mass
matrix ML (see Example 13.1). An alternative diagonalization strategy consists in us-
ing the matrix M̂ = diag(m̂ii) with elements

m̂ii =
mii

∑ j m j j
.

In the one-dimensional case, for linear and quadratic finite elements, the matrices M̂
and ML coincide, while they differ for cubic elements (see Exercise 3). The matrix M̂
is non-singular also for Lagrangian finite elements of high order, while it can turn out
to be singular when using non-Lagrangian finite elements, for instance when using hi-
erarchical bases. In the latter case, we resort to more sophisticated mass-lumping pro-
cedures. Indeed, a number of diagonalization techniques able to generate non-singular
matrices have been elaborated also for finite elements of high degree. See for example
[CJRT01].
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Example 13.1. The mass matrix for the P2 finite elements on the reference triangle
with vertices (0,0), (1,0) and (0,1) is given by

M =
1

180

⎡⎢⎢⎢⎢⎢⎢⎣
6 −1 −1 0 −4 0

−1 6 −1 0 0 −4
−1 −1 6 −4 0 0

0 0 −4 32 16 16
−4 0 0 16 32 16

0 −4 0 16 16 32

⎤⎥⎥⎥⎥⎥⎥⎦ ,

while the lumped mass matrices are given by

ML =
1

180
diag(0 0 0 60 60 60),

M̂ =
1

114
diag(6 6 6 32 32 32).

As it can be noticed the matrix ML is singular. �

The mass-lumping technique is also used in other contexts, for instance in the so-
lution of parabolic problems (see Chap. 5) when finite-element spatial discretizations
and finite-difference explicit temporal discretizations (e.g., the forward-Euler method)
are used. In such case, lumping the mass matrix that arises from the discretization of
the temporal derivative can conduct to the solution of a diagonal system, with corre-
sponding reduction of the computational cost.

13.6 Decentred FD schemes and artificial diffusion

The comparative analysis with finite differences allowed us to find a remedy to the
oscillatory behaviour of finite element solutions in the case of a diffusion-reaction
problem. We now wish to find a remedy for the case of the diffusion-transport problem
(13.16) as well.

Let us consider finite differences. The oscillations in the numerical solution arise
from the fact that we use a centred finite difference (CFD) scheme for the discretiza-
tion of the transport term. Since the latter is non-symmetric, this suggests to discretize
the first derivative at a point xi with a decentred incremental ratio where the value at
xi−1 intervenes if the field is positive, and at xi+1 in the opposite case.

This technique is called upwinding and the resulting scheme, called upwind scheme
(FDUP, in short) in the case b > 0 is written as

−μ ui+1 −2ui+ ui−1

h2 +b
ui− ui−1

h
= 0, i = 1, . . . ,M − 1 . (13.35)

(See Fig. 13.5 for an example of application of the upwind scheme). The price to pay
is a reduction of the order of convergence, because the decentred incremental ratio
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Fig. 13.5. Solution obtained using the centred (CFD) and upwind (UPFD) finite difference
scheme for the one-dimensional diffusion-transport equation (13.16) with Peg = 50 and two
different local PÃl’clet numbers. Also in the presence of high local Péclet numbers, one can no-
tice the stabilizing effect of the artificial diffusion introduced by the upwind scheme, inevitably
accompanied by a loss of accuracy

introduces a local discretization error O(h) as opposed to O(h2) (see (13.30)), in the
CFD case.

We now observe that

ui −ui−1

h
=

ui+1 − ui−1

2h
− h

2
ui+1 − 2ui+ui−1

h2 ,

that is, the decentred incremental ratio to approximate the first derivative can be writ-
ten as the sum of a centred incremental ratio plus a term proportional to the discretiza-
tion of the second derivative, still with a centred incremental ratio. Thus, the upwind
scheme can be reinterpreted as a centred finite difference scheme where an artificial
diffusion term proportional to h has been introduced. As a matter of fact, (13.35) is
equivalent to

−μh
ui+1 −2ui+ ui−1

h2 +b
ui+1 − ui−1

2h
= 0, i = 1, . . . ,M− 1, (13.36)

where μh = μ(1+Pe), Pe being the local Péclet number introduced in (13.22). Scheme
(13.36) corresponds to the discretization using a CFD scheme of the perturbed prob-
lem

−μhu′′+bu′ = 0. (13.37)

The viscosity “correction” μh − μ = μPe=
bh

2
is called numerical viscosity or artifi-

cial viscosity. The new local Péclet number associated to the scheme (13.36) is

Pe∗ =
bh

2μh
=

Pe

(1+Pe)
,
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so Pe∗ < 1 for all possible values of h > 0. As we will see in the next section, this
interpretation allows to extend the upwind technique to finite elements, and also to
the two-dimensional case where, incidentally, the notion of decentred differentiation
is not obvious.
More generally, in a CFD scheme of the form (13.36) we can use the following nu-
merical viscosity coefficient

μh = μ(1+φ(Pe)), (13.38)

where φ is a suitable function of the local Péclet number that must satisfy the property
lim

t→0+
φ(t) = 0. It can be easily observed that if φ = 0, we obtain the CFD method

(13.31), while if φ(t) = t, we obtain the upwind UPFD method (13.35) (or (13.36)).
Different choices of φ lead to different schemes. For instance, setting

φ(t) = t − 1+B(2t), (13.39)

where B is the so-called Bernoulli function defined as

B(t) =
t

et − 1
if t > 0, and B(0) = 1,

we obtain the exponential fitting scheme, generally attributed to Scharfetter and Gum-
mel or to Iljin (in fact, it was originally introduced by Allen and Southwell [AS55]).
See also Sect. 13.8.7 for more on this method.

Having denoted by φU , resp. φSG, the two functions determined by the choices
φ(t) = t and φ(t) = t − 1− B(2t), we observe that φSG � φU if Pe → +∞, while
φSG = O(Pe2) and φU = O(Pe) if Pe→ 0+ (see Fig. 13.6).
It can be verified that for each given μ and b the Scharfetter-Gummel scheme is a
second order scheme (with respect to h) and, because of this, it is sometimes called
upwind scheme with optimal viscosity. In fact, it can also be verified, in the case
where f is constant – more generally, it is sufficient that f is constant on each interval
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Fig. 13.6. The functions φU (solid line) and φSG (etched line) versus the local Péclet number
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Fig. 13.7. Comparison between the exact solution and those obtained by the upwind scheme
(UPFD) and the Scharfetter and Gummel one (SGFD) in the case where Peg = 50

[xi,xi+1]) – that the numerical solution produced by this scheme is nodally exact. This
means that it coincides exactly with the solution u at each discretization node inside
the interval (0,1), that is we have

ui = u(xi) for i = 1, . . . ,M − 1,

independently of the choice of h (see Fig. 13.7).
We observe that the local Péclet number associated with the coefficient (13.38) is

Pe∗ =
bh

2μh
=

Pe

(1+φ(Pe))
,

and is therefore always less than 1, for each value of h.

Remark 13.2. The matrix associated with the upwind and the exponential fitting
scheme is an M-matrix regardless of the value of h; hence, the numerical solution
has a monotone behaviour (see [QSS07, Chap. 1]). •

13.7 Eigenvalues of the diffusion-transport equation

Let us consider the operator Lu =−μu′′+bu′ associated to problem (13.16) on a gen-
eric interval (α,β ). Its eigenvalues λ solve Lu = λu, α < x < β , u(α) = u(β ) = 0,
u being an eigenfunction. Such eigenvalues, in general, will be complex because of
the presence of the first-order term bu′. Supposing μ > 0 constant (and b variable,
a priori), we have

β∫
α

|u|2 dx Re(λ ) =

β∫
α

Luudx = μ

β∫
α

|u′|2 dx− 1
2

β∫
α

b′|u|2 dx. (13.40)
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It can be inferred that if μ is small and b′ is strictly positive, the real part of λ is not
necessarily positive. However, thanks to the Poincaré inequality (2.13) we have

β∫
α

|u′|2 dx ≥Cα ,β

β∫
α

|u|2 dx, (13.41)

with Cα ,β being a positive constant depending on β −α; we deduce from (13.40) that

Re(λ )≥Cα ,β μ−
1
2

b′max,

where b′max = max
α≤s≤β

b′(s). In particular, let us observe that

Re(λ )> 0 if b is constant or if b′(x)≤ 0 ∀x ∈ [α,β ].

The same kind of lower bound can be obtained for the eigenvalues associated to
the Galerkin-finite element approximation of the problem at hand. The latter are the
solution of the problem

find λh ∈ C, uh ∈Vh :

β∫
α

μu′hv′h dx+

β∫
α

bu′hvh dx = λh

β∫
α

uhvh dx ∀vh ∈Vh, (13.42)

where Vh = {vh ∈ Xr
h : vh(α) = vh(β ) = 0}. To prove this, it suffices to take again

vh = uh in (13.42) and proceed as previously.
We can instead obtain an upper bound by choosing again vh = uh in (13.42) and taking
the modulus in both members:

|λh| ≤
μ‖u′h‖2

L2(α ,β )
+ ‖b‖L∞(α ,β )‖u′h‖L2(α ,β )‖uh‖L2(α ,β )

‖uh‖2
L2(α ,β )

.

By using the inverse inequality (4.52) in the one-dimensional case

∃ CI =CI(r)> 0 : ∀vh ∈ Xr
h , ‖v′h‖L2(α ,β ) ≤CI h−1‖vh‖L2(α ,β ), (13.43)

we easily find that
|λh| ≤ μC2

I h−2 + ‖b‖L∞(α ,β )CI h−1.

If, instead, we use a Legendre G-NI spectral approximation of the same problem
on the usual reference interval (−1,1) (see Sect. 10.3), the eigenvalue problem takes
the following form:⎧⎨⎩find λN ∈ C, uN ∈ P0

N :(
μu′N ,v

′
N

)
N +
(
bu′N ,vN

)
N = λN

(
uN ,vN

)
N ∀vN ∈ P0

N ,
(13.44)
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with P0
N now being the space of algebraic polynomials of degree N vanishing at x =

±1, and (·, ·)N the discrete GLL scalar product defined in (10.25). We will suppose,
for simplicity, that b is also constant. Taking vN = uN , we obtain

Re(λN) =
μ‖u′N‖2

L2(−1,1)

‖uN‖2
N

,

and so Re(λN) > 0. Thanks to the Poincaré inequality (13.41) (which holds in the
interval (−1,1) with constant Cα ,β = π2/4), we obtain the lower bound

Re(λN)> μ
π2

4

‖uN‖2
L2(−1,1)

‖uN‖2
N

.

As uN is a polynomial of degree at most N, thanks to (10.54) we obtain

Re(λN)> μ
π2

12
.

Instead, using the following inverse inequality for algebraic polynomials

∃ C > 0 : ∀vN ∈ PN , ‖v′N‖L2(−1,1) ≤C N2 ‖vN‖L2(−1,1) (13.45)

(see [CHQZ06]) and once again (10.54), we find

Re(λN)<Cμ N4.

In fact, if N > 1/μ , we can prove that the moduli of the eigenvalues of the diffusion-
transport problem (13.44) behave like those of the pure diffusion problem, that is (see
Sect. 10.3.2)

C1 N−1 ≤ |λN | ≤C2 N2.

For proofs and more details, see [CHQZ06, Sect. 4.3.3].

13.8 Stabilization methods

The Galerkin method introduced in the previous sections provides a centred approxi-
mation of the transport term. A possible way to use a decentred approximation consists
in choosing test functions vh in a different space from the one uh belong to: by doing
so, we obtain a method called Petrov-Galerkin, for which the analysis based on the Céa
lemma no longer holds. We will analyze this approach more in detail in Sect. 13.8.2.
In this section we will deal instead with the methods of stabilized finite elements.
More precisely, instead of using the Galerkin finite element method (13.26) for the
approximation of (13.12), we consider the generalized Galerkin method

find
◦
uh∈Vh : ah(

◦
uh,vh) = Fh(vh) ∀vh ∈Vh, (13.46)

where

ah(
◦
uh,vh) = a(

◦
uh,vh)+ bh(

◦
uh,vh) and Fh(vh) = F(vh)+Gh(vh). (13.47)
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The additional terms bh(
◦
uh,vh) and Gh(vh) have the purpose of eliminating (or at least

reducing) the numerical oscillations produced by the Galerkin method (when the grid
is not fine enough) and are therefore named stabilization terms. The latter depend
parametrically on h.

Remark 13.3. We want to point out that the term “stabilization” is in fact inexact. The
Galerkin method is indeed already stable, in the sense of the continuity of the solution
with respect to the data of problem (see what has been proved, e.g. in Sect. 13.1 for
problem (13.1)). In this case, stabilization must be understood as the aim of reducing
(ideally, eliminating) the oscillations in the numerical solution when Pe> 1. •
Let us now see several possible ways to choose the stabilization terms.

13.8.1 Artificial diffusion and decentred finite element schemes

Based on what we have seen for finite differences, we can apply the Galerkin method
to problem (13.16) (whose weak formulation is (13.18)) by replacing the viscosity
coefficient μ with a new coefficient μh = μ(1+φ(Pe)). This way, we end up adding
to the original viscosity term μ an artificial (or numerical) viscosity equal to μφ(Pe),
which depends on the discretization step h through the local Péclet number Pe.
This corresponds to choosing in (13.47) Gh(vh) = 0 and

bh(
◦
uh,vh) = μφ(Pe)

1∫
0

◦
u
′
h v′h dx. (13.48)

Since

ah(
◦
uh,

◦
uh)≥ μh| ◦uh |2H1(Ω)

and μh ≥ μ , we can say that problem (12.47) - (12.48) has a larger coercivity constant
than the standard Galerkin formulation which corresponds to taking ah = a and Fh = F
in (13.46).

The following result provides an a priori estimate of the error made by approxi-
mating the solution of problem (13.18) with that of (13.46), (13.47), (13.48).

Theorem 13.1. Under the assumption that u ∈ Hr+1(Ω), the error between the
solution of problem (13.18) and that of the approximate problem (13.46) with
artificial diffusion is bounded from above:

‖ ◦
u − ◦

uh ‖H1(Ω) ≤

C
hr

μ(1+φ(Pe))
‖ ◦

u ‖Hr+1(Ω) +
φ(Pe)

1+φ(Pe)
‖ ◦

u ‖H1(Ω),
(13.49)

with C a suitable positive constant independent of h and μ .
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Proof. We can take advantage of Strang’s lemma, previously introduced in
Sect. 10.4.1, thanks to which we obtain

‖ ◦
u − ◦

uh ‖H1(Ω) ≤ inf
wh∈Vh

{(
1+

M

μh

)
‖ ◦

u −wh‖H1(Ω)

+
1
μh

sup
vh∈Vh,vh �=0

|a(wh,vh)− ah(wh,vh)|
‖vh‖H1(Ω)

}
.

(13.50)

We choose wh = Pr
h

◦
u, the orthogonal projection of

◦
u on Vh with respect to the scalar

product

1∫
0

u′v′ dx of H1
0(Ω), that is

Pr
h

◦
u∈Vh :

1∫
0

(Pr
h

◦
u − ◦

u)′v′hdx = 0 ∀vh ∈Vh.

It can be proved that (see [QV94, Chap. 3])

‖(Pr
h

◦
u)′‖L2(Ω) ≤ ‖(◦u)′‖L2(Ω) and ‖Pr

h
◦
u − ◦

u ‖H1(Ω) ≤Chr‖ ◦
u ‖Hr+1(Ω),

C being a constant independent of h. Thus, we can bound the first addendum of the

right-hand side in (13.50) by (C/μh)hr‖ ◦
u ‖Hr+1(Ω).

Now, thanks to (13.48), we obtain

1
μh

|a(wh,vh)− ah(wh,vh)|
‖vh‖H1(Ω)

≤ μ

μh
φ(Pe)

1
‖vh‖H1(Ω)

∣∣∣ 1∫
0

w′
hv′h dx

∣∣∣.
Using the Cauchy-Schwarz inequality, and observing that

‖v′h‖L2(Ω) ≤ ‖vh‖H1(Ω), ‖(Pr
h

◦
u)′‖L2(Ω) ≤ ‖Pr

h
◦
u ‖H1(Ω) ≤ ‖ ◦

u ‖H1(Ω),

we obtain

1
μh

sup
vh∈Vh,vh �=0

∣∣∣a(Pr
h

◦
u,vh)− ah(Pr

h
◦
u,vh)

∣∣∣
‖vh‖H1(Ω)

≤ φ(Pe)

1+φ(Pe)
‖ ◦

u ‖H1(Ω).

Inequality (13.49) is therefore proved. �
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Corollary 13.1. For a given μ and for h tending to 0 we have

‖ ◦
u − ◦

uh ‖H1(Ω) ≤C1

[
hr‖ ◦

u ‖Hr+1(Ω) +φ(Pe)‖
◦
u ‖H1(Ω)

]
, (13.51)

where C1 is a positive constant independent of h, while for a given h and μ
tending to 0 we have

‖ ◦
u − ◦

uh ‖H1(Ω) ≤C2

[
hr−1‖ ◦

u ‖Hr+1(Ω) +‖ ◦
u ‖H1(Ω)

]
, (13.52)

where C2 is a positive constant independent of h and μ .

Proof. We obtain (13.51) from (13.49) remembering that φ(Pe) → 0 for any given
μ when h → 0. To obtain (13.52) it is sufficient to observe that, in the upwind case,
φU (Pe) = Pe, so

μ(1+φ(Pe)) = μ+
b

2
h and

φ(Pe)

1+φ(Pe)
=

h

h+2μ/b
.

For the Scharfetter and Gummel method, φSG(Pe) � φU (Pe) for a given h and μ
tending to 0. �

In particular, for a given μ , the stabilized method generates an error that decays lin-
early in h (irrespectively of the degree r) when using the upwind viscosity, while
with an artificial viscosity of Scharfetter and Gummel type, the convergence rate be-
comes quadratic if r ≥ 2. This result follows from estimate (13.51), recalling that
φU (Pe) = O(h) while φSG(Pe) = O(h2) for a fixed μ and for h → 0.

13.8.2 The Petrov-Galerkin method

An equivalent way to write the generalized Galerkin problem (13.46) with numerical
viscosity is to reformulate it as a Petrov-Galerkin method, that is a method where
the space of test functions is different from the space where the solution is sought.
Precisely, the approximation takes the following form

find
◦
uh∈Vh : a(

◦
uh,vh) = F(vh) ∀vh ∈Wh, (13.53)

where Wh �= Vh, while the bilinear form a(·, ·) is the same as in the initial problem.
It can be verified that in the case of linear finite elements, that is for r = 1, problem
(13.46)–(13.48) can be rewritten as (13.53), where Wh is the space generated by the
functions ψi(x) = ϕi(x) + Bαi (see Fig. 13.8, right). Here the Bαi = α Bi(x) are the
so-called bubble functions, with

Bi(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
g
(

1− x−xi−1
h

)
, xi−1 ≤ x ≤ xi,

−g
( x−xi

h

)
, xi ≤ x ≤ xi+1,

0 otherwise,
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Fig. 13.8. Example of a bubble function Bi and of a basis function ψi of the space Wh

and g(ξ ) = 3ξ (1− ξ ), with 0 ≤ ξ ≤ 1 (see Fig. 13.8, left) [ZT00]. In the case of
upwind finite differences we have α = 1, while in the case of the Scharfetter-Gummel
scheme we have α = coth(Pe)−1/Pe. Note that the test functions lose their symmetry
feature (with respect to the usual piecewise linear basis functions) under the effect of
the convective field.

13.8.3 The artificial diffusion and streamline-diffusion methods in the

two-dimensional case

The upwind artificial-viscosity method can be generalized to the case where we con-
sider a two- or a three-dimensional problem of the type (13.1). In such case, it will
suffice to modify the Galerkin approximation (13.11) by adding to the bilinear form
(13.2) a term like

Qh
∫
Ω

∇uh ·∇vh dΩ for a chosen Q > 0, (13.54)

which corresponds to adding the artificial diffusion term −QhΔu to the initial problem
(13.1). The corresponding method is called upwind artificial diffusion. This way an
additional diffusion is introduced, not only in the direction of the field b, as one should
rightly do in order to stabilize the oscillations generated by the Galerkin method, but
also in the orthogonal direction, which is not at all necessary. For instance, if we
consider the two-dimensional problem

−μΔu+
∂u

∂x
= f in Ω , u = 0 on ∂Ω ,

where the transport field is given by the vector b = [1,0]T , the artificial diffusion term
we would add is

−Qh
∂ 2u

∂x2 and not −QhΔu =−Qh

(
∂ 2u

∂x2 +
∂ 2u

∂y2

)
.
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More generally, we can add the following stabilization term

−Qhdiv [(b ·∇u)b] =−Qhdiv

(
∂u

∂b
b

)
, with Q = |b|−1.

In the Galerkin problem the latter yields the following term

bh(uh,vh) = Qh(b ·∇uh,b ·∇vh) = Qh

(
∂uh

∂b
,
∂vh

∂b

)
. (13.55)

The resulting discrete problem is therefore a modification of the Galerkin problem
(13.11), called streamline-diffusion problem, and reads

find uh ∈Vh : ah(uh,vh) = ( f ,vh) ∀vh ∈Vh,

where

ah(uh,vh) = a(uh,vh)+ bh(uh,vh).

Basically, we are adding a term proportional to the second derivative in the direction
of the field b (also called streamline). Note that, in this case, the artificial viscosity
coefficient is actually a tensor. As a matter of fact, the stabilization term bh(·, ·) can be
seen as the bilinear form associated to the operator −div(μa∇u) with [μa]i j =Qhbib j,
bi being the i-th component of b.

Although the term (13.55) is less diffusive than (13.54), the accuracy is only O(h)
also for the streamline-diffusion method. More accurate stabilization methods are de-
scribed in Sects. 13.8.6, 13.8.8 and 13.8.9. To introduce them we will need some
definitions that we will anticipate in Sects. 13.8.4 and 13.8.5.

13.8.4 Consistency and truncation error for the Galerkin and generalized

Galerkin methods

Let us consider a generalized Galerkin problem of the form (13.47), and replace
◦
uh by

uh to recover more familiar notations. Note that this formulation can refer to a problem
in any spatial dimension. We define a functional of the variable vh

τh(u;vh) = ah(u,vh)−Fh(vh), (13.56)

whose norm

τh(u) = sup
vh∈Vh,vh �=0

|τh(u;vh)|
‖vh‖V

(13.57)

is called the truncation error associated to the generalized Galerkin method (13.46).
In accordance with the definitions given in Sect. 1.2, the generalized Galerkin method
is said to be consistent if lim

h→0
τh(u) = 0.

Moreover, we will say that it is strongly (or fully) consistent if the truncation error
(13.57) is non-zero for each value of h.
The standard Galerkin method is strongly consistent, as seen in Chap. 4, since

τh(u;vh) = a(u,vh)−F(vh) = 0 ∀vh ∈Vh.
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Instead, the generalized Galerkin method is only consistent (in general) as long as
ah − a and Fh −F “tend to zero” when h tends to zero, as guaranteed by Strang’s
lemma.
Concerning the upwind and streamline-diffusion methods, we have

τh(u;vh) = ah(u,vh)−F(vh)

= ah(u,vh)− a(u,vh) =

⎧⎨⎩ Qh(∇u,∇vh) (Upwind),

Qh( ∂u
∂b
, ∂vh
∂b

) (Streamline-Diffusion),

hence both are consistent but not strongly consistent. Remarkable instances of strongly
consistent methods will be introduced and analyzed in Sect. 13.8.6

13.8.5 Symmetric and skew-symmetric part of an operator

Let V be a Hilbert space and V ′ its dual. We will say that an operator L : V → V ′ is
symmetric if

V ′ 〈Lu,v〉V = V 〈u,Lv〉V ′ ∀u,v ∈V,

skew-symmetric when

V ′ 〈Lu,v〉V =−V 〈u,Lv〉V ′ ∀u,v ∈V.

An operator can be split into the sum of a symmetric part LS and a skew-symmetric
part LSS,

Lu = LSu+LSSu.

Let us consider, for instance, the following diffusiont-transport-reaction operator

Lu =−μΔu+ div(bu)+σu, x ∈Ω ⊂ Rd ,d ≥ 2, (13.58)

operating on the space V = H1
0 (Ω). Since

div(bu) = 1
2 div(bu)+ 1

2 div(bu)

= 1
2 div(bu)+ 1

2 udiv(b)+ 1
2 b ·∇u,

we can split L the following way

Lu =−μΔu+

[
σ +

1
2

div(b)

]
u︸ ︷︷ ︸

LSu

+
1
2
[div(bu)+b ·∇u]︸ ︷︷ ︸

LSSu

.

Note that the reaction coefficient has become σ∗ = σ + 1
2 div(b). We can verify that

the two parts are symmetric resp. skew-symmetric. Indeed, integrating twice by parts,
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we obtain, ∀u,v ∈V ,

V ′ 〈LSu,v〉V = μ(∇u,∇v)+ (σ∗u,v)

=−μ V 〈u,Δv〉V ′ +(u,σ∗v)

= V 〈u,LSv〉V ′ ,

V ′ 〈LSSu,v〉V =
1
2
(div(bu),v)+

1
2
(b ·∇u,v)

=−1
2
(bu,∇v)+

1
2
(∇u,bv)

=−1
2
(u,b ·∇v)− 1

2
(u,div(bv))

=−V 〈u,LSSv〉V ′ ,

where we have indicated by (·, ·) the scalar product of L2(Ω).

Remark 13.4. We recall that any matrix A can be decomposed into the sum

A = AS +ASS,

where

AS =
1
2
(A+AT )

is a symmetric matrix called the symmetric part of A and

ASS =
1
2
(A−AT )

is a skew-symmetric matrix called the skew-symmetric part of A. •

13.8.6 Strongly consistent methods (GLS, SUPG)

We consider a diffusion-transport-reaction problem that we write in the abstract form
Lu = f in Ω , with u = 0 on ∂Ω . Let us consider the corresponding weak formulation
(13.3) with a(·, ·) being the bilinear form associated to L. A stabilized and strongly
consistent method can be obtained by adding a further term to the Galerkin approxi-
mation (13.11), that is by considering the problem

find uh ∈Vh : a(uh,vh)+Lh(uh, f ;vh) = ( f ,vh) ∀vh ∈Vh, (13.59)

for a suitable form Lh satisfying

Lh(u, f ;vh) = 0 ∀vh ∈Vh. (13.60)
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(This is the case of the generalized Galerkin method (13.46), (13.47), provided we re-
quire bh(u,vh) = Gh(vh) ∀vh ∈Vh.) We observe that in (13.59) the form Lh depends
both on the approximate solution uh and on the forcing term f . A possible choice that
verifies (13.60) is

Lh(uh, f ;vh) =L
(ρ)

h (uh, f ;vh) = ∑
K∈Th

(Luh − f ,τKS
(ρ)(vh))L2(K),

where (u,v)L2(K) =

∫
K

uv dK, ρ and τK are parameters to be determined, and

S
(ρ)(vh) = LSSvh +ρLSvh.

Here, LS and LSS are the symmetric resp. skew-symmetric part of the operator L under
exam. A possible choice for τK is

τK = δ
hK

|b(x)| ∀x ∈ K, ∀K ∈ Th (13.61)

where b is the convective (or transport) field, hK the diameter of the generic element
K, and δ a dimensionless coefficient to be prescribed.
To verify that (13.59) is fully consistent, we note that

τh(u;vh) = a(u,vh)+L
(ρ)
h (u, f ;vh)− ( f ,vh)

is zero for all vh ∈ Vh, thanks to (13.3) and property (13.60). Thus the truncation
error (13.57) is null. Let us now see some particular cases associated to three different
choices of the parameter ρ :

• if ρ = 1 we obtain the method called Galerkin Least-Squares (GLS), where

S
(1)(vh) = Lvh.

If we take vh = uh we see that a term proportional to
∫

K
(Luh)

2 dK has been added

on each triangle to the original bilinear form;

• if ρ = 0 we obtain the method named Streamline Upwind Petrov-Galerkin (SUPG)
where

S
(0)(vh) = LSSvh;

• if ρ =−1 we obtain the so-called Douglas-Wang (DW) method where

S
(−1)(vh) = (LSS −LS)vh.

If σ = 0 and divb = 0 and we use P1 finite elements, the three methods above
coincide, as −Δuh|K = 0 ∀K ∈ Th.

Let us now limit ourselves to the two most classical procedures, GLS (ρ = 1) and
SUPG (ρ = 0) and to the problem written in conservative form (13.58). We define
the “ρ norm”

‖v‖(ρ)={μ‖∇v‖2
L2(Ω) + ‖√γv‖2

L2(Ω) + ∑
K∈Th

(
(LSS +ρLS)v,τKS

(ρ)(v)
)

L2(K)
} 1

2 ,
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where γ = 1
2 divb+σ when we use the conservative form (13.13) of the operator L,

otherwise γ = − 1
2 divb+ σ when using the non-conservative form (13.1). In either

case we assume that γ is a non-negative function. The following (stability) inequality
holds: there exists an α∗ depending on γ and on the coercivity constant α of a(·, ·)
such that

‖uh‖(ρ) ≤
C

α∗ ‖ f‖L2(Ω), (13.62)

where C is a suitable constant (see for instance (13.78)). Moreover, under suitable
assumptions, as we will se in Sect. 13.8.8, the following error estimate holds

‖u− uh‖(ρ) ≤Chr+1/2|u|Hr+1(Ω), (13.63)

hence the order of accuracy of the method increases when the degree r of the polyno-
mials we employ increases, as in the standard Galerkin method. The proofs of (13.62)
and (13.63) in the case ρ = 1 will be provided in Sect. 13.8.8.

The choice of the stabilization parameter δ , measuring the amount of artificial vis-
cosity, is extremely important. To this end, we report in Table 13.1 the range admitted
for such parameter as a function of the chosen stabilized scheme. In the table, C0 is
the constant of the following inverse inequality

∑
K∈Th

h2
K

∫
K
|Δvh|2dK ≤C0‖∇vh‖2

L2(Ω) ∀vh ∈ Xr
h . (13.64)

Obviously, C0 =C0(r). Let us note that for linear finite elements C0 = 0. In such a
case, the constant δ in Table 13.1 is not subject to any upper bound. On the contrary,
if we are interested in polynomials of higher degree, r ≥ 2, then

C0(r) = C̄0r−4. (13.65)

For a more extensive analysis, we refer to [QV94, Chap. 8], and to [RST96]. We
also suggest [Fun97] for the case of an approximation with spectral elements.

Table 13.1. Admissible values for the stabilization parameter δ

SUPG 0 < δ < 1/C0

GLS 0 < δ

DW 0 < δ < 1/(2C0)

13.8.7 On the choice of the stabilization parameter τKτKτK

For linear finite elements (r = 1) another choice of the stabilization function τK , alter-
native to that in (13.61), is

τK(x) =
hK

2|b(x)|ξ (PeK) ∀x ∈ K, ∀K ∈ Th, (13.66)
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where

PeK(x) =
|b(x)|hK

2μ(x)
∀x ∈ K, ∀K ∈ Th, (13.67)

is the local Péclet number (in analogy to definition (13.22) for dimension one), and
the upwind function ξ (·) can for instance be chosen as follows

ξ (θ ) = coth(θ )− 1/θ , θ > 0. (13.68)

As limθ→+∞ ξ (θ ) = 1 (cf. Fig. 13.9), if PeK(x)� 1 then (13.66) reduces, in the limit,
to (13.61) with δ = 1/2. Moreover, since θ → 0 implies ξ (θ ) = θ/3+o(θ ), we have
τK(x) → 0 when PeK(x) � 1 (in fact no stabilization is necessary if the problem is
diffusion-dominated). Other possibilities for the function τK are found in the literature.
For instance, hK can be replaced in (13.66)–(13.67) by the diameter of the element K
along b, or one can choose the upwind function ξ (·) to be ξ (θ ) = max{0,1− 1/θ},
or ξ (θ ) = min{1,θ/3} (see [JK07] for more details).

Let us now give a heuristic explanation for the choice (13.66) of the stabiliz-
ing function τK . To this end, take the variational formulation (13.18) of the one-
dimensional diffusion-transport problem (13.16). Given a uniform partition Th of
Ω = (0,1) in N intervals of width h = 1/N, consider the SUPG method for the dis-
cretization of (13.18):

find
◦
uh∈Vh such that ah(

◦
uh,vh) = Fh(vh) ∀vh ∈Vh,

where Vh ⊂ H1
0 (0,1) is the space of piecewise-linear continuous polynomials on Th,

and

ah(u,v) =
∫ 1

0
(μu′v′+ bu′v)dx+ τ

∫ 1

0
|b|2u′v′ dx ∀u,v ∈Vh,

Fh(v) =−
∫ 1

0
bvdx ∀v ∈Vh.

Fig. 13.9. Upwind function ξ defined in (13.68)
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By defining μh = μ(1+τ|b|2/μ) the bilinear form ah(·, ·) may be equivalently written
as

ah(u,v) =
∫ 1

0
μhu′v′ dx+

∫ 1

0
bu′vdx ∀u,v ∈Vh.

Choose the parameter τ as

τ =
h

2|b|
[

coth(Pe)− 1
Pe

]
, (13.69)

where Pe= |b|h
2μ is the local Péclet number. By virtue of these definitions we obtain

τ
|b|2
μ

= Pe

[
coth(Pe)− 1

Pe

]
= Pecoth(Pe)− 1

= Pe− 1+Pe(coth(Pe)− 1)

= Pe−1+B(2Pe).

The final equality involves the identity:

t (coth(t)−1) = t

[
et + e−t

et − e−t − 1

]
= 2t

[
e−t

et − e−t

]
=

2t

e2t − 1
= B(2t), t > 0,

which in turn descends from the definition of coth(·). Above, B(·) is the Bernoulli
function (cf. Sect. 13.6). To sum up, μh may be written as

μh = μ

(
1+ τ

|b|2
μ

)
= μ (1+φ(Pe)) ,

having chosen φ as in (13.39). So in this particular case, the SUPG method, with τ
chosen as in (13.69), coincides with the Scharfetter and Gummel method encountered
in Sect. 13.6, which is the unique method capable of yielding a numerical solution to
a constant-coefficient problem (with constant source) that is nodally exact.

Remark 13.5. If one employs polynomials of degree r ≥ 2 (as in the hp formulation,
or with spectral elements), a more coherent definition of the local Péclet number is
this

Per
K =

|b(x)|hK

2μ(x)r
,

while the corresponding stabilizing function (13.66) becomes (see [GaAML04])

τK(x) =
hK

2|b|rξ (Pe
r
K).

•
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13.8.8 Analysis of the GLS method

In this section we want to prove the stability property (13.62) and the convergence
property (13.63) in the case of the GLS method (hence for ρ = 1).

We suppose that the differential operator L has the form (13.58), with μ > 0 and
σ ≥ 0 constant, and b being a vector function whose components are continuous (e.g.
constant), with homogeneous Dirichlet boundary conditions being assigned. The bi-
linear form a(·, ·) : V ×V → R associated to the operator L is therefore

a(u,v) = μ

∫
Ω

∇u ·∇vdΩ +

∫
Ω

div(bu)vdΩ +

∫
Ω

σuvdΩ ,

with V = H1
0(Ω). For simplicity, we suppose that there exist two constants γ0 and γ1

such that

0 < γ0 ≤ γ(x) =
1
2

div(b(x))+σ ≤ γ1 ∀ x ∈Ω . (13.70)

In this case the form a(·, ·) is coercive, as a(v,v)≥ μ‖∇v‖2
L2(Ω)

+ γ0‖v‖2
L2(Ω)

. Follow-
ing the procedure developed in Sect. 13.8.5, we can write the symmetric and skew-
symmetric parts associated to L as

LSu =−μΔu+ γu, LSSu =
1
2

(
div(bu)+b ·∇u

)
.

Moreover, we rewrite the stabilized formulation (13.59) by splitting L
(1)

h (uh, f ;vh) in
two terms, one containing uh, the other f :

find uh ∈Vh : a(1)h (uh,vh) = f (1)h (vh) ∀vh ∈Vh, (13.71)

with

a(1)h (uh,vh) = a(uh,vh) + ∑
K∈Th

δ

(
Luh,

hK

|b|Lvh

)
L2(K)

(13.72)

and

f (1)h (vh) = ( f ,vh) + ∑
K∈Th

δ

(
f ,

hK

|b|Lvh

)
L2(K)

. (13.73)

We observe that, using these notations, the strong consistency property (13.60) is
expressed via the equality

a(1)h (u,vh) = f (1)h (vh) ∀vh ∈Vh. (13.74)

We can now prove the following preliminary result.
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Lemma 13.1. The bilinear form a(1)h (·, ·) defined in (13.72) satisfies the following
relation

a(1)h (vh,vh) = μ ||∇vh||2L2(Ω)
+ ||√γ vh||2L2(Ω)

+ ∑
K∈Th

δ

(
hK

|b|Lvh,Lvh

)
L2(K)

∀ vh ∈Vh.
(13.75)

This identity follows from definition (13.72) (having chosen vh = uh) and from (13.70).
In the case under exam, the norm ‖ ·‖(1), which we here denote by the symbol ‖ ·‖GLS

for convenience, becomes

‖vh‖2
GLS = μ ||∇vh||2L2(Ω) + ||√γ vh||2L2(Ω) + ∑

K∈Th

δ

(
hK

|b|Lvh,Lvh

)
L2(K)

. (13.76)

We can prove the following stability result.

Lemma 13.2. Let uh be the solution of the GLS method. Then for each δ > 0
there exists a constant C > 0, independent of h, such that

‖uh‖GLS ≤C‖ f‖L2(Ω).

Proof. We choose vh = uh in (13.71). By exploiting Lemma 13.1 and definition (13.76),
we can first write that

‖uh‖2
GLS = a(1)h (uh,uh) = f (1)h (uh) = ( f ,uh)L2(Ω) + ∑

K∈Th

δ

(
f ,

hK

|b|Luh

)
L2(K)

.

(13.77)
We look for an upper bound for the two right-hand side terms of (13.77) separately,
by applying suitably the Cauchy-Schwarz and Young inequalities. We thus obtain:

( f ,uh)L2(Ω) =

(
1√
γ

f ,
√
γ uh

)
L2(Ω)

≤
∥∥∥ 1√

γ
f
∥∥∥

L2(Ω)
‖√γ uh‖L2(Ω)

≤ 1
4
‖√γ uh‖2

L2(Ω) +
∥∥∥ 1√

γ
f
∥∥∥2

L2(Ω)
,

∑
K∈Th

δ

(
f ,

hK

|b|Luh

)
L2(K)

= ∑
K∈Th

(√
δ

hK

|b| f ,

√
δ

hK

|b| Luh

)
L2(K)

≤ ∑
K∈Th

∥∥∥√δ hK

|b| f
∥∥∥

L2(K)

∥∥∥√δ hK

|b| Luh

∥∥∥
L2(K)

≤ ∑
K∈Th

δ

(
hK

|b| f , f

)
L2(K)

+
1
4 ∑K∈Th

δ

(
hK

|b|Luh,Luh

)
L2(K)

.
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By summing the two previous upper bounds and by exploiting again definition (13.76),
we have

‖uh‖2
GLS ≤

∥∥∥ 1√
γ

f
∥∥∥2

L2(Ω)
+ ∑

K∈Th

δ

(
hK

|b| f , f

)
L2(K)

+
1
4
‖uh‖2

GLS,

that is, recalling that hK ≤ h,

‖uh‖2
GLS ≤ 4

3

[∥∥∥ 1√
γ

f
∥∥∥2

L2(Ω)
+ ∑

K∈Th

δ

(
hK

|b| f , f

)
L2(K)

]
≤ C2 ‖ f‖2

L2(Ω) ,

having set

C =
(4

3
max
x∈Ω

(1
γ
+ δ

h

|b|
))1/2

. (13.78)

�
We observe that the previous result is valid with the only constraint that the stabiliza-
tion parameter δ be positive. In fact, such parameter might also vary for each element
K. In this case, we would have δK instead of δ in (13.72) and (13.73), while the con-
stant δ in (13.78) would have the meaning of max

K∈Th

δK .

We now study the convergence of the GLS method.

Theorem 13.2. We assume that the space Vh satisfies the following local approx-
imation property: for each v ∈V ∩Hr+1(Ω), there exists a function v̂h ∈Vh such
that

‖v− v̂h‖L2(K) + hK|v− v̂h|H1(K) + h2
K|v− v̂h|H2(K) ≤Chr+1

K |v|Hr+1(K) (13.79)

for each K ∈ Th. Moreover, we suppose that for each K ∈ Th the local Péclet
number of K is larger than 1,

PeK(x) =
|b(x)|hK

2μ
> 1 ∀x ∈ K. (13.80)

Finally, we suppose that the inverse inequality (13.64) holds and that the stabi-
lization parameter satisfies the relation 0 < δ ≤ 2C−1

0 .
Then the following estimate holds for the error associated to the GLS method

‖uh − u‖GLS ≤Chr+1/2|u|Hr+1(Ω), (13.81)

as long as u ∈ Hr+1(Ω).

Proof. First of all, we rewrite the error as follows

eh = uh − u = σh −η , (13.82)

with σh = uh − ûh, η = u− ûh, where ûh ∈Vh is a function that depends on u and that
satisfies property (13.79). If, for instance, Vh = Xr

h ∩H1
0 (Ω), we can choose ûh = Π r

hu,
that is the finite element interpolant of u.
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We start by estimating the norm ‖σh‖GLS. By exploiting the strong consistency of
the GLS scheme given by (13.74), we obtain

||σh||2GLS = a(1)h (σh,σh) = a(1)h (uh − u+η ,σh) = a(1)h (η ,σh)

thanks to (13.71). Now, by definition (13.72) and thanks to the homogeneous Dirichlet
boundary conditions it follows that

a(1)h (η ,σh) = μ
∫
Ω

∇η ·∇σh dΩ −
∫
Ω

η b ·∇σh dΩ +
∫
Ω

σ η σh dΩ

+ ∑
K∈Th

δ
(

Lη ,
hK

|b|Lσh

)
L2(K)

= μ(∇η ,∇σh)︸ ︷︷ ︸
(I)

− ∑
K∈Th

(η ,Lσh)K︸ ︷︷ ︸
(II)

+2(γ η ,σh)L2(Ω)︸ ︷︷ ︸
(III)

+ ∑
K∈Th

(η ,−μΔσh)L2(K)︸ ︷︷ ︸
(IV)

+ ∑
K∈Th

δ

(
Lη ,

hK

|b|Lσh

)
L2(K)︸ ︷︷ ︸

(V)

.

We now bound the terms (I)-(V) separately. By carefully using the Cauchy-Schwarz
and Young inequalities we obtain

(I) = μ(∇η ,∇σh)L2(Ω) ≤
μ

4
||∇σh||2L2(Ω) + μ‖∇η‖2

L2(Ω),

(II) = − ∑
K∈Th

(η ,Lσh)L2(K) =− ∑
K∈Th

(√ |b|
δ hK

η ,

√
δ hK

|b| Lσh

)
L2(K)

≤ 1
4 ∑K∈Th

δ
(hK

|b|Lσh,Lσh

)
L2(K)

+ ∑
K∈Th

( |b|
δ hK

η ,η
)

L2(K)
,

(III) = 2(γ η ,σh)L2(Ω) = 2(
√
γ η ,

√
γ σh)L2(Ω) ≤

1
2
‖√γ σh‖2

L2(Ω) + 2‖√γ η‖2
L2(Ω).

For the term (IV), thanks again to the Cauchy-Schwarz and Young inequalities, hy-
pothesis (13.80) and the inverse inequality (13.64), we obtain

(IV) = ∑
K∈Th

(η ,−μΔσh)L2(K)

≤ 1
4 ∑K∈Th

δ μ2
(hK

|b| Δσh,Δσh

)
L2(K)

+ ∑
K∈Th

( |b|
δ hK

η ,η
)

L2(K)

≤ 1
8
δ μ ∑

K∈Th

h2
K (Δσh,Δσh)L2(K) + ∑

K∈Th

( |b|
δ hK

η ,η
)

L2(K)

≤ δC0 μ

8
‖∇σh‖2

L2(Ω) + ∑
K∈Th

( |b|
δ hK

η ,η
)

L2(K)
.
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Term (V) can finally be bounded once again thanks to the Cauchy-Schwarz and Young
inequalities as follows

(V) = ∑
K∈Th

δ
(

Lη ,
hK

|b|Lσh

)
L2(K)

≤ 1
4 ∑K∈Th

δ
(hK

|b| Lσh,Lσh

)
L2(K)

+ ∑
K∈Th

δ
(hK

|b| Lη ,Lη
)

L2(K)
.

Thanks to these upper bounds and using once more the definition (13.76) , we obtain
the following estimate

‖σh‖2
GLS = a(1)h (η ,σh)≤ 1

4
‖σh‖2

GLS

+
1
4

(
‖√γ σh‖2

L2(Ω) + ∑
K∈Th

δ
(hK

|b| Lσh,Lσh

)
L2(K)

)
+
δC0 μ

8
‖∇σh‖2

L2(Ω)

+ μ ‖∇η‖2
L2(Ω) +2 ∑

K∈Th

( |b|
δ hK

η ,η
)

L2(K)
+ 2‖√γ η‖2

L2(Ω) + ∑
K∈Th

δ
(hK

|b| Lη ,Lη
)

L2(K)︸ ︷︷ ︸
E (η)

≤ 1
2
‖σh‖2

GLS +E (η),

having exploited, in the last passage, the assumption that δ ≤ 2C−1
0 . Then, we can

state that
‖σh‖2

GLS ≤ 2E (η).

We now estimate the term E (η), by bounding each of its summands separately. To this
end, we will basically use the local approximation property (13.79) and the require-
ment formulated in (13.80) on the local Péclet number PeK . Moreover, we observe
that the constants C, introduced in the remainder, depend neither on h nor on PeK , but
can depend on other quantities such as the constant γ1 in (13.70), the reaction constant
σ , the norm ||b||L∞(Ω), the stabilization parameter δ . We then have

μ ‖∇η‖2
L2(Ω)

≤ Cμ h2r |u|2Hr+1(Ω)

≤ C
||b||L∞(Ω) h

2
h2r |u|2Hr+1(Ω) ≤C h2r+1 |u|2Hr+1(Ω),

(13.83)

2 ∑
K∈Th

( |b|
δ hK

η ,η
)

L2(K)
≤ C

||b||L∞(Ω)

δ ∑
K∈Th

1
hK

h2(r+1)
K |u|2Hr+1(K)

≤ C h2r+1 |u|2
Hr+1(Ω)

,

2‖√γ η‖2
L2(Ω)

≤ 2γ1 ‖η‖2
L2(Ω)

≤C h2(r+1) |u|2Hr+1(Ω)
, (13.84)

having exploited, for controlling the third summand, the assumption (13.70).
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Finding an upper bound for the fourth summand of E (η) is slightly more difficult:
first, by elaborating on the term Lη , we have

∑
K∈Th

δ
(hK

|b| Lη ,Lη
)

L2(K)
= ∑

K∈Th

δ
∥∥∥√hK

|b| Lη
∥∥∥2

L2(K)

= ∑
K∈Th

δ
∥∥∥− μ√hK

|b| Δη+

√
hK

|b| div(bη)+σ

√
hK

|b| η
∥∥∥2

L2(K)

≤C ∑
K∈Th

δ
(∥∥∥μ√hK

|b| Δη
∥∥∥2

L2(K)
+
∥∥∥√hK

|b| div(bη)
∥∥∥2

L2(K)
+
∥∥∥σ√hK

|b| η
∥∥∥2

L2(K)

)
.

(13.85)
Now, with a similar computation to the one performed to obtain estimates (13.83) and
(13.84), it is easy to prove that the second and third summands of the left-hand side
of (13.85) can be bounded using a term of the form C h2r+1 |u|2Hr+1(Ω)

, for a suitable
choice of the constant C. For the first summand, we have

∑
K∈Th

δ
∥∥∥μ√hK

|b| Δη
∥∥∥2

L2(K)
≤ ∑

K∈Th

δ
h2

K μ

2
‖Δη‖2

L2(K)

≤Cδ ||b||L∞(Ω) ∑
K∈Th

h3
K ‖Δη‖2

L2(K) ≤C h2r+1 |u|2Hr+1(Ω),

having again used conditions (13.79) and (13.80). The latter bound allows us to con-
clude that

E (η)≤C h2r+1 |u|2Hr+1(Ω),

that is

‖σh‖GLS ≤C hr+1/2 |u|Hr+1(Ω). (13.86)

Reverting to (13.82), to obtain the desired estimate for the norm ‖uh −u‖GLS we still
have to estimate ‖η‖GLS. This evidently leads to estimating three contributions as in
(13.83), (13.84) and (13.85), and eventually produces

‖η‖GLS ≤C hr+1/2 |u|Hr+1(Ω).

The desired estimate (13.81) follows by combining this result with (13.86). �

13.8.9 Stabilization through bubble functions

The generalized Galerkin method considered in the previous sections yields a stable
numerical solution owing to the enrichment of the bilinear form a(·, ·). An alternative
strategy consists of adopting a richer subspace than the standard one Vh. The idea is
then to choose both the approximate solution and the test functions in the enriched
space, therefore remaining within a classical Galerkin framework.
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Referring to the usual diffusion-transport-reaction problem of the form (13.1), we in-
troduce the finite dimensional space

V b
h =Vh ⊕B,

where Vh = Xr
h ∩ H1

0 (Ω) is the usual space and B is a finite-dimensional space of
bubble functions, or

B = {vB ∈ H1
0 (Ω) : vB|K = cK bK , bK |∂K = 0 and cK ∈ R}.

On each element K we then add the correction term bK , for which several differ-
ent choices are possible. As we only wish to deal with the initial grid Th associated
to the space Vh, a standard choice leads to defining bK = λ1λ2λ3 where the λi, for
i = 0, . . . ,2, are the barycentric coordinates on K, i.e. linear polynomials defined on
K, vanishing on one of the sides of the triangle and taking the value 1 at the vertex
opposed to such side. (See Sect. 4.4.3 for their definition). The function bK coincides
in this case with the so-called cubic bubble that takes value 0 on the boundary of K and
positive values inside it (see Fig. 13.10 (left)).Hence c is the only degree of freedom
associated to the triangle K (it will coincide, for instance, with the largest value taken
by bK on K, or with the value it takes in the center of gravity). (see Sect. 4.4.3).

Remark 13.6. In order to introduce a computational subgrid on the domain Ω (ob-
tained as a suitable refinement of the mesh Th), we can adopt more complex defini-
tions for the bubble function bK . For instance, bK could be a piecewise linear function,
again defined on the element K and assuming the value 0 on the boundary of the tri-
angle (like the basis function of linear finite elements associated to some point inside
K) (see Fig. 13.10 (right)) [EG04]. •

At this point, we can introduce the Galerkin approximation on the space V b
h of the

problem under exam, which will take the form

find ub
h ∈V b

h : a(uh + ub,v
b
h) = ( f ,vb

h) ∀vb
h ∈V b

h , (13.87)

with a(·, ·) being the bilinear form associated to the differential operator L.

Fig. 13.10. Example of a cubic (left) and linear (right) bubble
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We propose to rewrite (13.87) as a stabilized Galerkin scheme in Vh, by eliminating
function ub. So far we can only say that, in each element K, ub

∣∣
K = cb,KbK for a

suitable (unknown) constant cb,K , with ub ∈ B.
We decompose both ub

h and vb
h as sums of a function of Vh and a function of B, that is

ub
h = uh +ub, vb

h = vh + vb.

For any given K, we first select as test function vb
h in (13.87) the one identified by

vh = 0 and vb ∈ B such that

vb =

{
bK in K,

0 elsewhere.

We then have
a(uh +ub,vb) = aK(uh + cb,KbK ,bK),

having denoted by aK(·, ·) the restriction of the bilinear form a(·, ·) to the element K.
We can therefore rewrite (13.87) as

aK(uh,bK)+ cb,KaK(bK ,bK) = ( f ,bK)L2(K). (13.88)

Exploiting the fact that bK vanishes on the boundary of K, we can integrate by parts the
first term of (13.88), obtaining aK(uh,bK) = (Luh,bK)L2(K), then the unknown value
of the constant cb,K , is

cb,K =
( f −Luh,bK)L2(K)

aK(bK ,bK)
.

We now choose as test function vb
h in (13.87) the one identified by any function vh ∈Vh

and by vb = 0, thus obtaining

a(uh,vh)+ ∑
K∈Th

cb,KaK(bK ,vh) = ( f ,vh)L2(Ω). (13.89)

Let us rewrite aK(bK ,vh). By integrating by parts and exploiting the definitions of
symmetric and skew-symmetric parts of the differential operator L (see Sect. 13.8.5),
we have

aK(bK ,vh) =

∫
K

μ∇bK ·∇vh dK +

∫
K

b ·∇bK vh dK +

∫
K

σ bKvh dK

=−
∫
K

μ bKΔvh dK +

∫
∂K

μ bK∇vh ·ndγ−
∫
K

bK∇vh ·b dK

+
∫
∂K

b ·n vh bK dγ+
∫
K

σ bKvh dK = (bK ,(LS −LSS)vh)L2(K).
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We have exploited the property that the bubble function bK vanishes on the boundary
of the element K, and moreover that divb = 0. In a very similar way we can rewrite
the denominator of the constant cb,K in the following way

aK(bK ,bK) = (LSbK ,bK)L2(K).

Reverting to (13.89), we thus have

a(uh,vh)+aB(uh, f ;vh) = ( f ,vh)L2(Ω) ∀ vh ∈Vh,

where

aB(uh, f ;vh) = ∑
K∈Th

(Luh − f ,bK)K(LSSvh −LSvh,bK)L2(K)

(LSbK ,bK)L2(K)

.

We have therefore found a stabilized Galerkin scheme, which can be formulated in the
strongly consistent form (13.59). In the case where b is constant, we can identify it
using a sort of generalized Douglas-Wang method.
By choosing a convenient bubble bK and following an analogous procedure to the one
illustrated above, it is also possible to define generalized SUPG and GLS methods
(see [BFHR97]). Similar strategies based on the so-called subgrid viscosity can be
successfully used. See [EG04] for an extensive analysis.

13.9 DG methods for diffusion-transport equations

The Discontinuous Galerkin method introduced in Chap. 12 for the Poisson problem
can be extended to the diffusion-transport-reaction problem (13.13) (in conservation
form) as follows: find uδ ∈W 0

δ s.t.

M

∑
m=1

(μ∇uδ ,∇vδ )Ωm − ∑
e∈Eδ

∫
e
[vδ ] · {{μ∇uδ}}− τ ∑

e∈Eδ

∫
e
[uδ ]{{μ∇vδ}}

+ ∑
e∈Eδ

∫
e
γ|e|−1[uδ ] · [vδ ]−

M

∑
m=1

(buδ ,∇vδ )Ωm + ∑
e∈Eδ

∫
e
{{buδ}}b · [vδ ]

+
M

∑
m=1

(σuδ ,vδ )Ωm =
M

∑
m=1

( f ,vδ )Ωm ,

(13.90)

we have used the same notation of Sect. 12.1; moreover,

{{buδ}}b =

⎧⎨⎩
bu+δ if b ·n+ > 0
bu−

δ
if b ·n+ < 0

b{uδ} if b ·n+ = 0 .
(13.91)

Observe that {{buδ}}b · [vδ ] = 0 if b ·n+ = 0.
If the diffusion-transport-reaction equation is written in non-conservative form as

in (13.1), by b·∇u= div(bu)−div(b)u it is sufficient to modify (13.90) by substituting
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the term
M

∑
m=1

(σuδ ,vδ )Ωm with
M

∑
m=1

(ηuδ ,vδ )Ωm ,

where η(x) = σ(x)−div(b(x)); this time we suppose that there exists a positive con-
stant η0 > 0 so that η(x)≥ η0 for almost every x ∈Ω .

The DG method can easily be localized to every subdomain Ωm (either a finite
or a spectral element). Indeed, since test functions do not have to be continuous, for
every m (m = 1, . . . ,M) we can choose test functions to vanish outside the element
Ωm. In this way the sum in (13.90) (or in (12.7)) is reduced to the single index m,
while the one on the edges is reduced to the edges on the boundary of Ωm. We spot
here another peculiarity of the DG method: it fits well with local refinements, element
by element, either grid-wise (“h-refinement”), or polynomial-wise (“p-refinement”, p
being the local polynomial degree, the same indicated with r for finite elements and
with N for spectral elements methods).
In Chaps. 14,15,16 we will see that in hyperbolic problems the solutions can be dis-
continuous. This is the case when either the initial and/or boundary data are discontin-
uous and, more in general, for non-linear problems. In all these cases, approximations
based on discontinuous polynomial functions are very appropriate. For further par-
ticulars on DG methods for diffusion-transport problems, see, e.g., [Coc99, HSS02,
BMS04, BHS06, AM09].
Finally, let us point out that the previous description can be extended to a problem
where the spatial operator is written as the divergence of a flux depending on ∇u,
div(φ(∇u)). For this we only need to replace in every formula ∇u with the flux ex-
pression Φ(∇u).
We refer to Sect. 13.11 for an analysis of the numerical results obtained by the DG
method (13.90).

13.10 Mortar methods for the diffusion-transport equations

Mortar methods, described in Chapter 12 for the Poisson problem, can be applied
to the discretization of equations (13.1) and of those written in conservation form
(13.13). The domain discretization and the choice of master and slave spaces can be
carried out as described in Chapter 12 for the Poisson problem.

The bilinear forms ai(u
(i)
δ
,v(i)
δ
) showing up in equation (12.19) and in system

(12.30) now read

ai(u
(i)
δ ,v(i)δ ) =

∫
Ωi

μ∇u(i)δ ·∇v(i)δ +

∫
Ωi

v(i)δ b ·∇u(i)δ +

∫
Ωi

σu(i)δ v(i)δ

in case of problem (13.1), and

ai(u
(i)
δ
,v(i)
δ
) =

∫
Ωi

μ∇u(i)
δ
·∇v(i)

δ
−
∫
Ωi

u(i)
δ

b ·∇v(i)
δ
+

∫
Ωi

σu(i)
δ

v(i)
δ
+

∫
∂Ωi

b ·nu(i)
δ

v(i)
δ

(13.92)
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in case of the problem in conservation form (13.13), where the transport term has been
integrated by parts.

However, we must point out that when |b(x)| � μ , the mortar solution, as seen
in the previous chapter, does not always allow to attain optimal error estimates like
(12.20) and (12.21), that is a global error that can be expressed as the sum of local
errors, without requiring any compatibility constraints between the discretization of
the subdomains sharing the same interface. More precisely, instabilities can arise due
to the non-conformity at the interfaces, even if stabilization techniques, like GLS or
SUPG, are called into play. To understand why that may occur, we first consider the
diffusion-transport-reaction problem in conservation form (13.13) and its weak mortar

formulation (as in (12.19)) with ai(u
(i)
δ
,v(i)
δ
) defined in (13.92). Add now the GLS

stabilization by substituting the bilinear forms with the stabilized ones

a(1)i,δ (u
(i)
δ
,v(i)
δ
) = ai(u

(i)
δ
,v(i)
δ
)+ ∑

Ti,k∈Ti

(
Lu(i)

δ
,τkLv(i)

δ

)
L2(Ti,k)

(13.93)

The index (1) in a(1)i,δ indicates the choice ρ = 1 in the stabilization, according to the
formalism used in the previous sections; the elements Ti,k are those of the triangulation
Ii of Ωi. Now we write

a(1)
δ
(uδ ,vδ ) =

2

∑
i=1

a(1)i,δ (u
(i)
δ
,v(i)
δ
).

(Source terms are stabilized in a similar way.)
Using the classical rules of integration, we have∫

Ωi

div(bu(i)δ )u(i)δ =
1
2

∫
Ωi

div(bu(i)δ )u(i)δ − 1
2

∫
Ωi

u(i)δ b ·∇u(i)δ +
1
2

∫
∂Ωi

b ·ni(u
(i)
δ )2

=
1
2

∫
Ωi

(divb)(u(i)δ )2 +
1
2

∫
Γ

b ·ni(u
(i)
δ )2

where ni indicates the outward unit vector on ∂Ωi and the last boundary integral is
now confined on the internal interface thanks to the homogeneous Dirichlet conditions.
Then

a(1)i,δ (u
(i)
δ ,u(i)δ ) = μ‖∇u(i)δ ‖2

L2(Ωi)
+ ‖
√
σ +

1
2

divb u(i)δ ‖2
L2(Ωi)

+ ∑
Ti,k∈Ti

(
Lu(i)δ ,τkLu(i)δ

)
L2(Ti,k)

+
1
2

∫
Γ
b ·ni(u

(i)
δ )2

and

a(1)
δ
(uδ ,uδ ) = μ‖∇uδ‖2

L2(Ω) +‖
√
σ +

1
2

divb uδ‖2
L2(Ω)

+ ∑
i=1,2

Ti,k∈Ti

(
Lu(i)δ ,τkLu(i)δ

)
L2(Ti,k)

+
1
2

∫
Γ

b ·nΓ ((u(1)δ )2 − (u(2)δ )2),

since nΓ = n1 =−n2 on the interface.



356 13 Diffusion-transport-reaction equations

Because of the presence of the integral 1
2

∫
Γb ·nΓ ((u(1)δ )2 − (u(2)δ )2), a(1)δ can fail

to be coercive for to the norm ‖ · ‖GLS or any other discrete norm. To go around this

problem, in [AAH+98] it is suggested to add to the bilinear form a(1)
δ

one more DG-
like stabilization term on Γ ,

ãΓ (uδ ,vδ ) =
∫
Γ
(b ·n1)

−(u(2)δ − u(1)δ )v(1)δ +

∫
Γ
(b ·n2)

−(u(1)δ − u(2)δ )v(2)δ .

Here x− indicates the negative part of the number x (i.e. x− = (|x|−x)/2). By splitting
each integral on Γ into two terms according to the sign of (b · ni)

−, with the aid of
simple algebraic operations we obtain

ãΓ (uδ ,uδ ) =
1
2

∫
Γ
|b ·nΓ |(u(1)δ − u(2)δ )2.

The form a(1)
δ
(uδ ,uδ )+ ãΓ (uδ ,uδ ) is therefore coercive for the GLS norm (13.77).

13.11 Some numerical tests

We now present some numerical solutions obtained using linear finite elements for the
following two-dimensional diffusion-transport probem

{ −μΔu+b ·∇u= f in Ω = (0,1)× (0,1),

u = g on ∂Ω ,
(13.94)

where b = (1,1)T . To start with let us consider the following constant data: f ≡ 1 and

Fig. 13.11. Approximation of problem (13.94) with μ = 10−3, h = 1/80, using the standard
(left) and GLS (right) Galerkin method. The corresponding local Péclet number is Pe= 8.84
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g ≡ 0. In this case the solution is characterized by a boundary layer near the edges
x = 1 and y = 1. We have considered two different viscosity values: μ = 10−3 and
μ = 10−5. For both problems we compare the solutions obtained using the standard
and GLS Galerkin methods, respectively, by making two different choices for the uni-
form discretization step h: 1/20 and 1/80, respectively. In the GLS case we used
the value (13.61) of τK . The combinations of the two values for μ and h yield four
different values for the local Péclet number Pe. As it can be observed by analyzing
Figs. 13.11–13.14 (bearing in mind the different vertical scales) for increasing Pé-
clet numbers, the solution provided by the standard Galerkin method denotes stronger
and stronger fluctuations. The latter eventually overcome completely the numerical
solution (see Fig. 13.14). On the other hand, the GLS method is able to provide an
acceptable numerical solution even for extremely high values of Pe (even though it
develops an over-shoot at the point (1,1)).

Let us now choose forcing term f and the boundary data g in such a way that

u(x,y) = x+ y(1− x)+
e−1/μ − e−(1−x)(1−y)/μ

1− e−1/μ

be the exact solution (see e.g. [HSS02]). The corresponding Péclet number is Pegl =

(
√

2μ)−1. For small values of the viscosity μ , this solution features a boundary layer
near the edges x = 1 and y = 1. In what follows we consider two different values
of the viscosity: μ = 10−1 and μ = 10−9. The numerical approximation is based on
piecewise linear finite elements (r = 1). We compare the numerical solutions obtained
using the standard Galerkin method, the SUPG method, and the DG method (13.92)
(with σ = 1 and γ = 10r2) under the variant DG-N the (12.7), for which the boundary
conditions are imposed using the Nitsche penalization technique [Nit71]. In Figs. 13.5
and 13.6 we plot the numerical solutions using an unstructured triangular grid whose
gridsize is h ≈ 1/8. Similar results obtained on a finer grid with h ≈ 1/16 are dis-
played in Figs. 13.17-13.18; they show that for small Péclet (global) number, the three
different methods yield very similar solutions. For large Péclet number, Figs 13.16-
13.18 (be aware of the different vertical scales) show that the solution of the Galerkin
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Fig. 13.12. Approximation of problem (13.94) with μ = 10−3, h = 1/20, using the standard
(left) and GLS (right) Galerkin method. The corresponding local Péclet number is Pe= 35.35
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Fig. 13.13. Approximation of problem (13.94) with μ = 10−5, h = 1/80, using the standard
(left) and GLS (right) Galerkin method. The corresponding local Péclet number is Pe= 883.88
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Fig. 13.14. Approximation of problem (13.94) with μ = 10−5, h = 1/20, using the standard
(left) and GLS (right) Galerkin method. The corresponding local Péclet number is Pe= 3535.5

method exhibits very pronounced spurious oscillations. Instead, the SUPG provides
acceptable solutions even though they are affected by over-shoot in correspondence to
the point (1,1).

The DG method exhibits oscillations on those elements intersecting the outflow
boundary, because of the direct (essential) treatment of the boundary condition. Fi-
nally the DG-N solution has neither oscillations no over-shoots, thanks to they weak
treatment of the boundary condition. However by this (Nitsche) approach the bound-
ary longer solution cannot be properly approximated.

Finally, we consider a pure transport problem, that is b ·∇u= f inΩ = (0,1)2 with
u = g su Γ−, b = (1,1), with f and g chosen in such a way that the exact solution is
u(x,y) = 1+ sin(π(x+ 1)(y+ 1)2/8).

We solve this problem by the DG method with piecewise polynomials of degree
r = 1,2,3 and 4 on a sequence of uniform triangular grids with gridsize h. The DG
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(a) Standard Galerkin method (b) SUPG method

(c) DG method (d) DG-N variant of method DG
Fig. 13.15. The approximate solution of problem (13.94) for μ = 10−1 obtained respectively
the Galerkin method, the SUPG method, the DG method (13.92) (with σ = 1 and γ = 10r2), and
the DG-N variant with weak imposition of boundary conditions. Triangula grid with h ≈ 1/8
and piecewise linear finite elements (r = 1)

(a) Standard Galerkin method (b) SUPG method

(c) DG method (d) DG-N variant of method DG
Fig. 13.16. The approximate solution of problem (13.94) for μ = 10−9 obtained respectively
the Galerkin method, the SUPG method, the DG method (13.92) (with σ = 1 and γ = 10r2), and
the DG-N variant with weak imposition of boundary conditions. Triangula grid with h ≈ 1/8
and piecewise linear finite elements (r = 1)
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(a) Standard Galerkin method (b) SUPG method

(c) DG method (d) DG-N variant of method DG

Fig. 13.17. The approximate solution of problem (13.94) for μ = 10−1 obtained respectively by
the Galerkin method, the SUPG method, the DG method (13.92) (with σ = 1 and γ = 10r2), and
the DG-N variant with weak imposition of boundary conditions. Triangular grid with h ≈ 1/16
and piecewise linear finite elements (r = 1)

(a) Standard Galerkin method (b) SUPG method

(c) DG method (d) DG-N variant of method DG
Fig. 13.18. The approximate solution of problem (13.94) for μ = 10−9 obtained respectively by
the Galerkin method, the SUPG method, the DG method (13.92) (with σ = 1 and γ = 10r2), and
the DG-N variant with weak imposition of boundary conditions. Triangular grid with h ≈ 1/16
and piecewise linear finite elements (r = 1)
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Fig. 13.19. Approximation error vs number of degrees of freedom for finite elements of degree
r = 1,2,3,4

method provides the following error estimate (see, e.g., [BMS04]).

|‖u−uh‖|=
(
‖u−uh‖2

L2(Ω) + ∑
e∈Eh

‖s1/2
e [u− uh]‖2

0,e

)1/2

≤Chr+1/2‖u‖Hr+1(Ω),

(13.95)
where se = α|b · ne| is a suitable stabilization term, where α is a positive constant
independent of h and e. Eh is the set of all the edges of the triangulation and C is a
positive constant. In Fig. 13.19 we report (in logarithmic scale) the errors computed
in the energy norm (13.95): the decay as hr+1/2, as predicted by the error estimate
(13.95).
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Fig. 13.20. Finite element solutions obtained on a uniform grid with gridsize h = 1/4 (left) and
h = 1/8 (right)



362 13 Diffusion-transport-reaction equations

13.12 An example of goal-oriented grid adaptivity

As anticipated in Remark 4.10, the a posteriori analysis presented in Sect. 4.6.5 for the
control of a suitable functional of the error can be extended to differential problems
of various kinds by assuming a suitable redefinition of the local residue (4.98) and of
the generalized jump (4.94). A grid adaptation turns out to be particularly useful when
dealing with diffusion-transport problems with dominant transport. Here, an accurate
placement of the mesh triangles, e.g. at the (internal or boundary) layers, can dramat-
ically reduce the computational cost.
Let us consider problem (13.1) with μ = 10−3, b = (y,−x)T , σ and f identically
null, and Ω coinciding with the L-shaped domain (Fig. 13.21) (0,4)2\(0,2)2. Let us
suppose to assign a homogeneous Neumann condition on {x = 4} and {y = 0}, a non-
homogeneous Dirichlet condition (u = 1) on {x = 0}, and a homogeneous Dirichlet
condition on the remaining parts of the boundary. The solution u of (13.1) thus is char-
acterized by two internal layers having a round shape. In order to test the sensitivity
of the adapted grid with respect to the specific choice made for the functional J, let us
consider the two following options:

J(v) = J1(v) =
∫
Γ1

b ·nvds, with Γ1 = {x = 4}∪{y = 0},

for the control of the outgoing normal flow through {x = 4} and {y = 0}, and

J(v) = J2(v) =
∫
Γ2

b ·nvds, with Γ2 = {x = 4},

if we are still interested in controlling the flow, but only through {x= 4}. Starting from
a quasi-uniform initial grid of 1024 elements, we show in Fig. 13.21 the (anisotropic)
grids obtained for the choice J = J1 (left) resp. J = J2 (right), at the fourth and second
iteration of the adaptive process. Both boundary layers are responsible for the flow
throughΓ1, and in fact the grid is refined in correspondence of the two layers. However,
only the upper layer is “recognized” as carrying information to the flow along Γ2.
Finally, note the strongly anisotropic nature of the mesh in the figure. In order to
follow not only the refinement but also the correct orientation of the grid, triangles are
implemented in such a way to follow the directional properties (the boundary layers)
of the solution. For further details, refer to [FMP04].

13.13 Exercises

1. Decompose in its symmetric and skew-symmetric parts the one-dimensional diffu-
sion-transport-reaction operator

Lu =−μu′′+bu′+σu.
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Fig. 13.21. Fourth adapted grid for the functional J1 (left); second adapted grid for the functional
J2 (right)

2. Split in its symmetric and skew-symmetric parts the diffusion-transport operator
written in the non-divergence form

Lu =−μΔu+b ·∇u.

3. Prove that the one-dimensional linear, quadratic and cubic finite elements yield,
in the reference interval [0,1], the following condensed matrices, obtained via the
mass-lumping technique:

r = 1 ML = M̂ =
1
2

diag(1 1),

r = 2 ML = M̂ =
1
6

diag(1 4 1),

r = 3

⎧⎪⎨⎪⎩
ML =

1
8

diag(1 3 3 1),

M̂ =
1

1552
diag(128 648 648 128)= diag

( 8
97

,
81

194
,

81
194

,
8
97

)
.

4. Consider the problem{ −εu′′(x)+ bu′(x) = 1, 0 < x < 1,
u(0) = α, u(1) = β ,

where ε > 0 and α,β ,b ∈R are given. Find its finite element formulation with up-
wind artificial viscosity. Discuss its stability and convergence properties and com-
pare them with that of the Galerkin-linear finite elements formulation.

5. Consider the problem{ −εu′′(x)+u′(x) = 1, 0 < x < 1,
u(0) = 0, u′(1) = 1,
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with ε > 0 given. Write its weak formulation and its approximation of Galerkin-
finite element type. Verify that the scheme is stable and explain why.

6. Consider the problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
−div(μ∇u)+ div(βu)+σu = f in Ω ,

−γ ·n+ μ∇u ·n= 0 on ΓN ,

u = 0 on ΓD,

where Ω is an open subset of R2 with boundary Γ = ΓD ∪ΓN ,
◦
ΓD ∩

◦
Γ N= /0, n is

the outgoing normal to Γ , μ = μ(x)> μ0 > 0, σ = σ(x)> 0, f = f (x) are given
scalar functions, β = β(x), γ = γ(x) are given vector functions.
Approximate it using the Galerkin-linear finite element method. Find under which
hypotheses on the coefficients μ , σ and β the method is inaccurate, and suggest
the relevant remedies in the different cases.

7. Consider the one-dimensional diffusion-transport problem{ −(μu′ −ψ ′u)′ = 1, 0 < x < 1,

u(0) = u(1) = 0,
(13.96)

where μ is a positive constant and ψ a given function.
a) Study the existence and uniqueness of problem (13.96) by introducing suitable

hypotheses on the function ψ , and propose a stable numerical approximation
with finite elements.

b) Consider the variable change u = ρeψ/μ , ρ being an auxiliary unknown func-
tion. Study the existence and uniqueness of the weak solution of problem (13.96)
in the new unknown ρ and provide its numerical approximation using the finite
elements method.

c) Compare the two approaches followed in (a) and (b), both from the abstract
viewpoint and from the numerical one.

8. Consider the diffusion-transport-reaction problem⎧⎪⎨⎪⎩
−Δu+div(bu)+ u = 0 in Ω ⊂ R2,

u = ϕ on ΓD,
∂u

∂n
= 0 on ΓN ,

whereΩ is an open bounded domain, ∂Ω = ΓD∪ΓN , ΓD 	= /0.
Prove the existence and uniqueness of the solution by making suitable regularity
assumptions on the data b = (b1(x),b2(x))

T (x ∈Ω ) and ϕ = ϕ(x) (x ∈ ΓD).
In the case where |b| 
 1, approximate the problem with the artificial diffusion-
finite elements and SUPG-finite elements methods, discussing advantages and dis-
advantages with respect to the Galerkin finite element method.
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9. Consider the problem

−
2

∑
i, j=1

∂ 2u

∂xi∂x j
+β

∂ 2u

∂x2
1

+ γ
∂ 2u

∂x1∂x2
+ δ

∂ 2u

∂x2
2

+η
∂u

∂x1
= f in Ω ,

with u = 0 on ∂Ω , where β , γ , δ , η are given coefficients and f is a given function
of x = (x1,x2) ∈Ω .

a) Find the conditions on the data that ensure the existence and uniqueness of a
weak solution.

b) Provide an approximation using the Galerkin finite element method and analyze
its convergence.

c) Under which conditions on the data is the Galerkin problem symmetric?
In such case, provide suitable methods for the solution of the associated alge-
braic problem.



Chapter 14

Finite differences for hyperbolic equations

In this chapter we deal with time-dependent problems of hyperbolic type. For their
origin and an in-depth analysis see e.g. [Sal08, Chap. 4]. We will limit ourselves to
considering the numerical approximation using the finite difference method, which
was historically the first one to be applied to this type of equations. To introduce in
a simple way the basic concepts of the theory, most of our presentation will concern
problems depending on a single space variable. Finite element approximations will be
addressed in Chapter 15, the extension to nonlinear problems in Chapter 16.

14.1 A scalar transport problem

Let us consider the following scalar hyperbolic problem⎧⎨⎩
∂u

∂ t
+ a

∂u

∂x
= 0, x ∈ R, t > 0,

u(x,0) = u0(x), x ∈ R,

(14.1)

where a ∈ R\ {0}. The solution of such problem is a wave travelling at velocity a, in
the (x, t) plane, given by

u(x, t) = u0(x− at), t ≥ 0.

We consider the curves x(t) in the plane (x, t), solutions of the following ordinary
differential equation ⎧⎨⎩

dx

dt
= a, t > 0,

x(0) = x0,

for varying values of x0 ∈ R. They read x(t) = x0 + at and are called characteristic
lines (often simply characteristics). The solution of (14.1) along these lines remains

A. Quarteroni, Numerical Models for Differential Problems, MS&A 16, 
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constant, for

du

dt
=
∂u

∂ t
+
∂u

∂x

dx

dt
= 0.

In the case of the more general problem⎧⎨⎩
∂u

∂ t
+a

∂u

∂x
+ a0u = f , x ∈ R, t > 0,

u(x,0) = u0(x), x ∈ R,

(14.2)

where a,a0, and f are given functions of (x, t), the characteristic lines x(t) are the
solutions of the Cauchy problem⎧⎨⎩

dx

dt
= a(x, t), t > 0,

x(0) = x0.

In such case, the solutions of (14.2) satisfy the following relation

d

dt
u(x(t), t) = f (x(t), t)− a0(x(t), t)u(x(t), t).

Therefore it is possible to extract the solution u by solving an ordinary differential
equation on each characteristic curve (this approach leads to the so-called character-
istic method).

If, for instance a0 = 0, we find

u(x, t) = u0(x− at)+
∫ t

0
f (x−a(t− s),s)ds, t > 0.

Let us now consider problem (14.1) in a bounded interval. For instance, let us suppose
x ∈ [0,1] and a > 0. As u is constant on the characteristics, from Fig. 14.1 we deduce
that the value of the solution at a point P coincides with the value of u0 at the foot
P0 of the characteristic outgoing from P. Instead, the characteristic outgoing from Q

P

Q

P0

x

t

0 1

t

Fig. 14.1. Examples of characteristic lines (straight lines in this case) issuing from P and Q
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intersects the straight line x = 0 for t > 0. The point x = 0 is therefore an inflow point
at which we must necessarily assign the value of u. Note that if a < 0, the inflow point
would be x = 1.

By referring to problem (14.1) it is useful to observe that if u0 were a discontinuous
function at x0, then such discontinuity would propagate along the characteristic outgo-
ing from x0 (this process can be rigorously formalized from a mathematical viewpoint
by introducing the concept of weak solution for hyperbolic problems). In order to reg-
ularize the discontinuity, one could approximate the initial datum u0 with a sequence
of regular functions uε0(x),ε > 0. However, this procedure is only effective if the hy-
perbolic problem is linear. The solutions of nonlinear hyperbolic problems can indeed
develop discontinuities also for regular initial data (as we will see in Chapter 16). In
this case the strategy (which also inspires numerical methods) is to regularize the dif-
ferential equation itself, rather than the initial datum. We can consider the following
diffusion-transport equation

∂uε

∂ t
+a

∂uε

∂x
= ε

∂ 2uε

∂x2 , x ∈ R, t > 0,

for small values of ε > 0, which can be regarded as a parabolic regularization of
equation (14.1). If we set uε(x,0) = u0(x), we can prove that

lim
ε→0+

uε(x, t) = u0(x−at), t > 0, x ∈R.

14.1.1 An a priori estimate

Let us now return to the transport-reaction problem (14.2) on a bounded interval⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂u

∂ t
+a

∂u

∂x
+ a0u = f , x ∈ (α,β ), t > 0,

u(x,0) = u0(x), x ∈ [α,β ],

u(α, t) = ϕ(t), t > 0,

(14.3)

where a(x), f (x, t) and ϕ(t) are assigned functions; we have made the assumption that
a(x)> 0, so that x = α is the inflow point (where to impose the boundary condition),
while x = β is the outflow point.

By multiplying the first equation of (14.3) by u, integrating in x and using the
formula of integration by parts, we obtain for each t > 0

1
2

d

dt

β∫
α

u2 dx+

β∫
α

(a0− 1
2

ax)u
2 dx+

1
2
(au2)(β )− 1

2
(au2)(α) =

β∫
α

f u dx.

By supposing that there exists a μ0 ≥ 0 such that

a0− 1
2 ax ≥ μ0 ∀x ∈ [α,β ],
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we find

1
2

d

dt
‖u(t)‖2

L2(α ,β ) + μ0‖u(t)‖2
L2(α ,β ) +

1
2
(au2)(β )≤

β∫
α

f u dx+
1
2

a(α)ϕ2(t).

If f and ϕ are identically zero, then

‖u(t)‖L2(α ,β ) ≤ ‖u0‖L2(α ,β ) ∀t > 0.

In the case of the more general problem (14.2), if we suppose that μ0 > 0, thanks to
the Cauchy-Schwarz and Young inequalities we have

β∫
α

f u dx≤ ‖ f‖L2(α ,β )‖u‖L2(α ,β ) ≤
μ0

2
‖u‖2

L2(α ,β ) +
1

2μ0
‖ f‖2

L2(α ,β ).

Integrating over time we get the following a priori estimate

‖u(t)‖2
L2(α ,β ) + μ0

t∫
0

‖u(s)‖2
L2(α ,β ) ds+a(β )

t∫
0

u2(β ,s) ds

≤ ‖u0‖2
L2(α ,β ) + a(α)

t∫
0

ϕ2(s) ds+
1
μ0

t∫
0

‖ f‖2
L2(α ,β ) ds.

An alternative estimate that does not require the differentiability of a(x), but uses,
instead, the hypothesis that a0 ≤ a(x) ≤ a1 for two suitable positive constants a0 and
a1, can be obtained by multiplying the equation by a−1,

a−1 ∂u

∂ t
+
∂u

∂x
= a−1 f .

By multiplying by u and integrating between α and β we obtain,

1
2

d

dt

β∫
α

a−1(x)u2(x, t)dx+
1
2

u2(β , t) =

β∫
α

a−1(x) f (x, t)u(x, t)dx+
1
2
ϕ2(t).

If f = 0 we immediately obtain

‖u(t)‖2
a +

t∫
0

u2(β ,s)ds = ‖u0‖2
a +

t∫
0

ϕ2(s)ds, t > 0.

We have defined

‖v‖a =

⎛⎝ β∫
α

a−1(x)v2(x)dx

⎞⎠
1
2

.
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Thanks to the lower and upper bounds of a−1, the latter is equivalent to the norm of
L2(α,β ). On the other hand, if f 	= 0, we can proceed as follows

‖u(t)‖2
a +

t∫
0

u2(β ,s) ds≤ ‖u0‖2
a +

t∫
0

ϕ2(s) ds+

t∫
0

‖ f‖2
a ds+

t∫
0

‖u(s)‖2
ads,

having used the Cauchy-Schwarz inequality.
By now applying Gronwall’s lemma (see Lemma 2.2) we obtain, for each t > 0,

‖u(t)‖2
a +

t∫
0

u2(β ,s) ds≤ et

⎛⎝‖u0‖2
a +

t∫
0

ϕ2(s)ds+

t∫
0

‖ f‖2
a ds

⎞⎠ . (14.4)

14.2 Systems of linear hyperbolic equations

Let us consider a linear system of the form⎧⎨⎩
∂u

∂ t
+A

∂u

∂x
= 0, x ∈ R, t > 0,

u(0,x) = u0(x), x ∈ R,

(14.5)

where u : [0,∞)×R→ Rp, A : R→ Rp×p is a given matrix, and u0 : R→ Rp is the
initial datum.

Let us first consider the case where the coefficients of A are constant (i.e. indepen-
dent of both x and t). System (14.5) is called hyperbolic if A can be diagonalized and
has real eigenvalues, that is

A = TΛT−1.

Here Λ = diag(λ1, ...,λp), with λi ∈ R for i = 1, . . . , p, is the diagonal matrix of the
eigenvalues of A, T : R→ Rp×p, T = [ω1,ω2, . . . ,ωp] is the matrix whose column
vectors are the right eigenvectors of A, that is

Aωk = λkω
k, k = 1, . . . , p.

Through this similarity transformation system (14.5) becomes

∂w

∂ t
+Λ

∂w

∂x
= 0, (14.6)

where w = T−1u are called characteristic variables. In this way we obtain p indepen-
dent equations of the form

∂wk

∂ t
+λk

∂wk

∂x
= 0, k = 1, . . . , p,
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analogous in all to the equation of problem (14.1) (provided that we suppose a0 and f
null). The solution wk is therefore constant along each characteristic curve x = x(t),
solution of the Cauchy problem⎧⎨⎩

dx

dt
= λk, t > 0,

x(0) = x0.

(14.7)

Since the λk are constant, the characteristic curves are in fact the lines x(t) = x0 +
λkt and the solutions read wk(x, t) = ψk(x−λkt), where ψk is a function of a single
variable determined by the initial conditions. In the case of problem (14.5), we have
that ψk(x) = wk(x,0), thus the solution u = Tw will have the form

u(x, t) =
p

∑
k=1

wk(x−λkt,0)ω
k.

