
M A N N I N G

Somnath Musib
Foreword by Josh Long

IN PRACTICE

Spring Boot
in Practice

SOMNATH MUSIB

Foreword by JOSH LONG

MANN I NG

SHELTER ISLAND

Ещё больше книг по Java в нашем телеграм канале:

 https://t.me/javalib

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2022 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book
was correct at press time. The author and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any usage
of the information herein.

Manning Publications Co. Development editor: Jennifer Stout
20 Baldwin Road Technical development editor: Ubaldo Pescatore
PO Box 761 Review editor: Mihaela Batinić
Shelter Island, NY 11964 Production editor: Andy Marinkovich

Copy editor: Christian Berk
Proofreader: Jason Everett

Technical proofreader: Giampiero Granatella
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617298813
Printed in the United States of America

www.manning.com

 To my parents—for sacrificing everything to raise us
and

To my son, Abhirup—for adding new meaning and purpose to my life

iviv

brief contents
PART 1 ... 1

1 ■ Booting Spring Boot 3

PART 2 ... 29
2 ■ Common Spring Boot tasks 31
3 ■ Database access with Spring Data 70
4 ■ Spring Boot: Autoconfiguration and Actuator 131
5 ■ Securing Spring Boot applications 184
6 ■ Implementing additional security with Spring Security 233
7 ■ Developing RESTful Web services with Spring Boot 297

PART 3 . .. 347
8 ■ Reactive Spring Boot application development 349

PART 4 . .. 397
9 ■ Deploying Spring Boot applications 399

PART 5 . .. 439
10 ■ Spring Boot with Kotlin, Native Image, and GraphQL 441

Ещё больше книг по Java в нашем телеграм канале:
 https://t.me/javalib

v

contents
foreword xiii
preface xv
acknowledgments xvii
about this book xix
about the author xxii
about the cover illustration xxiii

PART 1 .. 1

1 Booting Spring Boot 3
1.1 Introducing Spring Boot 4

Why Spring Boot? 4 ■ What is Spring Boot? 5 ■ Spring Boot
core features 6 ■ Spring Boot components 7

1.2 Code examples 9
Maven vs. Gradle 9 ■ Java vs. Kotlin 9 ■ Database support 9
Lombok 9

1.3 Getting started with Spring Boot 10
Your first Spring Boot project 10 ■ Spring Boot project
structure 10 ■ Creating an executable JAR file 20 ■ Exploring
the JAR file 20 ■ Shutting down a Spring Boot application 21

CONTENTSvi

1.4 Spring Boot additional concepts 22
Spring Boot startup events 22 ■ Listening events in a Spring Boot
application 23 ■ Custom Spring Boot starters 25 ■ Custom
autoconfiguration 26 ■ Failure analyzers 26 ■ Spring Boot
actuator 26 ■ Spring Boot developer tool 27

PART 2 .. 29

2 Common Spring Boot tasks 31

2.1 Managing configurations 32
Using the SpringApplication class 32 ■ Using @PropertySource 33
Config data file 35 ■ OS environment variable 38

2.2 Creating custom properties with
@ConfigurationProperties 40
Technique: Defining custom properties with @ConfigurationProperties
in a Spring Boot application 41

2.3 Executing code on Spring Boot application startup 46
Technique: Using CommandLineRunner to execute code at Spring
Boot application startup 46

2.4 Customizing logging in a Spring Boot application 51
Technique: Understanding and customizing default Spring Boot
logging in a Spring Boot application 52 ■ Technique: Using
Log4j2 to configure logging in a Spring Boot application 56

2.5 Validate user data using Bean Validation 60
Technique: Using built-in Bean Validation annotations to validate
business entity in a Spring Boot application 60 ■ Technique:
Defining and using custom Bean Validation annotation to validate
a POJO in a Spring Boot application 63

3 Database access with Spring Data 70

3.1 Introducing Spring Data 71
Why Spring Data? 72 ■ Spring Data modules 72

3.2 Configuring a database in a Spring Boot application 74
Technique: Configuring a relational database in a Spring Boot
application 74 ■ Technique: Configuring MongoDB database in
a Spring Boot application 79 ■ Technique: Initializing a
relational database schema with a Spring Boot application 82

CONTENTS vii

3.3 Understanding the CrudRepository interface 86
Technique: Managing domain objects in a relational database with
Spring Data JPA 88 ■ Technique: Creating a custom Spring Data
repository with Spring Data JPA to manage domain objects in a
relational database 94

3.4 Retrieve data from a database using Spring Data 97
Defining query methods 97 ■ Technique: Defining custom query
methods to retrieve domain objects from a relational database with
Spring Data JPA 98 ■ Implementing pagination with
PagingAndSortingRepository 101 ■ Technique: Using
PagingAndSortingRepository interface to paginate and sort the
data 101 ■ Specifying query using @NamedQuery 104
Technique: Using a named query to manage domain objects in a
relational database with Spring Data JPA 105

3.5 Specifying query using @Query 107
Technique: Using @Query annotation to define queries and retrieve
domain objects in a relational database with Spring Data JPA 107

3.6 Using Criteria API with Spring Data JPA 111
Technique: Using Criteria API to manage domain objects in a
relational database with Spring Data JPA 111

3.7 Using QueryDSL with Spring Data JPA 114
Technique: Using QueryDSL to manage domain objects in a
relational database with Spring Data JPA 114

3.8 Managing domain object relationships 119
Technique: Managing domain objects with many-to-many
relationships in a relational database with Spring Data JPA 121

4 Spring Boot: Autoconfiguration and Actuator 131
4.1 Understanding Spring Boot autoconfiguration 132

Understanding @Conditional annotation 134 ■ Deep dive into
autoconfiguration 136

4.2 Using Spring Boot DevTools 139
Property defaults 139 ■ Automatic restart 140 ■ Live
reload 140

4.3 Creating a custom failure analyzer 140
Technique: Creating a custom Spring Boot FailureAnalyzer 141

4.4 Spring Boot Actuator 144
Technique: Configuring Spring Boot Actuator in a Spring Boot
application 145 ■ Understanding Spring Boot Actuator

CONTENTSviii

endpoints 146 ■ Managing Spring Boot Actuator
endpoints 149 ■ Health endpoint deep dive 150
Creating a custom Spring Boot HealthIndicator 154
Technique: Defining a custom Spring Boot actuator
HealthIndicator 155

4.5 Info endpoint deep dive 158
Technique: Configuring info Spring Boot Actuator endpoint 158
Technique: Configuring a custom info contributor to provide custom
application info in the Spring Boot Actuator endpoint 162

4.6 Creating a custom Spring Boot Actuator endpoint 164
Technique: Creating a custom Spring Boot actuator endpoint 164
Spring Boot actuator metrics 170 ■ Creating custom metrics 174
Gauge 176 ■ Metrics dashboard with Prometheus and
Grafana 179

5 Securing Spring Boot applications 184
5.1 Introducing Spring Security 185
5.2 Hello Spring Security with Spring Boot 187

Technique: Enabling application security with Spring Security
in a Spring Boot application 187 ■ Filter, FilterChain,
and Spring Security 192 ■ Spring Security architecture 195
Authenticating a user 197 ■ Spring Security
autoconfiguration 200

5.3 Using Spring Security 202
Technique: Customizing the default Spring Security login page of a
Spring Boot application 202 ■ Technique: Configuring in-
memory authentication with custom users in Spring Security in a
Spring Boot application 207 ■ Technique: Configuring JDBC
authentication with Spring Security in a Spring Boot
application 215 ■ Technique: Implementing JDBC authentication
with custom UserDetailsService in a Spring Boot application 219
Technique: Implementing LDAP authentication in a Spring Boot
application 224 ■ Technique: Implementing HTTP basic
authentication in a Spring Boot application 229

6 Implementing additional security with Spring Security 233
6.1 Enabling HTTPS in a Spring Boot application 235

Technique: Enabling HTTPS in a Spring Boot application 235

6.2 Securing secrets in Spring Cloud Vault 238
Technique: Managing application secrets with HashiCorp Vault
in a Spring Boot application 239

CONTENTS ix

6.3 Implementing user registration 242
Technique: Implementing user registration with Spring Security in a
Spring Boot application 242

6.4 Implementing email verification at user registration 251
Technique: Validating user email addresses in a Spring Boot
application 251

6.5 Controlling multiple incorrect login attempts 261
Technique: Controlling multiple incorrect login attempts
in a Spring Boot application 261

6.6 Implementing a Remember Me feature 267
Technique: Enabling a Remember Me feature in a Spring Boot
application with Spring Security 268

6.7 Implementing reCAPTCHA 270
Technique: Enabling Google reCAPTCHA in a Spring Boot
application with Spring Security 271

6.8 Enabling two-factor authentication with Google
Authenticator 276
Technique: Enabling two-factor authentication in a Spring Boot
application 276

6.9 Authentication with OAuth2 287
Technique: Enabling sign in with Google in a Spring Boot
application 288

6.10 Securing Actuator endpoints 292
Technique: Securing Spring Boot Actuator endpoints 294

7 Developing RESTful Web services with Spring Boot 297

7.1 Developing a RESTful API with Spring Boot 298
Technique: Developing a RESTful API using Spring Boot 298

7.2 Managing exceptions in a Spring Boot RESTful API 306
Technique: Handling exceptions in a RESTful API 306

7.3 Testing a RESTful API 311
Technique: Testing a RESTful API in a Spring Boot
application 311

7.4 Documenting a RESTful API 317
Technique: Documenting a RESTful API with OpenAPI 317

CONTENTSx

7.5 Implementing RESTful API versioning 323
Technique: Implementing versioning in a RESTful API 324

7.6 Securing a RESTful API 334
Technique: Using JWT to authorize RESTful API requests 335

PART 3 .. 347

8 Reactive Spring Boot application development 349

8.1 Introduction to reactive programming 350
Backpressure 353 ■ Benefits of reactive programming 354

8.2 Understanding Project Reactor 355
8.3 Introducing Spring WebFlux 358

Technique: Developing a reactive RESTful API with annotated
controllers 359 ■ Technique: Developing a reactive RESTful API
with functional endpoints 367

8.4 Testing reactive applications 372
Technique: Using WebClient to build an API client 373

8.5 Introduction to RSocket 378
Technique: Developing applications using RSocket
and Spring Boot 379

8.6 Introduction to WebSocket 388
Technique: Developing an application using WebSocket and Spring
Boot 389

PART 4 .. 397

9 Deploying Spring Boot applications 399

9.1 Running Spring Boot applications as executable
JAR files 401
Technique: Packaging and executing a Spring Boot application
as an executable JAR file 401

9.2 Deploying Spring Boot applications as WAR
in the WildFly application server 406
Technique: Packaging and deploying a Spring Boot application as
WAR in the WildFly application server 407

CONTENTS xi

9.3 Deploying Spring Boot applications in Cloud
Foundry 416
Technique: Deploying a Spring Boot application to Cloud
Foundry 417

9.4 Deploying Spring Boot applications in Heroku 420
Technique: Deploying a Spring Boot application in Heroku 420

9.5 Running Spring Boot applications as Docker
containers 423
Technique: Creating a container image and running a Spring Boot
application as a container 424

9.6 Deploying Spring Boot applications in a Kubernetes
cluster 429
Technique: Deploying a Spring Boot application
in a Kubernetes cluster 429

9.7 Deploying Spring Boot applications
in Red Hat OpenShift 434
Technique: Deploying a Spring Boot application
in the Red Hat OpenShift platform 434

PART 5 .. 439

10 Spring Boot with Kotlin, Native Image, and GraphQL 441

10.1 Spring Boot with Kotlin 442
Technique: Developing a Spring Boot application with Kotlin 443
Technique: Securing a Spring Boot Kotlin application with Spring
Security 449

10.2 Introducing Spring Native 453
Introduction to GraalVM 453 ■ GraalVM native image 454
Spring Boot native image 455 ■ Technique: Generating Spring
Boot native image using buildpacks 455 ■ Technique: Generating
Spring Boot native image using a Maven plugin 460
Understanding Spring AOT Maven Plugin 463

10.3 Spring Boot with GraphQL 464
Issues with REST 464 ■ Introduction to GraphQL 466
Using GraphQL with Spring Boot 467 ■ Technique: Developing a
GraphQL API with a Spring Boot application 467 ■ Technique:

CONTENTSxii

Developing a GraphQL API over WebSocket with a Spring Boot
application 483

appendix A Generating and building Spring Boot projects 486
appendix B Spring MVC and Thymeleaf Template Engine 522

index 549

xiii

foreword
We might be on to something
I remember sitting with cloud luminaries and colleagues, James Watters and Andrew
Clay Shafer, in a café in Santa Monica, California in 2015. We were at a crossroads.
The Spring team had launched Spring Boot in 2013, and it was generally available in
2014. And in 2015, it was taking off. We knew people were excited about the possibili-
ties, and we knew people were embracing it, but we also knew we hadn’t quite gotten
there. It was too big to know when or where there was. I still don’t know if we know. It is
early 2022 as I write this, and the project is growing day by day. I still don’t know if we
know where there is.

 “We might be on to something,” we agreed. Indeed.
 I still don’t know if we’re there, of course. But I do know that to get there, we need

people to be on the same page and familiar with the landscape. You can’t find your
way around without proper orientation. This book, Spring Boot in Practice, gives me
hope. It avoids the vertigo typical of most attempts to scale the rock face that is server-
side application and service development by offering a steady hand.

 The book almost immediately gets right into the business of building an applica-
tion straight out of the gate. First, there’s a quick primer on the fundamentals, and
then boom, you’re building something! I think that’s the best way, too. With something
this big, you just have to start exploring. It won’t matter how much, or in what detail, I
try to describe the place or even depict it cartographically; it’s just not the same. You
need to see it; you need to explore the space!

FOREWORDxiv

 After the primer, it feels like we’re working our way up the conceptual ladder, start-
ing with the foundational stuff you will deal with when building any Spring Boot-based
application. Then, we get into data access, the Spring Boot observability support
through the Spring Boot Actuator support, securing your applications with Spring
Security, and building HTTP services with Spring MVC and Spring Webflux. If you get
this far, you won’t know every nook and cranny, but you’ll know where to go. You’ll be
correctly oriented.

 Where you go next is anybody’s guess, but author Somnath Musib does a good job
here, as well, charting out some newer neighborhoods in the wide and wonderful world
of Springdom, including Kotlin, GraphQL, and GraalVM. Kotlin is an ever-changing
and vibrant language that maps nicely to the Spring ecosystem. Spring GraphQL is a
brand-new project that brings the GraphQL Java project to the Spring developer. And
Spring Native is a fantastic way to turn Spring Boot 2.x and Spring Framework 5.x
code into GraalVM native images. Both Spring GraphQL and Spring Native are rela-
tively new projects, so I am delighted to see them covered here in this book, your reli-
able guide to Spring.

 Somnath Musib does a great job navigating the area, and his guidance no doubt
makes it easier to focus on the journey that matters: the journey to production. When
you enjoy success in production, when you’re there, I hope you too can look at your
friends and colleagues and say, smiling, “We might be on to something.”

—Josh Long, Spring Developer Advocate,
Tanzu, a division of VMWare, @starbuxman

xv

preface
As of the writing of this book, Spring Boot is the most popular Java framework, and it
is way ahead in its usage and acceptance from its competitor frameworks, such as
Dropwizard, Quarkus, and Micronaut. With the industry-wide adoption of microservice-
based architecture, the popularity of Spring Boot is skyrocketing, and it has become
the most preferred Java framework to learn amongst the developers.

 Despite its popularity, the biggest challenge newcomers come across is knowing
where to start. Both Spring and Spring Boot reference documentation is humongous
and not beginner friendly. Spring Boot provides several guides on how to do certain
things with Spring Boot. These guides are good for a quick start but fail to provide
practical examples and a comprehensive understanding of the capabilities of Spring
Boot. There are numerous tutorials, articles, and blog posts available across the inter-
net. But again, those are scattered, incomplete, and far from providing a complete
picture of Spring Boot.

 Spring Boot in Practice attempts to address many of these issues. When we started
working on the book, we had two major goals. The first was to provide our readers
with a clear picture of Spring Boot and its many internal concepts, such as auto-
configuration, actuator, and security. The second was to enrich the readers’ learning
journey with practical examples of Spring Boot, rather than traditional textbook-style,
theory-oriented examples. We are confident that we have kept ourselves focused on
these two goals.

 Spring Boot in Practice covers a wide variety of Spring Boot materials. Primarily, the
book is focused on beginner- to intermediate-level readers. The book aims to take the

PREFACExvi

readers on a journey starting with basic Spring Boot concepts and how to use various
Spring Boot features effectively, supported by ample real-world use cases that lead to
more advanced topics. Although the book is primarily focused on entry-level to
intermediate-level developers, it has materials for seasoned developers as well. Con-
cepts such as Spring Boot with Kotlin, Spring Native Image with GraalVM, Spring
Boot with GraphQL, Hashicorp Vault, and Multi-Factor Authentication (MFA) will all
be useful for senior developers.

 I sincerely hope that readers appreciate and benefit from the contents of this book
and find it useful in their Spring Boot application development. Any remarks or sug-
gestions for improving the content of the book are most welcome and eagerly awaited.
You may reach the author on LinkedIn at https://www.linkedin.com/in/musibs/.

Ещё больше книг по Java в нашем телеграм канале:
 https://t.me/javalib

https://www.linkedin.com/in/musibs/

xvii

acknowledgments
While it is my name listed on the front cover, this book came about with the help of
many people, and I would like to thank all of them for helping to make it one of the
best Spring Boot books available.

 First, I would like to express my heartfelt gratitude to my wife, Jhinuk. You’ve
patiently waited and allowed me to spend hours writing this book. Thank you for all
your support and encouragement throughout this journey. I love you.

 Next, I would like to thank my newborn child, Abhirup, for giving me a new mean-
ing and purpose in my life. My gratitude is also due to my parents and my brother,
Sumanta, and sister, Supriya, who have always believed in me and motivated me to
achieve new heights in my life.

 I’d like to thank my mentors, colleagues, and friends who taught me many invaluable
lessons in my career. This list is large, but I must mention the following people: Amit
Chitnis, Ashwani Singh, Midhuna Babu, Kiran N. S., Sandeep Salian, Priya Ponnekanti,
Minal Barve, Shravan Kumar Singh, Suhasini C. H., Ramya S., and Parijat Pathak.

 I’d also like to acknowledge my development editor at Manning, Jennifer Stout,
for working with me, making me believe I could write this book, and for making the
journey easier. I’d also like to thank the book’s acquisition editor, Mike Stephens;
review editor, Mihaela Batinić; production editor, Andy Marinkovich; copy editor,
Christian Berk; and proofreader, Jason Everett. Thank you for providing me with the
opportunity to write a Manning book. Thanks as well to all other people at Manning
who worked with me on the production and promotion of the book. It was truly a
team effort.

ACKNOWLEDGMENTSxviii

 Thank you to all the reviewers who took the time to read the manuscript at various
stages during its development and provided their invaluable feedback. To Ajit Malleri,
Al Pezewski, Alain Lompo, Alex Saez, Amrah Umudlu, Andres Sacco, Anindya
Bandopadhyay, Ashley Eatly, Asif Iqbal, Becky Huett, Chad Johnston, Fernando
Bernardino, Gabriele Bassi, Giampiero Granatella, Harinath Kuntamukkala, Ilya
Sakayev, Javid Asgarov, Jean-François Morin, João Miguel Pires Dias, John Guthrie,
Kent R. Spillner, Krzysztof Kamyczek, Lachman Dhalliwal, Maqbool Patel, Mladen
Knežić, Mohamed Sanaulla, Najeeb Arif, Neil Croll, Rafał Gorzkowski, Raffaella
Ventaglio, Raghunath Nedumpurath, Raymond Cheung, Richard Meinsen, Ruslan
Vidzert, Sambaran Hazra, Satej Sahu, Sergio Britos Arevalo, Søren Dines Jensen, Tan
Wee, Tiziano Bezzi, and William Fly, you all helped make this a better book.

 Special thanks to the technical reviewer of the book, Ubaldo Pescatore, for all the
reviews and feedback. And a big thank you to Giampiero Granatella, the technical
proofreader, for his careful review of the code one last time, shortly before the book
went into production.

 Finally, thank you to the Spring and Spring Boot team. You’ve created something
incredibly useful and made life easier for developers around the world.

xix

about this book
Spring Boot in Practice is written for Java developers who would like to learn Spring Boot
and how to use it in their application development. This book belongs with Manning’s
“In Practice” series and is focused on the practical use of Spring Boot with lots of real-
world examples. The book is written in the problem, solution, discussion pattern,
where we first introduce a problem and then provide a solution for it. Lastly, we pro-
vide an in-depth discussion of each feature in the discussion section.

Who should read this book?
Spring Boot in Practice is written for beginner- to intermediate-level application develop-
ers and provides plenty of real-life examples for using Spring Boot. This book
attempts to emphasize various Spring Boot internal concepts as well as emerging fea-
tures, such as Spring Boot with GraalVM Native Image, GraphQL, and reactive appli-
cation development. Thus, this book has enough material for senior Spring Boot
application developers to add to their existing knowledge. Anyone who wishes to
learn Spring Boot, or brush up on their Spring Boot knowledge, will find the book
useful.

How this book is organized: A roadmap
Spring Boot in Practice has 10 chapters and two appendixes, which span five parts.

 Part 1 contains an introduction to Spring Boot and its various features:

 Chapter 1 provides a high-level discussion on Spring Boot, its characteristics,
and the various features it offers.

ABOUT THIS BOOKxx

Part 2 contains several concepts and techniques for Spring Boot application
development:

 Chapter 2 discusses how you can perform several commonly used application
tasks with Spring Boot. This includes various ways of managing configuration,
using logging, data validation, and more.

 Chapter 3 discusses several techniques for accessing a database from a Spring
Boot application.

 Chapter 4 provides an in-depth discussion on Spring Boot autoconfiguration
and actuators. In this chapter, we discuss how autoconfiguration is designed
and its internals. We also cover the Spring Boot actuator, creating custom end-
points, and Prometheus monitoring in considerable depth.

 Chapter 5 introduces Spring Security and several techniques for securing a
Spring Boot application. We introduce how Spring Security works, various
important filters, and how to customize various security parameters in your
Spring Boot application.

 Chapter 6 takes the concepts introduced in chapter 5 to the next level by dis-
cussing several advanced production-grade security features that can be imple-
mented in a Spring Boot application.

 Chapter 7 introduces how to develop RESTful APIs with Spring Boot. We dis-
cuss handling exceptions in RESTful API development, document APIs, version
APIs, and, lastly, securing RESTful APIs

Part 3 discusses performing reactive application development with Spring Boot:

 Chapter 8 introduces how to develop reactive applications with Spring Boot. We
also cover using WebSocket and RSocket with Spring Boot.

Part 4 highlights various techniques for deploying Spring Boot applications into vari-
ous platforms:

 Chapter 9 discusses how to deploy Spring Boot applications on various plat-
forms. We start with basic JAR and WAR deployment of Spring Boot applica-
tions. We then discuss deploying Spring Boot applications in Cloud Foundry
and Heroku. Lastly, we demonstrate how to run Spring Boot applications as
containers and deploy in Kubernetes Cluster and Red Hat OpenShift.

Part 5 discusses using Spring Boot with Kotlin, GraalVM, Native Image, and GraphQL:

 Chapter 10 talks about using Kotlin to develop Spring Boot applications. We
also discuss generating native images of the Spring Boot application with
Spring Native. Lastly, we introduce how you can use GraphQL in a Spring Boot
application.

ABOUT THIS BOOK xxi

About the code
This book contains many examples of source code, both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/spring-boot-in-practice. The complete
code for the examples in the book is available for download from the Manning web-
site at www.manning.com/books/spring-boot-in-practice, and from GitHub at https://
github.com/spring-boot-in-practice/repo.

liveBook discussion forum
Purchase of Spring Boot in Practice includes free access to liveBook, Manning’s online
reading platform. Using liveBook’s exclusive discussion features, you can attach com-
ments to the book globally or to specific sections or paragraphs. It’s a snap to make
notes for yourself, ask and answer technical questions, and receive help from the
author and other users. To access the forum, go to https://livebook.manning.com/
book/spring-boot-in-practice/discussion. You can also learn more about Manning’s
forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website for as long as the book is in print.

https://livebook.manning.com/book/spring-boot-in-practice
https://livebook.manning.com/book/spring-boot-in-practice/discussion
https://livebook.manning.com/book/spring-boot-in-practice/discussion
https://livebook.manning.com/discussion
http://www.manning.com/books/spring-boot-in-practice
https://github.com/spring-boot-in-practice/repo
https://github.com/spring-boot-in-practice/repo

xxii

about the author
SOMNATH MUSIB is a polyglot developer with 10+ years of expe-
rience. He has been using Spring Boot since 2015 and is actively
involved in Spring Boot application development. Somnath
loves teaching and likes to explain complex topics to people in
an easy-to-understand manner. In his spare time, he loves writ-
ing about technologies on his Medium blog at https://musibs
.medium.com/.

https://musibs.medium.com/
https://musibs.medium.com/
https://musibs.medium.com/

xxiii

about the cover illustration
The figure on the cover of Spring Boot in Practice is “Femme de Navarre” or “Woman
from Navarre,” taken from a collection by Jacques Grasset de Saint-Sauveur, published
in 1797. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or sta-
tion in life was just by their dress. Manning celebrates the inventiveness and initiative
of the computer business with book covers based on the rich diversity of regional cul-
ture centuries ago, brought back to life by pictures from collections such as this one.

Part 1

Part 1 of this book consists of chapter 1, which introduces you to Spring Boot
and some of its important characteristics. Chapter 1 covers the overview of
Spring Boot, its various components, and some of its important features, such as
Spring Boot starter, autoconfiguration, actuator, and failure analyzers. We also
explore the project structure and various elements of a Spring Boot application.
Chapter 1 also discusses creating an executable JAR file from a Spring Boot appli-
cation and explores the JAR file components.

3

Booting Spring Boot

Welcome to Spring Boot—the most popular Java framework out there! It has revo-
lutionized the way Spring applications or, more specifically, Java applications are
developed these days. Spring Boot is an open source extension of the Spring
Framework designed to simplify the Spring application development. The popular-
ity of Spring Boot is mostly attributed to its ability to create standalone, production-
ready, Spring-based applications, in no time, that you can run without worrying
much about the configuration hazards.

This chapter covers
 Introducing Spring Boot

 Project structure and various elements of a
generated project

 Creating an executable JAR file and the generated
JAR structure

 An overview of Spring Boot starter,
autoconfiguration, failure analyzer, and actuator

 Introducing Spring Boot developer tools to
increase developer productivity

4 CHAPTER 1 Booting Spring Boot

 This chapter provides an overview of Spring Boot, discussing what Spring Boot is,
its purpose, its project structure, and several key Spring Boot features. Are you ready?
Let’s boot our journey!

1.1 Introducing Spring Boot
In this section, we’ll introduce you to the Spring Boot framework and briefly answer a
few common questions about Spring Boot. We’ll discuss why we need Spring Boot
framework, introduce you to the framework, the various features it offers and various
components of the framework.

1.1.1 Why Spring Boot?

As we venture out on this beautiful voyage of getting ourselves familiar with Spring
Boot, the very first question that appears in mind is: why should we learn it in the first
place? To find an answer to this question, let’s understand what problem Spring Boot
promises to solve.

 The Spring Framework started its journey to simplify the Java Enterprise applica-
tion development. It became immensely popular due to its simplified application
development strategies and the heavy-lifting nature of the framework. Further, as the
use of Spring as a framework increased, the need to further simplify the Spring appli-
cation development process was also amplified.

 Although Spring provides a great deal of support to the developers in focusing
only on solving their business problems, before Spring Boot there is still a significant
amount of work that needs to be done by the developer to make things work. For
instance, the following are a few challenges you’ll face once you start developing a
Spring-based web application:

 Gain understanding of Servlet and the associated deployment descriptor web.xml
concepts.

 Familiarize yourself with the WAR and EAR directory structures to package the
application components.

 Understand application server-specific concepts, such as the domain, port,
threads, and data sources while you deploy your application.

 Deal with complicated class loading strategies, application monitoring, manage-
ment concepts, and logging facilities.

There are too many technical buzzwords out there. What if, instead, you could write
the business logic for your application, build an executable file, and just run it in a
command line? You wouldn’t need to define complicated XML configurations or per-
form application server deployment or other technical juggleries. All these pieces of
the puzzle would be mysteriously solved by some experienced magician, which would
be impressive, right? Well, you’ll soon discover that Spring Boot is this magician.

 Spring Boot was introduced as a subproject under the Spring Framework to
empower developers with a fast startup experience and exempt them from most of the

51.1 Introducing Spring Boot

configuration hazards. As you proceed with your Spring Boot journey, you’ll notice
how seamlessly Spring Boot addresses several configuration and integration issues.
For instance, in your Spring Boot project, you’ll not be forced to define a deployment
descriptor web.xml file. You also won’t be forced to use an application server to run
your application unless you specifically decide to run on an application server. Most of
the time, Spring Boot’s default configuration can easily meet your needs.

1.1.2 What is Spring Boot?

Spring Boot was released in April 2014 to reduce some of the burdens of developing a
Java web application. It allowed developers to focus more on the business logic rather
than the boilerplate technical code and associated configurations. Spring Boot
intends to create Spring-based, production-ready, standalone applications with little
configuration changes on behalf of the application developer. It takes an opinionated
view of the Spring Framework, so the application developers can quickly get started
with what they need. It provides an additional layer between the Spring Framework
for the user to simplify certain configuration aspects.

 Figure 1.1 shows how Spring Boot sandwiches itself between you, as the application
developer, and the Spring Framework. As an intermediate layer, Spring Boot performs

Spring Framework

Spring Boot

User

Spring ecosystem

Figure 1.1 Developer view of Spring Boot. It sandwiches itself between the developer
and the Spring Framework. Several Spring Framework components are automatically
configured by Spring Boot based on the Spring components a developer uses.

6 CHAPTER 1 Booting Spring Boot

many configurations, which you’ll otherwise need to do yourself if you interact directly
with the Spring Framework.

1.1.3 Spring Boot core features

Spring Boot has several notable features that make it stand out from the crowd of
other frameworks:

 Fast bootstrapping—One of the primary goals of Spring Boot is to provide a fast
startup experience in Spring application development. Let’s say you want to
build a web application using Spring in a traditional approach. You’ll most
likely follow the steps outlined below:
1 Configure a Maven or Gradle project with Spring MVC dependencies.
2 Configure the Spring MVC DispatcherServlet.
3 Package the application components into a WAR file.
4 Deploy the WAR file into a servlet container (e.g., Apache Tomcat).
With Spring Boot, you can generate an application by specifying the dependen-
cies you need in your application, and Spring Boot takes care of the rest.

 Autoconfiguration—Spring Boot automatically configures the bare minimum
components of a Spring application. It does this based on the presence of the
JAR files in the classpath or properties configured in the various property files.
For instance, if Spring Boot detects the presence of a database driver JAR file
(e.g., H2 in-memory database JAR) in the classpath, it automatically configures
the corresponding data source to connect to the database.

 Opinionated—Spring Boot is opinionated. It automatically configures several
components to start with a Spring application. Spring Boot does this with a set
of starter dependencies. A starter dependency targets a specific area of applica-
tion development and provides the related dependencies. For example, if you
need to develop a web application, you can configure the spring-boot-starter-
web dependency, which ensures that all related dependencies for developing a
web application, such as spring-web and spring-webmvc, are available in the
application classpath.

 Standalone—Spring Boot applications embed a web server, so they can run
standalone and do not necessarily require an external web or application server.
This enables Spring Boot applications to be packaged as an executable JAR
file and run with the java -jar command. This also allows Spring Boot appli-
cations to be easily containerized and candidates for cloud-native application
development.

 Production-ready—Spring Boot provides several useful production-ready features
out of the box to monitor and manage the application once it is pushed to pro-
duction, such as health checks, thread dumps, and other useful metrics.

71.1 Introducing Spring Boot

1.1.4 Spring Boot components

Spring Boot consists of several components with each component focusing on a spe-
cific area of the application development. Some of these are core components, and
you’ll use them often with almost every Spring Boot project. For example, the Spring
Boot is the primary component you’ll use in almost every Spring Boot project. Fig-
ure 1.2 shows the Spring Boot components, and the following list briefly discusses these
components:

 spring-boot—This is the primary Spring Boot component that provides support
to other components. For example, it contains the SpringApplication class,
which contains several static methods to create a standalone Spring Boot appli-
cation. It also provides support for embedded web servers (e.g., Tomcat) and
supports externalized application configurations (e.g., database details of your
application), etc.

 spring-boot-autoconfigure—This component provides the necessary support for
the automatic configuration of a Spring Boot application. Spring Boot autocon-
figuration guesses and configures the spring beans based on the dependencies

Spring Boot

DevTools

Actuator

Boot

autoconfigure

Test

Loader

Starter

Test

autoconfigure

Actuator

autoconfigure

CLI

Spring Boot DevTools
component

Spring Boot Actuator
component

Spring Boot
autoconfiguration
component

Spring Boot
test component

Primary Spring Boot
component

Spring Boot
CLI component

Figure 1.2 Spring Boot components

8 CHAPTER 1 Booting Spring Boot

present in classpath and the properties configured. However, autoconfigura-
tion backs away from the default configuration if it detects user-configured
beans with custom configurations.

 Spring-boot-starters—Starters are a set of prepackaged dependency descriptors
provided for developer convenience. A Spring Boot starter assists in providing a
set of Spring and related technologies to the developer, which otherwise, the
developer needs to manage themselves.

 spring-boot-CLI—This is a developer-friendly command-line utility that compiles
and runs groovy codes. It can also watch files for changes, so you do not need to
restart your application on modifications. This CLI tool exempts you from the
need for dependency management tools, such as Maven or Gradle. Also, it lets
you quickly prototype Spring applications without worrying much about depen-
dency management and other builds-related issues. Refer to appendix A to learn
how to use the Spring Boot CLI.

 spring-boot-actuator—This component provides the actuator endpoints to inter-
act with, monitor, and audit a Spring Boot application. An actuator in Spring
Boot can be managed through JMX or HTTP endpoints. Spring Boot provides
a predefined list of actuator endpoints that cover a range of application aspects.
If that does not satisfy your need, you can also create your custom actuator end-
points specific to your application. Spring Boot actuator also provides configu-
rations to let you decide which actuator endpoints you want to enable and
provides several means to secure them from unauthorized access.

 spring-boot-actuator-autoconfigure—This component provides support to auto-
configure the actuator endpoints based on the classpath. For instance, if the
Micrometer (https://micrometer.io) dependency is present in the classpath,
Spring Boot automatically configures the MetricsEndpoint.

 spring-boot-test—This module contains annotations and methods to write test
cases for the Spring Boot application.

 spring-boot-test-autoconfigure—This component supports the autoconfiguration of
the test cases of your application.

 spring-boot-loader—This component allows a Spring Boot application to be pack-
aged as a single fat JAR file, including all dependencies and the embedded web
servers that can be run standalone. You don’t use this module independently;
instead, it is used along with Maven or Gradle plugins.

 spring-boot-devtools—This component contains an additional developer toolkit
for a smooth development experience of Spring Boot applications. The toolkit
includes features such as automatic detection of application code changes and
LiveReload server to automatically refresh any HTML changes to the browser.
Developer tools are intended to increase developer productivity.

https://micrometer.io

91.2 Code examples

1.2 Code examples
In this section, we’ll discuss the code examples and the technologies we’ll use to
develop the examples. We’ll talk about the build system, programming language, and
the database that we’ll use in this book. We’ll also introduce you to Lombok, which
helps us to simplify the POJO class definitions with simple annotations.

1.2.1 Maven vs. Gradle

Spring Boot lets you create a Spring Boot project with either Apache Maven (https://
maven.apache.org/) or Gradle (https://gradle.org/) build tools. In the Spring Ini-
tializr (https://start.spring.io/) tool, you can choose the build system of your choice
and generate the project. In this book, we’ll use Apache Maven as the preferred build
system, as most readers are familiar with Apache Maven. However, if you are a Gradle
user, you will find it is quite easy to port the code examples to Gradle seamlessly.

1.2.2 Java vs. Kotlin

You can use both Java and Kotlin (https://kotlinlang.org/) programming languages
in your Spring Boot project. Spring Framework 5.0 has incorporated support for
Kotlin, and since then there is a constant effort to provide better support for Kotlin in
the Spring Framework. For instance, in Spring Security 5.3, the Spring team has intro-
duced a Kotlin version of their domain-specific language (DSL) support to Spring
Security. You can read more about Spring Framework’s Kotlin support at http://mng
.bz/Bxw8.

 In this book, we’ll primarily use Java as our preferred language in most of the code
examples. We’ll cover the major Kotlin features in Spring Framework (through Spring
Boot) in chapter 10.

1.2.3 Database support

Several coding examples in this book require database access to demonstrate the con-
cepts. Spring Boot extends support to an array of SQL and NoSQL databases. For the
ease of testing of the coding examples, we’ll use an H2 in-memory SQL database in all
our code examples (with a few exceptions).

1.2.4 Lombok

Lombok (https://projectlombok.org/) is a Java library that automatically generates
the constructors, getter, setter, toString, and others based on the presence of a few
annotations in the plain old Java object (POJO) class. All you need to do is use the
appropriate annotation in the POJO class. For instance, to generate a getter method
for all member variables in the POJO class, you can specify @Getter annotation in the
class. We’ll use Lombok in this book in the code examples.

 If you are not interested in using Lombok, you can simply provide the getter, setter,
and constructors, as applicable to the code. The code examples should work as expected.

https://maven.apache.org/
https://maven.apache.org/
https://maven.apache.org/
https://gradle.org/
https://start.spring.io/
https://kotlinlang.org/
http://mng.bz/Bxw8
http://mng.bz/Bxw8
http://mng.bz/Bxw8
https://projectlombok.org/

10 CHAPTER 1 Booting Spring Boot

1.3 Getting started with Spring Boot
You now have an overview of Spring Boot and know the purpose of the framework. In
this section, you’ll learn to generate a Spring Boot project and the various parts of the
generated project.

1.3.1 Your first Spring Boot project

Spring Boot provides a tool called Spring Initializr that lets you generate a skeleton
Spring Boot project. You can access the Spring Initializr tool at https://start.spring.io.
Further, Spring Boot also provides APIs that allows the mainstream IDE vendors to
integrate Spring Initializr and provide built-in support to generate a Spring Boot proj-
ect in the IDE itself. If you are new to Spring Initializr, refer to appendix A to learn vari-
ous ways to create a Spring Boot project. We’ve generated a Spring Boot project for your
reference in the book’s companion GitHub repository at http://mng.bz/razD.

1.3.2 Spring Boot project structure

A generated Spring Boot project structure is relatively simple and consists of only the
components you need to proceed with Spring Boot application development. It con-
tains the following components:

 A pom.xml file that contains the dependencies you’ve selected during project
generation.

 A Maven wrapper file that lets you build the project without installing Maven in
your local machine.

 A package structure that contains the source and tests Java files. The source
package contains a Java class with the main method, and the test package has an
empty test class.

Record
Java 14 has introduced the concept of records in the Java language. Records are
immutable data classes that require you to specify only the type and name of the
fields. The Java compiler can then generate the equals, hashCode, and toString
methods. It also generates the private final fields, getter methods, and public con-
structor. If you do not wish to use a third-party library, such as Lombok, you may con-
sider using Java records.

A record can be defined as follows:

Public record Course(int id, String name, String description, int rating) {}

The compiler generates the public constructor with all the defined fields and provides
getter methods with the same as the field names (e.g., id(), name() etc.) as well
as equals and hashCode methods. You can find more information about Java records
at http://mng.bz/donO.

http://mng.bz/donO
https://start.spring.io
http://mng.bz/razD
http://mng.bz/razD

111.3 Getting started with Spring Boot

 A resources folder to maintain additional project artifacts and an empty appli-
cation.properties file.

Let’s discuss the key components of the generated project in detail.

THE MAVEN POM.XML FILE

The pom.xml file of the generated project is shown in the following listing.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http:/ /maven.apache.org/POM/4.0.0"

➥ xmlns:xsi="http:/ /www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http:/ /maven.apache.org/POM/4.0.0

➥ https:/ /maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.6.3</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>
 <groupId>com.manning.sbip.ch01</groupId>
 <artifactId>spring-boot-app-demo</artifactId>
 <version>1.0.0</version>
 <name>spring-boot-app-demo</name>
 <description>Spring Boot Demo Application</description>
 <properties>
 <java.version>17</java.version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 <exclusions>
 <exclusion>
 <groupId>org.junit.vintage</groupId>
 <artifactId>junit-vintage-engine</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>

Listing 1.1 The pom.xml file of generated Spring Boot project

Current project declares Spring Boot starter parent as its parent to indicate that this
project is a child Spring Boot project. This ensures several features of the application,

such as plugin and dependency management, can be managed by Spring Boot.

Current project’s
artifact details

List of
declared Maven
dependencies:
Spring Boot
starter web and
Spring Boot
starter test

Spring Boot starter test
dependency provides
necessary support to
perform testing Spring
Boot applications
with popular testing
libraries, such as Junit,
Hamcrest, and Mockito.
This dependency
excludes junit-vintage-
engine dependency to
leverage Junit 5
features with junit-
jupiter-engine.

Spring Boot Maven plugin is a Maven plugin
that provides useful goals to perform
several application management activities.
For instance, you can quickly start the
Spring Boot application with this plugin
using mvn spring-boot:run command.

12 CHAPTER 1 Booting Spring Boot

 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>
</project>

There are three segments of the pom.xml you’ll explore in this section:

1 The parent tag
2 The dependencies section
3 The Spring Boot Maven plugin

The spring-boot-starter-parent is the parent dependency for all Spring Boot
starter dependencies. It also indicates that the current Spring Boot project is a child
Spring Boot project and extends a few details from the parent project.

 A spring-boot-starter-parent is a special type of starter dependency that pro-
vides several default configurations, such as the default java version and default con-
figurations for several Maven plugins to a Spring Boot project. For example, the
maven-war-plugin and maven-surefire-plugin are automatically included by the
starter parent dependency.

 Further, spring-boot-starter-parent also assists in dependency management.
Notice that there is no dependency version specified for any of the declared depen-
dencies. The appropriate version of these libraries is specified in the spring-boot-
starter-parent.

Does your project already have a parent pom?
It is possible that you already have an existing Maven project set up with a parent
pom, and you are upgrading this project to the Spring Boot. In this scenario, how can
your child Spring Boot project extend the parent pom, since it is already extending a
custom parent pom?

You can still leverage several benefits, such as the dependency management offered by
Spring Boot parent pom, by adding the following dependency. You can specify spring-
boot-dependencies in the dependencyManagement section of the pom.xml file:

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-dependencies</artifactId>
 <version>2.6.3</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

131.3 Getting started with Spring Boot

In the second section of the pom.xml file, Spring Boot starter dependencies are
declared. Spring Boot starter dependencies are one of the key features of the Spring
Boot framework. Refer to the Spring Boot starter dependency sidebar for a quick
overview.

In the generated project, we’ve included two starter dependencies: spring-boot-
starter-web and spring-boot-starter-test. The web starter dependency includes
required JARs to build a web application, whereas the test dependency lets you write
test cases for your application.

 In the final section of the pom.xml presented in listing 1.1, you can find the spring-
boot-maven-plugin. This plugin is provided for developer convenience to simplify

Spring Boot starter dependency
A Spring Boot starter dependency is intended to make the Spring Boot application
development easy, rapid, and effective. If you have previous experience developing
Java applications with a build tool such as Apache Maven or Gradle, you can recall that
managing dependencies is one of the key challenges for an application developer.

The first challenge is to identify the libraries (dependencies) you need to develop a
specific component of your application. Once you identify them, you need to find the
right versions of the libraries. Even if you find the right libraries and versions, in this
fast-paced world of application development, it is relatively easy to become out of
sync with the versions. To further increase your issues, the dependencies you choose
have their own dependencies or, more precisely, transitive dependencies. In some
cases, you even need to control those as well. Spring Boot starter dependency is a
solution in Spring Boot to relieve you of all the above-mentioned issues.

A starter dependency groups together a set of dependencies you might need to
develop a part of your application. If you choose to develop a web application with
Spring Boot, you’ll most likely choose the spring-boot-starter-web dependency.
It ensures that all required dependencies to develop a web application are available
in your application. Of course, this is opinionated, and you get the set of dependen-
cies that the Spring team recommends you need to have to develop a web applica-
tion. However, the key part here is that you are relieved from the dependency
versioning, upgrades, and many other issues.

A starter dependency can also depend on another starter dependency. For instance,
the spring-boot-starter-web needs a few common starter dependencies, such
as the spring-boot-starter, spring-boot-starter-tomcat, and spring-boot-
starter-json dependencies. These starters pull another set of dependencies related
to Spring Boot, Tomcat, and JSON, respectively. You can refer to the Spring Boot doc-
umentation for a list of Spring Boot starters available at http://mng.bz/VlJ0.

The concept of starter dependency is extendable. Spring Boot lets you build starters
that you can use in your application. This is useful for large applications to modularize
and manage dependencies in terms of custom starters. You’ll learn how to create a
custom starter later in the book.

http://mng.bz/VlJ0

14 CHAPTER 1 Booting Spring Boot

several application management activities. For instance, you’ll often notice it is quite
straightforward to build an executable JAR or WAR file of a Spring Boot application.
This is because the repackage goal of the spring-boot-maven-plugin ensures that it
takes the Maven-generated original JAR or WAR file (which is not an executable) and
repackages it to make it executable. Table 1.1 shows the list of available goals of
spring-boot-maven-plugin with syntax and a brief description:

You can refer to table 1.1 to learn more about each of these goals. For instance, if you
would like to run the current Spring Boot application, you can execute the following

Table 1.1 List of Spring Boot Maven plugin goals

Goal name Maven command syntax Description

Build an image spring-boot:build-image Packages the application into an open
container initiative (OCI; see https://
opencontainers.org/) image. You will learn
more about images and their deployment
into containers in chapter 9.

Generate build-info
properties

spring-boot:build-info Generates a build-info.properties file
based on the current Maven project. You can
find this file at ${project.build.outputDirec-
tory}/META-INF/build-info.properties.

Display help
information

spring-boot:help Shows the help content of the spring-
boot-maven-plugin. You can use mvn
spring-boot:help -Ddetail=true
-Dgoal=<goal-name> to view parameters
allowed in a goal. For example, mvn
spring-boot:help -Ddetail=true -
Dstart shows detailed information about
the start goal.

Repackage Spring
Boot JAR or WAR
archives

Spring-boot:repackage This goal intends to repackage the existing
JAR or WAR files to make them executable
from the command line (e.g., java -jar
somejar.jar). By default, this goal binds
itself in the Maven lifecycle package phase
and makes the generated JAR or WAR archive
executable. You can use mvn clean
install spring-boot:repackage to
see how this goal works. Alternatively, you
can also use mvn package to generate the
same executable archive.

Run a Spring Boot
application

spring-boot:run Runs a Spring Boot application in place

Start a Spring Boot
application

spring-boot:start Starts a Spring Boot application

Stop a running Spring
Boot application

spring-boot:stop Stops an application that was started using
the start goal

https://opencontainers.org/
https://opencontainers.org/

151.3 Getting started with Spring Boot

command in command-line or terminal from the same directory where pom.xml is
located: mvn spring-boot:run. You’ll see the application starts and runs on default
HTTP port 8080, as shown in figure 1.3:

A careful observation of the command line output shows that this goal, indeed, invokes
several other Maven plugins, such as maven-resources-plugin to copy resources (e.g.,
copying Java source files from src/main/java folder to the associated output directory)
and maven-compiler-plugin to compile the source code before it starts the application.
The spring-boot-maven-plugin abstracts all these low-level tasks from the developer.

THE SPRING BOOT MAIN CLASS

In the generated project, you can find that Spring Initializr has generated a Java class
with a Java main() method in it. The following listing shows this.

package com.manning.sbip.ch01;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class SpringBootAppDemoApplication {

Listing 1.2 The Spring Boot main class

Figure 1.3 Running a Spring Boot application using Spring Boot Maven plugin in command line

16 CHAPTER 1 Booting Spring Boot

 public static void main(String[] args) {
 SpringApplication.run(SpringBootAppDemoApplication.class, args);
 }

}

Let’s examine the following components of the generated Java file:

1 Using the main() method
2 Using the @SpringBootApplication annotation
3 The role of SpringApplication class

In general, to run a web application, you build and package the application compo-
nents in a WAR or EAR archive file and deploy it into a web (e.g., Apache Tomcat) or
application server (e.g., Red Hat JBoss). Spring Boot simplifies this process to a cer-
tain degree. It does not enforce you to build a WAR or EAR file of your application.
Instead, it lets you run the Spring Boot application like a regular Java application
using a conventional main() method.

 Although Spring Boot follows a familiar approach to keep things simple for devel-
opers, it performs a decent amount of heavy lifting behind the scenes. For instance, a
Servlet-based web application can run only in a Servlet Container, such as Apache
Tomcat or Jetty. Spring Boot enables this support by using an embedded Apache Tom-
cat server in the application by default. Thus, when you start your Spring Boot applica-
tion using the main() method, Spring Boot starts an embedded instance of the
Apache Tomcat server and runs the web application inside it.

 If you explore the spring-boot-starter-web dependency further, you can find it
has a transitive dependency on the spring-boot-starter-tomcat module. You can
execute the mvn dependency:tree command from the path where the pom.xml file is
located to explore the dependency tree of the application.

 You may notice that the class in the generated Java file is annotated with the
@SpringBootApplication annotation. This is a convenient annotation that consists of
three annotations: @EnableAutoConfiguration, @ComponentScan, and @SpringBoot-
Configuration, each of which is performing a specific task in the application.

 Let’s understand these annotations based on their actions:

 @EnableAutoConfiguration—Spring Boot provides several @Enable* annota-
tions to enable specific features in your Spring Boot application. The @Enable-
AutoConfiguration annotation provides the necessary support for Spring
Boot to autoconfigure your application based on the JAR dependencies pres-
ent in the application classpath. You’ll learn more about autoconfiguration in
chapter 4.

 @ComponentScan—Provides support to scan the packages for Spring compo-
nents in the application. A component in Spring is a Java bean that is man-
aged by Spring and annotated with the @Component, @Bean, or specialized
component annotations. With the presence of @ComponentScan annotation, the

171.3 Getting started with Spring Boot

Spring Boot application scans for all components present in the root package
and subpackages under it to manage their lifecycle. The key point to remember
with ComponentScan is that the scan starts from a root package and continues to
all child packages. Thus, if you have packages that are not in the root or its sub-
package, none of those components will be scanned by the component scan.

 @SpringBootConfiguration—This annotation indicates that the annotated class
provides the Spring Boot application configuration. It is meta-annotated with
Spring @Configuration annotation so that the configurations in the annotated
class can be found automatically by Spring Boot. Thus, the beans defined in this
main class can be autodetected and loaded by Spring.

Also, note that the Spring Boot application main class needs to be in your application
root package, as the @SpringBootApplication annotation is configured in this class.
@SpringBootApplication annotation uses the root package as the base package. This
base package and all other subpackages are automatically scanned by Spring Boot to
load Spring components (e.g., classes configured with @Component, @Configuration,
and other Spring annotations) and other types. You can find more details at http://
mng.bz/xv8e.

 The next, and final, component is the use of the SpringApplication class in the
generated Java file. This class is provided by Spring Boot to conveniently bootstrap a
Spring Boot application. Most of the time, you’ll use the static run() method of
SpringApplication to bootstrap and launch your application. Spring Boot performs
several activities while it executes the run() method:

1 Creates an instance of an ApplicationContext based on the libraries present in
the classpath

2 Registers a CommandLinePropertySource to expose command line arguments
as Spring properties

3 Refreshes the ApplicationContext created at step 1 to load all singleton beans
4 Triggers the ApplicationRunners and CommandRunners configured in the

application

Revisiting ApplicationContext
Most Java applications you develop consist of objects. These objects interact with
each other, and there are dependencies among them. To effectively manage object
creation and interdependencies, Spring uses the principles of dependency injection
(DI). This dependency injection or the inversion of control (IoC) approach lets Spring
create the objects (or, more appropriately, the beans in Spring parlance) and inject
the dependencies externally. The bean definitions are presented to Spring either
through the XML bean definition files (e.g., applicationContext.xml) or through the
annotation-based configurations (@Configuration annotation). Spring loads these
bean definitions and keeps them available in the Spring IoC container.

http://mng.bz/xv8e
http://mng.bz/xv8e
http://mng.bz/xv8e

18 CHAPTER 1 Booting Spring Boot

The SpringApplication class attempts to create an instance of ApplicationContext
based on the JAR dependencies present in the classpath. A Spring Boot web applica-
tion can be either Servlet-based or reactive type. Leveraging Spring’s class loading
techniques, and based on the availability of the classes in the classpath, Spring
deduces the current application’s type. Once the application type is known, Spring
Boot applies the below strategy to load the application context:

1 If the application is identified as a Servlet-based web application, Spring
Boot attempts to create an instance of AnnotationConfigServletWebServer-
ApplicationContext class.

2 Alternatively, if the application is reactive type, Spring Boot creates an instance
of the AnnotationConfigReactiveWebServerApplicationContext class.

3 If the application is neither a Servlet-based nor a reactive application, Spring
Boot attempts to create an instance of AnnotationConfigApplicationContext
class.

You start a Spring Boot application using the static run() method of Spring-
Application class. Although using the static run() method is useful, Spring Boot
additionally lets you create an instance of SpringApplication class to customize the
application bootstrap mode. For instance, if you are aware of the application type,
you can directly set it in the SpringApplication instance, as shown in the following
listing.

package com.manning.sbip.ch01;

//imports

@SpringBootApplication
public class BootstrappingSpringBootAppApplication {

 public static void main(String[] args) {

 SpringApplication springApplication = new

➥ SpringApplication(BootstrappingSpringBootAppApplication.class);

 springApplication.setWebApplicationType(WebApplicationType.REACTIVE);

(continued)

The ApplicationContext interface acts as the Spring IoC Container. Spring pro-
vides a plethora of ApplicationContext implementations based on the application
type (Servlet or Reactive application), the bean definition configurations (e.g., to load
from classpath or annotation), and so on. You can refer to the Java documentation
of the ApplicationContext interface (http://mng.bz/AxJK) to learn more about it
and its available subtypes.

Listing 1.3 Customizing SpringApplication to select the application type as reactive

Create an
instance of

SpringApplication

Customizing SpringApplication
class to set the application type

as Reactive

http://mng.bz/AxJK

191.3 Getting started with Spring Boot

 springApplication.run(args);
 }
}

SpringApplication also provides several setter methods, so you can control vari-
ous Spring Boot features, such as setting additional Spring profiles or setting a
resource loader to load application resources. You can refer to the latest version
of the Spring Boot reference manual (http://mng.bz/ZzJO) to learn more about
SpringApplication.

CONFIGURATION MANAGEMENT WITH THE APPLICATION PROPERTIES FILE

Spring Initializr generates an empty application.properties file in the src/main/
resources folder. This property file allows you to externalize various application con-
figurations (e.g., server details or database details) for your application. Although
there are multiple ways to externalize application properties for a Spring Boot appli-
cation, this is the most frequently used approach. This property file lets you specify
the configurations in a key-value pair format, where a key is separated from the asso-
ciated value by a = character. The following listing shows a sample configuration in the
application.properties file for configuring the server address and port of a Spring
Boot application.

server.address=localhost
server.port=8081
management.endpoints.web.exposure.include=*

To see the application.properties file in practice, you can modify the server.port
value in the current application to a different HTTP port value (e.g., to 9090). If you
launch the application after this modification, you can see it starts on the updated
HTTP port.

 If you are not fond of the property file format, you can alternatively use the YAML
(https://yaml.org/spec/1.2/spec.html) file format to configure application proper-
ties. YAML allows you to hierarchically define the properties. If you would like to use
the YAML file format, you can rename the existing application.properties file to appli-
cation.yml and specify the properties in YAML format. The following listing shows the
equivalent YAML configuration of listing 1.4.

server:
 address: localhost
 port: 8080

Listing 1.4 The application.properties contents to configure the application address
and port

Listing 1.5 The application.yml content to configure the application address and port

Network address to which
the server should bind Server

HTTP
port

All actuator
endpoints to be
exposed over HTTP

http://mng.bz/ZzJO
https://yaml.org/spec/1.2/spec.html

20 CHAPTER 1 Booting Spring Boot

management:
 endpoints:
 web:
 exposure:
 include: '*'

You can refer to the common application properties on the Spring Boot website
(http://mng.bz/REJ0) for a list of supported application.properties. As we advance
in this book, you’ll be surprised to observe how, by simply adding an application con-
figuration property, you can achieve a drastic change in your application behavior.

 In this section, you’ve explored the core components of a Spring Boot application.
You should now be familiar with the overall Spring Boot project structure, the pom.xml
file components, the @SpringBootApplication annotation, SpringApplication class,
and the mighty application.properties that give you the power to control the Spring
Boot application behavior through various built-in and custom properties.

1.3.3 Creating an executable JAR file

The easiest way of creating an executable JAR file from your Spring Boot project is by
using the mvn package command. Recall that you’ve selected the packaging type while
generating the project. Based on the selection, a JAR file is created in the project’s tar-
get directory. The generated JAR file can be executed with the java -jar command
from your command line to start the application.

 By default, the Maven package goal does not generate an executable JAR or WAR
file on its own. It’s the spring-boot-maven-plugin’s repackage goal that binds itself
in the package phase and prepares the executable file.

1.3.4 Exploring the JAR file

If you explore the generated jar file, you’ll find the following structure as shown in the
following listing.

spring-boot-app-demo.jar
 |
 +-META-INF
 | +-MANIFEST.MF
 +-org
 | +-springframework
 | +-boot
 | +-loader
 | +-<spring boot loader classes>
 +-BOOT-INF
 +-classes
 | +-com
 | +-manning
 | +-sbip
 | +-ch01
 | +-SpringBootAppDemoApplication.class

Listing 1.6 Spring Boot generated JAR file structure

http://mng.bz/REJ0

211.3 Getting started with Spring Boot

 +-lib
 | +-dependency1.jar
 | +-dependency2.jar
 +-classpath.idx
 +-layers.idx

We can broadly classify the structure into four sections:

 META-INF—This section contains the MANIFEST.MF file, which contains much
critical information on the JAR that needs to be executed. The two key parame-
ters presented in this file are Main-Class and Start-Class details.

 Spring Boot loader components—Spring Boot loader provides several loader
implementations that are used to load the executable file. For instance, the
JarLauncher class loads a JAR file, a WarLauncher loads a WAR file, and the
PropertiesLauncher lets you customize the class loading through a set of
loader.* properties.

 BOOT-INF\classes—All application class files are packaged in this folder.
 BOOT-INF\lib—This folder contains all the dependencies for your application.

One key point to note is the use of Main-Class and Start-Class parameters in the
MANIFEST.MF file. The Main-Class contains the Launcher class name, which uses
the class specified in the Start-Class to start the application. In a Spring Boot exe-
cutable JAR, the Start-Class is always your Spring Boot main class.

 The classpath.idx file is an index file that lists the dependencies with the order in
which the class loader should load them. The layer.idx file is used for JARs that allow
the JAR to be segregated into logical layers for Docker or OCI image creation. You’ll
explore the use of layer.idx in chapter 9 when you create Docker images from your
Spring Boot application.

1.3.5 Shutting down a Spring Boot application

You may find shutting down and executing the Spring Boot application quite straight-
forward. If you are executing the JAR as a foreground process through your command
line, you can terminate the Java process with Ctrl-C (in Windows and Linux). Simi-
larly, you can use the appropriate OS-specific command to kill the Java process if the
application is running as a background process.

 Without any additional configurations, the approaches discussed above terminate
the Spring Boot application immediately and do not provide it with any scope to serve
the currently executing request if there is any. This might be an issue with your appli-
cation’s user experience. Thus, you need to ensure a graceful shutdown of the appli-
cation, which should allow the current request to be served, but no new request
should be taken before it finally gets terminated.

 Spring Boot provides additional configurations to enable the graceful shutdown in
your application. You can configure these properties in the application.properties file,
as shown in the following listing.

22 CHAPTER 1 Booting Spring Boot

server.shutdown=graceful
spring.lifecycle.timeout-per-shutdown-phase=1m

The default value of the server.shutdown property is immediate, which indicates an
immediate shutdown of the application. Once you configure the graceful shutdown,
you can also configure the timeout period the application should wait for the current
request to finish. Note that the spring.lifecycle.timeout-per-shutdown-phase
property has a default value of 30s. You can configure a custom timeout value if the
default value is not suitable for your application. In Listing 1.7, we’ve configured one
minute as the timeout period.

NOTE The above-mentioned graceful shutdown feature was introduced in
Spring Boot 2.3.0 release. It’s not available for earlier Spring Boot releases.

1.4 Spring Boot additional concepts
In this section, we’ll provide a brief introduction to a few useful Spring Boot concepts.
Some of these are key concepts of the framework, and we’ll provide a detailed discus-
sion in the subsequent chapters.

1.4.1 Spring Boot startup events

Spring framework’s event management mechanism promotes decoupling event pub-
lishers and subscribers in an application. It allows you to subscribe to the framework’s
built-in events as well as define your custom events.

 The Spring Boot framework also provides several built-in events that you can sub-
scribe to perform certain actions. For instance, there might be a requirement that you
need to invoke an external REST API if your Spring Boot application initializes com-
pletely. In this section, we’ll introduce several Spring Boot events, which are published
at various stages of an application startup and initialization:

 ApplicationStartingEvent—Published at the beginning of the application
startup once the Listeners are registered. Spring Boot’s LoggingSystem uses
this event to perform any action that needs to be taken up before application
initialization.

 ApplicationEnvironmentPreparedEvent—Published when the application is
starting up and the Environment is ready for inspection and modification.
Spring Boot internally uses this event to preinitialize several services, such as
MessageConverter, ConversionService, Initialize Jackson, and others.

 ApplicationContextInitializedEvent—Published when the Application-
Context is prepared, ApplicationContextInitializers are executed, but
none of the bean definitions are loaded. This event can be used to perform a
task before beans are initialized in the Spring container.

Listing 1.7 Graceful shutdown configuration

231.4 Spring Boot additional concepts

 ApplicationPreparedEvent—Published when the ApplicationContext is pre-
pared, bean definitions are loaded but not refreshed. The Environment is ready
for use at this stage.

 ContextRefreshedEvent—Published when the ApplicationContext is refreshed.
This event comes from Spring—not Spring Boot. This event does not extend
SpringApplicationEvent. The Spring Boot ConditionEvaluationReport-
LoggingListener listens to this event and prints the autoconfiguration report
once this event is published.

 WebServerInitializedEvent—Published when the webserver is ready. This
event has two variants based on the type of the application: ServletWebServer-
InitializedEvent for Servlet-based applications and ReactiveWebServer-
InitializedEvent for reactive applications. This event does not extend
SpringApplicationEvent.

 ApplicationStartedEvent—Published when the ApplicationContext is
refreshed but before the ApplicationRunner and CommandLineRunners are
called.

 ApplicationReadyEvent—Published by SpringApplication to indicate the
application is ready to service requests. It is not advised to change the internal
state of the application, as all application initialization steps are finished.

 ApplicationFailedEvent—Published when there are some exceptions, and
the application has failed to start. This event is useful to perform tasks like
script execution or notifying startup failures.

1.4.2 Listening events in a Spring Boot application

Spring Boot events at application startups provide useful information about the vari-
ous stages of application initialization. These events are useful if you need program-
matic control on the application startup behavior. The easiest approach is to subscribe
to these events and take necessary actions. For instance, if you need to modify any
parameter in the Environment, you can subscribe to ApplicationEnvironment-
PreparedEvent and do so. Spring Boot uses these events internally to initialize several
components of the application.

 Let’s discuss different approaches to subscribe to these events. The easiest way to
use Spring Framework’s @EventListener annotation. For instance, to listen to the
ApplicationReadyEvent, you can use the code snippet shown in the following listing.

@EventListener(ApplicationReadyEvent.class)
public void applicationReadyEvent(ApplicationReadyEvent

➥ applicationReadyEvent) {
 System.out.println("Application Ready Event generated at "+new

➥ Date(applicationReadyEvent.getTimestamp()));
}

Listing 1.8 Using @EventListener annotation to listen ApplicationReadyEvent

24 CHAPTER 1 Booting Spring Boot

The above code snippet prints the timestamp of when the ApplicationReadyEvent
was generated. Although @EventListener works well in most circumstances, it does
not work for events that are published very early in the application start-up, such as
ApplicationStartingEvent and ApplicationEnvironmentPreparedEvent. In this
section, we’ll discuss two additional approaches to listening to events in a Spring Boot
application.

USING SPRINGAPPLICATION

Typically, in the generated Spring Boot project, the application class invokes the static
run() method of SpringApplication to start the application. However, the Spring-
Application class also provides several setter methods to customize the application
startup behavior. For instance, it lets you add ApplicationContextInitializer, set
ApplicationListener, and many others with the various setter methods. To use
SpringApplication to listen to events, you can create an appropriate Application-
Listener class and implement the onApplicationEvent() method. The following
listing shows a custom listener that listens to the ApplicationStartingEvent of
Spring Boot:

public class ApplicationStartingEventListener implements

➥ ApplicationListener<ApplicationStartingEvent> {

 @Override
 public void onApplicationEvent(ApplicationStartingEvent

➥ applicationStartingEvent) {
 System.out.println("Application Starting Event logged at "+new

➥ Date(applicationStartingEvent.getTimestamp()));
 }

}

You can then add this listener in the SpringApplication so that, once there is an
ApplicationStartingEvent published, the associated listener is called. The following
listing shows the SpringApplication implementation.

@SpringBootApplication
public class SpringBootEventsApplication {

 public static void main(String[] args) {
 SpringApplication springApplication = new

➥ SpringApplication(SpringBootEventsApplication.class);
 springApplication.addListeners(new

➥ ApplicationStartingEventListener());
 springApplication.run(args);
 }
}

Listing 1.9 Creating a custom ApplicationListener

Listing 1.10 Adding application listener in SpringApplication

251.4 Spring Boot additional concepts

In the listing, you’ve added the custom listener into the SpringApplication instance.
The addListeners(..) method takes a varargs, so you can add any number of listen-
ers using this method.

 The SpringApplication approach requires you to make code changes in your
Spring Boot application class. If this is not convenient, Spring Boot provides another
approach through the spring.factories property file to register the custom listeners.
Let’s explore this in the next section.

USING THE SPRING.FACTORIES FILE

The spring.factories file provides you with an extension point in the Spring Boot
framework to configure and customize certain application features. For instance, you
can find extensive use of this file by Spring Boot to configure the initializers, applica-
tion listeners, autoconfiguration, failure analyzers, the template provides, and others.
The spring.factories file is a property file consisting of key–value pairs.

 In general, the spring.factories file exists even before the Spring Boot, and it is one
of the core Spring Framework features. You can find this file inside the spring-beans
JAR, which is a Spring framework component.

 Nonetheless, Spring Boot provides an approach to configure certain custom com-
ponents, such as the ApplicationListener, through this file. The spring.factories is
located inside the META-INF folder, which is located inside the src\main\resources
folder. The following listing shows a sample spring.factories file.

org.springframework.context.ApplicationListener=com.manning.sbip.ch01.liste

➥ ner.ApplicationStartingEventListener

In listing 1.11, the key is the class type of the component you are configuring, and the
value is the fully qualified class name of the associated implementation. For instance,
as we are configuring an ApplicationListener, the key is the fully qualified class type
org.springframework.context.ApplicationListener, and the value is the custom
listener class com.manning.sbip.ch01.listener.ApplicationStartingEventListener.
You can configure multiple listener implementations separated by a comma. You’ll
notice the use of the spring.factories file in detail in later chapters while configuring
custom autoconfiguration, failure analyzers, and more.

1.4.3 Custom Spring Boot starters

In the earlier example, you likely noticed the use of official Spring Boot starters that
are developed and maintained by Spring Boot. Starters are one of the key features of
Spring Boot that simplify the dependency management in a Spring Boot application.
This concept of starters can be extended to the proprietary code and configurations
as well. Spring Boot extends its infrastructure to let you define your custom starters so
that you can define and maintain them like other application artifacts. In the latter
part of the book, we’ll demonstrate how to define a custom starter.

Listing 1.11 The spring.factories file

26 CHAPTER 1 Booting Spring Boot

1.4.4 Custom autoconfiguration

In the introduction of this chapter, we mentioned that Spring Boot is opinionated. At
the time of application startup, Spring Boot automatically configures various applica-
tion components based on available dependencies and configurations and other fac-
tors. The autoconfiguration strategy lets Spring Boot express its opinion about certain
application components and plays a major role in Spring Boot application initializa-
tion and execution. For starters, the autoconfiguration feature is also extendable, and
you can define your autoconfiguration. Later in the book, we’ll demonstrate how to
define custom autoconfiguration.

1.4.5 Failure analyzers

Spring Boot uses the notion of failure analyzers that analyzes application failures and
provides a detailed diagnostic report about the failure. A FailureAnalyzer accepts an
exception and provides a detailed FailureAnalysis. Figure 1.4 shows the Failure-
Analysis report printed in the console for the PortInUseException. This exception
occurs if the port you are using to start the Spring Boot application is not available
for use.

You can extend the concept of FailureAnalyzer and define your custom exception
and failure analyzers. For instance, it is quite useful, along with custom auto config-
urations, to define your domain-specific exception and define failure analyzer
implementation with a detailed failure analysis report. You’ll explore how to create a
custom FailureAnalyzer later in the book.

1.4.6 Spring Boot actuator

Spring Boot actuator lets you monitor and interact with your Spring Boot application.
It is quite common to monitor several health parameters in any production applica-
tion. For instance, you can perform a health check in an application to determine
whether the application is up. Besides, you can also capture the thread dump or heap
dump of your application to perform a variety of analyses. Spring Boot provides a
plethora of production-ready features with the actuator. To enable the Spring Boot

Figure 1.4 Failure analyzer diagnostic report if the port is not available for use

271.4 Spring Boot additional concepts

actuator, you need to include the spring-boot-starter-actuator dependency in the
pom.xml. The following listing shows this dependency.

