MS&A — Modeling, Simulation and Applications 16

Alfio Quarteroni

Numerical
Models

for Differential
Problems

Third Edition
@ Springer

MS&A

Volume 16

Editor-in-Chief

A. Quarteroni

Series Editors

T. Hou

C. Le Bris
A.T. Patera
E. Zuazua

More information about this series at http://www.springer.com/series/8377

http://www.springer.com/series/8377

Alfio Quarteroni

Numerical Models
for Differential Problems

Third Edition

@ Springer

Alfio Quarteroni

Ecole Polytechnique Fédérale (EPFL)
Lausanne, Switzerland

and Politecnico di Milano

Milan, Italy

ISSN 2037-5255 ISSN 2037-5263 (electronic)
MS&A — Modeling, Simulation & Applications

ISBN 978-3-319-49315-2 ISBN 978-3-319-49316-9 (eBook)

DOI 10.1007/978-3-319-49316-9
Library of Congress Control Number: 2017948172

© Springer International Publishing AG 2009, 2014, 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Cover illustration: The picture on the cover displays the approximation of an eigenfunction of the Laplace
operator obtained by Paola Gervasio using the Spectral Element Method.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface to the second edition

Differential equations (DEs) are the foundation on which many mathematical models for real-
life applications are built. These equations can seldom be solved in ‘closed’ form: in fact, the
exact solution can rarely be characterized through explicit, and easily computable, mathematical
formulae. Almost invariably one has to resort to appropriate numerical methods, whose scope
is the approximation (or discretization) of the exact differential model and, hence, of the exact
solution.

This is the second edition of a book that first appeared in 2009. It presents in a compre-
hensive and self-contained way some of the most successful numerical methods for handling
DEzs, for their analysis and their application to classes of problems that typically show up in the
applications.

Although we mostly deal with partial differential equations (PDEs), both for steady prob-
lems (in multiple space dimensions) and time-dependent problems (with one or several space
variables), part of the material is specifically devoted to ordinary differential equations (ODEs)
for one-dimensional boundary-value problems, especially when the discussion is interesting in
itself or relevant to the PDE case.

The primary concern is on the finite-element (FE) method, which is the most popular dis-
cretization technique for engineering design and analysis. We also address other techniques, al-
beit to a lesser extent, such as finite differences (FD), finite volumes (FV), and spectral methods,
including further ad-hoc methods for specific types of problems. The comparative assessment
of the performance of different methods is discussed, especially when it sheds light on their
mutual interplay.

We also introduce and analyze numerical strategies aimed at reducing the computational
complexity of differential problems: these include operator-splitting and fractional-step meth-
ods for time discretization, preconditioning, techniques for grid adaptivity, domain decomposi-
tion (DD) methods for parallel computing, and reduced-basis (RB) methods for solving para-
metrized PDEs efficiently.

Besides the classical elliptic, parabolic and hyperbolic linear equations, we treat more in-
volved model problems that arise in a host of applicative fields: linear and nonlinear conserva-
tion laws, advection-diffusion equations with dominating advection, Navier-Stokes equations,
saddle-point problems and optimal-control problems.

Here is the contents’ summary of the various chapters.

vi Preface

Chapter 1 briefly surveys PDEs and their classification, while Chapter 2 introduces the
main notions and theoretical results of functional analysis that are extensively used throughout
the book.

In Chapter 3 we illustrate boundary-value problems for elliptic equations (in one and sev-
eral dimensions), present their weak or variational formulation, treat boundary conditions and
analyze well-posedness. Several examples of physical interest are introduced.

The book’s first cornerstone is Chapter 4, where we formulate Galerkin’s method for the
numerical discretization of elliptic boundary-value problems and analyze it in an abstract func-
tional setting. We then introduce the Galerkin FE method, first in one dimension, for the reader’s
convenience, and then in several dimensions. We construct FE spaces and FE interpolation
operators, prove stability and convergence results and derive several kinds of error estimates.
Eventually, we present grid-adaptive procedures based on either a priori or a posteriori error
estimates.

The numerical approximation of parabolic problems is explained in Chapter 5: we begin
with semi-discrete (continuous in time) Galerkin approximations, and then consider fully-discrete
approximations based on FD schemes for time discretization. For both approaches stability and
convergence are proven.

Chapters 6, 7 and 8 are devoted to the algorithmic features and the practical implementation
of FE methods. More specifically, Chapter 6 illustrates the main techniques for grid generation,
Chapter 7 surveys the basic algorithms for the solution of ill-conditioned linear algebraic sys-
tems that arise from the approximation of PDEs, and Chapter 8 presents the main operational
phases of a FE code, together with a complete working example.

The basic principles underlying finite-volume methods for the approximation of diffusion-
transport-reaction equations are discussed in Chapter 9. FV methods are commonly used in
computational fluid dynamics owing to their intrinsic, built-in conservation properties.

Chapter 10 addresses the multi-faceted aspects of spectral methods (Galerkin, collocation,
and the spectral-element method), analyzing thoroughly the reasons for their superior accuracy
properties.

Galerkin discretization techniques relying on discontinuous polynomial subspaces are the
subject of Chapter 12. We present, more specifically, the discontinuous Galerkin (DG) method
and the mortar method, together with their use in the context of finite elements or spectral
elements.

Chapter 13 focuses on singularly perturbed elliptic boundary-value problems, in partic-
ular diffusion-transport equations and diffusion-reaction equations, with small diffusion. The
exact solutions to this type of problems can exhibit steep gradients in tiny subregions of the
computational domains, the so-called internal or boundary layers. A great deal of attention is
paid to stabilization techniques meant to prevent the on-rise of oscillatory numerical solutions.
Upwinding techniques are discussed for FD approximations, and their analogy with FE with ar-
tificial diffusion is analyzed. We introduce and discuss other stabilization approaches in the FE
context, as well, which lead to the sub-grid generalized Galerkin methods, the Petrov-Galerkin
methods and Galerkin’s Least-Squares method.

The ensuing three chapters form a thematic unit focusing on the approximation of first-order
hyperbolic equations. Chapter 14 addresses classical FD methods. Stability is investigated us-
ing both the energy method and the Von Neumann analysis. Using the latter we also analyze the
properties of dissipation and dispersion featured by a numerical scheme. Chapter 15 is devoted
to spatial approximation by FE methods, including the DG methods and spectral methods. Spe-
cial emphasis is put on characteristic compatibility conditions for the boundary treatment of
hyperbolic systems. A very quick overview of the numerical approximation of nonlinear con-

Preface vii

servation laws is found in Chapter 16. Due to the relevance of this particular topic the interested
reader is advised to consult the specific monographs mentioned in the references.

In Chapter 17 we discuss the Navier-Stokes equations for incompressible flows, plus their
numerical approximation by FE, FV and spectral methods. A general stability and convergence
theory is developed for spatial approximation of saddle-point problems, which comprises strate-
gies for stabilization. Next we propose and analyze a number of time-discretization approaches,
among which finite differences, characteristic methods, fractional-step methods and algebraic
factorization techniques. Special attention is devoted to the numerical treatment of interfaces in
the case of multiphase flows.

Chapter 18 discusses the issue of optimal control for elliptic PDEs. The problem is first for-
mulated at the continuous level, where conditions of optimality are obtained using two different
methods. Then we address the interplay between optimization and numerical approximation.
We present several examples, some of them elementary in character, others involving physical
processes of applicative relevance.

Chapter 19 regards domain-decomposition methods. These techniques are specifically de-
vised for parallel computing and for the treatment of multiphysics’ PDE problems. The families
of Schwarz methods (with overlapping subdomains) and Schur methods (with disjoint subdo-
mains) are illustrated, and their convergence properties of optimality (grid invariance) and scal-
ability (subdomain-size invariance) studied. Several examples of domain-decomposition pre-
conditioners are provided and tested numerically.

Finally, in Chapter 20 we introduce the reduced-basis (RB) method for the efficient solution
of PDEs. RB methods allow for the rapid and reliable evaluation of input/output relationships
in which the output is expressed as a functional of a field variable that is the solution of a
parametrized PDE. Parametrized PDEs model several processes relevant in applications such as
steady and unsteady transfer of heat or mass, acoustics, solid and fluid mechanics, to mention
a few. The input-parameter vector variously characterizes the geometric configuration of the
domain, physical properties, boundary conditions or source terms. The combination with an
efficient a posteriori error estimate, and the splitting between offline and online calculations,
are key factors for RB methods to be computationally successful.

Many important topics that would have deserved a proper treatment were touched only
partially (in some cases completely ignored). This depends on the desire to offer a reasonably-
sized textbook on one side, and our own experience on the other. The list of notable omissions
includes, for instance, the approximation of equations for the structural analysis and the prop-
agation of electromagnetic waves. Detailed studies can be found in the references’ specialized
literature.

This text is intended primarily for graduate students in Mathematics, Engineering, Physics
and Computer Science and, more generally, for computational scientists. Each chapter is meant
to provide a coherent teaching unit on a specific subject. The first eight chapters, in particu-
lar, should be regarded as a comprehensive and self-contained treatise on finite elements for
elliptic and parabolic PDEs. Chapters 9—17 represent an advanced course on numerical meth-
ods for PDEs, while the last three chapters contain more subtle and sophisticated topics for the
numerical solution of complex PDE problems.

This work has been used as a textbook for graduate-level courses at the Politecnico di Mi-
lano and the Ecole Polytechnique Fédérale de Lausanne. We would like to thank the many
people — students, colleagues and readers — who contributed, at various stages and in many
different ways, to its preparation and to the improvement of early drafts. A (far from com-
plete) list includes Paola Antonietti, Luca Dede, Marco Discacciati, Luca Formaggia, Loredana

viii Preface

Gaudio, Paola Gervasio, Andrea Manzoni, Stefano Micheletti, Nicola Parolini, Anthony T. Pat-
era, Luca Pavarino, Simona Perotto, Gianluigi Rozza, Fausto Saleri, Benjamin Stamm, Alberto
Valli, Alessandro Veneziani, and Cristoph Winkelmann. Special thanks go to Luca Paglieri for
the technical assistance, to Francesca Bonadei of Springer for supporting this project since its
very first Italian edition, and, last but not least, to Silvia Quarteroni for the translation from
Italian and to Simon G. Chiossi for the linguistic revision of the second edition.

Milan and Lausanne, October 2013 Alfio Quarteroni

Preface to the third edition

In this third edition we have added a new chapter on Isogeometric Analysis (Chapter 11), sub-
stantially improved the chapter on Reduced Basis Methods (now Chapter 20), and revised all
the other chapters.

Special thanks go to Luca Ded¢ and Andrea Manzoni.

Lausanne and Milan, August 2017 Alfio Quarteroni

Contents

1 A brief survey of partial differential equations....................... 1
1.1 Definitions and examplesoouiiiiiinneennnna. 1

1.2 Numerical SOIUtion 3

1.3 PDE Classificationottt 5
1.3.1 Quadratic form associatedtoaPDE 8

1.4 EXCICISES .« vttt ittt e et e 9

2 Elements of functional analysis 11
2.1 Functionals and bilinear forms.............. 11

2.2 Differentiation in linear Spacesouueeieunnnaea.n. 13

2.3 Elements of distributions i, 15
2.3.1 Square-integrable functions 17

2.3.2 Differentiation in the sense of distributions 18

2.4 SODOIEYV SPACES ... vttt ettt 20
2.4.1 Regularity of the spaces H¥(Q) 21

242 Thespace HY(2)...oooviiiii i 22

243 Trace OPEeratorsveeuriemnneinn .. 23

2.5 Thespaces L*(Q) and L”(Q), with 1 <p<ooo..... 24

2.6 Adjoint operators of a linear operatorcoouiinn.... 25

2.7 Spaces of time-dependent functions 27

2.8 EXEICISES ..t tttte ettt e 28

3 Ellipticequations i 31
3.1 An elliptic problem example: the Poisson equation................ 31

3.2 The Poisson problem in the one-dimensionalcase 32
3.2.1 Homogeneous Dirichlet problem....................... 33

3.2.2 Non-homogeneous Dirichlet problem 39

323 NeumannProblem......... 39

324 Mixed homogeneous problem 39

3.2.5 Mixed (or Robin) boundary conditions 40

3.3 The Poisson problem in the two-dimensional case 40

X Contents

34

3.5

3.6

3.3.1 The homogeneous Dirichlet problem
332 Equivalence, in the sense of distributions, between weak
and strong form of the Dirichlet problem
333 The problem with mixed, non homogeneous conditions. . . .
334 Equivalence, in the sense of distributions, between weak
and strong form of the Neumann problem
More general elliptic problems
34.1 Existence and uniqueness theorem
Adjoint operator and adjointproblem
3.5.1 The nonlinearcase.,
EXEICISES oottt

4 The Galerkin finite element method for elliptic problems

4.1
4.2

43

4.4

4.5

4.6

4.7

Approximation via the Galerkin method
Analysis of the Galerkinmethod
4.2.1 Existence and uniquenesseoiiiin...
422 Stability
423 CONVEIZENCE .. oottt ettt et
The finite element method in the one-dimensional case
4.3.1 The space Xh1
432 The space Xi
4.3.3 The approximation with linear finite elements
4.3.4 Interpolation operator and interpolation error
4.3.5 Estimate of the finite element errorinthe H'
Finite elements, simplices and barycentric coordinates
4.4.1 An abstract definition of finite element in the Lagrangian

442 SIMPIEXES . . vttt
4.4.3 Barycentric coordinates 00
The finite element method in the multi-dimensional case...........
4.5.1 Finite element solution of the Poisson problem
4.5.2 Conditioning of the stiffness matrix
4.5.3 Estimate of the approximation error in the energy norm.. . . .
4.5.4 Estimate of the approximation error in the L> norm
Grid adaptivityot
4.6.1 A priori adaptivity based on derivatives reconstruction.
4.6.2 A posteriori adaptivityiiiii .
4.6.3 Numerical examples of adaptivity
4.6.4 A posteriori error estimates in the L> norm
4.6.5 A posteriori estimates of a functional of the error
EXCICISES oottt

Contents Xi

Parabolicequations 121
5.1 Weak formulation and its approximation 122
5.2 APriori stimatesoeiuiiiiniein i 125
5.3 Convergence analysis of the semi-discrete problem 128
5.4 Stability analysis of the O-method.............................. 132
5.5 Convergence analysis of the 8-method 135
5.6 EXEICISES ..ttt ettt 138
Generationof IDand 2D grids 141
6.1 Gridgenerationin ID 141
6.2 Gridof apolygonaldomain it 144
6.3 Generation of structured grids L 146
6.4 Generation of non-structured grids i 149
6.4.1 Delaunay triangulation, 149
6.4.2 Advancing fronttechnique 153
6.5 Regularization techniques 155
6.5.1 Diagonal swap 156
6.5.2 Nodedisplacementcouiiiinniinneenn... 157
Algorithms for the solution of linear systems 161
7.1 Directmethodst 161
7.2 Tterativemethods i 164
7.2.1 Classical iterative methods 164
7.2.2 Gradient and conjugate gradient methods................ 167
7.2.3 Krylovsubspacemethods..................... 169
7.2.4 TheMultigridmethod 175
Elements of finite element programming 179
8.1 Working steps of a finite elementcode 179
8.1.1 The codeinanutshell oo ... 182
8.2 Numerical computation of integrals 183
8.2.1 Numerical integration using barycentric coordinates 185
8.3 Storage of sparse matriCesoiiiiiiiiiiiiiin... 187
84 Assembly 189
8.4.1 Coding geometrical information 191
8.4.2 Coding of functional information 193
8.4.3 Mapping between reference and physical element 193
8.4.4 Construction of local and global systems 198
8.4.5 Boundary conditions prescription 201
8.5 Integrationintime.....................iiiiiiiiiiiiiiian... 203
8.6 Acompleteexample 206
The finite volume method 213
9.1 Somebasic principles 214

9.2 Construction of control volumes for vertex-centered schemes. 216

xii

10

11

12

Contents

9.3 Discretization of a diffusion-transport-reaction problem 219
9.4 Analysis of the finite volume approximation 221
9.5 Implementation of boundary conditions 222
Spectral methods. 225
10.1 The spectral Galerkin method for elliptic problems 225
10.2 Orthogonal polynomials and Gaussian numerical integration 229
10.2.1 Orthogonal Legendre polynomials 229
10.2.2 Gaussian integrationc..uuueeiiinnnnan. 232
10.2.3 Gauss-Legendre-Lobatto formulae 233
10.3 G-NImethods in one dimensioncouveunnennn.... 235
10.3.1 Algebraic interpretation of the G-NI method 237
10.3.2 Conditioning of the stiffness matrix in the G-NI method . . .239
10.3.3 Equivalence between G-NI and collocation methods 240
10.3.4 G-NI for parabolicequations 243
10.4 Generalization to the two-dimensionalcase 245
10.4.1 Convergence of the G-NImethod 246
10.5 G-NI and SEM-NI methods for a one-dimensional model problem . .254
10.5.1 TheG-NImethod 255
1052 The SEM-NImethod............, 259
10.6 Spectral methods on triangles and tetrahedra 261
107 EXEICISES .ot vvt ettt e e e e e 265
Isogeometricanalysis 267
11.1 B-splinesand NURBS i, 268
11.1.1 B-splines basis functions 268
11.1.2 B-splines curves, surfaces, and solids................... 271
11.1.3 NURBS basis functions and geometries 272
11.1.4 NURBS function spaces and hApk-refinements 275
11.1.5 Construction of NURBS geometries: an example 278
11.2 The iS0OZEOMEtriC CONCEPL. . . ottt vte ittt et e e 280
11.3 NURBS-based IGA: the Galerkinmethod 281
11.3.1 The Poisson problem, 282
11.3.2 Algebraic aspects.vueiiiin i 284
11.3.3 A priori error estimatesouvverneenneennnenn.. 287
11.3.4 A numerical example: the Poisson problem 288
11.3.5 Eigenvalueanalysis..............cooiiiiiiinnn. 289
11.4 Current developments and perspectives 292
Discontinuous element methods (DG and mortar methods). 293
12.1 The discontinuous Galerkin method (DG) for the Poisson problem . .293
122 Themortarmethod 299

12.2.1 Characterization of the space of constraints by spectral
CIEMENLS .« ..ttt 301

13

14

Contents xiii

12.2.2 Characterization of the space of constraints by finite

elements 302
12.3 Mortar formulation for the Poisson problem 303
12.4 Choosing basis functionsc..oiiiiiniineenn... 304
12.5 Choosing quadrature formulae for spectral elements 306
12.6 Choosing quadrature formulae for finite elements................. 307
12.7 Solving the linear system of the mortar method................... 308
12.8 The mortar method for combined finite and spectral elements. 309
12.9 Generalization of the mortar method to multi-domain decompositions311
12.10 Numerical results for the mortar method 311
Diffusion-transport-reactionequations 315
13.1 Weak problem formulation............... 315
13.2 Analysis of a one-dimensional diffusion-transport problem. 318
13.3 Analysis of a one-dimensional diffusion-reaction problem 322
13.4 Finite elements and finite differences (FD) 324
13.5 The mass-lumping technique, 326
13.6 Decentred FD schemes and artificial diffusion.................... 328
13.7 Eigenvalues of the diffusion-transportequation................... 331
13.8 Stabilizationmethods i 333
13.8.1 Artificial diffusion and decentred finite element schemes. . . 334
13.8.2 The Petrov-Galerkinmethod 336
13.8.3 The artificial diffusion and streamline-diffusion methods
in the two-dimensionalcase, .. 337
13.8.4 Consistency and truncation error for the Galerkin and
generalized Galerkin methods 338
13.8.5 Symmetric and skew-symmetric part of an operator 339
13.8.6 Strongly consistent methods (GLS, SUPG) 340
13.8.7 On the choice of the stabilization parameter 7 342
13.8.8 Analysisof the GLSmethod 345
13.8.9 Stabilization through bubble functions 350
13.9 DG methods for diffusion-transportequations 353
13.10 Mortar methods for the diffusion-transportequations 354
13.11 Some numerical testscouuuinn it 356
13.12 An example of goal-oriented grid adaptivity 362
13,13 EXEICISES . vt vvtte ettt e e e e et e 362
Finite differences for hyperbolic equations 367
14.1 A scalar transportproblem 367
14.1.1 Anaprioriestimate.oouuunneeeennnneeennn.. 369
14.2 Systems of linear hyperbolic equations.......................... 371
142.1 Thewaveequationooviiiinunneeennn.. 373
14.3 The finite difference method 374
14.3.1 Discretization of the scalarequation 375

14.3.2 Discretization of linear hyperbolic systems.............. 377

Xiv

15

16

17

Contents

14.3.3 Boundary treatment................c.oiiitiiinnaenn..n 378

14.4 Analysis of the finite difference methods 378

14.4.1 Consistency and CONVergence..............c.ooeeuune.... 378

1442 Stability ... 379

14.4.3 Von Neumann analysis and amplification coefficients 384

14.4.4 Dissipation and dispersionouieiun... 388

14.5 Equivalent equationsuuitiiiitnnnnennnnunnnnnn. 392

14.5.1 Theupwindschemecaseccouuuunnnnn. 392

14.5.2 The Lax-Friedrichs and Lax-Wendroffcase 395

14.5.3 On the meaning of coefficients in equivalent equations395

14.5.4 Equivalent equations and error analysis 396

146 EXEICISES ..t vvttt ettt e et e 397

Finite elements and spectral methods for hyperbolic equations 399

15.1 Temporal discretizationuveiuneiunnennennnnnn. 399

15.1.1 The forward and backward Euler schemes 399

15.1.2 The upwind, Lax-Friedrichs and Lax-Wendroff schemes . . . 401

15.2 Taylor-Galerkin schemes, 406

15.3 The multi-dimensionalcaseoiiiiiiiinnaa.. 410
15.3.1 Semi-discretization: strong and weak treatment of the

boundary conditions i 410

15.3.2 Temporal discretizationc.ccouneeeen... 413

15.4 Discontinuous finite elements 416

15.4.1 The one-dimensional upwind DG method 416

15.4.2 The multi-dimensionalcase 420

15.4.3 DG method with jump stabilization 422

15.5 Approximation using spectral methods....................... ... 424

15.5.1 The G-NImethodin asingleinterval 424

1552 The DG-SEM-NImethod 428

15.6 Numerical treatment of boundary conditions for hyperbolic systems . 430

15.6.1 Weak treatment of boundary conditions 433

I5.7 EXEICISES ...ttt et e e e e e e 436

Nonlinear hyperbolic problems 437

16.1 Scalar eqUationS.couuuuit et 437

16.2 Finite difference approximation...............cc.oooveeinnnn.... 442

16.3 Approximation by discontinuous finite elements.................. 443

16.3.1 Temporal discretization of DG methods 446

16.4 Nonlinear hyperbolic Systemscoiiiiiinneenn .. 452

Navier-Stokes equations 457

17.1 Weak formulation of Navier-Stokes equations.................... 459

17.2 Stokes equations and their approximation 463

17.3 Saddle-point problemst 467

17.3.1 Problem formulation 467

18

Contents XV

17.3.2 Analysisof theproblem 468
17.3.3 Galerkin approximation, stability and convergence analysis 472
17.4 Algebraic formulation of the Stokes problem 475
17.5 An example of stabilized problem................. 479
17.6 A numerical example 481
17.7 Time discretization of Navier-Stokes equations................... 483
17.7.1 Finite difference methods 484
17.7.2 Characteristics (or Lagrangian) methods 486
17.7.3 Fractional step methods 487
17.8 Algebraic factorization methods and preconditioners for
saddle-point SYStEIMS . .« ..ottt e 490
17.9 Free surface flow problems 496
17.9.1 Navier-Stokes equations with variable density and viscosity 496
17.9.2 Boundary conditionscouviiiiiiiniiia.. 498
17.9.3 Application to free surface flows 499
17.10 Interface evolution modelling oin. 501
17.10.1 Explicit interface descriptions 501
17.10.2 Implicit interface descriptions 501
17.11 Finite volume approxXimationcouuunineeennnnnaen. 506
17.12 EXEICISES ..ot vvit ittt ettt 508
Optimal control of partial differential equations 511
18.1 Definition of optimal control problems.......................... 511
18.2 A control problem for linear systems 513
18.3 Some examples of optimal control problems for the Laplace equation 514
18.4 On the minimization of linear functionals 515
18.5 The theory of optimal control for elliptic problems................ 517
18.6 Some examples of optimal control problems 522
18.6.1 A Dirichlet problem with distributed control 522
18.6.2 A Neumann problem with distributed control 522
18.6.3 A Neumann problem with boundary control 523
18.7 Numerical testsouu it e 525
18.8 Lagrangian formulation of control problems 530
18.8.1 Constrained optimizationin R” 530
18.8.2 The solution approach based on the Lagrangian 531
18.9 TIterative solution of the optimal control problem.................. 533
18.10 Numerical examplesouutitiiiin i 538
18.10.1 Heat dissipation by athermal fin 538
18.10.2 Thermal pollutioninariver, 540
18.11 A few considerations about observability and controllability........ 542
18.12 Two alternative paradigms for numerical approximation 543
18.13 A numerical approximation of an optimal control problem for
advection—diffusionequations 545

18.13.1 The strategies “optimize—then—discretize” and
“discretize—then—optimize” 547

XVi

19

20

Contents

18.13.2 A posteriori error estimatesooeeeeon.. 548
18.13.3 A test problem on control of pollutant emission 550
I18.14 EXEICISES ..ttt ettt et e e e e e e e 553
Domain decomposition methods 555
19.1 Some classical iterative DD methods 556
19.1.1 Schwarzmethod 556
19.1.2 Dirichlet-Neumannmethod 558
19.1.3 Neumann-Neumann algorithm......................... 560
19.1.4 Robin-Robin algorithm......... 561
19.2 Multi-domain formulation i 561
19.2.1 The Steklov-Poincaré operator......................... 562
19.2.2 Equivalence between Dirichlet-Neumann and Richardson
methods 564
19.3 Finite element approXimationuueeeeunnnneann. 567
19.3.1 The Schurcomplement............................... 569
19.3.2 The discrete Steklov-Poincaré operator 571
19.3.3 Equivalence between Dirichlet-Neumann and Richardson
methods in the discretecaseoovivinnn.... 573
19.4 Generalization to the case of many subdomains 575
19.4.1 Some numericalresults............ 578
19.5 DD preconditioners in case of many subdomains 580
19.5.1 Jacobi preconditioner................ooiiiiiniiiia... 581
19.5.2 Bramble-Pasciak-Schatz preconditioner 582
19.5.3 Neumann-Neumann preconditioner 583
19.5.4 FETI (Finite Element Tearing & Interconnecting) methods . 587
19.5.5 FETI-DP (Dual Primal FETI) methods 591
19.5.6 BDDC (Balancing Domain Decomposition with
Constraints) methods 594
19.6 Schwarz iterative methods 595
19.6.1 Algebraic form of Schwarz method for finite element
discretizationst 595
19.6.2 Schwarz preconditioners.ccouueeeuenen.. 597
19.6.3 Two-level Schwarz preconditioners..................... 601
19.7 An abstract convergenceresultiiiiiiiiia.. 604
19.8 Interface conditions for other differential problems 606
199 EXEICISES ..ot vvtt ettt et e 610
Reduced basis approximation for parametrized partial differential
equAtioONS. 613
20.1 Elliptic coercive parametric PDEs 615
20.1.1 Twosimpleexamples 616
20.2 Main components of computational reduction techniques 618
20.3 Thereducedbasismethod o i il 621

203.1 RBSpacescoouiiiiiii 622

Contents Xvii

20.3.2 Galerkin projectionc..iiiiiiiiiinaaa. 622
20.3.3 Offline-Online computational procedure 624
20.4 Algebraic and geometric interpretations of the RB problem 625
20.4.1 Algebraic interpretation of the (G-RB) problem 626
20.4.2 Geometric interpretation of the (G-RB) problem.......... 628

20.4.3 Alternative formulations: Least-Squares and
Petrov-Galerkin RB problems 630
20.5 Construction of reduced spaces ..., 633
20.5.1 Greedy algorithm........., 633
20.5.2 Proper Orthogonal Decomposition 636
20.6 Convergence of RB approximationscouueenn.... 639
20.6.1 A priori convergence theory: a simplecase 639
20.6.2 A priori convergence theory: greedy algorithms 640
20.7 A posteriori error estimationiiiiiiiiiiaaa.. 643
20.7.1 Some preliminary estimates 643
20.7.2 Errorbounds i 644
20.8 Non-compliantproblems, 645
20.9 Parametrized geometries and Operators 647
20.9.1 Physical parameters...........c..iiiiiiiiiiia.. 648
20.9.2 Geometrical parameters 650
20.10 A working example: a diffusion-convection problem 654

References 663

Chapter 1
A brief survey of partial differential equations

The purpose of this chapter is to recall the basic concepts related to partial differential
equations (PDEzs, in short). For a wider coverage see [RR04, Eva98, LM68, Sal08§].

1.1 Definitions and examples

Partial differential equations are differential equations containing derivatives of the
unknown function with respect to several variables (temporal or spatial). In particu-
lar, if we denote by u the unknown function in the d + 1 independent variables x =
(x1,...,x4)" and t, we denote by

Ju du u oP1ttpatpy 0 11
’at’axl""’axd""’axlfl,,,axg‘lat/’fvg) ()

a generic PDE, g being the set of data on which the PDE depends, while py,...,p4,
preN.

We say that (1.1) is of order q if g is the maximum order of the partial derivatives
appearing in the equation, i.e. the maximum value taken by the integer p; + p> +
wo.tpa+pr
If (1.1) depends linearly on the unknown u and on its derivatives, the equation is said
to be linear. In the particular case where the derivatives having maximal order only
appear linearly (with coefficients which may depend on lower-order derivatives), the
equation is said to be quasi-linear. It is said to be semi-linear when it is quasi-linear
and the coefficients of the maximal order derivatives only depend on x and #, and not
on the solution u. Finally, if the equation contains no terms which are independent of
the unknown function u, the PDE is said to be homogeneous.

We list below some examples of PDEs frequently encountered in the applied sci-
ences.

P(u,g)=F (x,t,u

Example 1.1. A first-order linear equation is the transport (or advection) equation

du
+V-(Bu)=0, (1.2)
ot
© Springer International Publishing AG 2017 1

A. Quarteroni, Numerical Models for Differential Problems, MS&A 16,
DOI 10.1007/978-3-319-49316-9 1

2 1 A brief survey of partial differential equations
having denoted by

T 7d8v,- - T
V-vfdlv(v)fz’a s v=(1,...,vq)",
xi

i=1
the divergence operator. Integrated on a region 2 C R?, (1.2) expresses the mass
conservation of a material system (a continuous media) occupying the region . The
u variable is the system’s density, while 3(x,t) is the velocity of a particle in the
system that occupies position X at time ¢. |

Example 1.2. Linear second-order equations include:
the potential equation

—Au=f, (1.3)

that describes the diffusion of a fluid in a homogeneous and isotropic region 2 C R¢,
but also the vertical displacement of an elastic membrane;
the heat (or diffusion) equation

d

u
—Au=7f; 1.4
P f (1.4)
the wave equation
du
o —Au=0. (1.5)
‘We have denoted by
4 9%y
Au= 1.6
! 1:21 ox? (1.6)
the Laplace operator (Laplacian). |

Example 1.3. An example of a quasi-linear first-order equation is Burgers’ equation

while its variant obtained by adding a second-order perturbation

8u+ du _83214 £>0
o ox T Coxd ’

is an example of a semi-linear equation.
Another second-order, non-linear equation, is

(32u)2+ (32u)2_f]
ox? 9x3 -

1.2 Numerical solution 3

A function u = u(xy,...,x4,t) is said to be a solution (or a particular integral) of
(1.1) if it makes (1.1) an identity once it is replaced in (1.1) together with all of its
derivatives. The set of all solutions of (1.1) is called the general integral of (1.1).

Example 1.4. The transport equation in the one-dimensional case,

Ju Ju

o o, =0, (1.7)

admits a general integral of the form u = w(x; +1), w being a sufficiently regular
arbitrary function (see Exercise 2). Similarly, the one-dimensional wave equation

0%u J%u B

o " a2 =0 (19

admits as a general integral
u(xy,t) =wy(x;+1) +wa(x) —1),
w1 and w; being two sufficiently regular arbitrary functions (see Exercise 3). |

Example 1.5. Let us consider the one-dimensional heat equation

0 2
u d%u o,
ot 8x%
for 0 < x;< 1 and ¢ > 0, with boundary conditions
u(0,0) =u(1,1)=0, >0

and initial condition u|,—¢ = ug. Its solution is
N e i (i
u(xy,t) = Zuo’je sin(jmxy),
=

where uy = Uji—o is the initial datum and
1
Up,j = 2/“0(x1)Sin(j7TXI) dx;, j=12,... n
0

1.2 Numerical solution

In general, it is not possible to obtain a solution of (1.1) in closed (explicit) form. In-
deed, the available analytical integration methods (such as the technique of separation
of variables) are of limited applicability. On the other hand, even in the case where a
general integral is known, it is not guaranteed that a particular integral may be deter-
mined. Indeed, in order to obtain the latter, it will be necessary to assign appropriate
conditions on u (and/or its derivatives) at the boundary of the domain Q.

4 1 A brief survey of partial differential equations

Besides, from the examples provided it is evident that the general integral depends
on a number of arbitrary functions (and not on arbitrary constants, as it happens for
ordinary differential equations), so that the imposition of the boundary conditions will
result in the solution of mathematical problems that are generally rather involved.

Thus, from a theoretical point of view, the analysis of a given PDE is often bound
to investigating existence, uniqueness, and, possibly, regularity of its solutions, but
lacks practical tools for their actual determination.

It follows that it is extremely important to have numerical methods at one’s dis-
posal, that allow to construct an approximation uy of the exact solution u and to eval-
uate (in some suitable norm) the error uy — u when substituting to the exact solution
u the approximate solution uy. In general, N > 1 is a positive integer that denotes
the (finite) dimension of the approximate problem. Schematically, we will obtain the
following situation:

P(u,g)=0 Exact PDE
4 [numerical methods]
Py(un,gn) =0 Approximate PDE.

We have denoted by gy an approximation of the set of data g on which the PDE
depends, and with &y the new functional relation characterizing the approximated
problem. For simplicity, one writes u = u(g) and uy = uy(gn).

We will present several numerical methods starting from Chap. 4. Here, we only
recall their main features. A numerical method is convergent if

||lu—un|| >0 asN — o
for a given norm. More precisely, we have convergence if and only if
Ve >0, ANy = Np(g) > 0,38 = 6(No,€) : VN > Ny, Vgn such that ||g — gn|| < 8,
lu(g) —un(gn)| < €.

(The norm used for the data is not necessarily the same as that used for the solutions.)
A direct verification of the convergence of a numerical method may not be easy. A
verification of its consistency and stability properties is recommendable, instead. A
numerical method is said to be consistent if

Py(u,g) =0 as N — oo, (1.9)
and strongly consistent (or fully consistent) if

Prn(u,g) =0 VN> 1. (1.10)
Notice that (1.9) can be equivalently formulated as

Pn(u,g) — P(u,g) — 0as N — co.

1.3 PDE Classification 5

This expresses the property that &y (the approximated PDE) “tends” to & (the exact
one) as N — oo. Instead, we say that a numerical method is stable if to small perturba-
tions to the data correspond small perturbations to the solution. More precisely,

Ve>0,36=35(g) >0: Vogy: ||0gn|| < = |[Sun| <&, YN > 1.
uy + Suy being the solution of the perturbed problem
Pn(un + Sun,gn + 6gn) = 0.

(See also [QSS07, Chap. 2] for an in-depth coverage.)
The fundamental result, often quoted as the Lax-Richtmyer equivalence theorem,
finally guarantees that

Theorem 1.1. If a method is consistent and stable, then it is convergent.

Other important properties will obviously influence the choice of a numerical
method, such as its convergence rate (i.e. the order with respect to 1 /N with which
the error tends to zero) and its computational cost, that is the computation time and
memory required to implement such method on the computer.

1.3 PDE Classification

Partial differential equations can be classified into three different families: elliptic,
parabolic and hyperbolic equations, for each of which appropriate specific numerical
methods will be considered. For the sake of brevity, here we will limit ourselves to the
case of a linear second-order PDE, with constant coefficients, of the form Lu = G,
2%u 2%u 2%u du u
=A B C D E F 1.11
ox? + 0x10x7 + 0x3 + oxy + ox» o (11D
with assigned function G and A,B,C,D.E,F € R. (Notice that any of the x; variables
could represent the temporal variable.) In that case, the classification is carried out
based on the sign of the discriminant, /\ = B?2 —4AC.In particular:

Lu

if A <0 the equation is said to be elliptic,
if A =0 the equation is said to be parabolic,
if A >0 the equation is said to be hyperbolic.

Example 1.6. The wave equation (1.8) is hyperbolic, while the potential equation (1.3)
is elliptic. An example of a parabolic problem is given by the heat equation (1.4), but
also by the following diffusion-transport equation

du
o —uAu+V-(Bu)=0

where the constant @ > 0 and the vector field 3 are given. |

6 1 A brief survey of partial differential equations

The criterion introduced above makes the classification depend on the sole coefficients
of the highest derivatives and is justified via the following argument. As the reader will
recall, the quadratic algebraic equation

Ax} + Bxyxy +Cx3 + Dx| + Exo + F = G,

represents a hyperbola, a parabola or an ellipse in the Cartesian plane (x;,x,) depend-
ing whether A is positive, null or negative. This parallel motivates the name assigned
to the three classes of partial derivative operators.

Let us investigate the difference between the three classes more attentively. Let
us suppose, without this being restrictive, that D, E, F and G be null. We look for a
change of variables of the form

& =axy+Bx;, M =7yx2+0x, (1.12)

with e, B, y and § to be chosen so that Lu becomes a multiple of d%u/d&dn. Since

5 5 0%u
Lu= (AB*+Boaf +Co®)
&2
2, 2, (1.13)
2
+ (2AB8+B(a5+ﬁy)+2Cay)a§an +(AS +By5+Cy2)an2,
we need to require that
AB?+Boaf+Ca*=0, A8>+Bys+Cy*=0. (1.14)

If A = C =0, the trivial trasformation & = x,, 1 = x| (for instance) provides Lu in the
desired form.

Let us then suppose that A or C be not null. It is not restrictive to suppose A # 0.
Then, if a # 0 and y # 0, we can divide the first equation of (1.14) by & and the
second one by y2. We find two identical quadratic equations for the ratios 3 /o and
0/7v. By solving them, we have

A !

In order for the transformation (1.12) to be non-singular, the quotients 3/« and 6/y
must be different. We must therefore take the positive sign in one case, and the nega-
tive sign in the other. Moreover, we must assume A > 0. If A were indeed null, the
two fractions would still be coincident, while if /A were negative none of the two frac-
tions could be real. To conclude, we can take the following values as coefficients of
transformation (1.12):

a=y=2A, B=-B+/A, §=-B—\/A.
Correspondingly, (1.12) becomes

£ =24x+ [-B+VA]xi, N=2Ax+[-B—A]x,

1.3 PDE Classification 7
and, after the transformation, the original differential problem Lu = 0 becomes

2%u B
9&dn

(For ease of notation, we still denote by u the transformed solution and by L the trans-
formed differential operator.) The case A = 0 and C # 0 can be treated in a similar
way by taking & = x;, n =xp, — (C/B)x;.

To conclude, the original term Lu can become a multiple of 9%u/d&dn based on the
transformation (1.12) if and only if A > 0, and in such case, as we have anticipated,
the problem is said to be hyperbolic. It is easy to verify that the general solution of
problem (1.15) is

Lu= —4AN 0. (1.15)

u=p(&)+q(n),

p and ¢ being arbitrary differentiable functions in one variable. The lines & = constant
and 1 = constant are said to be the characteristics of L and are characterized by
the fact that on these lines, the functions p and ¢, respectively, remain constant. In
particular, possible discontinuities of the solution u propagate along the characteristic
lines (this will be shown in more detail in Chap. 14). Indeed, if A # 0, by identifying
x1 with ¢ and x» with x, the transformation

B

X =x— _t
TToal

t'=t,

transforms the hyperbolic operator L such that

2%u +B 0%u +C32u
012 dtdx ox?

in a multiple of the wave operator L such that

Lu=A

u 0%

Lu = —
T oo TC o

with 2 = A /4A%.

The latter is the wave operator in a coordinate system moving with velocity —B/2A.
The characteristic lines of the wave operator are the lines verifying

dr* 1
dx) 2’

dt 1 d dt 1
= an =— .
dx ¢ dx c

that is

When A = 0, as previously stated L is parabolic. In this case there exists only one
value of B/« in corrispondence of which the coefficient of 9%u/d&? in (1.13) becomes
zero: precisely, B /a = —B/(2A). On the other hand, since B/(2A) = 2C/B, this choice

8 1 A brief survey of partial differential equations

also implies that the coefficient of 9%u/d&dn becomes zero. Hence, the change of
variables

& =2Ax,—Bx;, 1N =x,
transforms the original problem Lu = 0 into the following

2%u

Lu=A an? =

0,

the general solution of which has the form

u=p(§)+nq(S).

A parabolic operator therefore has only one family of characteristics, precisely & =
constant. The discontinuities in the derivatives of u propagate along such characteris-
tic lines.

Finally, if A < 0 (elliptic operators) there does not exist any choice of 8/a or §/y
that makes the coefficients 9%u/d&? and 9%u/dn? null. However, the transformation

_2Ax2—BX1 _
5_ \/—A) n_-xla

transforms Lu= 0 into

Lue A 32u+32u _0
A2 Tom2)T

i.e. a multiple of the potential equation. The latter has therefore no family of charac-
teristic lines.

1.3.1 Quadratic form associated to a PDE

We can associate to equation (1.11) the so-called principal symbol S” defined by

SP(x,q) = —A(X)qt — B(x)q192 — C(x)q5.

This quadratic form can be represented in matrix form as follows:

1
—A(x — B(x
SP(x,q) =q" 1() 2P q (1.16)
—,B(x) —C(x)

A quadratic form is said to be definite if all of the eigenvalues of its associated
matrix have the same sign (either positive or negative); it is indefinite if the matrix has
eigenvalues of both signs; it is degenerate if the matrix is singular.

It can then be said that equation (1.11) is elliptic if its quadratic form (1.16) is definite
(positive or negative), hyperbolic if it is indefinite, and parabolic if it is degenerate.

1.4 Exercises 9

The matrices associated to the potential equation (1.3), the (one-dimensional) heat
equation (1.4) and the wave equation (1.5) are given respectively by

1 0 0 0 d -1 0

o 1[0 1™ o1
and are positive definite in the first case, singular in the second case, and indefinite in
the third case.

1.4 Exercises

1. Classify the following equations based on their order and linearity:

(@) - du\? azuizau du 9d*u iy du\? a2u70
a oxy 9x3 0x| 0xp 9x10x 0xy dx? -
2%u 24

u
(b) patz +K :f7

4
oxi

o () + () -r

[Solution: (a) quasi-linear, second-order; it is Plateau’s equation which governs,
under appropriate hypotheses, the plane motion of a fluid. The u appearing in the
equation is the so-called kinetic potential; (b) linear, fourth-order. It is the vibrating
rod equation, p is the rod’s density, while K is a positive quantity that depends on
the geometrical properties of the rod itself; (¢) non-linear, first-order.]

2. Reduce the one-dimensional transport equation (1.7) to an equation of the form

dw/dy = 0, having set y = x| — ¢, and obtain that u = w(x; +1) is a solution of the
original equation.
[Solution: operate the substitution of variables z = x| +17, y = x; — ¢, u(x|,t) =
w(y,z). In such way du/dx; = dw/dz+ dw/dy, where du/dt = dw/dz— dw/dy,
and thus —20dw/dy = 0. Note at this point that the equation obtained thereby admits
a solution w(y,z) that does not depend on y and, using the original variables, we
getu=w(x;+1).]

3. Prove that the wave equation

*u B ,0%u

c =0,
01?2 ax%

with constant ¢, admits as a solution u(xy,t) = wy(x] + ¢t) +wy(x; — ct), wy and
wy being two sufficiently regular arbitrary functions.

10 1 A brief survey of partial differential equations
[Solution: proceed as in Exercise 2, by applying the substitution of variables y =
X1 +ct, z=x; —ct and setting u(x,1) = w(y,z).]

4. Verify that the Korteveg-de-Vries equation

du du 23u

o TPay T¥5a =0

admits a general integral of the form u = acos(kx; — @t) with an appropriate ® to
be determined, and a, B and o being assigned constants. This equation describes
the position u of a fluid with respect to a reference position, in the presence of long
wave propagation.

[Solution: the given u satisfies the equation only if ® = k8 — atk>.]

5. Consider the equation
2 %u) u _0
! ox? 2 0x3
with x1x, # 0. Classify it and determine its characteristic lines.
6. Consider the generic second-order semi-linear differential equation

2%u 2%u 02

u
a(xy,x;) o2 +2b(x1,x2)ax] I +c(x1,x2) 22 + f(u,Vu) =0,
du Ju\T
where Vu = (,) is the gradient of u. Write the equation of its charac-
aX] 8x2

teristic lines and deduce from it the classification of the proposed equation, by
distinguishing the different cases.

7. Set r(x) = [x| = (7 +x3)"/? and define u(x) = In(r(x)), x € R?\{0}. Verify that
Au(x) =0, x€Q,

where Q is any given open set such that Q C R?\{0}.
[Solution: observe that

azuzl 172)(1.2 i=1.2]
oxr r? r2)’ T

Chapter 2
Elements of functional analysis

In this chapter we recall a number of concepts used extensively in this textbook: func-
tionals and bilinear forms, distributions, Sobolev spaces, L? spaces. For a more in-
depth reading, the reader can refer to e.g. [Sal08],[Yos74], [Bre86], [LM68], [Ada75].

2.1 Functionals and bilinear forms

Definition 2.1. Given a function space V, we call functional on V an operator
associating a real number to each element of V

F:V—R.

The functional is often denoted as F (v) = (F,v), an expression called duality or crochet.
A functional is said to be linear if it is linear with respect to its argument, that is if

F(Av+uw)=AFWv)+uF(w) VA,UER, VvweV.
A linear functional is bounded if there is a constant C > 0 such that
[F(v)| <Clv|ly ¥veV. (2.1

A linear and bounded functional on a Banach space (i.e. a normed and complete
space) is also continuous. We then define the space V', called dual of V, as the set of
linear and bounded functionals on V/, that is

V' ={F :V ~ R such that F is linear and bounded }

and we equip it with the norm || - ||+ defined as

[F()]

[Fllyr = sup : 2.2)
vev\{oy [Vllv
The constant C appearing in (2.1) is greater than or equal to ||F||y.
© Springer International Publishing AG 2017 11

A. Quarteroni, Numerical Models for Differential Problems, MS&A 16,
DOI 10.1007/978-3-319-49316-9 2

12 2 Elements of functional analysis
The following theorem, called identification or representation theorem ([Yos74]),

holds.

Theorem 2.1 (Riesz representation theorem). Let H be a Hilbert space, that
is a Banach space whose norm is induced by a scalar product (-,-)n. For each
linear and bounded functional f on H there exists a unique element xy € H such
that

f(y) = (yaxf)H Vy €H, and ||f||H/ = ||-xf||H (23)

Conversely, each element x € H identifies a linear and bounded functional fy on
H such that

L) =0x)u VyeH and ||filla = x|l 24

If H is a Hilbert space, its dual space H' of linear and bounded functionals on H is
a Hilbert space too. Moreover, thanks to Theorem 2.1, there exists a bijective and
isometric (i.e. norm-preserving) transformation f <> x; between H' and H thanks to
which H' and H can be identified. We can denote this transformation as follows:

Ay :H— H', x— fo = Agx,

Ag'H —H, f—xp=Ag'x (2.5)

We now introduce the notion of fom.

Definition 2.2. Given a normed functional space V we call form an application
which associates to each pair of elements of V a real number

a:VxVi—R.

A form is called:

bilinear if it is linear with respect to both its arguments, i.e. if:

a(Au+pw,v) = Aa(u,v)+ pa(w,v) VA, u R Vu,vweV,
alu, Aw+ uv) = Aa(u,v) + pa(u,w) VA,u € R\Vu,v,w €V,

continuous if there exists a constant M > 0 such that
la(u,v)| < Mlullv|lv]lv Vu,veV; (2.6)
symmetric if

a(u,v)=a(v,u) Yu,ve€V; (2.7)

2.2 Differentiation in linear spaces 13

positive (or positive definite) if
alvyv) >0 Wwev, (2.8)
coercive if there exists a constant & > 0 such that

a(vyv) > alv[|Z Wev. (2.9)

Definition 2.3. Let X and Y be two Hilbert spaces. We say that X is contained in
Y with continuous injection if there exists a constant C such that ||w|y < C||w||x
Yw € X. Moreover X is dense in Y if each element belonging to Y can be obtained
as the limit, in the || - ||y norm, of a sequence of elements of X.

Given two Hilbert spaces V and H, such that V C H, the injection of V in H is contin-
uous and moreover V is dense in H. Then, upon identification of H and H’,

VCH~H cV'. (2.10)

For elliptic problems, the spaces V and H will typically be chosen respectively as
H'(Q) (or one of its subspaces, Hl () or H}D (2)) and L? (L), see Chap. 3.

Definition 2.4. A linear and bounded (hence continuous) operator J between
two functional spaces X and Y is an isomorphism if it maps bijectively the ele-
ments of the spaces X and Y and its inverse 7~ exists. If also X C Y holds, such
isomorphism is called canonical.

2.2 Differentiation in linear spaces

In this section, we briefly report the notions of differentiability and differentiation for
applications on linear functional spaces; for a further analysis of this topic, as well as
an extension of such notions to more general cases, see [KF89].

Let us begin by considering the notion of strong (or Fréchet) differential:

Definition 2.5. Let X and Y be two normed linear spaces and F an application
of X inY, defined on an open set E C X; such application is called differentiable
at x € E if there exists a linear and bounded operator L, : X — Y such that

Ve >0,38 >0 : ||F(x+h)—F(x)— Lehlly <€ ||llx VA € X with | |h][x < 5.

14 2 Elements of functional analysis

We call the expression Lih (or Ly[h]), which generates an element in'Y for each
h € X, strong differential (or Fréchet differential) of the application F at x € E; the
operator Ly is called strong derivative of the application F at x and is generally
denoted as F'(x), that is F'(x) = L.

From the definition, we deduce that a differentiable application in x is also continuous
in x. We list below some properties deriving from this definition:

if F(x) = constant, then F’(x) is the null operator, that is L[h] = 0 Vh € X;
the strong derivative of a continuous linear application F(x) is the application
itself, that is F'(x) = F(x);

e given two continuous applications F and G of X in Y, if these are differentiable at
X0, so are the applications F 4+ G and aF, for all o € R, and we have:

(F+ G)/(X()) = F/(X()) + G/(X()),
(@F) (x0) = " (x).

Consider now the following definition of weak (or Gdteaux) differential:

Definition 2.6. Let F be an application of X in Y; we call weak (or Gdateaux)
differential of the application F at x the limit

DF (x,) — lim © * TR =F (%)

t—0 t

VheX,

where t € R and the convergence of the limit must be intended with respect to the
norm of the space Y. If the weak differential DF (x,h) is linear (in general it is
not), it can be expressed as

DF (x,h) = F5(x)h VheX.

The linear and bounded operator F[;(x) is called weak derivative (or Géteaux
derivative) of F. Moreover, we have

F(x+th) — F(x) = tF;(x)h+o(t) VheX,
which implies
||F (x+1th) — F(x) —tFS(x)h|| = o(¢) VheX.
Note that if an application F has a strong derivative, then it also admits a weak deriva-

tive, coinciding with the strong one; the converse instead is not generally true. How-
ever, the following theorem holds (see [KF89]):

2.3 Elements of distributions 15

Theorem 2.2. If on a neighbourhood U (xy) of xo there exists a weak derivative
F[,(x) of the application F and such derivative is a function of x on such neigh-
borhood, continuous at xo, then the strong derivative F'(xo) at x(exists, too, and
coincides with the weak one, that is F'(xg) = Ff(xo).

2.3 Elements of distributions

In this section we want to recall the main definitions regarding the theory of distribu-
tions and Sobolev spaces, useful for a better comprehension of the subjects introduced
in the textbook. For a more in-depth treatment, see, e.g., the monographs [Bre86],
[Ada75] and [LM68].

Let 2 be an open set of R* and f: 2 — R.

Definition 2.7. By support of a function f we mean the closure of the set where
the function itself takes values different from zero, that is

supp f = {x: f(x) #0}.

A function f: Q — R is said to have a compact support in €2 if there exists a compact
set | K C Q such that supp f C K.
At this point, we can provide the following definition:

Definition 2.8. 2(Q) is the space of infinitely differentiable functions with com-
pact support in Q, that is
2(Q)={feC(Q): IK C Q, compact: suppf C K}.
We introduce the multi-index notation for the derivatives. Let o = (o, 0, ..., Q)

be an n-tuple of non-negative integers (called multi-index) and let f : Q — R be a
function defined on 2 C R”. We will use the following notation

9% f(x)

ax‘f‘l ax(zxz . OxSn’

D f(x) =

|| = @) + o + ... + a, being the length of the multi-index coinciding with the order
of differentiation of f.

I'With Q € R”, a compact set is a closed and bounded set.

16 2 Elements of functional analysis

In the space Z(£2) we can introduce the following notion of convergence:

Definition 2.9. Given a sequence {§} of functions of () we say that these
converge in 9(Q) to a function ¢, and we will write @ 9(—)) o, if:
(2

1. the supports of the functions ¢y are all contained in a fixed compact set K of
Q;
2. we have uniform convergence of the derivatives of all orders, that is

D*¢p —» D*¢9 Vo € N".
We are now able to define the space of distributions on Q:

Definition 2.10. Let T be a linear transformation from 2(Q) into R and let us
denote by (T, @) the value taken by T on the element ¢ € Z(Q). We say that T
is continuous if

lim <T’ (Pk> = <T7 §0>
k—ro0

where { @}y, is an arbitrary sequence of 7(L2) that converges toward ¢ €
D(Q). We call distribution on Q any linear and continuous transformation T
from 2(Q) into R. The space of distributions on € is therefore given by the dual
space 2'(Q2) of D(RQ).

The action of a distribution 7 € 2'(Q) on a function ¢ € 2(Q) will always be de-
noted via the identity pairing (T,).

Example 2.1. Let a be a point of the set 2. The Dirac delta relative to point a is the
distribution 8, defined by the following relation

(82,0) = 0(a) ¥ € 7(Q). .

For another example, see Exercise 4. Also in 2'(2) we introduce a notion of
convergence:

Definition 2.11. A sequence of distributions {T,} converges to a distribution T
in 2'(Q) if we have

r}i_IEO<Tna¢> =(T,9) Vo € 7(Q).

2.3 Elements of distributions 17
2.3.1 Square-integrable functions
We consider the space of square-integrable functions on Q C R”,
L2(Q) = {f: @+ R such that /(f(x))2 48 < +oo}.
Q

More precisely, L?(£2) is a space of equivalence classes of measurable functions, the
equivalence relation to be intended as follows: v is equivalent to w if and only if v
and w are equal almost everywhere, i.e. they differ at most on a subset of Q2 with zero
measure. The expression “almost everywhere in 2” (in short, a.e. in 2) means exactly
“for all the x € 2, except for a zero-measure set, at most”.

The space L?(£) is a Hilbert space whose scalar product is

(f:8)12(0) = /f(x)g(x) dQ.
Q

The norm in L?(£2) is the one induced by this scalar product, i.e.

1@y = /U iz

To each function f € L?(Q2) we associate a distribution 7y € 2’(Q) defined in the
following way

(T1.6) = [f06(x)d2 Vo e 7(@).
Q
The following result holds:
Lemma 2.1. The space 7(Q) is dense in L*(Q).

Due to the latter, it is possible to prove that the correspondence f — T is injective,
thus we can identify L?(£) with a subset of 2/(£), writing

L*(Q)c 7'(Q).

Example 2.2. Let £ = R and let us denote by X/,] (x) the characteristic function of
the interval [a, b], defined as

w1 if x € [a, D],
Xab*) =93 0 otherwise.

Let us then consider the sequence of functions f,(x) = 5 X[_1/n,1/s (X) (see Fig. 2.1).

18 2 Elements of functional analysis

n/2 n

-1/n 1/n * -1/n 1/n X

Fig. 2.1. The characteristic function of the interval [—1/n,1/n] (left) and the triangular function
Ja (right)

We want to verify that the sequence {7, } of the distributions associated to the former
converges to the distribution &, i.e. the Dirac delta relative to the origin. As a matter
of fact, for each function ¢ € (), we have

1/n
(T;,.9) /fn = [o) ax="[@(1/n) = B(~1/m)
—1/n
@ being a primitive of ¢. If we now set 7 = 1 /n, we can write
D(h) — P(—h)
T, = .
(Ty,,) o
When n — oo, h — 0 and thus, following the definition of derivative, we have
D(h) — P(—h) /
@(0).
2 — &0)

By construction @’ = ¢, and therefore

(T1,,9) — ¢(0) = (80,9),

having used the definition of &, (see Example 2.1).

The same limit can be obtained by taking a sequence of triangular functions (see
Fig. 2.1) or Gaussian functions, instead of rectangular ones (provided that they still
have unit integral).

Finally, we point out that in the usual metrics, such sequences converge to a func-
tion which is null almost everywhere. |

2.3.2 Differentiation in the sense of distributions
Let Q CR"and T € 2'(Q). Its derivatives gf in the sense of distributions are distri-

butions defined in the following way

or PL) o
<axi’¢>__<T’axi> Yo e 2(Q), i=1,...,n.

2.3 Elements of distributions 19

H(x)

_05 05

Fig. 2.2. The Heaviside function (left). On the right, the function of Example 2.6 with k = 1/3.
Note that this function tends to infinity at the origin

In a similar way, we define derivatives of arbitrary order. Precisely, for each multi-
index o = (a1, 0, ..., 0y), we have that D*T is a new distribution defined as

(DT, ¢) = (—1)l*l(T,D*¢) v € 7(Q).

Example 2.3. The Heaviside function on R (see Fig. 2.2) is defined as

1 ifx>0,
H(x){o ifx <0,

The derivative of the distribution Ty associated to the latter is the Dirac distribution
relative to the origin (see Example 2.1); upon identifying the function H with the
associated distribution Ty, we will then write

dH
dx % u
Differentiation in the context of distributions enjoys some important properties

that do not hold in the more restricted context of differentiation for functions in clas-
sical terms.

Property 2.1. The set 9'(Q) is closed with respect to the differentiation opera-
tion (in the sense of distributions), that is each distribution is differentiable in-
finitely many times and its distributional derivatives are themselves distributions.

Property 2.2. Differentiation in 2'(Q2) is a continuous operation, in the sense
that if T, — T for n — oo, then it also results that D*T,, — D*T for n — oo,
7'(Q) 7'(Q)

for each multi-index cx.

20 2 Elements of functional analysis

We finally note that differentiation in the sense of distributions is an extension
of the classical differentiation of functions. Indeed, if a function f is differentiable
with continuity (in classical sense) on £2, then the derivative of the distribution T
corresponding to f coincides with the distribution 7 corresponding to the classical
derivative f’ of f (see Exercise 7).

We will invariably identify a function f of L?() with the corresponding distribu-
tion 7 of 2'(Q), writing f in place of Ty. Similarly, when we talk about derivatives,
we will always refer to the latter in the sense of distributions.

2.4 Sobolev spaces

In Sect. 2.3.1 we have noted that the functions of L?(£) are particular distributions.
However, this does not guarantee that their derivatives (in the sense of distributions)
are still functions of L?(£2), as shown in the following example.

Example 2.4. Let Q C R and let [a,b] C Q. Then, the characteristic function of the
interval [a,b] (see Example 2.2) belongs to L?(£2), while its distributional derivative
dX(a.p)/dx = 84 — &) (see Example 2.3) does not. |

It is therefore reasonable to introduce the following spaces:

Definition 2.12. Let Q be an open set of R" and k be a positive integer. We call
Sobolev space of order k on Q the space formed by the totality of functions of
L?(Q) whose (distributional) derivatives up to order k belong to L*(Q):

HYQ)={f e *(Q):D*f € [*(Q) Ve : |a| <k}

It follows, obviously, that H**!(Q) c H*(Q) for each k > 0 and this inclusion is
continuous. The space L?(£) is sometimes denoted by H’().

The Sobolev spaces H*() are Hilbert spaces with respect to the following scalar
product

(ron= Y [0°nD°gae.

‘a‘SkQ

from which descend the norms

1Fle =l = VP = | & [@°pPae. @1
‘O“Sk_Q
Finally, we define the seminorms

|f|k=|f|Hk<g>=J Y [werrae.

‘a‘:kg

2.4 Sobolev spaces 21

so that (2.11) becomes

k
||f||Hk(_Q) = Z |f|124m(9)~
m=0

Example 2.5. If n = 1 and k = 1 we have:

(fon = (F@ua = [fed@+ [fg de:
Q Q

(ralk

ey = | [£2d@+ [d@ = \JIf 2 g+ 1R g
Q Q

Il = flae ZJ/(f/)z dQ =|f"l20) [
)

2.4.1 Regularity of the spaces H*(Q)

We now want to relate the fact that a function belongs to a space H*(Q) with its
continuity properties.

Example 2.6. Let Q = B(0,1) C R? be the ball centered at the origin and of radius 1.

Then the function .

1

2 2
\/x1+x2

belongs to H!(2) when 0 < k < 1/2, see Fig. 2.2 (right). It develops a singularity at
the origin and therefore it is neither continuous nor bounded. A similar conclusion can
be drawn for

f(x1,x2) = |In (2.12)

fx1,x) =In(=In(x] +23)),
this time with Q = B(0,1/2) C R2. [
Not all of the functions of H' () are therefore continuous if £ is an open set of
R? (or R%). In general, the following result holds:

Property 2.3. If Q is an open set of R", n > 1, provided with a “sufficiently
regular” boundary, then

HA(Q) C C"(Q) ifk>m+ ’;

In particular, in one spatial dimension (n = 1), the functions of H! () are contin-
uous (they are indeed absolutely continuous, see [SalO8] and [Bre86]), while in two
or three dimensions they are not necessarily so. Instead, the functions of H>(Q) are
always continuous forn = 1,2, 3.

22 2 Elements of functional analysis
2.4.2 The space H}(Q)

If Q is bounded, the space Z(£) is not dense in H' (). We can then give the follow-
ing definition:

Definition 2.13. We denote by H},(Q) the closure of 2(2) in H'(Q).

The functions of Hj(£2) enjoy the following properties:

Property 2.4 (Poincaré inequality). Ler Q be a bounded set in R"; then there
exists a constant Cg such that

V2 < Calvim@qy W e€HH(R). (2.13)

Proof. Q being bounded, we can always find a sphere Sp = {x: [x — g| < D} with
centre g and radius D > 0, containing Q. Since Z(£) is dense in H)(Q2) it is sufficient
to prove the inequality for a function u € 2(Q). (In the general case where v € H}(22)
it will suffice to build a sequence u; € 2(Q), i =1,2,... converging to v in the norm
of H'(£), apply the inequality to the terms of the sequence and pass to the limit.)
Integrating by parts and exploiting the fact that div(x — g) = n,

sy =n" [n-lu(Pae =" [(x—g)-V(u(0)ae

=—2n"" /Q(X—g) [u(x)Vu(x)]dQ < 207 |x — glli=(o) lull 2 () 1l)

<2n7 ' Dlull2 (o) 4l g)- ¢
As an immediate consequence, we have that:

Property 2.5. The seminorm |v|y q) is a norm on the space H)(Q) that turns
out to be equivalent to the norm ||v||g1(q).

Proof. We recall that two norms, || - || and |||
two positive constants c¢; and ¢;, such that

cl[Vl[l < vl < eaf [WII] W eV.

, are said to be equivalent if there exist

As |v|; = \/| v|? +|v||3 it is evident that | v [; < ||v||;. Conversely, exploiting Prop-
erty 2.4,
Il =1 v B +HIVIR < IV +CE v <Ca v,

from which we deduce the equivalence of the two norms. o

In a similar way, we define the spaces H () as the closure of 2(Q) in H¥(Q).

2.4 Sobolev spaces 23

2.4.3 Trace operators

Let Q be a domain of R”. By that we mean:

an open bounded interval if n = 1;

an open bounded connected set, with a sufficiently regular boundary 0Q. For in-
stance, a polygon if n = 2 (i.e. a domain whose boundary is a finite union of
segments), or a polyhedron if n = 3 (i.e. a domain whose boundary is a finite
union of polygons).

Let v be an element of H'(Q): the remarks formulated in Sect. 2.4.1 show that it
is not simple to define the “value” of v on the boundary of €2, a value that we will call
the trace of v on dQ. We exploit the following result:

Theorem 2.3. Let 2 be a domain of R" provided with a “sufficiently regular”
boundary 02, and let k > 1. There exists one and only one linear and continuous
application

1 : H¥(Q) — L2(9Q)

such that v = v|y0, Y € H*NCY(Q); yv is called trace of v on dQ. The
continuity of Yy implies that there exists a constant C > 0 such that

1ovliL2ry < ClIvllpx(a)-

The result still holds if we consider the trace operator yr : H*(Q) — L2(I") where
I" is a sufficiently regular portion of the boundary of £ with positive measure.

Owing to this result, Dirichlet boundary conditions make sense when seeking solu-
tions v in H¥(Q), with k > 1, provided we interpret the boundary value in the sense of
the trace.

Remark 2.1. The trace operator ¥ is not surjective on L?(I"). In particular, the set
of functions of L2(I") which are traces of functions of H!(£) constitutes a subspace
of L>(I") denoted by H'/?(I") and characterized by intermediate regularity properties
between those of L?(I") and those of H'(I"). More generally, for every k > 1 there
exists a unique linear and continuous application }, : H*(Q) — H*~1/2(I") such that
YoV = V|, for each v € HY(Q)NCY(Q). .

The trace operators allow for an interesting characterization of the previously de-
fined space H(')(.Q). Indeed, we have the following property:

Property 2.6. Let Q be a domain of R" provided with a sufficiently regular
boundary dQ and let Y be the trace operator from H' () in L?(dQ). Then

H)(2) = Ker(p) = {ve H'(Q) : v =0}

24 2 Elements of functional analysis

In other words, Hj(2) is formed by the functions of H!(£) having null trace on
the boundary.

2.5 The spaces L*(Q) and L?(Q), with 1 < p < e

The space L?(£2) can be generalized in the following way: for each real number p with
1 < p < o we can define the following space of (equivalence classes of) measurable
functions

LP(Q) = {v: @ s R such that /|v(x)|” dQ < o},
Q

whose norm is given by
1/p

@) = | [peorae
Q

Furthermore, we define the space
L},.(2)={f:Q — Rsuchthat f|x € L'(K) for each compact set K C Q}.

If 1 < p < oo, then Z(L2) is dense in L7 (R2).
In the case where p = oo, we define L () to be the space of functions that are bounded
a.e. in . Its norm is defined as follows

V=) = inf{CeR: [v(x)| <C, ae.in Q} (2.14)

sup{|v(x)|, a.e. in Q}. (2.15)

For 1 < p < o, the spaces LP(Q2), provided with the norm || - ||Lp(Q), are Banach
spaces.

We recall the Héolder inequality: given v € LP(Q) and w € LY (Q) with 1 <p <
and 113 + [f, =1, then vw € L' (Q) and

J1v00 wix)ld < i@ Il g 216
Q

The index p’ is called conjugate of p.

If I < p < oo, then LP(2) is a reflexive space: this means that any linear and continu-
ous form @ : L”(£2) — R can be identified to an element of L”' (), i.e. there exists a
unique g € LY () such that

o(f) = [fex) a2 v feL(Q)
Q

2.6 Adjoint operators of a linear operator 25
If p =2, then p’ = 2, so the Holder inequality becomes
(wi2i9) < V2 IWlliag) Vv weL(Q). (2.17)

As such, it is known as Cauchy-Schwarz inequality. Moreover, the following inequal-
ity holds
||VW||L2(_Q) < ||VHL4(Q)||W||L4(Q) Yvwe L4(-Q)- (2.18)

If @ C R" is a bounded domain, for 1 < p < g < oo we have
LI(Q)cL’(Q)cL'(Q)cL.(Q).
If Q is unbounded, we always have
LP(Q)CL),(2) Yp>1.

Moreover, if Q C R” and for n > 1 the boundary 92 is polygonal (more generally, it
is Lipschitz continuous), we have the following continuous inclusions:

if0<2s<n then H*(Q) C LY(Q) Vg such that 1 < g < g¢* with ¢* = 2n/(n—2s);
if2s=n then H*(Q) C LY(Q) Vg such that 1 < g < oo}

if 25 > n then H'(Q) c C°(Q). (2.19)

Finally, we introduce the Sobolev space Wk’l’(.Q), with k a non-negative integer and
1 < p < o, as the space of functions v € LP () such that all the distributional deriva-
tives of v of order up to k are in LP(Q).

WhP(Q)={veLP(Q) : D*v e LF(Q)
for each non-negative multi-index ¢ such that |ae| < k}.
For 1 < p < oo this is a Banach space with norm
1/p
Mwtriay = 10%q))
|oe|<k

Its seminorm |v|Wk,1,(Q) is defined similarly, provided we sum over multi-integers o
such that |a| = k.
Note that, for k = 0, W*?(Q) = LP(Q) and that, for p =2, Wk?(Q) = H¥(Q).

2.6 Adjoint operators of a linear operator

Let X and Y be two Banach spaces and .Z(X,Y) be the space of linear and bounded
operators from X to Y. Given L € #(X,Y), the adjoint (or coniugate) operator of L
is the operator L’ : Y’ — X’ defined by

x(L'f,x)x = y{f,Lx)y VfeY xeX. (2.20)

26 2 Elements of functional analysis

L is alinear and bounded operator between Y’ and X', thatis L' € Z(Y’, X’), moreover

L'l (v xy = ILI 2 (x.y), Where we have set
Lx|y
Ll 2xy) = sup Iy (2.21)
or [l x

In the case where X and Y are two Hilbert spaces, an additional adjoint operator,
LT .Y = X, called transpose of L, can be introduced. It is defined by

(L"y,x)x = (v,Lx)y VxeX,yeY. (2.22)

Here, (-,-)x denotes the scalar product of X, while (-,-)y denotes the scalar product of
Y. The above definition can be explained as follows: for any given element y € Y, the
real-valued function x — (y, Lx)y is linear and continuous, hence it defines an element
of X’. By Riesz’s theorem (Theorem 2.1) there exists an element x of X, which we
name L7y, that satisfies (2.22). Such operator belongs to .Z (Y, X) (that is, it is linear
and bounded from Y to X) and moreover

IL" | 2vx) = ILILz(x.y)- (2.23)

Thus, in the case where X and Y are two Hilbert spaces, we have two notions of adjoint
operator, L’ and LT . The relationship between the two operators is

AxLT = LAy, (2.24)

Ax and Ay being Riesz’s canonical isomorphisms from X to X’ and from Y to Y’,
respectively (see (2.5)). Indeed, Vx € X,y € Y,

x(AxL"y,x)x = (L"y,x)x = (v,Lx)y = y/(Ayy,Lx)y = yx/(L'Ayy,x)x .

The identity (2.24) can be equivalently expressed by stating that the diagramme in
Fig. 2.3 is commutative.

L

LT
X - Y

Ax Ay

X' v Y’
B e

Fig. 2.3. The adjoint operators LT and L’ of the operator L

2.7 Spaces of time-dependent functions 27

2.7 Spaces of time-dependent functions

When considering space-time functions v(x,#),x € Q CR",n > 1,1 € (0,T), T > 0,
it is natural to introduce the functional space

L1(0,T; WhP(Q)) =
T

v:(0,T) — WkP(Q)such that v is measurable and /”v(t)llgvk,p(g)dt < ooy,

0
(2.25)

where k > 0 is a non-negative integer, 1 < g < oo, 1 < p < oo, endowed with the norm

1/q

T
ooy = | [IVOT@dr] (226)
0

For every ¢ € (0,T) we have used the shorthand notation v(z) to indicate the function:
v(t) : Q =R, v(t)(x) = v(x,1) VxE€ Q. (2.27)

The spaces L=(0,T : WkP(Q)) and CO([0, T]; WP (Q)) are defined in a similar way.
When dealing with time-dependent initial-boundary value problems, the following
result can be useful to derive a-priori estimates and stability inequalities.

Lemma 2.2 (Gronwall). LerA € L! (t0,T) be a non-negative function, ¢ a con-
tinuous function on [ty, T].

i) If g is non-decreasing and @ is such that

() <g)+ [A(D)o(ndr Vi€ [i,T], (2.28)
fo
then
t
(1) < g(t)exp /A(T)df Vit € [10,T)- (2.29)
fo

ii) If g is a non-negative constant and ¢ a non-negative function such that
t
() < g+ [A@o(dr Vieln,T], (2.30)
)

then

0(1) < g + ;/A(r)dr Vit € [to,T]. 2.31)
fo

28 2 Elements of functional analysis

A discrete counterpart of this lemma, useful when dealing with fully discrete (in space
and time) approximations of initial-boundary value problems, is the following

Lemma 2.3 (discrete Gronwall lemma). Assume that k, is a non-negative se-
quence, and that the sequence @, satisfies

n—1 n—1
00 <80, Pu<g0+ Y. Pm+t Y knQu, n>1 (2.32)
m=0 m=0
If go > 0 and p,, > 0 for m > 0, then
n—1 n—1
On < (20+ Y, pm)exp(Y km), n>1. (2.33)
m=0 m=0

For the proof of these two lemmas, see, e.g., [QV94, Chap. 1].

2.8 Exercises

1. Let Q2 = (0,1) and, for a > 0, f(x) = x~%. For which o do we have f € L?(Q),
1 < p < o ?1s there an o > 0 for which f € L*=(Q) ?

2. Let Q = (0,) and f(x) = ,. Show that f € L'(Q).

I
x(Inx)
3. Prove for which o € R we have that f € L} (0,1), with f(x) = x~¢.

loc

4. LetucL] (Q).Define T, € 2'(Q) as follows

loc
T 0) = [o(u(x) 42 Vo e 7(Q).
Q

Verify that 7, is indeed a distribution and that the application u — T}, is injective.
We can therefore identify u with 7,, and conclude by observing that L}UC(Q) -
D'(Q).

5. Show that the function defined as follows:

flx) =/ Difx e (—1,1)
f(x) =0if x €] — oo, —1]U[1,4o0]

belongs to Z(R).

2.8 Exercises 29

6. Prove that for the function f defined in (2.12) we have

r

-
1
||f||12{1 @) = 2717/|10gs|2ks ds+27rk2/s |logs|*~2 ds,
0 0

hence f belongs to H!(Q) for every 0 < k <).

7. Let @ € C'(—1,1). Show that the derivative ‘2? computed in the classical sense is

equal to izf computed in the sense of distributions, after observing that C(—1,1) C
Ll (-1,1)Cc 2'(-1,1).

loc
8. Prove that if Q = (a,b) the Poincaré inequality (2.13) holds with Co = (b —
a)/V2.

[Solution: observe that the Cauchy-Schwarz inequality implies

. . 12 4 . 1/2
v(x) = /v’(t)dtg / W (0)2dt / | < Va—all g,

a a

whence

b
112 0y < 1320 [6 @)

Chapter 3
Elliptic equations

This chapter is devoted to the introduction of elliptic problems and to their weak for-
mulation. Although our introduction is quite basic, the complete novice to functional
analysis is invited to consult Chapter 2 before reading it.

For the sake of simplicity, we will focus primarily on one-dimensional and two-
dimensional problems. However, the generalization to three-dimensional problems is
(almost always) straightforward.

3.1 An elliptic problem example: the Poisson equation

Consider a domain 2 C R, i.e. an open bounded and connected set, and let dQ be
its boundary. We denote by x the spatial variable pair (x,x;). The problem under
examination is

“Au=f inQ, 3.1)

where f = f(x) is a given function and the symbol A denotes the Laplacian opera-
tor (1.6) in two dimensions. (3.1) is an elliptic, linear, non-homogeneous (if f # 0)
second-order equation. We call (3.1) the strong formulation of the Poisson equation.
We also recall that, in the case where f = 0, equation (3.1) is known as the Laplace
equation.

Physically, u can represent the vertical displacement of an elastic membrane due to
the application of a force with intensity equal to f, or the electric potential distribution
due to an electric charge with density f.

To obtain a unique solution, suitable boundary conditions must be added to (3.1),
that is we need information about the behaviour of the solution « at the domain bound-
ary dQ. For instance, the value of the displacement « on the boundary can be assigned

u=g onoQ, (3.2)

where g is a given function, and in such case we will talk about a Dirichlet problem.
The case where g = 0 is said to be homogeneous.

© Springer International Publishing AG 2017 31
A. Quarteroni, Numerical Models for Differential Problems, MS&A 16,
DOI 10.1007/978-3-319-49316-9 3

32 3 Elliptic equations

Alternatively, the value of the normal derivative of u can be imposed

Vu-n= Ju =h ondQ,
dan

n being the outward unit normal vector on d€2 and % an assigned function. The as-
sociated problem is called a Neumann problem and corresponds, in the case of the
membrane problem, to imposing the traction at the boundary of the membrane itself.

Once again, the case & = 0 is said to be homogeneous.
Finally, different types of conditions can be assigned to different portions of the
boundary of the computational domain Q. For instance, supposing that dQ = I, UTy

with 12 pN 12 ~ = 0, the following conditions can be imposed:
u=g on Ip,

0
aZ =h only.

The notation 12 has been used to indicate the interior of I". In such a case, the associ-
ated problem is said to be mixed.

Also in the case of homogeneous Dirichlet problems where f is a continuous func-
tion in 2 (the closure of €2), it is not guaranteed that problem (3.1), (3.2) admits a
regular solution. For instance, if Q = (0,1) x (0,1) and f = 1, u may not belong to
the space Cz(.Q). Indeed, if it were so, we would have

d’u d%u

—Au(0,0)= -2 %0,0)- 2 %0,0)=0,
(0.0 =3 50,0~ 50.0)
as the boundary conditions would imply that u(x;,0) = u(0,x,) = 0 for all x;, x,

belonging to [0, 1]. Hence u could not satisfy equation (3.1), that is
—Au=1 1in(0,1)x(0,1).

What can be learned from this counterexample is that, even if f € C°(£), it makes no
sense in general to look for a solution u € CZ(.Q) to problem (3.1), (3.2), while one
has greater probabilities to find a solution u € C?(2)NC°(Q) (a larger space than
C2(Q)).

We are therefore interested in finding an alternative formulation to the strong one,
also because, as we will see in the following section, the latter does not allow the
treatment of some physically significant cases. For instance, it is not guaranteed that,
in the presence of non-smooth data, the physical solution lies in the space C*(2) N
C%(£), and not even that it lies in C' (Q) NC(Q).

3.2 The Poisson problem in the one-dimensional case

Our first step is the introduction of the weak formulation of a simple boundary-value
problem in one dimension.

3.2 The Poisson problem in the one-dimensional case 33

3.2.1 Homogeneous Dirichlet problem

Let us consider the homogeneous Dirichlet problem in the one-dimensional interval
Q=(0,1)
—u'(x)=f(x), 0<x<1,
(x) = f(x) 3.3)
u(0) =0, u(1)=0.

This problem governs, for instance, the equilibrium configuration of an elastic string
with tension equal to one, fixed at the endpoints, in a small displacement configuration
and subject to a transversal force with intensity f. The overall force acting on the
section (0,x) of the string is

Flx) = /0 " (o)t

The function u describes the vertical displacement of the string relative to the resting
position u = 0.

The strong formulation (3.3) is in general inadequate. If we consider, for instance,
the case where the elastic string is subject to a charge concentrated in one or more
points (in such case f can be represented via Dirac distributions), the physical solution
exists and is continuous, but not differentiable. Fig. 3.1 shows the case of a unit charge
concentrated only in the point x = 0.5 (left) and in the two points x = 0.4 and x = 0.6
(right). These functions cannot be solutions of (3.3), as the latter would require the

1 0 0.4
1

\
—
4’7
-9 o
()]
=
\
\
—
4’7
-y
-—e°
=
\J

—0.25 oY 1 0.4 -

Fig. 3.1. We display on the left the equilibrium configuration of the string corresponding to the
unit charge concentrated in x = 0.5, represented in the upper part of the figure. On the right
we display the one corresponding to two unit charges concentrated in x = 0.4 and x = 0.6, also
represented in the upper part of the figure

34 3 Elliptic equations

—0.01+ \ u(x) :
—0.02+ ‘
—0.03+
—0.041
—0.05,

Fig. 3.2. Displacement relative to the discontinuous charge represented in the upper part of the
figure

solution to have a continuous second derivative. Similar considerations hold in the
case where f is a piecewise constant function. For instance, in the case represented
in Fig. 3.2 of a null load, except for the interval [0.4,0.6] where it is equal to —1, the
analytical solution is only of class C! ([0, 1]), since it is given by

10" forx € [0,0.4],
i, 1 2
u(x) = T 2x+)5 for x € [0.4,0.6],
1

710(17x) forx € [0.6,1].