The latter is composed by p travelling, non-interacting waves.
Since a strictly hyperbolic system admits p different characteristic lines issuing from
each point (x, t) of the plane (x, t), u(x, t) will only depend on the initial datum at the
points x−λkt, for k = 1, . . . , p. For this reason, the set of the p points representing the
feet of the characteristics outgoing from (x, t), that is

D(x, t) = {x ∈ R |x = x−λkt , k = 1, ..., p}, (14.8)

is called domain of dependence of the solution u at the point (x, t).
In case we consider a bounded interval (α,β ) instead of the whole real line, the

sign of λk, k = 1, . . . , p, denotes the inflow point for each of the characteristic vari-
ables. The function ψk in the case of a problem set on a bounded interval will be de-
termined not only by the initial conditions, but also by the boundary conditions at the
inflow of each characteristic variable. Having considered a point (x, t) with x ∈ (α,β )
and t > 0, if x−λkt ∈ (α,β ) then wk(x, t) is determined by the initial condition, in

(x  −   )/ 1 α λ k

(x ,t )11

(x ,t )2 2

λkx−     t2 2
α

t

x
β

λ1 βt=t
1
–(x  −   )/ 

kλx−     t2 2

2(x ,t )2

1 1(x ,t )

t

α

x
0 0 β

t= t
1
–

Fig. 14.2. The value of wk at a point in the plane (x, t) depends either on the boundary condition
or on the initial condition, depending on the value of x− λkt. Both signs of λk, the positive
(right) and negative (left), are shown
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particular we have wk(x, t) = wk(x−λkt,0). Conversely, if x−λkt /∈ (α,β ) then the
value of wk(x, t) will depend on the boundary condition (see Fig. 14.2):

if λk > 0 , wk(x, t) = wk(α, t− x−α
λk

),

if λk < 0 , wk(x, t) = wk(β , t− x−β
λk

).

As a consequence, the number of positive eigenvalues determines the number of bound-
ary conditions to be assigned at x = α , while at x = β we will need to assign as many
conditions as the number of negative eigenvalues.

In the case where the coefficients of the matrix A in (14.5) are functions of x and
t, we denote respectively by

L =

⎡⎢⎣ lT1
...

lTp

⎤⎥⎦ and R = [r1 . . .rp]

the matrices containing the left, resp. right, eigenvectors of A, whose elements satisfy
the relations

Ark = λkrk, lTk A = λklTk ,

that is
AR = RΛ , LA =ΛL.

Without loss of generality, we can suppose that LR = I. Let us now suppose that there
exists a vector function w satisfying the relations

∂w

∂u
= R−1, that is

∂uk

∂w
= rk, k = 1, . . . , p.

Proceeding as we did initially, we obtain

R−1 ∂u

∂ t
+ΛR−1 ∂u

∂x
= 0,

hence the new diagonal system (14.6). By reintroducing the characteristic curves (14.7)
(the latter will no longer be straight lines as the eigenvalues λk vary for different val-
ues of x and t), w is constant along them. Its components are still called characteristic
variables; as R−1 = L (thanks to the normalization relation) we obtain

∂wk

∂u
· rm = lk · rm = δkm, k,m = 1, . . . , p.

The functions wk, k = 1, . . . , p are called Riemann invariants of the hyperbolic system.

14.2.1 The wave equation

Let us consider the following second order hyperbolic equation

∂ 2u

∂ t2 − γ2 ∂
2u

∂x2 = f , x ∈ (α,β ), t > 0. (14.9)
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Let

u(x,0) = u0(x) and
∂u

∂ t
(x,0) = v0(x), x ∈ (α,β ),

be the initial data and let us suppose, that u is identically null at the boundary

u(α, t) = 0 and u(β , t) = 0, t > 0. (14.10)

In this case, u can represent the vertical displacement of a vibrating elastic chord with
lenght β −α , fixed at the endpoints, and γ is a coefficient that depends on the specific
mass of the chord and on its tension. The chord is subject to a vertical force whose
density is f . The functions u0(x) and v0(x) describe the initial displacement and the
velocity of the chord.

For simplicity of notation, we denote by ∂t u the derivative ∂u
∂ t , by ∂xu the deriva-

tive ∂u
∂x and we use similar notations for the second derivatives.

Let us now suppose that f is null. From equation (14.9) we deduce that the kinetic
energy of the system is preserved, that is (see Exercise 1)

‖∂tu(t)‖2
L2(α ,β )

+ γ2 ‖∂xu(t)‖2
L2(α ,β )

= ‖v0‖2
L2(α ,β )

+ γ2 ‖∂xu0‖2
L2(α ,β )

. (14.11)

With the change of variables

ω1 = ∂xu, ω2 = ∂t u,

the wave equation (14.9) becomes the following first-order system

∂ω

∂ t
+A

∂ω

∂x
= f, x ∈ (α,β ), t > 0, (14.12)

where

ω =

[
ω1

ω2

]
, A =

[
0 −1
−γ2 0

]
, f =

[
0
f

]
,

whose initial conditions are ω1(x,0) = u′0(x) and ω2(x,0) = v0(x).
Since the eigenvalues of A are distinct real numbers±γ (representing the wave prop-
agation rates), system (14.12) is hyperbolic.
Note that, also in this case, regular solutions correspond to regular initial data, while
discontinuities in the initial data will propagate along the characteristic lines dx

dt =±γ .

14.3 The finite difference method

Out of simplicity we will now consider problem (14.1). To solve the latter numerically,
we can use spatio-temporal discretizations based on the finite difference method. In
this case, the half-plane {t > 0} is discretized choosing a temporal step Δ t, a spatial
discretization step h and defining the gridpoints (x j, tn) in the following way

x j = jh, j ∈ Z, tn = nΔ t, n ∈ N.
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Set

λ = Δ t/h,

and let us define

x j+1/2 = x j + h/2.

We seek discrete solutions un
j which approximate u(x j, tn) for each j and n.

Hyperbolic initial value problems are often discretized in time using explicit meth-
ods. Of course, this imposes restrictions on the values of λ that implicit methods gen-
erally do not have. Any explicit finite difference method can be written in the form

un+1
j = un

j −λ (Hn
j+1/2−Hn

j−1/2), (14.13)

where Hn
j+1/2 = H(un

j ,u
n
j+1) for a suitable function H(·, ·) called numerical flux.

The numerical scheme (14.13) is basically the outcome of the following consid-
eration. Suppose that a is constant and let us write equation (14.1) in conservation
form

∂u

∂ t
+
∂ (au)

∂x
= 0,

au being the flux associated to the equation. By integrating in space, we obtain
x j+1/2∫

x j−1/2

∂u

∂ t
dx+[au]

x j+1/2
x j−1/2 = 0, j ∈ Z,

that is

∂

∂ t
Uj +

(au)(x j+ 1
2
)− (au)(x j− 1

2
)

h
= 0, where Uj = h−1

x
j+ 1

2∫
x

j− 1
2

u(x) dx.

Equation (14.13) can now be interpreted as an approximation where the temporal deriv-
ative is discretized using the forward Euler finite difference scheme, Uj is replaced by
u j and Hj+1/2 is a suitable approximation of (au)(x j+ 1

2
).

14.3.1 Discretization of the scalar equation

In the context of explicit methods, numerical methods are distinguished by how the
numerical flux H is chosen. In particular, we cite the following methods:

• forward/centered Euler (FE/C)

un+1
j = un

j −
λ

2
a(un

j+1−un
j−1), (14.14)

that takes the form (14.13) provided we define

Hj+1/2 =
1
2

a(u j+1 + u j). (14.15)
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• Lax-Friedrichs (LF)

un+1
j =

1
2
(un

j+1 +un
j−1)−

λ

2
a(un

j+1− un
j−1), (14.16)

also of the form (14.13) with

Hj+1/2 =
1
2
[a(u j+1 + u j)−λ−1(u j+1−u j)]. (14.17)

• Lax-Wendroff (LW)

un+1
j = un

j −
λ

2
a(un

j+1− un
j−1)+

λ 2

2
a2(un

j+1− 2un
j + un

j−1), (14.18)

that can be rewritten in the form (14.13) provided that we take

Hj+1/2 =
1
2
[a(u j+1 + u j)−λa2(u j+1− u j)]. (14.19)

• Upwind (or forward/decentered Euler) (U)

un+1
j = un

j −
λ

2
a(un

j+1− un
j−1)+

λ

2
|a|(un

j+1−2un
j + un

j−1), (14.20)

corresponding to the form (14.13) provided that we choose

Hj+1/2 =
1
2
[a(u j+1 + u j)−|a|(u j+1− u j)]. (14.21)

The LF method is obtained from the FE/C method by replacing the nodal value un
j in

(14.14) with the average of un
j−1 and un

j+1.
The LW method derives from the Taylor expansion in time

un+1 = un +(∂t u)
nΔ t +(∂ttu)

nΔ t2

2
+O(Δ t3),

where (∂t u)n denotes the partial derivative of u at time tn. Then, using equation (14.1),
we replace ∂tu by −a∂xu, and ∂tt u by a2∂xxu. Neglecting the remainder O(Δ t3) and
approximating the spatial derivatives with centered finite differences, we get (14.18).
Finally, the U method is obtained by discretizing the convective term a∂xu of the
equation with the upwind finite difference, as seen in Chapter 13, Sect. 13.6.

All of the previously introduced schemes are explicit. An example of implicit
method is the following:

• Backward/centered Euler (BE/C)

un+1
j +

λ

2
a(un+1

j+1− un+1
j−1) = un

j . (14.22)
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Naturally, the implicit schemes can also be rewritten in a general form that is similar
to (14.13) where Hn is replaced by Hn+1. In the specific case, the numerical flux will
again be defined by (14.15).

The advantage of formulation (14.13) is that it can be extended easily to the case
of more general hyperbolic problems.
In particular, we will examine the case of linear systems in Sect. 14.3.2. The extension
to the case of nonlinear hyperbolic equations will instead be considered in Sect. 16.2.
Finally, we point out the following schemes for approximating the wave equation
(14.9), again in the case f = 0:

• Leap-Frog

un+1
j − 2un

j + un−1
j = (γλ )2(un

j+1−2un
j +un

j−1). (14.23)

• Newmark

un+1
j − 2un

j + un−1
j =

(γλ )2

4

(
wn−1

j + 2wn
j +wn+1

j

)
, (14.24)

where wn
j = un

j+1− 2un
j + un

j−1.

14.3.2 Discretization of linear hyperbolic systems

Let us consider the linear system (14.5). Generalizing (14.13), a numerical scheme for
a finite difference approximation can be written in the form

un+1
j = un

j −λ (Hn
j+1/2−Hn

j−1/2),

where un
j is the vector approximating u(x j, tn). Now, H j+1/2 is a vector numerical

flux. Its formal expression can be easily derived by generalizing the scalar case and
replacing a, a2, and |a| in (14.15), (14.17), (14.19), (14.21) respectively with A, A2,
and |A|, where

|A|= T|Λ |T−1,

|Λ |= diag(|λ1|, ..., |λp|) and T is the matrix of eigenvectors of A.
For instance, transforming system (14.5) in p independent transport equations and

approximating each of these with an upwind scheme for scalar equations, we obtain
the following upwind numerical scheme for the initial system

un+1
j = un

j −
λ

2
A(un

j+1−un
j−1)+

λ

2
|A|(un

j+1− 2un
j +un

j−1).

The numerical flux of such scheme is

H j+ 1
2
=

1
2
[A(u j+1 +u j)−|A|(u j+1−u j)].

The Lax-Wendroff method becomes

un+1
j = un

j −
1
2
λA(un

j+1−un
j−1)+

1
2
λ 2A2(un

j+1− 2un
j +un

j−1)

and its numerical flux is

H j+ 1
2
=

1
2
[A(u j+1 +u j)−λA2(u j+1−u j)].
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14.3.3 Boundary treatment

In case we want to discretize the hyperbolic equation (14.3) on a bounded interval, we
will obviously need to use the inflow node x = α to impose the boundary condition,
say un+1

0 = ϕ(tn+1), while at all other nodes x j, 1≤ j≤m (including the outflow node
xm = β ) we will write the finite difference scheme.

However, schemes using a centered discretization of the space derivative require a
particular treatment at xm. Indeed, they would require the value um+1, which is unavail-
able as it relates to the point with coordinates β + h, outside the integration interval.
The problem can be solved in various ways. An option is to use only the upwind decen-
tered discretization on the last node, as such discretization does not require knowing
the datum in xm+1; this approach however is only a first-order one. Alternatively, the
value un+1

m can be obtained through extrapolation from the values available at the inter-
nal nodes. An example could be an extrapolation along the characteristic lines applied
to a scheme for which λa≤ 1; this provides un+1

m = un
m−1λa+ un

m(1−λa).
A further option consists in applying the centered finite difference scheme to the

outflow node xm as well, and use, in place of un
m+1, an approximation based on a

constant extrapolation (un
m+1 = un

m), or on a linear one (un
m+1 = 2un

m−un
m−1).

This matter becomes more problematic in the case of hyperbolic systems, where
we must resort to compatibility equations. To shed more light on these aspects and
to analyze their possible instabilities deriving from the numerical boundary treatment,
the reader can refer to Strickwerda [Str89], [QV94, Chap. 14] and [LeV07].

14.4 Analysis of the finite difference methods

We analyze the consistency, stability and convergence properties of the finite differ-
ence methods we introduced previously.

14.4.1 Consistency and convergence

For a given numerical scheme, the local truncation error is the error generated by
expecting the exact solution to verify the numerical scheme itself.

For instance, in the case of scheme (14.14), having denoted by u the solution of the
exact problem (14.1), we can define the truncation error at the point (x j, tn) as follows

τn
j =

u(x j, tn+1)− u(x j, tn)

Δ t
+ a

u(x j+1, tn)− u(x j−1, tn)

2h
.

If the truncation error

τ(Δ t,h) = max
j,n
|τn

j |

tends to zero when Δ t and h tend to zero, independently, then the numerical scheme
will be said to be consistent.



14.4 Analysis of the finite difference methods 379

Moreover, we will say that a numerical scheme is accurate to order p in time and
to order q in space (for suitable integers p and q), if for a sufficiently regular solution
of the exact problem we have

τ(Δ t,h) = O(Δ t p + hq).

Using Taylor expansions suitably, we can then see that the truncation error of the
previously introduced methods is:

• Euler (forward or backward) / centered: O(Δ t +h2);
• Upwind: O(Δ t +h) ;

• Lax-Friedrichs: O( h2

Δ t +Δ t + h2) ;
• Lax-Wendroff: O(Δ t2 +h2 + h2Δ t).

Finally, we will say that a scheme is convergent (in the maximum norm) if

lim
Δ t,h→0

(max
j,n
|u(x j, t

n)− un
j |) = 0.

Obviously, we can also consider weaker norms, such as ‖ ·‖Δ ,1 and ‖ ·‖Δ ,2, which we
will introduce in (14.26).

14.4.2 Stability

We will say that a numerical method for a linear hyperbolic problem is stable if for
each instant T there exists a constant CT > 0 (possibly depending on T ) such that for
each h> 0, there exists δ0 > 0 (possibly dependent on h) such that for each 0<Δ t < δ0

we have
‖un‖Δ ≤CT‖u0‖Δ , (14.25)

for each n such that nΔ t ≤ T , and for each initial datum u0. Note that CT should not
depend on Δ t and h. Often (always, in the case of explicit methods) we will have
stability only if the temporal step is sufficiently small with respect to the spatial one,
that is for δ0 = δ0(h).

The notation ‖ · ‖Δ denotes a suitable discrete norm, for instance

‖v‖Δ ,p =
(

h
∞

∑
j=−∞

|v j|p
) 1

p

for p = 1,2, ‖v‖Δ ,∞ = sup
j
|v j|. (14.26)

Note how ‖v‖Δ ,p represents an approximation of the Lp(R) norm, for p = 1,2 or +∞.
The implicit backward/centered Euler scheme (14.22) is stable in the norm ‖ ·‖Δ ,2

for any choice of the parameters Δ t and h (see Exercise 2).
A scheme is called strongly stable with respect to the norm ‖ · ‖Δ if

‖un‖Δ ≤ ‖un−1‖Δ , (14.27)

for each n such that nΔ t ≤ T , and for each initial datum u0, which implies that (14.25)
is verified with CT = 1.
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x̄+Δx

t̄

(x̄, t̄)

x̄−Δx x̄ x̄+Δx

(x̄, t̄)

r1 r2

r2r1

t̄

t̄−Δ t
x̄−Δx x̄

Fig. 14.3. Geometric interpretation of the CFL condition for a system with p = 2, where ri =
x̄−λi(t− t̄) i = 1,2. The CFL condition is satisfied on the left, and violated on the right

Remark 14.1. In the context of hyperbolic problems, one often wants long-time solu-
tions (solutions with T 
 1). Such cases usually require a strongly stable scheme, as
this guarantees that the numerical solution is bounded for each value of T . •

As we will see, a necessary condition for the stability of an explicit numerical
scheme of the form (14.13) is that the temporal and spatial discretization steps satisfy

|aλ | ≤ 1, or Δ t ≤ h

|a| . (14.28)

This is the celebrated CFL condition (from Courant, Friedrichs and Lewy, [CFL28]).
The number aλ is commonly called CFL number and is a physically dimensionless
quantity (a being a velocity).

The geometrical interpretation of the CFL stability condition is the following. In
a finite difference scheme, the value of un+1

j generally depends on the values un
j+i

time at tn at the three points x j+i, i = −1,0,1. Proceeding backwards, we deduce
that the solution un+1

j will only depend on the initial data at the points x j+i, for i =
−(n+1), ...,(n+1) (see Fig. 14.3).

Calling numerical domain of dependence DΔ t(x j, tn) the domain of dependence of
un

j , which will therefore be called numerical dependence domain of un
j , the former will

verify

DΔ t(x j, t
n)⊂ {x ∈ R : |x− x j| ≤ nh =

tn

λ
}.

Consequently, for each given point (x, t) we have

DΔ t(x, t)⊂ {x ∈ R : |x− x| ≤ t

λ
}.

In particular, taking the limit for Δ t → 0, and fixing λ , the numerical dependency
domain becomes

D0(x, t) = {x ∈ R : |x− x| ≤ t

λ
}.

The condition (14.28) is then equivalent to the inclusion

D(x, t)⊂ D0(x, t), (14.29)
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where D(x, t) is the dependency domain of the exact solution defined in (14.8). Note
that in the scalar case, p = 1 and λ1 = a.

Remark 14.2. The CFL condition establishes, in particular, that there is no explicit
finite different scheme for hyperbolic initial value problems that is unconditionally
stable and consistent. Indeed, suppose the CFL condition is violated. Then there ex-
ists at least a point x∗ in the dependency domain that does not belong to the numerical
dependency domain. Then changing the initial datum to x∗ will only modify the exact
solution and not the numerical one. This implies non-convergence of the method and
therefore also instability. Indeed, for a consistent method, the Lax-Richtmyer equiva-
lence theorem states that stability is a sufficient condition for its convergence. •

Remark 14.3. In the case where a = a(x, t) is no longer constant in (14.1), the CFL
condition becomes

Δ t ≤ h

sup
x∈R, t>0

|a(x, t)| .

If the spatial discretization step varies, we have

Δ t ≤min
k

hk

sup
x∈(xk,xk+1), t>0

|a(x, t)| ,

with hk = xk+1− xk. •

Referring to the hyperbolic system (14.5), the CFL stability condition, in analogy to
(14.28), will be∣∣∣∣λk

Δ t

h

∣∣∣∣≤ 1, k = 1, . . . , p, or, equivalently, Δ t ≤ h

maxk |λk|
,

where {λk, k = 1 . . . , p} are the eigenvalues of A.
This condition, as well, can be written in the form (14.29). The latter expresses the

requirement that each line of the form x = x−λk(t − t), k = 1, . . . , p, must intersect
the horizontal line t = t−Δ t at points x(k) which lie within the numerical dependency
domain.

Theorem 14.1. If the CFL condition (14.28) is satisfied, the upwind, Lax-
Friedrichs and Lax-Wendroff schemes are strongly stable in the norm ‖ · ‖Δ ,1.

Proof. To prove the stability of the upwind scheme (14.20) we rewrite it in the fol-
lowing form (having supposed a > 0)

un+1
j = un

j −λa(un
j− un

j−1).
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Then

‖un+1‖Δ ,1 ≤ h∑
j

|(1−λa)un
j|+ h∑

j

|λaun
j−1|.

Under the hypothesis (14.28) both values λa and 1−λa are non-negative. Hence,

‖un+1‖Δ ,1 ≤ h(1−λa)∑
j

|un
j |+ hλa∑

j

|un
j−1|= ‖un‖Δ ,1,

that is, inequality (14.25) holds with CT = 1. The scheme is therefore strongly stable
with respect to the norm ‖ · ‖Δ = ‖ · ‖Δ ,1.

For the Lax-Friedrichs scheme, always under the CFL condition (14.28), we derive
from (14.16) that

un+1
j =

1
2
(1−λa)un

j+1+
1
2
(1+λa)un

j−1,

so

‖un+1‖Δ ,1 ≤ 1
2

h

[
∑

j

∣∣(1−λa)un
j+1

∣∣+∑
j

∣∣(1+λa)un
j−1

∣∣]
≤ 1

2
(1−λa)‖un‖Δ ,1 + 1

2
(1+λa)‖un‖Δ ,1 = ‖un‖Δ ,1.

For the Lax-Wendroff scheme, the proof is analogous (see e.g. [QV94, Chap. 14] or
[Str89]). �
Finally, we can prove that if the CFL condition is verified, the upwind scheme satisfies

‖un‖Δ ,∞ ≤ ‖u0‖Δ ,∞ ∀n≥ 0, (14.30)

i.e. it is strongly stable in the norm ‖ · ‖Δ ,∞. Relation (14.30) is called discrete maxi-
mum principle (see Exercise 4).

Theorem 14.2. The backward Euler scheme BE/C is strongly stable in the norm
|| · ||Δ ,2, with no restriction on Δ t. The forward Euler scheme FE/C, instead, is
never strongly stable. However, it is stable with constant CT = eT/2 provided that
we assume that Δ t satisfies the following condition (more restrictive than the
CFL condition)

Δ t ≤
(

h

a

)2

. (14.31)

Proof. We observe that

(B−A)B =
1
2
(B2−A2 +(B−A)2) ∀A,B ∈R. (14.32)
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As a matter of fact

(B−A)B = (B−A)2+(B−A)A =
1
2
((B−A)2 +(B−A)(B+A)).

Multiplying (14.22) by un+1
j we find

(un+1
j )2 +(un+1

j − un
j)

2 = (un
j)

2−λa(un+1
j+1− un+1

j−1)u
n+1
j .

Observing that

∑
j∈Z

(un+1
j+1− un+1

j−1)u
n+1
j = 0 (14.33)

(telescopic sum), we immediately obtain that ||un+1||2Δ ,2≤ ||un||2Δ ,2, which is the result
sought for the BE/C scheme.

Let us now move to the FE/C scheme and multiply (14.14) by un
j . Observing that

(B−A)A =
1
2
(B2−A2− (B−A)2) ∀A,B ∈R, (14.34)

we find

(un+1
j )2 = (un

j)
2 +(un+1

j − un
j)

2−λa(un
j+1− un

j−1)u
n
j .

On the other hand, we obtain once again from (14.14) that

un+1
j −un

j =−
λa

2
(un

j+1− un
j−1)

and therefore

(un+1
j )2 = (un

j)
2 +

(
λa

2

)2

(un
j+1− un

j−1)
2−λa(un

j+1− un
j−1)u

n
j .

Now summing on j and observing that the last addendum yields a telescopic sum
(hence it does not provide any contribution) we obtain, after multiplying by h,

‖un+1‖2
Δ ,2 = ‖un‖2

Δ ,2 +

(
λa

2

)2

h∑
j∈Z

(un
j+1− un

j−1)
2,

from which we infer that there is no value of Δ t for which the method is strongly
stable. However, as

(un
j+1− un

j−1)
2 ≤ 2

[
(un

j+1)
2 +(un

j−1)
2] ,

we find that, under the hypothesis (14.31),

‖un+1‖2
Δ ,2 ≤ (1+λ 2a2)‖un‖2

Δ ,2 ≤ (1+Δ t)‖un‖2
Δ ,2.
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By recursion, we find

‖un‖2
Δ ,2 ≤ (1+Δ t)n‖u0‖2

Δ ,2 ≤ eT‖u0‖2
Δ ,2,

where we have used the inequality

(1+Δ t)n ≤ enΔ t ≤ eT ∀n such that tn ≤ T.

We conclude that

‖un‖Δ ,2 ≤ eT/2‖u0‖Δ ,2,
which is the stability result sought for the FE/C scheme. �

14.4.3 Von Neumann analysis and amplification coefficients

Von Neumann’s analysis is useful to investigate the stability of a scheme in the norm
|| · ||Δ ,2. To this purpose, we assume that the function u0(x) is 2π-periodic and thus it
can be written as a Fourier series as follows

u0(x) =
∞

∑
k=−∞

αkeikx, (14.35)

where

αk =
1

2π

2π∫
0

u0(x) e−ikx dx

is the k-th Fourier coefficient. Hence,

u0
j = u0(x j) =

∞

∑
k=−∞

αkeik jh, j = 0,±1,±2, · · ·

It can be verified that applying any of the difference schemes seen in Sect. 14.3.1 we
get the following relation

un
j =

∞

∑
k=−∞

αkeik jhγn
k , j = 0,±1,±2, . . . , n≥ 1. (14.36)

The number γk ∈ C is called amplification coefficient of the k-th frequency (or har-
monic), and characterizes the scheme under exam. For instance, in the case of the
forward centered Euler method (FE/C) we find

u1
j =

∞

∑
k=−∞

αkeik jh
(

1− aΔ t

2h
(eikh− e−ikh)

)
=

∞

∑
k=−∞

αkeik jh
(

1− aΔ t

h
isin(kh)

)
.
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Table 14.1. Amplification coefficient for the different numerical schemes in Sect. 14.3.1. We
recall that λ = Δ t/h

Scheme γk

Forward/centered Euler 1− iaλ sin(kh)
Backward/centered Euler (1+ iaλ sin(kh))−1

Upwind 1−|a|λ (1−e−ikh)
Lax-Friedrichs coskh− iaλ sin(kh)
Lax-Wendroff 1− iaλ sin(kh)−a2λ 2(1−cos(kh))

Hence,

γk = 1− aΔ t

h
isin(kh) and thus |γk|=

{
1+

(
aΔ t

h
sin(kh)

)2
} 1

2

.

As there exist values of k for which |γk| > 1, there is no value of Δ t and h for which
the scheme is strongly stable.

Proceeding in a similar way for the other schemes, we find the coefficients reported
in Table 14.1.

We will now see how the von Neumann analysis can be applied to study the sta-
bility of a numerical scheme with respect to the ‖ · ‖Δ ,2 norm and to ascertain its
dissipation and dispersion properties.

To this purpose, we prove the following result:

Theorem 14.3. If there exist a number β ≥ 0 and a positive integer m such that,

for suitable choices of Δ t and h, we have |γk| ≤ (1+βΔ t)
1
m for each k, then the

scheme is stable with respect to the norm ‖ · ‖Δ ,2 with stability constant CT =

eβT/m. In particular, if we can take β = 0 (and therefore |γk| ≤ 1 ∀k) then the
scheme is strongly stable with respect to the same norm.

Proof. We will suppose that problem (14.1) is formulated on the interval [0,2π ]. In
such interval, let us consider N + 1 equidistant nodes,

x j = jh, j = 0, . . . ,N, with h =
2π
N

,

(N being an even positive integer) where to satisfy the numerical scheme (14.13).
Moreover, we will suppose for simplicity that the initial datum u0 is periodic. As the
numerical scheme only depends on the values of u0 at the nodes x j, we can replace u0

by the Fourier polynomial of order N/2,

ũ0(x) =

N
2 −1

∑
k=− N

2

αkeikx (14.37)
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which interpolates it at the nodes. Note that ũ0 is a periodic function with period 2π .
We will have, thanks to (14.36),

u0
j = u0(x j) =

N
2 −1

∑
k=− N

2

αkeik jh, un
j =

N
2 −1

∑
k=− N

2

αkγ
n
k eik jh.

We note that

‖un‖2
Δ ,2 = h

N−1

∑
j=0

N
2 −1

∑
k,m=− N

2

αkαm(γkγm)
nei(k−m) jh.

As

h
N−1

∑
j=0

ei(k−m) jh = 2πδkm, −N

2
≤ k,m≤ N

2
− 1,

(see e.g. [QSS07, Lemma 10.2]) we find

‖un‖2
Δ ,2 = 2π

N
2 −1

∑
k=− N

2

|αk|2|γk|2n.

Thanks to the assumption made on |γk| we have

‖un‖2
Δ ,2 ≤ (1+βΔ t)

2n
m 2π

N
2 −1

∑
k=− N

2

|αk|2 = (1+βΔ t)
2n
m ‖u0‖2

Δ ,2 ∀n≥ 0.

As 1+βΔ t ≤ eβΔ t , we deduce that

‖un‖Δ ,2 ≤ e
βΔtn

m ‖u0‖Δ ,2 = e
βT
m ‖u0‖Δ ,2 ∀n such that nΔ t ≤ T.

This proves the theorem. �
Remark 14.4. Should strong stability be required, the condition |γk| ≤ 1 indicated in
Theorem 14.3 is also necessary. •

In the case of the upwind scheme (14.20), as

|γk|2 = [1−|a|λ (1− coskh)]2 +a2λ 2 sin2 kh, k ∈ Z,

we obtain

|γk| ≤ 1 if Δ t ≤ h

|a| , k ∈ Z, (14.38)

that is, the CFL condition guarantees strong stability in the || · ||Δ ,2 norm.
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Proceeding in a similar way, we can verify that (14.38) also holds for the Lax-
Friedrichs scheme.

The centered backward Euler scheme BE/C instead is unconditionally strongly
stable in the norm ‖ ·‖Δ ,2, as |γk| ≤ 1 for each k and for each possible choice of Δ t and
h, as we previously obtained in Theorem 14.2 by following a different procedure.

In the case of the centered forward Euler method FE/C we have

|γk|2 = 1+
a2Δ t2

h2 sin2(kh)≤ 1+
a2Δ t2

h2 , k ∈ Z.

If β > 0 is a constant such that

Δ t ≤ β h2

a2 (14.39)

then |γk| ≤ (1+βΔ t)1/2. Hence, applying Theorem 14.3 (with m = 2) we deduce that
the FE/C scheme is stable, albeit with a more restrictive CFL condition, as previously
obtained following a different path in Theorem 14.2.

If we apply the centered forward Euler method to the transport-reaction equation

∂u

∂ t
+a

∂u

∂x
+ a0u = 0, (14.40)

with a0 > 0, for each k ∈ Z we find

|γk|2 = 1−2a0Δ t +Δ t2a2
0 +λ

2 sin2(kh)≤ 1−2a0Δ t +Δ t2a2
0 +

(
aΔ t

h

)2

.

Then the scheme is strongly stable in the ‖.‖Δ ,2 norm under the condition

Δ t <
2a0

a2
0 + h−2a2

. (14.41)

Example 14.1. In order to verify numerically the stability condition (14.41), we have
considered equation (14.40) in the interval (0,1) with periodic boundary conditions.
We have chosen a= a0 = 1 and the initial datum u0 equal to 2 in the interval (1/3,2/3)
and 0 elsewhere. As the initial datum is a square wave, its Fourier expansion has all
its αk coefficients not null. On the right of Fig. 14.4, we report ‖un‖Δ ,2 in the time
interval (0,2.5) for two values of Δ t, one larger and one smaller than the critical
value Δ t∗ = 2/(1+ h−2), provided by (14.41). Note that for Δ t < Δ t∗ the norm is
decreasing, while, in the opposite case, after an initial decrease it grows exponentially.
Fig. 14.5 shows the result for a0 = 0 obtained with FE/C using the same initial datum.
In the figure on the left, we display the behaviour of ‖un‖Δ ,2 for different values of h
and using Δ t = 10h2, that is varying the time step based on the restriction provided
by inequality (14.39) and taking β = 10. Note how the norm of the solution remains
bounded for decreasing values of h. On the right-hand side of the same figure, we
illustrate the result obtained for the same values of h taking as condition Δ t = 0.1h,
which corresponds to a constant CFL number equal to 0.1. In this case, the discrete
norm of the numerical solution blows up as h decreases, as expected. �
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Fig. 14.4. The figure on the right displays the behaviour of ‖un‖Δ ,2, where un is the solution of
equation (14.40) (with a = a0 = 1) obtained using the FE/C method, for two values of Δ t, one
smaller and one greater than the critical value Δ t∗. On the left, the initial datum used
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Fig. 14.5. Behaviour of ‖un‖Δ ,2 where un is the solution obtained using the FE/C method for
a0 = 0 and for different values of h. On the left, the case where Δ t satisfies the stability condition
(14.39). On the right, the results obtained by maintaining the CFL number constant and equal
to 0.1, violating condition (14.39)

14.4.4 Dissipation and dispersion

Besides allowing to enquire about the stability of a numerical scheme, the analysis
of the amplification coefficients is also useful to study its dissipation and dispersion
properties.
To clarify the matter, let us consider the exact solution of problem (14.1); then

u(x, tn) = u0(x− anΔ t), n≥ 0, x ∈ R,

with tn = nΔ t. In particular, using (14.35) we obtain

u(x j, t
n) =

∞

∑
k=−∞

αkeik jh(gk)
n with gk = e−iakΔ t . (14.42)

Comparing (14.42) with (14.36) we can note that the amplification coefficient γk

(generated by the specific numerical scheme) is the correspondent of gk.
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We observe that |gk| = 1 for each k ∈ Z, while |γk| ≤ 1 in order to guarantee the
strong stability of the scheme. Thus, γk is a dissipative coefficient. The smaller |γk| is,
the larger will be the reduction of the amplitude αk and, consequently, the larger will
be the dissipation of the numerical scheme.
The ratio εa(k) =

|γk|
|gk| is called amplification error (or dissipation error) of the k-th

harmonic associated to the numerical scheme (and in our case it coincides with the
amplification coefficient).
Having set

φk = kh,

as kΔ t = λφk we obtain
gk = e−iaλφk . (14.43)

The real number φk, here expressed in radians, is called phase angle of the k-th har-
monic. We rewrite γk in the following way

γk = |γk|e−iωΔ t = |γk|e−iωk λφk ,

and comparing such relation to (14.43), we can deduce that the ratio ω
k represents the

propagation rate of the numerical scheme, relatively to the k-th harmonic. The ratio

εd(k) =
ω

ka
=
ωh

φka

between the numerical propagation and the propagation a of the exact solution is called
dispersion error εd relative to the k-th harmonic.

The amplification (or dissipation) error and the dispersion error for the numerical
schemes analyzed up to now are function of the phase angle φk and of the CFL number
aλ , as reported in Fig. 14.6. For symmetry reasons we have considered the interval
0 ≤ φk ≤ π and we have used degrees instead of radians on the x-axis to indicate φk.
Note how the forward/centered Euler scheme gives a curve of the amplification factor
with values above one for all the CFL schemes we have considered, in accordance
with the fact that such scheme is never strongly stable.

Example 14.2. In Fig. 14.7 we compare the numerical results obtained by solving
equation (14.1) with a = 1 and initial datum u0. The solutions are composed by a
packet of two sinusoidal waves of equal length l centered at the origin (x = 0). In the
figures on the left l = 20h, while in the right ones we have l = 8h. As k = 2π

l , we have
φk =

2π
l h and therefore the values of the phase angle of the wave packet are φk = π/20

on the left and φk = π/8 on the right. The numerical solution has been computed for
the value 0.75 of the CFL number, using the different (stable) schemes illustrated
previously. We can note how the dissipative effect is very strong at high frequencies
(φk = π/4) and in particular for the first-order upwind, backward/centered Euler and
Lax-Friedrichs methods.

In order to appreciate the dispersion effects, the solution for φk = π/4 after 8 time
steps is reported in Fig. 14.8. We can note how the Lax-Wendroff method is the least
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Fig. 14.6. Amplification and dispersion errors for different numerical schemes in terms of the
phase angle φk = kh and for different values of the CFL number

dissipative. Moreover, by observing attentively the position of the numerical wave
crests with respect to those of the numerical solution, we can verify that the Lax-
Friedrichs method features a positive dispersion error. Indeed, the numerical wave
anticipates the exact one. The upwind method is also weakly dispersive for a CFL
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Fig. 14.7. Numerical solution of the convective transport equation of a sine wave packet with
different wavelengths (l = 20h left, l = 8h right) obtained with different numerical schemes.
The numerical solution for t = 1 is displayed by the solid line, while the exact solution at the
same time instant is displayed by the dashed line

number equal to 0.75, while the dispersion of the Lax-Friedrichs and backward Euler
methods is evident (even after only 8 time steps!). �
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Fig. 14.8. Numerical solution of the convective transport of a packet of sinusoidal waves. The
solid line represents the solution after 8 time steps. The etched line represents the corresponding
exact solution at the same time level

14.5 Equivalent equations

To each numerical scheme, we can associate a family of differential equations, called
equivalent equations.

14.5.1 The upwind scheme case

Let us first focus on the upwind scheme. Suppose there exists a regular function v(x, t)
satisfying the difference equation (14.20) at each point (x, t) ∈ R×R+ (and not only
at the grid nodes (x j, tn)!). We can then write (in the case where a > 0)

v(x, t +Δ t)− v(x, t)

Δ t
+ a

v(x, t)− v(x− h, t)

h
= 0. (14.44)
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Using the Taylor expansions with respect to x and t relative to the point (x, t) and
supposing that v is of class C4 with respect to x and t, we can write

v(x, t +Δ t)− v(x, t)

Δ t
= vt +

Δ t

2
vtt +

Δ t2

6
vttt +O(Δ t3),

a
v(x, t)− v(x− h, t)

h
= avx− ah

2
vxx +

ah2

6
vxxx +O(h3),

where the right-hand side derivatives are all evaluated at (x, t). Thanks to (14.44) we
deduce that, at each point (x, t), the function v satisfies the relation

vt + avx = RU +O(Δ t3 + h3), (14.45)

with

RU =
1
2
(ahvxx−Δ t vtt)− 1

6
(ah2vxxx +Δ t2vttt ).

Formally differentiating such equation in t, we find

vtt + avxt = RU
t +O(Δ t3 + h3).

Instead, differentiating it in x, we have

vxt + avxx = RU
x +O(Δ t3 + h3). (14.46)

Hence
vtt = a2vxx +RU

t −aRU
x +O(Δ t3 + h3), (14.47)

which allows to obtain from (14.45)

vt +avx = μvxx− 1
6
(ah2vxxx +Δ t2vttt )− Δ t

2
(RU

t − aRU
x )+O(Δ t3 + h3), (14.48)

having set

μ =
1
2

ah(1− (aλ )) (14.49)

and, as usual, λ = Δ t/h. Now, differentiating (14.47) with respect to t formally, and
(14.46) with respect to x, we find

vttt = a2vxxt +RU
tt −aRU

xt +O(Δ t3 + h3)

= −a3vxxx + a2RU
xx +RU

tt − aRU
xt +O(Δ t3 + h3).

(14.50)

Moreover, we have that

RU
t =

1
2

ahvxxt − Δ t

2
vttt − ah2

6
vxxxt − Δ t2

6
vtttt ,

RU
x =

1
2

ahvxxx− Δ t

2
vttx− ah2

6
vxxxx− Δ t2

6
vtttx.

(14.51)
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Using relations (14.50) and (14.51) in (14.48) we obtain

vt + avx = μvxx− ah2

6

(
1− a2Δ t2

h2 − 3aΔ t

2h

)
vxxx

+
Δ t

4

(
Δ t vttt − ahvxxt−aΔ t vttx

)
︸ ︷︷ ︸

(A)

+
Δ t

12
(Δ t2vtttt − aΔ t2vtttx +ah2vxxxt − a2h2vxxxx)

− a2Δ t2

6
RU

xx−
Δ t2

6
RU

tt + a
Δ t2

6
RU

xt +O(Δ t3 + h3).

(14.52)

Let us now focus on the third derivatives of v contained in the term (A). Thanks to
(14.50), (14.46) and (14.47), respectively, we find:

vttt =−a3vxxx + r1,

vxxt =−avxxx + r2,

vttx = a2vxxx + r3,

where r1, r2 and r3 are terms containing derivatives of v of order no less than four,
as well as terms of order O(Δ t3 + h3). (Note that it follows from the definition of RU

that its derivatives of order two are expressed through derivatives of v of order no less
than four.) Regrouping the coefficients that multiply vxxx, we therefore deduce from
(14.52) that

vt + avx = μvxx +νvxxx +R4(v)+O(Δ t3 + h3), (14.53)

having set

ν =−ah2

6
(1−3aλ+ 2(aλ )2), (14.54)

and having indicated with R4(v) the set of terms containing the derivatives of v of
order at least four.
We can conclude that the function v satisfies, respectively, the equations:

vt + avx = 0 (14.55)

if we neglect the terms containing derivatives of order above the first;

vt + avx = μvxx (14.56)

if we neglect the terms containing derivatives of order above the second;

vt + avx = μvxx +νvxxx (14.57)

if we neglect the derivatives of order above the third. The coefficients μ and ν are
in (14.49) and (14.54). Equations (14.55), (14.56) and (14.57) are called equivalent
equations (at the first, second resp. third order) relative to the upwind scheme.
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14.5.2 The Lax-Friedrichs and Lax-Wendroff case

Proceeding in a similar way, we can derive the equivalent equations of any numerical
scheme. For instance, in the case of the Lax-Friedrichs scheme, having denoted by v a
hypothetic function that verifies equation (14.16) at each point (x, t), having observed
that

1
2

(
v(x+h, t)+ v(x−h, t)

)
= v+

h2

2
vxx +O(h4),

1
2

(
v(x+h, t)− v(x−h, t)

)
= hvx +

h3

6
vxxx +O(h4),

we obtain

vt + avx = RLF +O

( h4

Δ t
+Δ t3

)
, (14.58)

having set

RLF =
h2

2Δ t
(vxx−λ 2vtt )− ah2

6
(vxxx +

λ 2

a
vttt ).

Proceeding as we did previously, tedious computation allows us to deduce from (14.58)
the equivalent equations (14.55)–(14.57), in this case having

μ =
h2

2Δ t
(1− (aλ )2), ν =

ah2

3
(1− (aλ )2).

In the case of the Lax-Wendroff scheme, the equivalent equations are characterized by
the following parameters

μ = 0, ν =
ah2

6
((aλ )2− 1).

14.5.3 On the meaning of coefficients in equivalent equations

In general, in the equivalent equations the term μvxx represents a dissipation, while
νvxxx represents a dispersion. We can provide a heuristic proof of this by examining
the solution to the problem{

vt + avx = μvxx +νvxxx, x ∈R, t > 0,

v(x,0) = eikx, k ∈ Z.
(14.59)

By applying the Fourier transform we find, if μ = ν = 0,

v(x, t) = eik(x−at),

while for μ and ν arbitrary real numbers (with μ > 0) we have

v(x, t) = e−μk2t eik[x−(a+νk2)t].
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Comparing these two relations, we see that for growing values of μ the modulus of
the solution gets smaller. Such effect becomes more remarkable as the frequency k
increases (a phenomenon we have already registered in the previous section, albeit
with partly different arguments).

The term μvxx in (14.59) therefore has a dissipative effect on the solution. In turn,
ν modifies the propagation rate of the solution, increasing it in the ν > 0 case, and
decreasing it if ν < 0. Also in this case, the effect is more notable at high frequencies.
Hence, the third derivative term νvxxx introduces a dispersive effect.

In general, in the equivalent equation, even-order spatial derivatives represent dif-
fusive terms, while odd-order derivatives represent dispersive terms. For first-order
schemes (such as the upwind scheme) the dispersive effect is often barely visible, as
it is disguised by the dissipative one. Taking Δ t and h of the same order, from (14.56)
and (14.57) we evince that ν� μ for h→ 0, as ν =O(h2) and μ =O(h). In particular,
if the CFL number is 1

2 , the third-order equivalent equation of the upwind method fea-
tures a null dispersion, in accordance with the numerical results seen in the previous
section.

Conversely, the dispersive effect is evident for the Lax-Friedrichs scheme, as well
as for the Lax-Wendroff scheme which, being of second order, does not feature a
dissipative term of type μvxx. However, being stable, the latter cannot avoid being dis-
sipative. Indeed, the fourth-order equivalent equation for the Lax-Wendroff scheme is

vt + avx =
ah2

6
[(aλ )2− 1]vxxx− ah3

6
aλ [1− (aλ )2]vxxxx,

where the last term is dissipative if |aλ | < 1, as one can easily verify by applying
the Fourier transform. We then recover, also for the Lax-Wendroff scheme, the CFL
condition.

14.5.4 Equivalent equations and error analysis

The technique applied to obtain the equivalent equation denotes a strong analogy with
the so-called backward analysis that we encounter during the numerical solution of
linear systems, where the computed (not exact) solution is interpreted as the exact
solution of a perturbed linear system (see [QSS07, Chap. 3]). As a matter of fact, the
perturbed system plays a similar role to that of the equivalent equation.

Moreover, we observe that an error analysis of a numerical scheme can be carried
out by using the equivalent equation associated to it. Indeed, by generically denoting
by r = μvxx+νvxxx the right-hand side of the equivalent equation, by comparison with
(14.1) we obtain the error equation

et + aex = r,

where e = v− u. Multiplying such equation by e and integrating in space and time
(between 0 and t) we obtain

‖e(t)‖L2(R) ≤C(t)

(
‖e(0)‖L2(R) +

√∫ t

0
‖r(s)‖2

L2(R)
ds

)
, t > 0
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having used the a priori estimate (14.4). We can assume e(0) = 0 and therefore ob-
serve that ‖e(t)‖L2(R) tends to zero (for h and Δ t tending to zero) with order 1 for the
upwind or Lax-Friedrichs schemes, and with order 2 for the Lax-Wendroff scheme
(having supposed v to be sufficiently regular).

14.6 Exercises

1. Verify that the solution to the problem (14.9)–(14.10) (with f = 0) satisfies identity
(14.11).
[Solution: Multiplying (14.9) by ut and integrating in space we obtain

0 =

β∫
α

uttut dx−
β∫
α

γ2uxxut dx =
1
2

β∫
α

[(ut)
2]t dx+

β∫
α

γ2uxuxt dx− [γ2uxut ]
β
α .

(14.60)
As

β∫
α

utt ut dx =
1
2

β∫
α

[(ut)
2]t dx and

β∫
α

γ2uxuxt dx =
1
2

β∫
α

γ2[(ux)
2]t dx,

integrating (14.60) in time we have

β∫
α

u2
t (t) dx+

β∫
α

γ2u2
x(t) dx−

β∫
α

v2
0 dx−

β∫
α

γ2u2
0x dx = 0. (14.61)

Hence (14.11) immediately follows from the latter relation.]

2. Verify that the solution provided by the backward/centered Euler scheme (14.22)
is unconditionally stable; more precisely,

‖u‖Δ ,2 ≤ ‖u0‖Δ ,2 ∀Δ t, h > 0.

[Solution: Note that, thanks to (14.32),

(un+1
j − un

j)u
n+1
j ≥ 1

2

(
|un+1

j |2−|un
j |2
)

∀ j, n.

Then, multiplying (14.22) by un+1
j , summing over the index j and using (14.33) we

find

∑
j

|un+1
j |2 ≤∑

j

|un
j |2 ∀n≥ 0,

from which the result follows.]
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3. Prove (14.30)
[Solution: We note that, in the case where a > 0, the upwind scheme can be rewrit-
ten in the form

un+1
j = (1− aλ )un

j + aλun
j−1.

Under hypothesis (14.28) both coefficients aλ and 1− aλ are non-negative, hence

min(un
j ,u

n
j−1)≤ un+1

j ≤max(un
j ,u

n
j−1).

Then

inf
l∈Z
{u0

l } ≤ un
j ≤ sup

l∈Z
{u0

l } ∀ j ∈ Z, ∀n≥ 0,

from which (14.30) follows.]

4. Study the accuracy of the Lax-Friedrichs scheme (14.16) for the solution of prob-
lem (14.1).

5. Study the accuracy of the Lax-Wendroff scheme (14.18) for the solution of problem
(14.1).



Chapter 15

Finite elements and spectral methods

for hyperbolic equations

In this chapter we will illustrate how to apply Galerkin methods, and in particular the
finite element method and the spectral one, to the spatial and/or temporal discretization
of scalar hyperbolic equations. We will treat both continuous as well as discontinuous
finite elements.

Let us consider the transport problem (14.3) and let us set for simplicity (α,β ) =
(0,1), ϕ = 0. Moreover, let us suppose that a is a positive constant and a0 a non-
negative constant.

To start with, we proceed with a spatial discretization based on continuous finite
elements. We therefore attempt a semidiscretization of the following form:
∀t > 0, find uh = uh(t) ∈Vh such that(

∂uh

∂ t
,vh

)
+a

(
∂uh

∂x
,vh

)
+a0 (uh,vh) = ( f ,vh) ∀vh ∈Vh, (15.1)

u0
h being the approximation of the initial datum. We have set

Vh = {vh ∈ Xr
h : vh(0) = 0}, r ≥ 1.

The space Xr
h is defined as in (4.14), provided that we replace (a,b) with (0,1).

15.1 Temporal discretization

For the temporal discretization of problem (15.1) we will use finite difference schemes
such as those introduced in Chapter 14.

As usual, we will denote by un
h, n≥ 0, the approximation of uh at time tn = nΔ t.

15.1.1 The forward and backward Euler schemes

In case we use the forward Euler scheme, the discrete problem becomes:

A. Quarteroni, Numerical Models for Differential Problems, MS&A 16, 
DOI 10.1007/978-3-319-49316-9_15

399© Springer International Publishing AG 2017 
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∀n≥ 0, find un+1
h ∈Vh such that

1
Δ t

(
un+1

h −un
h,vh
)
+ a

(
∂un

h

∂x
,vh

)
+ a0 (u

n
h,vh) = ( f n,vh) ∀vh ∈Vh, (15.2)

where (u,v) =
∫ 1

0 u(x)v(x)dx denotes as usual the scalar product of L2(0,1).
In the case of the backward Euler method, instead of (15.2) we will have

1
Δ t

(
un+1

h −un
h,vh
)
+a

(
∂un+1

h

∂x
,vh

)
+ a0

(
un+1

h ,vh
)
=
(

f n+1,vh
)∀vh ∈Vh. (15.3)

Theorem 15.1. The backward Euler scheme is strongly stable with no restriction
on Δ t. Instead, the forward Euler method is strongly stable only for a0 > 0,
provided we suppose that

Δ t ≤ 2a0

(aCh−1 +a0)2 (15.4)

for a given constant C =C(r).

Proof. Choosing vh = un
h in (15.2), we obtain (in the case f = 0)

(
un+1

h − un
h,u

n
h

)
+Δ ta

(
∂un

h

∂x
,un

h

)
+Δ ta0‖un

h‖2
L2(0,1) = 0.

For the first term, we use the identity

(v−w,w) =
1
2

(
‖v‖2

L2(0,1)−‖w‖2
L2(0,1)−‖v−w‖2

L2(0,1)

)
∀v,w ∈ L2(0,1) (15.5)

which generalizes (14.34). For the second summand, integrating by parts and using
the boundary conditions, we find(

∂un
h

∂x
,un

h

)
=

1
2
(un

h(1))
2.

Thus, we obtain

‖un+1
h ‖2

L2(0,1) + aΔ t(un
h(1))

2 + 2a0Δ t‖un
h‖2

L2(0,1) = ‖un
h‖2

L2(0,1) +‖un+1
h −un

h‖2
L2(0,1).

(15.6)

We now seek an estimate for the term ‖un+1
h −un

h‖2
L2(0,1). To this end, setting in (15.2)
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vh = un+1
h −un

h, we obtain

‖un+1
h −un

h‖2
L2(0,1) ≤ Δ ta

∣∣∣( ∂un
h

∂x ,u
n+1
h − un

h

)∣∣∣+Δ ta0
∣∣(un

h,u
n+1
h − un

h

)∣∣
≤ Δ t

[
a‖ ∂un

h
∂x ‖L2(0,1) + a0‖un

h‖L2(0,1)

]
‖un+1

h −un
h‖L2(0,1).

By now using the inverse inequality (13.43) (referred to the interval (0,1)), we obtain

‖un+1
h − un

h‖L2(0,1) ≤ Δ t
(
aCIh

−1 +a0
)‖un

h‖L2(0,1).

Finally, (15.6) becomes

‖un+1
h ‖2

L2(0,1) +aΔ t(un
h(1))

2

+Δ t
[
2a0−Δ t(aCIh−1 + a0)

2
]‖un

h‖2
L2(0,1) ≤ ‖un

h‖2
L2(0,1).

(15.7)

If (15.4) is satisfied, then ‖un+1
h ‖L2(0,1) ≤ ‖un

h‖L2(0,1) and we therefore have strong

stability in L2(0,1) norm.
In the case where a0 = 0 the obtained stability condition is meaningless. However,

if we suppose that

Δ t ≤ Kh2

a2C2
I

,

for a given constant K > 0, then we can apply the discrete Gronwall lemma (see
Lemma 2.3) to (15.7) and we find that the method is stable, with a stability constant
which in this case depends on the final time T . Precisely,

‖un
h‖L2(0,1) ≤ exp(Ktn)‖u0

h‖L2(0,1) ≤ exp(KT )‖u0
h‖L2(0,1) ∀n≥ 1.

In the case of the backward Euler method (15.3), we choose instead vh = un+1
h . By

using the relation

(v−w,v) =
1
2

(
‖v‖2

L2(0,1)−‖w‖2
L2(0,1) + ‖v−w‖2

L2(0,1)

)
∀v,w ∈ L2(0,1) (15.8)

which generalizes (14.32), we find

(1+ 2a0Δ t)‖un+1
h ‖2

L2(0,1) +aΔ t(un+1
h (1))2 ≤ ‖un

h‖2
L2(0,1). (15.9)

Hence we have strong stability in L2(0,1), for all Δ t and for all a0 ≥ 0. �

15.1.2 The upwind, Lax-Friedrichs and Lax-Wendroff schemes

The generalization to the finite elements case of the Lax-Friedrichs (LF), Lax-Wendroff
(LW) and upwind (U) finite difference schemes can be attained in different ways.
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We start by observing that (14.16), (14.18), and (14.20) can be rewritten in the
following comprehensive form

un+1
j −un

j

Δ t
+ a

un
j+1−un

j−1

2h
− μ un

j+1− 2un
j + un

j−1

h2 + a0un
j = 0. (15.10)

(Note however that a0 = 0 in (14.16), (14.18) and (14.20).) The second term is the
discretization via centered finite differences of the convective term aux(tn), while the
third one is a numerical diffusion term and corresponds to the discretization via finite
differences of −μuxx(tn). The numerical viscosity coefficient μ is given by

μ =

⎧⎪⎨⎪⎩
h2/2Δ t (LF),

a2Δ t/2 (LW),

ah/2 (U).

(15.11)

Equation (15.10) suggests the following finite element version for the approximation
of problem (14.3): ∀n≥ 0, find un+1

h ∈Vh such that

1
Δ t

(
un+1

h − un
h,vh
)
+ a

(
∂un

h

∂x
,vh

)
+a0 (u

n
h,vh)

+μ

(
∂un

h

∂x
,
∂vh

∂x

)
− μγ ∂un

h

∂x
(1)vh(1) = ( f n,vh) ∀vh ∈Vh,

(15.12)

where γ = 1,0 depending on whether or not we want to take the boundary contribution
into account when integrating by parts the numerical viscosity term.

For the stability analysis, in the case γ = 0, a0 = 0, a> 0, let us set vh = un+1
h −un

h,
in order to obtain

‖un+1
h − un

h‖L2(0,1) ≤ Δ t(a+ μCIh
−1)‖∂un

h

∂x
‖L2(0,1),

thanks to inequality (4.52). Having now set vh = un
h, thanks to (15.5) we obtain

‖un+1
h ‖2

L2(0,1)−‖un
h‖2

L2(0,1) + aΔ t(un
h(1))

2 + 2Δ tμ‖∂un
h

∂x
‖2

L2(0,1)

= ‖un+1
h − un

h‖2
L2(0,1) ≤ Δ t2(a+ μCIh

−1)2‖∂un
h

∂x
‖2

L2(0,1).

A sufficient condition for strong stability (i.e. to obtain an estimate such as (14.27),
with respect to ‖ · ‖L2(0,1)) is therefore

Δ t ≤ 2μ
(a+ μCIh−1)2 .

Thanks to (15.11), in the case of the upwind method this is equivalent to

Δ t ≤ h

a

(
1

1+CI/2

)2

.
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In the case of linear finite elements, CI � 2
√

3, whence

aΔ t

h
�

(
1

1+
√

3

)2

.

The stability analysis we have just developed is based on the energy method and, in
this case, leads to sub-optimal results. A better indicator can be obtained by resorting
to the von Neumann analysis, as we saw in Sect. 14.4.3. To this end we observe that,
in the case of linear finite elements with constant spacing h, (15.12) with f = 0 can be
rewritten in the following way for each internal node x j:

1
6
(un+1

j+1 +4un+1
j + un+1

j−1)+
λa

2
(un

j+1− un
j−1)+

a0

6
Δ t(un

j+1 +4un
j + un

j−1)

−μΔ t
un

j+1− 2un
j + un

j−1

h2 =
1
6
(un

j+1 +4un
j + un

j−1).

(15.13)

By comparing such relation to (15.10), we can note that the difference only resides in
the term arising from the temporal derivative and from the term of order zero, and has
to be attributed to the presence of the mass matrix in the case of finite elements. On
the other hand, we saw in Sect. 13.5 that we can apply the mass-lumping technique
to approximate the mass matrix using a diagonal matrix. By proceeding in this way,
scheme (15.13) can effectively be reduced to (15.10) (see Exercise 1).

Remark 15.1. Note that relations (15.13) refer to the internal nodes. The approach
used to handle boundary conditions with the finite element method generally yields
different relations than those obtained via the finite difference method. •
These observations allow us to extend all the schemes seen in Sect. 14.3.1 to analogous
schemes, generated by discretizations in space with continuous linear finite elements.
To this end, it will be sufficient to replace the term un+1

j −un
j with

1
6
[(un+1

j−1− un
j−1)+ 4(un+1

j −un
j)+ (un+1

j+1− un
j+1)].

Thus, the general scheme (14.13) is replaced by

1
6
(un+1

j−1 +4un+1
j + un+1

j−1) =
1
6
(un

j−1 + 4un
j + un

j−1)−λ (Hn∗
j+1/2−Hn∗

j−1/2), (15.14)

where

Hn∗
j+1/2 =

⎧⎨⎩ Hn
j+1/2 for explicit time-advancing schemes,

Hn+1
j+1/2 for implicit time-advancing schemes.

Note that, even if we had adopted a numerical flux corresponding to an explicit
time-advancing scheme, the resulting scheme would no longer lead to a diagonal sys-
tem (indeed, it becomes a tridiagonal one) because of the mass matrix terms. The
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use of an explicit time-advancing scheme for finite elements might seem inconvenient
with respect to a similar full finite difference scheme. However, such a scheme has
interesting features. In particular, let us consider its amplification and dispersion co-
efficients, using the von Neumann analysis illustrated in Sect. 14.4.3. To this end, let
us suppose that the differential equation is defined on all of R, or, alternatively, let us
consider a bounded interval and assume periodic boundary conditions at its endpoints.
In either case, we can assume that relation (15.14) holds for all values of the index j. A
simple computation leads us to writing the following relation between the amplifica-
tion coefficient γk of a finite difference scheme (see Table 14.1) and the amplification
coefficient γFEM

k of the corresponding finite element scheme

γFEM
k =

3γk− 1+ cos(φk)

2+ cos(φk)
, (15.15)

where we denote again with φk the phase angle relative to the k-th harmonic (see
Sect. 14.4.3).

We can thus compute the amplification and dispersion errors, which are reported
in Fig. 15.1. Comparing them with the analogous errors relating to the corresponding
finite difference scheme (reported in Fig. 14.6) we can make the following remarks.
The forward Euler scheme is still unconditionally unstable (in the sense of strong sta-
bility). The upwind scheme (FEM) is strongly stable if the CFL number is less than 1

3
(hence, a less restrictive result than the one found using the energy method), while the
Lax-Friedrichs (FEM) method never satisfies the condition γFEM

k ≤ 1 (in accordance
with the result that we would find using the energy method in this case).
More generally, we can say that in the case of schemes with an explicit temporal treat-
ment, the “finite element” version requires more restrictive stability conditions than
the corresponding finite difference one. In particular, for the Lax-Wendroff finite el-
ement scheme, that we will denote with LW (FEM), the CFL number must now be
less than 1√

3
, instead of 1 as in the finite differences case. However, the LW (FEM)

scheme (for the CFL values for which it is stable), is slightly less diffusive and dis-
persive than the equivalent finite difference scheme, for a wide range of values of the
phase angle φk = kh. The implicit Euler scheme remains unconditionally stable also
in the FEM version (coherently with what we obtained using the energy method in
Sect. 15.1.1).

Example 15.1. The previous conclusions have been experimentally verified as fol-
lows. We have repeated the case of Fig. 14.7 (right), where we have now considered
a CFL value of 0.5. The numerical solutions obtained via the classical Lax-Wendroff
method (LW) and via LW (FEM) for t = 2 are reported in Fig. 15.2. We can note
how the LW (FEM) scheme provides a solution that is more accurate and, especially,
featuring a smaller phase error. This result is confirmed by the value of the ‖ · ‖Δ ,2
norm of the error in the two cases. Indeed, by calling u the exact solution and uLW

resp. uLW(FEM) the one obtained using the two numerical schemes, ‖uLW − u‖Δ ,2 =
0.78, ‖uLW(FEM)− u‖Δ ,2 = 0.49.
Further tests conducted with non-periodic boundary conditions confirm the stability
properties previously derived. �
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Fig. 15.1. Amplification and dispersion errors for several finite element schemes obtained from
the general scheme (15.14)
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Fig. 15.2. Comparison between the solution obtained via the Lax-Wendroff finite difference
scheme (LW) and its finite element version (LW (FEM)) (φk = π/4, t = 2)

15.2 Taylor-Galerkin schemes

We now illustrate a class of finite element schemes named “Taylor-Galerkin” schemes.
These are derived in a similar way to the Lax-Wendroff scheme, and we will indeed
see that the LW (FEM) version is in this class.

For simplicity, we will refer to the pure transport problem (14.1). The Taylor-
Galerkin method consists in combining the Taylor formula truncated to the first order

u(x, tn+1) = u(x, tn)+Δ t
∂u

∂ t
(x, tn)+

∫ tn+1

tn
(s− tn)

∂ 2u

∂ t2 (x,s)ds (15.16)

with equation (14.1). By formally differentiating (14.1) with respect to t we obtain

∂ 2u

∂ t2 =
∂

∂ t
(−a

∂u

∂x
) =−a

∂

∂x

∂u

∂ t
= a2 ∂

2u

∂x2 .

From (15.16) we then obtain

u(x, tn+1) = u(x, tn)−aΔ t
∂u

∂x
(x, tn)+a2

∫ tn+1

tn
(s− tn)

∂ 2u

∂x2 (x,s)ds. (15.17)

We approximate the integral in the following way∫ tn+1

tn
(s− tn)

∂ 2u

∂x2 (x,s)ds ≈ Δ t2

2

[
θ
∂ 2u

∂x2 (x, t
n)+ (1−θ )∂

2u

∂x2 (x, t
n+1)

]
, (15.18)

obtained by evaluating the first factor at s= tn+ Δ t
2 and the second one through a linear

combination (using θ ∈ [0,1] as a parameter) of its values in s = tn and s = tn+1. We
denote by un(x) the approximating function u(x, tn).
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Let us consider two remarkable situations. If θ = 1, we obtain a semi-discretized
scheme that is explicit in time

un+1 = un−aΔ t
∂un

∂x
+

a2Δ t2

2
∂ 2un

∂x2 .

If we now discretize in space by finite differences or finite elements, we recover the
previously examined LW and LW (FEM) schemes.
Instead, if we take θ = 2

3 , the approximation error in (15.18) becomes O(Δ t4) (sup-
posing that u has the required regularity). De facto, such choice corresponds to ap-
proximating ∂ 2u

∂x2 between tn and tn+1 with its linear interpolant. The resulting semi-
discretized scheme is written[

1− a2Δ t2

6
∂ 2

∂x2

]
un+1 = un− aΔ t

∂un

∂x
+

a2Δ t2

3
∂ 2un

∂x2 ; (15.19)

its truncation error in time is O(Δ t3).
At this point, a discretization in space using the finite element method leads to the

following scheme, called Taylor-Galerkin (TG):

for n = 0,1, . . . find un+1
h ∈Vh such that

A(un+1
h ,vh) = (un

h,vh)− aΔ t

(
∂un

h

∂x
,vh

)
− a2Δ t2

3

(
∂un

h

∂x
,
∂vh

∂x

)
+ γ

a2Δ t2

3

∂un
h

∂x
(1)vh(1) ∀vh ∈Vh, (15.20)

where

A(un+1
h ,vh) =

(
un+1

h ,vh
)
+

a2Δ t2

6

(
∂un+1

h

∂x
,
∂vh

∂x

)
− γ a2Δ t2

6

∂un+1
h

∂x
(1)vh(1),

and γ = 1,0 depending on whether or not we want to take into account the boundary
contribution when integrating by parts the second derivative.

The latter yields a linear system whose matrix is

A = M+
a2(Δ t)2

6
K;

M is the mass matrix and K is the stiffness matrix, possibly taking the boundary con-
tribution as well into account (if γ = 1).

In the case of linear finite elements, the von Neumann analysis leads to the follow-
ing k-th amplification factor for scheme (15.20)

γk =
2+ cos(kh)− 2a2λ 2(1− cos(kh))+ 3iaλ sin(kh)

2+ cos(kh)+a2λ 2(1− cos(kh))
. (15.21)

It can be proven that the scheme is strongly stable in ‖ · ‖Δ ,2 under the CFL condition
aΔ t

h ≤ 1. Thus, it has a less restrictive stability condition than the Lax-Wendroff (FEM)
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Fig. 15.3. Amplification (top) and dispersion (bottom) error of the Taylor-Galerkin scheme
(15.20), as a function of the phase angle φk = kh and for different values of the CFL number

scheme.
Fig. 15.3 shows the behaviour of the amplification and dispersion error for the scheme
(15.20), as a function of the phase angle, in analogy to what we have seen for other
schemes in Sect. 14.4.4.

In the case of linear finite elements the truncation error of the TG scheme is
O(Δ t3)+O(h2)+O(h2Δ t).

Example 15.2. To compare the accuracy of the schemes presented in the last two sec-
tions, we have considered the problem

⎧⎨⎩
∂u

∂ t
+
∂u

∂x
= 0, x ∈ (0,0.5), t > 0,

u(x,0) = u0(x), x ∈ (0,0.5),

with periodic boundary conditions, u(0, t) = u(0.5, t), for t > 0. The initial datum is
u0(x) = 2cos(4πx) + sin(20πx), and is illustrated in Fig. 15.4 (left). The latter su-
perposes two harmonics, one with low frequency one and one with high frequency.

We have considered the Taylor-Galerkin, Lax-Wendroff (FEM), (finite difference)
Lax-Wendroff and upwind schemes. In Fig. 15.4 (right) we show the error in dis-
crete norm ‖u− uh‖Δ ,2 obtained at time t = 1 for different values of Δ t and with a
fixed CFL number of 0.55. We can note a better convergence of the Taylor-Galerkin
scheme, while the two versions of the Lax-Wendroff scheme show the same order
of convergence, but with a smaller error for the finite element version. The upwind
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Fig. 15.4. Initial condition u0 for the simulation of example 15.2 (left) and error ‖u−uh‖Δ ,2 at
t = 1 for varying Δ t and fixed CFL for different numerical schemes (right)

scheme is less accurate: it features a larger absolute error and a lower convergence
rate. Moreover, it can be verified that for a fixed CFL, the error of the upwind scheme
is O(Δ t), that of both variants of the Lax-Wendroff scheme is O(Δ t2), while the error
of the Taylor-Galerkin scheme is O(Δ t3). �

We report in Figs. 15.5 and 15.6 the numerical approximations and corresponding
errors in maximum norm for the transport problem⎧⎨⎩

∂u

∂ t
− ∂u

∂x
= 0, x ∈ (0,2π), t > 0

u(x,0) = sin
(
π cos(x)

)
, x ∈ (0,2π)

having periodic boundary conditions. Such approximations are obtained using finite
differences of order 2 and 4 (ufd2, ufd4), compact finite differences of order 4 and 6
(ucp4, ucp6), and by the Galerkin spectral method with Fourier basis (ugal). For the
sake of comparison, we also report the exact solution u(x, t) = sin

(
π cos(x+t)

)
(uex).
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Fig. 15.5. Approximation of the solution of a wave propagation problem using finite difference
methods (of order 2, 4), compact finite difference methods (of order 4 and 6) and with the
Fourier Galerkin spectral method (from [CHQZ06])
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15.3 The multi-dimensional case

Let us now move to the multi-dimensional case and consider the following first-order,
linear and scalar hyperbolic transport-reaction problem in the domain Ω ⊂ Rd , with
d = 2,3: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂u

∂ t
+ a ·∇u+a0u = f , x ∈Ω , t > 0

u = ϕ , x ∈ ∂Ω in, t > 0,

u|t=0 = u0, x ∈Ω ,

(15.22)

where a = a(x), a0 = a0(x, t) (possibly zero), f = f (x, t), ϕ = ϕ(x, t) and u0 = u0(x)
are given functions. The inflow boundary ∂Ω in is defined by

∂Ω in = {x ∈ ∂Ω : a(x) ·n(x)< 0}, (15.23)

n being the outward unit normal vector to ∂Ω .
For simplicity, we have supposed that a does not depend on t; in this way, the

inflow boundary ∂Ω in does not change with time.

15.3.1 Semi-discretization: strong and weak treatment of the boundary

conditions

To obtain a semi-discrete approximation of problem (15.22), similar to that used in
the one-dimensional case (15.1), we define the spaces

Vh = Xr
h , V in

h = {vh ∈Vh : vh|∂Ω in = 0},
where r is an integer ≥ 1 and Xr

h was introduced in (4.38).
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We denote by u0,h and ϕh two suitable finite element approximations of u0 and ϕ ,
respectively, and we consider the problem: for each t > 0 find uh(t) ∈Vh such that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫
Ω

∂uh(t)

∂ t
vh dΩ +

∫
Ω

a ·∇uh(t)vh dΩ +

∫
Ω

a0(t)uh(t)vh dΩ

=
∫
Ω

f (t)vh dΩ ∀ vh ∈V in
h ,

uh(t) = ϕh(t) on ∂Ω in,

(15.24)

with uh(0) = u0,h ∈Vh.
To obtain a stability estimate, we assume for simplicity that ϕ , and therefore ϕh,

is identically null. In this case uh(t) ∈V in
h , and taking, for every t, vh = uh(t), we have

the following inequality

‖uh(t)‖2
L2(Ω)

+

t∫
0

μ0‖uh(τ)‖2
L2(Ω) dτ+

t∫
0

∫
∂Ω\∂Ω in

a ·n u2
h(τ) dγ dτ

≤ ‖u0,h‖2
L2(Ω)

+

t∫
0

1
μ0
‖ f (τ)‖2

L2(Ω)dτ .

(15.25)

We have assumed that there exists a positive constant μ0 such that, for all t > 0 and
for each x in Ω ,

0 < μ0 ≤ μ(x, t) =a0(x, t)− 1
2

diva(x). (15.26)

In the case where such hypothesis is not verified (for instance if a is a constant field
and a0 = 0), then by using the Gronwall Lemma 2.2 we obtain

‖uh(t)‖2
L2(Ω)

+

t∫
0

∫
∂Ω\∂Ω in

a ·nu2
h(τ)dγ dτ

≤
⎛⎝‖u0,h‖2

L2(Ω)
+

t∫
0

‖ f (τ)‖2
L2(Ω) dτ

⎞⎠exp

t∫
0

[1+2μ∗(τ)] dτ,

(15.27)

where we have set μ∗(t) = max
x∈Ω̄

|μ(x, t)|.
Supposing for simplicity that f = 0, if u0 ∈ Hr+1(Ω) we have the following con-

vergence result

max
t∈[0,T ]

‖u(t)−uh(t)‖L2(Ω) +

⎛⎝ T∫
0

∫
∂Ω
|a ·n| |u(t)−uh(t)|2 dγ dt

⎞⎠1/2

≤Chr‖u0‖Hr+1(Ω).

For the proofs, we refer to [QV94, Chap. 14], [Joh87] and to the references cited
therein.
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In problem (15.24) the boundary condition has been imposed in a strong (or essential)
way. An alternative option is the weak (or natural) treatment that derives from the
integration by parts of the transport term in the first equation in (15.24), where we
now consider vh ∈ Vh (i.e. we no longer require that the test function is null on the
inflow boundary). We obtain∫
Ω

∂uh(t)

∂ t
vh dΩ −

∫
Ω

div(avh))uh(t) dΩ

+

∫
Ω

a0uh(t)vh dΩ +

∫
∂Ω

a ·nuh(t)vh dγ =
∫
Ω

f (t)vh dΩ .

The boundary condition is imposed by replacing uh with ϕh on the inflow boundary
part, obtaining∫
Ω

∂uh(t)

∂ t
vh dΩ −

∫
Ω

div(avh)uh(t) dΩ +

∫
Ω

a0uh(t)vh dΩ +

∫
∂Ω\∂Ω in

a ·nuh(t)vh dγ

=
∫
Ω

f (t)vh dΩ −
∫

∂Ω in

a ·nϕh(t)vh dγ ∀vh ∈Vh . (15.28)

Clearly, the solution uh found in this way only satisfies the boundary condition in an
approximate way.

A further option consists in counter-integrating (15.28) by parts, thus producing
the following formulation: for each t > 0, find uh(t) ∈Vh such that∫
Ω

∂uh(t)

∂ t
vh dΩ+

∫
Ω

a ·∇uh(t)vh dΩ+

∫
Ω

a0uh(t)vh dΩ+

∫
∂Ω in

vh(ϕh(t)−uh(t))a ·ndγ

=

∫
Ω

f (t)vh dΩ ∀vh ∈Vh . (15.29)

We note that the formulations (15.28) and (15.29) are equivalent: the only difference
is the way boundary terms are highlighted. In particular, the boundary integral in for-
mulation (15.29) can be interpreted as a penalization term with which we evaluate
how different uh is from the data ϕh on the inflow boundary. Assuming that hypothe-
sis (15.26) is still true, having chosen vh = uh(t) in (15.29), integrating the convective
term by parts and using the Cauchy-Schwarz and Young inequalities, we get the fol-
lowing stability estimate

‖uh(t)‖2
L2(Ω) +

t∫
0

μ0‖uh(τ)‖2
L2(Ω) dτ+

t∫
0

∫
∂Ω\∂Ω in

a ·nu2
h(τ) dγ dτ

≤ ‖u0,h‖2
L2(Ω) +

t∫
0

∫
∂Ω in

|a ·n|ϕ2
h (τ)dγ dτ+

t∫
0

1
μ0
‖ f (τ)‖2

L2(Ω)dτ. (15.30)
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In absence of hypothesis (15.26), inequality (15.30) would change in an analogous
way to what we have previously seen, provided we use the Gronwall Lemma 2.2 as
we did to derive (15.27).

Remark 15.2. In the case where the boundary condition for problem (15.22) takes the
form a ·nu = ψ , we could again impose it weakly by adding a penalization term, that
in such case would take the form∫

∂Ω in

(ψh(t)−a ·nuh(t))vh dγ,

ψh being a suitable finite element approximation of the datum ψ . •
Alternatively to the strong and weak imposition of the boundary conditions, i.e.

to formulations (15.24) and (15.29), we could adopt a Petrov-Galerkin approach by
imposing in a strong way the condition uh(t) = ϕh(t) on the inflow boundary ∂Ω in,
and requiring vh = 0 on the outflow boundary ∂Ω out , yielding the following discrete
formulation. Set V out

h = {vh ∈Vh : vh|∂Ωout = 0}. Then for each t > 0 find uh(t)∈Vh =
Xr

h such that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫
Ω

∂uh(t)

∂ t
vh dΩ +

∫
Ω

(a ·∇uh(t))vh dΩ +

∫
Ω

a0(t)uh(t)vh dΩ

=

∫
Ω

f (t)vh dΩ ∀vh ∈V out
h ,

uh(t) = ϕh(t) on ∂Ω in.

We recall that for a Petrov-Galerkin formulation, the well-posedness analysis cannot
be based on the Lax-Milgram lemma any longer.

Instead, if the inflow condition were inposed in a weak way, we would have the
following formulation:
for each t > 0, find uh(t) ∈Vh = Xr

h such that, for each vh ∈V out
h ,

∫
Ω

∂uh(t)

∂ t
vh dΩ −

∫
Ω

div(avh)uh(t) dΩ +

∫
Ω

a0(t)uh(t)vh dΩ

=

∫
Ω

f (t)vh dΩ −
∫

∂Ω in

a ·nϕh(t)vh dγ.

For further details, the reader can refer to [QV94, Chap. 14].

15.3.2 Temporal discretization

For an illustrative purpose, let us limit ourselves to considering the Galerkin semi-
discrete problem (15.24). Using the backward Euler scheme for the temporal discretiza-
tion, we obtain the following fully discrete problem:
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∀n≥ 0 find un+1
h ∈Vh such that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
Δ t

∫
Ω

(un+1
h − un

h)vh dΩ +
∫
Ω

a ·∇un+1
h vh dΩ +

∫
Ω

an+1
0 un+1

h vh dΩ

=

∫
Ω

f n+1vh dΩ ∀vh ∈V in
h ,

un+1
h = ϕn+1

h on ∂Ω in,

where u0
h = u0,h ∈Vh is a suitable approximation in Vh of the initial datum u0.

Let us limit ourselves to the homogeneous case, where f = 0 and ϕh = 0 (in this
case un

h ∈ V in
h for every n ≥ 0). Having set vh = un+1

h and using identities (15.8) and
(15.26), we obtain, for each n≥ 0

1
2Δ t

(
‖un+1

h ‖2
L2(Ω)−‖un

h‖2
L2(Ω)

)
+

1
2

∫
∂Ω\∂Ω in

a ·n(un+1
h )2 dγ + μ0‖un+1

h ‖2
L2(Ω) ≤ 0.

For each m≥ 1, summing over n from 0 to m−1 we obtain

‖um
h ‖2

L2(Ω) + 2Δ t

(
μ0

m

∑
n=0
‖un

h‖2
L2(Ω) +

1
2

m

∑
n=0

∫
∂Ω\∂Ω in

a ·n(un
h)

2 dγ

)
≤ ‖u0,h‖2

L2(Ω).

In particular, as a ·n≥ 0 on ∂Ω \ ∂Ω in, we conclude that

‖um
h ‖L2(Ω) ≤ ‖u0,h‖L2(Ω) ∀m≥ 0.

As expected, this method is strongly stable, with no condition on Δ t.
We now consider the discretization in time using the forward Euler method⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
Δ t

∫
Ω

(un+1
h − un

h)vh dΩ +

∫
Ω

a ·∇un
hvh dΩ +

∫
Ω

an
0un

hvh dΩ

=

∫
Ω

f nvh dΩ ∀vh ∈V in
h ,

un+1
h = ϕn+1

h on ∂Ω in.

(15.31)

We suppose again that f = 0, ϕ = 0 and that the condition (15.26) is verified. More-
over, we suppose that ‖a‖L∞(Ω) < ∞ and that, for each t > 0, ‖a0‖L∞(Ω) < ∞.
Setting vh = un

h, exploiting identity (15.5) and integrating the convective term by parts,
we obtain

1
2Δ t

(
‖un+1

h ‖2
L2(Ω)−‖un

h‖2
L2(Ω)−‖un+1

h −un
h‖2

L2(Ω)

)
+

1
2

∫
∂Ω\∂Ω in

a ·n(un
h)

2 dγ+(−1
2

div(a)+ an
0,(u

n
h)

2) = 0,
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and then, after a few steps,

‖un+1
h ‖2

L2(Ω) + Δ t
∫
∂Ω\∂Ω in

a ·n(un
h)

2 dγ+ 2Δ tμ0‖un
h‖2

L2(Ω)

≤ ‖un
h‖2

L2(Ω) +‖un+1
h −un

h‖2
L2(Ω). (15.32)

It is now necessary to control the term ‖un+1
h − un

h‖2
L2(Ω)

. To this end, we set vh =

un+1
h −un

h in (15.31) and obtain

‖un+1
h − un

h‖2
L2(Ω)

=−Δ t(a∇un
h,u

n+1
h − un

h)−Δ t(an
0un

h,u
n+1
h −un

h)

≤ Δ t‖a‖L∞(Ω)|(∇un
h,u

n+1
h − un

h)|+Δ t‖an
0‖L∞(Ω)|(un

h,u
n+1
h − un

h)|
≤ Δ t‖a‖L∞(Ω)‖∇un

h‖L2(Ω)‖un+1
h −un

h‖L2(Ω) +

Δ t‖an
0‖L∞(Ω)‖un

h‖L2(Ω)‖un+1
h − un

h‖L2(Ω).

Using the inverse inequality (4.52), we obtain

‖un+1
h − un

h‖2
L2(Ω)

≤ Δ t(CIh−1‖a‖L∞(Ω)+

‖an
0‖L∞(Ω))‖un

h‖L2(Ω)‖un+1
h −un

h‖L2(Ω),

and then

‖un+1
h − un

h‖L2(Ω) ≤ Δ t
(
CIh

−1‖a‖L∞(Ω) +‖an
0‖L∞(Ω)

)‖un
h‖L2(Ω).

Using such results to find an upper bound for the term in (15.32), we have

‖un+1
h ‖2

L2(Ω)
+Δ t

∫
∂Ω\∂Ω in a ·n(un

h)
2 dΩ+

Δ t
[
2μ0−Δ t

(
CIh−1‖a‖L∞(Ω) + ‖an

0‖L∞(Ω)

)2
]
‖un

h‖2
L2(Ω)≤ ‖un

h‖2
L2(Ω)

.

The integral on ∂Ω \ ∂Ω in is positive because of the hypotheses on the boundary
conditions; hence, if

Δ t ≤ 2μ0(
CIh−1‖a‖L∞(Ω) + ‖an

0‖L∞(Ω)

)2 (15.33)

we have ‖un+1
h ‖L2(Ω) ≤ ‖un

h‖L2(Ω), that is the scheme is strongly stable. Note that the
stability condition (15.33) is of parabolic type, similar to the one found in (14.31) for
the case of finite difference discretizations.

Remark 15.3. In the case where a is constant and a0 = 0 we have that μ0 = 0, and
the stability condition (15.33) can never be satisfied by a positive Δ t. Thus, the result
in (15.33) does not contradict the one we have previously found for the forward Euler
scheme. •
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15.4 Discontinuous finite elements

An alternative approach to the one adopted so far is based on the use of discontinuous
finite elements, yielding discontinuous Galerkin method (DG in short) similar to the
one already addressed in Chapter 12 and in Sect. 13.9 for 2nd order problems. This
choice is motivated by the fact that, as we previously observed, the solutions of (even
linear) hyperbolic problems can be discontinuous.

For a given mesh Th of Ω , the space of discontinuous finite elements is

Wh = Y r
h = {vh ∈ L2(Ω) |vh|K ∈ Pr, ∀ K ∈ Th}, (15.34)

that is the space of piecewise polynomial functions of degree less than or equal to r,
with r ≥ 0, which are not necessarily continuous across the finite element interfaces.

15.4.1 The one-dimensional upwind DG method

In the case of the one-dimensional problem (14.3) in its simplest upwind version,
the DG finite element method takes the following form: ∀t > 0, find a function uh =
uh(t) ∈Wh such that

β∫
α

∂uh(t)

∂ t
vh dx

+
m−1

∑
i=0

⎡⎣ xi+1∫
xi

(
a
∂uh(t)

∂x
+ a0uh(t)

)
vh dx + a(xi)(u

+
h (t)−U−

h (t))(xi)v
+
h (xi)

⎤⎦
=

β∫
α

f (t)vh dx ∀vh ∈Wh, (15.35)

where we have supposed that a(x) is a continuous function. We have set, for each
t > 0,

U−
h (t)(xi) =

{
u−h (t)(xi), i = 1, . . . ,m−1,
ϕh(t)(x0),

(15.36)

where {xi, i = 0, · · · ,m} are the nodes, x0 = α , xm = β , h is the maximal distance
between two consecutive nodes, v+h (xi) denotes the right limit of vh at xi, v−h (xi) the
left one. For simplicity of notation, the dependence of uh and f on t will often be
understood when this does not yield to ambiguities.