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
</dependency>

By default, Spring Boot exposes the /actuator as the base endpoint to access the
other endpoints. Only the /health and /info endpoints are enabled for HTTP by
default. For instance, if you access the http:/ /localhost:8080/actuator, you’ll see the
page as shown in the following listing.

{
 "_links":{
 "self":{
 "href":"http:/ /localhost:8080/actuator",
 "templated":false
 },
 "health":{
 "href":"http:/ /localhost:8080/actuator/health",
 "templated":false
 },
 "health-path":{
 "href":"http:/ /localhost:8080/actuator/health/{*path}",
 "templated":true
 },
 "info":{
 "href":"http:/ /localhost:8080/actuator/info",
 "templated":false
 }
 }
}

If you access http:/ /localhost:8080/actuator/health, you can find the application sta-
tus as UP if the application is running. We’ll discuss the Spring Boot actuator in detail
in chapter 4.

1.4.7 Spring Boot developer tool

To increase developer productivity, Spring Boot provides a set of tools that make the
development experience more pleasant. For instance, it monitors the classpath
changes and automatically builds the application for any change. Besides, it also pro-
vides an embedded LiveReload server that can be used to trigger a browser refresh
when a resource is modified. To include developer tools in your Spring Boot project,
you need to include the spring-boot-devtools dependency in the pom.xml, as
shown in the following listing.

Listing 1.12 Spring Boot starter actuator dependency

Listing 1.13 Spring Boot actuator endpoints

28 CHAPTER 1 Booting Spring Boot

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-devtools</artifactId>
 <optional>true</optional>
</dependency>

Summary
Spring Boot enables you to create standalone, production-ready applications that you
can run without worrying much about the configuration aspects. Its autoconfigura-
tion and starter-based dependency management perform the heavy lifting of applica-
tion configuration and let you focus on the business aspect of your application.

 In this chapter, we started with an overview of the various Spring Boot features and
components. Some of the main areas we explored in this chapter were

 What Spring Boot is and the benefits it offers over a traditional Spring application
 Spring Boot features and its various components
 The structure and the components of a generated Spring Boot project
 How to create an executable JAR file from a Spring Boot project and the struc-

ture of the generated JAR file
 How to gracefully shutdown a running Spring Boot application
 Spring Boot startup events and various ways to listen to the events
 An overview of custom starter, autoconfiguration, failure analyzers, and actuators
 An introduction to Spring Boot developer tools to increase development

productivity

The remainder of this book is dedicated to presenting the real-world techniques for
solving common problems you’ll encounter when working with Spring Boot. You’ll be
introduced to a broad spectrum of subject areas, starting with Spring Boot application
development, security, reactive application development, and cloud-based deployments.

Listing 1.14 Spring Boot developer tools

Part 2

Part 2 of the book consists of six chapters, which discuss several parts of
Spring Boot application development.

 Chapter 2 covers several common tasks a developer typically uses in a Spring
Boot application. This includes configuration management, logging, using com-
mand line runner, data validation, and more.

 Chapter 3 shows various techniques for connecting to a database from a
Spring Boot application. This chapter also discusses, in depth, multiple approaches
to accessing data from a database.

 Chapter 4 introduces you to Spring Boot autoconfiguration and Spring Boot
Actuator. Spring Boot autoconfiguration is the magic behind Spring Boot’s sim-
plicity and opinionated nature. Spring Boot Actuator allows you to monitor vari-
ous application metrics. These metrics can be visualized in GUI-based tools, such
as Grafana.

 Chapter 5 and Chapter 6 discuss multiple approaches to securing a Spring
Boot application. Chapter 5 covers Spring Security and how it works with Spring
Boot. Chapter 6 provides several advanced techniques, including multi-factor
authentication, signing in with Google, and reCAPTCHA validation.

 Chapter 7 discusses how to develop RESTful APIs with Spring Boot. It also
covers techniques for handling exceptions in RESTful APIs, writing unit test
cases, documenting APIs with OpenAPI, implementing versioning, and securing
RESTful APIs.

31

Common Spring
Boot tasks

By this point, we’ve learned a bit about what Spring Boot is and its purpose of
improving the application development experience by abstracting specific low-level
configurations. In this chapter, you’ll extend this understanding further by learn-
ing a few core concepts, such as how to manage application configuration and cre-
ate a custom configuration for your application. You’ll also use Spring Boot to
perform several commonly used tasks that you’ll frequently perform while develop-
ing Spring Boot applications.

This chapter covers
 Managing configurations in a Spring Boot

application

 Creating custom configurations with
@ConfigurationProperties

 Exploring the CommandLineRunner interface to
execute initialization code

 Understanding Spring Boot default logging and
configuring Log4j2 logging

 Validating user data in a Spring Boot application
using Bean Validation

32 CHAPTER 2 Common Spring Boot tasks

2.1 Managing configurations
Managing application configuration is a key part of any application, and Spring Boot
applications are no exception. Depending on how you develop and manage applica-
tions, you can have multiple environments (e.g., dev, test, staging, and prod) for an
application in your organization. For instance, you can have one environment for
development, one for testing, one for staging, and one for production. For all these
environments, your application code mostly remains the same, and you need to man-
age many different configurations based on the environment. As an example, the
database configurations or the security configurations are different in all these envi-
ronments. Besides, as the application grows, and you incorporate new features, it
becomes more tedious to manage the configurations.

 Spring Boot provides several approaches to let you externalize application configu-
rations without altering the application source code. The various approaches include
property files, YAML files, environment variables, and command-line arguments.

 In the next sections, you’ll explore these approaches and learn how you can con-
figure the application configurations in your Spring Boot application. In all the
upcoming subsections, we intend to explain the concepts. If you need to refer to the
code, you can download the Spring Boot project from the GitHub repository links.

2.1.1 Using the SpringApplication class

You can use Spring Boot’s SpringApplication class to define configurations in your
Spring Boot application. This class provides a method named setDefaultProperties()
that accepts a java.util.Properties or a java.util.Map<String, Object> instance
to let you set the configurations. You can configure all your application properties in
the Properties or Map instance. This approach is useful for configurations that are
one-time configurations, and you need not change them. Let’s explain this using the
following example.

 In your application.properties file, you can import additional configuration files
(e.g., properties or yml files containing other configurations) using the Spring
Boot’s spring.config.import property. For instance, you can configure spring
.config.import=classpath:additional-application.properties in your applica-
tion.properties file, so Spring Boot can load the configuration present in the addi-
tional-application.properties file. However, if this file does not exist in the classpath,
Spring Boot throws a ConfigDataLocationNotFoundException.

 Based on your application configuration, you may choose to ignore some config-
uration files and continue with the application bootstrap. To achieve this, you can

Source code
The final version of the Spring Boot project is available at http://mng.bz/lag8.

http://mng.bz/lag8

332.1 Managing configurations

configure a property named spring.config.on-not-found to ignore. The following
listing shows this in practice.

package com.manning.sbip.ch02;

import java.util.Properties;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class SpringBootAppDemoApplication {

 public static void main(String[] args) {

 Properties properties = new Properties();
 properties.setProperty("spring.config.on-not-found", "ignore");

 SpringApplication application = new

➥ SpringApplication(SpringBootAppDemoApplication.class);
 application.setDefaultProperties(properties);
 application.run(args);
 }
}

In Listing 2.1 you created an instance of SpringApplication class and set the spring
.config.on-not-found property with a java.util.Properties instance through the
setDefaultProperties() method.

2.1.2 Using @PropertySource

In your Spring configuration classes, you can specify the @PropertySource annotation
with the location of the property file to load configurations. The following listing
shows this.

package com.manning.sbip.ch02;

//imports

@Configuration
@PropertySource("classpath:dbConfig.properties")
public class DbConfiguration {

Listing 2.1 Using SpringApplication’s setDefaultProperties method

Source code
The final version of the Spring Boot project is available at http://mng.bz/2jNd.

Listing 2.2 The DbConfiguration class

http://mng.bz/2jNd

34 CHAPTER 2 Common Spring Boot tasks

 @Autowired
 private Environment env;

 @Override
 public String toString() {
 return "Username: "+env.getProperty("user") +", Password:

➥ "+env.getProperty("password");
 }
}

The code snippet in listing 2.2 defines a Spring configuration class that has the
@PropertySource annotation on it, which reads properties from the dbConfig
.properties file available in the application classpath. Listing 2.3 shows the
dbConfig.properties file present in the src\main\resources folder.

user=sa
password=p@sswOrd

Besides, you’ve autowired the Spring Environment instance that lets you access the prop-
erties available in the dbConfig.properties file. Let us now access the DbConfiguration
class to get the configured properties, as shown in the following listing.

package com.manning.sbip.ch02;

//imports

@SpringBootApplication
public class SpringBootAppDemoApplication {

 private static final Logger log =

➥ LoggerFactory.getLogger(SpringBootAppDemoApplication.class);

 public static void main(String[] args) {

 ConfigurableApplicationContext applicationContext =

➥ SpringApplication.run(SpringBootAppDemoApplication.class, args);
 DbConfiguration dbConfiguration =

➥ applicationContext.getBean(DbConfiguration.class);
 log.info(dbConfiguration.toString());
 }
}

If you start the application, you’ll notice that it prints the user and password proper-
ties in the application console.

Listing 2.3 dbConfig.properties file

Listing 2.4 Accessing the DbConfiguration instance

352.1 Managing configurations

2.1.3 Config data file

Spring Boot lets you specify the application configuration properties in the
application.properties or application.yml file. This is the most widely used approach
to provide a configuration in a Spring Boot application. By default, the Spring
Initializr-generated Spring Boot project includes an empty application.properties file.
In case you are comfortable with the YAML or YML files instead of the properties
file, you can provide an application.yml file in your application. Configurations speci-
fied in the properties or the YML file are loaded into Spring Environment, and you
can access the Environment instance in your application classes. Besides, you can also
use them with the @Value annotation.

@PropertySource
 YML or YAML files are not supported with this annotation like properties files.

You need to write additional code to support YML files.
 With Java 8 and above, you can repeat @PropertySource annotation with

other configuration files. The following code snippet shows @PropertySource
Java 8 configuration that loads properties from dbConfig.properties and redis-
Config.properties files.

@Configuration
@PropertySource("classpath:dbConfig.properties")
@PropertySource("classpath:redisConfig.properties")
public class DbConfiguration {
//
}

Source code
The final version of the Spring Boot project is available at http://mng.bz/1jEV.

Properties or YML file
Spring Boot lets you specify the application configurations in the properties as well as
the YML file. In a property file, you can specify the properties in a key–value pair, as
shown below, where the property key is separated from the values with a = separator:

server.port=8081
spring.datasource.username=sa
spring.datasource.password=password

The similar properties can be configured in a YML in the following manner:

http://mng.bz/1jEV

36 CHAPTER 2 Common Spring Boot tasks

If you need to change the file name from application.properties (or .yml) to other
custom names, you can do so easily. You can customize the file name from applica-
tion.properties with the spring.config.name property. In your Spring Boot applica-
tion, let’s create a file named sbip.yml file in the src\main\resources folder and place
the server.port configuration with value 8081.

 You can build the application using the mvn package command from the location
of your pom.xml file. In the pom.xml file, we specify the packaging type as JAR. Thus,
the mvn package command generates a JAR file with the application components.
After successfully building the application, run the executable JAR, using the java -
jar <jarName> command. This is shown in the following listing.

java -jar config-data-file-0.0.1-SNAPSHOT.jar

You’ll notice the application starts in default HTTP port 8080. Stop the application with
the Ctrl-C command, and restart it with the command shown in the following listing.

java -jar config-data-file-0.0.1-SNAPSHOT.jar --spring.config.name=sbip

You’ll notice the application starts with HTTP port 8081. This is because Spring Boot
has read the server.port property from the sbip.yml file and started the application
in HTTP port 8081.

 By default, Spring Boot reads the application.properties or application.yml file
from the following locations:

(continued)

server:
 port: 8081
spring:
 data source:
 user: sa
 password: password

Whether to use properties or YML files is a developer preference. Spring Boot works
similarly with both these file types (with a few exceptions). Some people prefer to use
YML due to its better clarity and ability to represent hierarchical data more naturally.
Besides, it is less repetitive and has enhanced capabilities to support data struc-
tures, such as lists, maps, and others.

However, if you choose to use YML files in your application, you should exercise cau-
tion to be mindful of its syntax. It is relatively easy to miss an extra space or define
an incorrect indentation in the YML file. Additionally, it is much easier to find needed
properties by full name if you use the .properties format. With YML, you always
have to find the needed property manually.

Listing 2.5 Executing the application JAR file

Listing 2.6 Running a Spring Boot application with a different configuration file name

372.1 Managing configurations

1 The classpath root
2 The classpath /config package
3 The current directory
4 The /config subdirectory in the current directory
5 Immediate child directories of the /config subdirectory

We leave it as an exercise to try out these configurations in your Spring Boot project.
Apart from the above locations, you can also specify a custom location using the
spring.config.location property. For instance, the java command in the following
listing reads the configuration file from the path C:\sbip\repo\ch02\config-data-file\data\
sbip.yml of my Windows machine.

java -jar target\config-data-file-0.0.1-SNAPSHOT.jar
--spring.config.location=C:\sbip\repo\ch02\config-data-file\data\sbip.yml

The command in listing 2.7 starts the Spring Boot application in HTTP port 8081.
 From version 2.4.0 onward, Spring Boot throws an error if it could not find any

property file you specified. You can use the optional prefix to indicate the configura-
tion file is optional. For instance, the command in the following listing continues to
start the Spring Boot application even though the property file sbip1.yml is not avail-
able in C:\sbip\repo\ch02\config-data-file\data\.

java -jar target\config-data-file-0.0.1-SNAPSHOT.jar

➥ --spring.config.location=optional:C:\sbip\repo\ch02\config-data-

➥ file\data\sbip1.yml

Listing 2.7 Executing a Spring Boot application with spring.config.location property

Listing 2.8 Starting a Spring Boot application with an optional property file

Note on spring.config.name and spring.config.location properties
Spring Boot loads spring.config.name and spring.config.location in the early
phases of application startup. Thus, you can’t provide these configurations in the
application.properties or applicatiom.yml file. You can use the SpringApplication
.setDefaultProperties() method, OS environment variable, or command-line argu-
ments to configure these properties. In the above examples, we’ve used the command-
line arguments options.

Command line arguments
Spring Boot lets you specify the configuration as command-line arguments as well.
You can create a JAR file of the application and specify the properties as command-
line arguments while executing the JAR file. For instance, in this section, you have
specified the spring.config.name and spring.config.location properties as
the command line arguments.

38 CHAPTER 2 Common Spring Boot tasks

Spring Boot also allows you to specify the property files for a specific profile. Spring
profiles let you segregate parts of your application configuration and make it available
only in a certain environment (e.g., a profile for the test environment or a profile for
the production environment). You can refer to Spring Boot documentation to read
more on profiles at http://mng.bz/PWJ9. In this section, we’ll keep ourselves focused
on the profile features for config data files.

 You can define additional config data files dedicated to a profile along with the
default application.properties (or .yml) file. You can maintain the profile-specific
property files with the application-{profile}.properties (or .yml) file. For instance, if
you have two profiles—dev, and test—you can maintain two different application
properties files with the name application-dev.properties and application-test.properties.
Let’s see this in practice.

 In the Spring Boot project, let’s create these two property files in the src\main\
resources folder. For application-dev.properties, specify server.port=9090, and for
application-test.properties, specify server.port=9091. Thus, if you select profile as
the dev, the application should start on HTTP port 9090, and for the test profile, it
should be HTTP port 9091.

 You can activate a profile (e.g., dev or test) using the spring.profiles.active
Spring Boot property. You can specify it in your application.properties file. For instance,
if you specify spring.profiles.active=dev, then profile dev is active, and the properties
specified in application-dev.properties are loaded. Similarly, you can activate the
test profile by configuring the spring.profiles.active=test property.

 Config data files are loaded in the following order:

1 The application properties (properties or the yml file) files packaged inside the
application JAR

2 Profile-specific application properties packaged inside the application JAR
3 The application properties (properties or the yml file) files packaged outside the

application JAR
4 Profile-specific application properties packaged outside the application JAR

2.1.4 OS environment variable

You can specify the configurations as an environment variable and use the variable
name in the config data file. Let us demonstrate this with an example. In the applica-
tion.properties file, we’ve declared the following custom property called app.timeout,
as shown in the following listing.

Source code
The final version of the Spring Boot project is available at http://mng.bz/J1J0.

http://mng.bz/PWJ9
http://mng.bz/J1J0

392.1 Managing configurations

app.timeout=${APP_TIMEOUT}

The APP_TIMEOUT is an environment variable configured with the value 30. In Win-
dows, you can set an environment variable using the set <VAR>=<value> command
through the command prompt, where VAR is the environment variable name, and the
value is the associated value. In Linux-based OS, you can use export <VAR>=<value>
through a terminal. Setting the environment variables with this approach makes the
variables available only for that command prompt/terminal session. Thus, you need
to run the Spring Boot application in the same command prompt/terminal window.
Let’s now access the app.timeout property in the application code, as shown in the
following listing.

package com.manning.sbip.ch02;

//imports

@SpringBootApplication
public class SpringBootAppDemoApplication {

 private static final Logger log =
LoggerFactory.getLogger(SpringBootAppDemoApplication.class);

 public static void main(String[] args) {
 ConfigurableApplicationContext applicationContext =

SpringApplication.run(SpringBootAppDemoApplication.class, args);
 Environment env = applicationContext.getBean(Environment.class);
 log.info("Configured application timeout value: "+

env.getProperty("app.timeout"));
 }
}

In listing 2.10, we accessed the ConfigurableApplicationContext instance and then
accessed the Spring Environment bean from it. The Environment let you access the
properties configured in the application.properties file. We then access and print the
properties in the application console. Notice that Spring Boot has accessed the environ-
ment variable for you and replaced the placeholders with the actual value at run time.

 Additionally, note that it is a common practice to define the properties with the
default values in the application.properties file. You can then override these property
values using the environment variables if needed. For instance, you can define the
server.port property in the application.properties file. You can override this value to
a different port number using the environment variable.

 In this section, you’ve learned various approaches to configuring application prop-
erties in a Spring Boot application. We’ll wrap this discussion by understanding the

Listing 2.9 Spring Boot datasource username and password property configuration

Listing 2.10 Accessing the Spring Boot properties

40 CHAPTER 2 Common Spring Boot tasks

order in which the properties are loaded if a property is present in multiple places.
For instance, what happens if you have configured the server.port property in the
application.properties config data file as well as passed it through as a command-line
argument? Following is the order in which properties get precedence. The higher
sequence number overrides the properties of the lower sequence number:

1 SpringApplication

2 @PropertySource

3 Config data file
4 OS environment variable
5 Command line arguments

Thus, a property specified in the command line arguments has the highest prece-
dence over a property specified in the config data file. You can refer to Spring Boot
documentation available at http://mng.bz/wnWq for an in-depth understanding of
various features on configuration management in your Spring Boot application.

2.2 Creating custom properties with
@ConfigurationProperties
In the previous section, you’ve seen several approaches to configuring properties in a
Spring Boot application. The configurations we use can be classified into two catego-
ries—Spring Boot built-in properties and custom properties. Spring Boot provides a
myriad number of built-in properties to configure various features of your Spring
Boot application. The easiest example is the server.port property that you’ve used in
the previous section to define the HTTP port your Spring Boot application should
run. The server.port property is a Spring Boot built-in property. You can find a list
of Spring Boot built-in properties in Spring Boot reference documentation available
at http://mng.bz/q2Gw.

 In this section, we’ll discuss custom properties that are specific to your applica-
tion. Based on the complexity and features available in your application, you may
need to configure custom properties. For instance, you can configure an external
REST web service URL or a boolean flag to enable or disable a specific feature in
your application.

 The good part is that you can configure any number of properties in your applica-
tion configuration file(s), and Spring Boot will ensure that it is loaded and available to
you at runtime. In the previous section, you’ve seen how Spring Boot binds the config-
ured properties in the Spring’s Environment instance that you can autowire to your
class and access the properties.

 Although this approach works perfectly well, it has several drawbacks:

 There is no type-safety of the configured properties, and we encounter issues at
runtime. For instance, let’s assume you are capturing a URL or an email
address in your property file. You can’t enforce the type-safety of these proper-
ties, as there is no validation.

http://mng.bz/wnWq
http://mng.bz/q2Gw

412.2 Creating custom properties with @ConfigurationProperties

 You need to access the property values individually with the @Value annotation
or through the Spring Environment instance.

Spring Boot provides you with an alternative approach that lets you define strongly
typed bean definitions that manage the type-safety as well as validate your application
configuration. Let’s discuss this in the next technique.

2.2.1 Technique: Defining custom properties with
@ConfigurationProperties in a Spring Boot application

In this technique, we will introduce defining custom properties with @Configuration-
Properties in a Spring Boot application.

PROBLEM

You need to define custom properties in your Spring Boot application that are type-
safe and can be validated.

SOLUTION

In this technique, we’ll discuss how to define custom properties in your Spring Boot
application and access these properties in your application classes without using the
@Value annotation or Environment instance. To continue with this technique, you can
use the Spring Boot project used previously. You need to add the following additional
configuration in the pom.xml file, as shown in the following listing.

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-configuration-processor</artifactId>
 <optional>true</optional>
</dependency>

You need a Spring Boot configuration processor to generate metadata about classes
that are annotated with @ConfigurationProperties annotation. This metadata is
then used by the IDEs to provide autocompletion and documentation support for the
properties in the application.properties or application.yml file. You’ll learn more about
@ConfigurationProperties annotation shortly. Next, let us define the following cus-
tom properties in our Spring Boot application, as shown in the following listing.

app.sbip.ct.name=CourseTracker
app.sbip.ct.ip=127.0.0.1

Source code
The final version of the Spring Boot project is available at http://mng.bz/7Wr9.

Listing 2.11 Spring Boot configuration processor

Listing 2.12 Custom application properties

http://mng.bz/7Wr9

42 CHAPTER 2 Common Spring Boot tasks

app.sbip.ct.port=9090
app.sbip.ct.security.enabled=true
app.sbip.ct.security.token=asddf998hhyqthgtYYtggghg9908jjh7ttr
app.sbip.ct.security.roles=USER,ADMIN

Notice that these are not Spring Boot built-in properties and are custom properties
specific to our application. You need to specify these properties in your applica-
tion.properties file. Let’s define a Java class that represents these properties, as shown
in the following listing.

package com.manning.sbip.ch02.configurationproperties;

import java.util.List;

import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.boot.context.properties.ConstructorBinding;

@ConstructorBinding
@ConfigurationProperties("app.sbip.ct")
public class AppProperties {

 private final String name;

 private final String ip;

 private final int port;

 private final Security security;

 public String getName() {
 return name;
 }

 public String getIp() {
 return ip;
 }

 public int getPort() {
 return port;
 }

 public Security getSecurity() {
 return security;
 }

 public AppProperties(String name, String ip, int port, Security security) {
 this.name = name;
 this.ip = ip;
 this.port = port;
 this.security = security;
 }

Listing 2.13 AppProperties class

Application Name

Application IP

Application
Security
configuration

432.2 Creating custom properties with @ConfigurationProperties

 @Override
 public String toString() {
 return "AppProperties{" +
 "name='" + name + '\'' +
 ", ip='" + ip + '\'' +
 ", port='" + port + '\'' +
 ", security=" + security +
 '}';
 }

 public static class Security {

 private boolean enabled;

 private final String token;

 private final List<String> roles;

 public Security(boolean enabled, String token, List<String> roles) {
 this.enabled = enabled;
 this.token = token;
 this.roles = roles;
 }

 public boolean isEnabled() {
 return enabled;
 }

 public String getToken() {
 return token;
 }

 public List<String> getRoles() {
 return roles;
 }

 @Override
 public String toString() {
 return "Security{" +
 "enabled=" + enabled +
 ", token='" + token + '\'' +
 ", roles=" + roles +
 '}';
 }
 }

}

Let’s explain the changes in the AppProperties class of listing 2.13:

 This class is annotated with the @ConstructorBinding and @Configuration-
Properties annotations. We’ll provide more details regarding these two anno-
tations in the discussion section. Besides, you’ve set the prefix for the properties
as the app.sbip.ct.

Enable Security.
Possible values
true/false.Token Value

Available roles

44 CHAPTER 2 Common Spring Boot tasks

 You’ve defined a few variables with the name of the properties (e.g., name, ip,
and port). For the security-related properties, we’ve defined the Security static
class inside the AppProperties class. This is because the properties are nested
in this fashion. For instance, the property named app.sbip.ct.security
.enabled is represented by the enabled property in the Security class.

 You have provided Java documentation to these variables so that IDEs can show
this documentation in the application.properties file.

So far, we’ve defined our properties and the associated class that maps to the proper-
ties. Let us now define another class that uses the configured properties, as shown in
the following listing.

package com.manning.sbip.ch02;

//imports

@Service
public class AppService {

 private final AppProperties appProperties;

 @Autowired
 public AppService(AppProperties appProperties) {
 this.appProperties = appProperties;
 }

 public AppProperties getAppProperties() {
 return this.appProperties;
 }
}

The class defined in listing 2.14 is annotated with Spring @Service annotation to
define it as a service and should be autoscanned by Spring Boot. The most notable
change is that we’ve autowired the AppProperties instance in this class. Spring Boot
ensures that all properties are configured in the application.properties file are
read, validated, and bound to the AppProperties instance. This instance is then
autowired to the service class. Let’s use this service class and access the AppProperties
instance, as shown in the following listing.

package com.manning.sbip.ch02;

//imports

@SpringBootApplication
@EnableConfigurationProperties(AppProperties.class)
public class SpringBootAppDemoApplication {

Listing 2.14 AppService class

Listing 2.15 Spring Boot application class

452.2 Creating custom properties with @ConfigurationProperties

 private static final Logger log =

➥ LoggerFactory.getLogger(SpringBootAppDemoApplication.class);

 public static void main(String[] args) {
ConfigurableApplicationContext applicationContext =

➥ SpringApplication.run(SpringBootAppDemoApplication.class, args);
AppService appService =

➥ applicationContext.getBean(AppService.class);
log.info(appService.getAppProperties().toString());

 }
}

In listing 2.15, we used the @EnableConfigurationProperties(AppProperties.class)
annotation. This annotation ensures that classes with @ConfigurationProperties
are registered in the Spring container. One drawback with this annotation is that
you need to specify your @ConfigurationProperties annotated classes with the
annotation.

 If you have more classes annotated with @ConfigurationProperties, you can use
the alternative @ConfigurationPropertiesScan and specify a base package so that
Spring Boot can scan and find the classes annotated with @ConfigurationProperties.
In this case, you need not explicitly specify the @ConfigurationProperties classes.
Note that this annotation does not pick classes that are additionally annotated or
meta-annotated with the @Component annotation. If you start the application, you can
find that configured properties are printed in the application console.

DISCUSSION

Spring Boot’s @ConfigurationProperties provides a type-safe and structured approach
to configure custom application properties. You’ve already noticed how easily you can
configure, validate, and use a set of properties in your Spring Boot application. Along
with spring.config.import and @ConfigurationProperties annotation, you can logi-
cally segregate your application properties into various files based on their category.

 The @ConfigurationProperties annotation lets you externalize configurations in
a type-safe and structured fashion. You can add this annotation to a class definition
(demonstrated in this technique) or to a method annotated with @Bean annotation
in a Spring @Configuration class. The property binding to the class can be done
either with setter methods for the member variables or through constructor bind-
ing. In this example, you’ve provided a prefix named app.sbip.ct. This prefix is
used along with the properties you’ve defined in the class. Thus, the property name is
used as app.sbip.ct.name property.

 In this example, you’ve used the @ConstructorBinding by explicitly specifying
this annotation in the POJO class. This annotation indicates that the configuration
properties should be bound using the constructor arguments, rather than by calling
setters. This annotation can be specified at the class level as well as the specific con-
structor. If there is only one constructor, you can specify the annotation at the class

46 CHAPTER 2 Common Spring Boot tasks

level. However, if you have multiple constructors, you can use the annotation at a spe-
cific constructor level.

 In case you need to use a setter binding other than the constructor binding, you
can specify the setter methods for the member variables. If you are looking for the
immutability of your property configuration class, you should use @ConstrcutorBinding
without providing the setter methods. Thus, once the properties bind to the POJO
instance, there is no way to modify them. You can optionally use the @DefaultValue
annotation in the parameter if you need to define a default value for one or more
properties. The following listing shows this.

public AppProperties(String name, String ip, @DefaultValue("8080") int port,
Security security) {

 this.name = name;
 this.ip = ip;
 this.port = port;
 this.security = security;
}

In listing 2.16, you provided a default value of 8080 for the property port. Thus, if this
app.sbip.ct.port property is not configured in the application, this default value is
used. To learn more about @ConfigurationProperties annotation, you can refer to
Spring Boot documentation available at http://mng.bz/mxer.

2.3 Executing code on Spring Boot application startup
At times, you’ll need to execute custom code at Spring Boot application startup. For
instance, you may want to execute a database initialization script before the application
finishes its initialization or consume a REST service to load data for your application.

 The CommandLineRunner and ApplicationRunner are two Spring Boot interfaces
that provide a single run(..) method and are invoked just before a Spring Boot appli-
cation finishes its initialization. These methods are invoked only once at the time of
the Spring Boot application startup.

 In this section, you’ll explore the use of the CommandLineRunner interface in a Spring
Boot application. The ApplicationRunner interface is quite similar to the Command-
LineRunner interface, and we will leave it as an exercise for you to try yourself.

2.3.1 Technique: Using CommandLineRunner to execute code at Spring
Boot application startup

In this technique, we’ll introduce you to the CommandLineRunner.

PROBLEM

You want to use CommandLineRunner to execute some application initialization code at
the Spring Boot application startup.

Listing 2.16 AppProperties class constructor with @DefaultValue annotation

http://mng.bz/mxer

472.3 Executing code on Spring Boot application startup

SOLUTION

You can configure CommandLineRunner in several ways. The following list shows the
approaches to configure a CommandLineRunner in a Spring Boot application:

 In the Spring Boot main class that implements the CommandLineRunner interface
 By providing the CommandLineRunner implementation as a bean definition

using the @Bean annotation
 By providing the CommandLineRunner as a Spring Component using the

@Component annotation

In this technique, you’ll see the aforementioned CommandLineRunner configuration
approaches with examples. After creating or importing the Spring Boot project,
implement the CommandLineRunner interface in your Spring Boot main class, as shown
in the following listing.

package com.manning.sbip.ch02;
//imports

@SpringBootApplication
public class CourseTrackerApplication implements CommandLineRunner {

 protected final Log logger = LogFactory.getLog(getClass());

 public static void main(String[] args) {
 SpringApplication.run(CourseTrackerApplication.class, args);
 }
 @Override
 public void run(String... args) throws Exception {
 logger.info("CourseTrackerApplication CommandLineRunner has

➥ executed");
 }
}

To keep the example simple, you are logging a statement in the console. Once the
Spring Boot application starts, it logs the statement in the console, as shown in figure 2.1.

 You can also define a CommandLineRunner as a Spring @Bean definition, as shown in
listing 2.18.

Source code
The final version of the Spring Boot project is available at http://mng.bz/5KBB.

Listing 2.17 The CommandLineRunner implementation in Spring Boot Main Class

Provides an implementation of the run(..)
method of ComandLineRunner interface

and prints a log statement in the console

http://mng.bz/5KBB

48 CHAPTER 2 Common Spring Boot tasks

package com.manning.sbip.ch02;

//imports

@SpringBootApplication
public class CourseTrackerApplication {

 protected final Logger logger = LoggerFactory.getLogger(getClass());

 public static void main(String[] args) {
 SpringApplication.run(CourseTrackerApplication.class, args);
 }
 @Bean
 public CommandLineRunner commandLineRunner() {
 return args -> {
 logger.info("CommandLineRunner executed as a bean definition with

"+args.length+" arguments");
 for(int i=0; i<args.length;i++){
 logger.info("Argument: "+args[i]);
 }
 };

 }
}

In listing 2.18, you defined a Spring bean that provides an implementation of the
CommandLineRunner interface through a Java lambda expression. This is possible
because CommandLineRunner is a functional interface with a single method called
run(String… args). The run() method accepts a String varargs. You can supply
the command line arguments and access these inside the commandLineRunner bean
implementation. To supply arguments, you can use the IDE to pass the arguments.
Besides, you can package the application using the mvn package command and run
using the java -jar <appname> <args> command. For instance, you can run the java

Listing 2.18 CommandLineRunner implementation as a Spring Bean

Figure 2.1 The log statement defined in the CommandLineRunner is printed in the IntelliJ IDEA console log.

Defines a
CommandLineRunner bean.
Once the application starts,

this bean is loaded and
prints the log statement

in the console.

492.3 Executing code on Spring Boot application startup

-jar command-line-runner-0.0.1-SNAPSHOT.jar Spring command where Spring is
the argument that will be passed to the CommandLineRunner.

 This @Bean implementation produces the same result as the previous implements
alternative shown in listing 2.17. The benefit of this approach is that you are not
forced to implement the CommandLineRunner interface.

 So far, you’ve provided the CommandLineRunner implementation in the Spring
Boot main class. However, you can also provide a CommandLineRunner implementation
in a separate class and annotate it with Spring’s @Component annotation. This
approach ensures that the CommandLineRunner specific code is segregated in a sepa-
rate Java file and not cluttered in the Spring Boot main class.

The following listing shows a simple CommandLineRunner implementation that logs a
statement in the console log.

package com.manning.sbip.ch02.commandline;

//imports

@Order(1)
@Component
public class MyCommandLineRunner implements CommandLineRunner {

 protected final Logger logger = LogFactory.getLogger(getClass());

 @Override
 public void run(String... args) throws Exception {
 logger.info("MyCommandLineRunner executed as a Spring Component");
 }
}

The Spring Boot component scan can detect this component and create an instance
of MyCommandLineRunner class. If you start the application, you can see the configured
log statement in the console.

 You can also configure multiple CommandLineRunner implementations and decide
the execution order based on the @Order annotation. Notice that the Order(1)

The @Bean and @Component annotation
Both @Bean and @Component annotation let you instruct Spring to create instances
of the annotated class, but their usage is slightly different. You typically use @Bean
annotation for the classes for which you don’t have access to the source code. Thus,
you define a bean and return a new instance of the class. For @Component annota-
tion, as you have access to the source Java file, you can simply annotate the class
with this annotation.

Listing 2.19 CommandLineRunner implementation as a Spring Component

The Order annotation defines the sorting order of the annotated component.
For instance, if you have multiple CommandLineRunner instances, you can
use the Order annotation to specify their execution order.

50 CHAPTER 2 Common Spring Boot tasks

annotation is specified in listing 2.19. For instance, the following listing shows another
CommandLineRunner implementation that is ordered with order value two.

package com.manning.sbip.ch02.commandline;

//imports

@Order(2)
@Component
public class AnotherCommandLineRunner implements CommandLineRunner {

 protected final Logger logger = LogFactory.getLogger(getClass());

 @Override
 public void run(String... args) throws Exception {
 logger.info("AnotherCommandLineRunner executed as a Spring

➥ Component");
 }
}

If you start the application, you can see that both the log statements are printed in the
console based on their defined order, as shown in figure 2.2.

DISCUSSION

The CommandLineRunner is a useful feature that is frequently used to perform several
application initialization activities. In a CommandLineRunner implementation, you also
have access to the command line arguments through the args parameter. Thus, you
can control the CommandLineRunner implementation behavior externally through the
supplied arguments.

 In a CommandLineRunner implementation you can also autowire any depen-
dency using Spring’s dependency injection mechanism. Since a CommandLineRunner

Listing 2.20 CommandLineRunner implementation with execution order two

Figure 2.2 Log statements printed in the IntelliJ IDEA console log, as defined in multiple CommandLineRunner
implementations

512.4 Customizing logging in a Spring Boot application

implementation runs when the Spring Boot application almost finishes its initializa-
tion, all bean definitions are available for autowire. Hence, you can autowire any
bean dependency in your CommandLineRunner implementation.

 For example, in the upcoming techniques when you’ll learn the Spring Data
repository, you’ll see the use of the CourseRepository interface as a dependency on
the CommandLineRunner implementation. The following listing shows an example.

@Bean
public CommandLineRunner printCourses(CourseRepository courseRepository) {
 return args -> {
 System.out.println("============= Course Details

➥ =================");
 courseRepository.findAll().forEach(System.out::println);
 };
}

We’ll explain the Spring Data repository in detail in chapter 3. For now, understand
that an instance of CourseRepository will be automatically provided by Spring Boot
in printCourses() method.

SUMMARY

With this technique, you’ve seen three variations on the usage of a CommandLineRunner
implementation:

 By implementing the CommandLineRunner interface directly in the Spring Boot
application and providing an implementation of the run() method

 By defining the CommandLineRunner as a Spring bean definition using the @Bean
annotation

 By defining the CommandLineRunner as a Spring component using the @Compo-
nent annotation

The first approach is limited, as it lets you define only one CommandLineRunner imple-
mentation, and there are no execution ordering capabilities. The other two approaches
are flexible, as they let you specify the execution order. The third approach allows you
to segregate the CommandLineRunner implementation away from the Spring Boot
main class and provides better code organization.

2.4 Customizing logging in a Spring Boot application
Logging is an essential aspect of an application. A log contains important events of
application activity and provides useful information on application behavior. Based on
the logging configuration, log statements can be logged in various mediums, such as
in the console, files, and database. However, console and file-based logging are the
dominant logging types and are most frequently used in an application.

Listing 2.21 CommandLineRunner implementation from the Spring Boot main class

CommandLineRunner Bean definition. The CourseRepository
is injected via Spring dependency injection.

52 CHAPTER 2 Common Spring Boot tasks

 In this section, you’ll first understand and explore the default Spring Boot logging
mechanism. We’ll then explore how to customize the logging in your Spring Boot
application with other logging frameworks.

2.4.1 Technique: Understanding and customizing default Spring Boot
logging in a Spring Boot application

In this technique, we’ll discuss Spring Boot default logging mechanisms and configu-
rations for customizing logging in a Spring Boot application.

PROBLEM

You want to understand and customize the default logging in a Spring Boot application.

SOLUTION

By default, Spring Boot provides a console logging facility for all Spring Boot applica-
tions. This console log prints the log statements in the command prompt or terminal
at application startup or when you perform any other activity in the application for
which logging is enabled.

Spring Boot uses the Apache commons logging framework (https://commons.apache
.org/proper/commons-logging/) for its internal logging purposes. It also supports
other popular logging frameworks, such as Logback (http://logback.qos.ch/), Log4j2
(https://logging.apache.org/log4j/2.x/), and java.util.logging.

 If you are using any of the Spring Boot starter dependencies, then by default
Spring Boot uses the Logback logging framework. This is because Spring Boot starter
dependencies have a transitive dependency with spring-boot-starter-logging starter
dependency, which includes the Logback dependencies. The following listing shows
the Logback dependencies internally used by Spring Boot.

<dependencies>
 <dependency>
 <groupId>ch.qos.logback</groupId>
 <artifactId>logback-classic</artifactId>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>jul-to-slf4j</artifactId>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>

Source code
The final version of the Spring Boot project is available at http://mng.bz/6Zdo.

Listing 2.22 Spring Boot starter logging dependencies

Spring Boot Starter
Logging dependencies

http://mng.bz/6Zdo
https://commons.apache.org/proper/commons-logging/
https://commons.apache.org/proper/commons-logging/
https://commons.apache.org/proper/commons-logging/
http://logback.qos.ch/
https://logging.apache.org/log4j/2.x/

532.4 Customizing logging in a Spring Boot application

 <artifactId>log4j-over-slf4j</artifactId>
 </dependency>
</dependencies>

Once the project setup is done, you can start the application using the IDE’s launch
option or by using the mvn spring-boot:run Maven command. You can see the
startup log in the console, as shown in figure 2.3.

This console log should be familiar to you if you are following any of the techniques
discussed so far. Let us now understand various parts of the console log. Figure 2.3
shows the different elements of the logged message.

 Following are the various elements of a log statement:

 Date and time—Date and time of logging.
 Log level—Logging level. Possible values include FATAL, ERROR, WARN, INFO, DEBUG,

and TRACE. A logging level demonstrates the importance of the log statement. For
instance, any log statement logged with FATAL or ERROR indicate some serious
issues in the application processing, whereas INFO or DEBUG, for example, indicate
typical regular application activities, which you can likely ignore.

 Process ID—Process ID of the application.
 Separator—A separator (---) to indicate the start of the actual log messages.
 Thread name—Name of a thread performing the logging. A Spring Boot appli-

cation contains multiple threads. Some of the threads could be application
threads, and you might be starting a few threads for various reasons. For instance,
if you are executing asynchronous processing capabilities of Spring Boot, you
can create a TaskExecutor and assign a name for the threads of the underlying

Figure 2.3 Various components of Spring Boot startup logs logged in the console

54 CHAPTER 2 Common Spring Boot tasks

thread pool. Thus, in such cases, you’ll see the custom thread name as you’ve
configured.

 Logger name—Abbreviated source class name.
 Message—The actual log message.

Now that you’ve seen various parts of a log statement, let’s understand how these parts
are configured. The following listing shows the logging pattern used in figure 2.3.

%clr(%d{${LOG_DATEFORMAT_PATTERN:yyyy-MM-dd HH:mm:ss.SSS}}){faint}
%clr(${LOG_LEVEL_PATTERN:-%5p}) %clr(${PID:- }){magenta} %clr(---){faint}
%clr([%15.15t]){faint} %clr(%-40.40logger{39}){cyan} %clr(:){faint}
%m%n${LOG_EXCEPTION_CONVERSION_WORD:%wEx}

The %clr is a conversion word that is used to configure the color-coding. Spring Boot
uses the org.springframework.boot.logging.logback.ColorConverter class for
this purpose. For example, %clr(${PID:- }){magenta} prints the process ID in
magenta color. This default logging pattern is specified in the Spring Boot Logback
logging configuration file.

 You can customize the default logging pattern with a different logging format. For
example, the following listing shows a custom logging pattern by configuring the
logging.pattern.console property in the application.properties file.

logging.pattern.console=%clr(%d{dd-MM-yyyy HH:mm:ss.SSS}){yellow}
%clr(${PID:- }){green} %magenta([%thread]) %highlight([%-5level])
%clr(%-40.40logger{39}){cyan} %msg%n

If you restart the application, you will notice a different logging format printed in the
console.

Listing 2.23 Default logging pattern

Listing 2.24 Custom logging pattern in the application.properties file

Appender and logger in logging
If you are new to logging, there are a few terminologies you should be aware of:

 Logger—A logger is a logging framework component that is responsible for
logging the log messages using one or more appenders. You can define sev-
eral loggers with various logging levels based on your need.

Default logging pattern used in
Spring Boot console logging

Configuring a custom logging
pattern in a Spring Boot application

552.4 Customizing logging in a Spring Boot application

By default, Spring Boot logs statements with INFO, WARN, and ERROR levels. If you need
other logging levels, such as TRACE, or DEBUG, you can configure the associated proper-
ties in the application.properties file. For instance, to enable debug statements, you
can configure debug=true in the application.properties file. Similarly, you can enable
trace mode by configuring trace=true in the application.properties file.

 Although console logging works well in development time, in a production appli-
cation, you need the application log statements in a file, so the file can be referred to
in the future. Moreover, logging into a file is not enough. You also need to maintain
the log files based on the file size and duration (i.e., what should be the size of a log
file and how long you would continue writing into an existing log file).

 There are the size- and time-based policies to roll over the log file to a new file. For
example, you may decide to roll over to a new log file once your current log file
reaches a certain size (e.g., 10 MB). You could also roll over to a new log file daily irre-
spective of the log file size. You’ll see an example of such policies shortly, but before
that, let’s see how to write the log contents into a file in a Spring Boot application.

 The easiest way to configure logging in a file is by configuring the logging
.file.name or logging.file.path properties in the application.properties file. The
logging.file.name property lets you specify a log file name where the logging should
be made. Let’s configure the logging.file.name=application.log property in the
application.properties file.

 If you want to configure the log file into a directory other than the project root direc-
tory, you can specify the logging.file.path property with the path value. For example,
configuring logging.file.path=C:/sbip/logs generates a log file named spring.log
into C:/sbip/logs directory. Note that you can configure the logging.file.name or
logging.file.path properties at any point in time. Let’s configure the logging.file
.path in the application.properties file, as shown in the following listing.

logging.pattern.console=%clr(%d{dd-MM-yyyy HH:mm:ss.SSS}){yellow}
%clr(${PID:- }){green} %magenta([%thread]) %highlight([%-5level])
%clr(%-40.40logger{39}){cyan} %msg%n

logging.file.path=C:\\sbip\\logs

 Appender—An appender in a logging framework primarily decides two main
things: where the log messages should go and what should be the logging for-
mat. Based on the destination of the log messages, there are several
appender types. For example, a console appender logs the messages in the
underlying application’s console. A file appender allows the log messages to
be written into a file. A special type of file appender, RollingFileAppender per-
forms additional tasks, such as managing the log file by rolling it over based
on time and date. An SMTP appender lets you email the log messages to an
email address.

Listing 2.25 Updated application.properties file

Custom
logging
pattern

Log file
path

56 CHAPTER 2 Common Spring Boot tasks

By default, Spring Boot backs up the current log file and rolls over to the next log file
when the file size reaches 10 MB or the log file is seven days old. You can control these
behaviors using the logging.logback.rollingpolicy.max-file-size and logging
.logback.rollingpolicy.max-history properties, respectively. We encourage you to
configure these parameters in the application.properties file and notice the changes
in the log file.

DISCUSSION

Using this technique, you’ve learned the default logging configurations in Spring
Boot. You’ve seen how to configure and manage file-based logging with Spring Boot-
provided parameters. You can read more about Spring Boot logging features in the
Spring Boot documentation available at http://mng.bz/oaOd.

 Although Logback logging works fine with a Spring Boot project, you might be
interested to configure other major logging frameworks in your Spring Boot applica-
tion. There could be various reasons to do this. For instance, you are comfortable and
familiar with other logging frameworks such as Log4j2 (https://logging.apache.org/
log4j/2.x/), or your organization might have a preference towards a specific logging
framework. Let us demonstrate how you can exclude the default Logback configura-
tion and configure an alternate logging framework. In the next technique, you’ll con-
figure the Log4j2 logging framework in your Spring Boot application.

2.4.2 Technique: Using Log4j2 to configure logging in a Spring Boot
application

In this technique, we’ll demonstrate how to use Log4j2 logging in a Spring Boot
application.

PROBLEM

You need to configure Log4j2 as the logging framework in your Spring Boot application.

SOLUTION

Configuring Log4j2 in a Spring Boot application is straightforward. To start with, you
need to exclude the default spring-boot-starter-logging dependency and provide
the Log4j2 starter dependency in your build configuration file. You can then provide
the Log4j2 logging configuration either in properties, XML, YAML, or JSON format
for Spring Boot to load and configure the logging. Using this technique, we’ll use
XML to define the logging configuration.

If you are continuing with the Spring Boot project from the previous technique,
then you need to perform two additional changes to start with the Log4j2 logging
configuration:

Source code
The final version of the Spring Boot project is available at http://mng.bz/nYpa.

https://logging.apache.org/log4j/2.x/
https://logging.apache.org/log4j/2.x/
https://logging.apache.org/log4j/2.x/
http://mng.bz/oaOd
http://mng.bz/nYpa

572.4 Customizing logging in a Spring Boot application

 Remove all the logging configurations you’ve added to the application.proper-
ties file. You can remove all properties that start with the logging prefix.

 You also need to exclude the spring-boot-starter-logging dependency from
the spring-boot-starter-web dependency in the pom.xml file. You then need
to add the spring-boot-starter-log4j2 dependency. The following listing
shows these configuration changes.

<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 <exclusions>
 <exclusion>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-logging</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-log4j2</artifactId>
 </dependency>

 // Other dependencies
</dependencies>

The above pom.xml changes ensure that Logback-related dependencies are removed
and Log4j2 dependencies are available in the classpath.

 You can provide Log4j2 configurations, such as appender, loggers, and associated
configurations, in an XML or a YML file. This XML configuration needs to be created
in the src\main\resources folder with the name log4j2.xml or log4j2-spring.xml. This
configuration file wraps the complete logging configuration to be used in your Spring
Boot application. Although Spring Boot provides both the options to define the con-
figurations with either log4j2.xml or log4j2-spring.xml files, it recommends using the
latter one wherever possible. This is because Spring Boot can have better control over
the logging initialization (http://mng.bz/vom7). The following listing shows a sample
log4j2.xml configuration.

<?xml version="1.0" encoding="UTF-8"?>
<Configuration status="WARN">

Listing 2.26 Adding Log4j2 starter dependency and excluding default starter logging

Listing 2.27 Sample Log4j2 XML configuration

Excluding the default Logback dependency
and including the Log4j2 dependency

The root element of a Log4j2 configuration
file. The status attribute represents the level
of internal log4j2 events. It is set to WARN
in this configuration.

http://mng.bz/vom7

58 CHAPTER 2 Common Spring Boot tasks

 <Properties>
 <Property name="LOG_PATTERN">
 %d{yyyy-MM-dd HH:mm:ss.SSS} [%5p] [%15.15t] %-40.40c{1.} :

➥ %m%n%ex
 </Property>
 </Properties>

 <Appenders>
 <Console name="ConsoleAppender" target="SYSTEM_OUT">
 <PatternLayout pattern="${LOG_PATTERN}" />
 </Console>

 <RollingFile name="FileAppender"

 fileName="logs/application-log4j2.log"
 filePattern="logs/application-log4j2-%d{yyyy-MM-dd}-

➥ %i.log">
 <PatternLayout>
 <Pattern>${LOG_PATTERN}</Pattern>
 </PatternLayout>
 <Policies>
 <SizeBasedTriggeringPolicy size="10MB" />
 <TimeBasedTriggeringPolicy interval="7" />
 </Policies>
 <DefaultRolloverStrategy max="10"/>
 </RollingFile>
 </Appenders>
 <Loggers>
 <Logger name="com.manning.sbip" level="debug" additivity="false">
 <AppenderRef ref="FileAppender"/>
 </Logger>
 <Logger name="org.springframework.boot" level="info"

additivity="false">
 <AppenderRef ref="ConsoleAppender"/>
 </Logger>
 <Root level="info">
 <AppenderRef ref="FileAppender"/>
 <AppenderRef ref="ConsoleAppender"/>
 </Root>
 </Loggers>
</Configuration>

You can refer to the inline documentation to understand various configuration
parameters. Log4j2 is a powerful and feature-rich logging framework. The above con-
figuration represents the basic logging configuration that is needed to demonstrate
Log4j2 integration with Spring Boot.

 Let us add the CommandLineRunner implementation in the Spring Boot main class
to include log statements instead of the system out statements. The following listing
shows the modified Spring Boot main class.

Defines common placeholders
that can be used in other places
in the XML file. You’ve defined the
LOG_PATTERN property here.

List of
appenders

A console appender configuration
that logs the log statements in

console/terminal/command prompt.

A file appender configuration that logs the log
statements in a file with a provided file name and
pattern. It also provides additional configuration,
such as how to manage the file over a period.

Rolls the
current log file
once its size
reaches 10 MB

Rolls the
current log file
after 7 days

Maximum
10 backup

log files can
be kept

The list of
loggers that
logs the log
statements
using the
provide
appender

A logger that runs in
DEBUG logging level. It
uses the underlying file
appender to log all log
events generated from
com.manning.sbip and
its subpackages.

A logger that runs in INFO
logging level and logs events
from org.springframeworg.boot
and its subpackages

Root logger
runs in INFO
logging level

592.4 Customizing logging in a Spring Boot application

package com.manning.sbip.ch02;

//imports

@SpringBootApplication
public class CourseTrackerApplication {

 private static Logger logger =

➥ LoggerFactory.getLogger(CourseTrackerApplication.class);

 public static void main(String[] args) {
 SpringApplication.run(CourseTrackerApplication.class, args);
 logger.info("CourseTrackerApplication started successfully with

➥ Log4j2 configuration");
 }
}

You can find the modified code in bold font. There are two main changes you’ve
achieved with this code:

 The first change you’ve made is creating a logger instance using the getLogger
method of LoggerFactory class. If you look into the import statements, you can
find that the imported LoggerFactory class is from the SLF4j library. Simple
Logging Facade for Java (SLF4J) provides an abstraction for various logging
frameworks that allows you to plug in the preferred logging framework (e.g.,
Log4j2) at build time. You can learn more about SLF4j at http://www.slf4j.org/.

 The next change is that, instead of using the system out statements, you are
using the newly created logger instance to log the messages.

If you start the application, you can find the application-log4j2.log log file is gener-
ated in the logs folder of your project’s root directory. You can see that the configured
log message is printed along with other application startup log statements.

DISCUSSION

In this technique, you’ve learned to configure one of the most popular and widely
used logging frameworks of the Java ecosystem. The Log4j2 logging framework is one
of the stable logging frameworks and offers a lot of useful features. You can refer to
the Log4j2 reference manual (https://logging.apache.org/log4j/2.x/manual) to learn
more about this logging framework.

 As an exercise, we encourage you to play around with the Log4j2 configuration; its
various parameters, such as log levels; various other appender types, such as JDBC
appender; filters; and other offerings. For instance, to see how the size-based trigger
policy and default rollover strategy works, you can change the SizeBasedTriggering-
Policy to a smaller size in the Log4j2 XML configuration file. You can then generate
more log messages from your Java files. You’ll notice how log files are rolled over once
they meet the defined criteria.

Listing 2.28 Spring Boot main class with updated CommandLineRunner implementation

http://www.slf4j.org/
https://logging.apache.org/log4j/2.x/manual

60 CHAPTER 2 Common Spring Boot tasks

2.5 Validate user data using Bean Validation
It is often a requirement to validate the user input data to make sure it meets the busi-
ness requirement. For instance, you may want to validate certain fields for nonempty
or check the minimum and the maximum lengths of the values allowed for that field.
You may also want to implement a custom validation on the user data. For example, it
might be possible that you want to implement a custom password validation rule for
the user-supplied password.

 Bean Validation (https://beanvalidation.org/) is the de facto standard for imple-
menting such validations in the Java ecosystem. This Java specification allows you to
express validations in terms of simple annotations. Moreover, it also allows you to define
custom validators in an extensible manner. Hibernate Validator (http://hibernate.org/
validator) is the reference implementation of the Bean Validation specification.

 Spring Boot provides seamless integration with the Bean Validation framework
with a Spring Boot starter dependency. It provides a spring-boot-starter-valida-
tion dependency that allows you to use Hibernate Validator in your application.

2.5.1 Technique: Using built-in Bean Validation annotations to validate
business entity in a Spring Boot application

In this technique, we’ll discuss how to use bean validation to validate the business
entities.

PROBLEM

You want to validate business entities using the Java Bean Validation framework in
your Spring Boot application.

SOLUTION

Let us demonstrate the usage of bean validation in Spring Boot with an example.

In this Maven project, we’ve added the spring-boot-starter-validation depen-
dency, as shown in the following listing.

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-validation</artifactId>
</dependency>

To start with, let us add a new entity named Course. A course contains an id, name,
category, rating, and description, as shown in the following listing.

Source Code
The final version of the Spring Boot project is available at http://mng.bz/4jlw.

Listing 2.29 Spring Boot starter validation Maven dependency

https://beanvalidation.org/
http://hibernate.org/validator/
http://hibernate.org/validator/
http://hibernate.org/validator/
http://mng.bz/4jlw

612.5 Validate user data using Bean Validation

package com.manning.sbip.ch02.model;

import javax.validation.constraints.Min;
import javax.validation.constraints.Max;

public class Course {

 private long id;
 private String name;
 private String category;

 @Min(value = 1, message = "A course should have a minimum of 1 rating")
 @Max(value = 5, message = "A course should have a maximum of 5 rating")
 private int rating;

 private String description;

 // Constructor, Getter, and Setters
}

We’ve additionally added two validations for the rating field. A rating can have a min-
imum value of 1 and a maximum value of 5. If these constraints are not satisfied, then
the message defined in the annotation is displayed as an error message. Let’s validate
these constraints by defining a CommandLineRunner, as shown in the following listing.

package com.manning.sbip.ch02;

//imports

@SpringBootApplication
public class CourseTrackerApplication implements CommandLineRunner {

 private static Logger logger =

➥ LoggerFactory.getLogger(CourseTrackerApplication.class);
 public static void main(String[] args) {
 SpringApplication.run(CourseTrackerApplication.class, args);
 }

 @Override
 public void run(String... args) throws Exception {
 Course course = new Course();
 course.setId(1);
 course.setRating(0);
 Validator validator =

➥ Validation.buildDefaultValidatorFactory().getValidator();
 Set<ConstraintViolation<Course>> violations =

➥ validator.validate(course);

Listing 2.30 The course entity

Listing 2.31 The Spring Boot main class with CommandLineRunner implementation

Create a course with a rating of 0,
which violates the minimum constraint
defined for the rating field.

Get an instance of Validator that validates the bean
instances. In this example, it will validate the course entity.

Validate all defined constraints in
the course object and return the
constraint violations if any.

62 CHAPTER 2 Common Spring Boot tasks

 violations.forEach(courseConstraintViolation -> logger.error("A

➥ constraint violation has occurred. Violation details: [{}].",

➥ courseConstraintViolation));
 }
}

In listing 2.31, you created a course and set the course rating value to 0. Besides, you
are obtaining an instance of the validator and supplying the course instance to it for
constraint validation. The validator validates and returns the set of constraint viola-
tions in the supplied object. In this example, the @Min constraint validation is violated,
and the associated ConstraintViolation is returned. We then log this validation
error in the console.

 If you run the application, you can find that, once the application starts success-
fully, the CommandLineRunner is executed, and the ConstraintViolation error mes-
sage is logged in the console, as shown in figure 2.4.

DISCUSSION

Bean Validation allows you to specify and validate application constraints. You’ve
already noticed how it allows you to specify the constraints in terms of annotations
with the ability to configure custom error messages. Table 2.1 provides some of the
commonly used annotations defined in the Hibernate Validator API. Note that Hiber-
nate Validator (https://hibernate.org/validator) is the Bean Validation reference
implementation and used by Spring Boot for bean validation.

 Refer to http://mng.bz/QWJG for a list of supported Hibernate Validator con-
straints and their usage.

Log each constraint
violation in the console.

Figure 2.4 The @min constraint violation error message

https://hibernate.org/validator
http://mng.bz/QWJG

632.5 Validate user data using Bean Validation

Although built-in annotations work well in most of the scenarios, sometimes you might
need custom constraint validations. For instance, you might need to check whether a
supplied character sequence is a valid IP address. You can also apply additional
constraints for a password supplied by your application users. In the next technique,
you’ll learn how to implement and use a custom constraint using the Bean Validation
framework in your Spring Boot application.

2.5.2 Technique: Defining and using custom Bean Validation annotation
to validate a POJO in a Spring Boot application

In this technique, we’ll learn how to define custom annotations and use those to per-
form validation of business entities.

PROBLEM

You want to define a custom annotation and use it to validate a POJO in a Spring Boot
application.

SOLUTION

In the previous technique, you used the built-in Bean Validation annotations to apply
constraints in business entities. In this technique, you’ll learn how to implement a cus-
tom annotation with a custom validator to implement business-specific constraints in
your entities.

 To demonstrate how to define a custom constraint, you’ll use a User POJO that
has a username and a password. Typically, organizations define custom password poli-
cies that their users need to adhere to. In this example, you’ll implement a custom

Table 2.1 Hibernate Validator annotations to validate field-level constraints

Annotation Purpose

@NotBlank Checks for non-null of the annotated character sequence. Supported only in
a CharSequence field.

@NotEmpty Checks for non-null or empty of the annotated character sequence. Sup-
ported only in CharSequence, Collection, Map, and arrays.

@NotNull Checks whether the annotated value is non-null. Supported in any data type.

@Min(value=) Checks whether the annotated value is higher than or equal to the specified
minimum value.

@Max(value=) Checks whether the annotated value is lower than or equal to the specified
maximum value.

@Pattern(regex=,
flags=)

Checks if the annotated string matches the regular expression regex con-
sidering the given flags match.

@Size(min=, max=) Checks if the annotated element’s size is between min and max (inclusive)
value.

@Email Checks whether the specified character sequence is a valid email address.

64 CHAPTER 2 Common Spring Boot tasks

annotation that validates the passwords against the predefined password policy. In
this example, you’ll use the Passay (https://www.passay.org/) library to enforce the
password rules.

In this project, we’ve added the Passay Maven dependency in the pom.xml, as shown
in the following listing.

<dependency>
 <groupId>org.passay</groupId>
 <artifactId>passay</artifactId>
 <version>1.6.0</version>
</dependency>

Before defining the custom validation annotation, you need to define the Constraint-
Validator that is invoked to enforce the constraint. Let us define the Password-
RuleValidator class that contains the actual password validation logic, as shown in
the following listing.

package com.manning.sbip.ch02.validation;
//imports

public class PasswordRuleValidator implements ConstraintValidator<Password,

➥ String> {

 private static final int MIN_COMPLEX_RULES = 2;
 private static final int MAX_REPETITIVE_CHARS = 3;
 private static final int MIN_SPECIAL_CASE_CHARS = 1;
 private static final int MIN_UPPER_CASE_CHARS = 1;
 private static final int MIN_LOWER_CASE_CHARS = 1;
 private static final int MIN_DIGIT_CASE_CHARS = 1;

 @Override
 public boolean isValid(String password, ConstraintValidatorContext

➥ context) {
 List<Rule> passwordRules = new ArrayList<>();
 passwordRules.add(new LengthRule(8, 30));
 CharacterCharacteristicsRule characterCharacteristicsRule =
 new CharacterCharacteristicsRule(MIN_COMPLEX_RULES,
 new CharacterRule(EnglishCharacterData.Special,

➥ MIN_SPECIAL_CASE_CHARS),
 new CharacterRule(EnglishCharacterData.UpperCase,

➥ MIN_UPPER_CASE_CHARS),

Source code
The final version of the Spring Boot project is available at http://mng.bz/XWJv.

Listing 2.32 Passay Maven dependency

Listing 2.33 The PasswordRuleValidator

https://www.passay.org/
http://mng.bz/XWJv

652.5 Validate user data using Bean Validation

 new CharacterRule(EnglishCharacterData.LowerCase,

➥ MIN_LOWER_CASE_CHARS),
 new CharacterRule(EnglishCharacterData.Digit,

➥ MIN_DIGIT_CASE_CHARS));
 passwordRules.add(characterCharacteristicsRule);
 passwordRules.add(new

➥ RepeatCharacterRegexRule(MAX_REPETITIVE_CHARS));
 PasswordValidator passwordValidator = new

➥ PasswordValidator(passwordRules);
 PasswordData passwordData = new PasswordData(password);
 RuleResult ruleResult = passwordValidator.validate(passwordData);
 return ruleResult.isValid();
 }
}

Let’s discuss the code snippet shown in listing 2.33.

 This class implements the ConstraintValidator interface and provides an
implementation of the isValid() method that contains the custom password
validation logic. The ConstraintValidator interface is typed and accepts two
arguments. The first argument defines the annotation (e.g., Password) on
which the custom validator should be used. The second argument takes the
data type of the value on which the custom annotation is applied. Thus, we’ve
defined the ConstraintValidator<Password, String>.

 In the isValid() method, you’ve defined the custom policy against which the
password should be validated. We’ve kept the password policy fairly simple.
There is a length-based rule that enforces that the password length should be a
minimum of 8 characters and a maximum of 30 characters. Besides, the policy
expects the password should contain an upper case, a lower case, a digit, and
should not be repetitive of a character more than three times.

 The isValid() method returns either true or false based on the defined vali-
dation logic.

Let’s now define the @Password annotation that uses the PasswordRuleValidator, as
shown in the following listing.

package com.manning.sbip.ch02.validation;

import javax.validation.Constraint;
import javax.validation.Payload;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

@Target({ElementType.METHOD, ElementType.FIELD})
@Retention(RetentionPolicy.RUNTIME)
@Constraint(validatedBy = PasswordRuleValidator.class)

Listing 2.34 The @Password annotation

66 CHAPTER 2 Common Spring Boot tasks

public @interface Password {
 String message() default "Password do not adhere to the specified rule";
 Class<?>[] groups() default {};
 Class<? extends Payload>[] payload() default {};
}

Let’s explore various parts of this annotation definition:

 The @Target annotation defines that this annotation applies to the Method and
Field.

 The @Retention annotation defines how the @Password annotation is stored.
You’ve used RUNTIME, so it can be used by the runtime environment.

 The @Constraint indicates that this annotation is a Bean Validation constraint.
The element validatedBy specifies the classes implementing the constraint.

 The message() defines the message that needs to be displayed if the input data
validation fails.

 The Class<?>[] groups() allow the developer to select to split the annotations
into different groups to apply different validations to each group. We haven’t
defined any groups in this example.

 The Class<? extends PayLoad>[] payLoad() is typically used to carry metadata
information consumed by a validation client. We haven’t defined any payload in
this example.

Let’s now define the business model on which the @Password annotation is applied.
The following listing shows the User POJO.

package com.manning.sbip.ch02.model;

import com.manning.sbip.ch02.validation.Password;

public class User {

 private String userName;

 @Password
 private String password;

 public User(String userName, String password) {
 this.userName = userName;
 this.password = password;
 }

 public String getUserName() {
 return userName;
 }

 public String getPassword() {
 return password;
 }

Listing 2.35 The User business entity

672.5 Validate user data using Bean Validation

 @Override
 public String toString() {
 return "User{" +
 "userName='" + userName + '\'' +
 ", password='" + password + '\'' +
 '}';
 }
}

The User business entity has two fields: a username and password. The password field
is annotated with the custom @Password annotation. Let us now create a few users and
see how the custom annotation works. The following listing shows a CommandLine-
Runner implementation that creates several users.

package com.manning.sbip.ch02;

//imports

@SpringBootApplication
public class CourseTrackerApplication implements CommandLineRunner {

 private static Logger logger =

➥ LoggerFactory.getLogger(CourseTrackerApplication.class);

 public static void main(String[] args) {
 SpringApplication.run(CourseTrackerApplication.class, args);
 }

 @Override
 public void run(String... args) throws Exception {
 User user1 = new User("sbip01", "sbip");
 Validator validator =

➥ Validation.buildDefaultValidatorFactory().getValidator();
 Set<ConstraintViolation<User>> violations =

➥ validator.validate(user1);
 logger.error("Password for user1 do not adhere to the password

➥ policy");
 violations.forEach(constraintViolation -> logger.error("Violation

➥ details: [{}].", constraintViolation.getMessage()));

 User user2 = new User("sbip02", "Sbip01$4UDfg");
 violations = validator.validate(user2);
 if(violations.isEmpty()) {
 logger.info("Password for user2 adhere to the password

➥ policy");
 }

 User user3 = new User("sbip03", "Sbip01$4UDfgggg");
 violations = validator.validate(user3);
 logger.error("Password for user3 violates maximum repetitive

➥ rule");

Listing 2.36 Spring Boot main class with a CommandLineRunner implementation

68 CHAPTER 2 Common Spring Boot tasks

 violations.forEach(constraintViolation -> logger.error("Violation

➥ details: [{}].", constraintViolation.getMessage()));

 User user4 = new User("sbip04", "Sbip014UDfgggg");
 violations = validator.validate(user4);
 logger.error("Password for user4 violates special character rule");
 violations.forEach(constraintViolation -> logger.error("Violation

➥ details: [{}].", constraintViolation.getMessage()));

 }
}

In listing 2.36, you created four users. Apart from user2, all other users do not adhere
to the defined password policy. For instance, there are multiple password policy viola-
tions for user1. For user3 and user4 there are maximum repetitive rules and special
character rule violations. Let us start the application to see these validation issues. Fig-
ure 2.5 shows the error message for password violations.

DISCUSSION

With this technique, you’ve seen how to define a custom annotation to implement
business-specific constraints in your Spring Boot application. To implement a custom
constraint, you need to implement the ConstraintValidator interface and define
the isValid() method. In this method, you need to define the business logic that
decides whether the input data is valid or not. Once the validator is defined, you need
to define the custom annotation that uses the defined validator.

 You can then use the annotation in the fields that need to be validated. In this
example, we’ve explicitly used the validator from the ValidatorFactory to validate
the objects. Later in the book, you’ll see much better and more effective uses of the

Figure 2.5 The custom constraint violation error message

69Summary

Bean Validation’s built-in and custom annotations while designing the REST API with
a Spring Boot application.

Summary
In this chapter, you’ve explored several core techniques that need to be mastered by any
Spring Boot developer. Some of the major topics we’ve explored in this chapter are:

 Several approaches to managing application properties in a Spring Boot
application

 How to use @ConfigurationProperties to define properties in a type-safe
manner

 How to configure CommandLineRunner to execute one-time executable code at
Spring Boot application startup

 Default Spring Boot console logging, additional configurations, and how to use
Log4j2 logging in a Spring Boot application

 How to use Bean Validation API to validate POJOs in your Spring Boot applica-
tion with built-in annotations as well as with custom annotations

In chapter 3, the next stop of your Spring Boot journey, you’ll learn to access the data-
base from a Spring Boot application.

70

Database access
with Spring Data

You’ve already explored a variety of topics on Spring Boot in the last two chap-
ters. With a solid overview of Spring Boot, you’ve learned a few common tasks
that you may use in your Spring Boot applications quite frequently. So what’s
next? In today’s world, most applications are incomplete without a database that
stores the application data. Spring Boot applications are no exception. In this
chapter, you’ll boot your journey by interacting with the database from your
Spring Boot application. You’ll explore how seamless it is to perform database

This chapter covers
 Introducing Spring Data, its needs, and various

Spring Data modules

 Configuring a relational database, NoSQL
database (MongoDB), and access data in
a Spring Boot application

 Enabling Spring Data JPA to manage business
domain objects with relational databases

 Various techniques to access data from a
relational database using @NamedQuery, @Query,
Criteria API, and Querydsl

713.1 Introducing Spring Data

configuration, complete initialization, access data, and manage business objects in
the database with Spring Boot!