A formulation of the problem alternative to the strong one is therefore necessary to
allow reducing the order of the derivation required for the unknown solution u. We
move from a second-order differential problem to a first-order one in integral form,
which is called the weak formulation of the differential problem.

To this end, we operate a sequence of formal transformations of (3.3), without
worrying at this stage whether all the operations appearing in it are allowed. We start
by multiplying equation (3.3) by a (so far arbitrary) test function v and integrating on
the interval (0, 1),

1 1

—u'v=frv = —/u”vdx:/fvdx.

0 0

3.2 The Poisson problem in the one-dimensional case 35

We integrate by parts the first integral, with the purpose of eliminating the second
derivative, in order to impose a lower regularity on the solution. We find

1 1

—/u”v dx = /u/v/ dx— [u'v]}.

0 0

Since u is known at the boundary, we can consider only test functions which vanish at
the endpoints of the interval, hence the contribution of the boundary terms vanishes.
In this way, the equation becomes

1 1

/ WV dx = / fvdx. (3.4)

0 0

The test function space V must therefore be such that if v € V then v(0) = v(1) = 0.
Note that the solution u, being null at the boundary and having the same requirements
of regularity as the test functions, will also be sought in the same space V.

There remains to specify the regularity requirements which must be satisfied by
the space V, so that all the operations introduced make sense. Evidently, if u and
v belonged to C'([0,1]), we would have «’,v' € C([0,1]) and therefore the integral
appearing in the left-hand side of (3.4) would make sense. However, the examples in
Fig. 3.1 tell us that the physical solutions might not be continuously differentiable: we
must therefore require a lower regularity. Moreover, even when f € C°([0, 1]), there is
no garantee that the problem admits solutions in the space

vV ={vecl(0,1]):v(0) = v(1) = 0}. (3.5)
As a matter of fact, when provided with the scalar product

1

[u,v], = /u'v’abc7 (3.6)

0

this space is not complete, that is, not all of the Cauchy sequences with values in
V converge to an element of V. (Verify as an exercise that (3.6) is indeed a scalar
product.)

Let us then proceed as follows. We recall the definition of the spaces L? of func-
tions whose p-th power is Lebesgue integrable. For 1 < p < oo, these are defined as
follows (see Sect. 2.5):

1 1/p
L7(0,1)={v:(0,1) = R such that [|v|Lr,1)= (/ [v(x)|P dx) < oo}
0

For the integral fol u'v' dx to be well defined, the minimum requirement on «’ and V' is
that the product «’v' lies in L' (0, 1). To this end, the following property holds:

36 3 Elliptic equations

Property 3.1. Given two functions @, y : (0,1) — R, if ¢, w? are integrable
then QV is integrable, that is, equivalently,

¢, yeLl?(0,1) = oyelL'(0,1).

This result is a direct consequence of the Cauchy-Schwarz inequality (2.17):

1

[oewx) dx| < 9l Wl 37
0

where
ol = J JEERE (38)
Q

is the norm of ¢ in L*(0,1) . Since [[@l|;2(0.1), ¥l 2(0.1) < o by hypothesis, this
proves that there also exists a (finite) integral of Q.

In order for the integrals appearing in (3.4) to make sense, functions, as well as their
derivatives, must be square integrable. We therefore define the Sobolev space

H'(0,1)={v€L*0,1):v € L*(0,1)}.

The derivative must be interpreted in the sense of distributions (see Sect. 2.3). We then
choose as V the following subspace of H' (0, 1),

H)(0,1)={v € H'(0,1) : v(0) = v(1) = 0},

constituted by the functions of H!(0, 1) that are null at the endpoints of the interval. If
we suppose f € L?(0, 1), the integral on the right-hand side of (3.4) also makes sense.
Problem (3.3) is then reduced to the following problem

1 1
findu eV =H.(0,1): /u'v'dx:/fvdx wev. (3.9)
0 0

Remark 3.1. The space H(l) (0, 1) is the closure, with respect to the scalar product (3.6),
of the space defined in (3.5).

The functions of H' (0, 1) are not necessarily differentiable in a traditional sense, that
is H'(0,1) ¢ C'(]0,1]). For instance, functions that are piecewise continuous on a
partition of the interval (0, 1) with derivatives that do not match at all endpoints of
the partition belong to H'(0, 1) but not to C'([0,1]). Hence, also continuous but not
differentiable solutions of the previous examples are considered. °

3.2 The Poisson problem in the one-dimensional case 37

The weak problem (3.9) turns out to be equivalent to a variational problem, due to
the following result:

Theorem 3.1. The problem

finducV: 1]] (3.10)
I)=, [)7 dx— / G
0 0

is equivalent to problem (3.9), in the sense that u is a solution of (3.9) if and only
if u is a solution of (3.10).

Proof. Suppose that u is a solution of the variational problem (3.10). Then, setting
v=u-+ 6w, with 6 € R, we have that

J(u) <J(u+0ow) VYwev.

The function y(8) = J(u+ 6w) is a quadratic function in 6 with minimum reached
for 6 = 0. Thus,

dJ(u+ ow)

o = =0.
v'(9) 5=0 26 5=0
From the definition of derivative we have
dJ(u+ ow) — bm J(u+ow)—J(u) Vw €V
26 6—0 1)

Let us consider the term J(u + dw):

1 1

Ju+dw) = ;/[(u+6w)’]2dxf/f(u+6w)dx
0 0
1

1 1
= ;/[u/2+52w/2+25u/w’] dx—/fu dx—/fSw dx
0 0

0
| 1 1
= J(u)+2/[52w'2+25u'w'] dx—/fSw dx.
0 0

Hence,

1

1
/5w +2u'w'] dx — /fwdx.
0

0

(u+5w

38 3 Elliptic equations

Passing to the limit for § — 0 and setting to 0, we obtain
1 1
/u/w’dx—/fwdx:o YwevV,
0 0
that is, u satisfies the weak problem (3.9).
Conversely, if u is a solution of (3.9), by setting v = 0w, we have in particular that
1 1
/M/SW/ dx — /f5w dx=0
0 0
and therefore
1 1
J(u+ow) = ;/[(u—&— Sw)']? dx—/f(u+ ow) dx
0 0

1 1 1 1 1
1 1
= 2/l/l/2dX7/fI/ldx+/I/l16W/dX7/f6de+2/62W12dx
0 0 0 0 0

1
—)+ ; / 52w/ dx.
0
Since
1
;/52w'2dx20 VwevV, Vs eR,
0

we deduce that
Ju)<J(v) Wvey,

that is u also satisfies the variational problem (3.10). o

Remark 3.2 (Principle of virtual work). Let us consider again the problem of
studying the configuration assumed by a string fixed at the endpoints and subject to
a forcing term of intensity f, described by equation (3.3). We indicate with v an ad-
missible displacement of the string (that is a null displacement at the endpoints) from
the equilibrium position u. Equation (3.9), expressing the equality between the work
performed by the internal forces and by the external forces in correspondence to the
displacement v, is nothing but the principle of virtual work of mechanics. Moreover, as
in our case there exists a potential (indeed, J(w) defined in (3.10) expresses the global
potential energy corresponding to the configuration w of the system), the principle of
virtual work establishes that any displacement allowed by the equilibrium configura-
tion causes an increment of the system’s potential energy. In this sense, Theorem 3.1
states that the weak solution is also the one minimizing the potential energy. °

3.2 The Poisson problem in the one-dimensional case 39
3.2.2 Non-homogeneous Dirichlet problem

In the non-homogeneous case the boundary conditions in (3.3) are replaced by
u(0) =go, u(l)=gu,

go and g being two assigned values.

We can reduce to the homogeneous case by noticing that if u is a solution of the
non-homogeneous problem, then the function 1= u — [(1—x)go+xg1] is a solution of
the corresponding homogeneous problem (3.3). The function Ry = (1 —x)go +xg; is
said lifting (or extension, or prolongation) of the boundary data.

3.2.3 Neumann Problem

Let us now consider the following Neumann problem

—u"+ou=f 0<x<l,
u'(O) :/’l(), u'(l) :/’l],

o being a positive function and A, i two real numbers. We observe that in the case
where o = 0 the solution of this problem would not be unique, being defined up to an
additive constant. By applying the same procedure followed in the case of the Dirichlet
problem, that is by multiplying the equation by a test function v, integrating on the
interval (0, 1) and applying the formula of integration by parts, we get the equation

1

/u/v’dx—i-/cmvdx— uv /fvdx

0

Let us suppose f € L?(0,1) and o € L™(0, 1), that is that & is a bounded function
almost everywhere (a.e.) on (0, 1) (see (2.14)). The boundary term is known from the
Neumann conditions. On the other hand, the unknown u is not known at the boundary
in this case, hence it must not be required that v is null at the boundary. The weak
formulation of the Neumann problem is therefore: find u € H'(0,1) such that

1
/u/v/ dx+/6uvdx:/fv dx+hyv(1) —hov(0) Vv eHY(0,1). (3.11)
0

In the homogeneous case hy = h; = 0, the weak problem is characterized by the
same equation as the Dirichlet case, but the space V of test functions is now H'(0,1)
instead of H}(0, 1).

3.2.4 Mixed homogeneous problem

Analogous considerations hold for the mixed homogeneous problem, that is when we
have a homogeneous Dirichlet condition at one endpoint and a homogeneous Neu-

40 3 Elliptic equations

mann condition at the other,

o _
{uu +ou=f, 0<x<l, (3.12)

(0) =0, W(1) =0.

In such case it must be required that the test functions are null in x = 0. Setting Ip =
{0} and defining

Hf, (0,1)={veH'(0,1): v(0) =0},
the weak formulation of problem (3.12) is: find u € HII—D (0,1) such that

1

1 1
/u'v’ der/Guvdx:/fvdx VVGHIFD(O,l),
0 0

0

with f € L?(0,1) and ¢ € L=(0,1). The formulation is once again the same as in
the homogeneous Dirichlet problem, however the space where to find the solution
changes.

3.2.5 Mixed (or Robin) boundary conditions

Finally, consider the following problem

u(0) =0, W' (1) + yu(l) =

where ¥ > 0 and r are two assigned constants.

Also in this case, we will use test functions that are null at x = 0, the value of u
being thereby known. As opposed to the Neumann case, the boundary term for x = 1,
deriving from the integration by parts, no longer provides a known quantity, but a term
proportional to the unknown u. As a matter of fact, we have

—[u'v](l) = —rv(1)+yu(1)v(1).

The weak formulation is therefore: find u € H'FD (0,1) such that

{ —u'+ou=f 0<x<l,

1

/ der/Guv dx+yu(1 /fv dx+rv(1) VVGH}D(O,l).
0

A boundary condition that is a linear combination between the value of u and the
value of its first derivative is called Robin (or Newton, or third-type) condition.
3.3 The Poisson problem in the two-dimensional case

In this section, we consider the boundary-value problems associated to the Poisson
equation in the two-dimensional case.

3.3 The Poisson problem in the two-dimensional case 41

3.3.1 The homogeneous Dirichlet problem

The problem consists in finding « such that

{ —Au=f inQ,

3.13
u=0 ondQ, ()

where Q C R? is a bounded domain with boundary 9. We proceed in a similar way
as for the one-dimensional case. By multiplying the differential equation in (3.13) by
an arbitrary function v and integrating on 2, we find

—/Auvd.Q:/fvd.Q.
Q Q

At this point, it is necessary to apply the multi-dimensional analogue of the one-dimen-
sional formula of integration by parts. This can be obtained by applying the divergence
(Gauss) theorem by which

/div(a) 4Q = /a-ndy, (3.14)
Q0 0Q

a(x) = (a;(x),a2(x))7 being a sufficiently regular vector-valued function and n(x) =
(n1(x),n2(x))T the outward unit normal vector on 9. If we apply (3.14) first to the
function a = (@y,0)7 and then to a = (0, y)”, we get the relations

29 Iy .
/ax,»"'m:*/‘pax,» dﬂ+/¢wnid% i=12. (3.15)
Q0 Q 0Q

Note also that if we take a = b, where b and ¢ are respectively a vector and a scalar
field, then (3.14) yields

/(pdwbd.Q = /b VodQ + /b nody (3.16)
Q 9Q

which is called Green formula for the divergence operator.
We exploit (3.15) by keeping into account the fact that Au = divVu = Z?zl a‘i, (g)’:)
Supposing that all the integrals make sense, we find

L5, (5r)as

2 du dv 2 du
igi /8xi 8xi a2 - Z / 8x,~ Vi d’)/
Q0 Q

—/Auvd.Q

42 3 Elliptic equations

We obtain the following relation, called Green formula for the Laplacian
du
—/Auvd.Qz/Vu-Vvd.Q—/a vdy. (3.17)
n
Q Q EYe)

Similarly to the one-dimensional case, the homogeneous Dirichlet problem will lead
us to choose test functions that vanish at the boundary, and, consequently, the bound-
ary term that appears in (3.17) will in turn vanish.

Taking this into account, we get the following weak formulation for problem (3.13)

findu € H)(Q): /Vu-Vvd.Q :/fvd.Q W e HY(Q), (3.18)
Q Q

f being a function of L?(£2) and having set

H!(Q)={v: Q—Rsuchthatv € L>(Q),

v 5 o
o er¥@), i-1.2),

H)(Q)={veH'(Q): v=00n0Q}.

The derivatives must be understood in the sense of distributions and the condition
v =0 on dQ in the sense of the traces (see Chap. 2).

In particular, we observe that if u,v € H}(2), then Vu, Vv € [L?(Q)]? and therefore
Vu-Vv € L1(Q). The latter property is obtained by applying the following inequality

L/Vu-Vde < | Vull g [V l2(e,
Q0

a direct consequence of the Cauchy-Schwarz inequality (2.17).

Hence, the integral appearing in the left side of (3.18) is perfectly meaningful, and
so is the one appearing at the right.

Similarly to the one-dimensional case, it can be shown also in the two-dimensional
case that problem (3.18) is equivalent to the following variational problem

J(u) = Vlg‘gj(v), with
findueV: 1)
ﬂ@zz/WWdQ—/ﬁ%Q,

Q Q

having set V = H}(Q).
We can rewrite the weak formulation (3.18) in a more compact way by introducing
the following form

a:VxV—=R, a(u,v):/Vu-Vvd.Q (3.19)
Q

3.3 The Poisson problem in the two-dimensional case 43

and the following functional

F:V SR, F(v):/fvd.Q
Q

(functionals and forms are introduced in Chap. 2).
Problem (3.18) therefore becomes:

findueV: a(u,v)=Fk) WweV.

We notice that a(+,-) is a bilinear form (that is, linear in to both its arguments), while
F is a linear functional. Then

FWI< 2@ Vi) < Ifllizio) IV @)-

Consequently, F is also bounded. Following definition (2.2), its norm is bounded by
[Fllv: < [fll12(q)- Consequently, F belongs to V', the dual space of V, that is the set
of linear and continuous functionals defined on V (see Sect. 2.1).

3.3.2 Equivalence, in the sense of distributions, between weak and strong form
of the Dirichlet problem

We want to prove that the equations of problem (3.13) are actually satisfied by the
weak solution, albeit only in the sense of distributions.

To this end, we consider the weak formulation (3.18). Let 2(£2) now be the space of
functions that are infinitely differentiable and with compact supportin Q2 (see Chap. 2).
We recall that 2(Q2) C H)(Q). Hence, by choosing v = ¢ € () in (3.18), we have

/Vu~V(p d.Q:/f(p dQ Yoec 2(Q). (3.20)
Q Q
By applying Green’s formula (3.17) to the left-hand side of (3.20), we find

f/Au(pd.QJr/gZ(pdy:/f(pd.Q Yo € 2(Q),
Q0 00 Q0

where the integrals are to be understood via duality, that is:

*/AWP dQ = g10)(—Au,9)7q),
Q
du u
o ® V= @/(ag)<an,¢>@(ag)~
Pre

Since ¢ € (L), the boundary integral is null, so that

@) (~Au—f,0) 90 =0 Yo 2(Q),

44 3 Elliptic equations

which corresponds to saying that —Au — f is the null distribution, that is
—Au=f in2'(Q).

The differential equation (3.13) is therefore verified, as long as we intend the deriva-
tives in the sense of distributions and we interpret the equality between —Au and f not
in a pointwise sense, but in the sense of distributions (and thus almost everywhere in
). Finally, the fact that u vanishes on the boundary (in the sense of traces) is a direct
consequence of u being in Hj ().

3.3.3 The problem with mixed, non homogeneous conditions

The problem we want to solve is now the following

—Au=f inQ,

u=g onlp, 3.21)
0

a::d) on Iy,

where I, and Iy yield a partition of 9, that is I, UTy = 9, I'p NIy = 0 (see
Fig. 3.3).

In the case of the Neumann problem, where I, = 0, the data f and ¢ must verify
the following compatibility condition

—/¢ d7=/fd!2 (3.22)
202 Q

in order for the problem to have a solution. Condition (3.22) is deduced by integrating
the differential equation in (3.21) and applying the divergence theorem (3.14)

—/Aud.Q = —/div(Vu) dQ = — gu dy.
n
Q Q

0

Moreover, we observe that also in the case of the Neumann problem, the solution
is defined only up to an additive constant. In order to have uniqueness it would be
sufficient, for example, to find a function with null average in Q.

Let us now suppose that I # @ in order to ensure the uniqueness of the solution
to the strong problem without conditions of compatibility on the data. Let us also
suppose that f € L2(Q), g € H'/2(Ip) and ¢ € L?(I}y), having denoted by H'/2(I}p)
the space of functions of L?(I) that are traces of functions of H' (2) (see Sect. 2.4.3).

By Green’s formula (3.17) we obtain from (3.21)

/VwVvd.Q—/guvdy:/fvd.Q. (3.23)
n
Q Q Q

3.3 The Poisson problem in the two-dimensional case 45

Ip

Fig. 3.3. The computational domain 2

We recall that du/dn = ¢ on Iy, and by exploiting the additivity of integrals, (3.23)
becomes

/Vu-Vvd.Q—/zuvdy—/¢vdy:/fvd.(2. (3.24)
" Iy Q0

By forcing the test function v to vanish on Ip, the first boundary integral appearing in
(3.24) vanishes. The mixed problem therefore admits the following weak formulation

find ueV,: /Vu~Vvd.Q:/fvd.Q+/¢vd}/ Yvev, (3.25)
Q Q Iy

having denoted by V the space
V=Hp (Q)={veH (Q): vy =0}, (3.26)
and having set
Ve={ve H'(Q): vl =g

The formulation (3.25) is not satisfactory, not only because the choice of spaces is
“asymmetrical” (v € V, while u € V;), but mainly because Vj is an affine manifold, but
not a subspace of H!'(Q) (indeed, it is not true that linear combinations of elements
of V, are still elements of V).

We then proceed similarly to what we saw in Sect. 3.2.2. We suppose to know a
function Ry, called lifting of the boundary data, such that

1
R, cH (), R,lp, =3
Furthermore, we suppose that such lifting are continuous, i.e. that

3C> 0 Ryl () < Clglh oy Vs € HY2(T)

46 3 Elliptic equations

We set it = u— R, and we begin by observing that ulp, = ulp, — Rg|r;,=0, that is
ne H'FD (). Moreover, since Vu = Vi -+ VR,, problem (3.25) becomes

find u € H: (Q): a(u,v)=F(v) YveHL(Q), (3.27)

having defined the bilinear form a(-,-) as in (3.19), while the linear functional F now
takes the form

F(v)zgfvdﬂ—&—l{(pvdy—!VRg-Vde.

The problem is now symmetrical since the space where the (new) unknown solution
is sought coincides with the test function space.

The Dirichlet conditions are said to be essential as they are imposed explicitly in
the functional space in which the problem is set.

The Neumann conditions are instead said to be natural, as they are satisfied im-
plicitly by the solution of the problem (to this end, see Sect. 3.3.4). This difference in
treatment has important ripercussions on the approximate problems.

Remark 3.3. The reduction of the problem to a “symmetrical” form allows to obtain
a linear system with a symmetric matrix when solving the problem numerically (for
instance via the finite elements method). °

Remark 3.4. Building a lifting R, of a boundary function with an arbitrary form can
turn out to be problematic. Such task is simpler in the context of a numerical approxi-

mation, where one generally builds a lifting of an approximation of the function g (see
Chap. 4). °

3.3.4 Equivalence, in the sense of distributions, between weak and strong form
of the Neumann problem

Let us consider the nonhomogeneous Neumann problem

du (3.28)

—Au+ou=f inQ,
on dQ2,

8n:¢

where O is a positive constant or, more generally, a function 6 € L*(€Q) such that
o(x) > ap a.e. in Q, for a well-chosen constant o > 0. Let us also suppose that
f €L2(Q) and that ¢ € L?(9R). By proceeding as in Sect. 3.3.3, the following weak
formulation can be derived:

find u e HY(Q):
/Vu-Vvd.Q+/Guvd.Q:/fvd9+/¢vdy weH'(Q) (329
Q0 Q0 Q Q

3.3 The Poisson problem in the two-dimensional case 47
By taking v = ¢ € 2(£) and counterintegrating by parts, we obtain
7@)(~Autou—f,0)g0) =0 Voe2(Q).
Hence

—Aut+ou=f in2'(Q)

—Au+ou—f=0 ae.in Q. (3.30)

In the case where u € Cz(.Q) the application of Green’s formula (3.17) in (3.29) leads
to

/(—Au—&-cu—f)vd.()—i—/(gz —¢)v=0 YvecH{(Q),
Q 2Q

and therefore, by (3.30),

du
o= ¢ ondQ.

In the case where the solution u of (3.29) is only in H!(£2) the generalized Green
formula can be used, which states that there exists a unique linear and continuous
functional g € (H'/2(9Q))’ (called generalized normal derivative), which operates on
the space H'/2(dQ) and satisfies

/Vu~Vv dQ = (—Au)+ < g,v> WeH(Q).
Q

We have denoted by < -, - > the pairing between H' () and its dual, and by < -, - >
the pairing between H'/2(9Q) and its dual. Clearly g coincides with the classical
normal derivative of u if u has sufficient regularity. For the sake of simplicity we
use the notation du/dn for the generalized normal derivative in the remainder of this
chapter. We therefore obtain that for v € H! ()

(—Au+ou—f,v)+<du/dn—¢,v>=0;
using (3.30) we finally conclude that
<Ju/dn—¢,v>=0 WwecH (Q)

and thus that du/dn = ¢ a.e. on 0 Q.

48 3 Elliptic equations

3.4 More general elliptic problems

Let us now consider the problem

—div(uVu)+ou=f inQ,

u=g onlp, (3.31)
ﬂau:‘l’ OnFN7
on

where Ip UIy = dQ with ISD ﬁ]iN = 0. We will suppose that f € L>(Q), u,0 €
L (). Furthermore, we suppose that there is a o > 0 such that p(x) > py and
o(x) > 0 ae. in Q. Only in the case where 6 =0 we will require that I, is non-
empty in order to prevent the solution from losing uniqueness. Finally, we will suppose
that g and ¢ are sufficiently regular functions on d£, for instance g € H!/ 2(Ip) and
¢ € L*(Iy).

Also in this case, we proceed by multiplying the equation by a test function v and
by integrating (once again formally) on the domain Q:

/[—div(uVu) +oulvdQ = /fv Q.
Q Q
By applying Green’s formula we obtain

/uVu-Vde+/cude—/uguvdy:/fvd.(z,
n
Q0 Q0 Q Q

which can also be rewritten as
J J
/[.LVwVvd.QJr/Guvd.Qf/uauvdy:/fvd9+/uauvd}/.
n n
Q Q Ip Q Iy

The function pdu/dn is called conormal derivative of u associated to the operator
—div(uVu). On I'p we impose that the test function v is null, while on I'y we impose
that the conormal derivative is equal to ¢. We obtain

/uVu-Vvd.Q—i—/Guvd.Qz/fvd.Q—&—/(l)vd‘y.
Q Q Q Iy

Having denoted by R, a lifting of g, we set U=u— R,. The weak formulation of
problem (3.31) is therefore

find u GHIFD(.Q):
/wz‘i.vvdﬂ+/mivd9:/fvd9
Q0 Q Q

—/MVRg~Vvd.(2—/GRgdeJr/d)vd}’ Wy € H, (Q).
Q Q Iy

3.4 More general elliptic problems 49

We define the bilinear form

a:VxV—=R, a(u,v):/uVu-Vvd.Q—i—/Guvd.Q
Q Q

and the linear and continuous functional

F:V—=R, Fv)= —a(Rg,v)+/fde+/¢v dy. (3.32)
Q Iy

The previous problem can then be rewritten as
find u € H: (Q): a(u,v)=F(v) YveHL(Q). (3.33)

A yet more general problem than (3.31) is the following

Lu=f in Q,
u=g on Ip,
d

. =¢ only,
8nL

where, as usual, IpUIy = 0dQ, ISD ﬂ]S‘N = (), and having defined

2
Lu:—z J (au)+cm.

a; j
ij=1 8x,- ax j
The coefficients g;; are functions defined on £2. The derivative

du 2 u

anL = Z a,'j an n; (334)

is called conormal derivative of u associated to the operator L (it coincides with the
normal derivative when Lu = —Au).
Let us suppose that ¢(x) € L*(£2) and that there exists an 0 > 0 such that 6(x) > &g

a.e. in Q. Furthermore, let us suppose that the coefficients a;; : 2 — R are continuous
functions Vi, j = 1,2, and that there exists a positive constant @ such that

2 2
VE=(6,6)T eR? Y a;(x)&& > a) & aeinQ. (3.35)
ij=1 i=1

In such case, the weak formulation is still the same as (3.33), the functional F is still
the one introduced in (3.32), while

2
a(u,v):/ < Y ai aa:j g:l_ + cmv> Q. (3.36)

o \ij=1

50 3 Elliptic equations

It can be shown (see Exercise 2) that under the ellipticity hypothesis on the coefficients
(3.35), this bilinear form is continuous and coercive, in the sense of definitions (2.6)
and (2.9). These properties will be exploited in the analysis of the well-posedness of
problem (3.33) (see Sect. 3.4.1).

Elliptic problems for fourth-order operators are proposed in Exercises 4 and 6, while
an elliptic problem deriving from the linear elasticity theory is analyzed in Exercise 7.

Remark 3.5 (Robin conditions). The case where Robin boundary conditions are en-
forced on the whole boundary, say

uau+yu =0 ondQ,
on

requires more care. In this case the weak form of the problem reads

findu e H'(Q) : a(u,v):/fvd.Q Vv e H'(Q),
Q

where a(u,v) = [oUVu-VvdQ + [, yuvdQ2. This bilinear form is not coercive if
Y < 0. The analysis of this problem can be carried out e.g. by means of the Peetre-
Tartar lemma, see [EG04]. °

3.4.1 Existence and uniqueness theorem

The following fundamental result holds (refer to Sect. 2.1 for definitions):

Lemma 3.1 (Lax-Milgram). Let V be a Hilbert space, a(-,-) : VXV = R a
continuous and coercive bilinear form, F(-) : V. — R a linear and continuous
functional. Then, there exists a unique solution to the problem

findueV: a(u,v)=F(kv) WweV. (3.37)

Proof. This is based on two classical results of Functional Analysis: the Riesz repre-
sentation theorem (see Theorem 2.1, Chap. 2), and the Banach closed range theorem.
The interested reader can refer to, e.g., [QV94, Chap. 5]. >

The Lax-Milgram lemma thus ensures that the weak formulation of an elliptic
problem is well posed, as long as the hypotheses on the form a(-,-) and on the func-
tional F () hold. Several consequences derive from this lemma. We report one of the
most important in the following corollary.

3.5 Adjoint operator and adjoint problem 51

Corollary 3.1. The solution of (3.37) is bounded by the data, that is

lullv < [Flyr,

|
(04
where o is the coercivity constant of the bilinear form a(-,-), while ||F ||y is the
norm of the functional F, see (2.2).

Proof. 1t is sufficient to choose v = u in (3.37) and then to use the coercivity of the
bilinear form a(-,-). Indeed, we have

ollully < alu,u) = F(u).

On the other hand, since F is linear and continuous it is also bounded, and the upper
bound

[E@)] < [|F v llullv
holds, hence the claim follows. S
Remark 3.6. If the bilinear form a(-,-) is additionally symmetric, that is
a(u,v)=a(v,u) Vu,veV,
then (3.37) is equivalent to the following variational problem (see Exercise 1)

findueV: J(u)=minJ(v),
veV

] (3.38)
with J(v) = 2a(v,v) —F(v).

3.5 Adjoint operator and adjoint problem

In this section we will introduce the concept of adjoint of a given operator in Hilbert
spaces, as well as the adjoint (or dual) problem of a given boundary-value problem.
Then we will show how to obtain dual problems, with associated boundary conditions.
The adjoint problem of a given differential problem plays a fundamental role, for
instance, when establishing error estimates for Galerkin methods, both a priori and a
posteriori (see Sects. 4.5.4 and 4.6.4-4.6.5, respectively), but also for the solution of
optimal-control problems, as we will see in Chapter 18.

Let V be a Hilbert space with scalar product (-,-)y and norm || - ||y, and let V' be
its dual space. Let a : V x V — R be a continuous and coercive bilinear form and let
A :V — V' be its associated elliptic operator, that is A € Z(V,V'),

vi{Av,w)y = a(v,w) Yv,weV. (3.39)

52 3 Elliptic equations

Leta® : V xV — R be the bilinear form defined by
a*(wyv) =a(v,w) VYvwevV, (3.40)
and consider the operator A* : V — V' associated to the form a*(-,), that is
vi{A*wv)yy =a*(w,v) Yy,weV. (3.41)
Thanks to (3.40) we have the following relation, known as the Lagrange identity
vi{A*wv)yy = pr{Avw)y Yy,w e V. (3.42)

Note that this is precisely the equation that stands at the base of the definition (2.20)
of the adjoint of a given operator A acting between a Hilbert space and its dual. For
coherence with (2.20), we should have noted this operator A’. However, we prefer to
denote it A* because the latter notation is more customarily used in the context of
elliptic boundary value problems.

If a(-,-) is a symmetric form, a*(+,-) coincides with a(-,-) and A* with A. In such
case A is said to be self-adjoint; A is said to be normal if AA* = A*A.
Naturally, the identity operator / is self-adjoint (I = I*), while if an operator is self-
adjoint, then it is also normal.
Some properties of the adjoint operators which are a consequence of the previous
definition, are listed below:

A being linear and continuous, then also A* is, that is A* € Z(V,V');
A% (7 ,77) = [|All (7,7 (these norms are defined in (2.21));
(A+B)*=A*+B*;

(AB)* = B*A*;

(A")" = A;

(A~1)* = (A*)~! (if A is invertible);

(aA)* = aA* Va € R.

When we need to find the adjoint (or dual) problem of a given (primal) problem,
we will use the Lagrange identity to characterize the differential equation of the dual
problem, as well as its boundary conditions.

We provide an example of such a procedure, starting from a simple one-dimension-
al diffusion transport equation, completed by homogeneous Robin-Dirichlet boundary
conditions

Av=—V"+vV=f xel=(0,1),
, f 0.1 (3.43)
V(0)4+ Bv(0)=0, v(1)=0,
assuming constant. Note that the weak form of this problem is
1
find u € Vsuch that a(u,v) = /fvdx Ywev, (3.44)

0

3.5 Adjoint operator and adjoint problem 53

where V = {ve H'(0,1):v(1) =0} and
1

a:VxV—=R, a(u,v) /ufuvdxf(ﬁJrl)()(O)
0

By (3.40) we obtain, Yv,w € V,

1

a*(wyv)=a(v,w) = /(v' —v)w'dx— (B +1)v(0)w(0)

1

_ /vw +w)dx+ [pw']§ — (B+ 1)v(0)w(0)

0
= / (=" — W)vdx — [w/(0) + (B + 1)w(0)]v(0).
0

Since definition (3.41) must hold, we will have
A'w=—w"—w in 2(0,1).
Moreover, as v(0) is arbitrary, w will need to satisfy the boundary conditions
W+ (B+1)w](0) =0, w(1)=0.

We observe that the transport field of the dual problem has an opposite direction
with respect to that of the primal problem. Moreover, to homogeneous Robin-Dirichlet
boundary conditions for the primal problem (3.43) correspond conditions of exactly
the same nature for the dual problem.

The procedure illustrated for problem (3.43) can clearly be extended to the multi-
dimensional case. In Table 3.1 we provide a list of several differential operators with
boundary conditions, and their corresponding adjoint operators with associated bound-
ary conditions. (On the functions appearing in the table assume all the necessary reg-
ularity for the considered differential operators to be well-defined). We note, in par-
ticular, that to a given type of primal conditions do not necessarily correspond dual
conditions of the same type, and that, for an operator that is not self-adjoint, to a con-
servative (resp. non-conservative) formulation of the primal problem corresponds a
non-conservative (resp. conservative) formulation of the dual one.

3.5.1 The nonlinear case

The extension of the analysis in the previous section to the nonlinear case is not so
immediate. For simplicity, we consider the one-dimensional problem

{ Avpv=="+w'=f xel=(0,1), (3.45)

v(0) =v(1) =0,

3 Elliptic equations

54

u
L/Qm:ooﬂin.n._.\smz. 0= qAIp L/Qm:ooﬂxm 0=qAlp
< Juo (= ‘MO + (mq)AIp — (A M) ATp— < Juog=n o +nA - q+ (nAn)Arp—
_ue o He
L/qmgoo\%: o - J\peuog=nu-q %: -
MO +MA - q— (MAT)AIP no + (nq)Ap+ (nAT)AIp
‘Jquopg=n ‘Juog=mn
_ ue _ue
L/QQ:OO\\S-_A:.\sm 0= q AIp L/QQcoo\sw 0=qAIp
‘ Juog=m ‘MO + MA - q— My — <Juog=n ‘NO+np-q+ny—
up ue
L/c.m:ooHE\TT:.e.T%m 0=qAp L/c.m:ooni.;m 0=qAp
‘Juog=m MO+ MA-q— My ‘Juog=mn MO+ NAq Ny
u u
u/qm:oou§+am . u/qmgooux:xm .
MO + My — no +ny—
‘quopg=n ‘Juog=mn
u u
J\veuw o= am I\ o= :M
My — ny—
‘Juog=m Juog=n
‘g onq 40ip12do (nu10lpv) pnq g [puitid 40ip12do puiid

(suonipuods Arepunoq

pajeroosse Yim) siojerado (Jurolpe) renp Surpuodsariod pue wojqoid rewrid ayy 1oy (*D°g) suonipuod Arepunoq pue siojerddo [enudreyi ‘I°¢ dqel

3.5 Adjoint operator and adjoint problem 55

having denoted by A(v) the operator

d? d-
Av) = ———+v—. A
(v) o3 TV (3.46)
The Lagrange identity (3.42) is now generalized as
vi{AW)u,why = v (u, A" (v)whyr (3.47)

for each u € D(A) and w € D(A*), D(A) being the domain of A, that is the set of func-
tions of class C? that are null at x = 0 and x = 1, and D(A*) the domain of the adjoint
(or dual) operator A* whose properties will be identified by imposing (3.47). Starting
from such identity, let us see which adjoint operator A* and which dual boundary con-
ditions we get for problem (3.45). By integrating by parts the diffusion term twice and
the transport term of order one once, we obtain

1 1
vi{A(W)u,wyy = —/u”wdx—&—/vu/wdx
0

0
1

1
I i
/u’w/dx—u’w’()—/(vw)’udx—i—vuw‘o (3.48)
0 0

1 1
1 | i
—/uw"dx+uw” —u/w‘ —/(vw)’udx—!—vuw‘ .
0 0 0

Let us analyze the boundary terms separately, by makin the contribution at both end-
points explicit. In order to guarantee (3.47), we must have

u(H)w' (1) —u(0)w'(0) =o' (1) w(1) +u' (0) w(0) +v(1) u(1) w(1) —v(0) u(0) w(0) =0

for each u and v € D(A). We observe that the fact that u belongs to D(A) allows us to
ignore, as vanishing, both the first two and the last two summands, so that we end up
having

—u'(1)w(1)+ 4 (0)w(0) =0.

Since such relation must hold for each u € D(A), we must choose homogeneous Dirich-
let conditions for the dual operator, i.e.

w(0) =w(1) =0. (3.49)
Reverting to (3.48), we then have
1 1
vi{AW)u,wyy = —/u"wdx—i—/vu/wdx
0 0

1 1
f/uw"dxf/(vw)'udx: v{(u,A*(V)w)yr.
0 0

56 3 Elliptic equations

The adjoint operator A* of the primal operator A defined in (3.46) therefore reads

d* n d
Bl
dx* dx
while the dual boundary conditions are provided by (3.49). To conclude, we note that

the dual problem is always linear, even though we started from a nonlinear primal
problem.

A*(v)-=—

For more details on the differentiation and on the analysis of the adjoint problems,
we refer the reader to, e.g., [Mar95].

3.6 Exercises

1. Prove that the weak problem (3.37) is equivalent to the variational problem (3.38)
if the bilinear form is coercive and symmetric.
[Solution: let u € V be the solution of the weak problem and let w be a generic
element of V. Thanks to the bilinearity and to the symmetry of the form, we find

Ju+w) = %[a(u,u) 2, w) + a(w, w)] — [F(u) + F(w)]
= J(u)+la(u,w)—F(w)]+ %a(w, w) =J(u)+ ;a(w,w).

Thanks to the coercivity we then obtain that J(u+w) > J(u) + (&t/2)||w||Z, that is
Vv eV withv=u, J(v) > J(u). Conversely, if u is a minimum for J, then by writing
the extremality condition limg_,o (J(u+ 8v) —J(u)) /6 = 0 we find (3.37).]

2. Prove that the bilinear form (3.36) is continuous and coercive under the hypotheses
listed in the text on the coefficients.
[Solution: the bilinear form is obviously continuous. Thanks to the hypothesis (3.35)
and to the fact that o € L () is positive a.e. in £2, it is also coercive as

a(v,v) > (X|v|12_1,(_0) —&—aoHvHiz(Q) > min(a,) |v|[Z WeV.

We point out that if V = H'(€2) then the condition ¢ > 0 is necessary for the
bilinear form to be coercive. In the case where V = H(')(.Q), it is sufficient that
o > —af C%z, Cq being the constant intervening in the Poincaré inequality (see
(2.13)). In this case, the equivalence between || - |1 () and | - |y1() can indeed be
exploited. See Property 2.5 of Chapter 2.]

3. LetV =H}(0,1), and take a: V x V — R and F : V — R defined in the following

way:
1 1
:/ 1 — 4x)(x) dx, /1+x /(x) dx.
0 0

3.6 Exercises 57

Prove that the problem: find u € V such that a(u,v) = F(v) Vv € V, admits a unique
solution. Moreover, verify that this solution coincides with u(x) = x> — x.
[Solution: it can be easily shown that the bilinear form is continuous and coercive
in V. Then, since F is a linear and continuous functional, by the Lax-Milgram
lemma we can conclude that there exists a unique solution in V. We verify that the
latter is indeed u(x) = x> — x. The latter function belongs for sure to V (since it is
continuous and differentiable and such that u(0) = u(1) = 0). Moreover, from the
relation

1 1 1
/(1) (o) (x) dx = f/((l)l (1) v(x) dx = /(71 — 4x)v(x) dx,
0 0 0

valid Vv € V, we deduce that in order for u to be a solution we must have ((1 +
x)u'(x))" = 1+ 4x almost everywhere in (0, 1). Such property holds for the pro-
posed u.]

. Find the weak formulation of the problem

A’u=f inQ,
u=0 on dQ,
0

aZzO on dQ2,

Q C R? being a bounded open set with regular boundary 902, A2- = AA- the bi-
laplacian operator and f € L?(€) an assigned function.

[Solution: the weak formulation, obtained by applying Green’s formula twice to
the bilaplacian operator, is

find u € H3(Q) - /AuAvd.Q:/fvd_Q e H2(Q), (3.50)
Q Q

where H3(Q2)={ve H*(Q): v=0, dv/dn=00n dR}.]

. For each function v of the Hilbert space H%(.Q), defined in Exercise 4, it can be
shown that the seminorm |- |2) defined as V]2 q) = ([|Av[? d2)/? is in fact
equivalent to the norm | - [|j2(o). Using such property, prove that problem (3.50)
admits a unique solution.

[Solution: let us set V = H3(2). Then

a(u,v):/AuAvd.Q andF(v):./fv dQ
Q Q

are a bilinear form from V x V — R and a linear and continuous functional, respec-
tively. To prove existence and uniqueness it is sufficient to invoke the Lax-Milgram
lemma as the bilinear form is coercive and continuous. Indeed, thanks to the equiv-
alence between norm and seminorm, there exist two positive constants ¢« and M
such that

a(u,u) = uly > allullf, |a(u,v)| < Mlulv|v]v.]

58

6.

3 Elliptic equations

Write the weak formulation of the fourth-order problem

—div (uVu) +A%u+ou=0 inQ,

u=0 on dQ,
gZ:O on dQ,

by introducing appropriate functional spaces, knowing that 2 C R? is a bounded
open set with regular boundary dQ and that p(x) and o(x) are known functions
defined on Q2.

[Solution: proceed as in the two previous exercises by supposing that the coeffi-
cients i and o lie in L*(£).]

. Let Q c R? be a domain with a smooth boundary 92 = I, UIy and IED N ISN: 0.

By introducing appropriate functional spaces, find the weak formulation of the
following linear elasticity problem

2 9
—Za.x_aij(u) =f inQ, i=1,2,
j=19%]

ui=20 onlp, i=1,2, (3.51)

Zoij(u)nj:g,- only, i=1,2,

having denoted as usual by n = (ny,n3)” the outward unit normal vector to 9£2,
by u = (u;,uz)! the unknown vector, and by f = (fi,2)! and g = (g1,82)7 two
assigned vector functions. Moreover, it has been set for i, j = 1,2,

i du; du;
0ij(w) = Adiv()d; + 2ue; W), - &;(w) = (ax i a’)
J 1

A and u being two positive constants and &;; the Kronecker symbol. The system
(3.51) allows to describe the displacement u of an elastic body, homogeneous and
isotropic, that occupies in its equilibrium position the region €2, under the action
of an external body force whose density is f and of a surface charge distributed on
Iy with intensity g (see Fig. 3.4).

[Solution: the weak formulation of (3.51) can be found by observing that ¢;; = 0j;
and by using the following Green formula

Z /Gl])€ (v Z /G,] njvidy
i,j=1 i,j= 139
3.52
_2/8% (3.52)
ox; Vi

L=l g

3.6 Exercises 59

Fig. 3.4. A partially constrained body subject to the action of an external charge
By assuming ve V= (HIFD(Q))2 (the space of vectorial functions that have com-
ponents v; € HII-D () for i = 1,2), the weak formulation reads
find u € V such that a(u,v) = F(v) YWV €V,

with

2
a(u,v) = /),dlv u)div(v) dQ +2u Z/U)€ (v
b=l

/f Vd.(2+/g vdy.

In order for the integrals to make sense, it will be sufficient to require f € (L?(£2))?
and g € (L*(Iy))?.]

. Prove, by applying the Lax-Milgram Lemma, that the solution of the weak formu-
lation (3.52) exists and is unique under appropriate conditions on the regularity of
the data and knowing that the following Korn inequality holds:

!
<
~—
I

3Co>0 Z/s,, V)€ (v) dQ > Co|lv|Z WveV.
iLj=lg

[Solution: consider the weak formulation introduced in the solution to the previous
exercise. The bilinear form defined in (3.52) is continuous and also coercive be-
cause of the Korn inequality. F is a linear and continuous functional; hence, by the
Lax-Milgram lemma, the solution exists and is unique.]

Chapter 4
The Galerkin finite element method
for elliptic problems

In this chapter we describe the numerical solution of the elliptic boundary-value prob-
lems considered in Chapter 3 by introducing the Galerkin method. We then illustrate
the finite element method as a particular case. The latter will be further developed in
the following chapters.

4.1 Approximation via the Galerkin method

As seen in Chapter 3.2, the weak formulation of a generic elliptic problem set on a
domain C R?, d = 1,2,3, can be written in the following way

findueV: a(u,v)=Fkv) WeV, 4.1)

V being an appropriate Hilbert space, subspace of H' (), a(-,-) being a continuous
and coercive bilinear form from V x V in R, F(+) being a continuous linear functional
from V in R. Under such hypotheses, the Lax-Milgram Lemma of Sect. 3.4.1 ensures
existence and uniqueness of the solution.

Let V}, be a family of spaces that depends on a positive parameter A, such that

V,CV, dimV,=N, <o Yh>0.
The approximate problem takes the form
findu, €V, . alup,vy) =F(vy) Vv, €V, 4.2)
and is called Galerkin problem. Denoting with {¢;, j = 1,2,...,N,} a basis of V}, it

suffices that (4.2) be verified for each function of the basis, as all the functions in the
space V}, are a linear combination of the ¢;. We will then require that

a(uh,(pi):F((pi), = 1,2,...,Nh. (43)

© Springer International Publishing AG 2017 61
A. Quarteroni, Numerical Models for Differential Problems, MS&A 16,
DOI 10.1007/978-3-319-49316-9 4

62 4 The Galerkin finite element method for elliptic problems
Obviously, since uy, € Vj,
Npy

up(x) = Y u; 9;(x),

where the u;, j = 1,..., Ny, are unknown coefficients. Equations (4.3) then become

N
Y ujale;,¢)=F(p), i=12,....Ny. (4.4)
j=1

We denote by A the matrix (called stiffness matrix) with elements

aij=a(Q;, i)

and by f the vector with components f; = F(¢;). If we denote by u the vector having
as components the unknown coefficients u;, (4.4) is equivalent to the linear system

Au=Hf. 4.5)

We point out some characteristics of the stiffness matrix that are independent of the
basis chosen for V},, but exclusively depend on the properties of the weak problem that
is being approximated. Other properties, instead, such as the condition number or the
sparsity structure, depend on the basis under exam and are therefore addressed in the
sections dedicated to the specific numerical methods. For instance, bases formed by
functions with small support are appealing, as all the elements a;; whose indices are
related to basis functions having supports with empty intersections will be null. More
in general, from a computational viewpoint, the most convenient choices of V;, will
be the ones requiring a modest computational effort for the computation of the matrix
elements as well as the source term f.

Theorem 4.1. The matrix A associated to the Galerkin discretization of an ellip-
tic problem whose bilinear form is coercive is positive definite.

Proof. We recall that a matrix B € R"*" is said to be positive definite if
vIBv>0 VYveR" andalsov/Bv=0 < v=0. (4.6)

The correspondence

Np
V= (V,’) S RN" <~ vh(x) = Zvj'(bj eV, 4.7
j=1

4.2 Analysis of the Galerkin method 63

defines a bijection between the spaces RV and V}, . Given a generic vector v = (v;)
of RM: | thanks to the bilinearity and coercivity of the form a(-,), we obtain

N, Ny Ny Ny
v Av = ZZvla,Jv, ZZW @, Pi)v
j=li= Jj=1li=
Ny Ny
= ZZ“ viQj Vi) = a <Zv,¢,7zv1¢z)
j=li=

= a(vy,vy) > vy > 0.

Moreover, if v Av = 0, then, by what we have just obtained, ||v4||? = 0 too, i.e. v, =0
and so v = 0. Consequently the claim is proved, as the two conditions in (4.6) are
fulfilled. o

Furthermore, the following property can be proved (see Exercise 4):

Property 4.1. The matrix A is symmetric if and only if the bilinear form a(-,-) is
symmetric.

For instance, in the case of the Poisson problem with either Dirichlet (3.18) or
mixed (3.27) boundary conditions, the matrix A is symmetric and positive definite.
The numerical solution of such a system can be efficiently performed using both di-
rect methods such as the Cholesky factorization, and iterative methods such as the
conjugate gradient method (see Chap. 7 and, e.g., [QSSO7, Chap. 4]).

4.2 Analysis of the Galerkin method

In this section, we aim at studying the Galerkin method, and in particular at verifying
three of its fundamental properties:

e cexistence and uniqueness of the discrete solution uy,;
e stability of the discrete solution uy,;
e convergence of uy, to the exact solution u of problem (4.1), as & — O.

4.2.1 Existence and uniqueness

The Lax-Milgram Lemma stated in Sect. 3.4.1 holds for any Hilbert space, hence in
particular for the space V},, as the latter is a closed subspace of the Hilbert space V.
Furthermore, the bilinear form a(-,-) and the functional F(-) are the same as in the
variational problem (4.1). The hypotheses required by the Lemma are therefore ful-
filled. The following result then follows:

64 4 The Galerkin finite element method for elliptic problems

Corollary 4.1. The solution of the Galerkin problem (4.2) exists and is unique.

It is nonetheless instructive to provide a constructive proof of this corollary without
using the Lax-Milgram Lemma. As we have seen, in fact, the Galerkin problem (4.2)
is equivalent to the linear system (4.5). Proving the existence and uniqueness for one
means to prove automatically the existence and uniqueness of the other. We therefore
focus our attention on the linear system (4.5).

The matrix A is invertible as the unique solution of system Au = 0 is the identi-
cally null solution. This immediately descends from the fact that A is positive definite.
Consequently, the linear system (4.5) admits a unique solution, hence also its corre-
sponding Galerkin problem admits a unique solution.

4.2.2 Stability

Corollary 3.1 allows us to provide the following stability result.

Corollary 4.2. The Galerkin method is stable, uniformly with respect to h, by
virtue of the following upper bound for the solution

1
lunlly < IF v

The stability of the method guarantees that the norm ||u,||y of the discrete solution
remains bounded for & tending to zero, uniformly with respect to s. Equivalently,
it guarantees that ||u, —wy|lv < LI|F — G|y, u; and wy, being numerical solutions
corresponding to two different data F and G.

4.2.3 Convergence

We now want to prove that the weak solution of the Galerkin problem converges to
the solution of the weak problem (4.1) when £ tends to zero. Consequently, by taking
a sufficiently small 4, it will be possible to approximate the exact solution u by the
Galerkin solution u, as accurately as desired.

Let us first prove the following consistency property.

Lemma 4.1 (Galerkin orthogonality). The solution uy, of the Galerkin method
satisfies
alu—up,vy) =0 Vv, €V (4.8)

4.2 Analysis of the Galerkin method 65

N u—uy

Up

Fig. 4.1. Geometric interpretation of the Galerkin orthogonality

Proof. Since V), C V, the exact solution u satisfies the weak problem (4.1) for each
element v = v, € V},, hence we have

a(u,vy) =F(vy) Yv, €V 4.9)
By subtracting side by side (4.2) from (4.9), we obtain
a(u,vy) —a(up,vy) =0 Vv, €V,
from which, thanks to the bilinearity of the form a(-,-), the claim follows. o

Let us point out that (4.9) coincides with the definition of strong consistency given
in (1.10).

If a(-,-) is symmetric, (4.8) is interpreted as the orthogonality condition with re-
spect to the scalar product a(-,-), between the approximation error, u — uy,, and the
subspace V. Borrowing terminology from the Euclidean case, the solution u;, of the
Galerkin method is said to be the orthogonal projection on Vj, of the exact solution u.
Among all elements of V},, v, is the one minimizing the distance to the exact solution
u in the energy norm, i.e. in the following norm induced by the scalar product af(-,-):

[t — uplla = \/a(u—uh,u—uh).

Remark 4.1. The geometric interpretation of the Galerkin method makes sense only
in the case where the form a(-,-) is symmetric. However, this does not impair the
generality of the method or its consistency property in the case where the bilinear
form is not symmetric. °

Let us now consider the value taken by the bilinear form when both its arguments are
equal to u — uy,. If v, is an arbitrary element of V;, we obtain

alu—up,u—up) = a(u—up,u—vy) +alu—up, vy —up).

66 4 The Galerkin finite element method for elliptic problems
The last term is null by virtue of (4.8), as v, — uy, € Vj,. Moreover
|a(u—up,u—vp)| < Mllu—uyllv|ju—vallv,

having exploited the continuity of the bilinear form. On the other hand, by the coer-
civity of a(-,-) it follows

alu— up,u—up) > otllu— w7,
hence we have
M
[t — upllv < o lu—villy Vv, € Vp.
Such inequality holds for all functions v;, € V}, and therefore we find
M
- < inf ||u— . 4.10
=y <0 nf u=wiv @.10)

This fundamental property of the Galerkin method is known as Céa Lemma.

It is then evident that in order for the method to converge, it will be sufficient to require
that, for A tending to zero, the space V}, tends to saturate the entire space V. Precisely,
it must turn out that

lim inf ||v— =0 Wev.
h‘i%vfév,,nv villv ve 4.11)

In that case, the Galerkin method is convergent and it can be written that
lim||u —u =0.
tim [— v

The space Vj, must therefore be carefully chosen in order to guarantee the saturation
property (4.11). Once this requirement is satisfied, convergence will be verified in
any case, independently of how u looks like; conversely, the speed with which the
discrete solution converges to the exact solution, i.e. the order of decay of the error
with respect to A, will depend, in general, on both the choice of V, and the regularity
of u (see Theorem 4.3).

Remark 4.2. Obviously, in;f/ ||t — villv < || — up|lv. Consequently, by (4.10), if Z
vh€Vh

is has order 1, the error due to the Galerkin method can be identified with the best
approximation error for u in V. In any case, both errors have the same infinitesimal
order with respect to /. °

Remark 4.3. In the case where a(-,-) is a symmetric bilinear form, and also continu-
ous and coercive, then (4.10) can be improved as follows (see Exercise 5)

M
— < inf — . 4.12
[l —unlly < \/a HéVhHM wallv (.)

h

4.3 The finite element method in the one-dimensional case 67

4.3 The finite element method in the one-dimensional case

Let us suppose that Q is an interval (a,b). The goal of this section is to create approx-
imations of the space H! (a,) that depend on a parameter /. To this end, we introduce
a partition .7, of (a,b) in N + 1 subintervals K; = (xj_1,x;), also called elements,
having width 2; = x; — x;_| with

a=x0<x1<...<xy<xyy1=D>b (4.13)

and set h = max; h;.
Since the functions of H' (a,b) are continuous functions on [a, b], we can construct the
following family of spaces

Xr={v,eC®(Q): wilg, €P-VK; € T}, r=12,... (4.14)

having denoted by IP, the space of polynomials with degree lower than or equal to » in
the variable x. The spaces X; are all subspaces of H! (a,b), as they are constituted by
differentiable functions except for at most a finite number of points (the vertices x; of
the partition .7;,). They represent possible choices for the space Vj,, provided that the
boundary conditions are properly incorporated. The fact that the functions of X; are
locally (element-wise) polynomials will make the stiffness matrix easy to compute.

We must now choose a basis {¢;} for the X/ space. It is convenient, by what ex-
posed in Sect. 4.1, that the support of the generic basis function ¢; have non-empty
intersection only with the support of a negligible number of other functions of the
basis. In such way, many elements of the stiffness matrix will be null. It is also conve-
nient that the basis be Lagrangian: in that case, the coefficients of the expansion of a
generic function v;, € X} in the basis itself will be the values taken by v;, at carefully
chosen points, which we call nodes and which, as we will see, generally form a su-
perset of the vertices of .7,. This does not prevent the use of non-Lagrangian bases,
especially in their hierarchical version (as we will see later). We now provide some
examples of bases for the spaces X,! and X7.

4.3.1 The spaceX,}

This space is constituted by the continuous and piecewise linear functions on a par-
tition .7}, of (a,b) of the form (4.13). Since only one straight line can pass through
two different points and the functions of X,: are continuous, the degrees of freedom of
the functions of this space, i.e. the values that must be assigned to define uniquely the
functions themselves, will be equal to the number N + 2 of vertices of the partition. In
this case, therefore, nodes and vertices coincide. Consequently, having assigned N + 2
basis functions ¢;, i =0,...,N+ 1, the whole space X,ﬁ will be completely defined. The
characteristic Lagrangian basis functions are characterized by the following property

@ €X! suchthat @(x;)=8;, i,j=0,1,....N+1,

0;j being the Kronecker delta. The function ¢; is therefore piecewise linear and equal
to one at x; and zero at the remaining nodes of the partition (see Fig. 4.2). Its expression

68 4 The Galerkin finite element method for elliptic problems

A
1.

Xo=a X1 X Xiy1 Xny1=b

Fig. 4.2. The basis function of X }} associated to node x;

is given by:
X—Xi_
U forwy <x<ux,

Xi = Xi—]

() = Xit] —X

pilx) = o for x; < x < xi41, @.15)

Xit1 —Xi
0 otherwise.

Obviously ¢; has as support the union of the intervals [x;_1,x;] and [x;,x;1;] only, if
i#Qori#N+1 (fori =0 ori= N+ 1 the support will be limited to the interval
[x0,x1] or [xn,xn+1], respectively). Consequently, the only basis functions whose sup-
port overlaps with that of ¢; are ¢;,_; and ¢, (and, of course, ¢;). Hence the stiffness
matrix is tridiagonal as a;; = 0if j & {i —1,i,i+1}.

As visible in expression (4.15), the two basis functions ¢; and ¢;;| defined on each
interval [x;,x; ;1] basically repeat themselves with no changes, up to a scaling factor
linked to the length of the interval itself. In practice, the two basis functions ¢; and
@i+ 1 can be obtained by transforming two basis functions @y and @; built once and for
all on a reference interval, typically the [0, 1] interval.

To this end, it is sufficient to exploit the fact that the generic interval [x;,x;;1] of
the partition of (a,b) can be obtained starting from the interval [0,1] via the linear
transformation ¢ : [0, 1] — [x;,x;11] defined as

x=0(&) =xi+&(xin —x). (4.16)

If we define the two basis functions @y and @; on [0, 1] as

the basis functions ¢; and @; on [x;,x;11] will simply be given by

@i(x) = @o(E(x)), Pir1(x) = @1 (§(x))

since & (x) = (x —x;)/(xi+1 — x;) (see Figs. 4.3 and 4.4).

This way of proceeding (defining the basis on a reference element and then trans-
forming it on a specific element) will be of fundamental importance when considering
problems in several dimensions.

4.3 The finite element method in the one-dimensional case 69

%
L

0 1 ¢ Xi Xit1 X

Fig. 4.3. The basis function ¢; in [x;,x;+1] and the corresponding basis function @y on the
reference element

X

Xi Xit+1

Fig. 4.4. The basis function ¢;, in [x;,x;;1] and the corresponding basis function @; on the
reference element

4.3.2 The space X,f

The functions of X,% are piecewise polynomials of degree 2 on each interval of .7, and,
consequently, they are determined once the values they take at three distinct points of
each interval K; are assigned. To guarantee the continuity of the functions of X,% two
of these points will be the endpoints of the generic interval of .7}, the third will be
the midpoint of the latter. The degrees of freedom of the space Xi are therefore the
values of v, taken at the endpoints of the intervals composing the partition .7}, and at
their midpoints. We order the nodes starting from xo = a to xpy+2 = b; in such way the
midpoints correspond to the nodes with odd indices, and the endpoints to the nodes
with even indices (refer to Exercise 6 for alternative numberings).

Exactly as in the previous case the Lagrangian basis for X,% is the one formed by
the functions

@ €X? suchthat @i(x;) =8, i,j=0,1,....,2N+2.

These are therefore piecewise quadratic functions that are equal to 1 at the node to
which they are associated and are null at the remaining nodes. Here is the explicit
expression of the generic basis function associated to the endpoints of the intervals in

70 4 The Galerkin finite element method for elliptic problems

the partition:

o),

—Xi—1)\Xi —

(i CVCH) (Pi(x) = (.lerl X) (x1+2) ifx <x<x
(1 =) (g =) S

0 otherwise.
For the midpoints of the intervals, we have

(Xig1 —x)(x —xi-1)

ifx;) <x<x,
(iodd) @i(x)= (i1 = xi) (i — xi1)

0 otherwise.

See Fig. 4.5 for an example.

As in the case of linear finite elements, in order to describe the basis it is sufficient to
provide the expression of the basis functions on the reference interval [0, 1] and then
to transform the latter via (4.16). We have

(&) =(1-8)(1-28), @1(6)=4(1-8)5, ¢2(5)=6(25—-1).

We represent these functions in Fig. 4.5. Note that the generic basis function ¢,
relative to node x,; | has a support coinciding with the element to which the midpoint
belongs. For its peculiar form, it is known as bubble function.

As previously anticipated, we can also introduce other non-Lagrangian bases. A par-
ticularly interesting one is the one constructed (locally) by the three functions

() =1-& w(6)=¢ () =(1-5)%.

A basis of this kind is said to be hierarchical because, to construct the basis for X, 12,
it exploits the basis functions of the lower-dimension space, X;:. It is convenient from
a computational viewpoint if one decides, during the approximation of a problem, to

| |
Xi—a | XX K-l X XTTXi42 | Xitd 0 0.5 1

Fig. 4.5. The basis functions of X f (on the left) and the corresponding functions on the reference
interval (on the right)

4.3 The finite element method in the one-dimensional case 71

increase only locally, i.e. only for such elements, the degree of interpolation (that is if
one intends to perform the so-called adaptivity in the degree, or adaptivity of type p).
The Lagrange polynomials are linearly independent by construction. In general,
however, such property must be verified to ensure that the set of chosen polynomials
is effectively a basis. In the case of the functions ¥, ¥, and ¥, we must verify that

if aoWo(&) +ouyi(§) +onyr(§) =0VE, then ap=a;=a=0.

Indeed, the equation

(&) +ou (&) + amn(E) = ap+E (o — o+ o) — & =0

implies oy = 0, oy = 0 and therefore o = 0. We notice that the stiffness matrix in the
case of finite elements of degree 2 will be pentadiagonal.

By proceeding in the same way it will be possible to generate bases for X; with
an arbitrary positive integer r: we point out, however, that as the polynomial degree
increases, the number of degrees of freedom increases and so does the computational
cost of solving the linear system (4.5). Moreover, a well known fact from polynomial
interpolation theory, the use of high degrees combined with equispaced node distri-
butions leads to increasingly less stable approximations, in spite of the theoretical
increase in accuracy. A successful remedy is provided by the spectral element ap-
proximation that, using well-chosen nodes (the ones from the Gaussian quadrature),
allows to generate approximations with arbitrarily high accuracy. To this purpose see
Chap. 10.

4.3.3 The approximation with linear finite elements

We now examine how to approximate the following problem:

—u'+ou=f, a<x<b,
u(a) =0, u(b) =0,

whose weak formulation, as we have seen in the previous chapter, is

b b b
find u € Hj(a,b) : /u/v/ dx—i—/cmv dx = /fv dx YveH\(a,b).
a a

a

As we did in (4.13), we introduce a decomposition .7}, of (0,1) in N + 1 subintervals
K; and use linear finite elements. We therefore introduce the space

Vi={w, € Xhl : vp(a) = vp(b) =0}, 4.17)

that is the space of piecewise linear functions that vanish at the boundary (a function
of such space has been introduced in Fig. 4.6). This is a subspace of H(l)(a,b).

72 4 The Galerkin finite element method for elliptic problems

hi
| | | . | 3
a=xp Xi—1 X XN Xn+1=Db X

Fig. 4.6. Example of a function of V},

The corresponding finite element problem is therefore given by
b b b
find u, € V), : /u;lvz dx+/6uhvh dx = /fvh dx Vv, €V (4.18)
a a

a

We use as a basis of Xh1 the set of hat functions defined in (4.15) by caring to consider
only the indices 1 <i < N. By expressing u;, as a linear combination of such functions
up(x) = YN, u;¢;:(x), and imposing that (4.18) is satisfied for each element of the basis
of V},, we obtain a system of N equations

Au =f, (4.19)

where
b b
A = [ajj], aij:/qo}(Pi' dX+/G<Pj<Pi dx;
a a

b
u=lu); £=[f], ﬁ:/m dx.

Note that u; = uy(x;), 1 <i <N, that is the finite element unknowns are the nodal
values of the finite element solution uy,.
To find the numerical solution uy, it is now sufficient to solve the linear system (4.19).
In the case of linear finite elements, the stiffness matrix A is not only sparse, but
also results to be tridiagonal. To compute its elements, we proceed as follows. As we
have seen it is not necessary to operate directly on the basis functions on the single
intervals, but it is sufficient to refer to the ones defined on the reference interval: it will
then be enough to transform appropriately the integrals that appear in the definition of
the coefficients of A.
A generic non-null element of the stiffness matrix is given by

Xi Xit1

b
ajj = / (0} @)+ oip;)dx = / (0 @)+ opip;)dx + / (0,0} + oPip;)dx.

Xi—1 Xi

4.3 The finite element method in the one-dimensional case 73

Let us consider the first summand by supposing j =i — 1. Evidently, via the coordinate
transformation (4.16), we can rewrite it as

/ (991 +0Pig;1)dx =
. [101(E) 01 <)+ 0 (€811 (E I
having noted that dx =0d(x,»_1 + &) = hid€. On the other hand @;(x(&)) = @y (€) and
0i—1(x(&)) = @o(&). We also note that
Lo = ae = ol

l
Similarly, we find that ¢/, (x(&)) = (1/h;)®}(&). Hence, the element a; ;; becomes

1

a1 = [(BOBE + REDEN) az.

0

The advantage of this expression lies in the fact that in the case of constant coefficients,
all the integrals appearing within the matrix A can be computed once and for all.
We will see in the multi-dimensional case that this way of proceeding maintains its
importance also in the case of variable coefficients.

4.3.4 Interpolation operator and interpolation error

Let us set I = (a,b). For each v € CY(I), we call interpolant of v in the space of X!,
determined by the partition .7, the function thv such that

IT'v(x;) = v(x;) Va; node of the partition, i =0,...,N + 1.

By using the Lagrangian basis {¢;} of the space X,ﬁ the interpolant can be expressed
in the following way

N+1
Hhv Z v(xi)@i(x

Hence, when v and a basis of Xh1 are known, the interpolant of v is easy to compute.
The operator I'I,: :CY(I) — Xhl mapping a function v to its interpolant I'I,: v is called
interpolation operator.

Analogously, we can define the operators IT} : C°(I) — X/, for all » > 1. Having
denoted by I1, ,’(the local interpolation operator mapping a function v to the polynomial
HK veP(K) interpolating v at the » + 1 nodes of the element K; € .7, we define
H,: vas

My e Xj : Iv| =T (v| x) VK€ T (4.20)

74 4 The Galerkin finite element method for elliptic problems

Theorem 4.2. Let v € H1(I), for r > 1, and let IT}v € X} be its interpolating
function defined in (4.20). The following estimate of the interpolation error holds

v =TVl < Cirh™ ™ lgrergy fork=0,1. (4.21)

The constants Cy,, are independent of v and h. We recall that H®(I) = L*(I) and
that | - [goy = | - lL2q)-

Proof. We prove (4.21) for the case r = 1, and refer to [QV94, Chap. 3] or [Cia78]
for the more general case. We start by observing that if v € H*!(I) then v € C’(I). In
particular, for r = 1, v € C'(I). Let us set e = v — IT}v. Since e(x;) = 0 for each node
xj, Rolle’s theorem allows to conclude that there exist some §; € Kj = (xj_1,x;), with
j=1,...,N+1, for which we have ¢/(;) = 0.

H,!v being a linear function in each interval K, we obtain that

EI(X):/g e"(s)ds:/é V'(s)ds for x € Kj,
j j

from which we deduce that

Xj
|e’(x)|g/x W'(s)lds forx € K;.

J=1

Now, by using the Cauchy-Schwarz inequality we obtain

% 12 1 o 1/2 x; 1/2
€' (x)] < (/ 12ds> (/ |v”(s)|2ds> <2 (/ |v”(s)|2ds>
x_~,1 Xi—1 Xi—1
’ ! ! (4.22)
Hence,
RPN 2 (Y w2
/ 1€ () Pdx < h / W (s)[2ds. (4.23)

J—1 J—1

An upper bound for ¢(x) can be obtained by noting that, for each x € K,

and therefore, by applying inequality (4.22),

el < [1€ s)ids <2 ([

J—1 Jj—1

/ " e()Pdx < 1t / "W (s)Pds. (4.24)

J—1 J—1

1/2
|v”(s)|2ds> .

Hence,

4.3 The finite element method in the one-dimensional case 75

By summing over the indices j from 1 to N + 1 in (4.23) and (4.24) we obtain the
inequalities

1/2 1/2

b b
/ €' 0)dx | <h / W ()2
a a

and
1/2

b 1/2 b
/|e(x)|2dx < /|v"(x)|2dx

respectively, that correspond to the desired estimates (4.21) for r = 1, with Cy; = 1
and k =0,1. o

4.3.5 Estimate of the finite element error in the H! norm

Owing to result (4.21) we can obtain an estimate of the approximation error of the
finite element method.

Theorem 4.3. Let u € V be the exact solution of the variational problem (4.1)
(in our case Q =1 = (a,b)) and uy, its approximate solution via the finite ele-
ment method of degree r, i.e. the solution of problem (4.2) where Vj, = X; NV.
Moreover, let u € HPT\(I), for a suitable p such that r < p. Then the following
inequality, also called a priori error estimate, holds

M
le —upllv < aChr|u|Hr+1(,), 4.25)

C being a constant independent of u and h.

Proof. From (4.10), by setting wj, = IIju we obtain
M r
e —unlly <~ = Tyully-

The right-hand side can now be bounded from above via the interpolation error esti-
mate (4.21) for k = 1, from which the claim follows. o

It follows from the latter theorem that, in order to increase the accuracy, two differ-
ent strategies can be followed: reducing 4, i.e. refining the grid, or increasing r, that is
using finite elements of higher degree. However, the latter strategy makes sense only
if the solution u is regular enough: as a matter of fact, from (4.25) we immediately
infer that, if u € V NHP*!(I), the maximum value of r that it makes sense to take
is r = p. Values higher than p do not ensure a better rate of convergence: therefore
if the solution is not very regular it is not convenient to use finite elements of high

76 4 The Galerkin finite element method for elliptic problems

degree, as the greater computational cost is not compensated by an improvement of
the convergence. An interesting case is when the solution only has the minimum reg-
ularity (p = 0). From the relations (4.10) and (4.11) we obtain that there is anyhow
convergence, but estimate (4.25) is no longer valid. It is then impossible to say how
the norm V of the error tends to zero when & decreases. We summarize these situations
in Table 4.1.

Table 4.1. Order of convergence with respect to & for the finite element method for varying
regularity of the solution and degree r of the finite elements. We have highlighted on each
column the result corresponding to the “optimal” choice of the polynomial degree

r ueHY(I) u € H2(I) ueH(I) uc HY(I) ucH(I)

1 converges ‘ ' ‘ h! h! h!
2 converges h! ‘ " ‘ n? n?
3 converges ! h? ‘ n ‘ "
4 converges h! n? " ‘ n* ‘

In general, we can state that: if u € HP*! (I), for a given p > 0, then there exists a
constant C independent of u and A, such that

||M—I/th||H1(1) SChS|M|H_v+1(1), szmin{r,p}. (426)

4.4 Finite elements, simplices and barycentric coordinates

Before introducing finite element spaces in 2D and 3D domains we can attempt to
provide a formal definition of finite element.

4.4.1 An abstract definition of finite element in the Lagrangian case

From the examples we considered we can deduce that there are three ingredients al-
lowing to characterize a finite element in the general case, i.e. independently of the di-
mension:

e the domain of definition K of the element. In the one-dimensional case it is an
interval, in the two-dimensional case it is generally a triangle but it can also be a
quadrilateral; in the three-dimensional case it can be a tetrahedron, a prism or a
hexahedron;

e a space of polynomials IT, of dimension N, defined on K and a basis {(pj}ljv;]
of II,. In the monodimensional case, I, has been introduced in Sect. 4.3 and
N, = r+ 1. For the multidimensional case, see Sect. 4.4.2;

o asetX={y:I— R}?L of functionals on IT,, satisfying %(@;) = J;j, 0;; be-
ing the Kronecker delta. These allow a unique identification of the coefficients

4.4 Finite elements, simplices and barycentric coordinates 77

{a j}ljy;l of the expansion of a polynomial p € IT, with respect to the chosen basis,

p(x) =):?’;1 oj@;j(x). As a matter of fact, we have o; = %(p), i=1,...,N,. These
coefficients are called degrees of freedom of the finite element.

In the case of Lagrange finite elements the chosen basis is provided by the La-
grange polynomials and the degree of freedom ¢; is equal to the value taken by the
polynomial p at a point a; of K, called node, that is we have o; = p(a;),i=1,...,N,.
We can then set, with a slight notation abuse, X = {a j}zjy; 1» since knowing the posi-
tion of the nodes allows us to find the degrees of freedom (notice however that this
is not true in general, think only of the case of the hierarchical basis introduced pre-
viously). In the remainder, we will exclusively refer to the case of Lagrange finite
elements.

In the construction of a Lagrange finite element, the choice of nodes is not arbi-
trary. Indeed, the problem of interpolation on a given set K may be ill posed. For this
reason the following definition proves useful:

Definition 4.1. A set X = {a;}’}’;l of points of K is called unisolvent on I, if,
given N, arbitrary scalars oj, j=1,...,N,, there exists a unique function p € I,
such that

p(aj)=oa;, j=1,....N,.

In such case, the triple (K, X,II,) is called Lagrangian finite element. In the case of
Lagrangian finite elements, the element is generally recalled by citing the sole poly-
nomial space: hence the linear finite elements introduced previously are called Py, the
quadratic ones PP», and so forth.

As we have seen in the 1D case, for the finite elements based on the use of local
P, and IP, polynomial spaces, it is convenient to define the finite element starting from
a reference element K; typically this is the interval (0, 1). It will tipically be the right
triangle with vertices (0,0), (1,0) and (0, 1) in the two-dimensional case (when using
triangular elements). (See Sect. 4.4.2 for the case in arbitrary dimensions.) Hence, via
a transformation ¢, we move to the finite element defined on K. The transformation
therefore concerns the finite element as a whole. More precisely, we observe that if
(K,X,IT,) is a Lagrangian finite element and ¢ : K — R a continuous and injective
map, and we define

K=0¢(K), P.={p:K—R:popcll}, E=0¢(),

then (K, X, P,) is still said to be a Lagrangian finite element. The space of polynomials
defined on triangles and tetrahedra can be introduced as follows.

78 4 The Galerkin finite element method for elliptic problems

Fig. 4.7. The unitary simplex in]Rd,d =1,2,3

4.4.2 Simplexes

If {Np,...,Ng} are d + 1 points in R?, d > 1, and the vectors {N; — Np,...,N;—No}
are linearly independent, then the convex hull of {Ny,...,N,} is called a simplex, and
{No,...,Ny} area called the vertices of the simplex. The standard simplex of R? is
the set

d
Ki={xeR":x;>0,1<i<d Y x<1} (4.27)
i=1
and it is a unit interval in R!, a unit triangle in R4, a unit tetrahedron in RY (see
Fig. 4.7). Its vertices are ordered in such a way that the Cartesian coordinates of N;
are all null, except the i-th one that is equal to 1. On a d-dimensional simplex, the
space of polynomials IP, is defined as follows

P, = {p(x) = Z ail,_,idxill ...xé;”, ai,..i; € R}. (4.28)
i lopy
Then y
. r+d 1
N, = dimP, = (i) = kI;I](r—l—k). (4.29)

4.4.3 Barycentric coordinates

For a given simplex K in R? (see Sect. 4.5.1) it is sometimes convenient to consider a
coordinate frame alternative to the Cartesian one, that of the barycentric coordinates.
The latter are d + 1 functions, {2, ..., s}, defined as follows

(fo,-)~n,-

. Rd) — 1 —
AR SR, Ai(x) =1 NN m

0<i<d. (4.30)
For every i =0,...,d let F; denote the face of K opposite to N;; F; is in fact a vertex if
d =1, an edge if d = 2, a triangle if d = 3. In (4.30), n; denotes the outward normal
to F;, while N; is an arbitrary vertex belonging to F;. The definition of A; is however
independent of which vertex of F; is chosen.

4.4 Finite elements, simplices and barycentric coordinates 79

No

Fig. 4.8. The barycentric coordinate A; of the point P is the ratio ||11§“ between the measure of

the simplex K; (whose vertices are P and {N, j # i}) and that of the given simplex K (a triangle
on the left, a tetrahedron on the right). The shadowed simplex is K

Barycentric coordinates have a geometrical meaning. Indeed, for every point P
belonging to K, its barycentric coordinate A;, 0 < i < d, represents the ratio between
the measure of the simplex K; whose vertices are P and the vertices of K sitting on the
face F; opposite to the vertex N;, and the measure of K. See Fig. 4.8.

Remark 4.4. Let us consider the unitary simplex K,;, whose vertices {No, e ,Nd} are
ordered in such a way that all the Cartesian coordinates of N; are null, except x; which
is equal to one. Then

d
A(x)=x;, 1<i<d, Ax)=1-) A(x). 4.31)

i=1

The barycentric coordinate A; is therefore an affine function that is equal to 1 at N;
and vanishes on the face F; opposite to N;.
On a general simplex K in R?, the following partition of unity property is satisfied

d
0<A(x)<1, YA(x)=1 Vxek. (4.32)
i=0 o
A point P belonging to the interior of K has therefore all its barycentric coordinates
positive. This property is useful whenever one has to check which triangle in 2D or
tetrahedron in 3D a given point belongs to, a situation that occurs when using La-
grangian derivatives (see Sect. 17.7.2) or computing suitable quantities (fluxes, stream-
lines, etc.) as a post-processing of finite element computations.

A remarkable property is that the center of gravity of K has all its barycentric

coordinates equal to (d 4+ 1)~!. Another remarkable property is that

¢i=%, 0<i<d, (4.33)

where {@;, 0 <i < d} are the characteristic Lagrangian functions on the simplex K of
degree r = 1, that is

¢ €P1(Ky), @(Nj)=0;, 0<j<d. (4.34)
(See Fig. 4.10, left, for the nodes.)

80 4 The Galerkin finite element method for elliptic problems

For r = 2 the above identity (4.33) does not hold anymore, however the characteristic
Lagrangian functions {¢;} can still be expressed in terms of the barycentric coordi-
nates {A;} as follows:

{ oi=M(2A—1), 0<i<d, (4.35)

(Pd+i+j:4)ti)tj; 0§l<]§d

For 0 <i <d, ¢; is the characteristic Lagrangian function associated to the vertex N;,
while for 0 <i < j <d, @44, it is the characteristic Lagrangian function associated
to the midpoint of the edge whose endpoints are the vertices N; and N (see Fig. 4.10,
middle).

The previous identities justify the name “coordinates” that is used for the A;’s.
Indeed, if P is a generic point of the simplex K, its Cartesian coordinates {xﬁ.P),l <

J < d} can be expressed in terms of the barycentric coordinates {li(P),O <i<d}as
follows

A =Y 1< j<a, (4.36)

where {xy), 1 < j < d} denote the Cartesian coordinates of the i-th vertex N; of the
simplex K.

4.5 The finite element method in the multi-dimensional case

In this section we extend the finite element method introduced previously for one-
dimensional problems to the case of boundary-value problems in multi-dimensional
regions. We will also specifically refer to the case of simplexes. Many of the results
presented are in any case immediately generalizable to more general finite elements
(see, for instance, [QV94]).

For the sake of simplicity, most often we will consider domains 2 C R? with
polygonal shape and meshes (or grids) 7, which represent their cover with non-over-
lapping triangles. For this reason, 7}, is also called a triangulation. We refer to Chap-
ter 6 for a more detailed description of the essential features of a generic grid .7,.

In this way, the discretized domain

thm(U K)

Ke),

represented by the internal part of the union of the triangles of .7, perfectly coincides
with Q. We recall that we denote by inf(A) the internal part of the set A, that is the
region obtained by excluding the boundary from A. In fact, we will not analyze the
error due to the approximation of a non-polygonal domain with a finite element grid
(see Fig. 4.9). The interested reader may consult, for instance, [Cia78] or [SF73].
Hence, from now on we will adopt the symbol £ to denote without distinction both
the computational domain and its (optional) approximation.