We now derive a stability estimate for the solution uh of (15.35), supposing, for
simplicity, that the forcing term f is identically null. Having then chosen vh = uh in
(15.35), we have (setting Ω = (α,β ))

1
2

d

dt
‖uh‖2

L2(Ω) +

m−1

∑
i=0

[ xi+1∫
xi

(a

2
∂

∂x

(
uh
)2

+ a0u2
h

)
dx + a(xi)(u

+
h −U−

h )(xi)u
+
h (xi)

]
= 0.
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Now, integrating the convective term by parts, we have

1
2

d

dt
‖uh‖2

L2(Ω) +
m−1

∑
i=0

xi+1∫
xi

(
a0− ∂

∂x

(a

2

))
u2

h dx+

m−1

∑
i=0

[a

2
(xi+1)(u

−
h (xi+1))

2 +
a

2
(xi)(u

+
h (xi))

2− a(xi)U−
h (xi)u+h (xi)

]
= 0. (15.37)

Isolating the contribution associated to node x0 and exploiting definition (15.36), we
can rewrite the second sum in the previous equation as

m−1

∑
i=0

[a

2
(xi+1)(u

−
h (xi+1))

2 +
a

2
(xi)(u

+
h (xi))

2− a(xi)U−
h (xi)u+h (xi)

]
=

a

2
(x0)(u

+
h (x0))

2−a(x0)ϕh(x0)u+h (x0)+
a

2
(xm)(u

−
h (xm))

2 +

m−1

∑
i=1

[a

2
(xi)
(
(u−h (xi))

2 +(u+h (xi))
2
)
−a(xi)u−h (xi)u+h (xi)

]
=

a

2
(x0)(u

+
h (x0))

2−a(x0)ϕh(x0)u+h (α)+

a

2
(xm)(u

−
h (xm))

2 +
m−1

∑
i=1

a

2
(xi)
[
uh(xi)

]2
,

(15.38)

having denoted by
[
uh(xi)

]
= u+h (xi)−u−h (xi) the jump of function uh at node xi. We

now suppose, analogously to the multi-dimensional case (see (15.26)), that

∃γ ≥ 0 suchthat a0− ∂

∂x

(a

2

)
≥ γ. (15.39)

Returning to (15.37) and using the relation (15.38) and the Cauchy-Schwarz and Young
inequalities, we have

1
2

d

dt
‖uh‖2

L2(Ω) + γ‖uh‖2
L2(Ω) +

m−1

∑
i=1

a

2
(xi)
[
uh(xi)

]2
+

a

2
(x0)(u

+
h (x0))

2+

a

2
(xm)(u

−
h (xm))

2 = a(x0)ϕh(x0)u+h (x0)≤ a

2
(x0)ϕ

2
h (x0)+

a

2
(x0)(u

+
h (x0))

2,

that is, integrating with respect to time as well, ∀t > 0,

‖uh(t)‖2
L2(Ω)

+ 2γ

t∫
0

‖uh(t)‖2
L2(Ω) dt +

m−1

∑
i=1

a(xi)

t∫
0

[
uh(xi, t)

]2
dt+

a(xm)(u
−
h (xm))

2 ≤ ‖u0,h‖2
L2(Ω)

+ a(x0)

t∫
0

ϕ2
h (x0, t) dt.

(15.40)
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Such estimate represents the desired stability result.
Note that, in case the forcing term is no longer null, we can replicate the previous
analysis by suitably using the Gronwall Lemma 2.2 to handle the contribution of f .
This would lead to an estimate similar to (15.40), however this time the right-hand
side of the inequality would become

et
(
‖u0,h‖2

L2(Ω) + a(x0)

t∫
0

ϕ2
h (x0, t) dt +

t∫
0

( f (τ))2 dτ
)
. (15.41)

In the case where the constant γ in inequality (15.39) is strictly positive, we could
avoid using the Gronwall lemma, and attain an estimate such as (15.40) where in the
first term 2γ is replaced by γ , while the second term takes the form (15.41) without
the exponential et .

Because of the discontinuity of test functions, (15.35) can be rewritten in an equiv-
alent way as follows, ∀i = 0, . . . ,m−1,

xi+1∫
xi

(
∂uh

∂ t
+ a

∂uh

∂x
+a0uh

)
vhdx+ a(u+h −U−

h )(xi)v
+
h (xi)

=

xi+1∫
xi

f vhdx ∀vh ∈ Pr(Ii),

(15.42)

with Ii = [xi,xi+1]. In other terms, the approximation via discontinuous finite elements
yields to element-wise “independent” relations; the only term connecting an element
and its neighbours is the jump term (u+h −U−

h ) that can also be interpreted as the
attribution of the boundary datum on the inflow boundary of the element under exam.

We then have a set of small problems to be solved in each element, precisely r+1
equations for each interval [xi,xi+1]. Let us write them in compact form as

Mh
.
uh(t)+Lhuh(t) = fh(t) ∀t > 0, uh(0) = u0,h, (15.43)

Mh being the mass matrix, Lh the matrix associated to the bilinear form and to the
jump relation, fh the source term:

(Mh)pq =

xi+1∫
xi

ϕpϕq dx, (Lh)pq =

xi+1∫
xi

(aϕq,x +a0ϕq)ϕp dx+(aϕqϕp)(xi),

(fh)p =

xi+1∫
xi

fϕp dx+aU−
h (xi)ϕp(xi), p,q = 0, . . . ,r .

We have denoted by {ϕq, q = 0, . . . ,r} a basis for Pr([xi,xi+1]) and by uh(t) the coef-
ficients of uh(x, t)|[xi,xi+1] in the basis {ϕq}. If we take the Lagrange basis we will have,
for instance, the functions reported in Fig. 15.7 (for r = 0, r = 1 and r = 2) and the
values of {uh(t)} are the ones taken by uh(t) at nodes (xi+1/2 for r = 0, xi and xi+1 for
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Fig. 15.7. The Lagrange bases for r = 0, r = 1 and r = 2

r = 1, xi, xi+1/2 and xi+1 for r = 2). Note that all previous functions are identically null
outside the interval [xi,xi+1]. Moreover, in the case of discontinuous finite elements it
is perfectly acceptable to use polynomials of degree r = 0, in which case the transport
term a ∂uh

∂x will provide a null contribution on each element.
With the aim of diagonalizing the mass matrix, it can be interesting to use as a basis

for Pr([xi,xi+1]) the Legendre polynomials ϕq(x) = Lq(2(x− xi)/hi), hi = xi+1 − xi.
The family {Lq, q = 0,1, . . .} are the orthogonal Legendre polynomials defined over
the interval [−1,1], that we have introduced in Sect. 10.2.2. Indeed, in such a way we
obtain (Mh)pq =

hi
2p+1 δpq, p,q = 0, . . .r. Obviously, in this case the unknown values

{uh(t)} cannot be interpreted as nodal values of uh(t), but rather as the Legendre
coefficients of the expansion of uh(t) in the new basis.

The diagonalization of the mass matrix turns out to be particularly interesting when
we use explicit time advancing schemes (such as, e.g., second- and third-order Runge-
Kutta schemes, introduced in Chapter 16). In this case, indeed, we will have a fully
explicit problem to solve on each small interval.

For illustrative purposes, we present below some numerical results obtained for
problem ⎧⎨⎩

∂u

∂ t
+

∂u

∂x
= 0, x ∈ (−5,5), t > 0,

u(−5, t) = 0, t > 0,
(15.44)

using the initial condition

u(x,0) =

{
sin(πx), x ∈ (−2,2),
0 otherwise.

(15.45)

The problem has been discretized using linear finite elements in space, both contin-
uous and discontinuous. For the temporal discretization, we have used the backward
Euler scheme in both cases. We have chosen h = 0.25 and a time step Δ t = h; for such
value of h the phase number associated to the sinusoidal wave is φk = π/2.

In Fig. 15.8 we report the numerical solution at time t = 1 together with the cor-
responding exact solution. The scheme has strong numerical diffusion, but also small
oscillations towards the end in the case of continuous elements. Furthermore, we can
observe that the numerical solution obtained using discontinuous finite elements, al-
though being discontinuous, no longer features an oscillatory behaviour towards the
end.
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Fig. 15.8. Solution at time t = 1 of problem (15.44) with φk = π/2, h = 0.25, obtained us-
ing continuous (left) and discontinuous (right) linear finite elements and backward Euler time
discretization

Let us now consider the following problem⎧⎪⎪⎨⎪⎪⎩
∂u

∂ t
+
∂u

∂x
= 0, x ∈ (0,1), t > 0,

u(0, t) = 1, t > 0,

u(x,0) = 0, x ∈ [0,1],

(15.46)

which represents the transport of a discontinuity entering the domain. We have con-
sidered continuous linear finite elements, with both strong and weak treatment of the
boundary conditions, as well as discontinuous linear finite elements. This time, as
well, we have used the backward Euler method for the temporal discretization. The
grid-size is h = 0.025 and the time step is Δ t = h.

The results at time t = 0.5 are represented in Fig. 15.9. We can note how the
Dirichlet datum is well represented also by schemes with weak boundary treatment.
To this end, for the case of continuous finite elements with weak boundary treatment,
we have computed the behaviour of |uh(0)− u(0)| for t = 0.1 for several values of h,
Δ t being constant. We can note a linear convergence to zero with respect to h.

15.4.2 The multi-dimensional case

Let us now consider the multi-dimensional case (15.22). Let Wh be the space of dis-
continuous piecewise polynomials of degree r on each element K ∈ Th, introduced in
(15.34). The discontinuous Galerkin (DG) finite element semi-discretization of prob-
lem (15.22) becomes: for each t > 0 find uh(t) ∈Wh such that

∫
Ω

∂uh(t)

∂ t
vhdΩ + ∑

K∈Th

⎡⎣aK(uh(t),vh)−
∫
∂Kin

a ·nK [uh(t)]v
+
h dγ

⎤⎦
=

∫
Ω

f (t)vhdΩ ∀vh ∈Wh,

(15.47)
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Fig. 15.9. Solution to problem (15.46) for t = 0.5 with h = 0.025 obtained using continuous lin-
ear finite elements and strong (top left) and weak (top right) treatment of the boundary Dirichlet
condition, while discontinuous elements in space have been used (bottom left). Finally, we show
(bottom left) the behavior of |uh(0)−u(0)| as a function of h for t = 0.1, in weak treatment of
the Dirichlet condition

with uh(0) = u0,h, where nK denotes the outward unit normal vector on ∂K, and

∂Kin = {x ∈ ∂K : a(x) ·nK(x)< 0}.
The bilinear form aK is defined in the following way

aK(u,v) =
∫
K

(
a ·∇uv+ a0uv

)
dx,

while

[uh(x)] =

{
u+h (x)−u−h (x), x /∈ ∂Ω in,

u+h (x)−ϕh(x), x ∈ ∂Ω in,

∂Ω in being the inflow boundary (15.23) and with

u±h (x) = lim
s→0±

uh(x+ sa), x ∈ ∂K.
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For each t > 0, the stability estimate obtained for problem (15.47) is (thanks to the
hypothesis (15.26))

‖uh(t)‖2
L2(Ω)

+

t∫
0

⎛⎝μ0‖uh(τ)‖2
L2(Ω) + ∑

K∈Th

∫
∂Kin

|a ·nK | [uh(τ)]
2

⎞⎠ dτ

≤ C

⎡⎣‖u0,h‖2
L2(Ω)

+

t∫
0

(
‖ f (τ)‖2

L2(Ω) + |ϕh|2a,∂Ω in

)
dτ

⎤⎦ ,
having introduced, for each subset Γ of ∂Ω of positive measure, the seminorm

|v|a,Γ =

⎛⎝∫
Γ

|a ·n|v2 dγ

⎞⎠1/2

.

Supposing for simplicity that f = 0, ϕ = 0, and that u0 ∈ Hr+1(Ω), we can prove
the following a priori error estimate

max
t∈[0,T ]

‖u(t)−uh(t)‖L2(Ω) +

⎛⎝ T∫
0

∑
K∈Th

∫
∂Kin

|a ·nK | [u(t)− uh(t)]
2 dt

⎞⎠ 1
2

≤ Chr+1/2‖u0‖Hr+1(Ω). (15.48)

For the proofs, we refer to [QV94, Chap. 14], [Joh87], and to the references cited
therein.

15.4.3 DG method with jump stabilization

Other formulations are possible, based on different forms of stabilization. Let us con-
sider a diffusion and reaction problem such as (15.22) but written in conservation form

∂u

∂ t
+div(au)+a0u = f , x ∈Ω , t > 0. (15.49)

Having now set

aK(uh,vh) =

∫
K

(− uh(a ·∇vh)+a0uh vh
)

dx,
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we consider the following approximation based on the DG method (see Sects. 12.1
and 13.9): for each t > 0, find uh(t) ∈Wh such that,∫

Ω

∂uh(t)

∂ t
vh dΩ + ∑

K∈Th

aK(uh(t),vh)+ ∑
e	⊂∂Ω in

∫
e

{{auh(t)}}[vh]dγ

+ ∑
e	⊂∂Ω

∫
e

ce [uh(t)] [vh]dγ

=

∫
Ω

f (t)vh dΩ − ∑
e⊂∂Ω in

∫
e

(a ·n)ϕh(t)vh dγ ∀vh ∈Wh.

(15.50)

The notations are the following: we denote by e any side of the grid Th shared by two
triangles, say K1 and K2. For each scalar function ψ , piecewise regular on the mesh,
with ψ i = ψ

∣∣
Ki

, we have defined its jump on e as follows:

[ψ ] = ψ1n1 +ψ
2n2,

ni being the outward unit normal to element Ki. Instead, if σ is a vector function, then
its average on e is defined as

{{σ}}= 1
2
(σ1 +σ2).

Note that the jump [ψ ] through e of a scalar function ψ is a vector parallel to the
normal to e.
These definitions do not depend on the ordering of the elements.
If e is a side belonging to the boundary ∂Ω , then

[ψ ] = ψ n, {{σ}}= σ.

Concerning ce, this is a non-negative function which will typically be chosen to be
constant on each side. Choosing, for instance, ce = |a · n|/2 on each internal side,
ce =−a ·n/2 on ∂Ω in, ce = a ·n/2 on ∂Ω out , the formulation in (15.50) is reduced to
the standard upwind formulation∫

Ω

∂uh(t)

∂ t
vh dΩ + ∑

K∈Th

aK(uh(t),vh)+ ∑
e	⊂∂Ω in

∫
e

{{auh(t)}}a[vh]dγ

=

∫
Ω

f (t)vh dΩ − ∑
e⊂∂Ω in

∫
e

(a ·n)ϕh(t)vh dγ ∀vh ∈Wh.

(15.51)

Here {{auh}}a denotes the upwind value of auh, that coincides with au1
h if a ·n1 > 0,

with au2
h if a ·n1 < 0, and finally with {{auh}} if a ·n1 = 0 (as in definition (13.91)).

Finally, if a is a constant (or divergence-free) vector, then div(auh) = a ·∇uh and
(15.51) coincides with (15.47). Formulation (15.50) is called discontinuous Galerkin
method with jump stabilization. The latter is stable if ce ≥ θ0 |a · ne| (for a suitable
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θ0 > 0) for each internal side e, and also convergent with optimal order. Indeed, in the
case of the stationary problem it can be proven that

‖u−uh‖2
L2(Ω) + ∑

e∈Th

‖√ce [u− uh]‖2
L2(e) ≤C h2r+1 ‖u‖2

Hr+1(Ω).

For the proof and for other formulations with jump stabilization, including the case of
advection-diffusion equations, we refer the reader to [BMS04].

15.5 Approximation using spectral methods

In this section we will briefly discuss the approximation of hyperbolic problems with
spectral methods. For simplicity, we will limit our discussion to one-dimensional prob-
lems. We will first treat the G-NI approximation in a single interval, then the SEM
approximation corresponding to a decomposition in sub-intervals where we use dis-
continuous polynomials when we move from an interval to its neighbors. This pro-
vides a generalization of discontinuous finite elements, in the case where we consider
polynomials of “high” degree on each element, and the integrals on each element are
approximated using the GLL integration formula (10.18).

15.5.1 The G-NI method in a single interval

Let us consider the first-order hyperbolic transport-reaction problem (14.3) and let us
suppose that (α,β ) = (−1,1). Then we approximate in space by a spectral collocation
method, with strong imposition of the boundary conditions. Having denoted by {x0 =
−1,x1, . . . ,xN = 1} the GLL nodes introduced in Sect. 10.2.3, the semi-discretized
problem is:
for each t > 0, find uN(t) ∈QN (the space of polynomials (10.1)) such that⎧⎪⎪⎪⎨⎪⎪⎪⎩

(∂uN

∂ t
+ a

∂uN

∂x
+ a0 uN

)
(x j, t) = f (x j , t), j = 1, . . . ,N,

uN(−1, t) = ϕ(t),

uN(x j,0) = u0(x j), j = 0, . . . ,N.

(15.52)

Suitably using the discrete GLL scalar product defined in (10.25), the G-NI approxi-
mation of problem (15.52) becomes: for each t > 0, find uN(t) ∈QN such that⎧⎪⎪⎪⎨⎪⎪⎪⎩
(∂uN(t)

∂ t
,vN

)
N
+
(

a
∂uN(t)

∂x
,vN

)
N
+
(
a0 uN(t),vN

)
N =

(
f (t),vN

)
N ∀vN ∈Q−N ,

uN(−1, t) = ϕ(t),

uN(x,0) = u0,N ,
(15.53)

where u0,N ∈ QN is a suitable approximation of u0, and having set Q−N = {vN ∈ QN :
vN(−1) = 0}. At the inflow, the solution uN satisfies the imposed condition at each
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time t > 0, while test functions vanish.
In fact, the solutions of problems (15.52) and (15.53) coincide if u0,N in (15.53) is
chosen as the interpolated ΠGLL

N u0. To prove this, it is sufficient to choose in (15.53)
vN coinciding with the characteristic polynomial ψ j (defined in (10.12), (10.13)) as-
sociated to the GLL node x j, for each j = 1, . . . ,N.

Let us now derive a stability estimate for formulation (15.53) in the norm (10.53)
induced from the discrete scalar product (10.25). For simplicity, we choose a homoge-
neous inflow datum, that is ϕ(t) = 0, for each t, and a and a0 constant. Having chosen,
for each t > 0, vN = uN(t), we obtain

1
2
∂

∂ t
‖uN(t)‖2

N +
a

2

1∫
−1

∂u2
N(t)

∂x
dx + a0‖uN(t)‖2

N =
(

f (t),uN(t)
)

N .

Suitably rewriting the convective term, integrating with respect to time and using the
Young inequality, we have

‖uN(t)‖2
N +a

t∫
0

(
uN(1,τ)

)2
dτ+ 2a0

t∫
0

‖uN(τ)‖2
N dτ

= ‖u0,N‖2
N + 2

t∫
0

(
f (τ),uN(τ)

)
N dτ

≤ ‖u0,N‖2
N + a0

t∫
0

‖uN(τ)‖2
N dτ +

1
a0

t∫
0

‖ f (τ)‖2
N dτ,

that is

‖uN(t)‖2
N +a

t∫
0

(
uN(1,τ)

)2
dτ+ a0

t∫
0

‖uN(τ)‖2
N dτ

≤ ‖u0,N‖2
N +

1
a0

t∫
0

‖ f (τ)‖2
N dτ.

(15.54)

The norm of the initial data can be bounded as follows

‖u0,N‖2
N ≤ ‖u0,N‖2

L∞(−1,1)

( N

∑
i=0

αi

)
= 2‖u0,N‖2

L∞(−1,1),

and a similar bound holds for ‖ f (τ)‖2
N provided that f is a continuous function. Hence,

reverting to (15.54) and using inequality (10.54) to bound the norms of the left-hand
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side, we deduce

‖uN(t)‖2
L2(−1,1) + a

t∫
0

(
uN(1,τ)

)2
dτ+ a0

t∫
0

‖uN(τ)‖2
L2(−1,1)dτ

≤ 2‖u0,N‖2
L∞(−1,1) +

2
a0

t∫
0

‖ f (τ)‖2
L2(−1,1) dτ.

The reinterpretation of the G-NI method as a collocation method is less immediate
in the case where the convective term a is not constant and if we start from a con-
servative formulation of the differential equation in (15.52), that is when the second
term on the left-hand side is replaced by ∂ (au)/∂x. In such case, we can show again
that the G-NI approximation is equivalent to the collocation approximation where the
convective term is replaced by ∂

(
ΠGLL

N (auN)
)
/∂x, i.e. by the interpolation derivative

(10.40).

Also in the case of a G-NI approximation, we can resort to a weak imposition of the
boundary conditions. Such approach is more flexible than the one considered above,
and more suitable for the generalization to multi-dimensional problems or systems of
equations. As we have seen in the previous section, the starting point for imposing
boundary conditions weakly is a suitable integration by parts of the transport terms.
Referring to the one-dimensional problem (15.52), we have (if a is constant)

1∫
−1

a
∂u(t)

∂x
vdx =−

1∫
−1

au(t)
∂v

∂x
dx+

[
au(t)v

]1
−1

=−
1∫

−1

au(t)
∂v

∂x
dx+ au(1, t)v(1)− aϕ(t)v(−1).

Thanks to the above identity, we can immediately formulate the G-NI approximation
of problem (15.52) with a weak treatment of boundary conditions:
for each t > 0, find uN(t) ∈QN such that(∂uN(t)

∂ t
,vN

)
N
−
(

auN(t),
∂vN

∂x

)
N
+
(
a0 uN(t),vN

)
N +

auN(1, t)vN(1) =
(

f (t),vN
)

N +aϕ(t)vN(−1) ∀vN ∈QN ,

(15.55)

with uN(x,0) = u0,N(x). We note that both the solution uN and the test function vN are
free at the boundary.
An equivalent formulation of (15.55) is obtained by suitably counter-integrating the
convective term by parts:
for each t > 0, find uN(t) ∈QN such that(∂uN(t)

∂ t
,vN

)
N
+
(

a
∂uN(t)

∂x
,vN

)
N
+
(
a0 uN(t),vN

)
N +

a
(
uN(−1, t) −ϕ(t))vN(−1) =

(
f ,vN

)
N ∀vN ∈QN .

(15.56)
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It is now possible to reinterpret such weak formulation as a suitable collocation
method. To this end, it is sufficient to choose in (15.56) the test function vN to be the
characteristic polynomials (10.12), (10.13) associated to the GLL nodes. Considering
first the internal and outflow nodes, and choosing therefore vN =ψi, with i = 1, . . . ,N,
we have (∂uN

∂ t
+ a

∂uN

∂x
+ a0 uN

)
(xi, t) = f (xi, t), (15.57)

having previously simplified the weight αi common to all terms of the equation. On
the other hand, by choosing vN = ψ0 we obtain the following relation at the inflow
node (∂uN

∂ t
+ a

∂uN

∂x
+ a0 uN

)
(−1, t)

+
1
α0

a
(
uN(−1, t) −ϕ(t))= f (−1, t),

(15.58)

α0 = 2/(N2 +N) being the GLL weight associated to node x0 = −1. From equations
(15.57) and (15.58) it then follows that a reformulation in terms of collocation is pos-
sible at all the GLL nodes except for the inflow node, for which we find the relation

a
(
uN(−1, t) −ϕ(t))= α0

(
f − ∂uN

∂ t
− a

∂uN

∂x
− a0 uN

)
(−1, t). (15.59)

The latter can be interpreted as the fulfillment of the boundary condition of the dif-
ferential problem (15.52) up to the residue associated to the uN approximation. Such
condition is therefore satisfied exactly only in the limit, for N −→ ∞ (i.e. in a natural
way).

In accordance with what we noted previously, formulation (15.56) would be com-
plicated, for instance, in case of a non-constant convective field a. Indeed,

−
(

auN(t),
∂vN

∂x

)
N
=
(

a
∂uN(t)

∂x
,vN

)
N
− auN(1, t)vN(1)+aϕ(t)vN(−1),

would not be true as, in this case, the product auN(t)
∂vN
∂x no longer identifies a poly-

nomial of degree 2N−1, so the exactness of the numerical integration formula would
not hold. It is therefore necessary to apply the interpolation operatorΠGLL

N , introduced
in Sect. 10.2.3, before counter-integrating by parts, so that

−
(

auN(t),
∂vN

∂x

)
N
=−

(
ΠGLL

N

(
auN(t)

)
,
∂vN

∂x

)
N

=−
(
ΠGLL

N

(
auN(t)

)
,
∂vN

∂x

)
=
( ∂
∂x
ΠGLL

N

(
auN(t)

)
,vN

)
− [(auN(t)

)
vN
]1
−1.
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In this case, formulation (15.56) then becomes:
for each t > 0, find uN(t) ∈QN such that(∂uN(t)

∂ t
,vN

)
N
+
( ∂
∂x
ΠGLL

N

(
auN(t)

)
,vN

)
+
(
a0 uN(t),vN

)
N +

a(t)
(
uN(−1, t) −ϕ(t))vN(−1) =

(
f (t),vN

)
N ∀vN ∈QN ,

(15.60)

with uN(x,0) = u0,N(x). Also the collocation reinterpretation of formulation (15.56),
represented by relations (15.57) and (15.59), will need to be modified with the intro-
duction of the interpolation operator ΠGLL

N (that is by replacing the exact derivative
with the interpolation derivative). Precisely, we obtain(∂uN

∂ t
+

∂

∂x
ΠGLL

N

(
auN(t)

)
+a0 uN

)
(xi, t) = f (xi, t),

for i = 1, . . . ,N, and

a(−1)
(
uN(−1, t) −ϕ(t))= α0

(
f − ∂uN

∂ t
− ∂

∂x
ΠGLL

N

(
auN(t)

)− a0 uN

)
(−1, t),

at the inflow node x =−1.

15.5.2 The DG-SEM-NI method

As anticipated, we will introduce in this section an approximation based on a partition
in sub-intervals, in each of which the G-NI method is used. Moreover, the solution
will be discontinuous between an interval and its neighbors. This explains the DG
(discontinuous Galerkin), SEM (spectral element method), NI (numerical integration)
acronym.

Let us reconsider problem (15.52) on the generic interval (α,β ). On the latter, we
introduce a partition in M subintervalsΩm = (xm−1,xm) with m = 1, . . . ,M. Let

WN,M = {v ∈ L2(α,β ) : v
∣∣
Ωm
∈QN , ∀m = 1, . . . ,M}

be the space of piecewise polynomials of degree N(≥ 1) on each sub-interval. We
observe that continuity is not necessarily guaranteed in correspondence of the points
{xi}. Thus, we can formulate the following approximation of problem (15.52):
for each t > 0, find uN,M(t) ∈WN,M such that

M

∑
m=1

[(∂uN,M

∂ t
,vN,M

)
N,Ωm

+
(

a
∂uN,M

∂x
,vN,M

)
N,Ωm

+
(
a0 uN,M,vN,M

)
N,Ωm

+ a(xm−1)
(
u+N,M−U−

N,M

)
(xm−1)v+N,M(xm−1)

]
=

M

∑
m=1

(
f ,vN,M

)
N,Ωm

(15.61)

for all vN,M ∈WN,M , with

U−
N,M(xi) =

{
u−N,M(xi), i = 1, . . . ,M−1,

ϕ(x0), for i = 0,
(15.62)
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and where (·, ·)N,Ωm denotes the approximation via the GLL formula (10.25) of the
scalar product L2 restricted to the element Ωm. To simplify the notations we have
omitted to indicate the dependence on t of uN,M and f explicitly. Given the discontin-
uous nature of the test functions, we can reformulate equation (15.61) on each of the M
sub-intervals, by choosing the test function vN,M so that vN,M

∣∣
[α ,β ]\Ωm

= 0. Proceeding
in this way, we obtain(∂uN,M

∂ t
,vN,M

)
N,Ωm

+
(

a
∂uN,M

∂x
,vN,M

)
N,Ωm

+
(
a0 uN,M,vN,M

)
N,Ωm

+ a(xm−1)
(
u+N,M−U−

N,M

)
(xm−1)v+N,M(xm−1) =

(
f ,vN,M

)
N,Ωm

,

for each m = 1, . . . ,M. We note that, for m = 1, the term

a(x0)
(
u+N,M−ϕ

)
(x0)v+N,M(x0)

can be regarded as the imposition in weak form of the inflow boundary condition. On
the other hand for m = 2, . . . ,M, the term

a(xm−1)
(
u+N,M−U−

N,M

)
(xm−1)v+N,M(xm−1)

can be interpreted as a penalization term that provides a weak imposition of the conti-
nuity of the solution uN,M at the endpoints xi, i = 1, . . . ,M− 1.

We now want to interpret formulation (15.61) as a suitable collocation method. To

this end, we introduce on each sub-interval Ωm, the N + 1 GLL nodes x(m)
j , with j =

0, . . . ,N, and we denote by α(m)
j the corresponding weights (see (10.71)). We now

choose the test function vN,M in (15.61) as the characteristic Lagrangian polynomial

ψ
(m)
j ∈ PN(Ωm) associated to node x(m)

j and extended trivially outside the domainΩm.
Given the presence of the jump term, we will have a non-unique rewriting for equation
(15.61). We start by considering the characteristic polynomials associated to the nodes

x(m)
j , with j = 1, . . . ,N−1, and m = 1, . . . ,M. In this case we will have no contribution

from the penalization term, yielding[∂uN,M

∂ t
+ a

∂uN,M

∂x
+ a0 uN,M

]
(x(m)

j ) = f (x(m)
j ).

For this choice of nodes we thus find exactly the collocation of the differential problem
(15.52).

Instead, in the case where the function ψ(m)
j is associated to a node of the partition

{xi}, that is j = 0, with m = 1, . . . ,M we have

α
(m)
0

[∂uN,M

∂ t
+ a

∂uN,M

∂x
+ a0 uN,M

]
(x(m)

0 )

+ a(x(m)
0 )
(
u+N,M−U−

N,M

)
(x(m)

0 ) = α
(m)
0 f (x(m)

0 ),

(15.63)

recalling that U−
N,M(x(1)0 ) = ϕ(x0). We have implicitly adopted the convention that the

sub-interval Ωm should not include xm, as the discontinuous nature of the adopted
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method would make us process twice each node xi, with i = 1, . . . ,M− 1. Equation
(15.63) can be rewritten as

[∂uN,M

∂ t
+ a

∂uN,M

∂x
+ a0 uN,M− f

]
(x(m)

0 ) =−a(x(m)
0 )

α
(m)
0

(
u+N,M−U−

N,M

)
(x(m)

0 ).

We observe that while the left-hand side represents the residue of the equation at node

x(m)
0 , the right-hand side one is, up to a multiplicative factor, the residue of the weak

imposition of the continuity of uN,M at x(m)
0 .

15.6 Numerical treatment of boundary conditions for hyperbolic

systems

We have seen different strategies to impose the inflow boundary conditions for the
scalar transport equation. When considering hyperbolic systems, the numerical treat-
ment of boundary conditions requires more attention. We will explain why the point
is using a linear system with constant coefficients in one dimension,⎧⎪⎨⎪⎩

∂u

∂ t
+A

∂u

∂x
= 0, −1 < x < 1, t > 0,

u(x,0) = u0(x), −1 < x < 1,

(15.64)

completed with suitable boundary conditions. Following [CHQZ07], we choose the
case of a system made of two hyperbolic equations, and take u to be the vector (u,v)T ,
while

A =

[ −1/2 −1

−1 −1/2

]
,

whose eigenvalues are −3/2 and 1/2. We make the choice

u(x,0) = sin(2x)+ cos(2x), v(x,0) = sin(2x)− cos(2x)

for the initial conditions and

u(−1, t) = sin(−2+3t)+ cos(−2− t) = ϕ(t),

v(1, t) = sin(2+ 3t)+ cos(2− t) = ψ(t)
(15.65)

for the boundary conditions.
Let us now consider the (right) eigenvector matrix

W =

[
1/2 1/2

1/2 −1/2

]
,
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whose inverse is

W−1 =

[
1 1

1 −1

]
.

Exploiting the diagonalization

Λ =W−1AW =

[ −3/2 0

0 1/2

]
,

we can rewrite the differential equation in (15.64), in terms of the characteristic vari-
ables

z =W−1u =

[
u+ v

u− v

]
=

[
z1

z2

]
, (15.66)

as
∂z

∂ t
+Λ

∂z

∂x
= 0. (15.67)

The characteristic variable z1 propagates towards the left at rate 3/2, while z2 propa-
gates towards the right at rate 1/2.

This suggests to assign a condition for z1 at x = 1 and one for z2 at x = −1. The
boundary values of z1 and z2 can be generated by using the boundary conditions for u
and v as follows. From relation (15.66) we have

u =Wz =

[
1/2 1/2

1/2 −1/2

] [
z1

z2

]
=

[
1/2(z1 + z2)

1/2(z1− z2)

]
,

that is, exploiting the boundary values (15.65) assigned for u and v,

1
2
(z1 + z2)(−1, t) = ϕ(t),

1
2
(z1− z2)(1, t) = ψ(t). (15.68)

The conclusion is that, in spite of the diagonal structure of system (15.67), the charac-
teristic variables are in fact coupled by the boundary conditions (15.68).
Hence we have to face the problem of how to handle, from a numerical viewpoint,
boundary conditions for systems like (15.64). Indeed, difficulties can arise even from
the discretization of the corresponding scalar problem (for a constant > 0)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂ z

∂ t
+ a

∂ z

∂x
= 0, −1 < x < 1, t > 0,

z(−1, t) = φ(t), t > 0,

z(x,0) = z0(x), −1 < x < 1,

(15.69)

if we do not use an appropriate discretization scheme. We will illustrate the procedure
for a spectral approximation method. As a matter of fact, a correct treatment of the
boundary conditions for high-order methods is even more vital than for a finite element
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or finite difference method, because with spectral methods boundary errors would be
propagated inwards with an infinite rate.

Having introduced the partition x0 =−1< x1 < .. . < xN−1 < xN = 1 of the interval
[−1,1], if we decide to use, say, a finite difference scheme, we encounter problems,
essentially in determining the value of z at the outflow node xN , unless we use the
first order upwind scheme. As a matter of fact, higher order FD schemes such as the
centered finite difference scheme would not be able to provide such an approximation
unless additional nodes outside the definition interval (−1,1) were introduced.
In contrast, a spectral discretization does not involve any boundary problem. For in-
stance, the collocation scheme corresponding to problem (15.69) can be written as
follows:
∀n≥ 0, find zn

N ∈QN such that⎧⎪⎨⎪⎩
zn+1

N (xi)− zn
N(xi)

Δ t
+ a

∂ zn
N

∂x
(xi) = 0, i = 1, . . . ,N,

zn+1
N (x0) = φ(tn+1).

One equation is associated to each node, whether internal or on the boundary,
and the outflow node is treated as any other internal node. However, when moving
to system (15.64), two unknowns and two equations are associated with each internal
node xi, with i = 1, . . . ,N−1, while at the boundary nodes x0 and xN we still have two
unknowns but a single equation. Thus, we will need additional conditions for these
points: in general, at the endpoint x = −1 we will need as many conditions as the
positive eigenvalues of A while for x = 1 we will need to provide as many additional
conditions as the negative eigenvalues.
Let us look for a solution to this problem guided by the spectral Galerkin method. Let
us suppose we apply a collocation method to system (15.64); then, we want to find
uN = (uN,1,uN,2)

T ∈ (QN)
2 such that

∂uN

∂ t
(xi)+A

∂uN

∂x
(xi) = 0, i = 1, . . . ,N−1, (15.70)

and with
uN,1(x0, t) = ϕ(t), uN,2(xN , t) = ψ(t). (15.71)

The simplest idea to obtain the two missing equations for uN,1 and uN,2 at xN resp.
x0, is to exploit the vector equation (15.70) together with the known vectors ϕ(t) and
ψ(t) in (15.71). The solution computed in this way is, however, strongly unstable.
To seek an alternative approach, the idea is to add to the 2(N−1) collocation relations
(15.70) and to the “physical” boundary conditions (15.71), the equations of the out-
going characteristics at points x0 and xN . More in detail, the characteristic outgoing
from the domain at point x0 = −1 is the one associated to the negative eigenvalue of
the matrix A, and has equation

∂ z1

∂ t
(x0)− 3

2
∂ z1

∂x
(x0) = 0, (15.72)
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while the one associated with the point xN = 1 is highlighted by the positive eigenvalue
1/2 and is given by

∂ z2

∂ t
(xN)+

1
2
∂ z2

∂x
(xN) = 0. (15.73)

The choice of the outgoing characteristic is motivated by the fact that the latter carries
information from the inside of the domain to the corresponding outflow point, where
it makes sense to impose the differential equation.
Equations (15.72) and (15.73) allow us to have a closed system of 2N+2 equations in
the 2N +2 unknowns uN,1(xi, t) = uN(xi, t), uN,2(xi, t) = vN(xi, t), with i = 0, . . . ,N.
For completeness, we can rewrite the characteristic equations (15.72) and (15.73) in
terms of the unknowns uN and vN , as

∂ (uN + vN)

∂ t
(x0)− 3

2
∂ (uN + vN)

∂x
(x0) = 0

and
∂ (uN− vN)

∂ t
(xN)+

1
2
∂ (uN − vN)

∂x
(xN) = 0,

respectively, or in matrix terms as

[
W−1

11 W−1
12

][∂uN

∂ t
(x0)+A

∂uN

∂x
(x0)
]
= 0,

[
W−1

21 W−1
22

][∂uN

∂ t
(xN)+A

∂uN

∂x
(xN)

]
= 0.

(15.74)

Such additional equations are called compatibility equations: they represent a linear
combination of the differential equations of the problem at the boundary points with
coefficients given by the components of the matrix W−1.

Remark 15.4. Due to their global nature, spectral methods (either collocation, Galer-
kin, or G-NI) propagate immediately, and on the whole domain, every possible nu-
merical perturbation introduced at the boundary. As such, spectral methods represent
a good testbed for understanding how suitable numerical strategies are for the bound-
ary treatment of hyperbolic systems. •

15.6.1 Weak treatment of boundary conditions

Now we want to generalize the approach based on compatibility equations, and move
from pointwise relations, such as (15.74), to integral relations, more suitable for nu-
merical approximations such as, e.g., finite elements or G-NI.
Let us, once again, consider the constant coefficient system (15.64) and the notations
used in Sect. 15.6. Let A be a real, symmetric and non-singular matrix of order d,
Λ the diagonal matrix whose diagonal entries are the real eigenvalues of A, and W
the square matrix whose columns are the (right) eigenvectors of A. Let us suppose
that W is orthogonal, which guarantees thatΛ =W T AW . The characteristic variables,
defined as z = W T u, satisfy the diagonal system (15.67). We introduce the splitting
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Λ = diag(Λ+,Λ−) of the eigenvalue matrix, arising by grouping the positive eigen-
values (Λ+) and the negative ones (Λ−). Both sub-matrices are diagonal,Λ+ positive
definite of order p, Λ− negative definite of order n = d− p.
Analogously, we can rewrite z as z = (z+,z−)T , having denoted by z+ (z−) the char-
acteristic variables that are constant along the characteristic lines with positive (nega-
tive) slope, in other words, lines moving rightwards (leftwards) on the (x, t) reference
frame. In correspondence of the right extremum x = 1, z+ is associated to the outgoing
characteristic variables while z− to the incoming ones. Clearly, the roles are switched
at the left boundary point x =−1.
A simple case occurs when we assign, as boundary conditions, the values of the in-
coming characteristics at both domain extrema, that is p conditions at x = −1 and
n conditions at x = 1. In this case, (15.67) represents a fully-fledged decoupled sys-
tem. Much more frequently, however, the values of suitable linear combinations of the
physical variables are assigned at both boundary points. Reading them in terms of the
z variables, these yield linear combinations of the characteristic variables. None of the
outgoing characteristics will in principle be determined by these combinations, as the
resulting values will generally be incompatible with the ones propagated inwards by
the hyperbolic system. In contrast, the boundary conditions should allow to determine
the incoming characteristic variables as a function of the outgoing ones and of the
problem data.
For the sake of clarity, let us consider the following boundary conditions

BLu(−1, t) = gL(t), BRu(1, t) = gR(t), t > 0, (15.75)

where gL and gR are assigned vectors and BL, BR are suitable matrices. At the left
extremum x = −1, we have p incoming characteristics, and BL will have dimension
p× d. Setting CL = BLW and using the splitting z = (z+,z−)T introduced for z and
the corresponding splitting W = (W+,W−)T for the eigenvector matrix, we have

CLz(−1, t) =C+
L z+(−1, t)+C−L z−(−1, t) = gL(t),

where C+
L = BLW+ is a p× p matrix, while C−L = BLW− has dimension p× n. We

demand that C+
L is non-singular. Then the incoming characteristic at x = −1 can be

obtained by

z+(−1, t) = SLz−(−1, t)+ zL(t), (15.76)

SL =−(C+
L )−1C−L being a p×n matrix and zL(t) = (C+

L )−1gL(t). In a similar way, we
can assign at the right extremum x = 1 the incoming characteristic variable as

z−(1, t) = SRz+(1, t)+ zR(t), (15.77)

SR being a n× p matrix.
The matrices SL and SR are called reflection matrices.
The hyperbolic system (15.64) will thus be completed by the boundary conditions
(15.75) or, equivalently, by conditions (15.76)–(15.77).

Let us see which advantages can be brought by such a choice for boundary condi-
tions. We start from the weak formulation of problem (15.64), integrating by parts the
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term containing the space derivative

1∫
−1

vT ∂u

∂ t
dx −

1∫
−1

(∂v

∂x

)T
Audx +

[
vT Au

]1
−1 = 0,

for each t > 0, v being an arbitrary, differentiable test function. We want to rewrite
the boundary term

[
vT Au

]1
−1 by exploiting the boundary equations (15.76) - (15.77).

Introducing the characteristic variable W T v = y = (y+,y−)T associated to the test
function v, we will have

vT Au = yTΛz = (y+)TΛ+z+ + (y−)TΛ−z−.

Using relations (15.76)–(15.77), it then follows that

1∫
−1

vT ∂u

∂ t
dx −

1∫
−1

(∂v

∂x

)T
Audx

− (y+)T (−1, t)Λ+SLz−(−1, t)− (y−)T (−1, t)Λ−z−(−1, t)

+ (y+)T (1, t)Λ+z+(1, t) + (y−)T (1, t)Λ−SR z+(1, t)

= (y+)T (−1, t)Λ+zL(t)− (y−)T (1, t)Λ−zR(t).

(15.78)

We observe that the boundary conditions (15.76)–(15.77) are naturally incorporated
in the right-hand side of the system. Moreover, integrating again by parts, it is possi-
ble to obtain an equivalent formulation to (15.78) where the boundary conditions are
imposed in a weak way

1∫
−1

vT ∂u

∂ t
dx +

1∫
−1

vT A
∂u

∂x
dx

+ (y+)T (−1, t)Λ+
(
z+(−1, t)− SLz−(−1, t)

)
− (y−)T (1, t)Λ−

(
z−(1, t)− SRz+(1, t)

)
= (y+)T (−1, t)Λ+zL(t)− (y−)T (1, t)Λ−zR(t).

(15.79)

Finally, we recall that the following assumption, called dissipation hypothesis, is usu-
ally made on the reflection matrices SL and SR

‖SL‖‖SR‖< 1. (15.80)

The matrix norm in (15.80) must be understood as the Euclidean norm of a rectangular
matrix, that is the square root of the maximum eigenvalue of ST

L SL and ST
RSR.
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This assumption is sufficient to guarantee the stability of the previous scheme in the
L2 norm. Formulation (15.78) (or (15.79)) is suitable for Galerkin approximations
such as Galerkin finite elements, the spectral Galerkin method, the spectral method
with Gaussian numerical integration in a single domain (G-NI), the spectral element
version, whether continuous (SEM-NI) or discontinuous (DG-SEM-NI) spectral ele-
ments.

15.7 Exercises

1. Prove that the discretization with continuous linear finite elements (15.13) coin-
cides with the finite difference one (14.22) in case the mass matrix is diagonalized
using the mass lumping technique.
[Solution: use the partition of unity property (13.34) as in Sect. 13.5.]

2. Prove the stability inequalities provided in Sect. (15.4) for the semi-discretization
based on finite elements.

3. Prove relation (15.13).

4. Discretize system (15.78) using the continuous spectral element method, SEM-NI,
and the discontinuous one, DG-SEM-NI.



Chapter 16

Nonlinear hyperbolic problems

In this chapter we introduce some examples of nonlinear hyperbolic problems. We will
point out some characteristic properties of such problems, most notably their ability
to generate discontinuous solutions also in the case of continuous initial and boundary
data. The numerical approximation of these problems is far from easy. Here we will
simply limit ourselves to point out how finite difference and finite element schemes
can be applied in the case of one-dimensional equations.

For a more complete discussion, we refer to [LeV07, GR96, Bre00, Tor09, Kro97,
LeF02].

16.1 Scalar equations

Let us consider the following equation

∂u

∂ t
+
∂

∂x
F(u) = 0, x ∈R, t > 0, (16.1)

where F is a nonlinear function of u called flux of u, because on each interval (α,β )
of R, it satisfies the following relation

d

dt

∫ β

α
u(x, t)dx = F(u(t,α))−F(u(t,β )).

Then, if u = u(x, t) represents the density (or concentration) of a physical quantity q
and F is its associated flux, the rate of variation of q in [α,β ] is determined by the net
flux through the endpoints α and β .
For this reason, (16.1) expresses a conservation law. A typical example is Burgers’
equation

∂u

∂ t
+ u

∂u

∂x
= 0. (16.2)

This equation was already considered in Example 1.3, and corresponds to (16.1) when
the flux is F(u) = u2/2. Its characteristic curves are obtained by solving x′(t) = u.

A. Quarteroni, Numerical Models for Differential Problems, MS&A 16, 
DOI 10.1007/978-3-319-49316-9_16
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However, since u is constant on the characteristics, we obtain x′(t) = constant, so the
characteristics are straight lines. The latter are defined in the plane (x, t) by the map
t → (x+ tu0(x), t), and the solution to (16.2) is implicitly defined by u(x+ tu0(x)) =
u0(x), t < tc, tc being the first instant where such characteristics intersect. For instance,
if u0(x) = (1+ x2)−1, then tc = 8/

√
27.

Indeed, if u′0(x) is negative at some point, having set

tc =− 1
min u′0(x)

,

for t > tc there can be no classical solution (i.e. of class C1), as

lim
t→t−c

(
inf
x∈R

∂u

∂x
(x, t)

)
=−∞

Let us consider Fig. 16.1: note how for t = tc the solution has a discontinuity.
To account for this loss of uniqueness, we introduce the notion of weak solution of a
hyperbolic equation: we say that u is a weak solution of (16.1) if it satisfies the differ-
ential relation (16.1) at all points x ∈ R except for those where it is discontinuous. In
the latter, we no longer expect (16.1) to hold (it would make no sense to differentiate a
discontinuous function). Rather we require the following Rankine-Hugoniot condition
to be verified

F(ur)−F(ul) = σ(ur−ul), (16.3)

where ur and ul respectively denote the right and left limit of u at the discontinuity
point, and σ is the speed of propagation of the discontinuity. Condition (16.3) there-
fore expresses the fact that the jump of the flux is proportional to the jump of the
solution.

Weak solutions are not necessarily unique: among them, the physically correct one
is the so-called entropic solution. As we will see at the end of this section, in the case
of Burgers’ equation, the entropic solution is obtained as the limit, for ε → 0, of the

x

t

0

t1

t2

tc

Fig. 16.1. Development of the singularity at the critical time tc
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solution uε(x, t) of the equation having a viscous perturbation term

∂uε

∂ t
+
∂

∂x
F(uε) = ε

∂ 2uε

∂x2 , x ∈ R, t > 0,

with uε(x,0) = u0(x).
In general, we can say that:

• if F(u) is differentiable, a discontinuity that propagates at rate σ given by (16.3)
satisfies the entropy condition if

F ′(ul)≥ σ ≥ F ′(ur);

• if F(u) is not differentiable, a discontinuity that propagates at rate σ given by
(16.3) satisfies the entropy condition if

F(u)−F(ul)

u− ul
≥ σ ≥ F(u)−F(ur)

u−ur
,

for each u between ul and ur.

Example 16.1. Let us consider Burgers’ equation with the following initial condition

u0(x) =

{
ul if x < 0,
ur if x > 0,

where ur and ul are two constants. If ul > ur, then there exists a unique weak solution
(which is also entropic)

u(x, t) =

{
ul , x < σ t,
ur, x > σ t,

(16.4)

where σ = (ul +ur)/2 is the propagation rate of the discontinuity (also called shock).
In this case the characteristics “enter” the shock (see Fig. 16.2).
If ul < ur, there are infinitely many weak solutions: one still has (16.4), but in this case
the characteristics exit the discontinuity (see Fig. 16.3). Such solution is unstable, i.e.
small perturbations on the data substantially change the solution itself. Another weak
solution is

u(x, t) =

⎧⎪⎨⎪⎩
ul if x < ult,
x

t
if ult ≤ x≤ urt,

ur if x > urt.

xx

t

0

ul

ur

x = σt

σt

Fig. 16.2. Entropic solution to Burgers’ equation
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xx

t

0

ul

ur

x = σt

σt

Fig. 16.3. Non-entropic solution to Burgers’ equation

xx

t

0

ul

ur

x = σt

tul tur

Fig. 16.4. Rarefaction wave

Such solution, describing a rarefaction wave, is entropic, in contrast to the previous
one (see Fig. 16.4). �

We say that a hyperbolic problem (16.1) has an entropy function if there exist a
strictly convex function η = η(u) and a functionΨ =Ψ (u) such that

Ψ ′(u) = η ′(u)F ′(u), (16.5)

where the ‘prime’ denotes the derivative with respect to the argument u. The function
η is called entropy andΨ is called entropy flux. We recall that a function η is said to
be convex if for each distinct u and w and for each θ ∈ (0,1), we have

η(u+θ (w− u))< (1−θ )η(u)+θη(w).
If η has a continuous second derivative, this is equivalent to requiring that η ′′ > 0.

Remark 16.1. The one presented here is a “mathematical” definition of entropy. In
the case where (16.1) governs a physical phenomenon, it is often possible to define
a “thermodynamic entropy”. The latter turns out to be an entropy according to the
definition given above. •
The quasi-linear form of (16.1) is given by

∂u

∂ t
+F ′(u)

∂u

∂x
= 0. (16.6)

If u is sufficiently regular, it can easily be verified by multiplying (16.6) by η ′(u) that
η andΨ satisfy the following conservation law

∂η

∂ t
(u)+

∂Ψ

∂x
(u) = 0. (16.7)
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For a scalar equation it is generally possible to find different pairs of functions η and
Ψ that satisfy the given conditions.

The operations carried out to derive (16.7) make sense only if u is regular, in
particular if there are no discontinuities in the solution. However, we can find the
conditions to be verified by the entropy variable at a discontinuity in the solution of
(16.1) when such equation represents the limit for ε→ 0+ of the following regularized
equation (called viscosity equation)

∂u

∂ t
+
∂F

∂x
(u) = ε

∂ 2u

∂x2 . (16.8)

This is and advection diffusion equation (with non-linear advection). Its solution is
regular for each ε > 0; by performing the same manipulations used previously we
can write

∂η

∂ t
(u)+

∂Ψ

∂x
(u) = εη ′(u)

∂ 2u

∂x2 = ε
∂

∂x

[
η ′(u)

∂u

∂x

]
− εη ′′(u)

(
∂u

∂x

)2

.

By integrating on a generic slab [x1,x2]× [t1, t2] we obtain∫ t2

t1

∫ x2

x1

[
∂η

∂ t
(u)+

∂Ψ(u)

∂x

]
dxdt = ε

∫ t2

t1

[
η ′(u(x2, t))

∂u

∂x
(x2, t)

− η ′(u(x1, t))
∂u

∂x
(x1, t)

]
dt− ε

∫ t2

t1

∫ x2

x1

η ′′(u)
(
∂u

∂x

)2

dxdt = R1(ε)+R2(ε),

where we have set

R1(ε) = ε
∫ t2

t1

[
η ′(u(x2, t))

∂u

∂x
(x2, t)−η ′(u(x1, t))

∂u

∂x
(x1, t)

]
dt,

R2(ε) =−ε
∫ t2

t1

∫ x2

x1

η ′′(u)
(
∂u

∂x

)2

dxdt .

We have
lim
ε→0+

R1(ε) = 0,

while if the solution for ε→ 0+ of the modified problem denotes a discontinuity across
a curve of the (x, t) plane, we have

lim
ε→0+

R2(ε) 	= 0,

as the integral containing the term ( ∂u
∂x )

2 is, in general, unbounded.
On the other hand R2(ε) ≤ 0 for each ε > 0, with ∂ 2η/∂u2 > 0, hence the weak
boundary solution for ε → 0+ satisfies∫ t2

t1

∫ x2

x1

[
∂η

∂ t
(u)+

∂Ψ

∂x
(u)

]
dxdt ≤ 0 ∀x1,x2, t1, t2. (16.9)

In other words
∂η

∂ t
(u)+

∂Ψ

∂x
(u)≤ 0, x ∈ R, t > 0

in a weak sense.
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There is obviously a relationship between what we have just seen and the notion
of entropic solution. If the differential equation admits an entropy function η , then a
weak solution is an entropic solution if and only if η satisfies (16.9). In other words,
entropic solutions are limits, as ε→ 0+, of solutions of the regularized problem (16.8).

16.2 Finite difference approximation

Let us return to the nonlinear hyperbolic equation (16.1), with initial condition

u(x,0) = u0(x), x ∈R .

We denote by a(u) = F ′(u) its characteristic rate. Also for this problem, we can use
an explicit finite difference scheme of the form (14.13), with Hn

j+1/2 = H(un
j ,u

n
j+1)

Hn
j+1/2 �

1
Δ t

∫ tn+1

tn
F(u(x j+1/2, t))dt,

approximating the mean flux through x j+1/2 in the time interval [tn, tn+1]. To have
consistency, the numerical flux H(·, ·) must verify

H(u,u) = F(u), (16.10)

if u is a constant. Then thanks to a classical result by Lax and Wendroff, the functions
u such that

u(x j, t
n) = lim

Δ t,h→0
un

j

are weak solutions of the original problem (16.1).
Unfortunately, however, solutions obtained in this manner do not necessarily satisfy
the entropy condition (otherwise said, weak solutions may not be entropic).
In order to “recover” the entropic solutions, numerical schemes must introduce a suit-
able numerical diffusion, as suggested by the analysis of Sect. 16.1. To this end, we
rewrite (14.13) in the form

un+1
j = G(un

j−1,u
n
j ,u

n
j+1) (16.11)

and we introduce some definitions. The numerical scheme (16.11) is called:

• monotone if G is a monotonically increasing function in each of its arguments;
• bounded if there exists C > 0 such that sup j,n |un

j | ≤C;
• stable if ∀ h > 0, ∃ δ0 > 0 (possibly dependent on h) such that for each 0 < Δ t <

δ0, if un and vn are the finite difference solutions obtained starting from the two
initial data u0 and v0, then

‖un− vn‖Δ ≤CT ‖u0− v0‖Δ , (16.12)
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for each n ≥ 0 such that nΔ t ≤ T and for any choice of the initial data u0 and v0.
The constant CT > 0 is independent of Δ t and h, and ‖ · ‖Δ is a suitable discrete
norm, such as those introduced in (14.26). Note that for linear problems, this defi-
nition is equivalent to (14.25). We say that the numerical scheme is strongly stable
when in (16.12) we can take CT = 1 for each T > 0.

For example, using Fj = F(u j) for simplicity of notation, the Lax-Friedrichs scheme
for problem (16.1) is realized through the general scheme (14.13) where we take

Hj+1/2 =
1
2

[
Fj+1 +Fj− 1

λ
(u j+1−u j)

]
.

This method is consistent, stable and monotone provided that the following condition
(analogous to the CFL condition seen previously in the linear case) holds

∣∣F ′(un
j)
∣∣ Δ t

h
≤ 1 ∀ j ∈ Z , ∀n ∈ N. (16.13)

A classical result due to N.N. Kuznetsov establishes that monotone schemes of the
type (16.11) are bounded, stable, convergent to the entropic solution, and are accurate
to order one, at most, with respect to both time and space, that is there exists a constant
C > 0 such that

max
j,n
|un

j − u(x j, t
n)| ≤C(Δ t +h).

These schemes are generally too dissipative and do not generate accurate solutions
except when using very fine grids.

Higher order schemes (called high order shock capturing schemes) can be de-
veloped using techniques that allow to calibrate the numerical dissipation as a func-
tion of the local regularity of the solution. By doing so one can solve the disconti-
nuities correctly (ensuring the convergence of entropic solution and avoiding spuri-
ous oscillations) by using a minimal numerical dissipation. This is a complex topic
and cannot be sorted out within a few lines. For an in-depth analysis, we refer to
[LeV02b, LeV07, GR96, Hir88].

16.3 Approximation by discontinuous finite elements

For the discretization of problem (16.1) we now consider the space approximation
based on discontinuous Galerkin (DG) finite elements. Using the same notations in-
troduced in Sect. 15.4, we seek, for each t > 0, uh(t) ∈Wh such that we have ∀ j =
0, . . . ,m−1 and ∀vh ∈ Pr(I j),

∫
Ij

∂uh

∂ t
vh dx−

∫
Ij

F(uh)
∂vh

∂x
dx+Hj+1(uh)v

−
h (x j+1)−Hj(uh)v

+
h (x j) = 0, (16.14)
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with I j = [x j,x j+1]. The initial datum u0
h is provided by the relations∫

Ij

u0
hvhdx =

∫
Ij

u0vhdx, j = 0, . . . ,m− 1.

The function Hj now denotes the nonlinear flux at node x j and depends on the
values of uh at x j, that is

Hj(uh(t)) = H(u−h (x j, t),u
+
h (x j, t)), (16.15)

for a suitable numerical flux H(·, ·). If j = 0 we will have to set u−h (x0, t) = φ(t), which
is the boundary datum at the left extremum (assuming of course that this is the inflow
point).

We note that there exist various options for the choice of H. The first requirement
is that the numerical flux H has to be consistent with the flux F , i.e. it must satisfy
property (16.10) for any constant value u. Moreover, we want (16.14) to be pertur-
bations of monotone schemes. Indeed, as noted in the previous section, the latter are
stable and convergent to the entropic solution albeit being only first-order accurate.
More precisely, we require (16.14) to be a monotone scheme when r = 0. In this case,

having denoted by u( j)
h the constant value of uh on I j, (16.14) becomes

h j
∂

∂ t
u( j)

h (t)+H(u( j)
h (t),u( j+1)

h (t))−H(u( j−1)
h (t),u( j)

h (t)) = 0, (16.16)

with initial datum u0,( j)
h = h−1

j

∫ x j+1
x j u0 dx in the interval I j, j = 0, . . . ,m−1. We have

denoted by h j = x j+1− x j the length of I j.
In order for scheme (16.16) to be monotone, the flux H must be monotone, which

is equivalent to saying that H(v,w) is a Lipschitz function of its arguments, not de-
creasing in v and not increasing in w, that is v→ H(v, ·) is a non-decreasing function
while w→ H(·,w) is non-increasing. In symbols, H(↑,↓).

Three classical examples of monotone fluxes are the following:

1. Godunov Flux

H(v,w) =

⎧⎨⎩ min
v≤u≤w

F(u) if v≤ w,

max
w≤u≤v

F(u) if v > w;

2. Engquist-Osher Flux

H(v,w) =

v∫
0

max(F ′(u),0)du+

w∫
0

min(F ′(u),0)du+F(0);

3. Lax-Friedrichs Flux

H(v,w) =
1
2
[F(v)+F(w)− δ (w− v)], δ = max

infx u0(x)≤u≤supx u0(x)
|F ′(u)|.
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The Godunov flux is the one yielding the least amount of numerical dissipation, the
Lax-Friedrichs is the cheapest to evaluate. However, numerical experience suggests
that if the degree r increases, the choice of the flux H has no significant consequences
on the quality of the approximation.

In the linear case, where F(u) = au, all previous fluxes coincide and are equal to
the upwind flux

H(v,w) = a
v+w

2
− |a|

2
(w− v). (16.17)

In this case we observe that the scheme (16.14) exactly coincides with the one
introduced in (15.42) when a > 0. Indeed, having set a0 = 0 and f = 0 in (15.42) and
integrating by parts we obtain, for each j = 1, . . . ,m−1∫

Ij

∂uh

∂ t
vh dx−

∫
Ij

(auh)
∂vh

∂x
dx

+(auh)
−(x j+1)v

−
h (x j+1)− (auh)

−(x j)v
+
h (x j) = 0,

(16.18)

i.e. (16.14), keeping in mind that in the case under exam auh = F(uh) and, ∀ j =
1, . . . ,m− 1,

(auh)
−(x j) = a

u−h (x j)+u+h (x j)

2
− a

2
(u+h (x j)− u−h (x j)) = Hj(uh).

Verifying the case j = 0 is obvious.
We have the following stability result

‖uh(t)‖2
L2(α ,β ) +θ (uh(t))≤ ‖u0

h‖2
L2(α ,β )

having set [uh] j = u+h (x j)− u−h (x j), and

θ (uh(t)) = |a|
t∫

0

m−1

∑
j=1

[uh(t)]
2
j dt.

Note how jumps are also controlled by the initial datum. The convergence analysis
provides the following result (under the assumption that u0 ∈ Hr+1(α,β ))

‖u(t)− uh(t)‖L2(α ,β ) ≤Chr+1/2|u0|Hr+1(α ,β ), (16.19)

hence a convergence order (= r+1/2) larger than the one (= r) we would have using
continuous finite elements, as previously encountered in the linear case (see (15.48)).
In the nonlinear case and for r = 0, defining the seminorm

|v|TV (α ,β ) =
m−1

∑
j=0
|v j+1− v j|, v ∈Wh,

and taking the Engquist-Osher numerical flux in (16.16), we have the following result
(due to N.N. Kuznestov)

‖u(t)− uh(t)‖L1(α ,β ) ≤ ‖u0− u0
h‖L1(α ,β ) +C|u0|TV (α ,β )

√
th.

Moreover, |uh(t)|TV (α ,β ) ≤ |u0
h|TV (α ,β ) ≤ |u0|TV (α ,β ).
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16.3.1 Temporal discretization of DG methods

For the temporal discretization, we first write scheme (16.14) in the algebraic form

Mh
.
uh(t) = Lh(uh(t), t), t ∈ (0,T ),

uh(0) = u0
h,

uh(t) being vector of degrees of freedom, Lh(uh(t), t) the vector resulting from the
discretization of the flux term − ∂F

∂x and Mh the mass matrix. Mh is a block diagonal
matrix whose j-th block is the mass matrix corresponding to the element I j. As pre-
viously observed, the latter is diagonal if we resort to the Legendre polynomial basis,
which is orthogonal.

For the temporal discretization, in addition to the previously discussed Euler
schemes, we can resort to the following second-order Runge-Kutta method:

Mh(u
∗
h−un

h) = Δ tLh(u
n
h, t

n),

Mh(u
∗∗
h −u∗h) = Δ tLh(u

∗
h, t

n+1),

un+1
h = 1

2 (u
n
h +u∗∗h ).

In the case of the linear problem (where F(u) = au), using r = 1 this scheme is
stable in the norm ‖ · ‖L2(α ,β ) provided that the condition

Δ t ≤ 1
3

h

|a|
is satisfied. For an arbitrary r, numerical evidence shows that a scheme of order 2r+1
must be used, in which case we have stability under the condition

Δ t ≤ 1
2r+1

h

|a| .

We report the third order Runge-Kutta scheme, to be used preferably when r = 1:

Mh(u
∗
h−un

h) = Δ tLh(u
n
h, t

n),

Mh(u
∗∗
h − ( 3

4 un
h +

1
4 u∗h)) =

1
4Δ tLh(u

∗
h, t

n+1),

Mh(u
n+1
h − ( 1

3 un
h +

2
3 u∗∗h )) = 2

3Δ tLh(u
∗∗
h , tn+1/2).

(16.20)

More in general, the following family of Runge-Kutta methods was proposed by
[Shu88] and [SO88, SO89]. Let us set for notational convenience Kh = M−1

h Lh. Then
the new value un+1

h is obtained from un
h as follows:

1. Set u
(0)
h = un

h;
2. For i = 1, . . . , I compute the intermediate vectors
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2a) ui
h =

i−1

∑
p=0
αipw

ip
h ,

2b) w
ip
h = u

(p)
h +

βip

αip
Δ tnKh(u

(p)
h );

3. Set un+1
h = u

(I)
h

The coefficients are requested to satisfy the following conditions:

i) If βip 	= 0 then αip 	= 0;
ii) αip ≥ 0 (positivity);

iii)
i−1

∑
p=0

αip = 1 (consistency).

Let us make the stability assumption |wip
h | ≤ |u

(p)
h | for an arbitrary semi-norm | · |.

Then ii) and iii) give

|u(i)
h | = |

i−1

∑
p=0

αipw
ip
h | ≤

i−1

∑
p=0

αip|wip
h |

≤
i−1

∑
p=0

αip|u(p)
h | ≤ max

0≤p≤i−1
|u(p)

h |,

whence, in particular, |un
h| ≤ |u0

h| ∀n≥ 0.
The RK-DG schemes are analyzed in [SGT01], where they were named strong stabil-
ity preserving schemes.

Example 16.2. Let us reconsider the problem of Example 15.2, which we solve with
the discontinuous finite element method, using the third-order Runge-Kutta scheme
for the temporal discretization. Our scope is to verify (16.19) experimentally. To this
end, we use a very small time step, Δ t = 5× 10−4, and 5 decreasing values for step h
obtained by repeatedly halving the initial value h = 12.5× 10−3. We have compared
the error in L2(0,1) norm at time t = 0.01 for elements of degree r equal to 0, 1, 2
and 3. The result is reported in logarithmic scale in Fig. 16.5. This is in accordance
with the theory by which the error tends to zero as hr+1/2. Indeed, for r = 1 in this
particular case convergence is faster than what was predicted in theory: the numerical
data provides an order of convergence very close to 2. In the case r > 1 we have not
reported the results for values smaller than h, as for such values (and for the selected
Δ t) the problem is numerically unstable. �

Example 16.3. Let us consider the same linear transport problem of the previous ex-
ample, now using initial datum the square wave illustrated in Fig. 16.6 left. As the
initial datum is discontinuous, the use of high-degree elements does not improve the
convergence order, which results to be very close to the theoretical value of 1/2 for
all values of r considered. In Fig. 16.7 we show the oscillations in proximity of the
discontinuity of the solution in the case r = 2, responsible of the convergence degra-
dation, while the solution for r = 0 denotes no oscillation. �
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Fig. 16.5. Error ‖u− uh‖L2(0,1) obtained by solving a linear transport problem with regular
initial datum using discontinuous finite elements of degree r = 0,1,2,3. The error has been
computed at time t = 0.01. The time-advancing scheme is the third-order Runge-Kutta scheme
with time step Δ t = 5×10−4
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Fig. 16.6. Error ‖u−uh‖L2(0,1) obtained by solving a linear transport problem with initial datum
illustrated in the left figure. We have used discontinuous finite elements of degree r equal 0, 1,
2 and 3. The error has been computed at time t = 0.01. The temporal progression scheme is the
third-order Runge-Kutta scheme with Δ t = 5×10−4

In the case of the nonlinear problem, using the second-order Runge-Kutta scheme with
r = 0, under the condition (16.13) we obtain

|un
h|TV (α ,β ) ≤ |u0|TV (α ,β ),

i.e. strong stability in the norm | · |TV (α ,β ).
When we do not resort to monotone schemes, it is much more difficult to obtain

strong stability. In this case, we can limit ourselves to guaranteeing that the total vari-
ation of the local averages is uniformly bounded. (See [Coc98].)

Example 16.4. This example illustrates a typical feature of nonlinear problems, that
is how discontinuities can show up even if we start from a regular initial datum. To this
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Fig. 16.7. Solution at time t = 0.01 and for h = 3.125×10−3 for the test case of Fig. 16.6. On
the left-hand side, the case r = 3: note the presence of oscillations at the discontinuities, while
elsewhere the solution is accurate. On the right-hand side, we show the solution obtained when
using the same spatial and temporal discretization for r = 0

end, we consider the Burgers equation (16.2) in the (0,1) interval, with initial datum
(see Fig. 16.8)

u0(x) =

⎧⎪⎪⎨⎪⎪⎩
1, 0≤ x≤ 5

12 ,

54(2x− 5
6 )

3− 27(2x− 5
6 )

2 +1, 5
12 < x < 7

12 ,

0, 7
12 ≤ x≤ 1.

It can be easily verified that u0, illustrated in Fig. 16.8, is of class C1(0,1).
We have then considered the numerical solution obtained with the discontinuous

Galerkin method, using the third-order Runge-Kutta scheme with a time step of Δ t =
10−3 and h = 0.01, for r = 0, r = 1 and r = 2. Fig. 16.9 shows the solution at time
t = 0.5 obtained with such schemes. We can note a discontinuity arising, which the
numerical scheme solves without oscillations in the case r = 0, while for larger values
of r we have oscillations in proximity of the discontinuity itself �
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Fig. 16.8. Initial solution u0 of the first test case of the Burgers problem
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Fig. 16.9. Solution at time t = 0.5 of the first test case of the Burgers problem. Comparison
between the numerical solution for r = 0 (top left), r = 1 (top right) and r = 2 (bottom). For the
case r = 0, the piecewise constant discrete solution has been highlighted by connecting with a
dashed line the values at the midpoint of each element

To eliminate the oscillations in proximity of the solution’s discontinuities, we can
use the technique involving flux limiters, whose description goes beyond the scope
of this book. For this we refer the reader to the previously cited bibliography. We
limit ourselves to saying that the third-order Runge-Kutta scheme (16.20) is modified
as follows

u∗h =Λh
(
un

h +Δ tM−1
h Lh(u

n
h, t

n)
)
,

u∗∗h =Λh
(

3
4 un

h +
1
4 u∗h +

1
4Δ tM−1

h Lh(u
∗
h, t

n+1)
)
,

un+1
h =Λh

( 1
3 un

h +
2
3 u∗∗h + 2

3Δ tM−1
h Lh(u

∗∗
h , tn+1/2)

)
,

Λh being the flux limiter, that is a function depending also on the variations of the
computed solutions, i.e. the difference between the values of two adjacent nodes. This
is equal to the identity operator where the solution is regular, while it limits its varia-
tions if these cause high-frequency oscillations in the numerical solution. Clearly Λh

must be constructed in a suitable way, in particular it has to maintain the properties of
consistency and conservation of the scheme, and must differ as little as possible from
the identity operator so as to prevent accuracy degradation.
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Fig. 16.10. Solution at time t = 0.5 for the first test case of the Burgers problem. It has been ob-
tained for r = 1 and by applying the flux limiters technique to regularize the numerical solution
near the discontinuities

For the sake of an example, we report in Fig. 16.10 the result obtained with linear
discontinuous finite elements (r = 1) for the same test case of Fig. 16.9 applying
flux limiters. The obtained numerical solution is more regular, although slightly more
diffusive than that of Fig. 16.9.

Example 16.5. Let us now consider a second problem, where the initial datum is that
of Fig. 16.11, obtained by reflecting with respect to the line x = 0.5 the datum of the
previous test case. By keeping all the remaining parameters of the numerical simula-
tion unchanged, we once again examine the solution at t = 0.5. The latter is illustrated
in Fig. 16.12. In this case, the solution remains continuous; in fact, with this initial con-
dition, the characteristic lines (which in the case of the Burgers equation are straight
lines in the plane (x, t) with slope arctanu−1) never cross. The zoom allows to appre-
ciate qualitatively the better accuracy of the solution obtained for r = 2 with respect
to the one obtained for r = 1. �
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Fig. 16.11. Initial solution u0 for the second test case of the Burgers problem
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Fig. 16.12. Solution at time t = 0.5 for the second test case of the Burgers problem. Comparison
between the solution obtained for r = 1 (left) and the one obtained for r = 2 (right). In the box
we illustrate an enlargement of the numerical solution which allows to qualitatively grasp the
improved accuracy obtained for r = 2

16.4 Nonlinear hyperbolic systems

In this last section we briefly address the case of nonlinear hyperbolic systems. A
classical example is provided by the Euler equations, which are obtained from the
following Navier-Stokes equations (for compressible fluids) in Rd , d = 1,2,3:

∂ρ

∂ t
+

d

∑
j=1

∂ (ρu j)

∂x j
= 0,

∂ (ρui)

∂ t
+

d

∑
j=1

[
∂ (ρuiu j + δi j p)

∂x j
− ∂τi j

∂x j

]
= 0, i = 1, . . . ,d ,

∂ρe

∂ t
+

d

∑
j=1

[
∂ (ρhu j)

∂x j
− ∂ (∑

d
i=1 uiτi j +q j)

∂x j

]
= 0.

(16.21)

The variables have the following meaning: u=(u1, . . . ,ud)
T is the vector of velocities,

ρ is the density, p the pressure, ei +
1
2 |u|2 the total energy per unit of mass, equal to

the sum of the internal energy ei and of the kinetic energy of the fluid, h = e+ p/ρ the
total entalpy per mass unit, q the thermal flux and finally

τi j = μ

[(
∂u j

∂xi
+
∂ui

∂x j

)
− 2

3
δi jdivu

]
, i, j = 1, . . . ,d

the stress tensor (μ being the molecular viscosity of the fluid).
The equations in the above system describe the conservation of mass, momentum and
energy, respectively. To complete the system, it is necessary to put e in relationship
with the variables ρ , p,u, by defining a law

e =Φ(ρ , p,u).
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The latter is normally derived from the state equations of the fluid under exam. In
particular, the state equations of the ideal gas

p = ρRT, ei =CvT,

where R =Cp−Cv is the gas constant and T is its temperature, provide

e =
p

ρ(γ− 1)
+

1
2
|u|2,

where γ =Cp/Cv is the ratio between the specific heats at constant pressure and vol-
ume, respectively. The thermal flux q is usually related to the temperature gradient via
the Fick law

q =−κ∇T =− κ

Cv
∇(e− 1

2
|u|2),

κ being the conductibility of the fluid under exam.
If μ = 0 and κ = 0, we obtain the Euler equations for non-viscous fluids. The inter-

ested reader can find them in specialized fluid dynamics textbooks, or in textbooks on
nonlinear hyperbolic systems, such as for instance [Hir88] or [GR96]. Such equations
can be written in compact form in the following way

∂w

∂ t
+DivF(w) = 0, (16.22)

with w = (ρ ,ρu,ρe)T being the vector of the so-called conservative variables. The
flux matrix F(w), a nonlinear function of w, can be obtained from (16.21). For in-
stance, if d = 2, we have

F(w) =

⎡⎢⎢⎣
ρu1 ρu2

ρu2
1 + p ρu1u2

ρu1u2 ρu2
2 + p

ρhu1 ρhu2

⎤⎥⎥⎦ .
Finally, in (16.22) Div denotes the divergence operator of a tensor: if τ is a tensor with
components (τi j), its divergence is a vector with components

(Div(τ ))k =
d

∑
j=1

∂

∂x j
(τk j) , k = 1, ...,d. (16.23)

The form (16.22) is called conservation form of the Euler equations. Indeed, by inte-
grating it on any region Ω ⊂ Rd and using the Gauss theorem, we obtain

d

dt

∫
Ω

wdΩ +
∫
∂Ω

F(w) ·ndγ = 0.

This is interpreted by saying that the variation in time of w in Ω is compensated by
the variation of the fluxes through the boundary of Ω ; (16.22) is thus a conservation
law.
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The Navier-Stokes equations can also be written in conservative form as follows

∂w

∂ t
+DivF(w) = DivG(w),

where G(w) are the so-called viscous fluxes. Remaining in the d = 2 case, these are
given by

G(w) =

⎡⎢⎢⎣
0 0
τ11 τ12

τ21 τ22

ρhu1+u ·τ1 + q1 ρhu2 +u ·τ2 + q2

⎤⎥⎥⎦
where τ1 = (τ11,τ21)

T and τ2 = (τ12,τ22)
T .

We now rewrite system (16.22) in the form

∂w

∂ t
+

d

∑
i=1

∂Fi(w)

∂w

∂w

∂xi
= 0. (16.24)

This is a particular case of the following quasi-linear form

∂w

∂ t
+

d

∑
i=1

Ai(w)
∂w

∂xi
= 0. (16.25)

If the matrix Aα(w) = ∑d
i=1αiAi(w) can be diagonalized for all real values of

{α1, . . . ,αd} and its eigenvalues are real and distinct, then system (16.25) is said to be
strictly hyperbolic.

Example 16.6. A simple example of a strictly hyperbolic problem is provided by the
so-called p-system:

∂v

∂ t
− ∂u

∂x
= 0 ,

∂u

∂ t
+
∂

∂x
p(v) = 0 .

If p′(v)< 0, the two eigenvalues of the Jacobian matrix

A(w) =

(
0 −1

p′(v) 0

)
are

λ1(v) =−
√
−p′(v) < 0 < λ2(v) = +

√
−p′(v) . �

Example 16.7. For the one-dimensional Euler system (i.e. with d = 1) we have: w =
(ρ ,ρu,e)T and F(w) = (ρu,ρu2+ p,u(e+ p))T . The eigenvalues of the matrix A1(w)

of the system are u− c,u,u+ c where c =
√
γ p
ρ is the speed of sound. As u,c ∈ R,

the eigenvalues are real and distinct and therefore the one-dimensional Euler system
is strictly hyperbolic. �
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The remarks made on the discontinuities of the solution in the scalar case can be
extended to the case of systems, by introducing the notion of weak solution also here.
The entropy condition can be extended to the case of systems, using for instance the
condition proposed by Lax. We observe that in the case of the one-dimensional system
(16.22) the Rankine-Hugoniot jump conditions are written in the form

F(w+)−F(w−) = σ(w+−w−),

w± being the two constant states that represent the values of the unknowns through
the discontinuity, and σ representing once again the rate at which the discontinuity
propagates. Using the fundamental theorem of calculus, such relation is written in the
form

σ(w+−w−) =

∫ 1

0
DF (θw++(1−θ )w−) · (w+−w−)dθ

= A(w−,w+) · (w+−w−), (16.26)

where the matrix

A(w−,w+) =

∫ 1

0
DF (θw++(1−θ )w−)dθ

represents the mean value of the Jacobian of F (denoted by DF) along the segment
connecting w− with w+. Relation (16.26) shows that at each point where a discontinu-
ity occurs the difference between the right and left state w+−w− is an eigenvector of
the matrix A(w−,w+), while the rate of the jump σ coincides with the corresponding
eigenvalue λ = λ (w−,w+). Calling λi(w) the i−th eigenvalue of

A(w) = DF(w),

the admissibility condition of Lax requires that

λi(w+)≤ σ ≤ λi(w−) for each i.

Intuitively, this means that the velocity at which a shock of the i−th family travels must
exceed the velocity λi(w+) of the waves that are immediately ahead of the shock, and
must be less than the velocity λi(w−) of the waves behind the shock.

In the case of hyperbolic systems of m equations (m > 1), the entropy η and its
corresponding fluxΨ are still scalar functions, and relation (16.5) becomes

∇Ψ(u) =
dF

du
(u) ·∇η(u), (16.27)

which represents a system of m equations and 2 unknowns (η andΨ ). If m > 2, such
system may have no solutions.

Remark 16.2. In the case of the Euler equations, the entropy function exists also in
the case m = 3. •



Chapter 17

Navier-Stokes equations

Navier-Stokes equations describe the motion of a fluid with constant density ρ in a
domain Ω ⊂Rd (with d = 2,3). They read as follows⎧⎨⎩

∂u

∂ t
−div

[
ν
(
∇u+∇uT)]+(u ·∇)u+∇p = f, x ∈Ω , t > 0,

divu = 0, x ∈Ω , t > 0,
(17.1)

u being the fluid’s velocity, p the pressure divided by the density (which will simply
be called "pressure"), ν the kinematic viscosity, and f a forcing term per unit of mass
that we suppose belongs in L2(R+; [L2(Ω)]d) (see Sect. 5.2). The first equation is
that of conservation of linear momentum, the second one that of conservation of mass,
which is also called the continuity equation. The term (u ·∇)u describes the process of
convective transport, while −div

[
ν(∇u+∇uT )

]
the process of molecular diffusion.

System (17.1) can be derived by the analogous system for compressible flows intro-
duced in Chapter 16 by assuming ρ constant, using the continuity equation (which,
under current assumptions, takes the simplified form divu = 0) to simplify the various
terms, and finally dividing the equation by ρ . Note that in the incompressible case
(17.2) the energy equation has disappeared. Indeed, even though such an equation can
still be written for incompressible flows, its solution can be found independently once
the velocity field is obtained from the solution of (17.1).

When ν is constant, from the continuity equation we obtain

div
[
ν(∇u+∇uT )

]
= ν (Δu+∇divu) = νΔu

whence system (17.1) can be written in the equivalent form⎧⎨⎩
∂u

∂ t
−νΔu+(u ·∇)u+∇p= f, x ∈Ω , t > 0,

divu = 0, x ∈Ω , t > 0,
(17.2)

which is the one that we will consider in this chapter.

A. Quarteroni, Numerical Models for Differential Problems, MS&A 16, 
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Equations (17.2) are often called incompressible Navier-Stokes equations. More
in general, fluids satisfying the incompressibility condition divu = 0 are said to be in-
compressible. Constant density fluids necessarily satisfy this condition, however there
exist incompressible fluids featuring variable density (e.g., stratified fluids) that are
governed by a different system of equations in which the density ρ explicitly shows
up. This case will be addressed in Sect. 17.9.

In order for problem (17.2) to be well posed it is necessary to assign the initial
condition

u(x,0) = u0(x) ∀x ∈Ω , (17.3)

where u0 is a given divergence-free vector field, together with suitable boundary con-
ditions, such as, e.g., ∀t > 0,⎧⎪⎪⎨⎪⎪⎩

u(x, t) =ϕ(x, t) ∀x ∈ ΓD,(
ν
∂u

∂n
− pn

)
(x, t) =ψ(x, t) ∀x ∈ ΓN ,

(17.4)

where ϕ and ψ are given vector functions, while ΓD and ΓN provide a partition of the

domain boundary ∂Ω , that is ΓD ∪ΓN = ∂Ω ,
◦
ΓD ∩

◦
ΓN= /0. Finally, as usual n is the

outward unit normal vector to ∂Ω . If we use the alternative formulation (17.1), the
second equation in (17.4) must be replaced by[

ν
(
∇u+∇uT )n− pn

]
(x, t) =ψ(x, t) ∀x ∈ ΓN .

Further considerations on boundary conditions will follow in Sect. 17.9.2.
Denoting with ui, i = 1, . . . ,d the components of the vector u with respect to a

Cartesian frame, and with fi the components of f, system (17.2) can be written com-
ponentwise as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂ui

∂ t
−νΔui +

d

∑
j=1

u j
∂ui

∂x j
+
∂ p

∂xi
= fi, i = 1, . . . ,d,

d

∑
j=1

∂u j

∂x j
= 0.

In the two-dimensional case the Navier-Stokes equations with the boundary condi-
tions previously indicated yield well-posed problems. This means that if all data (ini-
tial condition, forcing term, boundary data) are smooth enough, then the solution is
continuous together with its derivatives and does not develop singularities in time.
Things may go differently in three dimensions, where existence and uniqueness of
classical solutions have been proven only locally in time (that is for a sufficiently
small time interval). In the following section we will introduce the weak formulation
of the Navier-Stokes equations, for which existence of a solution has been proven for
all times. However, the issue of uniqueness (which is related to that of regularity) is
still open, and is actually the central issue of Navier-Stokes theory.



17.1 Weak formulation of Navier-Stokes equations 459

Remark 17.1. The Navier-Stokes equations have been written in terms of the primi-
tive variables u and p, but other sets of variables may be used, too. For instance, in
the two-dimensional case it is common to see the vorticity ω and the streamfunction
ψ , that are related to the velocity as follows

ω = rotu =
∂u2

∂x1
− ∂u1

∂x2
, u =

⎡⎢⎢⎣
∂ψ

∂x2

− ∂ψ
∂x1

⎤⎥⎥⎦ .

The various formulations are in fact equivalent from a mathematical standpoint, al-
though they give rise to different numerical methods. See, e.g., [Qua93]. •

17.1 Weak formulation of Navier-Stokes equations

A weak formulation of problem (17.2)–(17.4) can be obtained by proceeding formally,
as follows. Let us multiply the first equation of (17.2) by a test function v belonging
to a suitable space V that will be specified later on, and integrateΩ∫
Ω

∂u

∂ t
·v dΩ −

∫
Ω

νΔu ·v dΩ +

∫
Ω

[(u ·∇)u] ·v dΩ +

∫
Ω

∇p ·vdΩ =

∫
Ω

f ·vdΩ .