3.1 Introducing Spring Data
Spring Data (https://spring.io/projects/spring-data) lets you access data from a vari-
ety of data sources (e.g., relational and nonrelational databases, MapReduce data-
bases, and cloud-based data services). It attempts to provide a uniform, easy-to-use,
and familiar programming model through the Spring Framework.

 It is an umbrella project under the Spring Framework that contains several sub-
projects, each of which targeting a specific database. For instance, the Spring Data JPA
module is specific to relational databases (e.g., H2, MySQL, PostgreSQL). Similarly,
Spring Data MongoDB aims to provide support for the MongoDB database.

Java Persistence API (JPA)
Most applications in today’s world need to communicate with the database to store
and retrieve application data. And to achieve this interaction developers generally
need to write a lot of boilerplate code. For instance, in the standard Java Database
Connectivity (JDBC) approach, you need to obtain a database connection, define a
PreparedStatement, set the bind variables, execute the query, and perform resource
management.

The Java Persistence API (JPA) takes away most of these burdens and provides the
developers with a bridge between the Java object model (e.g., business objects) and the
relational database model (e.g., database tables). This mapping between Java objects
and the relational model is popularly known as object-relational mapping (ORM) as illus-
trated in figure 3.1.

JPA is a specification that provides a set of interfaces, classes, and annotations to
persist and retrieve application objects easily and concisely. Note that it is just a
specification and outlines the standards for the ORM techniques. There are several
third-party vendors, such as Hibernate (https://hibernate.org/orm/) and EclipseLink
(https://www.eclipse.org/eclipselink/#jpa) that provide a concrete implementation
of this specification.

Figure 3.1 An overview of object-relational mapping. An entity represents a business object to
be persisted. A persistence provider implements the JPA specification.

Entity DB

Persistence providers

(hibernate, EclipseLink)

https://spring.io/projects/spring-data
https://hibernate.org/orm/
https://www.eclipse.org/eclipselink/#jpa

72 CHAPTER 3 Database access with Spring Data

3.1.1 Why Spring Data?

One of the core themes of Spring Data is to provide a consistent programming model
to access various data sources. Thus, it provides a convenient API that lets you specify
the metadata to the domain objects that need to be persisted and ensures that business
domain objects are eligible to be persisted in the specific datastore. For instance, you
can use a relational database and Spring Data JPA to manage business objects. You can
provide the JPA annotations in business objects, and Spring Data JPA ensures the
domain object is persisted in the database table. Later in this chapter, you’ll see many
of these annotations and their use in business objects.

 Spring Data modules also expose APIs in the form of templates similar to popular
JdbcTemplate and JmsTemplate template design patterns. For instance, if you use
MongoDB, you can use MongoTemplate to perform various operations in the MongoDB
database. These template classes provide several helper methods that manage store-
specific resource management and exception translations.

Spring Data provides a repository abstraction layer across the supported databases as a
common programming model. The abstraction is contained in the Spring Data Com-
mons module, and it provides several useful interfaces that let you perform the stan-
dard create, read, update, and delete (CRUD) operations as well as executing queries.
This abstraction layer is the topmost layer and acts as the foundation for other Spring
Data modules.

3.1.2 Spring Data modules

In the previous section, you’ve seen the role of Spring Data. In this section, you’ll
learn more about Spring Data modules. You can refer to the Spring Data Modules
sidebar for the list of major subprojects available under Spring Data.

Spring templates
Spring templates eliminate the need for boilerplate code that is otherwise required
to correctly use some of the commonly used APIs, such as Java Database Connec-
tivity (JDBC), Java Message Service (JMS), and Java Naming and Directory Interface
(JNDI). The boilerplate code is typically the setup, error handling, and resource man-
agement code that you additionally need to write to achieve the task. For instance,
in the previously discussed JDBC example, you need to obtain a database connec-
tion, create a PreparedStatement, execute the query, handle the exception, and
close the PreparedStatement and database connection.

The Spring templates take care of most of these boilerplate codes and let you only
focus on the actual business logic. For example, the JdbcTemplate lets you supply
the query you need to run, and the rest is managed by the template.

733.1 Introducing Spring Data

Of all Spring Data modules, the Spring Data Commons module is one of the most
important. It consists of foundational and data source agnostic components of Spring
Data that are used in other Spring Data modules. For instance, the Spring Data JPA
module relies on the interfaces defined in the Spring Data Commons module. Spring
Data JPA’s JpaRepository interface is a subinterface of the Spring Data Commons
module’s PagingAndSortingRepository interface and inherits CRUD, pagination,
and sorting support from the Spring Data Commons module.

 As shown in figure 3.2, the Spring Data Commons module provides three core
repository interfaces: Repository, CrudRepository, and PagingAndSortingRepository.
As the name suggests, the CrudRepository interface allows you to use the CRUD
operations. Similarly, the PagingAndSortingRepository interface, which is a sub-
interface of CrudRepository, allows you to perform CRUD operations as well as the
pagination and sorting of data returned from the database. You’ll explore some of
these interfaces in detail in section 3.3.

 The Spring Data submodules contain database technology-specific Spring Data
implementations that provide supports for specific database families (e.g., Spring Data
JDBC or Spring Data JPA focus on relational databases) or vendor-specific databases
(e.g., Spring Data MongoDB focuses on MongoDB database). These submodules lever-
age the core framework features offered in the Spring Data Commons module.

Spring Data modules
Spring Data is an umbrella project that provides support for several mainstream data
stores. Table 3.1 summarizes a few of the commonly used modules.

You can refer to the Spring Data reference document (https://spring.io/projects/
spring-data) for a full list of Spring Data projects.

Table 3.1 Spring Data modules and their purposes

Module Name Purpose

Spring Data Commons It contains the foundational components used in all Spring Data projects.

Spring Data JDBC This module provides repository support for JDBC.

Spring Data JPA It provides repository support for JPA.

Spring Data MongoDB It provides support for documents-based MongoDB database.

Spring Data REDIS It provides the necessary support for Redis datastore.

Spring Data REST It lets you access Spring data repositories as REST resources.

Spring Data for
Apache Cassandra

This module provides the necessary support for Apache Cassandra.

https://spring.io/projects/spring-data
https://spring.io/projects/spring-data
https://spring.io/projects/spring-data

74 CHAPTER 3 Database access with Spring Data

3.2 Configuring a database in a Spring Boot application
Configuring and accessing a database is one of the fundamental operations in any
application, and Spring Boot applications are no exception to it. Spring Boot pro-
vides various techniques to configure and access a database from your Spring Boot
application. Let’s understand how to configure and access a relational database in a
Spring Boot application.

3.2.1 Technique: Configuring a relational database in a Spring Boot
application

In this technique, we’ll demonstrate how to configure a relational database in a
Spring Boot application.

PROBLEM

Most applications need to interact with a database to store and retrieve application
data. However, before communicating with the database, you need to configure the
database in the application. You need to configure and access a relational database in
your Spring Boot application.

Spring data commons

Repository CrudRepository PagingAndSortingRepository

Spring data sub modules

Database layer

Spring Data

JDBC

Spring Data
JPA

Spring Data

MongoDB

Spring Data

Cassandra

Figure 3.2 Spring Data modules. The Spring Data Commons module provides a foundation upon which other
submodules are based. Each submodule targets a specific type of database. The Repository, CrudRepository,
and PagingAndSortingRepository are interfaces of the Spring Data Commons module.

753.2 Configuring a database in a Spring Boot application

SOLUTION

To configure a relational database with Spring Boot, you can add spring-boot-
starter-data-jpa and the relational database driver dependency in the pom.xml of
your application. Additionally, you need to supply the database details, such as data-
base username, password, driver class, and connection URL.

To configure a relational database, you need to add two additional dependencies in
the existing pom.xml file, as shown in the following listing. You can copy and paste
these dependencies anywhere inside the dependencies tag in the pom.xml file.

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>
<dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <scope>runtime</scope>
</dependency>

Which relational database to use?
In the demonstration, you’ll use an in-memory relational database named H2 (https://
www.h2database.com/html/main.html). However, you can use any relational data-
base to continue with this technique. For example, you can use MySQL (https://www
.mysql.com/), Oracle (http://mng.bz/y4xB), or PostgreSQL (https:// www.postgresql
.org/) databases as well. In case you are using a database other than H2, the config-
uration technique will be the same, and only the database driver and other supporting
configuration parameters will change.

Besides, you need to ensure you have a running instance of the database you are
using, so the Spring Boot application can connect to the database. You can either
install and configure the database in your development machine or use a database
instance from the cloud service providers, such as AWS or Azure. In the latter case,
ensure that you have connectivity to the database from your machine. Note that what-
ever approach (i.e., local or cloud) you use, only the database connection URL
changes, and the rest of the configuration remains the same. In this example, we are
using the embedded version of the H2 in-memory database.

Source code
You can find the base version of the Spring Boot project used in this technique in the
book’s companion GitHub repository at http://mng.bz/M2mW. The finished version
of the project is available at http://mng.bz/aDy7.

Listing 3.1 Spring Data JPA starter and H2 dependency

Spring Boot Data
JPA dependency
for JPA support

H2 database driver dependency. This
dependency is configured with runtime
scope to ensure it is available at the
application runtime and not needed at
the time of compilation.

https://www.h2database.com/html/main.html
https://www.h2database.com/html/main.html
https://www.h2database.com/html/main.html
https://www.mysql.com/
https://www.mysql.com/
https://www.mysql.com/
http://mng.bz/y4xB
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
http://mng.bz/M2mW
http://mng.bz/aDy7

76 CHAPTER 3 Database access with Spring Data

In listing 3.1, the first dependency incorporates Spring Data JPA, and the other one
includes the H2 database driver in the Spring Boot project. If you are using a database
other than H2, you need to use the associated database driver dependency in the
pom.xml file. For instance, if you are using MySQL or PostgreSQL database, you can
find the corresponding Maven dependency in the Maven central repository.

 Among the dependencies, Spring Data JPA lets you manage your business domain
objects through ORM techniques without defining SQL queries explicitly. The H2 in-
memory dependency allows you to use an embedded H2 database in the Spring Boot
application. As this is an in-memory database, the data inside this database is lost each
time you restart the application.

 Let’s now proceed with the H2 database details in the Spring Boot application. If
you recall, every Spring Boot application contains an application.properties file that
lets you configure various application properties to control its behavior. Let’s add the
H2 database configurations to the application.properties file. The following listing
shows the configuration needed to do this.

spring.datasource.url=jdbc:h2:mem:sbipdb
spring.datasource.driverClassName=org.h2.Driver
spring.datasource.username=sa
spring.datasource.password=password
spring.h2.console.enabled=true

In listing 3.2, you’ve provided the H2 database connection URL, driver class, user-
name, and password and enabled the H2 console. The H2 console provides you with a
UI that lets you execute SQL queries in the in-memory H2 database. The provided
details are sufficient for Spring Boot to configure the data source in the application.

 To validate the created data source, you’ll define a test case that asserts the data
source type and the underlying database, as shown in listing 3.3. If you are not famil-
iar with the test, you can refer to the book’s companion GitHub wiki page at http://
mng.bz/jyez.

NOTE If you are interested in unit testing, Manning has a few excellent texts
with detailed coverage of the subject. You can refer to Unit Testing Principles,
Practices, and Patterns by Vladimir Khorikov, available at https://www.manning
.com/books/unit-testing.

package com.manning.sbip.ch03;

// Import Statements are excluded as a matter of readability

Listing 3.2 Application properties with H2 database configuration

Listing 3.3 Unit test to validate the data source details

Database URL. We are using a schema
called sbipdb in this demonstration.

H2 Driver class

Database Username

Database Password

Enable H2 console. This property
is specific to H2 database only.

https://www.manning.com/books/unit-testing
https://www.manning.com/books/unit-testing
https://www.manning.com/books/unit-testing
http://mng.bz/jyez
http://mng.bz/jyez
http://mng.bz/jyez

773.2 Configuring a database in a Spring Boot application

@SpringBootTest
class CourseTrackerSpringBootApplicationTests {

 @Autowired
 private DataSource dataSource;

 @Test
 public void givenDatasourceAvailableWhenAccessDetailsThenExpectDetails()

throws SQLException {
 assertThat(dataSource.getClass().getName()).isEqualTo("com.zaxxer

.hikari.HikariDataSource");
 assertThat(dataSource.getConnection().getMetaData().getDatabasePro-

ductName()).isEqualTo("H2");
 }
}

In this test case, you’ve autowired the DataSource instance and asserted that the data
source class name is com.zaxxer.hikari.HikariDataSource and the database prod-
uct name is H2. You’ll learn more about the role of HikariCP in the discussion section
of this technique. If you execute this test case, you can see both assertions are true, as
shown in figure 3.3.

DISCUSSION

With this technique, you’ve learned how you can configure a relational database in
your Spring Boot application with a few configurations. For instance, the presence of
database configuration details in the application.properties file, and the Spring Data
JPA and H2 driver jars in the classpath enable Spring Boot to configure an H2 data
source in the application. You can use this data source for database communication.

 As part of the database configuration, Spring Boot automatically configures the
HikariCP (https://github.com/brettwooldridge/HikariCP) database connection pool.
A database connection pool contains one or more database connections that are gener-
ally created at the time of application startup and available for use by the application.
The benefit of a database connection pool is that a set of database connections are cre-
ated at the application startup and available for use by the application. Thus, you don’t
create a new connection each time you need a database connection and close it once
done. The application can take a connection from the pool, use it, and return to the
pool. Spring Boot uses HikariCP as the default database connection pool library.

Figure 3.3 Unit test case
executed successfully in
IntelliJ IDEA

https://github.com/brettwooldridge/HikariCP

78 CHAPTER 3 Database access with Spring Data

 If you are curious to know where the HikariCP dependency is located, you can
inspect the spring-boot-starter-data-jpa dependency by looking at its associated
pom.xml file. Browse to the pom.xml file of the sample application in your IDE, and
click on the spring-boot-starter-data-jpa dependency. You can observe that
spring-boot-starter-data-jpa has a dependency on spring-boot-starter-jdbc,
and that, in turn, has a dependency on the HikariCP library. Figure 3.4 shows this
dependency hierarchy.

If you need to use a database connection pooling library other than HikariCP, you can
achieve this by excluding the HikariCP dependency from the spring-boot-starter-
data-jpa dependency and including your preferred database connection pooling
library (e.g., Oracle UCP, Tomcat JDBC, DBCP2, etc.). Listing 3.4 shows the configu-
ration to exclude HikariCP and use the tomcat-jdbc connection pooling library.

…
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
 <exclusions>
 <exclusion>
 <groupId>com.zaxxer</groupId>

Listing 3.4 POM XML changes to exclude HikariCP and include Tomcat connection pool

spring-boot-starter-data-jpa

spring-boot-starter-jdbc

HikariCP

Figure 3.4 HikariCP connection pool
library transitive dependency

Default connection pool HikariCP is
excluded from Spring Data JPA dependency

793.2 Configuring a database in a Spring Boot application

 <artifactId>HikariCP</artifactId>
 </exclusion>
 </exclusions>
</dependency>
<dependency>
 <groupId>org.apache.tomcat</groupId>
 <artifactId>tomcat-jdbc</artifactId>
</dependency>
…

Spring Boot uses the following strategies to detect the database connection pool
library based on the configuration defined in listing 3.4:

1 If HikariCP is not available, then Spring Boot attempts to use Apache Tomcat
database connection pooling if it is available in the classpath.

2 If both HikariCP and Apache Tomcat connection pool dependencies are not
available, then Spring Boot attempts to use Apache Commons DBCP2 library
(https://commons.apache.org/proper/commons-dbcp).

3 If DBCP2 is also not available, Spring Boot configures the JDK’s default data
source (javax.sql.DataSource).

In this technique, you’ve configured the H2 database in your Spring Boot application
by configuring a few parameters in the application.properties file. In this demonstra-
tion, you’ve used only a handful of parameters to enable the database configuration.
Spring Boot provides several additional configuration parameters to fine-tune the
database configuration.

 For instance, if you are using the default HikariCP configuration, you might want
to customize the HikariCP connection pool configuration. You can configure a cus-
tom maximum number of connections per pool—namely, the maximum connection
pool size by configuring the spring.datasource.hikari.maximum-pool-size prop-
erty in the application.properties. If you are using a connection pool library other
than HikariCP, you need to configure the property specific to the library.

 If you are curious to explore the available database configuration parameters, you can
browse Spring Boot application.properties documentation at http://mng.bz/g4OV.

3.2.2 Technique: Configuring MongoDB database in a Spring Boot
application

In this technique, we’ll demonstrate how to configure MongoDB database in a Spring
Boot application.

PROBLEM

You’ve already explored configuring a relational database in a Spring Boot application.
Along with relational databases, NoSQL databases are also gaining popularity. You need
to configure the popular NoSQL database MongoDB in a Spring Boot application.

Tomcat JDBC connection pool is added
explicitly as the connection pool of choice

https://commons.apache.org/proper/commons-dbcp/
http://mng.bz/g4OV

80 CHAPTER 3 Database access with Spring Data

SOLUTION

MongoDB is a popular NoSQL database that stores the data as documents in JSON-like
format. Spring Boot provides an easy approach to integrate with the MongoDB database
through spring-boot-starter-data-mongodb dependency. In this technique, you’ll
learn how to connect to a MongoDB database from your Spring Boot application.

To configure MongoDB in a Spring Boot application, you’ve included the following
dependencies in your Spring Boot application, as shown in the following listing.

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-mongodb</artifactId>
</dependency>
<dependency>
 <groupId>de.flapdoodle.embed</groupId>
 <artifactId>de.flapdoodle.embed.mongo</artifactId>
</dependency>

The first dependency provides Spring Data MongoDB support in the Spring Boot
application. The second dependency adds the Flapdoodle-embedded MongoDB data-
base to our application. You can find more details on this database at http://mng
.bz/GGKO. If you are using a real MongoDB instance, then you don’t need the
embedded MongoDB database dependency. Let’s define a test case to validate how to
use MongoDB, as shown in the following listing.

package com.manning.sbip.ch03;

// Import statements are excluded as a matter of readability

Source code
You can find the base version of the Spring Boot project used in this technique in the
book’s companion GitHub repository at http://mng.bz/eneQ. The finished version of
the project is available at http://mng.bz/p28z.

Listing 3.5 MongoDB Maven dependencies

Flapdoodle-embedded MongoDB
In this section, for demonstration purposes, we have used the Flapdoodle-embedded
MongoDB database (http://mng.bz/OGlE). In production or complex applications, you
should avoid using it due to the various issues the library has. Refer to http://mng
.bz/Yg5A for additional details. Use a real MongoDB instance for production or com-
plex applications or consider using testcontainers (https://www.testcontainers.org/)
for testing purposes.

Listing 3.6 Unit test to validate the use of MongoDB in Spring Data

http://mng.bz/eneQ
http://mng.bz/p28z
http://mng.bz/OGlE
http://mng.bz/Yg5A
http://mng.bz/Yg5A
http://mng.bz/Yg5A
https://www.testcontainers.org/
http://mng.bz/GGKO
http://mng.bz/GGKO
http://mng.bz/GGKO

813.2 Configuring a database in a Spring Boot application

import static org.assertj.core.api.Assertions.assertThat;

@DataMongoTest
@ExtendWith(SpringExtension.class)
class CourseTrackerSpringBootApplicationTests {

 @Autowired
 private MongoTemplate mongoTemplate;

 @Test
 public void givenObjectAvailableWhenSaveToCollectionThenExpectValue() {
 // given
 DBObject object = BasicDBObjectBuilder.start().add("Manning", "Spring

Boot In Practice").get();
 // when
 mongoTemplate.save(object, "collection");
 // then
 assertThat(mongoTemplate.findAll(DBObject.class, "collection"))
 .extracting("Manning")
 .containsOnly("Spring Boot In Practice");

 }
}

Let’s explore the activities performed in this test case:

 You’ve autowired the MongoTemplate in the test class. An instance of Mongo-
Template is created by Spring Boot. MongoTemplate is a helper class that lets
you perform various MongoDB operations.

 You then create a document as the key–value pair with the key as Manning and
the value as Spring Boot in Practice. MongoDB stores the documents as part of
collections. Thus, you add the document to a collection named Collection.

 Finally, you find the document to extract the key and assert the returned value.

DISCUSSION

A relational database stores data in a tabular format in terms of rows and columns.
However, not all data is suitable to be stored in a tabular format. There are several use
cases in which data is unstructured and treated as a document. The NoSQL databases
store the data in terms of a document and are popularly known as document data-
bases. MongoDB is one of the most popular and leading document databases.

 With this technique, you’ve used an in-memory instance of MongoDB. An in-memory
instance lets you quickly bootstrap the application and does not require a local or
remote database installation.

 If you have a local or remote instance (e.g., in a remote server or cloud provider),
you can remove the embedded configuration and provide your actual database con-
figuration. The following listing shows the MongoDB database configurations you can
provide in the application.properties file to customize the database details.

82 CHAPTER 3 Database access with Spring Data

spring.data.mongodb.authentication-database=<Authentication database name>
spring.data.mongodb.database=<Database name>
spring.data.mongodb.field-naming-strategy=<Field Naming Strategy>
spring.data.mongodb.gridfs.database=<Gridfs database>
spring.data.mongodb.host=<Database Hostname>
spring.data.mongodb.password=<Database password>
spring.data.mongodb.port=<Database Port>
spring.data.mongodb.uri=<Database URI>
spring.data.mongodb.username=<Database Username>
spring.mongodb.embedded.version=2.6.10

NOTE You can refer to Spring Boot reference documentation available at
http://mng.bz/zQAQ for all supported properties.

If you are new to MongoDB, you can refer to the book’s companion GitHub wiki page
for a beginner’s guide on MongoDB available at http://mng.bz/0wA6.

3.2.3 Technique: Initializing a relational database schema with a
Spring Boot application

In this technique, we’ll discuss how to initialize a relational database schema in a
Spring Boot application.

PROBLEM

In the configuring a relational database in a spring boot application technique, you
saw how to configure a relational database in your Spring Boot application. However,
before you start accessing the database, you need to ensure the database schema is ini-
tialized properly. For instance, all the required tables and indexes are created, and
associated insert scripts are executed. You need to initialize the database schema at
the application startup.

SOLUTION

Spring Boot allows you to initialize a database schema with built-in solutions as well as
third-party libraries (ORM solutions). In this technique, you’ll learn how to initialize
the database using Spring Data’s built-in schema.sql and data.sql scripts.

 Spring Boot can load the SQL scripts from the classpath (e.g., the src/main/
resources folder) or a preconfigured location. By default, you define the schema.sql
file to provide all DDL scripts and define the data.sql file to include the DML scripts
and place it inside the src\main\resources folder for Spring Boot to detect and exe-
cute these files. Further, you can also use the spring.datasource.schema and

Listing 3.7 MongoDB properties

Authentication
database name

Database
name

Fully qualified name of the
FieldNamingStrategy to use

GridFS database name
Mongo
server

host
Login password of
the Mongo server

Mongo server port (27017 is
the default MongoDB port)

Mongo database URI.
When set, host and
port are ignored.

Login password of
the Mongo server

Embedded
MongoDB

version

http://mng.bz/zQAQ
http://mng.bz/0wA6

833.2 Configuring a database in a Spring Boot application

spring.datasource.data properties to customize the default behavior. You’ll exam-
ine this in this technique.

To begin with, if you are using a database other than an embedded (in-memory)
database, you need to set spring.sql.init.mode to always be in the application
.properties file, as shown in listing 3.8. This property instructs Spring Boot to always
initialize the database schema. It supports three values—embedded, always, and never.
By default, this property is set to the value embedded. This means Spring Boot auto-
matically initializes the database schema for embedded database types (e.g., H2 in-
memory database available at https://www.h2database.com/html/main.html). To ini-
tialize MySQL or other actual databases, you need to explicitly configure the value to
always. Since you are using the H2 database in this technique, you may ignore this
property.

 In this schema initialization-based approach, Spring Boot re-creates the schema
each time you restart the application. There is no database schema versioning done
by Spring Boot. For example, in the above example, Spring Boot drops and re-creates
the COURSES table in each application restart and executes the DML statements pro-
vided in the data.sql script. The following listing shows the updated application
.properties file.

DDL and DML in a nutshell
Data definition language (DDL) is used to define database structures, such as data-
base users, schemas, tables, indexes, constraints in a relational database. For
example, in H2 you can use the following DDL statement to create a table named
AUTHORS:

create table AUTHORS (
 id bigint not null,
 name varchar(255),
 primary key (id)
);

Data manipulation language (DML) is used to manipulate data. For example, DML
statements allow you to INSERT, UPDATE, and DELETE data in relational database
tables. For example, the following DML script INSERTS data into the AUTHORS table:

INSERT INTO AUTHORS(id, name) VALUES(1, ‘John Doe’) ;

Source code
To start with this technique, you can use the base Spring Boot project from the book’s
GitHub repository available at http://mng.bz/KB80. The final version of the project is
available at http://mng.bz/9K41.

http://mng.bz/KB80
http://mng.bz/9K41
https://www.h2database.com/html/main.html

84 CHAPTER 3 Database access with Spring Data

spring.sql.init.mode=always

// Other data source properties such as username, password, driver name, and
connection URL

Let’s now define the schema.sql and the data.sql files. However, before that let’s
recap the business model we are working on within this application. In this exam-
ple, you are managing Course details in the sample application. Thus, the Course is
the business domain object in the application. The schema.sql creates the COURSES
table, and the data.sql inserts a few sample courses into the COURSES table. The fol-
lowing listing shows the database schema configuration located at src/main/
resources/schema.sql.

CREATE TABLE COURSES
(
 id int(15) NOT NULL,
 name varchar(100) NOT NULL,
 category varchar(20) NOT NULL,
 rating int(1) NOT NULL,
 description varchar(1000) NOT NULL,
 PRIMARY KEY (id)
);

Listing 3.10 shows the database initialization SQL script provided in the data.sql
configuration file located at src/main/resources/data.sql. This is a DML script that
contains the INSERT statements to populate the COURSES table.

INSERT INTO COURSES(ID, NAME, CATEGORY, RATING, DESCRIPTION)
VALUES(1, 'Rapid Spring Boot Application Development',
'Spring', 4, 'Spring Boot gives all the power of the
 Spring Framework without all of the complexities');
INSERT INTO COURSES(ID, NAME, CATEGORY, RATING, DESCRIPTION)
VALUES(2, 'Getting Started with Spring Security DSL',
'Spring', 3, 'Learn Spring Security DSL in easy steps');
INSERT INTO COURSES(ID, NAME, CATEGORY, RATING, DESCRIPTION)
VALUES(3, 'Scalable, Cloud Native Data Applications',
'Spring', 4, 'Manage Cloud based applications with Spring Boot');
INSERT INTO COURSES(ID, NAME, CATEGORY, RATING, DESCRIPTION)
VALUES(4, 'Fully Reactive: Spring, Kotlin, and JavaFX Playing Together',
'Spring', 3,'Unleash the power of Reactive Spring
with Kotlin and Spring Boot');

Listing 3.8 Updated application.properties file

Listing 3.9 Database schema.sql configuration

Listing 3.10 Database initialization scripts

Instructs Spring Boot to initialize the database schema. Supported values are embedded,
always, and never. By default, it is set to embedded, which means if you use an embedded
database, then automatically the database is initialized. For other database types, it always
needs to be configured to configure the database.

853.2 Configuring a database in a Spring Boot application

INSERT INTO COURSES(ID, NAME, CATEGORY, RATING, DESCRIPTION)
VALUES(5, 'Getting Started with Spring Cloud Kubernetes',
'Spring', 5, 'Master Spring Boot application deployment
 with Kubernetes');

To validate whether Spring Boot initializes the database schema, let us write a test
case. This simple test case counts the number of courses available in the COURSES table
in the database, as shown in the following listing.

package com.manning.sbip.ch03;

// Import Statements are excluded as a matter of readability

@SpringBootTest
class CourseTrackerSpringBootApplicationTests {

 @Autowired
 private DataSource dataSource;

 @Test
 public void whenCountAllCoursesThenExpectFiveCourses()

➥ throws SQLException {
 ResultSet rs = null;
 int noOfCourses = 0;
 try(PreparedStatement ps =

➥ dataSource.getConnection().prepareStatement("SELECT COUNT(1) FROM

➥ COURSES")) {
 rs = ps.executeQuery();
 while(rs.next()) {
 noOfCourses = rs.getInt(1);

 }
 assertThat(noOfCourses).isEqualTo(5L);
 }
 finally {
 if(rs != null) {
 rs.close();

Database-specific schema and data SQL files
In addition to the schema.sql and data.sql files, Spring Boot also supports database-
specific SQLs. For instance, if your application supports multiple database types, and
there are SQL syntax differences, you can use schema-${platform}.sql and data-
${platform}.sql files. Thus, you can define a schema-h2.sql and data-h2.sql if you
need to support the H2 database. You can specify the database platform by defining
spring.datasource.platform=h2 in the application.properties file. Note that at
any point only one database is active. Thus, you can maintain multiple schema-${plat-
form}.sql and data-${platform}.sql files, but you can configure the spring.data-
source.platform to a specific database at any time.

Listing 3.11 Unit test to validate database schema initialization

86 CHAPTER 3 Database access with Spring Data

 }
 }
 }
}

In listing 3.11, you’ve autowired the DataSource and used basic JDBC code to count
the courses from the COURSES table. Don’t be scared by all this boilerplate code, as in
the next section, you’ll learn how to perform SQL queries with JPA repositories. In
this example, you’ve created five courses using the INSERT queries defined in the
data.sql file. Thus, in the test case you are asserting for five courses.

 You can also specify a different schema and data file name with a different loca-
tion. For instance, listing 3.12 shows the configuration for sbip-schema.sql and sbip-
data.sql files available at the src\main\resources\sql\schema and src\main\resources\
sql\data folders, respectively.

spring.sql.init.schema-locations=classpath:sql/schema/sbip-schema.sql
spring.sql.init.data-locations=classpath:sql/data/sbip-data.sql

Other than classpath, you can also provide a file system location (with file://<absolute
path>) if your schema and data files are in the file system. Further, you can specify
more than one schema or data file separated by the comma. For instance, spring.sql
.init.data-locations=classpath:sql/data/sbip-data.sql,file://c:/sql/data/reference-data.sql
loads both files.

DISCUSSION
In this technique, you’ve learned how to use Spring Boot’s built-in techniques to ini-
tialize a database by defining a few SQL files. To recap, you can define the schema.sql
file to provide all your DDL scripts that define the database schema. Furthermore, you
can use the data.sql file to provide DML scripts that populate the database. You’ve also
learned to maintain database platform-specific SQLs in the same application. This is
useful if your application supports multiple databases.

 So far, you’ve used the basic Spring Boot techniques to configure and communi-
cate to the database. In the next section, you’ll learn to use Spring Data JPA to man-
age your database communication in a much more concise and effective manner.
Let’s proceed to discussing Spring Data’s CrudRepository interface, which provides
support for standard CRUD operations as well as upon which most of the Spring Data
submodules are based.

3.3 Understanding the CrudRepository interface
Before starting with the CrudRepository interface, you need to know about the
Repository interface. Spring Data repository uses this generic interface as the pri-
mary abstraction for a data source. It takes a business domain class that needs to be

Listing 3.12 Custom schema and data file location

Specifying a different
schema file location

Specifying a different
data file location

873.3 Understanding the CrudRepository interface

managed and an identifier type of the class as the type attribute. A business domain
class is a Java class that represents a business entity and needs to be persisted. For
instance, in the CourseTracker application, you are managing the course details that
are represented in the Course class and have an identifier of the long data type.

 The Repository is a marker interface and is primarily used to capture the domain
class and its ID type information. A marker interface has no methods or constants and
provides runtime type information about objects. The following listing shows the
Repository interface from the spring-data-commons module.

public interface Repository<T, ID> {}

The CrudRepository is a subinterface of the Repository interface and provides
CRUD operations. Listing 3.14 shows the CrudRepository interface from the spring-
data-commons module. You can find the source code of this interface at http://mng
.bz/jyzP.

public interface CrudRepository<T, ID> extends Repository<T, ID> {
 <S extends T> S save(S entity);
 Optional<T> findById(ID id);
 Iterable<T> findAll();
 long count();
 void deleteById(ID id);
 // Additional Methods excluded for brevity
}

In addition to the CrudRepository, Spring Data also provides a PagingAndSorting-
Repository, which extends the CrudRepository and provides additional support for
pagination and sorting of the entities. Figure 3.5 shows the relationship between the
core interfaces of the Spring Data Commons module.

 To manage a business domain class persistence, you typically create an interface
that extends either CrudRepository or the PagingAndSortingRepository interface
and provides the entity class and its identifier type information. The custom repository
interface (e.g., CourseRepository) extends all the methods available in the extended
interface (e.g., CrudRepository). Let’s explore the use of the CrudRepository inter-
face in the next technique.

Listing 3.13 Spring Data repository interface

Listing 3.14 Spring Data CrudRepository methods

The interface definition. The generic type T
represents the domain class, and the ID type
represents the identifier of the domain class.Saves a given entity

Finds an entity
by the given ID

Finds all entities

Returns the number
of entities available

Deletes the entity
with the given ID

http://mng.bz/jyzP
http://mng.bz/jyzP
http://mng.bz/jyzP

88 CHAPTER 3 Database access with Spring Data

3.3.1 Technique: Managing domain objects in a relational database
with Spring Data JPA

In this section, we’ll explore how to manage business domain objects in a relational
database with Spring Data JPA.

PROBLEM

You need to use Spring Data JPA to manage domain objects in a relational database in
your Spring Boot application.

SOLUTION

In the previous section, you’ve learned the Spring Data repository interfaces Repository,
CrudRepository, and PagingAndSortingRepository that lets you manage domain
objects in a Spring Boot application. In this technique, you’ll learn how to use the
CrudRepository interface to perform the create, read, update, and delete operations
in an application.

Source code
You can find the base Spring Boot project used in this technique at http://mng.bz/
W7R1. The final version of the project is available at http://mng.bz/8lvw.

Figure 3.5 Spring Data Commons
repository hierarchy class diagram

http://mng.bz/W7R1
http://mng.bz/W7R1
http://mng.bz/W7R1
http://mng.bz/8lvw

893.3 Understanding the CrudRepository interface

Let’s start by modifying the Course domain class by providing a few JPA annotations so
that Spring Data JPA can manage this class. This is shown in the following listing.

import javax.persistence.*;

@Entity
@Table(name = "COURSES")
public class Course {

 @Id
 @Column(name = "ID")
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private Long id;

 @Column(name = "NAME")
 private String name;

 @Column(name = "CATEGORY")
 private String category;

 @Column(name = "RATING")
 private int rating;

 @Column(name = "DESCRIPTION")
 private String description;

 public Course(String name, String category,

➥ int rating, String description) {
 this.name = name;
 this.category = category;
 this.rating = rating;
 this.description = description;
 }
 // Getter/setters, and toString is omitted

Let’s discuss the changes you’ve made:

 You have annotated the class with the @Entity and the @Table annotations. The
first annotation marks the Java class as a JPA entity, and the other annotation
provides the database table details in which the entity needs to be managed.

 You have annotated the Java fields with the @Column annotation. This provides
mapping information between the Java fields and the associated column
name in the table.

 You have annotated the id field with the @Id annotation to indicate that this
field is the primary key of the table. You’ve also provided details to indicate that
the values for this field should be generated using the provided strategy. Refer
to the discussion section for more information about the available strategies.

 The course constructor does not have the id field. The ID is managed by JPA
and is auto-generated.

Listing 3.15 The Course entity with @Id, @Column, and @GeneratedValue annotations

90 CHAPTER 3 Database access with Spring Data

You’ll now define a custom Spring Data repository by extending the CrudRepository
interface that lets you manage the Course details. Recall that the CrudRepository inter-
face provides support for the standard CRUD operations. Thus, CourseRepository
inherits the CRUD operation support from this extended interface. The following list-
ing shows the CourseRepository interface.

package com.manning.sbip.ch03.repository;

import org.springframework.data.repository.CrudRepository;
import org.springframework.stereotype.Repository;

import com.manning.sbip.ch03.model.Course;

@Repository
public interface CourseRepository extends CrudRepository<Course, Long> {
 // The interface body is actually empty
}

You’ve annotated the CourseRepository interface with the @Repository annotation
to indicate this is a Spring repository. Notice that, although it seems to be an empty
interface, at runtime its concrete method implementation is provided by Spring Data
JPA, which is then used to perform the CRUD operations.

 The last change you need to perform is to update the application.properties file
with the spring.jpa.hibernate.ddl-auto property with the create value. This prop-
erty instructs the Hibernate (the default JPA provider in Spring Data JPA) to manage
the database tables for the entities. Note that this property is specific to Hibernate and
is not applicable if any other JPA provider is used. Let’s now write a test case to see the
CRUD operations in practice, as shown in the following listing.

package com.manning.sbip.ch03;

// Import Statements are excluded as a matter of readability

@SpringBootTest
class CourseTrackerSpringBootApplicationTests {

 @Autowired
 private CourseRepository courseRepository;

 @Test
 public void givenCreateCourseWhenLoadTheCourseThenExpectSameCourse() {
 Course course =

➥ new Course("Rapid Spring Boot Application Development",

➥ "Spring", 4, "'Spring Boot gives all the power of the

➥ Spring Framework without all of the complexities");
 Course savedCourse = courseRepository.save(course);

Listing 3.16 The CourseRepository interface

Listing 3.17 Unit test to validate CrudRepository methods

913.3 Understanding the CrudRepository interface

 assertThat(courseRepository.findById(savedCourse.getId())

➥ .get()).isEqualTo(course);
 }

 @Test
 public void givenUpdateCourseWhenLoadTheCourseThenExpectUpdatedCourse() {
 Course course =

➥ new Course("Rapid Spring Boot Application Development",

➥ "Spring", 4, "'Spring Boot gives all the power of the

➥ Spring Framework without all of the complexities");
 courseRepository.save(course);
 course.setRating(5);
 Course savedCourse = courseRepository.save(course);
assertThat(courseRepository.findById(savedCourse.getId())

➥ .get().getRating()).isEqualTo(5);
 }

 @Test
 public void givenDeleteCourseWhenLoadTheCourseThenExpectNoCourse() {
 Course course =

➥ new Course("Rapid Spring Boot Application Development",

➥ "Spring", 4, "'Spring Boot gives all the power of the

➥ Spring Framework without all of the complexities");
 Course savedCourse = courseRepository.save(course);
 assertThat(courseRepository.findById(savedCourse.getId())

➥ .get()).isEqualTo(course);
 courseRepository.delete(course);
 assertThat(courseRepository.findById(savedCourse.getId())

➥ .isPresent()).isFalse();
 }
}

In the unit test of listing 3.17, you’ve autowired the CourseRepository and defined
three test cases:

 The first test case creates a new course and saves it into the database. We then
find the course by its ID and assert that it is the same course we’ve created.

 The second test case creates and saves a course in the database. It then updates
the course rating of the course and asserts whether the update is successful.

 The last test case creates and deletes a course. It asserts whether the course
deletion is successful.

DISCUSSION

In this technique, you’ve learned to manage business domain objects through Spring
Data JPA. To start with, you’ve updated the business domain class with JPA annota-
tions. Spring Data JPA uses these annotations to manage the domain objects. Let’s
explore the JPA annotations in detail:

 @Entity—You’ve annotated the Course class with the @Entity annotation to
indicate that this class is a JPA entity. A JPA entity is a POJO class representing
the business domain object that needs to be persisted in a database table. As a

92 CHAPTER 3 Database access with Spring Data

default configuration, Spring Data uses the class name as the entity name. How-
ever, you can specify a custom entity name with the name attribute of @Entity
annotation (e.g., @Entity(name = "COURSE")).

 @Table—By default, the entity class name also represents the name of the database
table in which the entity data should be persisted. Thus, the Course POJO class
name (i.e., Course) ensures that course details should be persisted in a table
named COURSE in the database. Spring Data uses this as the default strategy if there
is no table information provided in the class. However, in this example, you’ve cus-
tomized the table name as COURSES with the @Table annotation. You can also spec-
ify several other tables-related information, such as the database schema name,
unique constraints and indexes for the table, and a custom table name.

 @Id—An entity requires an identifier to identify each row in the underlying
database table uniquely. The @Id annotation on a Java field in the business
domain class specifies the property as the primary key of the table. Based on the
application, a primary key can be a simple ID with a single field, or it can be a
composite ID with multiple fields. To see the use of the composite key in Spring
Data JPA, you can refer to http://mng.bz/ExzO.

 @Column—By default, Spring Data uses the class field names as the column
names in the database table. For example, the field name id represents the col-
umn ID in the database table. Besides, if you have a property with more than
one word in the camelCase format in your Java class, then the camelCase prop-
erty name in the class is represented as the camel_case in the database table
field. The words in the field are connected by an underscore (_). Thus, if
you’ve defined a property named courseId, it is represented as course_id in
the table column.

Although the default column naming strategy works well in most scenarios, you can’t
use it all the time. For example, your organization might have a predefined column
naming convention for the database table columns. Thus, you have a database column
name different from the generated column name. You can address this name mis-
match by specifying the corresponding database column name in the @Column annota-
tion in the POJO field. For instance, @Column(name= "COURSE_ID") uses COURSE_ID as
the column name in the COURSES table instead of the default generated name ID.
Besides, you have also noticed that the id field is annotated with the @GeneratedValue
annotation. This annotation indicates that the value of the annotated property is gen-
erated. The GeneratedValue annotation accepts a GenerationType strategy that
defines how the property value should be generated. The supported values are Table,
Identity, Sequence, and Auto. Let’s discuss these options briefly:

 Table—This option indicates that the persistence provider should assign pri-
mary keys for an entity using a database table.

 Identity—Identity indicates that the persistence provider should assign the pri-
mary keys for an entity using a database identity column.

http://mng.bz/ExzO

933.3 Understanding the CrudRepository interface

 Sequence—As the name suggests, this option allows the persistence provider to
assign the primary keys using a database sequence.

 Auto—This option allows the persistence provider to determine the ID-generation
scheme.

You’ve annotated the CourseRepository interface with the @Repository annotation.
This annotation serves two important purposes:

 Auto detection—The @Repository annotation is meta-annotated with the @Compo-
nent annotation. Thus, the Spring component scan can autodetect the repository
interfaces through the classpath scanning, and you can autowire in other classes.

 Exception translation—One major benefit of using Spring Data JPA is that it pro-
vides flexibility to switch the underlying persistence provider. For instance, you
can instruct Spring Boot to use EclipseLink as the JPA provider instead of
Hibernate. However, this also brings the overhead of handling EclipseLink
specific exceptions.

The @Repository annotation assists you in managing this overhead through its sup-
port for exception translation. An exception translation in this context means
converting a technology-specific exception type (e.g., SQLException, EclipseLink-
Exception, or HibernateException) to a generic Spring exception type (e.g., Data-
AccessException). Spring Data provides DataAccessException and a set of its child
exception classes, which are runtime exceptions. These exceptions wrap the original
technology-specific checked exceptions and enables you to define a consistent excep-
tion handling strategy through the DataAccessException.

JPA provides you with the flexibility to automatically infer the DDLs from the @Entity
classes and execute them in a database. The spring.jpa.hibernate.ddl-auto prop-
erty decides how to manage the DDLs in your application. The possible values for this
property are none, validate, update, create, and create-drop. The following list
provides a brief discussion on these options:

 none—Disables the automatic DDL management. It is the default value for
nonembedded databases.

 validate—Validates the schema but does not make any changes to the data-
base. Spring Boot throws an error if the database schema is not in expected
structure.

 update—Updates the already-existing schema if necessary.

Service and data access object (DAO) layer
Typically, you don’t use a repository or the DAO implementations directly in the applica-
tion. There should be a business service layer that acts as a bridge between the control-
ler and the repository or the DAO layer. However, for simplicity and teaching purposes,
in this demonstration, we’ve directly used the repository inside the test case.

94 CHAPTER 3 Database access with Spring Data

 create—Creates the schema and destroys already-existing data
 create-drop—Creates the schema and destroys at the end of the session. It is

the default value for embedded databases.

The property spring.jpa.hibernate.ddl-auto is specific to Hibernate, which is the
default persistence provider in Spring Boot. If you are using another persistent pro-
vider, you can use the more generic property spring.jpa.generate-ddl, which accepts
a boolean value.

In this technique, you’ve explored that you can use the CrudRepository interface to per-
form the CRUD operations in your application. However, at times you might need to
control the exposure of the CRUD methods. For instance, you may not want to expose
the delete(..) method that deletes business entities due to your application design. For
instance, many organizations won’t delete the application data and instead choose to
update the details as inactive in the database. In the next technique, you’ll learn to con-
trol the exposure of the CRUD methods by defining a custom Spring Data repository.

3.3.2 Technique: Creating a custom Spring Data repository with Spring
Data JPA to manage domain objects in a relational database

In this technique, we will demonstrate how to create custom Spring Data repositories.

PROBLEM

You want to use Spring Data repository interfaces to manage your application domain
objects but don’t want to expose all CRUD methods.

SOLUTION

Spring Data repository interfaces provide an excellent and easy way to manage the
business domain objects. It also lets you define your custom repository interfaces if
the framework provided does not meet your need. With this technique, you’ll define a
custom Spring Data repository interface and use it in your Spring Boot application.

schema.sql or spring.jpa.hibernate.ddl-auto
In the previous technique, you’ve explored that you can use the schema.sql to create
the database schema. In the current technique, you’ve learned the spring.jpa.
hibernate.ddl-auto property that can also instruct Spring Data JPA to create the
database schema based on the JPA annotations.

You’ll need to ensure that you choose either of the approaches to create the data-
base schema. If you choose to use schema.sql, then configure spring.jpa.hiber-
nate.ddl-auto property to none in the application.properties file.

Source code
You can find the base version of the Spring Boot project at http://mng.bz/NxD1. The
completed version of the Spring Boot project is available at http://mng.bz/DxGw.

http://mng.bz/NxD1
http://mng.bz/DxGw

953.3 Understanding the CrudRepository interface

To create a custom repository, you need to define a base repository interface that
extends the Spring Data’s Repository interface. You can then selectively specify
the CrudRepository methods you want to expose. Let’s define an interface called
BaseRepository that exposes only the save() and findAll() methods of the Crud-
Repository interface, as shown in the following listing.

package com.manning.sbip.ch03.repository;

import org.springframework.data.repository.NoRepositoryBean;
import org.springframework.data.repository.Repository;

@NoRepositoryBean
public interface BaseRepository<T, ID> extends Repository<T, ID> {

 <S extends T> S save(S entity);

 Iterable<T> findAll();

}

You’ve annotated this interface with @NoRepositoryBean annotation. As this is a base
interface, you don’t want Spring Data infrastructure to pick up this interface and cre-
ate a concrete instance of it. The @NoRepositoryBean annotation ensures that the
BaseRepository interface is excluded from the proxy object creation. You’ve also
provided the CrudRepository method signatures that you want to expose in the
BaseRepository interface. For these method invocations, Spring Data routes the
runtime calls to the actual JPA implementation class, as they match the CrudRepository
method signature.

 Let’s define a custom interface that extends the BaseRepository interface, as
shown in listing 3.19. This ensures that the custom repository has access to only the
methods defined in the BaseRepository interface.

package com.manning.sbip.ch03.repository;

import com.manning.sbip.ch03.model.Course;
import org.springframework.stereotype.Repository;

@Repository
public interface CustomizedCourseRepository

➥ extends BaseRepository<Course, Long> {
}

The CustomizedCourseRepository interface is similar to the CourseRepository
interface with the exception that it extends the BaseRepository interface and lets you
access only the save(..) and findAll() methods.

Listing 3.18 Defining the BaseRepository interface

Listing 3.19 Defining CustomizedCourseRepository interface

96 CHAPTER 3 Database access with Spring Data

 Let’s define a test case that uses the custom CustomizedCourseRepository inter-
face, as shown in listing 3.20. Notice that you can only invoke the save(..) and find-
All() methods. Trying to access other CrudRepository methods will result in a
compile-time error, since that method signature is not available in the BaseRepository
interface.

package com.manning.sbip.ch03;

// Import Statements are excluded as a matter of readability

@DataJpaTest
class CourseTrackerSpringBootApplicationTests {

 @Autowired
 private CustomizedCourseRepository customizedCourseRepository;

 @Test
 public void givenCreateCourseWhenFindAllCoursesThenExpectOneCourse() {
 Course course =

➥ new Course("Rapid Spring Boot Application Development",

➥ “Spring”, 4, “’Spring Boot gives all the power of the

➥ Spring Framework without all of the complexities");
 customizedCourseRepository.save(course);
 assertThat(Arrays.asList(customizedCourseRepository.findAll())

➥ .size()).isEqualTo(1);
 }
}

In listing 3.20, you’ve autowired the CustomizedCourseRepository and used it to cre-
ate a course. You then assert that one course has been created.

DISCUSSION

In this technique, you’ve learned how to define a custom repository interface in your
application. Although the CrudRepository interface is suitable in most of the scenar-
ios, sometimes it is useful to control the CRUD operations. With the @NoRepository-
Bean annotation, Spring Data lets you achieve this.

Listing 3.20 Unit test to validate the custom repository

@SpringBootTest vs. @DataJpaTest
In the previous technique, we’ve used the @DataJpaTest annotation instead of the
@SpringBootTest. The @SpringBootTest annotation is useful when you need to boot-
strap the entire Spring IoC container. Thus, this annotation creates the Application-
Context that is used in the tests. However, at times loading the complete container
is overkill. For instance, when you test the DAO layer, you are only interested to load
the related beans—not the entire ApplicationContext. To achieve this, Spring Boot
provides several annotations to slice the testing into different layers and tests only the
layer you are interested in. For instance, the @DataJpaTest annotation is provided to

973.4 Retrieve data from a database using Spring Data

3.4 Retrieve data from a database using Spring Data
In the previous sections, you’ve learned how to configure databases and manage busi-
ness domain objects or entities. In this section, you’ll learn several techniques to effi-
ciently access data from a database in a Spring Boot application.

3.4.1 Defining query methods

In previous techniques, you’ve seen how to use the CrudRepository interface to man-
age business domain objects. Although this interface provides standard CRUD opera-
tions, sometimes these generic methods are not sufficient. Instead, you may need
more fine-grained control to manage domain objects. For instance, you might need to
query entities based on entity properties instead of only relying on the entity ID (i.e.,
default findById(..)method).

 You may also need to query entities after applying some conditions on the entity
properties (e.g., Like, StartsWith, Containing, etc.). Further, you may also be inter-
ested in ordering (i.e., ascending or descending) the fetched entities based on one or
more entity properties.

 Spring Data JPA provides two ways to define custom query methods that can meet
most of these custom requirements:

 Defining custom methods in the repository interfaces with specific naming
patterns. Spring Data can internally parse these methods and generate the
query from it.

 Defining custom methods and providing an SQL query that is directly used by
the Spring Data to query the entities.

In this section, you’ll learn the first option to define query method signatures so that
Spring Data can parse the provided methods and generate the queries. Spring Data
has a predefined method naming pattern that is understood by its method parser. It
supports the following commonly used patterns:

 Query—For querying entities, it lets you define find..By, read..By, get..By,
query..By, stream..By, and search..By methods.

 Count—This pattern is used to define count..By() methods to count the entities.
 Exists—This pattern is used to define exists..By() methods that check the

existence of an entity.
 Delete—To delete entities, it lets you define delete...By() and remove...By()

methods.

test only the JPA components. Similarly, the @WebMvcTest focuses only on the Spring
MVC components. It is recommended that you use these feature-specific annotations
wherever applicable. You can find more information about feature-specific testing at
http://mng.bz/laK8.

http://mng.bz/laK8

98 CHAPTER 3 Database access with Spring Data

Additionally, you can also use additional clauses to fine-tune the methods. For instance,
you can use Distinct or All expression in the method. Further, you can also use the
And and Or expressions to concatenate additional entity properties.

 Spring Data uses the concept of a Subject and Predicate to parse the methods. It
splits the method signature based on the By clause and treats the first half as the sub-
ject and the remaining part as the predicate. Thus, if you define a method named
findDistinctCourseByCategoryOrderByName(), then the part DistinctCourse is the
subject, and the CategoryOrderByName is the predicate. This is demonstrated in fig-
ure 3.6. Let’s use a technique to learn how you can define query methods to retrieve
data from the database.

3.4.2 Technique: Defining custom query methods to retrieve domain
objects from a relational database with Spring Data JPA

In this technique, we’ll explore how to create custom query methods to retrieve enti-
ties from a relational database.

PROBLEM

You need to use Spring Data JPA to define custom query methods to retrieve entities
from a relational database in your Spring Boot application.

SOLUTION

Spring Data JPA lets you define custom query methods to retrieve business entity
details from the database. In this exercise, you’ll learn to use this technique by defin-
ing a few custom query methods in the CourseTracker application.

In the previous technique, you’ve used the CourseRepository interface to extend the
CrudRepository interface and accessed methods defined in it. Let’s modify the
CourseRepository interface to provide a few query method signatures, as shown in
the following listing.

Source code
You can find the base version of the Spring Boot project in the book’s companion
GitHub repository at http://mng.bz/BxO8. The final version of the project is available
at http://mng.bz/dogO.

findDistinctCourseByCategoryOrderByName

Subject

Predicate
Separator

Condition

Query
pattern Figure 3.6 Query method structure

http://mng.bz/BxO8
http://mng.bz/dogO

993.4 Retrieve data from a database using Spring Data

package com.manning.sbip.ch03.repository;

// Import Statements are excluded as a matter of readability

@Repository
public interface CourseRepository extends CrudRepository<Course, Long> {

 Iterable<Course> findAllByCategory(String category);
 Iterable<Course> findAllByCategoryOrderByName(String category);
 boolean existsByName(String name);
 long countByCategory(String category);
 Iterable<Course> findByNameOrCategory(String name, String category);
 Iterable<Course> findByNameStartsWith(String name);
 Stream<Course> streamAllByCategory(String category);
}

You’ve defined seven custom query methods that find the course details and related
information from the database. Let’s explain these methods in detail. Note that
you’ve only defined the method signatures and not provided any implementation for
these methods. Spring Data JPA parses the method signatures and ensures a concrete
implementation internally:

 findAllByCategory—This is the simplest query method you’ve defined in the
CourseRepository interface. You can relate it with the findById(..) method
defined in the CrudRepository interface that finds an entity with the supplied
entity ID. This method takes the same concept a step further and lets you
define a custom method that finds a list of entities that belongs to a category.
You can define more custom query methods that use other entity properties.
For instance, to find a course that matches the supplied course description, you
can define a method named findByDescription(String description).

 findAllByCategoryOrderByName—This is an extension to the findAllByCate-
gory(..) method with the exception that it returns courses in ascending order
of the course name.

 existsByName—This method checks if a course with the supplied name exists.
It returns true if the course exists or false otherwise.

 countByCategory—This method returns the count of courses for the supplied
category.

Listing 3.21 CourseRepository interface with custom query methods

Finds all courses by
category. A find query

returns an Iterable type.

Finds all courses by
category and orders
the entities by name

Checks if a course with the supplied name exists. Returns true if course
exists and false otherwise. Exists queries return the Boolean type.

Returns the count of courses for the supplied category.
Count queries can return an integer or long type.

Finds all courses that
match the supplied
course name or the

course category
Finds all courses that

start with the supplied
course name string

Finds all courses by
category and returns
a Java 8 Stream

100 CHAPTER 3 Database access with Spring Data

 findByNameOrCategory—Finds all courses that match the supplied course
name or the course category. Like the OR clause, you can also use the AND clause
if you need to define a query that requires both properties to be available.

 findByNameStartsWith—Finds all courses that start with the supplied course
name string. The supplied course name method parameter can be a substring
of the actual course name.

 streamAllByCategory—Finds all courses by category and returns a Java 8
Stream. A Stream return type is different from the Iterable return type, which
you’ve seen in the previous methods. An Iterable is a data structure that con-
tains the returned data that you can iterate. A Stream is not a data structure;
instead, it points to a data source from which the data can be streamed.

Let us define a test case to use these query methods in practice, as shown in the follow-
ing listing.

package com.manning.sbip.ch03;

// Import Statements are excluded as a matter of readability

@SpringBootTest
class CourseTrackerSpringBootApplicationTests {

 @Autowired
 private CourseRepository courseRepository;

 @Test
 public void givenCreateCourseWhenLoadTheCourseThenExpectSameCourse() {
 // Saving a list of courses
 courseRepository.saveAll(getCourseList());
 assertThat(courseRepository.findAllByCategory("Spring")).hasSize(3);
 assertThat(courseRepository.existsByName

➥ ("JavaScript for All")).isTrue();
 assertThat(courseRepository.existsByName

➥ ("Mastering JavaScript")).isFalse();
 assertThat(courseRepository.countByCategory("Python"))

➥ .isEqualTo(2);
 assertThat(courseRepository.findByNameStartsWith

➥ ("Getting Started")).hasSize(3);
 }

 private List<Course> getCourseList() {
 // Get Course List
 }
}

In the test case of listing 3.22, you have created a few courses and saved them into the
database table. You then used the custom query methods and asserted their outcome.
If you execute this test case, you’ll find that all assertions are true.

Listing 3.22 Unit test to validate custom query methods

1013.4 Retrieve data from a database using Spring Data

DISCUSSION

In this section, you’ve learned a couple of important concepts of Spring Data JPA.
Let’s summarize the concepts you’ve explored so far:

 You have learned how to define custom repository query methods based on the
entity properties. You’ve also seen how you can use various patterns, such as Or,
StartsWith, and OrderBy, to control the query and the returned result order-
ing. These are only a few expressions we’ve demonstrated in this example. You
can refer to http://mng.bz/raND to learn more about the other expressions
you can use in the query method name.

 You’ve seen how to define a repository method with a Java 8 Stream in the
repository interface and subsequently use the returned stream in your applica-
tion. This contrasts with the Iterable return type through which you return a
collection. You can leverage the Stream features, such as map-filter-reduce
techniques, using the defined repository Stream method. Refer to the Java 8
Stream to learn more about how to leverage the Stream features.

3.4.3 Implementing pagination with PagingAndSortingRepository

Pagination is a technique to break a large set of data into multiple pages. It is an effec-
tive and server-friendly way to return the results to your user. Typically, application
users will not look beyond the first few results, irrespective of the number of results
shown to them. Thus, retrieving, processing, and returning a large set of data, at times,
result in a waste of bandwidth and CPU time. Besides, if the returned data contains
resources such as images, it can slow down the application loading and impact the
user experience. Imagine showing a product catalogue with hundreds of items and
each catalogue item containing an image.

 Spring Data provides the PagingAndSortingRepository interface that provides
you with the ability to page and sort the returned data. And since this interface
extends CrudRepository, you can also access the core CRUD features provided in the
CrudRepository interface. Let’s explore the use of the PagingAndSortingRepository
interface in the next technique.

3.4.4 Technique: Using PagingAndSortingRepository interface to
paginate and sort the data

In this technique, we’ll demonstrate how to use Spring’s PagingAndSortingReposi-
tory interface for pagination and sorting.

PROBLEM

Loading, sorting, and returning a large set of data to the application users waste the
server resources and impact the application user experience. You need to return the
data into a smaller subset in terms of pages.

http://mng.bz/raND

102 CHAPTER 3 Database access with Spring Data

SOLUTION

Pagination is the technique to split the data into a smaller chunk, known as a page.
You can configure the size of the page that determines the number of records or data
contained in a page. For a better user experience, you can optionally sort the data in
ascending or descending order.

 In this technique, you’ll use Spring Data’s built-in PagingAndSortingRepository
to implement pagination. In this technique, we’ll load a few courses and return the
courses to the users in terms of pages.

Let’s define the CourseRepository interface that extends the PagingAndSortingRe-
pository interface, as shown in the following listing. We’ll look into the PagingAnd-
SortingRepository interface shortly.

@Repository
public interface CourseRepository extends PagingAndSortingRepository<Course,

Long> {

}

Next, let’s define a test case that uses the PagingAndSortingRepository interface, as
shown in the following listing.

@Test
void givenDataAvailableWhenLoadFirstPageThenGetFiveRecords() {
 Pageable pageable = PageRequest.of(0,5);
 assertThat(courseRepository.findAll(pageable)).hasSize(5);
 assertThat(pageable.getPageNumber()).isEqualTo(0);

 Pageable nextPageable = pageable.next();
 assertThat(courseRepository.findAll(nextPageable)).hasSize(4);
 assertThat(nextPageable.getPageNumber()).isEqualTo(1);
}

We are performing the following activities:

 Creating a PageRequest instance using the static of method by specifying the
page number and the number of records on the page. You’ve specified the page
number 0 and the record size on the page as 5.

Source code
You can find the base version of the Spring Boot project in the book’s companion
GitHub repository at http://mng.bz/VlZ0. The final version of the project is available
at http://mng.bz/xvVe.

Listing 3.23 Extending PagingAndSortingRepository

Listing 3.24 Unit test to use PagingAndSortingRepository

http://mng.bz/VlZ0
http://mng.bz/xvVe

1033.4 Retrieve data from a database using Spring Data

 Using a pageable instance in the findAll() method of the CourseRespository
to load the first page. This findAll() method is from the PagingAndSorting-
Repository interface.

 Using the various methods of Pageable instances to assert on the values, such as
next page and page number.

Let’s now explore the use of sorting facilities provided in the PagingAndSorting-
Repository interface, as shown in the following listing.

@Test
void givenDataAvailableWhenSortsFirstPageThenGetSortedSData() {
 Pageable pageable = PageRequest.of(0,5, Sort.by(Sort.Order.asc("Name")));
 Condition<Course> sortedFirstCourseCondition = new Condition<Course>() {
 @Override
 public boolean matches(Course course) {
 return course.getId() == 4

➥ && course.getName().equals("Cloud Native

➥ Spring Boot Application Development");
 }
 };
 assertThat(courseRepository.findAll(pageable))

➥ .first().has(sortedFirstCourseCondition);
}

@Test
void givenDataAvailableWhenApplyCustomSortThenGetSortedResult() {
 Pageable customSortPageable = PageRequest.of(0,5, Sort.by(“Rating”)

.descending().and(Sort.by(“Name”)));
 Condition<Course> customSortFirstCourseCondition = new

Condition<Course>() {
 @Override
 public boolean matches(Course course) {
 return course.getId() == 2

➥ && course.getName().equals("Getting Started

➥ with Spring Security DSL");
 }
 };
 assertThat(courseRepository.findAll(customSortPageable))

➥ .first().has(customSortFirstCourseCondition);
}

In the above code snippet, you’ve performed sorting of the data:

 First, with the custom sort order with the course name in ascending order
 Second, defining a custom sorting order with descending sorting order on

course rating and ascending sorting on course name

Listing 3.25 Pagination usage example

104 CHAPTER 3 Database access with Spring Data

DISCUSSION

The PagingAndSortingRepository is a useful interface that lets you achieve custom
pagination and sorting features in your application. The following listing shows this
interface from the Spring Data codebase.

@NoRepositoryBean
public interface PagingAndSortingRepository<T, ID> extends

➥ CrudRepository<T, ID> {

 Page<T> findAll(Pageable pageable);

 Iterable<T> findAll(Sort sort);

}

The first findAll(..) method takes an instance of Pageable. The Pageable interface
provides several useful methods to construct page requests as well as access the page
information. For instance, you’ve used the of(..) method to construct the page request
that lets you specify the page number with the number of records in it. Further, it also
allows you to access the previous and next pages.

 The second findAll(..) method takes an instance of Sort. The Sort class is flexi-
ble and provides myriad ways to construct a sorting order. For instance, in the second
test case, you have constructed a custom sort order with rating in descending and
name in ascending order.

3.4.5 Specifying query using @NamedQuery

In section 3.4.1, you saw there are two approaches to defining query methods. You
learned the first approach in the defining custom query methods to retrieve domain
objects from a relational database with Spring Data JPA technique, where we explained
how to define custom query method signatures from which Spring Data generates the
queries. In this section, you’ll learn the other approach to manually define custom que-
ries directly in your repository methods, so Spring Data can use them as is instead of
deriving them through the names of the methods.

 Although the method name-based query approach works fine in most circum-
stances, sometimes you would like to define the queries explicitly that should be used
by Spring Data. Let’s discuss the scenarios in which you might want to use this alterna-
tive approach:

 If you have defined a fine-tuned query and leveraged datastore-specific features.
 If there is a requirement to access more than one table with table joins. In this

scenario, you might have defined a query that joins multiple tables.

In this section, you’ll learn several features to manually specify the query using Spring
Data’s NamedQuery, Query, and QueryDSL features. In this section, let’s start with the
NamedQuery feature.

Listing 3.26 The PagingAndSortingRepository interface definition

1053.4 Retrieve data from a database using Spring Data

 A NamedQuery is a predefined query that is associated with a business entity. It uses
Jakarta Persistence Query Language (JPQL; see http://mng.bz/AxpK) to define the
query. You can define a NamedQuery in an entity or its superclass. You’ll see an exam-
ple of this shortly.

 You can define a named query with the @NamedQuery annotation in your entity
class. This annotation has four arguments: name, query, lockMode, and hints. The
name and query attributes of the @NamedQuery annotations are mandatory, whereas
the remaining two attributes are optional. Let’s start with the next technique that
shows the usage of NamedQuery in your Spring Boot application.

3.4.6 Technique: Using a named query to manage domain objects in a
relational database with Spring Data JPA

In this technique, we’ll discuss how to use named query to manage domain objects.

PROBLEM

You need to use named query with Spring Data JPA to define custom queries in repos-
itory interface methods to manage domain objects in a relational database.

SOLUTION

Although the query methods with query method signature definition approach work
well enough in most scenarios, there are cases in which it has some limitations. For
instance, if you need to join multiple tables and retrieve the data, there is no easy way
to define the method signatures. With the named query, you can provide the query
along with the method signature so that the same can be used to retrieve the data.

To begin with, let’s modify the Course class to add the @NamedQuery annotation, as
shown in the following listing.

package com.manning.sbip.ch03.model;

import javax.persistence.*;

@Entity
@Table(name = "COURSES")
@NamedQuery(name = "Course.findAllByCategoryAndRating",

➥ query = "select c from Course c where c.category=?1

➥ and c.rating=?2")
public class Course {

Source code
You can find the base version of the Spring Boot project in the book’s companion
GitHub repository at http://mng.bz/Zz6O. The final version of the project is available
at http://mng.bz/REr0.

Listing 3.27 Course interface with @NamedQuery annotation

The @NamedQuery annotation lets you
specify the query for the repository
method in JPQL format.

http://mng.bz/AxpK
http://mng.bz/Zz6O
http://mng.bz/REr0

106 CHAPTER 3 Database access with Spring Data

 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private long id;
 private String name;

 // Remaining parts omitted for brevity
}

In the Course POJO, you’ve provided the query details that fetch all courses by the
supplied category in the @NamedQuery annotation. The name attribute contains the
entity and method name concatenated with a dot(.). In the query, you’ve provided the
query along with two positional parameters: ?1 and ?2. It uses the supplied parameter
values when the repository method is invoked.

 Further, you can use @NamedQuery annotation more than once in the entity if you
need to define more than one repository method for which you want to use the
@NamedQuery feature, which is shown in the following listing.

@Entity
@Table(name = "COURSES")
@NamedQueries({
 @NamedQuery(name = "Course.findAllByRating",

➥ query = "select c from Course c where c.rating=?1"),
 @NamedQuery(name = "Course.findAllByCategoryAndRating",

➥ query = "select c from Course c

➥ where c.category=?1 and c.rating=?2"),
})
public class Course {

// other members are excluded as a matter of readability
}

Let us redefine the CourseRepository interface, which now contains a custom
method with the same method name provided in the @NamedQuery annotation in the
Course entity. The following listing shows the updated CourseRepository interface.

package com.manning.sbip.ch03.repository;

// Import Statements are excluded as a matter of readability

@Repository
public interface CourseRepository extends CrudRepository<Course, Long> {

 Iterable<Course> findAllByCategoryAndRating(String category, int rating);
}

Listing 3.28 Use of @NamedQueries annotation to include multiple @NamedQuery
annotation

Listing 3.29 CourseRepository interface with the method defined in @NamedQuery
annotation

The repository method is defined in the
@NamedQuery annotation. It is defined here,

so you can use it with CourseRepository
instance.

1073.5 Specifying query using @Query

Let’s validate the use of the findAllByCategoryAndRating(..) method by defining a
test case, as shown in the following listing.

package com.manning.sbip.ch03;

// Import Statements are excluded as a matter of readability

@SpringBootTest
class CourseTrackerSpringBootApplicationTests {

 @Autowired
 private CourseRepository courseRepository;

 @Test
 public void givenCoursesCreatedWhenLoadCoursesBySpringCategory

➥ ThenExpectThreeCourses(){
 courseRepository.saveAll(getCourseList());
 assertThat(courseRepository

➥ .findAllByCategoryAndRating("Spring", 4)).hasSize(1);
 }

 private List<Course> getCourseList() {
 // get course list
 }
}

If you run the test case, you’ll see it executes successfully. In the next section, let’s dis-
cuss the @Query annotation.

3.5 Specifying query using @Query
Although the named queries to declare queries in the entity class work fine, they
unnecessarily add persistence information in the business domain class (recall that
you added the @NamedQuery annotation in the Course class). This can be a concern, as
it tightly couples the persistence details in the business domain classes.

 As an alternative, you can provide the query information in the repository inter-
face. This co-locates the query method and the JPQL query together. You can use the
@Query annotation in the repository interface methods to do this. Besides, the benefit
of using the @Query annotation over the named queries is that the @Query annotation
lets you use the native SQL queries as well. Thus, you can use both JPQL as well as
native SQL queries with the @Query annotation. Let’s explore the use of @Query anno-
tation in the next technique.

3.5.1 Technique: Using @Query annotation to define queries and retrieve
domain objects in a relational database with Spring Data JPA

In this technique, we’ll discuss how to use @Query annotation to define and retrieve
domain objects.

Listing 3.30 Unit test to use @NamedQuery annotation

108 CHAPTER 3 Database access with Spring Data

PROBLEM

You want to use @Query annotation with Spring Data JPA to define custom queries in
repository interface methods to manage domain objects in a relational database.