4.5 The finite element method in the multi-dimensional case 81

Fig. 4.9. Triangulation of a non-polygonal domain. The mesh induces an approximation €2, of
the domain € such that lim;,_,omeas(2 — ;) =0

Also in the multidimensional case, the parameter /4 is related to the spacing of the
grid. Having set hg = diam(K), for each K € .7}, where diam(K) = max, yex |[x—y| is
the diameter of element K, we define h = maxge g, hg. Moreover, we will impose that
the grid satisfy the following regularity condition. Let px be the diameter of the circle
inscribed in the triangle K (also called sphericity of K); a family of grids {.7,,h > 0}
is said to be regular if, for a suitable 6 > 0, the condition

I <8 VKe g (4.37)
Pk

is verified. We observe that condition (4.37) excludes immediately very deformed (i.e.
stretched) triangles, and hence the option of using anisotropic computational grids.
On the other hand, anisotropic grids are often used in the context of fluid dy-
namics problems in the presence of boundary layers. See Remark 4.6, and especially
references [AFG100, DV02, FMP04]. Additional details on the generation of grids on
two-dimensional domains are provided in Chapter 6.
We denote by P, the space of polynomials of global degree less than or equal to r, for
r=1,2,.... According to the general formula (4.28) we find

Py, ={p(x1,x2) =a+bx; + cxp, with a,b,c € R},
Py = {p(x1,x2) = a+bx| +cxp +dx1xa + ex] + fx3, with a,b,c,d, e, f € R},

P, ={pxi,x2)= Y ajxix), witha; € R}.
207t j<r

According to (4.29), the spaces P, have dimension (r+ 1)(r+2)/2. For instance, it
results that dim P; = 3, dim P, = 6 and dim P; = 10, hence on every element of the
grid .7}, the generic function v, is well defined whenever its value at 3, resp. 6, resp. 10
suitably chosen nodes, is known (see Fig. 4.10). The nodes for linear (r = 1), quadratic

(r =2), and cubic (r = 3) polynomials on a three dimensional simplex are shown in
Fig. 4.11.

4 The Galerkin finite element method for elliptic problems

L

Fig. 4.10. Nodes for linear (r = 1, left), quadratic (r = 2, center) and cubic (r = 3, right) poly-
nomials on a triangle. Such sets of nodes are unisolvent

ANpANga

Fig. 4.11. Nodes for linear (r = 1, left), quadratic (r = 2, center) and cubic (r = 3, right) poly-
nomials on a tetrahedron (only those on visible faces are shown)

4.5.1 Finite element solution of the Poisson problem

We introduce the space of finite elements
X ={v, €C’(Q):v|x €P,VK € T}, r=1,2,... (4.38)

that is the space of globally continuous functions that are polynomials of degree r on
the single triangles (elements) of the triangulation .7,.
Moreover, we define

X ={vih € X} :vploo =0}. (4.39)

The spaces X; and X 7 are suitable for the approximation of H!(), resp. H}(2),
thanks to the following property (for its proof see, e.g., [QV94]):

Property 4.2. A sufficient condition for a function v to belong to H'(Q) is that
veC%Q) andv € H(K) VK € .

Having set V}, :}2 , we can introduce the following finite element problem for the
approximation of the Poisson problem (3.1) with Dirichlet boundary condition (3.2),
in the homogeneous case (that is with g = 0)

find u, €V, - / Vi, Vv, dQ — / FopdQ Vv, eV (4.40)
Q Q

As in the one-dimensional case, each function v, € Vj, is characterized, uniquely, by
the values it takes at the nodes N;, with i = 1,... N, of the grid .9, (excluding the

4.5 The finite element method in the multi-dimensional case 83

9j

Fig. 4.12. The basis function ¢; of the space Xh] and its support

boundary nodes where v, = 0); consequently, a basis in the space V}, can be the set of
the characteristic Lagrangian functions ¢; € V,, j = 1,...,N,, such that

0 iti
(Pj(Ni):Sij:{l iij i,j=1,...,Ny. (4.41)

In particular, if » = 1, the nodes are vertices of the elements, with the exception of
those vertices belonging to the boundary of £2, while the generic function ¢; is linear
on each triangle and is equal to 1 at the node N; and O at all the other nodes of the
triangulation (see Fig. 4.12).

A generic function v;, € V}, can be expressed through a linear combination of the basis
functions of V}, in the following way

Ny

v (x) = Zvi(pi(x) Vx € Q, with v; = v,(N). (4.42)
i=1

By expressing the discrete solution u, in terms of the basis {@;} via (4.42), u,(x) =
Z?L uj@;(x), with u; = u;(N;), and imposing that it verifies (4.40) for each func-
tion of the basis itself, we find the following linear system of N, equations in the N},
unknowns u, equivalent to problem (4.40),

Ny

Zuj/Vgoj-VgoidQ:/f(pidQ, i=1,...,N,. (4.43)
=g Q
The stiffness matrix has dimensions N, x Nj, and is defined as

A= [a,’j] with ajj = /V(pj . V(p,' Q. (4.44)
Q

Moreover, we introduce the vectors

u=[] with wj=u(N;), f=[f] with ﬁ:/f(pid.Q. (4.45)
Q0

84 4 The Galerkin finite element method for elliptic problems
The linear system (4.43) can then be written as
Au=f. (4.46)

As in the one-dimensional case, the unknowns are the nodal values of the finite ele-
ment solution. It is evident, since the support of the generic function with basis ¢; is
only formed by the triangles having node N; in common, that A is a sparse matrix. In
particular, the number of non-null elements of A is of the order of Ny, as a;; is different
from zero only if N; and N; are nodes of the same triangle. A has not necessarily a
definite structure (e.g. banded), as that will depend on how the nodes are numbered.

Let us consider now the case of a non-homogeneous Dirichlet problem represented

by equations (3.1)—(3.2). We have seen in the previous chapter that we can in any case
resort to the homogeneous case through a lifting (also called extension, or prolonga-
tion) of the boundary datum. In the corresponding discrete problem we build a lifting
of a well-chosen approximation of the boundary datum, by proceeding in the follow-
ing way.
We denote by N}, the internal nodes of the grid .7, and by N}, the total number, includ-
ing the boundary nodes that for the sake of simplicity we will suppose to be numbered
last. The set of boundary nodes will then be formed by {N;,i =N, +1,...,N;}. A
possible approximation g;, of the boundary datum g can be obtained by interpolating
g on the space formed by the trace functions on d€ of functions of X;. This can be
written as a linear combination of the traces of the basis functions of X} associated to
the boundary nodes

a(x) =iy L s(ND@i(x) V€ 9. (4.47)

Its lifting R,, € X} is constructed as follows

Rey(0) = I, s(N)@i(x) Vxe Q. (4.48)

In Fig. 4.13 we provide an example of a possible lifting of a non-homogeneous Dirich-
let boundary datum (3.2), in the case where g has a non-constant value. The finite el-
ement formulation of the Poisson problem then becomes:

find u,€ Vj, :

/ Vit Vv dQ = / fypdQ — / YRy, VvpdQ vy €Vi (4.49)
Q Q Q

The approximate solution will then be provided by uy, :Iih +Rg,.

Notice how the particular lifting we adopted allows for the following algebraic inter-
pretation of (4.49)

Au=f—Bg
where A and f are defined as in (4.44) and (4.45), now with u; :lih (N;). Having set
N;l’ = N} — N, (this is the number of boundary nodes), the vector g € RV, and the

4.5 The finite element method in the multi-dimensional case 85

Fig. 4.13. Example of lifting of a non-homogeneous Dirichlet boundary datum u = g, g being
variable

. b .
matrix B € R¥*Ni have, respectively, the components
gi:g(NH—Nh)a i:17"'7N}?a

bij:/V(pj+Nh~V(pidQ, iil,...,Nh,jil,...,Nf.
Q

Remark 4.5. The matrices A and B are both sparse. An efficient program will store
exclusively their non-null elements. (See, e.g., [Saa96] for a description of possible
storage formats for sparse matrices, and also Chapter 8). In particular, thanks to the
special lifting we have adopted, in the matrix B, all the lines corresponding to non-
adjacent nodes to a boundary node will be null. (Two grid nodes are said to be adjacent
if there exists an element K € .7}, to which they both belong.) °

4.5.2 Conditioning of the stiffness matrix

We have seen that the stiffness matrix A = [a(¢;, ;)] associated to the Galerkin prob-
lem and therefore, in particular, to the finite element method, is positive definite; more-
over A is symmetric if the bilinear form a(-,-) is symmetric.

For a symmetric and positive definite matrix, its condition number with respect to
the norm ||.||2 is given by

ﬂvmax (A)

KZ(A) = }fmin (A) 9

Amax(A) and A (A) being the maximum and minimum eigenvalues, respectively,
of A.

It can be proved that, both in the one-dimensional and the multi-dimensional case, the
following relation holds for the stiffness matrix

Ky(A) =Ch™2, (4.50)

where C is a constant independent of the parameter /4, but dependent on the degree of
the finite elements being used.

86 4 The Galerkin finite element method for elliptic problems
To prove (4.50), we recall that the eigenvalues of the matrix A verify the relation
Av = Ayv,

v being an eigenvector corresponding to the eigenvalue A;,. Let v, be the function of
the space Vj, whose nodal values are the components v; of v, see (4.7). We suppose
a(-,-) to be symmetric, so A is symmetric and its eigenvalues are real and positive. We
then have
Av,v a(vy,v
)~h _ (72) _ (hvzh) 4.51)
vl vl

where || is the Euclidean vector norm. We suppose that the grid family {.7,,h > 0}
is regular (i.e. satisfies (4.37)) and moreover quasi-uniform, i.e. such that there exists
a constant T > 0 with

min hg > Th Vh > 0.
KeJ,

We now observe that, under the hypotheses made on .7, the following inverse in-
equality holds (for the proof, refer to [QV94])
3C1 >0 . Vvh S Vh, ||VVh||L2 < C]h ||vh||L2(Q), (4.52)

the constant C; being independent of 4. We can now prove that there exist two con-
stants C, C, > 0 such that, for each v, € V}, as in (4.7), we have

CLh? |vI* < ||vallf2 gy < C2 1! VP2 (4.53)

d being the spatial dimension, with d = 1,2,3. For the proof in the general case we
refer to Proposition 6.3.1. [QV94]. We here limit ourselves to proving the second
inequality in the one-dimensional case (d = 1) and for linear finite elements. Indeed,
on each element K; = [x;_1,x;], we have

/V%(X)dx:/ (VH(PH(X)+Vi‘Pi(x))2dx’

i i

with ¢;_; and ¢; defined according to (4.15). Then, a direct computation shows that

2
A‘%()dX<2 Vie 1/ (pl dx+v / (Pl dx) 3hi(vi2—1+vl'2)
with h; = x; — x;_1. The inequality
1vill2(q) < ChIvE

with C = 4/3, can be found by simply summing the intervals K and observing that
each nodal contribution v; is counted twice.

On the other hand, from (4.51) we obtain, thanks to the continuity and coercivity of
the bilinear form a(-,),

IVallZ g VallZ @)
v =TS e o

4.5 The finite element method in the multi-dimensional case 87

M and a being the continuity and coercivity constants, respectively. Now, ||v;, ||]2{] @) >
||Vh||iz(9) by the definition of the norm in H' (), while ||| @) <G vy, 2 (@)
(for a well-chosen constant C3 > 0) thanks to (4.52). Thus, by using inequalities (4.53),
we obtain
aCih? <Ay <MC3Cyh™2he,

We therefore have)

Amax(A) < MC5C 2,

Amin(A) ac
that is (4.50).

When the grid-size i decreases, the condition number of the stiffness matrix in-
creases, and therefore the associated system becomes more and more ill-conditioned.
In particular, if the datum f of the linear system (4.46) is subject to a perturbation &f
(i.e. it is affected by error), the latter in turn affects the solution with a perturbation
du; then it can be proved that, if there are no perturbations on the matrix A,

|Ou | |Of]

|ul it
It is evident that the higher the conditioning number is, the more the solution is af-
fected by the perturbation on the data. (On the other hand, notice that the latter is
always affected by perturbations on the data caused by the inevitable roundoff errors
introduced by the computer.)

As a further example we can study how conditioning affects the solution method.
Consider, for instance, solving the linear system (4.46) using the conjugate gradient
method (see Chap. 7). Then a sequence ul® of approximate solutions is iteratively
constructed, converging to the exact solution u. In particular, we have

k
K> (A)—1
[u® —ufy <2 VRO 0y,
VK2 (A)+1

having denoted by ||v||a = V/¥T Av the so-called “A-norm” of a generic vector v €
R If we define
VK (A) -1

P k) e

such quantity gives an idea of the convergence rate of the method: the closer p is to 0,
the faster the method converges, wilst the closer p is to 1, the slower the convergence.
Indeed, following (4.50), the more accurate one wants to be, by decreasing 4, the more
ill-conditioned the system will be, and therefore the more “problematic” its solution
will turn out to be.

This calls for the system to be preconditioned, i.e. it is necessary to find an invert-
ible matrix P, called (left) preconditioner, such that

K>y (P7IA) < Ky (A)

< K>(A)

and then apply the iterative method to the system preconditioned with P, thatis P~ Ax =
P~1b (see Chapter 7).

88 4 The Galerkin finite element method for elliptic problems

4.5.3 Estimate of the approximation error in the energy norm

Analogously to the one-dimensional case, for each v € C°(Q) we define interpolant
of v in the space of X!, determined by the grid .7}, the function H;}v such that

IT}v(N;) =v(N;) foreach nodeN; of Z,, i=1,...,N,

If {@;} is the Lagrangian basis of the space X!, then

Nh
Hhv Zv (N)oi(x

The operator th Q) — Xh1 , associating to a continuous function v its interpolant
H,J v, is called interpolation operator.

Similarly, we can define an operator II; : Q) — X;, for each integer r > 1.
Having denoted by IT the local interpolation operator associated to a continuous
function v the polynomial IT;v € P.(K), interpolating v in the degrees of freedom of
the element K € .9}, we define

mveX; : Iyl =I(|,) VKe. (4.54)

From now on we will suppose that 7, belongs to a family of regular grids of Q.

In order to obtain an estimate for the approximation error ||u — u,||y we follow a
similar procedure to the one used in Theorem 4.3 for the one-dimensional case. The
first step is to derive a suitable estimate for the interpolation error. To this end, we
will obtain useful information starting from the geometric parameters of each triangle
K, i.e. its diameter hg and sphericity px. Moreover, we will exploit the affine and
invertible transformation Fx : K — K between the reference triangle K and the generic
triangle K (see Fig. 4.14). Such map is defined by Fx (%) = BgX+ bk, with Bx € R>*?
and bg € R?, and satisfies the relation FK(K) = K. We recall that the choice of the
reference triangle K is not unique.

We will need some preliminary results.

Fx

Fig. 4.14. The map Fg between the reference triangle K and the generic triangle K

4.5 The finite element method in the multi-dimensional case 89

Lemma 4.2 (Transformgtion of the seminorms). For each integer m > 0 and
each v € H"(K), let ¥ : K — R be the function defined by ¥ = vo Fx. Then ¥ €

~

H"(K). Moreover, there exists a constant C = C(m) > 0 such that:

N _ 1
[Plin gy < ClIBx[I™ |detBx |2 [v]gm(k), (4.55)

_ 1,
Vlem(x) < C 1B || | detB |2 [0l m) (4.56)

I - || being the matrix norm associated to the Euclidean vector norm | - |, i.e.

|Bk&]|
|Bk|l= sup

_ (4.57)
£€R2 £40 €]

Proof. Since C™(K) C H™(K) densely, for each m > 0, we can limit ourselves to
proving the previous two inequalities for the functions of C™(K), then extending by
density the result to the functions of H"(K). The derivatives in the remainders will
therefore have to be intended in the classical sense. We recall that

1/2
Flyance) = (r Jipipas) .

by referring to Chapter 2.3 for the definition of the derivative D*. By using the chain
rule for the differentiation of composite functions, we obtain

100l 2y < CIBKI™ Y 1(DPV) 0 Filzge-
|B|=m

Then 1
1DVl 2%y < Cl|Bk||™|detBk|~2 [D*V]|L2k) -

Inequality (4.55) follows after summing on the multi-index c, for || = m. The result
(4.56) can be proved by proceeding in a similar way. o

Lemma 4.3 (Estimates for the norms ||Bg|| and ||Bg!|). We have the following
upper bounds:

h
Bkl <X, (4.58)
p
IBx!|| < h (4.59)
K =) 5
Pk

hand D being the diameter and the sphericity of the reference triangle K.

90 4 The Galerkin finite element method for elliptic problems

Proof. Thanks to (4.57) we have

1
Bkll= ., sup |Bké|
P ¢cr2 g|=p

For each &, with €] = p, we can find two points X and § € K such thatk — § = £. Since
Bk€& = Fx(X) — Fx(¥), we have |Bg&| < hg, that is (4.58).
An analogous procedure leads to the result (4.59). o

What we now need is an estimate in H” (K) of the seminorm of (v — ITv) o Fg, for
each function v of H”(K). In the remainder, we denote the interpolant ITzvo Fg with
[IT;v] . The nodes of K are NK = Fi(N;), N; being the nodes of K, and, analogously,
the basis functions @; defined on K are determined by the relation ¢; = X o Fi, having
denoted by @X the basis functions associated to the element K. Thus,

[H,r(v] HKVOF[(—ZV NK)Q; OF[(—ZVF]()P = rA,

i= i=

Mk being the number of nodes on K relating to the degree r. Then

|(v = TTgv) © Ficlygn gy = 9= TT50] g - (4.60)

In order to estimate the right side of the previous equality, we start by proving the
following result:

Lemma 4.4 (Bramble-Hilbert Lemma). Let L : H' ! (K) — H"(K), with m > 0
and r > 0, be a linear and continuous transformation such that

L(p)=0 VpeP.(K). (4.61)
Then, for each v € H'*! (I?), we have

IL(p D)) < IZ] o (H+1(R),H" (R))ﬁéilpflrfl?)||‘7+ﬁ||ﬁr+l(1?)v (4.62)

where £ (H'*1(K) H"(K) denotes the space of linear and continuous transfor-
mations | : H'+1(K) — H’"(K), normed by

120) (i)
I @@y mm@y = Sup £ (4.63)

veH 1 (K),v£0 ||V||Hr+1 ()

Proof. Let 9 € H'*! (I?) For each p € P,(I?), thanks to (4.61) and to definition (4.63)
of the norm, we obtain

L0 an) = [EO+ B ncy < IZ sy memiiey 19 Pl

Then (4.62) can be deduced thanks to the fact that p is arbitrary. o

4.5 The finite element method in the multi-dimensional case 91

The following result (whose proof is given, e.g., in [QV94, Chap. 3]) provides the
last necessary tool to obtain the estimate for the interpolation error that we are seeking.

Lemgla 4.5 (Deny-Lions Lemma). For each r > 0 there exists a constant C =
C(r,K) such that

. N A A ~ 1/
inf [0+ Pl < iy WEHTR). (460

As a consequence of the two previous lemmas, we can provide the following

Corollary 4.3. Let L: H't!(K) — H”’(A) withm > 0 and r > 0, be a linear and
continuous transformation such that L(p) = 0Vp € P,(K). Then there exists a
constant C = C(r,K) such that, for each v € H+'(K), we have

o~

| ()|Hm <C||L||$(Hr+l()Hm([(|V|Hr+l K) (465)

We are now able to prove the interpolation error estimate.

Theorem 4.4 (Local estimate of the interpolation error). Let r > 1 and 0 <
m < r+ 1. Then there exists a constant C = C(r,m,K) > 0 such that

hr+1
v — gv|gmg) < C ,fm Vi) WweHTH(K). (4.66)
K

Proof. From Property 2.3 we derive first of all that H'*!(K) c C°(K), for r > 1. The
interpolation operator IT% thus results to be well defined in H' ™! (K). By using in
succession (4.56), (4.60), (4.59) and (4.65) we have

[v — Igv|pmx <C|||B]|| |detBK| |v—IT% V|Hm(l?)

<C; op |detBK|2 |v—HEv|H,7,(1?)
fz

S p |detBK| ||LHer+l()H’" |V|Hr+])
1 .

=C; plr?|detBK|2|V|H'+l(l?)’

where C; = C (m), C, = C5(r,m,K) and C3 = C3(r,m, K) are suitably chosen constants,

92 4 The Galerkin finite element method for elliptic problems

all independent of 7. We note that the result (4.65) has been applied when identifying
L with the operator I — IT¢, with (I — IT¢.) p = 0, for p € P(K). Moreover the quantity
™ and the norm of the operator L have been included in the constant Cs.

At this point, by applying (4.55) and (4.58) we obtain (4.66), that is

r+1

1
|V7H]2V|Hm(K) <Cy4 m ||BK||r+1|V|Hr+1(K) <Cs gm |V|Hr+](](), (4.67)
K K

Cy = C4(r,m,l?) and Cs = Cs(r,m, K) being two well-chosen constants. The quantity
p"t! generated by (4.58) and relating to the sphericity of the reference element has
been directly included in the constant Cs. o

Finally, we can prove the global estimate for the interpolation error:

Theorem 4.5 (Global estimate for the interpolation error). Let m = 0,1 and
r > 1. There exists a constant C = C(r,m,K) > 0 such that

T —m 1/2 T
v — IVl) < c(Y nlrt)|v|]2_1,+](,()> W e HH(Q). (4.68)
Keg,

In particular, we obtain

v —Ivlgn@) SCH T "l WeH™H(Q), (4.69)

Proof. Thanks to (4.66) and to the regularity condition (4.37), we have

V=TV = Y, v —gvlim

KeJ,
hr+1 2
<(C Z Km |V|12_1r+1(,()
KG:% pK
—q Z (hk)zmh2(r+lm)|v|2]
== r+
&\ px K H+(K)
<G 5 Z h?((ﬂrlim)lvl]z.[rﬂ([(y
Ke),

i.e. (4.68), with C; = C, (r,m,I?) and C = C; §¥". (4.69) follows thanks to the fact that
hg < h, for each K € .9}, and that for each integer p > 0

1/2
vlne (@) =(Y |V|124p(1<)) :

Ke.g,

4.5 The finite element method in the multi-dimensional case 93

In the m = 0O case, regularity of the grid is not necessary to obtain the estimate
(4.69). This is no longer true for m = 1. As a matter of fact, given a triangle K and a
function v € H'H! (K), with r > 1, the following inequality holds [QV94],

r+1
|V7H]:V|Hm(K) SC ’;(m |V|Hr+]([(), m:O,l,
K

with C independent of v and .7,. Hence, in the case m = 1 for a family of regular
grids we obtain (4.69) by setting C = §C, § being the constant appearing in (4.37).
On the other hand, the need for a regularity condition can be proved by considering
the particular case where, for each C > 0, a (non-regular) grid can be constructed for
which inequality (4.69) is not true, as we are about to prove in the following example
which relates to the case r = 1.

Example 4.1. Consider the triangle K; illustrated in Fig. 4.15, with vertices (0,0),
(1,0), (0.5,1), with I < ‘é‘%, and the function v(x;,x;) = x2. Clearly v € H*(K;), and
its linear interpolant on Kj is given by H;}v(xl ,X2) = x1 — (41)"'x,. Since in this case
hk, = 1, inequality (4.69), applied to the single triangle K;, would yield

v =TVl k) < CPvliek,)- (4.70)

1
[v—IT, vl &,

Let us now consider the behaviour of the ratio n; = " when [tends to zero,

MHZ (Kp)
that is when the triangle is squeezed. We note that allowing / to tend to zero is equiv-
alent to violating the regularity condition (4.37), because for small enough values of
I, hg, = 1. At the same time, denoting by pk, the perimeter of K; and by |K;| we have
the surface of the element K}, the sphericity of K;

4K 21

PR b T V14

100

X2

K [ol

1 X1 0 0.1 0.2 03 0.4 05 06 0.7 08 0.9 1
1

Fig. 4.15. The triangle K; (left) and the behaviour of the relation [v — IT} | &)/ Vlke2(k,) as a
function of / (right)

94 4 The Galerkin finite element method for elliptic problems

tends to zero. We have

2 2
19, (v =TT [l 2(x)) Jx, (4)" dx 1
1= = =

|V|H2(K[) 21 8l '

Hence lim;_,(11; = +oo (see Fig. 4.15). Consequently, there cannot exist a constant C,
independent of .7}, for which (4.70) holds. |

The theorem on the interpolation error estimate immediately provides us with an
estimate for the approximation error of the Galerkin method. The proof is analogous
to that of Theorem 4.3 for the one-dimensional case. Indeed, it is sufficient to apply
(4.10) and Theorem 4.5 (for m = 1) to obtain the following error estimate:

Theorem 4.6. Let {), }y~0 be a family of regular triangulations of the domain
Q. Let uc'V be the exact solution of the variational problem (4.1) and wy, its
approximate solution using the finite element method of degree r. Ifu € H'+1(Q),
then the following a priori error estimates hold:

M 12
i = sl (@ < ac(Y Wl) @71
Ke9,
(|t — unll g (@) < Ch |10 (4.72)

C being a constant independent of h and u.

Also in the multi-dimensional case, in order to increase the accuracy two different
strategies can therefore be followed:

1. decreasing h, i.e. refining the grid;
2. increasing r, i.e. using finite elements of higher degree.

However, the latter approach can only be pursued if the solution u is regular enough.
In general, we can say that if u € C°(Q) NHP*!(Q) for some p > 0, then

| —up|lmr (@) < Ch'lulysr1(qy, s =min{r,p}, (4.73)

as already observed in the one-dimensional case (see (4.26)). Note that a sufficient
condition for u to be continuous is p > ‘21 — 1 (d being the spatial dimension of the
problem, d = 1,2,3). Moreover, it is possible to prove an error estimate in the maxi-
mum norm. For instance, if » = 1, one has

||u—uh||L°°) < Ch2|logh||u|Wzm

4.5 The finite element method in the multi-dimensional case 95

where C is a positive constant independent of % and the last term on the right-hand
side is the seminorm of u in the Sobolev space W?>(2) (see Sect. 2.5). For the proof
of this and other error estimates in W~ (2)-norms see, e.g., [Cia78] and [BS94].

Remark 4.6 (Case of anisotropic grids). The interpolation error estimate (4.66) (and
the consequent discretization error estimate) can be generalized in the case of aniso-
tropic grids. In such case however, the left term of (4.66) takes a more complex ex-
pression: these estimates, in fact, because of their directional nature, must take into
account the information coming from the characteristic directions associated to the
single triangles which replace the “global” information concentrated in the seminorm
|v|Hr+1(K). The interested reader can consult [Ape99, FPO1]. Moreover, we refer to
Fig. 4.18 and 13.21 for examples of anisotropic grids. °

4.5.4 Estimate of the approximation error in the L> norm

The inequality (4.72) provides an estimate of the approximation error in the energy
norm. Analogously, it is possible to obtain an error estimate in the L> norm. Since the
latter norm is weaker than the former one, one must expect a higher convergence rate
with respect to 4.

Lemma 4.6 (Elliptic regularity). Consider the homogeneous Dirichlet problem

—Aw=g inQ,
w=0 ondQ,

with g € L2(Q). If dQ is sufficiently regular (for instance, if 9 is a curve of

class C%, or else if Q is a convex polygon), then w € Hz(_Q), and moreover there
exists a constant C > 0 such that

W2y < Cligllizg)- (4.74)
For the proof see, e.g., [Bre86, Grill].

Theorem 4.7. Let u € V be the exact solution of the variational problem (4.1)
and uy, its approximate solution obtained with the finite element method of degree
r. Moreover, let u € C°(Q) NHP(Q) for a given p > 0. Then, the following a
priori error estimate in the norm of L*(Q) holds

[t — unllp20) < cht! lulys+1(qy, s =min{r,p}, (4.75)

C being a constant independent of h and u.

Proof. We will limit ourselves to proving this result for the Poisson problem (3.13),
the weak formulation of which is given in (3.18). Let ¢, = u — uy, be the approximation

96 4 The Galerkin finite element method for elliptic problems

error, and consider the following auxiliary Poisson problem (called adjoint problem,
see Sect. 3.5) with source term given by the error function e,

—AP =e¢, inQ,
{ =0 ondQ, (4.76)
whose weak formulation is
findgpeV: a(d),v):/ehvdﬂ Yvev, 4.77)
Q

with V = H}(Q). Taking v = e, (€ V), we have

||€h||iz(9) =a(¢,ep).
Since the bilinear form is symmetric, by the Galerkin orthogonality (4.8) we have
alen, n) = a(Pn,en) =0 YV @, € V).

It follows that
lenllF2 o) = a(@,en) = a(9 — gi,en). (4.78)

Now, taking ¢y, = th ¢, applying the Cauchy-Schwarz inequality to the bilinear form
a(-,-) and using the interpolation error estimate (4.69) we obtain

lenllF2(q) < lenlu @)@ — 9nli (@) < lenl (@) Chld i q)- (4.79)

Notice that the interpolation operator H,: can be applied to ¢ since, ¢ € H>(Q) thanks
to Lemma 4.6 and thus, in particular, ¢ € C°(£2), thanks to property 2.3 in Chap. 2.
By applying Lemma 4.6 to the adjoint problem (4.76) we obtain the inequality

19lw2(@) < Cllenlli2(q) (4.80)

which, applied to (4.79), eventually provides

llenlli2(@) < Chlenlw (a)

where C accounts for all the constants that have appeared so far. By now exploiting
the error estimate in the energy norm (4.72), we obtain (4.75). o

Let us generalize the result we have just proved for the Poisson problem to the case
of a generic elliptic boundary-value problem approximated with finite elements and
for which an estimate of the approximation error in the energy norm such as (4.72)
holds, and an elliptic regularity property analogous to the one of Lemma 4.6 holds.

4.5 The finite element method in the multi-dimensional case 97

In particular, let us consider the case where the bilinear form a(-,-) is not necessarily
symmetric. Let u be the exact solution of the problem

findueV: a(u,v)=(f,v) YWwevV, (4.81)
and uy, the solution of the Galerkin problem
finduy €V, alup,vy) = (f,vn) Vv €V

Finally, suppose that the error estimate (4.72) holds and let us consider the following
problem, which we will call adjoint problem of (4.81): for each g € L?(Q),

find p=¢(g) eV: a*(p,v)=(g,v) YweYV, (4.82)

where we have defined (see (3.40)) a* : V xV — R.

Obviously if a is symmetric the two problems coincide, as seen for instance in the
case of problem (4.77).

Let us suppose that for the solution u of the primal problem (4.81) an elliptic regularity

result holds; it can then be verified that the same result is valid for the adjoint problem
(4.82), that is

3C€>0: [0®)le(e) <Clighra VvgeL*(Q).
In particular, this is true for a generic elliptic problem with Dirichlet or Neumann (but
not mixed) data on a polygonal and convex domain £2 [Gril 1]. We now choose g = ¢,
and denote, for simplicity, ¢ = ¢ (e;,). Furthermore, having chosen v = ¢, we have

||eh||iZ(Q) = a(eh7 (P)

Since by the elliptic regularity of the adjoint problem ¢ € H?(Q), and [9ll20) <
Cllen|[2(q) thanks to the Galerkin orthogonality, we have that

||€h||fz(g) = alen,9) =aley, ¢ —II,0)
< Cillenllio) 19 — Ml (o)
< Gllenllni) b 19l @)
<

Gsllen]l i (Q) h ||eh||L2(Q),

where we have exploited the continuity of the form a(-,-) and the estimate (4.72).
Thus

||eh||L2(_Q) < C3h||eh||H1(Q)7

from which (4.75) follows, using the estimate (4.73) of the error in H! (Q).

98 4 The Galerkin finite element method for elliptic problems

10 T

0.1 |

Error
o
2

T

0.001 |]

1e-04 | L 1

1e-05 !
0.01 0.1 1

Fig. 4.16. Behaviour with respect to & of the error in H' () norm (lines without crosses) and
in LZ(.Q) norm (lines with crosses) for linear (solid lines) and quadratic (etched lines) finite
elements for the solution of the problem reported in Example 4.2

Remark 4.7. The technique illustrated above, depending upon the use of the adjoint
problem for the estimate of the L2-norm of the discretization error, is known in the lit-
erature as Aubin-Nitsche trick [Aub67, Nit68]. Several examples of how to determine
the adjoint of a given problem will be presented in Sect. 3.5. °

Example 4.2. We consider the model problem —Au+u= fin Q = (0,1)*> withu =g
on dQ. Suppose to choose the source term f and the function g so that the exact
solution of the problem is u(x,y) = sin(27x) cos(27y). We solve such a problem with
the Galerkin method with finite elements of degree 1 and 2 on a uniform grid with
step-size h. The graph of Fig. 4.16 shows the behaviour of the error when the grid-size
h decreases, both in the norm L?() and in that of H' (2). As shown by inspecting the
slope of the lines in the figure, the error’s decrease when using L2 norm (crossed lines)
is quadratic if linear finite elements are used (solid line), and cubic when quadratic
finite elements are used (etched line).

With respect to the H! norm (lines without crosses) instead, there is a linear re-
duction of the erorr with respect to the linear finite elements (solid line), and quadratic
when quadratic finite elements are used (etched line). Fig. 4.17 shows the solution
on the grid with grid-size 1/8 obtained with linear (left) and quadratic (right) finite
elements. |

4.6 Grid adaptivity

In Theorems 4.6 and 4.7 we have derived some a priori estimates for the finite element
approximation error.

4.6 Grid adaptivity 99

/',A \ ‘\
Ul
‘¢‘\\$§“”N£%>\g\

SO \ees
P ' A \\“\\\»

R “(éﬁ

A A
VAN

0.4 0.6

0.8 10

Fig. 4.17. Solutions computed using piecewise linear (left) and piecewise quadratic (right) finite
elements on a uniform grid with grid-size 1/8

Since the parameter / is the maximal length of the finite element edges, if we referred
to (4.72) we could be tempted to refine the grid everywhere in the hope of reducing
the error ||u — uh||H1(Q). However, it is more convenient to refer to (4.71) where the
upper bound is the sum of elemental contributions involving the solution seminorm
|u|Hr+1(k) on each element K and the local grid-size k.

Indeed, in order to have an efficient grid that minimizes the number of elements nec-
essary to obtain the desired accuracy, we can equidistribute the error on each element
K € Z},. In particular, we would like to obtain

hilulgrevy =1 VK € T,

where 7 is a well-chosen constant that only depends on the desired accuracy and on
the number of elements of the grid.

A larger contribution from |u| -1 (k) (due to a more pronounced variability of ulg) will
need to be balanced either by a smaller local grid-size ig or by a higher polynomial
degree r. In the first case, we will talk about h-adaptivity of the grid, in the second case
of p-adaptivity (where p stands for “polynomial”). In the remainder of this chapter we
will only focus on the first technique. However, we refer to Chap. 10 for the analysis
of error estimates which are better suited for polynomial adaptivity.

The remarks made up to now, although correct, turn out to be of little use as the
solution u is not known. We can therefore proceed according to different strategies.
The first one is to use the a priori error estimate (4.71) by replacing the exact solution u
with a well-chosen approximation, easily computable on each single element. In such
case, we talk about a priori adaptivity.

A second approach is instead based on the use of an a posteriori error estimate
able to link the approximation error to the behaviour of the approximate numerical
solution uy, known after solving the problem numerically. In such case, the optimal
computational grid will be constructed through an iterative process where solution, er-
ror estimate and modification of the computational grid are recomputed until reaching
the requested accuracy. In this case, we talk about a posteriori adaptivity.

100 4 The Galerkin finite element method for elliptic problems

The a priori and a posteriori adaptivity strategies are not mutually exclusive, ac-
tually they can coexist. For instance, having generated an appropriate starting grid
through an a priori adaptivity, the latter can be further refined through a posteriori
analysis.

4.6.1 A priori adaptivity based on derivatives reconstruction

An a priori adaptivity technique is based on estimate (4.71) where the derivatives
of u are carefully approximated on each element, with the purpose of estimating the
local seminorms of u. To do this, an approximate solution u;« is used, computed on a
tentative grid with step-size h*, with 4" large enough so that the computation is cheap,
but not too large to generate an excessive error in the approximation of the derivatives,
which could affect the effectiveness of the whole procedure.

We exemplify the algorithm for linear finite elements, in which case (4.71) takes the

form]

2
[l — |1) (Y mi |u|Hz) (4.83)
KeJj,

(C accounts for the continuity and coercivity constants of the bilinear form). Our aim
is eventually to solve our problem on a grid .7}, guaranteeing that the right-hand side
of (4.83) stands below a predefined tolerance € > 0. Let us suppose that we have
computed a solution, say uy+, on a preliminary grid .7+ with N* triangles. We use
uy+ to approximate the second derivatives of u that intervene in the definition of the
seminorm |M|H2(k)- Since uy+ does not have any continuous second derivatives in €2, it
is necessary to proceed with an adequate reconstruction technique. For each node N;
of the grid we consider the set (patch) Kn; of the elements sharing N; as a node (that
is the set of the elements forming the support of ¢;, see Fig. 4.12). We then find the
planes ﬂij (x)=a) -x+ blj by minimizing

s

solving a two-equation system for the coefficients alj and b{ . This can be regarded as
the local projection phase. We thus build a piecewise linear approximation g« € (X hl*)2
of the gradient Vuy« defined as

. * 2
7l (x) — a(;zf x)| dx, j=1,2, (4.84)
J

(g (x J—Zn X;) @i (x i=12, (4.85)

where the sum spans over all the nodes N; of the grid. Once the gradient is recon-
structed we can proceed in two different ways, depending on the type of reconstruc-
tion that we want to obtain for the second derivatives. We recall first of all that the
Hessian matrix associated to a function u is defined by D?(u) = V(Vu), that is

4.6 Grid adaptivity 101

A piecewise constant approximation of the latter is obtained by setting, for each
K* € s,
1

Dizl K" 9 (Vgh* + (Vgh*)T)

K (4.86)
Notice the use of the symmetric form of the gradient, which is necessary for Hessian
symmetry.

Should one be interested in a piecewise linear reconstruction of the Hessian, the
same projection technique defined by (4.84) and (4.85) could be directly applied to the
reconstructed gj+, by then symmetrizing the matrix obtained in this way via (4.86).
In any case, we are now able to compute an approximation of |u |H2(k+)ona generic tri-

angle K* of .7}, an approximation that will obviously be linked to the reconstructed Di.

From (4.83) we deduce that, to obtain the approximate solution u;, with an error
smaller than or equal to a predefined tolerance €, we must construct a new grid .7,""
such that

2012 N) e D21 1|2 < (€ 2
Y g = X ik ¥ IO < ()

Ke ’Zlncw K€<7hﬂ(’w l,j:]

Ideally one would wish the error to be equidistributed on each element K of the new grid.
A possible adaptation procedure then consists in generating the new grid by ap-
propriately partitioning all of the N* triangles K* of .7}» for which we have

2 1 £ 2
2 _ 42 2112
=tk 30 10 lse > . () 4.87)

This method is said to be a refinement as it only aims at creating a finer grid than the
initial one, but it clearly does not allow to fully satisfy the equidistribution condition.
More sophisticated algorithms also allow to derefine the grid in presence of the
triangles for which the inequality (4.87) is verified with the sign < (i.e. much smaller
than) instead of >. However, derefinement procedures are of more difficult implemen-
tation than refinement ones. Hence, one often prefers to construct the new grid from
scratch (a procedure called remeshing). For this purpose, on the basis of the error
estimate, the following spacing function H (constant on each element) is introduced

_ € VK* € T (4.88)

2 12

i,j=1

K*

and is used to construct the adapted grid by applying one of the grid generation algo-
rithms illustrated in Chap. 6. The adaptation algorithm often requires the function H
to be continuous and linear on each triangle. In this case we can again resort to a local
projection, like that in (4.84).

The adaptation can then be repeated for the solution computed on the new grid, until
inequality (4.87) is inverted on all of the elements.

102 4 The Galerkin finite element method for elliptic problems

T 08 06 o4 o2

0 -02 -1 -1
04 -06 08 4 1 08 -06 -04 02 0 02 04 06 08 1

Fig. 4.18. The function u (left) and the third adapted grid (right) for Example 4.3

Remark 4.8. The C constant appearing in inequality (4.83) can be estimated by ap-
plying the same inequality to known functions (which makes therefore possible to
compute the exact error). An alternative that does not require explicitly knowing C
consists in realizing the grid that equally distributes the error for a number N* of a
priori fixed elements. In this case the value of H computed by setting € and C to one
in (4.88) is rescaled, by multiplying it by a constant, so that the new grid has a number
N* of elements fixed a priori. °

Example 4.3. We consider the function u(xy,x2) = 10x3 +x3 +tan~ ' (10~*/(sin(5x2) —
2x1)) on the domain = (—1,1)2, which features a strong gradient across the curve
x1 = 0.5sin(x;), as can be observed from Fig. 4.18 on the left. Starting from an initial
structured grid constituted by 50 triangles and using an adaptive procedure guided by
the Hessian of u, we obtain, after 3 iterations, the grid in Fig. 4.18 (right), made of
3843 elements. Most of the triangles are located in the proximity of the functions’
jump: indeed, while few medium-large surface triangles are necessary to describe u
in a satisfactory way in the regions located far enough from the jump, the abrupt
variation of u in presence of discontinuities requires the use of small triangles, i.e. a
reduced discretization grid-size. Furthermore, we note the anisotropic nature of the
grid in Fig. 4.18, visible by the presence of elements whose shape is very stretched
with respect to that of an equilateral triangle (typical of an isotropic grid). Such grid
has been obtained by generalizing the estimator (4.87) to the anisotropic case. The
idea is essentially to exploit the information provided by the components [D,Zl]i i sepa-
rately instead of “mixing” them through the L?(K*) norm. By using the same adaptive
procedure in the isotropic case (i.e. the estimator in (4.87)), we would have obtained,
after 3 iterations, an adapted grid made of 10535 elements. |

4.6.2 A posteriori adaptivity

The procedures described in the previous section can be unsatisfactory because the
recostruction of u’s derivatives starting from uy,« is often subject to errors that are not
easy to quantify.

4.6 Grid adaptivity 103

A radical alternative consists in adopting a posteriori estimates of the error. The
latter do not make use of the a priori estimate (4.71) (and consequently of any approx-
imate derivatives of the unknown solution u). Rather, they are obtained as a function
of computable quantities, normally based on the so-called residue of the approximate
solution.

Let us consider problem (4.1) together with its Galerkin approximation (4.2). We
define the residue R € V' by

(R,v) =F(v) —a(up,v) Wvev, (4.89)

that is
(R,v) = alu—uy,v) Vvev. (4.90)

Then
= wily < |Rllyr < Mllu— . (491)

Indeed, using (4.90) and the continuity of a(-,-),

(R,v)
v Ivilv

On the other hand, taking v = u — uy, in (4.90) and using the coercitivity of a(-,-),

[Rlly- = sup <Mju—uly.

O£||u—uh||€ <a(u—up,u—uy) = (Ru—up)
< IRIly[|u — uallv,

whence the first inequality of (4.91).

Now our goal is to express R in terms of computable quantities on every element K
of the finite element triangulation. For the sake of exposition let us consider, as an
example, the Poisson problem (3.13). Its weak formulation is given by (3.18), while
its approximation using finite elements is described by (4.40), where V}, is the space
)?;l defined in (4.39). In this specific case, V = H} (2), V' =H 1(Q),a =M = 1.
Using the Galerkin orthogonality, together with (4.90) and (4.89), forevery v € H& (Q)
and every v, € V,,, we have

(R,v>:/V(u—uh)~Vde:/V(ufuh)V(v—vh)d.Q
Q Q
f(v—vh)d.Q—/Vuh-V v—vp) dQ

fv—v,)dQ+ Z /Auh v—v,) dQ — Z / (v—vp)

KeT % Ke. 7,,

-/
Q
I
Q

/f+Auh v—vy)dQ—) / (v—wp) (4.92)

e Ke%,

104 4 The Galerkin finite element method for elliptic problems

We observe that all the local integrals make sense.
Having denoted by e a side of the generic triangle K, we define the jump of the normal
derivative of uy, through the internal side e the quantity

auh
|: on :|e = VM;,|K1 -n; + Vuy, 5 ‘N = (V”h‘Kl — V”h‘Kz) ‘ny, (4.93)
where K| and K, are the two triangles sharing the side e, whose normal outgoing
unit vectors are given by n; and n; respectively, with n; = —n; (see Fig. 4.19). In
order to extend such definition also to the boundary sides, we introduce the so-called
generalized jump, given by

8uh
[auh] _ {8}1]6 for e € &, 494)

oan
0 for e € dQ,

where &}, indicates the set of inner sides in the grid. We note that, in the case of linear
finite elements, (4.94) identifies a piecewise constant function defined on all the sides
of the grid J},. Moreover, the definition (4.94) can be suitably modified in the case
where problem (3.13) is completed with boundary conditions that are not necessarily
of Dirichlet type.

Thanks to (4.94) we can therefore write that

d d
Y[e-mdr=- Y ¥ [Ty
KeTh 5k

KeT) ecok
u 1 u
= 2/[h] — V) dy=—, Y /[ah] (v—vp) dy,
KejheeaK Ke%,ak n

where the factor 1/2 takes into account the fact that each internal side e of the grid
is shared by two elements. Moreover, since v — v, = 0 on the boundary, in (4.94) we
could assign any value different from zero in presence of ¢ € d€2, as the terms of
(4.95) associated to the boundary sides would be null in any case.

By now inserting (4.95) in (4.92) and applying the Cauchy-Schwarz inequality, we

(4.95)

Fig. 4.19. Triangles involved in the definition of the jump of the normal derivative of u;, through
an internal side e

4.6 Grid adaptivity 105

obtain

Ry < Z{||f+Auh||Lz<K>||v—vhan(m

Ke),
1 auh
| [5]
Now we look for v;, € V}, that allows to express the norms of v — v, as a function of a
well—chosgn norm of v. Moreover, we want this norm to be “local”, i.e. computed over
a region Kcontaining K, but as little as possible. If v were continuous, we could take
as vy, the Lagrangian interpolant of v and use the previously cited interpolation error
estimates on K. Unfortunately, in our case v € H' () is not necessarily continuous.

However, if .7, is a regular grid, we can introduce the so-called Clément interpolation
operator %, H! (Q) — V,, defined, in the case of linear finite elements, as

Z(x) =Y (Pv)(Nj)o;(x) WweH(Q), (4.97)
N;

where Pjv denotes a local L? projection of v. More precisely it is a linear function
defined on the patch Ky; of the grid elements that share the node N; (see Fig. 4.20),
which is determined by the relations

/(Pjv—v)l//dx:o for y=1,x1,x5.

KN,
NJ

As usual, the @; are the characteristic Lagrangian basis functions of the finite element
space under exam.

For each v € H! (Q) and each K € 9}, the following inequalities hold (see, e.g.,
[BG98, BSY4, CIETS5]):

lv—Zivllia) < Crog [Vl gy,
1
||V7%hv||L2(3K) < C2h12(”VHH](I?)’

where C and C; are two positive constants that depend on the minimal angle of the
elements of the triangulation, while K = {K; € .7, : K; N K # 0} represents the union
of K with all the triangles that share an edge or a vertex with it (see Fig. 4.20).

~ Kn

Fig. 4.20. The set K of elements that have in common with K at least a node of the grid (left),
and the set Ky; of the elements that share node N (middle and right)

106 4 The Galerkin finite element method for elliptic problems

Alternatively to Z),v we could use the local Scott-Zhang interpolation operator,
see [BS94, Sect. 4.8]. The rest of the proof would proceed similarly.

By choosing in (4.96) v, = Zyv, setting C = max(Cy,C,) and using the discrete
Cauchy-Schwarz inequality, we obtain

<R v <C Z p](uy, ||v||H1

Ke.g,
1 ;
SC(Z[pkuh) <ZIIVI|)
Ke, Ke9,
We have denoted by
1 1 duy,
=h A h2 4.98
pitun) =i 15 awli + 0 || 0] .98

the so-called local residue, constituted by the internal residue || f + Auy||; 2 4 and by
au,,
on

We now observe that, since .7}, is regular, the number of elements in K is necessarily

bounded by a positive integer independent of i, which we denote by n. Thus,

the boundary residue ‘

L2(K)

]

IVl (@) (Y VI) < Vallvl o)

KGh

Because of the Poincaré inequality (2.13),

Wlana) < Cllgyays €=1/1+C4

(see the proof of Property 2.5), whence

1

IRll-a = sup (Rv) <c¢n<z[pk<uh>12) |

verd (@) IVl e ke

Thanks to the first inequality of (4.91) (and the fact that & = 1 in the current case), we
conclude with the following residual-based a posteriori error estimate

[l — unllypr 0 <C\/n< Y [pk(uh)]2> . (4.99)

Ke9,

4.6 Grid adaptivity 107

Table 4.2. Cardinality, relative error and normalized estimator associated with the initial grid
and with the first six adaptive grids

iteration M [—unllwr @)/ llunlla (@) n/lunlla (@)
0 324 0.7395 5.8333
1 645 0.3229 3.2467
2 1540 0.1538 1.8093
3 3228 0.0771 0.9782
4 7711 0.0400 0.5188
5 17753 0.0232 0.2888
6 35850 0.0163 0.1955

Notice that pg (uy,) is an effectively computable quantity, being a function of the datum
f, of the geometric parameter sg and of the computed solution u;,. The most delicate
point of this analysis is the not-always-immediate estimate of the constants C and n.

The a posteriori estimate (4.99) can, for instance, be used in order to guarantee
that

1 ([t — unllyg1 @)

< <
2 lunll (@)

3
€ 4.100
HE ()
€ > 0 being a pre-established tolerance. To this end, via an iterative procedure illus-

trated in Fig. 4.21, we can locally make finer and coarser the grid .7}, until when, for
each K, the following local inequalities are satisfied

9 g2

1¢? 2 2 2
lun sy < o) <, S el (4.101)

4N

having denoted by N the number of elements of the grid .7},. This ensures that the
global inequalities (4.100) are satisfied, up to the contribution of the constant Cy/n.
Alternatively, we can construct a well-chosen grid spacing function H, analogously to
what was done in Sect. 4.6.1.

Naturally, the flow diagram reported in Fig. 4.21 can also be used for boundary-
value problems differing from (4.40).

4.6.3 Numerical examples of adaptivity

We illustrate the concept of grid adaptivity on two simple differential problems. For
this purpose, we adopt the iterative procedure reported in Fig. 4.21, although we will
limit ourselves to the sole refinement phase. The coarsening process turns out to be of
more difficult implementation: as a matter of fact, the most commonly used software
only allows to refine the initial grid, hence it will be necessary to choose the latter to
be suitably coarse.

Finally, for both reported examples, the reference estimator for the discretization error
is represented by the right term of (4.99).

108 4 The Galerkin finite element method for elliptic problems

generation of the
initial grid

l

solution of the
numerical problem

|

set R=D =10

l

loop on the elements
K

. 1 ¢ o 3 &
if P (up) >E{ﬁ”uhHHl(Q) if pg (up) < E\JﬁHUhHHI(Q)

l |

K is marked R K is marked D
R+— RU{K} D —DU{K}
RUD=07? YES
[vo

generation of the
new grid

end

Fig. 4.21. Example of iterative grid adaptation procedure

First example

Let us consider the problem —Au = f in Q = (—1,1)?, with homogeneous Dirichlet
conditions on the whole boundary dQ2. Moreover, we choose a forcing term f such
that the exact solution is u(x,x2) = sin(7x;) sin(7x;) exp(10x;). We begin the adap-
tive procedure by starting from a uniform initial grid, made of 324 elements, and with
a tolerance € = 0.2. The iterative procedure converges after 7 iterations. We report in
Fig. 4.22 the initial grid together with three of the adapted grids obtained in this way,
while Table 4.2 summarizes the number .4}, of elements of the grid .7, the relative er-
ror |[u — up||y1 (@) /||unllp1 (@) and the normalized estimator 17/||up||y1 () on the initial
grid and on the first six adapted grids.

The grids in Fig. 4.22 provide a qualitative feedback on the reliability of the cho-
sen adaptivity procedure: as expected, triangles tend to concentrate in those regions

4.6 Grid adaptivity 109

1 1
0.8 08
06 06
04 0.4
0.2 0.2
0 0
-02 -02
-0.4 -04
-06 -06
_08 -08
T o8 w06 w04 w02 0 02 04 06 08 1 1 08 w06 04 02 0 02 04 06 08 1
1 1
08 08
06 06
04 0.4
0.2 0.2
0 0
02 -02
-04 -04
-06 -06
-0.8 -0.8
1 08 w06 04 02 0 02 04 06 08 1 1 08 w06 04 02 0 02 04 06 08 1

Fig. 4.22. Initial grid (top left) and three grids adapted by choosing the adaptive procedure of
Fig. 4.21, at the second (top right), third (bottom left) and fifth (bottom right) iteration

where u attains its extrema. On the other hand, the values in Table 4.2 also allow to
perform a quantitative analysis: both the relative error and the normalized estimator
progressively decrease, when the iterations increase. However, we can notice an av-
erage overestimate of about 10-11 times with respect to the fixed tolerance €. This
is not unusual and can basically be explained by the fact that the constant C+/n in
the inequalities (4.100) and (4.101) has been neglected (i.e. set to 1). It is clear that
such choice actually leads to requiring a tolerance € = €/(C+/n), that will therefore
coincide with the original € only in the case where we have Cy/n ~ 1. More precise
procedures, taking the constant C+/n into account, are in any case possible by starting,
e.g., from the (theoretical and numerical) analysis provided in [BDR92, EJ88].

Second example
Let us consider the problem —Au =0 in Q = {x = r(cos8,sin0)",r € (0,1), 6 €
(0, Zn)}, with u assigned on the boundary of Q so that u(r,0) = r*/3 sin(g 0) is the

110 4 The Galerkin finite element method for elliptic problems

(WA %)
INAY,
WALV Veive = Ay
S E S
SIS ISLNOHNNTAR AN
DOAPSEL LSRR
KDL REPIINHIHR
RTINS
RSB ITH,
OS]

IR
KIKD
A AN AVAVAVAVN

0.6 0.4 -02 0 0.2 0.4 06 0.8 1 06 0.4 02 0 0.2 0.4 06 08 1

Fig. 4.23. Initial grid (left) and twentieth adapted grid (right)

—0‘6 —O‘A 70‘2 (; 0‘2 D‘A D‘S D‘B I‘ 70‘6 70‘4 7[!‘2 O‘ 0‘2 0‘4 D‘G D‘E 1‘
Fig. 4.24. Isolines of the linear finite element solution on the initial grid (left) and on the twen-
tieth adapted grid (right)

exact solution. This function features low regularity in a neighborhood of the origin.
Suppose we approximate such problem via the Galerkin method using linear finite
elements on the quasi-uniform grid drawn on in the left of Fig. 4.23, and made of
138 triangles. The distortion in the isolines of u;, in the left of Fig. 4.24 shows that
the solution obtained in this way is quite inaccurate near the origin. We now use the
estimator (4.99) to generate an adapted grid which better suits the approximation of
u. By following an adaptive procedure such as the one illustrated in Fig. 4.21 we
obtain after 20 steps the grid made of 859 triangles of in Fig. 4.23 on the right. As
in Fig. 4.24 on the right, the isolines associated to the corresponding discrete solution
denote a higher regularity, an evidence of the improved quality of the solution. As a
comparison, in order to obtain a solution characterized by the same accuracy € with
respect to the norm H' of the error (required to be equal to 0.01) on a uniform grid,
2208 triangles are necessary.

4.6 Grid adaptivity 111

4.6.4 A posteriori error estimates in the L?> norm

Besides (4.99) it is possible to derive an a posteriori estimate of the error in L? norm.
To this end, we will again resort to the duality technique of Aubin-Nitsche used in
Sect. 4.5.4, and in particular we will consider the adjoint problem (4.76) associated
to the Poisson problem (3.13). Moreover, we will suppose that the domain € is suffi-
ciently regular (for instance, a convex polygon) in order to guarantee that the elliptic
regularity result (4.74) stated in Lemma 4.6 is true.

Moreover, we will exploit the following local estimates for the interpolation error
associated with the operator IT; applied to functions v € H?(Q)

~ 3
||V*H1:V|‘L2(ak) <G h12(|V|H2(K) (4.102)
(see [BS94] or [Cia78]), and
[v—TTvll 2) <C2hK|v|Hz (4.103)

The latter inequality is obtained from (4.67).
Starting from the adjoint problem (4.76) and exploiting the Galerkin orthogonality
(4.8), we have, for each ¢, € V},,

||€h||fz =) /f O—0n)d2— Y [Vu,-V(p—y)dQ

Ke 9, h K K€<7;,K

Counterintegrating by parts, we obtain

d
el = X [(r+am)@-onae— Y, [5"@-ond

KeTy ¥ Ke?h

Using the definition (4.94) of generalized jump of the normal derivative of u, across
the triangle edges and setting ¢y, = I1; ¢, we have

leisg) = X | [0+ am)o - mo)ag
K

Ke7),

71/ dup (¢ — IT¢)dy (4.104)
2a on h ' ’
K

We estimate the two terms in the right-hand side separately. By using the Cauchy-
Schwarz inequality and (4.103), it follows that

/(f—&-Auh)(‘P—H/:(b)d-Q‘ < ||f+Auh||L2(K)||¢ —Hff‘PHLZ(K)
e (4.105)

< Crhy 1f+Aunll20) 102 ()

112 4 The Galerkin finite element method for elliptic problems

Moreover, thanks to (4.102) we obtain

duy, ’ duy,
o] ot <[5
oK

~ 3
§C1h}(

o ¢ —IT; ¢l 25k
L+ (dK

8uh

don
By now inserting (4.105) and (4.106) in (4.104) and applying the discrete Cauchy-
Schwarz inequality we have

(4.106)

[|H2 (K)*
L2(9K)

lenllf2q) < C Y, hxpxn)l9hpew) < C,| Y, [xpx(n)l’|9lw o)
Ke g, Ke,

< C Y [hxpx(un)]? llenlli2q),
Ke),

with C = max(é] ,62), having introduced the notation (4.98) and having exploited the
elliptic regularity property (4.80) in the last inequality. We can then conclude that

1

2
llu—unll 20y < C<)y h?([pK(uh)]2> : (4.107)

KeJ,
C > 0 being a constant independent of 4.

Remark 4.9. Among the most widespread a posteriori estimates in engineering, we
cite for its simplicity and computational effectiveness the estimator proposed by Zien-
kiewicz and Zhu in the context of a finite element approximation of linear elasticity
problems [ZZ87]. The basic idea of this estimator is very simple. Suppose we want

to control the energy norm ([q |V — Vuy|*dQ) 12 of the discretization error asso-
ciated to a finite element approximation of the model problem (3.13). This estimator
replaces the exact gradient Vu in the latter norm with a corresponding reconstruc-
tion obtained through a suitable post-processing of the discrete solution u;. Over the
years, several “recipes” have been proposed in the literature for the construction of
the gradient Vu (see, e.g., [27292, Rod94, PWY90, LW94, NZ04, BMMPO06]). The
same procedure illustrated in Sect. 4.6.1 that leads to the reconstructed g;+ defined in
(4.85) can be used here for this purpose. Thus, having chosen a reconstruction, say
Gr(up), of Vu, the Zienkiewicz and Zhu-type estimator is represented by the quantity
N = ([|Gr(up) — Vuh|2d.(2)l/2. Clearly, to each new definition of Gg(uy) corre-
sponds a new error estimator. For this reason, a posteriori error estimators with such
structure are commonly called recovery-based. °

4.6.5 A posteriori estimates of a functional of the error

In the previous section, the adjoint problem (4.76) was used in a purely formal way,
because the error ey, that represents its forcing term, is unknown.

4.6 Grid adaptivity 113

There exists another family of a posteriori estimators of the error, again based
on the adjoint problem, which, instead, explicitly use the information provided by the
latter (see, e.g., [Ran99]). In such case, an estimate is provided for a suitable functional
J of the error ey, instead of for a suitable norm of e;,. This prerogative turns out to be
particularly useful whene one wants to provide significant estimates of the error for
quantities of physical relevance, such as, for instance, resistance or drag in the case
of bodies immersed in fluids, average values of concentration, strains, deformations,
fluxes, etc. For this purpose, it will be sufficient to operate a suitable choice for the
functional J. This type of adaptivity is called goal-oriented. To illustrate this new
paradigm, let us still refer to the Poisson problem (3.13) and assume that we want to
control the error of a given functional J : H(} () — R of the solution u. Let us consider
the following weak formulation of the corresponding adjoint problem

findg €V : /V¢~de.(2:](w) Vwev, (4.108)
Q

with V = H(])(.Q) By using the Galerkin orthogonality and proceeding as done in the
previous section, we find

Ne = [Ver-voae= ¥ [/<f+Auh><¢—¢h>d9
0Q

ke Ly
71/ D] (5~ o)y (4.109)
2a on h ' ’
K

where ¢, € Vj, is typically a convenient interpolant of ¢. By using the Cauchy-Schwarz
inequality on each element K, we obtain

| (en)| =

/Veh~V¢d.Q‘
Q

1(|[du
<y <||f+Auh||Lz<K) 19— drlliz + H [on }

Ke,

) [¢h||L2(a1<)>

L2(dK

1 1
<y [pK<uh>max< 100 1 ||¢¢h||Lz<aK>>] ,

Ke,

Pk (up,) being defined according to (4.98). We now introduce the so-called local weights

1 1
o) =max (100l 1z 100) o)
Thus,
Ve < Y. px(un) o (0). (4.111)

114 4 The Galerkin finite element method for elliptic problems

We can observe that, in contrast to the residue-type estimates introduced in
Sects. 4.6.2 and 4.6.4, the estimate (4.111) depends not only on the discrete solu-
tion uy, but also on the solution ¢ of the dual problem. In particular, having considered
the local estimator px (uj,)wk(¢), we can say that, while the residue pg(u;) mea-
sures how the discrete solution approximates the differential problem under exam, the
weight wg (¢) takes into account how this information is propagated in the domain as
an effect of the chosen functional. Hence, the grids obtained for different choices of
the functional J, i.e. of the forcing term of the adjoint problem (4.108), will be differ-
ent even if we start from the same differential problem (for more details, we refer to
Example 13.12).

Moreover, to make the estimate (4.111) efficient, we proceed by replacing the norms
9 — ®nllr2k) and [[¢ — @ull2(9k) in (4.110) with suitable estimates of the interpola-
tion error, having chosen ¢, as a suitable interpolant of the dual solution ¢.

We point out two particular cases. Choosing J(w) = [, we,dQ in (4.108) we
would find again the estimate (4.107) for the L2-norm of the discretization error, pro-
vided of course that we can guarantee that the elliptic regularity result (4.74), stated in
Lemma 4.6, is true. Instead, if we are interested in controlling e, at a point x of €, it
will be indeed sufficient to define J as J(w) = (8, w)w, with W = H}(Q2) N C%(Q)
and Oy being Dirac’s delta function at x (see Chapter 2).

Remark 4.10. The a posteriori analysis of this section, as well as that of the previ-
ous Sects. 4.6.2 and 4.6.4, can be extended to the case of more complex differential
problems, like for instance transport and diffusion problems, and more general bound-
ary conditions (see Example 13.12). The procedure remains basically the same. What
changes is the definition of the local residue (4.98) and of the generalized jump (4.94).
Indeed, while pk () directly depends on the differential formulation of the problem
under exam, [duy,/dn| will need to take into account the conditions assigned on the
boundary. °

For a thorough description of the adaptivity techniques provided up to now and
for a presentation of other possible adaptive techniques, we refer the reader to [Ver96,
Ran99, AO00].

4.7 Exercises

1. Heat transfer in a thin rod.
Let us consider a thin rod of length L, having temperature #; at the endpointx = 0
and insulated at the other endpoint x = L. Let us suppose that the cross-section of
the rod has constant area equal to A and that the perimeter of A is p. The temper-
ature ¢ of the rod at a generic point x € (0,L) then satisfies the following mixed
boundary-value problem:

—kAt" +opt =0, x€(0,L),
{ P *€(0.1) 4.112)

1(0) =lo, t/(L) =0,

4.7 Exercises 115

having denoted by k the thermal conductivity coefficient and by ¢ the convective
transfer coefficient.
Verify that the exact solution of this problem is

__ cosh[m(L—x)]
(x) = 1o cosh(mL) ’

with m = \/ o p/kA. Write the weak formulation of (4.112), then its Galerkin-finite
element approximation. Show how the approximation error in the H}(0,L)-norm
depends on the parameters k, ¢, p and t.

Finally, solve this problem using linear and quadratic finite elements on uniform
grids, then evaluate the approximation error.

2. Temperature of a fluid between two parallel plates.
We consider a viscous fluid located between two horizontal parallel plates, at a
distance of 2H. Suppose that the upper plate, which has temperature f,,,, moves at
arelative speed of U with respect to the lower one, having temperature f;, . In such
case the temperature 7 : (0,2H) — R of the fluid satisfies the following Dirichlet
problem:

ST G H R ye (0.2H)
dy2 - y) y b b
1(0) = ting, 1(2H) = top,

2
where o0 = 4;1/4 :
of the fluid. Find the exact solution #(y), then write the weak formulation and the
Galerkin finite element formulation.

[Solution: the exact solution is

, k being the thermal conductivity coefficient and u the viscosity

() = — & (H—y)*+

tinf - tsup tinf + tsup OCH4
_ H—
1 (H—y)+

2H 2 12 !
3. Deformation of a rope.
Let us consider a rope with tension 7" and unit length, fixed at the endpoints. The

function u(x), measuring the vertical displacement of the rope when subject to a
transversal charge of intensity w, satisfies the following Dirichlet problem:

k
—u"+ U= ;‘j in (0,1),
u(0) =0, u(l) =0,
having indicated with k the elasticity coefficient of the rope. Write the weak for-

mulation and the Galerkin-finite element formulation.

4. Prove Property 4.1.
[Solution: it suffices to observe that a;; = a(¢;, ¢;) Vi, j.]

5. Prove (4.12).

116 4 The Galerkin finite element method for elliptic problems

0 0
Ly . Y .
2 o o o . 2l e o o Ly
DR DY Ly
4 DR . 4 DY Ly
DY Ly ¢ oo Ly .
6 DRy .o 6 ¢ oo Ly Ly
DR . ¢ oo Ly DR
8 DR 8 DY e o0 000 00
DR ee e s o0 s e s e
10 . 10 e e e 0000000000
e 0 e 0000000 00
12F o o . 12 @ o o @ e e e 00000000000
Ly . DY e e e 000000000 00
14 Ly . 14 .o e e e 00000000000
Ly . . e oo 0 00 e o 00 00
16 .o . 16 e oo 0 00 oo 00 00
Ly . e oo 0 00 e e 00 00
18 Ly . 18 e oo 0 00 e o 00 o0
Ly . e oo 0 00 e o 00 00
20 Ly . 20 e o o 0 e e o 00 00
.o . oo o e o 00 o0
0 5 10 15 20 0 5 10 15 20

Fig. 4.25. Left: the sparsity pattern of the Galerkin finite element matrix associated to a dis-
cretization using 10 elements of the one-dimensional Poisson problem with quadratic finite
elements. Unknowns are numbered as explained in Exercise 6. Right: the pattern of the L and
U factors of A. Note that, because of the fill-in, the number of non-null finite elements has
increased from 81 in the matrix to 141 in the factors

[Solution: since the form is symmetric, the procedure contained in Remark 3.2
can be repeated, noting that the solution u, satisfies a(uy,v;) = a(u,v,) for each
v, € V. We deduce therefore that uj, minimizes J(vy,) = a(vy,vy) — 2a(u,v;) and
therefore also J* (v,) = J(vy,) + a(u,u) = a(u — vy, u —v;,) (the last equality is made
possible thanks to the symmetry of the bi-linear form). On the other hand,

Valu—vylly < vVa(u—vy,u—vy) <VMlju—vyy,

hence the desired result.]

6. Given a partition of an interval (a,b) into N + 1 sub-intervals, suppose to num-

ber first the endpoints of the single sub-intervals and then their midpoints. Is this
labelling more or less convenient than the one introduced in Sect. 4.3 for the dis-
cretization of the Poisson problem with finite elements in X,%? Suppose to solve the
linear system by a factorization method.
[Solution: the obtained matrix still has only five diagonals different from zero, as
the one obtained using the numbering proposed in Sect. 4.3. However, it features
a higher bandwidth. Consequently, in case it is factorized, it is subject to a larger
fill-in, as shown in Fig. 4.25.]

7. Consider the following one-dimensional boundary-value problem:

—(a) +yu=f, 0<x<l,
u=0 atx =0,
o' +6u=0 atx=1,

4.7 Exercises 117

where o = ot(x), v = y(x), f = f(x) are assigned functions with 0 < y(x) < 7 and
0< o < a(x) < o Vx € [0, 1], while § € R. Moreover, suppose that f € L2(0, 1).
Write the problem’s weak formulation specifying the appropriate functional spaces
and hypotheses on the data to guarantee existence and uniqueness of the solution.
Suppose to find an approximate solution uy, using the linear finite element method.
What can be said about the existence, stability and accuracy of uy,?

[Solution: we seek u € V.= {v € H'(0,1) : v(0) = 0} such that a(u,v) = F(v)
Vv € V where

1 1

a(um)z/(xu'v' dx+/1yuvdx+5u(l)v(l), F(v):/fvdx.
0

0 0

The existence and uniqueness of the solution of the weak problem are guaranteed
if the hypotheses of the Lax-Milgram lemma hold. The form a(-,-) is continuous
as we have

|a(u, v)| < 2max(a, Y1) lullv[v]lv +[8] [v(1)] |u(1)
1

)

from which, considering that u(1) = / i’ dx, we obtain
0

la(u,v)| < M|[ul|v|Ivlly with M =3max(oy,¥,8]).
We have coercivity if §>0, for in such case we find
alut.0) = a2 q 1) +12(1)3 = o250,

To find the inequality in || - ||y invoking the Poincaré inequality (2.13), it suffices to
prove that

1 2 2
Y L

and then to conclude that

%)

a(u,u) > a*||ul|> with o* = .
()= @} e

The fact that F is a linear and continuous functional can be verified immediately.
The finite element method is a Galerkin method with Vj, = {v, € X, : v,(0) = 0}.
Consequently, thanks to Corollaries 4.1, 4.2 we deduce that the solution u;, exists
and is unique. From the estimate (4.72) we furthermore deduce that, since r = 1,
the error measured in the norm of V will tend to zero linearly with respect to 4.]

8. Consider the following two-dimensional boundary-value problem:
—div(aVu)+yu=f inQ CR?
u=20 onlp,
aVu-n=0 on Iy,

118 4 The Galerkin finite element method for elliptic problems

.Q belng a bounded open domain having regular boundary dQ = I, UTy, with

FD N FN @ and unit outgoing normal n; o € L*(2), y € L*(2), and f € L*(Q)
are three assigned functions with ¥(x) > 0 and 0 < oy < 0/(x) a.e.in Q.

Analyze the existence and uniqueness of the weak solution and the stability of
the solution obtained using the Galerkin method. Suppose that u € H*(£). Which
polynomial degree would it be convenient to use?

[Solution: the weak problem consists in finding u € V = H}—D such that a(u,v) =
F(v) Yv €V, where

alu,v) =/aVqu d.Q—l—/‘yuv dQ, F(v /fv dQ.
Q

The bilinear form is continuous; indeed

IN

awn)| < [avul Vo @+ [Iyul v 0
Q Q
ItV [V¥l + Pl ey 2

Mllullv[vllv,

ANVAN

having taken M = 2max{||&|[=), [|VllL=(q)}- Moreover, it is coercive (see the

solution to Exercise 7) with coercw1ty constant given by a* =, agz Since F is a

linear and bounded functional, owing to the Lax-Milgram lemma the weak solution
exists and is unique. As far as the Galerkin method is concerned, we introduce a
subspace V;, of V with finite dimension. Then there exists a unique solution u;, of
the Galerkin problem: find u;, € V}, such that a(uy,vy,) = F(vj,) Vv, € Vj,. Moreover,
by Corollary 4.2 we have stability. As far as the choice of the optimal polynomial
degree r is concerned, it is sufficient to note that the exponent s appearing in (4.26)
is the minimum between r and p = 3. Hence, it will be convenient to use elements
of degree 3.]

The fundamental steps of a finite element code can be summarized as follows:

(a) input the data;

(b) build the grid 9}, = {K};

(c) build the local matrices Ax and the right-hand side elements fx;

(d) assemble the global matrix A and the one of the source term f;

(e) solve the linear system Au = f;

(f) post-process the results.

Suppose we use linear finite elements and consider the patch of elements in Fig. 4.26.

a) Referring to steps (c) and (d), explicitly write the matrix Tx allowing to pass
from the local matrix Ak to the global matrix A via a transformation of the kind
T¥ Ak Tx. What is the dimension of Tx?

b) What sparsity pattern characterizes the matrix A associated to the patch of
elements in Fig. 4.26?

4.7 Exercises 119
1
"5
4
3
Fig. 4.26. Patch of elements for the assembly of the global matrix A

c) Write the elements of the matrix A explicitly as a function of the elements of
the local matrices Ag.

d) In the case of a general grid .7, with Ny vertices and Nt triangles, what dimen-
sion does the global matrix A have in the case of linear and quadratic finite
elements, respectively?

For a more exaustive treatment of this subject, we refer to Chapter 12.

9. Prove the results summarized in Table 3.1 by using the Lagrange identity (3.42).

Chapter 5
Parabolic equations

In this chapter we consider parabolic equations of the form

d

al:—i—Lu:f, XEQ, 150, (5.1)

where Q is a domain of R?, d = 1,2,3, f = f(x,t) is a given function, L = L(x) is
a generic elliptic operator acting on the unknown u = u(x,¢). When solved only for
a bounded temporal interval, say for 0 <t < T, the region Qr = Q x (0,T) is called
cylinder in the space R? x R* (see Fig. 5.1). In the case where T = +o0, Q = {(x,1) :
x € ,t > 0} will be an infinite cylinder.

Equation (5.1) must be completed by assigning an initial condition

u(x,0) = up(x), X€Q, (5.2)

" e)
20

Fig. 5.1. The cylinder Oy = Q x (0,T), C R?

© Springer International Publishing AG 2017 121
A. Quarteroni, Numerical Models for Differential Problems, MS&A 16,
DOI 10.1007/978-3-319-49316-9 5

122 5 Parabolic equations

together with boundary conditions, which can take the following form:
u(x,t) = @(x,1), xelpandr >0,
dulx.t (5.3)
u(x1) = y(x,t), x€Iyandr >0,
on
where ug, ¢ and y are given functions and {Ip, Iy} provides a boundary partition, that

isIpUIy =08, IED N ISN = (. For obvious reasons, Ip is called Dirichlet boundary
and Iy Neumann boundary.
In the one-dimensional case, the problem:

u 22

u
% = O<x<d, t>0
ot o2 S X))

u(x,0) =up(x), 0<x<d,
u(0,t) =u(d,t)=0, >0,

(5.4)

describes the evolution of the temperature u(x,#) at point x and time ¢ of a metal
bar of length d occupying the interval [0,d], whose thermal conductivity is v and
whose endpoints are kept at a constant temperature of zero degrees. The function
uq describes the initial temperature, while f represents the heat generated (per unit
length) by the bar. For this reason, (5.4) is called heat equation. For a particular case,
see Example 1.5 of Chapter 1.

5.1 Weak formulation and its approximation

In order to solve problem (5.1)—(5.3) numerically, we will introduce a weak formula-
tion, as we did to handle elliptic problems.

We proceed formally, by multiplying for each ¢ > 0 the differential equation by a test
function v = v(x) and integrating on Q. We set V = H}Q, (£2) (see (3.26)) and for each
t >0 we seek u(r) € V such that

dult)

vag+aui) = [fovaa wev. 5.5)
Q

Q

where u(0) = uo, a(-,-) is the bilinear form associated to the elliptic operator L, and
where we have supposed for simplicity ¢ = 0 and y = 0. The modification of (5.5) in
the case where ¢ # 0 and y # 0 is left to the reader.

A sufficient condition for the existence and uniqueness of the solution to problem (5.5)
is that the following hypotheses hold:

the bilinear form a(-,) is continuous and weakly coercive, that is

JA>0, 3o >0: a(v,v) +M|v||12,2(9) >alv|i Wwev,

yielding for A = 0 the standard definition of coercivity.
Moreover, we require ug € L?(2) and f € L?(Q).

5.1 Weak formulation and its approximation 123

Then, problem (5.5) admits a unique solution u € L?(R*;V)NC?(R*;L?(Q)), with
V =H[, (Q).

For the definition of these functional spaces, see Sect. 2.7. For the proof, see [QV94,
Sect. 11.1.1].

Some a priori estimates of the solution u will be provided in the following section.

We now consider the Galerkin approximation of problem (5.5):
for eachr > 0, find u;,(¢) € V}, such that

duy(t)

5 dQ +a(uy(t),vy) = /f(t)vh dQ Vv, eV, (5.6)
Q

Q

with u;,(0) = up,,, where V;, C V is a suitable space of finite dimension and uy, is a con-
venient approximation of u in the space V},. Such problem is called semi-discretization
of (5.5), as the temporal variable has not yet been discretized.

To provide an algebraic interpretation of (5.6) we introduce a basis {¢;} for V;, (as we
did in the previous chapters), and we observe that it suffices that (5.6) is verified for
the basis functions in order to be satisfied by all the functions of the subspace. More-
over, since for each ¢ > 0 the solution to the Galerkin problem belongs to the subspace
as well, we will have

Ny

=Y uj(1)9;(x)
j=1

where the coefficients {u;(r)} represent the unknowns of problem (5.6).
Denoting by i(r) the derivatives of the function u () with respect to time, (5.6)
becomes

/Zu, (pj(p,d.Q+a<Zuj (pj,(p,>/f(t)¢id.(2, i=1,2,...,Ny,
Q0

that is
N Nj
Y /q),(p, dQ +Zu] a(Q;,) = /f(r)¢,~ deQ, i=1,2,....Ny. (5.7)
=1 H’_/ Q
aij 3 _
mij filt)
If we define the vector of unknowns u = (u; (1), us(t), ...,un,(t))", the mass ma-

trix M = [m;j|, the stiffness matrix A = [q;;] and the right-hand side vector f =
(fi(t), fo(t),..., fn, (t))T, the system (5.7) can be rewritten in matrix form as

Mu(t) + Au(r) = (z).

For the numerical solution of this ODE system, many finite difference methods are
available. See, e.g., [QSS07, Chap. 11]. Here we limit ourselves to considering the so-
called 0-method. The latter discretizes the temporal derivative by a simple difference

124 5 Parabolic equations

quotient and replaces the other terms with a linear combination of the value at time £*
and of the value at time #**!, depending on the real parameter 6 (0 < 6 < 1),

ukFl gk
Me + AU 4 (1 - 0)uk] = oF T + (1 — 9)f . (5.8)
As usual, the real positive parameter At = Al k= 0,1,..., denotes the dis-

cretization step (here assumed to be constant), while the superscript k indicates that
the quantity under consideration refers to the time ¢*. Let us see some particular cases
of (5.8):

e for 6 = 0 we obtain the forward Euler (or explicit Euler) method

k+1 _ gk
MY T A =
At
which is accurate to order one with respect to Az;
e for O = 1 we have the backward Euler (or implicit Euler) method

k+1 _ gk
Mu+ —u +Auk+1:fk+1,
At
also of first order with respect to At;
e for 6 = 1/2 we have the Crank-Nicolson (or trapezoidal) method

k+1 k
u —u 1 1
M A(k+1 k) — (fk+1 fk)
At + 5 u’+u) +
which is of second order in A¢. (More precisely, 8 = 1/2 is the only value for
which we obtain a second-order method.)

Let us consider the two extremal cases, 6 = 0 and 6 = 1. For both, we obtain a
system of linear equations: if 8 = 0, the system to solve has matrix 2/[1 , in the second
case it has matrix x + A. We observe that the M matrix is invertible, being positive
definite (see Exercise 1).

In the 8 = 0 case, if we make M diagonal, we actually decouple the system. This
operation is performed by the so-called lumping of the mass matrix (see Sect. 13.5).
However, this scheme is not unconditionally stable (see Sect. 5.4) and in the case
where V), is a subspace of finite elements we have the following stability condition
(see Sect.~5.4)

Je>0 : Ar<ch* Vh>0,

so At icannot be chosen irrespective of /.