Using Green’s formulae (3.16) and (3.17) we find:

−
∫
Ω

νΔu ·v dΩ =

∫
Ω

ν∇u ·∇v dΩ −
∫
∂Ω

ν
∂u

∂n
·v dγ,

∫
Ω

∇p ·v dΩ = −
∫
Ω

pdivv dΩ +

∫
∂Ω

pv ·n dγ.

Using these relations in the first of (17.2), we obtain∫
Ω

∂u

∂ t
·v dΩ +

∫
Ω

ν∇u ·∇v dΩ +
∫
Ω

[(u ·∇)u] ·v dΩ −
∫
Ω

pdivv dΩ

=

∫
Ω

f ·v dΩ +

∫
∂Ω

(
ν
∂u

∂n
− pn

)
·v dγ ∀v ∈V.

(17.5)

(All boundary integrals should indeed be regarded as duality pairings.)
Similarly, by multiplying the second equation of (17.2) by a test function q, belonging
to a suitable space Q to be specified, then integrating on Ω it follows∫

Ω

qdivu dΩ = 0 ∀q ∈ Q. (17.6)
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Customarily V is chosen so that the test functions vanish on the boundary portion
where a Dirichlet data is prescribed on u, that is

V = [H1
ΓD
(Ω)]d = {v ∈ [H1(Ω)]d : v|ΓD = 0}. (17.7)

It will coincide with [H1
0(Ω)]d if ΓD = ∂Ω . If ΓN 	= /0, we can choose Q = L2(Ω).

Moreover, if t > 0, then u(t) ∈ [H1(Ω)]d , with u(t) = ϕ(t) on ΓD, u(0) = u0 and
p(t) ∈ Q.

Having chosen these functional spaces, we can note first of all that∫
∂Ω

(ν
∂u

∂n
− pn) ·vdγ =

∫
ΓN

ψ ·vdγ ∀v ∈V.

Moreover, all the integrals involving bilinear terms are finite. More precisely, by using
the vector notation Hk(Ω) = [Hk(Ω)]d , Lp(Ω) = [Lp(Ω)]d , k ≥ 1, 1 ≤ p < ∞, we
find: ∣∣∣ν∫

Ω

∇u ·∇vdΩ
∣∣∣≤ ν|u|H1(Ω)|v|H1(Ω),

∣∣∣∫
Ω

pdivvdΩ
∣∣∣≤ ‖p‖L2(Ω)|v|H1(Ω),

∣∣∣∫
Ω

q∇udΩ
∣∣∣≤ ‖q‖L2(Ω)|u|H1(Ω).

For every function v ∈H1(Ω), we denote by

‖v‖H1(Ω) = (
d

∑
k=1

‖vk‖2
H1(Ω))

1/2

its norm and by

|v|H1(Ω) =
( d

∑
k=1

|vk|2H1(Ω)

)1/2

its seminorm. The notation ‖v‖Lp(Ω), 1 ≤ p < ∞, has a similar meaning. The same
symbols will be used in case of tensor functions. Thanks to Poincaré’s inequality,
|v|H1(Ω) is equivalent to the norm ‖v‖H1(Ω) for all functions belonging to V .

Also the integral involving the trilinear term is finite. To see how, let us start by
recalling the following result (see (2.19); for its proof, see [AF03]): if d ≤ 3,

∀v ∈H1(Ω), then v ∈ L4(Ω) and ∃C > 0 s.t. ‖v‖L4(Ω) ≤C‖v‖H1(Ω).

Using the following three-term Hölder inequality∣∣∣∫
Ω

f gh dΩ
∣∣∣≤ ‖ f‖Lp(Ω)‖g‖Lq(Ω)‖h‖Lr(Ω),
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valid for all p,q,r > 1 such that p−1 +q−1+ r−1 = 1, we conclude that∣∣∣∫
Ω

[(u ·∇)u] ·v dΩ
∣∣∣≤ ‖∇u‖L2(Ω)‖u‖L4(Ω)‖v‖L4(Ω) ≤C2‖u‖2

H1(Ω)‖v‖H1(Ω).

As for the solution’s uniqueness, let us consider again the Navier-Stokes equations
in strong form (17.2) (similar considerations can be made on the weak form (17.5),
(17.6)). If ΓD = ∂Ω , when only boundary conditions of Dirichlet type are imposed,
the pressure appears merely in terms of its gradient; in such a case, if we call (u, p) a
solution of (17.2), for any possible constant c the couple (u, p+ c) is a solution too,
since ∇(p+ c) = ∇p. To avoid such indeterminacy one can fix a priori the value of p
at one given point x0 of the domainΩ , that is set p(x0) = p0, or, alternatively, require
the pressure to have null average, i.e.,

∫
Ω p dΩ = 0. The former condition requires to

prescribe a pointwise value for the pressure, but this is inconsistent with our Ansatz
that p ∈ L2(Ω). (We anticipate, however, that this is admissible at the numerical level
when we look for a continuous finite-dimensional pressure.) For this reason we assume
from now on that the pressure is average-free. More specifically, we will consider the
following pressure space

Q = L2
0(Ω) = {p ∈ L2(Ω) :

∫
Ω

p dΩ = 0}.

Further, we observe that if ΓD = ∂Ω , the prescribed Dirichlet data ϕ must be
compatible with the incompressibility constraint; indeed,∫

∂Ω

ϕ ·n dγ =
∫
Ω

divu dΩ= 0.

If ΓN is not empty, i.e. in presence of either Neumann or mixed Dirichlet-Neumann
boundary conditions, the problem of pressure indeterminacy (up to an additive con-
stant) no longer exists. In this case we can take Q = L2(Ω). In conclusion, from now
on we shall implicitly assume

Q = L2(Ω) if ΓN 	= /0, Q = L2
0(Ω) if ΓN = /0. (17.8)

The weak formulation of the system (17.2), (17.3), (17.4) is therefore:

find u ∈ L2(R+; [H1(Ω)]d)∩C0(R+; [L2(Ω)]d), p ∈ L2(R+;Q) such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω

∂u

∂ t
·v dΩ +ν

∫
Ω

∇u ·∇v dΩ +

∫
Ω

[(u ·∇)u] ·v dΩ −
∫
Ω

p divv dΩ

=
∫
Ω

f ·v dΩ +
∫
ΓN

ψ ·vdγ ∀v ∈V,

∫
Ω

q divudΩ = 0 ∀q ∈ Q,

(17.9)
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with u|ΓD =ϕD and u|t=0 = u0. The space V is the one in (17.7) while Q is the space
introduced in (17.8). The spaces of time-dependent functions for u and p have been
introduced in Sect. 2.7.

As we have already anticipated, existence of solutions can be proven for this problem
for both dimensions d = 2 and d = 3, whereas uniqueness has been proven only in the
case d = 2 for sufficiently small data (see, e.g., [Tem01] and [Sal08]).

Let us define the Reynolds number

Re =
|U|L
ν

,

where L is a representative length of the domainΩ (e.g. the length of a channel where
the fluid’s flow is studied) and U a representative fluid velocity.
The Reynolds number measures the extent to which convection dominates over diffu-
sion. When Re� 1 the convective term (u ·∇)u can be omitted, and the Navier-Stokes
equations reduce to the so-called Stokes equations, that will be investigated later in this
chapter. On the other hand, if Re is large, problems may arise concerning uniqueness
of the solution, the existence of stationary and stable solutions, the possible existence
of strange attractors, the transition towards turbulent flows. See [Tem01, FMRT01].

When fluctuations of flow velocity occur at very small spatial and temporal scales,
their numerical approximation becomes very difficult if not impossible. In those cases
one typically resorts to the so-called turbulence models: the latter allow the approxi-
mate description of this flow behaviour through either algebraic or differential equa-
tions. This topic will not be addressed in this monograph. The interested readers may
consult, e.g., [Wil98] for a description of the physical aspects of turbulent flows,
[HYR08] for multiscale analysis of incompressible flows, [Le 05] for modelling as-
pects of multiscale systems, [MP94] for the analysis of one of the most widely used
turbulence models, the so-called κ− ε model. [Sag06] and [BIL06] provide the anal-
ysis of the so-called Large Eddy model, which is more computationally expensive but
in principle better suited to provide a more realistic description of turbulent flow fields.

Finally, let us mention the Euler equations introduced in (16.21), which are used
for both compressible or incompressible flows in those cases in which the viscosity
can be neglected. Formally speaking, this corresponds to taking the Reynolds number
equal to infinity.

By eliminating the pressure, the Navier-Stokes equations can be rewritten in re-
duced form in the sole variable u. With this aim let us introduce the following sub-
spaces of [H1(Ω)]d :

Vdiv = {v ∈
[
H1(Ω)

]d
: divv = 0}, V0

div = {v ∈ Vdiv : v = 0 on ΓD} .

Upon requiring the test function v in the momentum equation in (17.9) to belong
to the space Vdiv, the term associated to the pressure gradient vanishes, whence we find
the following reduced problem for the velocity



17.2 Stokes equations and their approximation 463

find u ∈ L2(R+;Vdiv)∩C0(R+; [L2(Ω)]d) such that∫
Ω

∂u

∂ t
·v dΩ +ν

∫
Ω

∇u ·∇v dΩ +

∫
Ω

[(u ·∇)u] ·v dΩ

=

∫
Ω

f ·v dΩ +

∫
ΓN

ψ ·v dγ ∀v ∈V 0
div,

(17.10)

with u|ΓD =ϕD and u|t=0 = u0. Since this problem is (nonlinear) parabolic, its analysis
can be carried out using techniques similar to those applied in Chapter 5. (See, e.g.,
[Sal08].) Obviously, if u is a solution of (17.9), then it also solves (17.10). Conversely,
the following theorem holds. For its proof, see, e.g., [QV94].

Theorem 17.1. Let Ω ⊂ Rd be a domain with Lipschitz-continuous boundary
∂Ω . Let u be a solution to the reduced problem (17.10). Then there exists a
unique function p ∈ L2(R+;Q) such that (u, p) is a solution to (17.9).

Once the reduced problem is solved, there exists a unique way to recover the pres-
sure p, and hence the complete solution of the original Navier-Stokes problem (17.9).

In practice, however, this approach can be quite unsuitable from a numerical view-
point. Indeed, in a Galerkin spatial approximation framework, it would require the
construction of finite dimensional subspace, say Vdiv,h, of divergence-free velocity
functions. In this regard, see, e.g., [BF91a] and [BBF13] for finite element approxi-
mations, and [CHQZ06] for spectral approximations. Moreover, the result of Theorem
17.1 is not constructive, as it does not provide a way to build the solution pressure p.
For these reasons one usually prefers to approximate the complete coupled problem
(17.9) directly.

17.2 Stokes equations and their approximation

In this section we will consider the following generalized Stokes problem with homo-
geneous Dirichlet boundary conditions⎧⎪⎨⎪⎩

αu−νΔu+∇p = f in Ω ,

divu = 0 in Ω ,

u = 0 on ∂Ω ,

(17.11)

for a given coefficient α ≥ 0. This problem describes the motion of an incompressible
viscous flow in which the (quadratic) convective term has been neglected, a simplifica-
tion that is acceptable when Re� 1. However, one can generate a problem like (17.11)
also while using an implicit temporal discretization of the Navier-Stokes equations, as
we will see in Sect. 17.7.
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From an analytical standpoint, Navier-Stokes equations can be regarded as a com-
pact perturbation of Stokes’ equations, as they differ from the latter solely because
of the presence of the convective term, which is of first order, whereas the diffusive
term is of second order. On the other hand, it is fair to say that this term can have a
fundamental impact on the solution’s behaviour when the Reynolds number Re is very
large, as already pointed out.
The weak formulation of problem (17.11) reads:
find u ∈V and p ∈ Q such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
Ω

(αu ·v+ν∇u ·∇v) dΩ −
∫
Ω

pdivv dΩ =

∫
Ω

f ·v dΩ ∀v ∈V,

∫
Ω

qdivu dΩ = 0 ∀q ∈ Q,

(17.12)

where V = [H1
0(Ω)]d and Q = L2

0(Ω). Now define the bilinear forms a : V ×V �→ R

and b : V ×Q �→ R as follows:

a(u,v) =
∫
Ω

(αu ·v+ν∇u ·∇v) dΩ ,

b(u,q) =−
∫
Ω

qdivu dΩ .

(17.13)

With these notations, problem (17.12) becomes: find (u, p) ∈V ×Q such that{
a(u,v)+ b(v, p) = (f,v) ∀v ∈V,

b(u,q) = 0 ∀q ∈ Q,
(17.14)

where (f,v) = ∑d
i=1
∫
Ω fivi dΩ .

If we consider non-homogeneous boundary conditions, as indicated in (17.4), the

weak formulation of the Stokes problem becomes: find (
◦
u, p) ∈V ×Q such that{

a(
◦
u,v)+b(v, p) = F(v) ∀v ∈V,

b(
◦
u,q) = G(q) ∀q ∈ Q,

(17.15)

where V and Q are the spaces introduced in (17.7) and (17.8), respectively. Having

denoted with Rϕ ∈ [H1(Ω)]d a lifting of the boundary datum ϕ, we have set
◦
u=

u−Rϕ, while the new terms on the right-hand side have the following expression:

F(v) = (f,v)+

∫
ΓN

ψv dγ− a(Rϕ,v), G(q) =−b(Rϕ,q). (17.16)
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The following result holds:

Theorem 17.2. The couple (u, p) solves the Stokes problem (17.14) iff it is a
saddle point of the Lagrangian functional

L (v,q) =
1
2

a(v,v)+ b(v,q)− (f,v),

or equivalently,

L (u, p) = min
v∈V

max
q∈Q

L (v,q).

The pressure q hence plays the role of Lagrange multiplier associated to the divergence-
free constraint. As we saw in Sect. 17.1 for the Navier-Stokes equations, it is possible
to eliminate, formally, the variable p from the Stokes equations, thus obtaining the
following reduced Stokes problem (in weak form)

find u ∈V 0
div such that a(u,v) = (f,v) ∀v ∈V 0

div. (17.17)

This is an elliptic problem for the vector variable u. Existence and uniqueness can
be proven using the Lax-Milgram Lemma 3.1. As a matter of fact, V 0

div is a Hilbert
space with respect to the norm ‖∇v‖L2(Ω), because the divergence operator is contin-

uous from V into L2(Ω), thus V 0
div is a closed subspace of the space V . Moreover, the

bilinear form a(·, ·) is continuous and coercive in V 0
div, and f∈V ′div. Using the Cauchy-

Schwarz and Poincaré inequalities, the following estimates can be obtained by taking
v = u in (17.17)):

α

2
‖u‖2

L2(Ω) +ν‖∇u‖2
L2(Ω) ≤

1
2α
‖f‖2

L2(Ω), if α 	= 0,

‖∇u‖L2(Ω) ≤
CΩ
ν
‖ f‖L2(Ω), if α = 0,

where CΩ is the constant of the Poincaré inequality (2.13). Note that the pressure has
disappeared from (17.17). However, still from (17.17) we can infer that the vector
w = αu−νΔu− f, regarded as a linear functional of H−1(Ω), vanishes when applied
to any vector function of V 0

div. Thanks to this property, there exists a unique function
p ∈ Q such that w = ∇p, that is p satisfies the first equation of (17.11) in distribu-
tional sense (this entails a suitable use of Thm. 16.7 that we will introduce later; see,
e.g., [QV94]). The couple (u, p) is therefore the unique solution of the weak problem
(17.14).

The Galerkin approximation of problem (17.14) has the following form:
find (uh, ph) ∈Vh×Qh such that{

a(uh,vh)+b(vh, ph) = (f,vh) ∀vh ∈Vh,

b(uh,qh) = 0 ∀qh ∈ Qh,
(17.18)
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where {Vh ⊂ V} and {Qh ⊂ Q} represent two families of finite-dimensional sub-
spaces depending on a real discretization parameter h. If, instead, we consider problem
(17.15)–(17.16) corresponding to non-homogeneous boundary data (17.4), the above
formulation needs to be modified by using F(vh) on the right-hand side of the first
equation and G(qh) on that of the second equation. These new functionals can be ob-
tained from (17.16) by replacing Rϕ with the interpolant of ϕ at the nodes of ΓD (and
vanishing at all other nodes), and replacing ψ with its interpolant at the nodes sitting
on ΓN . The algebraic formulation of problem (17.18) will be addressed in Sect. 17.4.

The following celebrated theorem is due to F. Brezzi [Bre74], and guarantees unique-
ness and existence for problem (17.18):

Theorem 17.3. The Galerkin approximation (17.18) admits one and only one
solution if the following conditions hold:

1. The bilinear form a(·, ·) is:
a) coercive, that is ∃α > 0 (possibly depending on h) such that

a(vh,vh)≥ α‖vh‖2
V ∀vh ∈V ∗h ,

where V ∗h = {vh ∈Vh : b(vh,qh) = 0 ∀qh ∈ Qh};
b) continuous, that is ∃γ > 0 such that

|a(uh,vh)| ≤ γ‖uh‖V‖vh‖V ∀uh,vh ∈Vh.

2. The bilinear form b(·, ·) is continuous, that is ∃δ > 0 such that

|b(vh,qh)| ≤ δ‖vh‖V‖qh‖Q ∀vh ∈Vh,qh ∈ Qh.

3. Finally, there exists a positive constant β (possibly depending on h) such that

∀qh ∈ Qh, ∃vh ∈Vh : b(vh,qh)≥ β‖vh‖H1(Ω)‖qh‖L2(Ω). (17.19)

Under the previous assumptions the discrete solution fulfills the following a-
priori estimates:

‖uh‖V ≤ 1
α
‖f‖V ′ ,

‖ph‖Q ≤ 1
β

(
1+

γ

α

)
‖f‖V ′ ,

where V ′ is the dual space of V . Moreover, the following convergence results
hold:

‖u−uh‖V ≤
(

1+
δ

β

)(
1+

γ

α

)
inf

vh∈Vh
‖u− vh‖V +

δ

α
inf

qh∈Qh

‖p− qh‖Q,

‖p− ph‖Q ≤ γ

β

(
1+

γ

α

)(
1+

δ

β

)
inf

vh∈Vh
‖u−vh‖V

+

(
1+

δ

β
+
δγ

αβ

)
inf

qh∈Qh

‖p− qh‖Q.
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It is worth noticing that condition (17.19) is equivalent the existence of a positive
constant β such that

inf
qh∈Qh,qh 	=0

sup
vh∈Vh,vh 	=0

b(vh,qh)

‖vh‖H1(Ω)‖qh‖L2(Ω)

≥ β . (17.20)

For such a reason it is often called the inf-sup condition.
The proof of this theorem requires non-elementary tools of functional analysis. It will
be given in Sect. 17.3 for a saddle-point problem that is more general than Stokes’
problem. In this perspective, Theorem 17.3 can be regarded as a special case of The-
orems 17.5 and 17.6. The reader not interested in the theoretical aspects can skip the
next section and jump directly to Sect. 17.4.

17.3 Saddle-point problems

The scope of this section is to study problems (17.14) and (17.18) and show how the
latter’s solutions converge to the former’s. With this aim we will recast those formula-
tions within a more abstract framework, that will eventually allow the use of the theory
proposed in [Bre74, Bab71, BBF13].

17.3.1 Problem formulation

Let X and M be two Hilbert spaces endowed with norms ‖ · ‖X and ‖ · ‖M. Denoting
with X ′ and M′ the corresponding dual spaces (that is the spaces of linear and bounded
functionals defined on X and M), we introduce the bilinear forms a(·, ·) : X×X −→R

and b(·, ·) : X ×M −→ R that we suppose to be continuous, meaning there exist two
constants γ,δ > 0 such that for all w,v ∈ X and μ ∈M,

|a(w,v)| ≤ γ ‖w‖X ‖v‖X , |b(w,μ)| ≤ δ ‖w‖X ‖μ‖M (17.21)

Consider now the following constrained problem: find (u,η) ∈ X×M such that{
a(u,v)+ b(v,η) = 〈l,v〉 ∀v ∈ X ,

b(u,μ) = 〈σ ,μ〉 ∀μ ∈M,
(17.22)

where l ∈ X ′ and σ ∈M′ are two assigned linear functionals, while 〈·, ·〉 denotes the
pairing between X and X ′ or M and M′.
Formulation (17.22) is general enough to include the formulation (17.14) of the Stokes
problem, that of a generic constrained problem with respect to the bilinear form a(·, ·)
(with η representing the constraint), or again the formulation which is obtained when
mixed finite element approximations are used for various kind of boundary-valueprob-
lems, for instance those of linear elasticity (see, e.g., [BF91a, QV94]).

Problem (17.22) can be conveniently restated in operator form. For this we asso-
ciate the bilinear forms a(·, ·) and b(·, ·) with the operators A ∈ L (X ,X ′) and B ∈
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L (X ,M′), defined through the following relations:

〈Aw,v〉 = a(w,v) ∀w, v ∈ X ,

〈Bv,μ〉 = b(v,μ) ∀v ∈ X , μ ∈M.

The relations pair X ′ to X and M′ to M. In accordance with the notations introduced
in Sect. 4.5.3, we denote by L (V,W ) the space of linear and bounded functionals
between V and W .
Let BT ∈L (M,X ′) be the adjoint operator of B defined by

〈BTμ ,v〉 = 〈Bv,μ〉 = b(v,μ) ∀v ∈ X , μ ∈M. (17.23)

The former duality holds between X ′ and X , the latter between M′ and M. (This
operator was denoted by the symbol B′ in Sect. 2.6, see the general definition (2.20).
Here, however, it is denoted by BT for consistency with the classical notation used in
the framework of saddle-point problems.)

In operator form, the saddle-point problem (17.22) can be restated as follows:
find (u,η) ∈ X×M such that{

Au+BTη = l in X ′,

Bu = σ in M′.
(17.24)

17.3.2 Analysis of the problem

In order to analyze problem (17.24), we introduce the affine manifold

Xσ = {v ∈ X : b(v,μ) = 〈σ ,μ〉 ∀μ ∈M}. (17.25)

The space X0 denotes the kernel of B, that is

X0 = {v ∈ X : b(v,μ) = 0 ∀μ ∈M}= ker(B).

This is a closed subspace of X . We can therefore associate (17.22) with the following
reduced problem

find u ∈ Xσ such that a(u,v) = 〈l,v〉 ∀v ∈ X0. (17.26)

If (u,η) is a solution of (17.22), then u is a solution to (17.26). In the following we
will introduce suitable conditions that allow the converse to hold, too. Moreover, we
would like to prove uniqueness for the solution of (17.26). This would allow us to ob-
tain an existence and uniqueness result for the original saddle-point problem (17.22).

We denote by X0
polar the polar set of X0, that is

X0
polar = {g ∈ X ′ : 〈g,v〉 = 0 ∀v ∈ X0}.

See Fig. 17.1 for a schematic picture. Since X0 = ker(B), we have X0
polar =(ker(B))polar.

The space X is a direct sum of X0 and its orthogonal space (X0)⊥,

X = X0⊕ (X0)⊥.
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X X ′

MM′

A
B B BTBT

X0 = KerB

X0
polar(X0)⊥

Fig. 17.1. The spaces X and M, the dual spaces X ′ and M′, the subspaces X0, (X0)⊥ and X0
polar ,

and the operators A, B and BT . Dashed lines indicate isomorphisms

Since, in general, ker(B) is not empty, we cannot expect B to be an isomorphism
between X and M′. The aim is to find a condition which guarantees that B is an iso-
morphism between (X0)⊥ and M′ (and, similarly, that BT is an isomorphism between
M and X0

polar).

Lemma 17.1. The three following statements are equivalent:

a. there exists a constant β ∗ > 0 such that the following compatibility condition
holds

∀ μ ∈M ∃v ∈ X , v 	= 0 : b(v,μ)≥ β ∗‖v‖X‖μ‖M; (17.27)

b. the operator BT is an isomorphism from M onto X0
polar; moreover,

‖BTμ‖X ′ = sup
v∈V,v	=0

〈BTμ ,v〉
‖v‖X

≥ β ∗‖μ‖M ∀μ ∈M; (17.28)

c. the operator B is an isomorphism from (X0)⊥ onto M′; moreover,

‖Bv‖M′ = sup
μ∈M,μ 	=0

〈Bv,μ〉
‖μ‖M

≥ β ∗‖v‖X ∀v ∈ (X0)⊥. (17.29)

Proof. First of all we prove the equivalence between a. and b. Owing to definition
(17.23) of BT , the two inequalities (17.27) and (17.28) do coincide. Let us now prove
that BT is an isomorphism between M and X0

polar. From (17.28) it follows that BT is an

injective operator from M into its range R(BT ), with continuous inverse. Then R(BT )
is a closed subspace of X ′. It remains to prove that R(BT ) = X0

polar. From the closed
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range theorem (see, e.g., [Yos74]), we have

R(BT ) = (ker(B))polar,

whence R(BT ) = X0
polar, which is the desired result.

Let us now prove the equivalence between b. and c. . The space X0
polar can be

identified with the dual space of (X0)⊥. As a matter of fact, to every g ∈ ((X0)⊥)′ we
can associate a functional ĝ ∈ X ′ which satisfies the relation

〈ĝ,v〉 = 〈g,P⊥v〉 ∀v ∈ X ,

where P⊥ denotes the orthogonal projection of X onto (X0)⊥, that is

∀v ∈ X , P⊥v ∈ (X0)⊥ : (P⊥v− v,w)X = 0 ∀w ∈ (X0)⊥.

Clearly, ĝ ∈ X0
polar and it can be verified that g−→ ĝ is an isometric bijection between

((X0)⊥)′ and X0
polar. Consequently, BT is an isomorphism from M onto ((X0)⊥)′ sat-

isfying the relation

‖(BT )−1‖
L (X0

polar,M) ≤
1
β ∗

if and only if B is an isomorphism from (X0)⊥ onto M′ satisfying the relation

‖B−1‖
L (M′,(X0)⊥) ≤

1
β ∗

.

This completes our proof. �

At this point we can prove that problem (17.22) is well posed.

Theorem 17.4. Let the bilinear form a(·, ·) satisfy the continuity condition
(17.21) and be coercive on the space X0, that is

∃α > 0 : a(v,v)≥ α‖v‖2
X ∀v ∈ X0. (17.30)

Suppose moreover that the bilinear form b(·, ·) satisfies the continuity condition
(17.21) as well as the compatibility condition (17.27).
Then for every l ∈ X ′ and σ ∈ M′, there exists a unique solution u of problem
(17.26); furthermore, there exists a unique function η ∈M such that (u,η) is the
unique solution to the original saddle-point problem (17.22).
Moreover, the map (l,σ)−→ (u,η) is an isomorphism from X ′ ×M′ onto X×M
and the following a priori estimates hold:

‖u‖X ≤ 1
α

[
‖l‖X ′+

α+ γ

β ∗
‖σ‖M′

]
, (17.31)
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‖η‖M ≤ 1
β ∗
[(

1+
γ

α

)
‖l‖X ′ +

γ(α+ γ)

α β ∗
‖σ‖M′

]
. (17.32)

The constantsα , β ∗ and γ are defined in (17.30), (17.27) and (17.21), respectively.
The symbols ‖ · ‖X ′ and ‖ · ‖M′ indicate the norms of the dual spaces, and are
defined as in (17.28) and (17.29), respectively.

Proof. The uniqueness of the solution to (17.26) directly follows from the coerciv-
ity property (17.30). Let us now prove existence. From assumption (17.27) and the
equivalence result stated in c. of Lemma 17.1, we can infer that there exists a unique
function uσ ∈ (X0)⊥ such that Buσ = σ , and, moreover,

‖uσ‖X ≤ 1
β ∗
‖σ‖M′ . (17.33)

The saddle-point problem (17.26) can be restated as follows

find ũ ∈ X0 such that a(ũ,v) = 〈l,v〉−a(uσ ,v) ∀v ∈ X0. (17.34)

The solution u to problem (17.26) is identified by the relation u = ũ+ uσ . At this
point, existence and uniqueness of the solution ũ of problem (17.34) follow by the
Lax-Milgram Lemma, together with the a priori estimate

‖ũ‖X ≤ 1
α

(‖l‖X ′+ γ‖uσ‖X
)
,

that is, thanks to (17.33),

‖ũ‖X ≤ 1
α

(‖l‖X ′+
γ

β ∗
‖σ‖M′

)
. (17.35)

The uniqueness of the u component of the solution to problem (17.22) is therefore
a direct consequence of the uniqueness of ũ ∈ X0 and uσ ∈ (X0)⊥, while the stability
estimate (17.31) follows again from the combination of (17.35) with (17.33).
We focus now on the component η of the solution. Since (17.34) can be restated as

〈Au− l,v〉 = 0 ∀v ∈ X0,

it follows that (Au− l)∈X0
polar, so we can exploit point b. of Lemma 17.1 and conclude

that there exists a unique η ∈M such that Au− l = −BTη , that is (u,η) is a solution
of problem (17.22) and η satisfies the inequality

‖η‖M ≤ 1
β ∗
‖Au− l‖X ′. (17.36)

We have already noticed that every solution (u,η) to (17.22) yields a solution u to the
reduced problem (17.26), whence the uniqueness of the solution of (17.22). Finally,
the a priori estimate (17.32) follows from (17.36), by noting that

‖η‖M ≤ 1
β ∗
[
‖A‖L (X ,X ′)‖u‖X + ‖l‖X ′

]
and using the already proven a priori estimate (17.31) on u. �
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17.3.3 Galerkin approximation, stability and convergence analysis

To introduce a Galerkin approximation of the abstract saddle-point problem (17.22),
we consider two families of finite-dimensional subspaces Xh and Mh of the spaces X
and M, respectively. They can be either finite element piecewise polynomial spaces,
or global polynomial (spectral) spaces, or spectral element subspaces.
We look for the solution to the following problem:
given l ∈ X ′ and σ ∈M′, find (uh,ηh) ∈ Xh×Mh such that:{

a(uh,vh)+b(vh,ηh) = 〈l,vh〉 ∀vh ∈ Xh,

b(uh,μh) = 〈σ ,μh〉 ∀μh ∈Mh.
(17.37)

By following what we did for the continuous problem, we can introduce the subspace

Xσ
h = {vh ∈ Xh : b(vh,μh) = 〈σ ,μh〉 ∀μh ∈Mh} (17.38)

which allows us to introduce the following finite dimensional counterpart of the re-
duced formulation (17.26)

find uh ∈ Xσ
h such that a(uh,vh) = 〈l,vh〉 ∀vh ∈ X0

h . (17.39)

Since, in general, Mh is different from M, the space (17.38) is not necessarily a sub-
space of Xσ .

Clearly, every solution (uh,ηh) of (17.37) yields a solution uh for the reduced
problem (17.39). In this section we look for conditions that allow us to prove that the
converse statement is also true, together with a result of stability and convergence for
the solution of problem (17.37).

We start by proving the discrete counterpart of Theorem 17.4.

Theorem 17.5 (Existence, uniqueness and stability). Suppose that the bilinear
form a(·, ·) satisfies the continuity property (17.21) and that it is coercive on the
space X0

h , that is there exists a constant αh > 0 such that

a(vh,vh)≥ αh‖vh‖2
X ∀vh ∈ X0

h . (17.40)

Moreover, suppose that the bilinear form b(·, ·) satisfies the continuity condition
(17.21) and that the following discrete compatibility condition holds: there exists
a constant βh > 0 such that

∀ μh ∈Mh ∃vh ∈ Xh, vh 	= 0 : b(vh,μh)≥ βh‖vh‖X‖μh‖M. (17.41)

Then, for every l ∈ X ′ and σ ∈ M′, there exists a unique solution (uh,ηh) of
problem (17.37) which satisfies the following stability conditions:

‖uh‖X ≤ 1
αh

[
‖l‖X ′+

αh + γ

βh
‖σ‖M′

]
, (17.42)

‖ηh‖M ≤ 1
βh

[(
1+

γ

αh

)
‖l‖X ′+

γ(αh + γ)

αh βh
‖σ‖M′

]
. (17.43)
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Proof. The proof can be obtained by repeating that of Theorem 17.4, considering Xh

instead of X , Mh instead of M, and simply noting that

‖l‖X ′h
≤ ‖l‖X ′ , ‖σ‖M′

h
≤ ‖σ‖M′ . �

The coercivity condition (17.30) does not necessarily guarantee (17.40), as X0
h 	⊂

X0, nor does the compatibility condition (17.27) in general imply the discrete compat-
ibility condition (17.41), due to the fact that Xh is a proper subspace of X . Moreover,
in the case in which the constants αh and βh in (17.40) and (17.41) are independent of
h, inequalities (17.42) and (17.43) provide the desired stability result.
Condition (17.41) represents the well known inf-sup or LBB condition (see [BF91a]).
(The condition (17.19) (or (17.20)) is just a special case.)

We move now to the convergence result.

Theorem 17.6 (Convergence). Let the assumptions of Theorems 17.4 and 17.5
be satisfied. Then the solutions (u,η) and (uh,ηh) of problems (17.22) and
(17.37), respectively, satisfy the following error estimates:

‖u−uh‖X ≤
(

1+
γ

αh

)
inf

v∗h∈Xσh
‖u− v∗h‖X +

δ

αh
inf

μh∈Mh
‖η− μh‖M, (17.44)

‖η−ηh‖M ≤ γ

βh

(
1+

γ

αh

)
inf

v∗h∈Xσh
‖u− v∗h‖X

+
(

1+
δ

βh
+

γδ

αhβh

)
inf

μh∈Mh
‖η− μh‖M,

(17.45)

where γ , δ , αh and βh are respectively defined by the relations (17.21), (17.40)
and (17.41). Moreover, the following error estimate holds

inf
v∗h∈Xσh

‖u− v∗h‖X ≤
(

1+
δ

βh

)
inf

vh∈Xh
‖u− vh‖X . (17.46)

Proof. Consider vh ∈Xh, v∗h ∈Xσ
h and μh ∈Mh. By subtracting (17.37)1 from (17.22)1,

then adding and subtracting the quantities a(v∗h,vh) and b(vh,μh), we find

a(uh− v∗h,vh)+ b(vh,ηh− μh) = a(u− v∗h,vh)+ b(vh,η− μh).

Let us now choose vh = uh− v∗h ∈ X0
h . From the definition of the space X0

h and using
(17.40) and (17.21), we find the bound

‖uh− v∗h‖X ≤ 1
αh

(
γ ‖u− v∗h‖X + δ ‖η− μh‖M

)
from which the estimate (17.44) immediately follows, as

‖u− uh‖X ≤ ‖u− v∗h‖X + ‖uh− v∗h‖X .
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Let us prove now the estimate (17.45). Owing to the compatibility condition (17.41),
for every μh ∈Mh we can write

‖ηh− μh‖M ≤ 1
βh

sup
vh∈Xh, vh 	=0

b(vh,ηh− μh)

‖vh‖X
. (17.47)

On the other hand, by subtracting side by side (17.37)1 from (17.22)1, then adding and
subtracting the quantity b(vh,μh), we obtain

b(vh,ηh− μh) = a(u− uh,vh)+b(vh,η− μh).

Using this identity in (17.47) as well as the continuity inequalities (17.21), it follows
that

‖ηh− μh‖M ≤ 1
βh

(
γ ‖u− uh‖X + δ‖η− μh‖M

)
.

This yields the desired result, provided we use the error estimate (17.44) that was
previously derived for the variable u.
Finally, let us prove (17.46). Property (17.41) allows us to use the discrete version
of Lemma 17.1 (now applied in the finite-dimensional subspaces). Then, owing to
the discrete counterpart of (17.29), for every vh ∈ Xh we can find a unique function
zh ∈ (X0

h )
⊥ such that

b(zh,μh) = b(u− vh,μh) ∀μh ∈Mh

and, moreover,

‖zh‖X ≤ δ

βh
‖u− vh‖X .

The function v∗h = zh +vh belongs to Xσ
h , as b(u,μh) = 〈σ ,μh〉 for all μh ∈Mh. More-

over,

‖u− v∗h‖X ≤ ‖u− vh‖X + ‖zh‖X ≤
(

1+
δ

βh

)
‖u− vh‖X ,

whence the estimate (17.46) follows. �

The inequalities (17.44) and (17.45) yield error estimates with optimal conver-
gence rate, provided that the constants αh and βh in (17.40) and (17.41) are bounded
from below by two constants α and β independent of h. Let us also remark that in-
equality (17.44) holds even if the compatibility conditions (17.27) and (17.41) are not
satisfied.

Remark 17.2 (Spurious pressure modes). The compatibility condition (17.41) is es-
sential to guarantee the uniqueness of the ηh-component of the solution. Indeed, if
(17.41) does not hold, then

∃ μ∗h ∈Mh,μ
∗
h 	= 0 s.t. b(vh,μ

∗
h ) = 0 ∀vh ∈ Xh.

Consequently, if (uh,ηh) is a solution to problem (17.37), then (uh,ηh + τμ
∗
h ), for all

τ ∈ R, is a solution, too.
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Any such function μ∗h is called spurious mode, or, more specifically, pressure spurious
mode when it refers to the Stokes problem (17.18) in which functions μh represent
discrete pressures. Numerical instabilities can arise since the discrete problem (17.37)
is unable to detect such spurious modes. •

For a given couple of finite dimensional spaces Xh and Mh, proving that the dis-
crete compatibility condition (17.41) holds with a constant βh independent of h is not
always easy. Several practical criteria are available, among which we mention those
due to Fortin ([For77]), Boland and Nicolaides ([BN83]), and Verfürth ([Ver84]). (See
[BF91b].)

17.4 Algebraic formulation of the Stokes problem

Let us investigate the structure of the algebraic system associated to the Galerkin ap-
proximation (17.18) to the Stokes problem (or, more generally, to a discrete saddle-
point problem like (17.37)). Denote with

{ϕ j ∈Vh}, {φk ∈ Qh},

the basis functions of the spaces Vh and Qh, respectively. Le us expand the discrete
solutions uh and ph with respect to such bases,

uh(x) =
N

∑
j=1

u jϕ j(x), ph(x) =
M

∑
k=1

pkφk(x), (17.48)

having set N = dimVh and M = dimQh. By choosing as test functions in (17.18) the
same basis functions we obtain the following block linear system{

AU+BT P = F,

BU = 0,
(17.49)

where A ∈ RN×N and B ∈ RM×N are the matrices related respectively to the bilinear
forms a(·, ·) and b(·, ·), whose elements are given by

A = [ai j] = [a(ϕ j,ϕi)], B = [bkm] = [b(ϕm,φk)],

while U and P are the vectors of the unknowns,

U = [u j], P = [p j].

The (N +M)× (N+M) matrix

S =

[
A BT

B 0

]
(17.50)
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is block symmetric (as A is symmetric) and indefinite, featuring real eigenvalues with
variable sign (either positive and negative). S is non-singular iff no eigenvalue is null, a
property that follows from the inf-sup condition (17.20). To prove the latter statement
we proceed as follows.

Since A is non-singular – it is associated to the coercive bilinear form a(·, ·) – from
the first of (17.49) we can formally obtain U as

U = A−1(F−BT P). (17.51)

Using (17.51) in the second equation of (17.49) yields

RP = BA−1F, where R = BA−1BT . (17.52)

This corresponds to having carried out a block Gaussian elimination on system (17.50).
This way we obtain a reduced system for the sole unknown P (the pressure), which

admits a unique solution in case R is non-singular. Since A is non-singular and positive
definite, the latter condition is satisfied iff BT has a null kernel, that is

kerBT = {0}, (17.53)

where kerBT = {x∈RM : BT x= 0}. The latter algebraic condition is in fact equivalent
to the inf-sup condition (17.20) (see Exercise 1).

On the other hand, since A is non-singular, from the existence and uniqueness of
P we infer that there exists a unique vector U which satisfies (17.51).

In conclusion, system (17.49) admits a unique solution (U,P) if and only if con-
dition (17.53) holds.

Remark 17.3. Condition (17.53) is equivalent to asking that BT (and consequently B)
has full rank, i.e. that rank(BT ) =min(N,M), because rank(BT ) is the maximum num-
ber of linearly independent row vectors (or, equivalently, column vectors) of BT . In-
deed, rank(BT )+dim ker(BT ) = M. •

Let us consider again Remark 17.2 concerning the general saddle-point problem
and suppose that the inf-sup condition (17.20) does not hold. Then

∃q∗h ∈Qh : b(vh,q
∗
h) = 0 ∀vh ∈Vh. (17.54)

Consequently, if (uh, ph) is a solution to the Stokes problem (17.18), then (uh, ph+q∗h)
is a solution too, as

a(uh,vh)+b(vh, ph + q∗h) = a(uh,vh)+b(vh, ph)+b(vh,q∗h)

= a(uh,vh)+ b(vh, ph) = (f,vh) ∀vh ∈Vh.

Functions q∗h which fail to satisfy the inf-sup condition are invisible to the Galerkin
problem(17.18). For this reason, as already observed, they are called spurious pressure
modes, or even parasitic modes. Their presence inhibits the pressure solution from
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Fig. 17.2. Case of discontinuous pressure: choices that do not satisfy the inf-sup condition, on
triangles (left), and on quadrilaterals (right)

being unique, yielding numerical instabilities. For this reason, those finite-dimensional
subspaces that violate the compatibility condition (17.20) are said to be unstable, or
incompatible.

Two strategies are generally adopted in order to guarantee well-posedness of the
numerical problem:

• choose spaces Vh and Qh that satisfy the inf-sup condition;
• stabilize (either a priori or a posteriori) the finite dimensional problem by elimi-

nating the spurious modes.

Let us analyze the first type of strategy. To start with, we will consider the case
of finite element spaces. To characterize Qh and Vh it suffices to choose on every
element of the triangulation their degrees of freedom. Since the weak formulation
does not require a continuous pressure, we will consider first the case of discontinuous
pressures.

As Stokes equations are of order one in p and order two in u, generally speaking
it makes sense to use piecewise polynomials of degree k ≥ 1 for the velocity space Vh

and of degree k−1 for the space Qh.
In particular, we might want to use piecewise linear finite elements P1 for each

velocity component, and piecewise constant finite elements P0 for the pressure (see
Fig. 17.2 in which, as in all those that will follow, by means of the symbol � we
indicate the degrees of freedom for the pressure, whereas the symbol • identifies those
for each velocity component). In fact, this choice, although being quite natural, does
not pass the inf-sup test (17.20) (see Exercise 3).
When looking for a compatible couple of spaces, the larger the velocity space Vh,
the more likely the inf-sup condition is satisfied. Otherwise said, the space Vh should
be “rich” enough compared to the space Qh. In Fig. 17.3 we report three different
choices of spaces that fulfill the inf-sup condition, still in the case of continuous ve-

(a) (b) (c)

Fig. 17.3. Case of discontinuous pressure: choices that do satisfy the inf-sup condition: on tri-
angles, (a), and on quadrilaterals, (b). Also the couple (c), known as Crouzeix-Raviart elements,
satisfies the inf-sup condition
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(a) (b)

(c) (d)

Fig. 17.4. Case of continuous pressure: the couples (a) and (b) do not satisfy the inf-sup con-
dition. The elements used for the velocity components in (c) are known as P1-isoP2 finite ele-
ments, whereas couple (d) is called mini-element

locity and discontinuous pressure. Choice (a) is made by P2−P0 elements, (b) by
Q2−P0 elements, while choice (c) by piecewise linear discontinuous elements for the
pressure, while the velocity components are made by piecewise quadratic continuous
elements enriched by a cubic bubble function on each triangle – these are the so-called
Crouzeix-Raviart elements.

In Fig. 17.4(a), (b) we report two choices of incompatible finite elements in the
case of continuous pressure. They consist of piecewise linear elements on triangles
(resp. bilinear on quadrilaterals) for both velocity and pressure. More in general, fi-
nite elements of the same polynomial degree k ≥ 1 for both velocity and pressures
are unstable. In the same figure, the elements displayed in (c) and (d) are instead
stable. In both cases, pressure is a piecewise linear continuous function, whereas ve-
locities are piecewise linear polynomials on each of the four sub-triangles (case (c)),
or piecewise linear polynomials enriched by a cubic bubble function (case (d)). The
pair P2−P1 (continuous piecewise quadratic velocities and continuous piecewise lin-
ear pressure) is stable. This is the smallest degree representative of the family of the
so-called Taylor-Hood elements Pk−Pk−1, k ≥ 2 (continuous velocities and continu-
ous pressure), that are inf-sup stable. For the proof of the stability results mentioned
here, as well for the convergence analysis, the reader can refer to [BF91a].

If we use spectral methods, using equal-order polynomial spaces for both velocity
and pressure yields subspaces that violate the inf-sup condition. Compatible spec-
tral spaces can instead be obtained by using, e.g., polynomials of degree N (≥ 2) for
each velocity component, and degree N − 2 for the pressure, yielding the so-called
QN −QN−2 approximation. The degrees of freedom for each velocity component are
represented by the (N + 1)2 GLL nodes introduced in Sect. 10.2.3 (see Fig. 17.5).
For the pressure, at least two sets of interpolation nodes can be used: either the subset
represented by the (N−1)2 internal nodes of the set of (N+1)2 GLL nodes (Fig. 17.6,
left), or the (N− 1)2 Gauss nodes introduced in Sect. 10.2.2 (Fig. 17.6, right). This
choice stands at the base of a spectral-type approximation, such as collocation, G-NI
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1 1
1

1

Fig. 17.5. The (N+1)2 Gauss-Legendre-Lobatto (GLL) nodes (here N = 6), hosting the degrees
of freedom of the velocity components

1 1
1

1

1 1
1

1

Fig. 17.6. The (N−1)2 internal Gauss-Legendre-Lobatto (GLL) nodes (left) and the (N−1)2

Gauss-Legendre (GL) nodes (right) (here for N = 6), hosting the degrees of freedom of the
pressure

(Galerkin with numerical integration), or SEM-NI (spectral element with numerical
integration) (see [CHQZ07]).

17.5 An example of stabilized problem

We have seen that finite element or spectral methods that make use of equal-degree
polynomials for both velocity and pressure do not fulfill the inf-sup condition and are
therefore unstable. However, stabilizing them is possible by SUPG or GLS techniques
like those encountered in Chapter 13 in the framework of the numerical approximation
of advection-diffusion equations.
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For a general discussion on stabilization techniques for Stokes equations, the reader
can refer e.g. to [BF91a]. Here we limit ourselves to show how the GLS stabilization
can be applied to problem (17.18) in case piecewise continuous linear finite elements
are used for velocity components as well as for the pressure

Vh = [
◦
X

1

h ]
2, Qh = {qh ∈ X1

h :
∫
Ω qh dΩ = 0}.

This choice is urged by the need of keeping the global number of degrees of freedom
as low as possible, especially when dealing with three-dimensional problems. We set
therefore Wh = Vh×Qh and, instead of (17.18), consider the following problem (we
restrict ourselves to the case where α = 0):

find (uh, ph) ∈Wh : Ah(uh, ph;vh,qh) = (fh,vh) ∀(vh,qh) ∈Wh. (17.55)

We have set

Ah : Wh×Wh → R,

Ah(uh, ph;vh,qh) = a(uh,vh)+b(vh, ph)− b(uh,qh)

+δ ∑
K∈Th

h2
K

∫
K

(−νΔuh +∇ph− f)(−νΔvh +∇qh) dK,

and we have denoted with δ a positive parameter that must be chosen conveniently.
This is a strongly consistent approximation of problem (17.11): as a matter of fact, the
additional term, which depends on the residual of the discrete momentum equation, is
null when calculated on the exact solution as, thanks to (17.12),−νΔu+∇p− f= 0.
(Note that, in this specific case, Δuh |K =Δvh|K = 0 ∀K ∈Th as we are using piecewise
linear finite element functions.).

From the identity

Ah(uh, ph;uh, ph) = ν‖∇uh‖2
L2(Ω)

+ δ ∑
k∈Th

h2
K‖∇ph‖2

L2(K)
, (17.56)

we deduce that the kernel of the bilinear form Ah reduces to the null vector, whence
problem (17.55) admits one and only one solution. The latter satisfies the stability
inequality

ν‖∇uh‖2
L2(Ω) + δ ∑

K∈Th

h2
K‖∇ph‖2

L2(K) ≤C‖f‖2
L2(Ω), (17.57)

C being a constant that depends on ν but not on h (see Exercise 7).
By applying Strang’s Lemma 10.1 we can now show that the solution to the gen-

eralized Galerkin problem (17.55) satisfies the following error estimate

‖u−uh‖H1(Ω) +

(
δ ∑

K∈Th

h2
K‖∇p−∇ph‖2

L2(K)

)1/2

≤Ch.
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Still using the notations of Sect. 17.2, we can show that (17.55) admits the following
matrix form [

A BT

B −C

] [
U

P

]
=

[
F

G

]
. (17.58)

This system differs from (17.49) without stabilization because of the presence of the
non-null block occupying the position (2,2), which is associated to the stabilization
term. More precisely,

C = (ckm) , ckm = δ ∑
K∈Th

h2
K

∫
K

∇φm ·∇φk dK, k,m = 1, . . . ,M,

while the components of the right-hand side G are

gk =−δ ∑
K∈Th

h2
K

∫
K

f ·∇φk dK, k = 1, . . . ,M.

In this case, the reduced system for the pressure unknown reads

RP = BA−1F−G.

In contrast to (17.52), this time R = BA−1BT +C. The matrix R is non-singular as C
is a positive definite matrix.

17.6 A numerical example

We want to solve the stationary Navier-Stokes equations in the square domain Ω =
(0,1)× (0,1) with the following Dirichlet conditions

u = 0, x ∈ ∂Ω\Γ ,
u = (1,0)T , x ∈ Γ ,

(17.59)

where Γ = {x = (x1,x2)
T ∈ ∂Ω : x2 = 1}. This problem is known as flow in a lid-

driven cavity. We will use continuous piecewise bilinear Q1−Q1 polynomials on
rectangular finite elements. As we know, these spaces do not fulfill the compatibility
condition approximation; in Fig. 17.7, left, we display the spurious pressure modes
that are generated by this Galerkin approximation. In the same figure, right, we have
drawn the pressure isolines obtained using a GLS stabilization (addressed in the previ-
ous section) on the same kind of finite elements. The pressure is now free of numerical
oscillations. Still for the stabilized problem, in Fig. 17.8 we display the streamlines for
two different values of the Reynolds number, Re= 1000 and Re= 5000. The stabiliza-
tion term amends simultaneously pressure instabilities (by getting rid of the spurious
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Fig. 17.7. Pressure isolines for the numerical approximation of the lid-driven cavity problem.
Stabilized GLS approximation (on the right); the vertical line corresponds to the null value of
the pressure. Non-stabilized approximation (on the left); the presence of a spurious numerical
pressure is evident

0 1
0

1

0 1
0

1

Fig. 17.8. Streamlines of the numerical solution of the lid-driven cavity problem corresponding
to two different values of the Reynolds number: Re = 1000, left, and Re = 5000, right

modes) and potential instabilities of the pure Galerkin method that develop when dif-
fusion is dominated by convection, an issue that we have extensively addressed in
Chapter 13.

For the same problem we consider, as well, a spectral G-NI approximation in which
the pressure and each velocity component are polynomials of QN (with N = 32). As
previously observed, this choice of spaces does not fulfill the inf-sup condition, and
so it generates spurious pressure modes that are clearly visible in Fig. 17.9, left. A
GLS stabilization, similar to that previously used for finite elements, can be set up for
the G-NI method, too. The corresponding solution is now stable and free of spurious
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Fig. 17.9. Pressure isolines obtained by the pure spectral G-NI method (on the left), and by the
GLS stabilized spectral G-NI method (on the right). In either case, polynomials of the same
degree, N = 32, are used for both pressure and velocity. As expected, the pure G-NI method
yields spurious pressure solutions. The test case is the same lid-driven cavity problem previously
approximated by bilinear finite elements

pressure modes, as the pressure isolines displayed on the right hand of the same figure
show.

17.7 Time discretization of Navier-Stokes equations

Let us now return to the Navier-Stokes equations (17.2) and focus on the issue of time
discretization. To avoid unnecessary cumbersome notation, from now on we will as-
sume that ΓD = ∂Ω and ϕ = 0 in (17.4), whence the velocity space becomes V =
[H1

0(Ω)]d . The space discretization of the Navier-Stokes equations yields the follow-
ing problem: for every t > 0, find (uh(t), ph(t)) ∈Vh×Qh such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
∂uh(t)

∂ t
,vh

)
+a(uh(t),vh)+ c(uh(t),uh(t),vh)+b(vh, ph(t))

= (fh(t),vh) ∀vh ∈Vh,

b(uh(t),qh) = 0 ∀qh ∈ Qh,

(17.60)

where, as usual, {Vh ⊂ V} and {Qh ⊂ Q} are two families of finite dimensional sub-
spaces of the velocity and pressure functional spaces, respectively. The trilinear form
c(·, ·, ·), defined by

c(w,z,v) =

∫
Ω

[(w ·∇)z] ·v dΩ ∀w,z,v ∈V,
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is associated to the nonlinear convective term, while a(·, ·) and b(·, ·) are the same as
in (17.13) (setting however α = 0).

Problem (17.60) is in fact a system of nonlinear differential algebraic equations.
By using notations already employed in the previous sections, it can be restated in
compact form as follows⎧⎨⎩ M

du(t)

dt
+Au(t)+C(u(t))u(t)+BT p(t) = f(t),

Bu(t) = 0,

(17.61)

with u(0) = u0. C(u(t)) is in fact a matrix depending on u(t), whose generic coeffi-
cient is cmi(t) = c(u(t),ϕi,ϕm). For the temporal discretization of this system let us
use, for instance, the θ -method, that was introduced in Sect. 5.1 for parabolic equa-
tions. By setting

un+1
θ = θun+1 +(1−θ )un,

pn+1
θ = θpn+1 +(1−θ )pn,

fn+1
θ = θ f(tn+1)+ (1−θ )f(tn),

Cθ (un+1,n)un+1,n = θC(un+1)un+1 +(1−θ )C(un)un,

we obtain the following system of algebraic equations⎧⎨⎩ M
un+1−un

Δ t
+Aun+1

θ +Cθ (u
n+1,n)un+1,n +BT pn+1

θ = fn+1
θ ,

Bun+1 = 0.

(17.62)

Except for the special case θ = 0, which corresponds to the forward Euler method, the
solution of this system is quite involved. A possible alternative is to use a semi-implicit
scheme, in which the linear part of the equation is advanced implicitly, while nonlinear
terms explicitly. By doing so, if θ ≥ 1/2, the resulting scheme is unconditionally
stable, whereas it must obey a stability restriction on the time step Δ t (depending on h
and ν) in all other cases. We further elaborate on this issue in the next section. Later,
in Sects. 17.7.2 and 17.7.3 we will address other temporal discretization schemes. For
more details, results and bibliographical references, see, e.g., [QV94, Chap. 13].

17.7.1 Finite difference methods

We consider at first an explicit temporal discretization of the first equation in (17.61),
corresponding to the choice θ = 0 in (17.62). If we suppose that all quantities are
known at the time tn, we can write the associated problem at time tn +1 as follows{

Mun+1 = H(un,pn, fn),

Bun+1 = 0,
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where M is the mass matrix whose entries are

mi j =

∫
Ω

ϕiϕ j dΩ .

This system is overdetermined for the unknown vector un+1, whereas it does not allow
the determination of the pressure pn+1. However, if we replace pn by pn+1 in the
momentum equation, we obtain the new linear system⎧⎨⎩

1
Δ t

Mun+1 +BT pn+1 = G,

Bun+1 = 0,

(17.63)

G being a suitable known vector. This system corresponds to a semi-explicit discretiza-
tion of (17.60). Since M is symmetric and positive definite, if condition (17.53) is sat-
isfied, then the reduced system BM−1BT pn+1 =BM−1G is non-singular. Once solved,
the velocity vector un+1 can be recovered from the first equation of (17.63). This dis-
cretization method is temporally stable provided the time step satisfies the following
limitation

Δ t ≤Cmin

(
h2

ν
,

h

maxx∈Ω |un(x)|
)
.

Let us now consider an implicit discretization of (17.60), for instance the backward
Euler method, which corresponds to choosing θ = 1 in (17.62). As already observed,
this scheme is unconditionally stable. It yields a nonlinear algebraic system which
can be regarded as the finite element space approximation to the steady Navier-Stokes
problem ⎧⎨⎩ −νΔun+1 +(un+1 ·∇)un+1 +∇pn+1+

un+1

Δ t
= f̃,

divun+1 = 0.

The solution of such nonlinear algebraic system can be achieved by Newton-Krylov
techniques, that is by using a Krylov method (e.g. GMRES or BiCGStab) for the so-
lution of the linear system that is obtained at each Newton iteration step (see, e.g.,
[Saa96] or [QV94, Chap. 2]). We recall that Newton’s method is based on the full
linearization of the convective term, un+1

k ·∇un+1
k+1 +un+1

k+1 ·∇un+1
k . A popular approach

consists in starting Newton iterations after few Piccard iterations in which the convec-
tive term is evaluated as follows: un+1

k ·∇un+1
k+1.

This approach entails three nested cycles:

• temporal iteration: tn → tn+1;

• Newton iteration: xn+1
k → xn+1

k+1;

• Krylov iteration: [xn+1
k ] j → [xn+1

k ] j+1;
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for simplicity we have called xn the couple (un,pn). Obviously, the goal is the follow-
ing convergence result:

lim
k→∞

lim
j→∞

[xn+1
k ] j =

[
un+1

pn+1

]
.

Finally, let us operate a semi-implicit, temporal discretization, consisting in treat-
ing explicitly the nonlinear convective term. The following algebraic linear system,
whose form is similar to (17.49), is obtained in this case⎧⎨⎩

1
Δ t

Mun+1 +Aun+1 +BT pn+1 = G,

Bun+1 = 0,

(17.64)

where G is a suitable known vector. In this case the stability restriction on the time
step takes the following form

Δ t ≤C
h

max
x∈Ω

|un(x)| . (17.65)

In all cases, optimal error estimates can be proven.

17.7.2 Characteristics (or Lagrangian) methods

The material derivative (also called Lagrangian derivative) of the velocity vector field
is defined as

Du

Dt
=
∂u

∂ t
+(u ·∇)u.

Characteristics methods are based on approximating the material derivative, e.g. by
the backward Euler method

Du

Dt
(x)≈ un+1(x)−un(xp)

Δ t
,

where xp is the foot (at time tn) of the characteristic issuing from x at time tn+1. A
system of ordinary differential equations has to be solved to follow backwards the
characteristic line X issuing from the point x⎧⎪⎨⎪⎩

dX

dt
(t;s,x) = u(t,X(t;s,x)), t ∈ (tn, tn+1),

X(s;s,x) = x,

having set s = tn+1.
The main difficulty lies in determining the characteristic lines. The first problem is
how to suitably approximate the velocity field u(t) for t ∈ (tn, tn+1), as un+1 is un-
known. The simplest way to do so consists in using a forward Euler scheme for the
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discretization of the material derivative. The second difficulty stems from the fact that
a characteristic line may cross several elements of the computational grid. An algo-
rithm is therefore necessary to locate the element in which the characteristic foot falls,
or to detect those cases in which the latter hits a boundary edge. With the previous dis-
cretization of the material derivative, at every time level tn+1 the momentum equation
becomes (formally)

un+1(x)−un(xp)

Δ t
−νΔun+1(x)+∇pn+1(x) = fn+1(x).

If used in the framework of piecewise linear finite elements in space, this scheme is
unconditionally stable. Moreover, it satisfies the error estimate

‖u(tn)−un‖L2(Ω) ≤ C(h+Δ t +h2/Δ t) ∀n≥ 1,

for a positive constant C independent of ν . Characteristic-based time discretization
strategies for spectral methods are reviewed in [CHQZ07, Chap. 3].

17.7.3 Fractional step methods

Let us consider an abstract time dependent problem,

∂w

∂ t
+Lw = f ,

where L is a differential operator that splits into the sum of two operators, L1 and L2,
that is

Lv = L1v+L2v.

Fractional step methods allow the temporal advancement from time tn to tn+1 in two
steps (or more). At first only the operator L1 is advanced in time implicitly, then the
solution so obtained is corrected by performing a second step in which only the other
operator, L2, is in action. This is why these kind of methods are also named operator
splitting.

In principle, by separating the two operators L1 and L2, a complex problem is split
into two simpler problems, each one with its own feature. In this respect, the operators
L1 and L2 can be chosen on the ground of physical considerations: diffusion can be
split from transport, for instance. In fact, also the solution of Navier-Stokes equations
by the characteristic method can be regarded as a fractional step method whose first
step operator is expressed by the Lagrangian derivative.

A simple, albeit not optimal fractional step scheme, is the following, known as
Yanenko splitting:

1. compute the solution w̃ of the equation

w̃−wn

Δ t
+L1w̃ = 0;
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2. compute the solution wn+1 of the equation

wn+1− w̃

Δ t
+L2wn+1 = f n.

By eliminating w̃, the following problem is found for wn+1

wn+1−wn

Δ t
+Lwn+1 = f n +Δ tL1( f n−L2wn+1).

If both L1 and L2 are elliptic operators, this scheme is unconditionally stable with
respect to Δ t.

This strategy can be applied to the Navier-Stokes equations (17.2), choosing L1

as L1(w) =−νΔw+(w ·∇)w whereas L2 is the operator associated to the remaining
terms of the Navier-Stokes problem. In this way we have split the main difficulties
arising when treating Navier-Stokes equations, the nonlinear part from that imposing
the incompressibility constraint. The corresponding fractional step scheme reads:

1. solve the diffusion-transport equation for the velocity ũn+1⎧⎨⎩
ũn+1−un

Δ t
−νΔ ũn+1 +(u∗ ·∇)u∗∗ = fn+1 in Ω ,

ũn+1 = 0 on ∂Ω ;
(17.66)

2. solve the following coupled problem for the two unknowns un+1 and pn+1⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
un+1− ũn+1

Δ t
+∇pn+1 = 0 in Ω ,

divun+1 = 0 in Ω ,

un+1 ·n = 0 on ∂Ω ,

(17.67)

where u∗ and u∗∗ can be either ũn+1 or un depending on whether the nonlinear convec-
tive terms are treated explicitly, implicitly or semi-implicitly. In such a way, in the first
step an intermediate velocity ũn+1 is calculated, then it is corrected in the second step
in order to satisfy the incompressibility constraint. The diffusion-transport problem
of the first step can be successfully addressed by using the approximation techniques
investigated in Chapter 13.

More involved is the numerical treatment of the problem associated with the sec-
ond step. By formally applying the divergence operator to the first equation, we obtain

div
un+1

Δ t
−div

ũn+1

Δ t
+Δ pn+1 = 0,

that is an elliptic boundary-value problem with Neumann boundary conditions⎧⎪⎪⎨⎪⎪⎩
−Δ pn+1 =−div

ũn+1

Δ t
in Ω ,

∂ pn+1

∂n
= 0 on ∂Ω .

(17.68)
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The Neumann condition follows from the condition un+1 · n = 0 on ∂Ω . From the
solution of (17.68) we obtain pn+1, and thus un+1 by using the first equation of (17.67),

un+1 = ũn+1−Δ t∇pn+1 in Ω . (17.69)

This is precisely the correction to operate on the velocity field in order to fulfill the
divergence-free constraint.

In conclusion, at first we solve the elliptic system (17.66) to obtain the intermediate
velocity ũn+1, then the scalar elliptic problem (17.68) yields the pressure unknown
pn+1, and finally we obtain the new velocity field un+1 through the explicit correction
equation (17.69).
Let us now investigate the main features of this method.
Assume that we take u∗ = u∗∗ = un in the first step; after space discretization, we
arrive at a linear system as(

1
Δ t

M+A

)
ũn+1 = f̃n+1.

Because of the explicit treatment of the convective term, the solution undergoes a sta-
bility restriction on the time step like (17.65). On the other hand, this linear system
naturally splits into d independent systems of smaller size, one for each spatial com-
ponent of the velocity field.
If, instead, we use an implicit time advancing scheme, like the one that we would get
by setting u∗= u∗∗= ũn+1, we obtain an unconditionally stable scheme, however with
a more involved coupling of all the spatial components due to the nonlinear convec-
tive term. This nonlinear algebraic system can be solved by, e.g., a Newton-Krylov
method, similar to the one that we have introduced in Sect. 17.7.1. In the second step
of the method, we enforce a boundary condition only on the normal component of the
velocity field. Yet, we lack any control on the behaviour of the tangential component.
This generates a so-called splitting error: although the solution is divergence-free, the
failure to satisfy the physical boundary condition on the tangential velocity component
yields the onset of a pressure boundary layer of width

√
ν Δ t.

The method just described was originally proposed by Chorin and Temam, and is
also called projection method. The reason can be found in the celebrated Helmholtz-
Weyl decomposition theorem:

Theorem 17.7. Let Ω ⊂ Rd, d = 2,3, be a domain with Lipschitz boundary.
Then, for every v ∈ [L2(Ω)]d , there exist two (uniquely-defined) functions w,z,

w ∈ H0
div = {v ∈

[
L2(Ω)

]d
: divv = 0 in Ω , v ·n = 0 on ∂Ω},

z ∈ [L2(Ω)]d , rotz = 0 (so z = ∇ψ , for a suitable ψ ∈ H1(Ω))

such that
v = w+ z.
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Owing to this result, any function v∈ [L2(Ω)]d can be univocally represented as being
the sum of a solenoidal (that is, divergence-free) field and of an irrotational field (that
is, the gradient of a suitable scalar function).
As a matter of fact, after the first step (17.66) in which the preliminary velocity ũn+1

is obtained from un by solving the momentum equation, in the course of the second
step a solenoidal field un+1 is constructed in (17.69), with un+1 ·n = 0 on ∂Ω . This
solenoidal field is the projection of ũn+1, and is obtained by applying the decomposi-
tion theorem with the following identifications: v = w̃n+1, v = un+1, ψ =+Δ t pn+1.

The name projection method is due to the fact that∫
Ω

un+1 ·ψ dΩ =

∫
Ω

ũn+1 ·ψ dΩ ∀ψ ∈ H0
div,

that is un+1 is the projection, with respect to the scalar product of L2(Ω), of ũn+1 on
the space H0

div.

Remark 17.4. Several variants of the projection method have been proposed with the
aim of reducing the splitting error on the pressure, not only for the finite element
method but also for higher order spectral or spectral element space approximations.
The interested reader can refer to, e.g., [QV94, Qua93, Pro97, KS05] and [CHQZ07,
Chap. 3]. •
Example 17.1. In Fig. 17.10 we display the isolines of the modulus of velocity cor-
responding to the solution of Navier-Stokes equations in a two-dimensional domain
Ω = (0,17)× (0,10) with five round holes. This can be regarded as the orthogonal
section of a three dimensional domain with 5 cylinders. A non-homogeneous Dirich-
let condition, u = [arctan(20(5− |5− y|)),0]T , is assigned at the inflow, a homoge-
neous Dirichlet condition is prescribed on the horizontal side as well as on the border
of the cylinders, while at the outflow the normal component of the stress tensor is
set to zero. For the space discretization the stabilized spectral element method was
used, with 114 spectral elements, and polynomials of degree 7 for both the pressure
and the velocity components on every element, plus a second-order BDF2 scheme for
temporal discretization ( see Sect. 8.5 and also [QSS07]). �

17.8 Algebraic factorization methods and preconditioners for

saddle-point systems

An alternative approach to the solution of systems like (17.49) is the one based on the
use of inexact (or incomplete) factorizations of the system matrix (17.50). We remind
that these systems can be obtained by the approximate solution of Stokes equations,
Navier-Stokes equations (after using one of the linearization approaches described in
Sects. 17.7.1, 17.7.2 or 17.7.3), or, more generally, from the approximation of saddle-
point problems, as shown in Sect. 17.3. Let us also point out that, in all these cases, the
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Fig. 17.10. Isolines of the modulus of the velocity vector for the test case of Example 17.1 at
the time levels t = 10.5 (above) and t = 11.4 (below)

space discretization method can be based on any one of the methods discussed thus
far (finite elements, finite differences, finite volumes, spectral methods, etc.).
Generally speaking, we will suppose to deal with an algebraic system of the following
form [

C BT

B 0

] [
U

P

]
=

[
F

0

]
(17.70)

where C coincides with A in the case of system (17.49), with 1
Δ t M+A in case of

system (17.64), while more in general it could be given by α
Δ t M+A+ δD, with D

being the matrix associated to the pressure gradient operator, in case a linearization or
a semi-implicit treatment are applied to the convective term. In the latter case the co-
efficients α and δ would depend on the specific linearization or semi-implicit method
adopted.
Also in this case we can associate (17.70) with the Schur complement

RP = BC−1F, with R = BC−1BT , (17.71)
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which reduces to (17.52) if we start from the Stokes system (17.49) instead of (17.70).
We start noticing that the condition number of R depends on the inf-sup constant βh,
see (17.41), as well as on the continuity constant δ (see (17.21)). More precisely, in
the case of the stationary problem (17.11), the following relations hold

βh =
√
λmin, δ ≥

√
λmax

where λmin and λmax are the eigenvalues of R (see [QV94, Sect. 9.2.1]). Thus,
cond(R) ≤ δ 2/β 2

h . In the time-dependent case we get a system like (17.70); in this
case the condition number of R also depends on Δ t and on the way the convective
term has been discretized.
A possible strategy for the solution of (17.52) consists in solving the Schur comple-
ment system (17.71) by an iterative method: the conjugate gradient method if C = A
(as A is symmetric), otherwise the GMRES or the Bi-CGStab method when δ 	= 0.
The use of a convenient preconditioner is mandatory. For a more general discussion,
see, e.g., [ESW05, BGL05, QV94] for the case of finite element discretizations, and
[CHQZ07] for discretization based on spectral methods.

We start by observing that the matrix of system (17.70), that we denote by S, can
be written as the product LU of two block triangular matrices,

S =

[
I 0

BC−1 I

] [
C BT

0 −R

]
.

Each one of the two matrices

PD =

[
C 0

0 −R

]
or PT =

[
C BT

0 −R

]

provides an optimal preconditioner for S, a block diagonal preconditioner (PD), and
a block triangular preconditioner (PT ). Unfortunately, they are both computationally
expensive because of the presence on the diagonal of the Schur complement R, which,
in turn, contains the inverse of matrix C. Alternatively, we can use their approximants

P̂D =

⎡⎣ Ĉ 0

0 −R̂

⎤⎦ or P̂T =

⎡⎣ Ĉ BT

0 −R̂

⎤⎦
where Ĉ and R̂ are two inexpensive approximations of C and R, respectively. Ĉ can
be built from optimal preconditioners of the stiffness matrix, like those that will be
introduced in Chapter 19.

The pressure correction diffusion preconditioner (PCD) makes use of the follow-
ing approximation of R

R̂PCD = APC−1
P MP,

where MP is the pressure mass matrix, AP the pressure Laplacian matrix, CP the con-
vection-diffusion pressure matrix. The term “pressure” here means that these matrices
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are generated by using the basis functions {ϕk,k = 1, . . . ,M} of the finite dimensional
pressure subspace Qh. This preconditioner is spectrally equivalent to BM−1BT , where
M is the velocity mass matrix. See [ESW05]. The application of this preconditioner
requires the action of one Poisson pressure solve, a mass matrix solve, and a matrix-
vector product with FP. Boundary conditions should be taken into account while con-
structing AP and CP.

The least-squares commutator preconditioner (LSC) is

R̂LSC = (BM̂−1
V BT )(BM̂−1

V CM̂−1
V BT )−1(BM̂−1

V BT ),

where M̂V is the diagonal matrix obtained from the velocity mass matrix M by disre-
garding the extra-diagonal terms. Using this preconditioner entails two Poisson solves.
The convergence of Krylov iterations with the LSC preconditioner is independent of
the grid-size and mildly dependent on the Reynolds number. See [EHS+06].

The augmented Lagrangian preconditioner (AL), introduced in [BO06], reads

R̂AL = (νM̂−1
P + γW−1)−1

where M̂P is a diagonal matrix that approximates MP, W is a suitably chosen matrix
that, in the simplest case, is also given by M̂P, ν is the flow viscosity and γ is a
positive parameter (usually taken to be 1). This preconditioner requires the original
system (17.70) to be modified by replacing the (1,1) block by C+ γBT W−1B, which
is consistent because Bu = 0. The new term γBT W−1B introduces a coupling between
the velocity vector components. Convergence, however, is independent of both the
grid-size and the Reynolds number.

Finally, let us remark that direct algebraic preconditioners based on incomplete LU
factorization (ILU) of the global matrix S can be used, in combination with suitable
reordering of the unknowns. An in-depth discussion is found in [RVS08].

A different LU factorization of S,

S =

[
C 0

B −R

] [
I C−1BT

0 I

]
(17.72)

stands at the base of the so-called SIMPLE preconditioner introduced in [Pat80], and
obtained by replacing C−1 in both factors L and U by a triangular matrix D−1 (for
instance, D could be the diagonal of C). More precisely,

PSIMPLE =

[
C 0
B −R̂

][
I D−1BT

0 I

]
= L̂Û,

with R̂ = BD−1BT .
With this preconditioner, convergence of preconditioned iterative methods deteriorates
when the grid-size h decreases and/or the Reynolds number increases.
Note that using PSIMPLE once, say

PSIMPLE w = r (17.73)
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with r = [ru,rp] and w = [u,p], yields L̂w∗ = r, and so Ûw = w∗, that is, setting
w∗ = [u∗,p∗]:

Cu∗ = ru, (17.74)

R̂ = Bu∗ − rp, (17.75)

u = u∗ −D−1BT p∗. (17.76)

This requires a C-solve for the velocity and a pressure Poisson solve (for BD−1BT ).
Several generalizations of the SIMPLE preconditioner have been proposed, going

under the name of SIMPLER, h-SIMPLE and MSIMPLER. Using PSIMPLER instead of
PSIMPLE in (17.73) involves the following steps:

R̂p0 = BD−1ru− rp, (17.77)

Cu∗ = ru−BT p0, (17.78)

R̂p∗ = Bu∗ − rp, (17.79)

u = u∗ −D−1BT p∗, (17.80)

p = p∗+ωp0, (17.81)

with ω ∈]0,1] being a possible relaxation parameter (ω = 1 in SIMPLER, ω 	= 1 in
SIMPLER(ω)). It therefore involves two pressure Poisson solves and one C-velocity
solve; however, in general it enjoys faster convergence than SIMPLE.

The preconditioner hSIMPLE (h = hybrid) is based on a combined application
of SIMPLE and SIMPLER. Finally, the preconditioner MSIMPLER makes use of the
same steps (17.77)–(17.81) as SIMPLER, but the approximate Schur complement R̂ =
BD−1BT is replaced by the least-squares commutator R̂LSC. The convergence is better
than with other variants of SIMPLE.

For more discussion and a comparative analysis see [RVS09] and also [Wes01].
The L̂Û factorization used in PSIMPLE can be regarded as a special case of a more

general family of inexact or algebraic factorizations that read as follows

Ŝ = L̂Û =

[
C 0

B −BL BT

] [
I U BT

0 I

]
(17.82)

Here L and U represent two (not necessarily coincident) approximations of C−1.
Using this inexact factorization, the solution of the linear system

Ŝ

[
û

p̂

]
=

[
F

0

]
can be found through the following steps:

step L̂ :

{
Cu∗ = F (intermediate velocity)

−BL BT p̂ =−Bu∗ (pressure)

step Û : û = u∗ −U BT p̂ (final velocity).
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When used in connection with time-dependent (either Stokes or Navier-Stokes) prob-
lems, e.g. (17.64), two different possibilities stand out [QSV00]:

L = U =
( 1
Δ t

M
)−1

, (17.83)

L =
( 1
Δ t

M
)−1

and U = C−1. (17.84)

The former (17.83) is named Chorin-Temam algebraic approximation because the
steps L̂ and Û can be regarded as the algebraic counterpart of the Chorin-Temam
fractional step method described previously (see Sect. 17.7.3).

The second choice, (17.84), is called a Yosida approximation as it can be inter-
preted as a Yosida regularization of the Schur complement ([Ven98]).
The potential advantage of this strategy with respect to the one based on differential
fractional step methods is that it does not require any special care about boundary
conditions. The latter are implicitly accounted for in the algebraic formulation (17.70)
and no further requirement is needed in the course of the L̂ and Û steps.
Several generalizations of the inexact factorization technique (17.82) are possible,
based on different choices of the factors L and U . In case the time dependent
Navier-Stokes equations are discretized in time by high-order (≥ 2) temporal schemes,
inexact factors are chosen so that the time discretization order is maintained. See
[GSV06, SV05, Ger08].
In Fig. 17.11 we display the error behaviour corresponding to the approximation of the
time dependent Navier-Stokes equations on the domainΩ = (0,1)2 using the spectral
element method (SEM) with 4× 4 square elements with side-length H = 0.25, and
polynomials of degree N = 8 for the velocity components and N = 6 for the pres-
sure. The exact solution is u(x,y, t) = (sin(x)sin(y+ t),cos(x)cos(y+ t))T , p(x,y, t) =
cos(x)sin(y+ t). The temporal discretization is based on implicit backward differen-
tiation formulae of order 2 (BDF2), 3 (BDF3), and 4 (BDF4) (see [QSS07]), then on
inexact (Yosida) algebraic factorizations of order 2, 3, and 4, respectively. Denoting by
(un

N , pn
N) the numerical solution at the time level tn, the errors on velocity and pressure
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are defined as

Eu =

(
Δ t

NT

∑
n=0
‖u(tn)−un

N‖2
H1(Ω)

)1/2

and Ep =

(
Δ t

NT

∑
n=0
‖p(tn)− pn

N‖2
L2(Ω)

)1/2

Errors on velocity are infinitesimal with respect to Δ t of order 2, 3, and 4, respectively,
whereas errors on pressure are of order 3/2, 5/2 and 7/2, respectively.

17.9 Free surface flow problems

Free surface flows can manifest under various situations and different shapes. A free
surface is generated every time that two immiscible fluids get in contact. They can
give rise to jets, [LR98], bubbles [HB76, TF88], droplets [Max76] and films. This
kind of fluids are encountered in a variety of different applications, such as waves
in rivers, lakes and oceans [Bla02, Qu02], the interaction between waves with solid
media (boats, coasts, etc.) [Wya00, KMI+83], injection, moulding and extrusion of
polymers and liquid metals [Cab03], chemical reactors or bioreactors, etc. Depend-
ing upon the spatial and temporal scales involved, processes like heat transfer, surface
tension, laminar to turbulent transition, compressibility and chemical reactions, inter-
action with solids, might have a relevant impact on the flow behaviour. In what follows
we will focus on laminar flows for viscous Newtonian fluids subject to surface tension;
in these circumstances, the flow can be described by the incompressible Navier-Stokes
equations.

When modeling this kind of fluids, two different approaches can be adopted:

• Front-tracking methods. These methods consider the free surface as being the
boundary of a moving domain on which suitable boundary conditions are spec-
ified. At the interior of the domain, a conventional fluid model is used; special
attention however should be paid to the fact that the domain is not fixed. On the
other side of the domain, the fluid, e.g. air, is usually neglected, or otherwise mod-
elled in a simplified fashion without explicitly solving it (see, e.g., [MP97]).

• Front-capturing methods. The two fluids are in fact considered as a single fluid in
a domain with fixed boundaries, whose properties like density and viscosity vary
as piecewise constant functions. The discontinuity line is in fact the free surface
(see, e.g., [HW65, HN81]).

For a review on numerical methods for free-boundary problems, see [Hou95].
In what follows we will consider front-capturing methods. More precisely, we

will derive a mathematical model for the case of a general fluid with variable density
and viscosity, which would therefore be appropriate to model the flow of two fluids
separated by a free surface.

17.9.1 Navier-Stokes equations with variable density and viscosity

We consider the general case of a viscous incompressible flow whose density ρ and
dynamical viscosity μ vary both in space and in time. Within a given spatial domain
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Fig. 17.12. Two typical grids in two dimensions for front-tracking methods (left) and front-
capturing methods (right). The thick line represents the free surface

Ω ⊂ Rd , the evolution of the fluid’s velocity u = u(x, t) and pressure p = p(x, t) are
modelled by the following equations:

{
ρ∂tu+ρ(u ·∇)u−div(2μD(u))+∇p = f, x ∈Ω , t > 0, (17.85)

divu = 0, x ∈Ω , t > 0, (17.86)

in which (D(v)) = ∇v+∇vT

2 is the symmetric gradient of v, a tensor that is also called
rate of deformation, while f denotes a volumetric force, for instance gravity. (Here ∂t

stands for ∂/∂ t. The divergence of a tensor was introduced in (16.23).)
These equations must be supplemented by suitable initial and boundary condi-

tions. In case ρ is constant we retrieve the form (17.1). Note that incompressibility
is not in contradiction with variable density. Incompressibility means that one single
fluid parcel does not change volume and thus density, whereas variable density means
that different fluid parcels may have different densities. The last two terms of the left-
hand side (17.85) can be rewritten as −divT(u, p), where

T(u, p) = 2μD(u)− Ip

is the stress tensor while I is the d× d identity tensor. A complete derivation of this
model can be found, e.g., in [LL59].

An equation for the density function ρ can be obtained from the mass balance
equation

Dtρ = ∂tρ+u ·∇ρ = 0, x ∈Ω , t > 0, (17.87)

ρ |t=0 = ρ0, x ∈Ω ,

where Dt indicates the material, or Lagrangian, derivative, see Sect. 17.7.2. In those
cases in which viscosity μ can be expressed in terms of the density, that is μ = μ(ρ),
this relation, together with (17.87), provides the model for the evolution of ρ and μ .
Models adapted to the special case of a flow of two fluids are described in Sect. 17.9.3.
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The analysis of the coupled problem (17.85)–(17.86)–(17.87) is a challenging task.
We refer the reader to [Lio96]. A global existence result can be proved if f = ρg and
σ = 0. This proof requiresΩ to be a smooth, bounded, connected open subset of Rd ,
and that homogeneous Dirichlet boundary conditions (i.e., with gD = 0) are imposed
on the whole boundary. If the initial and source data satisfy

ρ0 ≥ 0 a.e. in Ω , ρ0 ∈ L∞(Ω), ρ0u0 ∈ L2(Ω)d , ρ0|u0|2 ∈ L1(Ω),

and g ∈ L2(Ω × (0,T ))d ,

then there exist global weak solutions which satisfy

ρ ∈ L∞(Ω × (0,T )), ρ ∈C([0,∞);Lp(Ω)) ∀p ∈ [1,∞);

u ∈ [L2(0,T ;H1
0 (Ω))]d , ∇u ∈ [L2(Ω × (0,T ))]d×d ;

ρ |u|2 ∈ L∞(0,T ;L1(Ω)).

Another result by Tanaka [Tan93] treats the case where the surface tension coeffi-
cient σ is different from zero but constant. Under some (stronger) regularity assump-
tions on the initial data, it has been proved that a global solution exists for sufficiently
small initial data and external forces. Moreover, local uniqueness (in time) is proved.

17.9.2 Boundary conditions

Let us generalize the discussion on boundary conditions of the beginning of this chap-
ter to the case of the more general formulation (17.85), (17.86) of the Navier-Stokes
equations. We still consider a splitting of the boundary ∂Ω of the domain Ω into a
finite number of components and impose on them appropriate boundary conditions.
Several kind of conditions are admissible: for a general discussion see, e.g., [QV94]
and the references therein. In the following we just describe the most commonly used
conditions for free surface flows.

The Dirichlet boundary conditions prescribe the value of the velocity vector on a
boundary subset ΓD

u = ϕ on ΓD ⊂ ∂Ω . (17.88)

They are used either for imposing a velocity profile on the inflow boundary, or to
model a solid boundary moving with a prescribed velocity. In the latter case they are
said to be no-slip boundary condition, as they force the fluid not to slip but to stick to
the wall.

As we have already noted, when Dirichlet boundary conditions are specified on
the entire boundary ∂Ω , the pressure is not uniquely defined. In this case, if (u, p) is
a solution of (17.85), (17.86) and (17.88), then (u, p+ c), c ∈ R is also a solution of
the same set of equations. Using the Gauss theorem, from equation (17.86) it follows
that gD has to satisfy the compatibility condition∫

∂Ω
gD ·n dγ = 0.
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Neumann boundary conditions prescribe a force ψN per unit area as the normal
component of the stress tensor

T(u, p)n = 2μD(u)n− pn = ψ on ΓN ⊂ ∂Ω , (17.89)

where n is the outer unit normal on ΓN . When ψN = 0 the subset ΓN is called a free
outflow. For vanishing velocity gradients, the force ψN corresponds to the pressure on
the boundary. See also [HRT96] for more details about the interpretation and implica-
tions of this type of boundary conditions. Neumann boundary conditions are used to
model a given force per unit area gN on the boundary.

Mixed boundary conditions prescribe values of the normal component of the ve-
locity field, as well as on the tangential component of the normal stresses, that is:

u ·n = ϕ ·n on ΓD,
(T(u, p)n) · τ = (2μD(u)n) · τ = 0 on ΓN , ∀τ : τ ·n = 0.