SOLUTION

The @Query annotation allows you to provide the queries along with the method sig-
nature in the repository interface. This is considered a better approach, as the busi-
ness domain objects are kept free from persistence-related information.

Let’s redefine the CourseRepository interface in which you’ll provide three reposi-
tory methods using the @Query annotation, as shown in the following listing.

package com.manning.sbip.ch03.repository;

// Import Statements are excluded as a matter of readability

@Repository
public interface CourseRepository extends CrudRepository<Course, Long> {

 @Query("select c from Course c where c.category=?1")
 Iterable<Course> findAllByCategory(String category);
 @Query("select c from Course c where

➥ c.category=:category and c.rating >:rating")
 Iterable<Course>

➥ findAllByCategoryAndRatingGreaterThan(@Param("category")

➥ String category, @Param("rating") int rating);

 @Query(value = "select * from COURSE where rating=?1",

➥ nativeQuery = true)
 Iterable<Course> findAllByRating(int rating);

 @Modifying
 @Transactional

Source code
You can find the base version of the Spring Boot project in the book’s companion
GitHub repository at http://mng.bz/2jRd. The final version of the project is available
at http://mng.bz/1jZV.

Listing 3.31 Updated CourseRepository with custom query methods with @Query
annotation

The repository method that finds all
the courses belong to the supplied
category. The @Query annotation

lets you specify the JPQL Query. You
have used a positional argument with
?1, which is replaced by the supplied

category in this example.

The repository method finds all the courses that belong to the
supplied category and has a rating value greater than the one
supplied in the rating parameter. You have used named parameters
in this example. These named parameters are replaced by the
supplied category and rating values in this example.

The repository method that finds all the courses for a given
rating. This is not a JPQL query, and we’ve set the nativeQuery
to true to indicate this query is a native SQL database query.

http://mng.bz/2jRd
http://mng.bz/1jZV

1093.5 Specifying query using @Query

 @Query("update Course c set c.rating=:rating

➥ where c.name=:name”)
 int updateCourseRatingByName(@Param(“rating”) int rating,

➥ @Param("name") String name);
}

There is quite a lot happening in the updated CourseRepository interface. Let us
examine what it’s achieved in detail:

 You’ve used the @Query annotation to define the JPQL query that should be
used by Spring Data to fetch the courses. This query is similar to what you’ve
used in the named queries technique in section 3.4.6. This query also uses posi-
tional arguments to use the supplied argument. In this query, you are retrieving
all courses that belong to the provided category.

 In the next query, you’ve used the @Query annotation to define the query to be
used by Spring Data. However, there are a few notable differences in the syntax.
Instead of the positional argument-based approach, you’ve used named parame-
ters. Although the positional-based approach works well, at times it is error-
prone if the position of the parameter changes while performing code refactor-
ing. To avoid this issue, you are using the @Param annotation to provide the
parameter with a name and binding the name in the query.

 In the third query, you’ve specified an SQL query and set the nativeQuery flag
to true to indicate the query is a native SQL query. Typically, different database
vendors offer database-specific features that are native to the specific database.
Thus, if you need to leverage database-specific features, you can define the SQL
query with nativeQuery flag set to true.

 The fourth query is quite interesting. So far, most of the queries in the earlier
demonstrations have been used to retrieve data from the database. Unlike those
queries, the fourth query is a data manipulation query that updates content in
the database. Along with the @Query annotation, this method also specified two
additional annotations and a different return type. Let’s explain these in detail:
– The @Transactional annotation is used to bound the method execution in a

transaction context, as it is performing a database update. Note that we are
not performing any transaction explicitly; instead, Spring is managing the
transaction via aspect-oriented programming.

– The @Modifying annotation indicates that the query specified in the @Query
annotation is a modifying query. This annotation only works in conjunction
with the @Query annotation. In addition to the UPDATE statements, you can
also specify INSERT, DELETE, and other DDL statements in the @Query annota-
tion. Note that we’ll get an InvalidDataAccessApiUsageException if this
annotation is not specified.

The repository method lets you update a course rating. The @Modifying annotation indicates that
the query specified in the @Query annotation is a modifying query. The @Transactional annotation
bounds the method execution in a transaction context as it is performing a database update.

110 CHAPTER 3 Database access with Spring Data

– The return type of the query must be either int/Integer or void, as it is a
modifying query. If the return type is int/Integer, it returns the number of
rows modified by the query.

To understand the supported return types in the query methods, you can refer to
Spring Data JPA documentation at http://mng.bz/W7Z4 for a list of supported return
types. Let’s now define a test case to see these methods in practice, as shown in the fol-
lowing listing.

package com.manning.sbip.ch03;

// Import Statements are excluded as a matter of readability

@DataJpaTest
class CourseTrackerSpringBootApplicationTests {

 @Autowired
 private CourseRepository courseRepository;

 @Test
 public void givenCoursesCreatedWhenLoadCoursesWithQuery

➥ ThenExpectCorrectCourseDetails() {
 saveMockCourses();
 assertThat(courseRepository.findAllByCategory("Spring"))

➥ .hasSize(3);
 assertThat(courseRepository.findAllByRating(3)).hasSize(2);
 assertThat(courseRepository.findAllByCategory

➥ AndRatingGreaterThan("Spring", 3)).hasSize(2);
 courseRepository.updateCourseRatingByName(4,

➥ "Getting Started with Spring Cloud Kubernetes");
 assertThat(courseRepository.findAllByCategory

➥ AndRatingGreaterThan("Spring", 3)).hasSize(3);
 }

 private void saveMockCourses() {
 // Save List of Courses
 }
}

If you execute this test case, you’ll find that all the assertions are true.

DESCRIPTION

The @Query mechanism is an excellent feature that lets you specify the JPQL and the
SQL queries directly in the repository query methods. It offers several benefits com-
pared to the other two approaches (e.g., query methods and named query).

 The Spring Data query method has a limitation when you need to fetch data
from multiple tables and when you wish to use any native database feature. The
@Query approach is useful if you need to fetch data from multiple tables with a com-
plex table join query. You can define the query and let the Spring Data repository

Listing 3.32 Unit test to examine the use of the @Query annotation

http://mng.bz/W7Z4

1113.6 Using Criteria API with Spring Data JPA

use the query to retrieve the data. You can also use native SQL features of the under-
lying database if required.

 Although similar, the named query approach introduces persistence details with
@NamedQuery annotation, which is not always considered a best practice. An attentive
reader might counter that the @Query approach also specifies native SQL queries
inside the Java class, which also is not considered as a best practice. To overcome
this problem, Spring Data also lets you externalize the queries in a property file. You
can create a folder named META-INF inside the src\main\resources folder. Add a
file named jpa-named-queries.properties inside the META-INF folder. You can then
externalize the queries in the Entity.finderMethod=Query format. For example,
you can externalize the query for the findAllByCategory(..) method, as shown
here: Course.findAllByCategory = select c from Course c where c.category=?1.
Spring Data automatically refers to this externalized query when it needs to execute
the findAllByCategory(..) method.

 Although the named query and the query approaches seem like excellent alterna-
tives to control how to fetch data, both techniques suffer from a major drawback. In
these approaches, there is no syntax check of the provided query at compile time, and
any syntax issue in the query only surfaces at run time. In the next section, you’ll learn
two different techniques to programmatically define queries in a type-safe manner.

3.6 Using Criteria API with Spring Data JPA
One of the major drawbacks of using JPQL is the lack of its type safety and absence of
static query checking. This is because JPQL queries are not validated at compile time.
Thus, any error in the query can only be detected at execution time.

 The Criteria API (http://mng.bz/8lnZ) introduced in JPA 2.0 adds a type-safe way
to create queries. It lets you express a query in a programmatic and type-safe manner.
The type safety of a query is achieved using the interfaces and classes that represent
various parts of the query, such as the select clause, order-by, and others. Type safety is
also achieved in terms of referencing attributes of an entity. Let’s define a technique
to see the use of Criteria API in conjunction with Spring Data JPA.

3.6.1 Technique: Using Criteria API to manage domain objects in a
relational database with Spring Data JPA

In this technique, we’ll demonstrate the use of Criteria API.

PROBLEM

Previously, you’ve used JPQL or native SQL queries to access data from the database.
However, both JPQL and SQL do not provide any mechanism to validate the correct-
ness of the queries at compile time. Instead, all query syntax issues are detected at
runtime. You need to implement a technique that lets you define queries program-
matically in a type-safe manner to reduce execution-time errors in the queries.

http://mng.bz/8lnZ

112 CHAPTER 3 Database access with Spring Data

SOLUTION

Criteria API is a native API of JPA specification. Thus, you don’t need additional libraries
to use in your Spring Boot application.

Most of the components in the CourseTracker application require no change to use
Criteria API. Thus, the previously defined Course class, CourseRepository interface,
and other configurations remain unchanged. Let’s define a test case to see the use of
Criteria API in practice, as shown in the following listing.

package com.manning.sbip.ch03;

// Import Statements are excluded as a matter of readability

@SpringBootTest
class CourseTrackerSpringBootApplicationTests {

 @Autowired
 private CourseRepository courseRepository;

 @Autowired
 private EntityManager entityManager;

 @Test
 public void givenCoursesCreatedWhenLoadCoursesWithQuery

➥ ThenExpectCorrectCourseDetails() {
 courseRepository.saveAll(getCourseList());

 CriteriaBuilder criteriaBuilder =

➥ entityManager.getCriteriaBuilder();

 CriteriaQuery<Course> courseCriteriaQuery =

➥ criteriaBuilder.createQuery(Course.class);

 Root<Course> courseRoot = courseCriteriaQuery

➥ .from(Course.class);

 Predicate courseCategoryPredicate =

➥ criteriaBuilder.equal(

➥ courseRoot.get("category"), "Spring");

 courseCriteriaQuery.where(courseCategoryPredicate);

 TypedQuery<Course> query =

➥ entityManager.createQuery(courseCriteriaQuery);

Source code
You can find the base version of the Spring Boot project in the book’s companion
GitHub repository at http://mng.bz/PWB9. The final version of the project is available
at http://mng.bz/J1W0.

Listing 3.33 Unit test to demonstrate the use of Criteria API

http://mng.bz/PWB9
http://mng.bz/J1W0

1133.6 Using Criteria API with Spring Data JPA

 Assertions.assertThat(query.getResultList()

➥ .size()).isEqualTo(3);

 }

 private List<Course> getCourseList() {
 // Get Courses
 }
}

You perform the following activities in the test case:

 Autowire the EntityManager in the test class and use it to create an instance of
CriteriaBuilder. An EntityManager instance is associated with a persistence
context, which is a set of entity instances. Within the persistence context, the
entity instances and their lifecycle are managed. The CriteriaBuilder instance
allows you to construct criteria queries, selections, ordering, and more.

 The returned CriteriaBuilder is used to define a CriteriaQuery, and its type
is bound to the Course type.

 You then define the Root of the query using the returned CriteriaQuery.
 Subsequently, you define a Predicate that defines a condition. In this example,

the predicate represents the category as Spring.
 Lastly, you used the predicate in the previously defined CriteriaQuery and

define a TypedQuery, which provides the query output.

DISCUSSION

To use Criteria API in your application, you need to follow a series of steps to con-
struct the query. At first, you define an instance of CriteriaBuilder instance through
the EntityManager. Subsequently, you use this CriteriaBuilder instance to create
any of the CriteriaQuery, CriteriaUpdate, CriteriaDelete instances based on your
need. CriteriaQuery provides you with the functionalities to construct a query. The
CriteriaUpdate and CriteriaDelete allow you to define queries to perform bulk
updates and deletes, respectively.

 You then use CriteriaQuery to construct various query parts using methods, such
as from(..), where(..), groupBy(), orderBy(), and others. A CriteriaQuery instance
is typed, as you use the entity type in the CriteriaBuilder interface to create it. For
instance, in the test case shown earlier, you’ve used the Course type to bound the type.
You use CriteriaQuery to define the query root, which is always the reference entities
(e.g., Course in our example).

 The obtained Root is used to define the expressions. For instance, we have defined
the expression that the course category is Spring. This expression is used to define a
Predicate, which is used in CriteriaQuery. You use the EntityManager instance to
create a TypedQuery from the already created CriteriaQuery. The TypedQuery inter-
face controls the execution of the types of queries. You used the methods provided in
the TypedQuery instance to obtain the query result. For example, we’ve used the get-
ResultList(..) method to execute the query and retrieve the result.

114 CHAPTER 3 Database access with Spring Data

 Providing an in-depth guide to Criteria API is beyond the scope of this book. You
can refer to chapter 6 of the JPA specification, which is available at http://mng.bz/
wnrq, to learn more about this API.

3.7 Using QueryDSL with Spring Data JPA
In section 3.6 you explored the use of Criteria API with Spring Data JPA. Although
Criteria API is a native JPA API, one of the major challenges is its verbose nature. To
execute even a simple SELECT query, you need to write quite a few lines of code.

 The Querydsl (http://www.querydsl.com/) is an alternative third-party library that
also lets you build type-safe queries more concisely using its fluent API. Like Criteria
API, it also ensures that the following checks are made at compilation time:

 Entity types specified in a query exist and can be persisted in the database.
 All properties used in a query exist in the entity and can be persisted in the

database.
 All SQL operators receive values of expectant type.
 The resulting query is syntactically correct.

Spring Data provides a QuerydslPredicateExecutor interface to leverage QueryDSL
features in Spring Data modules. In the next technique, let’s examine the use of
Querydsl with JPA.

3.7.1 Technique: Using QueryDSL to manage domain objects in a
relational database with Spring Data JPA

In this technique, we’ll discuss the use of QueryDSL.

PROBLEM

Criteria API is a native JPA API and provides a means to build queries in a type-safe man-
ner. However, this API is often criticized for being verbose, as you need to perform too
many tasks to even execute a simple query. You need a relatively simple alternative.

SOLUTION

QueryDSL is an alternative to Criteria API that provides a fluent and concise API. Like
Criteria API, it allows you to define the queries programmatically in a type-safe man-
ner. In this technique, you’ll see the use of QuerydDSL API with Spring Data JPA to
manage domain objects in a relational database.

Source code
You can find the base version of the Spring Boot project in the book’s companion
GitHub repository at http://mng.bz/q2Ew. The final version of the project is available
at http://mng.bz/7Wn9.

http://mng.bz/wnrq
http://mng.bz/wnrq
http://mng.bz/wnrq
http://www.querydsl.com/
http://mng.bz/q2Ew
http://mng.bz/7Wn9

1153.7 Using QueryDSL with Spring Data JPA

To use QueryDSL, we need to add the querydsl-apt, querydsl-jpa Maven depen-
dencies and the apt-maven-plugin plugin in the pom.xml to enable the Querydsl
capabilities in the application, as shown in the following listing.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

➥ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

➥ https://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 // Other pom.xml components

 <dependencies>
 // Other dependencies
 <dependency>
 <groupId>com.querydsl</groupId>
 <artifactId>querydsl-apt</artifactId>
 </dependency>
 <dependency>
 <groupId>com.querydsl</groupId>
 <artifactId>querydsl-jpa</artifactId>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 <plugin>
 <groupId>com.mysema.maven</groupId>
 <artifactId>apt-maven-plugin</artifactId>
 <version>1.1.3</version>
 <executions>
 <execution>
 <phase>generate-sources</phase>
 <goals>
 <goal>process</goal>
 </goals>
 <configuration>
 <outputDirectory>

➥ target/generated-sources/java</outputDirectory>
 <processor>com.querydsl.apt.jpa.JPAAnnotationPro-

cessor</processor>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>

</project>

Listing 3.34 Updated pom.xml file with QueryDSL dependencies and apt-maven-plugin

116 CHAPTER 3 Database access with Spring Data

Let’s explore the use of these additional Maven dependencies and the plugin:

 The querydsl-apt library is an annotation processing tool (APT) that enables
the processing of the annotation in the source files before they move to the
compilation stage. This tool generates the so-called Q-types classes that are
related to the entity classes present in the application. These Q-types are
classes that are directly related to the entity classes of your application but are
prefixed with the letter Q. For example, for the Course entity, you’ll see a
QCourse.java source file created by this tool.

 The querydsl-jpa is the Querydsl library designed to be working alongside a
JPA application. Similarly, if you would like to use QueryDSL with MongoDB
database, you need to use querydsl-mongodb Maven dependency.

 The apt-maven-plugin ensures that the Q-types are generated at the time of
the process goal of the Maven build. Besides, as the name indicates, the output-
Directory property is the place where the generated Q-types are kept. Fur-
thermore, this directory needs to be included as the source folder of the
project, as you’ll use these generated Java files in your application.

Let’s now focus on the CourseRepository interface, as shown in the following listing.

package com.manning.sbip.ch03.repository;

// Import Statements are excluded as a matter of readability

@Repository
public interface CourseRepository

➥ extends CrudRepository<Course, Long>,

➥ QuerydslPredicateExecutor<Course> {
}

You can notice that, along with the CrudRepository interface, CourseRepository now
also extends the QuerydslPredicateExecutor interface. Although this interface is
not compulsory to be implemented to use Querydsl, it provides several overloaded
methods that let you use Querydsl instances with the familiar query methods (e.g.,
Iterable<T> findAll(OrderSpecifier<?>... orders);). Note that the query method
from the CrudRepository interface does not take any argument. You’ll see the usage
of the methods from this interface shortly.

 For this demonstration, there is no change in the Course POJO. Since the common
IDEs are automatically configured to process annotations, you should find the gener-
ated QCourse.java Java file in the configured outputDirectory, as configured in the
apt-maven-plugin plugin in the pom.xml file. For this demonstration, you’ve config-
ured the target/generated-sources/java directory where this QCourse.java file is gener-
ated. If the sources are not generated automatically, then you can run the mvn generate-
sources command from the root directory of your project to generate the source code.

Listing 3.35 Updated CourseRepository interface with QuerydslPredicateExecutor

1173.7 Using QueryDSL with Spring Data JPA

 Ensure that the root package of the generated java file is marked as the source
directory. Otherwise, you won’t be able to use this Java file in your application. In
IntelliJ IDEA, you can right-click on the java folder inside the generated-sources
folder and click on Mark Directory as and then Generated Sources Root options.

 You’ll now use the generated QCourse class to define the queries in our application
codebase. Typically, you’ll use the Q-classes inside the service layer to define the que-
ries. To keep things simple, we will define a test case and use the QCourse class to
define the queries, which is demonstrated in the following listing.

package com.manning.sbip.ch03;

// Imports excluded as a matter of readability

@SpringBootTest
class CourseTrackerSpringBootApplicationTests {

 @Autowired
 private CourseRepository courseRepository;

 @Autowired
 private EntityManager entityManager;

 @Test
 public void givenCoursesCreatedWhenLoadCoursesWithQuery

➥ ThenExpectCorrectCourseDetails() {
 courseRepository.saveAll(getCourseList());

 QCourse course = QCourse.course;
 JPAQuery query1 = new JPAQuery(entityManager);
 query1.from(course).where(course.category.eq("Spring"));

 assertThat(query1.fetch().size()).isEqualTo(3);

 JPAQuery query2 = new JPAQuery(entityManager);
 query2

➥ .from(course)

➥ .where(course.category.eq("Spring")

➥ .and(course.rating.gt(3)));
 assertThat(query2.fetch().size()).isEqualTo(2);
 OrderSpecifier<Integer> descOrderSpecifier =

➥ course.rating.desc();
 assertThat(Lists.newArrayList(

➥ courseRepository.findAll(descOrderSpecifier))

➥ .get(0).getName())

➥ .isEqualTo("Getting Started with Spring Security DSL");
 }

 private List<Course> getCourseList() {
 // getCourseList implementation goes here. Method body is excluded as

a matter of readability
 }
}

Listing 3.36 Unit test to examine the use of QueryDSL

Defines a
course instance

Creates a
JPAQuery
instance

Builds the query using
the from and where

clauses. Notice the use
of DSL (e.g., the use of

from and where).

Executes the
query and

retrieves the
courses

OrderSpecifier represents
the order-by instance in
the course. In this case, we
are creating a descending
order-by instance with the
course rating.

118 CHAPTER 3 Database access with Spring Data

Let’s discuss the test case in detail:

 It has a dependency on the CourseRepository and the EntityManager. The
EntityManager is used to create the JPA query instances.

 You have defined a local variable named course and initialized it with the
QCourse.course static instance.

 Subsequently, you have created an instance of JPAQuery using the EntityManager.
It is the default implementation of the JPQLQuery interface for JPA in Querydsl.

 You then start building the query using Querydsl’s fluent API. You pass the
course instance to the from() method of JPAQuery and build the conditional
clause of the query using the where() method.

 Following that, you invoke the fetch() method on the created query to fetch
courses from the database and assert the result.

 Subsequently, in the next JPAQuery (query2), you’ve used the and(..) method
in the where() method to provide additional criteria in the query.

 You then invoke fetch() on the generated query and assert the result.
 Lastly, you’ve created an instance of OrderSpecifier, which represents the

order-by instance in the Course. It defines the descending order based on the
rating property of the Course entity.

 You then use the findAll(..) method of CourseRepository that accepts the
OrderSpecifier instance. It returns all courses ordered as per the Order-
Specifier instance.

Note that this findAll(..) method is from QuerydslPredicateExecutor. Since Course-
Repository extends this interface, you can invoke using the CourseRepository instance.

DISCUSSION

With this technique, you’ve seen the use of Querydsl API with Spring Data JPA.
Querydsl is a popular framework that enables you to construct statically typed SQL-
like queries for several data sources. One of the major reasons for this library’s popu-
larity is its static type checking, fluent API, and concise nature. This static type check
ensures that queries are syntactically correct at compilation time.

 QueryDSL was introduced to maintain Hibernate Query Language (HQL) queries
in a type-safe way. Incorrect string concatenation and reference to domain types and
properties in HQL queries often lead to runtime query execution issues. QueryDSL
reduces these errors by performing static type checking at query compilation time. In
QueryDSL, queries are constructed based on the generated query types, which are
essentially the properties of the business domain class. In the QueryDSL method invo-
cations are also done in a type-safe manner. You can refer to the QueryDSL reference
manual at http://mng.bz/mx9r for further details.

http://mng.bz/mx9r

1193.8 Managing domain object relationships

3.8 Managing domain object relationships
Accessing data from a single table is relatively simple, but this is seldom the case for
modern enterprise applications. In most scenarios, you are likely to use more than
one table to retrieve the required data.

 In the relational database nomenclature, retrieving the required columns from dif-
ferent tables is known as projection. Spring Data lets you use projections either through
interface-based projection or class-based projection.

 An interface-based projection allows you to limit the attributes of an entity by declaring
an interface that exposes accessor methods for the properties to be read. For instance,
if you want to read only the description field of the Course entity when finding the
courses by course name, you can first define an interface that returns the only descrip-
tion, as shown in the following listing.

package com.manning.sbip.ch03.ibp;

public interface DescriptionOnly {
 String getDescription();
}

You can then add a query method in the CourseRepository interface that returns a
collection of DescriptionOnly types, as shown in the following listing.

package com.manning.sbip.ch03.repository;

// Import Statements are excluded as a matter of readability

@Repository
public interface CourseRepository extends CrudRepository<Course, Long> {

Criteria API vs. QueryDSL
In the previous two techniques, you’ve seen the usage of both Criteria API and the
QueryDSL library. The next question that comes to mind is: which one should you use
in your application? Well, both APIs are popular and widely used. Following are a few
points to consider when deciding which API to use:

 The Criteria API is a native JPA library and, thus, has native support in JPA,
whereas the QueryDSL is an open-source, third-party library.

 The Criteria API is criticized for its verbosity and complex nature of the API.
You need to write more to even execute a simple query. The QueryDSL has a
more approachable API due to the simpler and English-like API.

 Criteria API is only applicable for JPA. QueryDSL has integration with other
data stores, such as MongoDB, Lucene, and JDO.

Listing 3.37 Interface-based projection

Listing 3.38 Query method with interface-based projection

120 CHAPTER 3 Database access with Spring Data

 Iterable<DescriptionOnly> getCourseByName(String name);
}

The test case presented in the following listing validates the interface-based projection.

@Test
public void givenACourseAvailableWhenGetCourseByName

➥ ThenGetCourseDescription() {
 Iterable<DescriptionOnly> result =

courseRepository.getCourseByName("Rapid Spring Boot

➥ Application Development");

assertThat(result)
 .extracting("description").contains("Spring Boot

➥ gives all the power of the Spring Framework without all

➥ of the complexity");
}

The getCourseByName(..) method returns an Iterable of type DescriptionOnly,
and we retrieve the description. Next, we assert the returned description with the
actual description.

 A class-based projection is also referred to as a data transfer object (DTO). A DTO is a
Java POJO class that contains the selected properties returned by the query. As the
name suggests, the main purpose of this object is to transfer data from the DAO layer
to a higher layer, such as the service layer. You may recall that, as a best practice, a ser-
vice layer bridges the DAO layer, and the Spring controllers and DAO layers are not
accessed directly. You’ll examine an example of class-based projection shortly.

 Another important concept to understand while dealing with more than one entity
is the relationship between them. Based on their association, this relationship is classi-
fied into the following categories:

 One-to-One—This relationship type indicates that one entity is associated with
exactly one entity of the other type. For example, in our Course entity example,
let’s assume we have another entity named CourseDetails that captures the
additional details about a Course. Thus, we can say that the Course and Course-
Details entities have a One-to-One relationship, as a Course can have only one
CourseDetails.

 One-to-Many—This relationship type indicates that one entity is associated with
more than one entity of the other type. For instance, an entity Person can have
more than one Address. Thus, the relationship between the Person and the
Address is One-to-Many.

 Many-to-One—This relationship type indicates that many entities of one type
are associated with one entity of the other type. For instance, the relationship
between the entity Book and entity Publisher is of Many-to-One, as multiple
Books can be published by a Publisher.

Listing 3.39 Unit test to validate interface-based projection

1213.8 Managing domain object relationships

 Many-to-Many—This relationship type indicates that more than one entity of one
type is associated with more than one type of the other entity type. For instance,
in the course management example, one Course may be authored by multiple
Authors. Similarly, one Author can author multiple Courses. The relationship in
this context is Many-to-Many between the author and course entities.

Let’s demonstrate the use of DTO and the implementation of a many-to-many rela-
tionship in the following technique.

3.8.1 Technique: Managing domain objects with many-to-many relationships
in a relational database with Spring Data JPA

In this technique, we’ll demonstrate how to manage many-to-many relationships in
domain objects.

PROBLEM

While managing object relationships in your application, you often encounter scenar-
ios in which objects maintain many-to-many relationships. For instance, in the Course-
Tracker application, entities Author and Course maintain a many-to-many relationship.
You need to manage the many-to-many relationship among two entities using Spring
Data JPA.

SOLUTION

Many-to-many relationships are some of the most-used relationships for managing
between entities. For instance, the Course and Author entities have a many-to-many
relationship among them. In such a scenario, you must maintain the author and
course details along with the relationship between course and author. For example,
an author can author multiple courses, and many authors can collaborate on a course.
Thus, in this case, you need to maintain the author and course information as well as
their relationship details. Hence, you need to maintain three tables: one for the
Author details, another for the Course details, and one for their related information.
Figure 3.7 shows the entity–relationship (ER) diagram:

 Before continuing further, let us understand the data model you’ll use in this tech-
nique. The Author entity is represented by the AUTHOR table in the database.

ID
Name
Bio

Author ID
Name
Category
Rating
Description

Course

Collaborated

Authored

Figure 3.7 Author and Course entity–relationship diagram. In an ER diagram, the
relationship table is represented by the relationship arrow itself. Thus, the relationship
table is not present in the diagram.

122 CHAPTER 3 Database access with Spring Data

The mapping table between the Author and the Course entities is represented by the
AUTHORS_COURSES table. To represent a relationship on Relational Database Manage-
ment System, the rule is to use relationship tables in which the relationship between
author and course is represented with a DB entry containing the corresponding unique
identifiers of the two tables. For example, the AUTHORS_COURSES table contains the
mapping information of authors and courses based on author_id and course_id.
The following listing shows the schema.sql DDL scripts used in this technique.

CREATE TABLE authors (
 id BIGINT NOT NULL,
 bio VARCHAR(255),
 name VARCHAR(255),
 PRIMARY KEY (id)
);

CREATE TABLE authors_courses (
 author_id BIGINT NOT NULL,
 course_id BIGINT NOT NULL,
 PRIMARY KEY (author_id, course_id)
);

CREATE TABLE courses (
 id BIGINT NOT NULL,
 category VARCHAR(255),
 description VARCHAR(255),
 name VARCHAR(255),
 rating INTEGER NOT NULL,
 PRIMARY KEY (id)
);

ALTER TABLE authors_courses
 ADD CONSTRAINT course_id_fk FOREIGN KEY

➥ (course_id) REFERENCES courses (id);

ALTER TABLE authors_courses
 ADD CONSTRAINT author_id_fk FOREIGN KEY (author_id)

➥ REFERENCES authors (id);

Let’s now define the INSERT scripts in the data.sql file, as shown in listing 3.41. We’ve
created three courses and two authors. Besides, we’ve added the author and course
relationship by mapping courses 1 and 2 with author 1 and courses 1, 2, and 3 with
author 2. Thus, courses 1 and 2 are co-authored by both author 1 and author 2.

Source code
You can find the base version of the Spring Boot project in the book’s companion
GitHub repository at http://mng.bz/5K6B. The final version of the project is available
at http://mng.bz/6Zoo.

Listing 3.40 The Schema.sql

 A foreign key constraint to ensure that
the course_id in the authors_courses
table is a valid course ID from the
courses table

A foreign key constraint to
ensure that the author_id in
the authors_courses table is
a valid author ID from the
authors table

http://mng.bz/5K6B
http://mng.bz/6Zoo

1233.8 Managing domain object relationships

INSERT INTO COURSES(ID, NAME, CATEGORY, RATING, DESCRIPTION)

➥ VALUES(1, 'Rapid Spring Boot Application Development',

➥ 'Spring', 4, 'Spring Boot gives all the power of the

➥ Spring Framework without all of the complexity');
INSERT INTO COURSES(ID, NAME, CATEGORY, RATING, DESCRIPTION)

➥ VALUES(2, 'Getting Started with Spring Security DSL',

➥ 'Spring', 5, 'Learn Spring Security DSL in easy steps');
INSERT INTO COURSES(ID, NAME, CATEGORY, RATING, DESCRIPTION)

➥ VALUES(3, 'Getting Started with Spring Cloud Kubernetes',

➥ 'Python', 3, 'Master Spring Boot application deployment

➥ with Kubernetes');
INSERT INTO AUTHORS(ID, NAME, BIO)

➥ VALUES(1, 'John Doe',

➥ 'Author of several Spring Boot courses');
INSERT INTO AUTHORS(ID, NAME, BIO)

➥ VALUES(2, 'Steve Muller', 'Author of several

➥ popular Spring and Python courses');
INSERT INTO AUTHORS_COURSES(AUTHOR_ID, COURSE_ID) VALUES(1, 1);
INSERT INTO AUTHORS_COURSES(AUTHOR_ID, COURSE_ID) VALUES(1, 2);
INSERT INTO AUTHORS_COURSES(AUTHOR_ID, COURSE_ID) VALUES(2, 1);
INSERT INTO AUTHORS_COURSES(AUTHOR_ID, COURSE_ID) VALUES(2, 2);
INSERT INTO AUTHORS_COURSES(AUTHOR_ID, COURSE_ID) VALUES(2, 3);

To automatically execute the schema.sql and the data.sql we have added the follow-
ing additional properties in the application.properties file, as shown in the following
listing.

spring.jpa.hibernate.ddl-auto=none
spring.datasource.initialization-mode=always

Let’s now start by defining the Author entity, as shown in the following listing.

package com.manning.sbip.ch03.model;

// Import Statements are excluded as a matter of readability

@Entity(name = "AUTHOR")
@Table(name="AUTHORS")
public class Author {

 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private long id;
 private String name;
 private String bio;

Listing 3.41 The data.sql script

Listing 3.42 Additional properties in the application.properties file

Listing 3.43 The Author entity

We are using schema.sql to initialize
schema; thus, we are instructing JPA
not to manage the schema.

This is to indicate Spring Boot to execute
the schema.sql in our H2 database.

124 CHAPTER 3 Database access with Spring Data

 @ManyToMany
 @JoinTable(name = "AUTHORS_COURSES",
 joinColumns = {
 @JoinColumn(name="author_id",

➥ referencedColumnName = "id", nullable = false,

➥ updatable = false)},
 inverseJoinColumns = {
 @JoinColumn(name="course_id",

➥ referencedColumnName = "id", nullable = false,

➥ updatable = false)}
)
 private Set<Course> courses = new HashSet<>();

 public Author() {}

 public Author(String name, String bio) {
 this.name = name;
 this.bio = bio;
 }

 public long getId() {
 return id;
 }

 public String getName() {
 return name;
 }

 public String getBio() {
 return bio;
 }

 public Set<Course> getCourses() {
 return courses;
 }

 @Override
 public String toString() {
 return "Author{" +
 "id=" + id +
 ", name='" + name + '\'' +
 ", bio='" + bio + '\'' +
 '}';
 }
}

In the Author class, you’ve initialized an empty set of courses to store the relationship
between Author and Course. The following listing shows the Course entity.

package com.manning.sbip.ch03.model;

// Import Statements are excluded as a matter of readability

Listing 3.44 The updated Course entity

1253.8 Managing domain object relationships

@Entity(name = "COURSE")
@Table(name = "COURSES")
public class Course {

 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private long id;
 private String name;
 private String category;
 private int rating;
 private String description;

 @ManyToMany(mappedBy = "courses")
 private Set<Author> authors = new HashSet<>();

 // Constructor, getter, setters are excluded as a matter of readability

}

The Course entity contains information related to a course and specifies the many-to-
many relationship with the authors. Note that you’ve specified the mappedBy attribute
of @ManyToMany annotation in the non-owning side of the relationship. We can create
the courses and map to the authors who created it, as shown in the following listing.

Course rapidSpringBootCourse =

➥ new Course("Rapid Spring Boot Application Development",

➥ "Spring", 4,"Spring Boot gives all the power of the

➥ Spring Framework without all of the complexity");

Course springSecurityDslCourse =

➥ new Course("Getting Started with Spring Security DSL",

➥ "Spring", 5, "Learn Spring Security DSL in easy steps");

Author author1 = new Author("John Doe",

➥ "Author of several Spring Boot courses");

author1.getCourses().addAll(Arrays

➥ .asList(rapidSpringBootCourse, springSecurityDslCourse));

Also, besides the core annotations, such as @Entity, @Table, and @Id, there are other
annotations specified to capture the relationship information with the Course entity.
Let’s explore these annotations.

@MANYTOMANY

The @ManyToMany annotation specifies the many-valued association with many-to-
many multiplicity. Each such association has two sides—the owning side and the non-
owning side. The owning side indicates the entity that owns the relationship, and the
non-owning side is the inverse side of the relationship.

 In the case of a one-to-many relationship, the many part of the relationship is the
owning side. This is because every object of the many sides can easily have a reference

Listing 3.45 Mapping course details with authors

The mappedBy attribute of
@ManyToMany annotation
in the non-owning side of
the relationship

126 CHAPTER 3 Database access with Spring Data

to the one side. Otherwise, you need to maintain many references from the single
object (i.e., the one part) to the many objects.

 For many-to-many relationships, you can choose which side should be declared as
the owning side, since both sides can own the relationship. For instance, in this
demonstration, we have selected the Author entity as the owning side. This is chosen
based on the understanding that an author owns its courses.

 You additionally specify the @JoinTable annotation on the owning side of the rela-
tionship. As discussed, since an author owns a course, you have specified @JoinTable
annotation on the Author entity. In the case of the non-owning side, you specify the
mappedBy parameter in @ManyToMany annotation to specify the field of the owning
side. You’ll see the use of the mappedBy parameter in the Course entity.

@JOINTABLE

This annotation is specified on the owning side of the relationship and is typically
used in the mapping of many-to-many and unidirectional one-to-many associations.
You’ve specified this annotation to define the AUTHORS_COURSES join table. If this
annotation is not provided, then the default values of the annotation are applied. For
example, if the table name is not provided, then the table names of the entities are
concatenated together with an underscore character, where the owning side table is
used first. Besides, you have specified the joinColumns and inverseJoinColumns attri-
butes with @JoinTable annotation. The joinColumns specifies the foreign key col-
umns of the join table (e.g., AUTHORS_COURSES), which references the primary table
(e.g., AUTHORS), which owns the association. The inverseJoinColumns specify the for-
eign key columns of the join table, which reference the primary table (e.g., COURSES)
of the non-owning side.

@JOINCOLUMN

This annotation lets you specify a column for joining an entity association. To recap,
the following is the usage of the JoinColumn attribute:

@JoinColumn(name="author_id", referencedColumnName = "id",

➥ nullable = false, updatable = false)

The name attribute specifies the name of the foreign key column of the relationship
table. The referencedColumnName attribute allows you to specify the database column
that should be referenced by the foreign key column. The nullable attribute indi-
cates whether the foreign column is nullable. The updatable attribute specifies
whether the column is included in SQL UPDATE statements of the relationship table
generated by the persistence provider. Let’s define the AuthorCourse entity, as shown
in the following listing.

package com.manning.sbip.ch03.model;

// Import Statements are excluded as a matter of readability

Listing 3.46 The AuthorCourse entity

1273.8 Managing domain object relationships

@Entity(name = "AUTHOR_COURSE")
@Table(name = "AUTHORS_COURSES")
public class AuthorCourse {
 @Id
 @Column(name = "author_id")
 private long authorId;
 @Column(name = "course_id")
 private long courseId;

 // Constructor, Getter, and Setters excluded as a matter of readability
}

This class stores the relationship information of Author and Course entities and
contains the primary keys of both tables. Besides, this entity also represents the
AUTHORS_COURSES table, as you’ve annotated it with the @Table entity. You’ll see the
use of this AUTHORS_COURSES table when we define join query to retrieve data in our
repository interface. Let’s now discuss the AuthorCourseDto DTO class presented in
the following listing.

package com.manning.sbip.ch03.dto;

public class AuthorCourseDto {

 private long id;
 private String authorName;
 private String courseName;
 private String description;

 public AuthorCourseDto(long id, String authorName,

➥ String courseName, String description) {
 this.id = id;
 this.authorName = authorName;
 this.courseName = courseName;
 this.description = description;
 }

 @Override
 public String toString() {
 return "{" +
 "id=" + id +
 ", authorName='" + authorName + '\'' +
 ", courseName='" + courseName + '\'' +
 ", description='" + description + '\'' +
 '}';
 }
}

If you recall, a DTO class (the class-based projection) allows you to retrieve data from
different tables through projection that might not be represented by an existing
entity. Thus, a DTO is an object-oriented representation of the tuple data projection
from the repository method. You can use a DTO class as the repository return type for
queries with joins, as shown in the next listing.

Listing 3.47 The AuthorCourseDto entity

128 CHAPTER 3 Database access with Spring Data

package com.manning.sbip.ch03.repository;

// Import Statements are excluded as a matter of readability

@Repository
public interface AuthorRepository extends CrudRepository<Author, Long> {

 @Query("SELECT

➥ new com.manning.sbip.ch03.dto.AuthorCourseDto

➥ (c.id, a.name, c.name, c.description) from AUTHOR a,

➥ COURSES c, AUTHORS_COURSES ac where a.id = ac.authorId

➥ and c.id=ac.courseId and ac.authorId=?1")
 Iterable<AuthorCourseDto> getAuthorCourseInfo(long authorId);
}

In the AuthorRepository interface presented in listing 3.48, there is a query method
that fetches data from the AUTHORS, COURSES, and AUTHORS_COURSES tables. Since the
data obtained through the projection do not represent either the Author or Course
entity, it is represented with the AuthorCourseDto class.

 The AuthorRepository interface extends the CrudRepository to access the basic
CRUD features. It also defines a custom finder method to fetch the course details
authored by an author through the authorId. As you’ve seen in the earlier tech-
niques, the @Query annotation allows you to specify the query that should be used to
fetch the data from the database tables. Notice the query specified in the @Query
annotation is not an SQL query. It is a JPQL query that joins all three tables to fetch
the data and map to the provided DTO instance. In figure 3.8, there are three tables,
namely AUTHORS, AUTHORS_COURSES, and COURSES. You’ve defined a query method
with the query that joins AUTHORS, COURSES, and AUTHORS_COURSES tables and fetches
data based on the criteria specified in the query. Thus, you’ve created the Author-
CourseDto Java POJO that represents the columns in the returned projection.

 Now, we’ll add a test case to see the usage of the getAuthorCourseInfo(..)
method of AuthorRepository in practice, as shown in the following listing.

package com.manning.sbip.ch03;

// Import Statements are excluded as a matter of readability

@SpringBootTest
class CourseTrackerSpringBootApplicationTests {

 @Autowired
 private AuthorRepository authorRepository;

 @Test
 public void whenCountAllCoursesThenExpectFiveCourses() {
 assertThat(authorRepository.getAuthorCourseInfo(2)).hasSize(3));
 }
}

Listing 3.48 The AuthorRepository interface

Listing 3.49 Unit test to validate many-to-many relationship

1293.8 Managing domain object relationships

In listing 3.49 you defined a test case that fetches courses authored by author ID 2. In
this example, the author ID has authored three courses. Thus, you’ve asserted the
number of courses to 3. If you execute this test case, you’ll see that it runs successfully
and asserts that 3 courses are authored by author ID 2.

DISCUSSION

In this section, you’ve seen an example of how to manage the many-to-many relation-
ship among the entities. Although the presented example is a very basic one, it
demonstrated the features offered by Spring Data JPA to establish and maintain many-
to-many relationships between your business domain objects. For instance, you’ve
seen the use of @ManyToMany annotation in both the entities maintaining the many-to-
many relationship.

 Besides, you’ve also learned the concept of projection. We’ve explored both the
interface and class-based projections with examples. An interface-based projection
allows you to selectively fetch columns from an entity, whereas a class-based projection
with the notion of DTOs allows you to access data that belongs to multiple entities.

 Discussing all the relationship types with code examples is beyond the scope of the
book. We encourage you to implement the other relationship types once you are com-
fortable with the concepts described in this technique.

ID

Name

Bio

AUTHORS

AuthorId

CourseId

AUTHORS_COURSES

ID
Name
Category
Rating
Description

COURSES

Database tables

AuthorRepository

Id
AuthorName
CourseName
CourseDescription

AuthorCourseDto

Query fetches data from the database tables

Query result is mapped to the classAuthorCourseDto

Figure 3.8 Author, Course, and Authors_Courses tables with AuthorCourseDto POJO

130 CHAPTER 3 Database access with Spring Data

Summary
In this chapter, you’ve explored a variety of topics related to database communication
from a Spring Boot application. Many of these features are used extensively in Spring
Boot application development. Let’s quickly summarize the concepts you’ve learned
in this chapter:

 You have been introduced to Spring Data, why it’s needed, and various Spring
Data modules.

 You can configure a relational database and NoSQL databases with Spring Boot.
 You can initialize the database schema with schema.sql and data.sql as well as

through Spring Data JPA.
 You gained an understanding of Spring Data CrudRepository and PagingAnd-

SortingRepository interfaces and their use in a Spring Boot application.
 You can access data from a relational database using query methods, @Named-

Query, @Query, Criteria API, and Querydsl.
 You know how to manage the many-to-many relationship between domain

objects in a Spring Boot application.

In chapter 4, you’ll dive into two important concepts of Spring Boot: autoconfigura-
tion and actuator. Spring Boot autoconfiguration performs a lot of automatic configu-
ration under the hood for us and makes it relatively simple to start developing
applications. Spring Boot Actuator provides an infrastructure that lets you monitor
and interact with a Spring Boot application. Let’s discuss these in the next chapter!

131

Spring Boot:
Autoconfiguration

and Actuator

You’ve already learned so much about Spring Boot in the last three chapters. You
now have a solid foundation in Spring Boot, having already seen various features
of the framework and several common tasks that you need to perform on daily
basis. You’ve also learned how to communicate and use a database in a Spring
Boot application.

 In this chapter, you’ll explore two major concepts of Spring Boot: the Spring
Boot autoconfiguration and Spring Boot actuator. You’ll learn various building
blocks of Spring Boot autoconfiguration and explore how it works in an application.

This chapter covers
 Introducing Spring Boot autoconfiguration,

various types of conditional annotation, and
in-depth discussion

 An overview of Spring Boot DevTools, how to
configure it, and its various purposes

 Introducing Spring Boot FailureAnalyzer and
how to define a custom application-specific
FailureAnalyzer

 An in-depth discussion on Spring Boot Actuator
and how to define custom metrics

132 CHAPTER 4 Spring Boot: Autoconfiguration and Actuator

We’ll explore the various conditional annotation, which is the foundation of Spring
Boot autoconfiguration. You’ll then explore the Spring Boot actuator, which lets you
monitor your application health and let you interact with it.

4.1 Understanding Spring Boot autoconfiguration
Spring Boot autoconfiguration is probably the single most important feature of the
framework and one of the main reasons behind Spring Boot’s popularity. As the name
suggests, autoconfiguration automatically configures application components that
you would require while developing a Spring application. It makes a sensible guess
about the application components and attempts to provide a default configuration
with which it initializes the application. For instance, if you include the spring-boot-
starter-web dependency in your build configuration file, then Spring Boot assumes
you need a webserver to run the web application. Thus, it automatically configures the
Apache Tomcat web server for you.

 Another interesting feature of autoconfiguration is its flexibility. If the autocon-
figuration determines that the developer has explicitly configured an application
component, then it simply backs away from automatically configuring the specific
application component and uses the configuration provided by the developer. For
instance, when you use the spring-boot-starter-web dependency, Spring Boot uses
Apache Tomcat as the default web server. However, if you configure a different web
server and exclude Apache Tomcat, Spring Boot backs off its default Tomcat configu-
ration and configures the user-defined web server. The following listing shows the
configuration for Jetty web server in a Spring Boot application over Spring Boot
default Tomcat.

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 <exclusions>
 <exclusion>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-tomcat</artifactId>
 </exclusion>
 </exclusions>
</dependency>
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-jetty</artifactId>
</dependency>

Imagine you are working in an organization where development teams are working
on various projects using the Spring framework. At one point, one of the developers
notices that a few Spring configuration beans are used by all the teams and are
duplicated across the teams. Accordingly, the developer may decide to extract those

Listing 4.1 Configuring Jetty web server in a Spring Boot application

1334.1 Understanding Spring Boot autoconfiguration

duplicate configurations into a common application context configuration, as shown
in the following listing.

package com.manning.sbip.ch04;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
@Configuration
public class CommonApplicationContextConfiguration {

 #Creates a Spring Bean of type RelationalDataSourceConfiguration
 @Bean
 public RelationalDataSourceConfiguration dataSourceConfiguration() {
 return new RelationalDataSourceConfiguration();
 }

 // Other commonly used Spring bean definitions
}

Listing 4.2 shows a sample configuration of the CommonApplicationContext-
Configuration:

 The CommonApplicationContextConfiguration configuration class resides in a
separate project and is published as an independent Maven or Gradle compo-
nent. Thus, other teams can use this as a dependency in their projects.

 The RelationalDataSourceConfiguration class provides a relational data
source configuration that initializes the database and returns a data source.
Since most teams use a relational database, it makes sense to extract and keep
this as a separate configuration. Also, for simplicity, we’ve provided only one
configuration, but the CommonApplicationContextConfiguration class can
contain other common configurations, such as Spring transaction manager
bean definition.

Other teams that need to use CommonApplicationContextConfiguration can import
this common configuration in their specific configuration classes, as shown in the fol-
lowing listing.

import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Import;

@Configuration
@Import(CommonApplicationContextConfiguration.class)
public class CommonPaymentContextConfiguration {

 // Payment teams bean definitions
}

Listing 4.2 CommonApplicationContextConfiguration class

Listing 4.3 CommonPaymentContextConfiguration uses CommonApplicationContext-
Configuration class

The @Configuration
annotation indicates
this is a Spring
configuration class.

Imports the Spring
beans defined in the
CommonApplication-
ContextConfiguration
class

134 CHAPTER 4 Spring Boot: Autoconfiguration and Actuator

Teams can define project-specific bean definitions in their respective configuration files.
This approach works fine in most scenarios, but there is one problem. What if a team
wishes to use all the beans defined in the CommonApplicationContextConfiguration,
except a specific bean definition? For instance, one team wishes to use all beans
defined in the CommonApplicationContextConfiguration but not the Relational-
DataSourceConfiguration, as they don’t use a relational database. Thus, there
should be some way to tell Spring that importing the CommonApplicationContext-
Configuration configuration is fine but doesn’t create the RelationalDataSource-
Configuration bean. How can you achieve this? Spring’s @Conditional annotation
has an answer to this question. We’ll look at this in detail in the next section.

4.1.1 Understanding @Conditional annotation

Spring framework provides a @Conditional annotation that you can place in the
@Bean, @Component, and @Configuration to influence the creation of the Spring-
managed components. The @Conditional annotation accepts a Condition class param-
eter. The Condition interface has a method called matches(..) that returns a boolean
value. A true value indicates to further evaluate or create a @Bean, @Component, or
@Configuration. A value false means not to proceed with the @Bean, @Component, or
@Configuration creation. In your custom Condition implementations, you imple-
ment the Condition interface and define the matches(..) method.

 Let’s now examine how to use the @Conditional annotation in the Relational-
DataSourceConfiguration bean. The following listing shows the modified Common-
ApplicationContextConfiguration configuration class that uses the @Conditional
annotation.

import org.springframework.context.annotation.*;
import org.springframework.core.type.AnnotatedTypeMetadata;

@Configuration
public class CommonApplicationContextConfiguration {

 @Bean
 @Conditional(RelationDatabaseCondition.class)
 public RelationalDataSourceConfiguration dataSourceConfiguration() {
 return new RelationalDataSourceConfiguration();
 }
}

This configuration is similar to what you’ve seen in listing 4.2 with the exception that
the DataSourceConfiguration bean creation now depends on the RelationDatabase-
Condition condition. The following listing defines this condition.

Listing 4.4 Updated CommonApplicationContextConfiguration

The Conditional
annotation ensures that
the bean is only created
if the RelationalDatabase-
Condtion evaluates it
as true.

1354.1 Understanding Spring Boot autoconfiguration

public class RelationDatabaseCondition implements Condition {

 @Override
 public boolean matches(ConditionContext conditionContext,

➥ AnnotatedTypeMetadata annotatedTypeMetadata) {
 return isMySQlDatabase();
 }

 private boolean isMySQlDatabase() {
 try {
 Class.forName("com.mysql.jdbc.Driver");
 return true;
 }
 catch(ClassNotFoundException e) {
 return false;
 }
 }
}

In listing 4.5, you’ve made the following changes:

 Providing an implementation of the Condition interface. This interface has a
matches(..) method that returns a boolean value.

 Validating whether the MySQL driver class is present in the application class-
path. If the driver class is available, then the condition returns true to indicate
that a relational database is available.

For simplicity, we’ve kept the RelationDatabaseCondition straightforward with only
one validation. This one validation should be enough to convey the idea behind the
@Condition annotation. You can implement more such checks to evaluate a condition
and return the Boolean value accordingly. Typically, you can implement a condition
to create beans in two different ways:

1 Evaluate the classpath for the presence of specific libraries.
2 Validate whether certain properties are configured in the application. In the

matches(..) method, you have an instance of ConditionContext, which gives
access to the configured application properties. Thus, you can access all of the
properties configured in the application.properties file.

Although @Conditional annotation works just fine, it is a low-level annotation. Spring
Boot provides several high-level @Conditional annotations that target a specific type
of condition. Table 4.1 summarizes a few of the popular @Conditonal annotations
(the most frequently used annotations are highlighted in bold).

 In the next section, you’ll explore the use of some of these annotations in detail.

Listing 4.5 Condition to check a relational database

This method returns
true if the MySQL
database driver
class is present in
the classpath.

Evaluates if the MySQL driver
class is present in the classpath.
Availability of the class indicates
that the MySQL database is
being used in the application.
We’ve used MySQL driver for
demonstration purposes only.

136 CHAPTER 4 Spring Boot: Autoconfiguration and Actuator

4.1.2 Deep dive into autoconfiguration

Now that you’ve learned about the various @Conditional annotations, let us explore
how Spring Boot uses these annotations in practice. Every Spring Boot project has a
dependency on the spring-boot-autoconfigure module. It contains the key to
Spring Boot’s autoconfiguration magic. This JAR contains a file called spring.factories

Table 4.1 List of Spring Boot conditional annotations. Refer to the Spring Boot API documentation at
http://mng.bz/ExGo for the list of annotations.

Annotation Example Example explanation

@ConditionalOnBean @ConditionalOnBean(Data-
Source.class)

This condition is true if the user
specifies a DataSource bean in a
configuration.

@ConditionalOnClass @ConditionalOnClass(Data-
Source.class)

This condition is true if the class
DataSource is available in the
classpath.

@ConditionalOnProperty @ConditionalOnProperty(
"some.property")

This condition is true if
some.property is configured.

@ConditionalOnCloud-
Platform

@ConditionalOnCloudPlatform(
CloudPlatform.KUBERNETES)

This condition is true if the Cloud-
Platform is set to KUBERNETES.

@ConditionalOnExpression @ConditionalOnExpression(
"SPEL Expression")

This condition is true if the SPEL
expression is true.

@ConditionalOnJava @ConditionalOnJava(Java-
Version.EIGHT)

This condition is true if the sup-
ported Java version is 8.

@ConditionalOnJndi @ConditionalOnJndi("java:/
comp/env/jdbc/MyLocalDB")

This condition is true if the speci-
fied JNDI context exists.

@ConditionalOnMissing-
Bean

@ConditionalOnMissingBean(
DataSource.class)

This condition is true if there is
no DataSource bean in any
configuration.

@ConditionalOnMissing-
Class

@ConditionalOnMissingClass(
DataSource.class)

This condition is true if there is no
DataSource class present in the
classpath.

@ConditionalOnNotWeb-
Application

@ConditionalOnNotWeb-
Application

This condition is true if the applica-
tion is not a Web application.

@ConditionalOnResource @ConditionalOnResource(
"classpath:some.properties")

This condition is true if
some.properties file is present
in the classpath.

@ConditionalOnSingle-
Candidate

@ConditionalOnSingle-
Candidate(DataSource.class)

Matches if there is exactly one pri-
mary DataSource bean present in
the application.

@ConditionalOnWeb-
Application

@ConditionalOnWebApplication This condition is true if the applica-
tion is a Web application.

http://mng.bz/ExGo

1374.1 Understanding Spring Boot autoconfiguration

under the META-INF folder. The following listing shows a few of the autoconfigura-
tion classes.

Auto Configure
org.springframework.boot.autoconfigure.EnableAutoConfiguration=\
org.springframework.boot.autoconfigure.admin.SpringApplicationAdminJmxAutoCon

figuration,\
org.springframework.boot.autoconfigure.aop.AopAutoConfiguration,\
org.springframework.boot.autoconfigure.amqp.RabbitAutoConfiguration,\
org.springframework.boot.autoconfigure.batch.BatchAutoConfiguration,\
org.springframework.boot.autoconfigure.cache.CacheAutoConfiguration,\
org.springframework.boot.autoconfigure.cassandra.CassandraAutoConfiguration,\
org.springframework.boot.autoconfigure.

➥ context.ConfigurationPropertiesAutoConfiguration,\
org.springframework.boot.autoconfigure

➥ .context.LifecycleAutoConfiguration,\
org.springframework.boot.autoconfigure

➥ .context.MessageSourceAutoConfiguration,\
org.springframework.boot.autoconfigure

➥ .context.PropertyPlaceholderAutoConfiguration,\
org.springframework.boot.autoconfigure.

➥ couchbase.CouchbaseAutoConfiguration,\
org.springframework.boot.autoconfigure.

➥ dao.PersistenceExceptionTranslationAutoConfiguration,\
org.springframework.boot.autoconfigure

➥ .data.cassandra.CassandraDataAutoConfiguration,\

// Other autoconfiguration classes

If you explore the spring.factories file in the spring-boot-autoconfigure JAR file, you’ll
find a section called Auto Configure, which contains autoconfiguration details for sev-
eral Spring Boot components and the third-party libraries Spring Boot integrates with.
These autoconfiguration classes are Spring configuration files with the @Conditional
annotations, which you have seen in table 4.1.

 To understand this concept further, let’s analyze one of the autoconfiguration con-
figurations. In the next section, you’ll explore the DataSourceAutoConfiguration
that configures a data source in a Spring Boot application. Listing 4.7 shows a code
snippet from the DataSourceAutoConfiguration class. This class is available at
http://mng.bz/g4jV.

@Configuration
@ConditionalOnClass({ DataSource.class, EmbeddedDatabaseType.class })
@EnableConfigurationProperties(DataSourceProperties.class)
@Import({ DataSourcePoolMetadataProvidersConfiguration.class,

Listing 4.6 Autoconfiguration classes in the spring.factories file

Listing 4.7 DataSourceAutoConfiguration class

This configuration is loaded if DataSource and
EmbeddedDatabaseType classes are present in the classpath.

http://mng.bz/g4jV

138 CHAPTER 4 Spring Boot: Autoconfiguration and Actuator

DataSourceInitializationConfiguration.class })

➥ public class DataSourceAutoConfiguration {

 @Configuration

 @Conditional(EmbeddedDatabaseCondition.class)
 @ConditionalOnMissingBean({ DataSource.class, XADataSource.class })
 @Import(EmbeddedDataSourceConfiguration.class)
 protected static class EmbeddedDatabaseConfiguration {

 }

 @Configuration
 @Conditional(PooledDataSourceCondition.class)
 @ConditionalOnMissingBean({ DataSource.class, XADataSource.class })
 @Import({ DataSourceConfiguration.Hikari.class,

➥ DataSourceConfiguration.Tomcat.class,
 DataSourceConfiguration.Dbcp2.class,

➥ DataSourceConfiguration.Generic.class,
 DataSourceJmxConfiguration.class })
 protected static class PooledDataSourceConfiguration {

 }

// Additional Code

There are many annotations configured in the DataSourceAutoConfiguration class
shown in listing 4.7. Let’s explore these annotations one by one:

 This DataSourceAutoConfiguration class is configured with @Configuration
annotation. This indicates that this is a standard Spring configuration class.

 It uses @ConditionalOnClass annotation to indicate that DataSourceAuto-
Configuration configuration should only be evaluated if DataSource.class
and EmbeddedDatabaseType.class are present in the classpath.

 The @EnableConfigurationProperties(DataSourceProperties.class) ensures
that data source-specific properties provided in the application.properties
file are automatically converted to an instance of the DataSourceProperties
class. For instance, the spring.datasource.* properties configured in the appli-
cation.properties files are automatically mapped to DataSourceProperties. In
section 2.2 of chapter 2, we discussed the use of the @EnableConfiguration-
Properties annotation in detail.

 The @Import annotation pulls two additional configurations into the current
class: DataSourcePoolMetadataProvidersConfiguration and DataSourceIni-
tializationConfiguration to the DataSourceAutoConfiguration.

 In the DataSourceAutoConfiguration class, there are two inner configurations:
EmbeddedDatabaseConfiguration and PooledDataSourceConfiguration. The
first one creates an embedded database configuration if EmbeddedDatabase-
Condition evaluates to true and if you haven’t configured a DataSource or

DataSourceAutoConfiguration
also imports DataSourcePool-
MetadataProvidersConfiguration
and DataSourceInitialization-
Configuration classes.

This configuration is loaded if the
EmbeddedDatabaseCondtion evaluates as

true, and there are no beans of type
DataSource and XADataSource.

This configuration
is loaded if the

PooledDataSource-
Condition evaluates

to true, and there
are no beans of

type DataSource
and XADataSource.

1394.2 Using Spring Boot DevTools

XADataSource bean explicitly. The PooledDataSourceConfiguration creates a
database connection pool if PooledDataSourceCondition is evaluated to true
and there is no DataSource or XADataSource bean configured.

 The PooledDataSourceConfiguration imports other data store-specific config-
urations for the supported connection pool libraries: HikariCP, Tomcat, DBCP2,
and Generic.

You can explore these configurations to understand further how the autoconfigura-
tion is implemented. However, the above example demonstrates the foundational
concept behind Spring Boot autoconfiguration. As an exercise, you can explore the
EmbeddedWebServerFactoryCustomizerAutoConfiguration, JpaRepositoriesAuto-
Configuration and H2ConsoleAutoConfiguration classes for further understanding.

4.2 Using Spring Boot DevTools
Spring Boot provides a developer toolkit that provides an additional set of develop-
ment time features. These tools can be used for a more pleasant Spring Boot applica-
tion development experience and increased developer productivity. In short, this
toolkit is popularly known as Spring Boot DevTools. You can enable DevTools support
in your application by adding the following dependency in the pom.xml file, as shown
in the following listing.

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-devtools</artifactId>
 <optional>true</optional>
</dependency>

Notice that DevTools is added as an optional dependency. This is to prevent DevTools
dependency from being transitively applied to other modules that depend on your
project. In the remainder of this section, you’ll explore various features offered by
DevTools.

4.2.1 Property defaults

Spring Boot and some of its supporting libraries support caching for improved perfor-
mance. For instance, the Thymeleaf template engine can cache the HTML templates
to avoid reparsing. Although caching works well in production applications, it can be
counter-productive at development time, as you need to see your latest changes.
Spring Boot DevTools disables all the caching options by default. You can find a list of
items for which Spring Boot disables caching in the DevToolsPropertyDefaultsPost-
Processor class available in the org.springframework.boot.devtools.env package
of the spring-boot-devtools JAR.

Listing 4.8 The Spring Boot DevTools Maven dependency

140 CHAPTER 4 Spring Boot: Autoconfiguration and Actuator

4.2.2 Automatic restart

In a typical development setup you make changes to your application, and to view
those changes, you restart the application. Spring Boot DevTools makes developer life
a little easier by automatically restarting the application whenever there is an applica-
tion classpath change. This provides a quick feedback loop for the code changes, as
you can almost immediately validate your latest changes.

 Spring Boot uses two separate class loaders to implement automatic restart func-
tionality. The first one, known as the base class loader, loads classes, which are less
likely to change. For instance, the third-party libraries on your application have a
dependency that does not change. The other class loader, known as the restart class
loader, loads the classes that you are developing. This restart class loader is discarded
whenever there is a class change and a new one is created.

4.2.3 Live reload

Spring Boot DevTools provides an embedded LiveReload server that can be used to
trigger a browser refresh when a resource is changed. To use this feature, the browser
needs to have the LiveReload extension installed. For a detailed discussion on Spring
Boot DevTools, refer to the documentation available at http://mng.bz/5KMa.

4.3 Creating a custom failure analyzer
In chapter 1, you learned the concept of a FailureAnalyzer in Spring Boot. As the
name indicates, it detects a failure/exception in the application and provides a
detailed message that is useful for the developer to further understand the issue. For
instance, it is a common occurrence that we try to start multiple instances of a Spring
Boot application that uses the same HTTP port. In this case, Spring Boot provides a
nicely formatted error message stating you can’t start the second instance on the same
HTTP port, as it is already in use. Spring Boot does this with the help of a built-in fail-
ure analysis infrastructure. Further, it also lets you extend the concept of a failure ana-
lyzer, so you can leverage the benefit of it.

 There are two reasons a failure analyzer is useful:

 It allows you to provide a detailed error message on the actual error and deter-
mine what action you can take to resolve the issue and the root cause of the
issue.

 It provides an opportunity to perform validations at application startup and
report any errors as early as possible. For instance, let’s assume that your appli-
cation is depending on an external REST service that provides critical business
data for your application to function. It may be useful to validate the accessibil-
ity of the service at the application startup and ensure your application can
operate as expected. However, if the service is not reachable, you may choose
not to start the application, as without the REST service your application might
not function in an expected manner.

http://mng.bz/5KMa

1414.3 Creating a custom failure analyzer

In the next technique, we’ll demonstrate how to create a custom failure analyzer in a
Spring Boot application.

4.3.1 Technique: Creating a custom Spring Boot FailureAnalyzer

In this technique, we’ll demonstrate how to create a custom FailureAnalyzer.

PROBLEM

Your application has a dependency on an external REST service. You need to ensure
its reachability at the time of application startup. You also need to provide a detailed
message if the service is not accessible.

SOLUTION

Spring Boot provides a failure analysis infrastructure that allows you to define custom
logic to perform your business-specific validations and also allows you to report the
validation errors. Thus, you can leverage this infrastructure to perform the accessibil-
ity of the REST API and report any error at the application startup.

 To demonstrate how to create a custom failure analyzer, let’s consider the follow-
ing scenario. Let’s assume your application fetches dog details from an external API
called https://dog.ceo/dog-api/ and displays them in the application UI. You would
like to validate if this URL is accessible at the application startup. You’ll perform the
following activities:

 You will use Spring Boot’s ContextRefreshedEvent to trigger the validation.
Spring Boot publishes this event once the ApplicationContext is refreshed.

 If the API is not accessible, you’ll throw a custom RuntimeException called
UrlNotAccessibleException.

 Subsequently, you will define a custom FailureAnalyzer called UrlNot-
AccessibleFailureAnalyzer that should be invoked if UrlNotAccessible-
Exception occurs.

 Lastly, you’ll register UrlNotAccessibleFailureAnalyzer through the spring
.factories file so that Spring Boot registers the custom FailureAnalyzer. The
spring.factories is a special file that is located at the src\main\java\META-INF
folder of your application and automatically loaded by Spring on application
boot time. This file contains a reference to many configuration classes.

Let’s begin by defining the UrlNotAccessibleException exception, as shown in the
following listing.

Source code
To start with this technique, you can use any of the Spring Boot projects you’ve used
previously. You can also find the base version of the Spring Boot project used in this
technique at http://mng.bz/6ZaA. The final version of this Spring Boot project is
available at http://mng.bz/oadp.

https://dog.ceo/dog-api/
http://mng.bz/6ZaA
http://mng.bz/oadp

142 CHAPTER 4 Spring Boot: Autoconfiguration and Actuator

package com.manning.sbip.ch04.exception;

import lombok.Getter;

@Getter
public class UrlNotAccessibleException extends RuntimeException {

 private String url;

 public UrlNotAccessibleException(String url) {
 this(url, null);
 }

 public UrlNotAccessibleException(String url, Throwable cause) {
 super("URL " + url + " is not accessible", cause);
 this.url = url;
 }
}

In the listing, you are defining a RuntimeException that you’ll use in case the URL is
not accessible. Next, let us define the UrlAccessibilityHandler class, as shown in
the following listing.

package com.manning.sbip.ch04.listener;

//imports

@Component
public class UrlAccessibilityHandler {

 @Value("${api.url:https://dog.ceo/}")
 private String url;

 @EventListener(classes = ContextRefreshedEvent.class)
 public void listen() {
 // For demonstration purpose, we are throwing
 // the exception assuming the site is not reachable
 throw new UrlNotAccessibleException(url);
 }
}

In listing 4.10, you’ve defined the class UrlAccessibilityHandler as a Spring compo-
nent. Further, you’ve defined an event listener that is invoked once Spring Boot
publishes the ContextRefreshedEvent event. For simplicity and demonstration pur-
poses, you are throwing the UrlNotAccessibleException assuming it is not reach-
able. Let’s now define the UrlNotAccessibleFailureAnalyzer class, as shown in
the following listing.

Listing 4.9 The UrlNotAccessibleException exception

Listing 4.10 The UrlAccessiblityHandler class

1434.3 Creating a custom failure analyzer

package com.manning.sbip.ch04.exception;

//imports

public class UrlNotAccessibleFailureAnalyzer extends

➥ AbstractFailureAnalyzer<UrlNotAccessibleException> {

 @Override
 protected FailureAnalysis analyze(Throwable rootFailure,

➥ UrlNotAccessibleException cause) {

➥ return new FailureAnalysis("Unable to access the URL

➥ "+cause.getUrl(),

➥ "Validate the URL and ensure it is accessible", cause);
 }

}

Spring Boot invokes this FailureAnalyzer instance when an UrlNotAccessible-
Exception occurs. However, you need to indicate Spring Boot that you’ve defined a
FailureAnalyzer to handle the exception. You can do this by adding the META-
INF\spring.factories file in the src\main\java directory. The following listing shows the
content of this file.

org.springframework.boot.diagnostics.FailureAnalyzer=\
com.manning.sbip.ch04.exception.UrlNotAccessibleFailureAnalyzer

In the listing, you specify the type of the class (i.e., FailureAnalyzer) in this case and
specify the fully qualified class name of the FailureAnalyzer implementation. The
type of class indicates which type of configuration the associated value refers to. If you
configure more than one failure analyzer, you can configure a comma-separated list,
as shown in the following listing.

org.springframework.boot.diagnostics.FailureAnalyzer=\
com.manning.sbip.ch04.exception.UrlNotAccessibleFailureAnalyzer,
com.manning.sbip.ch04.exception.AdditionalFailureAnalyzer,
com.manning.sbip.ch04.exception.AnotherFailureAnalyzer

You can start the application and find that it failed to start. In the console log, you can
notice the nicely formatted failure message, as shown in figure 4.1.

DISCUSSION

Spring Boot uses FailureAnalyzer internally to perform several types of failure
analysis. For instance, the NoSuchBeanDefinitionFailureAnalyzer is invoked when
a NoSuchBeanDefinitionException exception occurs. Similarly, there is another

Listing 4.11 The UrlNotAccessibleFailureAnalyzer class

Listing 4.12 Registering the FailureAnalyzer through spring.factories file

Listing 4.13 Registering the FailureAnalyzer through spring.factories file

144 CHAPTER 4 Spring Boot: Autoconfiguration and Actuator

analyzer, such as DataSourceBeanCreationFailureAnalyzer, which is invoked when-
ever a DataSourceBeanCreationException occurs.

 Spring Boot exposes this infrastructure and lets the developer use it to define
application-specific analyzers. In this technique, you’ve seen an example of it. The
steps to use a failure analyzer are as follows:

1 Define a custom exception with the required fields that can carry the relevant
error messages.

2 Define a FailureAnalyzer by extending the AbstractFailureAnalyzer class.
This class has a type parameter that accepts any subclass of Throwable.

3 In the FailureAnalyzer implementation return a FailureAnalysis that con-
tains the issue, possible resolution, and the issue root cause details.