In case 6 > 0, the system will have the form Ku**! = g, where g is the source
term and K = Xlt + OA. Such matrix is however invariant in time (the operator L,
and therefore the matrix A, being independent of time); if the space mesh does not
change, it can then be factorized once and for all at the beginning of the process.
Since M is symmetric, if A is symmetric too, the K matrix associated to the system

5.2 A priori estimates 125

0.8 1

0.61-
- TR arivararavas
ATATTAvAY.S A TAVAYATAVarg
PR S
CAS 4

B

K

O

0.41

o

s

0.2

e
0050
X
CARPRK
A
00K
G

1

o

S o
S
XX
s
S
NAAAAXK
VAAZH

e
S X
vay ay
ATATTANY
0
i

Fig. 5.2. Solution of the heat equation for the problem of Example 5.1

will also be symmetric. Hence, we can use, for instance, the Cholesky factorization,
K=H H”, H being lower triangular. At each time step, we will therefore have to solve
two triangular systems in N, unknowns:

Hy =g,
HT ufkt! = y

(see Chap. 7 and also [QSS07, Chap. 3]).

Example 5.1. Let us suppose to solve the heat equation ‘;? —0.1Au = 0 on the do-
main Q C R? of Fig. 5.2 (left), which is the union of two circles of radius 0.5 and
center (—0.5,0) resp. (0.5,0)). We assign Dirichlet conditions on the whole boundary
taking u(x,7) = 1 for the points on dQ for which x; > 0 and u(x,7) =0 if x; < 0.
The initial condition is u(x,0) = 1 for x; > 0 and null elsewhere. In Fig. 5.2, we re-
port the solution obtained at time t = 1. We have used linear finite elements in space
and the implicit Euler method in time with A¢ = 0.01. As it can be seen, the initial
discontinuity has been regularized, in accordance with the boundary conditions. W

5.2 A priori estimates

Let us consider problem (5.5); since the corresponding equations must hold for each
v €V, it will be legitimate to set v = u(t) (¢ being given), solution of the problem
itself, yielding

dult)

W u(e) 42+ aul),u(n) = / Fu) de > 0. (5.9)
0

Q

Considering the individual terms, we have

S ae =, 5, [uPae = 5 0] q): (5.10)

126 5 Parabolic equations

If we assume for simplicity that the bilinear form is coercive (with coercivity constant
equal to), we obtain

a(u(r),u(t)) > al|u(@)|f7,

while thanks to the Cauchy-Schwarz inequality, we find

(f(@),u(0)) <[FOllL2 (o) [u@)2q)- (5.11)

In the remainder, we will often use Young'’s inequality
1
Va,b € R, ab§8a2+48b2 Ve >0, (5.12)

which descends from the elementary inequality

<\/8a 2\1/8 b)2 >0.

Using first Poincaré’ inequality (2.13) and Young’s inequality, we obtain

L 0)2 gy + @IVH) 2y < IOz 0 120

2
<

(5.13)
< 2170 gy + SV 2 g

Then, by integrating in time we obtain, for all # > 0,

t c2
(O)l3(g) 0 [VU2 05 < N0l + 2 [156 s (514

This is an a priori energy estimate. Different kinds of a priori estimates can be
obtained as follows. Note that

1d
2 dt

d
lu(®)ll72(0) = @20y 11O l2(0)-

Then from (5.9), using (5.10) and (5.11) we obtain (still using the Poincaré in-
equality)
a
u(®)ll2Q) + Co w2 IVu®)ll 20

<Ol lu®llz@). > 0.

d
@) 20§,

If [[u(t)]| 2 @) # O (otherwise we should proceed differently, even though the final
result is still true) we can divide by |[u(7)||;2(¢) and integrate in time to obtain

1
IIM(I)Ilem)Slluollem)Jr/o 17 $)22(0)ds, 1> 0. (5.15)

5.2 A priori estimates 127

This is a further a priori estimate.
Let us now use the first inequality in (5.13) and integrate in time to yield

1) gy + 200 | 1Vuts)]
< ol +2 [16) e [66) s
< ol +2 [Oy (olBagy + [170 ayde)ds
(using (5.15))
= By +2 [WOy luollziay+2 [176 izcay [1@ apas
— (ol + [175)dsP: (5.16)

The latter equality follows upon noticing that

S d s
176y [1@ liz@dr= o ([17@lzg)d0>

We therefore conclude with the additional a priori estimate

! 1
WMWMMn+2a/HVM®MHQwV

(5.17)
< Nl + [1 lz@ds, 10

We have seen that we can formulate the Galerkin problem (5.6) for problem (5.5)
and that the latter, under suitable hypotheses, admits a unique solution. Similarly to
what we did for problem (5.5) we can prove the following a priori (stability) estimates
for the solution to problem (5.6):

i) By + @ [1914(5) g
C
< w2y + 2 / 1F@2gds, >0, (518)
For its proof we can take, for every 7 > 0, v, = u;,(t) and proceed as we did to ob-

tain (5.13). Then, by recalling that the initial data is u,(0) = ugy,, we can deduce the
following discrete counterparts of (5.15) and (5.17):

!
lun ()l 2002y < luon(®)ll 20 +/0 £ () 2(yds, >0 (5.19)

and

(leen (1) 1722 +206/ IVetn ()72 dS)

<ol + [IFOlz@ds, 120, (520

128 5 Parabolic equations

5.3 Convergence analysis of the semi-discrete problem

Let us consider problem (5.5) and its approximation (5.6). We want to prove the con-
vergence of uy, to u in suitable norms.
By the coercivity hypotheses we can write

allw—u))i < allu—up)(), (u—u))
= a((u—up)(t), (w—vy) (1))
+a((u—up) @), (vp—up)(t)) Vv, i wp(t) €V, V1> 0.

For the sake of clarity, we suppress the dependence from ¢. By subtracting equation
(5.6) from equation (5.5) and setting wy, = v, — uj, we have

olu—
((u uh),wh)+a(u—uh,wh)=0,
ot
where (v,w) = [vw is the scalar product of L?(£2). Then
d(u—u
alluuhllém)ga(uuh,uvh)((3t ”),wh). (5.21)

We analyze the two right-hand side terms separately:

e using the continuity of the form a(-,-) and Young’s inequality, we obtain

alu—up,u—vp) < Mlju—up|[g o) llu—=vallg o)
o 2 M? 2
< gy + o e vl

e writing wy, in the form wy, = (v, — u) + (u — u;) we obtain

9 (u —up) _ ([9u—uy) 1d)
_(ot ’Wh) _(or 4T Vh _ZdtHu—uhHLz(Q). (5.22)

Replacing these two results in (5.21), we obtain

il o=l < o Tl + O),

Multiplying both sides by 2 and integrating in time between 0 and ¢ we find

t

=) 0) 22y [1= 1)) B g s < = 11))
0

) t t
+Ai /||(M—Vh)(5)||]2_11(9) ds+2/(;s(u—uh)(s),(u—vh)(s)> ds. (5.23)
0

0

5.3 Convergence analysis of the semi-discrete problem 129

Integrating by parts and using Young’s inequality, we obtain

[(=m0 ds== [(w=m)is). 5 (=)o) ds
0 0
() 0), (0=) 1)~ (- w)(0). e~ ,)(0)

1

< 1=z 17 sy as | N Ol

0
1
1) 0) 23)+ | 0Oy + 5 [1400) ~ (0) 22

From (5.23) we thus obtain

t
1
=)0z + [l) ()) s
0

t
MZ
<2 (=) O g+ [=) 5) i s 5o
/ .

2 [)@zl s g as

0
+2/[(= va) (0112) + 14(0) = vi(0) 12 -

Let us now suppose that V}, is the space of finite elements of degree r, more precisely
Viy={vin € X} : vp|r;, = 0}, and let us choose, at each #, v, (t) = IT; u(t), the interpolant
of u(t) in Vj, (see (4.20)). Thanks to (4.69) we have, assuming that u is sufficiently
regular,

hlut) = Iu() (@) + lu() — Tu(0) [l 2(q) < Coh™ Mu(t) lgr1 (-

Let us consider and bound from above some of the summands of the right-hand side
of inequality (5.24):

Er = 2(u—up)(0)|2q) < b |uoliy (o)
Mz t t
Bo= U [1u) = ni@)lq) ds < O [1u(s) i g ds
0 0
Ey = 2fu(t) = vi(t)l[f2q) < GH [u(®) i),
Ey = [u(0)—vy(0)||L2(9)§C4h2’lu(i @)
Consequently,

E\ +E>+E3 + E4 < Ch*" N(u),

130 5 Parabolic equations

where N(u) is a suitable function depending on « and on 3 . »and Cis a suitable positive
constant. Finally

9(u(s) —va(s))

Os ||L2(.Q)

In this way, from (5.24) we obtain the inequality

du(s)

< Csh"

Es(s) = ||

H(Q)

t
1=) (1) 12) + 200 / =) (5) s) s
0

([(= n) (5)[|2() ds-

t
du(s)

< 2r r

< CH¥N(u) + 4Csh 0/ | e

Applying the Gronwall lemma (Lemma 2.2 ii)), we obtain the a priori error estimate

. 1/2
(N Ol)20 [Tl |

= Ch <¢N */‘ ds

for a suitable positive constant C and for all # > 0.

An alternative proof that does not make use of Gronwall’ lemma can be carried out
as follows. If we subtract (5.6) from (5.5) and set E;, = u — uy;,, we obtain that (the
dependence of Ej, on ¢ is understood)

Hr(g)ds) (5.25)

JE
< 8th ,Vh) +G(Eh,vh) =0 Yy, eV,, Vr>O0.

If, for the sake of simplicity, we suppose that a(-,-) is symmetric, we can define
the orthogonal projection operator

Iy, : V=V, : Vwev, a(leth—w,vh) =0 Y, € Vp. (5.26)

Using the results seen in Chap. 3, we can prove (see [QV94, Sect. 3.5]) that there
exists a constant C > 0 such that, Yw € VN H"1(Q),

ITT] jw = wllggr)+ I = wlli2g) < CHPIWlpir (), 0 S p <1 (5.27)

Then we set

E,=0,+e,= (I/l — leyhu) + (leyhu - I/lh). (5.28)

Note that the orthogonal projection error ¢}, can be bounded by inequality (5.27)
and that ¢;, is an element of the subspace Vj,. Then

aeh

(aGh
ot’

o1 ,vh) —a(ch,vh) Vv, €V, ViE>0.

i) +alen,vi) = —(

5.3 Convergence analysis of the semi-discrete problem 131

If we take at every ¢ > 0, v;, = ¢;(¢), and proceed as done in Sect. 5.2 to deduce
the a priori estimates on the semi-discrete solution uy,, we obtain

Lillen(®) 2) +lVen(t) 20
< la(03(1),ea(0))| +1(3 01(0)ex(1))|

Using the continuity of the bilinear form a(-,-) (M being the continuity constant)
and Young’s inequality (5.12), we obtain

(5.29)

la(ou(t), en()] < [Ven(r) 2 +M2||V6 ()17
n\t)s€n =4 h 12(Q) o h 2(Q)

Moreover, using the Poincaré inequality and once more the Young’s inequality it

follows that

(3 onle).ene)

IN

12 o0l CalVer(0 e
L2

N

< TIvaOlEg + 215 a0l

Using these bounds in (5.29) we obtain, after integrating with respect to ¢:
1
len(Ol:)+ [1Ves(0) 20
2M2 2C3 10
2 2 Q 2
< NenlO)loay+ gy | IVOM) Bradst~ 0 [115 016 Expds, 1>0.

At this point we can use (5.27) to bound the errors on the right-hand side:

Vo)) < CH'u(t)|gr1 0y »

d du du
= —Hr
H 12(Q) H (af o))

oyt
Finally, note that [[e;(0)||2(q) < Ch"[uo| g (q), still using (5.27).
Since, for any norm || - |,

du(t)

<Ch
- ot

2(Q)

(@)

[l = [} < [|on| =+ [lex]

(owing to 5.28), using the previous estimates we can conclude that there exists a con-
stant C > 0 independent of both ¢ and £ such that

1
() =))+ [1V1() = Vit ()32 g 5}
r * Ju(s)
r 2 2 2 1/2
< O {uoriay + [10O oy [1757 Brvsapds) 2

Further error estimates are proven, e.g. in [QV94, Chap. 11].

132 5 Parabolic equations

5.4 Stability analysis of the 6-method

We now analyze the stability of the fully discretized problem.
Applying the 8-method to the Galerkin problem (5.6) we obtain

Ukt yk
h At by +a (Gufz“ +(1— G)MI,‘,,V;,)
=O0F () +(1—0)F (v;) Y, eV, (5.30)

for each k > 0, with u2 =uy; F k indicates that the functional is evaluated at time z*.
We will limit ourselves to the case where F = 0 and start to consider the case of the
implicit Euler method (8 = 1) that is

k+l Ltk
hAt h, +a(ul,‘l+1,vh)=O Yv, € V.

By choosing v, = uk !, we obtain

(bt k+])+Ata(k+1 IZJrl) (“ﬁa“lliﬂ)-
By exploiting the following inequalities
1
k k k k k
a(uy ™) > el ™G, (™) < 2||“h||iz(||”k+] ||L2(.Q)’

the former deriving from the coercivity of the bilinear form a(-,-), and the latter from
the Cauchy-Schwarz and Young inequalities, we obtain

22 gy + 2000 [< 1y (531)

Q)

By summing over k from O to n — 1 we deduce that

n—1

k+12 2
1122y + 20641 Y [3 < fltonl P2
k=0

Observing that [lu} ||y > ||u1,frl [L2(q)> we deduce from (5.31) that for each given
At >0,

lim ||u) =0

kl_r)?o””hHLz(.Q))
that is the backward Euler method is absolutely stable without any restriction on the
time step At.

When f # 0, using the discrete Gronwall lemma (see Sect. 2.7) it can be proved

in a similar way that

10122 g+ 2080 Y s < C0") <||m>h||iz<m +,;Ar||fk||iz<g>> - 532

k=1

5.4 Stability analysis of the 8-method 133

Such relation is similar to (5.20), provided that the integrals f(; -ds are approximated
by a composite numerical integration formula with time step Az [QSSO07].

Before analyzing the general case where 6 is an arbitrary parameter ranging be-
tween 0 and 1, we introduce the following definition.
We say that the scalar A is an eigenvalue of the bilinear form a(-,-) : V XV — R and
that w € V is its corresponding eigenfunction if it turns out that

a(w,v) = A(w,v) YveV.

If the bilinear form a(-,-) is symmetric and coercive, it has positive, real eigenvalues
forming an infinite sequence; moreover, its eigenfunctions form a basis of the space V.

The eigenvalues and eigenfunctions of a(-,-) can be approximated by finding the
pairs A, € R and wy, € V, which satisfy

a(wh,vh) = lh(wh,vh) Vv, € Vp. (5.33)
From an algebraic viewpoint, problem (5.33) can be formulated as follows
Aw = L, Mw,

where A is the stiffness matrix and M the mass matrix. We are therefore dealing with
a generalized eigenvalue problem.

Such eigenvalues are all positive and N, in number (N}, being as usual the dimen-
sion of the subspace V},); after ordering them in ascending order, k;: < lf <...<),,iv h
we have

l,iv” — o0 for Nj, — oo.

Moreover, the corresponding eigenfunctions form a basis for the subspace V}, and can
be chosen to be orthonormal with respect to the scalar product of L?(). This means
that, denoting by wj, the eigenfunction corresponding to the eigenvalue 4;, we have

(wz,w;l) =§;; Vi,j=1,...,N,. Thus, each function v, € Vj, can be represented as
follows
N, ‘
vi(x) =) viwy(x)
j=1

and, thanks to the eigenfunction orthonormality,

Np
vall2(0) = X vi- (5.34)
j=1

Let us consider an arbitrary 6 € [0, 1] and let us limit ourselves to the case where
the bilinear form a(-,-) is symmetric (otherwise, although the final stability result
holds in general, the following proof would not work, as the eigenfunctions would not
necessarily form a basis). Since u’,; €V}, we can write

N .
k k
uy(x) = Y uhwy (x).
b=

134 5 Parabolic equations

We observe that in this modal expansion, the ulj‘ no longer represent the nodal values
of uﬁ If we now set F = 0 in (5.30) and take v, = wZ, we find
L A A - S AP
At Z [“j - “j] (W;NWZ) + Z[euj +(1- e)uj]a(whaw;l) =0,
Jj=1 Jj=1

foreachi=1,...,N,. For each pairi,j = 1,...,N, we have

a(wi;?W;I) =)’}{(Wiwwz) =)’lfalj = A’Ié’

and thus, foreachi=1,...,N,,
k+1 k&
u: — ut)
[(- 0)ufla) = .

Solving now for uf*', we find

(-8

k+1 _ /
A Y LY

Recalling (5.34), we can conclude that for the method to be absolutely stable, we must
impose the inequality

1—(1-6)AiAr
1+ 0A} At ’
that is
—1—0AJAr < 1—(1—0)AsA1 < 1+ 02}At.
Hence,
2
-, —6<6-1<0.
Ay At

The second inequality is always verified, while the first one can be rewritten as

20—-1>—_. .
A, At
If 6 > 1/2, the left-hand side is non-negative, while the right-hand side is negative, so
the inequality holds for each Az. Instead, if 0 < 1/2, the inequality is satisfied (hence
the method is stable) only if
2

At < (1—26)1};' (5.35)
As such relation must hold for all the eigenvalues MI of the bilinear form, it will suffice
to require that it holds for the largest among them, which we have supposed to be QL;IV” .

5.5 Convergence analysis of the 8-method 135

To summarize, we have:

e if 0 >1/2, the 0-method is unconditionally absolutely stable, i.e. it is absolutely
stable for each At;
e if0 < 1/2, the 0-method is absolutely stable only for At < ” 229))LN"'
- h
Thanks to the definition of eigenvalue (5.33) and to the continuity property of a(-,-),
we deduce
M 2
th/z _ a(wy, ’ZWNh) < ”WI\;;,”V <M(1 _~_C2h72).
||th||L2(.Q) ||WNh||L2(_Q)

The constant C > 0 which appears in the latter step derives from the following inverse
inequality
aC >0 : ||Vvh||L2(Q) < Ch_1||vh||L2(Q) Vv, € Vi,

for whose proof we refer to [QV94, Chap. 3].
Hence, for 4 small enough, QL;IV” < Ch™2. In fact, we can prove that QL;IV” is indeed of
the order of A2, that is

N ; -
Ay =maxiAl ~ ch™2.

Keeping this into account, we obtain that for 6 < 1/2 the method is absolutely stable
only if

At < C(0)h?, (5.36)
where C(0) denotes a positive constant depending on 0. The latter relation implies
that for 8 < 1/2, Az cannot be chosen arbitrarily but is bound to the choice of /.

5.5 Convergence analysis of the 6-method

We can prove the following convergence theorem

Theorem 5.1. Under the hypothesis that ugy, f and the exact solution are suffi-
ciently regular, the following a priori error estimate holds: Yn > 1,

(") = 122) + 2000 Y (%) — k|13 < Cluo, £,u) (A1) + 1),
k=1

where p(0) =21if 0 # 1/2, p(1/2) = 4 and C depends on its arguments but not
on h and At.

Proof. The proofis carried out by comparing the solution of the fully discretized prob-
lem (5.30) with that of the semi-discrete problem (5.6), using the stability result (5.32)

136 5 Parabolic equations

as well as the decay rate of the truncation error of the time discretization. For simplic-
ity, we will limit ourselves to considering the backward Euler method (corresponding
tof=1)

1
A Wit =l vp) +a(u) = () Y €V (5.37)

We refer the reader to [QV94], Sect. 11.3.1, for the proof in the general case.
Let I] ;, be the orthogonal projector operator introduced in (5.26). Then

() =l 2 < Nee(e*) =TI} pu (1) 2) + I1TI7 et = il 22 (5.38)

The first term can be estimated by referring to (5.27). To analyze the second term,
where €f = uf —I17 ,u(t*), we obtain

1 (gli(+1

A —ef,vn) Fa(e ™) = (8w Yy e, (5.39)

having set,
(TG ()) — au)) (5.40)

and having exploited on the last summand the orthogonality (5.26) of the operator
I} ,. The sequence {&f, k =0,1...} satisfies problem (5.39), which is similar to
(5.37) (provided that we take §**! instead of f**!). By adapting the stability estimate
(5.32), we obtain, foreachn > 1,

(5k+lvvh) _ (fk_Hth) o

lef 22 0, +20Ar Y b1 < C7) (ne;?niz(mZmns"n@m)). (5.41)

k=1 k=1

The norm associated to the initial time-level can easily be estimated: for instance,
if uoy = I ug is the finite element interpolant of ug, by suitably using the estimates
(4.69) and (5 27) we obtain

||8h||L2 = [luon — I} yuo|| 2 (@)
(5.42)
< | juo — ”0||L2(Q) + [luo — Hf,h”0||L2(Q) < Ch"uolwr ()
Let us now focus on estimating the norm ||5k||Lz . Thanks to (5.5),
ou(rkt1
(fk+1,Vh) fa(u(tk_"l),vh) _ (I/l(at);Vh>-
This allows us to rewrite (5.40) as
Qu(rkt1 1
(851w, = < ”(at),vh) — At(le’h(u(tkH) —u(t)),vp) (5.43)

dultk+! w(1Y — (it . w(t 1Y — (it
:((;t - Zt (t)’vh>+((1_nlvh)(‘ it (I))’vh)'

5.5 Convergence analysis of the 8-method 137

Using the Taylor formula with the remainder in integral form, we have

P
au(tkﬂ) (thrl) —u(tk $d s a4

ot At T At / > G449
having made suitable regularity requirements on the function u with respect to the
temporal variable. By now using the fundamental theorem of calculus and exploiting
the commutativity between the projection operator I}, and the temporal derivative,
we obtain

thtl

(I—nyh) (u() — u(h)) = / (I—H{yh)(gz)(s)ds. (5.45)

tk

By choosing v, = 8! in (5.43), thanks to (5.44) and (5.45), we can deduce the
following upper bound

18 2y
] k1 e | e+l 5
“ ’ u
: HAt / (5= g5 ()8 LZ(Q)JFHAt /(I_Hlv")(as)(s)ds L2(Q)
Kt X s : S
/ H asz + As k/ H (IiH]r’h) (8?) (s) Lz(Q)ds'
t (5.46)

By reverting to the stability estimate (5.41) and exploiting (5.42) and the estimate
(5.46) with suitably scaled indices, we have
2
)

(A (t")(hz’luolw +Z”K/Has2
- (J10-m) e Lmds)z])v

Then, using the Cauchy-Schwarz inequality and estimate (5.27) for the projection
operator II] ,, we obtain

tk
n2 < n th 2 L AflA 3214 2
||8h||L2(Q) <C(t") |u0|Hr(_Q) + Z t|At 042 (%)
k=1 (k=1

([5150))

-1

u

(s)

138 5 Parabolic equations

2r 2
e (i + 5, | ok
thZAt/‘ ”) (5.47)
The result now follows using (5.38) and estimate (5.27). o

More stability and convergence estimates can be found in [Tho84].

5.6 Exercises

1. Verify that the mass matrix M introduced in (5.7) is positive definite.

2. Prove the stability condition (10.42) for the pseudo-spectral approximation of equa-
tion (5.4) (after replacing the interval (0,1) with (—1,1)).
[Solution: proceed as done in Sect. 5.4 for the finite element case and use the prop-
erties given in Lemma 10.2 and 10.3.]

3. Consider the problem:

du 0 du
ot ox (a ax) ﬁu 0 in Or (05)X (07)7
u=ug forx € (0,1), r =0,
u=n forx=0, >0,
ocau—l—yu:O forx=1,1>0,

ox

where o = a(x), ug = up(x) are given functions and 3, ¥, n € R (with positive f3).

a) Prove existence and uniqueness of the weak solution for varying ¥, providing
suitable limitations on the coefficients and suitable regularity hypotheses on
the functions a and uy.

b) Introduce the spatial semi-discretization of the problem using the Galerkin-
finite element method, and carry out its stability and convergence analysis.

¢) Inthe case where y = 0, approximate the same problem with the explicit Euler
method in time and carry out its stability analysis.

5.6 Exercises 139

4. Consider the following problem: find u(x,#), 0 <x <1, ¢ > 0, such that

du dv
= 1

at+ax 0, O0<x<1,t>0,
du

erOC()C)a —YxX)u=0, O<x<l1,t>0,
X

v(L,1) = B(1), u(0,1) =0, >0,

u(x,0) = up(x), 0<x<1,

where @, v, B,uq are given functions.

a) Introduce an approximation based on finite elements of degree two in x and the
implicit Euler method in time and prove its stability.

b) How will the error behave as a function of the parameters 4 and Az?

c) Suggest a way to provide an approximation for v starting from the one for u as
well as its approximation error.

5. Consider the following (diffusion-transport-reaction) initial-boundary value prob-
lem: find u : (0,1) x (0,7) — R such that

du d du
_ = 1 T
Py ax(aax)+ax([5u)+yu 0, 0<x<1,0<t<T,
u=0 forx=0,0<t<T,
u
. +6u=0 forx=1,0<t<T,
ox
u(x,0) = up(x), 0<x<l1,t=0,

where @ = a(x), B = B(x), v=7(x), 8 = 8(x), up = up(x), x € [0,1] are given
functions.

a) Write its weak formulation.

b) In addition to the hypotheses:

a. ElB()v Oy, O >0: Vxe (Oal) (041 Z (X()C) > ®, B()C) < ﬁ()v
b. B'(x)+7y(x)>0 Vxe(0,1),

provide further possible hypotheses on the data so that the problem is well-
posed. Moreover, give an a priori estimate of the solution. Treat the same prob-
lem with non-homogeneous Dirichlet datau = g forx =0and 0 <7 < T.

¢) Consider a semi-discretization based on the linear finite elements method and
prove its stability.

d) Finally, provide a full discretization where the temporal derivative is approxi-
mated using the implicit Euler scheme and prove its stability.

140 5 Parabolic equations
6. Consider the heat equation

du J%u B

- =0 —1 1,:>0
o1 o2 , <x< Lit>0,
u(x,0) = up(x), —l<x<1,
u(—=1,t) =u(l,t) =0, t>0,

and approximate it by the G-NI method in space and the backward Euler finite
difference method in time. Then carry out the stability analysis.

7. Consider the following fourth-order initial-boundary value problem:
find u: Q x (0,7) — R such that

d
I: —div(uVu)+A’u+ou=0 inQ x(0,T),

0

u(x,0) = up inQ,

Mg Tr=9Q x (0,T)
an*u* on Ly =))

where 2 C R? is a bounded open domain with "regular" boundary 922, A> = AA
is the bi-harmonic operator, 1 (x), o(x) and uy(x) are known functions defined in
Q. It is known that

180240 = ullpiay VueH(@).
Q

that is the two norms [[ul|y2 (o) and [|Aul[;2(q) are equivalent on the space
H3(2)={ucH*(Q): u=0du/dn=00n9Q}. (5.48)

a) Write its weak formulation and verify that the solution exists and is unique,
formulating suitable regularity hypotheses on the data.

b) Consider a semi-discretization based on triangular finite elements and provide
the minimum degree that such elements must have in order to solve the given
problem adequately. (Use the following property (see, e.g., [QV94]): if 7, is
a regular triangulation of © and vy is a polynomial for each K € .7}, then
v, € H2(Q) if and only if v, € C'(Q), that is v;, and its first derivatives are
continuous across the interfaces of the elements of .7}, .)

Chapter 6
Generation of 1D and 2D grids

As we have seen, the finite element method for the solution of partial differential
equations requires a “triangulation” of the computational domain, i.e. a partition of
the domain in simpler geometric entities (for instance, triangles or quadrangles in two
dimensions, tetrahedra, prisms or hexahedra in three dimensions), called the elements,
which verify a number of conditions. Similar partitions stand at the base of other
approximation methods, such as the finite volume method (see Chapter 9) and the
spectral element method (see Chapter 10). The set of all elements is the so-called
computational grid (or, simply, grid, or mesh).

In this chapter, for simplicity, we focus on the main partitioning techniques for
one- and two-dimensional domains, with no ambition of completeness. If necessary,
we will refer the reader to the relevant specialized literature. We will deal only with
the case of polygonal domains; for computational domains with curved boundaries,
the interested reader can consult [Cia78], [BS94], [GB98]. The techniques exposed
for the 2D case can be extended to three-dimensional domains.

6.1 Grid generation in 1D

Suppose that the computational domain £ be an interval (a,b). The most elementary
partition in sub-intervals is the one where the step % is constant. Having chosen the
number of elements, say N, we set h = b;,“ and introduce the points x; = xg + ih, with
xo=aand i=0,...,N. Such points {x;} are called “vertices” in analogy to the two-
dimensional case, where they will actually be the vertices of the triangles whose union
covers the domain 2. The partition thus obtained is called grid. The latter is uniform
as it is composed by elements of the same length.

In the more general case, we will use non-uniform grids, possibly generated ac-
cording to a given law. Among the possible different procedures, we illustrate a fairly
general one. Let a strictly positive function 7 : [a,b] — R™, called spacing function,
be assigned and let us consider the problem of generating a partition of the interval
[a,b] having N + 1 vertices x;. The value .7 (x) represents the desired spacing in corre-

© Springer International Publishing AG 2017 141
A. Quarteroni, Numerical Models for Differential Problems, MS&A 16,
DOI 10.1007/978-3-319-49316-9 6

142 6 Generation of 1D and 2D grids

spondence of the point x. For instance, if /¢ = h (constant), with & = (b —a)/M for a
given integer M, we fall exactly in the preceding case of the uniform grid, with N = M.
More generally, we compute A" = | ab 21 (x)dx and we set N = max(1,[.#]), where
[#] denotes the integer part of .4, i.e. the largest positive integer smaller than or
equal to .#". Note that the resulting grid will have at least one element. Then we set
K= % and look for the points x; such that

K/Xijf_l(x)dx:i,

fori=0,...,N. The constant Kk is a positive correction factor, with a value as close as
possible to 1, whose purpose is to guarantee that N is indeed an integer. In fact, for a
given 77, the number N of elements is itself an unknown of the problem. Instead, the
¢~ function defines a density function: to higher values of .~ correspond denser
nodes, and conversely, to smaller values of .~ ! correspond sparser nodes.
Obviously, if we wish to construct a grid with a given number N of elements, as
well as a given variation on [a, b], is sufficient to renormalize the spacing function so
that the integral on (a,b) of the corresponding density is exactly equal to N. In any
case, to compute the points x;, it is useful to introduce the following Cauchy problem

Y (x) = k7' (x), x € (a,b), with y(a) = 0.

The points x; will then be defined by the relation y(x;) = i, fori = 1,...,N — 1. Then,
it will automatically follow that xo = a and xy = b. We will then be able to use a
numerical solution method to find the roots of the functions f;(x) = y(x) — j, for each
value of j € {1,...,N — 1} (see e.g. [QSSO7]).

Besides being quite general, this procedure can be easily extended to the genera-
tion of vertices on the curved boundary of a two-dimensional domain, as we will see
in Sect. 6.4.2.

In the case where . does not exhibit excessive variations in the interval (a,b), we
can also use a simplified procedure which consists in computing a set of preliminary
points X, for i = 0,...,N, defined as follows:

1. Set %y = a and define X; = %;_; + 9 (%;—1), i = 1,2,..., until finding the value M
such that Xy > b and X1 < b;

2. if Xy — b <b—3Xxpy_1 set N =M, otherwise define N =M — 1.

Then the final set of vertices are obtained by setting

xi:xif]‘i’k%(iifl)v i=1,...,N,

with xg =a and k = (b*XN,I)/()CN 7)CN,]).

The MATLAB program mesh_1d allows to construct a grid on an interval with
endpoints a and b with step specified in the macro H, using the previous simplified
algorithm. For instance, with the following MATLAB commands:
a=0;b=1;H="0.1"
coord = mesh_1d(a,b,H);

we create a uniform grid on [0, 1] with 10 sub-intervals with step 4 = 0.1.

6.1 Grid generation in 1D 143

o x x XXX X X X XXXXK ok X X X X X X X x x x x4

-0.05 - - - - -0.02
0 0.2 0.4 0.6 0.8 1, 0

0.2 0.4 0.6 0.8 1

Fig. 6.1. On the left-hand side, the behaviour of the grid step (on the x-axis) associated to the
function H = *1/(exp(4*x)+2)’, on the right-hand side the one relating to the function H =
? 1% (x<3) + .05%(x>5) + .05°. The graph also reports the corresponding vertex distribu-
tions

Setting H="1/(exp(4*x)+ 2)" we obtain a grid that becomes finer when approaching
the second endpoint of the interval, while for H=".1x% (x < .3) 4 .05 (x > .5) + .05’
we obtain a grid with a discontinuously varying step (see Fig. 6.1).

Program 1 — mesh_1d: Constructs a one-dimensonal grid on an interval [a,b]
following the spacing function H

function coord = mesh_1d(a,b,H)

coord = a;
while coord(end) < b
x = coord(end);
xnew = x + eval(H);
coord = [coord, xnew];
end
if (coord(end) - b) > (b - coord(end-1))
coord = coord(1:end-1);
end
coord_old = coord;
kappa = (b - coord(end-1))/(coord(end) - coord(end-1));
coord = a;
for i = 1:length(coord_old)-1
x = coord_old(i);
coord(i+1) = x + kappa*eval(H);
end

We point out that in case .7 is determined by an error estimate, Program 1 will
allow to perform grid adaptivity.
We now tackle the problem of constructing the grid for two-dimensional domains.

144 6 Generation of 1D and 2D grids

6.2 Grid of a polygonal domain

Given a bounded polygonal domain £ in R?, we can associate it with a grid (or parti-
tion) .7, of in polygons K such that

where 2 is the closure of €, and

° 10{7é OVK € 9,

e K| NKy=0 foreach K|,K, € .7, such that K| # K»;

o if F=K;NK; # 0 with K1,K; € J, and K| # K3, then F is either a whole edge or

a vertex of the grid;
e having denoted by A the diameter of K foreach K € .7}, , we define h = maxgc 7, hk.

We have denoted by K=K \ JK the interior of K. The grid .7, is also called mesh, or
sometimes triangulation (in a broad sense) of Q.

The constraints imposed on the grid by the first two conditions are obvious: in
particular, the second one requires that given two distinct elements, their interiors do
not overlap. The third condition limits the admissible triangulations to the so-called
conforming ones. To illustrate the concept, we represent in Fig. 6.2 a conforming (left)
and nonconforming (right) triangulation. In the remainder, we will only consider con-
forming triangulations. However, there exist very specific finite element approxima-
tions, not considered in the present book, which use nonconforming grids, i.e. grids
that do not satisfy the third condition. These methods are therefore more flexible, at
least as far as the choice of the computational grid is concerned. They allow, among
other things, the coupling of grids constructed from elements of different nature, for
instance triangles, quadrilaterals and, more generally, polygons in 2D and polyhedrain
3D. This is for instance the case of the so-called virtual elements [Brel5], or mimetic
finite differences [BLM14].

The fourth condition links the parameter / to the maximum diameter of the ele-
ments of .7},.

For reasons linked to the interpolation error theory recalled in Chapter 4, we will
only consider regular triangulations .7}, i.e. the ones for which, for each element K €

»- ad ®- ¥ *

Fig. 6.2. Example of conforming (left) and nonconforming (right) grid

6.2 Grid of a polygonal domain 145

hg \
Fig. 6.3. Diameter and sphericity for a triangular (left) and quadrilateral element (right)

I, the ratio between the diameter hg and the sphericity px (i.e. the diameter of the
inscribed circle) is less that a given constant. More precisely, the grids satisfy Property
(4.37). Fig. 6.3 illustrates the meaning of diameter and sphericity for a triangular or
quadrilateral element.

In actual applications, it is customary to distinguish between structured and un-
structured grids. Structured grids basically use quadrangular elements and are char-
acterized by the fact that access to the vertices adjacent to a given node (or to the
elements adjacent to a given element) is immediate. Indeed, it is possible to estab-
lish a bijective relationship between the vertices of the grid and the pairs of integer
numbers (i, j),i=1,...,N;, j=1,...,N;such that, given the node of indices (i,),
the four adjacent vertices are in correspondence with the indices (i — 1, j), (i + 1,),
(i,j—1) and (i, j + 1). The total number of vertices is therefore N;N;. An analogous
association can be established between the elements of the grid and the pairs (1,J), [=
I,...,N;—1, J=1,...,N;— 1. Moreover, it is possible to identify directly the ver-
tices corresponding to each element, without having to memorize the connectivity
matrix explicitly (the latter is the matrix which, for each element, provides its vertex
numbering). Fig. 6.4 (left) illustrates such situation.

In a computer code, pairs of indices are typically replaced by a numbering formed
by a single integer that is biunivocally associated to the indices described above. For
instance, for the numbering of vertices, we can choose to associate the integer number
k=1i+(j—1)N; to each pair (i, j), and, conversely, we uniquely associate to the vertex
k the indices i = ((k— 1) modN;)+ 1 and j = ((k — 1)div©;) + 1, where mod and
div denote the remainder and the quotient of the integer division.

In unstructured grids, the association between an element of the grid and its ver-
tices must instead be stored in the connectivity matrix explicitly.

Code developed for structured grids can benefit from the “structure” of the grid,
and, for an equal number of elements, it will normally produce a more efficient al-
gorithm, both in terms of memory and in terms of computational time, with respect
to a similar scheme on a non-structured grid. In contrast, non-structured grids offer a
greater flexibility both from the viewpoint of a triangulation of domains of complex
shape and for the possibility to locally refine/derefine the grid. Fig. 6.4 (right) shows
an example of a non-structured grid whose spacing has been adapted to the specific

146 6 Generation of 1D and 2D grids

problem under exam. Such localized refinements would be more difficult to obtain
using a structured type of grid.

Non-structured two-dimensional grids are generally formed by triangles, although
it is possible to have quadrangular non-structured grids.

6.3 Generation of structured grids

The most elementary idea to generate a structured grid on a domain Q of arbitrary

shape consists in finding a regular and invertible map .# between the square Q=
[0,1] x [0, 1] (which we will call reference square) and . Note that the map must
be regular up to the boundary (a requirement that can in some cases be relaxed). We
proceed by generating a uniform - say - reticulation in the reference square, then we

use the mapping .# to transform the coordinates of the vertices in Q into the corre-
sponding ones in Q.
There are different aspects of this procedure to be considered with due care.

1. Finding the map .# is often difficult. Moreover, such map is not unique. In general
it is preferable that the latter is as regular as possible.

2. A uniform mesh of the reference square does not generally provide an optimal grid
in Q. Indeed, we usually want to control the distribution of vertices in 2, and
generally this can only be done by generating non-uniform grids on the reference
square, whose spacing will depend both on the desired spacing in £2 and on the
chosen map ..

3. Even if the mapping is regular (for instance of class C'), the elements of the grid
produced in € are not necessarily admissible, as the latter are not the image un-
der . of the corresponding elements in Q. For instance, if we desire piecewise
bilinear (Q;) finite elements in £2, the edges of the latter will need to be parallel to
the Cartesian axes, while the image of a mesh Q; on the reference square produces

e
v

N

VN
<N\

ISR
VavA

&
<X

X
<

R
%

-
i
0

i

VA

fi
\

(ij+1) i+1j+1)
(1.J)
(i) (i+1,)

X L%
EROSSELANSOAA]
1%aﬂ§%ylAVﬂ>

/\
AR
CSLROERANS
NADKIN/
SMARORS

i=I, j=J

Fig. 6.4. (Left) (1,J)-Numbering of the vertices of an element in a structured grid. (Right) A
non-structured triangular grid in an external region of an airfoil, adapted to improve the accuracy
of the numerical solution for a given flow condition

6.3 Generation of structured grids 147

0,1) y (L1 ‘gi(S)
3
5 >
4 Q 2 ;—B; 25(s)
Q
1 X
(0,0) (1,0)

81(s)

Fig. 6.5. Construction of a structured grid: on the left-hand side, identification of the map on the
boundary; on the right-hand side, grid corresponding to a uniform partitioning of the reference
square into 24 x 24 elements

curved edges in Q if the mapping is nonlinear. In other words, the map is made
effective only on the vertices, not on the edges, of the grid of Q.

An option to construct the map .# consists in using the transfinite interpolation
(10.3) that will be illustrated in Chap. 10. Such methodology is however not always
easily applicable. We will therefore illustrate in the remainder a more general method-
ology, which we will apply to a specific example, and refer to the specific literature
[TWMSS, TSWI9] for further examples and details.

Suppose we have a domain 2 whose boundary can be divided in four consecutive
parts I,..., I, as illustrated in Fig. 6.5 for a particularly simple domain. Moreover,
suppose we can describe such portions of dQ via four parametric curves gi,..., g4
oriented as in the figure, where the parameter s varies between 0 and 1 on each curve.
This construction allows us to create a bijective map between the sides of the reference
square and the domain boundary. Indeed, we will associate each curve to the corre-
sponding side of the square, as exemplified in Fig. 6.5. We now need to understand
how to extend the mapping to the whole Q.

Remark 6.1. Note that the curves g;, i = 1,...,4, are generally not differentiable on
all of (0, 1), but can exhibit a finite number of “corners” where ddgsi is undefined. In
Fig. 6.5, for instance, the curve g, is not differentiable at the “corner” marked by a
small black square. °

An option to construct the map .# : X = (X,y) — x(x,y) consists in solving the fol-
lowing elliptic system in Q:

I’x 9% .o)
“oe 9 =0 inQ=(0,1) 6.1)

with boundary conditions

X(x,0) = g1 (%), x(x,1) = g3(), *
X(1757\) = gZ(jj\)v X(an\) = g467\)7 y

148 6 Generation of 1D and 2D grids

&)

g(s)

Fig. 6.6. Triangulation of a non-convex domain. Identification of the boundary map and mesh
obtained by solving the elliptic problem (6.1)

The vertices of a grid in the reference square can then be transformed into the ver-
tices of a grid in . Note that the solution of problem (6.1) will generally be found
by using a numerical method, for instance via a finite difference (or finite element)
scheme. Moreover, to abide by the geometry of the boundary of Q suitably, it is nec-
essary to ensure that a vertex is generated at each “edge”. In Fig. 6.5 (right) we illus-
trate the result of this methodology to the domain in Fig. 6.5 (left). It can be noted that
the grid corresponding to a regular partition of the reference square is not particularly
satisfactory if, for instance, we want to have a higher distribution of vertices at the
edge.

Moreover, the methodology described above is not applicable to non-convex do-
mains. Indeed, let us consider Fig. 6.6 where we show an L-shaped domain, with
the corresponding boundary partition, and the grid obtained by solving problem (6.1)
starting from a regular partition of the reference domain. It is evident that such grid is
unacceptable.

To solve such problems, we can proceed in several (not mutually exclusive) ways:

we use in Q a non-uniform grid, that accounts for the geometric features of 2;
we use a different map .#, obtained, for instance, by solving the following new
differential problem instead of (6.1)

0%x 0%x oA
ftxafc?fﬁangrYX:f in Q, (6.2)

where oo > 0, > 0, ¥ > 0 and f are suitable functions of X and y. They are chosen
depending on the geometry of €2 and in order to control the vertex distribution;

e we partition Q in sub-domains that are triangulated separately. This technique is
normally known as blockwise structured grid generation. If we wish the global
grid to be conforming, we need to be very careful on how to distribute the number
of vertices on the boundaries of the interfaces between the different sub-domains.
The problem can become extremely complex when the number of sub-domains is
very large.

6.4 Generation of non-structured grids 149

Methods of the type illustrated above are called elliptic schemes of grid generation,
as they are based on the solution of elliptic equations, such as (6.1) and (6.2).
The interested reader is referred to the above-cited specialized literature.

6.4 Generation of non-structured grids

We will here consider the generation of non-structured grids with triangular elements.
The two main algorithms used for this purpose are the Delaunay triangulation and the
advancing front technique.

6.4.1 Delaunay triangulation

A triangulation of a set of n points of R? is a Delaunay triangulation if the disc cir-
cumscribed to each triangle contains no vertex (see Fig. 6.7).
A Delaunay triangulation features the following properties:

1. given a set of points, the Delaunay triangulation is unique, except for specific situ-
ations where M points (with M > 3) lie on a circle;

2. among all possible triangulations, the Delaunay triangulation is the one maximiz-
ing the minimum angle of the grid triangles (this is called the max-min regularity
property);

3. the set composed by the union of triangles is the convex figure of minimum surface
that encloses the given set of points (and is called convex hull).

The third property makes the Delaunay algorithm inapplicable to non-convex domains,
at least in its original form.

However, there exists a variant, called Constrained Delaunay Triangulation (CDT),
that allows to fix a priori a set of the grid edges to generate: the resulting grid nec-
essarily associates such edges to some triangle. In particular, we can a priori impose
those edges which define the boundary of the grid.

Fig. 6.7. On the left-hand side, an example of Delaunay grid on a triangular shaped convex
domain. It can be easily verified that the circle circumscribed to each triangle does not include
any vertex of the grid. On the right-hand side, a detail of a grid which does not satisfy the
Delaunay condition: indeed, the vertex P falls inside the circle circumscribed to the triangle K

150 6 Generation of 1D and 2D grids

In order to better specify the concept of CDT, we state beforehand the following defi-
nition: given two points P; and P», we will say that these are reciprocally visible if the
segment P P, passes through none of the boundary sides (or, more generally, the edges
we want to fix a priori). A constrained Delaunay triangulation satisfies the following
property: the interior of the circle circumscribed to each triangle K contains no vertex
visible from an internal point to K.

Once again, it can be proved that such triangulation is unique and satisfies the max-
min regularity property. The CDT is therefore not a proper Delaunay triangulation, as
some of its triangles could contain vertices belonging to the initial set. In any case,
the vertices are only the original ones specified in the set, and no further vertices are
added. However, two variants are possible: the Conforming Delaunay Triangulation
and the Conforming Constrained Delaunay Triangulation (or CCDT). The former is a
triangulation where each triangle is a Delaunay triangulation, but each edge to be fixed
can be further subdivided in sub-segments; in this case, new vertices can be added
to obtain shorter segments. The additional vertices are often necessary to guarantee
the max-min Delaunay property and at the same time to ensure that each prescribed
side is correctly represented. The second variant represents a triangulation where the
triangles are of the constrained Delaunay type. Also in this case, we can add additional
vertices, and the edges to be fixed cannot be divided in smaller segments. In the latter
case, however, the aim is not to guarantee that the edges are preserved, but to improve
the triangles’ quality.

Among the available software for the generation of Delaunay grids, or their vari-
ants, Triangle [She] allows to generate Delaunay triangulations, with the option to
modulate the regularity of the resulting grids in terms of maximal and minimal angles
of the triangles. The geometry is given as input to Triangle in the form of a graph,
called Planar Straight Line Graph (PSLG). Such codification is written in an input
file with extension . poly: the latter basically contains a list of vertices and edges, but
can also include information on cavities or concavities present in the geometry.

A sample . poly file is reported below.

A box with eight vertices in 2D, no attribute, one boundary marker
8201
Vertices of the external box

000

Wow

ces of the internal box

N UTHAWN =
PR = =3 wwo
=
coocon ooo

N =N =

Five sides with a boundary marker

51

1 1 2 5 # Left side of the external box
Sides of the square cavity

6.4 Generation of non-structured grids 151
0
0
0

0
One hole in the center of the internal box

o0 ~NO
o 0o
-

2
3
4
5
#
]
1

1.51.5

The example above illustrates a geometry representing a square with a square hole.
The first part of the file lists the vertices, while the second one defines the sides to
fix. The first line declares that eight vertices are going to follow, that the spatial di-
mension of the grid is two (we are in R?), that no other attribute is associated to the
vertices and that a boundary marker is defined on each point. The attributes represent
possible physical properties relating to the mesh nodes, such as conductibility and vis-
cosity values, etc. The boundary markers are integer-valued flags which can be used
within a computational code to assign suitable boundary conditions at different ver-
tices. The following lines display the eight vertices, with their abscissae and ordinates,
followed by the boundary marker value, zero in this case. The first line of the second
part declares that there are five sides ensuing, and that on each of them a value will
be specified for the boundary marker. Then, five boundary sides follow one another,
specified by their respective endpoints, and by the value of the boundary marker. In
the final section of the file, a hole is defined by specifying the center coordinates, in
the last line, preceded by the progressive numbering (in this case, limited to 1) of the
holes.

The constrained Delaunay grid associated to this geometry, say box.poly, is ob-
tained via the command

triangle -pc box

The parameter -p declares that the input file is a . poly, while the option -c prevents
that the concavities are removed, as would normally happen without it. De facto, this
option forces the triangulation of the convex hull of the PSLG graph. The result will
be the creation of three files, box.1.poly, box.1.node and box.1.ele. The first
file contains the description of the sides of the produced triangulation, the second one
contains the node description, and the latter defines the connectivity of the generated
elements. For the sake of conciseness, we will not describe the format of these three
files in detail. Finally, we point out that the numerical value, 1 in this example, that
separates the name of these three files from their respective extensions, plays the role
of an iteration counter: Triangle can indeed successively refine or modify the trian-
gulations produced time after time. The resulting triangulation is depicted in Fig. 6.8.

A software attached to Triangle, called Show Me, allows to visualize the outputs
of Triangle. For instance, Fig 6.8 (left) is obtained via the command
showme box

To obtain a constrained conforming triangulation we must specify the command
triangle with other parameters, such as -q, -a or -u. The first one imposes a con-
straint on the minimum angle, the second one fixes a maximum value for the surface

152 6 Generation of 1D and 2D grids

Fig. 6.8. Delaunay triangulation of a square with a square hole: CDT on the left-hand side,
CCDT on the right-hand side

of the triangles, while the third one forces the dimension of the triangles, typically
through an external function which the user must provide. For example, via the com-
mand

triangle -pcg20 box

we obtain the constrained conforming Delaunay triangulation reported in Fig. 6.8
(right), characterized by a minimum angle of 20°. Finally, the conforming Delaunay
triangulation is obtained by further specifying the option -D. A more complex example
is represented in Fig. 6.9. The command used

triangle -pca0.01g30 naca

fixes the minimum angle to 30° and the maximum surface of the generated triangles
to 0.01. The initial PSLG file naca.poly describes the geometry via 65 vertices, as
many sides and one cavity. The final mesh consists of 711 vertices, 1283 elements and
137 edges on the boundary.

We refer to the wide on-line documentation and to the detailed help of Triangle
for several further usage options of the software.

Fig. 6.9. Delaunay triangulation of a naca 4415 airfoil

6.4 Generation of non-structured grids 153

Returning to the properties of Delaunay grids, the Delaunay triangulation does
not allow to control the aspect ratio (maximum over minimum edge) of the generated
elements, exactly because of the above-mentioned max-min property. On the other
hand, in some situations it can be useful to generate “stretched” triangles in a given
direction, for instance if we want to represent properly a boundary layer. To this end,
the algorithm called generalized Delaunay triangulation has been developed, where
the condition on the circumscribed triangle is replaced by an analogous condition on
the ellipse circumscribed to the triangle under exam. In this way, by suitably ruling the
length and orientation of the axes of each ellipse, we can generate elements stretched
in the desired direction.

The most currently used algorithms for the generation of Delaunay grids are incre-
mental, i.e. they generate a sequence of Delaunay grids by adding a vertex at a time.
Hence, it is necessary to find procedures providing the new vertices in accordance with
the desired grid spacing, and stopping such procedure as soon as the grid generated
this way results to be unsatisfactory. For further details, [GB98] and [TSW99, Chap.
16] can be consulted, among others. A detailed description of the geometric properties
of the constrained Delaunay triangulation, both for domains of R? and of R3, can be
found in [BE92].

6.4.2 Advancing front technique

We roughly described another widely used technique used for the generation of non-
structured grids, the advancing front technique. A necessary ingredient is the knowl-
edge of the desired spacing to be generated for the grid elements. Let us then suppose
that a spacing function 57, defined on 2, provides for each point P of Q the dimen-
sions of the grid desired in that point, for instance, through the diameter g of the
elements that must be generated in a neighborhood of P. If we want to control the
shape aspect of the generated elements, .7# will have a more complex shape. In fact,
it will be a positive definite symmetric tensor, i.e. .7 : — R?*? such that, for each
point P of the domain, the (perpendicular) eigenvectors of 7 denote the direction
of maximum and minimum stretching of the triangles that will need to be generated
in the neighborhood of P, while the eigenvalues (more precisely, the square roots of
the eigenvalue inverses), characterize the two corresponding spacings (see [GB98]).
In the remainder, we will only consider the case where .77 is a scalar function.

The first operation to perform is to generate the vertices along the domain bound-
ary. Let us suppose that dQ is described as the union of parametric curves g;(s),
i=1,...N, for instance splines or polygonal splits. For simplicity, we assume that,
for each curve, the parameter s varies between 0 and 1. If we wish to generate N; + 1
vertices along the curve g; it is sufficient to create a vertex for all the values of s for
which the function

dg;

fits) = [)| (0)]ae

154 6 Generation of 1D and 2D grids

Front New front

Chosen edge

Fig. 6.10. Advancement of the front. The previously triangulated part of the domain has been
shaded

()

takes integer values. More precisely, the curvilinear coordinates s;”’ of the nodes to

generate along the curve g; satisfy the relations

N1,

f,-(sgj)) =j, j=0,--- N; with the constraints sl@ = 0,55
The procedure is similar to the one described in Sect. 6.1. Note that the term |‘ng" |
accounts for the intrinsic metric of the curve.

This being done, the advancing front process can start. The latter is described
by a data structure that contains the list of the sides defining the boundary between
the already triangulated portion of Q and the one yet to be. At the beginning of the
process, the front contains the boundary sides.

During the process of grid generation, each side of the front is available to create
a new element, which is constructed by connecting the chosen side with a new or
previously existing vertex of the grid. The choice whether to use an existing vertex
or to create a new one depends on several factors, among which the compatibility
between the dimension and the shape of the element that would be generated and
the ones provided by the spacing function .7#. Moreover, the new element must not
intersect any side of the front.

Once the new element has been generated, its new sides will be “added” to the
front so that the latter describes the new boundary between the triangulated and non-
triangulated part, while the initial side is removed from the data list. In this way, during
the generation process the front will progress from the already triangulated zones to-
ward the zone yet to be triangulated (see Fig. 6.10).

The general advancing front algorithm hence consists of the following steps:

define the boundary of the domain to be triangulated;

. initialize the front by a piecewise linear curve conforming to the boundary;

3. choose the side to be removed from the front using some criterion (typically the
choice of the shortest side provides good quality meshes);

4. for the side, say AB, chosen this way:

D=

6.5 Regularization techniques 155

a) select the “candidate” vertex C, i.e. the point inside the domain whose distance
from AB is prescribed by the desired spacing function 7,
b) seek an already existing point C’ on the front in a suitable neighbourhood of C.
If the search is successful, C’ becomes the new candidate point C. Continue the
search;
c) establish whether the triangle ABC intersects some other side of the front. If so,
select a new candidate point from the front and start back from step 4.b);
5. add the new point C, the new edges and the new triangle ABC to the corresponding
lists;
6. erase the edge AB from the front and add the new edges;
7. if the front is non-empty, continue from point 3.

It is obvious that if we wish the computational cost to be a linear function of
the number of generated elements, it will be necessary to make the above-described
operations as independent as possible from the number of dimensions of the grid we
are generating and, in particular, from the dimensions of the advancing front. Such
an objective is not trivial, especially because operations such as the control of the
intersection of a new triangle, or the search for the vertices of the front close to a
generic point, span the whole front. We refer for this to the specialized literature, and
in particular to Chaps. 14 and 17 of [TSW99].

As previously pointed out in the algorithm description, the quality of the generated
grid depends on the procedure of choice of the front edge on which to generate the new
triangle. In particular, a frequently adopted technique consists in choosing the side
with the smallest length: intuitively, this also allows to satisfy non-uniform spacing
requirements, without risking that the zones where a more dense node distributions is
required are overwritten by triangles associated to a coarser spacing. An example of
mesh obtained through such technique, in correspondence of the choice 7 (x,x;) =
e*sin(8m31)o=2% g represented in Fig. 6.11.

By implementing the suitable tricks and data structures, the advancing algorithm
provides a grid whose spacing is coherent with the requested one, with computational
times almost proportional to the number of generated elements.

The advancing front technique can also be used for the generation of quadrangular
grids.

6.5 Regularization techniques

Once the grid has been generated, a post-processing can be necessary in order to im-
prove its regularity. Some methods allow to transform the grid via operations that
improve the triangles’ shape. In particular, we will examine regularization techniques
that modify either the topological features (by diagonal exchange) or the geometrical
features (by node displacement).

156 6 Generation of 1D and 2D grids

1
0.9
08
07
0.6
05
0.4}
031
02

0.1

0 L . f h h
[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 6.11. Advancing front technique. Example of non-uniform spacing

N2 N2

N3 N3
N1 N1

N4 N4

a) b)

Fig. 6.12. The two configurations obtained via diagonal exchange in the convex quadrilateral
formed by two adjacent elements. The two configurations are compared based on an optimality
criterion

6.5.1 Diagonal swap

The exchange of diagonals is a technique allowing to modify the topology of the grid
without changing the position and number of its vertices. Such technique is based
on the fact that a quadrilateral can be subdivided into a couple of triangles sharing a
common side in two different ways (see Fig. 6.12).
In general, diagonal exchange is used to improve the quality of non-structured grids
by following a given optimality criterion. Suppose, for example, the goal is to avoid
angles that are too big, as when the sum of two opposite angles is bigger than 7.
Exchanging the diagonals would in this case solve the problem.

A general scheme for a possible diagonal exchange algorithm is obtained by defin-
ing the optimality criterion at the element level, under the form of an appropriate non-

6.5 Regularization techniques 157

negative function S : K — R™ U {0} that takes value 0 when K has the “optimal” shape
and dimension. For instance, we can use

K V3
s = 1) \ 63

Lolekpp 12

where |K| denotes the size of K, eX represents a generic side of K and |eX| is its length.
Using this function, we privilege triangles that are close to being equilateral, for which
S(K) = 0. Thus, we will generally obtain a grid as regular as possible, which does not
take the spacing into account. With reference to Fig. 6.12, the algorithm will proceed
as follows:

1. Cycle 0: set the exchanged side counter to zero: swap = 0;
2. span all internal sides e of the current mesh;
3. if the two triangles adjacent to e form a convex quadrilateral:
a) compute G = S?(K;) + $*(K>) — [S*(K}) + S*(K3)]
b) if G > 7, with 7 > 0 a predetermined, then execute the diagonal exchange (hence
modify the current grid) and set swap = swap + 1;
4. if swap > 0 start back from Cycle 0. Otherwise, the procedure terminates.

It can be easily verified that this algorithm necessarily terminates in a finite number of
steps because, for each diagonal exchange, the positive quantity ¥ S%(K), where the
sum is extended to all the triangles of the current grid, is reduced by the finite quantity
G (note that, although the grid is modified, at each diagonal exchange the number of
elements and sides remains unchanged).

Remark 6.2. It is not always a good option to construct the optimality function S at
the element level. For instance, based on the available data structures, S can also be
associated to the nodes or to the sides of the grid. °

The diagonal exchange technique is also the basis for a widely used algorithm (the
Lawson algorithm) for the Delaunay triangulation. It can indeed be proved that starting
from any triangulation of a convex domain, the corresponding Delaunay triangulation
(which, we recall, is unique) can be obtained through a finite number of diagonal
exchanges. Moreover, the maximum number of necessary swaps for this purpose can
be determined a priori and is a function of the number of grid vertices. The technique
(and convergence results) can be extended to constrained Delaunay triangulations,
through a suitable modification of the algorithm. We refer to the specialized literature,
for instance [GB98], for the details.

6.5.2 Node displacement

Another method to improve the quality of the grid consists in moving its points with-
out modifying its topology. Let us consider an internal vertex P and the polygon J#p
constituted by the union of the grid elements containing it. The set J#p is often called
“patch” associated to P and has been considered in Sect. 4.6. For an example, see

158 6 Generation of 1D and 2D grids

Fig. 4.20, right. A regularization technique, called Laplacian regularization, or barycen-
trization, consists in moving P to the center of gravity of .#p, that is in computing its
new position xp as follows:

xp = |Ap| ! / xdx
(see Fig. 6.13). This procedure will obviously be iterated on all the internal vertices of
the mesh and repeated several times. In case of convergence, the final grid is the one

minimizing the quantity
Z/ (xp — x)zdx7 (6.4)
P /AP

where the sum is extended to all the internal vertices of the grid. The name of such
procedure derives from the known property of harmonic functions (those in the kernel
of the Laplacian) which take in a point of the domain a value equal to that of the
average on a closed curve containing the point.

The final grid will generally depend on the order with which the vertices are dis-
placed, one after the other. Moreover, note that this procedure can provide an unac-

\Vav AR VA,

Fig. 6.13. Displacement of a point to the center of gravity of the convex polygon .#p formed by
the union of the elements containing P

ceptable grid if J#p is a concave polygon, as xp can fall out of the polygon. We present
an extension of the procedure that is suitable for generic patches of elements. Consider
Fig. 6.14, which shows a concave patch .#p. We define %p as the locus of points of #p
“visible” to all boundary points of #p, thatis ¢p = {A € #p: AB C #p,VB € d.%p};
note that 6p is always convex. The modification of the regularization algorithm con-
sists in placing P not in the center of gravity of J#p, but in that of 6p, as illustrated in
Fig. 6.14. Clearly, in the case of convex patches, we have 6p = #p. The set p can be
constructed in a computationally efficient manner by using suitable algorithms, whose
description is beyond the scope of this book.

Another option consists in displacing the vertex to the center of gravity of the

boundary of #p (or 6p in the case of concave patches), i.e. in setting

Xp = |8J£/p|*]/a Xdx.

Hp

6.5 Regularization techniques 159

\i/
i~

Fig. 6.14. Modification of the Laplacian regularization algorithm for concave patches. On the
left-hand side, the initial patch; on the right-hand side, the modification due to regularization.
We have shaded the concave polygon %p

2 2

-2 -1 o 1 2 -2 -1 o 1 2

Fig. 6.15. Example of regularization through both diagonal exchange and node displacement

This is equivalent to minimizing the square of the distance between the vertex P and
the sides forming the patch boundary.

A further technique, often found in the literature, consists in displacing each inter-
nal vertex to the center of gravity of the vertices belonging to the associated patch, i.e.
in computing the new position of each internal vertex P via

w=(Lx)/(£0)

NeXp Nexp
N#P N#P

where the sum is extended to all the vertices N belonging to the patch. Despite be-
ing the simplest methodology, the latter often yields bad results, in particular if the
distribution of vertices inside the patch is very irregular. Moreover, it is more diffi-
cult to extend it to concave patches. Thus the two previous procedures are preferable.
In Fig. 6.15 we present an example of successive application of both of the above-
described regularization techniques. Note that the regularization algorithms presented
here tend to uniform the grid, and therefore to prevent its thickenings or coarsenings
due for instance to grid adaptivity procedures such as the ones described in Chap.
4. However, it is possible to modify them to account for a non-uniform spacing. For

160 6 Generation of 1D and 2D grids

instance, a weighted barycentrization can be used, i.e. by setting

xp = (/, p dx)]], poosax

where the strictly positive weight function ¢ depends on the grid spacing function.
In the case of non-uniform spacing, p will take larger values in the zones where the
grid must be finer. When choosing for instance . = .77~ the resulting grid (approxi-
mately) minimizes

;/pr [%”_1 (x)(xp — x)]zdx,

where the sum is extended to the internal vertices.

Also concerning the diagonal exchange procedure we can take the spacing into ac-
count when evaluating the “optimal” configuration, for instance by suitably changing
the definition of function S(K) in (6.3).

Chapter 7
Algorithms for the solution of linear systems

This chapter serves as a quick and elementary introduction of some of the basic al-
gorithms that are used to solve a system of linear algebraic equations. For a more
thorough presentation we advise the reader to refer to, e.g., [QSS07, Chaps. 3 and 4],
[Saa96] and [vdVO03].

A system of m linear equations in n unknowns is a set of algebraic relations of the
form

n
Zaijxj:bi, izl,...,m (7.1)
j=1

x; being the unknowns, a;; the system’s coefficients and b; given numbers. System
(7.1) will more commonly be written in matrix form

Ax=bh, (7.2)

having denoted by A = (g;;) € R™*" the coefficient matrix, b=(b;) € R” being the
right hand side vector and x=(x;) € R” the unknown vector. We call solution of (7.2)
any n-tuple of values x; verifying (7.1).

In the following sections we recall some numerical techniques for the solution of
(7.2) in the case where m = n; we will obviously suppose that A is non-singular, i.e.
that det(A) # 0. Numerical methods are called direct if they lead to the solution of
the system in a finite number of operations, or iferative if they require a (theoretically)
infinite number.

7.1 Direct methods

The solution of a linear system can be found through the Gauss elimination method
(GEM), where the initial system Ax=b is reduced in n steps to an equivalent system
(i.e. having the same solution) of the form AWx = b where A = U is a nonsin-
gular upper triangular matrix and b is a new source term. It will be possible to solve

© Springer International Publishing AG 2017 161
A. Quarteroni, Numerical Models for Differential Problems, MS&A 16,
DOI 10.1007/978-3-319-49316-9 7

162 7 Algorithms for the solution of linear systems

the latter system with a computational cost of the order of n?> operations, through the
following backward substitution algorithm:

X _bi(qn)
n Hnn7
(7.3)
1 (n) « .
Xi = bi - Zuinj s lzn—l,...,l.
Ui j=itl

Denoting by A(V)x = b(1) the original system, the kth step of GEM is achieved via the
following formulae:

a
mij, = l(];{)’ i:k+1,...,l’l,
Ak
o =¥ e, =kt 1n 7.4)

pk+D) — pk) mikbék), i=k+1,....n

i i

(k+1)

We note that in this way, the elements q; j with j=kandi=k+1,...,n are null.

The elements m;;, are called multipliers, while the denominators a,(!,? are named pivotal

elements. The GEM can obviously be achieved only if all the pivotal elements are
non null. This happens, for instance, for symmetric positive definite matrices and for
strict diagonal dominant ones. In general, it will be necessary to resort to the pivoting
method, i.e. to the swapping of rows (and/or columns) of A®¥)_ in order to ensure that
the element a,(!,? be non-null.

To complete the Gauss eliminations, we need 2(n— 1)n(n+1)/3 4+ n(n— 1) flops, to
which we must add n? flops to solve the upper triangular system Ux = b via the
backward substitution method. Hence, about (21 /3 +2n?) flops are needed to solve
the linear system via the GEM. More simply, by neglecting lower order terms in #, it
can be said that the Gaussian elimination process requires 212> /3 flops.

The GEM is equivalent to factorizing the matrix A, i.e. to rewriting A as the prod-
uct LU of two matrices. The matrix U, upper triangular, coincides with the matrix
A" obtained at the end of the elimination process. The matrix L is lower triangular,
its diagonal elements are equal to 1 while the ones located in the remaining lower
triangular portion are equal to the multipliers.

Once the matrices L and U are known, the solution of the initial linear system
simply involves the (successive) solution of the two triangular systems

Ly=b, Ux=y.

Obviously, the computational cost of the factorization process is the same as the one
required by the GEM. The advantages of such a reinterpretation are evident: as L and

7.1 Direct methods 163

U depend on A only, and not on the known term, the same factorization can be used
to solve different linear systems having the same matrix A, but a variable known term
b (think for instance of the discretization of a linear parabolic problem by an implicit
method where at each time step it is necessary to solve a system with the same matrix
all the time, but with a different constant term). Consequently, as the computational
cost is concentrated in the elimination procedure, we have in this way a considerable
reduction in the number of operations when we want to solve several linear systems
having the same matrix.

If A is a positive-definite, symmetric matrix, the LU factorization can be con-
veniently specialized. Indeed, there exists only one upper triangular matrix H with
positive elements on the diagonal such that

A =HTH. (7.5)

Equation (7.5) is the so-called Cholesky factorization. The elements h;; of H are
given by the following formulae: #;| = /aj; and, fori =2,...,n:

k=1

i1\ /2
hii = (aii - Z h%k) .
k=1

This algorithm only requires about 13 /3 flops, i.e. it saves about twice the computing
time of the LU factorization and about half the memory.

-1
hij:<aij_zhikhjk) /hjj, j=1,...,i—1,

Let us now consider the particular case of a linear system with non-singular tridi-
agonal matrix A of the form

aj C1 0

In this case, the matrices L and U of the LU factorization of A are bidiagonal matrices
of the type

1 0 o c 0

Cn—1

O.Bn.l 0 ..an

164 7 Algorithms for the solution of linear systems

The unknown coefficients o; and f; can be easily computed by the following equa-
tions:
bi :
oy =ai, Pi= , O =a;—Pici1, i=2,...,n.
Qi1
This algorithm is named Thomas’ algorithm and can be seen as a particular kind of
LU factorization without pivoting.

7.2 Iterative methods

Iterative methods aim at constructing the solution x of a linear system as the limit
of a sequence {x(”)} of vectors. To obtain the single elements of the sequence, com-
puting the residue r” = b —Ax" of the system is required. In the case where the
matrix is full and of order n, the computational cost of an iterative method is there-
fore of the order of n> operations per iteration. Such cost must be compared with the
approximately 2n° /3 operations required by a direct method. Consequently, iterative
methods are competitive with direct methods only if the number of necessary itera-
tions to reach convergence (within a given tolerance) is independent of n or depends
on n in a sub-linear way.

Other considerations in the choice between an iterative method and a direct one
intervene as soon as the matrix is sparse.

7.2.1 Classical iterative methods

A general strategy to construct iterative methods is based on an additive decomposi-
tion, called splitting, starting from a matrix A of the form A=P—N, where P and N are
two suitable matrices and P is non-singular. For reasons which will become evident in
the remainder, P is also called preconditioning matrix or preconditioner.

Precisely, given x(9), we obtain x® fork > 1 by solving the new systems
Px) =Nx® +b, k>0 (7.6)
or, equivalently,
x*) = Bx® 4 p~1p, k>0 (7.7)

having denoted by B = P~ !N the iteration matrix.

We are interested in convergent iterative methods, i.e. such that lime® = 0 for
k—yo0

each choice of the initial vector x(9), having denoted by e(*) = x(¥) —x the error. With
a recursive argument we find

e =Bre® wk=0,1,... (7.8)

so can conclude that an iterative method of the form (7.6) is convergent if and only if
p(B) < 1, p(B) being the spectral radius of the iteration matrix B, i.e. the maximum
modulus of the eigenvalues of B.

7.2 Iterative methods 165

Equation (7.6) can also be formulated in the form
xkH) = x(®0) 4 p=1p(k) (7.9)
having denoted by
r® =p—Ax® (7.10)

the residue at step k. Equation (7.9) thus expresses the fact that to update the solution
at step k+ 1, it is necessary to solve a linear system with matrix P. Hence, beside being
non-singular, P must be invertible at a low computational cost if we want to prevent
the overall cost of the scheme from increasing excessively (obviously, in the limit case
where P is equal to A and N=0, method (7.9) converges in only one iteration, but at
the cost of a direct method).

Let us now see how to accelerate the convergence of the iterative methods (7.6) by
exploiting the latter form. We denote by

Rp=1-P'A

the iteration matrix associated to method (7.9). Equation (7.9) can be generalized by
introducing a suitable relaxation (or acceleration) parameter «. In this way, we obtain
the stationary Richardson methods (or, simply, Richardson methods), of the form

x®) = x®) 4 qple® k>0, (7.11)

More generally, supposing ¢ to be dependent on the iteration index, we obtain the
non-stationary Richardson methods given by

<) = x®) 4 g p1e® k>0 (7.12)

If we set o = 1, we can recover two classical iterative methods: the Jacobi method
if P=D(A) (the diagonal part of A), the Gauss-Seidel method if P = L(A) (the lower
triangular part of A).

The iteration matrix at step k for such methods is given by

R(oy) =1—oyP A,

(note that the latter depends on k). In the case where P=I, the methods under exam will
be called non preconditioned.

We can rewrite (7.12) (and therefore also (7.11)) in a form of greater computa-
tional interest. Indeed, having set 2 = p~1pKk) (the so-called preconditioned residue),
we have that x*t1) = x®) 4 04z%) and r*+1) = p — Ax*TD = ¢ — Az, To

166 7 Algorithms for the solution of linear systems

summarize, a non-stationary Richardson method at step k+ 1 requires the following
operations:

solving the linear system Pz*) = r(%)

computing the acceleration parameter 0y,
(7.13)
updating the solution x*t1) = x®) gy z(®)

updating the residue ré*!) = r(k) — g Az(*).

As far as the convergence of the stationary Richardson method (for which oy = o, for
each k > 0) is concerned, the following result holds:

Property 7.1. If P is a non-singular matrix, the stationary Richardson method
(7.11) is convergent if and only if

ZRC/’{,I' .

- >1 Vi=1,...,n, (7.14)
A; being the eigenvalues of P~'A.

Moreover; if we suppose that P~' A has positive real eigenvalues, ordered in such
away that Ay > Ay > ... > A, > 0, then the stationary Richardson method (7.11)
converges if and only if 0 < o < 2/Ay. Having set

2

aopl = A/] +A,n7 (715)

the spectral radius of the iteration matrix Re, is minimal if 0 = O, with

Y o Afl _)m
Popr = min [P(Ry)] = P (7.16)

If P and A are both symmetric and positive definite, it can be proved that the Richard-
son method converges monotonically with respect to the vector norms || - ||, and || - || .
We recall that [|v]|, = (Y, v?)"/? and ||v||a = (X7 =1 viaijvi)!

In this case, thanks to (7.16), we can relate p,,, with the condition number introduced
in Sect. 4.5.2 in the following way:

Ky(P'A) 1 2)A'P|,
= O,y =) 7.17
papt Kz(PilA) + 1) opt Kz(PilA) + 1 ()
The importance of the choice of the preconditioner P in a Richardson method is there-
fore clear. We refer to Chap. 4 of [QSS07] for some examples of preconditioners.

7.2 Iterative methods 167
7.2.2 Gradient and conjugate gradient methods

The optimal expression of the acceleration parameter ¢, indicated in (7.15), turns out
to be of little practical utility, as it requires knowing the maximum and minimum
eigenvalues of the matrix P~'A. In the particular case of positive definite symmetric
matrices, it is however possible to evaluate the optimal acceleration parameter in a
dynamic way, that is as a function of quantities computed by the method itself at step
k, as we show below.

First of all, we observe that in the case where A is a symmetric positive defi-
nite matrix, solving system (7.2) is equivalent to finding the minimum x € R" of the
quadratic form

P(y) = ;yTAy —y'D,

called energy of system (7.2).

The problem is thus reduced to determining the minimum point x of @ starting from
apoint x(*) € R” and, consequently, choosing suitable directions along which to move
to approach the solution x as quickly as possible. The optimal direction, joining x(?)
and x, is obviously unknown a priori: we will therefore have to move from x(©) along
another direction d©) and fix a new point x(!) on the latter, then repeat the procedure
until convergence.

At the generic step k we will then determine x**1) as

(D) = x®) 4 g a®), (7.18)

oy being the value fixing the length of the step along d¥). The most natural idea,
consisting in taking as downhill direction that of the greatest increase of @, given by
rd = —va(x()), leads to the gradient or steepest descent method.

The latter leads to the following algorithm: given x(¥) € R”, and having set r(®) =
b— Ax(o), for k=0,1,... until convergence, we compute

r(k)TAr(k) ’
x(k‘H) = X(k) + akr(k),
r(k+l) = r(k) — akAr(k) .

Its preconditioned version takes the following form: given x© e R”, and having set
r® —=p— Ax(o), 20 = P_lr(o), for k =0, 1, ... until convergence, we compute

z(k)TAz(k) ’
x(k‘H) = X(k) + akz(k) .
r(k+l) = r(k) — (XkAZ(k),
Pz(k+]) _ r(kJrl).

168 7 Algorithms for the solution of linear systems

As far as the convergence properties of the descent method are concerned, the follow-
ing result holds

Theorem 7.1. If A is symmetric and positive definite, the gradient method con-
verges for each value of the initial datum x© and

K2 (A)—1

(®) _
Kz(A)—i—l”e la, k=0,1,... (7.19)

le® s <

where || - || is the previously defined energy norm.

A similar result, with K>(A) replaced by K»(P~'A), holds also in the case of the
preconditioned gradient method, as long as we assume that P is also symmetric and
positive definite.

An even more effective alternative consists in using the conjugate gradient method,
where the descent directions no longer coincide with that of the residue. In particular,
having set p(o) = r(o), we seek directions of the form

plktD) = pltD) —Bp®, k=0,1,... (7.20)
where the parameters §; € R are to be determined so that
(ApU)Tpkt) =0, j=0,1,... k. (7.21)

Directions of this type are called A-orthogonal (or A-conjugated). The method in the
preconditioned case then takes the form: given x(*) € R”, having set r(¥) = b — Ax(©),
20 =P~ 1 and p(o) =2, the k-th iteration, with k = 0,1...,1s

p® 7 r®
(Aph)Tp”
X(kJrl) = X(k) —+ akp(k),

oy =

rk+1) — p0) _ op ApK),
pa(ktl) — plk+1)
(Ap(k))Tz(k—H)
p® T Ap®)
p(k+l) z(k+1) ﬁkp

B =

Y

The parameter o is chosen in order to guarantee that the error ||e**!)| 5 be min-
imized along the descent direction p("). The parameter f3, instead, is chosen so that
the new direction p**1) is A-conjugate to p!), that is (Ap*))Tp*+1) = 0. Indeed, it
can be proved (thanks to the induction principle) that if the latter relation is verified,

7.2 Iterative methods 169

then so are all the ones in (7.21) relative to j =0, ...,k — 1. For a complete justification
of the method, see e.g. [QSS07, Chap. 4] or [Saa96].
It can be proved that the conjugate gradient method converges in exact arithmetics in
at most n steps, and that

20k

k 0
le®lla <) L ale@la, (7.22)
with
K> (P1A)— 1
_ VE(P (7.23)
- VEK(PTIA) + 1

In the absence of roundoff errors, the CG method can therefore be seen as a direct
method as it terminates after a finite number of operations.

On the other hand, for matrices of large dimension, it is usually applied as an itera-
tive method and is arrested as soon as an error estimator (as for instance the relative
residue) is less than a given tolerance.

Thanks to (7.23), the dependence on the reduction factor of the error on the matrix
condition number is more favourable than the one of the gradient method (due to the
presence of the square root of K»(P~'A)).

It can be noted that the number of iterations required for convergence (up to a pre-
scribed tolerance) is proportional to é\/ K>(P~'A) for the preconditioned conjugate
gradient method, a clear improvement with respect to ;Kg (P~'A) for the precondi-
tioned gradient method. Of course, the PCG method is costlier per iteration, both in
CPU time and storage.

7.2.3 Krylov subspace methods

Generalizations of the gradient method in the case where the matrix A is not symmet-
ric lead to the so-called Krylov methods. Notable examples are the GMRES method
and the conjugate bigradient method BiCG, as well as its stabilized version, the
BiCGSTAB method. The interested reader can consult [QSS07, Chap. 4], [Saa96]
and [vdVO03].

Here we briefly review the GMRES (generalized minimal residual) method. We
start by a revisitation of the Richardson method (7.13) with P =1; the residual at the
k-th step can be related to the initial residual by

r =TT oA)r® = pp(A), (7.24)
where p;(A) is a polynomial in A of degree k. If we introduce the space

Kn(A;v) = span{v,Av,..., A" v}, (7.25)

it follows from (7.24) that r®) € K., (A;r(o)). The space defined in (7.25) is called
the Krylov subspace of order m associated with the matrix A and the vector v. It is a

170 7 Algorithms for the solution of linear systems

subspace of R” that can be written as u = p,,_1(A)v, where p,,_; is a polynomial in
A of degree <m — 1.
Similarly, the k-th iterate of the Richardson method can be represented as follows

k—1
x = xO 4 ¥ orl),
=0

whence x(*¥) belongs to the space
We={v=x"+y, yeKi(Ar)}. (7.26)

Notice also that):'j‘;(l) a jr(j) is a polynomial in A of degree less than k — 1. In the non-
preconditioned Richardson method we are thus looking for an approximate solution to
x in the space W;.. More generally, one can devise methods that search for approximate
solutions of the form

6 = xO 4 g, (A, (7.27)

where g;_; is a polynomial selected in such a way that x(*) is, in a sense that must be
made precise, the best approximation of x in W;.. A method that looks for a solution of
the form (7.27) is called a Krylov method.