The choiceϕ = 0 models the symmetry of the solution alongΓD, but also a free slip
on ΓD without penetration. In this case we talk about free-slip boundary conditions.

In some situations, a smooth transition from slip to no-slip boundary conditions is
desired. This can be realized by imposing Dirichlet boundary conditions in the normal
direction, in analogy to the free slip boundary conditions, and to replace the boundary
condition in the tangential direction by Robin boundary conditions, a linear combina-
tion of Dirichlet and Neumann boundary conditions:

u ·n = ϕ ·n on ΓD,
(ωCτu+(1−ω)(T(u, p)n)) · τ =
(ωCτu+(1−ω)(2μD(u)n)) · τ = ωCτgD · τ on ΓN , ∀τ : τ ·n = 0.

The parameterω ∈ [0,1] determines the regime. Forω = 0 we have free-slip bound-
ary conditions, whereas for ω = 1 we have no-slip boundary conditions. In practice,
ω can be a smooth function of space and time, with values in [0,1], allowing thus a
smooth transition between the two cases. This holds for ϕ = 0, but transition bound-
ary conditions cover also the general Dirichlet case for ϕ 	= 0 and ω = 1. The weight
Cτ can be seen as a conversion factor between velocities and force per unit area. This
type of boundary conditions has been studied in detail in [Joe05].

17.9.3 Application to free surface flows

A free surface flow can be modeled by (17.85)–(17.86). In this perspective the free sur-
face is an interface, denoted by Γ (t), cutting the domain Ω into two open subdomains
Ω+(t) and Ω−(t). The initial position of the interface is known, Γ (0) = Γ0, and the
interface moves with fluid velocity u. On each subdomain, we have constant densities
and viscosities denoted by ρ+, ρ−, μ+ and μ−. We require ρ± > 0 and μ± > 0.

Density and viscosity are then globally defined as follows:

ρ(x, t) =

{
ρ− x ∈Ω−(t)
ρ+ x ∈Ω+(t),

μ(x, t) =

{
μ− x ∈Ω−(t)
μ+ x ∈Ω+(t).
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In order to model buoyancy effects, the gravitational force f = ρg, where g is the
vector of gravity acceleration, has to be inserted in the right-hand side.

As the viscosity is discontinuous across the interface, equation (17.85) can hold
strongly only on the interior of the two subdomains. The latter must therefore be cou-
pled with suitable interface conditions (see, e.g., [Smo01]).

We denote by nΓ the interface unit normal pointing from Ω− into Ω+ and by κ
the interface curvature, defined as

κ =
d−1

∑
i=1

1
Rτ i

, (17.90)

where Rτ i are the radii of curvature along the principal vectors τ i which span the
tangent space to the interface Γ . The sign of Rτ i is such that Rτi nΓ points from Γ to
the center of the circle approximating Γ locally.

The jump of a quantity v across the interface is denoted by [v]Γ and defined as

[v]Γ (x, t) = lim
ε→0+

(v(x+ εnΓ , t)− v(x− εnΓ , t))

= v|Ω+(t)(x, t)− v|Ω−(t)(x, t) ∀x ∈ Γ (t).

The interface conditions then read:

[u]Γ = 0, (17.91)

[T(u, p)nΓ ]Γ = [2μD(u)nΓ − pnΓ ]Γ = σκnΓ . (17.92)

Equation (17.91) is called the kinematic interface condition. It expresses the prop-
erty that all components of the velocity are continuous. In fact the normal component
has to be continuous because there is no flow through the interface, whereas the tan-
gential component(s) have to be continuous because both fluids are assumed viscous
(μ+ > 0 and μ− > 0).

Equation (17.92) is refered to as the dynamic interface condition. It expresses
the property that the normal stress jumps by the same amount given by the surface
tension force. This force is proportional to the interface curvature and points in the
same direction of the interface normal. The surface tension coefficient σ depends on
the fluid pairing, and in general also on temperature. We will assume it to be constant,
as all heat transfer effects are neglected.

Note that the evolution of the interface has to be compatible with the mass con-
servation equation (17.87). Mathematically, this equation has to be understood in the
weak sense, i.e, in the sense of distributions, as the density is discontinuous across the
interface and, consequently, its derivatives can only be interpreted weakly.

As this form of the mass conservation equation is often not convenient for numer-
ical simulations, other equivalent models that describe the evolution of the interface
Γ (t) have been introduced. A short overview is presented in Sect. 17.10.
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17.10 Interface evolution modelling

We give here a short overview of different approaches for modelling the evolution of
an interface Γ (t) in a fixed domain Ω .

17.10.1 Explicit interface descriptions

An interface can be represented explicitly by a set of marker points or line segments
(in 2D, surface segments in 3D) on the interface, that are transported by the fluid
velocity.

In the case of marker points, introduced in [HW65], the connectivity of the inter-
face between the points is not known and has to be reconstructed whenever needed.
In order to simplify this task, additional markers are usually placed near the interface,
marking Ω+ or Ω−. The advection of the markers is simple, and connectivity can
change easily. However it is still somewhat cumbersome to reconstruct the interface
from the marker distribution. Typically, it is also necessary to redistribute the markers,
introduce new ones or discard existing ones.

Several markers can be connected to define a line or surface, either straight (plane)
or curved, e.g. by NURBS. A set of such geometrical objects can now define the
surface. Its evolution is modeled by the evolution of the constituting objects, and thus
by the markers defining them. The connectivity of the interface is thereby conserved.
This solves the difficulty of pure marker methods, and brings a new drawback in turn:
topological changes of the interface are allowed by the underlying physics but not
by this description. Sophisticated procedures have to be applied to detect and handle
interface breakup correctly.

17.10.2 Implicit interface descriptions

In front-capturing methods, the interface is represented implicitly by the value of a
scalar function φ : Ω × (0,T )→ R that tells to which subset any point x belongs:
Ω+(t) or Ω−(t). A transport equation solved for φ then describes the evolution of
the interface. By this feature, all implicit interface models share the advantage that
topology changes of the interface are possible in the model, and that these happen
without special intervention.

Volume-of-fluid methods

The volume of fluid methods (VOF) were originally introduced by Hirt and Nichols
[HN81]. Let φ be a piecewise constant function such that

φ(x, t) =

{
1, x ∈Ω+(t),
0, x ∈Ω−(t);

the interface Γ (t) is thus located at the discontinuity of the function φ , while density
and viscosity are simply defined as

ρ = ρ−+(ρ+−ρ−)φ , μ = μ−+(μ+− μ−)φ . (17.93)
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The transport equation is usually discretized with cell-centered finite volume meth-
ods, approximating φ by a constant value in each grid cell (see Sects. 9.1 and 17.12).
Due to discretization errors and diffusive transport schemes, the approximation φ will
take values between 0 and 1, which by virtue of equation (17.93) can be (and usually
are) interpreted as the volume fraction of the fluid occupying Ω+. This explains the
name volume of fluid. Volume fractions between 0 and 1 actually represent a mixture
of the two fluids. As the fluids are assumed immiscible, this behaviour is not desired,
especially because mixing effects may not stay concentrated near the interface but
spread over the whole domain Ω . When this happens, the supposedly sharp interface
becomes more and more diffuse. Several techniques exist to limit this problem. Elab-
orate procedures have been developed for the reconstruction of normals and curvature
of a diffuse interface.

Volume of fluid methods have the advantage that applying a conservative discreti-
zation of the transport equation ensures mass conservation of the fluid, because the
relation (17.93) between φ and ρ is linear.

Level-set methods

In order to circumvent the problems with volume of fluid methods, Dervieux and
Thomasset [DT80] proposed in 1980 to define the interface as the zero level set of a
continuous pseudo-density function and to apply this method to flow problems. Their
approach was then studied more systematically in [OS88] and subsequent publica-
tions, where the term level-set method was coined. The first application to flow prob-
lems was by Mulder, Osher and Sethian in 1992 [MOS92]. In constrast with volume
of fluid approaches, these methods allow to keep the interface sharp, as φ is defined
as a continuous function such that:

φ(x, t)> 0, x ∈Ω+(t),

φ(x, t)< 0, x ∈Ω−(t),
φ(x, t) = 0, x ∈ Γ (t).

The function φ is called level-set function, because the interface Γ (t) is its zero
level set, its isoline or isosurface associated to the value zero

Γ (t) = {x ∈Ω : φ(x, t) = 0}. (17.94)

The density and the viscosity can now be expressed in function of φ as

ρ = ρ−+(ρ+−ρ−)H(φ), μ = μ−+(μ+− μ−)H(φ), (17.95)

where H(·) is the Heaviside function

H(ξ ) =

{
0, ξ < 0
1, ξ > 0.

By construction, the interface stays sharp in a level-set model, and the immiscible
fluids do not start to mix. In addition, the determination of the normals and the curva-
ture of the interface are more straightforward and very natural. In turn, as the relation
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(17.95) is not linear, applying a conservative discretization of the transport equation
for φ does not ensure mass conservation of the fluid after discretization. This is not
a big problem, however, as the mass error still disappears with grid refinement and is
outweighed by advantages of the level-set formulation.

The evolution of the free surface is described by an advection equation for the
level-set function⎧⎪⎨⎪⎩

∂tφ +u ·∇φ = 0 in Ω × (0,T ), (17.96)

φ = φ0 in Ω at t = 0,

φ = φin on ∂Σin × (0,T ),

where Σin is the inflow boundary

Σin = {(x, t) ∈ ∂Ω × (0,T ) : u(x, t) ·n < 0}.
The flow equations (17.85)–(17.86) and the level-set equation (17.96) are therefore
coupled. Equation (17.96) can be derived as follows [MOS92]: let x̄(t) be the path of
a point on the interface Γ (t). This point moves with the fluid, thus Dt x̄(t) = u(x̄(t), t).
Since the function φ is always zero on the moving interface, we must have

φ(x̄(t), t) = 0.

Deriving with respect to time and applying the chain rule, we obtain

∂tφ +∇φ ·u = 0 on Γ (t) ∀t ∈ (0,T ). (17.97)

If we consider instead a path of a point in Ω±, we may require φ(x̄(t), t) =±c, c > 0,
in order to ensure that the sign of φ(x̄, t) does not change and that x̄(t) ∈ Ω±(t) for
all t hereby.

In this way, equation (17.97) generalizes to the whole domain Ω , which gives us
equation (17.96).

We can now verify that mass conservation is satisfied: using (17.95), we obtain
formally

∂tρ +u ·∇ρ = (ρ+−ρ−)(∂tH(φ)+u ·∇H(φ))

= (ρ+−ρ−)δ (φ)(∂t φ +u ·∇φ)
(17.98)

where δ (·) denotes the Dirac delta function. By equation (17.96), the third factor in
(17.98) is zero. Hence equation (17.87) holds and the mass conservation is satisfied
by the level-set interface evolution model.

Interface-related quantities

In the context of two fluid flow, the interface normal and curvature are of particular
interest. Namely the surface tension is proportional to the curvature and acting in the
normal direction.

We shall now explain how the quantitites depend on φ , without going into the de-
tails of the differential geometry involved. See, e.g., [Spi99] for a detailed and rigorous
derivation.
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The unit normal nΓ is orthogonal to all tangent directions τ , which in turn are
characterized by the fact that the directional derivative of φ in any tangent direction
must vanish:

0 = ∂τφ = ∇φ · τ on Γ .

The gradient of φ is thus orthogonal to all tangent directions, and we can define the
interface unit normal by normalizing it

nΓ =
∇φ

|∇φ | . (17.99)

Note that by this definition, nΓ points from Ω− into Ω+. Moreover, as φ is defined
not only on the interface but in the whole domain, the expression for the normal gen-
eralizes naturally to the entire domain, too.

In order to derive the expression for the curvature, we need to consider the princi-
pal tangent direction(s) τ i, i = 1 . . .d−1. These are the directions in which the inter-
face is approximated by a circle (cylinder), i.e., the directional derivative of nΓ in the
direction τ i is parallel to τ i

∂τ inΓ = ∇nΓ τ i =−κiτ i, κi ∈ R, i = 1 . . .d− 1 (17.100)

The bigger |κi|, the more curved the surface in this direction, and the coefficients κi are
in fact called principal curvatures. It follows from straightforward computations that
κi =(Rτ i)

−1, where the values Rτ i are the radii of the approximating circles (cylinders)
as of equation (17.90).

We can see from equation (17.100) that the d−1 values−κi are eigenvalues of the
d×d-tensor∇nΓ . By (17.99), nΓ is (essentially) a gradient field which is smooth near
the interface. The rank-two tensor ∇nΓ is thus (essentially) a tensor of second deriva-
tives of a smooth function, and hence symmetric. So it has one more real eigenvalue,
whose associated eigenvector must be nΓ , because the eigenvectors of a symmetric
tensor are orthogonal. It is easy to see that the respective eigenvalue is zero

(∇nΓ nΓ )i =
d

∑
j=1

(∂xi n j)n j =
d

∑
j=1

1
2
∂xi(n

2
j) =

1
2
∂xi |nΓ |2 = 0,

as |nΓ |= 1 by construction (17.99).
Starting from equation (17.90), we obtain for the curvature

κ =
d−1

∑
i=1

1
Rτ i

=
d−1

∑
i=1

κi =−tr(∇nΓ ) =−∇ ·nΓ ,

and using equation (17.99), we get

κ =−∇ ·
(
∇φ

|∇φ |
)
. (17.101)
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Initial Condition

Although we know the position Γ0 of the interface at t = 0, the associated level-set
function φ0 is not uniquely defined. The freedom of choice can be used to simplify fur-
ther subsequent tasks. We notice that steep gradients of φ make the numerical solution
of equation (17.96) more difficult (see e.g. [QV94]), whereas flat gradients decrease
the numerical stability when determining Γ from φ . A good compromise is thus the
further constraint |∇φ |= 1.

A function which fulfills this constraint is the distance function

dist(x;Γ ) = min
y∈Γ

|x−y|,

which at each point x takes the value of the minimum Euclidean distance from x to Γ .
Multiplying this function by −1 on Ω−, we obtain the signed distance function

sdist(x;Γ ) =

⎧⎨⎩ dist(x;Γ ), x ∈Ω+,
0, x ∈ Γ ,
−dist(x;Γ ), x ∈Ω−.

It is thus usual and reasonable to choose φ0, representing an initial interface Γ0, as
φ0(x) = sdist(x;Γ0).

Since |∇φ | = 1, the expressions of the interface normal and curvature simplify
further to

nΓ = ∇φ and κ =−∇ ·∇φ =−Δφ .
Reinitialization

Unfortunately, the property |∇φ | = 1 is not preserved under advection of φ with the
fluid velocity u. This is not a problem as long as |∇φ | does not stay too far from
1, which however cannot be guaranteed in general. Two different strategies can be
followed to cope with this issue.

One approach is to determine an advection velocity field that gives the same in-
terface motion as the fluid velocity field, while preserving the distance property. Ac-
tually such a velocity field exists and is called extension velocity, as it is constructed
by extending the velocity prescribed on the interface to the whole domain; efficient
algorithms are described in [AS99].

Alternatively, we can still use the fluid velocity u for advecting the level-set func-
tion φ , and intervene when |∇φ | becomes too large or too small. The action to be taken
in this case is known as reinitialization, as the procedure is partially the same as for
initialization with the initial condition. Suppose we decide to reinitialize at time t = tr:

1. Given φ(·, tr), find Γ (tr) = {x : φ(x, tr) = 0};
2. Replace φ(·, tr) by sdist(·,Γ (tr)).

Interestingly, it turns out that the problem of finding the extension velocity is closely
related to the problem of reinitializing φ with a signed distance function. The same
algorithms can be used and the same computational cost has to be expected. Two con-
ceptual differences favour the reinitialization approach, though: firstly, the extension
velocities have to be computed at every time step, whereas reinitialization can be per-
formed only when necessary, which results in a global reduction of the computational
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costs. Secondly, the approximated extension velocities will only approximately pre-
serve the distance property and may not guarantee that reinitialization is unnecessary.

Algorithmic details about the efficient construction of an approximation to the
signed distance function, especially for the three-dimensional case, can be found in
[Win07].

17.11 Finite volume approximation

The finite volume approach described in Chapter 9 is widely used for the solution of
problems described by differential equations, with applications in different engineer-
ing fields. In particular, the most frequently used commercial codes in the field of fluid
dynamics adopt finite volume schemes for the solution of the Navier-Stokes equations.
The latter are often coupled with models of turbulence, transition, combustion, trans-
port and reaction of chemical species.

When applied to incompressible Navier-Stokes equations, the saddle-point nature
of the problem makes the choice of control volumes critical. The most natural choice,
with coinciding velocity and pressure nodes, can generate spurious pressure modes.
The reason is similar to what was previously noticed for Galerkin finite element ap-
proximations: discrete spaces which implicitly underlie the choice of control volumes
must satisfy a compatibility condition if we want the problem to be well-posed.

For this reason, it is commonplace to adopt different control volumes, and hence-
forth nodes, for velocity and pressure. An example is illustrated in Fig. 17.13, where
we display a possible choice of nodes for the velocity components and for pressure
(on the staggered grid), as well as the corresponding control volumes. The control
volumes corresponding to the velocity are used for the discretization of momentum
equations, while the pressure ones are used for the continuity equation. We recall that
the latter does not contain the temporal derivative term.

Alternatively, we can adopt stabilization techniques similar to the ones seen in
Sect. 17.5, that allow to place the velocity and pressure nodes on the same grid. The
interested reader can consult the monographs [FP02], [Kro97], [Pat80] and [VM96]
for further details.

u
p

Fig. 17.13. A staggered finite volume grid for velocity and pressure. On the left-hand side we
sketch the control volumes for the continuity equation, on the right-hand side the ones used for
momentum equations
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Fig. 17.14. Vorticity field of an incompressible flow around 5 cylinders at time instants t = 100
(left) and t = 102 (right), Re = 200

In Fig. 17.14 we display the vorticity field of an incompressible flow around 5 cylin-
ders at two time instants (this is the same problem described in Example 17.1, see
Fig. 17.10) with a Reynolds number of 200. In this case the Navier-Stokes equations
are solved by a cell-centered finite volume discretization. The computational grid used
here features 103932 elements and a time step Δ t = 0.001.

Let us also report the simulation of the hydrodynamic flow around an America’s
Cup sailing boat in upwind regime, targeted at studying the efficiency of its appendages
(bulb, keel and winglets) (see Fig. 17.15, left). The computational grid used in this case
is hybrid, with surface elements of triangular and quadrangular shape, and volume
elements of tetrahedral, hexahedral, prismatic and pyramidal shape (see Fig. 17.15,
right).

The mathematical model is the one illustrated in Sect. 17.9 for free-surface flu-
ids. The Navier-Stokes equations, however, are coupled with a k−ε turbulence model
[MP94], through an approach of type RANS (Reynolds Averaged Navier-Stokes). The
problem’s unknowns are the values of the variables (velocity, pressure and turbulent
quantities) at the center of control volumes, which in this case correspond to the vol-
ume elements of the grid.

Fig. 17.15. Geometry of the hull and the appendages (left) and detail of the surface grid at the
bulb-keel intersection (right)
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The time-dependent Navier-Stokes equations are advanced in time using a frac-
tional-step scheme, as described in Sect. 17.7.3. As previously pointed out, the choice
of placing velocity and pressure at the same points makes it necessary to adopt a suit-
able stabilization of the equations [RC83]. For the computation of the free surface, we
have used both the volume-of-fluid method and the one based on the level-set tech-
nique, described in Sect. 17.10.2, the latter being more costly from a computational
viewpoint but in general less dissipative.

Simulations of this kind can require grids with very many elements, in the cases
where one wants to reproduce complex fluid dynamics phenomena such as the tur-
bulent flow around complex geometries, or the presence of regions of flow separa-
tion. The grid used in this case is composed of 5 million cells and generates an alge-
braic system with more than 30 million unknowns. Problems of this size are generally
solved by resorting to parallel computation techniques based on domain decomposi-
tion methods (see Chap. 19) in order to distribute the computation over several pro-
cessors.

The analysis of pressure distributions and of wall shear stresses, as well as the
visualization of the 3D flow through streamlines (see Figs. 17.16 and 17.17) are indeed
very useful during the hydrodynamic-project phase, whose aim is the optimization of
the boat’s performances (see e.g. [PQ05, PQ07, DPQ08]).

Fig. 17.16. Surface pressure distribution (left) and streamlines around the hull appendages
(right)

17.12 Exercises

1. Prove that condition (17.53) is equivalent to the inf-sup condition (17.20).
[Solution: note that condition (17.53) is violated iff ∃p∗ 	= 0 with p∗ ∈ RM such
that BT p∗ = 0 or, equivalently, if ∃p∗h ∈Qh such that b(ϕn, p∗h) = 0 ∀n = 1, . . . ,N.
This is equivalent to b(vh, p∗h) = 0∀vh ∈Vh, which in turn is equivalent to violating
(17.20).]
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2. Prove that a necessary condition in order that (17.53) be satisfied is that 2N ≥M.
[Solution: we have N = rank(B)+dim(kerB), while M = rank(BT )+dim(kerBT )=
rank(BT ) = rank(B). Consequently, we have N −M = dim(kerB) ≥ 0, thus the
condition N ≥M is necessary for the solution to be unique.]

3. Show that the finite element couple P1− P0 for velocity and pressure does not
satisfy the inf-sup condition.
[Solution: we restrict ourselves to a two-dimensional Dirichlet problem, and con-
sider a simple uniform triangulation made of 2n2 triangles, n ≥ 2, like the one
displayed in Fig. 17.18, left. This triangulation carries M = 2n2−1 degrees of free-
dom for the pressure (one value for every triangle except for one, as our pressure
we must have null average), N = 2(n−1)2 for the velocity field (which correspond
to the values of two components at each internal vertex). Thus the necessary con-
dition N ≥M proven in Exercise 2 is not fulfilled in the current case.]

4. Show that on a grid made by rectangles, the finite element couple Q1−Q0 of
bilinear polynomials for the velocity components and constant pressure on each
rectangle does not satisfy the inf-sup condition.
[Solution: consider a square computational domain and a uniform Cartesian grid
made of n× n squares as in Fig. 17.18 right). There are (n− 1)2 internal nodes

Fig. 17.17. Current lines around the sails during downwind navigation (left) and streamlines
around the hull appendages (right)

Fig. 17.18. Uniform grid for a finite element discretization using P1−P0 (left) and Q1−Q0
(right) finite elements with spurious pressure modes
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carrying N = 2(n− 1)2 degrees of freedom for the velocity and M = n2− 1 for
the pressure. The necessary condition is therefore satisfied provided n ≥ 3. We
therefore verify directly that the inf-sup condition does not hold. Let h be the uni-
form size of the element edges and denote by qi±1/2, j±1/2 the value at the midpoint
(xi±1/2,y j±1/2) = (xi± h/2,yi± h/2) of a given function q . Let Ki j be a square of
the grid. A simple calculation shows that

∫
Ω

qhdivuh dΩ =
h

2

n−1

∑
i, j=1

ui j(qi−1/2, j−1/2+qi−1/2, j+1/2

−qi+1/2, j−1/2− qi+1/2, j+1/2)

+vi j(qi−1/2, j−1/2−qi−1/2, j+1/2+qi+1/2, j−1/2− qi+1/2, j+1/2).

Clearly, any element-wise constant function p∗ whose value is 1 on the black ele-
ments and −1 on the white ones of Fig. 17.18, right, is a spurious pressure.]

5. Consider the steady Stokes problem with non-homogeneous Dirichlet boundary
conditions ⎧⎨⎩ −νΔu+∇p = f in Ω ⊂ R2,

divu = 0 in Ω ,
u = g on Γ = ∂Ω ,

where g is a given vector function. Show that
∫
Γ g ·n = 0 is a necessary condition

for the existence of a weak solution. Show that the right-hand side of the weak
form of the momentum equation identifies an element of V ′, the dual of the space
V = [H1

0(Ω)]d .

6. Do the same (as in Exercise 5) for the non-homogeneous Navier-Stokes problem⎧⎨⎩ (u ·∇)u−νΔu+∇p = f in Ω ⊂ R2,
divu = 0 in Ω ,
u = g on Γ = ∂Ω .

7. Prove the a priori estimate (17.57).
[Solution: choose vh = uh and qh = ph as test functions in (17.55). Then apply the
Cauchy-Schwarz, Young and Poincaré inequalities to bound the right-hand side.]



Chapter 18

Optimal control of partial differential

equations

In this chapter we will introduce the basic concepts of optimal control for linear ellip-
tic partial differential equations. At first we present the classical theory in functional
spaces “à la J.L.Lions”, see [Lio71, Lio72]; then we will address the methodology
based on the use of the Lagrangian functional (see, e.g., [Mau81, BKR00, Jam88]).
Finally, we will show two different numerical approaches for control problems, based
on the Galerkin finite element method.

This is intended to be an elementary introduction to this fascinating and complex
subject. The interested reader is advised to consult more specialized monographs such
as, e.g., [Lio71, AWB71, ATF87, Ago03, BKR00, Gun03, Jam88, APV98, MP01,
FCZ04, DZ06, Zua05, IK08, HPUU09, Tro10, BS12]. For the basic concepts of func-
tional analysis here used, see Chapter 2 and also [Ada75, BG87, Bre86, Rud91, Sal08,
TL58].

18.1 Definition of optimal control problems

In abstract terms, a control problem can be expressed by the paradigm illustrated in
Fig. 18.1. There is a system expressed by a state problem that can be either an alge-
braic problem, an initial-value problem for ordinary differential equations, or a boundary-
value problem for partial differential equations. Its solution, that will generically be
denoted by y, depends on a variable u representing the control that can be exerted on
the system. The goal of a control problem is to find the control u in such a way that a
suitable output variable, denoted by z and called observed variable (which is a function
of u through y), takes a desired "value" zd , the so-called observation, or target.
The problem is said to be controllable if a control u exists such that the observed
variable z matches exactly the desired value zd . Not all systems are controllable (see,
in this respect, the review paper [Zua06]): take for instance the simple case in which
the state problem is the linear algebraic system Ay = b, where A is a given n× n non-
singular matrix and b a given vector of Rn. Assume moreover that the observation

A. Quarteroni, Numerical Models for Differential Problems, MS&A 16, 
DOI 10.1007/978-3-319-49316-9_18

511© Springer International Publishing AG 2017 
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Control

Input

State Observation

OutputSystem

Fig. 18.1. The essential ingredients of a control problem

is represented by one component σ , say the first one, and suppose that the control is
one of the components of the right-hand side, say the last one. The question therefore
reads: “Find u ∈ R such that the solution of the linear system Ay = b+ [0, ...,0,u]T

satisfies y1 = y∗1”, y∗1 being a given value. In general, this problem admits no solution.
For this reason it is often preferred to replace the problem of controllability by one of
optimization: by doing so one does not expect the output variable z to be exactly equal
to the observation zd , but that the difference between z and zd (in a suitable sense) be
the smallest possible. Therefore, control and optimization are two intimately related
concepts, as we will see later on in this chapter.
As already noted, we will only consider systems governed by elliptic PDEs. With
this aim, we start by introducing the mathematical entities that enter in the control
problem.

• The control function u. It belongs to a functional space Uad , called the space of
admissible controls. In general, Uad ⊆ U , where U is a functional space apt to
describe the role assumed by u in the given state equation. If Uad =U the control
problem is unconstrained; if Uad ⊂ U the control problem is said to be con-
strained.

• The state of the system y(u) ∈ V (a suitable functional space), a function depend-
ing on the control u that satisfies the equation of state

Ay(u) = f , (18.1)

where A : V �→ V ′ is a differential operator (linear or not). This problem describes
a physical problem subject to suitable boundary conditions. As we will see, the
control function can enter in the right-hand side, in the boundary data, or in the
coefficients of the differential operator.

• The observation function in z(u), also depending on the control u through y and
on a suitable operator C : V →Z ,

z(u) =Cy(u).

This function belongs to the space Z of the observed functions and must "ap-
proach" the observation function zd . As a matter of fact, optimizing system (18.1)
means finding the control function u such that the function z(u) is “as close as
possible” to the observation function zd . This goal will be achieved through a min-
imization process that we are going to describe.

• A cost functional J(u), defined on the space Uad

u ∈Uad �→ J(u) ∈ R with J(u)≥ 0.
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In general, J will depend on u (also) through z(u), that is J(u) = J̃(u,z(u)), for a
suitable functional J̃ : Uad×Z →R.

The optimal control problem can be formulated in either following way:

i) find u ∈Uad such that

J(u) = infJ(v) ∀v ∈Uad ; (18.2)

ii) find u ∈Uad such that the following inequality holds

J(u)≤ J(v) ∀v ∈Uad . (18.3)

The function u that satisfies (18.2) (or (18.3)) is called optimal control of system
(18.1).
Before analyzing the existence and uniqueness properties of the control problem and
characterizing the condition of optimality, let us consider a simple finite-dimensional
example.

18.2 A control problem for linear systems

Let A be a n× n non-singular matrix and B a n× q matrix. Moreover, let f be a vector
of Rn, u a vector of Rq representing the control. The vector y = y(u) ∈ Rn which
represents the state satisfies the following linear system

Ay = f+Bu . (18.4)

We look for a control u that minimizes the following linear functional:

J(u) = ‖z(u)− zd‖2
Rm + ‖u‖2

N . (18.5)

In this equation, zd is a given vector (the target) of Rm, z(u) = Cy(u) is the vector

to be observed, where C is a m× n matrix, ‖u‖N = (Nu,u)
1/2
Rq is the N-norm of u, N

being a given symmetric and positive definite matrix of dimension q×q.
Upon interpreting the term ‖u‖2

N as the energy associated to the control, the prob-
lem is therefore: choose the control so that the observation z(u) is close to the target
zd and its energy is small.
Note that

J(u) = (CA−1(f+Bu)− zd ,CA−1(f+Bu)− zd)Rm +(Nu,u)Rq . (18.6)

The cost functional J(u) is therefore a quadratic function of u which has on Rq a
global minimum. The latter is characterized by the condition

J′(u)h = 0 ∀h ∈ Rq (18.7)
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where J′(u)h is the (Gâteaux) directional derivative along the direction h computed at
the "point" u, that is (see Definition 2.6 of Chap. 2)

J′(u)h = lim
t→0

J(u+ th)− J(u)

t
.

Since
Ay′(u)h = Bh and z′(u)h =Cy′(u)h

for all u and h, from (18.6) we obtain

J′(u)h = 2[(z′(u)h,z(u)− zd)Rm +(Nu,h)Rq ]

= 2[(CA−1Bh,Cy(u)− zd)Rm +(Nu,h)Rq ] .
(18.8)

Let us introduce the solution p = p(u) ∈Rn of the following system, that is called the
adjoint state of (18.4)

AT p(u) =CT (Cy(u)− zd) . (18.9)

From (18.8) we deduce

J′(u)h = 2[(Bh,p(u))Rn +(Nu,h)Rq ],

that is
J′(u) = 2[BT p(u)+Nu]. (18.10)

Since J attains its minimum at the point u for which J′(u) = 0, we can conclude that
the three-field system ⎧⎨⎩

Ay = f+Bu,
AT p = CT (Cy− zd),
BT p+Nu = 0,

(18.11)

admits a unique solution (u,y,p) ∈ Rq×Rn×Rn and that u is the unique optimal
control of the original system.

In the next section we will introduce several examples of optimal control problems
for the Laplace equation.

18.3 Some examples of optimal control problems for the Laplace

equation

Consider for simplicity the case where the elliptic operator A is the Laplacian. We
define two different families of optimal control problems: the distributed control and
the boundary control.

• Distributed control. Let us introduce the state problem{ −Δy = f + u in Ω ,
y = 0 on Γ = ∂Ω ,

(18.12)

where Ω is a domain in Rn, y ∈ V = H1
0 (Ω) is the state variable, f ∈ L2(Ω) is a

given source term, and u ∈Uad = L2(Ω) is the control function. We can consider
two different kinds of cost functional:
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– on the domain, for instance

J(u) =
∫
Ω
(y(u)− zd)

2dΩ , (18.13)

– on the boundary, for instance (provided y(u) is sufficiently regular)

J(u) =
∫
Γ
(
∂y(u)

∂n
− zdΓ )

2dγ.

The functions zd and zdΓ are two prescribed observation (or target) functions.

• Boundary control. Consider now the following state problem⎧⎪⎪⎨⎪⎪⎩
−Δy = f in Ω ,

y = u on ΓD,

∂y

∂n
= 0 on ΓN ,

(18.14)

with ΓD ∪ΓN = ∂Ω and
◦
Γ D ∩

◦
Γ N= /0. The control u ∈ H

1
2 (ΓD) is defined on the

Dirichlet boundary. Two different kinds of cost functional can be considered:
– on the domain, as in (18.13);
– on the boundary, for instance

J(u) =
∫
ΓN

(y(u)− zdΓN
)2dγ.

Here, too, zdΓN
represents a given observation function.

18.4 On the minimization of linear functionals

In this section we recall some results about the existence and uniqueness of extrema
of linear functionals, with focus on those associated to control problems addressed in
this chapter. For more results see, e.g., [Lio71, BG87, Bre86, TL58].
We consider a Hilbert space U , endowed with a scalar product (·, ·), and a bilinear
form π

u,v �→ π(u,v) ∀u,v ∈U , (18.15)

that we assume to be symmetric, continuous and coercive. The norm induced on U

by the scalar product will be denoted by ‖w‖=√(w,w). Let

v �→ F(v) ∀v ∈U , (18.16)

be a linear and bounded functional on U . Finally, let Uad be the closed subspace of
U of admissible control functions, and consider the following cost functional

J(v) = π(v,v)− 2F(v) ∀v ∈Uad . (18.17)
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The following result holds:

Theorem 18.1. Under the previous assumptions, there exists a unique u ∈ Uad

such that
J(u) = infJ(v) ∀v ∈Uad , (18.18)

where J(v) is defined in (18.17); u is called optimal control.
Moreover:

(i) The function u ∈Uad satisfies the variational inequality

π(u,v− u)≥ F(v−u) ∀v ∈Uad . (18.19)

(ii) If Uad = U (that is we consider a non-constrained optimization problem),
owing to the Lax–Milgram Lemma 3.1, u satisfies the following Euler equa-
tion associated to (18.18)

π(u,w) = F(w) ∀w ∈U . (18.20)

(iii) If Uad is a closed convex cone with vertex at the origin 01, u satisfies

π(u,v)≥ F(v) ∀v ∈Uad and π(u,u) = F(u). (18.21)

(iv) Suppose the map v �→ F(v) is strictly convex and differentiable, J (not nec-
essarily quadratic) satisfies: J(v)→∞ when ||v||U → ∞ ∀v ∈Uad. Then the
unique function u ∈ Uad which satisfies condition (18.18) is characterized
by the variational inequality

J′(u)(v− u)≥ 0 ∀v ∈Uad (18.22)

or, equivalently,
J′(v)(v− u)≥ 0 ∀u ∈Uad . (18.23)

(The symbol J′ denotes the Gâteaux derivative of J, see Definition 2.5 of
Chap. 2.)

Proof. For a complete proof see, e.g., [Lio71, Chap. 1, Theorem 1.1]. Here we prove
(18.19). If u minimizes (18.18), then for all v ∈ Uad and every 0 < ϑ < 1, J(u) ≤
J((1−ϑ)u+ϑv), thus 1

ϑ [J(u+ϑ(v−u))−J(u)]≥ 0. This inequality still holds when
ϑ → 0 (provided this limit exists), whence

J′(u)(v− u)≥ 0 ∀v ∈Uad . (18.24)

Inequality (18.19) follows by recalling the definition (18.17) of J.

1 A linear metric space W is a closed convex cone with vertex in the origin 0 if: (1) 0 ∈W ,
(2) x ∈W ⇒ kx ∈W ∀k≥ 0, (3) x,y ∈W ⇒ x+y ∈W , (4) W is closed.
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The converse holds as well (whence (18.18) and (18.19) are in fact equivalent). Indeed,
should u satisfy (18.19), and so (18.24), thanks to the convexity of the map v �→ J(v)
for every 0 < ϑ < 1 one has

J(v)− J(w)≥ 1
ϑ
[J((1−ϑ)w+ v)− J(w)] ∀v,w ∈Uad .

Taking the limit as ϑ → 0 we obtain

J(v)− J(w)≥ J′(w)(v−w).

Taking w = u and using (18.24) we obtain that J(v)≥ J(u), that is (18.18).
To prove (18.20) it is sufficient to choose v = u±w ∈U in (18.19).
Let us now prove (18.21). The first inequality can be obtained by replacing v with

v+u in (18.19). Setting now v = 0 in (18.19) we obtain π(u,u)≤ F(u). By combining
the latter with the first inequality in (18.21) we obtain the second equation in (18.21).
The converse (that is, (18.21)⇒ (18.19)) is obvious.

For the proof of (18.22) and (18.23), see [Lio71, Chap. 1, Theorem 1.4]. �
Remark 18.1. If J(v) is differentiable in v, ∀v ∈U , then for every minimizing func-
tion u ∈ U of J (provided it does exist) we have J′(u) = 0. Moreover, under the
assumptions of Theorem 18.1 (step (iv)), there exists at least one minimizing element
u ∈U . •
We can summarize by saying that the solution u ∈ Uad of the minimization problem
satisfies the following (equivalent) conditions:

i) J(u) = infJ(v) ∀v ∈Uad ,
ii) J(u)≤ J(v) ∀v ∈Uad ,
iii) J′(u)(v−u)≥ 0 ∀v ∈Uad ,
iv) J′(v)(v− u)≥ 0 ∀u ∈Uad .

Before closing this section, consider the abstract problem of finding u∈Uad satisfying
the variational inequality (18.19) (when π(·, ·) is not symmetric, this problem does not
correspond to a problem of minimization in the calculus of variations).

Theorem 18.2. If there exists a constant c > 0 such that

π(v1− v2,v1− v2)≥ c‖v1− v2‖2 ∀v1,v2 ∈Uad , (18.25)

then there exists a unique function u ∈Uad which satisfies (18.19).

For the proof, see [Lio71, Chap. 1, Theorem 2.1].

18.5 The theory of optimal control for elliptic problems

In this section we illustrate some existence and uniqueness results for the solution of a
control problem governed by a linear elliptic equation (the equation of state). For the
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sake of simplicity we restrict to distributed control (see Sect. 18.3); however, similar
results hold for boundary control problems as well, see [Lio71].

Let V and H be two Hilbert spaces, V ′ the dual of V and H ′ that of H , and
assume that V is dense in H with continuous injection. We recall that in this case,
property (2.10) of Chapter 2 holds. In addition, denote by (·, ·) the scalar product of
H and suppose that a(u,v) is a bilinear, continuous and coercive form on V (but not
necessarily symmetric). Under these assumptions, the Lax–Milgram lemma guaran-
tees that there exists a unique solution y ∈ V of problem

a(y,ϕ) = ( f ,ϕ) ∀ϕ ∈ V . (18.26)

By introducing the operator A associated with the bilinear form a(·, ·) (see (3.39))

A ∈L (V ,V ′) : V ′ 〈Aϕ ,ψ〉V = a(ϕ ,ψ) ∀ϕ ,ψ ∈ V ,

problem (18.26) becomes (in operator form)

Ay = f in V
′. (18.27)

This equation will be supplemented by a distributed control term.
Let U be a Hilbert space of control functions, and B an operator belonging to the

space L (U ,V ′). For every control function u the equation of state of the system is

Ay(u) = f +Bu in V
′, (18.28)

or, in weak form,

y(u) ∈ V : a(y(u),ϕ) = ( f ,ϕ)+b(u,ϕ) ∀ϕ ∈ V , (18.29)

where b(·, ·) is the bilinear form associated with the operator B, that is

b(u,ϕ) = V ′ 〈Bu,ϕ〉V ∀u ∈U , ∀ϕ ∈ V . (18.30)

Let us denote with Z the Hilbert space of observation functions, and introduce the
equation of observation

z(u) =Cy(u), (18.31)

for a suitable operator C ∈L (V ,Z ). At last, let us define the cost functional

J(y(u),u) =‖Cy(u)− zd ‖2
Z +(Nu,u)U , (18.32)

that we will indicate with the shorthand notation J(u). Here N ∈L (U ,U ) is a sym-
metric positive definite form such that

(Nu,u)U ≥ ν‖u‖2
U ∀u ∈U , (18.33)

where ν > 0 and zd ∈Z is the desired (target) observation.
The optimal control problem consists in finding u ∈Uad ⊆U such that

J(u) = infJ(v) ∀v ∈Uad . (18.34)

A reminder of the spaces and operators involved in the above definition of optimal
control problem is depicted in Fig. 18.2.
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Fig. 18.2. Functional spaces and operators involved in the statement of the control problem

Remark 18.2. When minimizing (18.32), one actually minimizes a combination be-
tween two terms. The former enforces that the observation z(u) is closed to the desired
value (the target) zd . The latter penalizes the use of a control u that is “too expensive”.
Heuristically speaking, we are trying to make z(u) go towards zd by a reduced effort.
Note that this theory applies also if the form N is null, but in this case one can only
prove the existence of an optimal control, not its uniqueness. •

In order to apply the abstract theoretical results stated in Sect. 18.4, by noticing
that the map u �→ y(u) from U in V is affine we can rewrite (18.32) as follows

J(u) = ‖C[y(u)− y(0)]+Cy(0)− zd‖2
Z +(Nu,u)U . (18.35)

Let us now define a bilinear form π that is continuous in U and a functional F as
follows, for all u,v ∈U :

π(u,v) = (C[y(u)− y(0)], C[y(v)− y(0)])Z +(Nu,v)U ,

F(v) = (zd−Cy(0), C[y(v)− y(0)])Z .

Then
J(v) = π(v,v)−2F(v)+ ||zd−Cy(0)||2Z .

Since ||C[y(v)− y(0)]||2
Z
≥ 0, owing to (18.33) we obtain

π(v,v)≥ ν||v||2U ∀v ∈U .

By doing so we have cast the control problem in the general formulation addressed
in Sect. 18.4. Then Theorem 18.1 guarantees existence and uniqueness of the control
function u ∈Uad .

At this stage we would like to study the structure of the equations useful to the so-
lution of the control problem. Thanks to Theorem 18.1, and since A is an isomorphism
between V and V ′ (see Definition 2.4), we have

y(u) = A−1( f +Bu),
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whence y′(u)ψ = A−1Bψ and therefore

y′(u)(v− u) = A−1B(v−u) = y(v)− y(u).

Since the optimal control must satisfy (18.22), dividing by 2 inequality (18.22) we
obtain, thanks to (18.35)

(Cy(u)− zd, C[y(v)− y(u)])Z +(Nu,v− u)U ≥ 0 ∀v ∈Uad . (18.36)

Let now C′ ∈L (Z ′,V ′) be the adjoint of the operator C ∈L (V ,Z ) (see (2.20)).
Then

Z 〈Cy,v〉Z ′ = V 〈y,C′v〉V ′ ∀y ∈ V , ∀v ∈Z
′,

hence (18.36) becomes

V ′ 〈C′ΛZ (Cy(u)− zd), y(v)− y(u)〉V +(Nu,v− u)U ≥ 0 ∀v ∈Uad , (18.37)

whereΛZ denotes the canonical Riesz isomorphism from Z to Z ′ (see (2.5)). Let us
now introduce the adjoint operator A′ ∈L (V ,V ′) of A

V ′ 〈A′ϕ ,ψ〉V = V 〈ϕ ,Aψ〉V ′ ∀ϕ ,ψ ∈ V .

This operator was denoted with the symbol A∗ in Sect. 3.5 (see the Lagrange identity
(3.42)). Owing to (3.40) and (3.41) we obtain

V ′ 〈A′ϕ ,ψ〉V = a(ψ ,ϕ) ∀ϕ ,ψ ∈ V . (18.38)

We define adjoint state (or adjoint variable) p(u) ∈ V the solution of the adjoint
equation

A′p(u) = C′ΛZ (Cy(u)− zd), (18.39)

with u ∈U . Thanks to (18.39), we obtain

V ′ 〈C′ΛZ (Cy(u)− zd), y(v)− y(u)〉V =

V ′ 〈A′p(u),y(v)− y(u)〉V =

(thanks to the definition of A′) V 〈p(u),A(y(v)− y(u))〉V ′ =

(thanks to (18.28)) V 〈p(u),B(v− u)〉V ′ = U ′ 〈B′p(u),v− u〉U ,

where B′ ∈L (V ,U ′) is the adjoint operator of B (see (2.20)). It follows that, with
the help of the Riesz canonical isomorphism ΛU of U and U ′ (see again (2.5)),
inequality (18.22) can be rewritten as

1
2

J′(u)(v− u) = (Λ−1
U

B′p(u)+Nu,v− u)U ≥ 0 ∀v ∈Uad . (18.40)

In the case of unconstrained control, that is when Uad = U , the last inequality
becomes in fact an equality, that is

B′p(u)+ΛU Nu = 0. (18.41)
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This follows by taking v= u−(Λ−1
U

B′p(u)+Nu) in (18.40). In the case where V ⊂U

the previous equation implies that

b(v, p)+ n(u,v) = 0 ∀v ∈ V .

The final result is recapped in the following Theorem ([Lio71, Chap. 2, Thm. 1.4]).

Theorem 18.3. A necessary and sufficient condition for the existence of an op-
timal control u ∈ Uad is that the following equations and inequalities hold (see
(18.28), (18.39), (18.40)):⎧⎪⎨⎪⎩

y = y(u) ∈ V , Ay(u) = f +Bu,

p = p(u) ∈ V , A′p(u) =C′Λ(Cy(u)− zd),

u ∈Uad , (Λ−1
U

B′p(u)+Nu,v−u)U ≥ 0 ∀v ∈Uad ,

(18.42)
or, in weak form:⎧⎪⎨⎪⎩

y = y(u) ∈ V , a(y(u),ϕ) = ( f ,ϕ)+ b(u,ϕ) ∀ϕ ∈ V ,

p = p(u) ∈ V , a(ψ , p(u)) = (Cy(u)− zd,Cψ)Z ∀ψ ∈ V ,

u ∈Uad , (Λ−1
U

B′p(u)+Nu,v− u)U ≥ 0 ∀v ∈Uad .

(18.43)
This is called the optimality system.
If N is symmetric and positive definite, then the control u is unique; on the other
hand, if N = 0 and Uad is bounded, then there exists at least one solution, and
the family of optimal controls forms a closed and convex subset X of Uad.
The third condition of (18.42) can be expressed as follows

(Λ−1
U

B′p(u)+Nu,u)U = inf
v∈Uad

(Λ−1
U

B′p(u)+Nu,v)U . (18.44)

Finally,
1
2

J′(u) = B′p(u)+ΛU Nu. (18.45)

Remark 18.3. Apart from the term depending on the form N, J′ can be obtained from
the adjoint variable p through the operator B′. This result will stand at the base of the
numerical methods which are useful to determine an approximate control function. If
Uad = U , then the optimal control satisfies

Nu =−Λ−1
U

B′p(u) . (18.46)

Thanks to identity (2.24) we have

Λ−1
U

B′ = BTΛV , (18.47)

where ΛV is the Riesz canonical isomorphism from V to V ′ and BT : V ′ →U is the
transpose operator of B introduced in (2.22). •
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18.6 Some examples of optimal control problems

In this section we introduce three examples of optimal control problems.

18.6.1 A Dirichlet problem with distributed control

Let us recover the example of distributed control (18.12) and consider the following
cost functional (to be minimized)

J(v) =
∫
Ω
(y(v)− zd)

2 dΩ +(Nv,v), (18.48)

in which, for instance, we can set N = νI, ν > 0. In this case V = H1
0 (Ω), H =

L2(Ω), U =H (then (Nv,v) = (Nv,v)U ) thereforeΛU is the identity operator. More-
over, B is the identity operator, C is the injection operator of V in H , Z = H and
thereforeΛZ is the identity operator. Finally, a(u,v) =

∫
Ω ∇u ·∇v dΩ . Owing to The-

orem 18.3 we obtain, with A =−Δ , the following optimality system:⎧⎪⎪⎪⎨⎪⎪⎪⎩
y(u) ∈ H1

0 (Ω) : Ay(u) = f + u in Ω ,

p(u) ∈ H1
0 (Ω) : A′p(u) = y(u)− zd in Ω ,

u ∈Uad :
∫
Ω
(p(u)+Nu)(v− u) dΩ ≥ 0 ∀v ∈Uad .

(18.49)

In the unconstrained case in which Uad = U (= L2(Ω)), the last inequality reduces
to the equation

p(u)+Nu = 0,

as we can see by taking v = u− (p(u)+Nu).
The first two equations of (18.49) provide a system for the two variables y and p{

Ay+N−1p = f in Ω , y = 0 on ∂Ω ,

A′p− y =−zd in Ω , p = 0 on ∂Ω ,

whose solution provides the optimal control u =−N−1 p.
If Ω has a smooth boundary, by the elliptic regularity property both y and p belong to
the space H2(Ω). Since N−1 maps H2(Ω) into itself, the optimal control u belongs to
H2(Ω), too.

18.6.2 A Neumann problem with distributed control

Consider now the problem⎧⎨⎩
Ay(u) = f + u in Ω ,

∂y(u)

∂nA
= g on ∂Ω ,

(18.50)
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for given f ∈ L2(Ω) and g ∈ H−1/2(∂Ω), where A is an elliptic operator and ∂
∂nA

is the conormal derivative associated with A (see (3.34)). The cost functional to be
minimized is the one introduced in (18.48). In this case V = H1(Ω), H = L2(Ω),
U = H , B is the identity operator, C is the injection map of V into H ,

a(ψ ,ϕ) = V ′ 〈Aψ ,ϕ〉V , F(ϕ) =

∫
Ω

fϕ dΩ +

∫
∂Ω

gϕ dγ.

If Aϕ =−Δϕ+βϕ , with β > 0, then

a(ψ ,ϕ) =
∫
Ω
∇ψ ·∇ϕ dΩ +

∫
Ω
βψϕ dΩ .

The variational formulation of the state problem (18.50) is

find y(u) ∈H1(Ω) : a(y(u),ϕ) = F(ϕ) ∀ϕ ∈ H1(Ω). (18.51)

The adjoint problem is the following Neumann problem⎧⎪⎨⎪⎩
A′p(u) = y(u)− zd in Ω ,

∂ p(u)

∂nA′
= 0 on ∂Ω .

(18.52)

The optimal control can be obtained by solving the system formed by (18.50), (18.52),
and

u ∈Uad :
∫
Ω
(p(u)+Nu)(v− u) dΩ ≥ 0 ∀v ∈Uad . (18.53)

18.6.3 A Neumann problem with boundary control

Consider now the problem⎧⎨⎩
Ay(u) = f in Ω ,

∂y(u)

∂nA
= g+u on ∂Ω ,

(18.54)

where the operator is the same as before and the cost functional is still that of (18.48).
In this case,

V = H1(Ω), H = L2(Ω), U = H−1/2(∂Ω).

For all u ∈ U , Bu ∈ V ′ is given by V ′ 〈Bu,ϕ〉V =
∫
∂Ω uϕ dγ , and C is the injection

map of V in H .
The weak formulation of (18.54) is

find y(u) ∈H
1(Ω) : a(y(u),ϕ) =

∫
Ω

fϕ dΩ +

∫
∂Ω

(g+u)ϕ dγ ∀ϕ ∈H
1(Ω).
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The adjoint problem is still given by (18.52), while the variational inequality yielding
the optimal control is the third of (18.42). The interpretation of this inequality is far
from trivial. If we choose

(u,v)U =

∫
∂Ω

(−Δ∂Ω )−1/4u (−Δ∂Ω )−1/4v dγ =
∫
∂Ω

(−Δ∂Ω )−1/2u v dγ

as scalar product in U , where Δ∂Ω is the Laplace–Beltrami operator (see, e.g.,
[QV94]), it can be proven that the third inequality of (18.42) is equivalent to (see
[Lio71, Chap. 1, Sect. 2.4])∫

∂Ω
(p(u)|∂Ω +(−Δ∂Ω )−1/2Nu)(v−u) dγ ≥ 0 ∀v ∈Uad .

In Tables 18.1 and 18.2 we summarize the main conclusions that were drawn for
the problems just considered.

Table 18.1. Summary of Dirichlet control problems

Dirichlet

conditions
Distributed Observation Boundary Observation

Distributed
Control

{
Ay = f +u in Ω
y = 0 on ∂Ω

J(y,u) =
∫
Ω

(y− zd)
2dΩ +ν

∫
Ω

u2dΩ

{
A′p = y− zd in Ω
p = 0 on ∂Ω

1
2

J′(u) = p(u)+νu in Ω

{
Ay = f +u in Ω
y = 0 on ∂Ω

J(y,u) =
∫
∂Ω

(
∂y

∂nA
− zd)

2dγ + ν
∫
Ω

u2dΩ

⎧⎨⎩ A′p = 0 in Ω

p =−( ∂y

∂nA
− zd) on ∂Ω

1
2

J′(u) = p(u)+νu in Ω

Boundary
Control

{
Ay = f in Ω
y = u on ∂Ω

J(y,u) =
∫
Ω

(y− zd)
2dΩ +ν

∫
∂Ω

u2dγ

{
A′p = y− zd in Ω
p = 0 on ∂Ω

1
2

J′(u) =− ∂ p

∂nA′
+νu on ∂Ω

{
Ay = f in Ω
y = u on ∂Ω

J =
∫
∂Ω

(
∂y

∂nA
− zd)

2dγ+ν
∫
∂Ω

u2dγ

⎧⎨⎩ A′p = 0 in Ω

p =−( ∂y
∂nA

− zd) on ∂Ω

1
2

J′(u) =− ∂ p

∂nA′
+νu on ∂Ω
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Table 18.2. Summary of Neumann control problems

Neumann

conditions
Distributed Observation Boundary Observation

Distributed
Control

⎧⎨⎩ Ay = f +u in Ω
∂y
∂nA

= g on ∂Ω

J(y,u) =
∫
Ω

(y− zd)
2dΩ +ν

∫
Ω

u2dΩ

⎧⎨⎩ A′p = y− zd in Ω
∂ p

∂nA′
= 0 on ∂Ω

1
2

J′(u) = p+νu inΩ

⎧⎨⎩ Ay = f +u in Ω
∂y

∂nA
= g on ∂Ω

J(y,u) =
∫
∂Ω

(y− zd)
2dγ+ν

∫
Ω

u2dΩ

⎧⎨⎩ A′p = 0 in Ω
∂ p

∂nA′
= y− zd on ∂Ω

1
2

J′(u) = p+νu in Ω

Boundary
Control

⎧⎨⎩ Ay = f in Ω
∂y

∂nA
= g+u on ∂Ω

J(y,u) =
∫
Ω

(y− zd)
2dΩ +ν

∫
∂Ω

u2dγ

⎧⎨⎩ A′p = y− zd in Ω
∂ p

∂nA′
= 0 on ∂Ω

1
2

J′(u) = p+νu on ∂Ω

⎧⎨⎩ Ay = f in Ω
∂y

∂nA
= g+u on ∂Ω

J(y,u) =
∫
∂Ω

(y− zd)
2dΩ +ν

∫
∂Ω

u2dγ

⎧⎨⎩ A′p = 0 in Ω
∂ p

∂nA′
= y− zd on ∂Ω

1
2

J′(u) = p+νu on ∂Ω

18.7 Numerical tests

In this section we present some numerical tests for the solution of 1D optimal control
problems similar to those summarized in Tables 18.1 and 18.2. We postpone unitil
Sect. 18.3 the description of the numerical tecniques that are used for the approxima-
tion of y, p and u.
For all numerical simulations we consider the domain Ω = (0,1), a simple diffusion-
reaction operator A

Ay =−μy′′+ γy,

and the very same cost functional considered in the tables, with a regularization coeffi-
cient ν = 10−2 (unless otherwise specified). We discretize both state and adjoint prob-
lems by means of piecewise-linear finite elements, with grid-size h= 10−2; for solving
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Fig. 18.3. Case D1. Initial and optimal state variables and the desired function (left); optimal
control function (right)

Table 18.3. Case D1. Number of iterations and optimal cost functional corresponding to differ-
ent values of ν

ν it J ν it J ν it J

10−2 11 0.0202 10−3 71 0.0047 10−4 349 0.0011

the minimization problem we use the conjugate gradient method with an acceleration
parameter τk initialized with τ0 = τ and then, when necessary for the convergence,
reduce it by 2 at every subsequent step. This satisfies the Armijo rule (see Sect. 18.9).
The tolerance tol for the iterative method is fixed to 10−3, with the following stopping
criterium ‖J′(uk)‖< Tol‖J′(u0)‖.
• Case D1 (Table 18.1 top left): distributed control and observation, with Dirichlet

boundary conditions. We assume

μ = 1, γ = 0, f = 1, u0 = 0, zd =

{
x x≤ 0.5
1− x x > 0.5

, τ = 10.

The value of the cost functional for u0 is J0 = 0.0396. Ater 11 iterations we obtain
the optimal cost functional J = 0.0202. In Fig. 18.3 we report the state variable for
the initial and optimal control u and the desired function zd (left), and the optimal
control function (right).
As displayed in Table 18.3, the number of iterations increases as ν decreases. In
the same Table, we also report, for the sake of comparison, the values of the cost
functional J corresponding to the optimal value of u for different values of ν .
In Fig. 18.4 we report the optimal state (left) and the control functions (right)
obtained for different values of ν .

• Case D2 (Table 18.1 top right): distributed control and boundary observation, with
Dirichlet boundary condition. We consider μ = 1, γ = 0, f = 1, u0 = 0, while the
target function zd is such that zd(0) = −1 and zd(1) = −4; finally, τ = 0.1. At
the initial step we have J = 12.5401 and after 89 iterations J = 0.04305; we can
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Fig. 18.4. Case D1. Optimal state variables y2 (for ν = 1e− 2), y3 (for ν = 1e− 3), y4 (for
ν = 1e−4) and desired function zd (left); optimal control u2 (for ν = 1e−2), u3 (for ν = 1e−3),
u4 (for ν = 1e−4) (right)
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Fig. 18.5. Case D2. Initial and optimal state variables (left); optimal control variable (right)

observe how the normal derivative of the state variable is “near” the desired value
zd

[
μ ∂y
∂n (0),μ

∂y
∂n(1)

]
= [−1.0511,−3.8695]. In Fig. 18.5 we report the initial and

optimal state (left) and the corresponding optimal control function (right).
• Case D3 (Table 18.1 bottom left): boundary control and distributed observation,

with Dirichlet boundary condition. We consider μ = 1, γ = 0, f = 1, initial control
u0 such that u0(0) = u0(1) = 0, zd = −1− 3x and τ = 0.1. The initial functional
value is J = 0.4204, after 55 iterations we have J = 0.0364 and the optimal control
on the boundary is [u(0),u(1)] = [0.6638,0.5541]. In Fig. 18.6, left, we report the
initial and final state variables and the desired observation function.

• Case D4 (Table 18.1 bottom right): boundary control and observation, with Dirich-
let boundary condition. We assume μ = 1, γ = 0, f = 1, initial control u0 such
that u0(0) = u0(1) = 0, while the target function zd is such that zd(0) = −1 and
zd(1) = −4; finally, τ = 0.1. For it = 0 the cost functional value is J = 12.5401,
after only 4 iterations J = 8.0513 and the optimal control on the boundary is
[u(0),u(1)] = [0.7481,−0.7481]. In Fig. 18.6, right, we report the state variable.
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Fig. 18.6. Left: Case D3. Initial and optimal state variables and desired observation function.
Right: Case D4. Initial and optimal state variables
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Fig. 18.7. Case N1. Initial and optimal state variables and the desired function (left); optimal
control variable (right)

• Case N1 (Table 18.2 top left): distributed control and observation, with Neumann
boundary condition. We consider μ = 1, γ = 1, f = 0, g =−1, u0 = 0, zd = 1, τ =
0.1. At the initial step we have J = 9.0053, after 18 iterations the cost functional
value is J = 0.0944. In Fig. 18.7 we report the state variable for the Neumann
problem (left) and the final optimal control (right).

• Case N2 (Table 18.2 top right): distributed control and boundary observation, with
Neumann boundary condition. We consider μ = 1, γ = 1 f = 0, the function g
such that g(0) = −1 and g(1) = −4, u0 = 0, while the target function zd is such
that zd(0) = zd(1) = 1; finally, τ = 0.1. For it = 0, J = 83.1329, after 153 iterations
J = 0.6280, the optimal state on the boundary is [y(0),y(1)] = [1.1613,0.7750]. In
Fig. 18.8 we report the state variable (left) and the optimal control variable (right).

• Case N3 (Table 18.2 bottom left): boundary control and distributed observation,
with Neumann boundary condition. We assume μ = 1, γ = 1, f = 0, initial control
u0 such that u0(0) = u0(1) = 0, zd = −1−3x, τ = 0.1. The initial cost functional
value is J = 9.0053, after 9 iterations we have J = 0.0461, and the optimal control
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Fig. 18.8. Case N2. Initial and optimal state variables (left); optimal control variable (right)
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Fig. 18.9. Left: Case N3. Initial and optimal state variables and desired observation function.
Right: Case N4. Initial and optimal state variables.

is [u(0),u(1)] = [1.4910,1.4910]. In Fig. 18.9, left, we report the state variable for
the initial and optimal control u, together with the desired observation function.

• Case N4 (Table 18.2 bottom right): boundary control and observation, with
Neumann boundary condition. We consider μ = 1, γ = 1, f = 0, g such that
g(0) = −1 and g(1) = −4, the initial control u0 such that u0(0) = u0(1) = 0,
while the target function zd such that zd(0) = zd(1) = 1; finally, τ = 0.1. At
the initial step J = 83.1329, after 37 iterations J = 0.2196, the optimal con-
trol is [u(0),u(1)] = [1.5817,4.3299] and the observed state on the boundary is
[y(0),y(1)] = [1.0445,0.9282]. In Fig. 18.9, right, we report the initial and opti-
mal state variables.
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18.8 Lagrangian formulation of control problems

In this section we present another methodological approach for the solution of optimal
control problems, based on Lagrange multipliers; this approach better highlights the
role played by the adjoint variable.

18.8.1 Constrained optimization in RnRnRn

Let us start by a simple example, the constrained optimization in Rn. Given two func-
tions f ,g ∈ C1(X), where X is an open set in Rn, we look for the extrema of f con-
strained to belong to

E0 = {x ∈ Rn : g(x) = 0}.

For simplicity of exposition we are considering the case where the constraint g is a
scalar function. We give the following definitions of regular points and of constrained
critical points:

Definition 18.1. A point x0 is said to be a regular point of E0 if

g(x0) = 0 and ∇g(x0) 	= 0.

Definition 18.2. A point x0 ∈ X is a constrained critical point if:

i) x0 is a regular point of E0;
ii) the directional derivative of f along the tangential direction to the constraint

g is null in x0.

On the basis of these definitions the following result holds:

Theorem 18.4. A regular point x0 of E0 is a constrained critical point if and only
if there exists λ0 ∈ R such that

∇ f (x0) = λ0∇g(x0).

We introduce the function L : X ×R �→ R, called the Lagrangian (or Lagrangian
functional),

L (x,λ ) = f (x)−λg(x).

From Theorem 18.4 we deduce that x0 is a constrained critical point if and only if
(x0,λ0) is a (free) critical point for L . The number λ0 is called Lagrange multiplier
and can be obtained, together with x0, by solving the system

∇L (x,λ ) = 0,
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that is {
Lx = ∇ f −λ∇g = 0,

Lλ =−g = 0.

18.8.2 The solution approach based on the Lagrangian

In this section we will extend the theory developed in Sect. 18.8.1 to optimal control
problems. Also in this context, the Lagrangian approach can be used as an alternative
to the approach “à la Lions” (see, for example, [BKR00]).
It is actually used to integrate the techniques of grid adaptivity based on a posteriori
error estimates with optimal control problems (see [BKR00, Ded04]).
The approach based on Lagrange multipliers is also widely used to solve shape opti-
mization problems in which the control is represented by the shape of the computa-
tional domain. The optimal control function u is therefore a function defined on the
boundary (or on a subset of it) which describes the optimal displacement from the
original position. The interested reader can consult, e.g., [Jam88, MP01, SZ91].
In Sect. 18.8.1 the approach based on the Lagrangian allows the determination of the
extrema of a function f with constraint g. Instead, in control problems we look for
a function u ∈Uad ⊂U satisfying the minimization problem (18.34), y(u) being the
solution of the state equation (18.28). As usual, A is an elliptic differential operator
applied to the state variable, while B is an operator applied to the control function
in the state equation. This problem can be regarded as a constrained minimization
problem, provided we state a suitable correspondence between the cost functional J
and the function f of Sect. 18.8.1), between the equation of state and the constraint
equation g = 0, and, finally, between the control function u and the extremum x.
We assume, for the sake of simplicity, that Uad = U . For a more general treatment,
see, e.g., [Gun03].
The solution of the optimal control problem can therefore be regarded as the search
for the (unconstrained) critical “points” of the following Lagrangian functional

L (y, p,u) = J(y(u),u) + V 〈 p, f +Bu−Ay(u) 〉V ′ , (18.55)

where p is the Lagrange multiplier. In this framework the (unconstrained) critical
points are represented by the functions y, p and u. The problem therefore becomes

find (y, p,u)∈V ×V ×U : ∇L (y, p,u)[(ψ ,ϕ ,φ)] = 0 ∀(ψ ,ϕ ,φ)∈V ×V ×U

that is ⎧⎪⎪⎨⎪⎪⎩
Lp(y, p,u)[ψ ] = 0 ∀ψ ∈ V ,

Ly(y, p,u)[ϕ ] = 0 ∀ϕ ∈ V ,

Lu(y, p,u)[φ ] = 0 ∀φ ∈U .

(18.56)

We have used the abridged notation Ly to indicate the Gâteaux derivative of L with
respect to y (see Definition 2.6). The notations Lp and Lu have a similar meaning.
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Consider now as an example a state equation of elliptic type with two linear operators
A and B that we rewrite in the weak form (18.29); given u ∈U and f ∈H ,

find y = y(u) ∈ V : a(y,ϕ) = ( f ,ϕ)+ b(u,ϕ) ∀ϕ ∈ V . (18.57)

The bilinear form a(·, ·) is associated with the operator A, b(·, ·) with B. The cost
functional to be minimized can be expressed as follows

J(y(u),u) = ||Cy(u)− zd||2 + n(u,u), (18.58)

where C is the operator that maps the state variable into the space Z of the observed
functions, zd is the target observation and n(·, ·) is the symmetric bilinear form associ-
ated to N. Thus far, no assumption was made on the boundary conditions, the kind of
control (either distributed or on the boundary) nor the kind of observation. This was
done on purpose in order to consider a very general framework. In weak form, (18.55)
becomes

L (y, p,u) = J(y(u),u)+b(u, p)+ ( f , p)− a(y, p).

Since⎧⎪⎪⎨⎪⎪⎩
Lp(y, p,u)[ϕ ] = ( f ,ϕ)+b(u,ϕ)− a(y,ϕ) ∀ϕ ∈ V ,

Ly(y, p,u)[ψ ] = 2(Cy− zd,Cψ)− a(ψ , p) ∀ψ ∈ V ,

Lu(y, p,u)[φ ] = b(φ , p)+ 2n(u,φ) ∀φ ∈U ,

(18.59)

(18.56) yields the optimality system⎧⎪⎪⎨⎪⎪⎩
y ∈ V : a(y,ϕ) = b(u,ϕ)+ ( f ,ϕ) ∀ϕ ∈ V ,

p ∈ V : a(ψ , p) = 2(Cy− zd,Cψ) ∀ψ ∈ V ,

u ∈U : b(φ , p)+2n(u,φ) = 0 ∀φ ∈U .

(18.60)

It is worth noticing that, upon rescaling p as p̃ = p/2, the variables (y, p̃,u) obtained
from (18.60) actually satisfy the system (18.43) obtained in the framework of Lions’
approach. Note that the vanishing of Lp yields the state equation (in weak form),
that of Ly generates the equation for the Lagrange multiplier (which can be identified
with the adjoint equation), and that of Lu yields the so-called sensitivity equation
expressing the condition that the optimum is achieved. The adjoint variable, that is
the Lagrange multiplier, is associated to the sensitivity of the cost functional J with
respect to the variation of the observation function, and therefore to the variation of
the control u.
It turns out to be very useful to express the Gâteaux derivative of the Lagrangian Lu

in terms of the derivative of the cost functional J with respect to u, (18.60), according
to what we have seen in Sect. 2.2. This correspondence is guaranteed by the Riesz
representation theorem (see Theorem 2.1). Indeed, since Lu[φ ] is a linear and bounded
functional, and φ belongs to the Hilbert space U , we can compute J′ case by case,
that is, from the third of (18.59), and from (18.45)

Lu[φ ] = (J′(u),φ)U = b(φ , p)+2n(u,φ).
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It is worth noticing how the adjoint equation is generated. According to Lions’ theory
the adjoint equation is based on the use of the adjoint operator (see equation (18.39)),
whereas when using the approach based on the Lagrangian we obtain it by differenti-
ating L with respect to the state variable. The adjoint variable p(u), when computed
on the optimal control u, corresponds to the Lagrange multiplier. In general, Lions’
method and the method based on the use of the Lagrangian do not lead to the same
definition of adjoint problem, so they give rise to numerical methods which can be-
have differently. For a correct solution of the optimal control problem it is therefore
essential to be coherent with the kind of approach that we are considering.
Another crucial issue is the derivation of the boundary conditions for the adjoint prob-
lem; the two different approaches may lead to different types of boundary conditions.
In particular, the approach based on the Lagrangian yields the boundary conditions for
the adjoint problem automatically, while this is not the case for the other approach.

18.9 Iterative solution of the optimal control problem

For the numerical solution of optimal control problems, two different paradigms can
be adopted:

• optimize-then-discretize: we first apply the iterative method, then discretize the
various steps of the algorithm, or

• discretize-then-optimize: we first discretize our optimal control problem and then
apply an iterative algorithm to solve its discrete version.

This discussion is deferred until Sect. 18.12. In this section we illustrate the way an
iterative algorithm can be used to generate a sequence that hopefully converges to the
optimal control function u.
As previously discussed, an optimal control problem can be formulated according to
the Lions approach, yielding the set of equations (18.43), or by means of the Lagrang-
ian, in which case the equations to be solved are (18.60). In either case we end up with
an optimality system made by:

i) the state equation,
ii) the adjoint equation,
iii) the equation expressing the optimality condition.

In particular, the third equation is related to the variation of the cost functional, ei-
ther explicitly in the Lions approach, or implicitly (through the Riesz representation
theorem) when using the Lagrangian approach. Indeed, in the case of linear elliptic
equations previously examined we obtain, respectively:

• 1
2 J′(u) = B′p(u)+ΛU Nu;

• Lu[φ ] = b(φ , p)+ 2n(u,φ) ∀φ ∈U .

In order to simplify our notation, in the remainder of this section we will use the
symbol J′ not only to indicate the derivative of the cost functional but also that of the



534 18 Optimal control of partial differential equations

Lagrangian, Lu[φ ]. The evaluation of J′ at a given point of the control region (Ω , Γ ,
or one of their subsets) provides an indication of the sensitivity of the cost functional
J (at that very point) with respect to the variations of the control function u. Otherwise
said, an infinitesimal variation δu of the control about a given value u, entails, up to
infinitesimals of higher order, a variation δJ of the cost functional that is proportional
to J′(u). This suggests the use of the following steepest descent iterative algorithm. If
uk denotes the value of the control function at step k, the control function at the next
step, k+1, can be obtained as follows

uk+1 = uk− τkJ′(uk), (18.61)

where J′ rappresents the descent direction, and τk the acceleration parameter. Al-
though not necessarily the most efficient, the choice (18.61) is however pedagogically
useful to understand the role played by J′ and therefore that of the adjoint variable p.
A method for the search of an optimal control can therefore be devised in terms of the
following iterative algorithm:

1. Find the expression of the adjoint equation and of the derivative J′ by either one
of the two approaches (Lions or Lagrangian);

2. Provide an initial guess u0 of the control function u;
3. Solve the equation of state in y using the above guess;
4. Knowing the state variable and the observation target zd , evaluate the cost func-

tional J;
5. Solve the adjoint equation for p, knowing y and zd ;
6. Knowing the adjoint variable, compute J′;
7. If the chosen stopping test is fulfilled (up to a given tolerance) then exit (jump to

point 10), otherwise continue;
8. Compute the parameter(s) for the acceleration of the iterative algorithm (for in-

stance τk);
9. Compute the new control function, e.g. through equation (18.61), and return to

point 3.;
10. Take the last computed variable to generate the "converged" unknowns u, y and p.

In Fig. 18.10 we display a flow chart that illustrates the above algorithm.

Remark 18.4. A convenient stopping test can be built on the measure of the distance,
in a suitable norm, between the observed variable z and the (desired) target observation
zd , say

||zk− zd||Z ≤ Tol.

However, in general this does not guarantee that J(uk)→ 0 as k → ∞. That is to say
that J might not converge to 0. A different stopping criterion is based on the evaluation
of the derivative of the cost functional

||J′(uk)||U ′ ≤ Tol.

The value of the tolerance must be sufficiently small with respect to both the value of
||J′(u0)|| on the initial control and the proximity to the target observation that we want
to achieve. •
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Fig. 18.10. Flow chart of a possible iterative algorithm for the solution of an optimal control
problem

Remark 18.5. The adjoint variable is defined on the whole computational domain. For
the evaluation of J′(u) it would be necessary to restrict the adjoint variable p on that
portion of the domain, or of its boundary, on which the control function u is defined.
See Tables 18.1 and 18.2 for several examples. •

The descent iterative method requires the determination of a suitable parameter τk.
The latter should guarantee that the convergence of the cost functional to its minimum

J∗ = inf
u∈U

J(u)≥ 0

is monotone, that is

J(uk − τkJ′(uk))< J(uk).
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In those cases in which the value of J∗ is known (e.g., J∗ = 0), then the parameter can
be chosen as follows (see, e.g., [Ago03] and [Vas81])

τk =
(J(uk)− J∗)
||J′(uk)||2

U ′
. (18.62)

As an example, consider the following control problem{
Ay = f +Bu,

infJ(u), where J(u) = ν||u||2U + ||Cy− zd||2Z , ν ≥ 0.

The previous iterative method becomes:⎧⎪⎪⎨⎪⎪⎩
Ayk = f +Buk,

A∗pk =C′(Cyk− zd),

uk+1 = uk− τk2(νuk +B′pk).

If Ker(B′A∗−1C′) = {0} this problem admits a solution, moreover J(u)→ 0 if ν→ 0.
Thus, if ν � 0+ we can assume that J∗ � 0, whence, thanks to (18.62),

τk =
J(uk)

||J′(uk)||2
U ′

=
ν||uk||2

U
+ ||Cyk− zd ||2Z

||2νuk +B′pk||2
U ′

. (18.63)

When considering a discretized optimal control problem, for instance using the
Galerkin–finite element method, as we will see in Sect. 18.12, instead of looking for
the minimum of J(u), with J : U �→ R, one looks for the minimum of J(u), where
J : Rn �→ R and u ∈ Rn is the vector whose components are the nodal values of the
control u ∈U . We will make this assumption in the remainder of this section.
As previously noted, the steepest descent method (18.61) is one among several itera-
tive algorithms that could be used for the solution of an optimal control problem. As
a matter of fact, this method is a special case of gradient method

uk+1 = uk + τkdk, (18.64)

where dk represents a descent direction, that is a vector that satisfies

dkT · J′(uk)< 0 if ∇J(uk) 	= 0.

Depending upon the criterion that is followed to choose dk, we obtain several special
cases:

• Newton method, for which

dk =−H(uk)−1∇J(uk),

where H(uk) is the Hessian matrix of J(u) computed at u = uk;
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• quasi–Newton methods, for which

dk =−Bk∇J(uk),

where Bk is an approximation of the inverse of H(uk);
• conjugate gradient method, for which

dk =−∇J(uk)+βkdk−1,

where βk is a scalar to be chosen in such a way that dkT
dk−1 = 0. (See also Chap. 7.)

Once dk is computed, the parameter τk should be chosen in such a way to guarantee
the monotonicity property

J(uk + τkdk)< J(uk). (18.65)

A more stringent requirement is that the following scalar minimization problem is
solved

find τk : φ(τk) = J(uk + τkdk) minimum;

this would guarantee the following orthogonality property

dkT ·∇J(uk) = 0.

Often, the computation of τk is based on heuristic methods. One way is to start from a
relatively large value of the parameter τk, which is then halved until (18.65) is verified.
However, this approach is not always successful. The idea is therefore to adopt more
stringent criteria than (18.65) when choosing τk, with the aim of achieving on one
hand a high convergence rate, and on the other avoiding too small steps. The first goal
is achieved by requiring that

J(uk)− J(uk + τkdk)≥−στkdkT ·∇J(uk), (18.66)

for a suitable σ ∈ (0,1/2). This inequality ensures that the average rate of decrease
of J at uk+1 along the direction dk is at least equal to a given fraction of the initial
decrease rate at uk. On the other hand, too small steps are avoided by requiring that

|dkT ·∇J(uk + τkdk)| ≤ β |dkT ·∇J(uk)|, (18.67)

for a suitable β ∈ (σ ,1), so to guarantee that (18.66) is satisfied, too. In practice,
σ ∈ [10−5,10−1] and β ∈ [10−1,1/2]. Several strategies can be chosen for the choice
of τk that are compatible with conditions (18.66) and (18.67). A popular one is based
on the Armijo formulae (see, e.g. [MP01]): for fixed σ ∈ (0,1/2), β ∈ (0,1) and τ̄ > 0,
one chooses τk = βmk τ̄ , mk being the first non-negative integer for which (18.66) is
satisfied. One can even take τk = τ̄ for all k, at least in those cases in which the
evaluation of the cost functional J is very involved.
For a more comprehensive discussion on this issue see, e.g., [GMSW89, KPTZ00,
MP01, NW06].
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18.10 Numerical examples

In this section we illustrate two examples of control problems inspired by real life ap-
plications. Both problems are analyzed by means of the Lagrangian approach outlined
in Sect. 18.8.2; for simplicity the optimal control function is in fact a scalar value.

18.10.1 Heat dissipation by a thermal fin

Thermal fins are used to dissipate the heat produced by some devices with the goal
of maintaining their temperature below some limit values. Typically, they are used for
electronic devices such as transistors; when active, and depending on the electrical
power, the latter could incur in failure with a higher frequency when the operational
temperature increases. This represents a major issue when designing the dissipator,
which is often used in combination with a fan able to improve considerably the thermal
dissipation via forced convection, thus controlling the temperature of the device. For
further details we refer the reader e.g. to [Ç07]; for another example in the field of
parametrized problems see [OP07].
In our example, we aim at regulating the intensity of the forced convection associated
with the fan in order to keep the temperature of the transistor as close as possible to a
desired value. The control is represented by the scalar coefficient of forced convection,
while the observation is the temperature on the boundary of the thermal fin which is
in contact with the transistor.

Let us consider the following state problem, whose solution y (in Kelvin degrees
[K]) represents the temperature in the thermal fin⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−∇ · (k∇y) = 0 in Ω ,

−k
∂y

∂n
=−q on ΓN ,

−k
∂y

∂n
= (h+U)(y− y∞) on ΓR = ∂Ω\ΓN ,

(18.68)

where the domain Ω and its boundary are reported in Fig. 18.11. The coefficient k
([W/(mm K)]) represents the thermal conductivity (aluminium is considered in this
case), while h and U (our control variable) are the natural and forced convection co-
efficients ([W/(mm2 K)]), respectively. Let us remark that when the fan is active, the
value of U is greater than zero; if U = 0 heat dissipation is due only to natural con-
vection. The temperature y∞ corresponds to the temperature of the air far away from
the dissipator, while q ([W/mm2]) is the heat per unit of area emitted by the transistor
and entering in the thermal fin through the boundary ΓN .
The weak form of problem (18.68) reads, for a given U ∈U = R

find y ∈ V : a(y,ϕ ;U) = b(U,ϕ) ∀ϕ ∈ V , (18.69)

where V = H1(Ω), a(ϕ ,ψ ;φ) =
∫
Ω k∇ϕ ·∇ψ dΩ+

∫
ΓR
(h+φ)ϕψ dγ and b(φ ,ψ) =∫

ΓR
(h+φ)y∞ψ dγ+

∫
ΓN

qψ dγ . Existence and uniqueness of the solution of the Robin-
Neumann problem (18.69) are ensured by the Peetre-Tartar lemma (see Remark 3.5).
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Fig. 18.11. Thermal fin: computational domain; unit measure in mm

The optimal control problem consists in finding the value of the forced convection
coefficient U such that the following cost functional J(y,U) is smallest, y ∈ V being
the solution of (18.69)

J(y,U) = ν1

∫
ΓN

(y− zd)
2 dγ+ν2U2. (18.70)

This leads to keeping the temperature of the transistor as close as possible to the
desired value zd ([K]) and the forced convection coefficient close to zero depending
on the value of the coefficient ν2 > 0; in particular we assume ν1 = 1/

∫
ΓN

z2
d dγ and

ν2 = ν0
2/h2, for a suitable ν0

2 .
The analysis of the problem is carried out by means of the Lagrangian functional
L (y, p,U) = J(y,U)+b(p;U)−a(y, p;U). In particular, we obtain via differentiation
of L (·) the following adjoint equation for a given U ∈ R and the corresponding y =
y(U) ∈ V

find p ∈ V : a(ψ , p;U) = c(y,ψ) ∀ψ ∈ V , (18.71)

where c(ϕ ,ψ) = 2ν1
∫
ΓN
(ϕ − zd)ψ dγ . Similarly, from the optimality condition we

deduce that

J′(U) = 2ν2U−
∫
ΓR

(y(U)− y∞)p(U) dγ. (18.72)

We assume now k = 2.20 W/(mm K), h= 15.0 ·10−6 W/(mm2 K), y∞ = 298.15 K
(= 25 ◦C), zd = 353.15 K (= 80 ◦C) and ν0

2 = 10−3. The problem is solved by means
of the finite element method with piecewise quadratic basis functions on a triangular
mesh with 1608 elements and 934 degrees of freedom. The steepest descent iterative
method is used for the optimization with τk = τ = 10−9 (see (18.61)); the iterative
procedure is stopped when |J′(Uk)|/|J′(U0)|< tol = 10−6. At the initial step we con-
sider natural convection for the dissipation of the heat such that U = 0.0, to which
corresponds a cost functional J = 0.0377. The optimum is reached after 132 iterations
yielding the optimal cost functional J = 0.00132 for the optimal value of the forced
convection coefficient U = 16.1 · 10−6 W/(mm2 K). Ideally, the fan should be de-
signed in order to warrant this value of the forced convection coefficient. In Fig. 18.12
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Fig. 18.12. Thermal fin: state solution (temperature [◦C]) at the initial step (natural convection)
(left) and at the optimum (right)

we display the state solution at the initial step and that at the optimum; we observe
that the temperature on ΓN is not equal to zd , because ν0

2 	= 0.

18.10.2 Thermal pollution in a river

Industrial activities are often related with pollution phenomena which need to be prop-
erly taken into account while designing a new plant or planning its operations. In this
field, thermal pollution could often affect a river or a channel used for cooling the hot
liquids produced by industrial plants, thus affecting the vital flora and fauna.
In this case the goal could consist in regulating the heat emission in a branch of a river
in order to maintain the temperature of the river close to a desired threshold without
considerably affecting the ideal heat emission rate of the plant.

We introduce the following state problem, whose solution y represents the temper-
ature in the channels and branches of the river considered⎧⎪⎪⎨⎪⎪⎩

∇ · (−k∇y+Vy) = f χ1 +Uχ2 in Ω ,

y = 0 on ΓIN ,

(−k∇y+Vy) ·n = 0 on ΓN .