4 Subsequently, you need to register this FailureAnalyzer instance, so Spring
Boot is aware of it.

5 Lastly, you need to perform the validation at an appropriate phase of the appli-
cation startup. You can use various Spring Boot lifecycle events to invoke your
application’s failure analyzers. For instance, in this technique we’ve used the
ContextRefreshedEvent to invoke the UrlNotAccessibleFailureAnalyzer.

This summarizes the discussion on FailureAnalyzer and how you can define a cus-
tom one in your application. In the next section, we’ll discuss Spring Boot Actuator.

4.4 Spring Boot Actuator
In addition to the core features to develop applications, Spring Boot also provides a
set of additional features for your application’s operational support. An application is
considered operational when it is in production and serving your customers or users.
To manage a seamless service for your customers, you need to monitor and manage
your application. This monitoring and managing includes understanding application
health, performance, inbound and outbound traffic, auditing, various application met-
rics (more on this later), restarting the application, changing application log level,
and more. The various monitoring inputs and metric details let you analyze applica-
tion behavior and act on a need basis.

 Spring Boot actuator brings these monitoring and managing capabilities to your
Spring Boot application. The main benefit of Spring Boot Actuator is that you get a

Figure 4.1 Custom
FailureAnalyzer with the
error description and
the action message

1454.4 Spring Boot Actuator

lot of production-ready features in your application without explicitly implementing
them in your application.

4.4.1 Technique: Configuring Spring Boot Actuator in a Spring Boot
application

In this technique, we’ll demonstrate how to configure Spring Boot Actuator.

PROBLEM

You have your application deployed and running in production. You need to monitor
the application health status by configuring the Spring Boot Actuator in your Spring
Boot application.

SOLUTION

You can enable Spring Boot actuator support in your Spring Boot application by add-
ing the spring-boot-starter-actuator dependency in the application pom.xml
configuration file, as shown in the following listing.

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
</dependency>

The dependency shown in listing 4.14 incorporates spring-boot-actuator-

autoconfigure and micrometer-core dependencies to the application. The first
dependency provides the core actuator support and the other one provides additional
support for Micrometer (https://micrometer.io/) to capture various matrices. We’ll
discuss Micrometer in greater detail later in this chapter.

In the application.properties file, include the management.endpoints.web.exposure
.include=* property. This property indicates to enable all actuator endpoints over
the Web (HTTP). If you do not wish to expose all actuator endpoints, you can pro-
vide comma separated actuator endpoint names as well. For instance, management
.endpoints.web.exposure.include=info,health property exposes only info and
health endpoints.

 Start the application and browse the following URL at http:/ /localhost:8080/
actuator/health either through your Web browser or the terminal to access the appli-
cation /health endpoint. Figure 4.2 shows the output.

Listing 4.14 The Spring Boot Starter Actuator dependency

Source code
To start with this technique, you can find the base version of the Spring Boot project
used in this technique at http://mng.bz/nYB2. The final version of this Spring Boot
project is available at http://mng.bz/vo24.

https://micrometer.io/
http://mng.bz/nYB2
http://mng.bz/vo24

146 CHAPTER 4 Spring Boot: Autoconfiguration and Actuator

The health endpoint returns with the status as UP. The UP status indicates the overall
health status of the application is good, and all components of the application are
accessible. Later in this chapter, we’ll discuss more on the other health statuses and
how to write a custom HealthIndicator in a Spring Boot application. You’ll learn
more about the other available endpoints and various other customizations in the sub-
sequent sections.

4.4.2 Understanding Spring Boot Actuator endpoints

An actuator endpoint allows you to monitor and manage your application. In the pre-
vious technique, you saw the usage of the health actuator endpoint that lets you mon-
itor the health status of the application. Spring Boot provides several built-in
endpoints you can use out-of-the-box. You can also add your custom endpoint specific
to your application.

 The actuator endpoints can be accessed either over the Web (HTTP) or JMX (Java
Management Extensions), and you can make the endpoints enabled, disabled, or
exposed. The enabled or disabled options indicate that you can control whether to
allow a specific actuator endpoint in the application. For instance, by default the
shutdown endpoint that lets you shut down a running application is disabled for secu-
rity reasons. You can override this default behavior and enable it in your application.
The expose option indicates whether a specific endpoint is exposed to be accessed
through an access mode (e.g., over the HTTP or JMX). For instance, by default only
the health and info endpoints are exposed over HTTP, and the rest of the endpoints
are not exposed over HTTP. However, all Spring Boot built-in actuator endpoints are
exposed over JMX by default. JMX is considered more secure than HTTP and is the
reason built-in endpoints are exposed by default over JMX.

 Spring Boot provides a discovery page that contains all available actuator end-
points. By default, this discovery page is available at /actuator and always accessible.
Thus, you can get the list of available actuator endpoints by accessing the URL http:/ /
localhost:8080/actuator/, as shown in figure 4.3. Table 4.2 shows the built-in Spring
Boot actuator endpoints.

Figure 4.2 The /health
endpoint outcome

1474.4 Spring Boot Actuator

Figure 4.3 The Spring Boot Actuator discovery page. This page contains a list of
endpoints you can access. The templated field is true if the endpoint URL has a
template that needs to be replaced with an appropriate value. For instance, in the
URL http:/ /localhost:8080/actuator/caches/{cache} you can retrieve details of a
particular cache by replacing the {cache} with the actual cache name.

148 CHAPTER 4 Spring Boot: Autoconfiguration and Actuator

Table 4.2 Spring Boot Actuator built-in endpoints

Endpoint Id Purpose
Expose over

HTTP
Expose over

JMX

auditevents Security audit information, such as user
login/logout

No Yes

beans Lists all available beans in the
BeanFactory

No Yes

caches Lists all the caches in the application No Yes

conditions Reports all the autoconfiguration conditions No Yes

configprops Shows all @ConfigurationProperties
beans

No Yes

env Shows current environment properties No Yes

flyway Shows details of the Flyway (https://flywaydb
.org/) database configurations if Flyway is
configured in the application

No Yes

health Health status of the application Yes Yes

heapdump Build and return the heap dump of the JVM
used by the application.

No Yes

httptrace Provides the details of HTTP requests and
responses. To view the HTTP traces you need
to configure an HttpTraceRepository
bean.

No Yes

info General application information such as cus-
tom data, build information, and latest com-
mit details

Yes Yes

integrationgraph Exposes a graph containing all Spring Integra-
tion components

No Yes

logfile Provides access to the contents of the appli-
cation’s log file

No N/A

loggers Provides access to the application’s loggers
and the configuration of their levels

No Yes

liquibase Provides detail of Liquibase (https://www
.liquibase.org/) database configurations if
Liquibase is configured in the application

No Yes

metrics Provides details of various application
metrics

No Yes

mappings Provides information about the application’s
request mappings

No Yes

prometheus Provides Spring Boot application’s metrics
in the format required for scraping by a Pro-
metheus server

No N/A

https://flywaydb.org/
https://flywaydb.org/
https://www.liquibase.org/
https://www.liquibase.org/

1494.4 Spring Boot Actuator

4.4.3 Managing Spring Boot Actuator endpoints

In section 4.4.2, you’ve seen by default Spring Boot exposes the health and info end-
points over the HTTP. You can expose other built-in endpoints by configuring the
management.endpoints.web.exposure.include property in the application.proper-
ties file. You can selectively specify the endpoint names you wish to expose over the
Web, or you can use the wildcard character (i.e., *) to expose all the actuator end-
points. The following listing shows the configurations to enable actuator endpoints
over the Web.

management.endpoints.web.exposure.include=beans,threaddump
management.endpoints.web.exposure.include=*

In listing 4.15, the first configuration enables only beans and threaddump endpoints
over the Web (HTTP). The second configuration enables all available actuator end-
points over the Web (HTTP).

 Further, you can also use the exclude property to control the exposure of actuator
endpoints. For instance, you may wish to expose all actuator endpoints except the
threaddump, heapdump, and health endpoints. The following listing shows this config-
uration.

management.endpoints.web.exposure.include=*
management.endpoints.web.exposure.exclude=threaddump,heapdump,health

In listing 4.16, you’ve exposed all actuator endpoints with the * wildcard but excluded
the threaddump, heapdump and health endpoints.

scheduledtasks Provides information about the application’s
scheduled tasks

No Yes

sessions Provides information about the application’s
HTTP sessions that are managed by Spring
Session

No Yes

shutdown Shut down the application. No Yes

startup Provides information about the application’s
startup sequence

No Yes

threaddump Provides a thread dump from the applica-
tion’s JVM

No Yes

Listing 4.15 Actuator Web Endpoints include property

Listing 4.16 Actuator Web endpoints include and exclude property

Table 4.2 Spring Boot Actuator built-in endpoints (continued)

Endpoint Id Purpose
Expose over

HTTP
Expose over

JMX

150 CHAPTER 4 Spring Boot: Autoconfiguration and Actuator

 In the previous sections, you’ve seen that the context root of all actuator endpoints
is always set to the actuator. For instance, to access the health actuator endpoint, you
used the URL http:/ /localhost:8080/actuator/health. Spring Boot allows you to cus-
tomize the endpoint context root with the custom values. This is useful if you already
use the /actuator endpoint for some other purposes and need to choose a different
context root. For instance, configuring the management.endpoints.web.base-path=/
sbip property in the application.properties file changes the actuator context root
from actuator to sbip.

 You can also change the management server port to a different HTTP port than
the actual application HTTP port. For instance, our Spring Boot application is run-
ning on HTTP port 8080, and by default this is used as the management port for actu-
ator endpoints. You can change the management port to 8081 by configuring the
property management.server.port=8081 in the application.properties file, as shown
in figure 4.4.

You can also customize the specific actuator endpoint name. For instance, you can
customize the default /health endpoint to /apphealth by configuring the management
.endpoints.web.path-mapping.health=apphealth property in the application.prop-
erties file, as shown in figure 4.5.

4.4.4 Health endpoint deep dive

In section 4.4.2, you learned about the use of the health Spring Boot actuator end-
point. As the name indicates, it provides the health status of the application and vari-
ous other components of it. For instance, you can retrieve the health status of the
database component of the application through the health actuator endpoint.

 Out of the box, Spring Boot provides several HealthIndicator implementa-
tions that provide the health status of a particular application component. Some of
these HealthIndicators are provided by Spring Boot and are always configured.
For instance, Spring Boot always configures the DiskSpaceHealthIndicator and
PingHealthIndicator.

 Earlier, you learned that the health endpoint only provides the aggregated health
status (e.g., UP). Let us configure the following property to retrieve the disk space and

http://localhost:8080/actuator
Default URL

Customized URL

management.endpoints.web.base-path=/sbip

management.server.port=8081

http://localhost: /8081 sbip
Figure 4.4 Customizing the Spring
Boot actuator URL with different
HTTP port and context root

1514.4 Spring Boot Actuator

the ping status along with the aggregated application health status. Let’s configure the
following property in the application.properties file, as shown in the following listing.

management.endpoint.health.show-details=always

The property in the listing can be configured with the following three values:

 always—Indicates to always display the detailed health status.
 never—Indicates only to provide the health status without any additional

details. This is the default value.
 when-authorized—Indicates only to provide details of the user or API autho-

rized to access the health endpoint. A user is considered authorized if they are
authenticated in the application and have the roles defined in the management
.endpoint.health.roles property in the application.properties file.

If you restart the application and access the http:/ /localhost:8080/actuator/health
URL, you’ll notice that the diskspace and ping health status are also provided, as
shown in figure 4.6.

Listing 4.17 Property to display detailed health status

Figure 4.5 Spring Boot Actuator endpoint discovery page with custom content. In this
example, the /actuator context is customized to /sbip. The management server port is
8081, whereas the application port is 8080.

152 CHAPTER 4 Spring Boot: Autoconfiguration and Actuator

Sometimes, Spring Boot enables HealthIndicator conditionally. These conditions
could be due to the presence of a particular dependency in the application classpath.
For instance, if you are using a relational database, Spring Boot automatically config-
ures the DataSourceHealthIndicator and provides the underlying database health
status. Note that these additional details are made available under the health end-
point only if management.endpoint.health.show-details property is configured to
always, as shown in listing 4.17. Let’s include the H2 database dependency in the
application pom.xml file, as shown in the following listing.

<dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <scope>runtime</scope>
</dependency>

If you restart the application and access the /health endpoint, you’ll notice that data-
base health status is included along with other components’ health status, as shown in
figure 4.7.

Listing 4.18 The H2 database dependency

Figure 4.6 Spring Boot Actuator health endpoint with show-details always
configuration

1534.4 Spring Boot Actuator

In figure 4.7, the root status shows the aggregated health status of your application. By
default, Spring Boot provides the following four health statuses:

1 DOWN: The component is not available.
2 OUT-OF-SERVICE: The component is temporarily out of service.
3 UP: The component is working as expected.
4 UNKNOWN: The component status is unknown.

If you need other statuses in your application, you can define custom statuses as
well. You can use the status(..) method of the Health class to define a custom sta-
tus. Listing 4.19 creates a new status called FATAL. You’ll learn more about this in the
next section.

public Health health() {
 return Health.status("FATAL").build();
}

Listing 4.19 Creating a custom health status

Figure 4.7 Spring Boot Actuator /health endpoint with database health status

154 CHAPTER 4 Spring Boot: Autoconfiguration and Actuator

Spring Boot uses the specified status order to determine the aggregated health status
of the application. Thus, the status DOWN has the highest priority, and UNKNOWN has the
lowest. If any of the HealthIndicators return the health status as DOWN, the aggre-
gated application status is DOWN.

 You can customize this order with the management.endpoint.health.status
.order property in the application.properties file. For instance, the following listing
shows a custom status order in which the custom status FATAL is configured with the
highest order.

management.endpoint.health.status.order=

➥ FATAL,DOWN,OUT-OF-SERVICE,UNKNOWN,UP

These health statuses affect the HTTP status code of the endpoint. For instance, by
default Spring Boot maps the DOWN and OUT-OF-SERVICE status code to the HTTP status
code 503 (Service Unavailable). The UP status and other statuses are mapped to the
HTTP status code 200 (OK).

 If you need to customize the health status mapping to different HTTP status
code, you can configure the management.endpoint.health.status.http-mapping
.<status> property. The following listing shows the mapping for the down and out_
of_service statuses.

management.endpoint.health.status.http-mapping.down=500
management.endpoint.health.status.http-mapping.out_of_service=503

You can also customize the mapping programmatically by providing an implementation
of the HttpCodeStatusMapper interface and defining the getStatusCode() method.

4.4.5 Creating a custom Spring Boot HealthIndicator

In the previous section, you explored the use of the health actuator endpoint. You
saw some of the Spring Boot built-in HealthIndicators, such as DiskSpaceHealth-
Indicator and DataSourceHealthIndicator, which provide the disk space and data
source status, respectively. Looking at these, you may think it would be useful to
define your own custom HealthIndicator to provide the health status to your applica-
tion or any subsystem your application is integrated with—by allowing your applica-
tion to load data from an external REST API, for example. You may want to validate
the health status of the REST API system. As you may have correctly guessed, Spring

Listing 4.20 Defining a custom health status order

Listing 4.21 Health status mapping

Source code
You can refer to the Spring Boot available at http://mng.bz/4jyj for more details.

http://mng.bz/4jyj

1554.4 Spring Boot Actuator

Boot allows you to define a custom HealthIndicator and automatically integrates the
health status through the health endpoint. Let’s explore this in the next technique.

4.4.6 Technique: Defining a custom Spring Boot actuator
HealthIndicator

In this technique, we’ll discuss how to define a custom Spring Boot actuator Health-
Indicator.

PROBLEM

Spring Boot’s built-in HealthIndicator does not allow you to inquire about the
health status of your application-specific components. You need to define a custom
HealthIndicator that allows you to monitor the health status of the critical REST API
system your application is integrated with.

SOLUTION

Spring Boot provides the HealthIndicator interface that lets you define any number
of custom HealthIndicators for your application. These HealthIndicator imple-
mentations are treated as regular Spring components and automatically discovered by
the Spring Boot component scanning and automatically integrated with the Spring
Boot actuator /health endpoint data. To demonstrate how to define a custom Health-
Indicator, we will monitor the health status of a REST API with which our Spring
Boot application is integrated. We’ll use https://dog.ceo/dog-api/ as our REST API
that returns beautiful dog images.

Once you are done with the project setup, you’ll provide an implementation of
HealthIndicator called DogsApiHealthIndicator. Note that it is a convention to use
the HealthIndicator suffix in the custom HealthIndicator class. The following list-
ing shows this implementation.

package com.manning.sbip.ch04.health.indicator;

// imports

@Component
public class DogsApiHealthIndicator implements HealthIndicator {

 @Override
 public Health health() {

Source code
To start with this technique, you can use the Spring Boot project available at http://
mng.bz/QW1v. You can find the completed Spring Boot project used in this technique
at http://mng.bz/XWQa.

Listing 4.22 The DogsApiHealthIndicator class

https://dog.ceo/dog-api/
http://mng.bz/QW1v
http://mng.bz/QW1v
http://mng.bz/QW1v
http://mng.bz/XWQa

156 CHAPTER 4 Spring Boot: Autoconfiguration and Actuator

 try {
 ParameterizedTypeReference<Map<String, String>> reference

➥ = new ParameterizedTypeReference<Map<String, String>>() {};
 ResponseEntity<Map<String, String>> result

➥ = new RestTemplate().exchange

➥ ("https:/ /dog.ceo/api/breeds/image/random",

➥ HttpMethod.GET, null, reference);
 if (result.getStatusCode().is2xxSuccessful() &&

➥ result.getBody() != null) {
 return Health.up().withDetails(result.getBody()).build();
 }
 else {
 return Health.down().withDetail("status",

➥ result.getStatusCode()).build();
 }
 }
 catch(RestClientException ex) {
 return Health.down().withException(ex).build();
 }
 }
}

We are doing the following activities in this class:

 This class implements the HealthIndicator interface. It implies that this class
provides the health status of some application component.

 It is annotated with @Component annotation, so it can be discovered by Spring
Boot component scanning.

 We’ve used Spring’s RestTemplate class to call the https:/ /dog.ceo API. Rest-
Template allows you to invoke the REST APIs from your application.

 We then evaluate the HTTP response status. If the status code is HTTP 2XX
series (e.g., 200, 201) and the response body is not null, we define the health
status as UP and return the REST service response body, so it can be shown in
the /health endpoint.

 If we encounter any exception, we return the actuator health status as down
and provide the exception, so it can be shown in the /health endpoint result.

That’s all. You just need to define the HealthIndicator, and Spring Boot will discover
it to collect the health status and provide the output in /health endpoint. You can
start the application and access the http:/ /localhost:8080/actuator/health/ endpoint.
Figure 4.8 shows the output.

 Note that you need to have an active internet connection to get the result shown
above. To see the custom health indicator failing, you can disconnect your computer
from the network and access the same URL. Figure 4.9 shows the outcome.

DISCUSSION

With this technique, we’ve discussed how to define a custom HealthIndicator that
enquires the health status of a REST API. As you’ve seen, it is straightforward to
define a custom health indicator and return the health status. In the next section,

1574.4 Spring Boot Actuator

Figure 4.8 Spring Boot Actuator health endpoint with custom HealthContributor

Figure 4.9 Spring Boot Actuator health endpoint with failed health status for custom HealthIndicator

158 CHAPTER 4 Spring Boot: Autoconfiguration and Actuator

let us explore more on the /info endpoint and learn how to define a custom Info-
Contributor.

4.5 Info endpoint deep dive
In previous sections, you’ve explored the health actuator endpoint. In this section,
you’ll dive into the info actuator endpoint.

4.5.1 Technique: Configuring info Spring Boot Actuator endpoint

In this technique, we’ll discuss how to configure a Spring Boot Actuator endpoint.

PROBLEM

You need to configure the info Spring Boot Actuator endpoint in your application.

SOLUTION

As the name indicates, the info endpoint provides information related to the applica-
tion. By default, the info endpoint does not provide any information. However, you can
customize this behavior to return some information related to your application. There
are two modes through which you can configure the data for the info endpoint.

First, you can configure the properties in the application.properties file by setting the
info.* properties. For instance, you can configure the following properties in the
application.properties in your Spring Boot application, as shown in the following
listing.

info.app.name= Spring Boot Actuator Info Application
info.app.description=Spring Boot application that explores the /info endpoint
info.app.version=1.0.0

management.endpoints.web.exposure.include=*
management.info.env.enabled=true

You can configure any number of properties with the info.* prefix in the applica-
tion.properties file, and these properties will be rendered at /info. Restart the appli-
cation, and access the http:/ /localhost:8080/actuator/info endpoint. Figure 4.10
shows the output.

 You can also print the project details, such as artifactId, groupId, and version,
through the info endpoint. For instance, configure the following properties as shown
in listing 4.24.

Source code
You can find the completed Spring Boot project used in this technique available at
http://mng.bz/y46d.

Listing 4.23 The info properties

To expose all actuator
endpoints over Web

Enable the Info environment contributor
(needed for Spring Boot 2.6.x and above)

http://mng.bz/y46d

1594.5 Info endpoint deep dive

info.build.artifact=@project.artifactId@
info.build.name=@project.name@
info.build.description=@project.description@
info.build.version=@project.version@
info.build.properties.java.version=@java.version@

In listing 4.24, the values are configured as @..@. Spring Boot automatically expands
the properties from the Maven project. If you restart the application and access the
http:/ /localhost:8080/actuator/info endpoint again, you will find the output shown
in figure 4.11.

Listing 4.24 The info properties

Figure 4.10 The Spring Boot Actuator info endpoint shows the application name, description, and
version as configured in the application.properties file.

Figure 4.11 Spring Boot Actuator info endpoint with the application details. These details are sourced
from the pom.xml file of the application.

160 CHAPTER 4 Spring Boot: Autoconfiguration and Actuator

Second, the /info endpoint allows you to fetch your application’s git repository, envi-
ronment, and build details. The git repository details are automatically displayed if a
git.properties file is available in the classpath. You can refer to http://mng.bz/M2AB
to learn how to generate a git.properties file.

 Similarly, the build details are also available if the build-info.properties file is avail-
able inside the META-INF folder in the classpath. The git repository and the build infor-
mation are managed through the GitInfoContributor and BuildInfoContributor
classes, respectively. You’ll shortly learn more about the InfoContributor interface.
To generate these files, you can perform the changes to the application’s pom.xml file
shown in the following listing.

<build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>

Gradle users
If you are using Gradle, you can also retrieve the details. Add the following in the
build.gradle file of your application:

springBoot {
 buildInfo()
}

Start the application using the gradlew bootRun command and access the http://
localhost:8080/actuator/info endpoint, and you will notice the details shown in fig-
ure 4.12.

Listing 4.25 The pom.xml changes to generate the build.info and git.properties file

Figure 4.12 Accessing build information in a Spring Boot Gradle
application through info endpoint

http://mng.bz/M2AB

1614.5 Info endpoint deep dive

 <executions>
 <execution>
 <goals>
 <goal>build-info</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>pl.project13.maven</groupId>
 <artifactId>git-commit-id-plugin</artifactId>
 </plugin>
 </plugins>
</build>

The changes to the listing do the following:

 The build-info goal in the spring-boot-maven-plugin generates the build-
info.properties file.

 The git-commit-id-plugin generates the git.properties file. This file contains
git repository information, such as git commit, build, and branch details. Note
that this is not a Spring Boot plugin; instead, it is a third party one.

Open a command line or terminal window and start the application. If you access the
http:/ /localhost:8080/actuator/info, you’ll find the details shown in figure 4.13.

Figure 4.13 Spring Boot Actuator info endpoint with git and build details. The git
details are sourced from the git.properties file. The build details are sourced from the
build-info.properties file. You can control the git details with the management.info
.git.mode property in the application.properties file with values full or simple. Setting
the property to full displays complete git details. By default, this default value of this
property is simple, and it only shows git commit time and ID.

162 CHAPTER 4 Spring Boot: Autoconfiguration and Actuator

Lastly, you can provide a custom InfoContributor that can provide application
details. Previously, we mentioned that the GitInfoContributor provides the informa-
tion regarding your git repository. This class reads the git.properties file and presents
the related data through the info endpoint.

4.5.2 Technique: Configuring a custom info contributor to provide
custom application info in the Spring Boot Actuator endpoint

In this technique, we’ll explore how to configure a custom info contributor.

PROBLEM

You need to provide custom application details through the info Spring Boot Actuator
endpoint in your application.

SOLUTION

Spring Boot provides the InfoContributor interface that lets you expose application
information through the Spring Boot Actuator built-in info endpoint.

With this technique, you’ll create a custom implementation of InfoContributor
named CourseInfoContributor in the course tracker application. This custom Info-
Contributor provides the course name and the course ratings through the info end-
point. The following listing shows this class.

package com.manning.sbip.ch04.info;

import org.springframework.boot.actuate.info.InfoContributor;
// Other Imports

@Component
public class CourseInfoContributor implements InfoContributor {

 @Autowired
 private CourseService courseService;

 @Override
 public void contribute(Info.Builder builder) {
 Map<String, Integer> courseNameRatingMap = new HashMap<>();
 List<CourseNameRating> courseNameRatingList = new ArrayList<>();
 for(Course course : courseService.getAvailableCourses()) {
 courseNameRatingList.add(CourseNameRating.builder()

➥ .name(course.getName()).rating(course.getRating()).build());
 }
 builder.withDetail("courses", courseNameRatingList);
 }

Source code
You can find the completed Spring Boot project used in this technique at http://mng
.bz/aDYm.

Listing 4.26 Defining a custom InfoContributor

http://mng.bz/aDYm
http://mng.bz/aDYm
http://mng.bz/aDYm

1634.5 Info endpoint deep dive

 @Builder
 @Data
 private static class CourseNameRating {
 String name;
 int rating;

 }
}

In the listing, you’ve done the following:

 First, you’ve implemented the Spring Boot InfoContributor interface and
defined the contribute(..) method.

 Second, you’ve used the course service that returns all available courses in the
application.

 Lastly, you’ve mapped the course name and rating information from the
course, and you’ve added the list of course names and ratings to the Info
.Builder instance. As the name indicates, the Info.Builder allows you to build
the info details.

Start the application, and you’ll notice the output shown in figure 4.14.

NOTE In this technique, you may notice that we are using the application
business domain details in the Spring Boot Actuator endpoint. You’ll notice
the use of application business domain details in several other techniques as
well. Ideally, Spring Boot Actuator endpoints are intended to be used for

Figure 4.14 Showing application-specific custom details with the info endpoint.

164 CHAPTER 4 Spring Boot: Autoconfiguration and Actuator

application monitoring and interaction purposes and not to expose or alter
business domain details. A RESTful Web service is more appropriate to man-
age business domain details. For demonstration purposes and to keep the
examples simple, we’ve used the business domain details in the Spring Boot
Actuator endpoints.

4.6 Creating a custom Spring Boot Actuator endpoint
In the previous section, you’ve seen the built-in Spring Boot actuator endpoints,
such as /health and /info. However, sometimes you may need to define custom end-
points specific to your application that can provide your application-specific data.
The custom endpoints are an easy and useful way to get some insight into your appli-
cation. In the next technique, we’ll explore how to define a custom Spring Boot actu-
ator endpoint.

4.6.1 Technique: Creating a custom Spring Boot actuator endpoint

In this technique, we’ll create a custom Spring Boot Actuator endpoint.

PROBLEM

Spring Boot built-in actuator endpoints are generic and do not provide application-
specific business details. You need to define an actuator endpoint that lets you moni-
tor and interact with application business details.

SOLUTION

To demonstrate how to define and use a custom Spring Boot actuator endpoint, you’ll
use the course tracker application you’ve used in the previous techniques. You’ll define
a releaseNotes endpoint that provides the application release details. A release consists
of release version, date, commit tag, new release, and bug fix details. We’ll also enable
viewing a specific release detail through the version. You’ll also enable delete opera-
tions through the actuator endpoint. The delete operation allows us to delete a specific
release version. Let’s implement this in the course tracker application.

To create a new actuator endpoint, you need to create a Java class, annotate with the
@Endpoint annotation and define the methods that support the @ReadOperation,
@WriteOperation, and @DeleteOperation. We’ll discuss these annotations in detail in
the discussion section.

 Let’s first create a collection of release notes by defining a bean definition in the
CourseTrackerApplication class, as shown in the following listing.

Source code
To start with this technique, you can use the Spring Boot project available at
http://mng.bz/g4jv. You can find the completed Spring Boot project used in this tech-
nique at http://mng.bz/enKV.

http://mng.bz/g4jv
http://mng.bz/enKV

1654.6 Creating a custom Spring Boot Actuator endpoint

@Bean(name = "releaseNotes")
public Collection<ReleaseNote> loadReleaseNotes() {
 Set<ReleaseNote> releaseNotes = new LinkedHashSet<>();
 ReleaseNote releaseNote1 = ReleaseNote.builder()
 .version("v1.2.1")
 .releaseDate(LocalDate.of(2021, 12, 30))
 .commitTag("a7d2ea3")
 .bugFixes(Set.of(
 getReleaseItem("SBIP-123",

➥ "The name of the matching-strategy property is

➥ incorrect in the action message of the failure

➥ analysis for a PatternParseException #28839"),
 getReleaseItem("SBIP-124",

➥ "ErrorPageSecurityFilter prevents deployment

➥ to a Servlet 3.1 compatible container #28790")))
 .build();

 ReleaseNote releaseNote2 = ReleaseNote.builder()
 .version("v1.2.0")
 .releaseDate(LocalDate.of(2021, 11, 20))
 .commitTag("44047f3")
 .newReleases(Set.of(getReleaseItem("SBIP-125",

➥ "Support both kebab-case and camelCase as Spring init

➥ CLI Options #28138")))
 .bugFixes(Set.of(getReleaseItem("SBIP-126",

➥ "Profiles added using @ActiveProfiles have

➥ different precedence #28724")))
 .build();
 releaseNotes.addAll(Set.of(releaseNote1, releaseNote2));
 return releaseNotes;
}

The ReleaseNote and ReleaseItem classes are defined in the following listing.

package com.manning.sbip.ch04.model;

//imports

@Builder
@Getter
@Setter
public class ReleaseNote {

 private String version;
 private LocalDate releaseDate;
 private String commitTag;
 private Set<ReleaseItem> newReleases;
 private Set<ReleaseItem> bugFixes;
}

Listing 4.27 Creating a collection of ReleaseNote bean definitions

Listing 4.28 The ReleaseNote and ReleaseItem classes

166 CHAPTER 4 Spring Boot: Autoconfiguration and Actuator

package com.manning.sbip.ch04.model;

//imports

@Builder
@Getter
@Setter
@NoArgsConstructor
@AllArgsConstructor
public class ReleaseItem {

 private String itemId;
 private String itemDescription;
}

Next, let’s create a class called ReleaseNotesEndpoint that provides the details of all
available releases in the application. The following listing shows this class.

package com.manning.sbip.ch04.endpoint;

import java.util.Collection;
import java.util.Optional;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.actuate.endpoint.annotation.DeleteOperation;
import org.springframework.boot.actuate.endpoint.annotation.Endpoint;
import org.springframework.boot.actuate.endpoint.annotation.ReadOperation;
import org.springframework.boot.actuate.endpoint.annotation.Selector;
import org.springframework.stereotype.Component;

import com.manning.sbip.ch04.model.ReleaseNote;

@Component
@Endpoint(id = "releaseNotes")
public class ReleaseNotesEndpoint {

 private final Collection<ReleaseNote> releaseNotes;

 @Autowired
 public ReleaseNotesEndpoint(Collection<ReleaseNote> releaseNotes) {
 this.releaseNotes = releaseNotes;
 }

 @ReadOperation
 public Iterable<ReleaseNote> releaseNotes() {
 return releaseNotes;
 }
}

We’ve performed the following actions in this class:

 Annotated the class with @Component annotation, so Spring Boot component
scanning can detect this class and create the bean.

Listing 4.29 The ReleaseNotesEndpoint class

1674.6 Creating a custom Spring Boot Actuator endpoint

 Annotated the class with @Endpoint annotation that indicates this class is an
actuator endpoint. We’ve also provided an ID named releaseNotes to uniquely
identify the endpoint.

 Autowired the releaseNotes in this class, so it can be used to get the release
details.

 Defined a method with @ReadOperation annotation that returns all releases.

To access the releaseNotes endpoint, you need to configure the management
.endpoints.web.exposure.include property with the value releaseNotes or with the
value *. The following listing shows this property with the releaseNotes endpoint.

management.endpoints.web.exposure.include=releaseNotes

If you start the application and access the actuator discovery page http:/ /localhost:
8080/actuator/ from your browser, you will notice the endpoint is listed as shown in
figure 4.15.

If you access the http:/ /localhost:8080/actuator/releaseNotes endpoint, you’ll notice
that it provides the list of releases available in the application, as shown in figure 4.16.

Listing 4.30 Expose the custom endpoint

Figure 4.15 Defining custom endpoint /releaseNotes and exposing it through the Actuator discovery
page

168 CHAPTER 4 Spring Boot: Autoconfiguration and Actuator

Let us now implement the endpoint that lets you find specific release details through
the release version. The following listing shows this in the ReleaseNotesEndpoint
class.

@ReadOperation
public Object selectCourse(@Selector String version) {
 Optional<ReleaseNote> releaseNoteOptional = releaseNotes
 .stream()
 .filter(releaseNote -> version.equals(releaseNote.getVersion()))
 .findFirst();
 if(releaseNoteOptional.isPresent()) {
 return releaseNoteOptional.get();
 }
 return String.format("No such release version exists : %s", version);
}

Listing 4.31 Defining the Read operation

Figure 4.16 The releaseNotes endpoint with the release details

1694.6 Creating a custom Spring Boot Actuator endpoint

In listing 4.31, we implemented another @ReadOperation that lets you specify a
release version as the @Selector and return only the release specific details. If there
is an invalid release version, it returns the following error message: No such release ver-
sion exists.

 The next operation you’ll implement is to delete release details. The following list-
ing shows this operation.

@DeleteOperation
public void removeReleaseVersion(@Selector String version) {
 Optional<ReleaseNote> releaseNoteOptional = releaseNotes
 .stream()
 .filter(releaseNote -> version.equals(releaseNote.getVersion()))
 .findFirst();
 if(releaseNoteOptional.isPresent()) {
 releaseNotes.remove(releaseNoteOptional.get());
 }
}

In the code snippet in listing 4.32, you are first checking if there is a release available
for the supplied version. If a release detail is found, the same is removed from the col-
lection. The following listing shows the cURL command to delete the course.

curl -i -X DELETE http:/ /localhost:8080/actuator/releaseNotes/v1.2.1

You can access the http:/ /localhost:8080/actuator/releaseNotes URL from your browser,
and you’ll notice that the release with version v1.2.1 is deleted.

 There is another annotation named @WriteOperation that lets you perform cre-
ate/update operations for the endpoint. We’ve skipped it in this example, as a write
operation does not fit well in the above example.

DISCUSSION

With this technique, you’ve learned how to define a custom Spring Boot actuator end-
point. It is straightforward to define a custom endpoint with the @Endpoint, @Read-
Operation, @WriteOperation, @DeleteOperation, and @Selector annotations.

 The @Endpoint annotation indicates that the annotated class is a Spring Boot actu-
ator endpoint and able to provide or mutate information in the running application.
It takes two arguments: id and enablebyDefault. In this example, you’ve configured
the id as /releaseNotes. By default, the enableByDefault parameter is set to true.
However, to expose it over a specific technology (e.g., JMX or Web), you need to con-
figure the associated management.endpoints.<web/jmx>.exposure.include parame-
ter in the application.properties file.

Listing 4.32 Defining the delete operation

Listing 4.33 Performing the delete operation for a single course with cURL

170 CHAPTER 4 Spring Boot: Autoconfiguration and Actuator

 Spring Boot also provides two technology-specific endpoint annotations: @Jmx-
Endpoint and @WebEndpoint. The first one lets you define an endpoint that is only
exposed over JMX, and the latter one exposes the endpoint over HTTP only. For
instance, in listing 4.29 you can change the @Endpoint to @JmxEndpoint and notice
that the /releaseNotes endpoint is not available on the discovery page at http:/ /
localhost:8080/actuator. You can use the JConsole tool (http://mng.bz/p2rK) to view
the JMX endpoints, as shown in figure 4.17.

4.6.2 Spring Boot actuator metrics

In addition to other endpoints, Spring Boot provides the metrics actuator endpoint
that provides various application metrics. For instance, if you start the spring-boot-
actuator-metrics application and access the http:/ /localhost:8080/actuator/metrics
endpoint, you’ll see the output shown in figure 4.18.

 Each one of these is an application metric that provides application-related infor-
mation. For example, if you need to know how much time the application was paused

Figure 4.17 The Spring Boot
Actuator endpoints exposed
through JMX

http://mng.bz/p2rK

1714.6 Creating a custom Spring Boot Actuator endpoint

for garbage collection, you can use the jvm.gc.pause metric through the http:/ /local-
host:8080/actuator/metrics/jvm.gc.pause URL, as shown in figure 4.19.

 In this example, the application was paused 10 times, and the total pause duration
was 0.031 seconds. Under the hood, the Spring Boot actuator uses Micrometer frame-
work (https://micrometer.io/) to configure the metrics. It also lets us define custom
metrics, such as counters, timers, gauges, and distribution summaries. Shortly, you’ll
learn how to create these metrics in a Spring Boot application. Let us now provide a
brief overview of the Micrometer framework.

Figure 4.18 List of available
Spring Boot actuator metrics

https://micrometer.io/

172 CHAPTER 4 Spring Boot: Autoconfiguration and Actuator

NOTE An in-depth discussion on the Micrometer framework or other moni-
toring systems is beyond the scope of this text. You can refer to Micrometer
documentation (https://micrometer.io/docs) or the respective monitoring
system documentation for further references. You can also refer to http://
mng.bz/NxNN for more insight on Micrometer with Spring Boot. For a list of
supporting monitoring systems, you can refer to the Spring Boot documenta-
tion at http://mng.bz/OGRw. In this book, we’ll show you how to use the
monitoring tool Prometheus, which collects the metrics, and the observability
platform Grafana, which lets you visualize these metrics.

The Micrometer is a metrics collection facade intended to collect various types of metrics
in a vendor-neutral way. It allows you to plug in the various concrete implementations

Figure 4.19 Details of the jvm.gc.pause metric

https://micrometer.io/docs
http://mng.bz/NxNN
http://mng.bz/NxNN
http://mng.bz/NxNN
http://mng.bz/OGRw

1734.6 Creating a custom Spring Boot Actuator endpoint

of monitor systems (e.g., Prometheus, Graphite, New Relic, etc.). Spring Boot can
select various monitoring systems through configuration and classpath to export met-
rics data.

 Micrometer provides a vendor-neutral metrics collection API (io.micrometer
.core.instrument.MeterRegistry and its subclasses) and provides implementations
for other monitoring frameworks, such as Prometheus (io.micrometer.prometheus
.PrometheusMeterRegistry). To configure a different monitoring system, you can
provide the corresponding dependency micrometer-registry-{monitoring_system},
and Spring Boot will automatically configure the registry for you. For instance, to con-
figure Prometheus, you need to configure the micrometer-registry-prometheus
dependency in the pom.xml file. Further, Spring Boot also provides several properties
to control these features. The following listing shows some of these properties.

management.metrics.export.<registry>.enabled=false
management.metrics.export.defaults.enabled=false

The first command indicates whether exporting metrics to the registry (e.g., Graph-
ite) is enabled. The second command indicates whether to enable default metrics
exporters. For instance, setting management.metrics.export.defaults.enabled to
false does not expose any metrics. You can validate that by accessing http:/ /local-
host:8080/actuator/metrics URL.

 Spring Boot autoconfigures a composite MeterRegistry that lets you add any
number of registry implementations. Thus, you can ship your metrics to more than
one monitoring system. Besides, you configure the registries with MeterRegistry-
Customizer. For instance, you can ship your application metrics to both Prometheus
and New Relic. You can then configure a common set of tags for both registries. Tags,
in this context, are used as an identifier. For instance, if multiple applications publish
metrics data, they can use a tag to identify the application name. Let’s say you need to
add a tag in your metrics that adds the application name to all metrics. Listing 4.35
shows how you can customize the MeterRegistry using the MeterRegistryCustomizer
with a Spring bean definition in a Spring configuration file.

@Bean
MeterRegistryCustomizer<MeterRegistry> metricsCommonTags() {
 return registry -> registry.config()

➥ .commonTags("application", "course-tracker");
}

Open a browser window and access any of the metrics; you’ll find the application tag is
present in the metrics data. You can then use the custom tag to filter the metric data.
You can append the query string ?tag=tagName:tagValue in the metric URL to
achieve this. For instance, figure 4.20 shows this in an example.

Listing 4.34 Exposing the metrics

Listing 4.35 Customizing MeterRegistry with MeterRegistryCustomizer

174 CHAPTER 4 Spring Boot: Autoconfiguration and Actuator

This summarizes the overview of the Spring Boot metrics. In the next section, you’ll
learn how to create custom metrics in a Spring Boot application.

4.6.3 Creating custom metrics

In the previous section, you explored the /metrics endpoint that exposes critical
application and system information worth monitoring for application performance
and overall health. The metrics you’ve seen so far are built-in to the Micrometer, and
Spring Boot autoconfigures those for us. For instance, the Micrometer framework
provides JvmGcMetrics, JvmMemoryMetrics, and JvmThreadMetrics classes that expose
JVM garbage collection, memory, and thread details, respectively. All these metrics are
autoconfigured by the Spring Boot JvmMetricsAutoConfiguration class.

 Spring Boot lets you create custom metrics that expose application-specific data
you may need to monitor. Let’s discuss this in terms of the CourseTracker application.
In this application, you may be interested to monitor the number of courses created
in the application on a real-time basis. You may also track the time that is being taken
to create a new course or the time taken within the SLAs.

 The micrometer framework provides several types of the meters, such as Counter,
Gauge, Timer, and DistributionSummary, that you can use to create custom metrics.
Let’s explore some of these. We’ll define the following additional metrics in the
CourseTracker application:

 Counting the number of courses created using the Counter metric.
 Counting the number of courses created using the Gauge metric. We’ll discuss

the difference between Counter and Gauge metrics.
 Capturing the time taken to create the course using the Timer metric.
 Capturing the distribution summary of the course ratings using the Distribution-

Summary metric.

Source code
To continue with this exercise, you can download the initial version of the Spring Boot
project from GitHub at http://mng.bz/YgXz. The final version of the application can
be accessed at http://mng.bz/GGlD.

http://localhost:8080/actuator/metrics/jvm.buffer.memory.used?tag=application:course-tracker

Metrics actuator endpoint

Metric name

Tag name

Figure 4.20 Using the tag to filter the metric output

http://mng.bz/YgXz
http://mng.bz/GGlD

1754.6 Creating a custom Spring Boot Actuator endpoint

COUNTER

The Counter is the first type of metric we’ll explore. A Counter represents a single
numeric value that can be incremented. For instance, we can use it to count the num-
ber of times a method was invoked. Thus, if we need to count the total number of
courses created, we can use the Counter in the course creation method to keep track.
Let’s first create a Counter instance and then use it in the DefaultCourseService to
count the number of courses. The following listing shows the createCourseCounter
bean definition in the CourseTrackerMetricsConfiguration class.

@Configuration
public class CourseTrackerMetricsConfiguration {

 @Bean
 public Counter createCourseCounter(MeterRegistry meterRegistry) {
 return Counter.builder("api.courses.created.count")
 .description("Total number of courses created")
 .register(meterRegistry);
 }
}

In the listing, you created a Counter instance with the name api.courses.created
.count and provided a description indicating its purpose. Finally, you registered it to
the MeterRegistry, so it can be exposed in the metrics list.

 Let’s now use this Counter instance in the createCourse(..) method of the
DefaultCourseService class, so each time this service method is invoked, the Counter
value can be incremented, as shown in the following listing.

@Autowired
private final Counter createCourseCounter;

public Course createCourse(Course course) {
 createCourseCounter.increment();
 return courseRepository.save(course);
}

Start the application, and access the http:/ /localhost:8080/actuator/metrics URL.
You’ll notice that a new metric endpoint is added. Access this http://localhost:8080/
actuator/metrics/api.courses.created.count endpoint URL, and you’ll notice it is dis-
playing the total number of courses created so far. However, as we haven’t created any
courses yet, it shows the count value is 0.

NOTE In listing 4.37, we used the Counter metric directly inside the Spring
Boot service class. Although this approach works, it tightly couples the metric
code with the actual business logic. As a better design, you can use Spring’s
event listener mechanism to decouple the use of the Counter metric.

Listing 4.36 The createCourseCounter bean

Listing 4.37 Count the number of courses created

176 CHAPTER 4 Spring Boot: Autoconfiguration and Actuator

Open a browser window, and access the http:/ /localhost:8080/index URL to create a
new course. Post that, and access the http:/ /localhost:8080/actuator/metrics/api
.courses.created.count endpoint again. This time you’ll notice that the course count is
increased to 1. Figure 4.21 shows the output.

4.6.4 Gauge

The drawback of the Counter metric is that it can’t persist the counter value once
there is an application restart. The counter value is set to 0 after the restart. Thus, if
you need to keep track of the total number of courses created in the application irre-
spective of the application restart, a Counter is not the right metric.

 A gauge is the other metric that is more suitable to find the total number of
courses available. For instance, in a production application, you’ll use a database that
can persist the application data. Thus, you can query the database on the total num-
ber of courses available and expose it through a Gauge metric. Let’s demonstrate how
to implement this with a Gauge.

 Let’s begin by defining a Gauge metric that retrieves the total number of courses
available in the database. Add the following bean definition in the previously created
CourseTrackerMetricsConfiguration class. The following listing shows the create-
CoursesGauge bean definition.

@Bean
public Gauge createCoursesGauge(MeterRegistry meterRegistry, CourseService

➥ courseService) {
 return Gauge.builder

Listing 4.38 The createCoursesGauge bean definition

Figure 4.21 Outcome of the api.courses.created.count custom metric

1774.6 Creating a custom Spring Boot Actuator endpoint

➥ ("api.courses.created.gauge", courseService::count)

➥ .description("Total courses available")

➥ .register(meterRegistry);
}

In the listing, you’ve created a Gauge metric named api.courses.created.gauge with
a suitable description and registered it with the MeterRegistry. The metric data is
fetched from the database using the count(..) method defined in the CourseService.

 As the data required by the Gauge metric is supplied from the database, you need
not incorporate it in the createCourse(..) service. Besides, as the api.courses
.created.gauge metric is already registered with the MeterRegistry, it is already
exposed in the /metrics endpoint.

 Start the application, create a few courses, and access the http:/ /localhost:8080/
actuator/metrics/api.courses.created.gauge URL. You’ll find the total number of
courses available in the application.

NOTE In this example, you are using the H2 in-memory database, and it is
restarted each time there is an application restart. Thus, you’ll notice that the
Gauge metric is behaving similarly to the Counter metric. To explore the data
persistence across application restart, use a database that persists the data in
the disk. For instance, you can use MySQL to explore this.

TIMER

The previous two metrics, Counter and Gauge, let you measure the count of something
(e.g., courses) in your application. Further, at times you may be interested to measure
the time taken to perform an operation in your application. For instance, you may
need to measure the time taken to create a course. Additionally, in time-critical appli-
cations, you can measure whether the operation is completed within the SLA. A Timer
allows you achieve this. Let’s define a timer that allows you to measure the time taken
to create a course in the CourseTracker application. We’ll define a Timer metric in
the CourseTrackerMetricsConfiguration class in the following listing.

@Bean
public Timer createCoursesTimer(MeterRegistry meterRegistry) {
 return Timer.builder("api.courses.creation.time")
 .description("Course creation time")
 .register(meterRegistry);
 }

In the listing, you defined a metric called api.courses.creation.time with a suitable
description and registered it with the MeterRegistry. Let’s now use this metric in the
createCourse(..) method of DefaultCourseService to capture the time taken to
create a course, as shown in the following listing.

Listing 4.39 The createCoursesTimer bean definition

178 CHAPTER 4 Spring Boot: Autoconfiguration and Actuator

@Autowired
private Timer createCoursesTimer;

@SneakyThrows
public Course createCourse(Course course) {
 return createCoursesTimer.recordCallable(() ->

➥ courseRepository.save(course));
}

In the listing, you are using the recordCallable(..) method of the Timer interface.
This method accepts a java.util.concurrent.Callable instance. In this demonstra-
tion, we’ve represented it with a lambda expression in which we invoke the repository
to save the course details. Internally, the timer uses this callable instance to capture the
total time taken to invoke the repository save(..) method. The recordCallable(..)
method throws an exception. We’ve used Lombok’s @SneakyThrows annotation that
wraps the checked exception to an unchecked one.

 You can restart the application, create a few courses, and then access the http:/ /
localhost:8080/actuator/metrics/api.courses.creation.time URL. The api.courses
.creation.time provides the details, such as total courses created, total time taken to
create the courses, and maximum time taken to create a course, as shown in Figure 4.22.

Listing 4.40 Using the createCoursesTimer

Figure 4.22 Outcome of the api.courses.creation.time custom metric. The baseUnit indicates
the unit for the metric and provides an option to customize the unit for the metric.

1794.6 Creating a custom Spring Boot Actuator endpoint

DISTRIBUTION SUMMARY

A distribution summary allows you to measure the distribution of events. It is similar
to a Timer structurally but is used to record values that do not represent a unit of time.
For example, a distribution summary could be used to measure the course ratings in
the CourseTracker application.

 Let’s define a DistributionSummary metric in the CourseTrackerMetrics-
Configuration class, as shown in the following listing.

@Bean
public DistributionSummary createDistributionSummary(MeterRegistry

➥ meterRegistry) {
 return DistributionSummary

➥ .builder("api.courses.rating.distribution.summary")

➥ .description("Rating distribution summary")

➥ .register(meterRegistry);
}

Like other metrics, in the listing you’ve defined a DistributionSummary metric with a
name and description and registered it with the MeterRegistry. Let’s now use this
metric in the createCourse(..) method of DefaultCourseService, as shown in the
following listing.

@Autowired
private DistributionSummary distributionSummary;
@SneakyThrows
public Course createCourse(Course course) {
 distributionSummary.record(course.getRating());

➥ return createCoursesTimer.recordCallable(() ->

➥ courseRepository.save(course));
}

Restart the application, and create a few courses with different course ratings. Post
that, and navigate to the http:/ /localhost:8080/actuator/metrics/api.courses.rating
.distribution.summary URL to access the newly defined distribution summary end-
point. Figure 4.23 shows the output.

 This completes the discussion of the major metrics that you may need to use in
your application. In the next section, you’ll learn how to use Prometheus and Grafana
to view these metrics in a graphical dashboard.

4.6.5 Metrics dashboard with Prometheus and Grafana

In this section, you’ll learn how to use Prometheus to collect the metrics you’ve
defined so far. Note that Prometheus is a monitoring solution, and Spring Boot pub-
lishes all metrics (built-in and custom) if Prometheus libraries are present in the

Listing 4.41 Defining a distribution summary

Listing 4.42 Using DistributionSummary in CreateCourse method

180 CHAPTER 4 Spring Boot: Autoconfiguration and Actuator

application classpath. Prometheus uses a different format to represent metrics. Refer
to http://mng.bz/aJMz for a list of Prometheus metrics. Further, you’ll configure
Grafana to visualize the Prometheus metrics.

NOTE Prometheus (https://prometheus.io/) is an open-source system-
monitoring and alerting toolkit originally built at SoundCloud. You can find
more information about Prometheus by viewing their documentation at
https://prometheus.io/docs/introduction/overview/. Grafana (https://grafana
.com/) provides a graphical toolkit that allows you to collect and visualize the
metrics in dashboards in the form of various graphical representations, such
as Graph, Time Series, Gauge Table, and more. You can use Prometheus and
Grafana either by installing them in your local machine or running the
Docker images. Refer to the GitHub wiki, available at http://mng.bz/0wvJ, for
a quick guide on setting up these applications. You can refer to the Pro-
metheus and Grafana documentation for more details.

Figure 4.23 Outcome of the api.courses.rating.distribution.summary custom metric. The COUNT
property indicates how many courses have been created. The TOTAL provides information regarding the
aggregated value of the rating. Lastly, the MAX property shows the maximum value of a course rating.
For demonstration, we’ve used the course rating in this example. We can also use other details, such
as time in units of second and length to capture distribution summary.

http://mng.bz/aJMz
https://prometheus.io/
https://prometheus.io/docs/introduction/overview/
https://grafana.com/
https://grafana.com/
https://grafana.com/
http://mng.bz/0wvJ

1814.6 Creating a custom Spring Boot Actuator endpoint

Spring Boot provides an easy integration with Prometheus and publishes all the met-
rics under the /actuator/prometheus endpoint. Add the following dependency to
the pom.xml of your project, as shown in the following listing.

<dependency>
 <groupId>io.micrometer</groupId>
 <artifactId>micrometer-registry-prometheus</artifactId>
 <scope>runtime</scope>
</dependency>

We discussed previously that Spring Boot autoconfiguration can configure one or
more systems in a Spring Boot application, based on the presence of libraries in the
application classpath. Adding this dependency enables the PrometheusMetrics-
ExportAutoConfiguration class, which in turn configures the PrometheusMeter-
Registry bean. This bean is the Prometheus registry plugged in the metrics facade.

 Restart the application and access the http:/ /localhost:8080/actuator/prometheus
endpoint URL to view the available metrics. Notice that the metrics are published in a
slightly different format.

 To proceed with the remaining part of this section, you need to ensure that you’ve
installed and configured Prometheus and Grafana. Refer to http://mng.bz/0wvJ for a
quick discussion on how to set up these applications. Once you’ve installed Pro-
metheus, you should be able to access the server and view the metrics. For instance, in
this demonstration, we’ve installed Prometheus in the local machine and can access it
through the http:/ /localhost:9090 URL. Prometheus provides a functional query lan-
guage named PromQL (Prometheus Query Language) that lets you select and aggre-
gate metric data. You can view the result either in tabular or graphical format in
Prometheus’s expression browser. We’ll leave it to the reader to explore how to select
and view various metric data through PromQL (http://mng.bz/KBVX).

 Although Prometheus allows you to view the data in graphical format through the
table and simple graphs, the visualization capability of Prometheus is limited. To pres-
ent data with better visualization, we’ll use Grafana, as it has a rich set of visualization
toolkits. Grafana can pull the metric data from the Prometheus server and present it
in the Grafana dashboard. You can use the PromQL to select the metric and present the
metric data in the dashboard.

 To use Grafana, you first need to create a data source. In this demonstration, the
data source is the Prometheus server. You can then proceed by creating an empty
dashboard and adding one or more panels to it. Each panel can represent one metric
of data. Grafana allows you to choose the type of UI toolkit (e.g., graph, table, heat-
map, gauge, etc.) you would like to use to present the data in the dashboard. Refer to
Grafana documentation, available at http://mng.bz/9Kpj, for more information about
how to create a Grafana dashboard. Figure 4.24 shows a sample dashboard created for
the demonstration.

Listing 4.43 Prometheus dependency

http://mng.bz/0wvJ
http://mng.bz/KBVX
http://mng.bz/9Kpj

182 CHAPTER 4 Spring Boot: Autoconfiguration and Actuator

In figure 4.24, we have shown four panels in the dashboard. The Courses Created panel
shows the number of courses created. The second panel, Course Creation Rate, shows
the rate of courses created per minute. The third panel, JVM Thread Status, shows the
threads in the application in various states. The last panel, System CPU Usage, shows the
use of the CPU over a period. The above is a basic dashboard created for demonstra-
tion purposes. You can explore the various metrics and present them in a variety of
visualizations (e.g., bar, chart, table, heatmap, etc.) in Grafana.

Summary
We’ve come along a long way in our Spring Boot Journey. You can now develop and
monitor Spring Boot applications with the concepts covered so far. Let’s quickly sum-
marize the concepts you’ve learned in this chapter:

 We had an in-depth discussion on Spring Boot autoconfiguration. We explored
various conditional annotations that play a critical role in implementing auto-
configuration and explored a built-in class, DataSourceAutoConfiguration, to
understand how it works in a Spring Boot application.

 We discussed Spring Boot DevTools, which provides a suite of features for a
pleasant development experience. Automatic application restart, disabling
caching, and browser refresh are a few notable features.

 We explored Spring Boot FailureAnalyzer and its role in validating various
application startup issues. We also discussed how to implement a custom
FailureAnalyzer.

Figure 4.24 Spring Boot Actuator metric in the Grafana dashboard

183Summary

 We had an in-depth discussion on the Spring Boot actuator and its various end-
points. We then explored the /info and /health endpoints in further detail.
We also learned several techniques on how to define and include custom appli-
cation information and health status in these endpoints.

 We explored the built-in metrics exposed by Spring Boot. We also discussed
how to create custom metrics, such as Counter, Gauge, Timer, and Distribution
Summary. Lastly, we demonstrated how to use Prometheus and Grafana to moni-
tor and view the metrics in a GUI console in real-time.

In chapter 5, you’ll learn to secure your Spring Boot applications with Spring Security.
You’ll explore Spring Security basic concepts and various fundamental security tech-
niques, such as basic and JDBC authentication. Let’s get started!

184

Securing Spring
Boot applications

In past chapters, you learned several essential techniques to build Spring Boot
applications, and you are now well-versed in core Spring Boot concepts, under-
stand several techniques to communicate to the database, can monitor Spring Boot
applications with Spring Boot Actuator, and are in a position to start building
enterprise-grade Spring Boot applications. However, before you get super excited
and announce to the world your newly acquired skills, there is another essential
technique that you need to master. What about the security of our Spring Boot applications?

This chapter covers
 An overview of Spring Security and common

security threats

 Enabling Spring Security in a Spring Boot
application and understanding Spring Security
autoconfiguration

 Customizing Spring Security with in-memory,
JDBC, and LDAP authentication

 Implementing HTTP basic authentication in a
Spring Boot project

1855.1 Introducing Spring Security

In this chapter, you’ll explore several techniques to secure Spring Boot applications
with Spring Security.

5.1 Introducing Spring Security
In previous chapters, you’ve seen the use of some of the core Spring modules, such
as Spring MVC and Spring Data and features such as Spring Boot Actuator and
DevTools. Spring Framework provides a dedicated module called Spring Security
that focuses on the security aspects of the Spring applications. Spring Boot provides
easy integration with Spring Security with the spring-boot-starter-security
dependency. In this chapter, we’ll demonstrate the use of Spring Security in Spring
Boot applications.

 However, before we deep-dive into techniques for implementing various security
features offered by Spring Security, let’s explore some of the default security features
offered by Spring Security in a Spring Boot application:

 Spring Security enforces the application users to be authenticated before
accessing it.

 If the application does not have a login page, Spring Security generates a default
login page for user login and allows the user to log out from the application.

 Spring Security provides a default user named user and generates a default
password (printed in the console log) for form-based login.

 Spring Security provides several password encoders to encode the plain-text
password and store it in the persistence storage.

 Spring Security prevents session fixation attacks by changing the session ID
after successful user authentication.

 Spring Security provides default protection from cross-site request forgery
(CSRF) attacks. It does so by including a randomly generated token in the
HTTP response. It expects this token to be available in all subsequent form-
based requests that intend to perform a state-changing operation in the
application. A malicious user won’t have access to the token and, thus, can’t
make CSRF attacks. Figure 5.1 demonstrates the CSRF protection with Spring
Security.

 By default, Spring Security includes several HTTP response headers that prevent
many common types of attacks. These headers are shown in the following listing.

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Content-Type-Options: nosniff
Strict-Transport-Security: max-age=31536000 ; includeSubDomains
X-Frame-Options: DENY
X-XSS-Protection: 1; mode=block

Listing 5.1 Default Spring Security HTTP response headers

186 CHAPTER 5 Securing Spring Boot applications

Let’s explore these headers and their role in protecting a Spring Boot application:

 The Cache-Control header instructs the browser to disable the browser cach-
ing completely.

 The X-Content-Type-Options header prevents the browser from attempting to
guess the content type of a request when the Content-Type header is missing in
the request.

 The Strict-Transport-Security header enforces the HTTP Strict Transport
Security (HSTS). Refer to the Spring Security reference documentation at
http://mng.bz/jyEa to learn more about HSTS.

 The X-Frame-Options HTTP header with DENY configuration instructs the
browser not to load application pages in a frame, iframe, or embed. This pre-
vents clickjacking attacks in a Web application.

1. User logs in and creates
an HTTP session

2. Server returns the CSRF token
in the HTTP response

Evil Site

3. User visits the site, and it steals theevil

session credentials through phishing

4. Evil site attempts to access
the user account, using the
stored session credentials
but no CSRF token

4. User accesses the site with session
credentials and the CSRF token

User Server

Figure 5.1 CSRF protection in a Spring Security application

http://mng.bz/jyEa

1875.2 Hello Spring Security with Spring Boot

 The X-XSS-Protection HTTP header with 1; mode=block prevents reflective
Cross-Site-Scripting attacks. The value 1 enables the browser’s built-in XSS
filtering, and the option mode=block allows the browser to prevent loading a
page if an XSS attack is detected.

You can find a detailed discussion on these and other HTTP response headers in the
Spring Security reference document available at http://mng.bz/W74g.

5.2 Hello Spring Security with Spring Boot
In this section, we’ll introduce Spring Security in the course tracker application that
we’ve been building in previous chapters. Let’s explore this in the next technique.

5.2.1 Technique: Enabling application security with Spring Security
in a Spring Boot application

In this technique, we’ll demonstrate how to enable application security with Spring
Security.

PROBLEM

You’ve developed a Web application with Spring Boot. However, there is no applica-
tion security implemented in the application. You need to implement basic applica-
tion security in the application.

SOLUTION

The simplest way to provide security in a Spring Boot application is to introduce the
spring-boot-starter-security dependency in the application’s pom.xml file. This
dependency is shown in the following listing.

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
</dependency>

The spring-boot-starter-security dependency brings all the necessary libraries
and enables Spring Security in the Spring Boot application. Spring Boot starter
dependency includes core Spring Security libraries, such as spring-security-config
and spring-security-web, into the application.

 You can start the application using the IDE’s run configuration option. Once the
application successfully starts, let’s access the index page of the application by accessing

Source code
To begin using this technique, you can use the base version of the Spring Boot project
used throughout it, which is available at http://mng.bz/8leK. The final version of this
Spring Boot project is available at http://mng.bz/ExNq.

Listing 5.2 Spring Security starter dependency

http://mng.bz/W74g
http://mng.bz/8leK
http://mng.bz/ExNq

188 CHAPTER 5 Securing Spring Boot applications

the URL http:/ /localhost:8080/index. To your surprise, you’ll find a login page ask-
ing you to sign in instead of presenting the application index page. This happens
because you’ve incorporated Spring Security in the application, and it has automati-
cally enabled a form-based login in the application. By default, Spring Security dis-
plays the login page, as shown in figure 5.2 to sign in to the application.

The default username for the application is user. Spring Boot generates and prints a
password in the console log. This password changes each time the application is
restarted. This default password might not be convenient for a production application in
which you would need the user to configure their passwords. Later in this chapter, you’ll
notice Spring Boot is flexible enough and lets you achieve the same. However, for now,
we’ll proceed with the default password printed in the console, as shown in figure 5.3.

Figure 5.2 Default login page for user sign in. This login page is generated by Spring
Security in the absence of a custom login page in the application. You can customize this
login page to configure a custom page.

Figure 5.3 Spring Security-generated password printed in the console log

1895.2 Hello Spring Security with Spring Boot

Log in to the application with the username as the user and the password as printed
in the console. For instance, in this example the password is d9bbec60-e3ce-4cb9-
b4a7-3ee35d3dc0f1. After successful login, you’ll be redirected to the application
index page, as shown in figure 5.4.

You are now logged in to the application and can access all application features,
such as adding a new course, editing an existing course, and deleting an existing
course. You can also log out from the application by clicking the logout button at
the top right corner of the application. Once logged out, you will be redirected to
the login page and can’t access any of the application features unless you log in
again. By default, Spring Security exposes the /logout endpoint. In the course
tracker example, we’ve included the logout button on the index page of the appli-
cation. Once you click on the logout button, the /logout endpoint is invoked, and
you are logged out of the application.

DISCUSSION

With this technique, you’ve learned how to enable default application security in a
Spring Boot application with Spring Security. You’ve observed that introducing
spring-boot-starter-security dependency in the pom.xml file magically enables
some level of application security through a form-based login in the application.
Spring Boot also generates a password to log in to the application.

 The introduction of spring-boot-starter-security dependency integrates the
Spring Security ecosystem to the application. You can inspect the spring-boot-
starter-security dependency in the pom.xml file and find that it has transitive

Figure 5.4 Course Tracker application index page. On application startup, we’ve initialized the database schema
and created three courses. Thus, three courses are shown in the course list.

190 CHAPTER 5 Securing Spring Boot applications

dependencies to spring-security-config and spring-security-web libraries.
Together, these two libraries provide the necessary support for Spring Security.

 As you’ve seen before with Spring Boot autoconfiguration, the presence of
Spring Security libraries in the application classpath enables Spring Boot to config-
ure necessary security components in the application. You’ll shortly examine what
these components are and how they are configured in the Spring Security auto-
configuration section.

 Before we make ourselves familiar with the internal workings of Spring Security,
let’s provide a very high-level overview of the authentication process in a typical Web
application. The sequence diagram in figure 5.5 provides the sequence of steps:

1 You attempt to access the home page of an application by accessing a Web URL
(e.g., http:/ /localhost:8080/ in the course tracker application).

2 The request reaches the server, and it finds that you are trying to access a pro-
tected resource.

3 As you are not presently authenticated, the server responds indicating that you
need to be authenticated. The response could be an HTTP response code or
redirect to a Web page based on the security implementation at the server.

4 Based on the authentication mechanisms implemented in the server, the
browser will either redirect you to a login page or retrieve the credentials
through other modes, such as the HTTP basic authentication dialogue box or a
cookie. You’ll learn how to configure the authentication mechanisms in the
server in later techniques.

5 The credentials are then sent back to the server. Browsers can either use an
HTTP POST request (e.g., for a login page) or an HTTP header (e.g., for
BASIC authentication) to pass the credentials to the server.

6 The server validates the credentials. If the credentials are valid, the login is
considered successful, and the server moves to the next step. However, if the
credentials are invalid, the browser typically asks to try again, so you return
to step 3.

7 If the login is successful and logged in with sufficient authorities, then the
request will be successful. Otherwise, the server returns with an HTTP error
code 403, which indicates forbidden.

8 If the user logs out from the application, the server clears the session and other
login credentials from the server and logs out the user. It then redirects the
user to the login page or the index page of the application based on the secu-
rity configuration of the server.

In the next section, you’ll begin with Spring Security architecture and learn how the
above steps are implemented in Spring Security.

1915.2 Hello Spring Security with Spring Boot

ServerUser

Attempting to access a

protected resource

Validates and

detects

the user

is not authorized

Redirects the user to login.

Login could be a login page,

HTTP basic authentication prompt, etc.

based on the authentication strategy.

User provides the login credentials.

Validates and

authenticates

the user

Successful login

Invalid credentials. Login again.

If valid user

credentials

Else

User logs out if successfully logged in.

Logs out the user and redirects to the login page

if form-based login is used

2

6

5
4

3

1

User supplies

credentials

7

8

Figure 5.5 Sequence diagram of user authentication in a Web application

192 CHAPTER 5 Securing Spring Boot applications

5.2.2 Filter, FilterChain, and Spring Security

In a typical Java Web application, a client requests the server to access a resource
through HTTP or HTTPS protocol. The client request in the server is handled by a
servlet. The servlet processes the HTTP request and provides an HTTP response. This
response is sent back to the client. In a Spring Web application, this servlet is the
DispatcherServlet, which handles all incoming requests to the application.

 A major component of Servlet specification that plays a pivotal role in request–
response processing is a Filter. A Filter sits before a Servlet and intercepts the
request–response. It can make changes to the request–response objects, as shown in
figure 5.6. One or more filters can be configured through a FilterChain, and all fil-
ters that are part of the chain can intercept and modify the request–response objects.
Many of the Spring Security features are based on these filters. Both Filter and
FilterChain are interfaces from javax.servlet package.

Note
Spring Security is a large topic and contains numerous features. It is beyond the
scope of this text to provide in-depth coverage on Spring Security concepts and vari-
ous features it offers. In this book, we’ll cover the bare minimum Spring Security con-
cepts you need to understand to continue with the subsequent techniques.

In this chapter and the next, you’ll learn several techniques that show how to imple-
ment various security features leveraging Spring Security. Since this is a Spring Boot
book, we’ll keep our focus limited to the use of Spring Security in the context of
Spring Boot.

For an in-depth understanding of Spring Security, we recommend referring to dedi-
cated Spring Security books or the Spring Security reference material available at
http://mng.bz/DxYn. Manning has a book dedicated to Spring Security, Spring Secu-
rity in Action by Laurent̨iu Spilcă, available at http://mng.bz/NxZE.

Server

Filters Servlets

Client

HTTP

request/response

Figure 5.6 High-level overview of request–response processing in a Spring
Security application

http://mng.bz/DxYn
http://mng.bz/NxZE

1935.2 Hello Spring Security with Spring Boot

Like how a special servlet named DispatcherServlet handles all incoming requests
in a Spring Web application, a special filter named DelegatingFilterProxy is used to
enable Spring Security. This filter is registered to the servlet container, and it starts
intercepting the incoming requests. In a Spring Boot application, this registration is
done by Spring Boot’s Spring Security autoconfiguration. Let’s now take a look into
the Filter interface, as shown in the following listing.

public interface Filter {

 public default void init(FilterConfig filterConfig) throws

➥ ServletException {}

 public void doFilter(ServletRequest request, ServletResponse response,
 ➥ FilterChain chain) throws IOException, ServletException;

 public default void destroy() {}
}

A Filter implementation needs to implement three methods (init(), doFilter(),
and destroy(..)), as shown in figure 5.7.

The three filter methods are discussed below:

 The init(..) is invoked by the Web container to indicate to a filter that it is
being placed into service.