A first question concerning Krylov subspace iterations is whether the dimension
of K, (A; V) increases as the order m grows. A partial answer is provided below.

Property 7.2. Let A € R"™" and v € R". The Krylov subspace K,,(A;v) has di-
mension equal to m iff the degree of v with respect to A, denoted by deg, (v),
is not less than m; the degree of v is defined as the minimum degree of a monic
nonnull polynomial p in A for which p(A)v = 0.

The dimension of K, (A;v) is thus equal to the minimum between m and the degree
of v with respect to A and, as a consequence, the dimension of the Krylov subspaces
is a nondecreasing function of m. The degree of v cannot be greater than n due to the
Cayley-Hamilton theorem (see [QSS07, Sect. 1.7]).

Example 7.1. Consider the 4 x 4 matrix A = tridiag,(—1,2,—1). The vector v =
[1,1,1,1]7 has degree 2 with respect to A since p,(A)v = 0 with p>(A) =1, —3A+A?
(I4 is the 4 x 4 identity matrix), while there is no monic polynomial p; of degree 1 for
which p;(A)v = 0. All Krylov subspaces from K;(A;v) on have therefore dimension
equal to 2. The vector w = [1,1,—1,1]7 has, instead, degree 4 with respectto A. W

For a fixed m, it is possible to compute an orthonormal basis for K, (A;v) using
the so-called Arnoldi algorithm.

Setting v; = v/||v||2, this method generates an orthonormal basis {v;} for K,,(A;vy)
using the Gram-Schmidt procedure (see [QSSO07, Sect. 3.4.3]). For k = 1,...,m, the

7.2 Iterative methods 171

Arnoldi algorithm computes

]’l,'kZViTAVk7 i=1,2,...,k,

k (7.28)
Wi =Ave— Y havi, hg = [|will2.
i-1

If w;, = 0 the process terminates and in such a case we say that a breakdown of the
algorithm has occurred; otherwise, we set vy.1 = Wy /||W||2 and the algorithm restarts,
incrementing k by 1.

It can be shown that if the method terminates at step m then the vectors vy,..., v,
form a basis for K, (A; v). In such a case, if we denote by V,,, € R"*" the matrix whose
columns are the vectors v;, we have

VIAV,, =H,, VI AV, =H,, (7.29)

where H,, € R"T1)xm i the upper Hessenberg matrix whose entries #;; are given by
(7.28), and H,, € R™*™ s the restriction of ﬁm to the first m rows and m columns.
The algorithm terminates at an intermediate step k < m iff degy (v1) = k. As for the
stability of the procedure, all the considerations valid for the Gram-Schmidt method
hold. For more efficient and stable computational variants of (7.28), we refer to [Saa96].

We are now ready to solve the linear system (7.2) by a Krylov method. We look for
the iterate x*) under the form (7.27); for a given r(o), x®) is in the unique element in
Wi which satisfies a criterion of minimal distance from x. The criterion for selecting
x(® is precisely the distinguishing feature of a Krylov method.

The most natural idea consists in searching for xK) € W as the vector which min-
imizes the Euclidean norm of the error. This approach, however, does not work in
practice since x¥) would depend on the (unknown) solution x. Two alternative strate-
gies can be pursued:

1. compute x¥) € W, by enforcing that the residual r¥) is orthogonal to any vector in
K (A;r<0)), i.e., we look for x¥) € W, such that

vVib-Ax®)y=0 wvek(Arr?); (7.30)
2. compute x*) € W, by minimizing the Euclidean norm of the residual ||r(k) 2, 1.e.
b — AxP)[|, = min|[b — Av]},. (7.31)
veW,

Alternative 1 leads to the Arnoldi method (more commonly known as FOM, full or-
thogonalization method), while Alternative 2 yields the GMRES (generalized minimal
residual) method.

We shall assume that k steps of the Arnoldi algorithm have been carried out, so that
an orthonormal basis for Kj(A;r(?)) has been generated and stored into the column

172 7 Algorithms for the solution of linear systems

vectors of the matrix Vj with v; = r(® /|[r(?)||,. In such a case the new iterate x*) can
always be written as

x(®) — x| v 50 (1.32)

where z®) must be selected according to a suitable criterion that we are going to
specify. Consequently we have

r =0 _ AV, 20 (7.33)

Since r(® = v, |[r(®

2, and using (7.29), relation (7.33) becomes
r® = Vi (|96, — Hiz®), (7.34)

where e is the first vector of the canonical basis of R¥t!. Therefore, in the GMRES
method the solution at step k can be computed through (7.32), provided

2% minimizes | ||r||,e; — Hiz®||, (7.35)

(we note that the matrix V| appearing in (7.34) does not alter the value of || -
since it is orthogonal).

25

Similarly to the CG method, the GMRES method enjoys a finite termination property,
that is it terminates at most after n iterations, yielding the exact solution (in exact arith-
metic). Indeed, the kth iterate minimizes the residual in the Krylov subspace K}. Since
every subspace is contained in the next one, the residual decreases monotonically. Af-
ter n iterations, where n is the size of the matrix A, the Krylov space K, is the whole
of R" and hence the GMRES method arrives at the exact solution. Premature stops are
due to a breakdown in Arnoldi’s orthonormalization algorithm. More precisely, we
have the following result.

Property 7.3. A breakdown occurs for the GMRES method at a step m (with
m < n) if and only if the computed solution x") coincides with the exact solution
to the system.

However, the idea is that after a small number of iterations (relatively to n), the vector
x® is already a good approximation of the exact solution. This is confirmed by the
convergence results that we describe later in this section.

To improve the efficiency of the GMRES algorithm it is necessary to devise a stopping
criterion which does not require the explicit evaluation of the residual at each step.
This is possible, provided that the linear system with upper Hessenberg matrix H is
appropriately solved. R

In practice, the matrix Hy in (7.29) is transformed into an upper triangular ma-
trix Ry € RETDXk with e+1,, = 0 and such that Q,{Rk = ﬁk, where Qy is a matrix

7.2 Iterative methods 173

obtained as the product of k Givens rotations. Then, since Q; is orthogonal, mini-
mizing ||||r(?)||,e; — Hgz®||, is equivalent to minimizing ||f; — Ryz® ||, with f; =
Q| ||2e;. It can also be shown that the k 4 1-th component of f; is, in absolute
value, the Euclidean norm of the residual at the k-th step.

As FOM, the GMRES method entails a high computational effort and a large
amount of memory, unless convergence occurs after few iterations. For this reason,
two variants of the algorithm are available, one named GMRES(m) and based on the
restart after m steps, with x(m) as initial guess, the other named Quasi-GMRES or
QGMRES and based on stopping the Arnoldi orthogonalization process. It is worth
noting that these two methods do not enjoy Property 7.3.

The convergence analysis of GMRES is not trivial, and we report just some ele-
mentary results here. If A is positive definite, i.e., its symmetric part Ag has positive
eigenvalues, then the k-th residual decreases according to the following bound

e @12 < sin*(B) Iz , (7.36)

where cos(B) = Amin(Ls)/||L|| with B € [0,7/2). Moreover, GMRES(m) converges
for all m > 1. In order to obtain a bound on the residual at a step k > 1, let us assume
that the matrix A is diagonalizable

A=TAT™ ',

where A is the diagonal matrix of the eigenvalues {A;},=1__,, and T = [w!,... w"]
is the matrix whose columns are the right eigenvectors of A. Under these assumptions,
the residual norm after k steps of GMRES satisfies

I®) < Ko (1)8[1e V]
where K»(T) = ||T||2||T ! |2 is the condition number of 7 and

d= min max |p(A;)].
pePip(0)=1 e (A2l

Moreover, suppose that the initial residual is well represented by the first m eigen-
vectors, i.e., 1’ = Y ojw’ +e, with [|e|| small in comparison to || X2 otjw||, and
assume that if some complex w’ appears in the previous sum, then its conjugate w’
appears as well. Then
k
M| < Ko (T)eellel]
Ap =4,

J

Very often, ¢y is of order one; hence, k steps of GMRES reduce the residual norm to
the order of ||e|| provided that k»(T) is not too large.

In general, as highlighted from the previous estimate, the eigenvalue information
alone is not enough, and information on the eigensystem is also needed. If the eigen-
system is orthogonal, as for normal matrices, then K>(7) = 1, and the eigenvalues

174 7 Algorithms for the solution of linear systems

retain all the information about convergence. Otherwise, upper bounds for ||r(*)|| can
be provided in terms of both spectral and pseudospectral information, as well as the
so-called field of values of A

F(A) = {vAv||v] = 1}.

If 0 ¢ .7 (A), then estimate (7.36) can be improved by replacing Amin(As) with
dist(0, Z (A)).

An extensive discussion on the convergence of GMRES and GMRES(m) can be
found in [Saa96], [Emb99], [Emb03], [TE05], and [vdV03].

The GMRES method can of course be implemented for a preconditioned system. We
provide here an implementation of the preconditioned GMRES method with a left
preconditioner P.

Preconditioned GMRES (PGMRES) Method
Initialize
X(O), Pr(o) — f_Ax(O)’ ﬁ — Hr(O)HZ’ X(l) — I'(O)/B

Iterate
Forj=1,....,k Do
Compute Pwl) = Ax()
Fori=1,...,jDo
gij = (X(i))Tw(j)
wli) =wl) — g;ix;
End Do
gj1.5 =Wl (7.37)
(if gj+1,j=0setk = jand Goro (1))
XU =wli) /gy
End Do
Vi=[xU, . xO] B ={gi}, 1<j<k 1<i<j+1;
(1) Compute z¥) | the minimizer of || Be; — H;z|
Set x®) = x(0) 4y, 2%

More generally, as proposed by Saad (1996), a variable preconditioner P, can be
used at the k-th iteration, yielding the so-called flexible GMRES method. This is espe-
cially interesting in those situations where the preconditioner is not explicitly given,
but implicitly defined, for instance, as an approximate Jacobian in a Newton iteration
or by a few steps of an inner iteration process (see Chapter 17). Another meaningful
case is the one of domain decomposition preconditioners (of either Schwarz or Schur
type) where the preconditioning step involves one or several substeps of local solves
in the subdomains (see Chapter 19).

Several considerations for the practical implementation of GMRES, its relation
with FOM, how to restart GMRES, and the Householder version of GMRES can be
found in [Saa96].

7.2 Iterative methods 175

Remark 7.1 (Projection methods). Denoting by Y} and L; two generic m-dimensional
subspaces of R”, we call projection method a process which generates an approximate
solution x¥) at step k, enforcing that x¥) € ¥} and that the residual r*) = b — Ax*)
be orthogonal to L. If Y, = L, the projection process is said to be orthogonal, and
oblique otherwise (see [Saa96]).

Krylov methods are projection methods. For instance, the Arnoldi method is an or-
thogonal projection method where Ly =¥, = Kj(A; r(o)), while the GMRES method is
an oblique projection method with ¥, = Ki(A; r(o)) and L; = AY;. It is worth noticing
that some classical methods introduced in previous sections fall into this category. For
example, the Gauss-Seidel method is an orthogonal projection method where at the
k-th step Ki(A;r(®) = span{e;}, with k = 1,...,n. The projection steps are carried
out cyclically from 1 to » until convergence. °

7.2.4 The Multigrid method

The geometric Multigrid (MG) method is an iterative algorithm to solve the algebraic
system associated to a certain grid by making use of one or several additional coarser
grids. For the sake of simplicity, we describe only the case of a two-grid algorithm.
Thus we suppose that (7.2) represents the algebraic system arising from, say, a finite
element approximation of a boundary-value problem on a (fine) grid .7,. For the sake
of clarity we can rewrite (7.2) as

Ahllh = bh (738)

where, as usual, 7 = max;c 7, diam(K), Ay, is the stiffness FE matrix, by, is the right
hand side, u;, the vector of nodal values. Let 3 represent a coarse grid such that
T, can be regarded as a refinement of .7, for instance so that the vertices of .7, are
obtained as the midpoints of edges from 7. In that case, h = H /2.

The generic iteration of the MG algorithm on these two grids consists of:

1. Pre-smoothing step:
performm; (> 1) iterations on the fine grid using an iterative algorithm (e.g. Jacobi,
or Gauss-Seidel, or Richardson),

=5, by =1, m,

(0) .

for a suitable u, ’ ;
2. Residual computation:

r = by — Apu";

3. Restriction to the coarse grid:

H
rg = Ih r,

where 1}11-1 ‘RN — RN g a fine-to-coarse operator, Ny, is the number of unknowns
of the fine-grid problem, Ny that of the coarse-grid one;

176 7 Algorithms for the solution of linear systems

4. Solution of the coarse-grid problem:

Agey =rpy
where Ay is the stiffness matrix associated with the FE discretization on the coarse
grid Jp;
5. Coarse-grid correction:

(m1+1)

u, = uglm‘) +1hey,

where I, : RNt — RN is a coarse-to-fine operator;
6. Post-smoothing step:
Perform my (> 1) iterations on the fine grid:

W =Sl b =

The two inter-grid operators (i.e. matrices) are typically adjoint to each other.

Let V), be the finite element space associated with .7, Vy that associated with 7.

For every w € RV, let wy = Y w;@!! be the corresponding FE function in V.

Similarly, for every v € RV:, let v, = Ijv’z’ V) (p;' be the corresponding FE function in

Vi, (see (4.7)). Here qoih (resp. (pJH) indicate the Lagrangian basis functions in V}, (resp.
Vu). Let th : Vg — Vj, be the operator corresponding to /7%, that is

f,{}w;{ =y iff Iﬁ,w =V.
Typically th is the natural injection, in the sense that
fIZ}WH = Wg VYwy € Vg.

This means that their nodal values (fng)(N?) =wy (Ni’) are the same at all nodes
N’]“. of .7,. The entries of I}, are therefore (12,),, = (pl-H(N’]“.)7 j=1,...,Ny, i=--- Ng.
The operator If is the weighted transpose of 7, that is

(v, w)y = (v,Ilw),, vy € RM .V we RV

where we have introduced the weigthed (mesh-dependent) inner products:

Ni
(v,w) =hY viw, Vv,we RV,
=1

Ny
(x,y)u =H*Y xyi Vxy€ RN,

i=1

A simple algebraic calculation shows that

hZ

:Hz(I;lI)jia i=1,...,Ny, j=...,Np,

()i

7.2 Iterative methods 177

that is
n_ Py
Iy = H2 (IH) .
What we have described is a two-grid V-cycle algorithm. As a matter of fact, a pictorial
representation of one step of this algorithm, where the fine is a high level whereas the
coarse is a low level, looks like a “V” workflow.
This iterative algorithm can be associated with the following iteration matrix

MG = S\ (I, — Iy (An) "' I AL)S], (7.39)

where I;, € RM*Ni i the identity matrix and Sy, is the smoothing iteration matrix (e.g.,
the Richardson matrix Rp or R() on the fine grid).

The convergence analysis of the two-grid V-cycle algorithm, as well as that of the
more general multi-grid case with either V- or W-cycle, is carried out, e.g., in [Hac]
and, for finite element discretization, in [BS94].

Chapter 8
Elements of finite element programming

In this chapter we focus more deeply on a number of aspects relating to the translation
of the finite-element method into computer code. This implementation process can
hide some pitfalls. Beyond the syntactic requirements of a given programming lan-
guage, the need for a high computational efficiency leads to an implementation that is
generally not the immediate translation of what has been seen during the theoretical
presentation. Efficiency depends on many factors, including the language used and the
architecture on which one works!. Personal experience can play a role as fundamental
as learning from a textbook. Moreover, although spending time searching for a bug in
the code or for a more efficient data structure can sometimes appear to be a waste of
time, it (almost) never is. For this reason, we wish to propose the present chapter as
a sort of ““guideline” for trials that the reader can perform on his own, rather than a
chapter to be studied in the traditional sense.

A final note about the chapter style. The approach followed here is to provide
general guidelines: obviously, each problem has specific features that can be exploited
in a careful way for a yet more efficient implementation.

8.1 Working steps of a finite element code

The execution of a Finite-Element computation can be logically split into four working
steps (Fig. 8.1).

1. Pre-processing. This step consists in setting up the problem and coding its compu-
tational domain, which, as seen in Chapter 4, requires the construction of the mesh
(or grid). In general, setting aside the trivial cases (for instance in one dimension),
the construction of an adequate mesh is a numerical problem of considerable inter-

I Currently, engineering applications involving scientific computing are running on parallel
architectures with hundreds or thousands of Central Processor Units (CPUs) or Graphical
Processor Units (GPUs), and this requires specific coding techniques. This topic is beyond
the scope of the present book.

© Springer International Publishing AG 2017 179
A. Quarteroni, Numerical Models for Differential Problems, MS&A 16,
DOI 10.1007/978-3-319-49316-9 8

180 8 Elements of finite element programming

PRE-PROCESSING; | ASSEMBLY

GRID L GEOMETRIC FUNCTIONAL
|1”| DATA STRUCTURE DATA STRUCTURE
CONSTRUCTION
OF MATRICES
GRID
ADAPTIVITY ALGEBRAIC
SOLVE
NO YES |

OK? : END

Fig. 8.1. Working steps of a finite element code

est, for which ad hoc techniques have been developed. Generally, this operation is
performed by dedicated programs or modules within a solver, where great effort
has been recently devolved to the aspect of interface and interfacing with CAD
(Computer Aided Design) software. Chapter 6 is dedicated to the fundamental
techniques for grid generation.

2. Assembly. In this phase, we construct the “functional” data structures, starting
from the “geometric” ones obtained by the mesh and by the user’s choices con-
cerning the desired type of finite elements to be used. Moreover, based on the
problem we want to solve and on its boundary conditions, we compute the stiff-
ness matrix associated to the discretization (see Chapters 4 and 13). In an un-
steady problem, this operation may need to be included in the time advancing
loop, when the matrix depends on time (like for instance for the linearization of
nonlinear problems, see Chapters 5 and 17). Strictly speaking, the term “assem-
bly” refers to the construction of the matrix of the linear system, moving from
the local computation performed on the reference element to the global one that
concurs to determine the matrix associated to the discretized problem. Fig. 8.2
summarizes the different operations during the assembly phase for the prepara-
tion of the algebraic system.

3. Solution of the algebraic system. The core of the solution of any finite-element
computation is represented by the solution of a linear system. As previously said,
this will eventually be part of a temporal cycle (based on an implicit discretization
method) or of an iterative cycle arising from the linearization of a nonlinear prob-
lem. The choice of the solution method is generally left to the user. For this reason,
it is very important that the user understands the problem under exam, which, as

8.1 Working steps of a finite element code 181

Node
Element | _ _1 _2_ _ 3_
1 I
1 4 6 , 5
| |
2 5 | 61 1
1 e !
3 I I
1 4 2 | 6] 3
5 3 ! 6! a
| |
2
5 3
1 al
2 (Dirichlet)
4 5 4
A
A - -
3 (Dirichlet) 3 6_ (fz\
i i=1,2,3 3 A4~ ~
6 -
4/‘[' 4

Fig. 8.2. Scheme of the assembly. The geometric and topological information (top table), suit-
ably stored, describes the grid. Through the mapping on the reference element, we compute the
discretization matrix A and of the term b, first by proceeding element by element (local com-
putation) and then, by exploiting the additivity of integration operation, we update the global
matrix. The symbols representing each element of the matrix are obtained through the overlap
of the symbols used to define each element of the mesh. Finally, we implement the boundary
conditions, which ideally remove the degrees of freedom with associated Dirichlet conditions,
getting to the final structures A and b. As we will see, the operation is often implemented in a
different way

we have seen in Chapter 4, has implications on the structure of the matrix (for in-
stance, symmetry and positivity); on the other hand she/he should be aware of the
available methods to perform an optimal choice (which rarely is the default one).
This is why in Chapter 7 we recalled the main properties of numerical methods
for the solution of linear systems.
Nowadays, a host of very efficient computational libraries exist for the solution of
various types of linear systems, hence the trend in the coding phase is generally to
include such libraries rather than implementing from scratch. Among others, we
remind PetSC (see [Pet]), UMFPACK [UMF], and TriLinos [Tri].

4. Post-processing. Since the amount of numerical data generated by a finite-element
code might be huge, a post-processing is often necessary in order to present re-
sults that are concise and in a usable format. However, this may not be a trivial

182 8 Elements of finite element programming

task. In particular, a reckless post-processing for the a posteriori computation of
differential quantities (e.g. stresses from displacements, fluxes or vorticity from
velocities, etc ...) can introduce unacceptable overhead errors.

Since grid generation techniques were addressed in Chap. 6, and we saw the algo-
rithms for the solution of linear systems in Chap. 7, the main focus of this chapter will
be on the Assembly phase (Sect. 8.4).

Before dealing with this subject, though, in Sect. 8.2 we will deal with quadrature
formula for the numerical computation of integrals, while sparse matrix storing will
be discussed in Sect. 8.3.

As far as the Post-processing step is concerned, we refer to the specific literature,
and recall that the techniques used above have been introduced in Chap. 4 for the
computation of a posteriori estimates.

Eventually, Sect. 8.6 will discuss a complete example.

8.1.1 The code in a nutshell

There are many programming languages and environments available today, character-
ized by different philosophies and objectives. When facing the implementation of a
numerical method, it is necessary to make a pondered choice in this respect. Amongst
the most useful programming environments for the construction of prototypes, Matlab
is certainly an excellent tool under many viewpoints, although, as with all interpreted
languages, it is weaker under the computational efficiency profile. Another environ-
ment targeted to the solution of differential problems in 2D through the finite-element
method is FreeFem++ (see www.freefem.org). This environment comprises all four
phases indicated above in a single package (free and usable under different operat-
ing systems). Its particularly captivating syntax reduces the gap between coding and
theoretical formulation by bringing the former significantly closer to the latter. This
operation has a clear “educational” merit, which is to quickly produce simulations also
for non trivial problems. However, the computational costs and the difficulty of im-
plementing new strategies that require an extension of the syntax can be penalizing in
actual cases of interest. In [FSV12] several solved examples and problems are solved
with FreeFem++.

Among compiled programming languages, Fortran (Fortran 77 in particular) is
traditionally the one that has had the biggest success in the numerical domain, be-
cause it generates very efficient executable codes. Recently, the abstraction feature
that is intrinsic to the object-oriented programming philosophy has proven to be very
suitable for finite element programming. The level of abstraction made possible by
far-reaching mathematical tools seems to find an excellent counterpart in the abstrac-
tion of object-oriented programming, based on the design of data types made by the
user (more than on operations to perform, as in procedural programming) and on their
polymorphism (see e.g. [LLOO, Str00]). However, the computational cost of such an
abstraction has sometimes reduced the interest for a theoretically attractive program-
ming style. The latter is often operationally weak for science problems, where com-
putational efficiency is (almost) always crucial. This has required the development of

http://www.freefem.org

8.2 Numerical computation of integrals 183

more sophisticated programming techniques (for instance, Expression Templates),
that avoid the cost associated to the interpretation of abstract objects to become too
heavy during code execution (see e.g. [Vel95, Fur97, Pru06, DV09]). Hence, besides
Fortran, languages like C++ (born as an object-oriented improvement of the language
C) are nowadays more and more frequent in the scientific domain; amongst others, we
recall FEniCS OpenFOAM and LifeV..

In the code excerpts presented below we will refer to C++. An accurate examina-
tion of the code (which we will henceforth call “Programs” for simplicity) requires
some basic knowledge of C++, for which we refer to [LLOO]. However, as we want
to use this chapter as a basis for autonomous experiments, it is not essential to master
the C++ syntax to understand the text; a mild familiarity with its basic syntax will be
enough for the reader who might prefer a different language.

8.2 Numerical computation of integrals

The effective numerical computation of the integrals in the finite element formulation
is typically performed via quadrature formulae. For an introduction to the subject of
numerical quadrature, we refer to basic numerical analysis textbooks (e.g. [QSS07]).
Here, it will suffice to recall that a generic quadrature formula has the form

ngn

/f(x)dx% Z f(Xig)wig
K

iqg=1

where K denotes the region over which we integrate (typically an element of the finite
element grid), ngn is the number of quadrature nodes for the selected formula, x;, are
the coordinates of the quadrature nodes and w;, are the weights. Typically, the accu-
racy of the formula and its computational cost grow with the number of quadrature
nodes. As we will see in Chapter 10, Sects. 10.2.2 and 10.2.3, the formulae which
guarantee the best accuracy for the same number of nodes are the Gaussian ones.

The computation of integrals is generally performed on the reference element
(where the expression of basis functions is known) through a suitable change of vari-
able (Sect. 4.3).

Let us denote with £; and x; (fori = 1,...,d) the coordinates on the reference ele-
ment K and those on the generic element K, respectively. Integration in the reference
space will then require the knowledge of the Jacobian matrices Jx (%) of the geometric
transformation Fx that maps the reference element K on the element K (see Fig. 4.14),

‘We then have

f(x)dx = / . F®)|detlx (R)|dx = Y. f(Rq)|det/k (%g) 10, (8.1)
q

184 8 Elements of finite element programming

where f = f o Fg, and W, are the weights on the reference element. In case of integrals
involving derivatives, denoting with Jx(x) the Jacobian matrix associated to Fy Lie.

Jx(x) = [g: (x)} =1

we have, for j=1,...,d,

af d9f 9% ~ T _
0 0= X g5 ® g 09 V)= [Fk(w]| VT).

We can prove that

Te00] " =)9

wa (%) being the matrix of the cofactors of the elements of Jx(X), i.e. (in the two-
dlmenswnal case)

axZ ()A(. axZ (ﬁ)
R

X

T oh on ™
The gradient of the function f can thus be expressed in terms of the variables in the
reference space as following

1

cof R
e () K CIVTR).

Vif (x) =

Denoting with o and 8 the indices of two generic basis functions, the typical element
of the stiffness matrix can therefore be computed as follows:

/Vx(pa (x) Vg (x)dx =

K
[(5 ®Vau)) (5 0¥ a5 |

W < - COJ (& a(pa < Jeo a(pﬁ
|detJKq(§(q)| Z <Z {JKf(Xq)} Jl aXl) <Z [f }jm aXm(q))] .

(8.2)

>N
12

Note that the matrices Jg, and consequently the matrices J;ff , are constant on the
element K if K is a triangle or a rectangle in 2D (a tetrahedron or a parallelepiped in
3D) with no curved boundaries.

The class coding a quadrature formula stores quadrature nodes and their associ-
ated weights. In the effective integral computation we will then obtain the necessary
mapping information for the actual computation, which depends on the geometry of K.

8.2 Numerical computation of integrals 185

The choice of a quadrature formula responds to two (conflicting) needs:

1. On one hand, the higher the accuracy is, the smaller is the integration error even-
tually affecting the overall quality of the numerical computation; a proper choice
of the quadrature rule, based on the concept of degree of exactness, may make
the numerical integration error vanish. We control for problems whose differential
operator has constant (or polynomial) coefficients.

2. On the other hand, a larger number of ngn nodes and in increase of the computa-
tional cost of assembly is necessary to obtain an increase of accuracy.

The appropriate synthesis of these two needs evidently depends on the require-
ments of the problem we want to solve, as well as on the accuracy and speed specifi-
cations to execute the computation.

8.2.1 Numerical integration using barycentric coordinates

The numerical evaluation of integrals on simplexes (intervals in 1D, triangles in 2D,
tetrahedra in 3D) can profit from the use of the barycentric coordinates that were
introduced in Sect. 4.4.3. To start with, we observe that the following exact integration
formulas hold (see, e.g., [Aki94, Chap. 9] or [Hug00, Chap. 3]):

in 1D "
IAbdw = E7 enght(K)).
/gl% ! (@+b+1)r 8 (K1)
in 2D
) / raAbasdo= 9P oarea(Ry)
g, 0 " (a+b+c+2)! 20
in 3D
) / AAA M do = TP iRy
& VBT (a4 bt e+ d+3)!)
More in general,
d d n R
/H?Ll.”idw: EL=°”" A1, (8.3)
g =0 (Y ni+d)!
i=0

where Ky is a d-dimensional standard simplex, |K,| denotes its measure, {n;, 0 <i <
d} is a set of non-negative integers.

These formulas are useful when dealing with finite-element approximations of the
boundary-value problems for the exact computation of polynomial integrals in the
characteristic Lagrangian basis functions.

For the sake of an example, Table 8.1 shows the weights and nodes for some popu-
lar quadrature formulas in 2D. Table 8.2 gives some formulas for a tetrahedron. These
formulas are symmetric: we must consider all possible permutations of the barycentric
coordinates to obtain the full list of nodes.

186 8 Elements of finite element programming

X2 X3
Ny N3

X2

X1 1

NO N| NO N|

Fig. 8.3. The barycentric coordinate A; of the point P represents the ratio between the volume
of the tetrahedron having as vertices P and the vertices of the face opposite to N; (in the figure,
right, we have shadowed the tetrahedron with vertices P,Ni,N,,N3 opposite Ny) and the total
volume of the tetrahedron

Table 8.1. Nodes and weights for the quadrature formulae on triangles. The nodes are expressed
through their barycentric coordinates. The weights do not take into account the measure of the
reference element (which is equal to 1/2 in this case)

ngn barycentric coordinates A; m wj r
1 173 173 173 1 1 1
3 1 0 0 3 1/3 1
3 2/3 1/3 173 3 1/3 1
4 173 173 173 1 —0.5625 2

0.6 0.2 0.2 3 0.52083
6 0.65902762237 0.23193336855 0.10903900907 6 1/6 2
6 0.81684757298 0.09157621351 0.09157621351 3 0.10995174366 3
0.10810301817 0.44594849092 0.44594849092 3 0.22338158968

Table 8.2. Nodes and weights for quadrature formulae on tetrahedra. The nodes are expressed
using their barycentric coordinates. The weights do not take into account the measure of the
reference element (equal to 1/6 in this case)

ngn barycentric coordinates A; m wj r
1 1/4 1/4 1/4 1/4 1 1 1
4 0.58541020 0.13819660 0.13819660 0.13819660 4 1/4 2
5 1/4 1/4 1/4 1/4 1 —16/20 3

12 1/6 1/6 1/6 4 9120

For the reader’s convenience we have written, next to the total number ngn of
nodes, the multiplicity m of each quadrature node, i.e. the number of nodes generated
by the permutations. We have also provided the exactness degree r, that is the largest
positive integer r for which all polynomials of degree < r are integrated exactly by the
quadrature formula at hand.

8.3 Storage of sparse matrices 187

Let us see two simple examples. Suppose we want to compute

1= [rmax= [FRuIRax
k 4

Using the weights and nodes of the first row of the table, we obtain

~1 1 11
J
G

1

= TG () = ArealK)f(x),

where the coefficient 1/2 represents the area of the reference element, and x is the
node with barycentric coordinates A} = A, = A3 = 1/3 corresponding to the center
of gravity of the triangle. The corresponding formula is the well-known composite
midpoint formula.

To use the formula in the second row we note that m = 3, hence we have indeed 3
quadrature nodes whose barycentric coordinates are obtained via cyclic permutation:

()LO: 17)L] :O;AQ :O)a (A'O:O;A’l = I;AQ :O)a (A'O:O;A’l :053’2: 1)

Hence for each triangle K we obtain

~ o~ ~

[x| [7(0,0)/deur(0,0)]+7(1,0)ldets(1,0)| +7(0, 1) dets 0, 1)
K

2

= Area(K) Y

i=0

1
3f(Ni)7

No,Nj, N, being the vertices of the triangle K, corresponding to the barycentric coor-
dinates (0,0), (1,0) and (0,1) respectively. The corresponding formula therefore yields
the composite trapezoidal formula. Both formulae have exactness degree equal to 1.

Other quadrature formulae for the computation of integrals for different finite ele-
ments can be found in [HugO0], [Str71], [FSV12].

Remark 8.1. When using quadrilateral or prismatic elements, nodes and weights of
the quadrature formulae can be obtained as the tensor product of the Gauss quadrature
formulae for the one-dimensional interval, see Sect. 10.2 (and also [CHQZ06]). °

8.3 Storage of sparse matrices

As seen in Chapter 4, finite element matrices are sparse. The distribution of non-null
elements is retained by the so-called sparsity pattern (also called graph) of the matrix.
The pattern depends on the computational grid, on the finite element type and on the
numbering of the nodes adopted. The efficient storage of a matrix therefore consists in
the storage of its non-null elements, according to the positioning given by the pattern.
The discretization of different differential problems sharing the same computational

188 8 Elements of finite element programming

grid and the same type of finite elements leads to matrices with the same graph. Hence
in an object-oriented programming logic it can be useful to separate the storage of
the graph (which can become a “data type” defined by the user, i.e. a class) from
the storage of the values of each matrix. In this way, a matrix can be seen as a data
structure for the storage of its values, together with a pointer to the graph associated to
it. The pointer only stores the position in the memory where the pattern is stored, hence
occupying a minimal amount of memory. Different matrices may therefore share the
same graph, without useless storage duplications of the pattern.

In practice, there are several techniques to store sparse matrices efficiently, i.e. the
position and value of non-null elements. At this juncture we should observe that, in
this context, the adjective “efficient” does not only refer to the lower memory occupa-
tion that can be achieved, but also to the speed in accessing memory for each element.
A storage format requiring the least possible memory waste is likely to be slower in
accessing a desired value. Indeed, a higher storage compactness is typically obtained
after finding the position in the memory by accessing the data structures that store the
graph. The more intermediate passages are necessary, the longer the access time to
the desired element will be. Precisely for the need of finding the right compromise,
different storage techniques have been proposed in the literature, with different pre-
rogatives. A review of these, with many comments and remarks, can be found e.g. in
[FSV12], Appendix A. Here we just recall a widely used format for the storage of
sparse square matrices, i.e. the CSR (Compact Sparse Row) format.

We denote by n the size of the matrix to be stored and by nz the number of its
non-null elements. In the CSR format, a matrix is identified by three vectors. Two —
denoted hereafter R and C — have integer values and form the so-called pattern, i.e. the
graph of the sparsity of the matrix, which depends on the mesh and the finite element
space; the third vector A contains the non-zero entries of the matrix. More precisely,
A has size nz and it stores the entries in a row-wise order. The vector C has size nz,
as well. The entry C(k) contains the column of the entry A (k). Finally, the vector R
has size n and contains pointers to the vector C, indicating the beginning of each row.
In other terms, R(k) contains the position of the vector J (and A) where row k of the
matrix begins. To be more concrete, we illustrate this on an example (see Fig. 8.4)
where n =5 and nz = 17.

0 1 2 3 4
a 0 f 0 g 0
0 b k m O 1
A= h Il ¢ 0 r 2
0 n 0 d p 3
i 0 s q e 4

We point out that the numbering of rows and columns in matrices and vectors starts
from 0, following the C++ syntax.

The vectors representing this matrix in CSR format are reported in Fig. 8.4. Here,
the different background colors in the vectors refer to the different rows of the matrix,
and the lines connect the pointers of the vector R to the corresponding entries in the
other vectors. In this way, if we want to retrieve a nonzero entry — for instance, in the

8.4 Assembly 189

a] 0 [0 |=

f 1 2
g 2 4
b 3 1
k 4 2
m 5 3

5] o

7 1 3 1

A= g C= =@ 2

n 10 e ig i
d 11 3
p 12 4
i 0
K 14 2
q 15 3
e 16 4

Fig. 8.4. Vectors representing the CSR format of Matrix A

second row — we start from position R (1) (because of the C++ numbering) through
the entry R(2) — 1, since R(2) points to the beginning of the third row. The entries
A(R(1),...,R(2)—1) are the values of the second row, whose corresponding columns
are in C(R(1),...,R(2) — 1). In this way it is relatively easy to access a matrix row-
wise, whereas the column-wise access is more involved. The column-wise format CSC
(Compressed Sparse Colum) is similarly formulated. In some libraries, an even more
compact format called Modified Sparse Row (MSR) is used for square matrices. In
[FSV12] the latter format is extended to accommodate both row-wise and column-
wise matrix access with the same computational cost.

8.4 Assembly

The assembly is the sequence of different operations leading to the construction of
the matrix associated to the discretized problem. For doing this, we need two types of
information:

1. geometric, typically contained in the mesh file;
2. functional, relative to the representation of the solution via finite elements.

In Fig. 8.5 we report possible reference geometries with their local vertex num-
bering. Tetrahedra represent the 3D extension of the triangular elements considered in
Chapter 4. Prismatic elements extend in 3D the quadrilateral geometric elements in
2D which will be introduced in Chapter 10, see e.g. [Hug00, Chap. 3], for a complete
description.

190 8 Elements of finite element programming

1D

2
X /
1
3
1 2
8 7
\ ; 2D .
6 5 X
~ /}
C 4 3
N
1 2 1

Fig. 8.5. Illustration of some reference elements available in LifeV with (conventional) local
numbering of nodes

Geometric and functional information, suitably coded, is then used to construct the
matrix of the discretized problem. As opposed to what would seem natural in the defi-
nition of Lagrangian finite elements, the matrix is constructed over cyclic permutations
of the elements instead of nodes. The reason for this element-oriented approach, as op-
posed to the node-oriented one, is essentially linked to computational efficiency mat-
ters. The analytical expression of a base function associated to a node varies on each
element sharing that node. Prior to the computation of the integrals, it would be neces-
sary to cycle over the nodes and detect the analytical expression of the appropriate ba-
sis functions to each element. Hence, we would have to cycle on the nodes and locate
the analytic expression of the appropriate basis function for each different element,
before carrying out the computation of the integrals. In terms of code, this means that
the body of the cycle must be filled with conditional branches, that is instructions of
the type if...then...elseif...then...else... within the assembly cycle. These are “costly”
operations in computational terms, especially if they lie within a cycle (and thus are
carried out several times), as is clear from the large number of micro-assembler in-
structions required in the compilation phase to expand a conditional branch, with re-
spect to any other instruction, see e.g. [HVZ97]. As we will see, by exploiting the
additivity of integration, the element-oriented approach allows to bypass this obstacle
in a smart way.

8.4 Assembly 191

In particular (see Chap. 4) the construction of the problem matrix can take place
in two conceptual steps, within a cycle on the grid elements:

1. construction of the matrix and of the right-hand side that discretize the differential
operator on the element at hand (local matrix and vector);

2. update of the global matrix and the right-hand side, by exploiting the additivity of
the integration operation.

There also exist different approaches to the problem: in some cases, the matrix is
not constructed, but its effects are directly computed when it multiplies a vector, as
happens when the linear system is solved by iterative methods; for reasons of space,
here we deal with the more standard approach.

As previously noted, the construction of the local matrix is carried out by integrat-
ing on the reference element K, using suitable quadrature formulae. Once the matrix
and known terms have been constructed, the boundary conditions are imposed; in par-
ticular, imposing Dirichlet conditions does not necessarily require the technique seen
in Sects. 3.2.2 and 4.5, which consisted in removing the degrees of freedom associated
to such conditions after the lift is constructed.

This should explain why assembly is a complicated phase. In the following sec-
tions we will discuss the above aspects, though in little detail for reasons of space.
First, we will treat the data structures for the coding of geometric (Sect. 8.4.1) and
functional (Sect. 8.4.2) information. The computation of the geometric mapping be-
tween reference element and current element provides the opportunity of introducing
isoparametric elements (Sect. 8.4.3). The effective computation of the local matrix
and known term and their use in the construction of the global system are treated in
Sect. 8.4.4. Finally, in Sect. 8.4.5 we will mention implementation techniques for the
lifting of the boundary datum.

8.4.1 Coding geometrical information

In terms of data structures, the mesh can be seen as a collection of geometric elements
and topological information. The former can be constructed by aggregating classes
for the definition of points (i.e. zero-dimensional geometric elements), edges (one-
dimensional geometric elements), faces (2D) and finally volumes (3D).

Starting from base classes coding these geometrical entities, a mesh will be a class
collecting the elements. In fact the geometric structure should be supplemented by the
following elements:

1. topological information allowing to characterize the elements in the grid, i.e. the
connectivity among nodes, with respect to a conventional numbering of the lat-
ter. The convention for the possible elements in LifeV is illustrated in Fig. 8.5; to
“visit” the elements of a grid efficiently, we can also add to each given element
information on the adjacent elements;

2. specific information allowing to locate the degrees of freedom on the boundarys;
this simplifies handling the boundary condition prescription; note that we typically
associate to each boundary geometric element an indicator that will subsequently
be associated to a specific boundary condition.

192 8 Elements of finite element programming

Starting from the reference geometric class, we then retrieve the current geometric
elements, according to the possible mappings treated in Sect. 8.4.3. For instance Pro-
gram 2 gives a portion of a class for a linear (affine) tetrahedron built upon a tetrahedric
basic reference shape with some functional information on the associated degrees of
freedom.

Program 2 — LinearTetra: Class for the coding of tetrahedra obtained via affine
geometric transformation of the reference element

class LinearTetra:
public Tetra

public:
typedef Tetra BasRefSha;
typedef LinearTriangle GeoBShape;
static const UInt numPoints = 4;
static const Ulnt nbPtsPerVertex = 1;
static const UInt nbPtsPerEdge = 0;
static const UInt nbPtsPerFace = 0;
static const UInt nbPtsPerVolume = 0;

Currently, no standards are available for the mesh file format. Each mesh genera-
tor has its own format. Typically, we expect such a file to contain the vertex coordi-
nates, the connectivity associating the vertices to the geometric elements and the list
of boundary elements, with corresponding indicator to be used for defining boundary
conditions. The functions with the data serving as boundary conditions, instead, are
generally assigned separately.

Remark 8.2. Multi-physics or multi-model problems are becoming a relevant com-
ponent of scientific computation: think for instance of fluid-structure interaction prob-
lems, or the coupling of problems where the full (and computationally costlier) differ-
ential model is used only in a specific region of interest, and coupled it with simpler
models in the remaining regions. These applications and, more generally, the need
to develop parallel computation algorithms, have motivated the development of tech-
niques for the solution of differential problems through domain decomposition (see
Chap. 19 and the more comprehensive presentations [QV99, TWO0S5]). In this case,
the resulting mesh is the collection of subdomain meshes, together with topological
information about subdomain interfaces. In this chapter, however, we will refer to
single-domain problems only. °

8.4 Assembly 193

8.4.2 Coding of functional information

As seen in Chapter 4, basis functions are defined on a reference element. For instance,
for tetrahedra, this element coincides with the unit simplex (see Fig. 8.5). The coding
of a reference element will basically include pointers to functions for determining
basis functions and their derivatives.

In Program 3 we report the functions for the definition of linear finite elements on
tetrahedra. For the sake of space, we provide the code for the first derivatives of the
first basis functions only.

Program 3 — fctP13D: Basis functions for a linear tetrahedric element

Real fct1_P1_3D(cRRef x, cRRef y, cRRef z){return 1 -x - y - z;}
Real fct2_P1_3D(cRRef x, cRRef, cRRef){return x;}
Real fct3_P1_3D(cRRef, cRRef y, cRRef){return y;}
Real fct4_P1_3D(cRRef, cRRef, cRRef z){return z;}

Real derfct1_1_P1_3D(cRRef, cRRef, cRRef){return -1;}
Real derfct1_2_P1_3D(cRRef, cRRef, cRRef){return -1;}
Real derfct1_3_P1_3D(cRRef, cRRef, cRRef){return -1;}

Once the reference element is instantiated, functional information will be avail-
able both for the representation of the solution and for the definition of the geometric
mapping between reference element and current element, as we explain in the follow-
ing section.

Having defined the geometric element and the type of finite elements we want
to use, we are now able to construct the problem’s degrees of freedom. This means
assigning to each mesh element the numbering of the degrees of freedom lying on the
element and the pattern of the local matrix; the latter is generally full, although it can
always contain null elements.

8.4.3 Mapping between reference and physical element

In Chapter 4 we saw how convenient it is to write basis functions, quadrature formu-
lae and, therefore, compute integrals with respect to a reference element. It can thus
be interesting to examine some practical methods to construct and code such coordi-
nate change. For further details, we refer to [Hug00]. Let us now limit ourselves to
considering the case of triangular and tetrahedric elements.

A first type of coordinate transformation is the affine one. Basically, the mapping
between % and x can be expressed via a matrix B and a vector ¢ (see Sect. 4.5.3 and
Fig. 8.6)

X =B%+ec. (8.4)

In this way, we trivially have that J = B (constant on each element). If the node dis-
tribution generated by the grid generator is correct, the determinant of J is always

194 8 Elements of finite element programming

Ps / ‘
0 ‘P\ \

Fig. 8.6. Mapping between the reference tetrahedron and the current one. The top map is affine,
the bottom one quadratic

positive, which guarantees there are no degenerate cases (for instance, four vertices
on the same plane in a tetrahedron) and that there are no incorrect permutations in the
nodes corresponding to the mapping. The expressions of B and ¢ can be obtained from
those of the node coordinates. Indeed, let us suppose that the nodes, numbered locally
1,2,3,4, of the reference tetrahedron correspond to the nodes of the mesh numbered as
i,k,l,m, respectively.
We then have:
Xi =C] Yi=c2 Yi=0¢3
Xe=bii+xi Yye=buntyi z=biz+ty 8.5)
Xp=by+xi yi=bn+yi z=byx+yi '
Xm=b31+xi ym=0bxn+yi zn=03+yi

from which we obtain the expressions for B and c.

However, there exists a more efficient way to represent the transformation: being
element-wise linear, it can be represented via the basis functions of linear Lagrangian
finite elements. Indeed, we can write:

3 3 3
j=0 j=0 Jj=0

The elements of the Jacobian matrix of the transformation are immediately computed:

L 09 & 09 L 0J9;
X X X
Lo X XX
499, 499, 4 9
J = Y J y. " y. "/ . 8.7)
jgl ! ox j; 79y jgl ! oz
dg; & 09; 4 _ 099,
Z; V4 Z;
I jgl T ox El 79y ,Z‘l 1oz |

8.4 Assembly 195

Py P

L
[

Fig. 8.7. Mapping between the reference quadrilateral and the current element: affine (top),
isoparametric (middle), hybrid (bottom). The latter is constructed with 5 nodes, in order to have
a biquadratic transformation for the nodes of a single side

When in a Lagrangian finite element the same basis functions are used for the def-
inition of the geometric mapping, we say that we are dealing with iso-parametric
elements (see Figs. 8.6 and 8.7). In the case at hand, this is a consequence of hav-
ing chosen linear finite elements and affine geometric transformations. When we take
finite elements of degree higher than 1, we can consider two kinds of mapping:

e affine finite elements: in this case, the geometric transformation is still described
by the affine transformations (8.6), although the functional information relative to
the solution is described by quadratic functions of higher degree; the boundary of
the discretized domain €2y, in this case, is still polygonal (polyhedral);

e isoparametric finite elements: the geometric transformation is described by the
same basis functions used to represent the solution; hence the elements in the
physical space Oxyz will generally have curved sides;

The definition of a quadratic mapping starting from the tetrahedric reference ele-
ment allows for instance to create tetrahedric quadratic geometric elements, coded in
the class QuadraticTetra reported in Program 4.

Program 4 — QuadraticTetra: Class for the definition of quadratic tetrahedric
elements

class QuadraticTetra: public Tetra
{
public:
typedef Tetra BasRefSha;
typedef QuadraticTriangle GeoBShape;
static const UInt numPoints = 10;

196 8 Elements of finite element programming

static const UInt nbPtsPerVertex = 1;
static const Ulnt nbPtsPerEdge = 1;
static const UInt nbPtsPerFace = 0;
static const Ulnt nbPtsPerVolume = 0;

Having established the type of reference element and the geometrical mappings, it
is possible to construct the collection of “current” elements. The current element can
be coded as in Program 5.

Program 5 — CurrentFE: Class for the definition of the current element

class CurrentFE

{

private:
void _comp_jacobian();
void _comp_jacobian_and_det();
void _comp_inv_jacobian_and_det();
void _comp_quad_point_coor();

template <class GEOELE>
void _update_point(const GEOELE& geoele);

//! compute phiDer

void _comp_phiDer();

//! compute the second derivative phiDer2
void _comp_phiDer2();

/I compute phiDer and phiDer2

void _comp_phiDerDer2();

Ulnt _currentld;

public:
CurrentFE(const RefFE& _refFE, const GeoMap& _geoMap, const QuadRule& _qr);
const int nbGeoNode;
const int nbNode;
const int nbCoor;
const int nbQuadPt;
const int nbDiag;
const int nbUpper;
const int nbPattern;
const RefFE& refFE;
const GeoMap& geoMap;
const QuadRule& qr;

8.4 Assembly 197

As it can be seen, the class contains information relating to the reference element,
to the geometric mapping that generates it and to the quadrature formula that will be
used for the computation of the integrals.

In particular, (8.7) proves to be very efficient in the coding phase, which we report
in Program 6. The computation of the Jacobian is carried out at the quadrature nodes
required for the integral computation (Sec. 8.2).

Program 6 — comp-jacobian: Section of the class storing the current elements
which computes the Jacobian of the transformation between current element and
reference element

void CurrentFE::_comp_jacobian()
{
Real fctDer;
// GeoMap derivatives:
for (intig = 0;ig < nbQuadPt;ig++)
{
for (\int icoor = 0;icoor < nbCoor;icoor++)
{
for (\int jcoor = 0;jcoor < nbCoor;jcoor++)
{
fctDer = 0.;
for (intj = 0;j < nbGeoNode;j++)

fctDer += point(j, icoor) * dPhiGeo(j, jcoor, ig);
}

jacobian(icoor, jcoor, ig) = fctDer;}}}

}

In the case of quadrilateral and prismatic elements, several of the previous con-
cepts can be extended, by referring e.g. to bilinear or biquadratic mappings. How-
ever, guaranteeing that the map is invertible is more difficult: for more details, see
[FSV12].

There are cases where it can be convenient to use finite elements of different degree
with respect to different coordinates. This is possible using quadrilateral structured
grids, where we can construct an element having a biquadratic polynomial on one
side, and bilinear polynomials on the remaining sides. In the case of an isoparametric
coding of the geometrical mapping, this leads to having, say, quadrilateral elements
with three straight sides and one curved side. To this end, we point out that [Hug00,
Chap. 4], reports the “incremental” implementation of a quadrilateral element that,
starting from a four-node bilinear setting, is enriched by other degrees of freedom up
to the biquadratic 9-node element.

198 8 Elements of finite element programming

8.4.4 Construction of local and global systems

This phase is the core of the construction of the discretization of differential operators.
As an example, let us take the code in Program 7, which constructs the discretization
of the elliptic differential equation —uAu+ cu = f.

The overall operation is articulated in a cycle over all the elements of the mesh
aMesh. After setting to zero the elementary matrix and vector, these structures are
filled incrementally, first with the discretization of the stiffness (diffusion) operator
and then with the mass operator (reaction). The source subroutine handles the local
right-hand side vector. The assemb subroutines handle the update of the computation
in the global matrix, as previously indicated in Fig. 8.2.

In this phase, to avoid checking whether a degree of freedom is on the boundary
using conditional branches within the loop, we ignore boundary conditions.

Program 7 — assemble: Code for assembling the discretization of a diffusion-
reaction problem —uAu+ ou = f, where f is denoted by sourceFct

Real mu=1., sigma=0.5;
ElemMat elmat(fe.nbNode,1,1);
ElemVec elvec(fe.nbNode,1);
for(UInti = 1; i<=aMesh.numVolumes(); i++){
fe.updateFirstDerivQuadPt(aMesh.volumelList(i));
/I<- computes the necessary information for numerical integration

elmat.zero();

elvec.zero();

stiff(mu,elmat,fe);
mass(sigma,elmat,fe);
source(sourceFct,elvec,fe,0);
assemb_mat(A,elmat,fe,dof,0,0);
assemb_vec(F,elvec,fe,dof,0);

Let us see in detail a possible implementation of the local computation and of the
global update separately.

Computation of the local matrices
Program 8 reports the implementation of the computation of the local matrix of the
diffusion operator and of the right-hand side of the linear system.

In particular, we first assemble the diagonal contributions and then the extra-dia-
gonal ones of the local matrix, thus looping over the quadrature nodes. The “core”
loop operation is:

s += fe.phiDer(iloc, icoor, ig) * fe.phiDer(jloc, icoor, ig)
* fe.weightDet(ig)*coef;

8.4 Assembly 199

The instruction
mat(iloc, jloc) +=s;

updates the term i, j of the local matrix incrementally: upon call of the ensuing sub-
routine mass(), the contribution of the reaction operator will be added to the one
previously computed.

We proceed in a similar way in source for the computation of the local vector of
known terms.

Program 8 — stiff-source: Subroutines for the computation of the second deriva-
tive and local-level computation of the right-hand side

void stiff(Real coef,
ElemMat& elmat, const CurrentFE& fe,
const Dof& dof,
const ScalUnknown<Vector>& U,Real t)

{

int iblock=0,jblock=0;

ElemMat::matrix_view mat = elmat.block(0,0); //initialize local matrix
intiloc, jloc, i, icoor, ig, iu;

double s, coef_s, x, y, z;

ID eleld=fe.currentld();

/I Diagonal elements
for (i = 0;i < fe.nbDiag;i++)
{
iloc = fe.patternFirst(i);s = 0;
for (ig = 0;ig < fe.nbQuadPt;ig++) // numerical integration
{
fe.coorQuadPt(x,y,z,ig);// definition of the quadrature formula
for (icoor = 0;icoor < fe.nbCoor;icoor++) // core of the assembly
s += fe.phiDer(iloc, icoor, ig) * fe.phiDer(iloc, icoor, ig)
* fe.weightDet(ig)*coef(t,x,y,z,uPt);
1
mat(iloc, iloc) +=s;
1
//Extra-diagonal elements
for (i = fe.nbDiag;i < fe.nbDiag + fe.nbUpper;i++)
{
iloc = fe.patternFirst(i);
jloc = fe.patternSecond(i);s = 0;
for (ig = 0;ig < fe.nbQuadPt;ig++)
{
fe.coorQuadPt(x,y,z,ig);
for ((icoor = O;icoor < fe.nbCoor;icoor++)
s += fe.phiDer(iloc, icoor, ig) * fe.phiDer(jloc, icoor, ig) *
fe.weightDet(ig)*coef;

200 8 Elements of finite element programming

coef s=s;

mat(iloc, jloc) += coef_s; //incremental

mat(jloc, iloc) += coef_s; //local matrix update
/I recall that the operator is SYMMETRIC!

1

void source(Real (*fct)(Real,Real,Real,Real,Real),
ElemVec& elvec, const CurrentFE& fe,
const Dof& dof,
const ScalUnknown<Vector>& U,Real 1)

{

int iblock=0;

inti, ig;

ElemVec::vector_view vec = elvec.block(iblock);

Real s;

ID eleld=fe.currentld();

intiu;

for (i = 0;i < fe.nbNode;i++)

{

s =0.0;

for (ig = 0;ig < fe.nbQuadPt;ig++)

s += fe.phi(i,ig) *
fet(t, fe.quadP1(ig, 0),fe.quadPt(ig, 1),fe.quadPt(ig, 2)) *
fe.weightDet(ig);
1

vec(i) += s; //right hand side computation }}

Update of the global matrix

Program 9 contains the update of the global matrix starting from the local ones. The
crucial point is the identification of the position of the nodes that compose the current
element, on which we have just computed the local matrix within the global one. This
operation is performed by looking up the dof.localToGlobal Tables, which contain
this type of operation.

For the update of the right-hand side, we perform a similar operation. Obviously,
the additivity of the integral requires the operation to be performed by adding the
different contributions: this explains the += in the update of the vector (corresponding
to V[ig]=V[ig]+ vec(i) and to the analogous term in M.setmatinc, which stands for
set matrix incrementally.

Program 9 — assemb: Assembly of the global matrix and of the right-hand side

template <typename Matrix, typename DOF>
void
assemb_mat(Matrix& M, ElemMat& elmat, const CurrentFE& fe, const DOF& dof)

8.4 Assembly 201

ElemMat::matrix_view mat = elmat.block(0,0);
Ulnt totdof = dof.numTotalDof();

inti, j, k;

Ulintig, jg;

Ulnt eleld = fe.currentld();

for (k =0 ; k < fe.nbPattern ; k++)

i = fe.patternFirst(k);

j = fe.patternSecond(k);

ig = dof.localToGlobal(eleld, i+ 1) - 1;
jg = dof.localToGlobal(eleld, j+ 1) - 1;
M.set_mat_inc(ig, jg, mat(i,j));

template <typename DOF, typename Vector, typename ElemVec>
void
assemb_vec(Vector& V, ElemVec& elvec, const CurrentFE& fe, const DOF& dof)

Ulnt totdof = dof.numTotalDof();

typename ElemVec::vector_view vec = elvec.block(iblock);
inti;

Ulnt ig;

Ulnt eleld = fe.currentld();

for (i=0;i<fe.nbNode ;i++)

ig = dof.localToGlobal(eleld, i+ 1) - 1;
V[ig]+=vec(i);

8.4.5 Boundary conditions prescription

The need to store sparse matrices efficiently must be compensated by the need to
access and manipulate the matrix itself, as we have previously noticed for the CSR
format, for instance in the phase of setting the boundary conditions. In a finite element
code, the matrix is typically assembled regardless of boundary conditions, so as not
to introduce conditional branches within the assembly. Boundary conditions are then
introduced by modifying the algebraic system. Imposing Neumann and Robin-type
conditions basically translates into the computation of suitable boundary integrals (or,
in one-dimensional cases, of values evaluated at the boundary). For instance, Pro-
gram 10 implements the computation of integrals on the surface for Neumann-type
conditions specified in function Bcb. The integral requires a suitable quadrature for-
mula that allows to update the known term b. The structure bdLocalToGlobal allows
to transfer the information for each boundary element having Neumann degrees of
freedom at the global right-hand side.

202 8 Elements of finite element programming

Program 10 — BcNaturalManage: Subroutine for handling Neumann-type bound-
ary conditions

template <typename VectorType, typename MeshType, typename DataType>

void bcNaturalManage(Vector Type& b, const MeshType& mesh, const Dof& dof, \\
const BCBase& BCb, CurrentBdFE& bdfem, const DataType&t)

{

Ulnt nDofF = bdfem.nbNode;

Ulint totalDof = dof.numTotalDof();

Ulnt nComp = BCb.numberOfComponents();

const IdentifierNatural* pld;
ID ibF, idDof, icDof, gDof;
Real sum;

DataType X, vy, z;
// Loop on the type of boundary conditions
for (IDi=1;i<= BCb.list_size(); ++i)
{
pld = static_cast< const IdentifierNatural* >(BCb(i));
/I Number of current boundary face
ibF = pld->id();
/I definition of information on the face
bdfem.updateMeas(mesh.boundaryFace(ibF));
// Loop on degrees of freedom per face
for (1D idofF = 1; idofF <= nDofF; ++idofF)
{
// Loop on the involved unknown components
for (IDj=1;j<=nComp; ++j)
{
//global Dof
idDof = pld->bdLocalToGlobal(idofF) + (BCb.component(j) - 1) * totalDof;
/I Loop on quadrature nodes
for (intl = 0; | < bdfem.nbQuadPt; ++I)
{
bdfem.coorQuadPt(x, y, z, |); // quadrature point coordinates
/I Contribution in the known term
b[idDof - 1] += bdfem.phi(int(idofF - 1), 1) * BCb(t, x, y, z, BCb.component(j)) *
bdfem.weightMeas(1);
I

Handling Dirichlet (essential) boundary conditions is more complex (see Fig. 8.2).
There are various strategies for this operation, some of which are treated in [FSV12].

8.5 Integration in time 203

The most coherent approach to what is prescribed by the theory consists in removing
the rows and columns referring to the nodes associated to the Dirichlet boundary con-
ditions from the system obtained during assembly, thus correcting the known term by
using the values of the Dirichlet datum we want to impose.

In fact, this coincides with the operation of lifting the boundary datum through
a piecewise polynomial function of the chosen degree for the finite elements, and
whose support is limited to the only layer of elements of the triangulation that face the
boundary (see Fig. 4.13 in Sect. 4.5.1)

This way of proceeding has the advantage of reducing the dimension of the prob-
lem to the effective number of degrees of freedom, however its practical implemen-
tation is problematic. Indeed, while for 1D problems, due to the natural ordering of
degrees of freedom, the optional rows and columns to be removed are always the first
and last one, for multi-dimensional problems the implementation involves eliminating
rows and columns whose numbering can be arbitrary, a difficult operation to handle
efficiently. It must also be noted that this operation substantially modifies the pat-
tern of the matrix, and this can be inconvenient in case we want to share the latter
among several matrices in order to save memory. For this reason, we prefer to con-
sider the Dirichlet condition to be imposed at a given node kp as an equation of the
form uy,, = gi, replacing the kp-th row of the original system. To avoid modifying the
matrix pattern, this substitution must be inserted by annihilating the extra-diagonal
row elements, except for the diagonal one, which is set to 1, while the corresponding
entry in the right-hand side is set to g,,.

This operation only requires row-wise access to the matrix, for which the CSR
format is particularly efficient.

8.5 Integration in time

Among the different methods to integrate in time, we analyzed the 6 method in the pre-
vious chapters, and pointed out a number of other methods, in particular BDF (Back-
ward Difference Formulas) methods implemented in LifeV. An introduction of these
methods can be found in [QSS07]. We here recall some of their basic aspects.
Given the system of ordinary differential equations:
M™ —pa
=f—Au
dt

and the associated initial datum u(z = 0) = ug, a BDF method is an implicit multi-step
method of the form

00, o+ nil el _ prtl 7 J
MU AU = E U, 8.8
At N +j:1At 8:8)

for suitable p > 1, where the coefficients are determined so that:

U

— aOUVH—l - ajUn+1—j O(AFP
or = = A - At +O(Ar").

Jj=1

204 8 Elements of finite element programming

Table 8.3. Coefficients ¢ for the BDF methods (p = 1,2,3) and coefficients f; for time-
extrapolation

J o) o3 Bo Bi B2
1 1 1 - - 1 - -
2 312 2 71/2 - 2 —1 -
3 11/6 3 —3/2 1/3 3 -3 1

Here, Ar > 0 is the time-step, " = nAt, and U” stands for U at time ¢". In Table 8.3
(left) we report the coefficients for p = 1 (implicit Euler method), 2, 3.

If the matrix A is a function of u, that is when problem (8.8) is nonlinear, BDF
methods, being implicit, can be very costly, for they require at each time step the
solution of the nonlinear algebraic system in U"*!

()

P o i
MU}’I+1 A Ul’l+1 Ul’l+1 — fn+1] Ul’l+1—j.
At Al) +J; At

A possible trade-off that significantly reduces computational costs, without switching
to a completely explicit method (whose stability properties can in general be unsatis-
factory), is to solve the linear system

(L Q| ntl _ prtl S TR j
MU A(UHUT = U
At +AUY) *]; At
where U* approximates U"*! using the solutions known from the previous steps. We
basically set

P .
U=) pU =U" L o(ar),
j=0

for suitable “extrapolation” coefficients ;. The objective is to reduce the computa-
tional costs without dramatically reducing neither the region of absolute stability of
the implicit scheme nor the overall accuracy of the time-advancing scheme. Table 8.3
reports the coefficients f3;.

The coding of a BDF time integrator can at this point be performed using a dedi-
cated class, reported in Program 11, whose members are:

1. the indicator of the order p which also states the dimension of the vectors o and 3;

2. the vectors a and 3;

3. the unknowns matrix given by aligning the vectors U",U"~! .. U™ =P The size
of each vector, i.e. the number of rows of such matrix (which has p columns) is
stored in the size index.

Having assembled the matrices A and M, the time-advancing scheme will be per-
formed by computing the matrix)M + A, the right-hand side f"*! + i Z’l | §
and solving system (8.8). In particular, in the implementation presented in Program 11,

the function time der computes the term):?:1 Zﬁ U=/ by accessing the vector o

8.5 Integration in time 205

and the unknowns matrix. In case the problem is nonlinear, we can access to the
vector (3 via the function extrap().

Having computed the solution at the new time step, the unknowns matrix has to
“make room for it”, by shifting all of its columns to the right, so that the first column
is the solution just computed. This operation is performed by the function shift right,
which basically copies the next-to-last column of unknowns into the last one, the
third from the bottom into the second-last one and so on until the solution computed
is fully stored.

Program 11 — Bdf: Base class for costructing Bdf time integration methods

class Bdf
{
public:
Bdf(const Ulnt p);
~Bdf();
void initialize_unk(Vector u0);
void shift_right(Vector const& u_curr);

Vector time_der(Real dt) const;
Vector extrap() const;

double coeff_der(UInt i) const;

double coeff_ext(Ulnt i) const;

const std::vector<Vector>& unk() const;
void showMe() const;

private:
Ulnt _M_order;
Ulnt _M_size;
Vector _M_alpha;
Vector M beta;
std::vector<Vector> M _unknowns;

Bdf::Bdf(const Ulntp)

_M_order(p),
_M_size(0),
_M_alpha(p + 1),
_M_beta(p)

{

if (n<=0| n>BDF_MAX_ORDER)
/I Error handling for requesting a wrong or non-implemented order

...}

206 8 Elements of finite element programming

switch (p)

{

case 1:
_M_alpha[0] =1.;// implicit Euler
_M_alpha[1]=1;
_M_beta[0]=1.;//u attime n+1 approximated by u at time n
break;

case 2:
_M_alpha[0]1=3./2;
_M_alpha[1]=2
_M_alpha[2]=-1./2;
_M_beta[0]=2;
_M_beta[1]=-1.;
break;

case 3:
_M_alpha[0]=11./6.;
_M_alpha[1]1=3,;
_M_alpha[2]=-3./2,;
_M_alpha[3]1=1./3;

_M_beta[0]=3,;
_M_beta[1]=-3.;
_M_beta[2]=1;
break;

}

_M_unknowns.resize(p); /number of columns of matrix _M_unknowns}

8.6 A complete example

We conclude this chapter with the listing of a program written for the solution of the
parabolic diffusion-reaction problem:

0

a?f[.t(t)Au+G(t)u:f, xeQ, 0<1<10,
u=gi, XEDOUHI; 0<t§107
u=g2, XEBOUBI; 0<t§107
Vu-n=0, xels, 0<t<10,

u = uy, xe, =0,

where Q is a cubic domain and dQ = IjoUI | UI}gUI3; UI3g. Precisely, the numer-
ical codes on the various boundary portions are:

Lp:x=0,0<y<1,0<z<1;
Li:x=0,(y=0,0<z<)U(y=1,0<z<1)
Uz=0,0<y<1)U(z=0,0<y<1);

8.6 A complete example 207

Iop:x=1,0<y<1,0<z<1;
Hi:x=1,(y=0,0<z<1)Uy=1,0<z<1)

Uz=0,0<y<1)U(z=0,0<y<1);
I50: 0Q\{I30UI3 ULjoUIq}.

In particular, (1) = 12, 6(t) = 2, g1(x,y,2,t) = g2(x,%,2,t) = t> +x*, up(x,y,z) =0,
f = 2t + 2x%. The exact solution is precisely 7> + x> and the test is made on a cubic
grid of 6007 elements with quadratic affine tetrahedra, for a total of 9247 degrees of
freedom. The time step is At = 0.5, the order of the BDF scheme is 3.

Program 12 contains the main program for this example (originally based on the
library LifeV) and has been enriched by comments to help the reading, although obvi-
ously not everything will be immediately clear just by reading the preceding sections.
Coherently with the spirit with which this chapter has been designed, we invite the
reader to try to write her/his own code or run the tutorials of libraries such as LifeV,
FEniCS or OpenFOAM.

Program 12 — main.cpp: Solution of a parabolic problem on a cubic domain

int main() {
using namespace std;

{

/I Definition of the boundary conditions (associated with a file main.hpp)
/| ============

BCFunctionBase gv1(g1); // Function g1

BCFunctionBase gv2(g2); // Function g2

BCHandler BCh(2); / Two boundary conditions are imposed

// To the two conditions, we associate the numerical codes 10 and 20
/I contained in the computational grid

BCh.addBC("Dirichlet1", 10, Essential, Scalar, gv1);
BCh.addBC("Dirichlet2", 20, Essential, Scalar, gv2);

1
/I Information on the geometric mapping and on the numerical integration

const GeoMap& geoMap = geolLinearTetra;
const QuadRule& gr = quadRuleTetra64pt;

const GeoMap& geoMapBd = geoLinearTria;
const QuadRule& qrBd = quadRuleTria3pt;

/P2 elements
const RefFE& refFE = feTetraP2;
const RefFE& refBdFE = feTriaP2;

208

8 Elements of finite element programming

/
/I Structure of the mesh

RegionMesh3D<LinearTetra> aMesh;

GetPot datafile("data"); //information on the mesh file

/I and other information is contained in a file named “data”

long int m=1;

std::string mesh_type = datafile("mesh_type", "INRIA");

string mesh_dir = datafile("mesh_dir", ".");

string fname=mesh_dir+datafile("mesh_file", "cube_6007.mesh");

readMppFile(aMesh,fname,m); // grid reading
aMesh.updateElementEdges();

aMesh.updateElementFaces();
aMesh.showMe();

/I Definition of the current finite element, equipped with
/I geometric mapping and quadrature rule
/| ============

CurrentFE fe(refFE,geoMap,qr);
CurrentBdFE feBd(refBdFE,geoMapBd,qrBd);

/
/I Definition of the degrees of freedom (DOF) of the problem
/I and of the specific boundary conditions

/

Dof dof(refFE);

dof.update(aMesh);
BCh.bdUpdate(aMesh, feBd, dof);
Ulnt dim = dof.numTotalDof();
dof.showMe();

// Initialization of the unknown vectors
//' U and of known term F

ScalUnknown<Vector> U(dim), F(dim);
U=ZeroVector(dim);
F=ZeroVector(dim);

I
/I Definition of the parameters for the integration in time

8.6 A complete example

/I always specified in “data” and read from there
1

Real Tfin = datafile("bdf/endtime", 10.0);
Real delta_t = datafile("bdf/timestep”, 0.5);
Realt0 = 0.;

Ulnt ord_bdf = datafile("bdf/order", 3);;

Bdf bdf(ord_bdf);

Real coeff=bdf.coeff_der(0)/delta_t;

bdf.showMe();

I

/I Construction of the pattern and of the time-independent matrices
/| ============

/I pattern for stiff operator
CSRPatt pattA(dof);

CSRMatr<double> A(pattA);
CSRMatr<double> M(pattA);
M.zeros();

cout << "** Matrix computation 1 "<<endl;

chrono.start();

1

SourceFct sourceFct;

ElemMat elmat(fe.nbNode,1,1);

ElemVec elvec(fe.nbNode, 1);

for(UInti = 1; ix=aMesh.numVolumes(); i++){
fe.updateJacQuadPt(aMesh.volumeList(i))
elmat.zero();
mass(1.,elmat,fe);
assemb_mat(M,elmat,fe,dof,0,0); // Mass matrix M

H

// TIME LOOP
I

int count=0;
bdf.initialize_unk(u0,aMesh,refFE,fe,dof,t0,delta_t,1);

for (Real t=t0+delta_t;t<=Tfin;t+=delta_t)
{

A.zeros();

F=ZeroVector(F.size());

/l

209

210 8 Elements of finite element programming

// Assembly and

/I Update of the known term with the solution of
// the preceding steps

/l

Real visc=nu(t);// mu and sigma depend on time
Real s=sigma(t);
for(UInti = 1; i<=aMesh.numVolumes(); i++){
fe.updateFirstDerivQuadPt(aMesh.volumelList(i));
elmat.zero();
elvec.zero();
mass(coeff+s,elmat,fe);
stiff(visc,elmat,fe);
source(sourceFct,elvec,fe,t,0);
assemb_mat(A,elmat,fe,dof,0,0);
assemb_vec(F,elvec,fe,dof,0);

}

/I Handling of the right hand side
F += M*bdf.time_der(delta_t);

/
/I Prescription of the boundary conditions
/

chrono.start();
bcManage(A,F,aMesh,dof,BCh,feBd,1.,1);

chrono.stop();

chrono.start();

Linear_solve(U.giveVec(), F.giveVec(), options, params, NULL,
(int *)pattA.giveRaw_bindx(), NULL, NULL, NULL,
A.giveRaw_value(), data_org,
status, proc_config);

I
/I Writing of the post-processing file
/

count++;

index << count;

wr_medit_ascii_scalar("U" + index.str() + ".bb", U.giveVec(), dim);
wr_medit_ascii("U" + index.str() + ".mesh", aMesh);

1

/I In this test case we know the analytic solution

/I (specified in main.hpp)

/I and we want to compute the errors in different norms
/l

8.6 A complete example 211

AnalyticalSol analyticSol;

Real normL2=0., normL2diff=0., normL2s0l=0.;
Real normH1=0., normH1diff=0., normH1s0l=0.;

for(Ulnt i=1; i<=aMesh.numVolumes(); ++i){
fe.updateFirstDeriv(aMesh.volumelList(i));

normL2 +=elem_L2_2(U,fe,dof);
normL2sol +=elem_L2_2(analyticSol,fe,t,(Ulnt)U.nbcomp());
normL2diff += elem_L2_diff_2(U,analyticSol,fe, dof, t,(UInt)U.nbcomp());

normH1 +=elem_H1_2(U,fe,dof);

normH1sol +=elem_H1_2(analyticSol,fe,t,U.nbcomp());
normH1diff += elem_H1_diff_2(U,analyticSol,fe,dof,t,U.nbcomp());
1

normL2 = sqrt(normL2);
normL2sol = sqgrt(normL2sol);
normL2diff = sqrt(normL2diff);
normH1 = sqgrt(normH1);
normH1sol = sqrt(normH1sol);
normH1diff = sqrt(normH1diff);

bdf.shift_right(U);

} // END OF TIME LOOP

}
return EXIT_SUCCESS;
1

This is what we have obtained after running the code

U2 = 0.655108

lsol [> = 0.655108

U — ol > = 1.49398¢-09

U —sol | /||sol|;» = 2.28051e-09
U1 = 1.32759

l[sol||;p = 1.32759

U — sol|| 1 = 8.09782¢-09

U = sol|| g1/ |Isol|| ;1 = 6.09963e-09

Note that the errors are to be attributed exclusively to the linear system’s solution:
as the exact solution is a parabolic function in time and space, the choice of finite ele-

212 8 Elements of finite element programming

ments of degree 2 and of the BDF scheme of order 3 guarantees that the discretization
errors are non-null. Fig. 8.8 illustrates the results visualized by Medit.

Fig. 8.8. Results of the simulation after 5 (left) and 20 (right) time steps

Chapter 9
The finite volume method

The finite volume method is a very popular method for the space discretization of
partial differential problems in conservation form. For an in-depth presentation of the
method, we suggest the monographs [LeV02a], [Wes01] and [Tor09].

As a paradigm to describe the method and illustrate its main features, let us consider
the following scalar equation

d

a’;+div(F(u)):s(u), XEQ, 1>0 ©9.1)

where u : (x,¢) — R denotes the unknown, x € Q C R? (d = 1,2,3), F is a given
vector function, linear or nonlinear, called flux, s is a given source function. If the flux
F contains terms depending on the first derivatives of u, the differential problem is
a second-order one. The differential equation (9.1) must be completed by the initial
condition u(x,0) = up(x), x € Q fort = 0, as well as by suitable boundary conditions,
on the whole boundary 0 if problem (9.1) is a second-order one, or just on a subset
Q™" of dQ (the inflow boundary) in the case of first-order problems. As we will see
in Chapter 16 (see Sect. 16.1 and Sect. 16.4), this type of differential equations are
called conservation laws.

The diffusion-transport equations that will be addressed in Chapter 13, the pure
transport equations of Chapters 14-16, and the parabolic ones examined in Chapter 5,
can all be considered as special cases of (9.1). Indeed, all partial differential equations
deriving from physical conservation laws can be expressed in conservation form.

Typically, the finite volume method operates on equations written in conservation
form such as (9.1).

With some additional effort, we can obviously consider the vector case, where the
unknown u and the source s are vector functions with p components, while the flux F
is now a tensor with dimension p X d. In particular, also the Navier-Stokes equations
and the Euler equations for compressible flows that will be considered in Sect. 16.4
can be rewritten in conservative form. A finite volume approximation of free-surface
incompressible flows for real life applications will be discussed in Sect. 17.11.

© Springer International Publishing AG 2017 213
A. Quarteroni, Numerical Models for Differential Problems, MS&A 16,
DOI 10.1007/978-3-319-49316-9 9

214 9 The finite volume method

Fig. 9.1. A control volume in 2D (left) and 3D (right)

9.1 Some basic principles

The preliminary step towards a finite volume discretization of (9.1) consists in iden-
tifying a set of polyhedra 2; C £ with diameter less than A, called control volumes
(or control cells), i = 1,...,M, such that U;Q2; = Q (we will assume for simplicity
that the domain € is polygonal, otherwise U;€2; will be its approximation). See Fig.
9.1 for an example of control volume. We will furthermore suppose the cells to be
pairwise disjoint, this being the most commonly used case, although such restriction
is not required, in principle, by the method.

Equation (9.1) is integrated on each ;; using the divergence theorem we obtain
the system of ordinary differential equations

gt/ud9+/F(u)-n,»dyz/s(u)dg, i=1....M. 9.2)
Q 20 &

We have denoted by n; the unit outward normal of d€2;. In two dimensions, let us
denote by L; the number of straight sides of €; (in Fig. 9.1 L; = 5) and by n;;, j =
1,...,L;, the (constant) outward unit normal vector to the side /;; of dQ;. Then (9.2)
can be rewritten as

Li
a/ud.QJrZ/F(u)~n,-jdy:/s(u)d.(2, i=1,... M. 9.3)
8tQ =1 Q
i ij i

Several issues have to be addressed:

which geometrical shape should the control volumes have;

how to represent the unknown u in each control volume, that is which are its de-
grees of freedom and where should they be placed;

how to approximate the (volume and surface) integrals;

how to represent the flux F(u) on each side, as a function of the values of the
unknown u on the control volumes adjacent to the side.

For the construction of the control volumes, we usually start from a triangulation .7,
of the domain into polygons called elements, say {K,,}, of the same kind. Typically

9.1 Some basic principles 215

Fig. 9.2. An example of blockwise structured mesh

these are triangles or quadrilaterals in 2D, tetrahedra or hexahedra in 3D, as we saw in
Chapter 4 when using finite elements. The grid can be structured, blockwise-structured
(with either disjoint or overlapping blocks), or unstructured. Structured grids are in
general bounded to domains of relatively simple shape, in order for the whole domain,
or each block in which it is subdivided, to be mapped to a rectangle or a cube. In Fig.
9.2 we display a block structured grid on the surface of the appendages of a yacht.

Once the domain has been triangulated, we have two possibilities.
In the so-called cell-centered method, the elements {K,, } of .7, directly serve as con-
trol volumes. Consequently, the unknowns are associated to an internal point on each
element, typically the barycenter, called node. However, this apparently natural choice
of control volumes has a disadvantage: as there are no nodes lying on the boundary
of Q, imposing the boundary conditions will require special actions, which we will
examine later on. To account for such inconvenient, we can construct control volumes
around the elements of .7}, where we will place the unknowns. This yields to the so-
called vertex-centered schemes.
Sometimes, in multifield problems with several unknowns, both techniques are used at
the same time to place different unknowns at different nodes. In this case, we will say
that staggered grids are used; we will present a remarkable example in Sect. 17.11,
devoted to the discretization of Navier-Stokes equations.

A basic example on a structured quadrangular grid is reported in Fig. 9.3, where
we also show the control volumes for cell-centered and vertex-centered schemes. The
latter are defined by the squares

Q' ={xeQ : |x—xi|<h/2}, @=0/nQ,

where {x;} are the vertices of the squares {K,, } of the initial grid .7}, which coincide
in this case with the nodes of the control volumes, and 4 is the uniform length of the
element edges.

These two choices do not exhaust the options encountered in the practice. Some-
times the variables are placed on each edge (or face, in 3D) of the grid .7}, and the

216 9 The finite volume method

M ' M
o o o ° L—90 : 3 1 90
T
° ol ® ° : ‘ 3
1 | ‘ ”7"”)
. ° ° . :
- o--{--®
° ° ° °
’

Fig. 9.3. Control volumes (in grey) generated by a partition of a square domain 2 with square
finite elements of edge h. Left: cell-centered case. Right: vertex-centered case

corresponding control volume is formed by the elements of .7, adjacent to the edge
(or face).

In general terms, a finite volume approach is simple to implement: the discretiza-
tion cells can be chosen in a very general form, the solution is typically assumed to
be a constant function in each control volume, the Neumann boundary conditions are
imposed in a natural way, and the very formulation of the problem expresses the lo-
cal conservation of the amount jQ’ u d€. The potential drawbacks are the objective
difficulty in drawing high-order schemes, the need to treat essential (Dirichlet) bound-
ary conditions, in particular for the cell-centered methods; finally, the mathematical
analysis is less simple than in the case of Galerkin methods, as a direct application of
variational techniques used for the former is not straightforward.