(18.73)

The domain Ω and the boundary ΓIN are indicated in Fig. 18.13, while ΓN = ∂Ω\ΓIN

(note that the outflow boundary ΓOUT displayed in Fig. 18.13 is part of ΓN). χ1, χ2

and χOBS represent the characteristic functions of the subdomains Ω1, Ω2 and ΩOBS,
respectively. Dimensionless quantities are considered for this test case. The coefficient
k is the thermal diffusivity coefficient, which also accounts for the contribution to the
diffusion of turbulence phenomena, while V is the advection field which describes
the motion of the water in the domain Ω (we comment later on the way to find it).
The source term f ∈ R and the control U ∈U = R represent the heat emission rates
from two industrial plants; f is given, whereas U has to be determined on the basis of
the solution of the optimal control problem. In particular, we want the following cost
functional to be minimized

J(y,U) =

∫
ΩOBS

(y− zd)
2 dΩ +ν(U−Ud)

2, (18.74)
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Fig. 18.13. Pollution in the river: computational domain

where zd is the desired temperature in ΩOBS, Ud the ideal heat emission rate and ν > 0
is chosen conveniently.
The optimal control problem is set up by means of the Lagrangian approach. With this
aim, (18.73) is rewritten in weak form, for a given U , as

find y ∈ V : a(y,ϕ) = b(U,ϕ) ∀ϕ ∈ V , (18.75)

where V = H1
ΓIN

(Ω), a(ϕ ,ψ) =
∫
Ω k∇ϕ · ∇ψ dΩ and b(U,ψ) = f

∫
Ω1
ψ dΩ +

U
∫
Ω2
ψ dΩ . Existence and uniqueness of the solution of problem (18.75) can be

proved by proceeding as indicated in Sect. 3.4.
The Lagrangian functional is L (y, p,U) = J(y,U)+b(U, p)−a(y, p). Differentiating
L (·) in y ∈ V we obtain the adjoint equation

find p ∈ V : a(ψ , p) = c(y,ψ) ∀ψ ∈ V , (18.76)

where c(ϕ ,ψ) = 2
∫
ΩOBS

(ϕ− zd)ψ dΩ . Similarly, we deduce the following derivative
of the cost functional

J′(U) = 2ν(U−Ud)+
∫
Ω2

p(U) dΩ . (18.77)

We assume now k = 0.01, f = 10.0, zd = 0 and Ud = f . The advection field V

is deduced by solving the Navier–Stokes equations (see Chap. 17) in the domain Ω ,
with the following boundary conditions: on ΓIN a parabolic profile is prescribed for
the velocity, with a maximum velocity equal to 1; on ΓOUT no stress conditions are
assumed in the normal direction, together with the slip condition V ·n = 0; finally, no-
slip conditions are prescribed on ∂Ω\(ΓIN ∪ΓOUT ). The notations are those displayed
in Fig. 18.13. The Reynolds number is equal to Re= 500. The Navier–Stokes problem
is solved by means of the Taylor–Hood P2–P1 (see Sect. 17.4) pairs of finite elements
on a mesh composed by 32248 triangles and 15989 nodes. In Fig. 18.14 we report the
intensity of the advection field V and the corresponding streamlines.
The optimal control problem is solved by means of the finite element method with
P2 basis functions on a triangular mesh with 32812 elements and 16771 degrees of
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Fig. 18.14. Pollution in the river: intensity of the advection field V, modulus (left) and stream-
lines (right)

Fig. 18.15. Pollution in the river: state solution (temperature), at the initial step (U =Ud) (left)
and at the optimum (right)

freedom, using the steepest descent method for the functional optimization; we select
τk = τ = 5 (see (18.61)) and the stopping criterium is |J′(Uk)|/|J′(U0)|< tol = 10−6.
The advection field V obtained by solving the Navier–Stokes equations is interpolated
on this new mesh. At the initial step we assume that U = Ud , thus obtaining a cost
functional J = 1.884. The optimal solution is obtained after 15 iterations, the corre-
sponding optimal cost functional is J = 1.817 obtained for an optimal heat emission
rate of U = 6.685. In practice the heat from the plant inΩ2 should be reduced in order
to maintain the temperature in ΩOBS low. In Fig. 18.15 we report the state solutions y
(temperature) before and after optimization.

18.11 A few considerations about observability and controllability

A few considerations can be made on the behaviour of iterative methods with respect
to the kind of optimal control problem that we are solving, particularly on which kind
of variable z we are observing, and which kind of control function u we are using.
Briefly, on the relationship between observability and controllability. We warn the
reader that the conclusions that we are going to draw are not supported by a general
theory, nor they apply to any kind of numerical discretization method.

• Where we observe. In general, optimal control problems based on an observation
variable distributed in the domain enjoy higher convergence rate than those for
which the observation variable is concentrated on the domain boundary.

• Where we control. In general, the optimization process is more robust if also the
control function is distributed in the domain (as a source term to the state equation,
or as coefficient of the differential operator governing the state equation), rather
than being concentrated on the domain boundary. More precisely, the convergence
rate is higher and its sensitivity to the choice of the acceleration parameter lower
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for distributed control problems than for boundary control ones, provided of course
all other parameters are the same.

• What we observe. Also the kind of variable that we observe affects the convergence
behaviour of the iterative scheme. For instance, observing the state variable is less
critical than observing either its gradients or some of its higher-order derivatives.
The latter circumstance occurs e.g., in fluid dynamics problems, when for poten-
tial problems one observes the velocity field, or for Navier-Stokes equations one
observes the fluid vorticity or its stresses.

• Shape optimization. Shape optimization problems are a special class of optimal
control problems: as a matter of fact, in this case the control function is not only
on the boundary, it is the boundary itself. The cost functional to be minimized is
called shape functional as it depends on the domain itself. One looks for

J(Ωopt) ≤ J(Ω) ∀Ω ∈Dad ,

where Dad is a set of admissible domains. Shape optimization problems are dif-
ficult to analyze theoretically and hard to solve numerically. The numerical grid
needs to be changed at every iteration. Besides, non-admissible boundary shapes
might be generated in the course of the iterations, unless additional geometrical
constraints are imposed. Moreover, special stabilization and regularization tech-
niques might be necessary to prevent numerical oscillations in the case of espe-
cially complex problems. More in general, shape optimization problems are more
sensitive to the variation of the various parameters that characterize the control
problem.

• Adjoint problem and state problem. For steady elliptic problems like those con-
sidered in this chapter, the use of the adjoint problem provides the gradient of
the cost functional at the same computational cost of the state problem. This ap-
proach can be considered as an alternative to those based on inexact or automatic
differentiation of the cost functional. In the case of shape optimization problems
the use of the adjoint problem allows a computational saving with respect to the
method based on the shape sensitivity analysis, as the latter depends on the (often
prohibitive) number of parameters that characterize the shape (the control points).
See, e.g., [KAJ02].

18.12 Two alternative paradigms for numerical approximation

Let us start by considering a simple example that illustrates some additional difficulties
that arise when solving an optimal control problem numerically. For a more insightful
analysis of the numerical discretization of optimal control problems, see, e.g., [FCZ03,
Gun03].
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Consider again the state equation (18.1) and the optimal control problem

“find u ∈Uad such that

J(u)≤ J(v) ∀v ∈Uad ,

where J is a given cost functional”.

(18.78)

The question is: “How can this problem be conveniently approximated?” As already
anticipated at the beginning of Sect. 18.8, at least two alternative strategies can be
pursued:

1) Discretize–then–optimize

According to this strategy, we discretize first the control space Uad by a finite di-
mensional space Uad,h and the state equation (18.1) by a discrete equation written
for short, as

Ahyh(uh) = fh. (18.79)

In a finite element context, the parameter h denotes the finite element grid-size. We
assume that a “discrete state” yh(vh) exists for every “admissible” discrete control
vh ∈Uad,h.
At this stage we look for a discrete optimal control, that is a function uh ∈ Uad,h

such that
J(uh)≤ J(vh) ∀vh ∈Uad,h, (18.80)

or, more precisely,

J(yh(uh),uh)≤ J(yh(vh),vh) ∀vh ∈Uad,h. (18.81)

This corresponds to the following scheme

MODEL −→ DISCRETIZATION −→ CONTROL,

for which the “discretize–then–optimize” expression was coined.

2) Optimize–then–discretize

Alternatively we could proceed as follows. We start from the control problem
(18.1), (18.78) and we write down the corresponding optimality system based on
the Euler–Lagrange equations :

Ay(u) = f ,

A′p = G(y(u)),
(18.82)

for a suitable G which depends on the state y(u) and represents the right-hand side
of the adjoint problem, plus an additional equation (formally corresponding to the
third equation of (18.56)) relating the three variables y, p and u

Q(y, p,u) = 0. (18.83)

At this stage we discretize system (18.82), (18.83) and solve it numerically. This
corresponds to the following procedure:

MODEL −→ CONTROL −→ DISCRETIZATION,
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for which the expression “optimize–then–discretize” is used. With respect to the
former approach, here we have swapped the last two steps.

The two strategies do not necessarily yield the same results. For instance, in [IZ99] it
is shown that if the state equation is a dynamic problem that describes the vibrations
of an elastic structure and a finite element approximation is used, then the first strategy
yields wrong results. This can be attributed to the lack of accuracy of the finite element
method for high frequency solutions of the wave equation (see [Zie00]).
At the same time it was also observed that for several shape optimization problems in
optimal design, the former strategy should be preferred; see. e.g., [MP01, Pir84].

The strategy of choice certainly depends on the nature of the differential problem
at hand. In this respect, control problems governed by elliptic or parabolic PDEs are
less problematic than those governed by hyperbolic equations because of their intrin-
sic dissipative nature. See for a discussion [Zua03]. The reader should however keep
abreast of the many important developments expected in this field in the coming years.

18.13 A numerical approximation of an optimal control problem

for advection–diffusion equations

In this section we consider an optimal control problem for an advection–diffusion
equation formulated with the Lagrangian approach. For its numerical discretization the
two different strategies: “discretize–then–optimize” and “optimize–then–discretize”
will be considered. The numerical approximation will be based on stabilized finite el-
ement methods, as seen in Chapter 13. Besides, an a posteriori error analysis will be
carried out, according to the guidelines illustrated in Chapter 4. For more details we
refer to [QRDQ06, DQ05], and the references therein.

We consider the following advection-diffusion boundary-value problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩
L(y) =−∇ · (μ∇y)+V ·∇y= u in Ω ,

y = 0 on ΓD,

μ
∂y

∂n
= 0 on ΓN ,

(18.84)

where Ω is a two-dimensional domain, ΓD and ΓN provide a disjoint partition of the
domain boundary ∂Ω , u ∈ L2(Ω) is the control variable while μ and V are two given
functions (the former being a positive viscosity). Here ΓD = {x ∈ ∂Ω : V(x) · n(x)<
0} is the inflow boundary, n(x) is the outward unit normal, while ΓN = ∂Ω \ΓD is the
outflow boundary.
We assume that the observation function is restricted to a subdomain D⊆Ω and that
the optimal control problem reads

find u : J(u) =
∫

D
(gy(u)− zd)

2 dD minimum, (18.85)
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where g ∈ C∞(Ω) maps the variabile y into the space of observations, and zd is the
desired observation (the target). By setting

V = H1
ΓD

= {v ∈ H1(Ω) : v|ΓD
= 0} and U = L2(Ω),

the Lagrangian functional introduced in Sect. 18.8 becomes

L (y, p,u) = J(u)+F(p;u)−a(y, p), (18.86)

where:

a(ϕ ,ψ) =
∫
Ω
μ∇ϕ ·∇ψ dΩ +

∫
Ω

V ·∇ϕ ψ dΩ , (18.87)

F(ϕ ;u) =
∫
Ω

uϕ dΩ . (18.88)

By differentiating L with respect to the state variable y, we obtain the adjoint equation
(in weak form)

find p ∈ V : aad(p,ψ) = Fad(ψ ;ϕ) ∀ψ ∈ V , (18.89)

where:

aad(p,ψ) =
∫
Ω
μ∇p ·∇ψ dΩ +

∫
Ω

V ·∇ψ p dΩ , (18.90)

Fad(ψ ;y) =
∫

D
2(g y− zd) g ψ dD. (18.91)

Its differential (distributional) counterpart reads⎧⎪⎪⎨⎪⎪⎩
Lad(p) =−∇ · (μ∇p+Vp) = χDg (g y− zd) in Ω ,

p = 0 on ΓD,

μ
∂ p

∂n
+V ·n p = 0 on ΓN ,

(18.92)

where χD denotes the characteristic function of the region D. By differentiating L

with respect to the control function u, we obtain the optimality equation (see the third
equation of (18.56)), that is∫

Ω
φ p dΩ = 0 ∀φ ∈ L2(Ω). (18.93)

This equation provides the sensitivity J′(u) of the cost functional with respect to the
control variable. Denoting for simplicity this sensitivity by δu, in this case we obtain
δu = p(u) = p. Finally, by differentiating L with respect to the adjoint variable p, as
usual we obtain the state equation (in weak form)

find y ∈ V : a(y,ϕ) = F(ϕ ;u) ∀ϕ ∈ V . (18.94)
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18.13.1 The strategies “optimize–then–discretize” and

“discretize–then–optimize”

From a numerical viewpoint the minimization algorithm introduced in Sect. 18.9 re-
quires, at every step, the numerical approximation of both the state and the adjoint
boundary-value problems. For both problems we can use the stabilized Galerkin-Least-
Squares finite element formulations introduced in Sect. 13.8.6. The corresponding dis-
cretized equations respectively read:

find yh ∈ Vh : a(yh,ϕh)+ sh(yh,ϕh) = F(ϕh;uh) ∀ϕh ∈ Vh, (18.95)

sh(yh,ϕh) = ∑
K∈Th

∫
K
δKR(yh;uh) L(ϕh) dK, (18.96)

find ph ∈ Vh : aad(ph,ψh)+ sad
h (ph,ψh) = Fad(ψh;yh) ∀ψh ∈ Vh, (18.97)

sad
h (ph,ψh) = ∑

K∈Th

∫
K
δKRad(ph;yh) Lad(ψh) dK, (18.98)

where δK is a stabilization parameter, R(y;u) = L(y)− u, Rad(p;y) = Lad(p)−G(y),
with G(y) = 2χDg (g y− zd). This is the paradigm “optimize–then–discretize”; see
Sect. 18.12 and, for the specific problem at hand, [Bec01, CH01, Gun03].
In the paradigm “discretize–then–optimize” , the one that we will adopt in the fol-
lowing, we first discretize (by the same stabilized GLS formulation (Eq. (18.95) and
(18.96)), and then introduce the discrete Lagrangian functional

Lh(yh, ph,uh) = J(yh,uh)+F(ph;uh)− a(yh, ph)− sh(yh, ph). (18.99)

At this stage, by differentiating with respect to yh, we obtain the discrete adjoint equa-
tion (18.97), however this time the stabilization term is different, precisely

s
ad
h (ph,ψh) = ∑

K∈Th

∫
K
δKL(ψh) L(ph) dK. (18.100)

Now, by differentiating Lh with respect to uh and using the Riesz representation the-
orem (Theorem 2.1), we obtain, noting that uh ∈ Vh,

δuh = ph + ∑
K∈Th

∫
K
δKL(ph) dK.

In particular, the new stabilized Lagrangian reads [DQ05]

L
s

h (yh, ph,uh) = L (yh, ph,uh)+ Sh(yh, ph,uh), (18.101)

where we have set

Sh(y, p,u) = ∑
K∈Th

∫
K
δKR(y;u) Rad(p;y) dK. (18.102)
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By differentiating L s
h we obtain the new discretized state and adjoint problems, which

can still be written as in (18.95) and (18.97), however this time the stabilization terms
read, respectively, as follows:

sh(yh,ϕh;uh) =− ∑
K∈Th

∫
K
δKR(yh;uh) Lad(ϕh) dK, (18.103)

sad
h (ph,ψh;yh) =− ∑

K∈Th

∫
K
δK

(
Rad(ph;yh) L(ψh)−R(yh;uh) G′(ψh)

)
dK,

(18.104)
having set G′(ψ) = 2χDg2ψ . Finally, the sensitivity of the cost functional becomes
now

δuh(ph,yh) = ph− ∑
K∈Th

δK Rad(ph;yh). (18.105)

18.13.2 A posteriori error estimates

With the aim of obtaining a suitable a posteriori error estimate for the optimal control
problem we shall use as error indicator the error on the cost functional, as done in
[BKR00]. Moreover, we will split this error into two terms, that we will identify as
iteration error and discretization error. In particular, for the discretization error we
will make use of duality principle advocated in [BKR00] for the grid adaptivity.

Iteration error and discretization error

At every step k of the iterative algorithm for the minimization of the cost functional
we consider the error

ε(k) = J(y∗,u∗)− J(yk
h,u

k
h), (18.106)

where the symbol ∗ identifies the variables corresponding to the optimal value of the
control, while yk

h denotes the discrete state variable at step k. (The variables yk
h and uk

h

have a similar meaning.) We call discretization error ε(k)D [DQ05] the component of

the total error ε(k) arising from step k, and iteration error ε(k)IT [DQ05] the component
of ε(k) that represents the difference between the value of the cost functional computed
on the exact variables at step k and the value J∗ = J(y∗,u∗) of the cost functional at
the optimum. In conclusion, the total error ε(k) (18.106) can be written as

ε(k) =
(

J(y∗,u∗)− J(yk,uk)
)
+
(

J(yk,uk)− J(yk
h,u

k
h)
)
= ε

(k)
IT + ε

(k)
D . (18.107)

In the following we will apply an a posteriori error estimate only on ε(k)D , that is the
only part of ε(k) that can be reduced by a grid refinement procedure. Since the gradient
of L (x), x = (y, p,u), is linear in x, when using algorithm (18.61) with τk = τ =

constant, the iteration error ε(k)IT becomes ε(k)IT = 1
2 ( δu(pk,uk) , u∗ − uk ), which in
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the current case becomes ([DQ05])

ε
(k)
IT =−1

2
τ‖pk‖2

L2(Ω)−
1
2
τ

∞

∑
r=k+1

( pk, pr )L2(Ω). (18.108)

Since the iteration error cannot be exactly defined by this formula, we will approxi-

mate ε(k)IT as

|ε(k)IT | ≈
1
2
τ‖pk‖2

L2(Ω),

or, more simply,

|ε(k)IT | ≈ ‖pk‖2
L2(Ω),

which yields the usual stopping criterium

|ε(k)IT | ≈ ‖δu(pk)‖L2(Ω). (18.109)

In practice, ε(k)IT is computed on the discrete variables, that is |ε(k)IT | ≈ ‖δuh(pk
h)‖. Sup-

pose that at a given iteration k the grid is adaptively refined, and denote with xh =
(yh, ph,uh) the variables computed on the old grid (before the refinement) Th, and
with xh,re f = (yre f

h , pre f
h ,ure f

h ) those of the refined grid Th,re f . Then at step k the dis-
cretization error associated with the grid Th,re f is lower than the one associated to Th.

However, the discretization error ε(k)IT computed on xh,re f , is lower than the iteration
error computed on xh.

A posteriori error estimate and adaptive strategy

The a posteriori error estimate for the discretization error ε(k)D can be characterized as
follows ([DQ05]).

Theorem 18.5. For the linear advection-diffusion control problem under exam,
with stabilized Lagrangian L s

h (Eq. (18.101) and Eq. (18.102)), the discretiza-
tion error at step k of the iterative optimization algorithm can be written as

ε
(k)
D =

1
2
( δu(pk,uk),uk− uk

h )+
1
2
∇L

s
h (x

k
h) · (xk− xk

h)+Λh(x
k
h), (18.110)

where xk
h = (yk

h, pk
h,u

k
h) represents the GLS linear finite element solution,

Λh(x
k
h) = Sh(x

k
h) + sh(yk

h, pk
h;uk

h), and sh(wk
h, pk

h;uk
h) is the stabilization term

(18.103).

By adapting (18.110) to the specific problem at hand and expressing the contributions
on the different finite elements K ∈ Th ([BKR00]), the following estimate can be
obtained

|ε(k)D | ≤ η(k)
D =

1
2 ∑K∈Th

{ (
ω p

Kρ
y
K +ωy

Kρ
p
K +ωu

Kρ
u
K

)
+λK

}
, (18.111)
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where:

ρy
K = ‖R(yk

h;uk
h)‖L2(K) + h

− 1
2

K ‖r(yk
h)‖L2(∂K),

ω p
K = ‖(pk− pk

h)− δKLad(pk− pk
h)+ δKG′(yk− yk

h)‖L2(K) + h
1
2
K‖pk− pk

h‖L2(∂K),

ρ p
K = ‖Rad(pk

h;yk
h)‖L2(K) + h

− 1
2

K ‖rad(pk
h)‖L2(∂K),

ωy
K = ‖(yk− yk

h)− δKL(yk− yk
h)‖L2(K) + h

1
2
K‖yk− yk

h‖L2(∂K),

ρu
K = ‖δuh(pk

h,y
k
h)+ δu(pk)‖L2(K) = ‖pk + pk

h− δKRad(pk
h;yk

h)‖L2(K),

ωu
K = ‖uk− uk

h‖L2(K),

λK = 2δK‖R(yk
h;uk

h)‖L2(K) ‖G(yk
h)‖L2(K),

r(yk
h) =

⎧⎪⎪⎨⎪⎪⎩
−1

2

[
μ
∂yk

h

∂n

]
, on ∂K\∂Ω ,

−μ ∂yk
h

∂n
, on ∂K ⊂ ΓN ,

rad(pk
h) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1

2

[
μ
∂ pk

h

∂n
+V ·n pk

h

]
, on ∂K\∂Ω ,

−
(
μ
∂ pk

h

∂n
+V ·n pk

h

)
, on ∂K ⊂ ΓN .

(18.112)
As usual, ∂K denotes the boundary of K ∈ Th, and [·] the jump operator across ∂K.

For a practical use of estimate (18.111) it is necessary to evaluate yk, pk and uk.
With this in mind we replace yk and pk by their quadratic reconstructions (yk

h)
q and

(pk
h)

q, while uk is replaced by (uk
h)

q = uk
h− τ(δuh((pk

h)
q,(yk

h)
q)− δuh(pk

h,y
k
h)), ac-

cording to the steepest descent method with constant acceleration parameter τk = τ .
Consider the following adaptive strategy for the iterative optimization algorithm:

1. use a coarse grid and iterate until the tolerance on the iterative error TolIT is
achieved;

2. adapt the grid, by equi-distributing the error on the different elements K ∈ Th,
according to the estimate (18.111), until convergence on the discretization error
within a tolerance TolD;

3. re-evaluate of the variables as well as ε(k)IT on the refined grid: return to point 1 and

repeat the procedure if ε(k)IT ≥ TolIT , stop the algorithm if ε(k)IT < TolIT .

18.13.3 A test problem on control of pollutant emission

As an example we are going to apply the a posteriori estimate (18.111) on the dis-

cretization error η(k)
D and the strategy illustrated in Sect. 18.13.2 to a test case on

emission of pollutants into the atmosphere. The specific problem is how to regulate
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the emission from industrial chimneys so to keep the pollutant’s concentration in a
certain critical area below a prescribed admissible threshold.

With this aim we consider a state equation that is given by a quasi–3D advection–
diffusion boundary–value problem [DQ05]. The pollutant concentration y at the
source (the emission height) z = H is described by (18.84), while the concentration
at ground level is obtained by applying the projection function g(x,y). The form of
the diffusion coefficients μ(x,y) and g(x,y) depends both on the distance H of the
source from the ground, and on the class of atmospheric stability (stable, neutral or
unstable). We will refer to a neutral atmosphere and, with reference to the domain
illustrated in Fig. 18.16, we assume that the wind field is V = V (cos π

30 ,sin π
30) with

V = 2.5 m/s. Moreover, we assume that there are three chimneys (represented by the
three aligned small circles in Fig.18.16), all at the same height H = 100 m, and that the
maximum discharge allowed from every chimney is umax = 800 g/s. We assume that
the pollutant emitted be SO2 and we fix at zd = 100 μg/m3 (the target observation in
our control problem) the desired concentration in the region of observation, a circular
region of the computational domain that we indicate by D in Fig.18.16. In (18.84) we
have considered the case of a distributed control u on the whole computational do-
main Ω , whereas in the current example u = ∑N

i=1 uiχi, where χi is the characteristic
function of the (tiny) region Ui which represents the location of the i–th chimney.

Finally, we choose

g(x) = 2e
− 1

2 (
H

0.04r(1+2·10−4r)−1/2 )

where r is the distance (in mt) from the source.
In Fig.18.17(a) we display the concentration at ground level corresponding to the

highest possible discharge (umax = 800 g/s) from each chimney, while in Fig.18.17(b)
we display the concentration that we have after having applied the optimal control
procedure (the cost functional being the square of the L2(D) norm of the distance
from the target concentration zd). We observe that the "optimal" emission rates become
u1 = 0.0837 ·umax, u2 = 0.0908 ·umax and u3 = 1.00 ·umax.
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Fig. 18.16. Computational domain for the test problem on pollutant control
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(a) (b)

Fig. 18.17. Pollutant concentration measured in [μg/m3] at the ground level: (a) before and (b)
after regulating the emissions from the chimneys

In Fig.18.18(a) we report the grid obtained by the a posteriori estimate on η(k)
D ,

whereas in Fig.18.18(b) the one obtained by the following energy norm error indicator
(ηE)

(k) = ∑K∈Th
hK ρ

y
K . The symbols adopted are those of (18.112).

These results are then compared with those that are obtained with a very fine grid

of about 80000 elements. The grid adaptivity driven by the error indicator η(k)
D tends

to concentrate nodes in those areas that are more relevant for the optimal control. This
is confirmed by comparing the errors on the cost functional using the same number

of gridpoints. For instance, the indicator η(k)
D yields an error of about 20%, against

the 55% that would be obtained using the indicator (ηE)
(k) on a grid of about 4000

elements, while on a grid of about 14000 elements it would be 6% against 15%.

(a) (b)

Fig. 18.18. Adapted grids (of about 14000 elements) obtained using the error indicator η( j)
D (see

(18.111)) (a) and (ηE)
( j))
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18.14 Exercises

1. Consider the optimal control problem with boundary control⎧⎨⎩
−∇ · (α∇y)+β ·∇y+ γy = f inΩ = (0,1)2,

∂y

∂n
= u on ∂Ω ,

(18.113)

u ∈ L2(Ω) being the control function and f ∈ L2(Ω) a given function. Consider
the cost functional

J(u) =
1
2
‖η y− zd‖2

L2(Ω) +ν‖u‖2
L2(∂Ω), (18.114)

with η ∈ L∞(Ω).
Write the equations (equation of state, adjoint equation and equation of optimal-
ity) of the optimal control problem (18.113)-(18.114) based on the Lagrangian ap-
proach, and those based on Lions’ approach.

2. Consider the optimal control problem⎧⎨⎩
−∇ · (α∇y)+β ·∇y+ γy = f + cu inΩ = (0,1)2,

∂y

∂n
= g on ∂Ω ,

(18.115)

where u ∈ L2(Ω) is a distributed control, c a given constant, f ∈ L2(Ω) and g ∈
H−1/2(∂Ω) two given functions. Consider the cost functional

J(u) =
1
2
‖η y− zd‖2

L2(Ω) +ν‖u‖2
L2(Ω), (18.116)

with η ∈ L∞(Ω).
Find the formulation of the optimal control problem (18.115)–(18.116) by the
Lagrangian-based approach, then the one based on Lions’ formulation.



Chapter 19

Domain decomposition methods

In this chapter we will introduce the domain decomposition method (DD, in short).
In its most common version, DD can be used in the framework of any discretization
method for partial differential equations (such as, e.g. finite elements, finite volumes,
finite differences, or spectral element methods) to make their algebraic solution more
efficient on parallel computer platforms. In addition, DD methods allow the reformula-
tion of any given boundary-value problem on a partition of the computational domain
into subdomains. As such, it provides a very convenient framework for the solution
of heterogeneous or multiphysics problems, i.e. those that are governed by differential
equations of different kinds in different subregions of the computational domain.

The basic idea behind DD methods consists in subdividing the computational do-
main Ω , on which a boundary-value problem is set, into two or more subdomains on
which discretized problems of smaller dimension are to be solved, with the further
potential advantage of using parallel solution algorithms. More in particular, there are
two ways of subdividing the computational domain into subdomains: one with disjoint
subdomains, the others with overlapping subdomains (for an example, see Fig. 19.1).
Correspondingly, different DD algorithms will be set up.
For reference lectures on DD methods we refer to [BGS96, QV99, TW05].

Ω

Ω1 Ω1

Ω2

Ω2

Γ

Γ2

Γ1

Ω12

Fig. 19.1. Two examples of subdivision of the domain Ω , with and without overlap
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19.1 Some classical iterative DD methods

In this section we introduce four different iterative schemes starting from the model
problem: find u :Ω →R such that:{

Lu = f inΩ ,

u = 0 on ∂Ω ,
(19.1)

L being a generic second order elliptic operator, whose weak formulation reads

find u ∈V = H1
0 (Ω) : a(u,v) = ( f ,v) ∀v ∈V, (19.2)

being a(·, ·) the bilinear form associated with L and (·, ·) the scalar product of L2(Ω).

19.1.1 Schwarz method

Consider a decomposition of the domain Ω in two subdomains Ω1 and Ω2 such that
Ω =Ω 1∪Ω 2, Ω1∩Ω2 =Ω12 	= /0 (see Fig. 19.1) and let Γi = ∂Ωi \ (∂Ω ∩∂Ωi).

Consider the following iterative method. Given u(0)2 on Γ1, solve the following prob-
lems for k ≥ 1: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

Lu(k)1 = f inΩ1,

u(k)1 = u(k−1)
2 on Γ1,

u(k)1 = 0 on ∂Ω1 \Γ1,

(19.3)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Lu(k)2 = f inΩ2,

u(k)2 =

⎧⎨⎩ u(k)1

u(k−1)
1

on Γ2,

u(k)2 = 0 on ∂Ω2 \Γ2.

(19.4)

In the case in which one chooses u(k)1 on Γ2 in (19.4) the method is named multiplica-

tive Schwarz, whereas that in which we choose u(k−1)
1 is named additive Schwarz. The

reason will be clarified in Sect.19.6. We have thus two elliptic boundary-value prob-
lems with Dirichlet conditions for the two subdomainsΩ1 and Ω2, and we would like
the two sequences {u(k)1 } and {u(k)2 } to converge to the restrictions of the solution u of
problem (19.1), that is

lim
k→∞

u(k)1 = u|Ω1
and lim

k→∞
u(k)2 = u|Ω2

.

It can be proven that the Schwarz method applied to problem (19.1) always converges,
with a rate that increases as the measure |Ω12| of the overlapping regionΩ12 increases.
Let us show this result on a simple one-dimensional case.
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Ω1

Ω2

a bγ1γ2

a bγ1γ2

u(0)2

u(1)1

u(1)2
u(2)1

u(2)2

Fig. 19.2. Example of a decomposition with overlap in dimension 1 (left). A few iterations of
the multiplicative Schwarz method for problem (19.7) (right)

Example 19.1. Let Ω = (a,b) and let γ1,γ2 ∈ (a,b) be such that a < γ2 < γ1 < b (see
Fig. 19.2). The two problems (19.3) and (19.4) become:⎧⎪⎪⎨⎪⎪⎩

Lu(k)1 = f , a < x < γ1,

u(k)1 = u(k−1)
2 , x = γ1,

u(k)1 = 0, x = a,

(19.5)

⎧⎪⎪⎨⎪⎪⎩
Lu(k)2 = f , γ2 < x < b,

u(k)2 = u(k)1 , x = γ2,

u(k)2 = 0, x = b.

(19.6)

To show that this scheme converges, let us bound ourselves to the simpler problem{
−u′′(x) = 0, a < x < b,

u(a) = u(b) = 0,
(19.7)

that is the model problem (19.1) with L =−d2/dx2 and f = 0, whose solution clearly

is u = 0 in (a,b). This is not restrictive since at every step the error: u− u(k)1 in Ω1,

u−u(k)2 in Ω2, satisfies a problem like (19.5)-(19.6) with null forcing term.

Let k = 1; since (u(1)1 )′′ = 0, u(1)1 (x) is a linear function; moreover, it vanishes at x = a

and takes the value u(0)2 at x = γ1. As we know the value of u(1)1 at γ2, we can solve
the problem (19.6) which, in its turn, features a linear solution. Then we proceed in a
similar manner. In Fig. 19.2 we show a few iterations: we clearly see that the method
converges, moreover the convergence rate reduces as the length of the interval (γ2,γ1)
gets smaller. �

At each iteration the Schwarz iterative method (19.3)–(19.4) requires the solution
of two subproblems with boundary conditions of the same kind as those of the original
problem: indeed, by starting with a Dirichlet boundary-value problem in Ω we end up
with two subproblems with Dirichlet conditions on the boundary of Ω1 and Ω2.
Should the differential problem (19.1) had been completed by a Neumann boundary
condition on the whole boundary ∂Ω , we would have been led to the solution of a
mixed Dirichlet-Neumann boundary-value problem on either subdomain Ω1 and Ω2.
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19.1.2 Dirichlet-Neumann method

Let us partition the domainΩ in two disjoint subdomains (as in Fig. 19.1): let thenΩ1

andΩ2 be two subdomains providing a partition ofΩ , i.e.Ω 1∪Ω 2 =Ω ,Ω 1∩Ω 2 =Γ
and Ω1∩Ω2 = /0. We denote by ni the outward unit normal vector to Ωi and will use
the following notational convention: n = n1 =−n2.

The following result holds (for its proof see [QV99]):

Theorem 19.1 (of equivalence). The solution u of problem (19.1) is such that
u|Ωi

= ui for i = 1,2, where ui is the solution to the problem:{
Lui = f in Ωi,

ui = 0 on ∂Ωi \Γ ,
(19.8)

with interface conditions
u1 = u2 (19.9)

and
∂u1

∂nL
=
∂u2

∂nL
(19.10)

on Γ , having denoted with ∂/∂nL the conormal derivative (see (3.34)).

Thanks to this result we could split problem (19.1) by assigning the interface con-
ditions (19.9)-(19.10) the role of “boundary conditions” for the two subproblems on
the interface Γ . In particular, we can set up the following Dirichlet-Neumann (DN)

iterative algorithm : given u(0)2 on Γ , for k ≥ 1 solve the problems:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Lu(k)1 = f inΩ1,

u(k)1 = u(k−1)
2 on Γ ,

u(k)1 = 0 on ∂Ω1 \Γ ,
(19.11)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Lu(k)2 = f inΩ2,

∂u(k)2

∂nL
=
∂u(k)1

∂nL
on Γ ,

u(k)2 = 0 on ∂Ω2 \Γ .

(19.12)

Condition (19.9) has generated a Dirichlet boundary condition on Γ for the subprob-
lem inΩ1 whereas (19.10) has generated a Neumann boundary condition on Γ for the
subproblem in Ω2.
Differently than Schwarz’s method, the DN algorithm yields a Neumann boundary-
value problem on the subdomain Ω2. Theorem 19.1 guarantees that when the two

sequences {u(k)1 } and {u(k)2 } converge, then their limit will be perforce the solution to
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the exact problem (19.1). The DN algorithm is therefore consistent. Its convergence
however is not always guaranteed, as we can see on the following simple example.

Example 19.2. LetΩ = (a,b), γ ∈ (a,b), L =−d2/dx2 and f = 0. At every k≥ 1 the
DN algorithm generates the two subproblems:⎧⎪⎪⎪⎨⎪⎪⎪⎩

−(u(k)1 )′′ = 0, a < x < γ,

u(k)1 = 0, x = a,

u(k)1 = u(k−1)
2 , x = γ,

(19.13)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−(u(k)2 )′′ = 0, γ < x < b,

(u(k)2 )′ = (u(k)1 )′, x = γ,

u(k)2 = 0, x = b.

(19.14)

Proceeding as done in Example 19.1, we can prove that the two sequences converge
only if γ > (a+b)/2, as shown graphycally in Fig. 19.3.

�

In general, for a problem in arbitrary dimension d > 1, the measure of the "Dirich-
let" subdomain Ω1 must be larger than that of the "Neumann" one Ω2 in order to
guarantee the convergence of (19.11)-(19.12). This however yields a severe constraint
to fulfill, especially if several subdomains will be used.
To overcome such limitation, a variant of the DN algorithm can be set up by replacing
the Dirichlet condition (19.11)2 in the first subdomain by

u(k)1 = θu(k−1)
2 +(1−θ )u(k−1)

1 on Γ , (19.15)

that is by introducing a relaxation which depends on a positive parameter θ . In such a
way it is always possible to reduce the error between two subsequent iterates.

a bγ

u(0)2

u(1)2

a+b
2

u(2)2
a bγ

u(0)2

u(1)2

a+b
2

Fig. 19.3. Example of converging (left) and diverging (right) iterations for the DN method in
1D
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In the case displayed in Fig. 19.3 we can easily verify that, by choosing

θopt =− u(k−1)
1

u(k−1)
2 − u(k−1)

1

, (19.16)

the algorithm converges to the exact solution in a single iteration (this is not surpris-
ing!).

More in general, it can be proven that in any dimension d ≥ 1, there exists a
suitable value θmax < 1 such that the DN algorithm converges for any possible choice
of the relaxation parameter θ in the interval (0,θmax).

19.1.3 Neumann-Neumann algorithm

Consider again a partition of Ω into two disjoint subdomains and denote by λ the
(unknown) value of the solution u at their interface Γ . Consider the following iterative
algorithm: for any given λ (0) onΓ , for k≥ 0 and i= 1,2 solve the following problems:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Lu(k+1)

i = f inΩi,

u(k+1)
i = λ (k) on Γ ,

u(k+1)
i = 0 on ∂Ωi \Γ ,

(19.17)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Lψ(k+1)

i = 0 inΩi,

∂ψ
(k+1)
i

∂n
= σi

(
∂u(k+1)

1

∂nL
− ∂u(k+1)

2

∂nL

)
on Γ ,

ψ
(k+1)
i = 0 on ∂Ωi \Γ ,

(19.18)

with

λ (k+1) = λ (k)−θ
(
σ1ψ

(k+1)
1|Γ −σ2ψ

(k+1)
2|Γ

)
, (19.19)

where θ is a positive acceleration parameter, while σ1 and σ2 are two positive coef-
ficients such that σ1 +σ2 = 1. This iterative algorithm is named Neumann-Neumann
(NN). Note that in the first stage (19.17) we care about the continuity on Γ of the

functions u(k+1)
1 and u(k+1)

2 but not that of their conormal derivatives. The latter are
addressed in the second stage (19.18), (19.19) by means of the correcting functions

ψ
(k+1)
1 and ψ(k+1)

2 .
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19.1.4 Robin-Robin algorithm

At last, we consider the following iterative algorithm, named Robin-Robin (RR). For
every k ≥ 0 solve the following problems:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Lu(k+1)
1 = f inΩ1,

u(k+1)
1 = 0 on ∂Ω1∩∂Ω ,

∂u(k+1)
1

∂nL
+ γ1u(k+1)

1 =
∂u(k)2

∂nL
+ γ1u(k)2 on Γ ,

(19.20)

then

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−�u(k+1)

2 = f inΩ2,

u(k+1)
2 = 0 on ∂Ω2∩∂Ω ,

∂u(k+1)
2

∂nL
+ γ2u(k+1)

2 =
∂u(k+1)

1

∂nL
+ γ2u(k+1)

1 on Γ ,

(19.21)

where u0 is assigned and γ1, γ2 are non-negative acceleration parameters that satisfy

γ1 + γ2 > 0. Aiming at the algorithm parallelization, in (19.21) we could use u(k)1 in-

stead of u(k+1)
1 , provided in such a case an initial value for u0

1 is assigned as well.

19.2 Multi-domain formulation of Poisson problem and interface

conditions

In this section, for the sake of exposition, we choose L =−� and consider the Poisson
problem with homogeneous Dirichlet boundary conditions (3.13). Generalization to
an arbitrary second order elliptic operator with different boundary conditions is in
order.

In the case addressed in Sect. 19.1.2 of a domain partitioned into two disjoint sub-
domains, the equivalence Theorem 19.1 allows the following multidomain formulation
of problem (19.1), in which ui = u

∣∣
Ωi

, i = 1,2:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�u1 = f inΩ1,

u1 = 0 on ∂Ω1 \Γ ,
−�u2 = f inΩ2,

u2 = 0 on ∂Ω2 \Γ ,
u1 = u2 on Γ ,

∂u1

∂n
=
∂u2

∂n
on Γ .

(19.22)
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19.2.1 The Steklov-Poincaré operator

We denote again by λ the unknown value of the solution u of problem (3.13) on the
interfaceΓ , that is λ = u|Γ . Should we know a priori the value λ on Γ , we could solve
the following two independent boundary-value problems with Dirichlet condition on
Γ (i = 1,2): ⎧⎪⎪⎨⎪⎪⎩

−�wi = f inΩi ,

wi = 0 on ∂Ωi \Γ ,
wi = λ on Γ .

(19.23)

With the aim of obtaining the value λ on Γ , let us split wi as follows

wi = w∗i + u0
i ,

where w∗i and u0
i represent the solutions of the following problems (i = 1,2):⎧⎪⎪⎨⎪⎪⎩

−�w∗i = f inΩi ,

w∗i = 0 on ∂Ωi∩∂Ω ,

w∗i = 0 on Γ ,

(19.24)

and ⎧⎪⎪⎨⎪⎪⎩
−�u0

i = 0 inΩi ,

u0
i = 0 on ∂Ωi∩∂Ω ,

u0
i = λ on Γ ,

(19.25)

respectively. Note that the functions w∗i depend solely on the source data f , while u0
i

solely on the value λ on Γ , henceforth we can write w∗i = Gi f and u0
i = Hiλ . Both

operators Gi and Hi are linear; Hi is the so-called harmonic extension operator of λ on
the domain Ωi.
By a formal comparison of problem (19.22) with problem (19.23), we infer that the
equality

ui = w∗i + u0
i , i = 1,2 ,

holds iff the condition (19.22)6 on the normal derivatives on Γ is satisfied, that is iff

∂w1

∂n
=
∂w2

∂n
on Γ .

By using the previously introduced notations the latter condition can be reformulated
as

∂

∂n
(G1 f +H1λ ) =

∂

∂n
(G2 f +H2λ )

and therefore (
∂H1

∂n
− ∂H2

∂n

)
λ =

(
∂G2

∂n
− ∂G1

∂n

)
f on Γ .
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a bγ

l1 l2

λ

H1λ H2λ

Ω1 Ω2

Fig. 19.4. Harmonic extensions in one dimension

In this way we have obtained an equation for the unknown λ on the interfaceΓ , named
Steklov-Poincaré equation, that can be rewritten in compact form as

Sλ = χ on Γ . (19.26)

S is the Steklov-Poincaré pseudo-differential operator; its formal definition is

Sμ =
∂

∂n
H1μ− ∂

∂n
H2μ =

2

∑
i=1

∂

∂ni
Hiμ =

2

∑
i=1

Siμ , (19.27)

while χ is a linear functional which depends on f

χ =
∂

∂n
G2 f − ∂

∂n
G1 f =−

2

∑
i=1

∂

∂ni
Gi f . (19.28)

The operator

Si : μ → Siμ =
∂

∂ni

(
Hiμ
)∣∣∣
Γ
, i = 1,2, (19.29)

is called local Steklov-Poincaré operator. Note that S, S1 and S2 operate between the
trace space

Λ = {μ | ∃v ∈V : μ = v
∣∣
Γ
} (19.30)

(that is H1/2
00 (Γ ), see [QV99]), and its dual Λ ′, whereas χ ∈Λ ′.

Example 19.3. With the aim of providing a practical (elementary) example of opera-
tor S, let us consider a simple one-dimensional problem. LetΩ = (a,b)⊂R as shown
in Fig. 19.4 and Lu=−u′′. By subdividingΩ in two disjoint subdomains, the interface
Γ reduces to a single point γ ∈ (a,b), and the Steklov-Poincaré operator S becomes

Sλ =

(
dH1

dx
− dH2

dx

)
λ =

(
1
l1
+

1
l2

)
λ ,

with l1 = γ−a and l2 = b− γ . �
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19.2.2 Equivalence between Dirichlet-Neumann and Richardson methods

The Dirichlet-Neumann (DN) method introduced in Sect. 19.1.2 can be reinterpreted
as a (preconditioned) Richardson method for the solution of the Steklov-Poincaré in-
terface equation. To check this statement, consider again, for the sake of simplicity, a
domain Ω partitioned into two disjoint subdomainsΩ1 and Ω2 with interface Γ .
Then we re-write the DN algorithm (19.11), (19.12), (19.15) in the case of the operator
L =−Δ : for a given λ 0, for k ≥ 1 solve:⎧⎪⎪⎪⎨⎪⎪⎪⎩

−�u(k)1 = f1 inΩ1,

u(k)1 = λ (k−1) on Γ ,

u(k)1 = 0 on ∂Ω1 \Γ ,
(19.31)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−�u(k)2 = f2 inΩ2,

∂u(k)2

∂n2
=
∂u(k)1

∂n2
on Γ ,

u(k)2 = 0 on ∂Ω2 \Γ ,

(19.32)

λ (k) = θu(k)2 |Γ +(1−θ )λ (k−1). (19.33)

The following result holds:

Theorem 19.2. The Dirichlet-Neumann iterative algorithm (19.31)–(19.33) is
equivalent to the preconditioned Richardson algorithm

PDN(λ
(k)−λ (k−1)) = θ (χ− Sλ (k−1)). (19.34)

The preconditioning operator is PDN = S2.

Proof. The solution u(k)1 of (19.31) can be written as

u(k)1 = H1λ
(k−1) +G1 f1. (19.35)

Since G2 f2 satisfies the differential problem{ −�(G2 f2) = f2 inΩ2,

G2 f2 = 0 on ∂Ω2,
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thanks to (19.32) the function u(k)2 −G2 f2 satisfies the differential problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−�(u(k)2 −G2 f2) = 0 inΩ2,

∂

∂n2
(u(k)2 −G2 f2) =−

∂u(k)1

∂n
+
∂

∂n
(G2 f2) on Γ ,

u(k)2 −G2 f2 = 0 on ∂Ω2 \Γ .

(19.36)

In particular u(k)2 |Γ = (u(k)2 −G2 f2)|Γ . Since the operator Si (19.29) maps a Dirichlet

data to a Neumann data onΓ , its inverse S−1
i transforms a Neumann data in a Dirichlet

one on Γ .
Otherwise said, S−1

2 η = w2|Γ , where w2 is the solution of⎧⎪⎪⎪⎨⎪⎪⎪⎩
−�w2 = 0 inΩ2,

∂w2

∂n
= η on Γ ,

w2 = 0 on ∂Ω2 \Γ .
(19.37)

Setting now

η =−∂u(k)1

∂n
+
∂

∂n
(G2 f2),

and comparing (19.36) with (19.37), we conclude that

u(k)2 |Γ = (u(k)2 −G2 f2)|Γ = S−1
2

(
−∂u(k)1

∂n
+
∂

∂n
(G2 f2)

)
.

On the other hand, owing to (19.35) and to the definition (19.28) of χ , we obtain

u(k)2 |Γ = S−1
2

(
− ∂

∂n
(H1λ

(k−1))− ∂

∂n
(G1 f1)+

∂

∂n
(G2 f2)

)
= S−1

2 (−S1λ
(k−1) + χ).

Using (19.33) we can therefore write

λ (k) = θ
[
S−1

2 (−S1λ
(k−1) + χ)

]
+(1−θ )λ (k−1),

that is
λ (k)−λ (k−1) = θ

[
S−1

2 (−S1λ
(k−1) + χ)−λ (k−1)

]
.

Since −S1 = S2−S, we finally obtain

λ (k)−λ (k−1) = θ
[
S−1

2 ((S2−S)λ (k−1)+ χ)−λ (k−1)
]

= θS−1
2 (χ − Sλ (k−1)),

that is (19.34). The preconditioned DN operator is therefore S−1
2 S = I+S−1

2 S1. �
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Using an argument similar to that used for the proof of Theorem 19.2, also the
Neumann-Neumann (NN) algorithm (19.17)–(19.19) can be interpreted as a precon-
ditioned Richardson algorithm, that is

PNN(λ
(k)−λ (k−1)) = θ (χ− Sλ (k−1)) ,

this time the preconditioner being PNN = (D1S−1
1 D1 +D2S−1

2 D2)
−1 where Di is a

diagonal matrix whose entries are equal to σi. Note that the preconditioned operator
becomes (if Di = I) S−1

2 S1 +2I+(S−1
2 S1)

−1.
Consider at last the Robin-Robin iterative algorithm (19.20)–(19.21). Denoting by

μ
(k)
i ∈Λ the approximation at step k of the trace of u(k)i on the interface Γ , i = 1,2, it

can be proven that (19.20)–(19.21) is equivalent to the following alternating direction
(ADI) algorithm:

(γ1iΛ + S1)μ
(k)
1 = χ+(γ1iΛ + S2)μ

(k−1)
2 ,

(γ2iΛ + S2)μ
(k)
2 = χ+(γ2iΛ + S1)μ

(k−1)
1 ,

where iΛ : Λ → Λ ′ here denotes the Riesz isomorphism between the Hilbert space Λ
and its dual Λ ′ (see (2.5); however, mind the different notation).
Should, for a convenient choice of the two parameters γ1 and γ2, the algorithm con-
verge to two limit functions μ1 and μ2, then μ1 = μ2 = λ , the latter function being the
solution to the Steklov-Poincaré equation (19.26).
The RR preconditioner reads PRR = (γ1 + γ2)

−1(γ1iΛ + S1)(γ2iΛ + S2).

Remark 19.1. In the Dirichlet-Neumann algorithm, the value λ of the solution u at
the interface Γ is the principal unknown. Once it has been determined, we can use it
as Dirichlet data to recover the original solution in the whole domain. Alternatively,
one could use the normal derivative η = ∂u

∂n on Γ as principal unknown (or, for a more
general partial differential operator, the conormal derivative - or flux). By proceeding
as above, we can show that η satisfies the new Steklov-Poincaré equation

(S−1
1 +S−1

2 )η = T1 f1 +T2 f2 onΓ (19.38)

where for i = 1,2, Ti fi is the solution of the following Neumann problem⎧⎪⎪⎨⎪⎪⎩
−�(Ti fi) = fi inΩi,
∂

∂ni
(Ti fi) = 0 onΓ ,

Ti fi = 0 on∂Ω\Γ .
(19.39)

The so-called FETI algorithms (see Sect. 19.5.4) are examples of iterative algo-
rithms designed for the solution of problems like (19.38). The FETI preconditioner is
PFET I = S1 +S2, hence the preconditioned FETI operator is (S1 + S2)(S

−1
1 + S−1

2 ).
•
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19.3 Multidomain formulation of the finite element approximation

of the Poisson problem

What seen thus far can be regarded as propedeutical to numerical solution of boundary-
value problems. In this section we will see how the previous ideas can be reshaped in
the framework of a numerical discretization method. Although we will only address
the case of finite element discretization, this is however not restrictive. We refer, e.g.,
to [CHQZ07] and [TW05] for the case of spectral or spectral element discretizations
and to [Woh01] for discretization based on DG and mortar methods.

Consider the Poisson problem (3.13), its weak formulation (3.18) and its Galerkin

finite element approximation (4.40) on a triangulation Th. Recall that Vh =
◦
Xr

h =
{

vh ∈
Xr

h : vh|∂Ω = 0
}

is the space of finite element functions of degree r vanishing on ∂Ω ,

whose basis is {ϕ j}Nh
j=1 (see Sect. 4.5.1).

For the finite element nodes in the domainΩ we consider the following partition:

let {x(1)j , 1 ≤ j ≤ N1} be the nodes located in the subdomain Ω1, {x(2)j , 1 ≤ j ≤ N2}
those in Ω2 and, finally, {x(Γ )j , 1 ≤ j ≤ NΓ } those lying on the interface Γ . Let us

split the basis functions accordingly: ϕ(1)
j will denote those associated to the nodes

x(1)j , ϕ(2)
j those associated with the nodes x(2)j , and ϕ(Γ )

j those associated with the

nodes x(Γ )j lying on the interface. This yields

ϕ
(α)
j (x(β )j ) = δi jδαβ , 1≤ i≤ Nα , ≤ j ≤ Nβ , (19.40)

with α,β = 1,2,Γ ; δi j is the Kronecker symbol.
By letting vh in (4.40) to coincide with a test function, (4.40) can be given the follow-
ing equivalent formulation: find uh ∈Vh such that:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a(uh,ϕ

(1)
i ) = F(ϕ(1)

i ) ∀i = 1, . . . ,N1 ,

a(uh,ϕ
(2)
j ) = F(ϕ(2)

j ) ∀ j = 1, . . . ,N2 ,

a(uh,ϕ
(Γ )
k ) = F(ϕ

(Γ )
k ) ∀k = 1, . . . ,NΓ ,

(19.41)

having set F(v) =
∫
Ω f vdΩ . Let now

ai(v,w) =
∫
Ωi

∇v ·∇wdΩ ∀v,w ∈V, i = 1,2

be the restriction of the bilinear form a(., .) to the subdomainΩi and define Vi,h = {v∈
H1(Ωi) | v = 0 on ∂Ωi \Γ } (i = 1,2). Similarly we set Fi(v) =

∫
Ωi

f vdΩ and denote

by u(i)h = uh|Ωi
the restriction of uh to the subdomainΩi, with i = 1,2. Problem (19.41)
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can be rewritten in the equivalent form: find u(1)h ∈V1,h, u(2)h ∈V2,h such that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a1(u
(1)
h ,ϕ

(1)
i ) = F1(ϕ

(1)
i ) ∀i = 1, . . . ,N1,

a2(u
(2)
h ,ϕ

(2)
j ) = F2(ϕ

(2)
j ) ∀ j = 1, . . . ,N2

a1(u
(1)
h ,ϕ

(Γ )
k |Ω1)+a2(u

(2)
h ,ϕ

(Γ )
k |Ω2)

= F1(ϕ
(Γ )
k |Ω1)+F2(ϕ

(Γ )
k |Ω2) ∀k = 1, . . . ,NΓ .

(19.42)

The interface continuity condition (19.22)5 is automatically satisfied thanks to the con-

tinuity of the functions u(i)h . Moreover, equations (19.42)1-(19.42)3 correspond to the
finite element discretization of equations (19.22)1-(19.22)6, respectively. In particular,
the third of equations (19.42) must be regarded as the discrete counterpart of condition
(19.22)6 expressing the continuity of normal derivatives on Γ .
Let us expand the solution uh with respect to the basis functions Vh

uh(x) =
N1

∑
j=1

uh(x
(1)
j )ϕ

(1)
j (x)+

N2

∑
j=1

uh(x
(2)
j )ϕ

(2)
j (x)+

NΓ

∑
j=1

uh(x
(Γ )
j )ϕ

(Γ )
j (x). (19.43)

From now on, the nodal values uh(x
(α)
j ), for α = 1,2,Γ and j = 1, . . . ,Nα , which are

the expansion coefficients, will be indicated with the shorthand notation u(α)j .
Using (19.43), we can rewrite (19.42) as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N1

∑
j=1

u(1)j a1(ϕ
(1)
j ,ϕ

(1)
i )+

NΓ

∑
j=1

u(Γ )j a1(ϕ
(Γ )
j ,ϕ

(1)
i ) = F1(ϕ

(1)
i ) ∀i = 1, . . . ,N1,

N2

∑
j=1

u(2)j a2(ϕ
(2)
j ,ϕ

(2)
i )+

NΓ

∑
j=1

u(Γ )j a2(ϕ
(Γ )
j ,ϕ

(2)
i ) = F2(ϕ

(2)
i ) ∀i = 1, . . . ,N2,

NΓ

∑
j=1

u(Γ )j

[
a1(ϕ

(Γ )
j ,ϕ

(Γ )
i )+ a2(ϕ

(Γ )
j ,ϕ

(Γ )
i )
]

+
N1

∑
j=1

u(1)j a1(ϕ
(1)
j ,ϕ

(Γ )
i )+

N2

∑
j=1

u(2)j a2(ϕ
(2)
j ,ϕ

(Γ )
i )

= F1(ϕ
(Γ )
i |Ω1)+F2(ϕ

(Γ )
i |Ω2) ∀i = 1, . . . ,NΓ .

(19.44)
Let us introduce the following arrays:

(A11)i j = a1(ϕ
(1)
j ,ϕ

(1)
i ), (A1Γ )i j = a1(ϕ

(Γ )
j ,ϕ

(1)
i ),

(A22)i j = a2(ϕ
(2)
j ,ϕ

(2)
i ), (A2Γ )i j = a2(ϕ

(Γ )
j ,ϕ

(2)
i ),(

A1
ΓΓ

)
i j = a1(ϕ

(Γ )
j ,ϕ

(Γ )
i ),

(
A2
ΓΓ

)
i j = a2(ϕ

(Γ )
j ,ϕ

(Γ )
i ),

(AΓ 1)i j = a1(ϕ
(1)
j ,ϕ

(Γ )
i ), (AΓ 2)i j = a2(ϕ

(2)
j ,ϕ

(Γ )
i ),

(f1)i = F1(ϕ
(1)
i ), (f2)i = F2(ϕ

(2)
i ),(

fΓ1
)

i = F1(ϕ
(Γ )
i ),

(
fΓ2
)

i = F2(ϕ
(Γ )
i ,ϕ

(1)
i ),
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then set

u = (u1,u2,λ)
T ,with u1 =

(
u(1)j

)
, u2 =

(
u(2)j

)
and λ=

(
u(Γ )j

)
. (19.45)

Problem (19.44) can be casted in the following algebraic form⎧⎪⎪⎪⎨⎪⎪⎪⎩
A11u1 +A1Γλ= f1,

A22u2 +A2Γλ= f2,

AΓ 1u1 +AΓ 2u2 +
(

A(1)
ΓΓ +A(2)

ΓΓ

)
λ= fΓ1 + fΓ2 ,

(19.46)

or, equivalently,

Au = f, that is

⎡⎣ A11 0 A1Γ

0 A22 A2Γ

AΓ 1 AΓ 2 AΓΓ

⎤⎦⎡⎣ u1

u2

λ

⎤⎦=

⎡⎣ f1

f2

fΓ

⎤⎦ , (19.47)

having set AΓΓ =
(

A(1)
ΓΓ +A(2)

ΓΓ

)
and fΓ = fΓ1 + fΓ2 . (19.47) is nothing but a blockwise

representation of the finite element system (4.46), the blocks being determined by the
partition (19.45) of the vector of unknowns.
More precisely, the first and second equations of (19.46) are discretizations of the
given Poisson problems in Ω1 and Ω2, respectively for the interior values u1 and u2,
with Dirichlet data vanishing on ∂Ωi \Γ and equal to the common value λ on Γ .
Alternatively, by setting (from the third equation of (19.46))

AΓ1 u1 +A(1)
ΓΓλ− f1

Γ =−(AΓ2u2 +A(2)
ΓΓλ− f2

Γ )≡ η, (19.48)

the first and third equations of (19.46) provide a discretization of the Poisson problem
in Ω1 with vanishing Dirichlet data on ∂Ω1 \Γ and with Neumann data η on Γ .

Similar considerations apply to the second and third equations of (19.46): they
represent the discretization of a Poisson problem in Ω2 with zero Dirichlet data in
∂Ω2 \Γ and Neumann data equal to η on Γ .

19.3.1 The Schur complement

Consider now the Steklov-Poincaré interface equation (19.26) and look for its finite
element counterpart. Since λ represents the unknown value of u onΓ , its finite element
correspondent is the vector λ of the values of uh at the interface nodes.

By gaussian elimination operated on system (19.47), we can obtain a new reduced
system on the sole unknown λ.

Matrices A11 and A22 are invertible since they are associated with two homoge-
neous Dirichlet boundary-value problems for the Laplace operator, hence

u1 = A−1
11 (f1−A1Γλ) and u2 = A−1

22 (f2−A2Γλ) . (19.49)
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From the third equation in (19.46), we obtain[(
A(1)
ΓΓ −AΓ1A−1

11 A1Γ

)
+
(

A(2)
ΓΓ −AΓ2A−1

22 A2Γ

)]
λ

= fΓ −AΓ1A−1
11 f1−AΓ2A−1

22 f2 = (f
(1)
Γ −AΓ1A−1

11 f1)+ (f
(2)
Γ −AΓ2A−1

22 f2).

(19.50)

Using the following definitions:

Σ = Σ1 +Σ2, Σi = A(i)
ΓΓ −AΓ iA

−1
ii AiΓ , i = 1,2, (19.51)

and

χΓ = χ
(1)
Γ +χ

(2)
Γ , χ

(i)
Γ = f

(i)
Γ −AΓiAiifi, (19.52)

(19.50) becomes

Σλ= χΓ . (19.53)

Since Σ and χΓ approximate S and χ , respectively, (19.53) can be considered as a fi-
nite element approximation to the Steklov-Poincaré equation (19.26). Matrix Σ is the
so-called Schur complement of A with respect to u1 and u2, whereas matrices Σi are
the Schur complements related to the subdomainsΩi (i = 1,2).
Once system (19.53) is solved w.r.t the unknown λ, by virtue of (19.49) we can com-
pute u1 and u2. This computation amounts to solve numerically two Poisson problems

on the two subdomainsΩ1 andΩ2, with Dirichlet boundary conditions u(i)h |Γ = λh (i=

1,2) on the interface Γ .

The Schur complement Σ inherits some of the properties of its generating matrix
A, as stated by the following result:

Lemma 19.1. Matrix Σ satisfies the following properties:

1. if A is singular, so is Σ ;
2. if A (respectively, Aii) is symmetric, then Σ (respectively, Σi) is symmetric too;
3. if A is positive definite, so is Σ .

Recall that the condition number of the finite element stiffness matrix A satisfies
K2(A)�C h−2 (see (4.50)). As of Σ , it can be proven that

K2(Σ)�C h−1. (19.54)

In the specific case under consideration, A (and therefore Σ , thanks to Lemma
19.1) is symmetric and positive definite. It is therefore convenient to use the conjugate
gradient method (with a suitable preconditioner) for the solution of system (19.53). At
every iteration, the computation of the residue will involve the finite element solution
of two independent Dirichlet boundary-value problems on the subdomains Ωi.
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By employing a similar procedure we can derive instead of (19.53) an interface
equation for the flux η introduced in (19.48). From (19.47) and (19.48) we derive⎡⎣ A11 A1Γ

AΓ 1 A(1)
ΓΓ

⎤⎦⎡⎣ u1

λ

⎤⎦=

⎡⎣ f1

f
(1)
Γ +η

⎤⎦ . (19.55)

By eliminating u1 from the first row and replacing it in the second one we obtain

Σ1λ= χ
(1)
Γ +η, that is λ= Σ−1

1 (χ
(1)
Γ +η). (19.56)

Proceeding in a similar way we obtain

Σ2λ= χ
(2)
Γ −η, that is λ= Σ−1

2 (χ
(2)
Γ −η). (19.57)

By equating the last two equations (whose common value is λ) we finally obtain the
Schur-complement equation for the flux η:

Tη =ψΓ , with T = Σ−1
1 +Σ−1

2 , ψΓ = Σ−1
2 χ

(2)
Γ −Σ−1

1 χ
(1)
Γ . (19.58)

This algebraic equation can be regarded as a direct discretization of the Steklov-Poincaré
problem for the flux (19.38).

19.3.2 The discrete Steklov-Poincaré operator

In this section we will find the discrete operator associated with the Schur comple-
ment. With this aim, besides the space Vi,h previously introduced, we will need the

one V 0
i,h generated by the functions {ϕ(i)

j } exclusively associated to the internal nodes

of the subdomain Ωi, and the space Λh generated by the set of functions {ϕ(Γ )
j |Γ

}.
We have Λh = {μh | ∃vh ∈ Vh : vh

∣∣
Γ
= μh}, whence Λh represents a finite element

subspace of the trace functions space Λ introduced in (19.30).
Consider now the problem: find Hi,hηh ∈Vi,h, with Hi,hηh = ηh on Γ , such that∫

Ωi

∇(Hi,hηh) ·∇vh dΩi = 0 ∀vh ∈V 0
i,h. (19.59)

Clearly, Hi,hηh represents a finite element approximation of the harmonic extension
Hiηh, and the operator Hi,h : ηh → Hi,hηh can be regarded as an approximation of Hi.
By expanding Hi,hηh in terms of the basis functions

Hi,hηh =
Ni

∑
j=1

u(i)j ϕ
(i)
j +

NΓ

∑
k=1

ηkϕ
(Γ )
k |Ωi

,

we can rewrite (19.59) in matrix form

Aiiu
(i) =−AiΓη. (19.60)
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The following result, called the uniform discrete extension theorem, holds:

Theorem 19.3. There exist two constants Ĉ1,Ĉ2 > 0, independent of h, such t hat

Ĉ1‖ηh‖Λ ≤ ‖Hi,hηh‖H1(Ωi)
≤ Ĉ2‖ηh‖Λ ∀ηh ∈Λh i = 1,2. (19.61)

Consequently, there exist two constants K1,K2 > 0, independent of h, such that

K1‖H1,hηh‖H1(Ω1)
≤ ‖H2,hηh‖H1(Ω2)

≤ K2‖H1,hηh‖H1(Ω1)
∀ηh ∈Λh. (19.62)

For the proof see, e.g., [QV99].

Now for i = 1,2 the (local) discrete Steklov-Poincaré operator Si,h : Λh → Λ ′h is
defined as follows

〈Si,hηh,μh〉=
∫
Ωi

∇(Hi,hηh) ·∇(Hi,hμh)dΩi ∀ηh,μh ∈Λh, (19.63)

then we define the (global) discrete Steklov-Poincaré operator as Sh = S1,h +S2,h.

Lemma 19.2. The local discrete Steklov-Poincaré operator can be expressed in
terms of the local Schur complement as

〈Si,hηh,μh〉=μTΣiη ∀ηh,μh ∈Λh , i = 1,2, (19.64)

where

ηh =
NΓ

∑
k=1

ηkϕ
(Γ )
k |Γ , μh =

NΓ

∑
k=1

μkϕ
(Γ )
k |Γ

and
η = (η1, . . . ,ηNΓ )

T , μ= (μ1, . . . ,μNΓ )
T .

Therefore the global discrete Steklov-Poincaré operator Sh = S1,h +S2,h satisfies
the relation

〈Shηh,μh〉= μTΣ η ∀ηh,μh ∈Λh. (19.65)

Proof. For i = 1,2 we have

〈Si,hηh,μh〉 = ai(Hi,hηh,Hi,hμh)

= ai

( NΓ

∑
j=1

u jϕ
(i)
j +

NΓ

∑
k=1

ηkϕ
(Γ )
k |Ωi

,
NΓ

∑
l=1

wlϕ
(i)
l +

NΓ

∑
m=1

μmϕ
(Γ )
m |Ωi

)
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=
NΓ

∑
j,l=1

wlai(ϕ
(i)
j ,ϕ

(i)
l )u j +

NΓ

∑
j,m=1

μmai(ϕ
(i)
j ,ϕ

(Γ )
m |Ωi

)u j

+
NΓ

∑
k,l=1

wlai(ϕ
(Γ )
k |Ωi

,ϕ
(i)
l )ηk +

NΓ

∑
k,m=1

μmai(ϕ
(Γ )
k |Ωi

,ϕ
(Γ )
m |Ωi

)ηk

= wT Aiiu+μT AΓ iu+wT AiΓη+μT A(i)
ΓΓ η.

Thanks to (19.60) we obtain

〈Si,hηh,μh〉 = −wT AiΓη−μT AΓ iA
−1
ii AiΓ η+wT AiΓ η+μT A(i)

ΓΓ η

= μT
(

A(i)
ΓΓ −AΓ iA

−1
ii AiΓ

)
η

= μTΣiη.
�

From Theorem 19.3 and thanks to the representation (19.63), we deduce that there
exist two constants K̂1, K̂2 > 0, independent of h, such that

K̂1〈S1,hμh,μh〉 ≤ 〈S2,hμh,μh〉 ≤ K̂2〈S1,hμh,μh〉 ∀μh ∈Λh. (19.66)

Thanks to (19.64) we can infer that there exist two constants K̃1, K̃2 > 0, independent
of h, such that

K̃1
(
μTΣ1μ

)≤ μTΣ2μ≤ K̃2
(
μTΣ1μ

) ∀μ ∈ RNΓ . (19.67)

This amounts to say that the two matrices Σ1 and Σ2 are spectrally equivalent, that is
their spectral condition number features the same asymptotic behaviour w.r.t h. Hence-
forth, both Σ1 and Σ2 provide an optimal preconditioner of the Schur complement Σ ,
that is there exists a constant C, independent of h, such that

K2(Σ
−1
i Σ)≤C, i = 1,2. (19.68)

As we will see in Sect. 19.3.3, this property allows us to prove that the discrete version
of the Dirichlet-Neumann algorithm converges with a rate independent of h. A similar
result holds for the discrete Neumann-Neumann and Robin-Robin algorithms.

19.3.3 Equivalence between the Dirichlet-Neumann algorithm and

a preconditioned Richardson algorithm in the discrete case

Let us now prove the analogue of the equivalence theorem 19.2 in the algebraic case.
The finite element approximation of the Dirichlet problem (19.31) has the following
algebraic form

A11u
(k)
1 = f1−A1Γλ

(k−1), (19.69)

whereas that of the Neumann problem (19.32) reads[
A22 A2Γ

AΓ 2 A(2)
ΓΓ

][
u
(k)
2

λ(k−1/2)

]
=

[
f2

fΓ −AΓ 1u
(k)
1 −A(1)

ΓΓλ
(k−1)

]
. (19.70)
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In its turn, (19.33) becomes

λ(k) = θλ(k−1/2) + (1−θ )λ(k−1). (19.71)

By eliminating u
(k)
2 from (19.70) we obtain(

A(2)
ΓΓ −AΓ 2A−1

22 A2Γ

)
λ(k−1/2) = fΓ −AΓ1u

(k)
1 −A(1)

ΓΓλ
(k−1)−AΓ2A−1

22 f2.

By the definition (19.51) of Σ2 and by (19.69), one has

Σ2λ
(k−1/2) = fΓ −AΓ1A−1

11 f1−AΓ2A−1
22 f2−

(
A(1)
ΓΓ −AΓ1A−1

11 A1Γ

)
λ(k−1),

that is, owing to the definition (19.51) of Σ1 and to (19.52),

λ(k−1/2) = Σ−1
2

(
χΓ −Σ1λ

(k−1)
)
.

Now, by virtue of (19.71) we deduce

λ(k) = θΣ−1
2

(
χΓ −Σ1λ

(k−1)
)
+(1−θ )λ(k−1),

that is, since −Σ1 =−Σ +Σ2,

λ(k) = θΣ−1
2

(
χΓ −Σλ(k−1) +Σ2λ

(k−1)
)
+(1−θ )λ(k−1)

whence
Σ2(λ

(k)−λ(k−1)) = θ (χΓ −Σλ(k−1)).

The latter is nothing but a Richardson iteration on the system (19.53) using the local
Schur complement Σ2 as preconditioner.

Remark 19.2. The Richardson preconditioner induced by the Dirichlet-Neumann al-
gorithm is in fact the local Schur complement associated to that subdomain on which
we solve a Neumann problem. So, in the so-called Neumann-Dirichlet algorithm, in
which at every iteration we solve a Dirichlet problem in Ω2 and a Neumann one in
Ω1, the preconditioner of the associated Richardson algorithm would be Σ1 and not
Σ2. •

Remark 19.3. An analogous result can be proven for the discrete version of the
Neumann-Neumann algorithm introduced in Sect. 19.1.3. Precisely, the Neumann-
Neumann algorithm is equivalent to the Richardson algorithm applied to system
(19.53) with a preconditioner whose inverse is given by P−1

h = σ1Σ
−1
1 +σ2Σ

−1
2 , σ1

and σ2 being the coefficients used for the (discrete) interface equation which corre-
sponds to (19.19). Moreover we can prove that there exists a constant C > 0, indepen-
dent of h, such that

K2((σ1Σ
−1
1 +σ2Σ

−1
2 )Σ)≤C .

Proceeding in a similar way we can show that the discrete version of the Robin-Robin
algorithm (19.20)-(19.21) is also equivalent to a Richardson algorithm for (19.53),
using this time as preconditioner the matrix (γ1 + γ2)

−1(γ1I +Σ1)(γ2I +Σ2). •
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Let us recall that a matrix Ph is an optimal preconditioner for Σ if the condition
number of P−1

h Σ is bounded uniformely w.r.t the dimension N of the matrix Σ (and
therefore from h in the case in which Σ arises from a finite element discretization).

We can therefore summarize by saying that for the solution of system Σλ = χΓ ,
we can make use of the following preconditioners, all of them being optimal:

Ph =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Σ2 for the Dirichlet-Neumann algorithm,

Σ1 for the Neumann-Dirichlet algorithm,

(σ1Σ
−1
1 +σ2Σ

−1
2 )−1 for the Neumann-Neumann algorithm,

(γ1 + γ2)
−1(γ1I+Σ1)(γ2I+Σ2) for the Robin-Robin algorithm.

(19.72)

When solving the flux equation (19.58), the FETI preconditioner reads Ph = (Σ1 +
Σ2)

−1, yelding the preconditioned matrix (Σ1+Σ2)(Σ
−1
1 +Σ−1

2 ). For all these precon-
ditioners, optimality follows from the spectral equivalence (19.67), hence K2(P

−1
h Σ)

is bounded independently of h.
From the convergence theory of Richardson method we know that if both Σ and Ph

are symmetric and positive definite, one has ‖λn−λ‖Σ ≤ ρn‖λ0−λ‖Σ , n≥ 0, being
‖v‖Σ = (vTΣv)1/2. The optimal convergence rate is given by

ρ =
K2(P

−1
h Σ)− 1

K2(P
−1
h Σ)+1

,

and is therefore independent of h.

19.4 Generalization to the case of many subdomains

To generalize the previous DD algorithms to the case in which the domain Ω is parti-
tioned into an arbitrary number M > 2 of subdomains we proceed as follows.
Let Ωi, i = 1, . . . ,M, denote a family of disjoint subdomains such that ∪Ω i = Ω , and
denote Γi = ∂Ωi \ ∂Ω and Γ = ∪Γi (the skeleton).

Let us consider the Poisson problem (3.13). In the current case the equivalence
Theorem 19.1 generalizes as follows:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−�ui = f inΩi,

ui = uk on Γik, ∀k ∈A (i),

∂ui

∂ni
=
∂uk

∂ni
on Γik, ∀k ∈A (i),

ui = 0 on ∂Ωi∩∂Ω ,

(19.73)
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for i = 1, . . . ,M, being Γik = ∂Ωi∩∂Ωk 	= /0 , A (i) the set of indices k such that Ωk is
adjacent to Ωi; as usual, ni denotes the outward unit normal vetor to Ωi.

Assume now that (3.13) has been approximated by the finite element method.
Following the ideas presented in Sect. 19.3 and denoting by u = (uI ,uΓ )

T the vector
of unknowns split in two subvectors, the one (uI) related with the internal nodes, and
that (uΓ ) related with the nodes lying on the skeleton Γ , the finite element algebraic
system can be reformulated in blockwise form as follows[

AII AIΓ

AΓ I AΓΓ

][
uI

uΓ

]
=

[
fI

fΓ

]
, (19.74)

being AΓ I = AT
IΓ . Matrix AIΓ is banded, while AII has the block diagonal form

AII =

⎡⎢⎢⎢⎢⎣
AΩ1,Ω1 0 . . . 0

0
. . .

...
...

. . . 0
0 . . . 0 AΩM ,ΩM

⎤⎥⎥⎥⎥⎦ . (19.75)

We are using the following notations:

(AΩi,Ωi)l j = ai(ϕ j,ϕl), 1≤ l, j ≤ Ni,

(A(i)
ΓΓ )sr = ai(ψr,ψs), 1≤ r,s≤ NΓi ,

(AΩi,Γ )lr = ai(ψr,ϕl), 1≤ r ≤ NΓi , 1≤ l ≤ Ni,

where Ni is the number of nodes internal to Ωi, NΓi that of the nodes sitting on the
interface Γi, ϕ j and ψr the basis functions associated with the internal and interface
nodes, respectively.

Let us remark that on every subdomainΩi the matrix

Ai =

[
AΩi,Ωi AΩi,Γ

AΓ ,Ωi A(i)
ΓΓ

]
(19.76)

represents the local finite element stiffness matrix associated to a Neumann problem
on Ωi. Since AII is non-singular, from (19.74) we can formally derive

uI = A−1
II (fI−AIΓ uΓ ). (19.77)

By eliminating the unknown uI from system (19.74), it follows

AΓΓ uΓ = fΓ −AΓ IA
−1
II (fI−AIΓ uΓ ),

that is (
AII AIΓ

0 Σ

)(
uI

uΓ

)
=

(
fI

χΓ

)
(19.78)
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having set
Σ = AΓΓ −AΓ IA

−1
II AIΓ and χΓ = fΓ −AΓ IA

−1
II fI.

Denoting, as usual, λ= uΓ , (19.78) yields

Σλ= χΓ . (19.79)

This is the Schur complement system in the multidomain case. It can be regarded as a
finite element approximation of the interface Steklov-Poincaré problem in the case of
M subdomains.

The local Schur complements are defined as

Σi = A(i)
ΓΓ −AΓ ,ΩiA

−1
Ωi,Ωi

AΩi,Γ , i = 1, . . . M, (19.80)

hence
Σ = RT

Γ1
Σ1RΓ1 + . . .+RT

ΓM
ΣMRΓM (19.81)

where RΓi is a restriction operator, that is a rectangular matrix of zeros and ones that
map values on Γ onto those on Γi, i = 1, . . . ,M. Note that the r.h.s. of (19.79) can be
written as a sum of local contributions,

χΓ =
M

∑
i=1

RT
Γi

(
f
(i)
Γ −AΓ ,ΩiA

−1
Ωi,Ωi

f
(i)
I

)
(19.82)

A general algorithm to solve the finite element Poisson problem in Ω could be
formulated as follows:

1. compute the solution of (19.79) to obtain the value of λ on the skeleton Γ ;
2. solve (19.77); since AII is block-diagonal, this step yields the solution of M inde-

pendent subproblems of reduced dimension, AΩi,Ωiu
i
I = gi, i = 1, . . . ,M.

About the condition number of Σ , the following estimate can be proven: there exists a
constant C > 0, independent of h and Hmin,Hmax, such that

K2(Σ) ≤C
Hmax

hH2
min

, (19.83)

Hmax being the maximum diameter of the subdomains and Hmin the minimum one.

Remark 19.4 (Approximation of the inverse of A). The inverse of the block matrix
A in (19.74) admits the following LDU factorization

A−1 =

[
I −A−1

II AIΓ

0 I

][
A−1

II 0
0 Σ−1

][
I 0

−AΓ IA
−1
II I

]
(19.84)

Should we have suitable preconditioners BII of AII and P of Σ , an approximation of
A−1 would be given by

P−1
A =

[
I −B−1

II AIΓ

0 I

][
B−1

II 0
0 P−1

][
I 0

−AΓ IB
−1
II I

]
. (19.85)

An application of P−1
A to a given vector involves B−1

II in two matrix-vector multiplies
and P−1 in only one matrix-vector multiply (see [TW05, Sect. 4.3]). •
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Remark 19.5 (Saddle-point systems). In case of a saddle-point (block) matrix like
the one in (17.58), an LDU factorization can be obtained as follows

K =

[
A BT

B −C

]
=

[
IA 0

BA−1 IC

][
A 0
0 S

][
IA A−1BT

0 IC

]
(19.86)

where S =−C−BA−1BT is the Schur complement computed with respect to the sec-
ond variable (e.g. P in the case of system (17.58)).
An inverse of K is obtained as

K−1 =

[
A−1 0

0 0

]
+QS−1QT , Q =

[ −A−1BT

I

]
, (19.87)

being IA and IC two identity matrices having the size of A and C, respectively. A pre-
conditioner for K can be constructed by replacing in (19.87) A−1 and S−1 by suitable
domain decomposition preconditioners of A and S, respectively.
This observation stands at the ground of the design of the so-called FETI-DP and
BDDC preconditioners, see Sects. 19.5.5 and 19.5.6. •

19.4.1 Some numerical results

Consider the Poisson problem (3.13) on the domain Ω = (0,1)2 whose finite element
approximation was given in (4.40).
Let us partitionΩ into M disjoint squaresΩi whose sidelength is H, such that∪M

i=1Ωi =
Ω . An example with four subdomains is displayed in Fig. 19.5 (left).

In Table 19.1 we report the numerical values of K2(Σ) for the problem at hand,
for several values of the finite element grid-size h; it grows linearly with 1/h and with
1/H, as predicted by the formula (19.83). In Fig. 19.5 (right) we display the pattern
of the Schur complement matrix Σ in the particular case of h = 1/8 and H = 1/2.
The matrix has a blockwise structure that accounts for the interfaces Γ1, Γ2, Γ3 and
Γ4, plus the contribution arising from the crosspoint Γc. Since Σ is a dense matrix,
when solving the linear system (19.79) the explicit computation of its entries is not
convenient. Instead, we can use the following Algorithm 18.1 to compute the matrix-
vector product ΣxΓ , for any vector xΓ (and therefore the residue at every step of an
iterative algorithm). We have denoted by RΓi the rectangular matrix associated to the

Table 19.1. Condition number of the Schur complement Σ

K2(Σ ) H = 1/2 H = 1/4 H = 1/8

h = 1/8 9.77 14.83 25.27
h = 1/16 21.49 35.25 58.60
h = 1/32 44.09 75.10 137.73
h = 1/64 91.98 155.19 290.43
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Fig. 19.5. Example of partition of Ω = (0,1)2 into four squared subdomains (left). Pattern of
the Schur complement Σ (right) corresponding to the domain partition displayed on the left

restriction operator RΓi : Γ → Γi = ∂Ωi \ ∂Ω , while x ← y indicates the algebraic
operation x = x+ y.

Algorithm 18.1 (Schur complement multiplication by a vector)

Given xΓ , compute yΓ = ΣxΓ as follows:

a. Set yΓ = 0

b. For i = 1, . . . ,M Do in parallel:

c. xi = RΓi xΓ

d. zi = AΩi,Γi
xi

e. zi ← A−1
Ωi,Ωi

zi

f. sum up in the local vector yΓi ← AΓi,Γi xi−AΓi,Ωi
zi

g. sum up in the global vector yΓ ← RT
Γi

yΓi

h. EndFor

Since no communication is required among the subdomains, this is a fully parallel
algorithm.
Before using for the first time the Schur complement, a start-up phase, described in
Algorithm 18.2, is requested. Note that this is an off-line procedure.

Algorithm 18.2 (Start-up phase for the solution of the Schur complement system)

Given xΓ , compute yΓ = ΣxΓ as follows:

a. For i = 1, . . . ,M Do in parallel:

b. Compute the entries of Ai

c. Reorder Ai as in (19.76) then extract the submatrices

AΩi,Ωi
, AΩi,Γi

, AΓi,Ωi
and A(i)

Γ ,Γ
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d. Compute the (either LU or Cholesky) factorization of AΩi,Ωi

e. EndFor

19.5 DD preconditioners in case of many subdomains

Before introducing the preconditioners for the Schur complement in the case in which
Ω is partitioned in many subdomains we recall the following definition:

Definition 19.1. A preconditioner Ph of Σ is said to be scalable if the condition
number of the preconditioned matrix P−1

h Σ is independent of the number of sub-
domains.

Iterative methods using scalable preconditioners allow henceforth to achieve con-
vergence rates independent of the subdomain number. This is a very desirable property
in those cases where a large number of subdomains is used.

Let Ri be a restriction operator which, to any vector vh of nodal values on the
global domain Ω , associates its restriction to the subdomain Ωi

Ri : vh|Ω → vi
h|Ωi∪Γi

.

Let moreover
RT

i : vi
h|Ωi∪Γi

→ vh|Ω
be the prolongation (or extension-by-zero) operator. In algebraic form Ri can be rep-
resented by a matrix that coincides with the identity matrix in correspondence with
the subdomainΩi

Ri =

⎡⎢⎣ 0 . . . 0 1 0 . . . 0
...

. . .
...

. . .
...

. . .
...

0 . . . 0 1 0 . . . 0

⎤⎥⎦ .
︸ ︷︷ ︸

Ωi

Similarly we can define the restriction and prolongation operators RΓi and RT
Γi

, respec-
tively, that act on the vector of interface nodal values (as done in (19.81)). In order to
find a preconditioner for Σ the strategy consists of combining the contributions of lo-
cal subdomain preconditioners with that of a global contribution referring to a coarse
grid whose elements are the subdomains themselves. Without the latter coarse grid
term the preconditioner could not be scalable since it would lack any mechanism for
global communication of information across the domain in each iteration step. This
idea can be formalized through the following relation that provides the inverse of the
preconditioner

(Ph)
−1 =

M

∑
i=1

RT
Γi

P−1
i,h RΓi +RT

ΓP−1
H RΓ .
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Fig. 19.6. A decomposition into 9 subdomains (left) with a fine triangulation in small triangles
and a coarse triangulation in large quadrilaterals (the 9 subdomains) (right)

We have denoted by H the maximum value of the diameters Hi of the subdomainsΩi;
moreover, Pi,h is either the local Schur complement Σi, or (more frequently) a suitable
preconditioner of Σi, while RΓ and PH refer to operators that act on the global scale
(that of the coarse grid).

Many different choices are possible for the local Schur complement preconditioner
Pi,h; they will give rise to different condition numbers of the preconditioned matrix
P−1

h Σ .

19.5.1 Jacobi preconditioner

Let {e1, . . . ,em} be the set of edges and {v1, . . . ,vn} that of vertices of a partition ofΩ
into subdomains (see Fig. 19.6 for an example).
The Schur complement Σ features the following blockwise representation

Σ =

[
Σee Σev

ΣT
ev Σvv

]
,

having set

Σee =

⎡⎣ Σe1e1 . . . Σe1em...
. . .