 The doFilter(..) is the main method where the actual action of the filter is
done. It has access to the request, response, and FilterChain objects. The

Listing 5.3 The Filter interface

Contains the logic that the
filter needs to perform

Initialization
init()

Request Response

Service
doFilter()

Destruction
destroy()

Filter life cycle

Figure 5.7 Filter life cycle methods. The init(..) method contains a code snippet that is invoked at
the time of the filter initialization and destroy (..) method contains code that is invoked when the
filter is about to go out of service from the container. The doFilter(..) method performs the request
handling and returns a response to the caller.

194 CHAPTER 5 Securing Spring Boot applications

FilterChain allows the current filter to invoke the next filter in the chain once
its processing is over.

 The destroy() is called when the container takes the filter out of service.

A FilterChain is another component provided by the servlet container that provides
a view into the invocation chain of a filtered request. Figure 5.8 shows a sample filter
chain. Filters use the FilterChain to invoke the next filter in the chain or the actual
resource (e.g., the servlet) if the filter is the last in the chain. A FilterChain has only
one method named doFilter(). If you revisit listing 5.3, you’ll notice the doFilter()
method in the Filter interface has access to the FilterChain along with the Servlet-
Request and ServletResponse instances. Thus, a Filter can perform its assigned
task and access the FilterChain to invoke the next filter in the chain. Listing 5.4
shows the FilterChain interface.

public interface FilterChain {
 public void doFilter(ServletRequest request, ServletResponse response)

➥ throws IOException, ServletException;
}

Spring Security makes heavy use of the filters to implement various security fea-
tures. The core foundation of Spring Security is based on these filters. For instance,
if Spring Security needs to perform a username and password-based authentica-
tion, it delegates the request to a filter named UsernamePasswordAuthentication-
Filter that is responsible for authenticating the user based on the supplied
credentials. Similarly, for HTTP basic authentication Spring Security uses Basic-
AuthenticationFilter.

 Now, let’s discuss two major filter implementations in Spring Security, Delegating-
FilterProxy and the FilterChainProxy, that act as the entry point for an HTTP request
into the Spring Security infrastructure. Further, you’ll also explore the Security-
FilterChain interface.

Listing 5.4 The FilterChain interface

Client Filter0 Filter2 Servlet

FilterChain

Filter1

Figure 5.8 Representation of a FilterChain. A Client invokes the first filter in the chain. This filter
then invokes the subsequent filter in the chain. Lastly, the request reaches a servlet that is at
the end of the FilterChain.

1955.2 Hello Spring Security with Spring Boot

5.2.3 Spring Security architecture

In the previous section, we’ve provided a high-level overview of Filter and Filter-
Chain and discussed how Spring Security leverages the features provided by these
components. In this section, let us discuss the DelegatingFilterProxy, the Filter-
ChainProxy filter, and the SecurityFilterChain class.

 A Filter is a very useful component in the Servlet specification. Spring Security uses
it to implement several of its core functionalities and authentication strategies.
Although useful, a Filter instance is a servlet container component, and it is managed
by the servlet container. The container instantiates, initializes, and destroys it. The serv-
let specification doesn’t require any kind of Spring integration to deal with a Filter.

 Spring Security provides a filter called DelegatingFilterProxy to bridge this gap.
You configure this filter with the servlet container, so its life cycle is managed by the
servlet container. We then define a separate Filter implementation and make it a
Spring bean managed by Spring. This Spring-managed bean is configured as a dele-
gate in the DelegatingFilterProxy. At runtime, DelegatingFilterProxy finds out
this actual Spring-managed filter and delegates the request for processing.

 The FilterChainProxy class is the other filter implementation that the Delegating-
FilterProxy delegates the HTTP requests. It contains one or more SecurityFilter-
Chains that process the HTTP request. Figure 5.9 shows a high-level overview of these
components.

 The SecurityFilterChain interface has two methods: matches(..) and get-
Filters(..). The first method allows Spring Security to evaluate whether the cur-
rent SecurityFilterChain matches the incoming request. Spring Security provides
the RequestMatcher interface and provides several implementations to perform the
match. For instance, to match any request it provides the AnyRequestMatcher that
matches all HTTP requests. Spring Security also provides an ant-style matcher Ant-
PathRequestMatcher that matches the URL paths.

 If there is a match, the getFilters(..) method returns the list of filters that
needs to be applied to the incoming request. If you continue with Spring Security
default configurations, then it configures a default SecurityFilterChain called
DefaultSecurityFilterChain and configures a list of required filters. It also ensures
that all HTTP requests pass through this filter chain.

 Based on the application design and other security requirements, you may choose
to override the default security configurations and configure one or more Security-
FilterChains in an application. For instance, you might configure one Security-
FilterChain for a set of application URLs (e.g., /courses) that has access to one
module of the application. Similarly, you can configure another SecurityFilter-
Chain for another set of URLs (e.g., /users). Since SecurityFilterChain consists of
a list of filters that provides security, this approach provides better flexibility in your
security implementation. For example, you may choose to implement form-based
authentication for the user controller of the application, whereas for the courses con-
troller, you can use HTTP basic authentication.

196 CHAPTER 5 Securing Spring Boot applications

Implementing multiple SecurityFilterChains
If you are configuring multiple SecurityFilterChains in your application, you
need to ensure the order of the chains. You can use Spring’s @Order annotation to
order the SecurityFilterChains. The SecurityFilterChain for a more specific
application URL should be ordered before the generic ones. Otherwise, the generic
SecurityFilterChain will always match the incoming requests, and the specific
SecurityFilterChain will never invoke. For instance, if you have two filter chains
(for the URLs, /admin and /*), you need to ensure that /admin specific filter chain
orders before the /*, as the latter one is generic and matches all requests.

Client

Other filter

FilterChainProxy

Other filter

Servlet

Security filter 1

Security filter N

DelegatingFilterProxy

FilterChain

SecurityFilterChain

Figure 5.9 Position of DelegatingFilterProxy, FilterChainProxy, and the SecurityFilterChain while accessing
a resource in the server. One or more filter sits behind the actual servlet that serves the client request.
DelegatingFilterProxy is a special filter that delegates the request processing to FilterChainProxy, which, in
turn, leverages the filters in the SecurityFilterChain.

1975.2 Hello Spring Security with Spring Boot

5.2.4 Authenticating a user

Before discussing authentication steps in detail, let us first discuss a few of the notable
classes and concepts that play an important role in authentication:

 SecurityContextHolder—This class associates the SecurityContext instance
to the current execution thread. A SecurityContext contains information
about an authenticated principal, such as username, user authorities, and other
user identification details. The SecurityContextPersistenceFilter manages
the SecurityContext instance. This filter tries to retrieve the SecurityContext
from a SecurityContextRepository. In a Web application, the HttpSession-
SecurityContextRepository implementation tries to load the Security-
Context from the HTTP Session. In the beginning, as we are not authenticated,
an empty security context is added to the SecurityContextHolder. Figure 5.10
shows a block diagram of SecurityContextHolder.

 AuthenticationFilters—These filters are used to authenticate a principal
and Spring Security provides several authentication filters. For instance, the
BasicAuthenticationFilter performs HTTP basic authentication, the Digest-
AuthenticationFilter performs Digest authentication. Once an authentica-
tion filter authenticates a principal, it places an authentication token in the
SecurityContext. This authentication token then can be used by other filters
in the filter chain.

 ExceptionTranslationFilter—The ExceptionTranslationFilter plays a
key role in the authentication process. Based on whether the user is already
authenticated or the user has the necessary access to a resource, there are two
exception types: AuthenticationException and AccessDeniedException.
The ExceptionTranslationFilter addresses both these exception types. For an
AuthenticationException, this filter redirects to an AuthenticationEntryPoint

SecurityContextHolder

SecurityContext

Principal Credentials Authorities

Authentication

Figure 5.10 A SecurityContextHolder holds a SecurityContext, which,
in turn, holds the Authentication details.

198 CHAPTER 5 Securing Spring Boot applications

to initiate the authentication process. Based on the configured authentication
mechanisms, Spring Security provides several AuthenticationEntryPoint imple-
mentations. For an AccessDeniedException, the request is redirected to an
appropriate AccessDeniedHandler implementation. One key benefit of the
Spring Security architecture is that it is extremely flexible and allows you to define
custom implementations if the framework-defined implementations do not meet
your requirement or you need further customizations.

 UserDetailsService—The UserDetailsService provides the necessary abstrac-
tions to map user-specific data to Spring Security’s UserDetails, which contains
the core user information. You can either choose to use Spring Security’s
implementations or provide a custom implementation.

 AuthenticationProvider—The AuthenticationProvider processes a specific
authentication implementation. It accepts an authentication request object,
performs the authentication, and returns a fully authenticated instance. It
throws AuthenticationException if the authentication fails.

Let’s now discuss how the authentication process is implemented in Spring Security.
Figure 5.11 shows this process through a block diagram. The following are the high
level steps:

1 The initial request is handled by the authentication filters. Based on the secu-
rity strategy configured in the server (you’ll see how you can configure this
shortly), an appropriate authentication filter handles the request. For instance,
the BasicAuthenticationFilter processes the request if the HTTP basic
authentication is configured.

2 The authentication filter creates an authentication token from the incoming
request.

3 It then invokes an AuthenticationManager to authenticate the request.
4 The AuthenticationManager contains a list of AuthenticationProvider

instances. An AuthenticationProvider has two methods: supports(..) and
authenticate(..). The supports(..) method decides whether the
AuthenticationProvider supports the authentication type. The authenti-
cate(..) performs the actual authentication.

5 The AuthenticationProvider uses the UserDetailsService implementation
to perform the authentication. The UserDetailsService loads the User-
Details from an identity store that contains user account details, such as user
authorities, username, password, and other account-related statistics. The
AuthenticationProvider uses the loaded UserDetails instance and performs
the actual authentication. The authenticated principal is then returned to the
AuthenticationManager, and the returned Authentication object is stored in
the SecurityContext for later usage by other filters.

1995.2 Hello Spring Security with Spring Boot

UserDetailsService

The UserDetailsService interface performs a crucial role by bridging the application-
specific user details to Spring’s UserDetails implantations. The UserDetails inter-
face represents an application user in a Spring application and contains various user
account-related information. The UserDetailsService exposes a loadUserBy-
Username (String username) method that lets you connect to the application-specific
identity store and load the user account details by the supplied username. Spring
Security provides several implementations of this interface, such as InMemoryUser-
DetailsManager and JdbcUserDetailsManager. Besides, you can also provide your
custom implementations of this interface by defining the loadUserByUsername(..)
method. We’ll discuss the custom implementation in a later technique.

Authentication filters

BasicAuthenticationFilter

DigestAuthenticationFilter

<<Authentication>>

UsernamePasswordAuthenticationToken

<<AuthenticationManager>>

<<AuthenticationProvider>>

<<UserDetailsService>>

RememberMeAuthenticationToken

InMemoryUserDetailsManager

JdbcUserDetailsManager

DaoAuthenticationProvider

RememberMeAuthenticationProvider

ProviderManager

X509AuthenticationFilter

Request

Response

Create

Authenticate

Authenticate

loadUserByUsername UserDetails

Authentication

Authentication

Authentication3 8

4
1

10

7

5 6

9

2

Figure 5.11 High-level overview of the Spring Security authentication steps

200 CHAPTER 5 Securing Spring Boot applications

5.2.5 Spring Security autoconfiguration

By now, you’ve acquired the foundational knowledge in Spring Security and under-
stand various building blocks, such as DelegatingFilterProxy, FilterChainProxy,
SecurityFilterChain, list of filters, and several other components. However, the last
piece of the puzzle is how these components are configured and work together in a
Spring Boot application. As you might have already anticipated, Spring Boot does this
with its smart and efficient autoconfiguration strategies. Let’s explore how Spring
Security autoconfiguration is implemented in Spring Boot. Figure 5.12 shows the
main autoconfiguration classes.

Spring Boot uses three configuration classes: SecurityAutoConfiguration, User-
DetailsServiceAutoConfiguration, and SecurityFilterAutoConfiguration to auto-
configure the core Spring Security components in a Spring Boot application.

SECURITYAUTOCONFIGURATION

The SecurityAutoConfiguration is at the heart of Spring Security autoconfigura-
tion. It leverages three other classes, SpringBootWebSecurityConfiguration, Web-
SecurityEnablerConfiguration, and SecurityDataConfiguration, to perform the
autoconfiguration. The following listing shows this class.

package org.springframework.boot.autoconfigure.security.servlet;

// Imports ommitted

@Configuration(proxyBeanMethods = false)
@ConditionalOnClass(DefaultAuthenticationEventPublisher.class)
@EnableConfigurationProperties(SecurityProperties.class)
@Import({ SpringBootWebSecurityConfiguration.class,

➥ WebSecurityEnablerConfiguration.class,

Listing 5.5 SecurityAutoConfiguration

SecurityAutoCon gurationfi

UserDetailsServiceAutoCon gurationfi

SecurityFilterAutoCon gurationfi

SpringBootWebSecurityConfiguration

WebSecurityEnablerConfiguration

SecurityDataConfiguration

Spring security autoconfiguration classes

Imports

Figure 5.12 Spring Security autoconfiguration classes

2015.2 Hello Spring Security with Spring Boot

 SecurityDataConfiguration.class })
public class SecurityAutoConfiguration {

 @Bean
 @ConditionalOnMissingBean(AuthenticationEventPublisher.class)
 public DefaultAuthenticationEventPublisher

➥ authenticationEventPublisher(ApplicationEventPublisher publisher) {
 return new DefaultAuthenticationEventPublisher(publisher);
 }

}

Let’s discuss these classes briefly. The SpringBootWebSecurityConfiguration class is
loaded if security is available and we haven’t defined our configuration. The following
listing shows the WebSecurityEnablerConfiguration class.

package org.springframework.boot.autoconfigure.security.servlet;
// imports omitted

@Configuration(proxyBeanMethods = false)
@ConditionalOnMissingBean(name = BeanIds.SPRING_SECURITY_FILTER_CHAIN)
@ConditionalOnClass(EnableWebSecurity.class)
@ConditionalOnWebApplication(type = ConditionalOnWebApplication.Type.SERVLET)
@EnableWebSecurity
class WebSecurityEnablerConfiguration {

}

The WebSecurityEnablerConfiguration is a configuration class that adds the @Enable-
WebSecurity annotation in the Spring configuration if Spring Security is present in the
classpath. This is to ensure that the @EnableWebSecurity annotation is present in the
default Spring Security autoconfiguration. However, if we explicitly add this annotation
to our Spring Security configuration file or define a bean with the name spring-
SecurityFilterChain, this configuration backs off and does nothing.

 The @EnableWebSecurity annotation performs a pivotal role in Spring Security
configuration. It provides three key configurations along with other functionalities. It
provides default WebSecurityConfiguration and HttpSecurityConfiguration and
enables @EnableGlobalAuthentication. The WebSecurityConfiguration creates the
WebSecurity instance that performs the Web-based security in Spring Security. Web
Security allows you to manage the security of Web components in your application
(e.g., images, CSS, and JS files). The HttpSecurityConfiguration creates the
HttpSecurity bean that allows us to configure Web security for the HTTP requests.
The @EnableGlobalAuthentication annotation provides the necessary configuration
to configure the AuthenticationManagerBuilder instance. We use this instance to
configure the AuthenticationManager.

Listing 5.6 WebSecurityEnablerConfiguration

202 CHAPTER 5 Securing Spring Boot applications

 If you need to customize the default configuration provided in the above configu-
ration classes, you can easily do that by defining a class that extends the WebSecurity-
ConfigurerAdapter or implementing the WebSecurityConfigurer interface. When
we discuss the upcoming techniques, you’ll notice we heavily use the WebSecurity-
ConfigurerAdapter class to customize WebSecurity and HttpSecurity implementa-
tions and use the AuthenticationManagerBuilder to configure various types of
authentications in our Spring Boot application.

 The SecurityDataConfiguration class provides support for Spring Data integration
with Spring Security. It defines a bean called SecurityEvaluationContextExtension,
which allows Spring Security to be exposed as SpEL expressions to create Spring Data
queries. Refer to the Java Documentation of this class, available at http://mng.bz/DxEy,
for a better understanding of how this works.

USERDETAILSSERVICEAUTOCONFIGURATION

The UserDetailsServiceAutoConfiguration class automatically configures InMemory-
UserDetailsManager if an instance of UserDetailsService is not configured in the
application. The default implementation contains a user with the default username as a
user and a generated password, which is a random UUID. In the previous technique,
you saw this generated password printed in the application console. You can customize
and provide your implementation of the UserDetailsService interface, so Spring
Security’s default configuration can back off, and the custom implementation can take
effect. You’ll see this in practice in the upcoming techniques.

 The last autoconfiguration we’ll discuss is the SecurityFilterAutoConfiguration
class that configures the DelegatingFilterProxyRegistrationBean. This is a Servlet-
ContextInitializer that registers the Spring Security filter DelegatingFilterProxy.
This autoconfiguration class is invoked after the SecurityAutoConfiguration.

5.3 Using Spring Security
In the previous sections, you’ve learned several concepts related to Spring Security
architecture, its authentication mechanism, and the Spring Security autoconfigura-
tion by Spring Boot. In this section, you’ll implement several techniques that explain
the use of various Spring Security features in a Spring Boot-based Web application. In
the next technique, we’ll customize the login page of the course tracker application.

5.3.1 Technique: Customizing the default Spring Security login page of
a Spring Boot application

In this technique, we’ll discuss how to customize the Spring Security provided default
login page to an application-specific custom login page.

PROBLEM

In the previous technique, you introduced Spring Security in the course tracker appli-
cation and noticed that Spring Security has enabled user login in the application with
a default login page. You want to customize the login page with a custom login page.

http://mng.bz/DxEy

2035.3 Using Spring Security

SOLUTION

The default login page generated and provided by Spring Security is a basic one and
just does the job. However, there are several reasons you’ll be interested in customiz-
ing this page. For instance, you might want to keep the application login page in line
with your application’s Web page design. You might also implement additional
authentication strategies, such as an additional security pin along with the regular
login, a one-time password (OTP), or a captcha.

Let’s first add a new login page to the application that is in line with the course tracker
application design. Place this page inside the templates folder under src\main\
resources folder. The following listing shows the login.html page.

<!DOCTYPE html>
<html xmlns:th="http:/ /www.thymeleaf.org">
<head>
<meta charset="utf-8">
<meta http-equiv="x-ua-compatible" content="ie=edge">
<title>Login</title>
<meta name="viewport" content="width=device-width, initial-scale=1">

<link rel="stylesheet" type="text/css"

➥ href="http:/ /cdn.jsdelivr.net/webjars/bootstrap/4.1.0/css/bootstrap.min.c

➥ ss" th:href="@{/webjars/bootstrap/css/bootstrap.min.css}" />
<script src="http:/ /cdn.jsdelivr.net/webjars/bootstrap/4.1.0/js/

bootstrap.min.js"

➥ th:src="@{/webjars/bootstrap/js/bootstrap.min.js}"></script>
<script src="http:/ /cdn.jsdelivr.net/webjars/jquery/3.3.1/jquery.min.js"

➥ th:src="@{/webjars/jquery/jquery.min.js}"></script>
</head>

<body>
 <nav class="navbar navbar-dark bg-dark navbar-expand-sm">

 Course Tracker

 <button class="navbar-toggler" type="button" data-toggle="collapse"

➥ data-target="#navbar-list" aria-controls="navbarNav" aria-

➥ expanded="false" aria-label="Toggle navigation">

 </button>

Source code
To begin using this technique, you can use the base version of the Spring Boot project
used throughout it, which is available at http://mng.bz/laDj. The final version of this
Spring Boot project is available at http://mng.bz/BxWv.

Listing 5.7 Course Tracker application login page

http://mng.bz/laDj
http://mng.bz/BxWv

204 CHAPTER 5 Securing Spring Boot applications

 <div class="collapse navbar-collapse justify-content-between"

➥ id="navbar-list">
 <ul class="navbar-nav">
 <li class="nav-item">
 Home

 <li class="nav-item">
 Add

Course

 </div>
 </nav>
 <div class="container my-5">
 <div class="row">
 <div class="col-md-3"></div>
 <div class="col-md-6">
 <h2 class="mb-1 text-center">Login</h2>
 </div>
 <div class="col-md-3"></div>
 </div>
 <div class="row">
 <div class="col-md-3"></div>
 <div class="col-md-6">
 <form th:action="@{/login}" method="post">
 <div class="form-group">
 <label for="username">Username</label>
 <input type="text" class="form-control"

➥ name="username" placeholder="Enter Username" required autofocus>
 </div>
 <div class="form-group">
 <label for="password">Password</label>
 <input type="password" class="form-control"

➥ name="password" placeholder="Enter Password" required autofocus>
 </div>
 <button type="submit" class="btn btn-

➥ dark">Submit</button>
 </form>
 </div>
 <div class="col-md-3"></div>
 </div>
 </div>
</body>
</html>

This is a basic HTML page designed with Bootstrap. There is a login form that accepts
the username and password of the user and invokes the login HTTP endpoint. Now,
let’s define a LoginController that exposes this login endpoint. The following listing
shows the LoginController.

2055.3 Using Spring Security

package com.manning.sbip.ch05.controller;

// imports

@Controller
public class LoginController {

 @GetMapping("/login")
 public String login() {
 return "login";
 }
}

This endpoint ensures whenever there is an invocation to the login URL (e.g.,
http:/ /localhost:8080/login), the login.html page is presented to the user. Let’s
now customize the Spring Security HTTPSecurity configuration to instruct Spring
to redirect to the login endpoint for user login. If you recall, Spring Security pro-
vides the default security configuration in the WebSecurityConfigurerAdapter
class. Thus, to provide a custom configuration, you need to override this method.
The following listing shows the SecurityConfiguration class that provides a cus-
tom security configuration.

package com.manning.sbip.ch05.security;

import org.springframework.context.annotation.Configuration;
import

➥ org.springframework.security.config.annotation.web.builders.HttpSecurity;
import

➥ org.springframework.security.config.annotation.web.builders.WebSecurity;
import

➥ org.springframework.security.config.annotation.web.configuration.WebSec

➥ urityConfigurerAdapter;

@Configuration
public class SecurityConfiguration extends WebSecurityConfigurerAdapter {

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http.authorizeRequests()
 .antMatchers("/login").permitAll()
 .anyRequest().authenticated()
 .and()
 .formLogin().loginPage("/login");
 }

 @Override
 public void configure(WebSecurity web) throws Exception {

Listing 5.8 The LoginController class

Listing 5.9 The SecurityConfiguration class

Customizing the
HTTPSecurity to configure
the custom login page. We
have excluded the login
page from authentication
and enforced login for all
other URLs.

206 CHAPTER 5 Securing Spring Boot applications

 web.ignoring().antMatchers("/webjars/**", "/images/**", "/css/**",

➥ "/h2-console/**");
 }
}

We’ve made the following configuration changes:

 We’ve defined this class as the Spring configuration, so the Spring Boot compo-
nent scanning can find this class.

 The SecurityConfiguration class extends the WebSecurityConfigurer-

Adapter class. It allows you to customize the Spring Security configuration.
 We’ve overridden the configure(HttpSecurity http) method and provided a

custom implementation to include the custom login page.
 We’ve also overridden the configure(WebSecurity web) method to allow static

content, such as CSS and images, to be excluded from authentication. Other-
wise, Web components, such as images, CSS, and JavaScript files, will not be ren-
dered for the pages that do not require authentication.

Let’s now start the application and access the index page by accessing the URL http:/ /
localhost:8080/index. As you are not yet logged in to the application, you’ll be redi-
rected to the login page at the URL http:/ /localhost:8080/login. Figure 5.13 shows
the custom login page of our application.

You may notice that this is not the same login page you used previously. You can use
the username as a user and the password as printed in the application console. Once
successfully logged in, you’ll be redirected to the http:/ /localhost:8080/index page,
which shows the list of available courses.

Figure 5.13 Course Tracker custom login page

2075.3 Using Spring Security

DISCUSSION

With this technique, you’ve explored how to customize the login page of a Spring
Boot application with Spring Security. As part of this technique, we’ve added the
login.html page and a LoginController, which contains an HTTP GET endpoint
login. Once this endpoint is accessed, it returns the logical view name login, and it is
rendered in the browser as login.html.

 The most notable change is the induction of the SecurityConfiguration class in
the application. The first thing to notice here is that it extends the WebSecurity-
ConfigurerAdapter class. If you recall, the WebSecurityConfigurerAdapter class is
the base class that provides the default Spring Security configurations in your Spring
Boot application. You can extend this class to customize various security settings in
Spring Security. As we will notice later in this chapter, we’ll heavily use this class to cus-
tomize or configure several features of Spring Security.

 The second change to notice is that you’ve overridden the configure(HttpSecu-
rity http) method that allows us to customize the security configuration in the appli-
cation. The following listing shows the changes inside the method.

http.authorizeRequests()
 .antMatchers("/login").permitAll()
 .anyRequest().authenticated()
 .and()
 .formLogin().loginPage("/login");

The antMatchers allows us to specify an application URL or an URL pattern. In the
above code snippet, we are ensuring that the login endpoint is permitted to be accessed
by all users and does not require to be authenticated. This is obvious, as the login page
allows us to log in. Next, we are enforcing that all other requests (i.e., anyRequest()) to
the application need to be authenticated. The authentication type is form-login (i.e.,
formLogin()), and the associated login page is available at the login endpoint.

 You’ve also overridden the configure(WebSecurity web) method to ensure the
static Web resources, such as the images and stylesheet files, are accessible without
any form of authentication. Otherwise, the stylesheets or the images for the login
page will not be accessible.

5.3.2 Technique: Configuring in-memory authentication with custom
users in Spring Security in a Spring Boot application

In this technique, we’ll demonstrate how to use Spring Security in-memory authenti-
cation in a Spring Boot application.

PROBLEM

Although the application in the previous technique works just fine, there is one major
issue with the user login. The password is a random UUID that is changed each time
the application is restarted. You’ll need to enhance the application login experience
by configuring a few custom users.

Listing 5.10 Security configuration

208 CHAPTER 5 Securing Spring Boot applications

SOLUTION

In earlier techniques, we relied on Spring Boot’s default InMemoryUserDetailsManager
configuration to configure the user in our application. This default configuration creates
an in-memory user with a username as a user and a password as a random UUID. Let’s
now change this to provide our custom InMemoryUserDetailsManager implementation.

 If you recall from earlier chapters, Spring Boot backs off with the default config-
urations if it finds a user-defined implementation. Thus, Spring Boot-provided
InMemoryUserDetailsManager implementation will no longer be used if we provide
our implementation.

Let’s enhance the SecurityConfiguration class by defining the InMemoryUserDetails-
Manager, as shown in the following listing.

package com.manning.sbip.ch05.security;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import

➥ org.springframework.security.config.annotation.authentication.builders.

➥ AuthenticationManagerBuilder;
import

➥ org.springframework.security.config.annotation.web.builders.HttpSecurity;
import

➥ org.springframework.security.config.annotation.web.builders.WebSecurity;
import

➥ org.springframework.security.config.annotation.web.configuration.WebSec

➥ urityConfigurerAdapter;
import org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder;
import org.springframework.security.crypto.password.PasswordEncoder;
import org.springframework.security.web.access.AccessDeniedHandler;

@Configuration
public class SecurityConfiguration extends WebSecurityConfigurerAdapter {

 @Autowired
 private AccessDeniedHandler customAccessDeniedHandler;

 @Override
 protected void configure(AuthenticationManagerBuilder auth) throws

➥ Exception {

Source code
To start using technique, you can use the base version of the Spring Boot project
used throughout it, which is available at http://mng.bz/do0D. The final version of this
Spring Boot project is available at http://mng.bz/raxg.

Listing 5.11 Updated SecurityConfiguration

http://mng.bz/do0D
http://mng.bz/raxg

2095.3 Using Spring Security

 auth.inMemoryAuthentication().passwordEncoder(passwordEncoder())
 .withUser("user")
 .password(passwordEncoder().encode("p@ssw0rd"))
 .roles("USER")
 .and()
 .withUser("admin")
 .password(passwordEncoder().encode("pa$$w0rd"))
 .roles("ADMIN");
 }

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http.authorizeRequests()
 .antMatchers("/login").permitAll()
 .antMatchers("/delete/**").hasRole("ADMIN")
 .anyRequest().authenticated()
 .and()
 .formLogin().loginPage("/login")
 .and()
 .exceptionHandling().accessDeniedHandler(customAccessDenied-

Handler);
 }
 @Override
 public void configure(WebSecurity web) throws Exception {
 web
 .ignoring()
 .antMatchers("/webjars/**", "/images/**", "/css/**", "/h2-

➥ console/**");
 }

 @Bean
 public PasswordEncoder passwordEncoder() {
 return new BCryptPasswordEncoder();
 }
}

In listing 5.11, we’ve performed the following activities:

 We’ve overridden the configure(AuthenticationManagerBuilder auth) method
to define the InMemoryUserDetailsManager configuration. In this method, we
have created two custom users, named user and admin, with their respective
passwords and roles USER and ADMIN. A role is an important aspect in con-
trolling user authorization in the application.

 In the HttpSecurity configuration, we’ve done the following:
– The login page does not require any authentication, and it is available at the

login endpoint.
– The delete endpoint can only be invoked by a user with the role of ADMIN.

Note how we are leveraging the user roles to control user actions in the
application. Spring Security throws an AccessDeniedException if any user
without the ADMIN role attempts to invoke the delete endpoint.

210 CHAPTER 5 Securing Spring Boot applications

– If there is an access denied exception, we’ve configured a custom Access-
DeniedHandler that lets us perform the actions when an AccessDenied-
Exception occurs. Note that we’ve autowired the CustomAccessDeniedHandler.

 We’ve provided an implementation for a PasswordEncoder. A password encoder
encodes a password from a plain text format to an encoded format. We’ll dis-
cuss PasswordEncoder in greater detail shortly. In this example, we’ve used the
BCryptPasswordEncoder to encode the password.

The following listing shows the CustomAccessDeniedHandler class.

package com.manning.sbip.ch05.security;

//imports
@Component
public class CustomAccessDeniedHandler implements AccessDeniedHandler {

 @Override
 public void handle(HttpServletRequest request, HttpServletResponse

➥ response,
 AccessDeniedException accessDeniedException) throws

➥ IOException, ServletException {
 // log unauthorized access

 response.sendRedirect(request.getContextPath() + "/accessDenied");

 }
}

In the CustomAccessDeniedHandler class, we are redirecting the user to the access-
Denied endpoint, which redirects the user to an error page. The AccessDeniedHandler
provides the flexibility to perform custom actions if there is an AccessDenied-
Exception. For instance, you can log the unauthorized access details, such as the user
who attempts the unauthorized access on which resource, in your application for
auditing purposes.

 The last change you’ll perform is adding a LogoutController that is invoked when
you click on the logout button. The following listing shows this controller.

package com.manning.sbip.ch05.controller;

//imports

@Controller
public class LogoutController {

 @PostMapping("/doLogout")
 public String logout(HttpServletRequest request, HttpServletResponse

➥ response) {

Listing 5.12 The CustomAccessDeniedHandler implementation

Listing 5.13 The LogoutController

2115.3 Using Spring Security

 Authentication authentication =

➥ SecurityContextHolder.getContext().getAuthentication();
 if(authentication != null) {

➥ new SecurityContextLogoutHandler().logout(request, response,

➥ authentication);
 }
 return "redirect:/login";
 }
}

We’ve executed the following operations in listing 5.13:

 We’ve created an HTTP POST endpoint that handles the user logout from the
application. Note that it is recommended to use the HTTP POST method
instead of the HTTP GET method for logout to avoid a CSRF attack.

 We’ve invoked the SecurityContextLogoutHandler for the user to log out of
the application. This class invalidates the existing HttpSession, clears the
authentication in the SecurityContext, and completes the logout.

Let’s now start the application and access the index page by accessing the URL http:/ /
localhost:8080/index. Since you are not yet logged in to the application, you’ll be
redirected to the custom login page at the URL http:/ /localhost:8080/login. You can
log in to the application using the username user and the password p@ssw0rd or with
the username admin and the password pa$$w0rd. After you log in successfully, you’ll
be redirected to the index page containing the list of courses.

 If you notice the application console log, you won’t find the Spring Security-
generated password anymore. This is because you’ve configured custom InMemoryUser-
DetailsManager implementation, and there is no default InMemoryUserDetailsManager
configuration provided by Spring Boot.

 If you login to the application with the user as a user and attempt to delete a
course, you’ll be redirected to the error page, as shown in figure 5.14.

DISCUSSION

Using this technique, you’ve learned to customize a Spring Boot application with cus-
tom users through Spring Security’s AuthenticationManagerBuilder class. This class

Figure 5.14 Error page for unauthorized access

212 CHAPTER 5 Securing Spring Boot applications

provides easy access for configuring various types of authentications, such as in-memory,
JDBC, and LDAP. For instance, you’ve used the inMemoryAuthentication(..)
method to configure the in-memory authentication. Similarly, you can also use the
jdbcAuthentication(..) and ldapAuthentication(..) methods to configure JDBC-
and LDAP-based authentication, respectively. You’ll learn more about JDBC and
LDAP authentication in later techniques.

 Let us now focus on the PasswordEncoder bean definition. A PasswordEncoder
encodes the plain-text password on a string to protect it. Spring Security provides sev-
eral PasswordEncoder implementations, such as NoOpPasswordEncoder, BCrypt-
PasswordEncoder, Pbkdf2PasswordEncoder and SCryptPasswordEncoder to name a
few. In this example, for demonstration, we’ve used the BCryptPasswordEncoder.

 Spring Security provides a factory class named PasswordEncoderFactories,
which allows you to create an instance of a DelegatingPasswordEncoder instance. A
DelegatingPasswordEncoder instance delegates the password encoding to an actual
PasswordEncoder, such as BCryptPasswordEncoder, which performs the actual
encoding.

 In general, the password of a user is encoded using the configured Password-
Encoder, and the encoded password is stored in the persistence store if a persistence
store-based identity store is used. Later, while the password is supplied for authentica-
tion, the supplied password is provided to the encoder, and it matches the user-supplied
password with the previously encoded password retrieved from the identity store. This
is shown in figure 5.15.

After authentication, the supplied plain-text password is erased from the application.
This prevents the plain-text password from being available in the application.

 We’ll now provide an alternative approach to creating an InMemoryUserDetails-
Manager that uses the DelegatingPasswordEncoder instance to encode the password.
The following listing shows this configuration.

Database
PasswordEncoder

Encoded passwordPlain-text passwordApplication
user

Figure 5.15 PasswordEncoder’s password comparison process. A PasswordEncoder takes the plain-text
password supplied by the user, and the encoded password is retrieved from the database. Based on the type of
PasswordEncoder used, it applies an internal algorithm to compare the password. If there is a match, the
comparison is successful. If the passwords do not match, the comparison is marked as failed.

2135.3 Using Spring Security

package com.manning.sbip.ch05.security;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import

➥ org.springframework.security.config.annotation.web.builders.HttpSecurity;
import

➥ org.springframework.security.config.annotation.web.builders.WebSecurity;
import

➥ org.springframework.security.config.annotation.web.configuration.WebSec

➥ urityConfigurerAdapter;
import org.springframework.security.core.userdetails.User;
import org.springframework.security.core.userdetails.UserDetails;
import org.springframework.security.core.userdetails.UserDetailsService;
import

➥ org.springframework.security.crypto.factory.PasswordEncoderFactories;
import org.springframework.security.crypto.password.PasswordEncoder;
import

➥ org.springframework.security.provisioning.InMemoryUserDetailsManager;
@Configuration
public class SecurityConfiguration extends WebSecurityConfigurerAdapter {

 @Autowired
 private PasswordEncoder passwordEncoder;

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http.authorizeRequests()
 .antMatchers("/login").permitAll()
 .antMatchers("/delete/**").hasRole("ADMIN")
 .anyRequest().authenticated()
 .and()
 .formLogin().loginPage("/login")
 .and()
 .exceptionHandling().accessDeniedHandler(customAccessDenied

➥ Handler);
 }

 @Override
 public void configure(WebSecurity web) throws Exception {
 web.ignoring().antMatchers("/webjars/**", "/images/*", "/css/*",

➥ "/h2-console/**");
 }

 @Bean
 @Override
 public UserDetailsService userDetailsService() {

 UserDetails user = User.withUsername("user")
 .passwordEncoder(passwordEncoder::encode)
 .password("p@ssw0rd").roles("USER").build();

Listing 5.14 The SecurityConfiguration class

Defining the
UserDetailsService as a
Spring Bean definition

214 CHAPTER 5 Securing Spring Boot applications

 UserDetails admin = User.withUsername("admin")
 .passwordEncoder(passwordEncoder::encode)
 .password("pa$$w0rd").roles("ADMIN").build();

 InMemoryUserDetailsManager userDetailsManager = new

➥ InMemoryUserDetailsManager();

 userDetailsManager.createUser(user);
 userDetailsManager.createUser(admin);

 return userDetailsManager;
 }

 @Bean
 public PasswordEncoder passwordEncoder() {
 return PasswordEncoderFactories.createDelegatingPasswordEncoder();
 }
}

In listing 5.14, you defined an instance of UserDetailsService. First, you created
the builder methods of the User class and built the instance of UserDetails
instance. Recall that the UserDetails represents a user in the Spring Security con-
text. Notice that you’ve used Java 8’s method reference with the password encoder
to encode the supplied password.

 Also, you’ve created an instance of DelegatingPasswordEncoder that internally
uses the BCryptPasswordEncoder. A BCryptPasswordEncoder is an actual password
encoder and considered more secure. Start the application with this configuration,
and you’ll notice that it works in the same way it worked previously. The major differ-
ence in this approach is the way you have initialized the InMemoryUserDetails-
Manager and used an appropriate password encoder.

Authentication, authorization, and roles
In the previous technique, you learned that while creating the application users, along
with the user details, we’ve also defined user roles. When dealing with security, you
need to understand the concepts of authentication and authorization.

Authentication is the process of ensuring that a user is the one they claim to be. This
is done through some sort of user identification mechanism, such as the user’s user-
name and password, certificates, biometric information, or other information. Autho-
rization defines what an authenticated user is allowed to perform once they are
logged in to the application. Let’s explore this using the analogy of traveling through
an airport. To catch a flight, you reach the airport and present your identity document
to get access to the airport terminal. The identity document authenticates you as the
right traveler. Once you are inside the terminal you are only authorized to board the
airplane as recorded in your boarding pass. The boarding pass defines your travel
authority. Even though you are inside the terminal, you can’t board any flight of your
choice, as you are not authorized to board any flight you don’t have a boarding pass

2155.3 Using Spring Security

5.3.3 Technique: Configuring JDBC authentication with Spring Security
in a Spring Boot application

In this technique, we’ll discuss how to use Spring Security JDBC authentication in a
Spring Boot application.

PROBLEM

Storing user credentials in the source code is a bad idea, as it can be retrieved by
anyone with access to the source code. Storing user credentials in a database table is
a relatively better approach. You need to configure JDBC authentication in a Spring
Boot application.

SOLUTION

The application you’ve developed in the previous technique is slightly better than its
previous version, as you have the option to configure the custom users in the applica-
tion. However, this is not enough because you will rarely be interested in keeping the
user credentials hardcoded in your source code. This defeats the purpose of enabling
the security altogether, since anyone with access to the source code can easily retrieve
the user credentials. Besides, if your application allows the registration of new users, it
will be a challenge to let them log in to the application with this approach.

 A better alternative is to store the user credentials in a persistent store, such as a
database. A database table, in most production applications, is secure, and only autho-
rized persons can access it. Thus, this technique allows us to explore how to store the
user credentials in a database table and use it for user authentication.

The first change you’ll need to perform is introducing two tables: USERS and AUTHOR-
ITIES. As the names suggest, the USERS table contains the user details, and the
AUTHORITIES table contains the user authorities. Note that authorities in broader terms
define what a user is authorized to do in the application. Previously, we defined the
user role in the same manner. Note that the core difference between these two is the

for. A similar concept is applied to the users in an application. They can only perform
the activities they are authorized for in the application.

In a Spring Security application, you use the notion of roles to control what a logged-
in user is authorized to view and perform in the application. You can think of a role
as the permission or right of a user. Refer to http://mng.bz/laO6 for more details
about using roles in a Spring Boot application.

Source code
To start using this technique, you can use the base version of the Spring Boot project
used throughout it, which is available at http://mng.bz/VlvX. The final version of this
Spring Boot project is available at http://mng.bz/xv58.

http://mng.bz/laO6
http://mng.bz/VlvX
http://mng.bz/xv58

216 CHAPTER 5 Securing Spring Boot applications

semantics of how we use these features. In the Spring Security context, the differences
are minimal and mostly work in the same way. Providing an in-depth discussion on the
differences between roles and authorities is beyond the scope of this book. You can
refer to Spring Security documentation or Manning’s Spring Security in Action by Lau-
rentˏiu Spilcă for a detailed understanding of this subject.

 USERS and AUTHORITIES are the default table names used by Spring JDBC, and to
use the default JDBC authentication provided by Spring Security, we need to use these
table names. In the latter technique, you’ll learn how to customize these table names
and the table structure. Listing 5.15 shows the modified schema.sql located in the
src/main/resources folder.

// Users and Authorities DDL

create table users(
 username varchar(50) not null primary key,
 password varchar(500) not null,
 enabled boolean not null
);

create table authorities (
 username varchar(50) not null,
 authority varchar(50) not null,
 constraint fk_authorities_users foreign key(username) references

➥ users(username)
);

create unique index ix_auth_username on authorities (username,authority);

Listing 5.16 shows the modified data.sql file.

// Users insert queries
INSERT into USERS(username, password, enabled) values ('user','p@ssw0rd',

➥ true);
INSERT into USERS(username, password, enabled) values ('admin','pa$$w0rd',

➥ true);

INSERT into AUTHORITIES(username, authority) values ('user','USER');
INSERT into AUTHORITIES(username, authority) values ('admin','ADMIN');

Upon application startup, Spring Boot will execute the queries provided in the above
listings. Recall from chapter 3 that Spring Boot automatically executes these scripts on
startup. Let’s now move on to the SecurityConfiguration changes, as shown in the
following listing.

Listing 5.15 Modified schema.sql

Listing 5.16 The data.sql file

The USERS table
stores the application
user details.

The AUTHORITIES table
stores the user authorities.

Unique index to
ensure the unique

username and
authority mappings

Application Users Application user
Authorities

2175.3 Using Spring Security

package com.manning.sbip.ch05.security;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import

➥ org.springframework.security.config.annotation.authentication.builders.

➥ AuthenticationManagerBuilder;
import

➥ org.springframework.security.config.annotation.web.builders.HttpSecurity;
import

➥ org.springframework.security.config.annotation.web.builders.WebSecurity;
import

➥ org.springframework.security.config.annotation.web.configuration.WebSec

➥ urityConfigurerAdapter;
import org.springframework.security.crypto.password.NoOpPasswordEncoder;
import org.springframework.security.crypto.password.PasswordEncoder;

import javax.sql.DataSource;

@Configuration
public class SecurityConfiguration extends WebSecurityConfigurerAdapter {

 @Autowired
 private DataSource dataSource;

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http.authorizeRequests()
 .antMatchers("/login").permitAll()
 .anyRequest().authenticated()
 .and()
 .formLogin().loginPage("/login");
 }

 @Override
 public void configure(WebSecurity web) throws Exception {
 web.ignoring().antMatchers("/webjars/**", "/images/**", "/css/**",

➥ "/h2-console/**");
 }

 @Override
 protected void configure(AuthenticationManagerBuilder auth) throws

➥ Exception {
 auth.jdbcAuthentication().dataSource(dataSource);
 }

 @Bean
 public PasswordEncoder passwordEncoder() {
 return NoOpPasswordEncoder.getInstance();
 }
}

Listing 5.17 The security configuration

Implementing JDBC authentication. By default Spring Security uses the supplied
data source (autowired above) to connect to the database and loads the user

details and authorities from USERS and AUTHORITIES tables, respectively.

218 CHAPTER 5 Securing Spring Boot applications

The first change you’ve made is autowiring the DataSource into the class. You’ve updated
the authentication strategy to JDBC authentication in the configure (Authentication-
ManagerBuilder auth) method. You then configured the JDBC authentication with
this data source, so Spring Boot can perform the necessary database lookup for user
authentication.

 Note that you’ve just specified the data source in JDBC authentication. By default,
Spring Security executes the queries listed in listing 5.18 to load the user details and its
authorities. It then uses these details to authenticate the users and validate their author-
ity to access the resource (e.g., if the user is authorized to access the index page).

select username, password, enabled from users where username =?
select username, authority from authorities where username =?

Let’s now start the application and access the index page by navigating to the URL
http:/ /localhost:8080/index. You’ll be redirected to the login page at the URL http:/ /
localhost:8080/login. You can log in to the application using the username user and
password p@ssw0rd or with the username admin and password pa$$w0rd. After success-
ful login, you’ll be redirected to the index page containing the list of courses.

DISCUSSION

With this technique, you’ve learned to perform JDBC authentication in the applica-
tion. This approach is much better than the previous authentication strategies, as the
user credentials are stored in a database table.

 For JDBC authentication, Spring Security provides the JdbcDaoImpl class that
implements the UserDetailsService and defines the loadUserByUsername(..)
method. This method loads the user details using the database. Besides, as shown in
figure 5.16, the JdbcUserDetailsManager class extends the JdbcDaoImpl and provides
more extensive support for user management services through JDBC. For instance,
this class allows performing CRUD operations for a user. Thus, if your application
supports user management, you can use this class to create or delete a user in the
application.

 Although this technique works fine, it has a certain limitation, as it forces you to
use the Spring default tables (USERS and AUTHORITIES) for authentication. But your
application might have its database tables to store user details, and you would like to
use that table for the JDBC authentication. In the next technique, we’ll demonstrate
how to use custom tables for JDBC authentication.

Listing 5.18 Queries used by Spring Security to load user details and authorities

Queries to fetch the user’s details and
authorities from the supplied username

to perform authentication

2195.3 Using Spring Security

5.3.4 Technique: Implementing JDBC authentication with custom
UserDetailsService in a Spring Boot application

In this technique, we’ll discuss how to implement Spring Security JDBC authentica-
tion with a custom UserDetailsService.

PROBLEM

Implementing JDBC authentication with custom queries does not provide complete
control of the user account management. Features such as user account locking,
account expiry, and user credentials expiry are not available.

SOLUTION

Spring Security provides a UserDetailsService interface that acts as a bridge
between the application user implementation and the Spring Security UserDetails. If
you have a custom user management module and user details that do not conform
to the Spring Security user implementation, you can provide an implementation of
this interface.

 The UserDetailsService interface is straightforward and provides only one
method loadUserByUsername() that allows you to load the user details from the iden-
tity store and return a Spring Security’s UserDetails implementation.

JdbcDaoImpl

JdbcUserDetailsManager

UserDetailsService

Database

Extends

Implements

Loads user data

Figure 5.16 Spring Security class and interfaces for JDBC authentication

220 CHAPTER 5 Securing Spring Boot applications

In this technique, we are talking about application-specific users. Therefore, we will
model an application user entity, as shown in the following listing.

package com.manning.sbip.ch05.model;

import lombok.Data;

import javax.persistence.*;

@Entity
@Table(name = "CT_USERS")
@Data
public class ApplicationUser {

 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private Long id;
 private String firstName;
 private String lastName;
 private String username;
 private String email;
 private String password;
 private boolean verified;
 private boolean locked;
 @Column(name = "ACC_CRED_EXPIRED")
 private boolean accountCredentialsExpired;
}

The details in listing 5.19 are straightforward. It contains user details, such as
first_name, last_name, username, and other user account details. We’ve named the
table that stores user details as CT_USERS.

 We need a Spring Data repository interface implementation for the Application-
User, so we can manage the user details in the database. The following listing shows
the ApplicationUserRepository interface.

package com.manning.sbip.ch05.repository;

@Repository
public interface ApplicationUserRepository extends

➥ CrudRepository<ApplicationUser, Long> {

Source code
To start using this technique, you can use the base version of the Spring Boot project
used throughout it, which is available at http://mng.bz/Axjp. The final version of this
Spring Boot project is available at http://mng.bz/Zzmm.

Listing 5.19 Custom user in the Course Tracker application

Listing 5.20 The ApplicationUserRepository interface

http://mng.bz/Axjp
http://mng.bz/Zzmm

2215.3 Using Spring Security

 ApplicationUser findByUsername(String username);
}

In listing 5.20, we’ve added the method findByUsername() that finds the Application-
User from the database with the supplied username. We need this method, as we need
to load the user details in the UserDetailsService implementation. Let’s provide the
custom UserDetailsService implementation, as shown in the following listing.

package com.manning.sbip.ch05.service;

import com.manning.sbip.ch05.model.ApplicationUser;
import com.manning.sbip.ch05.repository.ApplicationUserRepository;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.security.core.userdetails.User;
import org.springframework.security.core.userdetails.UserDetails;
import org.springframework.security.core.userdetails.UserDetailsService;
import

➥ org.springframework.security.core.userdetails.UsernameNotFoundException;

@Service
public class CustomUserDetailsService implements UserDetailsService {

 @Autowired
 private ApplicationUserRepository applicationUserRepository;

 @Override
 public UserDetails loadUserByUsername(String username) throws

➥ UsernameNotFoundException {
 ApplicationUser applicationUser =

➥ applicationUserRepository.findByUsername(username);
 if(applicationUser == null) {
 throw new UsernameNotFoundException("No user with "+username+"

➥ exists in the system");
 }
 return User.builder()
 .username(applicationUser.getUsername())
 .password(applicationUser.getPassword())
 .disabled(!applicationUser.isVerified())
 .accountExpired(applicationUser.isAccountCredentialsExpired())
 .accountLocked(applicationUser.isLocked())
 .roles("USER")
 .build();
 }
}

Listing 5.21 Custom UserDetailsService implementation

Providing implementation of loadUserByUsername(..) method that
maps application-specific user details to Spring Security-specific

UserDetails. We first load the user from the database and then use
the Spring Security’s builder method to construct the UserDetails

instance. If the user is not available, we throw the
UsernameNotFoundException exception.

222 CHAPTER 5 Securing Spring Boot applications

Let’s discuss the changes in listing 5.21:

 The CustomUserDetailsService class provides an implementation of the
UserDetailsService interface.

 It autowires the ApplicationUserRepository interface implementation, as this
is used to load the user details from the database.

 Lastly, in the loadUserByUsername() method, we are doing the following:
– We are finding the user details from the database.
– If there is no user with the supplied username, we are throwing the Username-

NotFoundException. This is a Spring Security exception to indicate the user
is not available.

– If the user exists, then we will build the Spring Security user with the
ApplicationUser details.

In this example, we mark a user as disabled if the user account is not verified. Simi-
larly, accountExpired() and accountLocked() can be used to control the user
account status. For instance, you can implement the account as locked after a configu-
rable number of incorrect login attempts. In fact, you can also implement account
expiry to force the user to change their password after a period. Besides, we’ve set the
user role as USER to indicate they have the role as user. Spring Security forces you to
configure either the role or the authorities of the user.

 The last change we need to perform is using this custom UserDetailsService in the
SecurityConfiguration class, so the custom implementation can be used by Spring
Security. The following listing shows the updated SecurityConfiguration class.

package com.manning.sbip.ch05.security;

import com.manning.sbip.ch05.service.CustomUserDetailsService;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import

➥ org.springframework.security.config.annotation.web.builders.HttpSecurity;
import

➥ org.springframework.security.config.annotation.web.builders.WebSecurity;
import

➥ org.springframework.security.config.annotation.web.configuration.WebSec

➥ urityConfigurerAdapter;
import org.springframework.security.core.userdetails.UserDetailsService;
import org.springframework.security.crypto.password.NoOpPasswordEncoder;
import org.springframework.security.crypto.password.PasswordEncoder;

@Configuration
public class SecurityConfiguration extends WebSecurityConfigurerAdapter {

 @Override
 protected void configure(HttpSecurity http) throws Exception {

Listing 5.22 SecurityConfiguration class

2235.3 Using Spring Security

 http
 .authorizeRequests()
 .antMatchers("/login").permitAll()
 .anyRequest().authenticated()
 .and()
 .formLogin().loginPage("/login");
 }

 @Override
 public void configure(WebSecurity web) throws Exception {
 web
 .ignoring()
 .antMatchers("/webjars/**", "/images/*", "/css/*", "/h2-

➥ console/**");
 }

 @Bean
 public PasswordEncoder passwordEncoder() {
 return NoOpPasswordEncoder.getInstance();
 }
 @Bean
 public UserDetailsService userDetailsService() {
 return new CustomUserDetailsService();
 }
}

In listing 5.22, you’ve made two additional changes: adding the UserDetailsService
bean definition and removing the configure(AuthenticationManagerBuilder auth)
method. The last method is no longer necessary, as you are providing the UserDetails-
Service implementation.

 The last change you’ll perform is creating the CT_USERS table and adding a few
user details to it. Listing 5.23 shows the schema.sql changes.

create table ct_users(
 ID BIGINT(19) NOT NULL,
 EMAIL VARCHAR(255) NOT NULL,
 FIRST_NAME VARCHAR(255) NOT NULL,
 LAST_NAME VARCHAR(255) NOT NULL,
 PASSWORD VARCHAR(255) NOT NULL,
 USERNAME VARCHAR(255) NOT NULL,
 VERIFIED BOOLEAN(1) NOT NULL,
 LOCKED BOOLEAN(1) NOT NULL,
 ACC_CRED_EXPIRED BOOLEAN(1) NOT NULL,
 PRIMARY KEY (ID)
);

The following listing shows the data.sql changes that contain two user details.

Listing 5.23 The CT_USERS table definition

Defining custom
UserDetailsService
implementation as
a Spring bean

224 CHAPTER 5 Securing Spring Boot applications

INSERT INTO CT_USERS(ID, FIRST_NAME, LAST_NAME, USERNAME, PASSWORD, EMAIL,

➥ VERIFIED, LOCKED, ACC_CRED_EXPIRED) VALUES(1, 'John', 'Socket',

➥ 'jsocket', 'password', 'jsocket@example.com', TRUE, FALSE, FALSE);

INSERT INTO CT_USERS(ID, FIRST_NAME, LAST_NAME, USERNAME, PASSWORD, EMAIL,

➥ VERIFIED, LOCKED, ACC_CRED_EXPIRED) VALUES(2, 'Steve', 'Smith',

➥ 'smith', 'password', 'smith@example.com', FALSE, FALSE, FALSE);

In listing 5.24, we created two users with usernames of jsocket and smith, respec-
tively. The first user account is enabled, and the last one is disabled. You can start the
application and try logging in with both the users. You’ll notice that you can success-
fully log in with the jsocket user but not with the smith user.

DISCUSSION

Many applications store their application user details in the database and use them to
authenticate the users. Spring Security provides several approaches to using JDBC
authentication based on the complexity of the application user set up in the application.

 In the last techniques, we discussed these approaches to perform JDBC-based user
authentication. In the first technique, you saw the default use of basic JDBC authenti-
cation where you need to implement the tables, as Spring Security requires you to
configure. In the next technique, you used the custom SQL queries, which is better
than the previous one, as it removes the restriction of using Spring Security-specific
tables. The third approach provides you with more control over how you need to man-
age your users and user account configuration.

 Although storing user details in the database works well, many organizations store
user details and roles in an LDAP (Lightweight Directory Access Protocol) server for
better user management and authentication. Let’s discuss this in the next technique.

5.3.5 Technique: Implementing LDAP authentication in a Spring Boot
application

In this technique, we’ll demonstrate how to perform LDAP authentication in a Spring
Boot application.

PROBLEM

Many organizations manage LDAP to store user details and use it for authenticating
users. In the course tracker application, you need to enable LDAP authentication.

SOLUTION

Most major organizations use LDAP as the central repository for storing user details,
their roles, and authentication purposes. An LDAP server is typically fast for reading
and query operations. As user details are changed less frequently and are queried for
purposes, such as authentication and validation on their roles, LDAP is the suitable
protocol to manage user details.

Listing 5.24 CT_USERS INSERT queries

2255.3 Using Spring Security

 Since LDAP is important and is often used by organizations, Spring Security pro-
vides built-in support for performing user authentication. In this technique, you’ll
first learn how to use LDAP authentication in a Spring Boot application.

The first change you need to perform is including the Maven dependencies required
to include LDAP support in the course tracker project. Listing 5.25 shows the Maven
dependencies to be included in the pom.xml file.

<dependency>
 <groupId>org.springframework.ldap</groupId>
 <artifactId>spring-ldap-core</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-ldap</artifactId>
</dependency>
<dependency>
 <groupId>com.unboundid</groupId>
 <artifactId>unboundid-ldapsdk</artifactId>
</dependency>

In listing 5.25, the spring-ldap-core and spring-security-ldap dependencies pro-
vide the necessary support to enable LDAP features in the Spring Boot application.
Besides, to use LDAP you need an LDAP server. For simplicity, in this example you’ve
used an embedded LDAP server called UnboundID (https://ldap.com/unboundid-
ldap-sdk-for-java/).

 The next change you’ll need to perform is adding the user data that will be accessed
by the LDAP server. By default, an LDAP server does not store the data; it is stored in an
underlying data storage. In this example, we’ll use an LDAP Data Interchange Format
(LDIF) (https://ldap.com/ldif-the-ldap-data-interchange-format/) file that stores the
user records. The following listing shows the users.ldif file stored inside the src\main\
resources folder.

dn: dc=manning,dc=com
objectclass: top
objectclass: domain
objectclass: extensibleObject
dc: manning

Source code
To start using this technique, you can use the base version of the Spring Boot project
used throughout it, which is available at http://mng.bz/RE5j. The final version of this
Spring Boot project is available at http://mng.bz/2jQ8.

Listing 5.25 LDAP dependencies

Listing 5.26 The users.ldif file

http://mng.bz/RE5j
http://mng.bz/2jQ8
https://ldap.com/unboundid-ldap-sdk-for-java/
https://ldap.com/unboundid-ldap-sdk-for-java/
https://ldap.com/ldif-the-ldap-data-interchange-format/

226 CHAPTER 5 Securing Spring Boot applications

dn: ou=people,dc=manning,dc=com
objectclass: top
objectclass: organizationalUnit
ou: people

dn: uid=steve,ou=people,dc=manning,dc=com
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
cn: Steve Smith
sn: Smith
uid: steve
userPassword: password

dn: uid=jsocket,ou=people,dc=manning,dc=com
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
cn: John Socket
sn: Socket
uid: jsocket
userPassword: password

We’ll provide a brief explanation of the users.ldif file in the discussion section. For
now, understand that you’ve two user details with the username steve and jsocket.
The password for both users is set to password. Lets now include the LDAP server con-
figuration in the application.properties file, as shown in the following listing.

spring.ldap.embedded.port=8389
spring.ldap.embedded.ldif=classpath:users.ldif
spring.ldap.embedded.base-dn=dc=manning,dc=com

In the listing, you specify the embedded LDAP server port and the LDIF file location.
You also specify the base distinguished name (DN) of the LDAP server, which acts as
the root entity in the LDAP server.

 The next and last change you’ll need to make is configuring the Security-
Configuration class to instruct Spring Security to perform an LDAP authentication.
The following listing shows the updated SecurityConfiguration class.

Listing 5.27 Embedded LDAP server configuration

These acronyms will be explained
later in the discussion section.

Defines user
Steve Smith

Defines user
John Socket

Embedded LDAP
server port

Embedded LDIF
file location Embedded

LDAP server
distinguished
name

2275.3 Using Spring Security

package com.manning.sbip.ch05.security;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import

➥ org.springframework.security.config.annotation.authentication.builders.

➥ AuthenticationManagerBuilder;
import

➥ org.springframework.security.config.annotation.web.builders.HttpSecurity;
import

➥ org.springframework.security.config.annotation.web.builders.WebSecurity;
import

➥ org.springframework.security.config.annotation.web.configuration.WebSec

➥ urityConfigurerAdapter;
import org.springframework.security.crypto.password.NoOpPasswordEncoder;
import org.springframework.security.crypto.password.PasswordEncoder;

@Configuration
public class SecurityConfiguration extends WebSecurityConfigurerAdapter {

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http
 .authorizeRequests()
 .antMatchers("/login").permitAll()
 .anyRequest().authenticated()
 .and()
 .formLogin().loginPage("/login");
 }
 @Override
 protected void configure(AuthenticationManagerBuilder auth) throws

➥ Exception {
 auth
 .ldapAuthentication()
 .userDnPatterns("uid={0},ou=people")
 .contextSource()
 .url("ldap:/ /localhost:8389/dc=manning,dc=com")
 .and()
 .passwordCompare()
 .passwordEncoder(NoOpPasswordEncoder.getInstance())
 .passwordAttribute("userPassword");
 }

 @Override
 public void configure(WebSecurity web) throws Exception {
 web
 .ignoring()
 .antMatchers("/webjars/**", "/images/*", "/css/*", "/h2-

console/**");
 }
}

Listing 5.28 The SecurityConfiguration class

Defining LDAP configuration
through Authentication-
ManagerBuilder

228 CHAPTER 5 Securing Spring Boot applications

Let’s discuss the changes made for LDAP authentication:

 We’ve used the AuthenticationManagerBuilder to configure the LDAP
authentication.

 We’ve set the DN to uid={0} and ou=people. In the uid={0}, the {0} is replaced
with the user ID (e.g., steve), while performing the authentication. Besides, the
ou=people indicate the user belongs to the people organization unit.

 We then perform the contextSource to configure Spring Security to point to
the LDAP server that should be used to authenticate users.

 The next operation we perform is doing a password comparison. Unlike a data-
base table, LDAP servers do not allow fetching the user password. Thus, while
authenticating Spring Security takes the password supplied by the user and does
an LDAP compare operation by supplying the user password to the LDAP server.

 While performing password comparison, we specify the password encoder and
the LDAP entity attribute name that represents the password in the LDAP
server. In this example, we are supplying a NoOpsPasswordEncoder, as we are
using a plain text password. We also set the password attribute to userPassword,
as in our LDIF file, we’ve used this attribute to represent the user password.

You can start the application and access the index page of the application. You’ll be
redirected to the familiar login page. You can log in with the users configured in the
LDAP server. You can use the username steve and password password to log in.

DISCUSSION

In this technique, we’ve discussed how to implement LDAP authentication through
Spring Security in a Spring Boot application. LDAP is an extremely popular directory
access protocol, and most major organizations manage their users and other organiza-
tional details through LDAP servers.

 In this example, we’ve kept the LDAP implementation as minimal as possible to
keep the example simple and clear. If you are not familiar with LDAP and its purpose,
you can find an in-depth LDAP guide at http://www.zytrax.com/books/ldap/.

 Next, we’ll provide a brief explanation of the users.ldif file you’ve used in this tech-
nique to store the user details. Figure 5.17 provides a high-level overview of this file. In
listing 5.26, you first created a root entry with dc=manning,dc=com. You then created the
organizational unit (ou) with ou=people. Lastly, you stored two user details: Steve Smith
with uid smith and John Socket with uid jsocket. Figure 5.17 shows these details.

 In the previous technique, you learned that the use of UserDetailsService plays a
major role in user authentication. In LDAP authentication we can’t use the User-
DetailsService, as the LDAP server does not allow reading user passwords. Spring
Security provides a LdapAuthenticator interface that is responsible for performing
the LDAP authentication.

 In Spring Security, you can perform LDAP authentication in two ways: bind
authentication and password authentication. In password authentication, the user-
supplied password is compared with the one present in the LDAP server. In this exam-

http://www.zytrax.com/books/ldap/

2295.3 Using Spring Security

ple, you used the password comparison to authenticate the users. In bind authentica-
tion, users are authenticated to establish an authorization identity that is used in
subsequent operations to the LDAP server. To authenticate, the users provide identity
proof, such as a password. Refer to https://ldap.com/the-ldap-bind-operation/ to read
more about LDAP bind operation.

 In all these techniques, you’ve seen the use of form-based user authentication. In
form-based authentication, a login form is presented to the user to enter the user cre-
dentials. Once the user attempts to log in, these credentials are read by the server, and
user authentication is performed. Another popular form of authentication is HTTP
basic authentication that lets the user agent (e.g., the browser) accept the user cre-
dentials and do the user authentication. The HTTP basic authentication technique is
useful when you don’t have an option to perform form-based authentication.

5.3.6 Technique: Implementing HTTP basic authentication in a Spring
Boot application

In this technique, we’ll discuss how to implement HTTP basic authentication in a
Spring Boot application.

PROBLEM

In the previous techniques, you’ve explored form-based user authentication for the
users to allow access to the application. However, some applications prefer to use
HTTP basic authentication instead of form-based login. You need to implement HTTP
basic authentication in your application.

dc=manning,dc=com

ou=people

cn=Steve Smith cn=John Socket Entries with

user data

Root entry

Hierarchical

separator

Figure 5.17 The users.ldif file structure. Its shows the root entries, the separator, and
the user data

https://ldap.com/the-ldap-bind-operation/

230 CHAPTER 5 Securing Spring Boot applications

SOLUTION

NOTE It is not recommended to use HTTP basic authentication in production
applications due to its limitations. This authentication mode encodes the plain-
text password with Base64 encoding, which can easily be decoded. A production
application prefers using techniques, such as token-based authentication.

HTTP basic authentication is an alternative authentication approach used in applica-
tions to authenticate the users. Like form-based login, it also accepts the user creden-
tials and allows the server to authenticate the user. In this technique, we’ll first
demonstrate the use of HTTP basic authentication in the course tracker application.
In the discussion section, we’ll provide more information on the HTTP basic authenti-
cation and how it works.

In this technique, we’ll use the default JDBC-based HTTP basic authentication.
Thus, we’ll remove the form-based login, as used in the previous techniques, and
define HTTP basic authentication in the SecurityConfiguration class, as shown in
the following listing.

package com.manning.sbip.ch05.security;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import

➥ org.springframework.security.config.annotation.authentication.builders.

➥ AuthenticationManagerBuilder;
import

➥ org.springframework.security.config.annotation.web.builders.HttpSecurity;
import

➥ org.springframework.security.config.annotation.web.builders.WebSecurity;
import

➥ org.springframework.security.config.annotation.web.configuration.WebSec

➥ urityConfigurerAdapter;
import org.springframework.security.crypto.password.NoOpPasswordEncoder;
import org.springframework.security.crypto.password.PasswordEncoder;

import javax.sql.DataSource;

@Configuration
public class SecurityConfiguration extends WebSecurityConfigurerAdapter {

 @Autowired
 private DataSource dataSource;

Source code
To start using this technique, you can use the base version of the Spring Boot project
used throughout it, which is available at http://mng.bz/J1rK. The final version of this
Spring Boot project is available at http://mng.bz/wnK2.

Listing 5.29 The SecurityConfiguration class for HTTP basic authentication with JDBC

http://mng.bz/J1rK
http://mng.bz/wnK2

2315.3 Using Spring Security

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http
 .authorizeRequests()
 .anyRequest()
 .authenticated()
 .and()
 .httpBasic();
 }

 @Override
 protected void configure(AuthenticationManagerBuilder auth) throws

Exception {
 auth.jdbcAuthentication().dataSource(dataSource);
 }

 @Override
 public void configure(WebSecurity web) throws Exception {
 web
 .ignoring()
 .antMatchers("/webjars/**", "/images/**", "/css/**", "/h2-

➥ console/**");
 }

 @Bean
 public PasswordEncoder passwordEncoder() {
 return NoOpPasswordEncoder.getInstance();
 }
}

In listing 5.29, you’ve defined that any requests to the application need to be authenti-
cated, and the authentication scheme is HTTP basic authentication. These are the only
changes you’ve made to implement HTTP basic authentication in the application.

 Let’s start the application and access the http:/ /localhost:8080/index from the
browser. You won’t find the familiar login page; instead, there will be a dialogue box
from the browser prompting you to enter the username and password, as shown in fig-
ure 5.18. Provide the same credentials used earlier, as there is no change in the users

The configure method indicates that
all requests to the application need

to be authenticated, and the
authentication needs to be

performed by HTTP Basic
Authentication.

Figure 5.18 HTTP basic authentication dialogue box for user authentication in Google Chrome browser

232 CHAPTER 5 Securing Spring Boot applications

you have created previously. For example, you can use the username user and the
password p@ssw0rd to log in.

 After successfully logging in, you’ll be redirected to the index page of the applica-
tion. You’ll notice there is no logout button available on any of the pages. This is
because there is no logout function in HTTP basic authentication. To log out from
the application, you’ll need to close all instances of the browser.

DISCUSSION

HTTP basic authentication is one of the simplest forms of authentication available in
HTTP. When you request the index page, the server detects that basic authentication
is enabled and does two things:

 It adds an HTTP response header called WWW-Authenticate with the value
Basic realm="Realm".

 It sends an HTTP status code 401 indicating the Unauthorized request.

A realm can be interpreted as an area (e.g., a group of Web pages) for which the
user credentials are shared. On receipt of the HTTP 401 error, the browser under-
stands that it needs to supply the username and password. Thus, it opens the dia-
logue box for the user to enter the credentials, as shown in figure 5.18. Once the
credentials are provided, the browser concatenates the details in username:pass-
word format and performs Base64 encoding on the concatenated data. It then
inserts the Authorization HTTP header in the request in the following format:
Authorization: Basic <Base64 encoded data>.

 The browser remembers the credentials, and on all subsequent requests, it inserts
the Authorization header with the encoded credentials. You need to close the browser
for it to discard the remembered credentials.

Summary
Let’s summarize the key takeaways of this chapter:

 We learned about Spring Security, its architecture, and Spring Boot autoconfig-
uration for Spring Security.

 We discussed how to implement Spring Security in a Spring Boot application
and customize the user login page.

 We explored how to implement in-memory, JDBC, and LDAP authentication
with Spring Security.

 We discussed how to implement role-based access control in a Spring Boot
application.

 We learned how to implement HTTP basic authentication to authenticate users
in a Spring Boot application.

In the next chapter, you’ll extend your understanding of Spring Security by imple-
menting a few more advanced application security features.

233

Implementing
additional security

with Spring Security

In chapter 5, we introduced you to Spring Security and provided an introduction to
various Spring Security concepts. Further, we’ve explored several techniques for
using Spring Security in a Spring Boot application. In this chapter, you’ll use the
foundational concepts from the previous chapter and implement several advanced
security features in your Spring Boot application using Spring Security. Some of
these features include enabling HTTPS; storing passwords in HashiCorp Vault; and
implementing Remember Me, reCAPTCHA, email verification, two-factor authenti-
cation, and more.