It should however be mentioned that some special instances of finite volume ap-
proximations can be recovered starting from the discontinuous Galerkin method that
will be introduced in Chapter 12. See, e.g., [EGH00], [RivOS8].

9.2 Construction of control volumes for vertex-centered schemes

In the case the original triangulation .7}, is made of triangular unstructured elements in
2D or tetrahedric ones in 3D, the construction of control volumes around the vertices
of .7}, is not straightforward. In principle, we could choose as control volume £; the set
of all elements containing the vertex x;. However, this would generate control volumes
with non-null intersection, a permitted-but not desirable-situation.

We can thus take advantage of some geometrical concepts. Let us consider for example
a bounded polygonal domain © C R?, and let {x;};c» be a set of points, which we
will call nodes, of Q. Here &2 denotes a set of indexes. These points are typically the
ones where we intend to provide an approximation of the solution u. We associate to
each node the polygon

Q/ ={xeR*: x—xi|<|x—x;| Vje 2, j#i}, 9.4)

with i € 2. The set {QY,i € P} is called Voronoi diagram, or Voronoi tessella-
tion, associated to the set of points {X;};c; .Ql-v is called i-th Voronoi polygon. For

9.2 Construction of control volumes for vertex-centered schemes 217

Fig. 9.4. A Voronoi diagram

an example see Fig. 9.4. The polygons thus obtained are convex, but not necessar-
ily bounded (consider for instance the ones adjacent to the boundary). Their vertices
are called Voronoi vertices; a vertex is said regular when it is the meeting point of
three Voronoi polygons, and degenerate when it is shared by at least four polygons. A
Voronoi diagram with only regular vertices is in turn called regular.
At this point, we can define the control volumes £; introduced in the previous
section as
Q=0'NQ, ic2. 9.3)

For each i € &, we denote by Z; the set of indexes of the nodes adjacent to x;,
ie.

P ={je P\{i} : 9QiNIQ; +0}.

Moreover, we denote by [;; = d;NdQ;, j € &}, aside of the boundary of £; shared
by an adjacent control volume, and by m;; its length. If the Voronoi diagram is regu-
lar, we have m;; > 0. In this case, if we connect each node x; with the nodes of &,
we obtain a triangulation of 2 coinciding with the Delaunay triangulation (see Sect.
6.4.1) of the convex hull of the nodes. In case there are degenerate vertices in the
Voronoi tessellation, from this procedure we can still obtain a Delaunay triangulation,
provided we triangulate suitably the polygons £2; constructed around the degener-
ate vertices. Clearly, if €2 is convex, the above-described process directly provides a
Delaunay triangulation of €2, see e.g. Fig. 9.5. The inverse procedure is also possi-
ble, noting that the vertices of the Voronoi diagram correspond to the centres of the

Fig. 9.5. Delaunay triangulation (right) obtained from a Voronoi diagram (left). The dots indi-
cate the nodes {X; };c »

218 9 The finite volume method

Fig. 9.6. Voronoi diagram (right) obtained starting from a Delaunay triangulation (left)

circles circumscribed to the triangles (the circumcenters) of the corresponding Delau-
nay triangulation. The triangle axes thus form the sides of the tessellation. The latter
therefore represents a possible set of control volumes associated to a given Delaunay
triangulation (see e.g. Fig. 9.6).

The Voronoi diagram and the Delaunay triangulation are dual to one another: Voro-
noi vertices correspond one-to-one to elements (triangles) of the Delaunay triangula-
tion, and, conversely, Delaunay vertices correspond to the polygons of the tessellation,
hence to the nodes.

There are two interesting properties which are worth highlighting. The first one is
that the center of the circumscribed circle to an acute triangle K lies within the closure
of K. Hence if the Delaunay triangulation has no obtuse angles, the vertices of the
corresponding Voronoi diagram are all contained in . The second is that if we denote
by v;, i = 1,2,3, the vertices of the non-obtuse triangle K, and by ; x = ;N K the
portion of the control volume £2; included in K, then we have the following inequalities
between the measures of K and £; g

1 1
L KIS 1kl < KL, i=1,23. (9.6)

An alternative to the construction based on the Voronoi diagram, which does not
require a Delaunay triangulation, consists in starting from a triangulation .7}, of Q
formed by any kind of triangles including obtuse ones. If K is the generic triangle of
I, with vertices v;, i = 1,2, 3, we now define

Qix={xeK : Aj(x) < Ai(x), j #1i}

where A; are the barycentric coordinates of K (see Sect. 4.4.3 for their definition). An
example is shown in Fig. 9.7. At this point, the control volumes can be defined in the
following way
.Ql-:int< U -Qi,K); ieP,
{K : viedK}

where int(2) denotes the interior of the closed set 2. The family {£€2;, i € &7} defines
the so-called median dual grid (sometimes also named Donald diagram). See Fig. 9.8
for an example. Consequently, we can define the quantities /;;, m;; and &; as for the
Voronoi diagram. Now the elements /;; are not necessarily straight segments.

9.3 Discretization of a diffusion-transport-reaction problem 219

V2

V3 Vi

Fig. 9.7. A triangle K, its center of gravity G = ; (Vi + V2 +v3), and the polygons Q; g

Fig. 9.8. Triangulation of the domain (left) and median dual grid, or Donald diagram (right)

9.3 Discretization of a diffusion-transport-reaction problem

Let us consider for the sake of an example equation (9.1) where
F(u)=—puVu+bu, s(u)=f—ou. 9.7)

This is a time-dependent diffusion-transport-reaction equation written in conserva-
tion form, similar to the one described at the beginning of Chapter 13. The functions
f,u,o0 and b are given, and fulfill the hypotheses made at the beginning of Chapter
13. As in the case of problem (13.1), we will suppose for simplicity that u satisfies
a homogeneous Dirichlet boundary condition, u = 0 on d<2. Let us suppose that Q
is partitioned by a Voronoi diagram and consider the corresponding Delaunay trian-
gulation (an instance is provided in Fig. 9.5). What follows can in fact be extended
to other types of finite volumes; for that, it will be sufficient to consider the set of the
inner indexes only, &, = {i € & : x; € Q}, because u vanishes on the boundary. In-
tegrating the assigned equation on the control volume £2; as we did in (9.3) and using
the divergence theorem, we find

aat/ud.(2+2/ uau +bonu) dy = /(ffou)d.Q, ie P (98)

In order to approximate the line integrals, a typical strategy consists in approximating
the functions ¢t and b - n;; using piecewise constants, and precisely

y‘l._zuij:const>0, b-n;;|, ~b;; = const. 9.9)
i

lij

220 9 The finite volume method

Fig. 9.9. The segment /;;

Such constants can represent either the value of the corresponding function at the
midpoint of segment /;;, or the mean value on the same side, that is

1 1
ﬂij:m_‘/lid% bijzm“/b'nijd%
ij ij
ij ij

As far as the normal derivatives are concerned, an option consists in approximating
them using incremental ratios of the type

du u(x;)—u(x;)
onjj [xj— x|
(see e.g. Fig. 9.9). This formula is exact if « is linear on the segment connecting x; and
x;. Finally, regarding the approximation of the integral of u on /;;, we replace u I by
a constant obtained by a linear convex combination, that is

uly,, = piju(xi) + (1= pij) u(x;),

with p;; € [0,1] a parameter to be defined. Using the previous approximations, and
denoting by u; the approximation of the unknown value u(x;), we can derive from
(9.8) the following approximate equations

dbli
dt

m;

L.

1 uiu
+j=21mij{*ﬂij j5ij " bij [pijui+ (1= pij)uj]} 9.10)
+mi6iui:miﬁ, I'G(@,

having denoted by m; the measure of £2;, by o; and f; the values of o and f at x; and
by 6;; the distance between x; and x;. Note that (9.10) can be written in the form

du; L
dtl + minij(ui,uj)eriGiui:miﬁ, 9.11)
=1

m;

where H;; is the so-called numerical flux representing the contribution of the approx-
imation of the flux through the side /;;. The concept of numerical flux is relevant also

9.4 Analysis of the finite volume approximation 221

in the context of finite difference schemes for hyperbolic equations, as we will see
in Chapters 14 (Sect. 14.3) and 16 (Sect. 16.3). Some of the features of the numerical
flux also translate into scheme properties. For instance, to have a conservative scheme,
it will be necessary that H;;j(u;,u;) = —Hji(u;j,u;).

9.4 Analysis of the finite volume approximation

The system of equations (9.10) can be rewritten in the form of a discrete variational

problem by proceeding in the following way. Foreachi=1,..., AC/)[, the i-th equation
is multiplied by a real number v; then by summing over the index i we obtain

L;
o
VZ mij { —Hij J5U + bij[pijui+ (1 —pij)u;]}

Mio

% dbli +
m;v;
S ar

(9.12)

+
M§°

iGiViui:ZmiVifi-
i=1

Let us now denote by V}, the space of piecewise-linear continuous functions with re-
spect to the Delaunay triangulation .7}, which vanish at the boundary dQ (see (4.17)).
From a set of values v; we can univocally reconstruct a function v;, € Vj, that interpo-
lates such values at the nodes x;, that is (see (4.7))

o

VhEVhZVh(X,'):V,', i=1,....M.

In a similar way, let u;, € Vj, be the function interpolating the values u; at x;. Then,
(9.12) is rewritten equivalently in the following discrete variational form: for each
t >0, find uj, = uy,(t) € Vj, such that

0
(at”havh)h +an(up,ve) = (f,vi)n Yvn € Vi, (9.13)

o

having introduced the internal scalar product (wy,, vy,), = Zﬁ‘i , m;viw; and having de-
noted by aj, (uy,, v;) the bilinear form appearing in the left-hand side of (9.12). We have
thus interpreted the finite volume approximation as a particular case of the generalized
Galerkin method for the assigned problem (see Sect. 10.4.1, in particular (10.47)). As
far as the choice of the coefficients p;; for the linear combination is concerned, an op-
tion is to use p;; = 1/2, which corresponds to using a finite difference of the centered
type for the convective term. As we will see in Chapter 14, this strategy is adequate

when the so called local Péclet number
Hij

(see (13.22)) is less than 1 for every pair i, j. If this is not the case, a more careful
choice of the coefficients p;; for the convex combination is required. In general, p;; =

222 9 The finite volume method

¢(PPe;;), where ¢ is a function of the local Péclet number with values in [0, 1], that
can be chosen as follows: if ¢(z) = 1/2[sign(z) + 1] gives a stabilization of upwind
type, while choosing ¢(z) = 1 — (1 —z/(e*—1))/z we will have a stabilization of
exponential-fitting type. (A similar kind of stabilization will be used in Sect. 13.6 in
the context of finite difference approximation of diffusion-transport equations.) By
this choice, we can show that the bilinear form a,(-,-) is Vj,-elliptic, uniformly with
respect to h, under the usual hypothesis that the coefficients of the problem satisfy the
positivity condition 1/2div(b) 4+ ¢ > By = const > 0.
Precisely, in this case, supposing further that > iy = const > 0,

an(va,vi) > Mo [valZ @) T Bo (i, vi)-

Moreover, as (v, vy,), is uniformly equivalent to the exact L2-scalar product (Vi,vi)
for functions of V},, this ensures the stability of problem (9.13). Finally, the method is
linearly convergent with respect to 4. In particular

|| — uhHHl(_Q) <Ch (||”||H2(Q) + |Vf|L°°(Q))

under the assumption that the norms on the right are bounded. For the proof, see
e.g. [KAOO]. We suggest the same reference for an analysis of other properties of the
method, such as monotonicity and conservation.

9.5 Implementation of boundary conditions

As previously stated, the differential problem under exam must be completed by suit-
able boundary conditions. For a problem written in conservation form, natural bound-
ary conditions would be to impose the fluxes, i.e.

F(u)-n=h only C Q.

For their implementation in the framework of finite volumes it is sufficient to act on
the numerical flux relating to the boundary sides, imposing

Hyo = H(ui,up) = h(xy) if Iy C Iy,

where X is a suitable point (typically the midpoint) of /.
On the other hand, essential (Dirichlet) conditions of the form

u=g onlpCdQ,

are immediate to implement in the context of vertex-centered schemes, for it is suf-
ficient to add the corresponding equation for the nodes lying on I'p. As previously
noted, the matter is more complicated for cell-centered schemes, as in this case there
are no nodes on the boundary. An option is to impose the conditions weakly, in a simi-
lar way to what we will illustrate, although in a different context, in Sect. 15.3.1. This
is a matter of suitably modifying the numerical fluxes on the sides, imposing

Hy = H(u;,g(xy)) ifly CIp.

9.5 Implementation of boundary conditions 223

Fig. 9.10. The numerical flux on the side /;; belonging to the Dirichlet boundary is computed in
order to implement the boundary condition

Fig. 9.10 illustrates the situation for a cell-centered control volume adjacent to the
boundary.

In practice, however, Dirichlet boundary conditions for cell-centered finite vol-
umes are often implemented using the so-called ghost nodes. For each side [;; on the
boundary, we generate additional nodes, external to the domain, to which the corre-
sponding boundary values are assigned. In this way, the computation of numerical
fluxes is formally the same also for the boundary sides.

Chapter 10
Spectral methods

As we have seen in Chapter 4, when we approximate boundary-value problems using
the finite element method, the order of convergence is anyhow limited by the degree of
the polynomials used, also in the case where solutions are very regular. In this chapter
we will introduce spectral methods, for which the convergence rate is only limited by
the regularity of the solution of the problem (and is exponential for analytical solu-
tions). For a detailed analysis we refer to [CHQZ06, CHQZ07, Fun92, BM92].

10.1 The spectral Galerkin method for elliptic problems

The main feature that distinguishes finite elements from spectral methods in their clas-
sical “single-domain” version, is that the latter use global polynomials on the compu-
tational domain £, instead of piecewise polynomials. This is no longer true in the case
of the spectral element method.

For each positive integer N, we denote by Qy the space of polynomials with real
coefficients and degree less than or equal to N with respect to each of the variables.
Thus in one dimension we will denote by

N
Qn()= {v(x): Zakxk, akeR} (10.1)
k=0
the space of polynomials of degree < N on the interval I C R, while in two dimensions,
N
Qn(Q)= {v(x) = Y auxixy, aw GR} (10.2)
k,m=0

will denote the same space, but on the open set 2 C R?. We note that while in one di-
mension Qy = Py, in several dimensions this does not happen. In particular, dim Qy =
(N 4 1)2, while, as already seen in Sect. 4.4.1, dim Py = (N 4 1)(N +2)/2.

Suppose we want to approximate the solution u of an elliptic problem which ad-
mits the variational formulation (4.1). Using a spectral Galerkin method (SM), the

© Springer International Publishing AG 2017 225
A. Quarteroni, Numerical Models for Differential Problems, MS&A 16,
DOI 10.1007/978-3-319-49316-9 10

226 10 Spectral methods

Ip Ip

Fig. 10.1. Acceptable (left) and unacceptable (right) Dirichlet boundaries for the spectral
method SM

space V will be approximated by a space Vy C Qu and the approximate solution will
consequently be indicated by uy. In particular, if we suppose that V' is H}—D (Q) (the
space defined in (3.27)), Vy will denote the set of polynomials of Qp that vanish on
the boundary portion I, where a Dirichlet condition is prescribed, that is

VNZ{VNGQNZ VN|FD:0}-

It is evident that Viy C V. The spectral Galerkin method SM will therefore be formu-
lated on the subspace V. However, there is an issue in the definition of Vy: in the
multi-dimensional case it is indeed not possible (in general) to require that a poly-
nomial vy vanishes only on an arbitrary part of the boundary of Q. For instance, if
Q is the square (—1,1)?, it is impossible to construct a polynomial that is null only
on a portion of a boundary edge without it being null on the whole edge (see Fig.
10.1). This does not prevent a polynomial from vanishing on one whole side of the
square or on all sides without necessarily being null in the whole of Q (for instance,
v2(x) = (1 —x3)(1 —x3) is null only on the boundary of).

For this reason, in the two-dimensional case we limit our attention to square domains
(or, more generally, to domains that are reducible, through appropriate transformation,
to the reference square Q = (—1,1)?) and we suppose that the boundary’s portion I3,
is formed by the union of one or more sides of the domain.

However, the spectral method can be extended to the case of a domain £2 composed by
the union of quadrilaterals €, each of which can be reduced to the reference square
£ via an invertible transformation ¢y : Q — € (see Fig. 10.2), leading to the so-
called spectral element method (SEM), that was introduced by A.T. Patera [Pat84]. It
is evident that in such a context it will be possible to require that the solution vanish on
portions of the boundary given by the union of sides of the quadrilateral, but naturally
not on portions of sides (see Fig. 10.2). In the SEM case, the discrete space has the
following form

VAC; = {VN S CO(.Q) : VN|_QkOLPk S QN(Q\)}

Example 10.1. A particularly important two-dimensional mapping is the transfinite
interpolation (called Gordon-Hall transformation as well as Coons patch). The map-
ping ¢y is in this case expressed as a function of the invertible mappings 7T]El) (=1,1)—

I; (for i = 1,...,4) that define the four sides of the computational domain €2; (see

10.1 The spectral Galerkin method for elliptic problems 227

Ip o)

&Q

Fig. 10.2. Decomposition of the solution domain and acceptable boundary conditions for the
SEM

Fig. 10.3). The transformation takes the following form

eem = D MTwle)+ TR
+1;§[w£<n>—1§”w;‘<1>—1;"77;*(_1)] (10.3)

5 - - M)

The transfinite interpolation therefore allows to consider computational domains 2
characterized by domains with non-straight edges. For more examples of transforma-

tions, see [CHQZO07]. |

The approximation of problem (4.1) using the Galerkin spectral method (SM) is
the following

finduy € Vy: alun,vy) =F(vy) Vvy € Vy,
while the spectral element one (SEM) will be

finduy € VS : aclun,vw) =Fc(vw) Yy € VS, (10.4)

I3

Pk
I

n
I8

Fig. 10.3. The transformation ¢ in the case of the transfinite interpolation

Q)

I;

228 10 Spectral methods

where
ac(uy,vw) =Y ag, (uy,vw), Fe(vw) =Y Fo,(vw),
x k

ag,(+,-) and Fg,(-) being the restrictions of a(-,-) and F(-) to £.

Since these methods represent a special instance of the Galerkin method (4.2), the
analysis made in Sect. 4.2 continues to hold and in particular, the existence, unique-
ness, stability and convergence results can be applied.

Moreover, it can be proved that for SM and SEM spectral methods the following
a priori error estimates hold:

Theorem 10.1. Let u € V be the exact solution of the variational problem (4.1)
and suppose that u € H*1(Q), for some s > 0. If uy is the corresponding ap-
proximate solution obtained via the SM, the following estimate holds

lu—unllg @) < CN7*llullgse1(q),

N being the degree of the approximating polynomials and Cs a constant that does
not depend on N, but can depend on s. If uy is, instead, the solution obtained via
SEM , then we have

[l — unllg o) < CsHmin(N’S)Nfs||“||HX+1(Q)v

H being the maximum length of the sides of the macroelements £2y.

As opposed to what happens for the finite element method, a greater regularity of
the solution leads to an increase in convergence rate, even supposing that the polyno-
mial degree N is fixed. In particular, if u is analytical, the order of convergence of the
spectral method becomes more than algebraic, i.e. exponential: more precisely,

Jy>0: ||M*MN||HI(Q) SCCXP(*YN)-

Also in the case where u has finite regularity, it is still possible to obtain from the
spectral method the maximal convergence rate allowed by the regularity of the exact
solution: this is a clear advantage of spectral methods over finite elements.

The main limitation (in two or three dimensions) of classical spectral methods is that
they can only handle simple geometries: rectangles or quadrilaterals which can be
mapped into a square via an invertible transformation. However, as previously men-
tioned, they can be extended, via the SEM, to the case where the domain is given by
the union of quadrilaterals, possibly with curved sides.

A further disadvantage of classical spectral methods lies in the fact that the as-
sociated stiffness matrix A is full in the one-dimensional case, or anyhow much less
sparse than the one for finite elements in high dimensions, because the basis functions
of such methods have global (and not local) support, see Sects. 10.2 and 10.3. The
associated system of equations is generally more costly to solve.

Finally, the computational cost required to compute the elements of the stiffness
matrix of the right-hand side must not be underestimated, as we are dealing with high

10.2 Orthogonal polynomials and Gaussian numerical integration 229

degree polynomials. We will sort out this issue in the next section by using well-chosen
Gaussian numerical integration.

Remark 10.1. In Sect. 10.5 at the end of this chapter, we will provide the algebraic
formulation of the SEM for a one-dimensional problem. In particular, we will intro-
duce the basis functions for the space V,g of composite polynomials. °

Remark 10.2. The SEM formulation is not so different from the p version of the finite
element method. In both cases, the number of subdomains £y is fixed while the local
degree of polynomials (called N in the case of SEM, p in the finite element case) is
increased locally, in order to improve the accuracy of the numerical approximation.
For further details, we refer the interested reader to [CHQZO07, Sch98]. °

10.2 Orthogonal polynomials and Gaussian numerical integration

In this section we introduce the mathematical ingredients that allow to construct nu-
merical integration formulae of Gaussian type. As previously anticipated, such formu-
lae are the basis of pseudo-spectral methods, but also of spectral element methods that
make use of numerical integration formulae.

10.2.1 Orthogonal Legendre polynomials

Let us consider a function f : (—1,1) — R. We recall that the space L?(—1,1) is
defined by (see Sect. 2.3.1)

1

1) = { s (L) S R Wl = f£0 dx)1/2<oo}.

-1
Its scalar product is given by

1

(1.9) = [gt

-1

The orthogonal Legendre polynomials L, € Py, for k = 0,1, ..., constitute a sequence
for which the following orthogonality property is satisfied

0 if m £k,
(LkaLm): Iv—1 .
(k+5) itm==k.

They are linearly independent and form a basis for L?(—1,1). Consequently, each
function f € L?(—1,1) admits the series expansion

flx) = iﬁLk(x) (10.5)
k=0

230 10 Spectral methods

known as Legendre series. This is a modal representation of f. The Legendre coeffi-
cients fj can easily be computed by exploiting the orthogonality of Legendre polyno-
mials. Indeed, we have

! 1w
N / f<x>]Lk<x> dx / (LAt
¥ / L)) = Rl
Hence, 1
fi= L/l = (4) [Fo L) (106

~1
from which the so-called Parseval identity immediately descends

=

”f”]zj(,[’]) = Z(ﬁ)ZHLk”]Z](f],])'

k=0

It is possible to compute the Legendre polynomials recursively via the following
three-term relation:

L():l, L1:x,
2k+1 k

= L, — L_ k=1,2,...
k+IXk k—‘rlkl’)

Ly

(In Fig. 10.4, the graphs of the polynomials L;, with k = 2,...,5, are drawn). The
Legendre series of any f € L?(—1,1) converges to f in L?>(—1, 1) norm. Denoting by

N
) =Y fili(x)
k=0

the N-th truncation of the Legendre series of f, this means that
dim [/ = fvllia-1,0) =0, (10.7)

that is

lim H i Al

N=vee Il 2N

L2(—1,1) -

Thanks to the Parseval identity, we have that
2 o 72 2 . (J?k)z
Hf_fNHLZ(*l.,l) = Z (fe) HL’“HLZ(fIJ) - Z

k+1)7
k=N+1 k=N+1K+ 5

10.2 Orthogonal polynomials and Gaussian numerical integration 231

z2zz2Z
TR
apsrwN

-1 -0.5 0 0.5 1

Fig. 10.4. The Legendre polynomials of degree k = 2,3,4,5

hence condition (10.7) is equivalent to

o (72
lim) U™ _ g

L 1
Noeo SNk

Moreover, it can be proved that if f € H'(—1, 1), for some s > 1, then it is possible to
find a suitable constant C; > 0, independent of N, such that

1 S
17 =i <6 () 19y
i.e. we have convergence of order s, with respect to 1/N.

At this point, we can prove that fy is the orthogonal projection of f on Qy with
respect to the scalar product of L?(—1, 1), that is

(f=fv,p)=0 VpeQn. (10.8)

First of all we note that

(fffNaLm): (Z ﬁLk;Lm) = Z f‘k(LkaLm)'

k=N+1 k=N+1

Since the polynomials Ly, with 0 < k < N, form a basis for the space Qu, every poly-
nomial p € Qu can be expanded with respect to this basis. Equation (10.8) follows
noticing that for m <N, (L,L,) =0 Yk > N+ 1 because of orthogonality.

In particular, from (10.8) it follows that fy is the function which minimizes the dis-
tance of f from Qy, that is

1f =l SN =plliairyy Ve Q. (10.9)

232 10 Spectral methods

For this purpose, we start by observing that
||f—fN||iz(,1’1) =(f—=ff—m=U—fnf—p)+(f—fn,r—In)

for each p € Qu and that (f — fn,p — fy) = 0 by the orthogonality property (10.8).
Consequently,

If = fulia gy = (f = fw.f=p) VpeQy,
from which, applying the Cauchy-Schwarz inequality, we obtain
1f = flta i gy S I = Ml If =Pl Ve eQy,

i.e. (10.9).
10.2.2 Gaussian integration

Gaussian integration formulae are the ones which, having fixed the number of quadra-
ture nodes, allow to obtain the highest exactness degree (see [QSS07]). The latter is
the highest integer r such that all polynomials of degree less than or equal to r are
integrated exactly by the formula at hand. We will start by introducing such formulae
on the interval (—1, 1), and then extend them to the case of a generic interval.

We denote by N the number of nodes. We call Gauss-Legendre quadrature nodes
the zeroes {%,...,in} of the Legendre polynomial Ly. In the presence of such a set
of nodes, we will consider the following quadrature formula (called interpolatory of
Gauss-Legendre)

1
1§41 f = [T £ () d (10.10)
~1

H}\(,;fl f being the polynomial of degree N — 1 interpolating f at the nodes xi,...,Xy.
We denote by y, € Qy_y, k=1,...,N, the characteristic Lagrange polynomials asso-
ciated to the Gauss-Legendre nodes,

Wk('f])zakﬁ]:177N

The quadrature formula (10.10) then takes the following expression

1 1
N
/f(x) dx~1IGt f = Zéckf()?k), with 0y = /l/lk(x)dx,
e k=1 e
and is called Gauss-Legendre quadrature formula (GL).
To find the nodes 7 and the weights & characterizing such formula on a generic inter-

val [a,b], it will be sufficient to refer to the relation

b—a_ a+b
= X
k= g KTy

~

10.2 Orthogonal polynomials and Gaussian numerical integration 233

for the former, while, for the latter, it can easily be verified that

The exactness degree of these formulae is equal to 2N — 1 (and is the maximum pos-
sible for formulae with N — 1 nodes). This means that

b N
[£dx= Y 8) V€ Qvr.
p k=1

10.2.3 Gauss-Legendre-Lobatto formulae

A feature of the Gauss-Legendre integration formulae is to have all quadrature nodes
internal to the integration interval. In the case of differential problems this makes the
imposition of boundary conditions on the end points of the interval problematic.

To overcome such difficulty, the so-called Gauss-Lobatto formulae are introduced,
particularly the Gauss-Legendre-Lobatto (GLL) formulae. There, nodes, relative to the
interval (—1,1), are represented by the end points of the interval themselves and by
the maximum and minimum points of the Legendre polynomial of degree N, i.e. by
the zeroes of the first derivative of the polynomial Ly.

We denote such nodes by {xo = —1,xy,...,xy_1,xy = 1}. Therefore, we have

Ly(x;)=0, fori=1,....,N—1. (10.11)
(In this chapter the symbol “/” denotes a derivative with respect to x.) Let y; be the
corresponding characteristic polynomials, that is

weQy : Yilx) =8, 0<ij<N, (10.12)
whose analytical expression is given by

L =Py
q/,(x)_N(NH) (xfx,')L;V(x,')’ i=0,....N (10.13)

(see Fig. 10.5 for the graphs of the characteristic polynomials y;, for i =0,...,4 in the
case where N = 4). The functions ;(x) are the counterpart of the Lagrangian basis
functions {¢;} of the finite elements introduced in Sect. 4.3. Given a function f €
C%([—1,1]), its interpolation polynomial IT¢L f € Qy at the GLL nodes is identified

by the relation
" f(xi) = f(xi), O<i<N. (10.14)

It has the following expression
N

G f(x) = Y f () wi(x). (10.15)

i=0

234 10 Spectral methods

0.5

-0.5

Fig. 10.5. The characteristic polynomials y;, i = 0,...,4 of degree 4 corresponding to the
Gauss-Legendre-Lobatto nodes

It can be proved, thanks to the non-uniform distribution of the nodes {x;}, that IT, ﬁ“‘ f

converges towards f when N — co. Moreover, the following error estimate is satisfied:
if f € H*(—1,1), for some s > 1,

1~ IG5 e (>||f o (10.16)

where C; is a constant depending on s but not on N. More generally (see [CHQZO06]),
1 s—k
I = I iy < G <N> Ul s> 1,k=01 (1017

In Fig. 10.6 (left), we show the convergence curves for the interpolation error of two
different functions.

By using H,\(,;LL f instead of IIy GLL 1f we can define the following Gauss-Legendre-
Lobatto (GLL) integration formula in alternative to (10.10)

N
IgHf = / G f(x)dx = Y o f (). (10.18)
e k=0

The new weights are o; = [1 Wi(x) dx and take the following expression
2 1
NN+1) L (x)’

The GLL formula has exactness degree equal to 2N — 1, that is it integrates exactly all
polynomials of degree < 2N — 1,

(10.19)

o =

1
/ f)dx=I"f Vf € Qoo (10.20)

10.3 G-NI methods in one dimension 235

10° - - - - - - 10

=X

integration error

interpolation error

S
S

0" L L L L L L 107

Fig. 10.6. Behaviour of the interpolation (left) and integration (right) error in the GLL nodes
as a function of the degree N for the two functions f)(x) = cos(4mx) (s) and fr(x) =
4cos(4x)exp(sin(4x)) (m) on the interval (—1,1)

This is the maximum degree obtainable when N + 1 nodes are used, 2 of which as-
signed a priori. Moreover, using the interpolation estimate (10.16), the following inte-
gration error estimate can be proved: if f € H'(—1,1), with s > 1,

1
1 iy
21

1* s
<c() 19y

where C; is independent of N but can depend, in general, on s. This means that the
more regular the function f is, the higher is the order of convergence of the integration
formula. In Fig. 10.6 (right) we report the integration error for two different functions
(the same ones considered for the left graph).

If we now consider a generic interval (a,b) instead of (-1,1), nodes and weights in
(a,b) take the following expression

b—a a+b b—a
Iy = 2 Xk)

Formula (10.20) generalizes as follows

b N
/f(x)dx ~ Y 8cf (1) (10.21)
u k=0

The properties of exactness and accuracy remain unchanged.

10.3 G-NI methods in one dimension

Let us consider the following one-dimensional elliptic problem with homogeneous

Dirichlet data
Lu=—(uu')Y +ou=f, —-1<x<l,

(10.22)
u(-1)=0, u(1)=0,

236 10 Spectral methods

U(x) > po > 0 and o(x) > 0, in order to have an associated bilinear form that is
coercive in H)(—1,1).
The spectral Galerkin method (SM) is written as

1 1 1
find uy € Vy : /uu},vﬁv dx—+ /GquN dx = /va dx Yovy € Vy, (10.23)
-1 -1 -1

with
Vv ={vwn € Qn :vy(—1)=wn(1) =0}. (10.24)

The G-NI (Galerkin with Numerical Integration) method is obtained by approximat-
ing the integrals in (10.23) via the GLL integration formulae. This amounts to substi-
tuting the scalar product (f,g) in L?(—1,1) by the discrete GLL scalar product (for
continuous functions)

N
(f.8)v = Y 06f (xi)g(xs), (10.25)
i=0

where the x; and the o; are defined according to (10.11) and (10.19). Hence, the G-NI
method is written as

find uly € Viy : (uuy’,viy)w + (ouly,vn)n = (f,vn)v - YV ow € V. (10.26)

Due to the numerical integration, in general uy # uy, that is the solutions of the SM
and G-NI methods do not coincide.
However, thanks to the exactness property (10.20), we will have

(f,e)n=1(f.8) VYf.g: fgcQun_i. (10.27)

If we consider the particular case where in (10.22) i is a constant and ¢ = 0, the G-NI
problem becomes

(Vi)v = (f, o) (10.28)

In some very particular cases, the spectral and the G-NI methods coincide. This is
for instance the case of (10.28), where f is a polynomial with degree equal at most
to N — 1. It is simple to verify that the two methods coincide thanks to the exactness
relation (10.27).

Generalizing to the case of more complex differential formulations having differ-
ent boundary conditions (Neumann, or mixed), the G-NI problem is written as

find ul*\, ceW: aN(u;‘v,vN) = FN(VN) Yy € Vy, (10.29)

where ay(+,-) and Fy(-) are obtained starting from the bilinear form a(-,-) and from
the known term F(-) of the spectral Galerkin problem, by substituting the exact inte-
grals with the GLL integration formulae. Vy is the space of polynomials of degree N
that vanish on the boundary points (provided that there are any) on which Dirichlet
conditions are imposed.

10.3 G-NI methods in one dimension 237

Observe that, due of the fact that the bilinear form ay (-, -) and the functional Fy(+)
are no longer the ones associated to the initial problem, what we obtain is no longer a
Galerkin approximation method, and the relative theoretical results cannot be applied
(in particular, the Céa lemma, see Lemma 4.1).
In general, a method derived from a Galerkin method, either spectral or with finite
elements, where numerical integrals replace exact ones, will be called generalized
Galerkin method (GG). For the corresponding analysis we will resort to the Strang
lemma (see Sect. 10.4.1 and also [Cia78, QV94]) .

10.3.1 Algebraic interpretation of the G-NI method

The functions y;, withi=1,2,...,N — I, introduced in Sect. 10.2.3 consititute a basis
for the space Vy, as they are all null in xo = —1 and xy = 1. We can therefore provide
for the solution uy of the G-NI problem (10.29) the nodal representation

N—1

uy(x) = ; up (i) Wi (x).

In analogy with the finite-element method, this means we identify the unknowns of
our problem with the values taken by uj at the nodes x; (now coinciding with the
Gauss-Legendre-Lobatto nodes). Moreover, for problem (10.29) to be verified for each
vy € Vy, it will be sufficient that it be verified for each basis function y;. We will
therefore have

N—1
Y un(xj)an(wjwi) =Fn(w), i=12,... ,N—1,
=1

which we can rewrite

N—1

Y ajjuy(x)) = £, i=12,...,N—1,

j=1
that is, in matrix form,

Auy =f (10.30)
where
A=(a;;) with a;=an(y;,w), f=(fi) with fi=Fy(y),

and where uy, denotes the vector of unknown coefficients uy (x;), for j=1,...,N—1.
In the particular case of problem (10.26), we would obtain

aij = (LY, V)N + 060 (x) 8, fi = (f, Wi)v = 06 f(xi),

foreachi,j=1,...,N—1. The matrix in 1D is full due to the presence of the diffusive
term. Indeed, the reactive term only contributes to the diagonal. In more dimensions,
the matrix A has a block structure, and the diagonal blocks are full. See Fig. 10.7,

238 10 Spectral methods

50

0 ‘5 1‘0 1‘5 2‘0 2‘5 3‘0 3‘5 4‘0 45 50 0 1 60 260 360 400 560 660 "

nz =637 nz = 18225
Fig. 10.7. Pattern of the matrix A for the G-NI method, the 2D (left) and 3D (right) case: nz
denotes the number of non-null elements in the matrix

reporting the pattern relating to matrix A in 2D and 3D. Finally, we observe that the
condition number we would get in the absence of numerical integration results is,
in general, much larger, namely O(N*). Moreover, the matrix A turns out to be ill-
conditioned, with condition number O(N?). For the solution of system (10.30) it is
therefore convenient to resort, especially in 2D and 3D, to a suitably preconditioned
iterative method. By choosing as a preconditioner the matrix of linear finite elements
associated to the same bilinear form a(-,-) and to the GLL nodes, we obtain a pre-
conditioned matrix whose conditioning is independent of N ([CHQZ06]). At the top
of Fig. 10.8 we report the condition number (as a function of N) of the matrix A and
of the matrix obtained by preconditioning A with different preconditioning matrices:
the diagonal matrix of A, the one obtained from A through the incomplete Cholesky
factorization, the one obtained using linear finite elements by approximating integrals
with the composite trapezoidal formula, and finally the exact one from finite elements.

—>— non—preconditioned —»— non—preconditioned

10°L| —#— diagonal i —4— diagonal
=
2 —<— incomplete Cholesky 10°F| —¢ incomplete Cholesky
g 104 —&— FEM with numerical integr i —4A— FEM with numerical integr|
H —%— FEM with exact integratior . —¥— FEM with exact inlegraliorw
= £
S 3 S 2
510 g 10
S L

10°

10'
10'
100 100 L L L L L L
0 70 0 10 20 30 40 50 60 70

N

Fig. 10.8. Condition number (left) and iteration number (right), for different types of precondi-
tioners

10.3 G-NI methods in one dimension 239

At the bottom of Fig. 10.8 we report the number of necessary iterations for the conju-
gate gradient method to converge in the different cases.

10.3.2 Conditioning of the stiffness matrix in the G-NI method

We seek estimates for the eigenvalues A" of the stiffness matrix A of the G-NI method
Au= 2 Mu.

In the case of the simple second derivative operator, we have A = (g;;), with g;; =
(Wi, vy = (¥}, ¥;), y; being the j-th characteristic Lagrange function associated to
the node x;. Then,

llTAll o ||u)1cv||12‘2(_171)

AN — —
u’u u’u

, (10.31)

u" € Vy being the only polynomial of the space Vy defined in (10.24) satisfying
uV(x;) =uj, for j=1,...,N — 1, where u = (u;). By setting

Xj
uj= /ufcv(s) ds
4

thanks to the Cauchy-Schwarz inequality we obtain the bound

i< / | |2ds>1/2< / ds) VR Iy

Hence)
N_
wu=Y ui 2N = 1)) |72y 0
j=1
which, thanks to (10.31), provides the lower bound

AN > !

> 1) (10.32)

An upper bound for A" can be obtained by recurring to the following inverse inequal-
ity for algebric polynomials (see [CHQZ06], Sect. 5.4.1)

1

/ pZ(x) 1/2
v p eV, ||p||Lz(_171)§\/2N(/1xzdx) . (10.33)
.|
Then
1
N 2
2 2 [lu (x)] 2 (x)]
||(uN)’||L2(7H)<2N/ U dx=2N ,Zl 1_;} o (10.34)
e

240 10 Spectral methods

where we use the exactness of the GLL integration formula (see (10.20)), as
[uV]?/(1 — x*) € Pay_,. Since for the coefficients @; the following asymptotic es-
timate holds: a;/(1 fxi) < C, for a suitable constant C independent of N, we can
conclude, thanks to (10.31) and (10.34), that

AN <2CN?. (10.35)

It can finally be proved that both estimates (10.32) and (10.35) are optimal as far as
the asymptotic behaviour with respect to N is concerned.

10.3.3 Equivalence between G-NI and collocation methods

We want to prove that the G-NI method con be interpreted as a collocation method, i.e.
one imposing the differential equation only at selected points of the computational in-
terval. Let us consider once again the homogeneous Dirichlet problem (10.22), whose
associated G-NI problem is written is the form (10.26).

We would like to counterintegrate by parts equation (10.26), but in order to do that, we
must first rewrite the discrete scalar products as integrals. Let ITGXE : CO([—1,1])
Qp be the interpolation operator introduced in Sect. 10.2.3, which maps a continu-
ous function to the corresponding interpolating polynomial at the Gauss-Legendre-
Lobatto nodes.

Since the GLL integration formula uses the values of the function only at the integra-
tion nodes and since the function and its G-NI interpolant coincide there, we have

N N !
Y aif () = Y alIgt fla) = [1§ f()ds
i=0 i=0]

where the latter equality descends from (10.20) as H,\(;U“ f is integrated exactly, being
a polynomial of degree N.

The discrete scalar product thus becomes a scalar product in L?>(—1,1), in the case
where one of the two functions is a polynomial of degree strictly less than N, i.e.

(f.8)v = (IIg" f.g)v = (T f,g) Vg € Qu-1. (10.36)

In this case, indeed, H,f,;LL f € Qu, (Hﬁ“‘ f)g € Qon—1 and therefore the integral is
computed exactly. Integrating by parts the exact integrals, we obtain'

(i vi)y = (ITGH (), viy)y = (ITGH (uay) viy)
—([IIGH ()] vn)-+ [TIGE (ady) v)L
= —([II§* ()l vn),

where the last equality holds because vy vanishes at the boundary and the terms which
appear in the scalar product yield a polynomial whose total degree is equal to 2N — 1.

! From now on, for simplicity of notation, we will denote the G-NI solution by uy (instead of
uy,), since there is no longer the risk to confuse it with the spectral solution.

10.3 G-NI methods in one dimension 241

At this point, we can rewrite the G-NI problem as follows
find uy € Vi : (Lyun,vw)y = (f,vv)n - Vow € Vy, (10.37)
where we have defined
Lyuy = —[ITSEE (uuy)) + ouy. (10.38)
By imposing that (10.37) is valid for each basis function y;, we obtain
(Lyun,Wi)v = (f, Wiy, i=1,2,....N—1.

Now we examine the i-th equation. The first term is

— (TG ()Y Z% IIE ()] (x) wix))
= z[UﬁLL(MMN)]’(xi),

since W;(x;) = &;;. Analogously, for the second term we have

N
(oun, i)y = Z(,)O‘jd(xj)MN(xj)llfi(xj) = ;0 (x;)un(x;).
=

Finally, the right-hand side becomes

N
(frwi)n = Y, 0f (x)wilxj) = 0uf (xi).

Jj=0

Dividing by ¢; the equation thus found, we obtain the following equivalent formula-
tion of the G-NI problem

{ LNMN()C,') :f(xl-), = 1,2,...,N7 1,

(10.39)
un(xo) =0, uy(xn) = 0.

This is called a collocation problem as it is equivalent to placing at the internal nodes
x; the assigned differential equation (after approximating the operator L by Ly), and
satisfying the boundary conditions at the boundary nodes.

We now introduce the interpolation derivative, Dy(®), of a continuous function

@, as being the derivative of the interpolating polynomial Hg“‘é defined according
to (10.14), i.e.

Dy(®) = D[IIFH @, (10.40)

D being the symbol of exact differentiation. If we consider the differential operator
L and replace all derivatives with the corresponding interpolation derivatives, we ob-
tain a new operator, called pseudo-spectral operator Ly, that coincides with the one
defined in (10.38). It follows that the G-NI method, introduced here as a generalized

242 10 Spectral methods

Galerkin method, can also be interpreted as a collocation method that operates directly
on the differential part of the problem, analogously to what happens, for instance, in
the case of finite differences. In this sense, finite differences can be considered as a
less accurate version of the G-NI method, as the derivatives are approximated using
formulae that use a small number of nodal values.

If the initial operator had been

Lu = (—uu')' + (bu) + ou,
then the corresponding pseudo-spectral operator would have been
Lyuy = —Dy(uuy) + Dy(buy) + ouy. (10.41)
Had the boundary conditions for problem (10.22) been of Neumann type,
(n) (1) =g-, (wu')(1) =g+,

the spectral Galerkin method would be formulated as follows

1 1
finduy € Qy /,uuf\,v;v dx—+ /GquN dx =
-1 21

1
/fVN dx + gywn(l) —g-ww(=1) Vv eQy,
|
while the G-NI method would become
finduy € Qv : (Huy,vy)n+ (Cun,vv)n =
(foon)v + geww(l) —g-ww(=1) VwweQy.

Its interpretation as a collocation method becomes: find uy € Qu such that

LN”N(xi):f(xi)a i=1,....N—1,
(Lvun0) = £50) = o (i) (=1) =) =0,
(L) = £w)) + () (1) =) =0,

where Ly is defined in (10.38). Note that at the boundary nodes the Neumann condi-
tion is satisfied up to the equation residual Lyuy — f multiplied by the coefficient of
the GLL formula, which is an infinitesimal of order 2 with respect to 1/N.

In Fig. 10.9 (taken from [CHQZ06]) we report the error in the H'(—1,1)-norm (left)
and the absolute value of the difference (u uﬁ\,) (£1) — g4 (right), that can be regarded
as the error made on the fulfillment of the Neumann boundary condition, for different
values of N. Both errors decay exponentially when N increases. Moreover, we report

10.3 G-NI methods in one dimension 243

W=z

0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
N N

Fig. 10.9. Error in H' (—1,1) (left) and error on the Neumann datum (right) for varying N

the errors obtained by using the Galerkin finite element approximations of degree
r=1,2,3.

Finally, it can be useful to observe that the interpolation derivative (10.40) can
be represented through a matrix D € RV+DxN+1) called matrix of the interpolation
derivative, associating to any vector v € RV*! of nodal values v; = ®(x;),i=0,...,N,
the vector w = Dv whose components are the nodal values of the polynomial Dy (®),
ie. wi = (Dn(®P))(x;),i=0,...,N. The elements of D are (see [CHQZ06])

Ly (x; 1
v() L i =0, NP #
Ly(xj) xi —x;
(N+1)N L
-) i=j=0,
Dij:W;(Xi): 4 J
N+1)N
A
0 otherwise,

wheredy =dy =2andd;=1forj=1,... N—1.
10.3.4 G-NI for parabolic equations

When we consider time-dependent problems, the spectral G-NI method can be used
for the spatial approximation. For the discretization of the time derivative we can then
apply a finite difference scheme. In this section, we consider one specific instance, the
6-method that was introduced in Sect. 5.1.

The 6-method applied to the G-NI spatial discretization of the homogeneous
Dirichlet problem (5.4), defined on the space interval —1 < x < 1, is formulated as
follows:
for each k > 0, find uf; € Vy = {vy € Qn : vy(—1) = vy (1) = 0} such that

k1 _ ok
(uN —uy

,vN> +aN(9u',§,+1 +(1— G)ug‘\,,vN)
At v

=0 (" on)n+(1—0) (ffvw)n Yy € Vi,

244 10 Spectral methods

with uS\), = upn € Vy being a convenient approximation of uo (for instance, the in-
terpolant H,\(,;LLuo introduced in (10.14)). As usual, (-,-)y denotes the discrete scalar
product obtained using the Gauss-Legendre-Lobatto (GLL) numerical integration for-
mula, while ay(-,-) is the approximation of the bilinear form «(-,-) obtained by re-
placing the exact integrals with the above-mentioned numerical integration formula.
By proceeding as we did in Sect. 5.4 for finite element spatial discretizations, it can
be proved that also in this case, the 8-method is unconditionally stable if 6 > é, while
for 6 < ; a sufficient condition for absolute stability if

At < C(O)N~*. (10.42)

Indeed, the proof can be checked by repeating the same steps we followed earlier in
the case of the finite element approximation. In particular, we define the eigenvalue-
eigenfunction pairs (A;,w) of the bilinear form ay(,-), for each j =1,....N — 1,
through the relation

w,];, cVy : (JN(W{;/,VN) =A; (w,{,,vN) Yvn € Vy.
Hence L
—an(wh,wy)
=))
wylly

Using the continuity of the bilinear form ay(-,-), we find
MR
TR
‘We now recall the following inverse inequality for algebraic polynomials ((CHQZ06])
3C>0: ”"5\1”%2(71,1) <C ||VN||E2(71,|) Yvy € Qn.
Then]
L I
S (4
Recalling the equivalence property (10.54), we conclude that
A <3CIMN* Vj=1,....N—1.

Inequality (10.42) is now obtained using the stability condition (5.35) (with the finite
element eigenvalues {4} replaced by the A;’s). Moreover, we have the following
convergence estimate, forn > 1 and Q = (—1,1),

rn
n n (11 -r au
||u(t)_MNHLZ(Q) < C(t){N (|u0|Hr(-Q) +/‘ at()

+u() @ +At/H atz

For the proof, refer to [CHQZ06, Chap. 7].

10.4 Generalization to the two-dimensional case 245

10.4 Generalization to the two-dimensional case

Let us consider as a domain the unit square Q = (—1,1)2. Since Q is the tensor
product of the one-dimensional interval (—1, 1), it is natural to choose as nodes

Xij = (xi,xj), i,j=0,...,N,

whose coordinates both coincide with the one-dimensional GLL nodes x;, while we
take as weights the product of the corresponding one-dimensional weights

o = o, i,j=0,...,N.

The Gauss-Legendre-Lobatto (GLL) integration formula in two dimensions is there-
fore defined by

N
/f(x) dx~ Y af(xij),
5 i,j=0
while the discrete scalar product is given by
N
(f.8)v =Y, aijf(xij)g(xij)- (10.43)
i,j=0

Analogously to the one-dimensional case it can be proved that the integration formula
(10.43) is exact whenever the integrand function is a polynomial of degree at most
2N — 1. In particular, this implies that

(fag)N:(fag) Vf,gsuchthatfge(@m,l.

In this section, for each N, Qu denotes the space of polynomials of degree less than
or equal to N with respect to each of the variables, introduced in (10.2).
We now consider as an example the problem

Lu=—div(uVu) +ou=f inQ=(—1,1)
u=~0 ondQ.

By assuming that p(x) > to > 0 and o(x) > 0, the corresponding bilinear form is
coercive in H(')(.Q) Its G-NI approximation is given by

find uy € Vy : aN(uN,vN) = FN(VN) Yy € Vy,
where
Vv ={ve€Qn:v|yq =0},
an(u,v) = (UVu,Vv)n + (ou,v)y
and

Fn(vw) = (f,vn)n-

246 10 Spectral methods

As shown in the one-dimensional case, also in higher dimensions the G-NI formu-
lation is equivalent to a collocation method where the operator L is replaced by Ly,
the pseudo-spectral operator obtained by approximating each derivative by the corre-
sponding interpolation derivative (10.40).

In the case of spectral element methods, we will need to generalize the GLL numerical
integration formula on each element €. This can be done thanks to the transformation
@i+ 2 — O (see Fig. 10.2). Indeed, we can first of all generate the GLL nodes on
the generic element €2, by setting

k . .
X,('j):cpk(x,'j), 1,]:07.”,1\7,
then defining the corresponding weights

||

(k)
J 4’

o

:aij|deth|:aij i,j=0,...,N,
having denoted by J; the Jacobian of the transformation ¢, and by || the measure

of ;. The GLL integration formula on £2; hence becomes

N
/) ax =18 () = Y ol r(x). (10.44)

ol i,j=0

The spectral element formulation with Gaussian numerical integration, which we will
denote by SEM-NI, becomes

find uy € VS : acn(un,vn) = Fen(vy) Yy € VE. (10.45)

We have set
acn(un,vn) =Y ag n(un,vn)
k

where aq, y(uy,vy) is the approximation of ag, (uy,vy) obtained by approximating
each integral on ; that appears in its bilinear form via the GLL numerical integra-
tion formula in £ (10.44). The term Fc y is defined in a similar way, and precisely
Fen(vn) = LiFo,n(vn), where Fo v is obtained, in turn, by replacing [o fvydx
with the formula 74" (fvy) for each k.

Remark 10.3. Fig. 10.10 summarizes rather schematically the origin of the different
approximation schemes evoked up to now. In the case of finite differences, we have
denoted by L, the discretization of the operator through finite difference schemes
applied to the various derivatives appearing in the definition of L. °

10.4.1 Convergence of the G-NI method

As observed in the one-dimensional case, the G-NI method can be considered as a
generalized Galerkin method. For the latter, the analysis of convergence is based on
the following general result:

10.4 Generalization to the two-dimensional case 247

Lemma 10.1 (Strang). Consider the problem
findueV: a(uv)=F(v) Yvev, (10.46)

where V is a Hilbert space with norm || - ||y, F € V' a linear and bounded func-
tional on V and a(-,-) : V. xV — R a bilinear, continuous and coercive form
onV.

Consider an approximation of (10.46) that can be formulated through the follow-
ing generalized Galerkin problem

finduy, €V, : ah(uh,vh) = Fh(vh) Y, € Vi, (10.47)

{Vh, h > 0} being a family of finite-dimensional subspaces of V.
Let us suppose that the discrete bilinear form ay(-,-) is continuous on Vj, X Vj,
and uniformly coercive on Vj, that is

Ja* > 0 independent of h such that aj,(vy,,vy,) > o ||va |3 Vv, € V.

Furthermore, let us suppose that Fj, is a linear and bounded functional on V.
Then:

1. there exists a unique solution uy, to problem (10.47);

2. such solution depends continuously on the data, i.e. we have
F

sup w(vh)

llunllv < 3
wevi{oy [vallv

*

3. finally, the following a priori error estimate holds

. M
=l < ot {(14 00) =l

+ 1* sup |a(wh,vh)—ah(wh,vh)|
0y, ev,\ {0} [[vallv
1 F — F
U |F (vi) — Fp(va)|
o, v\ {0} vallv

(10.48)

)

M being the continuity constant of the bilinear form a(-,-).

Proof. The assumptions of the Lax-Milgram lemma for problem (10.47) are satisfied,
so the solution of such problem exists and is unique. Moreover,

1
lanlly <, WFilly

F
1Fillyy = sup O

being the norm of the dual space V;, of V.
vieVp\ {0} [vallv

248 10 Spectral methods

STRONG FORM WEAK FORM
Lu=f ueV: a(u,v)=Fw)VWweV

Galerkin

INTEGRAL FORM
Lu = div(F(u)) = f L, Galerkin-Finite Elements
up € Vi, : a(uh,vh) = F(Uh) Yop € Vj,

Galerkin-Spectral

Fatte Vilinmes uy € Vy : a(uN,vN) = F(UN) Yoy € Vy
% Fh(uh) -n = f
o0y Qv
SEM
VQy, control volume —
un € Vzg : ac(uN,vN) = Fc(UN) Yoy € V]\c;
—— Generalized Galerkin
[Discontinuous Galerkin (DG)
Collocation
at internal nodes
FE with numerical integration
up € Vi o ap(up,vp) = Fp(vp) Yo, € V4,
Finite Differences " " w(un, on) h(vh) Yo "
Laua = fa .
I G-NI
Spectral uy € Vv an(un,vn) = Fy(vn) Von € Vy
collocation]
Lyun = fn
SEM-NI

un € V]? : ac,N(uN,vN) = FC,N(UN) Yoy € ng

Fig. 10.10. Reference frame for the main numerical methods addressed in this book

Let us now prove the error inequality (10.48). Let wy, be any function of the subspace
V.. Setting o}, = u, — wy, € V), we have:

a*||oy|l3 < an(on,0) [by the coercivity of ay,]
= ap(up, 0p) — ap(wp, op)
= Fh(Gh) — ah(wh, Gh) [thanks to (10.47)]
) = F(0n) + F(on) — an(wn, o1)
(on)] +a(u,0n) — ap(wp,05) [thanks to (10.46)]
(on)] + a(u—wp, o) + [a(wp, On) — ap(wp,0n)]. (10.49)

= Fy(oy,
= [Fi(on) — F
= [Fu(on) — F

10.4 Generalization to the two-dimensional case 249

If o), # 0, (10.49) can be divided by a*|| o},

v, to give

||Gh||v < 1 {|a(uwh76h)| |a(wh76h)7ah(Wh,Gh)|

o l|onllv l[onllv
n |Fr(on) F(Gh)|}

l|onllv

1 a\wp,vy) —ap(wp,v
S {M”“_WhHV-i- sup la(wn, v) = an(wh, vi)|

nEVi\ {0} [vallv
F —F
+ sup 1Fi(vn)) [by the continuity of a].
wevinfoy allv

If 07, = 0 such inequality is still valid (it states that O is smaller than a sum of positive
terms), although the proof breaks down.

We can now estimate the error between the solution u of (10.46) and the solution
uy, of (10.47). Since u — up, = (u — wy,) — 0}, we obtain

lu—unlly < Nu—=wpllv +llonllv < [|u—wpllv

1 a\wpy,vy) —ap(wy,v
T o {M”“_Wth—i- sup la(wn, vi) = an(wh)|

RV {0} [vallv
+ sup |Fi(vi) = F (vn)]
heVi\ {0} [vallv

M 1 a(wp.vy) — ap(wp,v
- <1Jr *)H“WthJr . sup |a(wiyvi) = an(wi, vi)|
* LARRANTY vallv
1 g —F
+ . sup | (vi) (Vh)|.
o Vhevh\{o} ||Vh||V

If the previous inequality holds Vwj, € V},, it also holds when taking the infimum when
wy, varies in Vj,. Hence, we obtain (10.48). o

By observing the right-hand side of inequality (10.48), we can recognize three dif-
ferent contributions to the approximation error u — uy: the first is the best approxima-
tion error, the second is the error deriving from the approximation of the bilinear form
a(-,-) using the discrete bilinear form a(-,-), and the third is the error arising from
the approximation of the linear functional F(-) by the discrete linear functional Fj,(-).

Remark 10.4. If in the preceding proof we choose wy, = uj,, u; being the solution to
the Galerkin problem

uy € Vi o alup,vy) =F(vy) Yy €V,

250 10 Spectral methods

then the term a(u — wy,, 03,) is null thanks to (10.46), (4.1). It is therefore possible to
obtain the following estimate, alternative to (10.48)

lu—uplly < [lu—ully

1 *a - *7
R J—- |la(uy, vi) —an(uy,vp)|
Oy, e\ {0} vallv

1 F — F
N up |F(vp) h(Vh)|.

a*,, ev,\ {0} [vallv

The latter highlights the fact that the error due to the generalized Galerkin method can
be bounded by the error of the Galerkin method plus the errors induced by the use of
numerical integration for the computation of both a(-,-) and F(-). °

We now want to apply Strang’s lemma to the G-NI method, to verify its conver-
gence. For simplicity we will only consider the one-dimensional case. Obviously, V,,
will be replaced by Vi, u;, by uy, v;, by vy and wy, by wy.

First of all, we begin by computing the error of the GLL numerical integration formula

E(g,vn) = (gvn) — (& VNN,

g and vy being a generic continuous function and a generic polynomial of Qy, re-
spectively. By introducing the interpolation polynomial IT$ g defined according to
(10.14), we obtain

E(g,vv) = (g,vv) — (IT¢ g, vn)N

€Qn-1 O

N
= (g,vv) — (T g vy) + (ITg g, V) — (TG g, v)n
—_———

— (gvw) — (H}\(,;Lng) €Qon-—1 (10.50)

+ (MG g, vw)n — (TG g, vy)v by (10.27)]

= (g - Hgfl]‘g;VN) + (H}\(J;Elfg - ngLLgva)N-

The first summand of the right-hand side can be bounded from above using the Cauchy-
Schwarz inequality as follows

(g — My, vw)| < Hg*Hgfﬁgnﬁ(q,l)||VN||L2(71,1)~ (10.51)

To find an upper bound for the second summand, we must first introduce the two
following lemmas, for the proof of which we refer to [CHQZ06]:

10.4 Generalization to the two-dimensional case 251

Lemma 10.2. The discrete scalar product (-,-)n defined in (10.25) is a scalar
product on Qy and, as such, it satisfies the Cauchy-Schwarz inequality

(@, w)n| < llollvllvlly, (10.52)

where the discrete norm || - ||y is given by

loly = V(9,9)n V¢ €Qy. (10.53)

Lemma 10.3. The “continuous” norm of L*(—1,1) and the “discrete” norm || - ||n
defined in (10.53) verify the inequalities

Ivvllzr,ny < lvwllv < \/3||VN||L2(—1,1) Vo € Qu, (10.54)

hence they are uniformly equivalent on Q.

By using first (10.53) and then (10.54) we obtain
(MG g — TG g, vw)n| < |TT¢H g — TTGH-g |l [|vwlln
<3 [I\Hﬁfﬁg*gllm(q,l) + ||H1(\/}LL8*8||L2(7|,1)} ||VN||L2(7|,1)-

Using such inequality and (10.51), from (10.50) we can obtain the following upper
bound

|E(g,vn)| < [4I\Hﬁf€g—g||u<_1,1) +3||H1§LLg_g||L2(—lyl)} lvallz-1n-

Using the interpolation estimate (10.17), we have that

1 s 1\’
Eewi<cl (1) + () |lehec il

provided that g € H*(—1, 1), for some s > 1. Finally, as foreach N >2,1/(N—1) <
2 /N, the Gauss-Legendre-Lobatto integration error results to be bound as

1 S
Eeoml <€) lelhwc o lowlhac (1055)

for each g € H'(—1,1) and for each polynomial vy € Q.

At this point we are ready to evaluate the various contributions that intervene in
(10.48). We anticipate that this analysis will be carried out in the case where suitable
simplifying hypotheses are introduced on the differential problem under exam. We

252 10 Spectral methods

begin with the simplest term, i.e. the one associated with the functional F, supposing
to consider a problem with homogeneous Dirichlet boundary conditions, in order to
obtain F(vy) = (f,vny) and Fy(vy) = (f,vn)n. Provided that f € H*(—1, 1) for some
s > 1, then,

wp FOV =BG _ () (]

vneEVN\{0} [[vwllv vnEVN\{0} l[vwllv
[E(f,vw)]

1 s
C(N> Il ulvwlieey g 56
sup < sup

wevnfoy nllv — yevgor v llv

1 s
<c() Ilhocro

having exploited relation (10.55) and having bounded the norm in L?(—1, 1) by that
inH(—1,1).

As for the contribution arising from the approximation of the bilinear form,

sup la(wy,vn) —an(wn,vN)|
uyEVA\{0} lvwllv

)

we cannot explicitly evaluate it without referring to a particular differential prob-
lem. We then choose, as an example, the one-dimensional diffusion-reaction problem
(10.22), supposing moreover that ¢ and ¢ are constant. Incidentally, such problem
satisfies homogeneous Dirichlet boundary conditions, in accordance with what was
requested for deriving estimate (10.56). In such case, the associated bilinear form is

a(u,v) = (uu' V') + (ou,v),
while its G-NI approximation is given by
ay(u,v) = (uu' V)y + (ou,v)y.
‘We must then evaluate
a(wy,vn) —an(wy,vw) = (wy, viy) — (Rwy, Vn)N + (0wn, vv) — (OWN, Vv)N-
Since wivy € Qan_2, if we suppose that p is constant, the product pwjvy is inte-
grated exactly by the GLL integration formula, that is (uw),vyy) — (Uwj,vy)n = 0.
‘We now observe that
(owy,vy) — (own,vN)n =E(owy,vy) = E(o(wy —u),vn) + E(ou,vy),

and therefore, using (10.55), we obtain

1
E(tu — o) <€) It =)l 1wl 1

10.4 Generalization to the two-dimensional case 253

1 N
Euml <¢ () ol sl 1y

On the other hand, since o is also constant, setting wy = IT¢ Ly and using (10.17),
we obtain

1 s—1
ey =l 11y < Clhe= Tl 1y <€ () ol

Hence,
a(wy,vy) —an(wy, vy 1N

N EVA\ {0} lvwllv N
We still need to estimate the first summand of (10.48). Having chosen wy = Hﬁ“‘u
and exploiting (10.17) again, we obtain that

1 N
GLL
=l == Tl 1y <€ () By 1039)

provided that u € H**!(—1, 1), for a suitable s > 1. To conclude, thanks to (10.56),
(10.57) and (10.58), from (10.48) applied to the G-NI approximation of problem
(10.22), and under the previous hypotheses, we find the following error estimate

1 N
=ty <€y) (Ul + il 1)

The convergence analysis just carried out for the model problem (10.22) can be
generalized (with a few technical difficulties) to the case of more complex differential
problems and different boundary conditions.

Example 10.2 (Problem with regularity depending on a parameter). Let us con-
sider the following (trivial but instructive) problem

—u' = 0, (07 1]
_u”:—a(a—l)(x—l)“’z, €(1,2),
u(0) =0, u(2) =1,

with o € N. The exact solution is null in (0, 1) and equals (x — 1)* for x € (1,2). Thus
it belongs to H*(0,2), but not to H**1(0,2). We report in Table 10.1 the behaviour of
the error in H'(0,2) norm with respect to N using a G-NI method for three different
values of o. As it can be seen, when the regularity increases, so does the order of
convergence of the spectral method with respect to N, as stated by the theory. In the
same table we report the results obtained using linear finite elements (this time N de-
notes the number of elements). The order of convergence of the finite element method
remains linear in either case. n

254 10 Spectral methods

Table 10.1. Behaviour of the error of the G-NI spectral method for varying polynomial degree
N and solution regularity index (left). Behaviour of the error of the linear finite element method
for varying number of intervals N and solution regularity index (right)

N a=2 o=3 a=4 N o=2 oa=3
4 0.5931 0.2502 0.2041 4 0.4673 0.5768
8 03064 0.0609 0.0090 8 0.2456 0.3023
16 0.1566 0.0154 7.5529-10~* 16 0.1312 0.1467
32 0.0792 0.0039 6.7934 107 32 0.0745 0.0801
1 D=~ "
0.9 SO 0.9-
03- M“‘%}\\\‘ : 03-
Sy, | o
0.5- \“ “‘\\ TS E 0.5-
0.4- S NS 0.4-
0.3 “

0.3
0.2
0.15

0.2
0.15

0 T T T 0 T T T
-0.7071 0 1 -0.7071 0 1

SeuS\\\ g wuNNE
O ARV
e

Fig. 10.11. The grid (left) and the solution isolines obtained using the spectral finite element
method (right) for the problem in Example 10.3

Example 10.3. Let us take the second example illustrated in Sect. 4.6.3, this time
using the spectral element method. Let us consider a partition of the domain into
four spectral elements of degree 8 as shown in the left of Fig. 10.11. The solution
obtained (Fig. 10.11, left) does not exhibit any inaccuracy in proximity of the origin, as
opposed to the solution obtained using finite elements in the absence of grid adaptivity
(compare with Fig. 4.24, left). |

10.5 G-NI and SEM-NI methods for a one-dimensional model
problem

Let us consider the one-dimensional diffusion-reaction problem
—[(14+x*) i (x)] +cos(x) u(x) = f(x), xe(—1,1), (10.59)
together with mixed-type boundary conditions
u(—=1)=0, u'(1)=1.

The goal of this section is to discuss in detail how to formulate the G-NI and SEM-
NI approximations. For the former, we will also provide the corresponding matrix
formulation as well as a stability analysis.

10.5 G-NI and SEM-NI methods for a one-dimensional model problem 255

10.5.1 The G-NI method
The weak formulation of problem (10.59) is:
find ueV:a(u,v)=F() WYWweV,

V={veH!'(~1,1) : v(=1)=0},a:V xV — Rand F : V — R being the bilinear
form and the linear functional, respectively, defined by

1

1
a(u,v) = /(1 +x%) i (x) v'(x)dx—|—/cos(xz)u(x)v(x)dx,
“1

-1

/f x)dx+2v(1).

The spectral-Galerkin formulation (SM) takes the following form
find uy €Vy suchthat a(uy,vy)=F(vny) Yvy € Vy, (10.60)
with
VNZ{VNGQN : VN(—I)ZO}CV. (10.61)

In order to obtain the corresponding G-NI formulation, it is sufficient to approximate
in (10.60) all scalar products on Lz(— 1, 1) with the GLL discrete scalar product de-
fined in (10.25). We then have

find u,’{, cVy: aN(u;,,vN) = FN(VN) Yoy € Wy, (10.62)

having set
ay(u,v) = ((L+x2)u' V) + (cos(x)u,v)
(10.63)
=Y ((1+x2) ' (xi oc,—i—Zcos Yu(x;) v(x;) o4
i=0 i=1

and N

Fv(v) = (fv)v+2v(1) = Y flxi)v(x) o+ 2v(1). (10.64)

i=1

Note that this requires f to be continuous. We observe that the index i of the last sum in
(10.63) and of the sum in (10.64) starts from 1, instead of 0, since v(xp) = v(—1) =0.
Moreover, the formulations SM (10.60) and G-NI (10.62) never coincide. Consider,
for instance, the diffusive term (1 +x?) (u})’vi: this is a polynomial of degree 2N.
Since the GLL integration formula has exactness degree 2N-1, the discrete scalar prod-
uct (10.25) will not return the exact value of the corresponding continuous scalar prod-
uct ((1+x%) (uy)',vy)-

To obtain the matrix formulation of the G-NI approximation, we denote by v;, for

256 10 Spectral methods

i=1,...,N, the characteristic polynomials associated to all GLL nodes except to the
one where a Dirichlet boundary condition is assigned, xo = —1. Such polynomials
constitute a basis for the space Vy introduced in (10.61). This allows us, in the first
place, to write the solution uy, of the G-NI formulation as

(%)) W (%)-

uy (x) =

™=

1

J

Secondly, we can choose in (10.62) vy = y;, i = 1,...,N, obtaining

an(uy, ¥i) = Fx(wi), i=1,...,N,

i.e.

™=

uy(xj)an (Wi, ¥i) = Fn (i), i=1,....N.
1

J

In matrix form,
Auy =f,

having uy, = (uy(x;)), A = (a;j), with

N N
aij=an(y;, ¥i) = Z(1+x%)‘l/§(xk)‘lfz{(xk)ak+ZCOS(X/%)Wj(xk)Wi(Xk)O‘k

=0 =1
= Y (1+x0) w00 W () 0% +cos () a4 6,
=0

and

f:(fl)a con fi = FN(WI):(faWI)N'i'2WI(1)
N
Y o) wilx) o +2 wi(1)
k=1

o; f(x;) for i=1,...,.N—1,
| anf(1)+2 for i=N.

We recall that the matrix A, besides being ill-conditioned, is full due to the presence
of the diffusive term.

Finally, we can verify that the G-NI method (10.62) can be reformulated as a suitable
collocation method. To this end, we wish to rewrite the discrete formulation (10.62)
in continuous form in order to counterintegrate by parts, i.e. to return to the initial
differential operator. In order to do this, we will resort to the interpolation operator
H,\(,;LL defined in (10.15), recalling in addition that the discrete scalar product (10.25)
coincides with the continuous one on L?(—1,1) if the product of the two integrand
functions is a polynomial of degree < 2N — 1 (see (10.36)).

10.5 G-NI and SEM-NI methods for a one-dimensional model problem 257

We then accurately rewrite the first summand of ay (u}, viv), ignoring the * to simplify
the notation. Thanks to (10.36) and integrating by parts, we have

((+x2)u§\,,v§\,)N
= (I (L4 uy) vi)y = (I (142) Vi)
= —([IGE((1+x2) uly)) vw) + TIGEE (1 +x2)) (1) vw (1)
= = ([(U +22)uy)V, vw)y + G (U422) (1) v (1)
Hence, we can reformulate (10.62) as

find uyeVy : (Lvun,vn)y = (f,vn)N
(10.65)
+ (2= G ((1+x2) uly) (1)) vy (1) Yoy € Vy,

with
Lyuy = —[IIFH (1 4+ 2%y)]+ cos(x®) uy = —Du (1 +x%) uy) + cos(x*) u,

Dy being the interpolation derivative introduced in (10.40). We now choose (10.65)
vw=Vy;. Fori=1,...,N—1, we have

(Lo)y = (— [IIGE((1+2))])+ (cos(a®) v,),

N—1 N—1
== Z,l i [ngLL((l +x%) ”;v)] (xj) wilx;) + Z a; cos(x 2) un (x;) yi(x;)
J= j=
= —oy [TIFH ((1+22)uy)] (xi) + 04 cos(x?) un (i) = (f, W)
N—1
= _Z,lajf(xj)wi(xj) = o f(x;),
=

that is, exploiting the definition of the Ly operator and dividing everything by ¢,
LNMN(X,') :f(xl-), = 1,...,N7 1. (1066)
Having set vy = yy in (10.65), we obtain instead

(Lvun, wv)y = —ow [T ((1 +22) uly)] (xw) + o cos(x%) un (xn)
= (foyw)n +2 = TIgH((1+x%) uy) (1)
= o f(xy) +2— IO ((1+x2) u)y) (1),

or, dividing all by ay,

Lyuy(xy) = f(xn) + O:N (2 — G (1 4+ uy) (1)) (10.67)

Equations (10.66) and (10.67) therefore provide the collocation in all the nodes (ex-
cept the potential boundary ones where Dirichlet conditions are assigned) of the given

258 10 Spectral methods

differential problem, after approximating of the differential operator L using opera-
tor Ly.

Finally, we analyze the stability of formulation (10.62). Since we are dealing
with a generalized Galerkin-type of approach, we will have to resort to the Strang
Lemma 10.1. This guarantees that, for the solution uy, of (10.62), the estimate

F
sup |Fy ()]

(10.68)
wevw\foy vy

lunllv <,

holds, a* being the (uniform) coercivity constant associated to the discrete bilinear
form ay(-,-). We apply this result to problem (10.59), by computing first of all o*.
By exploiting the definition (10.53) of the discrete norm || - ||y and the equivalence
relation (10.54), we have

an(uy,uy) = ((1+x2)u§v,u§v)N+ (cos(xz)uN,uN)N

Y

(uiys iy)y +cos(1) (uw,un) = |y 1§ + cos(1) flunllF;

a2y + €0l) > cos(D)

Y

having moreover exploited the relations

min(1+x7) > min (14+x°) =1,
j xe[-1,1]

mincos(x?) > min cos(x?) = cos(1).
j xe[-11]

This allows us to identify o* using the value cos(1). At this point, we can evaluate the
quotient |[Fy(vy)|/||va|lv in (10.68). Indeed, we have

[Envm)l = (£, ow) y + 208 (D] < [f Dl lvwlly + 2 on (1))
1

< V3£l Iowlly +2| Vi) da| < V317l ol +2 V2 wwly,
-1

having once more used the equivalence property (10.54) together with the Cauchy-
Schwarz inequality in its discrete (10.52) and continuous (3.7) versions. We can thus

conclude that
|Fv(v)|
[vwllv

<V3|flv+2V2,

that is, returning to the stability estimate (10.68),
1
My < 3 2V2|.
ludlly < o gy [Vl -+22]

Finally, we note that || f{|y < 2{| f{[co—1,1))V/f € CO([—1,1)).

10.5 G-NI and SEM-NI methods for a one-dimensional model problem 259

10.5.2 The SEM-NI method

Starting from problem (10.59), we now want to consider its SEM-NI formulation,
i.e. a spectral element formulation that uses the integration formulae of type GLL
in each element. Moreover, we propose to provide a basis for the space where such
formulation will be implemented.
We first introduce a partition of the interval (—1,1) in M (> 2) disjoint sub-intervals
Q= (Xp—1,%m), withm = 1,... M, denoting by h,, = x,, — x,,—1 the width of the m-
th interval, and setting & = max,, h,,,. The SEM formulation of problem (10.59) takes
the form

find uy € VS :a(uy,vy) =F(vy) Yoy €V, (10.69)

with
vy = {w e C([-1,1)) : w|, €Qu, Vm=1,....,M, vy(—1)=0}.

We note that the functional space V,\? of the SEM approach loses the “global” nature
that is instead typical of a SM formulation. Similarly to what happens in the case
of finite element approximations, we now have piecewise polynomial functions. By
exploiting the partition {€,,}, we can rewrite formulation (10.69) in the following
way

M M
find uy€VS: Y aq,(un,vn) =Y Fa,(vw) Yoy €V, (10.70)
m=1 m=1

where
aq, (un,vn) = a(un,vn)|q

/ (1 2) () Vi () i+ /] cos () iy (x) v (x) dx,

Xm—1

while .
Fo,(vw) = F(w)| o, = / ") () dx+ 20 (1) St

m—1
The SEM-NI formulation can be obtained at this point by approximating in (10.70)
the continuous scalar products by the discrete GLL scalar product (10.25):

M M
find uyeVY: Y avo,(y,vn) =Y Fya,(n) Yoy € VY,
m=1

m=1

where
ay, 0, (u,v) = ((1 +x2)”/7‘/)1v,9m + (Cos(xz)”v")N,Qm’

Fy.0,(v) = (£:v) y.q, +2v(1) S,

N
(M7V)N.Q = Z“(xl(m))v(xz('m)) ai(m)7
9y ‘m l=0

260 10 Spectral methods
(m)

xl(»m) being the i-th GLL node of the sub-interval £2,, and ¢
gration weight.

the corresponding inte-

Starting from the reference element Q= (—1,1) (which, in the case under exam,
coincides with the domain £ of problem (10.59)) and calling

h X+ X
Pu(&)="TE+T T g1,
2 2
the affine map from Q into Q, form=1,...,M, we will have
h
5" = gulx), o ="ay, i=0...N (10.71)

(m)

thatis x;” is the image, through the mapping ¢, of the i-th GLL node of Q.

We introduce, on each £,,, the set {l//i(m) }i\’: o of basis functions, such that

v () = vy (x) Vx € Q,

V; being the characteristic polynomial introduced in (10.12) and (10.13) associated to
node x; of GLL in Q. Having now a basis for each sub-interval £2,,, we can write the
solution uy of the SEM on each £,, as

Zu y/l (x) Vx € Qp, (10.72)
where ul(m) = uN(xl(m)).
Since we want to define a global basis for the space V,\? , we start by defining the basis
functions associated to the internal nodes of £2,,, form = 1,..., M. For this purpose, it

will be sufficient to extend trivially, outside £2,,, each basis function wi(m)

, yielding
(m) (x) = llfl(m) (x), X € Qp
0, otherwise.

These are, overall, (N — 1)M functions that behave as shown in Fig. 10.12. For each
end node x,, of the £,, sub-domains, with m = 1,...,M — 1, we define instead the
basis function

‘/’I(Vm)(x)a X €y
V=1 W, xe o,
0, otherwise,

obtained by “pasting” ‘VN) and l/l(() together (see Fig. 10.13). In particular, we

observe that yj; is not needed, since a homogeneous Dirichlet condition is assigned

at xo = —1, whereas we need yj; that we indicate with l//l(\,M). Thus, by the choice of

10.6 Spectral methods on triangles and tetrahedra 261

1

Ty (m)
wi
1 1 - | \/\‘\ 1
XO gm—l Xi(™ gm XM
Fig. 10.12. basis function V~/[<m> associated to the internal node xl(m)
1
*
wm
| | | | |
N T NVAR T 1
X0 Xm-1 Xm Xm+l XM

Fig. 10.13. basis function y;;, associated to the internal node x,,

boundary conditions made, there exist M basis functions associated to the endpoints
of the sub-intervals £2,,. (Had Dirichlet conditions been applied at both endpoints of
Q, we would have had the (M — 1) functions y;,, m=1,....M — 1.)

Hence, we have n = (N — 1)M + M basis functions for the space V) altogether. Each
function uy € VA(; can then be expressed in the following way

M N
Z Up Wm Z (x))

HM\

with u!, = uy(x,,) and ul(»m) defined as in (10.72). This way, the Dirichlet boundary
condition is respected.

10.6 Spectral methods on triangles and tetrahedra

As we have seen, the use of spectral methods on quadrilaterals in two dimensions
(or parallelepipeds in three dimensions) is made possible by the use of tensor prod-
ucts of one-dimensional functions (on the reference interval [—1,1]) and of the one-
dimensional Gaussian numerical integration formulae. Since a few years, however, we
are witnessing a growth of interest in the use of spectral-type methods also on geome-
tries that do not have tensor product structure, such as, for instance, triangles in 2D
and tetrahedra, prisms or pyramids in 3D.

We briefly describe Dubiner’s pioneering idea [Dub91] to introduce polynomial bases
of high degree on triangles, later extended in [KS05] to the three-dimensional case.

262 10 Spectral methods

~ X2
T

-1 -1

Fig. 10.14. Transformation of the reference triangle T into the reference square Q The slanting
segments are transformed into vertical segments

We consider the reference triangle
f: {(X[,XQ) € RZ -l <xLx0 s x +x< 0}
and the reference square

0={(&,&E)eR? . —1<&,6 <1}

The transformation
14+x;
(x1,x2) = (1,8), &i1=2 -

1, &L=x (10.73)
17)(2

is a bijection between T and Q Its inverse is given by

(E&) > (m), xi= . (1+E)1-E)—1, n=&.

5 (
As highlighted in Fig. 10.14, the mapping (x,x,) — (&1, &) sends the ray in 7T issuing
from the vertex (—1,1) and passing through the point (x;, —1) to the vertical segment
of Q of equation & = x;. The latter therefore becomes singular in (—1,1). For this
reason we call (&1, &,) the collapsed Cartesian coordinates of the point of the triangles
having coordinates (x1,x7).