...
Σeme1 . . . Σemem

⎤⎦ , Σev =

⎡⎢⎣ Σe1v1 . . . Σe1vn
...

. . .
...

Σemv1 . . . Σemvn

⎤⎥⎦
and

Σvv =

⎡⎢⎢⎢⎣
Σv1v1 0 . . . 0

0
. . .

...
...

. . . 0

0 . . . 0 Σvnvn

⎤⎥⎥⎥⎦ .
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In 3D there should be a further block row and column due to the presence of faces.
The Jacobi preconditioner of the Schur complement Σ is a block diagonal matrix

defined by

PJ
h =

[
Σ̂ee 0
0 Σvv

]
where Σ̂ee is either Σee or a suitable approximation of it. This preconditioner does
not account for the interaction between the basis functions associated with edges and
those associated with vertices. The matrix Σ̂ee is also diagonal

Σ̂ee =

⎡⎢⎢⎢⎣
Σ̂e1e1 0 . . . 0

0
. . .

...
...

. . . 0

0 . . . 0 Σ̂emem

⎤⎥⎥⎥⎦ .

Here Σ̂ekek denotes Σekek or a suitable approximation of it.

The preconditioner PJ
h can also be expressed in terms of restriction and prolonga-

tion operators as follows

(
PJ

h

)−1
=

m

∑
k=1

RT
ek
Σ̂−1

ekek
Rek +RT

v Σ
−1
vv Rv , (19.88)

where Rek and Rv denote edge and vertices restriction operators, respectively.

Regarding the condition number of the preconditioned Schur complement, there
exists a constant C > 0, indipendent of both h and H, such that

K2
(
(PJ

h )
−1Σ
)≤CH−2

(
1+ log

H

h

)2

.

Should the conjugate gradient method be used to solve the preconditioned Schur
complement system (19.79) with preconditioner PJ

h , the number of iterations neces-
sary to converge (within a prescribed tolerance) would be proportional to H−1. The
presence of H indicates that the Jacobi preconditioner is not scalable.

Moreover, we notice that the presence of the logarithmic term log(H/h) introduces
a relation between the size of the subdomains and the size of the computational grid
Th. This generates a propagation of information among subdomains characterized by
a finite (rather than infinite) speed of propagation. Note that the ratio H/h measures
the maximum number of elements across any subdomain.

19.5.2 Bramble-Pasciak-Schatz preconditioner

With the aim of accelerating the speed of propagation of information among subdo-
mains we can devise a mechanism of global coupling among subdomains. As already
anticipated, the family of subdomains can be regarded as a coarse grid, say TH , of the
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original domain. For instance, in Fig. 19.6 TH is made of 9 (macro) elements and 4
internal nodes. It identifies a stiffness matrix of piecewise bilinear elements, say AH ,
of dimension 4× 4 which guarantees a global coupling in Ω . We can now introduce a
restriction operator that, for simplicity, we indicate RH :Γh →ΓH . More precisely, this
operator transforms a vector of nodal values on the skeleton Γh into a vector of nodal
values on the internal vertices of the coarse grid (4 in the case at hand). Its transpose
RT

H is an extension operator. The matrix PBPS
h , whose inverse is

(PBPS
h )−1 =

m

∑
k=1

RT
ek
Σ̂−1

ekek
Rek +RT

HA−1
H RH , (19.89)

is named Bramble-Pasciak-Schatz preconditioner. The main difference with Jacobi
preconditioner (19.88) is due to the presence of the global (coarse-grid) stiffness ma-
trix AH instead of the diagonal vertex matrix Σvv. The following results hold:

K2
(
(PBPS

h )−1Σ
)≤C

(
1+ log

H

h

)2

in 2D,

K2
(
(PBPS

h )−1Σ
)≤C

H

h
in 3D.

Note that the factor H−2 does not show up anymore. The number of iterations of the
conjugate gradient method with preconditioner PBPS

h is now proportional to log(H/h)
in 2D and to (H/h)1/2 in 3D.

19.5.3 Neumann-Neumann preconditioner

Although the Bramble-Pasciak-Schatz preconditioner has better properties than Ja-
cobi’s, yet in 3D the condition number of the preconditioned Schur complement still
contains a linear dependence on H/h. In this respect, a further improvement is achiev-
able using the so-called Neumann-Neumann preconditioner, whose inverse is

(PNN
h )−1 =

M

∑
i=1

RT
Γi

DiΣ
∗
i DiRΓi . (19.90)

As before, RΓi denotes the restriction from the nodal values on the whole skeleton Γ
to those on the local interface Γi, whereas Σ∗i is either Σ−1

i (should the local inverse
exist) or an approximation of Σ−1

i , e.g. the pseudo-inverse Σ+
i of Σi. The matrix Di is

a diagonal matrix of positive weights d j > 0, for j = 1, . . . ,n, n being the number of
nodes on Γi. For instance, d j coincides with the inverse of the number of subdomains
that share the j− th node. If we still consider the 4 internal vertices of Fig. 19.6, we
will have d j = 1/4, for j = 1, . . . ,4.
For the preconditioner (19.90) the following estimate (similar to that of Jacobi pre-
conditioner) holds: there exists a constant C > 0, indipendent of both h and H, such
that

K2
(
(PNN

h )−1Σ
)≤CH−2

(
1+ log

H

h

)2

.
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The last (logarithmic) factor drops out in case the subdomains partition features no
cross points.
The presence of Di and RΓi in (19.90) only entails matrix-matrix multiplications. On
the other hand, if Σ∗i = Σ−1

i , applying Σ−1
i to a given vector can be reconducted to the

use of local inverses. As a matter of fact, let q be a vector whose components are the
nodal values on the local interface Γi; then

Σ−1
i q = [0, I]A−1

i [0, I]T q.

In particular, [0, I]T q = [0,q]T , and the matrix-vector product⎡⎢⎢⎢⎣
internal
nodes

boundary nodes

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

A−1
i

⎡⎢⎢⎢⎣
0
...
0
q

⎤⎥⎥⎥⎦

corresponds to the solution on Ωi of the Neumann boundary-value problem:⎧⎨⎩
−�wi = 0 inΩi,

∂wi

∂n
= q on Γi.

(19.91)

Algorithm 18.3 (Neumann-Neumann preconditioner)

Given a vector rΓ , compute zΓ = (PNN
h )−1rΓ as follows:

a. Set zΓ = 0

b. For i = 1, . . . ,M Do in parallel:

c. restrict the residue on Ωi: ri = RΓi rΓ

d. compute zi = [0, I]A−1
i [0,ri]

T

e. Sum up the global residue: zΓ ← RT
Γi

zi

f. EndFor

Also in this case a start-up phase is required, consisting in the preparation for
the solution of linear systems with local stiffness matrices Ai. Note that in the case
of the model problem (3.13), Ai is singular if Ωi is an internal subdomain, that is if
∂Ωi \ ∂Ω = /0. One of the following strategies should be adopted:

1. compute a (either LU or Cholesky) factorization of Ai + εI, for a given ε > 0 suf-
ficiently small;
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Table 19.2. Condition number of the preconditioned matrix (PNN
h )−1Σ

K2((PNN
h )−1Σ ) H = 1/2 H = 1/4 H = 1/8 H = 1/16

h = 1/16 2.55 15.20 47.60 —
h = 1/32 3.45 20.67 76.46 194.65
h = 1/64 4.53 26.25 105.38 316.54
h = 1/128 5.79 31.95 134.02 438.02

2. compute a factorization of Ai +
1

H2 Mi, where Mi is the mass matrix,

(Mi)k, j =

∫
Ωi

ϕkϕ j dΩi;

3. compute the singular-value decomposition of Ai.

The matrix Σ∗i is defined accordingly. In our numerical results we have adopted the
third approach.

The convergence history of the preconditioned conjugate gradient method with
preconditioner PNN

h in the case h = 1/32 is displayed in Fig. 19.7. In Table 19.2 we
report the values of the condition number of (PNN

h )−1Σ for several values of H.
As already pointed out, the Neumann-Neumann preconditioner of the Schur com-

plement matrix is not scalable. A substantial improvement of (19.90) can be achieved
by adding a coarse grid correction mechanism, yielding the following new precondi-
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Fig. 19.7. Convergence history for the preconditioned conjugate gradient method with precon-
ditioner PNN

h when h = 1/32
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tioned Schur complement matrix (see, e.g., [TW05, Sect. 6.2.1])(
PBNN

h

)−1
Σ = P0 +(I−P0)((P

NN
h )−1Σ)(I−P0), (19.92)

in which we have used the shorthand notation P0 = R̄T
0 Σ

−1
0 R̄0Σ , Σ0 = R̄0Σ R̄T

0 , and R̄0

denotes restriction from Γ onto the coarse level skeleton.
The matrix PBNN

h is called balanced Neumann-Neumann preconditioner.
It can be proven that there exists a constant C > 0, independent of h and H, such that

K2
(
(PBNN

h )−1Σ
)≤C

(
1+ log

H

h

)2

both in 2D and 3D. The balanced Neumann-Neumann preconditioner therefore guar-
antees optimal scalability up to a light logarithmic dependence on H and h.
The coarse grid matrix Σ0 that is a constituent of ΣH can be built up using the Algo-
rithm 18.4:

Algorithm 18.4 (construction of the coarse matrix for preconditioner PBNN
h )

a. Build the restriction operator R̄0 that returns, for every subdomain,

the weighted sum of the values at all the nodes at the boundary

of that subdomain

For every node the corresponding weight is given by the inverse of

the number of subdomains sharing that node

b. Build up the matrix Σ0 = R̄0Σ R̄T
0

Step a. of this Algorithm is computationally very cheap, whereas step b. requires
several (e.g., �) matrix-vector products involving the Schur complement matrix Σ .
Since Σ is never built explicitly, this involves the finite element solution of �×M
Dirichlet boundary value problems to generate AH . Observe moreover that the restric-
tion operator introduced at step a. implicitly defines a coarse space whose functions
are piecewise constant on every Γi. For this reason the balanced Neumann-Neumann
preconditioner is especially convenient when either the finite element grid or the sub-
domain partition (or both) are unstructured, as in Fig. 19.8). An algorithm that im-

Table 19.3. Condition number of (PBNN
h )−1Σ for several values of H

K2((PBNN
h )−1Σ ) H = 1/2 H = 1/4 H = 1/8 H = 1/16

h = 1/16 1.67 1.48 1.27 —
h = 1/32 2.17 2.03 1.47 1.29
h = 1/64 2.78 2.76 2.08 1.55
h = 1/128 3.51 3.67 2.81 2.07
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Fig. 19.8. Example of an unstructured subdomain partition in 8 subdomains for a finite element
grid which is either structured (left) or unstructured (right)

plements the BNN preconditioner within a conjugate gradient method to solve the
interface problem (19.79) is reported in [TW05, Sect. 6.2.2].

By a comparison of the results obtained using the Neumann-Neumann precondi-
tioner (with and without balancing), the following conclusions can be drawn:

• although featuring a better condition number than A, Σ is still ill-conditioned. The
use of a suitable preconditioner is therefore mandatory;

• the Neumann-Neumann preconditioner can be satisfactorily used for partitions fea-
turing a moderate number of subdomains;

• the balancing Neumann-Neumann preconditioner is almost optimally scalable and
therefore recommandable for partitions with a large number of subdomains.

19.5.4 FETI (Finite Element Tearing & Interconnecting) methods

In this section we will denote by Hi = diam(Ωi),Wi = W h(∂Ωi) (the space of traces
of finite element functions on the boundaries ∂Ωi), and by W = ∏M

i=1 Wi the product
space of such trace spaces.

At a later stage we will need two further finite element trace spaces, Ŵ ⊂W a
subspace of continuous traces across the skeleton Γ , and W̃ , a possible intermediate
space Ŵ ⊂ W̃ ⊂W that will fulfill a smaller number of continuity constraints.

We will consider the variable coefficient elliptic problem:

{ −div(ρ∇u) = f in Ω ,
u = 0 on ∂Ω ,

(19.93)

where ρ is piecewise constant, ρ = ρi ∈ R+ in Ωi.
Finally, we will denote byΩih the nodes inΩi, ∂Ωih the nodes on ∂Ωi, ∂Ωh the nodes
on ∂Ω , and Γh the nodes on Γ . See Fig. 19.9.
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Fig. 19.9. Finite element sets of nodes ∂Ωh, Γh, Ωih, and ∂Ωih

Let us introduce the following scaling counting functions: ∀x ∈ Γh∪∂Ωh

δi(x) =

⎧⎪⎪⎨⎪⎪⎩
1 x ∈ ∂Ωih∩ (∂Ωh \Γh),

∑
j∈Nx

ρ
γ
j (x)/ρ

γ
i (x) x ∈ ∂Ωih∩Γh,

0 elsewhere

(19.94)

where γ ∈ [1/2,+∞) and Nx is the set of indices of the subregions having x on their
boundary. Then we set

δ †
i (x) (= pseudo inverses ) =

{
δ−1

i (x) if δi(x) 	= 0,

0 if δi(x) = 0.
(19.95)

Based on the finite element approximation of (19.93), let us consider the local Schur
complements (19.80), which are positive semi-definite matrices. In this section we
will indicate the interface nodal values on ∂Ωi as ui, and we set u = (u1, . . . ,uM), the
local load vectors on ∂Ωi as χi and we set χΔ = (χ1, . . . ,χM). Finally, we set

ΣΔ = diag(Σ1, . . . ,ΣM) =

⎡⎢⎢⎢⎢⎣
Σ1 0 · · · 0
... Σ2

...
. . .

0 0 · · · ΣM

⎤⎥⎥⎥⎥⎦,
a block diagonal matrix. The original FEM problem, when reduced to the interface Γ ,
reads: find u ∈W such that{

J(u) =
1
2
〈ΣΔu,u〉− 〈χΔ ,u〉 → min,

BΓ u = 0.
(19.96)
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BΓ is not unique, so that we should impose continuity when u belongs to more than
one subdomain; BΓ is made of {0,−1,1}, since it enforces continuity constraints at
interfaces’ nodes. Here, we are using the same notation W to denote the finite element
space trace and that of their nodal values at points of Γh.
In 2D, there is a little choice on how to write the constraint of continuity at a point
sitting on an edge, there are many options for a vertex point. For the edge node we only
need to choose the sign, whereas for a vertex node, e.g. one common to 4 subdomains,
a minimum set of three constraints can be chosen in many different ways to assure
continuity at the node in question. See, e.g., Fig. 19.10.

Fig. 19.10. Continuity constraints enforced by 3 (non-redundant) conditions on the left, by 6
(redundant) conditions on the right

Problem (19.96) admits a unique solution iff Ker{ΣΔ}∩Ker{BΓ }= 0, that is if ΣΔ is
invertible on Ker(BΓ ).

We can reformulate (19.96) using Lagrange multipliers: find (u,λ) ∈W ×U such
that {

ΣΔ u+BT
Γλ = χΔ ,

BΓ u = 0.
(19.97)

Because of the inf-sup (LBB) condition (see Chap. 17), the component λ of the so-
lution to (19.97) is unique up to an additive vector of Ker(BT

Γ ), so we choose U =
range(BΓ ).
Let R = diag(R(1), . . . ,R(M)) be made of null-space elements of ΣΔ . (E.g. R(i) corre-
sponds to the rigid body motions of Ωi, in case of linear elasticity operator.)
R is a full column rank matrix. The solution of the first equation of (19.97) exists iff
χΔ −BT

Γλ ∈ range(ΣΔ ), a limitation that will be resolved by introducing a suitable
projection operator P. Then,

u = Σ†
Δ (χΔ −BT

Γλ)+Rα if χΔ −BT
Γλ⊥ Ker(ΣΔ ),

where α is an arbitrary vector and Σ†
Δ is a pseudoinverse of ΣΔ . (Even though there are

several pseudo-inverses of a given matrix, the following algorithm will be invariant to
the specific choice.) It is convenient to choose a symmetric Σ†

Δ , e.g. that of Moore-
Penrose, see [QSS07].



590 19 Domain decomposition methods

Substituting u into the second equation of (19.97) yields

BΓ Σ
†
ΔBT

Γλ= BΓ Σ
†
ΔχΔ +BΓRα. (19.98)

Let us set F = BΓ Σ
†
ΔBT

Γ and d = BΓ Σ
†
ΔχΔ . Then choose PT to be a suitable projection

matrix, e.g. PT = I−G(GT G)−1GT , with G = BΓR. Then:{
PT Fλ = PT d,

GTλ = e (= RTχΔ ).
(19.99)

More in general, one can introduce a s.p.d. matrix Q, and set

PT = I−G(GT QG)−1GT Q.

The operator PT is the projection from U onto the space of Lagrange multipliers that
are Q-orthogonal to range(G), while P = I−QG(GT QG)−1GT is a projection from
U onto Ker(GT ) (it is indeed the orthogonal projection with respect to the Q−1-inner
product (λ,μ)Q−1 = (λ,Q−1μ) ).
Upon multiplication of (19.98) by H = (GT QG)−1GT Q we find

α= H(d−Fλ),

which fully determines the primal variables in terms of λ.
If the differential operator has constant coefficients, choosing Q = I suffices. In case
of jumps in the coefficients, Q is typically chosen as a scaling diagonal matrix and can
be regarded as a scaling from the left of matrix BΓ by Q1/2.

The original one-level FETI method is a CG method in the space V applied to

PT Fλ= PT d , λ ∈ λ0 +V (19.100)

with an initial λ0 such that GTλ0 = e. Here

V = {λ ∈U : 〈λ,Bz〉= 0, z = Ker(ΣΔ )}
is the so-called space of admissible increments, Ker(GT ) = range(P) and

V ′ = {μ ∈U : 〈μ,Bz〉Q = 0,z ∈ Ker(ΣΔ )}= range(PT ).

The above simplest version of FETI with no preconditioner (or only a diagonal
preconditioner) in the subdomain is scalable with the number of subdomains, but the
condition number grows polynomially with the number of elements per subdomain.
The original, most basic FETI preconditioner is

P−1
h = BΓ ΣΔBT

Γ =
M

∑
i=1

B(i)ΣiB
(i)T

. (19.101)

It is called a Dirichlet preconditioner since its application to a given vector involves
the solution of M independent Dirichlet problems, one in every subdomain. The coarse
space in FETI consists of the nullspace on each substructure.
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To keep the search directions of the resulting preconditioned CG method in the
space V , the application of P−1

h is followed by an application of the projection P.
Thus, the so-called Dirichlet variant of the FETI method is the CG algorithm applied
to the modified equation

PP−1
h PT Fλ= PP−1

h PT d , λ ∈ λ0 +V. (19.102)

Since, for λ ∈ V , PP−1
h PT Fλ = PP−1

h PT PT FPλ, the matrix on the left of (19.102)
can be regarded as the product of two symmetric matrices. In case BΓ has full row
rank, i.e. the constraints are linearly independent and there are no redundant Lagrange
multipliers, a better preconditioner can be defined as follows

P̂−1
h = (BΓD−1BT

Γ )
−1BΓD−1ΣΔD−1BT

Γ (BΓD−1BT
Γ )
−1 (19.103)

where D is a block diagonal matrix D = diag(D(1), . . . ,D(M)) and each block D(i) is a
diagonal matrix whose elements are δ †

i (x) (see (19.95)) corresponding to the point x
of ∂Ωi,h.
Since BΓD−1BT

Γ is block-diagonal, its inverse can be easily computed by inverting
small blocks whose size is nx, the number of Lagrange multipliers used to enforce
continuity at point x.
The matrix D, that operates on elements of the product space W , can be regarded as a
scaling from the right of BΓ by D−1/2. With this choice

K2(PP̂−1
h PT F)≤C(1+ log(H/h))2, (19.104)

where K2(·) is the spectral condition number and C is a constant independent of h, H,
γ and the values of the ρi.

19.5.5 FETI-DP (Dual Primal FETI) methods

The FETI-DP method is a domain decomposition method introduced in [FLT+01] that
enforces equality of the solution at subdomains interfaces by Lagrange multipliers
except at subdomains corners, which remain primal variables. The first mathematical
analysis of the method was provided by Mandel and Tezaur [MT01]. The method was
further improved by enforcing the equality of averages across the edges or faces on
subdomain interfaces [FLP00], [KWD02]. This is important for parallel scalability.

Let us consider a 2D case for simplicity. As anticipated at the beginning of
Sect. 19.5.4, this idea is implemented by introducing an additional space W̃ such that
Ŵ ⊂ W̃ ⊂W for which we have continuity of the primal variables at subdomain ver-
tices, and also common values of the averages over all edges of the interface. However,
for simplicity we will confine ourselves to the case of primal variables associated to
subdomain vertices only. This space can be written as the sum of two subspaces

W̃ = ŴΠ ⊕W̃Δ (19.105)

where ŴΠ ⊂ Ŵ is the space of continuous interface functions that vanish at all nodal
points of Γh except at the subdomain vertices. ŴΠ is given in terms of the vertex
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variables and the averages of the values over the individual edges of the set of interface
nodes Γh. W̃Δ is the direct sum of local subspaces W̃Δ ,i:

W̃Δ =
M

∏
i=1

W̃Δ ,i (19.106)

where W̃Δ ,i ⊂Wi consists of local functions on ∂Ωi that vanish at the vertces ofΩi and
have zero average on each individual edge.

According to this space splitting, the continuous degrees of freedom associated
with the subdomain vertices and with the subspace ŴΠ are called primal (Π ), while
those (that are potentially discontinuous across Γ ) that are associated with the sub-
spaces W̃Δ ,i and with the interior of the subdomain edges are called dual (Δ ).

The subspace ŴΠ , together with the interior subspace, defines the subsystem which
is fully assembled, factored, and stored in each iteration step.

At this stage, all unknowns of the first subspace as well as the interior variables
are eliminated to obtain a new Schur complement Σ̃Δ . More precisely, we proceed as
follows.
Let Ã denote the stiffness matrix obtained by restricting diag(A1, . . . ,AM) (see (19.76))
from∏M

i=1W h(Ωi) to W̃ h(Ω) (these spaces now refer to subdomains, not to their bound-
aries). Then Ã is no longer block diagonal because of the coupling that now exists
between subdomains sharing a common vertex. According to the previous space de-
composition, Ã can be split as follows

Ã =

⎡⎢⎢⎣
AII AIΠ AIΔ

AT
IΠ AΠΠ AΠΔ

AT
IΔ AT

ΠΔ AΔΔ

⎤⎥⎥⎦ .
Here the subscript I refers to the internal degrees of freedom of the subdomains, Π
to those associated to the subdomains vertices, and Δ to those of the interior of the
subdomains edges, see Fig. 19.11, right. The matrices AII and AΔΔ are block diagonal
(one block per subdomain). Any non-zero entry of AIΔ represents a coupling between
degrees of freedom associated with the same subdomain. Upon eliminating the vari-
ables of the I and Π sets, a Schur complement associated with the variables of the Δ
sets (interior and edges) is obtained as follows

Σ̃ = AΔΔ −
[
AT

IΔAT
ΠΔ

][ AII AIΠ

AT
IΠ AΠΠ

]−1 [
AIΔ

AΠΔ

]
. (19.107)

Correspondingly we obtain a reduced right hand side χ̃Δ . By indicating with uΔ ∈ W̃Δ

the vector of degrees of freedom associated with the edges, similarly to what done in
(19.96) for FETI, the finite element problem can be reformulated as a minimization
problem with constraints given by the requirement of continuity across all of Γ : find
uΔ ∈ W̃Δ : {

J(uΔ ) =
1
2
〈Σ̃uΔ ,uΔ 〉− 〈χ̃Δ ,uΔ 〉 → min,

BΔuΔ = 0.
(19.108)
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Fig. 19.11. Degrees of freedom of the space W for one-level FETI (left) and those of the space
W̃ for one-level FETI-DP (right) in the case of primal vertices only

The matrix BΔ is made of {0,−1,1} as it was for BΓ . Note however that this time the
constraints associated with the vertex nodes are dropped since they are assigned to the
primal set. Note also that since all the constraints refer to edge points, no distinction
needs to be made between redundant and non-redundant constraints and Lagrange
multipliers.
A saddle point formulation of (19.108), similar to (19.97), can be obtained by intro-
ducing a set of Lagrange multipliers λ ∈V = range(BΔ). Indeed, since Ã is s.p.d., so
is Σ̃ : by eliminating the subvectors uΔ we obtain the reduced system

FΔλ= dΔ , (19.109)

where FΔ = BΔ Σ̃−1BT
Δ and dΔ = BΔ Σ̃−1χ̃Δ .

Note that once λ is found, uΔ = Σ̃−1(χ̃Δ −BT
Δλ) ∈ W̃Δ , while the interior variables

uI and the vertex variables uΠ are obtained by back-solving the system associated
with Ã.

A preconditioner for F is introduced as done in (19.103) for FETI (in case of
non-redundant Lagrange multipliers)

P−1
Δ = (BΔ D−1

Δ BT
Δ )

−1BΔ D−1
Δ SΔΔ D−1

Δ BT
Δ (BΔ D−1

Δ BT
Δ )

−1. (19.110)

Here DΔ is a block diagonal scaling matrix with blocks D(i)
Δ : each of their diagonal

elements corresponds to a Lagrange multiplier that enforces continuity between the
nodal values of some wi ∈ Wi and wj ∈ Wj at some point x ∈ Γh and it is given by
δ †

j (x). Moreover, ΣΔΔ = diag(Σ1,ΔΔ , . . . ,ΣM,ΔΔ ) with Σi,ΔΔ being the restriction of

the local Schur complement Σi to W̃Δ ,i ⊂Wi.
When using the conjugate gradient method for the preconditioned system

P−1
Δ FΔλ= P−1

Δ dΔ ,

in contrast with one level FETI methods we can use an arbitrary initial guess λ0.
For an efficient implementation of this algorithm see [TW05, Sect. 6.4.1]. Also in this
case we have a condition number that scales polylogarithmically, that is

K2(P
−1
Δ FΔ )≤C(1+ log(H/h))2,
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where C is independent of h,H,γ and the values of the ρi. For a comprehensive pre-
sentation and analysis, see [KWD02] and [TW05].
For a conclusive comparative remark between FETI and FETI-DP methods, by follow-
ing [TW05] we can note that FETI-DP algorithms do not require the characterization
of the kernels of local Neumann problems (as required by one-level methods), because
the enforcement of the additional constraints in each iteration always makes the local
problems nonsingular and at the same time provides an underlying coarse global prob-
lem. FETI-DP methods do not require the introduction of a scaling matrix Q, which
enters in the construction of a coarse solver for one-level FETI algorithms.
Finally, it is worth noticing that one-level FETI methods are projected conjugate gra-
dient algorithms that cannot start from an arbitrary initial guess. In contrast, FETI-DP
methods are standard preconditioned conjugate algorithms and can therefore employ
an arbitrary initial guess λ0.

19.5.6 BDDC (Balancing Domain Decomposition with Constraints) methods

This method was introduced by Dohrmann [Doh03] as a simpler primal alternative to
the FETI-DP domain decomposition method. The name BDDC was coined by Man-
del and Dohrmann because it can be understood as further development of the balanc-
ing domain decomposition method [Man93] with the coarse, global component of a
BDDC algorithm expressed interms of a set of primal constraints.

In contrast to the original Neumann-Neumann and one-levet FETI methods, FETI-
DP and BDDC algorithms do not require the solution of any singular linear systems of
equations (those associated with a pure Neumann problem). In fact, any given choice
of the primal set of variables determines a FETI-DP method and an associated BDDC
method. This pair defines a duality, and features the same spectrum of eigenvalues (up
to the eigenvalues 0 and 1) (see [LW06]). The choice of the primal constraints is of
course a crucial question in order to obtain an efficient FETI-DP or BDDC algorithm.

BDDC is used as a preconditioner for the conjugate gradient method. A specific
version of BDDC is characterized by the choice of coarse degrees of freedom, which
can be values at the corners of the subdomains, or averages over the edges of the
interface between the subdomains. One application of the BDDC preconditioner then
combines the solution of local problems on each subdomain with the solution of a
global coarse problem with the coarse degrees of freedom as the unknowns. The local
problems on different subdomains are completely independent of each other, so the
method is suitable for parallel computing. A BDDC preconditioner reads

P−1
BDDC = R̃T

DΓ Σ̃
−1R̃DΓ ,

where R̃Γ : Ŵ → W̃ is a restriction matrix, R̃DΓ is a scaled variant of R̃Γ with scale
factor δ †

i (featuring the same sparsity pattern of R̃Γ ). This scaling is chosen in such a
way that R̃Γ R̃T

DΓ is a projection (then it coincides with its square).
Theoretical analysis of BDDC preconditioner (and its spectral analogy with FETI-

DP preconditioner) was first provided in [MDT05] and later in [LW06] and [BS07].
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Fig. 19.12. Two examples for which the Schwarz method in its classical form applies

19.6 Schwarz iterative methods

Schwarz method, in its original form described in Sect. 19.1.1, was proposed by
H. Schwarz [Sch69] as an iterative scheme to prove existence of solutions to elliptic
equations set in domains whose shape inhibits a direct application of Fourier series.
Two elementary examples are displayed in Fig. 19.12. This method is still used in
some quarters as solution method for elliptic equations in arbitrarily shaped domains.
However, nowadays it is mostly used in a somehow different version, that of DD pre-
conditioner of conjugate gradient (or, more generally, Krylov) iterations for the solu-
tion of algebraic systems arising from finite element (or other kind of) discretizations
of boundary-value problems.

As seen in Sect. 19.1.1, the distinctive feature of Schwarz method is that it is based
on an overlapping subdivision of the original domain. Let us still denote {Ωm} these
subdomains.

To start with, in the following subsection we will show how the Schwarz method
can be formulated as an iterative algorithm to solve the algebraic system associated
with the finite element discretization of problem (19.1).

19.6.1 Algebraic form of Schwarz method for finite element discretizations

Consider as usual a finite element triangulation Th of the domain Ω . Then assume
that Ω is decomposed in two overlapping subdomains, Ω1 and Ω2, as shown in Fig.
19.1 (left).

Denote with Nh the total number of nodes of the triangulation that are internal
to Ω (i.e., they don’t sit on its boundary), and with N1 and N2, respectively, those
internal to Ω1 and Ω2, as done in Sect. 19.3. Note that Nh ≤ N1 +N2 and that equality
holds only if the overlap reduces to a single layer of elements. Indeed, if we denote
with I = {1, . . . ,Nh} the set of indices of the nodes of Ω , and with I1 and I2 those
associated with the internal nodes of Ω1 and Ω2, respectively, one has I = I1 ∪ I2,
while I1∩ I2 	= /0 unless the overlap consists of a single layer of elements.

Let us order the nodes in such a way that the first block corresponds to those
in Ω1 \Ω2, the second to those in Ω1 ∩Ω2, and the third to those in Ω2 \Ω1. The
stiffness matrix A of the finite element discretization contains two submatrices, A1
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and A2, corresponding to the local stiffness matrices in Ω1 e Ω2, respectively (see Fig.
19.13). They are related to A as follows

A

A1

A2

Nh

N1

N2

Fig. 19.13. The submatrices A1 and A2 of the stiffness matrix A

A1 = R1ART
1 ∈RN1×N1 and A2 = R2ART

2 ∈RN2×N2 , (19.111)

being Ri and RT
i , for i = 1,2, the restriction and prolongation operators, respectively.

The matrix representation of the latter is

RT
1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 . . . 0
...

. . .
...

0 . . . 1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ RNh×N1 , RT

2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0

1 . . . 0
...

. . .
...

0 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ RNh×N2 . (19.112)

If v is a vector of RNh , then R1v is a vector of RN1 whose components coincide with
the first N1 components of v. Should v instead be a vector of RN1 , then RT

1 v would be
a vector of dimension Nh whose last Nh−N1 components are all zero.

By using these definitions, an iteration of the multiplicative Schwarz method ap-
plied to system Au = f can be expressed as follows:

u(k+1/2) = u(k) +RT
1 A−1

1 R1(f−Au(k)), (19.113)

u(k+1) = u(k+1/2) +RT
2 A−1

2 R2(f−Au(k+1/2)). (19.114)

Equivalently, by setting
Pi = RT

i A−1
i RiA , i = 1,2, (19.115)

we have
u(k+1/2) = (I−P1)u

(k) +P1u,

u(k+1) = (I−P2)u
(k+1/2) +P2u = (I−P2)(I−P1)u

(k) + (P1 +P2−P2P1)u.
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Similarly, an iteration of the additive Schwarz method reads

u(k+1) = u(k) + (RT
1 A−1

1 R1 +RT
2 A−1

2 R2)(f−Au(k)), (19.116)

that is
u(k+1) = (I−P1−P2)u

(k) + (P1 +P2)u. (19.117)

Introducing the matrices

Qi = RT
i A−1

i Ri = PiA
−1, i = 1,2,

from (19.113) and (19.114) we derive the following recursive formula for the multi-
plicative Schwarz method

u(k+1) = u(k) +Q1(f−Au(k))+Q2[f−A(u(k) +Q1(f−Au(k)))]

= u(k) + (Q1 +Q2−Q2AQ1)(f−Au(k)),

whereas for the additive Schwarz method we obtain from (19.116) that

u(k+1) = u(k) + (Q1 +Q2)(f−Au(k)). (19.118)

This last formula can easily be extended to the case of a decomposition of Ω into
M ≥ 2 overlapping subdomains {Ωi} (see Fig. 19.14 for an example). In this case we
have

u(k+1) = u(k) +
( M

∑
i=1

Qi

)
(f−Au(k)). (19.119)

19.6.2 Schwarz preconditioners

Denoting with

Pas =
( M

∑
i=1

Qi

)−1
, (19.120)

from (19.119) it follows that an iteration of the additive Schwarz method corresponds
to an iteration of the preconditioned Richardson method applied to the solution of the
linear system Au = f using Pas as preconditioner (see Sect. 7.2.1). For this reason the
matrix Pas is named additive Schwarz preconditioner.

In case of disjoint subdomains (no overlap), Pas coincides with the block Jacobi
preconditioner

PJ =

⎡⎢⎣ A1 0
. . .

0 AM

⎤⎥⎦ , P−1
J =

⎡⎢⎣ A−1
1 0

. . .
0 A−1

M

⎤⎥⎦ (19.121)

in which we have removed the off-diagonal blocks of A.
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Equivalently, one iteration of the additive Schwarz method corresponds to an iter-
ation by the Richardson method on the preconditioned linear system Qau = ga, with
ga = P−1

as f, and the preconditioned matrix Qa is

Qa = P−1
as A =

M

∑
i=1

Pi.

By proceeding similarly, using the multiplicative Schwarz method would yield the
following preconditioned matrix

QM = P−1
ms A = I− (I−PM) . . . (I−P1).

Lemma 19.3. Matrices Pi defined in (19.115) are symmetric and non-negative
w.r.t the following scalar product induced by A

(w,v)A = (Aw,v) ∀w,v ∈ RNh .

Proof. For i = 1,2, we have

(Piw,v)A = (APiw,v) = (RT
i A−1

i RiAw,Av) = (Aw,RT
i A−1

i RiAv)

= (w,Piv)A ∀v,w ∈RNh .

Moreover, ∀v ∈ RNh ,

(Piv,v)A = (APiv,v) = (RT
i A−1

i RiAv,Av) = (A−1
i RiAv,RiAv)≥ 0. �

Lemma 19.4. The preconditioned matrix Qa of the additive Schwarz method is
symmetric and positive definite w.r.t the scalar product induced by A.

Proof. Let us first prove the symmetry: for all u,v ∈ RNh , since A and Pi are both
symmetric, we obtain

(Qau,v)A = (AQau,v) = (Qau,Av) =∑
i

(Piu,Av)

= ∑
i

(Piu,v)A =∑
i

(u,Piv)A = (u,Qav)A.

Concerning the positivity, choosing in the former identities u = v, we obtain

(Qav,v)A =∑
i

(Piv,v)A =∑
i

(RT
i A−1

i RiAv,Av) =∑
i

(A−1
i qi,qi)≥ 0,

having set qi = RiAv. It follows that (Qav,v)A = 0 iff qi = 0 for every i, that is iff
Av = 0. Since A is positive definite, this holds iff v = 0. �
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Owing to the previous properties we can deduce that a more efficient iterative
method can be generated by replacing the preconditioned Richardson iterations with
the preconditioned conjugate gradient iterations, yet using the same additive Schwarz
preconditioner Pas. Unfortunately, this preconditioner is not scalable. In fact, the con-
dition number of the preconditioned matrix Qa can only be bounded as

K2(P
−1
as A)≤C

1
δH

, (19.122)

being C a constant independent of h, H and δ ; here δ is a characteristic linear mea-
sure of the overlapping regions and, as usual, H =maxi=1,...,M{diam(Ωi)}. This is due
to the fact that the exchange of information only occurs among neighbooring subdo-
mains, as the application of (Pas)

−1 involves only local solvers. This limitation can be
overcome by introducing, also in the current context, a global coarse solver defined
on the whole domain Ω and apt at guaranteing a global communication among all of
the subdomains. This leads to devise two-level domain decomposition strategies, see
Sect. 19.6.3.

Let us address some algorithmic aspects. Let us subdivide the domain Ω in M
subdomains {Ωi}M

i=1 such that ∪M
i=1Ω i =Ω . Neighbooring subdomains share an over-

lapping region of size at least equal to δ = ξh, for a suitable ξ ∈N. In particular, ξ = 1
corresponds to the case of minimum overlap, that is the overlapping strip reduces to a
single layer of finite elements. The following algorithm can be used.

Algorithm 18.5 (introduction of overlapping subdomains)

a. Build a triangulation Th of the computational domain Ω

b. Subdivide Th in M disjoint subdomains {Ω̂i}M
i=1 such that ∪M

i=1Ω̂ i =Ω

c. Extend every subdomain Ω̂i by adding all the strips of finite elements

of Th within a distance δ from Ω̂i. These extended subdomains identify

the family of overlapping subdomains Ωi

In Fig. 19.14 a rectangular two-dimensional domain is subdivided into 9 disjoint
subdomains Ω̂i (on the left); also shown is one of the extended (overlapping) subdo-
mains (on the right).

To apply the Schwarz preconditioner (19.120) we can proceed as indicated in Al-

gorithm 18.5. We recall that Ni is the number of internal nodes of Ωi, RT
i and Ri are

the prolongation and restriction matrices, respectively, introduced in (19.112) and Ai

are the local stiffness matrices introduced in (19.111). In Fig. 19.15 we display an
example of sparsity pattern of Ri.

Algorithm 18.6 (start-up phase for the application of Pas)

a. Build on every subdomanin Ωi the matrices Ri and RT
i

b. Build the stiffness matrix A corresponding to the

finite element discretization on the grid Th
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c. On every Ωi build the local submatrices Ai = RiART
i

d. On every Ωi set up the code for the solution of a linear system with

matrix Ai.

For instance, compute a suitable (exact or incomplete) LU or

Cholesky factorization of Ai

A few general comments on Algorithm 18.5 and Algorithm 18.6 are in order:

• steps a. and b. of algorithm 18.5 can be carried out in reverse order, that is we
could first subdivide the computational domain into subdomains (based, for in-
stance, on physical considerations), then set up a triangulation;

• depending upon the general code structure, steps b. and c. of the algorithm 18.6
could be glued together with the scope of optimizing memory requirements and
CPU time.

In other circumstances we could interchange steps b. and c., that is the local stiff-
ness matrices Ai can be built at first (using the single processors), then assembled to
construct the global stiffness matrix A.
Indeed, a crucial factor for an efficient use of a parallel computer platform is keeping
data locality since in most cases the time necessary for moving data among processors
can be higher than that needed for computation.
Other codes (e.g. AztecOO, Trilinos, IFPACK) instead move from the global stiffness

Ω̂1

Ω̂2

Ω̂3

Ω̂4

Ω̂5

Ω̂6

Ω̂7

Ω̂8

Ω̂9

Ω5

Fig. 19.14. Partition of a rectangular region Ω in 9 disjoint subregions Ω̂i (on the left), and an
example of an extended subdomain Ω5 (on the right)

0 10 20 30 40 50 60 70 80

0
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10

15

20

25

nz = 27

Fig. 19.15. The sparsity pattern of the matrix Ri for a partition of the domain in 4 subdomains
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Table 19.4. Condition number of P−1
as A for several values of h and H

K2(P
−1
as A) H = 1/2 H = 1/4 H = 1/8 H = 1/16

h = 1/16 15.95 27.09 52.08 –
h = 1/32 31.69 54.52 104.85 207.67
h = 1/64 63.98 109.22 210.07 416.09
h = 1/128 127.99 218.48 420.04 832.57

matrix distributed rowise and deduce the local stiffness matrices Ai without perform-
ing matrix-matrix products but simply using the column indices. In MATLAB, how-
ever, it seems more convenient to build A at first, next the restriction matrices Ri, and
finally to carry out matrix multiplications RiART

i to generate the Ai.

In Table 19.4 we analyze the case of a decomposition with minimum overlap (δ =
h), considering several values for the number M of subdomains. The subdomains Ωi

are overlapping squares of area H2. Note that the theoretical estimate (19.122) is sat-
isfied by our results.

19.6.3 Two-level Schwarz preconditioners

As anticipated in Sect. 19.6.2, the main limitation of Schwarz methods is to propagate
information only among neighbooring subdomains. As for the Neumann-Neumann
method, a possible remedy consists of introducing a coarse grid mechanism that allows
for a sudden information diffusion on the whole domain Ω . The idea is still that of
considering the subdomains as macro-elements of a new coarse grid TH and to build
a corresponding stiffness matrix AH . The matrix

QH = RT
HA−1

H RH ,

where RH is the restriction operator from the fine to the coarse grid, represents the
coarse level correction for the new two-level preconditioner. More precisely, setting
for notational convenience Q0 = QH , the two-level preconditioner Pcas is defined
through its inverse as

P−1
cas =

M

∑
i=0

Qi. (19.123)

The following result can be proven in 2D: there exists a constant C > 0, independent
of both h and H, such that

K2(P
−1
cas A)≤C(1+

H

δ
).

The ratio H/δ measures the relative overlap between neighboring overlapping subdo-
mains. For “generous” overlap, that is if δ is a fraction of H, the preconditioner Pcas

is scalable. Consequently, conjugate gradient iterations on the original finite element
system using the preconditioner Pcas converges with a rate independent of h and H
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(and therefore of the number of subdomains). Moreover, thanks to the additive struc-
ture (19.123), the preconditioning step is fully parallel as it involves the solution of M
independent systems, one per each local matrix Ai.
In 3D, we would get a bound with a factor H/h, unless the elliptic differential operator
has constant coefficients (or variable coefficients which don’t vary too much).

The use of Pcas involves the same kind of operations required by Pas, plus those of
the following algorithm.

Algorithm 18.7 (start-up phase for the use of PcasPcasPcas)

a. Execute Algorithm 18.6

b. Define a coarse level triangulation TH whose elements are of the

order of H, then set n0 = dim(V0). Suppose that Th be nested in TH . (See
Fig. 19.16 for an example.)

c. Build the restriction matrix R0 ∈ Rn0×Nh whose elements are

R0(i, j) =Φi(x j),

where Φi is the basis function associated to the node i of the coarse

grid, while by x j we indicate the coordinates of the j − th node on

the fine grid

d. Build the coarse matrix AH. This can be done by discretizing the

original problem on the coarse grid TH, that is by computing

AH(i, j) = a(Φ j,Φi) =

∫
Ω

d

∑
�=1

∂Φi

∂x�

∂Φ j

∂x�
,

or, otherwise, by setting

AH = RHART
H .

Fig. 19.16. On the left, example of a coarse grid for a 2D domain, based on a structured mesh.
The triangles of the fine grid has thin edges; thick edges identify the boundaries of the coarse
grid elements. On the right, a similar construction is displayed, this time for an unstructured
fine grid
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For a computational domain with a simple shape (like the one we are considering)
one typically generates the coarse grid TH first, and then, by multiple refinements,
the fine grid Th. In other cases, when the domain has a complex shape and/or a non
structured fine grid Th is already available, the generation of a coarse grid might be
difficult or computationally expensive. A first option would be to generate TH by
successive derefinements of the fine grid, in which case the nodes of the coarse grid
will represent a subset of those of the fine grid. This approach, however, might not be
very efficient in 3D.
Alternatively, one could generate the two (not necessarily nested) grids Th and TH

independently, then generate the corresponding restriction and prolongation operators
from the fine to the coarse grid, RH and RT

H .

The final implementation of Pcas could therefore be made as follows:

Algorithm 18.8 (Pcas solve)

For any given vector r, the computation of z = P−1
cas r can be carried out as

follows:

a. Set z = 0

b. For i = 1, . . . ,M Do in parallel:

c. restrict the residue on Ωi: ri = Rir

d. compute zi : Aizi = ri

e. add to the global residue: z← RT
i zi

f. EndFor

g. Compute the coarse grid contribution zH : AHzH = RHr

h. Add to the global residue: z← RT
HzH

In Table 19.5 we report the condition number of P−1
cas A in the case of a minimum

overlap δ = h. Note that the condition number is almost the same on each NW-SE
diagonal (i.e. for fixed values of the ratio H/δ ).

Table 19.5. Condition number of P−1
cas A for several values of h and H

K2(P−1
cas A) H = 1/4 H = 1/8 H = 1/16 H = 1/32

h = 1/32 7.03 4.94 — —
h = 1/64 12.73 7.59 4.98 —
h = 1/128 23.62 13.17 7.66 4.99
h = 1/256 45.33 24.34 13.28 —
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An alternative approach to the coarse grid correction can be devised as follows.
Suppose that the coefficients of the restriction matrix be given by

R̂H(i, j) =

{
1 if the j− th node is in Ωi,

0 otherwise,

then we set ÂH = R̂HAR̂T
H . This procedure is named aggregation because the elements

of ÂH are obtained by simply summing up the entries of A. Note that we don’t need
to construct a coarse grid in this case. The corresponding preconditioner, denoted by
Paggre, has an inverse that reads

P−1
aggre = R̂T

HÂ−1
H R̂H +Pas.

It can be proven that

K2(P
−1
aggreA)≤C

(
1+

H

δ

)
.

In Table 19.6 we report several numerical values of the condition number for different
values of h and H.

Table 19.6. Condition number of P−1
aggreA for several values of h and H

P−1
aggreA H = 1/4 H = 1/8 H = 1/16

h = 1/16 13.37 8.87 —
h = 1/32 26.93 17.71 9.82
h = 1/64 54.33 35.21 19.70
h = 1/128 109.39 70.22 39.07

If H/δ =constant, this two-level preconditioner is either optimal and scalable, that
is the condition number of the preconditioned stiffness matrix is independent of both
h and H.

We can conclude this section with the following practical indications:

• for decompositions with a small number of subdomains, the single level Schwarz
preconditioner Pas is very efficient;

• when the number M of subdomains gets large, using two-level preconditioners
becomes crucial; aggregation techniques can be adopted, in alternative to the use
of a coarse grid in those cases in which the generation of the latter is difficult.

19.7 An abstract convergence result

The analysis of overlapping and non-overlapping domain decomposition precondi-
tioners is based on the following abstract theory, due to P.L. Lions, J. Bramble, M.
Dryja, O. Wildlund.
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Let Vh be a Hilbert space of finite dimension. In our applications, Vh is one of the
finite element spaces or spectral element spaces. Let Vh be decomposed as follows:

Vh = V0 +V1 + · · ·+VM.

Let F ∈ V ′ and a : V ×V → R be a symmetric, continuous and coercive bilinear
form. Consider the problem

find uh ∈Vh : a(uh,vh) = F(vh) ∀vh ∈Vh. (19.124)

Let Pi : Vh →Vi be a projection operator defined by

bi(Piuh,vh) = a(uh,vh) ∀vh ∈Vi

with bi : Vi×Vi → R being a local symmetric, continuous and coercive bilinear form
on each subspace Vi. Assume that the following properties hold:

a. stable subspace decomposition:

∃C0 > 0 such that every uh ∈Vh admits a decomposition uh =∑M
i=0 ui with ui ∈Vi

and
M

∑
i=0

bi(ui,ui)≤C2
0a(uh,uh);

b. strengthened Cauchy-Schwarz inequality:

∃εi j ∈ [0,1], i, j = 0, . . . ,M such that

a(ui,ui)≤ εi j

√
a(ui,ui)

√
a(u j,u j) ∀ui ∈Vi,u j ∈Vj;

c. local stability:

∃ω ≥ 1 such that ∀i = 0, . . . ,M

a(ui,ui)≤ ωbi(ui,ui) ∀ui ∈ Range(Pi)⊂Vi.

Then, ∀uh ∈Vh,

C−2
0 a(uh,uh)≤ a(Pasuh,uh)≤ ω(ρ(E)+1)a(uh,uh) (19.125)

where ρ(E) is the spectral radius of the matrix E = (εi j), and Pas = P0 + · · ·+PM is
the domain decomposition preconditioner.
From inequality (19.125) the following bound holds for the preconditioned system

K(B−1A)≤C2
0ω(ρ(E)+1)

where K(·) denotes the spectral condition number, A the matrix associated with the
original system (19.124), B the matrix associated to the operator Pas. For the proof,
see e.g. [TW05].
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19.8 Interface conditions for other differential problems

Theorem 19.1 in Sect. 19.1.2 allows a second order elliptic problem (19.1) to be refor-
mulated in a DD version thanks to suitable interface conditions (19.9) and (19.10). On
the other hand, as we have extensively discussed, such reformulation sets the ground
for several iterative algorithms on disjoint DD partitions. They comprise Dirichlet-
Neumann, Neumann-Neumann, Robin-Robin algorithms and, more generally, all of
the preconditioned iterative algorithms of the Schur complement system (19.53) using
suitable DD preconditioners.
In this section we consider other kind of boundary-value problems and formulate the
associated interface conditions. Table 19.7 displays the interface conditions for these
problems. For more details, analysis and investigation of associated iterative DD algo-
rithms, the interested reader can consult [QV99]. Here we limit ourselves to provide a
few additional insights in the case of advection and Stokes equations.

Advection (transport) problems. Consider the differential problem

Lu = ∇ · (bu)+a0u = f inΩ , (19.126)

supplemented by suitable conditions on the boundary ∂Ω . Consider a partition of the
computational domain Ω into two disjoint subdomains whose interface is Γ . Let us
partition the latter as follows (see Fig. 19.17): Γ = Γin∪Γout , where

Γin = {x ∈ Γ | b(x) ·n(x)> 0 } and Γout = Γ \Γin.

Ω Ω1

Ω2

Γout

Γin

Γ

n

Fig. 19.17. Domain partition and interface splitting for the advection problem (19.126)



19.8 Interface conditions for other differential problems 607

Example 19.4. The Dirichlet-Neumann method for the problem at hand could be gen-

eralized as follows: being given two functions u(0)1 , u(0)2 on Γ , ∀k ≥ 0 solve:⎧⎨⎩ Lu(k+1)
1 = f inΩ1,

(b ·n)u(k+1)
1 = (b ·n)u(k)2 on Γout ,⎧⎨⎩ Lu(k+1)

2 = f inΩ2,

(b ·n)u(k+1)
2 = θ (b ·n)u(k+1)

1 +(1−θ )(b ·n)u(k)2 on Γin.

where θ > 0 denotes a suitable relaxation parameter. The adaptation to the case of a

finite element discretization is straightforward. �

Stokes problem. The Stokes equations (17.11) feature two fields of variables: fluid
velocity and fluid pressure. When considering a DD partition, at subdomain interface
only the velocity field is requested to be continuous. Pressure needs not necessarily
be continuous, since in the weak formulation of the Stokes equations it is "only" re-
quested to be in L2. Moreover, on the interface Γ the continuity of the normal Cauchy
stress ν ∂u

∂n − pn needs only be satisfied in weak (natural) form.

Example 19.5. A Dirichlet-Neumann algorithm for the Stokes problem would entail
at each iteration the solution of the following subproblems (we use the short-hand
notation S to indicate the Stokes operator):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

S (u
(k+1)
2 , p(k+1)

2 ) = f inΩ2,

ν
∂u

(k+1)
2

∂n
− p(k+1)

2 = ν
∂u

(k)
1

∂n
− p(k)1 on Γ ,

u
(k+1)
2 = 0 on ∂Ω2 \Γ ,

(19.127)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S (u

(k+1)
1 , p(k+1)

1 ) = f inΩ1,

u
(k+1)
1 = θu

(k+1)
2 +(1−θ )u(k)

1 on Γ ,

u
(k+1)
1 = 0 on ∂Ω1 \Γ .

(19.128)

Should the boundary conditions of the original problem be prescribed on the ve-
locity field, e.g. u = 0, pressure p would be defined only up to an additive constant,
which could be fixed by, e.g., imposing the constraint

∫
Ω pdΩ = 0.

To fulfill this constraint we can proceed as follows. When solving the Neumann prob-

lem (19.127) on the subdomain Ω2, both the velocity u
(k+1)
2 and the pressure p(k+1)

2
are univocally determined. When solving the Dirichlet problem (19.128) on Ω1, the
pressure is defined only up to an additive constant; we fix it by imposing the additional
equation ∫

Ω1

p(k+1)
1 dΩ1 =−

∫
Ω2

p(k+1)
2 dΩ2.
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Should the four sequences {u(k)
1 }, {u(k)

2 }, {p(k)1 } and {p(k)2 } converge, the null average
condition on the pressure would be automatically verified. �

Example 19.6. Suppose now that the Schwarz iterative method is used on an overlap-
ping subdomain decomposition of the domain like that on Fig. 19.1, left. At every step
we have to solve two Dirichlet problems for the Stokes equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩

S (u
(k+1)
1 , p(k+1)

1 ) = f inΩ1,

u
(k+1)
1 = u

(k)
2 on Γ1,

u
(k+1)
1 = 0 on ∂Ω1 \Γ1,

(19.129)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S (u

(k+1)
2 , p(k+1)

2 ) = f inΩ2,

u
(k+1)
2 = u

(k+1)
1 on Γ2,

u
(k+1)
2 = 0 on ∂Ω2 \Γ2.

(19.130)

No continuity is required on the pressure field at subdomain boundaries.
The constraint on the fluid velocity to be divergence free on the whole domain

Ω requires special care. Indeed, after solving (19.129), we have divu
(k+1)
1 = 0 in Ω1,

hence, thanks to the Green formula,∫
∂Ω1

u
(k+1)
1 ·ndγ = 0.

This relation implies a similar relation for u
(k)
2 in (19.129)2; indeed

0 =

∫
∂Ω1

u
(k+1)
1 ·ndγ =

∫
Γ1

u
(k+1)
1 ·ndγ =

∫
Γ1

u
(k)
2 ·ndγ. (19.131)

At the very first iteration we can select u
(0)
2 in such a way that the compatibility

condition (19.131) be satisfied, however this control is lost, a priori, in the course
of the subsequent iterations. For the same reason, the solution of (19.130) yields the
compatibility condition ∫

Γ2

u
(k+1)
1 ·ndγ = 0. (19.132)

Fortunately, Schwarz method automatically guarantees that this condition holds.

Indeed, inΓ12 =Ω1∩Ω2 we have divu
(k+1)
1 = 0, moreover onΓ12\(Γ1∪Γ2), u

(k+1)
1 = 0

because of the given homogeneous Dirichlet boundary conditions. Thus

0 =
∫
∂Γ12

u
(k+1)
1 ·ndγ =

∫
Γ1

u
(k+1)
1 ·ndγ+

∫
Γ2

u
(k+1)
1 ·ndγ.

The first integral on the right hand side vanishes because of (19.131), therefore
(19.132) is satisfied. �
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Table 19.7. Interface continuity conditions for several kind of differential operators; D stands
for Dirichlet condition, N for Neumann

Operator Problem D N

Laplace −�u = f , u
∂u

∂n

−∇ · (σ(u)) = f,
Elasticity with

σk j = μ̂(Dku j +D juk)+ λ̂divuδk j , u σ(u) ·n
u in-plane membrane displacement

Transport-diffusion −∑k j Dk(Ak jD ju)+div(bu)+a0u = f u

∂u

∂nL

=∑k ak jD ju ·nk

Transport div(bu)+a0u = f b ·nu

−divT(u, p)+(u∗ ·∇)u = f,
divu = 0,

Incompressible with
viscous flows Tk j = ν(Dku j +D juk)− pδk j, u T(u, p) ·n

u∗ =

⎧⎨⎩
0 (Stokes equations)
u∞ (Oseen equations)
u (Navier-Stokes equations)

αu−divT̂(u,σ) = f,
Compressible ασ +divu = g,
viscous flows with u T̂(u,σ) ·n

T̂k j = ν(Dku j +D juk)

−βσδk j +
(
g− 2ν

d

)
divuδk j,

ρ = fluid density = logσ

Compressible αu+β∇σ = f,
inviscid flows ασ +divu = 0 u ·n σ

Maxwell
(harmonic regime)

rot

(
1
μ

rotE

)
−α2εE+ iασE = f n×E n×

(
1
μ

rotE

)
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19.9 Exercises

1. Consider the one-dimensional advection-transport-reaction problem{ −(α ux)x +
(
β u
)

x + γu = f in Ω = (a,b)

u(a) = 0, α ux(b)−β u(b) = g,
(19.133)

with α and γ ∈ L∞(a,b), β ∈W1,∞(a,b) and f ∈ L2(a,b).
a) Write the addititive Schwarz iterative method, then the multiplicative one, on

the two overlapping intervalsΩ1 = (a,γ2) andΩ2 = (γ1,b), with a < γ1 < γ2 <
b.

b) Interpret these methods as suitable Richardson algorithms to solve the given
differential problem.

c) In case we approximate (19.133) by the finite element method, write the corre-
sponding additive Schwarz preconditioner, with and without coarse-grid com-
ponent. Then provide an estimate of the condition number of the preconditioned
matrix, in both cases.

2. Consider the one-dimensional diffusion-transport-reaction problem{ −(α ux)x +
(
β u
)

x + δu = f in Ω = (a,b)

α ux(a)−β u(a) = g, ux(b) = 0,
(19.134)

with α and γ ∈ L∞(a,b), α(x)≥ α0 > 0, β ∈W1,∞(a,b), f ∈ L2(a,b) and g a given
real number.
a) Consider two disjoined subdomains of Ω , Ω1 = (a,γ) and Ω2 = (γ,b), with

a < γ < b. Formulate problem (19.134) using the Steklov-Poincaré operator,
both in differential and variational form. Analyze the properties of this operator
starting from those of the bilinear form associated with problem (19.134).

b) Apply the Dirichlet-Neumann method to problem (19.134) using the same do-
main partition introduced at point a).

c) In case of finite element approximation, derive the expression of the Dirichlet-
Neumann preconditioner of the Schur complement matrix.

3. Consider the one-dimensional Poisson problem{ −uxx(x) = f (x) in Ω = (0,1)

u(0) = 0, ux(1) = 0,
(19.135)

with f ∈ L2(Ω).
a) If Th indicates a partition of the intervalΩ with step-size h, write the Galerkin-

finite element approximation of problem (19.135).
b) Consider now a partition ofΩ into the subintervalsΩ1 = (0,γ) andΩ2 = (γ,1),

being 0 < γ < 1 a node of the partition Th (See Fig. 19.18). Write the algebraic
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blockwise form of the Galerkin-finite element stiffness matrix relative to this
subdomain partition.

c) Derive the discrete Steklov-Poincaré interface equation which corresponds to
the DD formulation at point b). Which is the dimension of the Schur comple-
ment?

d) Consider now two overlapping subdomainsΩ1 = (0,γ2) and Ω2 = (γ1,1), with
0 < γ1 < γ2 < 1, the overlap being reduced to a single finite element of the
partition Th (see Fig. 19.19). Provide the algebraic formulation of the additive
Schwarz iterative method.

e) Provide the general expression of the two-level additive Shwarz preconditioner,
by assuming as coarse matrix AH that associated with only two elements, as
displayed in Fig. 19.20.

4. Consider the diffusion-transport-reaction problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
Lu =−∇ · (α∇u)+∇ · (βu)+ γu= f in Ω = (0,2)× (0,1),

u = 0 on ΓD,

α
∂u

∂n
+ δu = 0 on ΓR,

(19.136)

with α = α(x), β= β(x), γ = γ(x), δ = δ (x) and f = f (x) being given functions,

and ∂Ω = Γ D∪Γ R, with
◦
ΓD ∩

◦
ΓR= /0.

LetΩ in (19.136) be partitioned into two disjoined subdomainsΩ1 = (0,1)×(0,1)
and Ω2 = (1,2)× (0,1).
a) Formulate problem (19.136) in terms of the Steklov-Poincaré operator, both in

differential and variational form.
b) Apply the Dirichlet-Neumann method to problem (19.136) using the same de-

composition introduced before.
c) Prove the equivalence between the Dirichlet-Neumann method at point b) and a

suitable preconditioned Richardson operator, after setting α = 1, β = 0, γ = 1
and ΓR = /0 in (19.136). Do the same for the Neumann-Neumann method.

5. Consider the two-dimensional diffusion-transport-reaction problem{
Lu =−∇ · (μ∇u)+b ·∇u+σu= f in Ω = (a,c)× (d,e),

u = 0 on ∂Ω .
(19.137)

Consider a decomposition ofΩ made of the overlapping subdomainsΩ3 =(a, f )×
(d,e) and Ω4 = (g,c)× (d,e), with g < f . On such a decomposition, write for
problem (19.137) the Schwarz method in both multiplicative and additive versions.

0 1
Fig. 19.18. Subdomain partition Th of the interval (0,1)
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0 1 

 

Fig. 19.19. Overlapping decomposition of the interval (0,1)

0 1

Fig. 19.20. Coarse-grid partition made of two macro elements for the construction of matrix AH

and Lagrangian characteristic function associated with the node γ

Then interpret these methods as suitable preconditioned Richardson iterative algo-
rithms. Finally, comment on the convergence properties of these methods.



Chapter 20

Reduced basis approximation for

parametrized partial differential equations

Reduced basis (RB) methods are computational reduction techniques for the rapid and
reliable evaluation of input-output relationships: the output is expressed as a func-
tional of the solution of a parametrized partial differential equation (PDE), the input
being the set of parameters.

Parametrized PDEs can model several processes that are relevant in applications,
such as, e.g., steady and unsteady heat and mass transfer, acoustics, solid and fluid me-
chanics, but also electromagnetics or even finance. The input-parameter vector may
characterize either the geometric configuration, or some physical properties, or else
boundary conditions and source terms. The outputs of interest might be the maxi-
mum system temperature, an added mass coefficient, a crack stress intensity factor, an
effective constitutive property, an acoustic waveguide transmission loss, or a channel
flowrate or pressure drop, just to mention a few. Finally, the field variables that connect
the input parameters to the outputs can represent a distribution function, temperature
or concentration, displacement, pressure, or velocity, etc.

The goal of an RB approximation is to capture the essential features of the in-
put/output behaviour of a system (i) by improving computational performances and
(ii) by keeping the approximation error between the reduced-order solution and the
full-order one (the parametrized PDE) under control. In particular, the aim is to ap-
proximate a PDE solution using a handful of degrees of freedom instead of the many
more (thousands, or millions, sometimes even billions) that would be needed for a full-
order approximation. In fact, the idea at the heart of computational reduction strategies
is the assumption (often verified) that the behaviour of a system can be well described
by a small number of dominant modes.

In this way, we need to solve the full-order problem only for few instances of
the input through a computationally demanding Offline stage, in order to construct
a reduced space of basis solutions. This makes possible to perform many low-cost
reduced-order simulations at a very inexpensive Online stage for new instances of the
input, by expressing the reduced solution as a linear combination of the basis solutions
and exploiting a Galerkin projection onto this reduced space.

A. Quarteroni, Numerical Models for Differential Problems, MS&A 16, 
DOI 10.1007/978-3-319-49316-9_20
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RB methods do not replace Galerkin methods (or any other method suitable to ap-
proximate PDEs). Rather, they build upon, a given approximation method, for instance
the finite element method (FEM): the RB solution does not approximate directly the
exact solution, but rather a “given" finite element discretization of (typically) very
large dimension Nh of it.

In particular, we shall consider in this chapter the case of linear functional outputs
of affinely parametrized linear elliptic coercive PDEs. This class of problems – rel-
atively simple, yet relevant to many important applications, such as conduction and
convection-diffusion, linear elasticity, etc. – proves to be a convenient expository ve-
hicle for the methodology, which can be applied, up to suitable extension, to more
general equations. We refer the reader interested in, say, linear parabolic PDEs to the
review presented in [QRM11], for instance.

Although our focus is on the affine linear elliptic coercive case, the reduced basis
approximation and a posteriori error estimation we discuss in this chapter are for more
general, and their combination is a key factor for reduction techniques to be compu-
tationally successful. We also point out that, despite the increasing computer power
nowadays makes the numerical solution of problems of very large dimensions and/or
modelling complex phenomena essential, a computational reduction is still crucial
whenever one is interested in real-time simulations and/or repeated output evaluations
for different values of some inputs of interest. Typical cases are, for instance, real time
visualization, the sensitivity analysis of PDE solutions with respect to parameters, or
optimization problems under PDE constraints (such as optimal control problems, as
the ones addressed in Chap. 18).

We outline below the chapter’s content. In Sect. 20.1 we introduce the affine linear
elliptic coercive setting in the case of the so-called compliant problems; the most rele-
vant examples of parametrizations will be addressed in Sect. 20.9. In Sect. 20.2 we il-
lustrate some basic ingredients shared by several computational reduction approaches.
Then we describe the main features of the reduced basis method for parametrized
problems in Sect. 20.3: reduced spaces, Galerkin projection and an Offline/Online
procedure ensuring computational efficiency. Moreover, we provide in Sect. 20.4 both
an algebraic and a geometrical interpretation of the reduced basis approximation prob-
lem. We address in Sect. 20.5 the most popular strategies to construct snapshots (that
is, basis functions) and reduced spaces: greedy algorithms (the core of RB methods
for parametrized PDEs) and proper orthogonal decomposition, POD. In Sect. 20.6 we
sketch some ideas related to a priori convergence theory, whereas in Sect. 20.7 we
present rigorous and relatively sharp a posteriori output error bounds for RB approx-
imations. We extend both the RB approximation and a posteriori error bounds to the
case of non-compliant problems in Sect. 20.8. We discuss a simple numerical test case
and provide a brief overview for more general classes of problems in Sect. 20.10.
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20.1 Elliptic coercive parametric PDEs

Before introducing the main features of computational reduction, let us describe the
class of problems we deal with throughout the chapter; more details will be given in
Sect. 20.9. We denote by D ⊂ Rp, for an integer p ≥ 1, a set of input parameters
which may describe physical properties of the system, as well as boundary terms,
source terms or the geometry of the computational domain. The problems we focus
on can be written in the following form:

given μ ∈ D , evaluate the output of interest s(μ) = J(u(μ)) where u(μ) ∈ V =
V (Ω) is the solution of the following parametrized PDE

L(μ)u(μ) = F(μ). (20.1)

Here Ω ⊂ Rd , d = 1,2,3 is a regular domain, V a suitable Hilbert space, V ′ its dual,
L(μ) : V →V ′ a second-order differential operator and F(μ) ∈ V ′. The weak formu-
lation of problem (20.1) reads: find u(μ) ∈V =V (Ω) such that

a(u(μ),v;μ) = f (v;μ) ∀ v ∈V, (20.2)

where the bilinear form1 is obtained from L(μ):

a(u,v;μ) = V ′ 〈L(μ)u,v〉V ∀u,v ∈V, (20.3)

while
f (v;μ) = V ′ 〈F(μ),v〉V (20.4)

is a continuous linear form. We assume, for each μ ∈ D , a(·, ·;μ) to be continuous
and coercive, i.e. ∃ γ̄ <+∞,α0 > 0:

γ(μ) = sup
u∈V

sup
v∈V

a(u,v;μ)
‖u‖V‖v‖V

< γ̄, α(μ) = inf
u∈V

a(u,u;μ)

‖u‖2
V

≥ α0. (20.5)

If the coercivity assumption is not satisfied, we have stability in the more general sense
guaranteed by the inf-sup condition. J (the output functional) is a linear and bounded
form on V . Under these standard hypotheses on a and f , (20.2) admits a unique so-
lution, due to the Lax-Milgram lemma. We shall exclusively consider second-order
elliptic partial differential equations, in which case V = H1

ΓD
(Ω) – see (3.26). Further-

more, we assume that a is symmetric and that J = f . The latter is merely a simplifying
assumption and it means that we are in the so-called compliant case [PR07], a situation
occurring quite frequently in engineering problems (see Sect. 20.1.1). The generaliza-
tion to the non-compliant case, where a may be non-symmetric and J may be any
bounded linear functional over V , is provided in Sect. 20.8.

1 To be rigorous, we should introduce the Riesz identification operator R : V ′ → V by which
we identify V and its dual, so that, given a third Hilbert space H such that V ↪→ H ′ and
H ′ ↪→ V ′, V ′ 〈L(μ)u,v〉V = (RL(μ)u,v)H ; see also Sect. 2.1. However, the Riesz operator
will be omitted for the sake of simplicity.
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We make one last assumption, crucial to enhance the computational efficiency: we
require both the parametric bilinear form a and the parametric linear form f to be
affine with respect to the parameter μ , that is:

a(w,v;μ) =
Qa

∑
q=1

Θ q
a (μ)aq(w,v) ∀v,w ∈V,μ ∈D , (20.6)

f (v;μ) =
Qf

∑
q=1

Θ
q
f (μ) f q(w) ∀w ∈V,μ ∈D . (20.7)

Here Θ q
a : D →R, q = 1, . . . ,Qa and Θ q

f : D →R, q = 1, . . . ,Q f , are μ-dependent
functions, whereas aq : V ×V → R, f q : V → R are μ-independent. As a general
principle, parameter-independent terms will be computed Offline, thus making On-
line computation much lighter.

Let us also remark that, since a is symmetric, we can define the energy inner
product and the energy norm for elements of V as follows:

(w,v)μ = a(w,v;μ) ∀w,v ∈V , (20.8)

‖w‖μ = (w,w)1/2
μ ∀w ∈V . (20.9)

Next, for given μ ∈D and non-negative real τ ,

(w,v)V = (w,v)μ + τ(w,v)L2(Ω) ∀w,v ∈V , (20.10)

‖w‖V = (w,w)1/2
V ∀w ∈V , (20.11)

shall define the inner product and norm on our V , respectively. The role of this scalar
product will be clear in Sect.20.5.

20.1.1 Two simple examples

Before describing the main features shared by several computational reduction ap-
proaches, we provide two simple examples of parametrized problems which fit the
framework and the methodology presented in this chapter. More involved examples,
as well as a general formulation of physical and/or geometrical parametrizations ful-
filling the key assumptions of RB methods, will be addressed later on, in Sect.20.9.

The simplest elliptic coercive parametrized problem we may think of is a Poisson
problem, defined over a domain Ω , modelling the diffusion/reaction of e.g. a pollu-
tant. Here u = u(μ) denotes the pollutant concentration, and the diffusion coefficient
μ plays the role of input parameter; the output of interest is the average of the concen-
tration over the domain,

s(μ) =
∫
Ω

u(μ)dΩ .

Consider homogeneous Neumann boundary conditions over ∂Ω , a unit source term
over the domainΩ and set V = H1(Ω). We recover the abstract formulation of (20.2)
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by defining

a(w,v; μ) = μ

∫
Ω

∇w ·∇vdΩ +

∫
Ω

wvdΩ , f (v; μ) =

∫
Ω

vdΩ . (20.12)

This problem is coercive, symmetric, and compliant. In this case we deal with p = 1
parameters, encoding a physical property; f does not depend on μ , while a is affine in
μ ; we have Qa = 2, Qf = 1, Θ 1

a (μ) = μ , Θ 2
a (μ) =Θ 1

f (μ) = 1, and

a1(w,v) =
∫

Ω
∇w ·∇vdΩ , a2(w,v) =

∫
Ω

wvdΩ , f 1(v) =
∫

Ω
vdΩ .

A slightly more involved case, still dealing with physical parameters only, is given
by a heat conduction problem in a square domain Ω which comprises B1 ×B2 blocks,
each one representing a subregion with (a priori different) constant thermal conduc-
tivity; the geometry is depicted in Fig. 20.1. Here

Ω =
P+1⋃
i=1

Ri ,

where the Ri, i = 1 . . . ,P+ 1, correspond to the subregions featuring a conductiv-
ity equal to μ i > 0. Inhomogeneous Neumann (non-zero flux) boundary conditions
on Γbase, homogeneous Dirichlet (temperature) conditions on Γtop, and homogeneous
(zero flux) Neumann conditions are imposed on the two vertical sides. The output of
interest is the average temperature over Γbase.

The parameters μ =(μ1, . . . ,μP) are then the conductivities in the first P= B1B2−
1 blocks (with the blocks numbered as shown in Figure 20.1); the conductivity of the
last block, which serves for normalization, is one.
By setting V = {v ∈ H1(Ω)

∣∣ v|Γtop = 0}, we recover the abstract formulation (20.2),
with

a(w,v; μ) =
P

∑
i=1

μ i

∫
Ri

∇w ·∇vdΩ +
∫

RP+1

∇w ·∇vdΩ , (20.13)

Fig. 20.1. Thermal block problem for B1 = B2 = 3
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which is associated to the Laplace operator with homogeneous Neumann conditions
(as well as internal flux continuity conditions), and

f (v;μ) =
∫
Γbase

vdΓ , (20.14)

which imposes the inhomogeneous Neumann conditions and yields the mean temper-
ature. Moreover, F is independent of μ. The dependence of (20.13) on the parameters
is affine; by direct inspection we note that Qa =P+1, Qf = 1,Θ q

a (μ) = μq, 1≤ q≤P,
ΘP+1

a = 1,Θ 1
f (μ) = 1 and

aq(w,v) =
∫

Rq

∇w ·∇vdΩ , 1≤ q≤ P+1 , f 1(v) =
∫
Γbase

vdΓ .

20.2 Main components of computational reduction techniques

By computational reduction techniques (CRT) we denote problem-dependent meth-
ods which aim at reducing the dimension of the algebraic system arising from the
discretization of a given PDE problem, for instance (20.2).

The reduced solution is obtained through a projection onto a small subspace made
by global basis functions, constructed for the specific problem at hand, rather than
onto a large space of generic basis functions (either local, like in finite elements or
global, like in spectral methods).

In order to highlight the essential features of CRTs, in this section we rely on the
strong form (20.1) of the PDE problem. In fact, the CRTs we are going to introduce
can be built upon any discretization technique described throughout the book, and not
necessarily on those based on the weak form of the PDE problem.

The goal of a computational reduction technique for parametrized PDE problems
is to compute, in a cheap way, a low-dimensional approximation of the PDE solution.
The most common choices, like proper orthogonal decomposition (POD) or (greedy)
reduced basis (RB) methods, seek a reduced solution through a projection onto suit-
able low-dimensional subspaces2. The essential constituents of a computational re-
duction technique can be described as follows:

• High-fidelity discretization technique: as previously observed, a CRT is not in-
tended to replace a high-fidelity (sometimes denoted as truth) discretization
method (obtained e.g. by any kind of Galerkin method).
In the case of problem (20.1), the truth, high-fidelity approximation can be ex-
pressed in the following compact way: given μ ∈ D , evaluate sh(μ) = f (uh(μ))
where uh(μ) ∈V Nh is such that

Lh(μ)uh(μ) = Fh(μ). (20.15)

2 Indeed, several CRTs, like POD, were originally introduced in order to speed-up the solution
of complex time-dependent problems, like those modelling turbulent flows, without being
specifically designed for parametrized problems (otherwise said, time was considered as the
only parameter).
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Here V Nh ⊂ V is a finite-dimensional space of very large dimension Nh, Lh(μ) a
suitable discrete operator and Fh(μ) a given term. Recall that compliance means
J = f .

For instance, assume that the truth approximation is based on the following Galer-
kin high-fidelity approximation of problem (20.2): find uh(μ) ∈V Nh such that

a(uh(μ),vh;μ) = f (vh;μ) ∀ vh ∈V Nh . (20.16)

Moreover, let us introduce the injection operator Qh : V Nh → V , and its adjoint
Q′h : V ′ → (V Nh)′ between the dual spaces. The Galerkin problem (20.15) reads

Q′h(L(μ)Qhuh(μ)−F(μ)) = 0, (20.17)

which corresponds to (20.15) upon defining

Lh(μ) = Q′hL(μ)Qh, Fh(μ) = Q′hF(μ). (20.18)

Note that (Lh(μ))
−1 = Πh(L(μ))−1Π ′h, where Πh : V → V Nh is the L2-projection

operator andΠ ′h : (V Nh)′ →V ′ its adjoint. It follows directly from our assumptions
on a, f , and V Nh that (20.16) admits a unique solution. Let us assume that

‖u(μ)− uh(μ)‖V ≤ E (h) ∀μ ∈D , (20.19)

E (h) being an estimate of the discretization error, which can be made as small
as desired by choosing a suitable discretization space. Moreover, we define the
coercivity and continuity constants (related to the subspace V Nh) as

αNh(μ) = inf
w∈V Nh

a(w,w;μ)

‖w‖2
V

, γNh(μ) = sup
w∈V Nh

sup
v∈V Nh

a(w,v;μ)
‖w‖V‖v‖V

, (20.20)

respectively. By (20.5), from the continuity and coercivity of a it follows that

αNh(μ)≥ α(μ), γNh(μ)≤ γ(μ) ∀μ ∈D .

• (Galerkin) projection: a CRT usually consists in selecting a reduced basis of few
high-fidelity PDE solutions {uh(μ

i)}N
i=1 (called snapshots) and seeking a reduced

approximation uN(μ) expressed as a linear combination of these basis functions.
The coefficients of this combination are determined through a projection of the
equations onto the reduced space

VN = span{uh(μ
i) , i = 1, . . . ,N},
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with N = dim(VN)� Nh. The reduced problem reads, therefore: given μ ∈ D ,
evaluate sN(μ) = f (uN(μ)), where uN(μ) ∈VN solves

a(uN(μ),vN ;μ) = f (vN ;μ) ∀ vN ∈VN . (20.21)

The smaller N, the cheaper the reduced problem to solve. We remark that our RB
field and RB output approximate, for given Nh, the high-fidelity solution uh(μ)
and output sh(μ) (hence, indirectly, u(μ) and s(μ)).

As before, we can interpret (20.21) with the aid of suitable operators as

LN(μ)uN(μ) = FN(μ). (20.22)

Indeed, let us introduce the injection operator QN : VN →V Nh , and its adjoint Q′N :
(V Nh)′ →V ′N operating between the dual spaces. Then, since

Q′N(Lh(μ)QNuN(μ)−Fh(μ)) = 0, (20.23)

we can obtain (20.22) from (20.23) by identifying

LN(μ) = Q′NLh(μ)QN , FN(μ) = Q′NFh(μ). (20.24)

Similarly to what was done before, here (LN(μ))
−1 = ΠN(Lh(μ))

−1Π ′N , where
ΠN : V Nh →VN is the L2-projection operator andΠ ′N : V ′N → (V Nh)′.

• Offline/Online procedure: under suitable assumptions (see Sect. 20.3.3) the ex-
tensive generation of the snapshots database can be performed Offline once, and
is completely decoupled from each new subsequent input-output Online query.
Clearly, during the Online stage, the goal is to solve the reduced problem for pa-
rameter instances μ ∈D not selected during the Offline stage. In addition, the ex-
pensive Offline computations have to be amortized over the Online stage – in the
RB context the break-even point is usually reached with O(102) Online queries.

• Error estimation procedure: sharp, inexpensive bounds ΔN(μ) such that

‖uh(μ)− uN(μ)‖V ≤ ΔN(μ) ∀μ ∈D , N = 1, . . . ,Nmax, (20.25)

may be available [PR07], as well as output error bounds Δ s
N(μ) such that

|sh(μ)− sN(μ)| ≤ Δ s
N(μ).

These error estimators might also be employed to generate a clever parameter sam-
pling during the construction of the reduced space, as we will see in Sect. 20.5.1.
Their construction in the case of elliptic coercive problems is describe in detail in
Sect. 20.7.

By putting (20.19) and (20.25) together we finally obtain, for all μ ∈ D , the error
bound

‖u(μ)−uN(μ)‖V ≤ ‖u(μ)− uh(μ)‖V + ‖uh(μ)− uN(μ)‖V ≤ E (h)+ΔN(μ).

In the following section we provide further details on the construction of a reduced
basis approximation, which is the main goal of this chapter.
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20.3 The reduced basis method

We now specify the general features presented in Sect. 20.2 for the case of the reduced
basis method. Reduced Basis (RB) discretization is, in brief, a Galerkin (sometimes,
a Petrov-Galerkin) projection on an N-dimensional approximation space VN that ap-
proximates the manifold

Mh = {uh(μ) ∈V Nh : μ ∈ D}, (20.26)

given by the set of fields generated as the input varies over the whole parameter do-
main D . We assume that this manifold is sufficiently smooth; in the case of a single
parameter, the parametrically induced manifold is a one-dimensional filament within
the infinite-dimensional space which characterizes all possible solutions to the given
PDE. We depict the retained snapshots in Fig. 20.2.

If indeed the manifold is low-dimensional and smooth (a point we will return to
later), we expect any point of the manifold – any solution uh(μ) for some μ in D

– to be well approximated in terms of relatively few retained snapshots. However,
we must ensure that not only we can choose our retained snapshots optimally (see
Sect. 20.5), but also that we can (i) select a good combination of the available retained
snapshots, (ii) represent the retained snapshots in a stable reduced basis and (iii) obtain
the associated basis coefficients efficiently. These three points will be discussed in the
following section.

Fig. 20.2. The “snapshots” uh(μ
n),1 ≤ n ≤ N, on the parametric manifold Mh
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20.3.1 RB Spaces

We restrict our attention to reduced spaces generated by snapshots that represent high-
fidelity solutions of the PDE3, and review the construction of the RB approximation
in the elliptic case, also from an algebraic standpoint. Given a positive integer Nmax,
we define a (hierarchical) sequence of RB spaces V RB

N , 1 ≤ N ≤ Nmax, such that each
V RB

N is an N-dimensional subspace of V Nh . We further suppose that

V RB
1 ⊂V RB

2 ⊂ ·· ·V RB
Nmax

⊂V Nh . (20.27)

As we shall see, the nesting or hierarchy condition (20.27) is important in ensuring
memory efficiency of the resulting RB approximation.

In order to define a (hierarchical) sequence of spaces V RB
N , 1≤ N ≤ Nmax, we first

introduce, for given N ∈ {1, . . . ,Nmax}, a sample

SN = {μ1, . . . ,μN} (20.28)

of parameter points μn ∈D , 1≤ n ≤ N, to be properly selected (e.g. by means of the
greedy procedure that will be presented in Sect. 20.5.1). This produces corresponding
snapshots uh(μ

n) ∈V Nh . The associated greedy-RB spaces are thus given by

V RB
N = span{uh(μ

n), 1≤ n≤ N} . (20.29)

In the rest of the section the superscript RB will often be omitted for ease of nota-
tion. We observe that, by construction, the spaces VN satisfy (20.27) – i.e. RB spaces
(20.29) are hierarchical – and the samples (20.28) are nested, that is S1 = {μ1}⊂ S2 =
{μ1,μ2} ⊂ ·· · ⊂ SNmax .

20.3.2 Galerkin projection

For our particular class of equations, Galerkin projection is a natural choice. Thus,
given μ ∈D , we evaluate sN(μ) = J(uN(μ)), where uN(μ) ∈VN ⊂V Nh is such that

a(uN(μ),vN ;μ) = f (vN ;μ) ∀ vN ∈VN . (20.30)

From now on, problem (20.30) will be called Galerkin Reduced Basis (G-RB) approx-
imation of the given problem (20.2). By comparison between (20.16) and (20.30) we
immediately obtain the property

a(uh(μ)− uN(μ),vN ;μ) = 0 ∀ vN ∈VN , (20.31)

which is a Galerkin orthogonality property for the reduced problem (see Chap. 4).

3 This is the most common way of constructing reduced subspaces, which are also called
Lagrange RB spaces. Other known methods are based on Taylor [Por85] and Hermite [IR98]
spaces.
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Moreover, we obtain from (20.31) and Céa’s lemma – see Sect. 4.2 – the classical
optimality result in the energy norm (20.9)

‖uh(μ)− uN(μ)‖μ ≤ inf
w∈VN

‖uh(μ)−w‖μ . (20.32)

In other words, in the energy norm the Galerkin procedure automatically selects the
best combination of snapshots. It is also clear that

sh(μ)− sN(μ) = ‖uh(μ)− uN(μ)‖2
μ , (20.33)

i.e. the output converges as the “square” of the energy error. In fact, using the compli-
ance assumption, we can write

sh(μ)− sN(μ) = a(uh(μ),uh(μ);μ)− a(uN(μ),uN(μ);μ)

= a(uh(μ),uh(μ)− uN(μ);μ)+ a(uh(μ),uN(μ);μ)− a(uN(μ),uN(μ);μ)

= a(uh(μ)− uN(μ),uh(μ)− uN(μ);μ)+ a(uh(μ)− uN(μ),uN(μ);μ),

where the second term in the last row vanishes thanks to (20.31). Although this result
depends critically on the compliance assumption, a generalisation via adjoint approx-
imations to the non-compliant case is possible; see Sect. 20.8.