This chapter covers
 Configuring advanced security configurations,

including securing passwords with Spring Cloud
Vault, Remember Me, and Google reCAPTCHA

 Enabling multi-factor authentication, including
email verification and two-factor authentication
with Google Authenticator

 Implementing login with OAuth2 in a Spring Boot
application

 Securing Spring Boot Actuator endpoints with
Spring Security

234 CHAPTER 6 Implementing additional security with Spring Security

 You can use Spring Security to implement several advanced application security
features in a Spring Boot application. Some of these features are widely used in pro-
duction applications, and implementing these in your Spring Boot application can
certainly enhance application security. Let’s summarize the features you’ll implement
in this chapter:

 Enabling HTTPS—The interaction between client and server over the HTTP
protocol poses a serious security risk. This is because the HTTP protocol trans-
fers data in plain text. Therefore, malicious users can intercept the network
traffic and can access application data. HTTPS protocol encrypts the interac-
tion between client and server and protects application data.

 Secret management—Managing application secrets (e.g., password, API keys, etc.)
is a key concern in any application. In a Spring Boot application, it is a common
occurrence to place secrets in the application.properties (or application.yml)
file; however, this defeats the purpose of the actual use of the secret. We’ll
demonstrate how to use Spring Cloud Vault to manage application secrets.

 User registration—Most Web applications deal with users. Therefore, effectively
managing users in an application is one of the key tasks. You’ll learn this by
implementing a user registration module in the Course Tracker application.

 Email verification—While registering users in an application, the users must pro-
vide a valid email address. You’ll learn how to verify user email by implementing
email verification in the user registration in the Course Tracker application.

 Locking user account—It is a common practice to lock user accounts in case there
are multiple failed log in attempts. These features can protect user accounts
from brute-force attacks by malicious users or internet bots.

 Remember Me—Remembering users in a trusted device can save users time.
Spring Security provides built-in support for enabling the Remember Me fea-
ture in a Spring application.

 Enabling reCAPTCHA—Internet bots can cause severe damage to an applica-
tion, as they can overwhelm the application by creating fictitious users. It can
drain the computing resources for the application and provide poor or no ser-
vice to the real application user. You can prevent this by enabling CAPTCHA.
You’ll implement Google reCAPTCHA in the Course Tracker application.

 Two-factor authentication—The two-factor authentication provides added security
to the applications, as it requires the user to provide additional authentication.
You’ll implement two-factor authentication in the Course Tracker application,
which requires users to submit a one-time password (OTP) from the Google
Authenticator application.

 Logging in with Google—Most users these days have user accounts on websites
like Google, Facebook, GitHub, and many others. The ability for users to use
these existing accounts to access an application, such as Course Tracker, pro-
vides an added convenience, as it does not require the user to go through the

2356.1 Enabling HTTPS in a Spring Boot application

lengthy user registration and account activation process in third-party applica-
tions. In the Course Tracker application, you’ll let the users log in with their
Google account.

NOTE In this chapter, we intend to show you how to implement several
advanced security features that are often used in enterprise or production
applications. Thus, in this chapter, you’ll see a lot of code examples and com-
paratively fewer theoretical explanations. Further, as some of these tech-
niques are lengthy, at times we’ll refer you to the book’s GitHub repository
for the relevant code snippets.

6.1 Enabling HTTPS in a Spring Boot application
In modern-day applications, it is a common practice to serve the users through
HTTPS instead of the HTTP protocol. HTTPS is the HTTP with TLS encryption. With
HTTPS, the HTTP request and response are encrypted and are more safe and secure.
It is relatively easy to enable HTTPS in a Spring Boot application. Let’s explore this in
the next technique.

6.1.1 Technique: Enabling HTTPS in a Spring Boot application

In this technique, we’ll show how to enable HTTPS support in a Spring Boot application.

PROBLEM

HTTPS provides better security for a Web application. You need to enable HTTPS in
the Course Tracker application.

SOLUTION

Enabling HTTPS in a Spring Boot application is a two-step process. First, you need to
obtain a TLS certificate, then you need to configure the certificate in your Spring
Boot application. A TLS certificate contains information, including the public and
private keys of the certificate owner. These details serve two purposes: encrypting the
data and providing identity assurance of the certificate owner. For the first step, you
can obtain a certificate in two ways. You can obtain it via a trusted certificate authority
(CA), such as Verisign, Entrust, or Let’s Encrypt or by generating a self-signed certifi-
cate via utilities like keytool or openssl. For a production application, it is always rec-
ommended to use a certificate obtained from a trusted CA. For demonstration
purposes, we’ll generate a self-signed certificate using the JDK’s keytool utility. You
can refer to the GitHub wiki (see http://mng.bz/q2pJ) for the steps for generating a
self-signed certificate.

Source code
To begin this technique, you can use the base version of the Spring Boot project used
in this technique, which is available at http://mng.bz/7WAe. The final version of this
Spring Boot project is available at http://mng.bz/mxM4.

http://mng.bz/q2pJ
http://mng.bz/7WAe
http://mng.bz/mxM4

236 CHAPTER 6 Implementing additional security with Spring Security

Once you have the certificate, you can proceed with the HTTPS configuration in the
Spring Boot application. The first step is to place the keystore file (which contains
the certificate) inside the Spring Boot application. We’ll keep the file inside a folder
called keystore in the src\main\resources folder. The next step is to configure the
Spring Boot application to use the provided keystore and then enable HTTPS.

 Next, to enable the HTTPS in the Spring Boot application, let’s open the applica-
tion.properties (or application.yml) file and define the properties, as shown in the fol-
lowing listing.

server.ssl.key-store-type=PKCS12
server.ssl.key-store=classpath:keystore/sbip.p12
server.ssl.key-store-password=p@ssw0rd
server.ssl.key-alias=sbip
server.port=8443

The next change we’ll implement is enforcing HTTPS for every request. This can be
done in the SecurityConfiguration class that extends the WebSecurityConfigurer-
Adapter class (we introduced this Spring Security class in chapter 5). The following
listing shows the changes.

@Configuration
public class SecurityConfiguration extends WebSecurityConfigurerAdapter {

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http.requiresChannel().anyRequest().requiresSecure()
 .and()
 .authorizeRequests().antMatchers("/login").permitAll()
 .anyRequest().authenticated().and().formLogin().loginPage("/login");
 }

 @Override
 protected void configure(AuthenticationManagerBuilder auth) throws

➥ Exception {
 auth.inMemoryAuthentication().passwordEncoder(passwordEncoder())

.withUser("

➥ user")
 .password(passwordEncoder().encode("pass")).roles("USER");
 }

 @Override
 public void configure(WebSecurity web) throws Exception {

Listing 6.1 HTTPS properties

Listing 6.2 Updated SecurityConfiguration class

The format used for the Keystore. It
could be set to JKS in case it is a JKS file.

The path to the keystore
containing the certificate. We
have kept the certificate in
the keystore folder, which is
in the application class path.

The password used to
generate the certificateThe alias

mapped to
the certificateHTTPS Port

2376.1 Enabling HTTPS in a Spring Boot application

 web.ignoring().antMatchers("/webjars/**", "/images/*", "/css/*",

➥ "/h2-console/**");
 }

 @Bean
 public PasswordEncoder passwordEncoder() {
 return new BCryptPasswordEncoder();
 }
}

In listing 6.2, the bold code snippet indicates that all requests need to be secure (i.e.,
over HTTPS). You can start the application and access the login page by accessing
https:/ /localhost:8443/login URL. Notice that we are using the HTTPS protocol and
associated port 8443 instead of the default HTTP port 8080.

 Now that we’ve implemented HTTPS, and the application blocks all HTTP requests,
we need to redirect all traffic to HTTPS automatically. In the application.properties
file, you’ve already configured the HTTPS configuration (through the server.port
=8443 property). Thus, you won’t be able to configure HTTP anymore through prop-
erties configuration, as Spring Boot supports only one of the protocol configurations
at a time in the application.properties file.

 We’ll configure the HTTP connector for the Tomcat server programmatically, so
all incoming HTTP requests can be automatically redirected to HTTPS. The following
lisitng shows the code snippet added in the CourseTrackerSpringBootApplication
class.

@Bean
public ServletWebServerFactory servletContainer() {
 TomcatServletWebServerFactory tomcat = new

➥ TomcatServletWebServerFactory() {
 @Override
 protected void postProcessContext(Context context) {
 SecurityConstraint securityConstraint = new

➥ SecurityConstraint();
 securityConstraint.setUserConstraint("CONFIDENTIAL");
 SecurityCollection collection = new SecurityCollection();

 collection.addPattern("/*");
 securityConstraint.addCollection(collection);
 context.addConstraint(securityConstraint);
 }
 };
 tomcat.addAdditionalTomcatConnectors(redirectConnector());
 return tomcat;
}

private Connector redirectConnector() {
 Connector connector = new

➥ Connector("org.apache.coyote.http11.Http11NioProtocol");
 connector.setScheme("http");

Listing 6.3 Configuration redirect HTTP request to HTTPS

We have provided
the pattern of /* to
include all incoming
requests.

238 CHAPTER 6 Implementing additional security with Spring Security

 connector.setPort(8080);
 connector.setRedirectPort(8443);
 return connector;
}

In listing 6.3, you’ve made the following changes:

 Defined the TomcatServletWebServerFactory class, created the security con-
straint, and included it in the context

 Defined the redirect connector that redirects HTTP requests at 8080 requests to
HTTPS port 8443

Restart the application and access the http:/ /localhost:8080/login URL. You’ll notice
you are automatically redirected to the https:/ /localhost:8443/login URL.

DISCUSSION

In any production-grade application, it is always recommended to use HTTPS over
HTTP. In HTTP the request and response are transferred in plain-text mode, and
your application is vulnerable to exposing sensitive application information. For
example, imagine that your social account password or credit card details are trans-
ferred in plain text and can be accessed by malicious users.

 HTTPS encrypts the request and response and prevents exposing the application
data in transit. Thus, applications using HTTPS are trustworthy to the users. Besides,
it provides security to both application users and application owners.

 Spring Boot provides built-in support to configure HTTPS, and in this technique,
you’ve explored how easily you can configure it in a Spring Boot application. You’ve
also learned how to block the HTTP requests using Spring Security and implemented
auto redirection of HTTP requests to HTTPS.

 You may notice that the HTTPS URL of the Course Tracker Spring Boot applica-
tion shows a Not secure message in the browser. This is due to the use of a self-signed
certificate we are using in our example. Self-signed certificates are not trusted by
browsers, as these can be generated by anyone and do not have any credibility. How-
ever, self-signed certificates are useful for development and demonstration purposes.
In a production application, you must use certificates issued from a trusted CA.

 In this technique, we’ve shown you how to enable HTTPS in the Spring Boot appli-
cation. In a production or enterprise setup, it is a common practice to use load balanc-
ers that frontend the Spring Boot applications. Typically, the HTTPS is managed in the
load balancer layer—not in the Spring Boot application. The demonstrated technique
is useful if you don’t use a load balancer or would like to enable HTTPS in the Spring
Boot application as a last resort or as a quick hack in an internal company project.

6.2 Securing secrets in Spring Cloud Vault
Managing application secrets is one of the key challenges for any application, and
Spring Boot applications are no exception. An application can contain verities of
secrets, such as passwords, API Keys, TLS certificates, and encryption keys to name a

Default HTTP port is set to
8080, and the redirect port is
configured to HTTPS port 8443.

2396.2 Securing secrets in Spring Cloud Vault

few. Exposing these secrets to malicious actors can cause catastrophic damage to an
application. For instance, imagine the consequences if the database password of a
banking application is exposed to malicious users.

 Spring Boot allows you to manage the application properties (including secrets)
through the application.properties (or the application.yml) file for a smooth appli-
cation configuration. Although this approach is developer-friendly, it can leave
room for developers to accidentally place secrets in plain text and expose them to
the outside. It is a common occurrence that developers accidentally check-in secrets
in public repositories and compromise overall application security. For instance, in
the previous technique, you stored the keystore password in the application.proper-
ties file.

 In this section, we’ll introduce you to HashiCorp’s Vault (https://www.vaultproject
.io/). It is a popular tool that allows you to manage the secrets of an application
securely and efficiently. You’ll also explore how to integrate Vault into a Spring Boot
project and manage the application secrets in the vault. Before we start discussing
Vault concepts, let’s first use it in the next technique and then provide a discussion
on it.

6.2.1 Technique: Managing application secrets with HashiCorp Vault
in a Spring Boot application

In this technique, we’ll demonstrate how to manage application secrets (e.g., pass-
words, API keys, etc.) with HashiCorp Vault in a Spring Boot application.

PROBLEM

Your application contains sensitive application information, such as database pass-
words or external API keys. You need to secure those with HashiCorp Vault.

SOLUTION

With this technique, we’ll demonstrate storing application secrets in the Hashicorp
Vault and using the secrets in a Spring Boot application. Presently, in the Course
Tracker application, we are storing the keystore password as plain text in the applica-
tion.properties file. We’ll externalize this secret to the vault and make the necessary
configuration changes in the application to refer it from the vault.

A note on HashiCorp Vault
HashiCorp Vault provides plenty of configurations and options to manage and use the
vault. Some of these configurations include configuring the vault persistence storage,
cloud integration, dynamic secret generation, and others. It is beyond the scope of
this text to provide in-depth coverage on this topic. In this section, we aim to show
how to configure a basic vault and use it in a Spring Boot application. For further details
on various vault features, refer to the documentation at https://www.vaultproject.io/
docs.

https://www.vaultproject.io/
https://www.vaultproject.io/
https://www.vaultproject.io/
https://www.vaultproject.io/docs
https://www.vaultproject.io/docs
https://www.vaultproject.io/docs

240 CHAPTER 6 Implementing additional security with Spring Security

Before we proceed with this technique, you’ll need to set up the vault server and con-
figure it to store your secrets. You can refer to http://mng.bz/oagp for setting this up
in your machine.

 Next, let’s perform the pom.xml changes to include the Spring Cloud config sup-
port in the Course Tracker application. The following listing shows the updated
pom.xml changes.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http:/ /maven.apache.org/POM/4.0.0"
 xmlns:xsi="http:/ /www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http:/ /maven.apache.org/POM/4.0.0

➥ https:/ /maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.6.3</version>
 <relativePath /> <!-- lookup parent from repository -->
 </parent>
 <groupId>com.manning.sbip.ch06</groupId>
 <artifactId>course-tracker-implementing-vault-final</artifactId>
 <version>1.0.0</version>
 <name>course-tracker-implementing-vault-final</name>
 <description>Spring Boot application for Chapter 06</description>

 <properties>
 <java.version>17</java.version>
 <spring-cloud.version>2021.0.0</spring-cloud.version>
 </properties>

 <dependencies>
 / / additional configurations
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-vault-config</artifactId>
 </dependency>
 </dependencies>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>

Source code
To begin this technique, you can use the base version of the Spring Boot project used
in this technique, which is available at http://mng.bz/5KVa. The final version of this
Spring Boot project is available at http://mng.bz/6ZxA.

Listing 6.4 Updated pom.xml

http://mng.bz/5KVa
http://mng.bz/6ZxA
http://mng.bz/oagp

2416.2 Securing secrets in Spring Cloud Vault

 <version>${spring-cloud.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
 / / additional configurations
</project>

Next, let’s provide the vault configuration in the application.properties file, as shown
in the following listing.

spring.cloud.vault.token=s.YGgzy5qOtEf4d6Xo0i6qqQGL
spring.cloud.vault.authentication=token
spring.cloud.vault.host=localhost
spring.cloud.vault.port=8200
spring.cloud.vault.scheme=http
spring.config.import=vault:/ /secret/coursetracker
spring.application.name=coursetracker

server.ssl.key-store-password=${keystore}

Let’s discuss the changes made in listing 6.5:

1 We included the initial root token obtained while initializing the vault. The
token value for your configuration will be different. This token is required for
the Course Tracker application to authenticate itself to the vault.

2 We used the authentication mode as a token. Vault supports several other
authentication modes.

3 We supplied the vault host, port, and scheme. We are using HTTP, as we have
configured the Vault to run with HTTP. This is solely to keep the example sim-
ple, and in a production application you should always use the HTTPS scheme.

4 We provided the secret configuration. Note that we used the secret/course-
tracker in the Vault to store the keystore password. We also provided the appli-
cation name as coursetracker.

5 We replaced the keystore password with the vault key, which is configured as a
keystore in the vault.

You can start the application and access the https:/ /localhost:8443 URL. You’ll find
the application is running as usual.

DISCUSSION

With this technique, you’ve explored using the Hashicorp Vault to store application
secrets and using it in a Spring Boot application. Hashicorp Vault is a powerful and
feature-rich vault that is flexible and allows you to configure the vault per your
requirements.

 Figure 6.1 shows the interaction between the user, Spring Boot application, and vault:

Listing 6.5 Application.properties changes

Spring configuration
to refer to the secret/
coursetracker in the
vault

Replace the server.ssl.key-
store-password=p@ssw0rd
property with this
configuration.

242 CHAPTER 6 Implementing additional security with Spring Security

With this technique, we’ve placed the initial root token in the application.properties
file. Vault generates this token when you initialize the vault with the vault operator
init command. In a production application, you should refer to it from an environ-
ment variable or use some other means to supply it to the application. We are using
HTTP to communicate with the vault, which can compromise secrets. It is recom-
mended to configure HTTPS to use the vault in a production application.

6.3 Implementing user registration
Registering and managing users is one of the key features of a Web application. In this
section, we’ll discuss how we can create new users in the Course Tracker application.
Let’s implement this in the next technique.

6.3.1 Technique: Implementing user registration with Spring Security in
a Spring Boot application

In this technique, we will discuss implementing user registration in a Spring Boot
application.

PROBLEM

You need to implement a user registration module in the Course Tracker application.
The new user details should be persisted in the application, and the user should be
able to log in to the application.

SOLUTION

Before we deep dive into the actual implementation of the user registration, let’s
provide an outline of the changes you’ll perform in the existing Course Tracker
application:

 Defining a user registration HTML page (add-user.html) to capture the new
user details.

 Creating a UserDto data transfer object (DTO) class that captures the details
submitted through the HTML page.

 Defining the ApplicationUser domain entity class that represents the user in
the Course Tracker application. Note that UserDto class represents the data
captured in the HTML page and might contain additional parameters, which
might not be required to be part of actual ApplicationUser details (e.g., the
ConfirmPassword field in the UserDto class).

 Creating the associated service implementations and Spring Data repositories.

Spring Boot
application

User

Request keystore
passwordAccess application

Vault

Figure 6.1 Interaction between user, Spring Boot application, and Hashicorp Vault

2436.3 Implementing user registration

To add a new user, let’s begin by defining a user registration page. You can find the
HTML page at http://mng.bz/4jrj.

 This user registration page is similar to the previous HTML pages you’ve used ear-
lier. It has an HTML form that allows users to enter basic user details and register
themselves in the application. Let’s now add a Java POJO class that captures these
details. The following listing shows the UserDto class, which captures the user data
entered by the user on the registration page.

package com.manning.sbip.ch06.dto;

import javax.validation.constraints.*;

@Data
@NoArgsConstructor
@AllArgsConstructor
public class UserDto {

 @NotEmpty(message="Enter your firstname")
 private String firstName;

 @NotEmpty(message="Enter your lastname")
 private String lastName;
 @NotEmpty(message="Enter a username")

 private String username;
 @NotEmpty(message="Enter an email")
 @Email(message="Email is not valid")
 private String email;

 @NotEmpty(message="Enter a password")
 private String password;

 @NotEmpty(message="Confirm your password")
 private String confirmPassword;

 // Getter, Setter, and Constructors omitted
}

The UserDto is a plain Java class containing fields that are the same as the registration
page with javax.validation.constraints annotations that are used to perform the
validations. Note that you’ve named this class UserDto. This is because it is transfer-
ring the data from the HTML page to the controller. Typically, you need to have a

Source code
To begin this technique, you can use the base version of the Spring Boot project used
in this technique, which is available at http://mng.bz/nYa2. The final version of this
Spring Boot project is available at http://mng.bz/vo04.

Listing 6.6 The UserDto class

http://mng.bz/nYa2
http://mng.bz/vo04
http://mng.bz/4jrj

244 CHAPTER 6 Implementing additional security with Spring Security

different user class that represents the actual user in the application. For instance, you
might have additional details in the UserDto class that might not be useful to store for
the actual user. For instance, in the example in listing 6.6, you have the password and
confirmPassword fields, which are required to ensure the passwords provided are the
same. However, for the actual application entity, using only the password field is
enough. The following listing shows the ApplicationUser class.

package com.manning.sbip.ch06.model;

import javax.persistence.*;

@Data
@Entity
@Table(name = "CT_USERS")
@NoArgsConstructor
public class ApplicationUser {

 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private Long id;

 private String firstName;
 private String lastName;
 private String username;
 private String email;
 private String password;

 // Getter, Setter, and Constructors omitted
}

This class is a JPA entity, and you are using a custom table named CT_USERS to store
application user details. It is a common practice to append the acronym of the appli-
cation module (e.g., CT for the CourseTracker application) in the table name. The
following listing shows the table details located in src\main\resources\script.ddl file.

create table CT_USERS (
 id BIGINT NOT NULL auto_increment,
 first_name varchar(50),
 last_name varchar(50),
 email varchar(50),
 username varchar(50),
 password varchar(100),
 PRIMARY KEY (id)
);

Let’s define the UserRepository interface that lets us manage the ApplicationUser
details in the application, as shown in the following listing.

Listing 6.7 ApplicationUser Java class

Listing 6.8 The CT_USERS table DDL

2456.3 Implementing user registration

package com.manning.sbip.ch06.repository;

//imports

@Repository
public interface UserRepository extends CrudRepository<ApplicationUser,

➥ Long> {

 ApplicationUser findByUsername(String username);
}

Listing 6.9 defines a custom method that lets us find the ApplicationUser based on
the supplied username. In chapter 3, we discussed in detail how Spring Data uses these
custom methods and retrieves data from the database. Next, let’s define a User-
Service interface that provides the operations you can perform to maintain the users
in the application, as shown in the following listing.

package com.manning.sbip.ch06.service;

//imports

public interface UserService {
 ApplicationUser createUser(UserDto userDto);
 ApplicationUser findByUsername(String username);
}

In listing 6.10, you’ve defined two operations:

 The createUser(..) method, which lets you create a new user.
 The findByUsername(..) method, which finds the user from the supplied

username.

The following listing provides an implementation to this interface.

package com.manning.sbip.ch06.service.impl;

//imports

@Service
public class DefaultUserService implements UserService {

 @Autowired
 private UserRepository userRepository;

 @Autowired
 private PasswordEncoder passwordEncoder;

Listing 6.9 UserRepository interface

Listing 6.10 The UserService interface

Listing 6.11 The default implementation of the UserService interface

Create a new
user in the
application.

Finds a user from
the supplied
username

246 CHAPTER 6 Implementing additional security with Spring Security

 public ApplicationUser createUser(UserDto userDto) {
 ApplicationUser applicationUser = new ApplicationUser();
 applicationUser.setFirstName(userDto.getFirstName());
 applicationUser.setLastName(userDto.getLastName());
 applicationUser.setEmail(userDto.getEmail());
 applicationUser.setUserName(userDto.getUsername());
 applicationUser.setPassword(passwordEncoder.encode(userDto.getPass-

word()));

 return userRepository.save(applicationUser);
 }

 public ApplicationUser findByUsername(String username) {
 return userRepository.findByUsername(username);
 }
}

In listing 6.11, you’ve implemented the createUser(..) method. You created an
instance of the applicationUser and populated the object using the details from the
userDto object. You then saved the application object details in the CT_USERS table
using the userRepository. Notice that you’ve used the password encoder to encode
the password so that the encoded password is stored in the database table.

 You’ve also provided an implementation of the findByUsername(..) method,
which finds the ApplicationUser using the supplied username. You’ll see the use of
this method while we implement our custom UserDetailsService to load data from
the CT_USERS table.

 If you recall from chapter 5, the UserDetailsService interface provides a bridge
between the custom identity store and Spring Security user management. The next
thing you’ll do is provide an implementation of the UserDetailsService, as shown in
the following listing.

package com.manning.sbip.ch06.service.impl;

//import

@Service
public class CustomUserDetailsService implements UserDetailsService {

 @Autowired
 private UserService userService;

 public UserDetails loadUserByUsername(String username) throws

➥ UsernameNotFoundException {

 ApplicationUser applicationUser =

➥ userService.findByUsername(username);
 if(applicationUser == null) {

Listing 6.12 UserDetailsService implementation

Maps the UserDto details captured from the HTML page to the actual
ApplicationUser instance that is persisted into the database. Notice the use of a

password encoder that encodes the plain-text password into an encoded password.

2476.3 Implementing user registration

 throw new UsernameNotFoundException("User with username

➥ "+username+" does not exists");
 }
 UserDetails userDetails =

➥ User.withUsername(username).password(applicationUser.getPassword()).roles

➥ ("USER").disabled(false).build();
return userDetails;
 }
}

With this technique, you are using a custom table (i.e., CT_USERS) to manage the
users. Thus, you need to provide a mapping between your custom user details and
the Spring Security user.

 In the CustomUserDetailsService class, you use the UserService implementa-
tion to find the ApplicationUser instance from the CT_USERS table. If no such user
exists, you return a UsernameNotFoundException exception. However, if there is a
user with the supplied username, you map the ApplicationUser instance to Spring
Security UserDetails.

 Let’s now add a Spring controller that manages the user registration. The follow-
ing listing shows this.

package com.manning.sbip.ch06.controller;

//imports

@Controller
public class RegistrationController {

 @Autowired
 private UserService userService;
 @GetMapping("/adduser")
 public String register(Model model) {
 model.addAttribute("user", new UserDto());
 return "add-user";
 }

 @PostMapping("/adduser")
 public String register(@Valid @ModelAttribute("user") UserDto userDto,

➥ BindingResult result) {
 if(result.hasErrors()) {
 return "add-user";
 }
 userService.createUser(userDto);
 return "redirect:adduser?success";
 }
}

In the listing, you added two endpoints: the adduser HTTP GET endpoint, which
returns the add-user.html page and the adduser HTTP POST endpoint, which checks

Listing 6.13 RegistrationController

We are returning a Spring Security
UserDetails instance created from
the custom ApplicationUser class.

The HTTP GET mapping that
returns the caller to the add-
user.html page. We also add
an empty instance of the
UserDto class that is used to
bind the data entered into the
HTML page.

The HTTP POST mapping that performs
the user registration. In the UserDto
class, you’ve used validation (using
annotations such as @NotEmpty) to
ensure that the UserDto fields are
not empty. Thus, we check if the
BindingResult has any error.

248 CHAPTER 6 Implementing additional security with Spring Security

if the UserDto object is valid and all necessary details are provided. This endpoint is
the one bound in the submit attribute of the add-user.html page. If it is invalid, you
return to the add-user.html page with the list of errors. If it is valid, the user is cre-
ated in the CT_USERS table.

 Let’s now handle the user login failure in the LoginController class. As we dis-
cussed in chapter 5, this controller displays the login page to the user. Let’s add a
new HTTP GET endpoint login-error that displays a login error message to the
user in case of an unsuccessful login. The following listing shows the updated Login-
Controller class.

package com.manning.sbip.ch06.controller;

//imports

@Controller
public class LoginController {

 @GetMapping("/login")
 public String login() {
 return "login";
 }

 @GetMapping("/login-error")
 public String loginError(Model model) {
 model.addAttribute("loginError", true);
 return "login";
 }
}

The last change you’ll perform is updating the SecurityConfiguration class. The list-
ing 6.15 shows the updated class.

package com.manning.sbip.ch06.security;
//imports

@Configuration
public class SecurityConfiguration extends WebSecurityConfigurerAdapter {

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http.authorizeRequests()
 .antMatchers("/adduser", "/login", "/login-error").permitAll()
 .anyRequest().authenticated()
 .and()
 .formLogin().loginPage("/login").failureUrl("/login-error");
 }

Listing 6.14 The login controller

Listing 6.15 The SecurityConfiguration class

For login error, this endpoint is
invoked. It set the loginError
flag to true and based on this
the login page displays the login
error issue to the user. Notice
that you are using Spring MVC’s
model instance to transport the
loginError attribute to the
login.html page.

2496.3 Implementing user registration

 @Override
 public void configure(WebSecurity web) throws Exception {
 web.ignoring().antMatchers("/webjars/**", "/images/*", "/css/*");
 }

 @Bean
 public PasswordEncoder passwordEncoder() {
 return new BCryptPasswordEncoder();
 }
}

We made the following changes in this class:

 We added the login-error endpoint to the list of endpoints accessible without
any authentication.

 We added the login failureUrl to the login-error endpoint to redirect the
user to relogin for an unsuccessful login. Spring Security internally redirects
the users to the login-error endpoint in case of a login failure.

 We defined the BCryptPasswordEncoder to encode the password. Recall that, in
the DefaultUserService class, you’ve used this encoder to encode the pass-
words before storing them in the database.

You can start the application, access the http:/ /localhost:8080 URL, and click on the
Register menu to add a new user. You’ll see the user registration page, as shown in fig-
ure 6.2.

Figure 6.2 User registration page. This page contains basic user details, which are saved into the
CT_USERS table.

250 CHAPTER 6 Implementing additional security with Spring Security

Once you fill in the details and click on Sign Up, you’ll see a successful user registra-
tion message and a link for login. At this stage, if you query to the CT_USERS table in
the h2-console, you’ll notice a new user is created, and the password is stored in an
encoded text.

If you click on the sign in link, you’ll be redirected to the login page. You can log in
with your username and password. If the login is successful, you’ll be redirected to the
index page, containing the list of available courses. For an unsuccessful login, you’ll
notice an error message, as shown in figure 6.3. Notice that this error page is the one
appearing when the loginError is set to true.

DISCUSSION

With this technique, you’ve implemented a user registration module in the Course
Tracker application. The Course Tracker application is now able to register new users,
and the newly created users can log in with their credentials.

 You’ve introduced a few components in the application to enable the user registra-
tion capability in the application. Notice that in this technique, we’ve used a handful
of already-discussed technical concepts to implement this feature. Let’s recap the
major changes we’ve made in this technique:

 Introducing a user registration HTML page and the associated Registration-
Controller.

 Inducting the UserDto and ApplicationUser. The UserDto class transfers data
from the HTML page to the controller. The ApplicationUser class represents
the users in the application.

 Creating a new UserRepository service and the corresponding UserService
class to perform operations on the User class.

 Providing an implementation of the UserDetailsService and changing the
SecurityConfiguration and LoginController classes to additionally handle
login failures.

Figure 6.3 User login
failed. The user is presented
with an error message for
invalid credentials.

2516.4 Implementing email verification at user registration

Although this user registration module works fine, a few additional validations need
to be handled. For instance, you need to ensure that the Password and Confirm-
Password filed data is the same. The email address and username values also need
to be unique across the application. Further, there is no password policy imple-
mented, and most production applications should have a defined password policy
(e.g., minimum password length, usage of special characters, etc.). We leave these
activities as an exercise for the reader. You can refer to section 2.5 in chapter 2 for
more information about implementing these features.

6.4 Implementing email verification at user registration
In the previous section, while registering a user, you collected the user email address.
On the registration page, you enforced email validation that ensures the user is pro-
viding a structurally valid email address. However, you haven’t validated whether the
provided email address exists or if it belongs to the user. Validating user email is an
important action performed by most Web applications. There are several reasons
for this:

 You are validating that the user is who they are claiming to be and not imper-
sonating anyone else.

 The user is not an internet bot (http://mng.bz/KxG0) but a legitimate user that
wants to register to the application.

 A valid email is also useful to inform the user of various marketing, promotions,
and product offerings.

Let’s demonstrate how to validate the user email address by sending a verification link
to the provided email address. We’ll discuss this in the next technique.

6.4.1 Technique: Validating user email addresses in a Spring Boot
application

In this technique, we’ll demonstrate how to validate a user email address while regis-
tering a new user in a Spring Boot application.

PROBLEM

While registering a new user, you need to validate the user email address by sending a
verification link to the supplied email address.

SOLUTION

With this technique, you’ll learn how to validate a user email address in a Spring Boot
application. You’ll do this by sending a verification link to the user’s email address.
Until the user verifies their email address through the verification link, the associated
user account will be disabled. Once the user confirms the email address by clicking
the verification link, the user account is activated.

http://mng.bz/KxG0

252 CHAPTER 6 Implementing additional security with Spring Security

Let’s begin by providing a high-level outline of the changes you’ll be performing in
this technique.

 A user registers to the course application by creating a new user account. The
Course Tracker application successfully records the user details in the CT_USERS table.
However, it marks the user account as disabled, as the user email ID is not yet verified.
As part of the registration process, the Course Tracker application sends an email to
the registered email ID with a verification link to activate the account. If the user
attempts to access the account before activation, they are redirected to an error page,
which asks the user to activate the account. After successful verification, the account is
activated in the application, and the user can log in.

NOTE In this example, we’ve used Gmail as the preferred email server for
demonstration purposes. You can use other email service providers as well as
your custom email server. If you choose to do so, ensure to provide relevant
email server configuration in place of Gmail. You’ll see how to configure
these details in listing 6.17.

Let’s now begin with the necessary code changes to implement this feature. The first
change you need to make is adding the spring-boot-starter-mail dependency in
the application’s pom.xml file. This dependency contains necessary libraries, which
allow you to send an email to the user’s email address. The following listing shows the
dependency.

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-mail</artifactId>
</dependency>

Let’s also update the application.properties file to provide the email server details that
should be used to send the email. In this demonstration, we’ll use Gmail as our email
server. You can use any other email server (e.g., Outlook or your custom email server
configuration). If you use an email server other than Gmail, ensure that you provide
the necessary configurations. The following listing shows the Gmail email server con-
figuration in the application.properties file.

Source code
To begin this technique, you can use the base version of the Spring Boot project used
in this technique, which is available at http://mng.bz/QW9v. The final version of this
Spring Boot project is available at http://mng.bz/XWla.

Listing 6.16 The spring-boot-starter-mail dependency

http://mng.bz/QW9v
http://mng.bz/XWla

2536.4 Implementing email verification at user registration

// Other properties
spring.mail.host=smtp.gmail.com
spring.mail.port=587
spring.mail.username=<Enter Gmail Email ID>
spring.mail.password=<Enter Gmail Password>

spring.mail.properties.mail.smtp.auth=true
spring.mail.properties.mail.smtp.starttls.enable=true
spring.mail.protocol=smtp
spring.mail.test-connection=false

In the listing 6.17, you’ve provided the Gmail email server configuration. By default,
Gmail does not allow sending emails from less secure applications. The Course
Tracker is treated as a less secure application by Gmail. Thus, you need to enable the
Less Secure App Access option in your Gmail account security settings.

NOTE In listing 6.17, you included the Gmail username and password in the
application.properties file. The application.properties file is part of your
application codebase and eventually moved to the source code repository. It is
strongly discouraged to configure any type of application secrets in the application.prop-
erties (or application.yml) file, as doing so risks exposing the secrets to a wider
audience. Imagine you pushed the configurations with the email address and
password to a public repository in GitHub, and it is forked by other users.
Your credentials will sprawl to all these forked repositories, and let others
gain access to your email account. A better alternative is to use solutions, such
as a vault, to keep application secrets, which we have discussed in one of the
previous techniques.

The next change you need to make in the ApplicationUser class is ensuring whether
the user account is verified. Add a new boolean variable named verified and the
associated getter/setter methods in the ApplicationUser class.

 Since we are changing the entity class, we need to change the CT_USERS table as
well to add the new column verified. The following listing shows this.

create table CT_USERS (
 id BIGINT NOT NULL auto_increment,
 first_name varchar(50),
 last_name varchar(50),
 email varchar(50),
 username varchar(50),
 password varchar(100),
 verified smallint(1),
 PRIMARY KEY (id)
);

Listing 6.17 Updated application.properties file with Gmail email server configuration

Listing 6.18 The updated CT_USERS table with verified column

Email server. We have used
the Gmail email server.

Email server port. We have
used the Gmail email port.

Email server username.
Provide a Gmail email ID.

Email server password.
Provide the password
of the provided Gmail
email ID.

Email server additional
properties

254 CHAPTER 6 Implementing additional security with Spring Security

With this technique, you are attempting to validate the newly registered user by send-
ing an activation link to their email. To keep this implementation simple, we’ll use a
Base64 encoded UUID as the unique ID for a given username. It works as follows:

 Once the user is registered, we generate a UUID, and store it along with the
user’s username in a table called CT_EMAIL_VERIFICATIONS.

 This UUID is Base64 encoded and sent to the user as part of their activation
email.

 Once the user clicks on the link available in the activation email, we retrieve the
Base64 encoded UUID value, decode it, and compare it against the stored value
in the table.

 If there is a match, we record the user as a verified user in the application by
updating the verified flag in the CT_USERS table to true.

Let’s define the EmailVerification entity class that contains the verificationId
and the username of the users, as shown in the following listing.

package com.manning.sbip.ch04.model;

//imports

@Entity
@Table(name = "CT_EMAIL_VERIFICATIONS")
public class EmailVerification {
 @Id
 @GeneratedValue(generator = "UUID_GENERATOR")
 @GenericGenerator(name = "UUID_GENERATOR", strategy =

"org.hibernate.id.UUIDGenerator")
 private String verificationId;
 private String username;
}

Let’s define the CT_EMAIL_VERIFICATIONS table that stores the verification ID and
username, as shown in listing 6.20. You can append this table DDL in the script.ddl
file located in the src\main\resources folder. This table contains the binding between
usernames and their validation identifiers.

create table CT_EMAIL_VERIFICATIONS (
 verification_id varchar(50),
 username varchar(50),
 PRIMARY KEY (verification_id)
);

Let us now define a Spring service class that manages the EmailVerfication entity
services. The following listing shows the EmailVerificationService class.

Listing 6.19 EmailVerification POJO class

Listing 6.20 CT_EMAIL_VERIFICATIONS table

The UUID-based
verification ID

The username of the
registered user

2556.4 Implementing email verification at user registration

package com.manning.sbip.ch04.service;

//imports
@Service
public class EmailVerificationService {

 private final EmailVerificationRepository repository;

 @Autowired
 public EmailVerificationService(EmailVerificationRepository repository) {
 this.repository = repository;
 }
 public String generateVerification(String username) {
 if (!repository.existsByUsername(username)) {
 EmailVerification verification = new

➥ EmailVerification(username);
 verification = repository.save(verification);
 return verification.getVerificationId();
 }
 return getVerificationIdByUsername(username);
 }

 public String getVerificationIdByUsername(String username) {
 EmailVerification verification =

➥ repository.findByUsername(username);
 if(verification != null) {
 return verification.getVerificationId();
 }
 return null;
 }

 public String getUsernameForVerificationId(String verificationId) {
 Optional<EmailVerification> verification =

➥ repository.findById(verificationId);
 if(verification.isPresent()) {
 return verification.get().getUsername();
 }
 return null;
 }
}

Let’s now shift our focus to generating the verification email when a new user registers
in the application. You’ll leverage Spring’s ApplicationEvent and Application-
Listener for this purpose. The ApplicationEvent class represents an event in the
application. The ApplicationListener class allows you to listen to the published
events and perform some action once the events are emitted.

 With this technique, you’ll generate a UserRegistrationEvent whenever a new
user is created in the application. Then, you’ll define an EmailVerification-
Listener that listens to this event and allows you to compose and send an email with
the verification link.

Listing 6.21 The EmailVerificationService class

Generates a
verification ID
for a supplied
username

Provides the
verification ID
for a supplied

username

Provides
the username
for a supplied
verification ID

256 CHAPTER 6 Implementing additional security with Spring Security

 You might wonder whether we could send the email in the RegistrationController
class itself while registering the user. The benefit of using Spring’s ApplicationEvent
is that it allows you to decouple the email-sending activity from the actual user regis-
tration process. The usage of this observer pattern is generally a best practice, espe-
cially in distributed microservices scenarios. Refer to http://mng.bz/y4jd for the
UserRegistrationEvent class. The following listing shows the EmailVerification-
Listener class.

package com.manning.sbip.ch06.listener;

//imports

@Service
public class EmailVerificationListener implements

➥ ApplicationListener<UserRegistrationEvent> {

 @Autowired
 private final JavaMailSender mailSender;

 @Autowired
 private final EmailVerificationService verificationService;

 public void onApplicationEvent(UserRegistrationEvent event) {
 ApplicationUser user = event.getUser();
 String username = user.getUsername();
 String verificationId =

➥ verificationService.generateVerification(username);
 String email = event.getUser().getEmail();

 SimpleMailMessage message = new SimpleMailMessage();
 message.setSubject("Course Tracker Account Verification");
 message.setText(getText(user, verificationId));
 message.setTo(email);
 mailSender.send(message);
 }

 private String getText(ApplicationUser user, String verificationId) {
 String encodedVerificationId = new

➥ []String(Base64.getEncoder().encode(verificationId.getBytes()));
StringBuffer buffer = new StringBuffer();
buffer.append("Dear ").append(user.getFirstName()).append("

➥ ").append(user.getLastName()).append(",").append(System.lineSeparator()

➥).append(System.lineSeparator());
buffer.append("Your account has been successfully created in the Course

➥ Tracker application. ");

buffer.append("Activate your account by clicking the following link:

➥ http://localhost:8080/verify/email?id=").append(encodedVerificationId);
buffer.append(System.lineSeparator()).append(System.lineSeparator());

Listing 6.22 EmailVerificationListener class

http://mng.bz/y4jd

2576.4 Implementing email verification at user registration

buffer.append("Regards,").append(System.lineSeparator()).append("Course

➥ Tracker Team");
return buffer.toString();
 }
}

In the EmailVerificationListener class, upon receiving a UserRegistrationEvent
(which is created at the time of user registration in the RegistrationController) you
retrieve the username and use the EmailVerificationSevice to generate the verifica-
tion ID. You then create an instance of Spring’s SimpleMailMessage class and com-
pose the email message. Finally, you send the email with the verification link to the
configured email ID.

Let’s now define the EmailVerificationController class that is invoked once the
user clicks on the verification link, as shown in the following listing.

Note
Notice that, by default, the event publisher and listener are executed by the same
thread. Thus, the user registration is not completed unless the event listener sends
the email. If you need to handle the email generation and sending as an asynchro-
nous task, you can use Spring’s SimpleApplicationEventMulticaster. The fol-
lowing listing shows this configuration.

package com.manning.sbip.ch06.config;

// imports

@Configuration
public class EventConfiguration {

 @Bean(name = "applicationEventMulticaster")
 public ApplicationEventMulticaster

simpleApplicationEventMulticaster() {
 SimpleApplicationEventMulticaster eventMulticaster = new

➥ SimpleApplicationEventMulticaster();

 eventMulticaster.setTaskExecutor(new SimpleAsyncTaskExecutor());
 return eventMulticaster;
 }
}

In listing 6.23, you’ve defined an instance of SimpleApplicationEventMulticaster
and provided it with an instance of SimpleAsyncTaskExecutor that handles the pub-
lished event asynchronously.

Listing 6.23 SimpleApplicationEventMulticaster bean definition

258 CHAPTER 6 Implementing additional security with Spring Security

package com.manning.sbip.ch04.controller;

//imports

@Controller
public class EmailVerificationController {

 @Autowired
 private EmailVerificationService verificationService;
 @Autowired
 private UserService userService;

 @GetMapping("/verify/email")
 public String verifyEmail(@RequestParam String id) {
 byte[] actualId = Base64.getDecoder().decode(id.getBytes());
 String username =

➥ verificationService.getUsernameForVerificationId(new String(actualId));
 if(username != null) {
 ApplicationUser user = userService.findByUsername(username);
 user.setVerified(true);
 userService.save(user);
 return "redirect:/login-verified";
 }
 return "redirect:/login-error";
 }
}

In listing 6.24, you first retrieve the verificationId and find the associated user-
name. If there is a user found against the username, you load the user and update the
account as verified. Otherwise, the user is redirected to a login error page. Let’s
explore the changes you need to perform in the SecurityConfiguration class, as
shown in the following listing.

package com.manning.sbip.ch06.security;

//import

@Configuration
public class SecurityConfiguration extends WebSecurityConfigurerAdapter {

 @Autowired
 private CustomAuthenticationFailureHandler

➥ customAuthenticationFailureHandler;

 @Override
 protected void configure(HttpSecurity http) throws Exception {

 http.requiresChannel().anyRequest().requiresSecure()
 .and()

Listing 6.24 The EmailVerificationController class

Listing 6.25 The SecurityConfiguration class

2596.4 Implementing email verification at user registration

 .antMatchers("/adduser", "/login", "/login-error", "/login-

➥ verified", "/login-disabled", "/verify/email").permitAll()
 .anyRequest().authenticated()
 .and()
 .formLogin().loginPage("/login").failureHandler(customAuthentication-

Failure

➥ Handler);
 }

 // Additional code
}

In listing 6.25, you’ve made the following changes:

 Allowing the "/adduser", /login", /login-error", /login-verified",
/login-disabled", and "/verify/email" endpoints to be accessed without
any form of authentication. This is obvious, as these endpoints deal with actions
that either allow a user to log in or a new user register to the application.

 Leveraging Spring Security’s AuthenticationFailureHandler interface to pro-
vide a custom failure handler implementation that handles login failure. Recall
in previous techniques, you had used a failureUrl to forward the request to a
failure page. The AuthenticationFailureHandler implementation provides
better control, as you can place additional logic on what needs to be done in
case of a login failure.

Let’s define the CustomAuthenticationFailureHandler class, as shown in the follow-
ing listing.

package com.manning.sbip.ch06.handler;

import org.springframework.security.authentication.DisabledException;
//Other imports

@Service
public class CustomAuthenticationFailureHandler implements

➥ AuthenticationFailureHandler {

 private DefaultRedirectStrategy defaultRedirectStrategy = new

➥ DefaultRedirectStrategy();

 public void onAuthenticationFailure(HttpServletRequest request,

➥ HttpServletResponse response, AuthenticationException exception) throws

➥ IOException, ServletException {

 if(exception instanceof DisabledException) {
 defaultRedirectStrategy.sendRedirect(request, response,

➥ "/login-disabled");
 return;
 }

Listing 6.26 CustomAuthenticationFailureHandler class

260 CHAPTER 6 Implementing additional security with Spring Security

 defaultRedirectStrategy.sendRedirect(request, response, "/login-

➥ error");
 }
}

In case of an authentication failure, Spring Security throws the actual exception that
indicates the type of authentication failure. Using this technique, there could be a sit-
uation in which a user can attempt to access their account without activating it. How-
ever, the user account is disabled in the application, unless the account is activated
through the activation link. Spring Security automatically throws a DisabledException,
indicating that the user account is disabled. If that happens, we redirect the user to
the /login-disabled endpoint. You’ve used Spring’s DefaultRedirectStrategy class
to redirect the response to the appropriate endpoint.

If you start the application and create a new user using the Register option, you’ll
notice that an email is sent out to the configured email, as shown in figure 6.4. You
need to ensure that you have an active internet connection for the application to send
the email. After successful registration of the user, you’ll receive an email similar to
the one shown in the figure.

DISCUSSION

With this technique, we’ve learned how to effectively implement a user registration
through a verification email. We’ve leveraged some of the core Spring features, such as
Spring event management, and used Spring Security features, such as Authentication-
FailureHandler. We recommend you try out the following scenarios:

 Register a new user in the application. Upon successful registration, you’ll notice
there is an activation link.

Figure 6.4 Account verification email for a newly registered user in the Course Tracker application

2616.5 Controlling multiple incorrect login attempts

 At this stage, if you try to login into the application, you’ll receive an error mes-
sage stating the user account is disabled.

 Once you click on the activation link, you’ll notice a confirmation message that
the account is activated, and you can log in.

 At this stage, you can try login with valid credentials, and you will be redirected
to the index page that shows the available courses.

Using this technique, you’ve shared a verification link in the user email and asked the
users to click on it to activate the user account. You can further enhance this imple-
mentation by imposing an expiry time on the verification link. This will prevent any
malicious actor from sending randomly generated IDs and misusing the application.
We leave this task as an exercise for the reader. If you decide to proceed with this task,
consider including an expiry time in the verification link and storing this expiry time in
the CT_EMAIL_VERIFICATIONS table. Once the user clicks on the verification link, along
with the verification token, validate whether the expiry time provided in the link is still
valid. Further, clear the verification link details from the CT_EMAIL_VERIFICATIONS table
for any misuse.

6.5 Controlling multiple incorrect login attempts
In many applications, it is a common practice to temporarily suspend user access if
there are multiple incorrect login attempts. This is one of the security measures taken
by applications to prevent brute-force attacks on an application to gain unauthorized
access to the application. In this section, you’ll learn how to implement this in the
Course Tracker application.

6.5.1 Technique: Controlling multiple incorrect login attempts
in a Spring Boot application

In this technique, we’ll demonstrate how to temporarily block a user account in case
there are multiple incorrect login attempts.

PROBLEM

In the current implementation, the Course Tracker application allows users to make
any number of login attempts. You need to temporarily suspend user access for 24
hours if the user performs three incorrect login attempts.

SOLUTION

Spring Security publishes several Spring events while it performs various security activ-
ities in an application. For instance, once a user is successfully authenticated Spring
Security publishes AuthenticationSuccessEvent. Similarly, Spring publishes Authen-
ticationFailureBadCredentialsEvent if the authentication fails due to invalid cre-
dentials. There are many such events published by Spring Security that applications
can listen to and perform necessary actions.

 Let’s provide an outline on how we can use the aforementioned Spring Security
events to suspend user access if there are multiple incorrect login attempts:

262 CHAPTER 6 Implementing additional security with Spring Security

 We will define a cache that maintains the number of failed login attempts.
 We will use the aforementioned events to manage the user status in the cache.
 We will block the user access if the cache indicates the user has more than three

failed login attempts.
 The cache will automatically expire the user login attempts status after 24 hours.

We’ll use the Google Guava library to implement the cache. Therefore, let’s add the
Guava dependency in the pom.xml file, as shown in the following listing.

<dependency>
 <groupId>com.google.guava</groupId>
 <artifactId>guava</artifactId>
 <version>30.1.1-jre</version>
</dependency>

Next, let’s define the LoginAttemptService class that defines the cache and a few use-
ful methods to maintain the cache and user login attempt status. The following listing
shows this in action.

package com.manning.sbip.ch06.service;

//imports

@Service
public class LoginAttemptService {

 private static final int MAX_ATTEMPTS_COUNT = 3;

 private LoadingCache<String, Integer> loginAttemptCache;

 public LoginAttemptService() {
 loginAttemptCache = CacheBuilder.newBuilder().expireAfterWrite(1,

➥ TimeUnit.DAYS)
 .build(new CacheLoader<String, Integer>() {
 @Override
 public Integer load(final String key) {
 return 0;
 }
 });
 }

Source code
To begin this technique, you can use the base version of the Spring Boot project used
in this technique, which is available at http://mng.bz/M2GB. The final version of this
Spring Boot project is available at http://mng.bz/aD2m.

Listing 6.27 Guava dependency

Listing 6.28 LoginAttemptService class

In this cache, the
String type represents

a username, and the
Integer type represents

the failed login
attempts.

Creates the cache
and expires the
cache contents
after one day

http://mng.bz/M2GB
http://mng.bz/aD2m

2636.5 Controlling multiple incorrect login attempts

 public void loginSuccess(String username) {
 loginAttemptCache.invalidate(username);
 }

 public void loginFailed(String username) {
 int failedAttemptCounter = 0;

 try {
 failedAttemptCounter = loginAttemptCache.get(username);
 }
 catch (ExecutionException e) {
 failedAttemptCounter = 0;
 }
 failedAttemptCounter++;
 loginAttemptCache.put(username, failedAttemptCounter);
 }
 public boolean isBlocked(String username) {
 try {
 return loginAttemptCache.get(username) >= MAX_ATTEMPTS_COUNT;
 }
 catch (ExecutionException e) {
 return false;
 }
 }
}

We’ll now define two event listeners: one that listens to the AuthenticationFailure-
BadCredentialsEvent and one that invokes the LoginAttemptService to update the
cache with the failed login attempt count, as shown in the following listing.

package com.manning.sbip.ch06.listener;

//imports

@Service
public class AuthenticationFailureEventListener implements

➥ ApplicationListener<AuthenticationFailureBadCredentialsEvent> {

 @Autowired
 private LoginAttemptService loginAttemptService;

 @Override
 public void onApplicationEvent(AuthenticationFailureBadCredentialsEvent

➥ authenticationFailureBadCredentialsEvent) {
 String username = (String)

➥ authenticationFailureBadCredentialsEvent.getAuthentication().getPrincipal
();
 loginAttemptService.loginFailed(username);
 }
}

Listing 6.29 AuthenticationFailureEventListener class

Increments the failed
login attempt counter
for the specified
username

Indicates whether the user
has exceeded the maximum

number of allowed login
attempts

264 CHAPTER 6 Implementing additional security with Spring Security

Next, we’ll define the AuthenticationSuccessEventListener class that listens to
AuthenticationSuccessEvent and invalidate the cache for the user. The following
listing shows this.

package com.manning.sbip.ch06.listener;

//imports

@Component
public class AuthenticationSuccessEventListener implements

➥ ApplicationListener<AuthenticationSuccessEvent> {

 @Autowired
 private LoginAttemptService loginAttemptService;

 @Override
 public void onApplicationEvent(AuthenticationSuccessEvent

➥ authenticationSuccessEvent) {
 User user = (User)

➥ authenticationSuccessEvent.getAuthentication().getPrincipal();
 loginAttemptService.loginSuccess(user.getUsername());
 }
}

In listing 6.30, we retrieve the username of the user from the AuthenticationSuccess-
Event and invalidate the cache for the username. Thus, previous incorrect login
attempts are removed from the cache, as the user logs in to the application successfully.

 Next, we’ll update the CustomUserDetailsService class to validate whether the user
is blocked. Recall that the isBlocked(..) method from the LoginAttemptService class
checks if the user has exceeded the maximum allowed incorrect login attempts, as
shown in the following listing.

package com.manning.sbip.ch06.service.impl;

//imports

@Service
public class CustomUserDetailsService implements UserDetailsService {

 @Autowired
 private LoginAttemptService loginAttemptService;

 public UserDetails loadUserByUsername(String username) throws

➥ UsernameNotFoundException {

Listing 6.30 AuthenticationSuccessEventListener class

Listing 6.31 CustomUserDetailsService class

2656.5 Controlling multiple incorrect login attempts

 if(loginAttemptService.isBlocked(username)) {

➥ throw new LockedException("User Account is Locked");
 }

 // other parts are omitted

 }
}

In listing 6.31, you are returning Spring Security’s LockedException if the user
account is blocked. This exception indicates there is an error in the login attempt,
and the login has failed. Recall that we invoke the CustomAuthenticationFailure-
Handler to identify the login failure type and redirect the user to the appropriate
login endpoint. Listing 6.32 shows the updated CustomAuthenticationFailure-
Handler class.

package com.manning.sbip.ch06.handler;

//imports

@Service
public class CustomAuthenticationFailureHandler implements

➥ AuthenticationFailureHandler {

 private DefaultRedirectStrategy defaultRedirectStrategy = new

➥ DefaultRedirectStrategy();

 public void onAuthenticationFailure(HttpServletRequest request,

➥ HttpServletResponse response, AuthenticationException exception) throws

➥ IOException, ServletException {

 if(exception instanceof DisabledException) {
 defaultRedirectStrategy.sendRedirect(request, response,

➥ "/login-disabled");
 return;
 }
 if(exception.getCause() instanceof LockedException) {
 defaultRedirectStrategy.sendRedirect(request, response,

➥ "/login-locked");
 return;
 }
 defaultRedirectStrategy.sendRedirect(request, response, "/login-

➥ error");
 }
}

In listing 6.32, we modified the CustomAuthenticationFailureHandler already
implemented in the previous technique with the addition of another redirect for
LockedException instances. We redirected the user to the login-locked endpoint if
there is a LockedException. Define the login-locked endpoint that redirects the

Listing 6.32 CustomAuthenticationFailureHandler class

266 CHAPTER 6 Implementing additional security with Spring Security

user to the login page with an error message specifying the user account is locked.
Listing 6.33 shows this endpoint defined in the LoginController.

@GetMapping("/login-locked")
 public String loginLocked(Model model) {
 model.addAttribute("loginLocked", true);
 return "login";
 }

You need to use the loginLocked flag in the login.html page to display the error
message that the user account is locked. It is available at http://mng.bz/g4nv. Lastly,
you need to permit this endpoint to be accessed without any authentication, as shown
in listing 6.34.

package com.manning.sbip.ch06.security;

//imports

@Configuration
public class SecurityConfiguration extends WebSecurityConfigurerAdapter {

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http.requiresChannel()
.anyRequest()
.requiresSecure()
.and()
.authorizeRequests()
 .antMatchers("/adduser", "/login", "/login-error", "/login-

➥ verified", "/login-disabled", "/verify/email", "/login-

➥ locked").permitAll()
.anyRequest().authenticated().and().formLogin().loginPage("/login").failure

➥ Handler(customAuthenticationFailureHandler);
 }

 // Other code snippets are omitted
}

In listing 6.34, we included the login-locked endpoint in the existing antMatchers list.
 You can start the application and register and activate a new user, then try to make

incorrect login attempts multiple times. After three failed login attempts, you’ll find
that the user account is suspended, and the following error is displayed, as shown in
figure 6.5.

DISCUSSION

With this technique, you’ve learned how to temporarily suspend a user account if
there are multiple incorrect login attempts. The key takeaway from this technique is

Listing 6.33 The login-locked endpoint

Listing 6.34 Updated SecurityConfiguration

http://mng.bz/g4nv

2676.6 Implementing a Remember Me feature

the use of Spring Security built-in security events to identify the user authentication
status. Note that we use the cache to manage the user login attempt statistics. The
cache automatically clears the login statistics after 24 hours and makes the user eligi-
ble for login.

6.6 Implementing a Remember Me feature
Although you’ll make every effort to secure your application, you also need to be
mindful of the user experience. If you make your application too secure that the
users need to make a great deal of effort to access the application, it can easily dis-
courage them from accessing the application. Thus, you need to maintain a careful
balance between user experience and application security. For instance, many appli-
cations provide a remember-me feature that allows the application to remember the
identity of the user between sessions. Spring Security supports this with an additional
cookie to the user’s browser, which is included in all subsequent requests to the
server. In case the session cookie is expired, Spring uses the remember-me cookie to
authenticate the user.

 Spring Security provides two built-in approaches to implement remember-me ser-
vices: a hash-based token approach and a persistent token approach. The first one
stores user identity in a browser cookie, which makes it less secure. The persistent
token approach stores the details in a database. Let’s first implement the hash-based
token approach in the Course Tracker application.

Figure 6.5 User account is locked due to multiple incorrect login attempts. The red tag appearing in the form
here is the one showing when the loginLocked flag is set to true.

268 CHAPTER 6 Implementing additional security with Spring Security

6.6.1 Technique: Enabling a Remember Me feature in a Spring Boot
application with Spring Security

In this technique, we’ll demonstrate how to implement the Remember Me feature in
a Spring Boot-based Web application.

PROBLEM

For a better user experience, many applications provide a remember-me feature. You
need to implement this feature in the Course Tracker application.

SOLUTION

Spring Security provides built-in support for the remember-me feature and provides
sensible defaults for most of the configurations. To enable remember-me, you’ll need
to perform two changes in the application:

 Adding an HTML checkbox to the login page with the name remember-me. The
checkbox name in the HTML page must be remember-me, as Spring Security
checks the HTTP request to validate whether there is a parameter with this
name.

 In the SecurityConfiguration class, you’ve to enable the remember-me config-
uration, so Spring Security can include necessary configurations.

The following listing shows the changes in the login.html page.

<div class="form-group">
 <label for="password">Password</label>
 <input type="password" class="form-control" name="password"

➥ placeholder="Enter Password" required autofocus>
</div>
<div class="form-check">
 <input type="checkbox" class="form-check-input" name="remember-me">
 <label for="remember-me" class="form-check-label">Remember me</label>
</div>
<div class="text-center mt-1">
 <button type="submit" class="btn btn-dark">Submit</button>
 Register
</div>

You’ve added the checkbox to the login page. The key part here is that the input param-
eter name must be remember-me. Listing 6.36 shows the SecurityConfiguraton changes.

Source code
To begin this technique, you can use the base version of the Spring Boot project used
in this technique, which is available at http://mng.bz/Bx60. The final version of this
Spring Boot project is available at http://mng.bz/doRN.

Listing 6.35 The Login.html changes

http://mng.bz/Bx60
http://mng.bz/doRN

2696.6 Implementing a Remember Me feature

 @Override
 protected void configure(HttpSecurity http) throws Exception {

 http.authorizeRequests()
 .antMatchers("/adduser", "/login", "/login-error", "/login-verified",

➥ "/login-disabled", "/verify/email").permitAll()
 .anyRequest().authenticated()
 .and()
 .formLogin().loginPage("/login").failureHandler(customAuthenticationFailure

➥ Handler)
 .and()
 .rememberMe().key("remember-me-key").rememberMeCookieName("course-
tracker-remember-me")
 .and()
 .logout().deleteCookies("course-tracker-remember-me");
}

 @Override
 protected UserDetailsService userDetailsService() {
 return this.customUserDetailsService;
 }

In listing 6.36, we made two changes:

 Invoke the rememberMe() method in the HttpSecurity configuration for
Spring Security to enable the Remember Me services. Further, you’ve custom-
ized the key and the cookie name, both of which are optional, and Spring pro-
vides default values as remember-me if you don’t configure these parameters.

 We also need to ensure we override the userDetailsService() method and
return the UserDetailsService implementation. This is needed, as Remember-
MeServices loads the UserDetails based on this implementation to load the
user details and create the authentication instance.

If you start the application and attempt to log in, you’ll find a new checkbox option
for remember-me. If this is enabled, after successful login you’ll find an additional
cookie in your browser with the name course-tracker-remember-me.

DISCUSSION

Let’s discuss how a hash-based token approach works. When the user ticks the check-
box in the login page while logging in to the application, Spring Security sends an
additional cookie to the user browser, which is included in all subsequent requests to
the server. Thus, even if the session cookie is expired, the remember-me cookie is avail-
able and not expired. The server can fetch the user details from the remember-me
cookie and reauthenticate the user automatically.

 If you inspect the course-tracker-remember-me cookie in your browser, you’ll
find it has lots of scrambled text. These are the Base64 encoded details Spring Secu-
rity stores inside the cookie. The cookie has the details in the format shown in the fol-
lowing listing.

Listing 6.36 The SecurityConfiguraton class changes

270 CHAPTER 6 Implementing additional security with Spring Security

Base64(username:expirationTime:md5Hex(username:tokenExpiryTime:password:key))

Following are the details used in the token:

 username—As identifiable to the UserDetailsService.
 expirationTime—The date and time when the remember-me token expires,

expressed in milliseconds. By default, it is set to two weeks.
 md5Hex—Calculates the MD5 hash of the username, tokenExpiry, password,

and key. The generated hash value is represented in hexadecimal.
 password—That matches the one retrieved in the UserDetails.
 key—A private key to prevent modification of the remember-me token. By

default, Spring Security generates the key if you haven’t configured one. How-
ever, the drawback with this generated key is that if the application shuts down,
then all remember-me cookies will be invalidated, as the key will be different
after restarting the application. In our example, we’ve used the remember-me-
key as the key name.

Although the hash-based remember-me token approach makes it a lot easier for a user
to access the application, it has several shortcomings:

 If the remember-me cookie is stolen or accessed by malicious users, it can be
used to gain unauthorized access to the application if the expiry time in the
cookie is valid.

 Even if the cookie is expired, malicious users can use the details present in the
cookie to gain access to the key and the password through brute force attacks.
If the key or password is poorly chosen, malicious users can perform dictionary
attacks (http://mng.bz/95Y1) to retrieve them.

The weakness of the hash-based remember-me token approach can be improved if it is
used with two-factor authentication. With this, even if the remember-me cookie is com-
promised, the second level of login can prevent unauthorized access. Spring Security
provides another alternative with a persistent token approach that uses a database
table to store confidential information.

6.7 Implementing reCAPTCHA
CAPTCHA stands for completely automated public Turing test to tell computers and humans
apart. It is a computer program or application that distinguishes human inputs from
machine inputs as a measure to prevent bot spam. CAPTCHAs can be available in
many formats. It could be as simple as clicking a checkbox or as complicated as click-
ing on certain image types or entering some text.

 Although CAPTCHAs might be annoying to the users, it serves a purpose to pro-
tect the application. For instance, these days internet bots are used to spam applica-
tions a lot. In the Course Tracker application, internet bots may create fictitious users

Listing 6.37 The hash-based token format

http://mng.bz/95Y1

2716.7 Implementing reCAPTCHA

and exhaust the application resources resulting in a denial-of-service (DoS) attack.
CAPTCHAs help applications prevent bot spamming to a certain degree.

 There are several providers of CAPTCHA: reCAPTCHA (https://www.google.com/
recaptcha/about/) from Google is a popular choice for many. HCAPTCHA (https://
www.hcaptcha.com/) is another alternative. Let’s secure the Course Tracker applica-
tion registration page with Google’s reCAPTCHA in the next technique.

6.7.1 Technique: Enabling Google reCAPTCHA in a Spring Boot
application with Spring Security

In this technique, we’ll demonstrate how to implement Google reCAPTCHA in a
Spring Boot-based Web application.

PROBLEM

Internet bot spamming is a growing concern for Web application owners, as it creates
fictitious users and exhausts the application resources. You need to implement CAPT-
CHA to prevent bot spamming in the Course Tracker application.

SOLUTION

Using this technique, you’ll implement Google reCAPTCHA services at the time of
user registration. This will ensure that only a human user can register successfully in
the Course Tracker application. You’ll find the steps to set up Google reCAPTCHA
documented at http://mng.bz/en6V.

 After this setup is done, you’ll have two keys: the site key and the secret key. You’ll
need these keys in your Spring Boot application. The site key is to be specified on the
HTML page, and the secret key is to be used to validate the CAPTCHA response cap-
tured from the user. You’ll explore this shortly.

The first change you’ll need to make is to include the link for the CAPTCHA on the
registration page. Add the following in the add-user.html page before the sign-up
form group, as shown in the following listing.

// Additional Code
<div class="form-group">
 <label for="confirmPassword">Confirm Password</label>
 <input type="password" th:field="*{confirmPassword}" class="form-control"

➥ id="confirmPassword" placeholder="Confirm Password">
 <span th:if="${#fields.hasErrors('confirmPassword')}"

➥ th:errors="*{confirmPassword}" class="text-danger">

Source code
To begin this technique, you can use the base version of the Spring Boot project used
throughout, which is available at http://mng.bz/p2eK. The final version of this Spring
Boot project is available at http://mng.bz/OG0w.

Listing 6.38 Sitekey in the add-user.html page

https://www.google.com/recaptcha/about/
https://www.google.com/recaptcha/about/
https://www.google.com/recaptcha/about/
https://www.hcaptcha.com/
https://www.hcaptcha.com/
https://www.hcaptcha.com/
http://mng.bz/en6V
http://mng.bz/p2eK
http://mng.bz/OG0w

272 CHAPTER 6 Implementing additional security with Spring Security

</div>
<div class="g-recaptcha mb-2" data-sitekey="<Your Site Key>"></div>
<div class="form-group text-center">
 <input type="submit" class="btn btn-dark center" value="Sign Up" />
 <p>Already have an account? Sign in</p>
</div>

// Additional Code

In listing 6.38, the highlighted code (in bold) enables the CAPTCHA verification
checkbox on the user registration page. Further, add the following script tag inside
the head section of the page, as shown in the following listing.

<script src="https:/ /www.google.com/recaptcha/api.js"></script>

The code snippet in the previous two listings enables the Google reCAPTCHA option
on the registration page. Let’s now define a reCAPTCHA verification service that vali-
dates the reCAPTCHA response from the user, as shown in the following listing.

package com.manning.sbip.ch06.service.impl;

//imports

@Service
public class GoogleRecaptchaService {

 private static final String VERIFY_URL =

➥ "https:/ /www.google.com/recaptcha/api/siteverify"
 + "?secret={secret}&remoteip={remoteip}&response={response}";
 private final RestTemplate restTemplate;

 @Value("${captcha.secret.key}")
 private String secretKey;

 public GoogleRecaptchaService(RestTemplate restTemplate) {
 this.restTemplate=restTemplate;
 }

 public RecaptchaDto verify(String ip, String recaptchaResponse) {
 Map<String, String> request = new HashMap<>();
 request.put("remoteip", ip);
 request.put("secret", secretKey);
 request.put("response", recaptchaResponse);
 ResponseEntity<Map> response =

➥ restTemplate.getForEntity(VERIFY_URL, Map.class, request);

Listing 6.39 ReCAPTCHA API Script tag

Listing 6.40 Google reCAPTCHA verification service

This is the secret key defined in the application.properties
file with the key captcha.secret.key. Secrets are placed in the
application.properties only for demonstration purpose.

We are using the RestTemplate
to validate the user response

with Google. The RecaptchaDto
contains the success (and errors,

if any). In listing 6.42, you are
using this RecaptchaDto POJO.