We denote by {J,Ea’ﬁ) (&), k> 0} the family of Jacobi polynomials that are orthogonal
with respect to the weight w(&) = (1 — &)*(1+ &), for a, B > 0. Hence,

1
Vk>0, J“Pep, and /J,ﬁ“ﬁ)(g) (PN EVw(E)dE =0 Ym#£k. (10.74)
-1

We observe that, forx = 8 =0, JIEO’O) coincides with the k-th Legendre polynomial L.
For each pair of integers k = (kj,k,) we define the so-called warped tensor product
basis on Q

P (G1,62) = Wy (81) Why ks (82), (10.75)

10.6 Spectral methods on triangles and tetrahedra 263

with ¥, (&) = /5" (&) and %, 1, (&) = (1 - &)IE O (&), Note that Py is a
polynomial of degree k; in §; and ky + k; in &,. R
By now applying mapping (10.73), we find the following function defined on T

P (x1,:2) = Pu(1,6) = (21“1 1)(1)20). (10.76)

17)62

This is a polynomial of total degree k| + k7 in the variables x1, x2, i.e. @k € Py ¢, (f)
The orthogonality of the Jacobi polynomials (10.74), for each m # k, allows to prove
that

/‘Pk X1,%2) Qm (x1,x2) dxy dxy = /‘Ikoo (&1) Jm1 (51)0151)'
(10.77)

/JkaH—l 0 ’('122rn1+170)(1g'2) (1— 'g’z)k] +my+1 d'éz) =0.

Hence, {@x : 0 <k, kz, ki+k <N } constltutes an orthogonal (modal) basis for the
space of polynomials Py (7)), with dimension TN+ 1)(N+2).

The orthogonality property is undoubtedly convenlent as it allows to diagonalize the
mass matrix (see Chap. 5). However, with the modal basis described above, imposing
the boundary conditions (in case the computational domain is a triangle T), as well
as satisfying the continuity conditions on the interelements (in case spectral element
methods with triangular elements are used) results to be uncomfortable. A possible
remedy consists in adapting such basis by generating a new one, which we will denote
by {@te}; ba stands for boundary adapted. In order to obtain it, we will start by

replacing the one-dimensional Jacobi basis Jlga,o) (&) (with o = 0 or 2k+ 1) with the

adapted basis constituted by:

e two boundary functions: 1“;5 and 1;5 ;

. (NB— 1) bubble functions: ('5%)('3*) ,E P)g), k=2,...,N, for suitable fixed
a,p>1.

These one-dimensional bases are then used as in (10.75) instead of the non-adapted
Jacobi polynomials. This way, we find vertex-type, edge-type and bubble functions.
Precisely:

e vertex-type functions:

@Vl(il,iz)z(l_zgl)(l_zé) (vertex V) = (—1,—1)),

¢VZ(51752):(1251)(1;§2) (vertex V2 = (1,=1).

1+&

DV3(§1,8) =)

(vertex V3 = (—1,1));

264 10 Spectral methods

Fig. 10.15. Basis functions of degree N = 5: boundary-adapted bases on the square (first from
the top) and on the triangle (second from top) associated to the values f = 1 and & = 0; Jacobi
basis J,Ea’ﬁ) on the square (second from the bottom) corresponding to the values ¢ = 8 =0
(Legendre case); Dubiner basis functions { @} on the triangle (bottom)

10.7 Exercises 265

e edge-type functions:

o @a) = () (e (1) 2k,

DY (E,8) = (2&)(1;@) (1252)J(B€)(€2)’ 2 <k <N,
Vzw(él;éz) (1;&) (1 ;'éZ) (1262)‘](5;@(&2)’ 2<ky <N:

e bubble-type functions:

ol 6= (1)))
(57) (e,

2 <ki,ky, ki +ky <N.

Although the choice f = § = 2 ensures the orthogonality of the bubble functions,
generally we prefer the choice f = 1, § = 0, which guarantees a good sparsity of
the mass and stiffness matrices and an acceptable condition number for the stiffness
matrix for second-order differential operators.

In Fig. 10.15 we report some examples of bases on triangles corresponding to different
choices of f and § and different values of the degree N.

Using these modal bases, we can now set up a spectral Galerkin approximation
for a boundary-value problem set on the triangle 7, or a SEM-type method on
a domain Q partitioned in triangular elements. We refer the interested reader to
[CHQZ06, CHQZO07, KS05].

10.7 Exercises

1. Prove inequality (10.52).
2. Prove property (10.54).

3. Write the weak formulation of problem

—((1+x)u' () +ulx) = fx), 0<x<1,
{ u@0)=a, u(l)=4,
and the linear system resulting from its discretization using the G-NI method.
4. Approximate the problem
W'(x)+u(x) =x}, —l<x<l,
{ (=D=1, «(1)=0,

266 10 Spectral methods

using the G-NI method and analyze its stability and convergence.

5. Write the G-NI approximation of the problem
Lu(x) = — () (1)) + (bu() + o(ulx) = f(x), ~1<x<1,
w(xu'(£1)=0.

Find the conditions on the data under which the pseudo-spectral approximation is
stable. Moreover, verify that the following relations hold:

LNuN(xj):f(xj), j=1,...,N—1,
p(1)uy(1) = an(f — Lyun)(1),
p(=1uy(=1) = —oo(f — Lyun)(—1),

Ly being the pseudo-spectral operator defined in (10.41).
6. Consider the problem

—pAu+b-Vu—ou=f inQ=(-1,1)?

u(x) = ug forx; = —1,
u(x) = u; forx; =1,
Vu(x) -n(x) =0 forxy=—1landx, =1,

where x = (x1,x2)7, nis the outgoing normal of 2, u = u(x), b =b(x), 6 = 5(x),
f = f(x) are assigned functions, and ug, u; are given constants.

Provide sufficient conditions on the data to guarantee the existence and uniqueness
of the weak solution, and give an a priori estimate. Then approximate the weak
problem using the G-NI method, providing an analysis of its stability and conver-
gence.

7. Prove the stability condition (10.42) in the case of the pseudo-spectral approxima-
tion of the equation (5.4) (replacing the interval (0, 1) with (—1,1)).
[Solution: follow a similar procedure to that explained in Sect. 5.4 for the finite
element solution and invoke the properties reported in Lemmas 10.2 and 10.3.]

8. Consider the parabolic heat equation

du 9d%u

— =0 —1<x<1,t>0
o ox2 e
u(x,0) = up(x), —l<x<1,

u(—1,t)=u(l,r)=0, >0.

Approximate it using the G-NI method in space and the implicit Euler method in
time and its stability study.

Chapter 11
Isogeometric analysis

Isogeometric Analysis — commonly abbreviated as IGA — is a strategy for the spa-
tial approximation of PDEs based on the so—called isogeometric concept. Extensively
developed in the last years starting from the seminal work of T.J.R. Hughes and col-
laborators [HCBOS] in 2005, IGA originally aimed at restoring the centrality of the
geometric representation of the computational domain in the numerical approxima-
tion of PDEs. IGA was developed with the promise to close the current gap between
Computer Aided Design (CAD) procedures and computational modeling of PDEs (as
outlined e.g. in Sec. 8.1) by recognizing that the meshing procedure of the compu-
tational domain is indeed a major bottleneck in Engineering practice. Since CAD
systems mostly employ B—splines or NURBS [dBO1, PT97] basis functions for the
geometric representation of the computational domains, IGA considers the same B—
splines or NURBS bases for the construction of the finite dimensional space in which
the approximate solutions of the PDEs lay; this strategy is commonly indicated as
NURBS-based IGA [CHB09, HCBOS5]. Other, more general or flexible geometric rep-
resentations based on splines, as e.g. T-splines, locally refined splines, etc.. [BCC™ 10,
BCS10,SBV*11, SLSH12, SZBNO03, TSHH17], can be used for IGA, even if their de-
velopment and usage are still not straightforward and represent active research fields.

While the original, driving factor in the IGA development has been the efficiency
of the whole design—through—analysis computational pipeline in parallel with the ge-
ometric accuracy — namely “exactness” — in the representation of the computational
domain, the employment of B—splines and NURBS basis functions is especially suited
for the spatial approximation of several families of PDEs, also in virtue of the regular-
ity properties of these basis functions.

The most widespread IGA construction is NURBS-based IGA in the framework
of the Galerkin method [CHB09, EBBH09, HCBO05]. We refer the interested reader to
e.g. [ABC*08, ABBS17, ABKF11, BBHH10, BCZH06, BHS12, BSV14, BVS*12,
CHRO7, DBH12, DCVT'16, dFRV11, GCBHO08, SDS*12, ZBG"07] for an overview
of applications to problems in Computational Mechanics, a list which is far from being
exhaustive.

© Springer International Publishing AG 2017 267
A. Quarteroni, Numerical Models for Differential Problems, MS&A 16,
DOI 10.1007/978-3-319-49316-9 11

268 11 Isogeometric analysis

In this chapter we provide a brief overview of NURBS—based IGA in the frame-
work of the Galerkin method starting from the definition of B—splines and NURBS
basis functions and geometries, the isogeometric concept, the Galerkin method, and
the approximation properties of the method.

11.1 B-splines and NURBS

B—splines and NURBS (Non Rational Uniform B—splines) — a generalization of B—
splines — are widely used in CAD. B—splines are a particular family of splines func-
tions — constituted by piecewise polynomials — with minimal support for a given poly-
nomial degree.

11.1.1 B-splines basis functions

Univariate B—splines basis functions are built over a parameter domain £2 C R starting
from the so—called knot vector =, a set of non—decreasing real values in the parame-

ter space R. Specifically, =& = {81,52,...,8,1+p+1}, where E, fori=1,....n+p+1

is the ith knot, n is the number of basis functions composing the B-splines basis,
and p > 0 the polynomlal degree in this manner, the parameter domain Q reads as

Q= (€I,€n+p+1) As 51 < 52 - < §n+p+1, knots can be repeated for which a

multiplicity m; > 1 associated to each knot value j =1,...,7, forsome i <n+p+1;
by convention, the multiplicity of each knot value is 1 < m; < p+ 1. In particular,
we consider the case of open knot vectors, for which the multiplicity of the first and

last knot values in & is m| = m;; = p+ 1. Pairs of knots delimit knot spans ('g'i, 'g',grl)
in .(5 fori =1,...,n+ p; in particular, knot spans of null size are allowed by con-
struction in the case knot values have multiplicity m; > 1. For open knot vectors, the
~ ~ o~ n
knot spans internal to 2, i.e. { (ii, Eir 1) } | can be interpreted as mesh elements
i=p+

whose number is n.;; then, one has the relation n = n,; + p among the number of such
mesh elements, the number of basis functions, and the polynomial degree. Finally, we
denote by A the characteristic mesh size of the elements partitioning 2.

For a given knot vector & = {'g'] N Y } the univariate B—splines basis

functions N; : Q — R, for i = 1,...,n, are piecewise polynomials of degree p built
by means of the Cox—de Boor recursion formula [PT97]:

K’zo(g){ 1 forée [gi,gm)v

0 otherwise

Nk 1(§)+A€i+17§ Nip1j-1(€) fork=1,...p
§l+k 'él €i+k+1*§i+i

when the ratio 8 appears in the above formula, it is, by convention, replaced by 0.

Ru@)- 575 5

For the sake of simplicity, we denote the basis functions 1’\\7,,,(5) simply as N;(&),

11.1 B-splines and NURBS 269

the dependence on the degree p being understood. The properties of B—splines are
uniquely determined from the knot vector =, including their number n and degree p,
as well as their support and regularity, which are strictly related to the multiplicity of
the knot values. In particular, each basis function N; has support in p + 1 knot spans,
regardless of their size; moreover, p + 1 basis functions have support in each knot
span (or mesh element). B—splines basis functions are positive definite, specifically
one has ﬁ,(é) >0 for all £ € Q and for any i = 1,...,n; in addition, they constitute
a partition of unity, i.e. Y, ﬁ,('g') =1forall £ € Q. B-splines basis functions are
piecewise polynomials, hence they are C”—continuous in each knot span (mesh ele-
ment), but only CP~"—continuous across each knot value of multiplicity m > 1. This
last property is widely exploited in NURBS-based IGA as it is peculiar of these basis
functions. For example, B—splines of degree p = I are only CY—continuous across each
mesh element (internal knot value) in Q. Basis functions of degree p = 2 are either
C%- or C'—continuous across mesh elements depending on the multiplicity m = 2 or
m = 1 of the associated internal knot value, respectively. In general, basis functions of
degree p are C'—, C'—, ..., or CP~'—continuous across mesh elements depending on
the multiplicity m = p,p —1,...,1 of the associated knot values, respectively. Exam-
ples of univariate B—splines basis functions are reported in Fig. 11.1.

Bivariate, trivariate, and in general multivariate B—splines basis functions of di-

mension k > 1 are built through the tensor product rule. The knot vectors £% = {él‘x,

& G pat } are defined for each parametric direction o = 1,.. ., k, with ny and

Do the correspondmg number of basis functions and degree; then, univariate B-splines
basis functions N @ . O — R are built separately from each knot vector £ for o =
1,..., K. By using the tensor product combination of knot vectors, the parameter do-

main reads Q = QF_ (51 ,:‘,‘”a+pa+l) C R¥ with mesh elements ® _, (a Elﬁl) C

R¥, whose characteristic mesh size is denoted with A. By introducing the multi—index
i=(i,.. zK) for some 1 <iy <ngyand 1 < o < k, the multivariate B—splines basis

functions N; : Q — R are built by exploiting the tensor product rule as
K ~
)=[INaE*
a=I

where & = (£1,...,&¥) € Q. The total number of multivariate B-splines basis func-
tions is n = [[5_ ne; by assuming a suitable reordering, the multi-index notation is
dropped henceforth in favor of the scalar one, for which multivariate B-splines are
indicated as N; : Q — R for i = 1,...,n. At this stage, we simply recall that mul-
tivariate B-splines basis functions are positive and still form a partition of unity in
Q. Regarding the properties of support and regularity of these basis functions across
the mesh elements edges, these are inherited from the independent univariate basis
functions along each parametric direction @ = 1,. .., kK from which they are built.

270 11 Isogeometric analysis

0 ’ 0.5 1
£

5= {{0}2,1/4,1/2,3/4, {11} p=1, {{0}3,{1/4}27{172:}27{3/4}27{1}3}’

ney =4,n=>5, CYcontinuous

p=2,ng =4 n=9,C%—continuous

1

£
2= {{01,1/4,1/2,3/4 {11 }. p =2,
Ny =4,n="17, C!~continuous and
CY—continuous across the knot 2

Z={{0y,1/4,1/2,3/4, {1}, p=2,
e = 4, n =6, C'—continuous

[) ’ 0.5 1 0 0.5 1

{{0}47{1/4}27{172?7{3/4}27{1}4}’ E={{0}*,1/4,1/2,3/4,{1}*}, p=3,

. ny =4, n =", C2—continuous
p =3, 1, =4, n=10, C'—continuous el ’

Fig. 11.1. Examples of univariate B—splines basis functions; knot vectors =, degree p, number
of elements 7n,;, number of basis functions 1, and global continuity C* are indicated

11.1 B-splines and NURBS 271

11.1.2 B-splines curves, surfaces, and solids

B-splines geometries are obtained as geometrical mappings from the parameter do-
main Q in the parameter space R (.Q C RX) into the physical space R?, with 1 <
kK < d. For example, for k = 1 and d = 3, one obtains curves in 3D, for k¥ = 2 and
d = 3 a surface, while for kK = d = 3 a solid object. Other than from the B—splines

~ n
basis functions {Nl('g')} , obtained from the knot vectors £% for « = 1,...,k, B—
i=1

splines geometries are built from the control points {P;}"_; € RY, a set of points in the
physical space. Each control point is associated to a B—splines basis function. Con-
trol points are ordered accordingly based on the tensor product rule, a construction
which identifies the so—called control polygon in R?. Then, a B—splines geometry is
determined by the geometrical mapping ¢ : Q — R, with ¢ : £ > x, as

0(8) =Y PiN(E), (LD

which defines the physical domain € identifying the geometry in the physical space
R?. We illustrate in Figs. 11.2 and 11.3 some examples of B—splines geometries.
Regularity properties of a B—splines geometry are inherited from those of the B—
splines basis functions which they are built from, other than the location of control
points in the physical space. We remark that smooth graphical representations of £ —
known as (high order) geometric continuity — can be obtained by particular choices of
the control points positions even if the B—splines basis functions are only C°—continuous.
However, particular choices of the control points positions may lead to degenerate ge-

Fig. 11.2. B—splines curve in 2D (k = 1 and d = 2) obtained from n = 6 B—splines basis func-
tions of degree p = 2, built from the knot vector Z = {{0}3,1/4,1/2,3/4,{1}*}, and the
control points P; = (1,0)7, P> = (1/2,1)T, Py = (0,1)T, Py = (=3/4,1/2)T, Ps = (—1,0)7,
and Pg = (0,—1/4)T. The control points and control polygon are highlighted in red

272 11 Isogeometric analysis

05 S5 ~"0s
Y 00 X

Fig. 11.3. B—splines surface in 3D (kx = 2 and d = 3) obtained from n = 8 bivariate B—splines
basis functions. These are built from the univariate B—splines associated to the knot vectors

={{0}%,{1}*} and 22 = {{0}3, 1 {133} and have degrees 1 and 2, respectlvely The con-
trol points are Py = (1,0,0) , Py = (1/2,1/4,0 , Py = (1/4,1/2 0)7, and P4 = (;),1,0
along the parametric direction a = 1, while Ps = (3/2,0,0)7, 5/4 3/4,1)", P7 =
(3/4,5/4,1)T, and Pg = (0,3/2,0)” along the parametric direction o =2. The control points
and control polygon are highlighted in red

ometric representations which however we do not consider in this chapter [PT97].

11.1.3 NURBS basis functions and geometries

Geometric representations based on B—splines are flexible but do not allow to ex-
actly represent conic sections, a wide family of geometries commonly used in com-
puter graphics and design including circular arcs, cylindrical shapes, and spheres. To
achieve both flexibility and accuracy in geometric representations, NURBS have been
introduced [PT97] and nowadays represent a widely used tool in computer graphics.
Univariate NURBS basis functions are obtained by associating to an univariate B—

~ n
splines basis {N,(é)} , built from the knot vector =, a set of n real numbers called
1=
weights, say {w;}?_| € R By introducing the weighting function W (&) =X_; N;(&) wj,
the univariate NURBS basis functions Rl- cQ R, with Qc R, read

E(é):ﬁi(é)w: ﬁi(é)wi fori=1,...,n.

WE) T T NEw

Each NURBS basis function is a piecewise rational function defined in the parameter
domain Q; even if they are not piecewise polynomials, the degree p is convention-
ally referred to as the polynomial degree of the B—splines basis functions from which

11.1 B-splines and NURBS 273

w=(1,1,1,1/3,1,1) w=(1,1,1,3,1,1)

Fig. 11.4. Examples of univariate NURBS basis functions with knot vector = =
{{0}3, 1/4,1/2,3/4,{1}3 }. degree p = 2, number of elements n,; = 4, number of basis func-
tions n = 6, and globally C'—continuous; NURBS weights are indicated in the vector w

these are generated. In this chapter, we will assume that the weights are strictly posi-
tive,i.e. w; > O forall i = 1,...,n, whence the properties of NURBS are immediately
inherited from those of the generating B—splines, including the regularity (continuity)
properties; as a matter of fact, B—splines are a particular case of NURBS for which
the weights are all equal, by convention w; = 1 forall i = 1,...,n. Some examples of
univariate NURBS basis functions are reported in Fig. 11.4.

By exploiting the tensor product construction of multivariate B—splines basis func-
tions, which straightforwardly extends to the corresponding weights, and by using a
suitable reordering of the basis functions, multivariate NURBS basis functions R
Q > R, with Q C R¥, read

S N(@wi Ni(E)w;
MO W) T el m@w

fori=1,...,n

—~ n
Analogously to B—splines, by associating to each basis {Ri(é)} 2 set of control
.
points {P;};_,, a NURBS geometry is determined by the geometric mapping ¢ : Q —
RY as

=Y PiRi(£), (11.2)
i=1

with the physical domain €2 identified by the NURBS mapping. An example of NURBS
geometry is shown in Fig. 11.5.

In this chapter, we simply consider B—splines and NURBS geometric representa-
tions for which k = d i e. the parametric and physical spaces coincide. We assume that
the Jacobian J (&) = dé (é) of the geometric mapping (11.1) or (11.2) is well defined in

Q and that det (J (&)) > 0 a.e. in Q with the measure of the set {'g' €Q : det (f('g')) = 0}

equal to zero in the topology of RY. Finally, we assume that the mapping (11.1) is in-
vertible a.e. in Q and that the inverse of J exists and is regular in each element of

274 11 Isogeometric analysis

Y X

Fig. 11.5. Example of a NURBS surface: the cylindrical shell. The control points and control
net are highlighted in red

the mesh; the inverse of the geometric mapping is ¢~ : x — &. The geometric map-
ping (11.2) also allows to map the mesh in the parametric domain f), whose charac-
teristic size is 4, into the mesh in the physical domain £ with characteristic size /; an
example is depicted in Fig. 11.6.

0 03333 06667 1 c
g -1 :
0 2 4

Fig. 11.6. NURBS geometric mapping ¢ (&) from the parameter domain O C R? into the phys-
ical domain 2 C IR?; the physical mesh is determined by the parametric one through 0(&)

11.1 B-splines and NURBS 275

= 0.5
0 S LY g
0 0.5 I 0 0.5 I
¢ 3
E={{0}*{1}*},p=2,ny=1,and E={{0P,1/2.{1P¥}, p=2n4=2,
n=73;hy=1. andn=4;h; =0.5.
1 1¢
= 0.5 Z 0.5
0 0

£
Z={{0}%,1/4,1/2,3/4,{1}3}, p=2, E={{0}3,1/8,....7/8, {133}, p=2,
ne =4, and n = 6; hy = 0.25. ne; =8, and n = 10; hy = 0.125.

Fig. 11.7. Example of successive h-refinements originating from an univariate B—splines basis
of degree p =2 with n,; = 1 and hg = 1 (top-left); the sequentially s-refined B—splines bases
give rise to sequences of nested function spaces

11.1.4 NURBS function spaces and i pk-refinements

—~ n ~
The NURBS basis {Ri(é)} - in the parameter domain Q defines a NURBS function
i=

space over €2, say .4}, of dimension n

J;:span{ﬁi(é), i:l,...,n}. (11.3)

Because of the invertibility of the geometric mapping (11.2) (for k¥ = d), NURBS
basis functions can be defined in the physical domain Q (the geometry itself) as R; :
Q — R, with R;(x) = Ri(¢ ' (x)). Hence, the NURBS function space over the physical
domain Q C R? reads

Ny =span{R;(x), i=1,...,n} :span{]?,-((b*](x)), i= 1,...,n}. (11.4)

276 11 Isogeometric analysis

Z 0.5
AR ¥ 3 y 0=
0 0.5 I 0
Z={{0}2,1/2.{1}*}, po =Ly =2, E= {{0}3,{1/2}27{1}3},1)1 =2,
andn=3;h=0.5 ng=2,andn=35h=0.5

1 T

&= {03, (172 {11}, ;2 =3, 2= {{0P, (121 {11}, py = 4,
ne=2,andn=7h=0.5 ng =2,andn=9; h=0.5

Fig. 11.8. Example of successive p—refinements originating from an univariate B—splines basis
of degree pg = 1 with n,; = 2 (top—left); the sequentially p—refined B—splines bases give rise to
sequences of nested function spaces

NURBS spaces can be enriched by means of three different strategies. The so—
called - and p-refinements are analogous to the ones performed with C’—continuous
Lagrangian basis functions which stand at the basis of both the Finite Element and
Spectral Element Methods presented in Chapters 4 and 10, respectively. A third one
however, called k—refinement and peculiar of NURBS basis functions, is particularly
useful for the construction of regular function spaces [CHB09, HCBO05]. We provide
hereafter a short and simplified overview of the hpk-refinements for univariate B—
splines basis functions, while we refer the reader to [ABCT08, CHR0O7, EBBH09,
HRSO08] for a more comprehensive description of the topic.

e Ji—refinement (mesh refinement). It consists of inserting additional knots in the
original knot vector =, without replicating existing knot values. Each new knot
increases the number of new basis functions by a single unit. A uniform knot
insertion yields a uniform mesh refinement. An example is reported in Fig. 11.7.

11.1 B-splines and NURBS 277

e p-refinement (increasing the polynomial degree). The polynomial degree p of the
B-splines basis functions is increased to p + 1 by increasing the multiplicity of
each knot value in = by one unit; consequently, the number of basis functions is
increased by the number of actual mesh elements #n,;. The regularity of the original
basis functions is preserved along the application of the procedure. An example is
highlighted in Fig. 11.8.

e k—refinement. It consists of performing, on a knot vector without internal knots,
firstly order elevations followed by knot insertions. The regularity of the basis
functions is maximum, CP~!, across each internal knot value and their number
only increases by one unit for each k—refinement step. An example is depicted in
Fig. 11.9.

We remark that 41— and p-refinements generate sequences of enriched NURBS func-
tion spaces .4%,, -#},, ... which are nested into each other and the original one .47,
ie. Ay C Ny C My, C---. Conversely, k—refinements provide sequences of NURBS

Z 0.5}
0
0 0.5 1 0
Z={{0}>,{1}*}.p=1.ny =1, and E={{0}%,1/4,1/2,3/4, {1} },p=2,
n=2;h=0.5 ne =4,and n=6; h=0.25

(=

S

E={{0}*,1/4,1/2,3/4 {1}*}, p=3, Z={{0},1/4,1/2,3/4, {1y}, p=4,
ng =4, andn=7,h=0.25 ne =4,and n=28; h=0.25

Fig. 11.9. Example of three levels of k—refinements applied to an univariate B—splines basis of
degree p = 1 with n,; = 1 (top-left); the k—refined B—splines bases do not give rise to sequences
of nested function spaces

278 11 Isogeometric analysis

function spaces .4}, , 4,, ... with functions endowed with increasing regularity, but
not nested into each other, i.e. A}, C Ay, Ny C Ny, ..., but Ay & Ny, etc.
Refinements or, equivalently, enrichments of NURBS function spaces are typically
used as a starting point to enhance the representations of the geometry at hand, e.g.
to add more detailed features by moving control points. If the enriched NURBS basis
is also used for a geometric representation of Q, a key point is that such geometric
representation is preserved while performing the refinement. This means that must

~ n
be equally represented by the original NURBS basis {R,(é) } - and the enriched one
=

—~ n
{Ri(ij)}i:l. Specifically, in order to preserve the geometric mapping along the en-

richment of the NURBS basis functions, both a new set of control points {Pi}?:l and
of NURBS weights {w;}"_, must be contextually generated such that, from Eq. (11.2),
one has ¢(§) = X1 PiRi(§) = L PiRi(§).

Concepts about hpk-refinements straightforwardly extend to multivariate NURBS
basis functions.

11.1.5 Construction of NURBS geometries: an example

We consider as example the construction of a curve, specifically an arc centered in the
origin, spanning 90 degrees in R?, and featuring a smooth kink. We start by construct-
ing the arc that will be later “adapted” to our curve. Albeit this is not the unique option
to build the curve, we hereby summarize its construction according to this principle in
the following steps, also depicted in Fig. 11.10:

e Step 1. We build the univariate B—splines basis functions of degree p = 2 from the

knot vector £ = {{0}?,{1}?} to guarantee a minimum regularity to the basis func-
—~ n
tions; this yields n = 3 B—splines basis functions {N,(é)} K Correspondingly,
=

we place in the physical space R? n = 3 control points Py = (1 ,O)T, P, = (1, l)T,
and P3 = (0, l)T; this yields a B—splines curve, but not yet the arc since this cannot
be exactly represented under this construction.

e Step 2(a). In order to obtain the arc, we associate the non—unitary weight wy = \/12

—~ ~ 3

to the B—splines basis function N, (&), thus yielding a NURBS basis {R,(:‘,‘)} E
=

e Step 2(b). By using the same control points of step 2, we obtain the arc spanning 90

degrees and centered in the origin; we notice that in this case w, = arccos (9(2))

e Step 3(a). As we need to modify the arc with a smooth kink, we enrich the NURBS

basis {Ri(:‘,‘)}ll by inserting new knots in the knot vector =, thus yielding & =
{{033, 7,391 12 {1}3}. In virtue of this h-refinement step, we obtain a new
NURBS basis {ﬁi(é)}?zl of degree p = 2, n =7, and globally C'—continuous;

e Step 3(b). Following step 3(a), a new set of control points {Pi}?zl is generated to
preserve the geometric representation of the arc.

11.1 B-splines and NURBS 279

1 1
= 0.5 Z 0.5
0 - 0 : -
0 0.5 1 0 0.5 1
13 13
Step 1 Step 2(a)
19
1
0.8:
0.6}
- i
= 0.5
0.4
0.2
0 3 0
0 0.5 1 0
X
Step 2(b) Step 3(a)

0 0.5 1 0 0.5 1
X X
Step 3(b) Step 4

Fig. 11.10. Construction of a NURBS curve: arc with a kink

e Step 4. Finally, the position of the control point P, is modified, e.g. as P4 = (% , é) !
to obtain the desired curve.

280 11 Isogeometric analysis

11.2 The isogeometric concept

The commonly indicated NURBS-based IGA [CHB09, HCBO5] relies on the very
same NURBS (or B—splines) basis functions first used to represent the computational
domain of a PDE also to build later the finite dimensional trial space where the numer-
ical solution is sought for. This is specifically referred to as the isogeometric concept
[CHBO9].

Let us consider for example the linear elliptic problem of Eq. (4.1) in weak for-
mulation. According to the isogeometric concept, the computational domain 2 C R4
is represented by means of NURBS basis functions — exactly in most of the cases of
practical interest — through the NURBS geometric mapping ¢ : Q — R of Eq. (11.2),
where ¢(£) =Y PiRi(€); Q C RY is called parameter domain. Then, we look for

an approximate solution in the parameter domain uy, : 2 — R such that

(€)=Y UiRi(&),

™

i=1

where {U;}}_, is the so—called set of control variables. Since we assume that the

NURBS mapping (11.2) is invertible a.e. in Q, we write the approximate solution in
the computational (physical) domain uy, : 2 — R as

uh(x) = iUiRi(x) =

i=1 i

UiRi(¢~ " (x)). (11.5)

™

1

It follows that i, € JT/;,\ and, equivalently, u;, € .4}, with JT/;,\ and .1, the NURBS spaces
of Egs. (11.3) and (11.4), respectively. Thanks to the invertibility of the NURBS map-
ping (11.2), we have uy,(x) = i,(¢ ~'(x)) for which 7, (&) is often simply indicated as
uy (X) .

According to the isogeometric concept, the approximation properties of the NURBS
space are inherited from those of the NURBS basis functions already used to represent
the computational domain £ wherein the solution of the PDE is defined. We remark
however that the solution u;, can be sought in a NURBS space .4, enriched with
respect to the space .4}, already used to represent 2 provided that A4, C 4}; such
enrichment is obtained by means of suitable spk—refinements.

We observe that the isogeometric mapping is quite general and not strictly limited
to the NURBS mapping (11.2); indeed, other geometric mappings can be used, e.g.
those based on other types of splines [TSHH17] or T-splines [BCC" 10, SLSH12],
provided that the associated basis is complete and H'(£)-conformal for a second
order elliptic PDE.

The strategy of using the same representation, through suitable basis functions, of
the trial solution u;, and the computational domain has already been extensively ex-
ploited in the so—called isoparametric finite element method [Cia78, Hug00]. How-
ever, in this case, the basis functions — let them be for example polynomials of degree
r, say { @] (x) }f\il € P, — are determined by the choice of the finite element approxima-
tion, or equivalently by the finite element space X; (4.38). Then, the computational do-
main £2 is approximated by the computational mesh 2, = int (U ke, K) intended as

11.3 NURBS-based IGA: the Galerkin method 281

o £s ra
‘f"}_. ‘f}_.
& | x fl | T
Linear, r =1 Quadratic, r =2

Fig. 11.11. Isoparametric finite elements in R?; mappings from the reference element K into
the mesh element K

the union of non—overlapping mesh elements K; see Fig. 4.9. According to the isopara-
metric concept, each mesh element K € .7}, is built from the reference one, say K , by
means of a geometric mapping in the form of Eq. (11.2) by using the polynomial basis
{(ﬁl’(é)}f\il € PP, In this manner, if 7 > 2, mesh elements as triangles in R? may be
endowed with “curved” edges to better approximate the computational domain . For
example, if r = 1, we have Py = {p(§1,&) = a+ b + &, with a,b,c € R}, while
forr=2,wehave P, = {p('g'] ,6)=a+b&+c&+dEE+ e'g'lz +f§22, with a,b,c,
d,e, f € R}, with obvious choice of the basis functions {(ﬁ[(é)}fﬁl € P,. If the geo-
metric mapping is based on polynomials of degree r = 1, then the reference triangle
K is mapped into a mesh element K as a triangle with straight edges according to a

mapping ¢' (&) using the basis { @/ (‘:)}13:1 Instead, if r = 2, the reference triangle
K can be mapped into a mesh element K with curved edges (sections of parabola)

through a mapping ¢>(&) using {0} ('g')}le; see Fig. 11.11. As a matter of fact, the
finite element method presented in Chapter 4 is a particular case of the isoparamet-
ric finite element method just introduced for which the geometric mapping of each
mesh element K from K is ¢'(£) - i.e. using the basis functions { @/ (é)}?:l eP -
regardless of the polynomial degree r > 1 used to build the finite element space X .

We remark that the isoparametric concept can also be exploited with the spectral
element method presented in Sec. 10.1 and Fig. 10.2 for square mesh elements, as well
as, with the Gordon—Hall transformation introduced in Example 10.1 and Fig. 10.3.

Differently from the isoparametric concept, the isogeometric one essentially lets
the geometrical representation of 2 to determine the basis functions for the trial so-
lution. This choice naturally leads to incorporate the exact geometric representation
of ©Q in the computation of the solution of the PDE, whereas the isoparametric con-
cepts generally generates a new computational domain €2, suitable for the “analysis",
which is only an approximation of Q. Another distinguishing feature of the isogeo-
metric concept is that the computational domain €2 is exactly represented as a whole,
in general; conversely, in the isoparametric one, the geometric mapping generates a
set of mesh elements K € .7}, whose union determines £2j,.

11.3 NURBS-based IGA: the Galerkin method

We briefly introduce IGA with NURBS basis functions in the framework of the Galerkin
method as presented in Chapter 3.

282 11 Isogeometric analysis

11.3.1 The Poisson problem

The NURBS function space .4}, of Eq. (11.4) is suitable for approximating the space
H! () according to Property 4.1. In addition, we define

N =Avn € My : vilaq =0},

and we indicate with N, its dimension, i.e. N, = dim (JV;I). For example, if d =

I, j/h: span{R;(x), i=2,...,n—1} by observing that univariate NURBS basis
functions are interpolatory at the images of the knot values &; and &, 1. More in
general, for d = 1,2 or 3, by assuming a suitable reordering of the n NURBS basis
functions such that R;(x) = 0 for all x € dQ with index i = N, + 1,...,n, we can

write </Io/h: span{R;(x), i=1,...,N,}. Again, the NURBS space </10/h is suitable
for approximating the space Hj ().

Let us consider the Poisson problem (3.1) defined in the computational domain
QR ford = 1,2,3, and endowed with the Dirichlet boundary conditions (3.2) on
d in the homogeneous case, i.e. g =0 on dQ C R4 In this respect, we assume
that the computational domain £ is exactly represented by the NURBS basis func-
tions of the space .4, through the geometric mapping ¢ (&) of Eq. (11.2); as a matter
of fact, according to the isogeometric concept, the NURBS space .4}, — together with
the corresponding control points {P;}? | € R? — is specifically built to exactly repre-
sent 2 and typically enriched through hpk-refinements preserving its geometric rep-
resentation. Then, by referring to the weak formulation (3.18), for which the solution

ue Hé (), and by setting V}, =_4"j,, we obtain the NURBS—based IGA approximation
of the problem in the framework of the Galerkin method

findu, €V, : /Vuh-Vvhd.Q:/fvhd.Q Yy, € V. (11.6)
Q Q

We remark that the approximate solution u;, (11.7) of the previous problem is rewritten

as
Npy

up(x) = Y UiRi(x) (11.7)
i=1
in virtue of the reordering of the NURBS basis functions previously introduced.

Remark 11.1. The NURBS basis {R;};_, is a modal basis as opposed to the finite
element Lagrangian basis that is instead nodal. In other words, if we assume that a
control point P; lays in Q, the value taken by the approximate solution u;, in such con-
trol point does not coincide in general with the corresponding control variable U, i.e.
uy(P;) # U;. Moreover, some of the control points used to build the computational do-
main may even lay outside 2, as seen e.g. in Fig. 11.6. In those cases, the approximate
solution at these points is not defined.

Let us now consider the Poisson problem (3.1) with non-homogeneous Dirichlet
boundary conditions (3.2) on 9 for which g € L?(9€Q) is a non-zero function. Again,

11.3 NURBS-based IGA: the Galerkin method 283

we resort to the homogeneous case through a lifting of the boundary datum g and its
discrete counterpart. Let us denote with JI{I‘?Q the space formed by the trace functions
on dQ of functions of .4}, which incidentally is still a NURBS space. As we consider
NURBS basis functions built from open knot vectors, we write the approximation of
gondQ as

n
g(x)= Y GiR(x) Vx€dQ,
i=Nj+1

where the non-zero basis functions at the boundary dQ are reordered to carry in-
dexes i =N, +1,...,n and {G,'}?:Nh .1 is the set of corresponding control variables.
As the NURBS basis functions of %89 are not interpolatory, the control variables
{Gi}l’-'zNh 41 can not be determined in general through interpolation of the datum g
on dQ. However, a non-rigorous, but efficient approach consists in “interpolating"
the datum at the control points, i.e. in setting G; =~ g(P;), if P; € dQ, for i = N, +
1,...,n [CHB09]. Alternatively, the approximate datum g; can be built by means of
the L*(92) projection of g onto the NURBS space %89 . Once the approximate da-
tum gy, is built, its lifting R,, € .4}, is constructed as

n
R, (x) = Z GiRi(x) Vxe Q.
i:N]l+l

By setting V, :j/ 1, the NURBS-based IGA approximation of the problem reads

find I?thG Vi, . / Vl?th ~Vvhd.Q:/thd.Q Vv, € Vy,
Q Q

with the approximate solution u;, recovered as u;, =it +R,, .

We observe that Neumann, Robin, and in general natural boundary conditions (see
Secs. 3.3 and 3.4) are embedded in the weak formulation of the problem and are
treated in the same manner as other Galerkin methods.

Remark 11.2. For computational purposes, problems approximated by IGA are recast
in the parametric domain £2 by means of the so-called “pull-back" operation thanks to
the invertibility of the NURBS geometric mapping ¢ (&) of Eq. (11.2) [CHB09]; see

also Fig. 11.6. For the Poisson problem (11.6), by setting \7h :JT/\;, from Eq. (11.3)
with obvious choice of notation, we obtain

find i, € V), : /A (f‘TVﬁh) : (f—TWh) 740 = /A Fo,7dQ Y, eV, (11.8)
Q Q

where f: foo, J : Q — RY* is the Jacobian of the geometric mapping, and
f: det (f) its determinant, which is positive a.e. in Q C R4, as in this case we
assumed K = d.

284 11 Isogeometric analysis

11.3.2 Algebraic aspects

Let us refer for simplicity to the Poisson problem (11.6) in weak formulation with
homogeneous Dirichlet boundary conditions on €. By expressing the approximate
solution uy, as in Eq. (11.7) and then fulfilling Eq. (11.6) for each test functions vy,
equal to the NURBS basis functions of V},, we have the equivalent problem

Ny

find {Uj}j:l

Ny
: ZUj/VRj-VRidQ:/fRidQ Vi=1,...,N,. (11.9)
=1 7Q Q

This yields a linear system in the form of Eq. (4.46), i.e.
Au=H,
where the stiffness matrix A € RM >N is such that

A:[Aij] with A,’j:/ VRJ"VRid.Q, (11.10)
Q

the solution vector u € RV contains the control variables, i.e u = U j], and the source
f € R vector reads f = [f;] with f; = [, fR;dQ.

At the computational level, the assembling of the matrix A and vector f is “pulled-
back" into the parametric domain €2, as anticipated in Remark 11.2. Moreover, such
calculation is made inexactly, using suitable quadrature formulas. Typically, the Gauss—
Legendre quadrature rules [QSS07] are applied element by element on the mesh with
the rule—of—thumb of using p + 1 quadrature nodes per parametric direction. Nev-
ertheless, more efficient quadrature rules, tailored for NURBS basis functions and
exploiting their properties of high order continuity across mesh edges, have been pro-
posed e.g. in [ACH"12, HRS10]. We remark however that, albeit the NURBS geo-
metric representation of the computational domain € is exact, the assembly of A and
f is not in general; indeed, quadrature rules as the Gauss—Legendre one allow the
exact evaluation of the integrals involved in the weak formulation of the problem —
see e.g. Eq. (11.10) — only for B—splines, which are piecewise polynomials, but not
for NURBS, which are instead rational functions. Still, quadrature errors do not harm
in most of the cases the overall accuracy of NURBS-based IGA. Indeed, they are
generally negligible or decay at very high rates, for example when using p + 1 Gauss—
Legendre quadrature nodes per parametric direction (this is again a rule-of-thumb).

The properties of the stiffness matrix A (11.10) directly follow from those of the
NURBS basis functions used for its construction — as discussed in Sec. 11.1 — and
the nature of the differential problem to be approximated. In particular, univariate
NURBS basis functions are sequentially ordered in R; similarly, bivariate and trivari-
ate NURBS basis functions correspondingly possess an ordered structure in virtue of
their construction based on the tensor product rule of univariate basis functions. This
infers that the NURBS mesh is structured and all the connectivity structures (as the
so—called ID array) are simultaneously determined when the NURBS basis is built. It
follows that the matrix A is banded. In general, the matrix A is also sparse; indeed,

11.3 NURBS-based IGA: the Galerkin method 285

0 T 0
1 .« s e T
2t & & ®
2 - - - . = s s = e
3 4 et
. - - . -
4 .« . & 6 . s »
- L] - . -
5 s s s s s
8 . s .
6 . s s . PR
10 . s .
7 . . .
0 2 4 6 8 0 5 10
nz =29 nz =41
1D, C'~continuous, n =7 1D, C%—continuous, n = 11
[—T— ™ 0
g iz, ‘tils, “idh,
aen 90, 00, S0 50
10338, it it i,
M 100
Hit, it S 35 18,
PN I I I 150l
251 it it i35 3. 3.
‘Hi Cui uh h Cum
s0) it it i, e 200
35 *idy e i i i)
., i, i i, 250
“ gy
45 ., 3% i 300
“iie, Tiit, i,
50 n i i“ - i i i 4 " n
(1] 10 20 30 40 50 (4] 50 100 150 200 250 300
nz = B41 nz = 24389
2D, C'~continuous, n = 49 3D, C'—continuous, n = 343

Fig. 11.12. Examples of stiffness matrices for NURBS basis functions of degree p =2 in 1D,
2D, and 3D with n,; =5 along each parametric direction

by recalling the notation of Sec. 11.1.1, this occurs if ng > po for @ =1,...,k. The
maximum number of non-zero entries in each row of A is

K
H(Zpa + 1)a
a=1

where pg, is the polynomial degree along each parametric direction. This is indepen-
dent of the continuity order of the NURBS basis functions —i.e. let them be C° or C?~!
— as their support only depends on the polynomial degree p. Hence, the maximum size
of band of the stiffness matrix is the same for the isoparametric finite element method
on structured meshes and for NURBS-based IGA.

We report some examples of stiffness matrices assembled by means of NURBS
basis functions in Fig. 11.12.

The stiffness matrix A = [a(R},R;)] of Eq. (11.10) stems from the NURBS-based
IGA approximation of the Poisson problem in the framework of the Galerkin method;

286 11 Isogeometric analysis

106. > . 106.
“©-SEM
-B-1CA
4| t
= 10 = 10°
S S
< <
‘-’N ‘-’N
* 10% * 10%
10°
106.
4|
= 10
S
<
‘-’N
b4]02.
10°? 107! 10° 10°? 107! 10°
h [log] h [log]
p=4 p=>5

Fig. 11.13. Condition number K;(A) of the stiffness matrix A — with Dirichlet boundary condi-
tions — in the 1D case, 2 = (0, 1), for the spectral element method with numerical integration
(SEM-NI) and for C?~!—continuous NURBS-based IGA under i-refinement for different val-
ues of p. The number of degrees of freedom is N, = p/h+ 1 for SEM and N, = 1/h+ p for
IGA with CP~! B—splines

hence, it is positive definite as the bilinear form a(-,-) is coercive. In addition, A is
symmetric since the form a(-,-) is symmetric. Moreover, its conditioning number be-
haves as in Eq. (4.50), K»(A) ~C h2, provided that & is “sufficiently” small, with
the constant C dependent on the polynomial degree p and the order of continuity of
the NURBS basis functions. We report in Fig. 11.13 some examples to illustrate the
behavior of the condition number under 4-refinement.

Regarding the condition number K,(A) under p-refinement, this may “quickly”
grow with p for C”~!—continuous NURBS basis functions. Specifically, for a stiff-
ness matrix A assembled for a d—dimensional problem, with d > 2, the following
bound K>(A) < C(h) p**+244P (which however does not seem to be sharp) was pro-
vided in [GSD14]. In particular, the condition number of the matrix A associated to
NURBS-based IGA does not enjoy the same properties of the spectral element method
with or without numerical integration presented in Sec. 10.3.1, for which one has in-

11.3 NURBS-based IGA: the Galerkin method 287

108.
6|
o 10 S
4] 4]
< 10% <
o o
102 L
100 L

Fig. 11.14. Condition number K (A) of the stiffness matrix A — with Dirichlet boundary condi-
tions — in the 1D case, Q = (0, 1), for the spectral element method with numerical integration
(SEM-NI) under h—refinement and CP~!—continuous NURBS—based IGA under k-refinement
for h =1 and h = 1/32. The number of degrees of freedom is N, = p/h+ 1 for SEM and
Nj = 1/h+ p for IGA with CP~! B-splines

stead K»(A) = O(p*) and O(p?), respectively. We report in Fig. 11.14 an example
illustrating the behavior of the condition number under p—refinement for a 1D case.

11.3.3 A priori error estimates

We provide the error estimates associated to NURBS—based IGA in the framework of
the Galerkin method under 4-refinement. Specifically, we refer to the Poisson problem
of Sec. 11.3.1, for which u € H} (), by assuming that f and dQ are “sufficiently"
regular.

We report, from [BBCT06] and [TDQ14] a result for the a priori error estimate
in H' norm. Its proof follows analogously to its finite element counterparts of Theo-
rems 4.3 and 4.6; however, it makes use of an operator that is not interpolatory, but
rather a suitable L? projector on the NURBS subspace .4},

Theorem 11.3 (A priori error estimate in H' norm). Let u € H'*1(Q), with r > 0,
be the solution of the Poisson problem and uy, € V), its NURBS—based IGA approxima-
tion using the NURBS space of basis function of degree p and at least Cknin—continuous
in Q, with kyi, > 0. Then, the following error estimate under h—refinement holds

=l iy < C llull s g, (1L.11)

where s = min{p,r} and C is a positive constant independent of both the mesh size h
and the solution u.

By using the Aubin-Nitsche’s argument as in Sec. 4.5.4 and Theorem 4.7 for the
finite element method, we have the following L?—error estimate for the Poisson prob-
lem.

288 11 Isogeometric analysis

Theorem 11.4 (A priori error estimate in L> norm). Under the same assumptions
of Theorem 11.3, the following error estimate under h—refinement holds

= unll2() < CHF |u]| e), (11.12)

where s = min{p,r} and C is a positive constant independent of both the mesh size h
and the solution u.

The previous results (11.11) and (11.12) show that the errors associated to the
NURBS-based IGA approximation converge under h-refinement with orders 8 or 7,
respectively, which are determined only by the polynomial degree p of the NURBS
space .4, and the regularity of the solution u. The convergence orders therefore do not
depend on the regularity of the NURBS basis functions of .4}, provided that these are
at least CY—continuous in Q. Moreover, the convergence rates are the same that one
would obtain by approximating u by means of the finite element method. Specifically,
if u € H"(Q) for a sufficiently large r (r > p + 1), then the convergence rates of the
errors under i—refinement are p and p + 1 in norms H'! and L?, respectively.

Results for a priori error estimates under p— and k—refinements are presented in
[BBRS11]. Here, we limit ourselves to recall that the errors associated to NURBS—
based IGA behave as for the hp—version of the finite element method, i.e. as the spec-
tral element method of Chapter 10. Specifically, a priori error estimates under p—
refinement are characterized in a similar fashion of Theorem 10.1; in this respect, if
the exact solution u of the PDE is analytical, then the order of convergence of the er-
rors associated to NURBS-based IGA is more than algebraic, i.e. it can be interpreted
as being exponential (Sec. 10.1).

11.3.4 A numerical example: the Poisson problem

We consider hereby the solution of a simple Poisson problem in order to highlight
some of the features and properties of NURBS-based IGA.

u
-1.000€+00 ||-1J|f-l 0 J”uﬁ“_” 1.000e+00

0 0.5 L 1.5 2
X

Fig. 11.15. Poisson problem: computational domain £ (left) and exact solution u (right)

11.3 NURBS-based IGA: the Galerkin method 289

Fig. 11.16. Poisson problem: sequence of 4—refined meshes of €2

Let us start by considering the NURBS geometry in Fig. 11.15, which it is exactly
represented by means of NURBS basis functions of degree p = 2 (here we use basis
functions with the same polynomial degree p along the two parametric directions o =
1,2). Such NURBS geometry defines the computational domain Q = (1,2) x (0,7/2)
in polar coordinates (r,0).

We consider now the Poisson problem (3.13) with homogeneous Dirichlet bound-
ary conditions. The source term f is chosen such that the exact solution of the Poisson
problem in is u = sin(7/3(r*> — 1)) sin(40); the polar coordinates are used with the
sole purpose of representing it in a compact fashion. The exact solution u is depicted
in Fig. 11.15.

We solve the Poisson problem by means of NURBS-based IGA using NURBS ba-
sis functions of degrees p =2 and 3 which are C?~! and C%—continuous in Q. Specif-
ically, we evaluate the H I and L?—errors under h-refinement, i.e. over sequences of
successively refined meshes, as in Fig. 11.16, which lead to sequences of enriched,
but nested NURBS function spaces .4}, as described in Sec. 11.1.4. We therefore con-
sider NURBS basis functions as those depicted in the univariate case in Fig. 11.1. In
Fig. 11.17 we report the H' and L?—errors under h—refinement for which we high-
light the convergence rates expected from the corresponding a priori error estimates
of Theorems 11.3 and 11.4. We remark in particular that the convergence rates of
the H' and L?—errors are p and p + 1, respectively; this result is independent of the
order of continuity of the NURBS basis functions, let them be either cr—1or CO-
continuous. However, the number &, of basis functions involved in the computation is
much larger for the C® NURBS than for their C”~! counterpart, for a given number of
mesh elements (and hence /). High order continuous NURBS (C?~!) require therefore
a smaller number of degrees of freedom N, to achieve the same levels of errors of the
C? basis functions.

11.3.5 Eigenvalue analysis

We consider the solution of an eigenvalue problem as a further test of comparison
between the approximation properties of NURBS—-based IGA, the spectral element
method with numerical integration, and the standard finite element method. Let us

290 11 Isogeometric analysis

H1 Error
H1 Error

1072 1072
-4 oy
5 10 5 10
- 10°% e 1078 .
L]
o 4E = -0-p=2,c° “©-p=2,c° ‘v
107 s 2 “©-p-2.c'] 108} | @ puz, ¢! i
o =8-p=3, ¢’ -8-p=3,c° ‘8
-8=p=3,C° -8-p=3, C*
10710 i o bl : : Lk om0l —— o
1072 10! 10° 10' 10° 10° 10* 10° 10°
h Nh
L2—error vs. h L*—error vs. Ny,

Fig. 11.17. Poisson problem: behavior of the H! and L?—errors under h—refinement for NURBS
basis functions of degrees p = 2 and 3 which are C?~! and C%—continuous; the errors are plotted
both against the characteristic mesh size & and the number N, of degrees of freedom

introduce the 1D eigenvalue problem in 2 = (0,1)
find w, cRand u, €V : a(up,v) = @>m(u,,v) YvevV,

where a(w,v) = [y w'V'dx, m(w,v) = [§ wvdx, and V = H'(0,1), which admits an
infinite number of eigenvalues ®?, with @, = nx for n = 0,1,2.... By setting the
finite dimensional space V), = .4}, the NURBS space of Eq. (11.4) with dimension Ny,
we obtain the NURBS-based IGA approximation of the eigenvalue problem

find w,, € Rand u, , € Vy 1 a(uyp,vy) = (u,ihm(unyh,vh) Vv e V.

Ny
The approximate eigenvalues are {a)f h} , which we assume to be ordered (increas-
7) n=0

ingly) in R. As our NURBS-based IGA formulation is a Galerkin method — either with
exact integration for NURBS or with a rule-of-thumb Gauss—Legendre quadrature for
B-splines — one obtains for this symmetric eigenvalue problem ([Cia78, Hug00]) that

W, < () Vn:O,l,...,Nh.

11.3 NURBS-based IGA: the Galerkin method 291

0 0.2 0.4 0.6 0.8 1
n/N

SEM-NI FEM

0.2 0.4 0.6 0.8 1 o] 0.2 0.4 0.6 0.8 1

n/N n/N

h h

CP~!_continuous B—splines, IGA C"—continuous B—splines, IGA

Fig. 11.18. Normalized spectra for the spectral element method with numerical integration
(SEM-NI), the finite element method (FEM), and both C?~!— and C%—continuous NURBS—
based IGA (with B—splines) for different values of p. The number of degrees of freedom is
Ny = png + 1 for SEM, FEM, and C? NURBS-based IGA, while Nj, = n,; + p for CP~1 IGA;
we vary n,; — yielding h = 1/n,; for Q = (0,1) — such that N;, ~ 1024, for all the methods under
consideration, for p=1,...,5

This property is not guaranteed for methods employing non—exact quadrature for-
mulas or methods not enjoying the properties of the Galerkin framework, as for the
spectral element method with numerical integration of Sec. 10.3; indeed, the latter is
no longer a Galerkin approximation method when the bilinear forms a(-,-) and m(,-)
are evaluated in an approximate fashion.

We report in Fig. 11.18 the normalized spectra, i.e. the plots of the ratios a;’;l" Vs.
A’,’h forn=1,...,Ny, where Ny, is the dimension of the finite dimensional space V},. We

compare the spectra obtained by means of NURBS—based IGA with both C?~! and C°
B-splines basis functions of degree p = 1,...,5, as well as through the correspond-
ing approximations based on the spectral element method with numerical integration
and the standard finite element method. Albeit normalized, our comparison comprises
about the same number of degrees of freedom Nj, for all the approximation methods,
which is obtained by suitably changing the number of mesh elements n,; for each

292 11 Isogeometric analysis

values of the polynomial degree p such that N, ~ 1024. As we can observe, IGA us-
ing CP~!—continuous B—splines provides by far the best approximation of the whole
spectrum, with accuracy improving by elevating the degree p of the basis functions.
Conversely, the spectral element method with numerical integration, the standard fi-
nite element method, and IGA with C%—continuous B—splines exhibit approximations
worsening in the largest part of the spectrum as the polynomial degree p increases.

11.4 Current developments and perspectives

IGA is nowadays a very active research field both in terms of applications and method-
ological developments. For the latter, we limit ourselves to mention the exploitation of
the properties of high order continuity of the B—splines and NURBS basis functions
in the framework of the Galerkin method ((CHRO7, EBBHO09]), which are particularly
suited for high order PDEs [BDQ15, TDQ14], PDEs involving sharp but smooth inter-
faces as phase field models [GCBHO08, GHNC10, GN12, LDE" 13, LH16], and prob-
lems of linear wave propagation (e.g., elastodynamics equations) for which control-
ling numerical dissipation and dispersion is crucial for accurate simulations [CHRO07,
CRBHO06, DJQ15, HER14, HRSOS].

The “exactness" of the geometric representation guaranteed by NURBS is partic-
ularly suited for problems in computational fluid dynamics involving boundary layers
[BCZH06, HAB11], mechanical problems undergoing large deformations [BBHH11,
LEB™10], contact problems in structural analysis [LWH14], beams and shell analy-
ses [BBHH10, DS11, KBH*10, LZZ13], and in general surface and geometric PDEs
[BDQL15, BDQ16, DQ15]. Shape optimization is another notable example in which
the NURBS geometric representation is easily exploited [KSWB14, NAG10, NG13,
Qial0, WFCOS]. Indeed, NURBS control point and weights provide a direct access
to control the shape of the computational domain wherein the PDEs are defined; we
refer the reader to Chapter 18 for an overview of optimization problems.

Computational efficiency and accuracy in IGA approximations are also pursued
through more efficient quadrature formulas for B—splines and NURBS basis functions
to be used in the framework of the Galerkin method [ACH™12, HCSH17, HRS10,
SHH14]. In this respect, collocation techniques for the approximation of PDEs are also
seeing a remarkable development [ABH" 10, BLR12, GL16, MST17, RH15, SER"13].

Other than NURBS, more general geometric representations have been consid-
ered and are currently under development. Among these, significant efforts are dedi-
cated to use and fit geometric representations based on T—splines [SZBNO03] — largely
used in the computer graphics industry — into the isogeometric concept, due to their
flexibility with respect to NURBS basis functions [BCCT 10, BCS10]. Adaptive IGA
[DJS10, KVvdZvB14, SDS™12, VGIS11] is also a very active research field and in-
volves, other than hierarchical refinements, the development of hierarchical, truncated
hierarchical, and locally refined B—splines [BC13, GJS12, JKD14] as well as hierar-
chical and modified T-splines [ESLT15, SLSH12, WZLH17].

Chapter 12

Discontinuous element methods
(DG and mortar)

Up to now we have considered Galerkin methods with subspaces of continuous poly-
nomial functions, either within the finite element method (Chapter 3) or the spectral
element method (Chapter 10). This chapter deals with approximation techniques based
on subspaces of polynomials that are discontinuous between elements. We will, in par-
ticular, introduce the so-called Discontinuous Galerkin method (DG) and the mortar
method. We will carry out this for the Poisson problem first, and then generalize to
the case of diffusion and transport problems (see Chapter 13). To maintain the presen-
tation general we will consider a partition of the computational domain into disjoint
subdomains that may be either finite or spectral elements.

12.1 The discontinuous Galerkin method (DG) for the Poisson
problem

Let us consider the Poisson problem together with homogeneous Dirichlet boundary
conditions (3.13) in a domain 2 R? divided in the union of M disjoint elements £,,,,
m=1,...,M. We wish to attain an alternative weak formulation to the usual one, that
will serve as starting point for the DG method. To simplify the discussion we assume
the exact solution to be sufficiently regular, for instance u € H} (Q2) N H?(Q2), so that
all operations below make sense. Define the space

Wo={veWw:vo=0},

where
W={vel*Q):v|g, €H (Qn),m=1,...,M}. (12.1)
By Green’s formula we have, for every v € wo,
M M
Z (—Du,v)g, = Z <(Vu,Vv)Qm/ vVu~nm>) (12.2)
m=1 m=1 an

where n,, is the outward unit normal to d,, and (-,-)q, denotes the scalar product
of L*(Q,,). Calling &5 the union of all internal edges, i.e. the interfaces separating

© Springer International Publishing AG 2017 293
A. Quarteroni, Numerical Models for Differential Problems, MS&A 16,
DOI 10.1007/978-3-319-49316-9 12

294 12 Discontinuous element methods (DG and mortar)

_Q+

Fig. 12.1. An “edge” e separating two neighbouring subdomains (or elements)

the subdomains (outermost edges may be neglected as v vanishes on them), we can
rearrange terms to obtain

—Z/a wWiuny, = — Z/ (v*Vut-nt v Vi a7, (12.3)
Qm

6635

in which the signs “+” and “—" label the information according to the two possible
normal orientations (see, e.g., Fig. 12.1).

We will use the following notation to denote mean values and jumps on elements’
edges:

{v}= v + . V]=vint+v n,
)" + -

fvwh = 2 o [Vl = (VW) ont 4 (Vw) ™

Notice how the above convention guarantees that the definition of the jump opera-
tor will not depend on how subdomains (elements) are numbered. A little algebraic
manipulation eventually gives

vivut nT+v Ve onT =20 {Vu} - (vIVu onT +v Vet o)
=2 - {Vu} +2[Vu]{v}
—(v'Vut-nT v Vu-n7)
and so
vivutonT vV T =[] {Vu} + [Vu]{v}. (12.4)

Using (12.3) and (12.4), from (12.2) we obtain that the solution to the Poisson problem
(3.13) satisfies: u € WO s.t.

M
Z (Vit, V)0, Z/ AVu}+ Vel () = ¥ (fv)a, Vv E WO,
m=1

ecsy m=1

12.1 The discontinuous Galerkin method (DG) for the Poisson problem 295

Now we introduce the discrete space
Ws = {Vg eWw: V5|Qm S Pr(.Qm),m = 1,...,M},

P,(Q,,) being a space of “polynomials” on £,,. More precisely, P,(Q,,) = P, if Q,,
is a simplex (2D triangle or 3D tetrahedron), while P.(Q2,,) = Q, 0 F;,(2,,) if Q;y is a
spectral element (a quadrilateral in 2D, a parallelepiped in 3D, cf. Ch. 10). Here F, is
the map that transforms £2,,, into the unit cube Q = [—1,1]%(d = 2,3). At last, let Wy
be the following subspace of W

Wy ={vs € Ws : vs|sq = 0}.

Note that the term [Vu]{v} in (12.3) is null because if u € H} ()N H*(Q) then
[Vu] = 0 on every edge e € &5. This fact together with expression (12.1) motivates
the following DG approximation for problem (3.13): find ug € W50 satisfying

Y (Vus,Vvs)a, — Y, /Vs {Vus} -7). /us fVvsh

m=1 ecsy e€y

+) Vel 1/ Z (f,vs)e, WvseWS, (12.5)

EE(@a

where ¥ = y(r) is a suitable positive constant (depending on the local polynomial
is the length of e € &5 and 7 is a suitable fixed number. The additional
new terms T[ug] - {Vvs} and yle|~'[us] - [vs] do not undermine strong consistency
(since [u] = 0 if u is the exact Poisson solution), beside warranting greater generality
and improved stability features.

Formulation (12.5), introduced at the end of the 70s, is called Interior Penalty
(IP) ([Whe78, Arn82]). In case T = 1, the method preserves the symmetry and the re-
sulting formulation is known as SIPG method (Symmetric Interior Penalty Galerkin)
[Whe78, Arn82]. For T # 1 the bilinear form is no longer symmetric, and the special
values T = —1 and 7 = 0 respectively lead to the NIPG method (Non-symmetric In-
terior Penalty Galerkin) [RWG99] and the IIPG method (Incomplete Interior Penalty
Galerkin) [DSW04]. Whereas the former is stable for any given y > 0, SIPG and I[IPG
require, in order to reach a stable formulation, a sufficiently large penalty parameter
Y.

Several variants of formulation (12.5) have been proposed within the context of
approximations by finite elements. Here we will only briefly describe the most classi-
cal situations, and refer to the article [ABCMO02] of Arnold, Brezzi, Cockburn, Marini
both for a general overview and a detailed study of stability and convergence.

A first version consists in replacing the last term on the left side of (12.5) with the
following stabilization term

‘y/re ug)) - re([vs))- (12.6)

666)5

296 12 Discontinuous element methods (DG and mortar)

Above r,(-) is a suitable extension operator that, from the jump of a function [vg]
across e € &, generates a function r,.([vs]) with non-zero support on the elements
having e as edge. See [BRM197] and [ABCMO02] for full details.

A second variant (cf. [Ste98]) replaces the averages { Vw} in (12.5) by the aver-
ages with relaxation

{Vwle=0Vwt +(1-0)Vw ™, 0<6<I.

Up to this point we have imposed the homogeneous Dirichlet condition “strongly”.
In order to add the boundary constraints, say u = g on d£2, in weak form (“a la Nitsche”
[Nit71]), as is more natural for DG-like approximations, we write the discrete formula-
tion (12.5) in Wy rather than in Wé) , and add on the left side the following contributions
to the boundary edges e C dQ

— Z /V(;Vu(ynff Z /(us—gg)Vv(yn

eCoQ ¢ eCoN e
+) }’|€|_1/(”5*g5)vsv us,vs € Ws.
eCoQ ¢

The positive constant ¥ = y(r) is the same of (12.5), and g5 is a convenient approx-
imation of g. The first term, arising naturally from integration by parts, ensures the
method is strongly consistent, while the second term makes the formulation symmet-
ric if T = 1 and non-symmetric if T = —1,0. The last term penalizes the trace of the
discrete solution ug and makes it “approach” the Dirichlet datum. Observe once again
that these terms do not affect the method’s strong consistency.

The DG formulation with boundary conditions imposed weakly thus becomes:
find ug € Ws such that

f‘, (Vus,Vvs)a, —Z/Va fVus}—1) /us fVvs3+ Y vlel”]/usl [vs]

m=1 ecs57 ¢ ecsy ecsy
- Z /V(;Vu(ynff Z /u5Vv5~n+ Z y|e|_1/u5v5
eCoN 7€ eCoQ ¢ eCoQ ¢
M
Z fivs)o /gngs n—+ 'J/|e| /g(;vs Yvs € Ws. (12.7)

eC&.Q eC8.Q

We shall refer to the latter formulation as the DG-N method (N for Nitsche). Clearly,
if the Dirichlet datum g is zero the last two terms on the right will not show up.

Concerning the accuracy of method (12.7) for discretizing the Poisson problem
(3.13) with homogeneous Dirichlet boundary conditions, let us introduce the so-called
energy norm

1/2
e (2/ i+ B el [lusf+ T el '/|u5|2) - a28)

666)5

12.1 The discontinuous Galerkin method (DG) for the Poisson problem 297

For formulation (12.5), where boundary conditions are imposed strongly, the last term
is missing. It can be proved that if the exact solution is sufficiently regular, the SIPG
method (7 = 1) converges with optimal convergence rate both for the L?(£) norm and
for (12.8), as long as the penalty parameter ¥ is large enough. Better said, for finite
elements of degree r one has

hllu—uslll + llu = usl 2(q) < Ch™ |ulgrer g (12.9)

where C is an appropriate positive number that depends on r (for a proof see
[ABCMO2], for example). As always, r is the polynomial degree employed on each el-
ement €2,,. For the non-symmetric methods NIPG and IIPG, as these schemes are not
strongly consistent on the adjoint problem, one cannot get optimal L? estimates. In
many cases, nevertheless, both methods exhibit optimal rates of convergence when
the degree of the approximation is odd and grids are sufficiently regular (see e.g.
[OBBI9S]).

For all variants of the DG-N method we have seen one can prove that if u €
HsH! (Q), s > 1, and if the polynomial degree r satisfies r > s, the error can be es-
timated in energy norm (12.8) as follows

h N
o= sl <€ (1) Pl (12.10

where C is a suitable positive constant that does not depend on r. For the SIPG method
(T = 1) and the IIPG method (7 = 0) estimate (12.10) holds as long as the penalty pa-
rameter Y is taken large enough. In particular, convergence in r is exponential when
the exact solution u is analytic. Let us also remark, by comparison with the known
results for spectral elements, that (12.10) is sub-optimal with respect to the approxi-
mation degree r, due to the presence of the factor /2. More details can be found in
[RWG99, RWGO01, HSS02, PS03], for instance.

In certain special situations one can attain optimal estimates in r. For the two-
dimensional case with quadrilateral grids, for example, [GSO5] provides optimal es-
timates in energy norm under the assumption that the solutions belongs locally to an
enriched Sobolev space. Different estimates, were proved in [SW10] without extra
regularity hypotheses, but under homogeneous Dirichlet boundary conditions.

We close the section by observing that sometimes formulation (12.7) is stable even
without the penalty term for jumps, i.e. choosing ¥ = 0 for the internal edges and for
the external ones as well. Riviere, Wheeler and Girault [RWG99] proved that the non-
symmetric version (T = —1), known in the literature as the Baumann-Oden method
[OBBI8], is stable and provides optimal estimates of the error (in energy norm) if the
approximation degree r satisfies r > 2. In that case one uses a special interpolation u/
of u, called Morley interpolation, for which {V;,(z—u!)} = 0 on each edge. In the ar-
ticle of Brezzi and Marini [BMO06] (see also [BS08]) it was proved that the Baumann-
Oden method (in its non-symmetric incarnation, with T = —1) in two dimensions with
triangular grids is stable, provided we add to the space of linear polynomials a bubble
function for each element. The Baumann-Oden method was shown in [ABMO09] to
be stable (always in 2 dimensions) when adding to linear polynomials n — 2 bubbles

298 12 Discontinuous element methods (DG and mortar)

0 0
10 — : 10
o Ta g/l <=3
- [|u — usllo.o/lullo.o r=
—1
10 102
107
107
2
3
107°
-6
10l
1 0 2
107 5 T > 3 0 1 = 3
10 10 10 10 10 10 10 10
Vndof Vndof

Fig. 12.2. Study of the convergence of method (12.5) (t = 1, ¥ = 10r2). Left: errors in energy
norm (12.8) and L%(£) norm (r = 1, structured triangular grids). Right: errors in energy norm
from biquadratic and bi-cubic elements on a sequence of Cartesian grids

for each element, for decompositions involving n-gons (polygons with n edges). At
last, we mention that Burman ef al. [BEMSO07] proved the 1-dimensional symmetric
variant (T = 1) need not be stabilized if r > 2.

To learn more on DG-type methods the reader should consult, for example, [Riv08],
[HWO08], [ABCMO02], [WohO1].

We present now some numerical results obtained by the discontinuous Galerkin
method the homogeneous Dirichlet problem (3.13) on = (0, 1)?, where the forcing
term f is such that the exact solution reads u(xy,x2) = (x; —x7) exp(3x1) sin(27x2).
We discussed method (12.5) with 7 = 1 and penalty constant ¥ = 1072, This choice
makes sure that the SIPG method is well posed. Then the {£,,} are nothing but the
finite elements (triangles) and r is the polynomial degree on each element. In the en-
suing numerical experiments &y is thus the union of all inner edges in the grid. Errors
were computed in L?(£) norm and in the energy norm (12.8). Fig. 12.2 (left) shows
the (normalized) errors computed on a sequence of triangular grids made by linear
elements (r = 1). As predicted by (12.9), the error tends to zero linearly in energy
norm and quadratically in L?(£). In Fig. 12.2 (right) we can read the (normalized)
errors computed on a sequence of Cartesian grids with biquadratic elements (r = 2)
and bi-cubic ones (r = 3). The approximation error in norm (12.8) tends to zero when
h — 0, and the convergence order equals 7.

In the framework of spectral elements we can attain a DG-SEM formulation start-
ing from a partition of £ in quadrilaterals, using formulation (12.7), and replacing
the volume integrals (-,-)q, Wwith local GLL quadrature formulae; similarly for the
integrals extended over the edges of spectral elements.

12.2 The mortar method 299

12.2 The mortar method

An alternative to the DG technique is based on the so-called mortar method, originat-
ing in the framework of spectral element methods (SEM).
Let us consider again the Poisson problem (3.13) in a domain 2 C R? with homo-
geneous Dirichlet boundary conditions.
Define on Q a partition into pairwise-disjoint non-empty open subregions ; C £,
i=1,...,M such that Q = Ui»‘ilﬂi. Then let I;; = I';; = dQ; N d&2; be the interface
between ; and Q;, 1 <i# j <M, and define I" = U;;I;; to be their union (Fig. 12.3).
Solving (3.13) by a mortar method means finding a discrete solution u that, inside
every subregion £2;, is continuous and polynomial (globally or locally), and that fulfills
a continuity condition on the interface I", called weak or integral: namely, that for
every i, jwith 1 <i# j<M

[(wslo,—usla)y =0 vwea, (12.11)
ij

where A is a suitable finite-dimensional space that depends on the discretization cho-

sen on the ;. To (12.11) are then added strong continuity constraints at certain points

lying on the interface I".

Note that equations (12.11) do not force the solution’s jump to vanish on the in-
terface, but they prescribe that its L? projection on A be zero. Consequently, in con-
trast to what happens for an approximation of Galerkin type (see Chaps. 4 and 10),
us ¢ H}(Q) in general, but rather us € W (see (12.1)).

To simplify the discussion, let us consider a partition of Q in M = 2 subregions
Qq, £, and call I" the interface, so that I’ = I, = I5;. In ;, i = 1,2, we define a
further partition .7; = U Tj in triangles or quadrilaterals 7; ; as explained in Sect. 6.2.

If the elements T;; are quadrilaterals we also require each T;; to be the image
of the reference element 7 = (-1, 1)2 under a smooth bijection @ik see Sect. 10.1.
Given polynomial interpolation degrees N; > 1 in each £;, define

Vv, (i) = {v € C°(Tiz) s vopir € Quy(T)}

~

where Qy (T) is the space of degree N polynomials in every variable in the reference

element T (cf. definition (10.2)).

Fig. 12.3. Two possible partitions of the domain £2, with only one interface I;; drawn

300 12 Discontinuous element methods (DG and mortar)

For a triangular partition, instead, we consider the finite-element spaces of Sect. 4.5,
and for i = 1,2 and any T;; € .7 set

P, (T;) for finite elements of degree r; on triangles,
Vi, (T; k) for spectral elements of degree N; on quadrilaterals.

X(;’.(T,»,k) = { (12.12)
The parameter §; implicitly depends on the degree (r; or N;) and on the maximum
diameter & of the elements of 7.
The finite-dimensional spaces induced by the local discretizations in €2;, i = 1,2, are
then

Vis = {vs € CO(.Q,') : V5|T,-‘k € X(;’.(Ti’k), VT i € T}, (12.13)

and the discrete solution ug must be seeked in
Ys = {vs € [*(Q): vg) =vs|q, € Vig, fori=1,2}.

As the space Y5 does not retain the information on how to match the functions vg)
on the interface, we must introduce a subspace Vs C Y5 of functions satisfying (12.11)
and search for the mortar solution ug inside V.

Let us observe first that the choice of mesh and polynomial degree in one subdo-
main is completely independent of the choice in the other subdomain, as Figure 12.4
explains.

On the left we have a spectral discretization in either £2;, where the edges of the ele-
ments of ;NI and 2, NI coincide but the degrees N, N, differ (hence interpolat-
ing nodes are different from quadrature nodes, too). In such cases we conventionally
speak of polynomial nonconformity.

The middle Figure 12.4 shows a discretization (by spectral elements in both spaces
€2;) with the same polynomial degree in every spectral element of 2| and €2,, but now
the edges of spectral elements in 2 NI and £2, NI do not coincide. We are then in
presence of geometrical nonconformity.

At last, in Figure 12.4, right, we have a discretization by spectral elements on 2; and
triangular finite elements in £2;.

Indicate with .#; the set of nodes induced by the discretization chosen in ;. In
the spectral case these are images on every T; ; of the Gauss-Legendre-Lobatto points
defined on T (see Sect. 10.2.3). The same discretizations induce two distinct sets of
nodes (not necessarily disjoint) on I" which we indicate by ///ir = #;NI", and two
sets %ir of degrees of freedom on I, whose elements are the values of the functions

ug) at the nodes of ..

Of the two sets of degrees of freedom on I', one, called mortar or master set, is
picked to play an active role in the problem’s formulation, meaning that its degrees
of freedom are primal unknowns for the problem. The other set, called non-mortar
or slave, characterizes the space A onto which the continuity condition projects. The
degrees of freedom of the sets %, and %, will depend on each other via a linear
relationship dictated by the integral conditions (12.11).

Label with m,s € {1,2} the master set % and the slave set %, respectively, and
let A paster» Asiave De their cardinalities. The subscripts m and s pass on to subdomains,

12.2 The mortar method 301

Q. o N 3

Fig. 12.4. Left: discretization by quadrilateral spectral elements with nonconformity of poly-
nomial type; middle: geometric nonconformity by spectral elements; right: discretization by
spectral elements and finite elements

polynomial degrees and all other quantities in the picture, so for instance we will have
Oy, Ny, and so on for the master domain, 25, N for the slave domain. In our study
%IF plays the master role, while 42/21‘ that of the slave.

The choice of finite or spectral elements for the discretization of the problem re-
quires separate arguments from now on. So let us suppose to only have either spectral
elements or finite elements in both 1, £», for the time being; we will see in Section
12.8 how to treat the mixed case.

12.2.1 Characterization of the space of constraints by spectral elements

Denote by & the collection of edges of spectral elements in the slave domain €; that
lie on I', and set

As=span{y € [*(T): y|, €Py,_, VYec &} (12.14)

and

Ps={pe //lf : p is the endpoint of an edge e € é"SF}. (12.15)

For the definition of .Xg to make any sense we have to take Ny > 2. (The case Ny = 1
can be reduced to the finite element formulation of type Q;.)

We want to characterize the space X(; in terms of a basis whose L*(I")-functions
have support on one edge only e € &, and that on this edge coincide with Lagrange’s
characteristic polynomials of degree N; — 2 associated to the Ny — 1 Gauss-Legendre
quadrature nodes on e (see [CHQZ06, formula (2.3.10)]). Figure 12.5, left, shows a
function y; of the basis of Ag supported on the second edge of &! and associated to
the first Gauss-Legendre node in e. _

It is straightforward to see that the dimension of As equals (N; — 1) times the
cardinality of &', and that dim(/i;) + dim(Ps) = Aiave- In the example of Fig. 12.6
we fixed Ny = 4, so dim(Pg) =3, dim(Xs) =6 and A, = 9.

302 12 Discontinuous element methods (DG and mortar)

12.2.2 Characterization of the space of constraints by finite elements

Now we denote by & the set of edges of €; that lie on I', as in Fig. 12.7, left, and by
@@sF 5 the edges of the triangles 7 ; of the slave set on I" (Figure 12.7, right).

The set Py is defined as in (12.15), whilst the projection space of the solution’s jump
is

As=span{y € [*(I'): y|, P, (e) Vee &5 suchthat eNPs =0,

(12.16)
vl. €Pri(e) Vee &5 suchthat enPs# 0},

where IP,(¢) are degree r polynomials in one variable on the interval e.

Figure 12.7, right, depicts a generic function of the space Ag over a rectification
of the interface I'.

To characterize a basis for (12.16) in presence of finite elements P;, we indicate
by x§ (j = 1,...,Ny+ 1) the nodes belonging to AF Ne, where e is an edge of &
(see Figure 12.7, left).

| e :

P1 p2 e=2 | I P2

Fig. 12.5. Left: a function in K(; for a spectral element discretization; right: functions in /13 for
a finite element discretization

Fig. 12.6. The black dots on I" represent the nodes of the slave set ./

edge ein &1
Pi

P2 P3 &ttt

Q

P1 P2 P3
; r
edge e in (%5

Fig. 12.7. Left: a decomposition of £ with finite element discretization; right: a function of the
space (12.16) on a rectification of the interface I"

12.3 Mortar formulation for the Poisson problem 303

The basis functions of Xg are functions in L?(I") that have one edge e € & as
support, and are associated to the inner nodes of e; for j = 3,...,N; — 1 they coincide
with the piecewise-linear functions of the Lagrangian basis associated to nodes X7,
while for j =2 (resp. j = N;) the function y; equals 1 on the segment [x{,x5] (resp.
(X, X%, 1)) and on the rest of e it coincides with the piecewise-linear characteristic
Lagrange function for node xj (resp. X,).

Figure 12.5, right, shows basis functions y; of the space (12.16), with support on the
second edge of &' .

12.3 Mortar formulation for the Poisson problem

At this juncture we can characterize the space Vg in which to look for the mortar solu-
tion to problem (3.13). We will say a function vg € Y satisfies the mortar conditions if:

/F(vgm) —vg))l// =0 VYye .Xg,

v (p) =\ (p) Vp € Ps

(12.17)

and we also set
Vs = {vs € Y5 : vs satisfies conditions (12.17) and v =0 on dQ}. (12.18)

The mortar formulation of (3.13) is thus

2

findus €Vs: Y ai(ul v{) Z/ P s e Vs, (12.19)
i=1
where ai(ug) , vg)) is the restriction to £; of the bilinear form a(ug, vs), or possibly of a
discretization of it by quadrature formulae of Gaussian type whenever a Galerkin-type
formulation with numerical integration is used (G-NI, see Chapter 10).