Let us remark that, by choosing the V -norm (20.11) instead of (20.32), we would
find

‖uh(μ)− uN(μ)‖V ≤
(
γ̄

α0

)1/2

inf
w∈VN

‖uh(μ)−w‖V , (20.34)

γ̄ and α0 being the uniform continuity and coercivity constants defined in (20.5).

We now consider the discrete equations associated with the Galerkin approxima-
tion (20.30). We must first choose an appropriate basis for our space; note that an
ill-advised choice of the RB basis can lead to very poorly conditioned systems. More-
over, if VN provides rapid convergence, the snapshots of (20.29) will be increasingly
co-linear as N increases, by construction. To avoid this situation (and generate an
independent set of snapshots) we apply the Gram-Schmidt process [Mey00, TI97] in
the (·, ·)V inner product to the snapshots uh(μ

n), 1 ≤ n ≤ Nmax, to obtain mutually
orthonormal functions ζn, 1 ≤ n ≤ Nmax: (ζn,ζm)V = δnm, 1 ≤ n,m ≤ Nmax, where
δnm is the Kronecker delta symbol. We then choose the set {ζn}n=1,...,N as our basis
of VN , 1≤ N ≤ Nmax.

We now insert

uN(μ) =
N

∑
m=1

u(m)
N (μ)ζm (20.35)

and then vN = ζn, 1≤ n≤ N, into (20.30) to obtain the RB algebraic system

N

∑
m=1

a(ζm,ζn;μ)u(m)
N (μ) = f (ζn;μ), (20.36)
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for the RB coefficients u(m)
N (μ), 1 ≤ m,n ≤ N. We can subsequently evaluate the RB

output prediction as

sN(μ) =
N

∑
m=1

u(m)
N (μ) f (ζm;μ) . (20.37)

By using the Rayleigh quotient, as explained in (4.51), we can show that the condition
number of the matrix a(ζm,ζn;μ), 1 ≤ n,m ≤ N, is bounded by γ(μ)/α(μ), inde-
pendently of N and Nh, owing to the orthogonality of the {ζn} and to (20.5); see e.g.
[PR07] for further details. For the sake of simplicity, from now on we consider the
case where f does not depend on the parameter μ.

20.3.3 Offline-Online computational procedure

System (20.36) is nominally of small size, yet it involves entities ζn, 1 ≤ n ≤ N, as-
sociated with our Nh-dimensional high-fidelity approximation space. If we have to
invoke high-fidelity fields in order to form the RB stiffness matrix for each new value
of μ the marginal cost per input-output evaluation μ → sN(μ) will remain unaccept-
ably large. Fortunately, the crucial assumption of affine parametric dependence will
cause a major increase in computational speed. In particular, thanks to (20.6), system
(20.36) can be expressed as

N

∑
m=1

( Qa

∑
q=1

Θ q
a (μ)A

q
N

)
uN(μ) = fN (20.38)

and (20.37) reads
sN(μ) = fN ·uN(μ), (20.39)

where (uN(μ))m = u(m)
N (μ), (Aq

N)mn = aq(ζn,ζm), (fN)n = f (ζn), for 1≤ m,n ≤ N.

The computation thus entails an expensive μ-independent Offline stage, performed
only once, and an inexpensive Online stage for any chosen parameter value μ ∈D :

• in the Offline stage, we first compute the uh(μ
n), and subsequently the ζn by Gram-

Schmidt orthonormalization, 1≤ n≤ Nmax; we then form and store the terms

f (ζn), 1≤ n≤ Nmax , (20.40)

aq(ζn,ζm), 1≤ n,m≤ Nmax, 1≤ q≤ Qa . (20.41)

The Offline operation count depends on Nmax, Qa, and Nh;

• in the Online stage, we retrieve (20.41) to form

Qa

∑
q=1

Θ q
a (μ)a

q(ζn,ζm), 1≤ n,m≤ N ; (20.42)

we solve the resulting N × N stiffness system (20.38) to obtain the u(m)
N (μ),

1 ≤ m ≤ N; finally, we access (20.40) to evaluate the output (20.37). The Online
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operation count is O(QaN2) to perform the sum (20.42), O(N3) to invert (20.38) –
note that the RB stiffness matrix is full – and finally O(N) to evaluate the in-
ner product (20.37). The Online storage (the data archived in the Offline stage) is
only O(QaN2

max)+O(Nmax), because of the hierarchical condition (20.27): for any
given N, we extract the necessary N×N RB matrices (resp. N-vectors) as princi-
pal submatrices (resp. subvectors) of the corresponding Nmax×Nmax (resp. Nmax)
quantities.

The Online cost (operation count and storage) to evaluate μ → sN(μ) is thus in-
dependent of Nh. The consequence is two-fold: first, if N is indeed small, we will
achieve very fast response both in real-time and many-query contexts; secondly, we
may choose Nh large enough, to make sure that the error ‖u(μ)− uh(μ)‖V is very
small, without affecting the Online marginal cost.

20.4 Algebraic and geometric interpretations of the RB problem

We now discuss the relationship between the Galerkin Reduced Basis (G-RB) approx-
imation (20.30) and the Galerkin high-fidelity approximation (20.16) from both an
algebraic and a geometric point of view.

Let us denote by uh(μ) ∈ RNh and uN(μ) ∈ RN the vectors of degrees of free-
dom associated to the functions uh(μ) ∈V Nh and uN(μ) ∈VN , respectively, which are
given by

uh(μ) = (u(1)h (μ), . . . ,u(Nh)
h (μ))T , uN(μ) = (u(1)N (μ), . . . ,u(N)

N (μ))T .

Let {ϕ̃r}Nh
r=1 denote the standard FE basis, orthogonal with respect to a discrete scalar

product

(uh,vh)h =
Nh

∑
r=1

wruh(xr)vh(xr),

{xr}Nh
r=1 being the set of FE nodes such that ϕ̃r(xs) = δrs and {wr}Nh

r=1 a set of weights

such that ∑
Nh
r=1 wr = |Ω |, for r,s = 1, . . . ,Nh; note that other choices of scalar products

can be made. It is useful to normalize these basis functions by defining

ϕr =
1√
wr
ϕ̃r, (ϕr,ϕs)h = δrs, r,s = 1, . . . ,Nh. (20.43)

As we saw in Chapter 4 – see relation (4.7) – we can consider the following bijec-
tion between the spaces RNh and V Nh :⎧⎪⎨⎪⎩

vh ∈ RNh ↔ vh ∈V Nh ,

vh = (v(1)h , . . . ,v(Nh)
h )T ↔ vh(x) =

Nh

∑
r=1

v(r)h ϕr(x).
(20.44)

For ease of notation, we will express the bijection (20.44) as follows: vh ∈ RNh →
Ihvh = vh ∈ Vh, IT

h vh = vh. Similarly, for the reduced basis approximation we use the
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notation vN ∈ RN → INvN = vN ∈VN , IT
N vN = vN . Thanks to the ortonormality of the

basis functions, v(r)h = (vh,ϕ
r)h, r = 1, . . . ,Nh.

Using bijection (20.44), the following algebraic relations hold:

(uh,vh)2 = (uh,vh)h ∀ uh,vh ∈ RNh (equivalently, ∀ uh,vh ∈V Nh). (20.45)

Indeed:

(uh,vh)h =

(
Nh

∑
r=1

u(r)h ϕr,
Nh

∑
s=1

v(s)h ϕ
s

)
h

=
Nh

∑
r,s=1

u(r)h v(s)h (ϕr,ϕs)h =
Nh

∑
r,s=1

u(r)h v(r)h = (uh,vh)2.

20.4.1 Algebraic interpretation of the (G-RB) problem

We first discuss the algebraic connection between the (G-RB) problem (20.30) and
the Galerkin high-fidelity approximation (20.16), which has strong consequences on
the computational aspects related with RB methods.

In matrix form, the (G-RB) problem (20.36) can be written as

AN(μ)uN(μ) = fN , (20.46)

with fN = ( f (1)N , . . . , f (N)
N )T , f (k)N = f (ζk), (AN(μ))km = a(ζm,ζk;μ), for k,m =

1, . . . ,N. On the other hand, the Galerkin high-fidelity approximation (20.16) reads
in matrix form as

Ah(μ)uh(μ) = fh, (20.47)

with fh = ( f (1)h , . . . , f (Nh)
h )T , f (r)h = f (ϕr), (Ah(μ))rs = a(ϕs,ϕr;μ), for r,s =

1, . . . ,Nh.
For the sake of notation, we omit the dependence on μ in the rest of the section.

Let V ∈ RNh×N be the transformation matrix whose entries are

(V)rk = (ζk,ϕ
r)h, r = 1, . . . ,Nh , k = 1, . . . ,N. (20.48)

Using this matrix, we can easily obtain the following algebraic identities:

fN = VT fh, AN = VTAhV, (20.49)

which represent the algebraic counterparts of the operator identities (20.24) (see
Fig. 20.3). Indeed,

(VTAhV)km =
Nh

∑
r,s=1

(V)T
kr(Ah)rs(V)sm =

Nh

∑
r,s=1

(ζk,ϕ
r)ha(ϕs,ϕr)(ζm,ϕ

s)h

=a

(
Nh

∑
s=1

(ζm,ϕ
s)hϕ

s,
Nh

∑
r=1

(ζk,ϕ
r)hϕ

r

)
= a(ζm,ζk) = (AN)km
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Fig. 20.3. Schematic representation of how to assemble the RB “stiffness” matrix

and, in the same way,

(VT fh)
(k) =

Nh

∑
r=1

(V)T
kr(fh)

(r) =
Nh

∑
r=1

(ζk,ϕ
r)h f (ϕr)

= f

(
Nh

∑
r=1

(ζk,ϕ
r)hϕr

)
= f (ζk) = (fN)k. (20.50)

Thanks to (20.49), each μ-independent RB “stiffness” matrix A
q
N can be assem-

bled once the corresponding high-fidelity “stiffness” matrix A
q
h has been computed.

The (vector representation of the) error between the solution of the (G-RB) prob-
lem and the Galerkin high-fidelity approximation is

eN = uh −VuN . (20.51)

Similarly, the (vector representation of the) high-fidelity residual of the (G-RB) solu-
tion reads

rh(uN) = fh −AhVuN . (20.52)

The following lemma provides the main algebraic connection between the (G-RB)
problem and the Galerkin high-fidelity approximation:

Lemma 20.1. The following algebraic relations hold:

AheN = rh(uN), (20.53)

VTAhuh = fN , (20.54)

VT rh(uN) = 0, (20.55)

eN and rh(uN) being defined by (20.51) and (20.52), respectively.

Proof. Equation (20.53) follows directly from (20.51) and (20.47).
By left multiplication of (20.47) by VT , we immediately obtain (20.54), thanks to
(20.49).
Finally, (20.55) follows from (20.52) using the identities (20.49) and problem
(20.46). �
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Note that condition (20.53) is the algebraic counterpart of the Galerkin orthogo-
nality property (20.31) valid for the (G-RB) problem.

In summary, for a given matrix V of reduced bases, the Galerkin Reduced Basis
(G-RB) problem (20.46) can be formally obtained as follows:

Galerkin Reduced Basis (G-RB) problem

1. consider the Galerkin high-fidelity problem (20.47);

2. set uh = VuN + eN , where uN ∈ RN has to be determined and the error eN is
the difference between uh and VuN ;

3. left multiply (20.47) by VT to obtain ANuN− fN =−VTAheN , that is

ANuN− fN =−VT rh(uN);

4. require uN to satisfy VT rh(uN) = 0, or equivalently

ANuN = fN .

If Ah is symmetric and positive definite, then the G-RB solution satisfies the fol-
lowing residual minimization property:

uN = arg min
ũN∈RN

‖rh(ũN)‖2
A−1

h
. (20.56)

In fact, by indicating with K1/2 the square root of a (symmetric and positive definite)
matrix K, we have

‖rh(ũN)‖2
A−1

h
= (fh−AhVuN , fh−AhVuN)A−1

h
=

= (A
−1/2
h fh−A

1/2
h VuN ,A

−1/2
h fh−A

1/2
h VuN).

This can be regarded as the least-squares solution of the system A
1/2
h VuN = A

−1/2
h fh,

whose corresponding normal equations4 are

VTA
1/2
h A

1/2
h VuN = VTA

1/2
h A

−1/2
h fh = VT fh.

Note that the latter coincide with the (G-RB) problem (20.46).

20.4.2 Geometric interpretation of the (G-RB) problem

We can also characterize from a geometric standpoint the RB approximation obtained
by solving the (G-RB) problem, as well as the error eN = uh −VuN between the
solution of the (G-RB) problem and the Galerkin high-fidelity approximation.

4 We recall that, given c ∈ RNh and B ∈ RNh×N , the overdetermined system Bũ = b can be
solved in the least-squares sense, by seeking u = argminũ∈RN ‖c−Bũ‖2

2. The solution is
unique provided that the N columns of B are linearly independent, and can be obtained
through the following normal equations:

(BTB)u = BT c.
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To this end, we exploit the fact that the transformation matrix V defined by (20.48)
identifies an orthogonal projection on the reduced subspace VN = span{v1, . . . ,vN} of
RNh generated by the column vectors of the matrix V. Then dim(VN) = N because of
the linear independence of the columns of V.

Assume that the basis functions {ζk}k=1,...,N are orthonormal with respect to the
scalar product (·, ·)h, that is

(ζk,ζm)h =
Nh

∑
j=1

wjζk(x j)ζm(x j) = δkm. (20.57)

Then
VTV ∈RN×N , VTV= IN (20.58)

where IN denotes the identity matrix of dimension N.
As a matter of fact

(VTV)mk = (ζm,ζk)h ∀k,m = 1, . . . ,N. (20.59)

Lemma 20.2. The following results hold:

1. The matrix Π = VVT ∈ RNh×Nh is a projection matrix from the whole space
RNh onto the subspace VN;

2. The matrix INh −Π = INh −VVT ∈ RNh×Nh is a projection matrix from the
whole space RNh onto the space V⊥N , which is the subspace of RNh orthogonal
to VN.

3. The residual rh(uN) satisfies

Π rh(uN) = 0, (20.60)

that is, it belongs to the orthogonal space V⊥N .

Proof. Property 1 is a direct consequence of the orthonormality property (20.58). In
fact:

∀wN ∈ VN there exists vN ∈ RN s.t. wN = VvN .

Then, ∀vh ∈ RNh , ∀wN ∈ VN ,

(Πvh,wN)2 = (Πvh,VvN)2 = (VT vh,V
TVvN)2 = (vh,VvN)2 = (vh,wN)2.

Property 2 follows from property 1. Finally, (20.60) follows from (20.55). �

If we assume the basis to be orthonormal, the error eN = uh−VuN can be decom-
posed into two orthogonal terms:

eN = uh−VuN = (uh−Πuh)+ (Πuh−VuN)

= (INh −Π)uh +V(VT uh−uN) = eV⊥N
+ eVN .
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Fig. 20.4. The subspace VN of RNh and the vectors uN ∈ RN , VuN ∈ VN and uh ∈ RNh

The first term, orthogonal to VN , accounts for the fact that the high-fidelity solution
does not strictly belong to the reduced subspace VN , whereas the second one, parallel
to VN , accounts for the fact that a (slightly) different problem from the original one is
solved; see Fig. 20.4.

We remark that the result (20.58) follows from property (20.57) on the h-
orthogonality of the reduced basis functions. Actually, the orthonormalization can be
done with respect to a different scalar product that we generically denote ( · , ·)N , i.e.

(ζk,ζm)N = δkm ∀k,m = 1, . . . ,N.

In this case, instead of (20.59) we have

δkm = (ζk,ζm)N =
Nh

∑
r=1

Nh

∑
s=1

(Vrkϕr,Vsmϕs)N =
Nh

∑
r=1

Nh

∑
s=1

VmsMsrVrk,

where we have used (20.48) and defined the mass matrix for ( · , ·)N as

Msr = (ϕr,ϕs)N , 1 ≤ r,s ≤ N.

Consequently, instead of (20.58) we obtain the new orthonormality relation

YTY= VTMV= IN ,

where YT = VTM1/2, Y = M1/2V. In the same way, the projection matrix is Π =
YYT . The results 1. and 2. of Lemma 20.2 proven above will still hold, provided the
matrix V is replaced by Y and the subspace VN by YN = YVN .

20.4.3 Alternative formulations: Least-Squares and Petrov-Galerkin RB

problems

The Galerkin projection, which leads to the (G-RB) problem discussed so far, is
the most common strategy to build a reduced-order method, since it yields, up to
constants, the best approximation with respect to the energy norm.
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In this case, the trial space (namely, the space where we seek the solution) and
the test space are the same; from an algebraic standpoint this is reflected by the iden-
tities (20.49), where the matrix by which we pre- and post-multiply the high-fidelity
stiffness matrix is the same. However, the trial and the test space may be chosen in
a different way, giving rise to what we have called a Petrov-Galerkin formulation. In
this section we provide some ideas about this approach.

The Least Squares Reduced Basis method

An alternative approach to (G-RB) is the so-called Least Squares Reduced Basis (LS-
RB) – sometimes also called Minimum Residual – method, where the (LS-RB) solu-
tion satisfies

uN = arg min
ũN∈RN

‖rh(ũN)‖2
2. (20.61)

Note that the minimization criterion (20.61) applies for any matrix Ah, whereas
(20.56), which characterizes the (G-RB) method, requires Ah to be symmetric and
positive definite. The solution to (20.61) coincides with the solution of the normal
equations

(AhV)
TAhVuN = (AhV)

T fh,

that is

(AhV)
T rh(uN) = 0. (20.62)

For a given matrix V, the Least Squares (Minimum Residual) RB problem can
therefore be obtained as follows:

Least Squares Reduced Basis (LS-RB) problem

1. consider the Galerkin high-fidelity problem (20.47);

2. set uh = VuN + eN , where uN ∈ RN has to be determined and the error eN is
the difference between uh and VuN ;

3. left multiply (20.47) by (AhV)
T to obtain

(AhV)
TAhVuN = (AhV)

T fh− (AhV)
T rh(uN);

4. require uN to satisfy (AhV)
T rh(uN) = 0, that is, equivalently,

(AhV)
TAhVuN = (AhV)

T fh. (20.63)

Note that (20.63) can be rewritten in the form (20.46) provided we set

fN = (AhV)
T fh, AN = (AhV)

TAhV.
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The Petrov-Galerkin Reduced Basis method

Problem (20.63) can be regarded as a special instance of the following Petrov-Galerkin
(rather than Galerkin) method: find uN(μ) ∈VN such that

a(uN(μ),wN ;μ) = f (wN ;μ) ∀wN ∈WN , (20.64)

where WN ⊂ V Nh is a subspace of dimension N, different from VN . If we denote by
{ηk , k = 1, . . . ,N} a basis for WN , and by W ∈RNh×N the matrix whose entries are

(W)rk = (ηk,ϕ
r)h, r = 1, . . . ,Nh , k = 1, . . . ,N,

we can still express (20.64) in the algebraic form (20.46); this time, however, instead
of (20.49) we have

fN =WT fh, AN =WTAhV. (20.65)

For two given matrices V and W, the Petrov-Galerkin RB (PG-RB) method can
be obtained as follows:

Petrov-Galerkin Reduced Basis (PG-RB) problem

1. consider the Galerkin high-fidelity problem (20.47);

2. set uh = VuN + eN , where uN ∈ RN has to be determined and the error eN is
the difference between uh and VuN ;

3. left multiply (20.47) by WT to obtain
WTAhVuN =WT fh−WT rh(uN);

4. require uN to satisfy WT rh(uN) = 0, that is, equivalently,

WTAhVuN =WT fh. (20.66)

As already anticipated, the (LS-RB) problem (20.63) is a special case of the (PG-
RB) problem (20.66) corresponding to the choice W=AhV. In fact, we can show (see
Exercise 1) the following result:

Property 20.1. The (LS-RB) formulation corresponds to the following problem
in variational form: find uN(μ) ∈VN such that⎧⎪⎨⎪⎩

a(uN(μ),y
μ
h (vN);μ) = f (yμh (vN);μ) ∀ vN ∈VN

where yμh (vN) ∈Vh is the solution to the following problem :

(yμh (vN),zh)h = a(vN ,zh;μ) ∀ zh ∈V Nh .

(20.67)

The (LS-RB) method is therefore equivalent to the Petrov-Galerkin method
(20.64) provided the test space

WN = span{ημk , k = 1, . . . ,N} ⊂V Nh
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is defined by taking η
μ
k = η

μ
k (ζk) as the solution to

(η
μ
k ,zh)h = a(ζk,zh; μ) ∀ zh ∈V Nh . (20.68)

Remark 20.1. The choice (20.68) is optimal in the sense that the error in the (PG-RB)
problem equals the best approximation error – i.e. the ratio of continuity constant to
stability constant is 1 – provided we endow the trial space with a suitable energy norm;
the interested reader can refer, for instance, to [DG11].

We also note that in the (LS-RB) case the basis functions of the test space depend
on μ because of the parametric dependence of the bilinear form a(·, ·; μ). Several
options for their efficient construction and orthonormalization are available in this
case; see for instance [RHM13] for further details.

20.5 Construction of reduced spaces

We now describe how to sample the parameter space in order to compute the retained
snapshots which actually form the reduced basis. We start by illustrating a sample
strategy, the greedy algorithm, which was introduced in [PR07, RHP08], and is based
on the idea of selecting at each step the locally optimal element. Next we will address
an alternative procedure, the so-called proper orthogonal decomposition.

20.5.1 Greedy algorithm

We start by formulating this algorithm in an abstract setting, then we characterize the
case of the reduced basis method by providing a computable version.

A greedy algorithm is a general procedure to approximate each element of a com-
pact set K in a Hilbert space V by a subspace of properly selected elements of K. For
a given N ≥ 1, we seek functions { f1, f1, . . . , fN} such that each f ∈ K is well approx-
imated by the elements of the subspace KN = span{ f1, . . . , fN}. The algorithm can be
described as follows:

f1 = argmax
f∈K

‖ f‖V ;

assume f1, . . . , fN−1 are defined
consider KN−1 = span{ f1, . . . , fN−1};
define fN = argmax

f∈K
‖ f −ΠKN−1 f‖V ;

iterate until max
f∈K

‖ f −ΠKN f‖V < ε∗tol.

ΠKN−1 is the orthogonal projection operator on KN−1 with respect to the scalar prod-
uct (·, ·)V and ε∗tol is a chosen tolerance; fN is called the worst case element, i.e. the
element of K that maximizes the projection error on KN−1.
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At each step, the elements provided by the previous algorithm are orthonormalized
by the following Gram-Schmidt procedure: we define

ζ1 =
f1

‖ f1‖V
, ζN =

fN −ΠKN−1 fN

‖ fN −ΠKN−1 fN‖V
, N = 2, . . . ,Nmax

and assume that the construction ends when N = Nmax. In particular, for any f ∈V ,

ΠKN f =
N

∑
n=1

πn
KN

( f )ζn, with πn
KN
( f ) = ( f ,ζn)V .

We are interested in the case where K is the parametrically induced manifold
(20.26); the greedy algorithm for the parameters selection takes the following form:

μ1 = arg max
μ∈D

‖uh(μ)‖V ;

given the samples μ1, . . . ,μN−1,

consider VN−1 = span{uh(μ
1), . . . ,uh(μ

N−1)};
construct μN = arg sup

μ∈D

‖uh(μ)−Π
μ
N−1uh(μ)‖V ;

iterate until sup
μ∈D

‖uh(μ)−Π
μ
N uh(μ)‖V < ε∗tol.

(20.69)

Here Π
μ
N−1 : V Nh →VN−1 denotes the elliptic (Galerkin) projection onto VN−1:

a(Π μ
N−1uh,vh; μ) = a(uh,vh; μ) ∀v ∈VN−1.

Note that, thanks to (20.16) and (20.21), Π
μ
N uh(μ) = uN(μ) for all μ ∈ D . The set

{uh(μ
1), . . . ,uh(μ

N)} generated above is then orthonormalized with respect to the
scalar product (·, ·)V , yielding a new orthonormal basis {ζ1 . . . ,ζN} of VN .

In the Gram-Schmidt orthonormalization process we cannot use the elliptic
(Galerkin) projection Π

μ
N , since the latter depends on μ; instead, we employ the or-

thogonal projection ΠN : V Nh → VN with respect to the scalar product (·, ·)V corre-
sponding to a specific value of μ̄ , see (20.10). The orthonormalization process gives:

ζ1 =
uh(μ

1)

‖uh(μ1)‖V
, ζN =

uh(μ
N)−ΠN−1uh(μ

N)

‖uh(μN)−ΠN−1uh(μN)‖V
, N = 2, . . . ,Nmax.

In particular,

ΠNuh(μ) =
N

∑
n=1

πn
N(μ)ζn, with πn

N(μ) = (uh(μ),ζn)V .

Computationally, the greedy algorithm (20.69) is rather expensive: at each step,
seeking the best snapshot entails solving an optimization problem, where the eval-
uation of the approximation error ‖uh(μ)−Π

μ
N−1uh(μ)‖V requires many expensive

evaluations of the high-fidelity solution uh(μ).
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In practice, this cost is alleviated by replacing the sup over D with a sup over a
very fine sample5 Ξtrain ⊂D , of cardinality |Ξtrain|= ntrain, which shall serve to select
our RB space – or train our RB approximation. This nevertheless still requires solving
several high-fidelity approximation problems.

A further simplification is then adopted, which consists of replacing the approxi-
mation error with an inexpensive a posteriori error estimator ΔN−1(μ) such that

‖uh(μ)−Πμ
N−1uh(μ)‖V ≤ ΔN−1(μ) ∀μ ∈D .

The complete greedy algorithm reads as follows:

S1 = {μ1};
compute uh(μ

1);
V1 = span{uh(μ

1)};
for N = 2, . . .

μN = argmaxμ∈Ξtrain ΔN−1(μ);
εN−1 = ΔN−1(μ

N);
if εN−1 ≤ ε∗tol

Nmax = N−1;
end;
compute uh(μ

N);
SN = SN−1 ∪ {μN};
VN =VN−1 ∪ span{uh(μ

N)};
end.

(20.70)

Otherwise said, at the N-th iteration of this algorithm to the retained snapshots,
over all possible candidate uh(μ), μ ∈ Ξtrain, we append the particular candidate snap-
shot that the a posteriori error bound (20.96) predicts will be the worst approximated
by the RB prediction associated to VN−1.

A similar greedy procedure can also be developed with respect to the energy norm
[RHP08]. This is particularly relevant in the compliant case, since the error in the
energy norm is directly related to the error in the output (see Sect. 20.3.2).

5 Typically these samples are chosen by Monte Carlo methods with respect to a uniform or
log-uniform density: Ξ is however sufficiently large to ensure that the reported results are
insensitive to further refinement of the parameter sample. We usually make a distinction be-
tween the test sample Ξ , which serves to assess Online the quality of the RB approximation
and the a posteriori error estimators, and the train samples Ξtrain, which serves to gener-
ate the RB approximation; the choice of the latter has important (both Offline and Online)
computational implications.
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20.5.2 Proper Orthogonal Decomposition

A technique alternative to greedy RB algorithms for the construction of reduced spaces
in computational reduction of parametrized systems is the proper orthogonal decom-
position (POD). POD is also popular in multivariate statistical analysis (where it is
called principal component analysis) or in the theory of stochastic processes (under
the name of Karhunen-Loève decomposition). The first applications of POD in scien-
tific computing were concerned with the simulation of turbulent flows and date back
to the early ’90s [Aub91, BHL93]; the interested reader can find further details for
instance in [HLB98].

POD techniques6 reduce the dimensionality of a system by transforming the orig-
inal variables into a new set of uncorrelated variables (called POD modes, or principal
components), the first few modes ideally retaining most of the energy present in all of
the original variables.

The POD method relies on the use of the singular value decomposition (SVD)
algorithm that we briefly describe below. Consider a discrete set of ntrain snapshot
vectors {u1, . . . ,untrain} belonging to RNh , and form the snapshot matrix U ∈RNh×ntrain

having them as column vectors:

U= [u1 u2 . . . untrain ],

with ntrain = |Ξtrain| � Nh (see (20.44)):

u j = (u(1)j , . . . ,u(Nh)
j ) ∈RNh , u(r)j = uh(xr;μ

j) ⇔ uh(x;μ j) =
Nh

∑
r=1

u(r)j ϕ
r(x).

(20.71)
The SVD decomposition of U reads

VTUZ=

(
Σ 0
0 0

)
,

where V= [ζ1 ζ2 . . . ζNh ] ∈ RNh×Nh and Z= [ψ1 ψ2 . . . ψntrain ] ∈ Rntrain×ntrain are
orthogonal matrices and Σ = diag(σ1, . . . ,σr) with σ1 ≥ σ2 ≥ . . .≥ σr; here r ≤ ntrain

is the rank of U, which is strictly smaller than ntrain if the snapshot vectors are not all
linearly independent.

Then, we can write

Uψi = σiζi and UT ζi = σiψi, i = 1, . . . ,r

or, equivalently,

UTUψi = σ2
i ψi and UUTζi = σ2

i ζi, i = 1, . . . ,r (20.72)

6 For a general and concise introduction to POD techniques for the reduction of a (time-
dependent) dynamical system – the first (and most used) application of this strategy – the
interested reader may refer to [Pin08, Vol11]. Two additional techniques – indeed quite
close to POD – for generating reduced spaces are the Centroidal Voronoi Tessellation (see
Chap. 9, [BGL06a, BGL06b]) and the Proper Generalized Decomposition (see for instance
[CAC10, CLC11, Nou10]).
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i.e. σ2
i , i = 1, . . . ,r are the nonzero eigenvalues of the matrix UTU (and also of UUT ),

listed in nondecreasing order; C= UTU is the correlation matrix

Ci j = uT
i u j, 1≤ i, j ≤ ntrain.

For any N ≤ ntrain, the POD basis of dimension N is defined as the set of the first
N left singular vectors ζ1, . . . ,ζN of U or, alternatively, the set of vectors

ζ j =
1
σ j

Uψ j, 1≤ j ≤ N (20.73)

obtained from the first N eigenvectors ψ1, . . . ,ψN of the correlation matrix C.
By construction, the POD basis is orthonormal. Moreover, if {z1, . . . ,zN} is an

arbitrary set of N orthonormal vectors in RNh , and ΠZN w the projection of a vector
w ∈ RNh onto ZN = span{z1, . . . ,zN}, that is

ΠZN u =
N

∑
n=1

πn
ZN
(u)zn, with πn

ZN
(u) = uT zn,

the POD basis (20.73) generated from the set of snapshot vectors u1, . . . ,untrain solves
the following minimization problem:⎧⎪⎨⎪⎩

min{E(z1, . . . ,zN) , zi ∈ RNh , zT
i z j = δi j , ∀1≤ i, j ≤ N}

with E(z1, . . . ,zN) =
ntrain

∑
i=1

‖ui−ΠZN ui‖2
2.

(20.74)

Thus, the POD basis minimizes, over all possible N-dimensional orthonormal sets
{z1, . . . ,zN} in RNh , the sum of the squares of the error E(z1, . . . ,zN) between each
snapshot vector ui and its projection ΠZN ui onto the subspace ZN . E(z1, . . . ,zN) is
often referred to as the POD energy.

The previous constructive presentation of the POD method was based on the so-
called method of snapshots, introduced by Sirovich [Sir87]. Alternatively, a POD basis
corresponding to a set of snapshot vectors u1, . . . ,untrain can be (and often is) defined
by (20.74). In this case, its connection with the SVD of the correlation matrix, as
well as relation (20.72), follow by imposing that the POD basis {ζ1, . . . ,ζN} fulfill the
first-order necessary optimality conditions (see Exercise 2).

Furthermore, it can be shown that

E(ζ1, . . . ,ζN) =
r

∑
i=N+1

σ2
i , (20.75)

so that the error in the POD basis is equal to the squares of the singular values cor-
responding to the neglected POD modes. In this way, we can select Nmax so that
E(ζ1, . . . ,ζN)≤ ε∗tol, for a prescribed tolerance ε∗tol.

To do this, it is sufficient to choose Nmax as the smallest N such that

I(N) =
N

∑
i=1
σ2

i

/
r

∑
i=1
σ2

i ≥ 1− δ , (20.76)
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that is the energy retained by the last r−Nmax modes equals to δ > 0, as small as
desired; I(N) is referred to as the relative information content of the POD basis.

A key feature is that although δ is chosen to be very small, e.g., δ = 10−β with β =
3,4, . . ., in several problems Nmax is relatively small (and in particular much smaller
than r). This happens because, very often, the singular values of the snapshot matrix
decrease very fast (e.g. with exponential rate).

Let us now cast the POD method described so far into the reduced basis context.
As already pointed out, see (20.71), the set of snapshot vectors is obtained from a
set {uh(μ

1), . . . ,uh(μ
ntrain)} of high-fidelity approximation functions belonging to the

space V Nh . In this case the minimization problem (20.74) can be equivalently refor-
mulated as: find the POD basis {ζ1, . . . ,ζN} that solves the minimization problem:⎧⎪⎨⎪⎩

min{E(z1, . . . ,zN) , zi ∈V Nh , (zi,z j)L2(Ω) = δi j , ∀1≤ i, j ≤ N}

with E(z1, . . . ,zN) =
ntrain

∑
i=1
‖uh(μ

i)−Πzuh(μ
i)‖2

L2(Ω)

(20.77)

where Πz : V Nh → ZN is the L2(Ω)-projection onto ZN = span{z1, . . . ,zN}.

To solve (20.77) we proceed as follows:

• we form the rank r (≤ ntrain) correlation matrix

Ci j = (uh(μ
i),uh(μ

j))L2(Ω), 1≤ i, j ≤ ntrain;

• we solve the ntrain× ntrain eigenvalue problem: for i = 1, . . . ,r,

Cψi = σ2
i ψi, ψT

i ψ j = δi j, 1≤ i, j ≤ r;

• finally we set

ζi =
ntrain

∑
j=1

1
σi
ψ

( j)
i uh(μ

j), 1≤ i≤ N, (20.78)

ψ
( j)
i being the j-th component of the eigenvector ψi and σi ≥ σi−1 > 0.

The correlation matrix factorizes as C = UT M̃U, where U is the snapshot matrix
while

(M̃)i j = (ϕ i,ϕ j)L2(Ω), 1≤ i, j ≤ Nh

is the mass matrix M̃ of the high-fidelity approximation space. This allows us to
exploit again a SVD to compute the POD basis functions. By using the Cholesky
factorization M̃ = HTH, where H ∈ RNh×Nh is the Cholesky factor of M̃, we find
Ũ = HU, hence C = UT M̃U = ŨT Ũ and therefore ψi, i = 1, . . . ,N represent the first
N singular vectors of Ũ.

Typically a POD approach to build an RB space is more expensive than the greedy
approach. In the latter, we only need to compute the N – typically very few – high-
fidelity retained snapshots, whereas in the POD approach we must compute all ntrain –
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typically/desirably very many – high-fidelity candidate snapshots, as well as the solu-
tion of an eigenproblem for the correlation matrix C ∈RNh×Nh . Note that (20.76) pro-
vides information about the amount of energy neglected by the selected POD modes,
that is an indication in the L2-norm instead than in the V -norm, as it was the case of
the a posteriori error estimates used in the greedy algorithm.

20.6 Convergence of RB approximations

In this section we illustrate some convergence results for problems depending on one
or several parameters.

20.6.1 A priori convergence theory: a simple case

An a priori exponential convergence result, with respect to the number N of basis
functions, is known in the case of elliptic PDEs depending on one-dimensional param-
eters, for instance in [MPT02a, MPT02b]; furthermore, several computational tests
shown e.g. in [RHP08] provide a numerical assessment of this behaviour, also for
larger dimensions of the parameter space. Here we describe the simplest case, associ-
ated with specific non-hierarchical spaces V ln

N , 1≤ N ≤ Nmax, given by

V ln
N = span{uh(μ

n
N), 1≤ n≤ N} , (20.79)

μn
N = μmin exp

{
n−1
N−1

ln

(
μmax

μmin

)}
, 1≤ n≤ N, 1≤ N ≤ Nmax . (20.80)

We denote the corresponding RB approximation by uln
N (μ). The a priori theory de-

scribed below suggests that the spaces (20.79) – which we shall call “equi-ln” spaces
– do display optimality features; as we will see in the next subsection, a greedy se-
lection would act as just as well. Here we consider the thermal block problem of
Sect. 20.1.1 for the case in which B1 = 2,B2 = 1, as shown in Fig. 20.5.

Fig. 20.5. Thermal block problem: B1 = 2,B2 = 1
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The governing equations are then given by (20.13) and (20.14) for two
blocks/regions R1 and R2, the single parameter μ = μ1 representing the conductivity
of region R1 (the conductivity of region R2 is one), and the parameter domain
D = [μmin,μmax] = [1/

√
μr,
√
μ r] for μ r = 100; the associated affine expansion

(20.6) now comprises only Qa = 2 terms.

The analysis presented here is, as a matter of fact, relevant to a large class of
single-parameter coercive problems. For the RB approximation of this problem, the
following result holds:

Property 20.2. Given general data F (of which FNeu from (20.14) is a particular
example), we obtain that for any N ≥ 1+Cμr

, and every μ ∈D ,

‖uh(μ)− uln
N (μ)‖μ

‖uh(μ)‖μ
≤ exp

{
− N− 1

Cμ r

}
, (20.81)

where Cμ r
= [2e lnμ r]+ and [ ]+ denotes the smallest integer greater than or

equal to its real argument.

The proof is a “parametric” version of the standard (finite element) variational ar-
guments of Chap. 4. In particular, we first invoke (20.32) and take as our candidate w
a high-order polynomial interpolant in the parameter μ of uh(μ); we next apply the
standard Lagrange interpolant remainder formula; finally, we resort to an eigenfunc-
tion expansion to bound the parametric (sensitivity) derivatives and optimize the order
of the polynomial interpolant.

For the complete proof and more considerations, see [PR07]. We note that the
RB convergence estimate (20.81), relative to the model problem we have considered,
relies on parameter smoothness and not on the computational grid (through Nh); the
exponent in the convergence rate depends on N and logarithmically on μr.

20.6.2 A priori convergence theory: greedy algorithms

Several recent results carry out an a priori convergence analysis in the more general
case of reduced spaces built through the greedy algorithm. Below we provide a few
preliminary results that explain why approximation spaces VN built in this way exhibit
exponential convergence in N; see e.g. [BMP+12, BCD+11] for further details.

Let us denote, for any uh ∈Mh,

σN(uh,Mh) = inf
vN∈VN

‖uh− vN‖V = ‖uh−Πμ
N uh‖V ,

where Πμ
N denotes the projector onto VN . Then

σN(Mh) = sup
uh∈Mh

σN(uh,Mh)
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is the best approximation error when approximating the set Mh by VN . Indeed, this
is the quantity which has to be maximized at each step of the greedy algorithm, in
order to select the current snapshot. For instance, referring to the case addressed in
Sect. 20.6.1, with the specific choice (20.80) we can achieve exponential convergence,
that is

σN(Mh)≤C exp(−Nα), for some α > 0.

A priori convergence analysis aims at providing upper bounds for the sequence
σN(Mh) in terms of the best N-dimensional subspace, i.e. the one that would minimize
the projection error for the whole set Mh among all N-dimensional subspaces. This
minimal error is given by the Kolmogorov N-width, which is defined as

dN(Mh) = inf
ZN⊂V

sup
uh∈Mh

dist(uh,ZN) (20.82)

where
dist(uh,ZN) = min

wN∈ZN
‖uh−wN‖V = ‖uh−ΠZN uh‖V

and the first infimum is taken over all linear subspaces ZN ⊂ V of dimension N. We
refer the reader to [LvGM96, Pin85] for a general discussion on Kolmogorov width.

dN(Mh) measures the degree to which a subset of the space V can be approximated
using finite-dimensional subspaces ZN . If σN(Mh) decayed at a rate comparable to
dN(Mh), the greedy selection would essentially provide the best possible accuracy
attainable by N-dimensional subspaces.

In general the optimal subspace with respect to the Kolmogorov N-width (20.82) is
not spanned by elements of the set Mh being approximated, thus we possibly have that
dN(Mh)� σN(Mh). However, if the N-width converges at exponential rate, then also
the error of the best approximation in VN does. This is the meaning of the following
result, shown in [BMP+12]; we recall that γ(μ) and α(μ) are the continuity and the
coercivity constants of the bilinear form a(·, ·;μ):

Theorem 20.1. Assume that the set of all solutions Mh = {uh(μ) : μ ∈ D} has
an exponentially small Kolmogorov N-width, i.e.

dN(Mh)≤ ce−δN with δ > log

(
1+

(
γ̄

α0

)1/2)
= logδ0,

where we have assumed that γ(μ) ≤ γ̄ and α(μ) ≥ α0 for all μ ∈ D . Then the
reduced basis method built using the greedy algorithm (20.69) converges expo-
nentially, that is, there exists η > 0 such that

‖uh(μ)− uN(μ)‖V ≤Ce−ηN ∀μ ∈D ,
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where C = cNδN
0 is independent of h and μ , and δ0 > 2. The same result holds

if we replace the error ‖uh(μ)−Πμ
N uh(μ)‖V with the error estimate ΔN(μ) in

(20.69) provided that

δ > log

(
1+

γ̄

α
Nh
0

(
γ̄

α0

)1/2)
.

Above, αNh
0 > 0 is a computable, uniform lower bound of the high-fidelity coer-

civity constant αNh(μ), hence such that αNh(μ)≥ αNh
0 for any μ ∈D .

Although interesting from a theoretical viewpoint, the previous comparison is
only useful if dN(Mh) decays to zero faster than N−1δ−N

0 . We remark that the fac-
tor
√
γ̄/α0 is related to the V -norm chosen to measure the error in the greedy algo-

rithm. Moreover, the expression of the a posteriori error estimate ΔN(μ), defined in
(20.96), involves a computable (μ-dependent) lower bound αNh

LB(μ) ≤ αNh(μ) of the
high-fidelity coercivity constant αNh(μ); in particular, the parametric lower bound is
uniformly bounded below by αNh

0 > 0.

In fact, we have exponential convergence of the Kolmogorov N-width when the
dependence on the parameter is analytic7. This result has been further improved in
[BCD+11], where it was shown that if dN(Mh) ≤ C exp

(−cNβ
)

for all N > 0 and

some C,c > 0, then, for some C̃, c̃ > 0 we have:

σN(Mh)≤ C̃ exp(−c̃Nβ/(β+1)) (20.83)

with C̃ independent of N. In the case of algebraic convergence, dN(Mh)≤MN−α for
all N > 0 and some M,α > 0, it was proved that

σN(Mh)≤CMN−α , C =C(γ,α0). (20.84)

Furthermore, it was shown that

σN(Mh)≤ 2N+1
√

3
dN(Mh),

and that this estimate cannot, in general, be improved.

To conclude, the reader of this book will remind that the fast (exponential) con-
vergence of numerical approximations is a distinctive feature of spectral methods (see
Chap. 10). The reduced basis method shares indeed some aspects with spectral meth-
ods: similarly to the latter, it makes use of basis functions with global support (which
are problem-dependent in the RB case, whereas global orthogonal polynomials in the
pure spectral case).

7 However, analytic regularity of the solution manifold Mh is not necessary in order to apply
the reduced basis method.
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In general, the reduced basis approximation of solutions of elliptic equations with
regular coefficients has indeed been very successful. Further convergence analyses
for the greedy algorithm and a numerical proof of these results, extending the ones
presented in [MPT02a, MPT02b], can be found e.g. in [LMQR13].

20.7 A posteriori error estimation

Effective a posteriori error bounds for field variables and outputs of interest are crucial
for both the efficiency and the reliability of RB approximations. As regards efficiency,
a posteriori error estimation allows to control the error, and also to minimize the com-
putational effort by controlling the dimension of the RB space. Not only, for the greedy
algorithm the application of error bounds (as surrogates for the actual error) allows sig-
nificantly larger training samples Ξtrain ⊂D and a better parameter space exploration
at greatly reduced Offline computational costs. Concerning reliability, a posteriori
error bounds allow a confident exploitation of the rapid predictive power of the RB
approximation and provide an error quantification for each new parameter value μ in
the Online stage.

In turn, error bounds must be rigorous – valid for all N and for all parameter values
in the parameter domain D : non-rigorous error indicators would not ensure reliability.
Secondly, the bounds must be reasonably sharp: an overly conservative error bound
can yield inefficient approximations (N too large) or even dangerous suboptimal en-
gineering results (unnecessary safety margins). In the third place, the bounds must be
very efficient: the Online operation count and storage to compute the RB error bounds
– the marginal average cost – must be independent of Nh (and commensurate with the
cost associated with the RB output prediction).

20.7.1 Some preliminary estimates

The central equation for a posteriori error estimates is the error-residual relationship
(see Sect. 4.6.2). It follows from the problems statements for uh(μ), (20.16), and
uN(μ), (20.30), by introducing the residual r(v;μ) ∈ (V Nh)′

r(v;μ) = f (v;μ)− a(uN(μ),v;μ) ∀ v ∈V Nh , (20.85)

that the error eh(μ) = uh(μ)− uN(μ) ∈V Nh satisfies

a(eh(μ),v;μ) = r(v;μ) ∀ v ∈V Nh . (20.86)

The Riesz representation êh(μ) ∈V Nh of r(·;μ) (see Theorem 2.1) satisfies

(êh(μ),v)V = r(v;μ) ∀ v ∈V Nh . (20.87)

From the error residual equation (20.86) we obtain

a(eh(μ),v;μ) = (êh(μ),v)V ∀ v ∈V Nh (20.88)
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and therefore

‖r( · ;μ)‖(V Nh )′ = sup
v∈V Nh

r(v;μ)
‖v‖V

= ‖êh(μ)‖V . (20.89)

Computing the dual norm of the residual through the Riesz representation theorem
allows to develop a suitable Offline-Online procedure also for the evaluation of the
error bounds, as remarked below.

We recall the definition of the exact and FE coercivity constants, respectively
(20.5) and (20.20). Moreover, we shall require a (parametric) lower bound α

Nh
LB:

D → R to the (parametric) coercivity constant αNh(μ),

0 < α
Nh
LB(μ)≤ αNh(μ) ∀μ ∈D .

20.7.2 Error bounds

We define error estimators for the energy norm and the output respectively as

Δ en
N (μ) =

‖êh(μ)‖V

(α
Nh
LB(μ))

1/2
and Δ s

N(μ) =
‖êh(μ)‖2

V

α
Nh
LB(μ)

. (20.90)

We next introduce the effectivity factors associated with these error estimators as

ηen
N (μ) =

Δ en
N (μ)

‖uh(μ)− uN(μ)‖μ and ηs
N(μ) =

Δ s
N(μ)

(sh(μ)− sN(μ))
,

respectively. To achieve rigour, we shall insist on effectivity factors≥ 1; for sharpness,
we desire them to be as close to one as possible. It has been demonstrated [RHP08,
PR07] that

Property 20.3. For any N = 1, . . . ,Nmax, the effectivity factors satisfy

1 ≤ ηen
N (μ)≤

√
γ(μ)

α
Nh
LB(μ)

∀μ ∈D , (20.91)

1 ≤ ηs
N(μ)≤

γ(μ)

α
Nh
LB(μ)

∀μ ∈D . (20.92)

Proof. It follows directly from (20.88) for v = eh(μ), and from the Cauchy-Schwarz
inequality that

‖eh(μ)‖2
μ ≤ ‖êh(μ)‖V ‖eh(μ)‖V . (20.93)

But (αNh(μ))
1
2 ‖eh(μ)‖V ≤ (a(eh(μ),eh(μ);μ))

1
2 = ‖eh(μ)‖μ , thus from (20.93) we

obtain ‖eh(μ)‖μ ≤ Δ en
N (μ) or ηen

N (μ) ≥ 1. We consider (20.88) again – but now for
v = êh(μ) – and the Cauchy-Schwarz inequality to obtain

‖êh(μ)‖2
V ≤ ‖êh(μ)‖μ ‖eh(μ)‖μ . (20.94)
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Thanks to continuity, ‖êh(μ)‖μ ≤ (γ(μ))
1
2 ‖êh(μ)‖V , hence from (20.94)

Δ en
N (μ) = (α

Nh
LB(μ))

− 1
2 ‖êh(μ)‖V ≤ (α

Nh
LB(μ))

− 1
2 (γ(μ))

1
2 ‖eh(μ)‖μ ,

that is ηen
N (μ) ≤

√
γ(μ)/α

Nh
LB(μ). Next, from (20.33) we have sh(μ)− sN(μ) =

‖eh(μ)‖2
μ , and hence since Δ s

N(μ) = (Δ en
N (μ))2:

ηs
N(μ) =

Δ s
N(μ)

sh(μ)− sN(μ)
=

(Δ en
N (μ))2

‖e(μ)‖2
μ

= (ηen
N (μ))2 ; (20.95)

in the end, (20.92) follows directly from (20.91) and (20.95). �
A similar result can be obtained for the a posteriori error bound in the V norm,

which is defined as

ΔN(μ) =
‖êh(μ)‖V

α
Nh
LB(μ)

. (20.96)

In fact, by following the same argument as in Proposition 20.3, it can be shown that:

Property 20.4. For any N = 1, . . . ,Nmax,

1≤ ΔN(μ)

‖uh(μ)− uN(μ)‖V
≤ γ(μ)

α
Nh
LB(μ)

∀μ ∈D . (20.97)

The effectivity upper bounds, (20.91), (20.92) and (20.97), are independent of N,
and hence stable with respect to RB refinement.

Finally, we remark that the error bounds of the previous section are of little utility
without an accompanying Offline-Online computational approach. The computation-
ally crucial component of all the error bounds of the previous section is ‖êh(μ)‖V ,
the dual norm of the residual (20.85), whose expression can be expanded accord-
ing to (20.35) and (20.6), thus yielding the possibility to pre-compute Offline the
parameter-independent quantities and then evaluate, for any new value of μ , just some
parameter-dependent quantities. The interested reader can find further details for in-
stance in [QRM11, RHP08].

An approach to the construction of lower bounds for the coercivity constant –
which is a generalized minimum eigenvalue – is the Successive Constraint Method
(SCM) introduced in [HRSP07]. The method – based on an Offline-Online strategy
– reduces the Online (real-time) calculation to a small linear program for which the
operation count is independent of Nh. See for instance [RHP08] for more details.

20.8 Non-compliant problems

For the sake of simplicity, we addressed in Sect. 20.7 the RB approximation of affinely
parametrized coercive problems in the compliant case. We now consider the elliptic
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case and the more general non-compliant problem: given μ ∈D , find

s(μ) = J(u(μ)) , (20.98)

where u(μ) ∈V satisfies

a(u(μ),v;μ) = f (v;μ) ∀ v ∈V . (20.99)

We assume that a is coercive and continuous but not necessarily symmetric; we
further suppose that both J and f are bounded linear functionals 8, but we no longer
require J = f . Moreover, we assume that both a and f are affine, see (20.6)-(20.7).

Following the methodology (and the notation) of Sect. 20.7, we can readily find
an a posteriori error bound for sN(μ): by standard arguments we obtain

|sh(μ)− sN(μ)| ≤ ‖J‖(VNh )′Δ
en
N (μ),

where ‖uh(μ)− uN(μ)‖μ ≤ Δ en
N (μ) and Δ en

N (μ) is defined in (20.90); see [RHP08,
PR07] for further details. We denote this method “primal-only”. Although for many
outputs primal-only is perhaps the best approach (each additional output, and associ-
ated error bound, is a simple “add-on”), this approach has two drawbacks:

1. we loose the “quadratic convergence” effect (20.33) for outputs (unless J = f and
a is symmetric);

2. the effectivity factor Δ s
N(μ)/|s(μ)− sN(μ)| may be unbounded: if J = f then we

know, from (20.33), that |sh(μ)− sN(μ)| ∼ ‖êh(μ)‖2
V and hence

Δ s
N(μ)

|sh(μ)− sN(μ)| ∼
1

‖êh(μ)‖V
→ ∞ as N → ∞,

i.e. the effectivity of the output error bound Δ s
N defined in (20.90) tends to infinity

as (N → ∞ and) uN(μ)→ uh(μ).
We may expect a similar behaviour for any J “close" to f : the problem is that
Δ s

N(μ) does not reflect the contribution of the test space to the convergence of the
output.

The introduction of RB primal-dual approximation allows to overcome the previ-
ous issues – and ensure a stable limit as N → ∞. Let us introduce the dual problem
associated to J, that reads as follows: find ψ(μ) ∈V such that

a(v,ψ(μ);μ) =−J(v) ∀ v ∈V ;

ψ is called the adjoint or dual field. Let us define the RB spaces for the primal and the
dual problem, respectively:

VNpr = span
{

uh(μ
k,pr),1≤ k ≤ Npr

}
, 1≤ Npr ≤ Npr,max;

VNdu = span
{
Ψh(μ

k,du),1≤ k ≤ Ndu
}
, 1≤ Ndu ≤ Ndu,max.

8 Typical output functionals correspond to the “integral” of the field u(μ) over an area or line
(in particular, boundary segment) in Ω . However, by appropriate lifting techniques, “inte-
grals” of the flux over boundary segments can also be considered.
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For our purposes a single FE space suffices for both the primal and dual, even if
in the practice the FE primal and dual spaces may be different. The resulting RB
approximations uNpr(μ) ∈VNpr ,ΨNdu(μ) ∈VNdu solve

a(uNpr(μ),v;μ) = f (v;μ) ∀v ∈VNpr ,

a(v,ΨNdu(μ);μ) =−J(v) ∀v ∈VNdu ;

then, the RB output can be evaluated as

sNpr ,Ndu(μ) = J(uNpr)− rpr(ΨNdu ;μ)

where
rpr(v;μ) = f (v;μ)− a(uNpr ,v;μ),

rdu(v;μ) =−J(v)− a(v,ΨNdu;μ)

are the primal and the dual residuals, respectively. The term rpr(ΨNdu ;μ) allows to
obtain a better convergence to the high-fidelity output sh(μ), as remarked in [PG00].

Thus, the output error bound takes the following form:

Δ s
N(μ) =

‖rpr( · ;μ)‖(V Nh )′

(α
Nh
LB(μ))

1/2

‖rdu( · ;μ)‖(V Nh )′

(α
Nh
LB(μ))

1/2
(20.100)

in the non-compliant case, so that we are able to recover the “quadratic” output effect.
Note that the Offline-Online procedure is very similar to the “primal-only” case, but
now we need to do everything both for primal and dual; moreover, we need to evaluate
both a primal and a dual residual for the a posteriori error bounds.

20.9 Parametrized geometries and operators

In this section we introduce the general class of scalar problems that fall under the
abstract formulation of Sect. 20.1, by extending the simple examples described in
Sect. 20.1.1 to the case where the parameters might describe:

• physical properties (material coefficients, source terms, boundary data), possibly
varying in different subregions of the computational domain;

• the geometrical configuration of the computational domain.

By following an increasing order of complexity, we first discuss the case of
parametrized physical properties; then we describe a generalization to take into ac-
count variations of physical properties over different subregions; finally, we present
the more difficult case dealing with parametrized geometries.

For the sake of exposition, let us distinguish between dp physical and dg geo-
metrical parameter components: we denote the former by μ p and the latter by μg,

respectively, so that μ = (μ p,μg) ∈ Dp×Dg =: D and Dp ⊂ Rdp , Dg ⊂ Rdg , with
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p = dp +dg. We focus on the following advection-diffusion-reaction problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∂

∂xi

(
νi j(x;μ p)

∂

∂x j
u(μ)

)
+

(
bi(x;μ p)

∂

∂xi

)
u(μ)

+γ(x;μ p)u(μ) = F(x;μ p), x ∈Ω(μg)

u(μ) = 0, x ∈ ΓD

νi j(x;μ p)
∂

∂x j
u(μ) = gN(x;μ p), x ∈ ΓN ,

where we suppose that all coefficients (e.g. thermal conductivity, elastic coefficients,
and so on) may depend on spatial coordinates and also a vector μ p of physical pa-

rameters. The domain Ω(μg) ⊂ Rd , d = 1,2,3, may depend instead on a vector μg
of geometrical parameters. For the sake of simplicity, in the following we consider
problems defined over two-dimensional domains (d = 2).

Here we assume that only Neumann data imposed on ΓN are affected by the phys-
ical parameters, whereas on ΓD = ∂Ω(μg) \ΓN we impose homogeneous Dirichlet
conditions. Parametrized Dirichlet data, although undergoing a similar treatment, in-
volve suitable (possibly parametrized) lifting functions.

20.9.1 Physical parameters

In the simplest case, input parameters μ = μ p represent physical properties, whereas
the computational domainΩ is parameter-independent. Moreover, we assume that the
parametric dependence of the physical coefficients does not change on the computa-
tional domain. The situation where the domain is split in subregions associated with
different physical properties will be covered later on.

The bilinear form and the linear form appearing in (20.2) are given in this case by

a(w,v;μ p) =
∫
Ω

∂w

∂xi
νi j(x;μ p)

∂v

∂x j
dΩ +

∫
Ω

bi(x;μ p)
∂w

∂xi
vdΩ +

∫
Ω
γ(x;μ p)wvdΩ ,

(20.101)

f (v;μ) =
∫
Ω

F(x;μ p)vdΩ +
∫
ΓN

gN(x;μ p)vdΓ , (20.102)

where V = H1
ΓD
(Ω); summation over repeated indices is understood.

In order to ensure an affine expansion of (20.101), we assume that μ p and x can
be treated as separate variables, i.e. each coefficient shall be expressed as a product of
two functions:

νi j(x;μ p) = Ki j(μ p)ψi j(x), 1≤ i, j ≤ 2 , (20.103)

bi(x;μ p) = Ki3(μ p)ψi3(x), i = 1,2 , (20.104)

γ(x;μ p) = K33(μ p)ψ33(x). (20.105)
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In this way, by taking the terms depending on the parameters μ p out of the integrals,
we can rewrite (20.101) as follows:

a(w,v;μ) =
3

∑
i, j=1

Ki j(μ p)

∫
Ω

[
∂w

∂x1

∂w

∂x2
w

]
ψi j(x)

⎡⎢⎢⎢⎢⎣
∂v

∂x1

∂v

∂x2
v

⎤⎥⎥⎥⎥⎦dΩ ,

(20.106)

where x = (x1,x2) denotes a point inΩ . Here K : Dp →R3×3 andΨ : Ω →R3×3 are
given matrices – of components Ki j(μ p) and ψi j(x), respectively – which are required
to be symmetric and positive definite for any x ∈ Ω , μ p ∈ Dp, in order to ensure the
coercivity of the bilinear form.

In particular, the upper 2×2 principal submatrices of K andΨ give the usual con-
ductivity/diffusivity tensor; the (3,3) term allows to consider a reaction (or mass)
term. The (3,1),(3,2) (and (1,3),(2,3)) elements of K and Ψ are related to first
derivative (or convective) terms; in particular, in order to recover (20.101) we assume
that K31(μ p) = K32(μ p) = 0.

For the sake of simplicity, in the following we assume that gN = 0. We remark
that, in the case of purely physical parametrization, the affinity assumption (20.6) is
easy to fulfill; see Exercise 3.

Let us now consider the case in which the domain

Ω̄ =

Kreg⋃
k=1

Rk

is split into regions9 Rk, each associated with different physical properties. Instead of
(20.101) we might therefore have

a(w,v;μ p) =
Kreg

∑
k=1

∫
Rk

∂w

∂xi
νk

i j(x;μ p)
∂v

∂x j
dΩ

+
Kreg

∑
k=1

∫
Rk

bk
i (x;μ p)

∂w

∂xi
vdΩ +

Kreg

∑
k=1

∫
Rk

γk(x;μ p)wvdΩ ,

(20.107)
with

νk
i j(x;μ p) = Kk

i j(μ p)ψ
k
i j(x), 1≤ i, j ≤ 2, (20.108)

bk
i (x;μ p) = Kk

i3(μ p)ψi3(x), i = 1,2, γk(x;μ p) = Kk
33(μ p)ψ

k
33(x), (20.109)

9 We make a distinction between (i) a partition of the computational domain accounting for
different physical properties over different subregions and (ii) a domain decomposition in dif-
ferent subdomains for the sake of geometrical representation, as shown in subsection 20.9.2.
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for any 1≤ k ≤ Kreg, and therefore

a(w,v;μ) =
Kreg

∑
k=1

3

∑
i, j=1

Kk
i j(μ p)

∫
Rk

[
∂w

∂x1

∂w

∂x2
w

]
ψk

i j(x)

⎡⎢⎢⎢⎢⎣
∂v

∂x1

∂v

∂x2

v

⎤⎥⎥⎥⎥⎦dΩ ,

(20.110)

where, for any k = 1, . . . ,Kreg, Kk : Dp →R3×3 andΨ k : Ω →R3×3 are given matri-
ces. By proceeding as we did before, it is possible to recover the affine expansion also
in this case.

20.9.2 Geometrical parameters

We now turn to the more difficult situation of geometrical parametrization. In this case,
the original parametrized problem defined over a parametrized domain Ωo(μg) needs
to be transformed into an equivalent problem defined over a parameter-independent
domain Ω . This is a requirement of the RB method: if we wish to consider linear
combinations of pre-computed solutions (the snapshots), the latter must refer to a
common spatial configuration.

Thus, to permit geometric variation, our parameter-independent reference domain
Ω must be regarded as the pre-image of Ωo(μg), the parameter-dependent “actual”
or “original” domain of interest. The geometric transformation will yield variable
(parameter-dependent) coefficients of linear and bilinear forms in the reference do-
main that, under suitable hypotheses to be discussed below, will take the requisite
affine form (20.6).

We shall first define an “original” problem (subscript o), over the parameter-
dependent domain Ωo = Ωo(μg); we denote Vo a suitable Hilbert space defined
on Ωo(μg). We shall also take into account possible physical parameters, so that

μ = (μ p,μg) ∈D = Dp×Dg and Dp ⊂ Rdp , Dg ⊂ Rdg , with p = dp + dg.
In the elliptic case, the original problem reads as follows: given μ ∈D , evaluate

so(μ) = Jo(uo(μ)) ,

where uo(μ) ∈Vo satisfies

ao(uo(μ),v;μ) = Fo(v;μ) ∀v ∈Vo .

The reference domain Ω is thus related to the original domain Ωo(μg) through a
parametric mapping T (·;μg), such thatΩo(μg) = T (Ω ;μg); in particular, we may set

Ω =Ωo(μ
re f
g ), for a selected parameter value μ re f

g ∈Dg. In order to build a parametric
mapping related to geometrical properties, we shall introduce a conforming domain
decomposition of Ωo(μg),

Ω o(μg) =
Kdom⋃
k=1

Ω
k
o(μg), (20.111)
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consisting of mutually disjoint open subdomainsΩ k
o(μg),

Ω k
o(μg)∩Ω k′

o (μg) = /0, 1≤ k < k′ ≤ Kdom.

If related to geometrical properties used as input parameters (e.g. lengths, thicknesses,
diameters or angles) parametric mappings can be defined in a quite intuitive fashion.
We point out that, in the case of a combined physical/geometrical parametrization,
the domain decomposition (20.111) can be used not only for algorithmic purposes, to
ensure well-behaved mappings, but also to represent different physical coefficients, as
in the case described in Sect. 20.9.1.

Hence, the original and reference subdomains are related under a map T (·;μg) :

Ω k →Ω k
o(μg), 1≤ k ≤ Kdom,

Ω k
o(μg) = T k(Ω k;μg), 1≤ k ≤ Kdom; (20.112)

these maps must be individually bijective, collectively continuous, and such that
T k(x;μg) = T k′(x;μg) ∀ x ∈ Ω k ∩Ω k′ , for 1 ≤ k < k′ ≤ Kdom. Here we treat the

simpler affine case, where the transformation is given, for any μ ∈D , x ∈Ω k, by

T k
i (x,μg) = ck

i (μg)+
d

∑
j=1

Gk
i j(μg)x j, 1≤ i≤ d (20.113)

for given translation vectors ck : Dg → Rd and linear transformation matrices Gk :
Dg→Rd×d , also known as “mapping coefficients”. The linear transformation matrices
can express rotation, scaling and/or shear. We can then define the associated Jacobians

Jk(μg) = |det(Gk(μg))|, 1≤ k ≤ Kdom . (20.114)

By assuming that the geometrical transformation is affine (i.e. given by (20.113)) the
Jacobian is constant in space over each subdomain. We further define, for any μg ∈Dg,

Dk(μg) = (Gk(μg))
−1, 1≤ k ≤ Kdom ; (20.115)

this matrix shall prove convenient in subsequent transformations involving derivatives.
Under the assumption that the mapping is invertible, we know that the Jacobian J(μg)
of (20.114) is strictly positive, and that the derivative transformation matrix, D(μg) =

(G(μg))
−1 of (20.115), exists.

We recall that, in two dimensions, an affine transformation maps straight lines
to straight lines, parallel lines to parallel lines and indeed parallel segments of equal
length to parallel segments of equal length: it follows that a triangle maps to a triangle,
a parallelogram to a parallelogram. We also recall that an affine transformation maps
ellipses to ellipses. These properties are crucial for the description of domains rele-
vant in engineering contexts, so that piecewise affine mappings, based on a domain
decomposition in standard, elliptical, and curvy triangles [RHP08], can be employed
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to treat a much larger class of geometric variations, still satisfying the affinity assump-
tion crucial for reducing the computational complexity. See for instance [RHP08] for
further details.

Let us now place some conditions on ao and Fo so to ensure, combined with the
affine geometry assumption, an affine expansion of the bilinear form. Similarly to what
we have done in Sect. 20.9.1 in the case of physical parameters, we require ao(·, ·;μ):
Vo×Vo →R to be expressed as

ao(w,v;μ) =
Kdom

∑
k=1

∫
Ω k

o (μg)

[
∂w

∂xo1

∂w

∂xo2
w

]
K

k
o,i j(xo;μ p)

⎡⎢⎢⎢⎢⎣
∂v

∂xo1
∂v

∂xo2
v

⎤⎥⎥⎥⎥⎦dΩo ,

(20.116)

where xo = (xo1,xo2) denotes a point in Ωo(μg). Here, for 1≤ k ≤ Kdom, K k
o : Ω k

o ×
Dp→R3×3 are given matrices, whose components depend on both spatial coordinates
and physical parameters. In case the parametrization is concerned with both physical
and geometrical elements, the matrices K k

o encode the properties related to the for-
mer; the meaning of the terms is the same as in Sect. 20.9.1.

Similarly, we require that Fo(·;μ) : Vo →R can be expressed as

Fo(v;μ) =
Kdom

∑
k=1

∫
Ω k

o (μg)
F

k
o (xo;μ p)vdΩo ,

where, for 1≤ k≤Kdom, F k
o :Ω k

o×Dp →R are given functions, which might encode
possible physical parametrizations related to source terms and/or boundary data.

We now transform the problem given on the original domain, into an equivalent
problem over the reference domain: given μ ∈D , evaluate

s(μ) = F(u(μ)) ,

where u(μ) ∈V satisfies

a(u(μ),v;μ) = F(v;μ) ∀v ∈V.

We may then identify s(μ) = so(μ) and u(μ) = uo (μ) ◦ T (·;μg), while

a(w,v;μ) =
Kdom

∑
k=1

∫
Ω k

[
∂w

∂x1

∂w

∂x2
w

]
K

k
i j (x;μ)

⎡⎢⎢⎢⎢⎣
∂v

∂x1
∂v

∂x2
v

⎤⎥⎥⎥⎥⎦dΩ , (20.117)

is the transformed bilinear form. Here the K k : Ω k×D → R3×3, 1 ≤ k ≤ Kdom, are
symmetric positive definite matrices, whose components depend both on the spatial
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coordinates x = (x1,x2) and the parameters μ = (μ p,μg) ∈D

K
k(x;μ) = Jk(μg)G

k(μg)K
k

o (T k(x;μg);μ p)(G
k(μg))

T , (20.118)

for 1≤ k≤ Kdom. The matrices G k: Dg → R3×3, 1≤ k ≤ Kdom, are given by

G
k(μ) =

⎛⎝ Dk(μg)
0
0

0 0 1

⎞⎠ ; (20.119)

Jk(μg) and Dk(μg),1≤ k ≤ Kdom, are given by (20.114) and (20.115), respectively.

Similarly, the new linear form can be expressed as

F(v;μ) =
Kdom

∑
k=1

∫
Ω k

F
k(x;μ)vdΩ ,

where F k: Ω k×D → R, 1≤ k ≤ Kdom, is given by

F
k(x;μ) = Jk(μg)F

k
o (T

k(x;μg);μ p), 1≤ k ≤ Kdom .

We point out that, compared to a purely physical parametrization (20.110), a ge-
ometrical parametrization yields a similar but more involved structure of the tensor
appearing in the bilinear form. In order to recover the affine expansion (20.6) for the
bilinear form a also in this case, we can proceed as in the case of physical parametriza-
tions, once the original problem is read on the reference domain Ω . In particular, we
require that the geometrical mapping T (·;μg) is affine on each subdomainΩ k, i.e. it is
of the form (20.113), and that the parametrized physical coefficients depend affinely
on the physical parameters μ p, i.e. they can be expressed as in (20.108)–(20.109).
Under these conditions, the bilinear form satisfies the affine parametric dependence
(20.6); F undergoes a similar treatment. An example taking into account both geomet-
rical and physical parameters will be explained thoroughly at the end of the chapter,
see Sect. 20.10.

We close by noting that the conditions we provide are sufficient but not necessary.
For example, we can permit affine polynomial dependence on xo in both K k

o (xo;μ)
and F k

o (xo;μ) and still ensure an affine development under the form (20.6); further-
more, in the absence of geometric variation, K k

o (xo;μ) and F k
o (xo;μ) can take on

any “separable” form in xo,μ . However, the affine expansion (20.6) is by no means
completely general: for more involved data parametric dependencies, non-affine
techniques [BNMP04, GMNP07, Roz09] must be invoked.
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20.10 A working example: a diffusion-convection problem

In order to illustrate the previous concepts on a real example, in this section10 we
discuss a steady heat diffusion/convection problem. Precisely, we consider heat con-
vection combined with heat diffusion in a straight duct, whose walls can be kept at
uniform temperature insulated, or characterized by heat exchange.

This example describes a class of heat transfer problems in fluidic devices with a
versatile configuration. In particular, the Péclet number, as a measure of axial trans-
port velocity field (modelling the physics of the problem), and the length of the non-
insulated portion of the duct, are only two of the possible parameters that may be var-
ied in order to extract average temperatures. Also discontinuities in Neumann bound-
ary conditions (different heat fluxes) and thermal boundary layers are interesting phe-
nomena to be studied.

We consider the physical domain Ωo(μ) shown in Fig. 20.6; all lengths are non-
dimensionalized with respect to a unit length h̃ (dimensional channel width); more-
over, let us denote k̃ the dimensional (thermal) conductivity coefficient for the air
flowing in the duct, ρ̃ its density and c̃p the specific heat capacity under constant pres-
sure. We introduce the (thermal) diffusion coefficient D̃ = k̃/ρ̃ c̃p, as well as the Péclet
number Pe = Ũ h̃/D̃, Ũ being the reference dimensional velocity for the convective
field (see Chap. 12). We consider P = 2 parameters: μ1 is the length of the non-
insulated bottom portion of the duct (unit heat flux), while μ2 represents the Péclet
number itself; the parameter domain is given by D = [1,10]× [0.1,100].

The solution u(μ), defined as the non-dimensional temperature u(μ) = (τ(μ)−
τin)/τin (where τ(μ) is the dimensional temperature, τin is the dimensional tempera-
ture of the air at the inflow and in the first portion of the duct), satisfies the following

Fig. 20.6. Parametrized geometry and domain boundaries

10 Throughout the section, Ωo(μ) denotes the original (physical) domain, whose generic point
is indicated by (x1,x2); for the sake of simplicity, we formulate all problems in the original
domain, but remove the subscripts o. Moreover, twiddle ˜ denotes dimensional quantities,
while its absence signals a non-dimensional quantity.
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steady advection-diffusion problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
μ2
Δu(μ)+ x2

∂

∂x1
u(μ) = 0 in Ωo(μ)

1
μ2

∂u

∂n
(μ) = 0 on Γ1∪Γ3

1
μ2

∂u

∂n
(μ) = 1 on Γ2

u(μ) = 0, on Γ4∪Γ5∪Γ6,

with summation (i, j = 1,2) over repeated indices; hence, we impose the temperature
at the top walls and in the “inflow” zone of the duct (Γ6), while we consider an insu-
lated wall (zero heat flux on Γ1 and Γ3) or heat exchange at a fixed rate (i.e. one on
Γ2) on other boundaries. We note that the forced convection field is given by a linear
velocity profile x2Ũ (Couette-type flow, [Pan05]).

The output of interest is the average temperature of the fluid on the non-insulated
portion of the bottom wall of the duct, given by

s(μ) = Tav(μ) =
1
μ1

∫
Γ2

u(μ). (20.120)

This problem is then mapped to the fixed reference domain Ω and discretized by
the Galerkin FEM with piecewise linear elements; the dimension of the corresponding
space is Nh = 5433. Since we are in a noncompliant case, a further dual problem has to
be solved in order to obtain better output evaluations and corresponding error bounds,
see Sect. 20.8. In particular, we show in Fig. 20.7 the lower bound of the coercivity
constant of the bilinear form associated to our problem.

We plot in Fig. 20.8 the convergence of the greedy algorithm for both the primal
and the dual problem; with a fixed tolerance ε∗tol = 10−2, Npr,max = 21 and Ndu,max = 30
basis functions have been selected, respectively.

In Fig. 20.9 the selected parameter values SNpr for the primal problem and SNdu for
the dual problem are shown; in each case Ξtrain is a uniform random sample of size
ntrain = 1000.

Moreover, in Fig. 20.10 some representative solutions (computed for N = Nmax)
for selected values of parameters are reported.

The thermal boundary layer looks very different in the four cases. In particular,
big variations of the temperature, as well as large gradients along the lower wall – are
remarkable for high Péclet number, when forced convection dominates steady con-
duction; moreover, the standard behaviour of boundary layer width – usually given by
O(1/Pe) – is captured correctly.

In Fig. 20.11 the RB evaluation (for N = Nmax) of the output of interest is reported
as a function of the parameters, as well as the corresponding error bound. As we
can see, for low values of μ2 (Péclet number) the dependence of the output on μ1
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Fig. 20.7. Lower bound of the coercivity constant αNh
LB(μ) as a function of μ

Fig. 20.8. Relative errors maxμ∈Ξtrain(ΔNpr(μ)/‖uNpr (μ)‖X ) and maxμ∈Ξtrain(ΔNdu(μ)/

‖ψNdu(μ)‖X ) as functions of Npr and Ndu for the RB approximations computed during the
greedy procedure, for the primal (left) and the dual (right) problem, respectively. Here Ξtrain is
a uniform random sample of size ntrain = 1000 and the RB tolerance is ε∗tol = 10−2

(geometrical aspect) is rather modest; for high values of μ2, instead, the output shows
a larger variation with respect to μ1. In the same way, for longer/shorter channels the
dependence on the Péclet number is higher/lower.
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Fig. 20.9. Selected parameter values SNpr for the primal (left) and SNdu for the dual (right) in the
parameter space

Fig. 20.10. Representative solutions for μ = (1,0.1), μ = (1,100) (top), μ = (10,0.1), μ =
(10,100) (bottom)

Fig. 20.11. Computed RB output (left) and corresponding error bound (right) as functions of μ
in the parameter space

We conclude by collecting in Table 20.1 all the data relevant to the RB approxi-
mation here considered.

Before closing this chapter, we warn the reader that reduced basis methods and,
more in general, computational reduction techniques, are still a rapidly evolving re-
search area.
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Table 20.1. Numerical details for the test case presented. RB spaces have been built by means
of the greedy procedure, using a tolerance εRB

tol = 10−2 and a uniform RB greedy train sample of
size ntrain = 1000. A comparison of the computational times between the Online RB evaluations
and the corresponding FE simulations is reported. Here to f f line

RB is the time of the Offline RB
construction and storage, tonline

RB is the time of an Online RB computation, while tFE is the time
for an FE computation, once FE matrices are built

Approximation data

Number of parameters P 2
Affine op. components Qa 4
Affine rhs components Q f 1

FE space dim. N 5433
RB primal space dim. Npr

max 21
RB dual space dim. Ndu

max 30

Approximation data

RB construction to f f line
RB (s) 362.8 s

RB evaluation tonline
RB (s) 0.107s

FE evaluation tFE (s) 14.3

Computational speedup S 133
Break-even point QBE 26

In this chapter we have provided a short introduction, pointed out all the essential
ingredients required to set up a reduced basis method, even if only for the simple
case of steady, elliptic, coercive PDEs. In the last decade RB methods and, more in
general, computational reduction techniques, have been applied to several problems
modelled by non-affinely parametrized and/or nonlinear, and/or noncoercive, and/or
time-dependent problems (see e.g. [AF12, AZF12]), such as Stokes [RHM13] and
Navier-Stokes [VP05, QR07] flows, elasticity problems and so on. A recent survey on
these classes of problems, and on other computational reduction techniques, can be
found for instance in [QR13].

Exercises

1. Prove Property 19.1; proceed according to the following steps (for simplicity, we
omit the dependence on μ):
(i) rewrite (19.63) as

(AhVuN ,AhVvN)2 = (fh,AhVvN)2 ∀vN ∈ RN ;

(ii) by using bijection (19.44) and observing that (VvN)
(p) = (vN ,ϕ

p)h, show that

(AhVvN ,zh)2 = a(vN ,zh) ∀vN ∈ RN ,zh ∈ RNh ,

where zh = Ihzh ∈ V Nh , that is, zh(x) = ∑
Nh
r=1 z(r)h ϕr(x) and vN = INvN ∈ VN ,

that is vN(x) = ∑N
k=1 v(k)N ζk(x);

(iii) define yh = yh(vN) = AhVvN ∈ RNh ; then

(fh,AhVvN)2 = (fh,yh(vN))2;
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note that yh(vN) = Ihyh(vN) ∈Vh is such that

(yh(vN),zh)h = (yh(vN),zh)2 = (AhVvN ,zh)2 ∀zh ∈V Nh

and by using (ii), show that yh(vN) satisfies (19.67);
(iv) show that

(fh,yh(vN))2 = ( fh,yh(vN))h = f (yh(vN)),

where fh = Ihfh ∈V Nh , that is fh(x) = ∑
Nh
r=1 f (r)h ϕr(x), and f (r)h = f (ϕr);

(v) finally, recover the following variational form:

a(uN ,yh(vN)) = f (yh(vN)) ∀vN ∈VN .

2. By introducing the Lagrangian function

L(z1, . . . ,zN , λ̃11, . . . , λ̃i j, . . . , λ̃NN) = E(z1, . . . ,zN)+
N

∑
i, j=1

λ̃i j(z
T
i z j− δi j),

and writing the first-order necessary optimality conditions, show that the solution
of problem (20.74) satisfies (20.72) and, in particular,

UTUψi = σ2
i ψi i = 1, . . . ,r.

Moreover, by denoting λi = λ̃ii, show that

λi = σ2
i =

ntrain

∑
j=1

(uT
j ζi)

2.

Furthermore, show that

ntrain

∑
i=1
‖ui−

k

∑
j=1

(uT
i ζ j)ζ j‖2

2 =
ntrain

∑
i=1

r

∑
j=N+1

(uT
i ζ j)

2 =
r

∑
i=N+1

λi,

and thus (20.75).

3. By considering the parametrized bilinear form (20.106)

a(w,v;μ p) = K11(μ p)
∫
Ω
ψ11(x)

∂w

∂x1

∂v

∂x1
dΩ

+K12(μ p)

∫
Ω
ψ12(x)

∂w

∂x1

∂v

∂x2
dΩ + · · ·+K33(μ p)

∫
Ω
ψ33(x)wvdΩ ,

(20.121)
recover the affine expansion (20.6). How many terms (at most) is the affine expan-
sion made of? Now do the same but for the a domain split into Kreg regions, each
associated with different physical properties.
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4. By referring to the problem addressed in Sect. 20.1.1 (the thermal block), consider
an example of anisotropic conductivity. The associated bilinear form on each block
reads

aq(w,v;μ) =
2

∑
i, j=1

μq
xix j

∫
Rq

∂w

∂xi

∂v

∂x j
dΩ (20.122)

where {μq
xix j , i, j = 1,2} represent the conductivities modelling an anisotropic heat

transfer in block Rq. Provide a weak formulation of the parametrized problem;
express a(w,v;μ) by an affine decomposition like (20.13) and indicate the total
number of parameters P and the quantity Qa for the cases a) B1 = B2 = 3, b) B1 =
B2 = 5 and c) B1 = 3 and B2 = 5.

5. a) Consider a geometrical parametrization of the thermal block of Sect. 20.1.1
based on the formulation already provided in the text with P = 8 physical pa-
rameters (i.e. μ s for s = 1, . . . ,8), representing isotropic heat transfer in each
sub-block. Consider the case of 3× 3 sub-blocks with additional Pg = 6 geo-
metrical parameters (i.e. μ i

x1
and μ i

x2
for i = 1,2,3). The length of the thermal

block is μ1
x1
+ μ2

x1
+ μ3

x1
= 1 in the x1-direction and μ1

x2
+ μ2

x2
+ μ3

x2
= 1 in the

x2-direction; in this way the first sub-block R1 (see Fig. 20.1) has dimension
μ1

x1
× μ1

x2
, while the sub-block R9 has dimension μ3

x1
× μ3

x2
.

Write the complete formulation for a(w,v;μ) in the form given by (20.13) and
indicate the number Qa of forms aq(w,v;μ). Then report the complete formula-
tion for all parameter-dependent functionsΘ q(μ), in terms of physical param-
eters (i.e. μ s for s = 1, . . . ,8) and geometrical parameters (i.e. μ i

x1
and μ i

x2
for

i = 1,2,3).
b) Propose a range of variation for each geometrical parameter by respecting the

given constraints (i.e. μ1
x1
+ μ2

x1
+ μ3

x1
= 1 and μ1

x2
+ μ2

x2
+ μ3

x2
= 1) and the

consistency of the thermal block configuration, and by avoiding a geometrical
degeneration of some elements Rq.

6. a) Consider the advection-diffusion example of Sect. 20.10 and write the weak
formulation of problem (20.120), defined on the original domain.

b) Propose a suitable domain decomposition ofΩ and define a set of affine maps in
order to describe the geometric deformation on each subdomain, by considering
μ ref = (1,1), which in turn defines the reference domain Ω = Ωo(μ ref). Then
write the corresponding weak formulation on the reference domainΩ .

c) Characterize the expression of the a posteriori estimate Δ en
N (μ) for the error

(in the energy norm) on the solution ‖uh(μ)− uN(μ)‖μ and the expression of
the a posteriori estimate Δ s

N(μ) on the output |sh(μ)− sN(μ)|, s(μ) being the
quantity defined in (20.120).

7. a) Consider the steady Stokes problem of Sect. 16.2 (eq.(16.12)) and the lid driven
cavity flow of Sect. 16.6. Take as possible geometrical parametrization for the
cavity the aspect ratio μ = L/D, where L is the length and D the height of
the cavity, respectively. Write the parametrization and weak formulation of the
problem in the reference domain.
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b) The reduced basis approximation spaces for a Stokes problem are given
by VN,u = {uh(μ

n),σh(μ
n),1 ≤ n ≤ N} ⊂ V Nh

u for the velocity and VN,p =

{ph(μ
n),1 ≤ n≤ N} ⊂V Nh

p for the pressure, where, for N selected μn, uh(μ
n)

and ph(μ
n) represent the finite elements solutions for velocity and pressure,

respectively, and σh(μ
n) ∈ V Nh

u is the solution of an auxiliary problem, called
supremizer problem, which reads in the original domain∫

Ωo

∇σh ·∇vdΩ =

∫
Ωo

ph(μ
n)div(v)dΩ ∀v ∈V Nh

u . (20.123)

The enrichment of the velocity space by the supremizer guarantees the stability
of the RB approximation and the fulfillment of an equivalent inf-sup condition
(see [RV07, RHM13]).
Write the reduced basis formulation for the Stokes problem; observe that the
algebraic system obtained from the RB Galerkin projection features a block
structure. Observe that this time the matrices are full, in contrast to what hap-
pens with the finite element method.

c) Do the same exercise considering the steady version of the Navier-Stokes equa-
tions (Sect. 16.1) by including also the affine transformation and the subse-
quent parametrization on the trilinear convective term (Sect. 16.7) c(w,z,v;μ),
as considered, for example, in [VP05, QR07].
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