The mortar solution therefore satisfies a weak continuity condition on each slave
edge (e € &) of the interface I', and a pointwise matching condition at the endpoints
(p € Ps) of slave edges. In [Bel99, BM94] an alternative mortar formulation was pro-
posed where conditions (12.17), are absent. This formulation is not very favourable,
computationally-speaking, for domains in R?.

When dealing with a spectral approximation, if the partitions in £2,, and Q; are
geometrically conforming on I" and the spectral interpolation degree N, on the mas-
ter domain is not larger than the slave degree N;, then conditions (12.17) force strong
continuity on all of I". Only if N, > N; is the solution ug discontinuous on the inter-
face. The literature labels as mortar or nonconforming only this latter approximation,
in which the discrete solution ug does not belong to the same space as the continuous
solution.

For finite element approximations, even when the interpolation degrees in £2,, and
Q are equal, we have nonconformity each time the sets . and .#! differ.

304 12 Discontinuous element methods (DG and mortar)

Whenever we adopt the spectral element discretization it can be proved ([BMP94])
that if the solution u of the continuous problem (3.13) and the function f are regular
enough on each subdomain €, i.e. uo, € H%(£;) with o; > 3 and fia;, € HPI(£2;)
withp; > 1,i=1,...,M, then

M
llu —usl| <€ <Z Nyl) +N; | fig e <s2,-)>) (12.20)
i=1

where |||v||| represents the so-called H' broken norm, meaning

p X 1/2
M= { X el |
i=1

For finite elements, calling /; the maximum diameter of the triangles 7; ;, one can
prove that if uq, € H%(£2;) with 6; > 3, then

M
i ,-,r,- l 71
llu—usl < €Y AT g e - (12.21)
i=1

12.4 Choosing basis functions

To solve problem (12.19), let us discuss how one can define the basis functions vg €
Vs. Denote with

) (plg,m), K =1,...,/4,, Lagrange’s characteristic functions in £2,, associated to the
nodes of .#,, \ ./ ; these belong to the space Vin5,, and vanish identically on I';

° golgf,), k' = 1,...,/4q,, Lagrange’s characteristic functions in €2, associated to the
nodes of . \ .#!"; they belong to V; 5 and are null on I';

° /,L]Em), k=1,...,Muaster» Lagrange’s characteristic functions in £2,, associated to
the nodes of .#] ; they belong to V.5, and vanish at the nodes of .7, \ MY

° p(s), j=1,..., e, Lagrange’s characteristic functions in £ associated to the
nodes of ./ ; these belong to V 5, and are zero on the nodes of ./ \ ML

o W, k=1,..., Muaser, the basis functions associated to active (or master) nodes of

I' and thus defined

,u,gm) € Vs, suchthat /,tlgm) (xX)=0 VXE My\ ML
= (12.22)
ﬁ,ﬁs) € Vs, such that ﬂ,gs) (x)=0 Vxe.\.nl,

~ (5
where u() are N aser functions in V, s that we can write as linear combinations
k 5,05

of the u()

;7 via a rectangular matrix £ = (€]

L/‘élave
ﬁ]Es) _ Z 5jkﬂj(-s)7 fork=1,..., master- (12.23)
j=1

12.4 Choosing basis functions 305

Fig. 12.8. Restriction to the interface of three functions for a spectral element approximation.
In grey the trace associated to master degrees of freedom, in black the slave trace

It is easy to check that
Vs = span{o\", ol 1}. (12.24)

Figure 12.8 shows the restrictions to I" of three different functions for a spectral
element discretization. On the left we have the function associated to a node in .
but not in .#! for a geometrically nonconforming partition; on the right the same
but for a conforming partition. In the middle the function i associated to a node in
MEN M.

While we can eliminate the functions (p,ﬁ,m) and (p,E,S,) associated to the nodes of
dQ by using the Dirichlet conditions, we keep all u,gm), uj(s) and L, because the

functions [L,ES) also depend on the /,tj(s) associated to the nodes of dQ NJI if the

Dirichlet conditions are non-homogeneous.
As the functions (p,E,m) and (p,E,S,) vanish on I', imposing vs € Vg, i.e. the mortar

conditions (12.17), is the same as asking that fork = 1,..., M aster

/F(u,ﬁ"’) — 5w =0 Ve As

- " (12.25)
w" (p) =" (p) vp € Ps.
Equivalently, by (12.23),
‘/Klavc () () -
N m
Z éjk/ruj w:/rlik Ve Yy € As
S (12.26)
Y s @ =" peps,
j=1
still fork=1,..., Muaster-
System (12.26) may be rewritten in the matrix form
L/‘élave
Z EikPrj = Py (12.27)
j=1

where P is a square matrix of dimension .45,,., and @ a rectangular matrix with
Netave TOWS and A a0 columns whose entries arise from the relations in (12.26).

306 12 Discontinuous element methods (DG and mortar)

P is non-singular, because the pair Py_, — Py satisfies an inf-sup condition in
case of spectral element approximation (see [BM92]); and similarly for finite elements
([Bel99]), where we have an inf-sup condition on Ag — Py .

Therefore the matrix = can be found by solving the linear system

P

(x]

= . (12.28)

The computation of the entries Py; = [~ u](.s) v and Py = [u,Em) W, using suitably
accurate quadrature formulae is crucial in order to ensure optimal error estimates (see
(12.20) and (12.21)).

12.5 Choosing quadrature formulae for spectral elements

The entries Py; depend only on the discretization in the slave domain, so we may

rewrite
PéjZ/Fll}s)WZ Y /ﬂ,(-s)ll’/z

ec&l

and use the GLL quadrature formulae with Ny + 1 nodes on each edge e € & . These

formulae are exact to degree 2N; — 1, and since u](.s) le € Py, and yy|. € Py,_», they
compute the terms Fy; exactly.

To compute the elements @y, we need to specify whether there is geometric con-
formity on I or not. If yes, the set &L (the edges of the elements in £, lying on I")
coincides with & and we can write

Dy = /F M;Em)llfe: Y / M;Em)w-

ecsl

Since 1™, € Py, and yy|, € Py, » on each edge e € &7, to compute exactly the
integrals on e € &I we can use the Gauss-Legendre quadrature formulae on Ny +1
nodes with N, = max{N;,N,,}, because these formulae are exact to degree 2N, + 1.

In a geometrically nonconforming setting, on the other hand, £’SF and <§’n1; do not
coincide and composite integration over the edges of &I (or &1 always induces
a big quadrature error. Suppose, in fact, we choose a partition associated to & to
compute the integrals ®;. For each e € & we have u,Em) e € Py,,, but not necessarily
Wy|e € Py,—2; quite the opposite, actually, for y; might be discontinuous on e € éi,f
(Figure 12.9). A similar thing happens if we take the partition of &/ instead of that of
En-

So let us build a new partition &%, that will be finer than either &% and &' and
whose every edge é € 6}[is contained in one edge only of éjﬁ and one only of é”’sr
(Figure 12.9). Then we can write

¢£k:A#£m)W£: Z /ﬂ,ﬁm)ll’z’

e ol
eesy

12.6 Choosing quadrature formulae for finite elements 307

Wy

Fig. 12.9. The partitions &, &L

ol é"f on I' and a function yyl, in case of spectral element
approximation with Ny =3

and since p,,Em) |s € Py, and yy|s € Py,_» oneach é € é"fr, we can use on the edges &
a Gauss-Legendre quadrature formula (see [CHQZ06] over N, + 1 nodes with N, =
max{Nj, Ny, }, and so compute the Py exactly.

12.6 Choosing quadrature formulae for finite elements

Let us consider the case of finite elements [Py, and recall that éasr denotes the set
of edges of I', while £’SF5 is the set of edges of the triangles Ty, € J; lying on I
(Figure 12.7).

The elements Fy;, depending only on the discretization of the slave domain, are

now
Pej:/rﬂj(s)We: Y /M,@W,

66551;3
©
J
integrate exactly on edges e € @@{5 using Simpson’s formula (see, e.g., [QSSO7]).

To compute the elements @y, we proceed in analogy to what we did in the spectral
case without geometric conformity on I".
Build a partition éjf finer than &1 and <§’SF , such that each side ¢ € &]1: lies only

on one edge of &! and one edge of é”’sr , with the result that

Dy = /F ué’")w: Y / M;Em)w-

Pl I
eesy

and as on each edge ¢ € &, F 5 the product ;" yy is polynomial of degree < 2, we can

Both ,u,gm) |o and yy|; have degree not exceeding 1 on each ¢ € &7, and we can
integrate exactly on each edge € via Simpson’s formula.

When finite elements of higher degree appear, the procedure is similar, with the
proviso of replacing Simpson’s formula with a more accurate one, like a Gauss-Legen-
dre formula.

The case of quadrilateral finite elements of type Q is treated in the same manner
of finite elements Iy, because the traces on I" of Lagrangian basis functions Q; and
P, coincide, and the space Ag is defined alike for both elements.

308 12 Discontinuous element methods (DG and mortar)

12.7 Solving the linear system of the mortar method

The coefficients &;; found by solving system (12.28) ensure that the functions Ly of
(12.22)—(12.23) satisfy the constraints of the space Vi, and once the master degrees of

freedom lk(m) € Uy are known it is possible to compute the slave degrees of freedom
l}s) € YU using
A6 = ZA\0m) (12.29)

where A®) = [A17]; < and Al = 2,0 e
When the discretization is conforming on I, the matrix = coincides with the iden-
tity matrix of dimension A ,a5er = Asiave-

By (12.24) every function in Vg can be written

G o, B0 () oy L ()
Vs (X) = Z U Qpr (X) + Z Uy P (x)+ Z)‘k i (X).
=1 K'=1 k=1

Now varying vg € span{(p,f,m), (p,E,S,), L} and defining vectors u(™ = [u,((',n)]T, ul®
(s)

[u;,]7, the mortar system (12.19) reads

Amm 0 Am,Fm u(m) fm
0 Ags AsnE ul) | = f, . (12.30)
An,m ETAns Ag,n,+ETARRE| A fr,, + E'tr

Above, for i € {m,s}, we introduced the matrices (A;)jx = a,(go,@, (pj(’)), (Ain)jx =
ai(p 90,(-1))» (Anikj = m(rp}’),u,ﬁ’)), (App)e = ai(”, i) and the vectors (f;); =
o, f(p](.l), (fr)e = Jo, fug(l) for the basis functions associated to the nodes of £2; not on
the boundary dQ2.

The matrix £ depends solely on the chosen discretization and is built once the
discretization’s parameters have been fixed.

System (12.30) can be solved by one of the direct of iterative methods seen in
Chapter 7. Instead of solving the overall system (12.30), one can solve its Schur com-
plement for the vector)\(’”), which consists in eliminating the unknowns u(”'), u®)
from the system (see Section 19.3.1 for a thorough description). Let us define the
following matrices (called local Schur complements)

Y =Arr—ApA;'Aip, fori=m,s, (12.31)
and set

r=3,+='52, x = (fr, — A i t) + ET (fr, — ALMy),

12.8 The mortar method for combined finite and spectral elements 309

Now we follow the recipe:
e compute master degrees of freedom on I” by solving
IAM = (12.32)

determine slave degrees of freedom on I' using the linear relationship (12.29);
solve problems Al =1 —Ain A0 i=1 ,2, independently. This is equivalent to
solving two Dirichlet problems with prescribed trace on I".

Equation (12.32) is the discrete counterpart to the Steklov-Poincaré equation
(19.26) (see Chap. 19) that expresses the continuity of fluxes through the interface,
rather than strong continuity if the discretization on I" is conforming, or weak conti-
nuity if the formulation on I" is of mortar type.

System (12.32) is typically solved by iterative methods (such as the Conjugate
Gradient, Bi-CGStab or GMRES), since local Schur complements X; are not assem-
bled explicitly due to the presence of the matrices A;l.

Various preconditioners have been proposed for the algebraic system resulting from
the mortar formulation; for example in [AMW99] a preconditioner for (12.32) is based
on the decomposition of the space of mortar traces in the direct sum of subspaces as-
sociated to the traces of the interfaces (in case of many subdomains) and on a coarse
space that allows to reduce the lower frequences of the error. At present, as there are
only two subdomains and one interface, we have preconditioned system (12.32) with
the matrix X, defined in (12.31). For a spectral element discretization it turns out to
be optimal, in the sense that the number of iterations required by the iterative method
to solve (12.32) up to a given tolerance is independent of the degrees N; (i = m,s) on
the master and slave domains (Figure 12.13). For finite element approximations the
preconditioner X,, lowers the number of iterations needed for the method to converge,
but now this number does depend on the discretization parameter A, as one can see
from the results of Figure 12.14.

12.8 The mortar method for combined finite and spectral elements

Until this point we have looked at situations where the spaces X; s, (i = m,s) of (12.12)
are of the same kind on both domains €2,,, €2, that is to say both of spectral type or of
finite element type. Now we consider the case when we choose X,, 5 of finite element
type while X, s of spectral element type, or the other way around.

First of all, notice that the spaces V; s, i = m, s, are naturally defined by the X; 5.

The definition of the space of constraints Ag is strictly related to the discretization
adopted on the slave space, so Kg will be defined as in (12.14) if the discretization in
€ is spectral, or as in (12.16) with finite elements. The corresponding basis functions
y; will abide by the definitions of Sections 12.2.1 or 12.2.2 respectvely.

Now we need to accurately compute the integrals appearing in (12.26) that define
the entries of the matrices P and ®.

Computing the P; is only a matter of the discretization chosen on the slave do-
main, so it is carried out as explained in Section 12.5 (for spectral elements in €2)

310 12 Discontinuous element methods (DG and mortar)

Fig. 12.10. The restrictions to I" of u,fm, /.LE-” and the functions y; in the spectral master / slave

finite elements case

5
m

Fig. 12.11. The restrictions to I" of uk , j()

/ spectral slave case

and the functions y; in the master finite elements

or Section 12.6 (for finite elements). Computing the &y requires more care, for it in-

volves both discretizations in € (via the functions y;) and in €2, (via the ,u,Em)). We

will keep the two situations separate and discuss only finite elements of type P;.
Case 1: spectral master / slave finite elements.

The restrictions of the functions ,u,ﬁm) to the edges e of & are polynomials of degree

Ny, while the restrictions of the y; to the edges of ézr 5 are polynomials of degree 1

at most (Figure 12.10). Let us produce a finer partition é’f than either &} and é”’sr 5 SO
(m)

that on every é € @‘}F the restrictions of ukm , Y are polynomials. The degree of the

product ,ulim) y; is at most N, + 1, and to compute each integral [, ”]Em) y; exactly we

can use Gauss-Legendre quadrature formulae on N, + 1 quadrature nodes in &, with
Ny = Nj/2if Ny, is even and N, = (N, + 1) /2 if N, is odd.
Case 2: master finite elements / spectral slave.

The restrictions of the ”15 "™ to the edges e of &1 . (the set of all edges of the triangles

T,k onI") are polynomials of degree one at most while the restrictions of the y; to the
edges of &1 are polynomials of degree Ny — 2 (Figure 12.11). We generate a partition
@‘"fr that is finer than &1 5 and than &, so that on every & € éaf the restrictions of ,u,Em)

and y; are polynomial. The degree of the product /J]Em) y; is at most Ny + 1, and to

(m)

compute each [, 1, y; exactly we may employ Gauss-Legendre quadrature formulae
with N, + 1 quadrature nodes in &, where N, = N;/2 if N, is even and N, = (N, +1)/2
if odd.

Once P and @ have been computed, we use (12.28) to compute = and then solve
the linear system (12.30) (or, equivalently, (12.32), as described in Section 12.7).

Concerning the analysis of the approximation error we have optimal convergence
([BMP94]), a result that generalizes estimates (12.20) and (12.21). Among the do-

12.10 Numerical results for the mortar method 311

mains ; (i = 1,...,M) we distinguish those with spectral discretization Q/*, i =
1,...,M*%, from those with finite element discretization .Qf ! Ji=1,...,M¢.

If the solution u to the continuous problem (3.13) and the function f are regular
enough on each subdomain £;, i.e. uo, € H%(£;) with ¢; > % and fqes € HP: (827%)
with p; > 1 foralli=1,...,M*, then

M

1—-o; —Pi
le—usli < (YN lug ez +N; * I fialamas)
=1

1

Ve (12.33)
i ,-,r,-] 7]
+ Y R)
i=1

HO (9)) '

12.9 Generalization of the mortar method to multi-domain
decompositions

Suppose we decompose the domain £ in more than two subdomains. The previous
sections’ study of one interface must be repeated for every single interface of the
decomposition. Hence for every interface I;; we have to choose which between £2;
and €2; is the master and which the slave, and then we must impose system (12.25)
on I;;. So for every interface I;; there is a “local” constraint space Kg that depends on
the slave domain chosen on I;;, and the overall, global space of constraints will be the
Cartesian product of the local ones. At the vertices of the subdomains €2; lying on the
closure of I" one imposes a continuity condition, in analogy to (12.25),. Observe that
a domain might be master for one interface and slave for another one, as in Figure
12.3, right: 3 could for example be master for I3¢ and slave for I35 and I3;.

The problems arising from a complicated decomposition crop up concretely in the
construction of the matrices P and @, in the procedure for solving efficiently PE = @,
and in the choice of a good preconditioner for the final algebraic system. The mortar
formulation should therefore be limited to the case of a small number of interfaces.

12.10 Numerical results for the mortar method

Consider the Poisson problem

{ —~Au=f inQ =(0,2)

e on 99, (12.34)

where f and g are such that the exact solution reads u(x,y) = sin(zxy) + 1. Subdivide
Q in two subdomains ; = (0,1) x (0,2) and £, = (1,2) x (0,2), on both of which
we introduce a further uniform partition into rectangles, and then discretize by spectral
elements.

Figure 12.12 displays the errors in broken norm between the mortar solution and
the exact one, once £2| has been appointed master. On the left the slave’s degree Ny =

312 12 Discontinuous element methods (DG and mortar)

° ‘ . o

0

o
)
&
o
)
&

e — sl
e — sl

o
L
=

o
L
=

So--o---a---f

-15 _15
H H H 0

0

Fig. 12.12. Errors in broken norm for the solution to problem (12.34). Q; = 2 x 2 spectral
elements. On the left the degree Ny = 14 on the slave domain €2; is fixed, on the right the degree
N,, = 14 on the master domain £2,, is fixed

N, = 14 is fixed, and the master’s degree N,, = N varies, whilst on the right Ny = 14
is fixed in the master domain and the slave degree varies. The two curves refer to
different partitions on the subdomains: the first one is geometrically conforming with
2 x 2 spectral elements in each €2;, the second has 2 x 3 spectral elements in €2,
and 2 x 2 in €. In both cases the error converges exponentially until the error in the
domain with fixed spectral degree prevails.

Figure 12.13 gives the number of iterations the preconditioned Bi-CGStab method
needs in order to solve system (12.32), using X, as preconditioner and with fixed
tolerance £ = 107'2 in the stopping test. Note that for a conforming discretization,
convergence is reached after one iteration, while in the nonconforming setting more
iterations are necessary, although their number is independent of the polynomial de-
grees N, and Nj.

Figure 12.14 shows the numerical results for an approximation of problem (12.34)
by finite elements P;, both in the master domain € and in the slave domain £2;. The
functions f, g and the subdomains are as in the previous case. In both ; we assumed

Iterations

Fig. 12.13. Iterations of preconditioned Bi-CGstab to solve problem (12.34). £, = 2 x 2 spec-
tral elements. The degree is fixed on the slave domain €, on the left, on the master domain €2,,
on the right

12.10 Numerical results for the mortar method 313

10
107 ;
o u-usly1 g,
= gl g
broken norm vs Ay
= hm
2 49‘7 hs
10 —2 =1 0
10 10 10
h

Fig. 12.14. Absolute errors in norm H' and in broken norm for the mortar approximation spec-
tral master /slave finite elements

uniform triangulations made of 2n; x 2n; triangles, with n,, # ny: precisely, n,, = 2k
and ny = 3(k+2) for k =5,10,20,40.

In Figure 12.14 one can read the absolute errors in norm H'(£;) and the broken-
norm error between the exact solution and the mortar solution, as the mesh size h;
varies: they decrease linearly with respect to /;, in agreement with estimate (12.21).
The number of iterations required by the preconditioned Bi-CGStab method, with pre-
conditioner X, and with given tolerance £ = 10~!? in the stopping test, is independent
of h;, and turns out to be < 6.

In Figure 12.15 we have the absolute errors in norm H'(£;) and the error in bro-
ken norm between exact and mortar solutions, as the mesh size h, varies in €, relative
to the approximation of problem (12.34) with spectral elements on the master domain
and finite elements (P} or Q) on the slave domain. The functions f, g and the subdo-
mains are defined as in the previous cases.

i

107} 107
—_— |y —_—lu—
ot) T el)
3yl (o 3lhl (o,
1 04r broken norm vs 71,n] 1 04r broken norm vsS/xm
—o— g —— i
——n?] 0 — "3
_2 1 _2 —1 0
10 10 10 1 % 10
hS s

Fig. 12.15. Absolute errors in norm H' and broken norm for the mortar approximation spectral
master /slave finite elements. On the left Qg — Py, on the right Qg — Q5. In both cases the error
line in broken norm overlaps and practically hides the curve in norm H' ()

314 12 Discontinuous element methods (DG and mortar)

10°

_______ —e—

. “7“5‘111(!2;;,)
lu—ug| Hl(Q)
broken norm vs Ay,
_3 © hm
10 »
10
hin

Fig. 12.16. Absolute errors in norm H' and broken norm for the mortar approximation master
finite elements/spectral slave

The errors on the left refer to a partition of £2,,, in 3 x 3 spectral elements of degree
Ny, = 6, of Qg in 2ng X 2n, equal triangles, with ny = 20,40, 80,160 (h; = 2/ny). The
errors on the right refer to a partition of £, in 3 x 3 spectral elements of degree
N,y = 8, and of € in n, X n; equal quadrilaterals, with ny = 10,20,40,80 (hy = 2/ny).

We remark that the error in the slave domain of finite elements decreases like A}*
(ry is the polynomial degree of the finite elements), whereas the error in the master
domain does not reach the spectral case’s accuracy because it is sensitive of the worse
accuracy on the slave domain. However, it decreases as h?“ and the error in broken
norm agrees with estimate (12.21).

The preconditioned Bi-CGStab method with preconditioner X, needs a number of
iterations, given a tolerance £ = 107!2 in the stopping test, that decreases slightly with
hs in both tests, and ranges from 8 iterations for 2, = 1/10 to 5 for h; = 1/40.

In Figure 12.16 the numerical results for the approximation of problem (12.34)
are shown, with finite elements P; on the master domain and spectral elements on the
slave domain. The functions f, g and the subdomains are defined as in above cases.
The domain £ is divided in 4 X 4 spectral elements of degree Ny = 6, while in Q,, we
have uniform triangulations of 2n,, x 2n,, triangles, with n,, = 20,40, 80, 160.

In particular one can see the behaviour of absolute errors in norm H'(€;) and
broken-norm, between the exact and the mortar solution, as the mesh-size h, varies in
;. With mortar approximation on master domain and spectral approximation on slave
domain, both errors in £, and £ decrease linearly with #,,. Here, too, the number of
iterations of the preconditioned Bi-CGStab method with preconditioner X, given a
tolerance € = 10~!2 in the stopping test, does not depend on /; and is < 8 in all tests.

Chapter 13
Diffusion-transport-reaction equations

In this chapter we consider problems of the following form:

(13.1)

Lu = —div(uVu)+b-Vu+ou=f inQ,
u=0 ondQ,

where 1,0, f and b are given functions (or constants). In the most general case, we
will suppose that g € L=() with u(x) > pp > 0, o € L2(Q) with 6(x) >0 a.e. in
Q. b e [L=(Q)]* with div(b) € L2(Q), and f € L}(Q).

In many practical applications, the diffusion term —div(uVu) is dominated by the
convection term b - Vu (also called transport term) or by the reaction term ou (also
called the absorption term when o is non-negative). In such cases, as we will see,
the solution can give rise to boundary layers, that is regions, generally close to the
boundary of 2, where the solution is characterized by strong gradients.

To derive such models, and to capture the analogy with random walk processes, see
e.g. [Sal08, Chap. 2.]

In this chapter we analyze the conditions ensuring the existence and uniqueness
of the solution to problem (13.1). We also consider the Galerkin method, illustrate its
difficulties in providing stable solutions in the presence of boundary layers, and finally
propose alternative discretization methods for the approximation of (13.1).

13.1 Weak problem formulation

Let V = H}(Q). By introducing the bilinear forma : V x V — R,

a(u,v) = /[JVM'VV d.Q+/vb~Vu d.QJr/Guv dQ Yu,v €V, (13.2)
Q Q Q

the weak formulation of problem (13.1) becomes
find ueV: a(u,v) = (f,v) Ywev. (13.3)

© Springer International Publishing AG 2017 315
A. Quarteroni, Numerical Models for Differential Problems, MS&A 16,
DOI 10.1007/978-3-319-49316-9 13

316 13 Diffusion-transport-reaction equations

In order to prove the existence and uniqueness of the solution of (13.3) we will put
ourselves in the condition to apply the Lax-Milgram lemma.

To verify the coercivity of the bilinear form a(-,-), we proceed separately on the
single terms composing (13.2).
For the first term we have

/va-Vvd.Q > o[VvE2q)- (13.4)
Q

Asve H(')(.Q), the Poincaré inequality holds (see (2.13)); then
V121) = M2y + 19V < (14 CD)IVVIP2 g
and therefore it follows from (13.4) that

Ho 2
uvv-vvdQ > IVl q)-
! 1+c3 " e

‘We now move to the convective term. Using Green’s formula (3.16) yields

1 1 1
/vb-Vvd.Q = Z/b-V(vz)d.Q:—2/v2div(b)d.(2+2/b-nv2dy
Q Q Q 20

1
= -, / Vdiv(b) dQ,
Q
as v =0 on d£2, whence

I
/vb-Vv a0 +/Gv2 40 — /vz(—zdiv(b) +0)dQ.
Q Q Q

The last integral is certainly positive if we suppose that

1
—,div(b) 620 ac.inQ. (13.5)
Consequently, the bilinear form a(-,-) is coercive, as
a(v,v) > alv|)? weV, wih a=_ (13.6)
’ jl Hl(.Q)) 1 —|—C§2 . .

To prove that the bilinear form a(-,-) is continuous, that is it satisfies (2.6), we bound
the first term on the right-hand side of (13.2) as follows

/#VM WdQ| < [|plli=()lVulli20) V2@ (13.7)
Q

< el el @) VIl @) -

13.1 Weak problem formulation 317

We have used the Holder and Cauchy-Schwarz inequalities (see Sect. 2.5), as well as
the inequality [[Vwl|i2(q) < [[Wlli(q) VW € H 1(Q). For the second term, proceeding
in a similar way we ﬁnd

[vb-Vuae| < bl)Vl
Q

(13.8)
< [Dll=@) IVl o) [l o)

Finally, for the third term we have, thanks again to the Cauchy-Schwarz inequality,

/Guv dQ| < C?|o|l2qlluvllizig) < CPllolao)lullu @) Vi@ (13.9)
Q

o) < Il Vls(@) < C2llull o V] (). having applied inequal-
ity (2.18) and exploited inclusmns (2 19) with C belng the 1nclu510n constant.
Summing (13.7), (13.8) and (13.9) term by term, the continuity property (2.6) follows
by taking, e.g.,

M = || tllL=(2) + [bllL=@) + C*5lL2(q) (13.10)

On the other hand, the right-hand side of (13.3) deﬁnes a bounded and linear functional
thanks to the Cauchy-Schwarz inequality and to the Poincaré inequality (2.13).

As the Lax-Milgram lemma hypotheses are verified (see Lemma 3.1), it follows that
the solution of the weak problem (13.3) exists and is unique. Moreover, the following
a priori estimates hold

1
el @) < o Il @), Vel ||f||L2

as consequences of (13.4), (13.6) and (2.4). The first follows from Corollary 3.1, the
second one can easily be proven starting from equation a(u,u) = (f,u) and using the
Cauchy-Schwarz and Poincaré inequalities as well as (13.4) and (13.5).

The Galerkin approximation of problem (13.3) is
find u, €Vj,: a(uh,vh) = (f,Vh) Vv, € Vy, (13.11)

where {V,,h > 0} is a suitable family of subspaces of H}(£2). By replicating the proof
carried out above for the exact problem (13.3), the following estimates can be proved:

1 Co
lunll () < a”f”Lz(_Q)v Vo) < o 12 @)

These prove, in particular, that the gradient of the discrete solution (as well as that of
the weak solution u) could be as large as Ll is small.
Moreover, the Galerkin error inequality (4.10) gives

M.
e —unlly <, inf u—vally. (13.12)
h<Vh

318 13 Diffusion-transport-reaction equations

By the definitions of ¢« and M (see (13.6) and (13.10)), the upper-bounding constant
M/ o becomes as large (and, correspondingly, the estimate (13.12) meaningless) as the
ratio [|b|p=(q)/[|it[[L=() (resp. the ratio [|0|[2(q)/||H||L=(a)) grows, which happens
when the convective (resp. reactive) term dominates over diffusive one.

In such cases the Galerkin method can give inaccurate solutions, unless — as we
will see — an extremely small discretization step # is used.

Remark 13.1. Problem (13.1) is known as the non-conservative form of the diffusion-
transport(-reaction) problem, the conservative form being

(13.13)

Lu = div(—uVu+bu)+ou=f inQ
u=0 on dQ

If b is constant, the two formulations (13.1) and (13.13) are equivalent. The bilin-
ear form associated to (13.13) is
a(u,v) = / (UVu—bu)-VvdQ + / ocuvdQ Yu,veV. (13.14)
Q Q

It can be easily verified that the condition which ensures the coercivity of this bilinear
form is

1
Ldv(h) +0>0 aeinQ. (13.15)

Under these assumptions, the conclusions drawn for problem (13.1) (and for its ap-
proximations) also hold for problem (13.13). °

In order to evaluate more precisely the behaviour of the numerical solution pro-
vided by the Galerkin method, we analyze a one-dimensional problem.

13.2 Analysis of a one-dimensional diffusion-transport problem

Let us consider the following one-dimensional diffusion-transport problem

—uu’"+bu' =0, 0<x<1,
{ u(0) =0, u(l) =1, (13.16)
U and b being two positive constants.
Its weak formulation is
findu e H'(0,1): a(u,v)=0 VveH}(0,1), (13.17)

with u(0) =0, u(1) = 1,and a(u,v) = [(wu'v' + bu'v)dx. Following what indicated in
Sect. 3.2.2, we can reformulate (13.17) by introducing a suitable lifting (or extension)
of the boundary data. In this particular case, we can choose R, = x. Having then set

U=1u— Ry = u — x, we can reformulate (13.17) in the following way

find ue H)(0,1): a(u,v)=F(v) Vv eH)0,1), (13.18)

13.2 Analysis of a one-dimensional diffusion-transport problem 319

where F (v) = —a(x,v) = — fol bv dx represents the contribution due to the data lifting.
We define the global Péclet number as the ratio
bL
Pe, = " (13.19)

L being the linear dimension of the domain (1 in our case). This ratio provides a
measure of how the convective term dominates the diffusive one. As such it plays
the same role as the Reynolds number in the Navier-Stokes equations, which we will
see in Chapter 17. For a negative b, its absolute value should be used in the previous
definition.

We start by computing the exact solution of such problem. Its associated charac-
teristic equation

—UAT DAL =0
has two roots, A = 0 and A, = b/u. The general solution is therefore
b
u(x) =C M 4 ! = Cp + Crer”.

By imposing the boundary conditions we find the constants C; and C,, and therefore
the solution

exp(ﬁx) —1
u(x) = b .
exp(h) 1
Using the Taylor expansion for the exponentials, if b/ < 1 we obtain
b b
_1+“x+~~~—1 ux
u(x) = L bt ~ ' =x
u u

Thus, the solution lies near the straight line interpolating the boundary data (which is
the solution corresponding to the case b = 0).
Conversely, if b/p > 1 the exponentials are very large, hence

ep(yx) b
= L =en (- 0-0).

and the solution is close to zero on almost all of the interval, except for a neighborhood
of the point x = 1, where it tends to 1 exponentially. Such neighborhood has a width
of the order of i /b and is therefore very small: the solution exhibits a boundary layer
of width &/(g) in proximity of x = 1 (see Fig. 13.1), where the derivative behaves like
b/u, and is therefore unbounded if u — 0.

Let us now suppose to use the Galerkin finite element method with piecewise-
linear polynomials to approximate (13.17): find u;, € Xhl s.t.

a(up,vy) =0 Vv G)?;zv 13.20
{ up(0) =0, uy(1) =1, (20

320 13 Diffusion-transport-reaction equations

1

b/u=-100

0.9+
0.8 b/u=-10
0.7H
0.6 b/u=0
0.5
0.4

0.3

0.2

0.1

b/u=100

0O 01 02 03 04 05 06 07 08 09 1
X

0

Fig. 13.1. Behaviour of the solution of problem (13.16) when varying the ratio /. For com-
pleteness, we also highlight the solutions relating to the case where b is negative

where, denoting by x;, fori =0, ... M, the vertices of the partition introduced on (0, 1),
we have set, coherently with (4.14),

X; = {v, € C°([0,1]) : vy P, i=1,...,M},
Xi—15Xi
X" = {vi € X} 1 vi(0) = vy, (1) = 0},

for » > 1. Having chosen, foreachi = 1,...,M — 1, v;, = ¢; (the i-th basis function of
X1, we have

1 1
/ Q! dx+/ buj, @; dx = 0.
0 0

Put differently, if we suppose the support of ¢; to be equal to [x;_1,x;;+1] and writing
M—1

u, = Y uj@;(x), we have
=

X Xit1 Xit1
M| Ui /‘PLHPI{ dXJr”i/(‘Pi/)2 dx+ui+1/(Pi/+1(Pi/ dx
Xi-1 Xi-1 X

Xit1 Xit1

X
+b u,-,l/(p[fl(piderui/(p{(p,’deru,-H/(pl-/ﬂ(pi dx| =0,

Xi—1 Xi—1 Xi

Vi=1,...,M — 1. If the partition is uniform, that is xo = 0 and x; = x;_| + h, with
i=1,...,M, observing that ¢/(x) = | if x; | <x <x;, @/(x) = —) if x; <x < xi11,
fori=1,...,M — 1, we obtain

1 2 1 1h 1h
u fuifthruih—u,-Hh +b 7ui7]h2+u"+'h2 =0,

13.2 Analysis of a one-dimensional diffusion-transport problem 321
that is

ol

1
" —ui_1—|—2ui—ui+1)+2b(u,-+1—ui_l)zO, i=1,...M—1. (13.21)

Rearranging the terms we find

b 2 b .
(Z—Z)ui+1+ ;llui— (2+Z)ui_1zo, i=1,....M—1.

Dividing by p/h and defining the local (or “grid”) Péclet number

_ bln

P
e2“

, (13.22)

we finally have
(]P’ef1)ui+]+2ui—(Pe+l)ui,| =0, i=1,....M—1. (13.23)

This is a linear difference equation that admits exponential solutions of the form u; =
pi (see [QSSO7]). Replacing such expression into (13.23), we obtain

(Pe—1)p?42p — (Pe+1) =0,
from which we get the two roots

—1+V1+Pe?—1 :{ (1+Pe)/(1—TPe),

P12= Pe—1 1.

Thanks to the linearity of (13.23), the general solution of such equation takes the form
u; = A1p} +A2p),

with A and A, two arbitrary constants. By imposing the boundary conditions uy = 0
and uy = 1, we find

1+ M~ -1
A1:—A2 and A2:<1—(+ e)) .
1—Pe

To conclude, the solution of problem (13.20) has the following nodal values

[(1+Fe ‘
1—-Pe .
L i=0,.
| 1+4Pe
1—Pe
We observe that, if Pe > 1, the term within brackets is negative and the approximate

solution becomes oscillatory, whereas the exact solution that is monotone! This phe-
nomenon is displayed in Fig. 13.2 where the solution of (13.23), for different values of

= M.

322 13 Diffusion-transport-reaction equations

1 T

—— Exact !
--- Pe= 263 /

Pe= 1.28 i
--- Pe= 063 o

L L L L
0.75 0.8 0.85 0.9 0.95 1

Fig. 13.2. Finite element solution of the diffusion-transport problem (13.16) with [Peg = 50 for
different values of the local Péclet number

the local Péclet number, is compared to the exact solution for a case where the global
Péclet number is equal to 50. As it can be observed, the higher the Péclet number
gets, the more the behaviour of the approximate solution differs from that of the exact
solution, with oscillations that become more and more noticeable in proximity of the
boundary layer.

The most obvious remedy to this misbehaviour would be to choose a sufficiently small
grid-size h, in order to ensure Pe < 1. However, this strategy is not always convenient:
for instance, if b = 1 and u = 1/5000, we should take i < 1/2500, that is introduce at
least 2500 intervals on (0, 1)! In particular, such strategy would require an unreason-
ably high number of nodal points for boundary-value problems in several dimensions.
A more suitable remedy consists in using an a-priori adaptive procedure that refines
the grid only in proximity of the boundary layer. Several strategies are availabel for this
purpose. Among the better known, we mention the so-called type B (for Bakhvalov)
or type S (for Shishkin) grids. See e.g. [GRSO07].

Alternative grid adaptive strategies, both a-priori and a-posteriori, especially useful
for multidimensional problems, are those described in Sect. 4.6.

13.3 Analysis of a one-dimensional diffusion-reaction problem

Let us now consider a one-dimensional diffusion-reaction problem:

T _
{ uu"+ou=0, 0<x<l, (13.24)

u(0) =0, u(l)=1,
with u and o positive constants, whose solution is

_ sinh(ox) e® —em**

u(x) = sinh(c) = La_,a , with o = /o /.

13.3 Analysis of a one-dimensional diffusion-reaction problem 323

Also in this case, if o/u > 1 there is a boundary layer for x — 1, with thickness
of order \/ /o, where the first derivative becomes unbounded for yu — 0 (note, for
instance, the exact solution for the case displayed in Fig. 13.3). Also in this case, it is
interesting to define the global Péclet number, which takes the form

ol?

Pe, = 611

)

L still being the linear dimension of the domain (1 in our case).
The Galerkin finite element approximation of (13.24) reads

find u, € X} such that a(uy,v,) =0 Yv, €X, (13.25)

for r > 1, with u;,(0) = 0 and up, (1) = 1 and a(uy, v;) = fol (puy,v), + oupvy)dx. Equiv-
alently, by setting it,= uj, — x, and F(vp) = —alx,v;) = — fol oxvudx, we have

find 1,€ Vj such that a(iy,v,) = F(vy) Vv € Vi, (13.26)

o
with Vj, =X7. For the sake of simplicity, let us consider problem (13.25) with piecewise
linear elements (that is » = 1) on a uniform partition. The equation associated to the
generic basis functionv, = ¢;, i=1,... M —1,is

1 1
/[Ju%(pi' der/Guh(pi dx =0.
0 0

—— Exact S
--- Pe= 556 Sy
--- Pe=1.18 P
- - Pe= 027 S

05 L L L L L L L L L
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Fig. 13.3. Comparison between the numerical solution and the exact solution of the diffusion-
reaction problem (13.24) with Peg = 200. The numerical solution has been obtained using the
Galerkin-linear finite elements method on uniform grids

324 13 Diffusion-transport-reaction equations

By carrying out our computation in a similar way to what we did in the previous
section, and observing that

Xi h Xit1 2 Xit+1 h
/ (Pifl(Pidx:6; / (pizdx:3hv / i Pir1 dx:6’
Xi—1 Xi

i Xi—1

we obtain

1 2 1 h 2 h
u (—ui—lh +uih —Mi+1h) +o (ui—16 +ui3h+ui+16) =0, (13.27)

h u 2 21 h u _
(60' h)u,+1+(36h+h)u,+(6c h)u,_l—O.

Dividing by pt/h and defining the following local Péclet number

that is

oh?
Pe = 13.2
e o1 , (13.28)

we finally have

(Pe — Dujr1 +2(1 4+ 2Pe)u; + (Pe — 1)u;—; =0, i=1,....M—1.
This three-term difference equation admits the following solutions for each i =
0,...,.M,

i i

1+ 2Pe + /3Pe(Pe +2)
1—1Pe

1+ 2Pe — /3Pe(Pe +2)
1 —TPe

M M>

1+2Pe+ /3Pe(Pe +2)
1-Pe

1+ 2Pe — /3Pe(Pe +2)
1—Pe

again oscillatory when Pe > 1.
The problem is therefore critical when © >>1, that is when the diffusion coefficient is
very small with respect to the reaction one (see the example reported in Fig. 13.3).

13.4 Finite elements and finite differences (FD)

We want to analyze the behaviour of the finite difference method (FD, in short) applied
to the solution of diffusion-transport and diffusion-reaction problems, and highlight
analogies and differences with the finite element method (FE, in short). We will limit
ourselves to the one-dimensional case and we will consider a uniform mesh.

Let us consider problem (13.16) once more and let us approximate it via finite
differences. In order to generate a local discretization error of the same magnitude

13.4 Finite elements and finite differences (FD) 325

for both terms, we will approximate the derivatives by using the following centred
incremental ratios:

W () = ”(x"+1)2_h“(x"‘1)+ﬁ(h2), i=1,...M—1, (13.29)
i+1) — 2u(x; i .
() = u(xi1) "‘h(f)”(x 1)+ﬁ(h2), i=1,....M—1. (13.30)

In both cases, as highlighted, the remainder is an infinitesimal with respect to the step
size h, as it can be easily proven by invoking the truncated Taylor series (see, e.g.,
[QSS07]). By replacing in (13.16) the exact derivatives with these incremental ratios
(thus ignoring the infinitesimal error), we find the following scheme

W1 —2ui+ui— Ui — Ui
b
h? + 2h
uy = O, uy = 1.

=0, i=1,....M—1,
(13.31)

For each i, the unknown u; provides an approximation for the nodal value u(x;). Mul-
tiplying by &, we obtain the same equation (13.21) obtained using the finite element
method with piecewise linear polynomials on the same uniform grid.

Let us now consider the diffusion-reaction problem (13.24). Proceeding in an anal-
ogous way, its approximation using finite differences yields

1 —2u; i—
I/l():()v up = 1.

The above equation is different from (13.27), which was obtained using linear finite el-
ements: instead the reaction term, appearing in (13.32) with the diagonal contribution
ou;, yields in (13.27) the sum of three different contributions

h 2 h
o\ ui—q 6 +ui3h+u,~+1 6)
Hence the two methods FE and FD are not equivalent in this case. We observe that the

solution obtained using the FD scheme (13.32) does not display oscillations, whichever
value is chosen for the discretization step /. As a matter of fact, the solution of (13.32)is

ui = (p}" = py") " (p} — pd),
with

2 4

The i-th powers now have a positive basis, guaranteeing a monotone behaviour of the
sequence {u;}. This differs from what we have seen in Sect. 13.3 for the FE, for which

1
2 2 2
Pl,zzyi(y —1) and y=2+6:’ .

it is necessary to choose & < \/ f’(f to guarantee that the local Péclet number (13.28)
is less than 1. See the example reported in Fig. 13.4 for a comparison between a finite
element approximation and a finite difference approximation.

326 13 Diffusion-transport-reaction equations

121 : b

—— Exact

- -~ Pe=10.20 (FEM)

- -~ Pe=10.20 (FD)
Pe=0.57 (FEM)

—+— Pe=0.57 (FD)

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Fig. 13.4. Comparison between the numerical solutions of the one-dimensional diffusion-
transport equation (13.24) with Peg = 2000 obtained using the Galerkin-linear finite element
method (FEM) and the finite difference method (FD), for different values of the local Péclet
number

13.5 The mass-lumping technique

In the case of the reaction-diffusion problem, we can obtain the same result as with
finite differences by using linear finite elements, provided that we resort to the so-
called mass-lumping technique, thanks to which the mass matrix

1
M = (m;;), mjj = /(Pj(Pi dx,
0

which is tridiagonal, is approximated using a diagonal matrix My, called condensed
or lumped matrix. To this end we use the following trapezoidal quadrature formula on
each interval (x;,x;41), foreachi=0,...,.M —1

Xit1

/ F(x) dx ~

Xi

RUCERIE)]

Thanks to the properties of finite element basis functions, we then find:

Qi1 @i dx == B @iy (xim1)@i(xi) + @1 (%) @i (x:)] =0,
Xi]
Xit1)
- @7 dx =2/ ¢? dx ~ 2’21 [@%i(xim1) + @%i(x;)] =h,
Xit1

@i@ir1 dx =~ B [Qi(x) @1 (x1) + @i (Xit1) Piv1 (xi41)] = O.

Xi

Using the previous formulae to approximate the mass matrix coefficients, we get to
the following diagonal matrix M; whose elements are the sums of the elements of

13.5 The mass-lumping technique 327
each row of M, i.e.

i+1
M, = diag(m;;), with m;= Y m;. (13.33)
j=i—1

Note that, thanks to the following partition of unity property of the basis functions
M
Y oix)=1 vxelo,1], (13.34)
j=0

the elements of My, take the following expression on the interval [0, 1]

1
rﬁii:/(pidx, i=0,....M.
0

Their values are reported in Exercise 3 for finite elements of degree 1,2, 3.
If the terms of order zero are replaced in the following way

1 M—1 1 M—1
/) Guh(pidx:o Zuj/o (pj(pidx:cf Zmijujzcmiiui,
j=1 j=1

the finite element problem produces solutions coinciding with those of finite differ-
ences, hence monotone solutions for each value of 4. Moreover, replacing M with M,
does not reduce the order of accuracy of the method.

The process of mass lumping (13.33) can be generalized to the two-dimensional
case when linear elements are used. For quadratic finite elements, instead, the above-
mentioned procedure consisting in summing by rows would generate a singular mass
matrix My, (see Example 13.1). An alternative diagonalization strategy consists in us-
ing the matrix M = diag(m;;) with elements

e
Xjmjj

In the one-dimensional case, for linear and quadratic finite elements, the matrices li/[
and My, coincide, while they differ for cubic elements (see Exercise 3). The matrix M
is non-singular also for Lagrangian finite elements of high order, while it can turn out
to be singular when using non-Lagrangian finite elements, for instance when using hi-
erarchical bases. In the latter case, we resort to more sophisticated mass-lumping pro-
cedures. Indeed, a number of diagonalization techniques able to generate non-singular
matrices have been elaborated also for finite elements of high degree. See for example
[CIRTO1].

328 13 Diffusion-transport-reaction equations

Example 13.1. The mass matrix for the P, finite elements on the reference triangle
with vertices (0,0), (1,0) and (0, 1) is given by

6 —1 -1 0 -4 O

—1 6 —1 0 0 —4

1 -1 -1 6 -4 0 O
180 0 0 —4 32 16 16 |’

-4 0 0 16 32 16

0 -4 0 16 16 32

while the lumped mass matrices are given by

.
My = o diag(000 6060 60).

~]
M= diag(666323232).

As it can be noticed the matrix My is singular. |

The mass-lumping technique is also used in other contexts, for instance in the so-
lution of parabolic problems (see Chap. 5) when finite-element spatial discretizations
and finite-difference explicit temporal discretizations (e.g., the forward-Euler method)
are used. In such case, lumping the mass matrix that arises from the discretization of
the temporal derivative can conduct to the solution of a diagonal system, with corre-
sponding reduction of the computational cost.

13.6 Decentred FD schemes and artificial diffusion

The comparative analysis with finite differences allowed us to find a remedy to the
oscillatory behaviour of finite element solutions in the case of a diffusion-reaction
problem. We now wish to find a remedy for the case of the diffusion-transport problem
(13.16) as well.

Let us consider finite differences. The oscillations in the numerical solution arise
from the fact that we use a centred finite difference (CFD) scheme for the discretiza-
tion of the transport term. Since the latter is non-symmetric, this suggests to discretize
the first derivative at a point x; with a decentred incremental ratio where the value at
x;—1 intervenes if the field is positive, and at x;; | in the opposite case.

This technique is called upwinding and the resulting scheme, called upwind scheme
(FDUP, in short) in the case b > 0 is written as

Uil —2ui+uiy | Ui — Ui

+b

2 L=0 =l M (13.35)

(See Fig. 13.5 for an example of application of the upwind scheme). The price to pay
is a reduction of the order of convergence, because the decentred incremental ratio

13.6 Decentred FD schemes and artificial diffusion 329

—— Exact

-—- CFD Pe=2.94

1F| ==+ UPFD Pe=2.94
CFD Pe=0.70

—+— UPFD Pe=0.70

0.2

Sttt

N

0.7 0.75 0.8 0.85 0.9 0.95 1

Fig. 13.5. Solution obtained using the centred (CFD) and upwind (UPFD) finite difference
scheme for the one-dimensional diffusion-transport equation (13.16) with Peg = 50 and two
different local PAI clet numbers. Also in the presence of high local Péclet numbers, one can no-
tice the stabilizing effect of the artificial diffusion introduced by the upwind scheme, inevitably
accompanied by a loss of accuracy

introduces a local discretization error (1) as opposed to &'(h?) (see (13.30)), in the
CFD case.
We now observe that

Up—Ui-1 _ Uil —Ui-1 i — 2+
h 2h 2 h2 ’

that is, the decentred incremental ratio to approximate the first derivative can be writ-
ten as the sum of a centred incremental ratio plus a term proportional to the discretiza-
tion of the second derivative, still with a centred incremental ratio. Thus, the upwind
scheme can be reinterpreted as a centred finite difference scheme where an artificial
diffusion term proportional to & has been introduced. As a matter of fact, (13.35) is
equivalent to

Uir1 —2ui+ui Ujt] — Uj—]
—Hn +b

=0 i=1,....M—1 13.36
h2 2h Y L) ? Y ()

where p;, = (14 Pe), Pe being the local Péclet number introduced in (13.22). Scheme
(13.36) corresponds to the discretization using a CFD scheme of the perturbed prob-
lem

— "+ bu = 0. (13.37)

. . . bh ;
The viscosity “correction” y, — U = ulPe = is called numerical viscosity or artifi-
cial viscosity. The new local Péclet number associated to the scheme (13.36) is

bh Pe

Pe* = ,
ST ow (14Pe)

330 13 Diffusion-transport-reaction equations

so Pe* < 1 for all possible values of 4 > 0. As we will see in the next section, this
interpretation allows to extend the upwind technique to finite elements, and also to
the two-dimensional case where, incidentally, the notion of decentred differentiation
is not obvious.

More generally, in a CFD scheme of the form (13.36) we can use the following nu-
merical viscosity coefficient

= (1 + 9(Fe)), (13.38)

where ¢ is a suitable function of the local Péclet number that must satisfy the property

lirgl (t) = 0. It can be easily observed that if ¢ = 0, we obtain the CFD method
t—0+

(13.31), while if ¢(¢) = ¢, we obtain the upwind UPFD method (13.35) (or (13.36)).
Different choices of ¢ lead to different schemes. For instance, setting

O(t)=t—1+B(21), (13.39)

where B is the so-called Bernoulli function defined as

t .
B(t) = o1 iftr>0, and B(0)=1,
we obtain the exponential fitting scheme, generally attributed to Scharfetter and Gum-
mel or to Iljin (in fact, it was originally introduced by Allen and Southwell [AS55]).
See also Sect. 13.8.7 for more on this method.

Having denoted by ¢Y, resp. ¢3¢, the two functions determined by the choices
¢(t) =t and ¢(t) =t — 1 — B(2t), we observe that ¢3¢ ~ ¢V if Pe — oo, while
¢5¢ = O(Pe?) and ¢V = O(Pe) if Pe — 07 (see Fig. 13.6).

It can be verified that for each given u and b the Scharfetter-Gummel scheme is a
second order scheme (with respect to /) and, because of this, it is sometimes called
upwind scheme with optimal viscosity. In fact, it can also be verified, in the case
where f is constant — more generally, it is sufficient that f is constant on each interval

9F ’
8

A P

o

5 P

j

s

2

1

Sz s 4 5 6 7 8 6 10

Fig. 13.6. The functions ¢V (solid line) and ¢3¢ (etched line) versus the local Péclet number

13.7 Eigenvalues of the diffusion-transport equation 331

E— Exact

R UPFD Pe=2.94

|- SGFD Pe=2.94
UPFD Pe=0.70

— SGFD Pe=0.70

L L L L L L L L L
08 082 08s 086 088 [02 0.4 0.96 [1

Fig. 13.7. Comparison between the exact solution and those obtained by the upwind scheme
(UPFD) and the Scharfetter and Gummel one (SGFD) in the case where Pe, = 50

[xi,x;+1]) — that the numerical solution produced by this scheme is nodally exact. This
means that it coincides exactly with the solution u at each discretization node inside
the interval (0, 1), that is we have

uj=u(x;) fori=1,....M—1,

independently of the choice of & (see Fig. 13.7).
‘We observe that the local Péclet number associated with the coefficient (13.38) is

bh Pe

- 2”11 (1+¢(Pe))7

and is therefore always less than 1, for each value of 4.

Pe*

Remark 13.2. The matrix associated with the upwind and the exponential fitting
scheme is an M-matrix regardless of the value of h; hence, the numerical solution
has a monotone behaviour (see [QSS07, Chap. 1]). °

13.7 Eigenvalues of the diffusion-transport equation

Let us consider the operator Lu = —pu” + bu’ associated to problem (13.16) on a gen-
eric interval (a, 3). Its eigenvalues A solve Lu = Au, ot < x < B, u(a) = u(f) =0,
u being an eigenfunction. Such eigenvalues, in general, will be complex because of
the presence of the first-order term bu’. Supposing u > 0 constant (and b variable,
a priori), we have

B B B B

1
/|u|2dee(7L) :/Luudx:[,t/|u'|2dxf 2/b'|u|2dx. (13.40)
o o o o

332 13 Diffusion-transport-reaction equations

It can be inferred that if u is small and &' is strictly positive, the real part of A is not
necessarily positive. However, thanks to the Poincaré inequality (2.13) we have

B B
/|u’|2dxzcaﬁ/|u|2dx, (13.41)
o a
with Cy g being a positive constant depending on 8 — o; we deduce from (13.40) that

1
Re()’) > Coc,ﬁ = 2 b:nam

where b, = maxﬁ b'(s). In particular, let us observe that
oa<s<

Re(A) >0 if bisconstantorif 5'(x) <0 Vxe€ [a,B].

The same kind of lower bound can be obtained for the eigenvalues associated to
the Galerkin-finite element approximation of the problem at hand. The latter are the
solution of the problem

B B
find A4, €C, up, €V : /uu},v}ldx—l—/bu;,vhdx =),h/uhvhdx Yy, €V, (13.42)
o o

o

where V;, = {v, € X] : vy(at) =v,(B) = 0}. To prove this, it suffices to take again
vy, = uy, in (13.42) and proceed as previously.

We can instead obtain an upper bound by choosing again v, = uy, in (13.42) and taking
the modulus in both members:

w12)+ 1B l(ap) 14412 @) 2o)

2

|An| < lual
UrllL2(ap)

By using the inverse inequality (4.52) in the one-dimensional case
41C = C[(r) >0: Yy, € X;;, ||V;1||L2(a7ﬁ) < C[hil ||Vh||L2(a7ﬁ), (13.43)

we easily find that
n] < HCT R 4 |[b]|L=(0p) Crh ™"

If, instead, we use a Legendre G-NI spectral approximation of the same problem
on the usual reference interval (—1,1) (see Sect. 10.3), the eigenvalue problem takes
the following form:

find AN € C, uy € P :
(13.44)
(muy,vy) y + (buy,vw) y = AN (un,vw) y Yow € P,

13.8 Stabilization methods 333

with IP’ON now being the space of algebraic polynomials of degree N vanishing at x =
+1, and (-,-)y the discrete GLL scalar product defined in (10.25). We will suppose,
for simplicity, that b is also constant. Taking vy = uy, we obtain

2
Re()yN) _ :u“”u;V”LZ(_LI)

)

w1

and so Re(A") > 0. Thanks to the Poincaré inequality (13.41) (which holds in the
interval (—1,1) with constant C,, g = 712 /4), we obtain the lower bound

77,'2 ||MN||EZ(_1 1)
Re(AY) > u ’
4 Junly

As uy is a polynomial of degree at most /N, thanks to (10.54) we obtain
2

T
Re(AN) > u 12"
Instead, using the following inverse inequality for algebraic polynomials
3C>0: Vv ePy, |vnlliz iy SCN? vnlle i (13.45)
(see [CHQZO06]) and once again (10.54), we find
Re(AY) < CuN*.

In fact, if N > 1/u, we can prove that the moduli of the eigenvalues of the diffusion-
transport problem (13.44) behave like those of the pure diffusion problem, that is (see
Sect. 10.3.2)

CIN T < AN <N

For proofs and more details, see [CHQZO06, Sect. 4.3.3].

13.8 Stabilization methods

The Galerkin method introduced in the previous sections provides a centred approxi-
mation of the transport term. A possible way to use a decentred approximation consists
in choosing test functions v;, in a different space from the one u;, belong to: by doing
s0, we obtain a method called Petrov-Galerkin, for which the analysis based on the Céa
lemma no longer holds. We will analyze this approach more in detail in Sect. 13.8.2.
In this section we will deal instead with the methods of stabilized finite elements.
More precisely, instead of using the Galerkin finite element method (13.26) for the
approximation of (13.12), we consider the generalized Galerkin method

find fthe Vi : ah(fth,vh) = Fh(vh) Vv, € Vi, (13.46)
where

ap (i, vi) = altty, vy) + by(tty,vy,) and Fy(vy) = F(vy) + Gy(vy).- (13.47)

334 13 Diffusion-transport-reaction equations

The additional terms bh(fth, vy,) and Gj,(vy,) have the purpose of eliminating (or at least
reducing) the numerical oscillations produced by the Galerkin method (when the grid
is not fine enough) and are therefore named stabilization terms. The latter depend
parametrically on 4.

Remark 13.3. We want to point out that the term “stabilization” is in fact inexact. The
Galerkin method is indeed already stable, in the sense of the continuity of the solution
with respect to the data of problem (see what has been proved, e.g. in Sect. 13.1 for
problem (13.1)). In this case, stabilization must be understood as the aim of reducing
(ideally, eliminating) the oscillations in the numerical solution when Pe > 1. °

Let us now see several possible ways to choose the stabilization terms.

13.8.1 Artificial diffusion and decentred finite element schemes

Based on what we have seen for finite differences, we can apply the Galerkin method
to problem (13.16) (whose weak formulation is (13.18)) by replacing the viscosity
coefficient y with a new coefficient ;, = (1 + ¢(Pe)). This way, we end up adding
to the original viscosity term an artificial (or numerical) viscosity equal to p¢(Pe),
which depends on the discretization step A through the local Péclet number Pe.

This corresponds to choosing in (13.47) G (v,) = 0 and

1

by (it vp) :w(%)/:‘i; v, dx. (13.48)
0

Since
o o o
an(tn,up) = pol g [g

and U, > U, we can say that problem (12.47) - (12.48) has a larger coercivity constant
than the standard Galerkin formulation which corresponds to taking a;, = a and F, = F
in (13.46).

The following result provides an a priori estimate of the error made by approxi-
mating the solution of problem (13.18) with that of (13.46), (13.47), (13.48).

Theorem 13.1. Under the assumption that u € H" Al (), the error between the
solution of problem (13.18) and that of the approximate problem (13.46) with
artificial diffusion is bounded from above:
|| u— up ||H1(Q) <
hr o (1) (IP’e) o
C U || + u ,
”(1+¢(Pe))” ||H +1(Q) 1+¢(]P€)|| ||Hl(.Q)

with C a suitable positive constant independent of h and [L.

(13.49)

13.8 Stabilization methods 335

Proof. We can take advantage of Strang’s lemma, previously introduced in
Sect. 10.4.1, thanks to which we obtain

o o . M o
Vi — il < uﬁ{Q+M>wwhm>

WpEV) 13.50

! lawn i) = an (o, 1) (13:50)

+ sup .
Ho v, €v,0,#0 HVhHHl(Q)

We choose wy, = P} ft, the orthogonal projection of It on V;, with respect to the scalar
1

product / u'v'dx of H)(Q), that is
0

1
Pl ucvy: /(P,j w—u)Vidx=0 Vv, €V,
0

It can be proved that (see [QV94, Chap. 3])

1By) ll2@) < 1) @) and [Py u —u |y q) < CH' [l [lyri(q),
C being a constant independent of 4. Thus, we can bound the first addendum of the

right-hand side in (13.50) by (C/)1 || " 1)
Now, thanks to (13.48), we obtain

1
1 — 1

la(wp,vi) — an(wn,va)| < u(l)(IP’e) ‘/WZVZ dx‘.
M, Vil (@) M, valler) 1

Using the Cauchy-Schwarz inequality, and observing that

Villiz@) < vallmey: 1B w1z < 1P u o) < 11w llm o),
we obtain
a(P}{ ’ivvh) 7ah(P}{ livvh) (p(Pe) || ° ||
sup S Uu|g .
W vy €V 20 Vel (@) 1+¢(pe) !~ @)

Inequality (13.49) is therefore proved. o

336 13 Diffusion-transport-reaction equations

Corollary 13.1. For a given | and for h tending to 0 we have

it = it lrgy < o [s o + 9O it gy |, (13.51)

where Cy is a positive constant independent of h, while for a given h and |
tending to 0 we have

| u =, [lg1 o) < Ca {hHH ||y + | u HHI(Q)} ; (13.52)

where C, is a positive constant independent of h and [L.

Proof. We obtain (13.51) from (13.49) remembering that ¢ (Pe) — 0 for any given
U when h — 0. To obtain (13.52) it is sufficient to observe that, in the upwind case,
¢Y (Pe) = Pe, so

o(Pe) h
14+¢(Pe) h+2u/b’
For the Scharfetter and Gummel method, ¢3¢ (Pe) ~ ¢Y (Pe) for a given h and u
tending to O. o

/.1(1+¢(Pe)):u+12)h and

In particular, for a given u, the stabilized method generates an error that decays lin-
early in & (irrespectively of the degree r) when using the upwind viscosity, while
with an artificial viscosity of Scharfetter and Gummel type, the convergence rate be-
comes quadratic if » > 2. This result follows from estimate (13.51), recalling that
¢Y (Pe) = O'(h) while ¢3¢ (Pe) = €' (h?) for a fixed and for 1 — 0.

13.8.2 The Petrov-Galerkin method

An equivalent way to write the generalized Galerkin problem (13.46) with numerical
viscosity is to reformulate it as a Petrov-Galerkin method, that is a method where
the space of test functions is different from the space where the solution is sought.
Precisely, the approximation takes the following form

find w,e Viy: a(up,vy) =F(vy) vy € Wy, (13.53)

where W), # Vj,, while the bilinear form a(-,-) is the same as in the initial problem.
It can be verified that in the case of linear finite elements, that is for » = 1, problem
(13.46)—(13.48) can be rewritten as (13.53), where W, is the space generated by the
functions y;(x) = @i(x) + BY (see Fig. 13.8, right). Here the B* = o B;(x) are the
so-called bubble functions, with

g(l_X7)}C,i7])a xi—lS-xSxia
Bi(x) =9 —g(*,), xi <x <Xy,

0 otherwise,

13.8 Stabilization methods 337

X0 ... i—1 i il e X A0 - i-1 X i1 - XN

3 2 El o 1 2 3

Fig. 13.8. Example of a bubble function B; and of a basis function y; of the space W,

and g(&) =3&(1— &), with 0 < & <1 (see Fig. 13.8, left) [ZT00]. In the case of
upwind finite differences we have o = 1, while in the case of the Scharfetter-Gummel
scheme we have o = coth(Pe) — 1 /Pe. Note that the test functions lose their symmetry
feature (with respect to the usual piecewise linear basis functions) under the effect of
the convective field.

13.8.3 The artificial diffusion and streamline-diffusion methods in the
two-dimensional case

The upwind artificial-viscosity method can be generalized to the case where we con-
sider a two- or a three-dimensional problem of the type (13.1). In such case, it will
suffice to modify the Galerkin approximation (13.11) by adding to the bilinear form
(13.2) a term like

Qh/Vuh -Vv, dQ2 forachosen Q > 0, (13.54)
Q

which corresponds to adding the artificial diffusion term —QhAu to the initial problem
(13.1). The corresponding method is called upwind artificial diffusion. This way an
additional diffusion is introduced, not only in the direction of the field b, as one should
rightly do in order to stabilize the oscillations generated by the Galerkin method, but
also in the orthogonal direction, which is not at all necessary. For instance, if we
consider the two-dimensional problem

d
—uAu+ = inQ, u=0 onoQ,
ox
where the transport field is given by the vector b = [1,0]7, the artificial diffusion term
we would add is

2%u

—0h ox?

2 2
and not —QhAu:—Qh<a “, 9 u>.

dx? + dy?

338 13 Diffusion-transport-reaction equations

More generally, we can add the following stabilization term
. . du . -1
—Qhdiv[(b- Vu)b] = —Qhdiv b b |, withQ=|b| .

In the Galerkin problem the latter yields the following term

8uh 8vh)

o (13.55)

bh(uh,vh) = Qh(b . Vuh,b . Vvh) = Qh (
The resulting discrete problem is therefore a modification of the Galerkin problem
(13.11), called streamline-diffusion problem, and reads

find u, € Vi, o ap(up,vi) = (f,vn) Yvp € Vi,
where

an(up,vi) = a(up,vi) + bu(up, vi)-

Basically, we are adding a term proportional to the second derivative in the direction
of the field b (also called streamline). Note that, in this case, the artificial viscosity
coefficient is actually a tensor. As a matter of fact, the stabilization term by (-, -) can be
seen as the bilinear form associated to the operator —div(p,Vu) with [p4)i; = Ohbibj,
b; being the i-th component of b.

Although the term (13.55) is less diffusive than (13.54), the accuracy is only &' (h)
also for the streamline-diffusion method. More accurate stabilization methods are de-
scribed in Sects. 13.8.6, 13.8.8 and 13.8.9. To introduce them we will need some
definitions that we will anticipate in Sects. 13.8.4 and 13.8.5.

13.8.4 Consistency and truncation error for the Galerkin and generalized
Galerkin methods

Let us consider a generalized Galerkin problem of the form (13.47), and replace fth by
uy, to recover more familiar notations. Note that this formulation can refer to a problem
in any spatial dimension. We define a functional of the variable v

Th(u;vh) :ah(u,vh)—Fh(vh), (13.56)

whose norm

)= sup Ol (13.57)

w0 Nvallv

is called the fruncation error associated to the generalized Galerkin method (13.46).
In accordance with the definitions given in Sect. 1.2, the generalized Galerkin method
is said to be consistent if }1li_r)r(1)1h(u) =0.

Moreover, we will say that it is strongly (or fully) consistent if the truncation error
(13.57) is non-zero for each value of A.

The standard Galerkin method is strongly consistent, as seen in Chap. 4, since

T (w;vy) = a(u,vy) — F(vy) =0 Vv, € V).

13.8 Stabilization methods 339

Instead, the generalized Galerkin method is only consistent (in general) as long as
ap —a and F, — F “tend to zero” when & tends to zero, as guaranteed by Strang’s
lemma.

Concerning the upwind and streamline-diffusion methods, we have

T(usvy) = ap(u,vy) —F(vy)
Qh(Vu,Vvh) (UpWind),

ap(u,vp) —au,vy) =

Qh(g{i, %vlf) (Streamline-Diffusion),

hence both are consistent but not strongly consistent. Remarkable instances of strongly
consistent methods will be introduced and analyzed in Sect. 13.8.6

13.8.5 Symmetric and skew-symmetric part of an operator

Let V be a Hilbert space and V' its dual. We will say that an operator L: V — V' is
symmetric if

vi{Lu,vyy = y{u,Lv)y Yu,v €V,
skew-symmetric when
V’<Luav>v = 7V<uaLv>V' Vu,v € V.

An operator can be split into the sum of a symmetric part Lg and a skew-symmetric
part Lgg,

Lu = Lgu+ Lgsu.
Let us consider, for instance, the following diffusiont-transport-reaction operator
Lu=—pAu+div(bu)+ou, xeQ cR?d>2, (13.58)
operating on the space V = H} (). Since
div(bu) = }div(bu)+ Jdiv(bu)
= ldiv(bu) + Ludiv(b) + 1b- Vu,

we can split L the following way

1 1
Lu=—pAu+ [G—&— 2div(b)} u+ 2[div(bu) +b-Vul.

Lsu Lssu

Note that the reaction coefficient has become ¢* = o + ;div(b). We can verify that
the two parts are symmetric resp. skew-symmetric. Indeed, integrating twice by parts,

340 13 Diffusion-transport-reaction equations

we obtain, Yu,v €V,
vi(Lsu,v)y = (Vu,Vv) + (6*u,v)
= —pv(u,Av)y + (u,0"v)

= V(M,LSV>V/,
1, .. 1
v (Lssu,v)y = 2(dlv(bu),v) + 2(b -Vu,v)

1
(Vu,bv)

1
=—_(bu,V
(bu, V) +

2
= ub-v) L diviow))
= 2 M, Vv 2 l/t, 1V \%
= —y{u,Lgsv)yr,

where we have indicated by (-, -) the scalar product of L*(Q).

Remark 13.4. We recall that any matrix A can be decomposed into the sum

A = Ag+ Agg,
where
1 T
Ag = 5 (A+A")
is a symmetric matrix called the symmetric part of A and
1 T
Ass =, (A—A")
is a skew-symmetric matrix called the skew-symmetric part of A. °

13.8.6 Strongly consistent methods (GLS, SUPG)

We consider a diffusion-transport-reaction problem that we write in the abstract form
Lu= fin Q, with u = 0 on dQ. Let us consider the corresponding weak formulation
(13.3) with a(-,-) being the bilinear form associated to L. A stabilized and strongly
consistent method can be obtained by adding a further term to the Galerkin approxi-
mation (13.11), that is by considering the problem

find u, €V, : a(uh,vh) +.$h(uh,f;vh) = (f,vh) Y, € Vi, (13.59)
for a suitable form &}, satisfying

Zlu, fiv) =0 Vv €V (13.60)

13.8 Stabilization methods 341

(This is the case of the generalized Galerkin method (13.46), (13.47), provided we re-
quire by, (u,vy) = Gp(vy) Vv, € V) We observe that in (13.59) the form %, depends
both on the approximate solution u;, and on the forcing term f. A possible choice that
verifies (13.60) is

L fov) =L (wn fron) = Y Ly — £.76.5®) (1)) 2.

Ke),

where (u,v)Lz(K) = / uv dK, p and T are parameters to be determined, and
K

FP)(v),) = Lgsvy, + pLsvy.

Here, Lg and Lgg are the symmetric resp. skew-symmetric part of the operator L under
exam. A possible choice for 7x is

hg
b(x)|
where b is the convective (or transport) field, g the diameter of the generic element

K, and 8 a dimensionless coefficient to be prescribed.
To verify that (13.59) is fully consistent, we note that

T(wvy) = a(uvy) + L (w, fivn) — (F,vn)

is zero for all v, € Vj, thanks to (13.3) and property (13.60). Thus the truncation
error (13.57) is null. Let us now see some particular cases associated to three different
choices of the parameter p:

TK:5| vx € K, VK € 7, (13.61)

e if p =1 we obtain the method called Galerkin Least-Squares (GLS), where
V() = Ly,

If we take v, = uj, we see that a term proportional to / (Luh)2 dK has been added
K
on each triangle to the original bilinear form;

e if p =0 we obtain the method named Streamline Upwind Petrov-Galerkin (SUPG)
where
O vy) = Lssvi;

e if p = —1 we obtain the so-called Douglas-Wang (DW) method where
D (vy) = (Lss — Ls)vy.

If 6 = 0 and divb = 0 and we use PP; finite elements, the three methods above
coincide, as —Aup|x =0 VK € .

Let us now limit ourselves to the two most classical procedures, GLS (p = 1) and
SUPG (p = 0) and to the problem written in conservative form (13.58). We define
the “p norm”

1
Wiy = IV R g+ [Pl + B, (st pLomaes @) 3L,
KeT, (K)

342 13 Diffusion-transport-reaction equations

where ¥ = ;divb + o when we use the conservative form (13.13) of the operator L,
otherwise y = f%divb + ¢ when using the non-conservative form (13.1). In either
case we assume that ¥ is a non-negative function. The following (stability) inequality
holds: there exists an o* depending on ¥ and on the coercivity constant o of af(-,-)
such that

C
llunll (o) < o £z) (13.62)

where C is a suitable constant (see for instance (13.78)). Moreover, under suitable
assumptions, as we will se in Sect. 13.8.8, the following error estimate holds

e =]l (py < CH P [ulygri1), (13.63)

hence the order of accuracy of the method increases when the degree r of the polyno-
mials we employ increases, as in the standard Galerkin method. The proofs of (13.62)
and (13.63) in the case p = 1 will be provided in Sect. 13.8.8.

The choice of the stabilization parameter §, measuring the amount of artificial vis-
cosity, is extremely important. To this end, we report in Table 13.1 the range admitted
for such parameter as a function of the chosen stabilized scheme. In the table, Cy is
the constant of the following inverse inequality

Y h%/ |[AvpPdK < Col|VWillfz) Yvi € X (13.64)
Ke), K

Obviously, Cy = Cy(r). Let us note that for linear finite elements Cy = 0. In such a
case, the constant § in Table 13.1 is not subject to any upper bound. On the contrary,
if we are interested in polynomials of higher degree, » > 2, then

Co(r) =Cor . (13.65)
For a more extensive analysis, we refer to [QV94, Chap. 8], and to [RST96]. We

also suggest [Fun97] for the case of an approximation with spectral elements.

Table 13.1. Admissible values for the stabilization parameter &

SUPG 0<d8<1/Cy
GLS 0<d
DW 0<6<1/(2Cy)

13.8.7 On the choice of the stabilization parameter 7x

For linear finite elements (r = 1) another choice of the stabilization function 7, alter-
native to that in (13.61), is

hk

:2|b(x)|g(19>e,<) vxcK, VK<, (13.66)

TK (X)

13.8 Stabilization methods 343

where Ib(x)|
b(x hK
Peg (x) = vxeK, VK€, (13.67)
2p(x)
is the local Péclet number (in analogy to definition (13.22) for dimension one), and
the upwind function & (-) can for instance be chosen as follows

£(0) =coth(6)—1/6, 6> 0. (13.68)

Aslimg_, ., E(0) =1 (cf. Fig. 13.9), if Pex(x) > 1 then (13.66) reduces, in the limit,
to (13.61) with 6 = 1/2. Moreover, since 6 — 0 implies £(0) = 0/3 +0(60), we have
Tk (x) — 0 when Peg(x) < 1 (in fact no stabilization is necessary if the problem is
diffusion-dominated). Other possibilities for the function 7x are found in the literature.
For instance, hg can be replaced in (13.66)—(13.67) by the diameter of the element K
along b, or one can choose the upwind function &(-) to be £(6) = max{0,1—1/6},
or £(6) = min{1,6/3} (see [JKO7] for more details).

Let us now give a heuristic explanation for the choice (13.66) of the stabiliz-
ing function 7. To this end, take the variational formulation (13.18) of the one-
dimensional diffusion-transport problem (13.16). Given a uniform partition .7}, of
Q = (0,1) in N intervals of width & = 1/N, consider the SUPG method for the dis-
cretization of (13.18):

find Iihe V), such that ah(lih,vh) = Fh(vh) Vv, € Vy,

where V;, C Hé (0,1) is the space of piecewise-linear continuous polynomials on .7,
and

1 1
ah(u,v):/o (uu’v'eru'v)derT/o |b|*u'V' dx Yu,v €Vy,

1
Fi(v) = —/0 bvdx Vv e V.

Fig. 13.9. Upwind function & defined in (13.68)

344 13 Diffusion-transport-reaction equations

By defining y;, = (14 7|b|? /) the bilinear form ay,(-, -) may be equivalently written
as

1 1
ah(u,v):/o uhu'v'dx+/0 bu'vdx Yu,v €V.

Choose the parameter 7T as
h 1
= th(Pe) — 13.6
T 20b| [co (Pe) Pe] , (13.69)

where Pe = ‘zb)f is the local Péclet number. By virtue of these definitions we obtain

b|? 1
T| | =Pe {coth(]P’e) - Pe]
= Pecoth(Pe) — 1
=Pe — 1 + Pe(coth(Pe) — 1)
— Pe— 1+ B(2Pe).

The final equality involves the identity:

¢ (coth(t) — 1) = 1 [el“’ - 1] .y L, el_t]

el —e ! —e
2t
ZEZtilzB(zl‘)v t>07
which in turn descends from the definition of coth(-). Above, B(-) is the Bernoulli
function (cf. Sect. 13.6). To sum up, L, may be written as

2
uhu<1+f|l;|) =p(l+o(Pe)),

having chosen ¢ as in (13.39). So in this particular case, the SUPG method, with T
chosen as in (13.69), coincides with the Scharfetter and Gummel method encountered
in Sect. 13.6, which is the unique method capable of yielding a numerical solution to
a constant-coefficient problem (with constant source) that is nodally exact.

Remark 13.5. If one employs polynomials of degree > 2 (as in the #p formulation,
or with spectral elements), a more coherent definition of the local Péclet number is
this

b(x)|h
pug = PO
u(x)r
while the corresponding stabilizing function (13.66) becomes (see [GaAMLO04])
h
w(x) =

13.8 Stabilization methods 345

13.8.8 Analysis of the GLS method

In this section we want to prove the stability property (13.62) and the convergence
property (13.63) in the case of the GLS method (hence for p = 1).

We suppose that the differential operator L has the form (13.58), with u > 0 and
o > 0 constant, and b being a vector function whose components are continuous (e.g.
constant), with homogeneous Dirichlet boundary conditions being assigned. The bi-
linear form a(-,-) : V x V — R associated to the operator L is therefore

a(u,v) = [J/VwVvd.Q +/div(bu)vd.Q +/Guvd.(2,
Q

with V = H(])(.Q) For simplicity, we suppose that there exist two constants ¥ and ¥
such that

1
0<p <y(x)= div(b(x)+o<n VxeQ. (13.70)

In this case the form a(-, -) is coercive, as a(v,v) > [JHVVH ot ’)/()HVH Follow

ing the procedure developed in Sect. 13.8.5, we can write the symmetrlc and skew-
symmetric parts associated to L as

1
Lsu= —pAu+yu, Lssu= 2(div(bu)+b-Vu).

Moreover, we rewrite the stabilized formulation (13.59) by splitting fh(l) (up, f3vy) in
two terms, one containing uy,, the other f:

find u, €V, : ag,])(uhavh):fé])(vh) Vv, €V, (13.71)
with
a;ﬁ”(uh,vh) = a(up,vy) + Z 19 (Luh, hKLvh) (13.72)
KeFj, [b| L2(K)
and
o=+ Y S(f, vah) : (13.73)
kez, NPl

We observe that, using these notations, the strong consistency property (13.60) is
expressed via the equality

al(wvp) = £V (v) Y €V (13.74)

We can now prove the following preliminary result.

346 13 Diffusion-transport-reaction equations

Lemma 13.1. The bilinear form ail) (+,-) definedin (13.72) satisfies the following
relation
1
af) (vn, 1) = u||Vvh||iz o vl

(13.75)
+ Z Lvh,Lvh Y, €V
KeJ, |b| L2(K)

h

This identity follows from definition (13.72) (having chosen v, = uy,) and from (13.70).
In the case under exam, the norm || - || (1), which we here denote by the symbol | - ||GLs
for convenience, becomes

thll%}LS = u||Vvh||iz(Q) + ||\/’)/V11||L2 + Z 1) (Lvh,Lvh) . (13.76)
Keg, L2(K)

We can prove the following stability result.

Lemma 13.2. Let u;, be the solution of the GLS method. Then for each 6 > 0
there exists a constant C > 0, independent of h, such that

lunllors < Cllf Iz (e

Proof. We choose v, =uy, in (13.71). By exploiting Lemma 13.1 and definition (13.76),
we can first write that

lunllzrs = @y (unyun) = £ () = (fou) eyt Y, S(f, |b|L”h) -
K

Ke 7,
(13.77)
We look for an upper bound for the two right-hand side terms of (13.77) separately,
by applying suitably the Cauchy-Schwarz and Young inequalities. We thus obtain:

ey (W w»t;I)Lz(<[! s A

<, IVralig +