2736.7 Implementing reCAPTCHA

 Map<String, Object> body = response.getBody();
 boolean success = (Boolean)body.get("success");
 RecaptchaDto recaptchaDto = new RecaptchaDto();
 recaptchaDto.setSuccess(success);
 if(!success) {
 recaptchaDto.setErrors((List)body.get("error-codes"));
 }
 return recaptchaDto;
 }
}

The code in the listing validates the user provided CAPTCHA response with the Goo-
gle reCAPTCHA verification service hosted at https://www.google.com/recaptcha/
api/siteverify. You’ve supplied your secret key, the server IP address (localhost in this
example), and the CAPTCHA response. The secret is added in the application.prop-
erties with the key name captcha.secret.key. If these details are correct, you get a
successful response. For failures, you get the list of error codes. For instance, for an
incorrect response, the error code is invalid-input-response. We’ve also added a
RestTemplate configuration to invoke the Google reCAPTCHA service, as shown in
the following listing.

package com.manning.sbip.ch04.configuration;

//imports

@Configuration
public class CommonConfiguration {

 @Bean
 public RestTemplate restTemplate(RestTemplateBuilder

➥ restTemplateBuilder) {
 return restTemplateBuilder.build();
 }
}

The following listing shows the RecaptchaDto class that captures the CAPTCHA vali-
dation response.

package com.manning.sbip.ch04.dto;

import java.util.List;

public class RecaptchaDto {

 private boolean success;
 private List<String> errors;

 // Getter and Setters
}

Listing 6.41 RestTemplate configuration

Listing 6.42 ReCAPTCHADto class

https://www.google.com/recaptcha/api/siteverify
https://www.google.com/recaptcha/api/siteverify
https://www.google.com/recaptcha/api/siteverify

274 CHAPTER 6 Implementing additional security with Spring Security

In the listing, the success captures whether the user response is correct. The errors list
stores the errors if there is a failure in validating the user provided CAPTCHA response.

 In the RegistrationController class you need to validate that the user provided
CAPTCHA response is valid. For a valid response, you continue and create the user in
the application. Otherwise, an error message is shown to the user in the user registra-
tion page. The following listing shows the updated adduser endpoint.

@PostMapping("/adduser")
public String register(@Valid @ModelAttribute("user") UserDto userDto,

➥ HttpServletRequest httpServletRequest, BindingResult result) {
 if(result.hasErrors()) {
 return "add-user";
 }
 String response = httpServletRequest.getParameter("g-recaptcha-

➥ response");
 if(response == null) {
 return "add-user";
 }

 String ip = httpServletRequest.getRemoteAddr();
 RecaptchaDto recaptchaDto = captchaService.verify(ip, response);
 if(!recaptchaDto.isSuccess()) {
 return "redirect:adduser?incorrectCAPTCHA";
 }

 ApplicationUser applicationUser = userService.createUser(userDto);
 if("Y".equalsIgnoreCase(emailVerification)) {
 eventPublisher.publishEvent(new

➥ UserRegistrationEvent(applicationUser));
 return "redirect:adduser?validate";
 }
 return "redirect:adduser?success";
}

Let’s start the application and browse to the Register option to add a new user.
You’ll be redirected to the user registration page and notice a CAPTCHA option
above the Sign Up button. Fill in all the details and click on the I’m Not a Robot
checkbox. You’ll be presented with a graphic challenge that will ask you to select the
tiles that belong to a specific category. Figure 6.6 shows the user registration page
with a sample CAPTCHA. Note that the CAPTCHA images change each time you
perform a user registration.

DISCUSSION

To be precise, this is not a Spring Boot or Spring Security technique, as we have not
used any specific features from these technologies. However, in the era of machine
learning and artificial intelligence, this is a useful feature to protect applications from
internet bot spamming.

Listing 6.43 Updated adduser endpoint

The following statements validate whether the
user has provided any response in the CAPTCHA
checkbox in the user registration page. If not, we
redirect them to the add-user.html page again.

If the user has provided a
response in the CAPTCHA checkbox,

we use the CAPTCHA service to
validate with Google whether the
response is correct. For incorrect

response, the user is redirected to
the CAPTCHA error page.

2756.7 Implementing reCAPTCHA

There are several variations of CAPTCHA implementations these days. As the bots are
getting smarter day by day, there is a growing need to improve the CAPTCHA technol-
ogies as well. Using this technique, we’ve implemented Google reCAPTCHA version 2,
which is relatively old, and there are newer versions available as well.

 Further, in this technique, we’ve used the CAPTCHA secret in the application
.properties file. In a production application, use a safer solution, such as a vault.

 Before we conclude this technique, I’ll give a word of caution. As discussed previ-
ously, application security needs to be balanced against user experience. This applies
to CAPTCHA-based application security as well. For instance, many applications only
start displaying CAPTCHA if it detects multiple login failures. This is a balanced
approach, as the application becomes suspicious against the repeated failed login
attempts and automatically increases the application security by enabling additional
security measures, such as CAPTCHA. We leave this as an exercise to the reader. As a
hint, you can use a cache to store the login failure attempts and enable the CAPTCHA
once there are three or more incorrect failure attempts.

Figure 6.6 Google reCAPTCHA
while performing user registration

276 CHAPTER 6 Implementing additional security with Spring Security

6.8 Enabling two-factor authentication with Google
Authenticator
Multi-factor authentication (MFA) is an authentication pattern that forces the users to
undergo multiple authentication steps before the user is allowed to access the applica-
tion. Two-factor authentication (or 2FA) is one variant of MFA that lets the user undergo
two different levels of authentication steps.

 Most Web applications use username- and password-based authentication to
authenticate the application users. Although this authentication pattern works per-
fectly well in most circumstances, it may make the users vulnerable if the user’s user-
name and password are compromised. An additional level authentication with a
different authentication mode ensures greater security to the users. For instance,
along with the regular username and password, a random OTP is often used in the
majority of the applications.

 In this section, you’ll learn to enable two-factor authentication in the Course
Tracker application. You’ll use the regular username and password as the first level of
authentication. Next, you’ll use an OTP as the second level of authentication. We’ll
use the Google Authenticator app to generate the OTP. Let’s explore this in the next
technique.

6.8.1 Technique: Enabling two-factor authentication in a Spring Boot
application

In this section, we’ll demonstrate how to implement two-factor authentication in a
Spring Boot application.

PROBLEM

The Course Tracker application currently uses username- and password-based authen-
tication. For better application security, you need to implement two-factor authentica-
tion in the application.

SOLUTION

In this technique, you’ll use the Google Authenticator app to enable two-factor
authentication in the Course Tracker application. You need to download this applica-
tion on a smartphone from the Google Play store (http://mng.bz/YgBz) or Apple
store (http://mng.bz/GGaD). This app will generate a time-based one-time password
(TOTP), and we’ll use this to perform the second level authentication. We’ll provide a
brief discussion on how the TOTP algorithm works in the discussion section.

Source code
To begin this technique, you can use the base version of the Spring Boot project used
in this technique available at http://mng.bz/zQW1. The final version of this Spring
Boot project is available at http://mng.bz/0wDJ.

http://mng.bz/YgBz
http://mng.bz/GGaD
http://mng.bz/zQW1
http://mng.bz/0wDJ

2776.8 Enabling two-factor authentication with Google Authenticator

You may notice that two-factor authentication is not a mandatory authentication strat-
egy. Applications provide a choice to users of whether they would like to opt for this fea-
ture. In the Course Tracker application, we’ll provide the users with the same choice.
Following is the outline for implementing 2FA in the Course Tracker application:

1 The user registers, and the user account is created in the application.
2 Upon first logging in to the application, we’ll ask the user whether they would

like to enable 2FA. If they are not interested, they can skip and redirect to the
application index page.

3 If the user opts for 2FA, we’ll then generate a quick reference (QR) code and
let the user scan the code in the Google Authenticator app on their smart-
phone.

4 Once the app configures the Course Tracker application, we’ll ask the user to
enter the OTP from the smartphone app on the 2FA registration page. This
process completes the 2FA registration for the user. For all subsequent logins,
the user needs to enter the OTP from the Google Authenticator app to proceed
with application access.

5 If the user has not enabled 2FA at the time of registration, we’ll prompt the user
to enable 2FA on each successful login. Note that this is for demonstration pur-
poses only. Most applications provide an option in their application security set-
tings to the users to enable it at their convenience.

To start with, let’s add the following dependency in the pom.xml file, as shown in the
following listing.

<dependency>
 <groupId>com.warrenstrange</groupId>
 <artifactId>googleauth</artifactId>
 <version>1.4.0</version>
</dependency>

The Google Auth dependency in the listing provides the necessary support to imple-
ment the TOTP-based 2FA in the application. You can refer to https://github.com/
wstrange/GoogleAuth for further details on this library.

 Next, while the user registers for 2FA, we share a QR code with the user. This QR
code contains a secret that needs to be stored against the username for further usage.
Let’s define a Java POJO entity that allows us to capture these details and persist them
into the CT_TOTP_DETAILS table. The following listing shows the TotpDetails class.

package com.manning.sbip.ch06.model;

// imports

Listing 6.44 Google Auth dependency

Listing 6.45 TOTP details

https://github.com/wstrange/GoogleAuth
https://github.com/wstrange/GoogleAuth
https://github.com/wstrange/GoogleAuth

278 CHAPTER 6 Implementing additional security with Spring Security

@Entity
@Data
@NoArgsConstructor
@AllArgsConstructor
@Table(name = "CT_TOTP_DETAILS")
public class TotpDetails {

 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private long id;
 private String username;
 private String secret;

 public TotpDetails(String username, String secret) {
 this.username = username;
 this.secret = secret;
 }
}

The following listing shows the CT_TOTP_DETAILS table DDL located in the src/main/
resources/script.ddl file.

create table CT_TOTP_DETAILS (
 id BIGINT NOT NULL auto_increment,
 secret varchar(255),
 username varchar(255),
 PRIMARY KEY (id)
);

Recall from the outline that after a successful login, we need to ask the user whether
they would like to opt for 2FA. From the previous techniques, you have seen Spring
Security provides an AuthenticationSuccessHandler interface you can implement to
define post-successful login actions. Let’s define the DefaultAuthenticationSuccess-
Handler class that implements the AuthenticationSuccessHandler interface, as
shown in the following listing.

package com.manning.sbip.ch06.service;

//imports

@Component
public class DefaultAuthenticationSuccessHandler implements

➥ AuthenticationSuccessHandler {

 private RedirectStrategy redirectStrategy = new

➥ DefaultRedirectStrategy();

 public void onAuthenticationSuccess(HttpServletRequest request,

➥ HttpServletResponse response, Authentication authentication) throws

Listing 6.46 CT_TOTP_DETAILS table DDL

Listing 6.47 DefaultAuthenticationSuccessHandler class

2796.8 Enabling two-factor authentication with Google Authenticator

➥ IOException, ServletException {
 if(isTotpAuthRequired(authentication)) {
 redirectStrategy.sendRedirect(request, response, "/totp-

➥ login");
 }
 else {
 redirectStrategy.sendRedirect(request, response, "/account");
 }
 }

 private boolean isTotpAuthRequired(Authentication authentication) {
 Set<String> authorities =
AuthorityUtils.authorityListToSet(authentication.getAuthorities());
 return authorities.contains("TOTP_AUTH_AUTHORITY");
 }
}

In listing 6.47, you are validating whether the user has 2FA configured by checking
whether the user has the role TOTP_AUTH_AUTHORITY; if the user has 2FA configured,
you redirect the user to the totp-login endpoint. Otherwise, the user is redirected to
the account endpoint. Note that TOTP_AUTH_AUTHORITY is a custom authority in the
application that is assigned to the users enabled 2FA. You’ll explore this shortly. The
totp-login redirects the user to the 2FA login page that allows the user to enter the
OTP from their Google Authenticator app. The account endpoint redirects the user
to the 2FA setup page if the user has not configured 2FA already. The following listing
shows the AccountController class.

package com.manning.sbip.ch06.controller;

//imports

@Controller
@RequiredArgsConstructor
public class AccountController {

 private final TotpService totpService;

 @GetMapping("/account")
 public String getAccount(Model model, @AuthenticationPrincipal

➥ CustomUser customUser) {
 if (customUser != null && !customUser.isTotpEnabled()) {
 model.addAttribute("totpEnabled", false);
 model.addAttribute("configureTotp", true);
 } else {
 model.addAttribute("totpEnabled", true);
 }
 return "account";
 }

Listing 6.48 AccountController class

We’ll discuss this snippet in greater detail later.
Specifically, the TOTP_AUTH_AUTHORITY and its use.

This service class
provides services
to generate and

validate TOTP
for a user.

Redirects the user
to the 2FA set up page.

Sets the totpEnabled and
configureTotp parameters
used in the account.html

page. The account.html
page lets you enable 2FA.

280 CHAPTER 6 Implementing additional security with Spring Security

 @GetMapping("/setup-totp")
 public String getGoogleAuthenticatorQrUrl(Model model,

➥ @AuthenticationPrincipal CustomUser customUser) {
 String username = customUser.getUsername();
 boolean isTotp = customUser.isTotpEnabled();

 if (!isTotp) {
 model.addAttribute("qrUrl",

➥ totpService.generateAuthenticationQrUrl(username));
 model.addAttribute("code", new TotpCode());
 return "account";
 }
 model.addAttribute("totpEnabled", true);
 return "account";
 }
 @PostMapping("/confirm-totp")
 public String confirmGoogleAuthenticatorSetup(Model model,

➥ @AuthenticationPrincipal CustomUser customUser,
 TotpCode totpCode) {
 boolean isTotp = customUser.isTotpEnabled();
 if (!isTotp) {
 try {
 totpService.enableTotpForUser(customUser.getUsername(),

➥ Integer.valueOf(totpCode.getCode()));
 } catch (InvalidVerificationCode ex) {
 model.addAttribute("totpEnabled",

customUser.isTotpEnabled());
 model.addAttribute("confirmError", true);
 model.addAttribute("configureTotp", false);
 model.addAttribute("code", new TotpCode());
 return "account";
 }

 model.addAttribute("totpEnabled", true);
 }
 customUser.setTotpEnabled(true);
 return "redirect:/logout";
 }
}

Next, let’s define the TotpService class, as shown in the following listing.

package com.manning.sbip.ch06.service;

//imports

@Service
public class TotpService {

Listing 6.49 TotpService

This endpoint let the user set up 2FA. If the user does not have TOTP configured, it
invokes the TOTP service and generates the QR code that lets the user configure
the Course Tracker application in the Google Authenticator app.

This conditional branch
happens when the QR
code needs to be
created. The TotpCode
is used to capture the
verification OTP in the
account.html page.

This endpoint
enables the TOTP
for the user.

2816.8 Enabling two-factor authentication with Google Authenticator

 private final GoogleAuthenticator googleAuth = new

➥ GoogleAuthenticator();
 private final TotpRepository totpRepository;
 private final UserRepository userRepository;
 private static final String ISSUER = "CourseTracker";

 public TotpService(TotpRepository totpRepository, UserRepository

➥ userRepository) {
 this.totpRepository = totpRepository;
 this.userRepository = userRepository;
 }

 @Transactional
 public String generateAuthenticationQrUrl(String username){
 GoogleAuthenticatorKey authenticationKey =

➥ googleAuth.createCredentials();
 String secret = authenticationKey.getKey();
 totpRepository.deleteByUsername(username);
 totpRepository.save(new TotpDetails(username, secret));
 return GoogleAuthenticatorQRGenerator.getOtpAuthURL(ISSUER,

➥ username, authenticationKey);
 }

 public boolean isTotpEnabled(String userName) {
 return userRepository.findByUsername(userName).isTotpEnabled();
 }

 public void enableTotpForUser(String username, int code){
 if(!verifyCode(username, code)) {
 throw new InvalidVerificationCode("Invalid verification code");
 }

 User user = userRepository.findByUsername(username);
 user.setTotpEnabled(true);
 userRepository.save(user);
 }

 public boolean verifyCode(String userName, int verificationCode) {
 TotpDetails totpDetails = totpRepository.findByUsername(userName);
 return googleAuth.authorize(totpDetails.getSecret(),

➥ verificationCode);
 }
}

The TotpService class contains several useful methods related to 2FA. For instance, it
contains the method for generating the QR code, enabling TOTP for users, or verify-
ing the supplied verification code.

 Next, let’s perform the necessary changes to the CustomUserDetailsService class
that assigns the TOTP_AUTH_AUTHORITY authority to users based on whether they have
enabled 2FA, as shown in the listing 6.50.

Generates the QR URL
for the supplied

username

Validates
whether
the supplied
OTP is correct
and valid and
ensures that
the user has
configured 2FA

282 CHAPTER 6 Implementing additional security with Spring Security

package com.manning.sbip.ch06.service;

//imports

@Service
public class CustomUserDetailsService implements UserDetailsService {

 private UserRepository userRepository;

 @Autowired
 public CustomUserDetailsService(UserRepository userRepository) {
 this.userRepository = userRepository;
 }

 public UserDetails loadUserByUsername(String username) throws

➥ UsernameNotFoundException {
 User user = userRepository.findByUsername(username);
 if(user == null) {
 throw new UsernameNotFoundException(username);
 }
 SimpleGrantedAuthority simpleGrantedAuthority = null;
 if(user.isTotpEnabled()) {
 simpleGrantedAuthority = new

➥ SimpleGrantedAuthority("TOTP_AUTH_AUTHORITY");
 }
 else {
 simpleGrantedAuthority = new

➥ SimpleGrantedAuthority("ROLE_USER");

 }
 CustomUser customUser = new CustomUser(user.getUsername(),

➥ user.getPassword(), true, true, true, true,

➥ Arrays.asList(simpleGrantedAuthority));
 customUser.setTotpEnabled(user.isTotpEnabled());
 return customUser;
 }

}

In listing 6.50, if the user has configured TOTP, we assign the TOTP_AUTH_AUTHORITY
authority to the user. Otherwise, we assign the ROLE_USER authority to the user.

 Once the user has enabled the TOTP, for all subsequent logins, they need to enter
the OTP, which the application verifies. You can complete this verification in several
ways. For instance, you can include the OTP verification logic in the associated Spring
controller and, based on the verification, redirect the user to the appropriate page.

 However, we’ll use a different technique. We’ll define a custom filter that performs
this validation and include this filter in the Spring Security filter chain in an appropri-
ate position so that it gets invoked automatically by Spring Security. The following list-
ing shows the TotpAuthFilter class.

Listing 6.50 The CustomUserDetailsService

2836.8 Enabling two-factor authentication with Google Authenticator

package com.manning.sbip.ch06.filter;

 //imports

@Component
public class TotpAuthFilter extends GenericFilterBean {

 private TotpService totpService;
 private static final String ON_SUCCESS_URL = "/index";
 private static final String ON_FAILURE_URL = "/totp-login-error";
 private final RedirectStrategy redirectStrategy = new

➥ DefaultRedirectStrategy();

 @Autowired
 public TotpAuthFilter(TotpService totpService) {
 this.totpService = totpService;
 }

 public void doFilter(ServletRequest request, ServletResponse response,

➥ FilterChain chain) throws IOException, ServletException {

 Authentication authentication =

➥ SecurityContextHolder.getContext().getAuthentication();
 String code = request.getParameter("totp_code");
 if(!requiresTotpAuthentication(authentication) || code == null) {
 chain.doFilter(request, response);
 return;
 }
 if(code != null && totpService.verifyCode(authentication.getName(),

➥ Integer.valueOf(code))) {
 Set<String> authorities =

➥ AuthorityUtils.authorityListToSet(authentication.getAuthorities());
 authorities.remove("TOTP_AUTH_AUTHORITY");
 authorities.add("ROLE_USER");
 authentication = new

➥ UsernamePasswordAuthenticationToken(authentication.getPrincipal(),

➥ authentication.getCredentials(), buildAuthorities(authorities));

SecurityContextHolder.getContext().setAuthentication(authentication);
 redirectStrategy.sendRedirect((HttpServletRequest) request,

➥ (HttpServletResponse) response, ON_SUCCESS_URL);
 }
 else {
 redirectStrategy.sendRedirect((HttpServletRequest) request,

➥ (HttpServletResponse) response, ON_FAILURE_URL);
 }
 }

 private boolean requiresTotpAuthentication(Authentication

➥ authentication) {
 if (authentication == null) {
 return false;
 }

Listing 6.51 TotpAuthFilter class

Implementation of the filter. If the user does
not require 2FA, this filter is skipped, and the

next filter on the filter chain is invoked.
However, if 2FA is enabled, then the

verification code supplied from
the user is validated, and

the user is assigned
with the USER role.

284 CHAPTER 6 Implementing additional security with Spring Security

 Set<String> authorities =

➥ AuthorityUtils.authorityListToSet(authentication.getAuthorities());
 boolean hasTotpAutheority =

➥ authorities.contains("TOTP_AUTH_AUTHORITY");
 return hasTotpAutheority && authentication.isAuthenticated();
 }

 private List<GrantedAuthority> buildAuthorities(Collection<String>

➥ authorities) {
 List<GrantedAuthority> authList = new ArrayList<GrantedAuthority>(1);
 for(String authority : authorities) {
 authList.add(new SimpleGrantedAuthority(authority));
 }
 return authList;
 }
}

Let’s discuss the changes made in the listing:

1 We retrieved the authentication object from the SecurityContextHolder class
and check if the user is authenticated and has TOTP_AUTH_AUTHORITY authority.

2 We validated the user-supplied OTP. If the OTP was not valid, we redirected the
user to an error page.

3 If the OTP was valid, we revoked the TOTP_AUTH_AUTHORITY authority from the
user and assign the ROLE_USER. We remove the TOTP_AUTH_AUTHORITY authority,
as we only need it to enable TOTP. Once the user has enabled TOTP, we
removed this and provided an ordinary role, such as USER.

4 We created a new UsernamePasswordAuthenticationToken token with the new
role. As we are changing the user role, we built this token, and updated it in the
SecurityContextHolder.

5 The user was redirected to the index page.

Next, let us make the necessary changes in the HTTP configuration in the Security-
Configuration class to configure the TotpAuthFilter. The following listing shows this.

package com.manning.sbip.ch06.security;

//imports

@Configuration
public class SecurityConfiguration extends WebSecurityConfigurerAdapter {

 @Autowired
 private TotpAuthFilter totpAuthFilter;

 @Override
 protected void configure(HttpSecurity http) throws Exception {

Listing 6.52 SecurityConfiguration

2856.8 Enabling two-factor authentication with Google Authenticator

 http.addFilterBefore(totpAuthFilter,

➥ UsernamePasswordAuthenticationFilter.class);

 http.authorizeRequests()
 .antMatchers("/adduser", "/login", "/login-error", "/setup-totp",

➥ "/confirm-totp").permitAll()
 .antMatchers("/totp-login", "/totp-login-

➥ error").hasAuthority("TOTP_AUTH_AUTHORITY")
 .anyRequest().hasRole("USER").and()
 .formLogin().loginPage("/login")
 .successHandler(new

➥ DefaultAuthenticationSuccessHandler()).failureUrl("/login-error");
 }

 // Other code snippets
}

In listing 6.52, we added the TotpAuthFilter before the UsernamePassword-
AuthenticationFilter. This ensures the TotpAuthFilter is part of the Spring Secu-
rity filter chain and is invoked. Recall that the Spring Security filter chain has a list of
filters that are invoked in sequence to perform the specific task the filter is assigned
with. Further, we are also ensuring that the TOTP related endpoints are only accessed
by the users with the TOTP_AUTH_AUTHORITY authority.

NOTE As you may notice this technique involves a few code snippets, and we
could not accommodate all the code examples, as it will take more pages. We
suggest you refer to the completed version of the Spring Boot project in the
GitHub repository for all code snippets. Only the important and relevant
code snippets are provided in the technique.

You can start the application and register a new user. After login, you’ll notice the
page for 2FA activation shown in figure 6.7.

You can either opt for the 2FA or skip to the index page. Let’s enable 2FA by clicking
on the Enable 2FA with Google Authenticator button. Figure 6.8 shows the next page
with the QR code.

Figure 6.7 Option to enable 2FA with Google Authenticator

286 CHAPTER 6 Implementing additional security with Spring Security

Scan the QR code, as shown in the Google Authenticator code, for your application,
and enter the verification code displayed in the app. Don’t scan the QR code shown in
the figure, as it won’t work for you. You need to scan the QR code shown in the Course
Tracker application to the smartphone application. You’ll notice an entry in the smart-
phone application with a verification code. Enter this verification code in the text box,
as shown in figure 6.8, and click Enable 2FA. For a successful verification code, the
Course Tracker application redirects you to the login page. Log in again, and you’ll be
redirected to the following page to provide the OTP, as shown in figure 6.9.

Figure 6.8 QR Code to register for 2FA in the Google Authenticator application. Once the user scans the QR
code, they can see the verification code in the smartphone application.

Figure 6.9 For regular logins, the user is prompted to enter the verification code from the Google Authenticator
application.

2876.9 Authentication with OAuth2

Enter the OTP from the Google Authenticator app, and you’ll be redirected to the
application index page showing the list of courses. For every login, you need to pro-
vide the OTP to access the application.

DISCUSSION

Google Authenticator supports two types of OTP algorithms: a time-based OTP algo-
rithm (TOTP) and an HMAC-based OTP algorithm (HOTP). Using this technique,
we’ve shown how to implement TOTP-based 2FA with Spring Security in a Spring
Boot application.

 The way the TOTP algorithm works is relatively simple. In this algorithm, both the
server (the Course Tracker application) and the client (the Google Authenticator app)
use a common secret and the time to generate the OTP. Recall that once you enable the
2FA, the application provides a QR code for you to scan in your Google Authenticator
application. The QR code transfers the secret key that is used by the Google Authenti-
cator application to calculate the OTP. Both parties use the secret and the time (that’s
why it’s called time-based OTP) to generate the OTP.

 Using this technique, you’ve also learned to implement custom filters and inserted
them into the Spring Security filter chain. For instance, another use case is suspending
the user access for incorrect login attempts. The logic presented in listing 6.31 to vali-
date whether the user account is blocked can be implemented through custom filters.
You can define any number of custom filters to implement various business features.
You’ve also seen how to define custom authorities and leverage in the application.

 Another enhancement that can be performed is limiting the number of invalid
guesses that can be entered on the /confirm-totp page. We leave this as an exercise
for the reader.

6.9 Authentication with OAuth2
Previously, you learned several techniques for letting users log in to the Course
Tracker application. We’ve implemented a user registration module that captures user
details, performs email verification to let users activate their account, and, finally, logs
in to the application. There is an alternative way to allow users access to your applica-
tion without requiring them to register in the application.

 These days many people have a user account on websites like Google, Facebook,
GitHub, and many others. They have already provided their details to these websites
at the time of registration. You can leverage these websites to let users access your
application. The interesting part is that both your custom user management module
and the login through Google, Facebook, or GitHub can co-exist in the application.
For instance, https://stackoverflow.com lets you log in to the application through
both modes.

 As you proceed with this technique, you’ll learn that this feature is implemented
through an open standard for access delegation. Spring Security provides a separate
module that deals with this integration. You’ll learn more about this in the upcoming
technique. We’ll implement user login with Google in the next technique.

https://stackoverflow.com

288 CHAPTER 6 Implementing additional security with Spring Security

6.9.1 Technique: Enabling sign in with Google in a Spring Boot application

In this technique, we’ll discuss how to enable sign in with Google in a Spring Boot-
based Web application.

PROBLEM

To access the Course Tracker application, users need to register and activate their
accounts before they can access the application. However, some users already have a
Google account, and they need to log in using their Google account. You need to
enable users to log in through their Google account in the Course Tracker application.

SOLUTION

To let the users log in through their Google account, your application first needs to be
a client of Google. This can be done by registering your application with Google.
Once your application has registered with Google, you’ll have a Google client ID and
a secret key. We’ll discuss the role of these keys later in the technique. You can refer to
http://mng.bz/KBOX to register the Course Tracker application with Google.

NOTE In this technique, you’ll use OAuth 2.0 to provide login access to the
users through Google. The OAuth2.0 is an authorization framework that
enables third-party applications (e.g., the Course Tracker) to obtain limited
access to a resource (e.g., an HTTP service) either on behalf of a resource
owner (e.g., Google), by orchestrating an approval interaction between the
resource owner and the HTTP service, or by allowing the third-party applica-
tion to obtain access on its behalf. Providing a detailed discussion on
OAuth2.0 is beyond the scope of this text. You can refer to the OAuth2.0 RFC
available at https://datatracker.ietf.org/doc/html/rfc6749 for more details
on OAuth2.0 Authorization Framework. Refer to the Spring Security-specific
texts to learn more about the use of OAuth2.0 with the Spring framework.
You can refer to the Manning Publication’s API Security in Action by Neil Mad-
den or Spring Security in Action by Laurentˏiu Spilcă for further details

To begin with, let’s add the spring-boot-starter-oauth2-client dependency to the
pom.xml file. This provides necessary support to configure OAuth2 in the applica-
tion, as shown in the following listing.

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-oauth2-client</artifactId>
</dependency>

Source code
To begin this technique, you can use the base version of the Spring Boot project used
throughout it, which is available at http://mng.bz/9KRj. The final version of this
Spring Boot project is available at http://mng.bz/jyQa.

Listing 6.53 Spring Boot started OAuth2 client

https://datatracker.ietf.org/doc/html/rfc6749
http://mng.bz/KBOX
http://mng.bz/9KRj
http://mng.bz/jyQa

2896.9 Authentication with OAuth2

Next, add the following properties in the application.properties file, as shown in the
following listing.

spring.security.oauth2.client.registration.google.client-id=<Your client ID>
spring.security.oauth2.client.registration.google.client-secret=<Your Secret>
spring.security.oauth2.client.registration.google.scope=email, profile

In listing 6.54, we configured the client-secret (obtained from Google) in the appli-
cation.properties file only for demonstration purposes. In a production application,
you should not place it in the code or property file. A better alternative is to use envi-
ronment variables or use a vault to keep the secret. Next, let’s update the HTTP secu-
rity configuration in the SecurityConfiguration file, as shown in listing 6.55.

@Override
protected void configure(HttpSecurity http) throws Exception {

 http.authorizeRequests()
 .antMatchers("/adduser", "/login", "/login-error", "/login-verified",

➥ "/login-disabled", "/verify/email").permitAll()
 .anyRequest().authenticated()
 .and()
 .formLogin().loginPage("/login").failureHandler(customAuthenticationFailure

➥ Handler)
 .and()
 .oauth2Login().loginPage("/login").successHandler(new

➥ Oauth2AuthenticationSuccessHandler());
}

To enable OAuth2 support, you’ve enabled the oauth2Login() in the configuration.
This configuration invokes the OAuth2LoginConfigurer class and allows you to cus-
tomize the OAuth2-related features. For instance, we’ve used a custom login page by
configuring the loginPage("/login"). This ensures we are redirecting the user to a
customized login page instead of the Spring default login page. We’ve also provided
an AuthenticationSuccessHandler implementation, which is invoked once the user
is authenticated. The following listing shows the Oauth2AuthenticationSuccess-
Handler implementation.

package com.manning.sbip.ch06.service.impl;

//imports

@Component
public class Oauth2AuthenticationSuccessHandler implements

➥ AuthenticationSuccessHandler {

Listing 6.54 Google OAuth2 properties

Listing 6.55 The Updated HTTP configuration

Listing 6.56 Oauth2AuthenticationSuccessHandler

290 CHAPTER 6 Implementing additional security with Spring Security

 private RedirectStrategy redirectStrategy = new

➥ DefaultRedirectStrategy();

 public void onAuthenticationSuccess(HttpServletRequest request,

➥ HttpServletResponse response, Authentication authentication) throws

➥ IOException, ServletException {
 redirectStrategy.sendRedirect(request, response, "/index");
 }
}

In listing 6.56, you redirected the user to the /index endpoint, which shows the
logged-in user the application index page. Note that the authentication parameter
is an instance of OAuth2AuthenticationToken, and you can access various user infor-
mation (e.g., name, email, etc.) from it. To keep the implementation simple, we
haven’t demonstrated this.

 Lastly, let’s update the login page to enable a Login with Google button on the
login page. You can access the updated login page at http://mng.bz/raXB. Start the
application, and you’ll find the page shown in figure 6.10.

Click on the Login with Google button, and you’ll be redirected to the Google sign-in
page. If you pay attention to the URL, you’ll notice it has the application client ID,
scope, and redirect URL, as shown in the following listing.

Figure 6.10 User login page with the Login with Google option

http://mng.bz/raXB

2916.9 Authentication with OAuth2

https:/ /accounts.google.com/o/oauth2/v2/auth/identifier?response_type=code&

➥ client_id=81684764817-

➥ lb9qc6bgsb4o73smdkhfkdj72q7pa6ns.apps.googleusercontent.com&scope=email

➥ %20profile&state=judvx4EoF8AnPBLSGbqCdpqZCR6xdkX0hbC8D4ub-

➥ Co%3D&redirect_uri=https%3A%2F%2Flocalhost%3A8443%2Flogin%2Foauth2%2Fco

➥ de%2Fgoogle&flowName=GeneralOAuthFlow

Figure 6.11 shows the Google sign in page with a message to continue accessing the
Course Tracker. Provide your Google credentials, and you’ll be redirected to the appli-
cation index page.

DISCUSSION

To enable OAuth2 support in the Spring Boot application, you’ve added the spring-
boot-starter-oauth2-client to the pom.xml file. Spring Boot provides an autocon-
figuration class called OAuth2ClientAutoConfiguration that performs several config-
urations automatically to set up OAuth2 in the Spring application. The presence of
spring-boot-starter-oauth2-client triggers this autoconfiguration. The authenti-
cation for OAuth2 is performed by the OAuth2LoginAuthenticationFilter filter.
This filter is configured by the OAuth2LoginConfigurer class.

Listing 6.57 Google redirect URL

Figure 6.11 Google login page
to log in to the Course Tracker
application with Oauth2

292 CHAPTER 6 Implementing additional security with Spring Security

 Let’s now provide a brief overview of how we’ve used OAuth2, while letting the
user sign in with Google. In the beginning, you’ve registered your application with
Google, and you’ve received a client_id and a secret. The client_id is a unique ID
for the Course Tracker application. The secret is a confidential piece of information
that is internally used by Google and the Course Tracker application. Figure 6.12
shows the authorization flow in detail.

 Let’s discuss the steps:

1 The user attempts to log in to the application with Google.
2 The application redirects the user to the Google sign-in page and embedded

the client_id in the redirect URL.
3 The user signs in to Google with their Google login credentials.
4 Google then displays a confirmation page asking whether the user authorizes

the Course Tracker application to access certain details. Notice that while you
register your application with Google, you provide certain scopes (e.g., user
name, email, etc.) to Google that you will need from the user. On this confirma-
tion page, Google shows the user the same details that the Course Tracker
application will access.

5 The user confirms with Google to grant access to the details to the Course
Tracker application.

6 Google then sends an authentication code to the user (i.e., to the user
browser). Google uses the secret key to encrypt the authentication code.

7 The browser then forwards it to the Course Tracker application. The applica-
tion uses its secret key to decrypt the authentication code.

8 The application then sends the authentication code to Google, and it is vali-
dated by Google.

9 Next, Google shares an access token to the application.
10 The application then uses this access token to retrieve the authenticated user

details.
11 The application redirects the user to the application index page.

With this technique, you’ve learned to allow users to log in with Google. You can also
implement this technique with Facebook or GitHub in the same manner. You first
need to register your application with these websites and obtain the client_key and
secrets. You can then use these details in the Spring Boot application to implement
these login options. We leave it as an exercise for the reader to implement this in the
Course Tracker application.

6.10 Securing Actuator endpoints
In chapter 4, we discussed Spring Boot application observability and explored the
built-in Spring Boot actuator that exposes various application metrics. Spring Boot

2936.10 Securing Actuator endpoints

Course

tracker
GoogleUser

Sign in with Google

Sign n withi <client_id>

Application

user
Application

Resource

owner

Redirect to Google <client_id>

Request authentication for client

Authorize client

Redirect with authentication code

Forward authentication code

Supply authentication code

Access token

Request user details

Application index page

b

c

d

e

f

g

h
I

j

1)

1!

Figure 6.12 OAuth2 authorization flow between the user, Google, and Course Tracker application

294 CHAPTER 6 Implementing additional security with Spring Security

Actuator endpoints contain sensitive application details and should be protected from
unauthorized access. You need to ensure two things:

 The actuator endpoints are protected and should not be exposed without
authentication.

 You are be able to authorize access to endpoints to privileged users, such as
application admins or the monitoring team.

Let us explore how to implement these in the next technique.

6.10.1 Technique: Securing Spring Boot Actuator endpoints

In this technique, we’ll demonstrate how to secure Spring Boot Actuator endpoints
with Spring Security.

PROBLEM

In the Course Tracker application, the actuator endpoint is accessible by ordinary
users. However, as actuator endpoints contain sensitive application information, they
need to be protected from unauthorized access.

SOLUTION

In the previous chapter as well as this one, you’ve learned several Spring Security con-
cepts. You’ll leverage the same concepts to enable appropriate authentication and
authorization to safeguard the actuator endpoints from unauthorized access.

Using this technique, we’ll enable all actuator Web endpoints and provide access to
health endpoints to both the user groups with role USER and ENDPOINT_ADMIN. We are
providing health endpoint access to both groups, as it allows users to view the health
status of the application and will be useful to find out if the application has any infra-
structure issues. All other endpoints are accessible only by the users with the role END-
POINT_ADMIN.

 Let’s add the security configuration to implement the above feature. The following
listing shows Spring Security configurations.

package com.manning.sbip.ch06.security;

//imports

@Configuration
public class SecurityConfiguration extends WebSecurityConfigurerAdapter {

Source code
To begin this technique, you can use the base version of the Spring Boot project used
throughout it, which is available at http://mng.bz/W7Dg. The final version of this
Spring Boot project is available at http://mng.bz/8lZK.

Listing 6.58 Security configuration to safeguard Actuator endpoints

http://mng.bz/W7Dg
http://mng.bz/8lZK

295Summary

 @Override
 protected void configure(AuthenticationManagerBuilder auth) throws

➥ Exception {
 auth.inMemoryAuthentication().passwordEncoder(passwordEncoder())
.withUser(User.builder().username("user").password(passwordEncoder().encode

➥ ("password")).roles("USER").build())
.withUser(User.builder().username("admin").password(passwordEncoder().encod

➥ e("admin")).roles("ENDPOINT_ADMIN").build());
 }
 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http.authorizeRequests().requestMatchers(EndpointRe-

quest.to("health")).hasA

➥ nyRole("USER", "ENDPOINT_ADMIN")

.requestMatchers(EndpointRequest.toAnyEndpoint()).hasRole("ENDPOINT_ADMIN")

➥ .and().formLogin();
 }
 @Bean
 public PasswordEncoder passwordEncoder() {
 return new BCryptPasswordEncoder();
 }
}

In listing 6.58, we made the following changes:

 Programmatically defined two users: user and admin. The user was assigned the
role USER, and the admin was assigned the role ENDPOINT_ADMIN.

 We allowed access to the actuator health endpoint to both the user and admin.
All other remaining endpoints are accessible only by the users having role END-
POINT_ADMIN.

 You’ve used form-based authentication for both user types.

Start the application, and log in with the user as the user. You can only access the
http:/ /localhost:8080/actuator/health endpoint. For all other endpoints, you’ll receive
a 403 Forbidden error message. Log out from the application by accessing the http:/ /
localhost:8080/logout URL. Next, log in to the application with the user admin and
password as admin, and you’ll notice you have access to all endpoints.

Summary
Let’s summarize the key takeaways of this chapter:

 We enabled HTTPS in a Spring Boot application with a self-signed certificate
and implemented redirection of all HTTP requests to HTTPS.

 We implemented Hashicorp Vault to externalize application secrets in the vault
and connected the Spring Boot application to the vault for secret access.

 We implemented a user registration module and enabled user account verifica-
tion via email.

 We enabled an application feature that temporarily suspends a user’s account
for multiple incorrect login attempts.

The health endpoint is accessible to
users with either of the USER or

ENDPOINT_ADMIN role. All other
endpoints require ENDPOINT_ADMIN

role. Also, we’ve used a form-based
login for authentication.

296 CHAPTER 6 Implementing additional security with Spring Security

 We enabled the Remember Me feature for quick login from trusted devices.
 We implemented Google reCAPTCHA to prevent internet bot and spam attacks.
 We enabled two-factor authentication with Google Authenticator for additional

application security.
 We implemented OAuth2 login in a Spring Boot application with Google.
 We learned how to protect Spring Boot Actuator endpoints from unauthorized

access with Spring Security.

297

Developing
RESTful Web services

with Spring Boot

In the microservice-based architecture, it is a common practice to expose applica-
tion functionality in terms of RESTful APIs. These APIs can then be accessed via a
range of application devices, such as desktop applications, mobile devices, as well as
other APIs.

 In this chapter, we’ll introduce you to designing and building RESTful APIs with
Spring Boot. You’ll also learn to document the API, so the API consumers can find
required details about the API, such as the request, response structures, HTTP

This chapter covers
 Designing and building RESTful Web services

with Spring Boot

 Exception handling in RESTful Web services

 Developing unit test cases to test RESTful Web
services

 Documenting the RESTful Web services through
OpenAPI

 Implementing different versioning strategies for
RESTful Web services

 Techniques for securing RESTful Web services

298 CHAPTER 7 Developing RESTful Web services with Spring Boot

return codes, etc. Finally, you’ll learn to develop unit test cases to test the API. Lastly,
we’ll show you how to secure your RESTful API. Let’s get started.

7.1 Developing a RESTful API with Spring Boot
A RESTful API (also known as REST API) is an application programming interface
that follows the constraints of REST architectural style. REST is an acronym for repre-
sentational state transfer and was created by Roy Fielding (http://mng.bz/Exyq). In a
REST API, when a client requests a resource from the server, the server provides a rep-
resentation of the state of the requested resource to the client. This representation
can be delivered through various formats, such as JSON, plain text, HTML, and oth-
ers. However, JSON is the most widely used format in the REST API parlance.

 Spring Boot provides built-in support in the framework to design and build
REST APIs. Spring Boot is one of the most popular frameworks in the Java space for
developing REST APIs. In this section, we’ll explore developing a RESTful API with
Spring Boot.

7.1.1 Technique: Developing a RESTful API using Spring Boot

In this technique, we’ll demonstrate how to develop a RESTful API using Spring Boot.

PROBLEM
Previously, you’ve used the Course Tracker Spring Boot application with Thymeleaf as
the frontend. You now need to expose the Course Tracker application as a RESTful
API. Exposing application backend functionality as RESTful API allows the decou-
pling of application backend with the frontend UI. This design approach lets you opt
for the application frontend frameworks (e.g., Angular, React, Vue, etc.) of your
choice without being tightly coupled with the backend.

SOLUTION

Designing RESTful APIs with Spring Boot is relatively easy, as the framework provides
built-in support for it. These days Spring Boot is the de facto choice for Java develop-
ers to build RESTful APIs. If you are following the previous chapters, then you are
already aware of most of the content for building a RESTful API with Spring Boot.

 In chapter 3, we discussed the use of Spring Data and talked about the approaches
to configuring and using a database in a Spring Boot application. In chapter 5, we
demonstrated building Spring Boot applications by using Spring controllers in con-
junction with Spring Data repositories.

With this technique, you’ll build a RESTful API for the Course Tracker application. It
will expose the REST endpoints shown in table 7.1.

Source code
The final version of the Spring Boot project is available at http://mng.bz/NxzE.

http://mng.bz/Exyq
http://mng.bz/NxzE

2997.1 Developing a RESTful API with Spring Boot

Table 7.1 contains the REST endpoints that let you perform the CRUD operations in
the Course Tracker application. To keep the example simple, we’ve only introduced a
limited number of endpoints. In a production application, you may define more
REST endpoints. For instance, you can have a few more GET endpoints that let you
filter application data to meet application requirements. However, to demonstrate the
concepts, we’ll use these REST endpoints throughout this chapter, as this endpoint
covers the fundamental operations (CRUD) that most APIs support.

 In the Course Tracker application, we are managing Course details. Therefore, we
will define the course business entity. The following listing shows this class.

package com.manning.sbip.ch07.model;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.Table;

import lombok.Data;

@Data
@Entity
@Table(name = "COURSES")
public class Course {

 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 @Column(name = "ID")
 private Long id;

 @Column(name = "NAME")
 private String name;

Table 7.1 REST endpoints exposed by the Course Tracker API

Endpoint Operation type Purpose

/courses/ GET Returns all available courses from the application

/courses/{id} GET Returns a course with the supplied course ID

/courses/category/
{name}

GET Returns the list of courses with the supplied course
category name

/courses/ POST Creates a new course

/courses/{id} PUT Updates the course for the supplied course ID

/courses/{id} DELETE Deletes a course with the supplied course ID

/courses/ DELETE Deletes all courses from the application

Listing 7.1 The course entity

300 CHAPTER 7 Developing RESTful Web services with Spring Boot

 @Column(name = "CATEGORY")
 private String category;

 @Column(name = "RATING")
 private int rating;

 @Column(name = "DESCRIPTION")
 private String description;
}

The Course is a Java POJO that models the course details in the application with fields
such as course id, name, category, rating, and description. Next, let’s define the
CourseRepository interface, which lets us manage the courses in the database.

package com.manning.sbip.ch07.repository;

import org.springframework.data.repository.CrudRepository;
import org.springframework.stereotype.Repository;

import com.manning.sbip.ch07.model.Course;

@Repository
public interface CourseRepository extends CrudRepository<Course, Long> {

 Iterable<Course> findAllByCategory(String category);
}

The CourseRepository interface extends the CrudRepository interface and
defines a custom method findAllByCategory(..) that finds all courses belonging
to a specific category.

 Let’s now define the service layer of the application. We define the service layer
with an interface that provides the operations supported in the application. The fol-
lowing listing shows the CourseService interface.

package com.manning.sbip.ch07.service;

//imports

public interface CourseService {

 Course createCourse(Course course);

 Optional<Course> getCourseById(long courseId);

 Iterable<Course> getCoursesByCategory(String category);

 Iterable<Course> getCourses();

Listing 7.2 The CourseRepository interface

Listing 7.3 The CourseService interface

3017.1 Developing a RESTful API with Spring Boot

 void updateCourse(long courseId, Course course);

 void deleteCourseById(long courseId);

 void deleteCourses();
}

The methods defined in listing 7.3 are self-explanatory. It contains the method decla-
rations that allow us to perform the CRUD operations in the application. Let’s now
provide a default implementation that provides implementations of these methods.

 Generally, it is a best practice to define an interface consisting of the operations
supported in the API. This interface provides a contract to the controller with the
operations supported in the service layer. You can then provide a concrete class that
implements these operations. Further, in the controller class, you use the interface
name instead of specifying the actual implementation class. This allows you to
decouple the controller with the actual implementation. In the future, if you need
to provide a different implementation of the service layer, your controller class is not
impacted, as it uses the interface and is not tied to a specific implementation. Listing 7.4
shows the CourseServiceImpl class.

package com.manning.sbip.ch07.service;

//imports

@Service
public class CourseServiceImpl implements CourseService {

 @Autowired
 private CourseRepository courseRepository;

 @Override
 public Course createCourse(Course course) {
 return courseRepository.save(course);
 }

 @Override
 public Optional<Course> getCourseById(long courseId) {
 return courseRepository.findById(courseId);
 }

 @Override
 public Iterable<Course> getCoursesByCategory(String category) {
 return courseRepository.findAllByCategory(category);
 }

 @Override
 public Iterable<Course> getCourses() {
 return courseRepository.findAll();
 }

Listing 7.4 The CourseServiceImpl class

Annotated with @Service
to indicate it’s a service

Autowires the
CourseRepository to
perform the database
operations

302 CHAPTER 7 Developing RESTful Web services with Spring Boot

 @Override
 public void updateCourse(Long courseId, Course course) {

 courseRepository.findById(courseId).ifPresent(dbCourse -> {
 dbCourse.setName(course.getName());
 dbCourse.setCategory(course.getCategory());
 dbCourse.setDescription(course.getDescription());
 dbCourse.setRating(course.getRating());

 courseRepository.save(dbCourse);
 });
 }

 @Override
 public void deleteCourses() {
 courseRepository.deleteAll();
 }

 @Override
 public void deleteCourseById(long courseId) {
 courseRepository.deleteById(courseId);
 }

}

The CourseServiceImpl class is annotated with @Service annotation to indicate it’s a
service. Recall that @Service is a Spring stereotype annotation that indicates the anno-
tated class is a service class and contains business logic. Further, it uses the Course-
Repository to perform the necessary database operations.

 We are now left with defining the CourseController that defines the REST end-
points. A Spring controller contains one of more endpoints and accepts the client
requests. It then, optionally, uses the services offered by the service layer and gener-
ates a response. It wraps the response in a model and shares it with the view layer. A
RestContoller also performs a similar activity. However, instead of wrapping the
response in the model and sharing to the view layer, it binds the response to the HTTP
response body, which is directly shared with the endpoint requester. The following list-
ing shows the CourseController class.

package com.manning.sbip.ch07.controller;

import java.util.Optional;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.DeleteMapping;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.PutMapping;
import org.springframework.web.bind.annotation.RequestBody;

Listing 7.5 The CourseController class

3037.1 Developing a RESTful API with Spring Boot

import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

import com.manning.sbip.ch07.model.Course;
import com.manning.sbip.ch07.service.CourseService;

@RestController
@RequestMapping("/courses/")
public class CourseController {

 @Autowired
 private CourseService courseService;

 @GetMapping
 public Iterable<Course> getAllCourses() {
 return courseService.getCourses();
 }

 @GetMapping("{id}")
 public Optional<Course> getCourseById(@PathVariable("id") long

➥ courseId) {
 return courseService.getCourseById(courseId);
 }

 @GetMapping("category/{name}")
 public Iterable<Course> getCourseByCategory(@PathVariable("name")

➥ String category) {
 return courseService.getCoursesByCategory(category);
 }

 @PostMapping
 public Course createCourse(@RequestBody Course course) {
 return courseService.createCourse(course);
 }

 @PutMapping("{id}")
 public void updateCourse(@PathVariable("id") long courseId,

➥ @RequestBody Course course) {
 courseService.updateCourse(courseId, course);
 }

The RequestMapping annotation specified the route or the path to the
API. In this example, we have defined the path /courses/ so that all
HTTP requests to the /courses/ path are redirected to this controller.

A GetMapping is a special type of
RequestMapping that handles only
the HTTP GET request. As no path
is specified in this endpoint, it is
the default endpoint for the HTTP
GET /courses/ endpoint.

Handles HTTP GET requests for the
path /courses/{id}. The {id} is a
path variable and replaced with an
appropriate value, e.g. /courses/1,
where 1 is the value of the path
variable ID.

Handles HTTP GET requests for the path /courses/category/{name}. The {name}
is a path variable and replaced with an appropriate value (e.g., /courses/
category/Spring, where Spring is the value of the path variable name).

Handles HTTP POST requests for the path /courses/. An
HTTP POST request accepts a request payload. You use the
@RequestBody annotation to specify the request body. Note
that the requester typically sends a JSON payload, and in
the endpoint you expect a Java POJO class that represents
the JSON payload. Spring Boot internally performs this
deserialization to convert the JSON to the Java type.

Handles the HTTP PUT operations
for the path /courses/{id}. The HTTP PUT
operation is used to perform the update
operations. In this endpoint, we expect
the ID of the resource that needs to be

updated and the updated representation
of the resource in the HTTP request

payload. We use the @RequestBody to
accept the request payload.

304 CHAPTER 7 Developing RESTful Web services with Spring Boot

 @DeleteMapping("{id}")
 void deleteCourseById(@PathVariable("id") long courseId) {
 courseService.deleteCourseById(courseId);
 }

 @DeleteMapping
 void deleteCourses() {
 courseService.deleteCourses();
 }

}

Listing 7.5 defines all the endpoints listed in table 7.1. We’ll explore this class in
greater detail in the discussion section of this technique. However, one thing you
should take note of is the use of @RestController annotation instead of the previ-
ously used @Controller annotation.

Let us start the application and access the endpoints. First, let’s create a course
using the POST /courses/ endpoint. Listing 7.6 shows the HTTPie command to
create a course.

> http POST :8080/courses/ name="Mastering Spring Boot" rating=4

➥ category=Spring description="Mastering Spring Boot intends to teach

➥ Spring Boot with practical examples"
HTTP/1.1 200
// Other HTTP Response Headers
{
 "category": "Spring",
 "description": "Mastering Spring Boot intends to teach Spring Boot with

➥ practical examples",
 "id": 1,
 "name": "Mastering Spring Boot",

Testing REST endpoints
Several utilities can be used to test REST endpoints. You can use Postman (https://
www.postman.com/) tool, which provides a GUI to test the endpoint. One nice feature
of Postman is that you can group related endpoints to create a collection. You can
export the collection and share it with others, who can import it in their Postman and
test the same endpoints.

If you prefer command-line tools, you can use cURL or HTTPie. The cURL is a Unix
built-in utility that can be used to access the REST endpoints. HTTPie is a command-
line HTTP client that allows you to access HTTP URLs. We’ll use this as an alternative
to cURL to test our APIs. You can find more information on HTTPie at https://
httpie.io/. You can also refer to http://mng.bz/KxeK for a quick introduction on
installing and using HTTPie.

Listing 7.6 The HTTPie command to create a new course

Represents the HTTP DELETE
operation for the /courses/{id}

path. In this endpoint, we
delete the course for the

supplied course ID.

Represents the HTTP DELETE operation for
the /courses/ path. In this endpoint, we

delete all available courses.

https://www.postman.com/
https://www.postman.com/
https://www.postman.com/
https://httpie.io/
https://httpie.io/
https://httpie.io/
http://mng.bz/KxeK

3057.1 Developing a RESTful API with Spring Boot

 "rating": 4
}

In listing 7.6, although we’ve supplied the request body data in key–value pair, the
HTTPie tool internally converts it to a JSON payload. Once this command is executed
in the terminal, a new course is created in the Course Tracker application. Let’s view
the course details using the GET /courses/{id} endpoint to retrieve course details
with a courseId obtained in the POST operation of listing 7.6. This is shown in the
following listing.

> http GET :8080/courses/1
HTTP/1.1 200
// Other HTTP Response Headers
{
 "category": "Spring",
 "description": "Mastering Spring Boot intends to teach Spring Boot with

➥ practical examples",
 "id": 1,
 "name": "Mastering Spring Boot",
 "rating": 4
}

You can try accessing other endpoints in the same manner and monitor the output.

DISCUSSION

With this technique, you’ve learned to create a complete RESTful API. We have kept
the application extremely simple to demonstrate the concepts. Let’s now discuss a few
best practices we’ve followed while designing the REST API.

 If you notice, we’ve used JSON to accept the requests and similarly responded with
JSON in the response. It is a best practice that the REST APIs accept request payloads
in JSON and provide a response in JSON.

 JSON is widely used to store and transfer data. Spring Boot provides built-in
support to perform the mapping between JSON and Java POJOs and vice versa. For
instance, if you notice in listing 7.6, you’ve sent a JSON request as the payload to
create a new course in the application. However, the POST endpoint accepts a
Course instance. Spring Boot performs this deserialization internally for us. By
default, it uses the Jackson library (https://github.com/FasterXML/jackson) to per-
form this mapping.

 The next thing to notice is the use of nouns while defining the endpoint paths. It is
a best practice to use the plural form of the noun (e.g., Course, Person, Vehicle, etc.)
to define the routes. We should not use verbs in the route paths as the HTTP request
method already has a verb (e.g., GET, POST, etc.) that defines the actions. Letting the
developers use the verbs in paths make the paths lengthy and inconsistent. For
instance, to get the course details, one developer may use /getCourses, whereas
another can use /retrieveCourses. However, the get or retrieve is already defined

Listing 7.7 The HTTPie command to view a course

https://github.com/FasterXML/jackson

306 CHAPTER 7 Developing RESTful Web services with Spring Boot

through the HTTP GET method. Thus, specifying it in the route path makes it redun-
dant. Hence, GET /courses/ is the preferred endpoint path to get all courses. Simi-
larly, the POST /courses/ is the appropriate endpoint to create a new course.

 Let’s now provide a high-level flow diagram that shows the request and response
processing in a REST API in a Spring Boot application. Figure 7.1 shows this diagram.

In listing 7.5, we’ve used the @RestController annotation in place of the previously
used @Controller annotation. The @RestController annotation is a convenience
annotation that is meta-annotated with the @Controller and @ResponseBody annota-
tions. The @ResponseBody annotation indicates that a method’s return value should
be bound to the HTTP response body.

 Although the above API works well and serves the purpose, currently there is no
exception handling. For instance, let’s try to delete a course that does not exist in the
application. You’ll notice that you have presented with an error and an ugly looking
large stack trace. We’ll fix this in the next technique.

7.2 Managing exceptions in a Spring Boot RESTful API
Exceptions are inevitable in software code. Numerous factors could cause an excep-
tional scenario in your code. For instance, in the RESTful API we’ve designed, a user
could attempt to access or delete a course with a nonexisting course ID. They could
also submit a malformed JSON request payload to create a new course through the
POST endpoint. All these scenarios cause exceptions in the API. In this section, we’ll
discuss how to handle these exceptions and provide a meaningful response to the user
specifying the exception details.

7.2.1 Technique: Handling exceptions in a RESTful API

In this technique, we’ll discuss how to handle exceptions in a RESTful API.

API

client

Rest

controller
Service Repository

Database

Request

Response

Figure 7.1 The communication flow diagram in a REST API. A user invokes a REST endpoint, which
is handled by the REST Controller. The controller then uses the service layer to process the request.
The service layer relies on the repository to communicate to the database. Once there is a response
from the repository, it is processed by the service layer and forwarded to the controller. The controller
may perform additional processing, and the final response is provided to the API client.

3077.2 Managing exceptions in a Spring Boot RESTful API

PROBLEM

The previously defined RESTful API is unable to handle errors, as there is no excep-
tion handling in place. It presents the user with a large stack trace that is not intuitive
and exposes application internal details. You need to handle exceptions and ensure to
provide meaningful error responses.

SOLUTION

Exception handling is an important aspect of a RESTful API. Typically, your APIs
will be consumed by a variety of consumers and being able to provide a meaningful
error response in the event of an exception scenario makes your API robust and
user friendly.

In the API designed in section 7.1, we’ve not handled the exceptions and the default
Spring Boot exception handling mechanism is in place. For instance, deleting a
course that does not exist in the application presents the error message, as shown in
the following listing.

C:\sbip\repo>http DELETE :8080/courses/10
HTTP/1.1 500
{
 "error": "Internal Server Error",
 "message": "No class com.manning.sbip.ch07.model.Course entity with id

➥ 10 exists!",
 "path": "/courses/10",
 "status": 500,
 "timestamp": "2021-06-23T16:38:20.105+00:00",
 "trace": "org.springframework.dao.EmptyResultDataAccessException: No

➥ class com.manning.sbip.ch07.model.Course entity with id 10

➥ exists!\r\n\tat

➥ org.springframework.data.jpa.repository.support.SimpleJpaRepository.lam

➥ bda$deleteById$0(SimpleJpaRepository.java:166)\r\n\tat

➥ java.base/java.util.Optional.orElseThrow(Optional.java:401)\r\n\tat

➥ org.springframework.data.jpa.repository.support.SimpleJpaRepository.del

➥ eteById(SimpleJpaRepository.java:165)\r\n\tat

➥ java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native

➥ Method)\r\n\tat

➥ java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMe

➥ thodAccessorImpl.java:64)\r\n\tat

// Remaining section of the exception is omitted

As you may notice, the above error message is not a desired one and contains details
that are not of much use to the API users. It also exposes to the caller information

Source code
The final version of the Spring Boot project is available at http://mng.bz/layj.

Listing 7.8 Default exception handling

http://mng.bz/layj

308 CHAPTER 7 Developing RESTful Web services with Spring Boot

about the tech stack used for the implementation of the API, which is generally con-
sidered a security flaw. Further, the HTTP response code is also generic (500 Internal
Server Error), which indicates that a server-side error has occurred. In this technique,
we’ll improve the Course Tracker RESTful API by implementing exception handling
in the API.

 To begin with, let’s first discuss the type of exceptions we may encounter in the
application. For this API, we can have only a handful of exception scenarios. For
instance, it may be possible that a user attempts to get, update, or delete a course that
does not exist in the application. This should result in an HTTP 404 Not Found error,
as the requested resource does not exist in the application. It is also possible that the
user is submitting an incomplete/incorrect JSON payload, while creating or updating
a course. Let’s handle these exception scenarios. This results in an HTTP 400 Bad
Request status code, as the user request could not be processed because the server is
unable to parse the request, since it is malformed. To handle the first scenario, let’s
create a custom exception called CourseNotFoundException, as shown in the follow-
ing listing.

package com.manning.sbip.ch07.exception;

public class CourseNotFoundException extends RuntimeException {

 private static final long serialVersionUID = 5071646428281007896L;

 public CourseNotFoundException(String message) {
 super(message);
 }
}

This CourseNotFoundException is thrown whenever API users attempt to access a
course that does not exist in the application. Let’s now redefine the CourseService-
Impl class, as shown in the following listing.

package com.manning.sbip.ch07.service;
//imports

@Service
public class CourseServiceImpl implements CourseService {

 // Additional Code

 @Override
 public Course updateCourse(long courseId, Course course) {

 Course existingCourse = courseRepository.findById(courseId)
 .orElseThrow(() -> new CourseNotFoundException(String.format("No

Listing 7.9 CourseNotFoundException

Listing 7.10 CourseServiceImpl class

3097.2 Managing exceptions in a Spring Boot RESTful API

➥ course with id %s is available", courseId)));
 existingCourse.setName(course.getName());
 existingCourse.setCategory(course.getCategory());
 existingCourse.setDescription(course.getDescription());
 existingCourse.setRating(course.getRating());
 return courseRepository.save(existingCourse);
 }

 @Override
 public void deleteCourseById(long courseId) {
 courseRepository.findById(courseId).orElseThrow(() -> new

➥ CourseNotFoundException("No course with id %s is available" +

➥ courseId));
 courseRepository.deleteById(courseId); }
}

Listing 7.10 shows the modified methods of CourseServiceImpl class. For an update
or a delete operation, if a course with the supplied courseId does not exist in the
application, we throw the CourseNotFoundException.

 Now that we’ve thrown the exception, what’s next? We need to define an exception
handler that intercepts the thrown exception and executes custom exception han-
dling logic. For instance, for an unhandled exception, the HTTP response code 500
Internal Server Error is returned. However, if a course with the supplied courseid
does not exist in the application, the appropriate HTTP error code should be 404 Not
Found. The latter HTTP response code tells the API consumer the course they are
accessing does not exist. Let’s define the GlobalExceptionHandler class that defines
the ExceptionHandlers of our application, as shown in the following listing.

package com.manning.sbip.ch07.exception.handler;

//imports

@ControllerAdvice
public class CourseTrackerGlobalExceptionHandler extends

➥ ResponseEntityExceptionHandler {

 @ExceptionHandler(value = {CourseNotFoundException.class})
 public ResponseEntity<?> handleCourseNotFound(CourseNotFoundException

➥ courseNotFoundException, WebRequest request) {
 return super.handleExceptionInternal(courseNotFoundException,
 courseNotFoundException.getMessage(), new HttpHeaders(),

➥ HttpStatus.NOT_FOUND, request);
 }
}

In the class in listing 7.11, you’ve defined a few ExceptionHandler implementations
that handle the exceptions and can be thrown while processing the requests. Let’s
explore this class in detail:

Listing 7.11 GlobalExceptionHandler class

310 CHAPTER 7 Developing RESTful Web services with Spring Boot

 This class is annotated with the @ControllerAdvice annotation. This annota-
tion is a specialized @Component that allows you to declare the @Exception-
Handler. The @ControllerAdvice annotation allows writing global code that
applies to a range of controllers (and RestControllers). Thus, the Excep-
tionHandler defined in listing 7.11 applies to all controllers in the application.

 This class extends the ResponseEntityExceptionHandler class, which is a base
class for @ControllerAdvice annotated classes that provide a centralized
exception handling across all @RequestMapping annotated methods through
@ExceptionHandler methods. This class provides exception handling logic for
a variety of exceptions that can occur in the application. We can extend this
class and override the exception handling logic at our convenience.

 We’ve defined a new ExceptionHandler for our custom exception CourseNot-
FoundException. In this implementation, we are setting the HTTP response code
to 404 Not Found and the error message retrieved from the custom exception.
Finally, we are invoking the superclass method handleExceptionInternal(..)
with these details.

Let’s now start the application and try out replicating a few exceptions scenarios and
observing the response. Let’s try deleting a course with a course ID that is not present
in the application. The HTTPie command and the associated response is shown in the
following listing.

C:\sbip\repo>http DELETE :8080/courses/1
HTTP/1.1 404
// HTTP Response Headers

No course with id 1 is available

Notice that we have an appropriate HTTP status code 404 as well as a relevant error
message that specifies the error. Moreover, the user does not see any reference to the
technology used for the API implementation (i.e., no Spring Boot stack trace appear-
ing anymore).

DISCUSSION

The ability of a RESTful API to handle various user errors and to respond with appro-
priate HTTP status codes and error messages makes it robust and user friendly. This
makes the application more compliant with the RESTful paradigm itself.

 While designing APIs, it is a common practice to first identify the possible error
scenarios in the application. You can then define custom exception classes that
define the identified error scenario. One advantage of designing a custom excep-
tion is that it allows you to model the exception in a better manner and provides
flexibility to capture various details about the exception. You can then define the
ExceptionHandler that intercepts these exception classes and allows you to define

Listing 7.12 Delete a course

3117.3 Testing a RESTful API

custom error response. For instance, try defining an exception handler that handles
the wrong request payloads and responds with the HTTP 400 bad request. We leave
this as an exercise for the readers.

7.3 Testing a RESTful API
In the previous techniques, you’ve learned to design and build a RESTful API. Once
you are done with the development, the next task is to test the endpoints of the API to
ensure that the API is working as expected. There are multiple ways to test a REST
API, as shown in figure 7.2.

So far, we’ve discussed using the command-line tool HTTPie that can be used to
access the endpoints. You can also use the cURL utility to test the endpoints. If you are
not comfortable with CLI utilities, GUI-based tools are another great alternative. In
the REST API testing, Postman (https://www.postman.com/) is extensively used by
API developers to test the APIs. Besides, if you are familiar with the Microsoft VS Code
editor (https://code.visualstudio.com/), it also provides several extensions to enable
testing support for the REST APIs. We won’t cover these utilities, as there are enough
tutorials and how-to guides for these tools available on the internet.

 In the next section, we’ll discuss how to test a REST API through integration test-
ing. It is always a best practice to write test cases for the endpoints that are executed
while you build the API. Let’s explore it in the next technique.

7.3.1 Technique: Testing a RESTful API in a Spring Boot application

In this section, we’ll explore how to test a RESTful API.

PROBLEM

We haven’t defined any test cases to test the REST API endpoints. To ensure the API
endpoints are working correctly and are not broken while introducing new changes in
the future, we need to define integration test cases.

REST API testing

Command line utilities
GUI-based tools

(e.g., Postman)
Unit testing

Figure 7.2 Options to test a RESTful API. Command line utilities includes cURL, HTTPie. The GUI-
based tools include Postman, SoapUI. Unit testing can be done with Spring Boot MockMVC in
conjunction with JUnit.

https://www.postman.com/
https://code.visualstudio.com/

312 CHAPTER 7 Developing RESTful Web services with Spring Boot

SOLUTION

In a typical application, to test your application classes, you either instantiate those
and invoke the methods defined in it or use mocking frameworks, such as Mockito
to mock the class and other components. In a Spring MVC application, we can simi-
larly define test cases. However, that does not verify a few important MVC framework
features, such as request mapping, validation, data binding, @ExceptionHandler,
and others.

 Spring MVC provides a testing framework that provides comprehensive testing
capabilities for Spring MVC-based applications without the need for an actual server.
This framework, also known as MockMVC, performs the MVC request handling via
mock request and response objects.

 In this technique, we’ll show you how to use the Spring MockMVC framework in a
Spring Boot application to test a REST API. We’ll define integration test cases for the
API endpoints we’ve defined in the previous techniques.

Let’s begin by defining the first test case that creates a course in the Course Tracker
application. The following listing shows the class.

package com.manning.sbip.ch07;

import static org.hamcrest.Matchers.greaterThan;
import static org.hamcrest.Matchers.hasSize;
import static org.junit.jupiter.api.Assertions.assertNotNull;
import static

➥ org.springframework.test.web.servlet.request.MockMvcRequestBuilders.del

➥ ete;
import static

➥ org.springframework.test.web.servlet.request.MockMvcRequestBuilders.get;
import static

➥ org.springframework.test.web.servlet.request.MockMvcRequestBuilders.post;
import static

➥ org.springframework.test.web.servlet.request.MockMvcRequestBuilders.put;
import static

➥ org.springframework.test.web.servlet.result.MockMvcResultHandlers.print;
import static

➥ org.springframework.test.web.servlet.result.MockMvcResultMatchers.jsonP

➥ ath;
import static

➥ org.springframework.test.web.servlet.result.MockMvcResultMatchers.status;

import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.extension.ExtendWith;

Source code
The final version of the Spring Boot project is available at http://mng.bz/Bx4v.

Listing 7.13 Integration test case for Course Tracker REST API create course endpoint

http://mng.bz/Bx4v

3137.3 Testing a RESTful API

import org.springframework.beans.factory.annotation.Autowired;
import

➥ org.springframework.boot.test.autoconfigure.web.servlet.AutoConfigureMo

➥ ckMvc;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.mock.web.MockHttpServletResponse;
import org.springframework.test.context.junit.jupiter.SpringExtension;
import org.springframework.test.web.servlet.MockMvc;

import com.fasterxml.jackson.databind.ObjectMapper;
import com.jayway.jsonpath.JsonPath;
import com.manning.sbip.ch07.model.Course;
import com.manning.sbip.ch07.service.CourseService;

@SpringBootTest
@AutoConfigureMockMvc
@ExtendWith(SpringExtension.class)
class CourseTrackerApiApplicationTests {

 @Autowired
 private CourseService courseService;

 @Autowired
 private MockMvc mockMvc;

 @Test
 public void testPostCourse() throws Exception {
 Course course = Course.builder()
 .name("Rapid Spring Boot Application Development")
 .category("Spring")
 .rating(5)
 .description("Rapid Spring Boot Application

➥ Development").build();
 ObjectMapper objectMapper = new ObjectMapper();

 MockHttpServletResponse response = mockMvc.perform(post("/courses/")
 .contentType("application/json")
 .content(objectMapper.writeValueAsString(course)))
 .andDo(print())
 .andExpect(jsonPath("$.*", hasSize(5)))
 .andExpect(jsonPath("$.id", greaterThan(0)))
 .andExpect(jsonPath("$.name").value("Rapid Spring Boot

➥ Application Development"))
 .andExpect(jsonPath("$.category").value("Spring"))
 .andExpect(jsonPath("$.rating").value(5))
 .andExpect(status().isCreated()).andReturn().getResponse();

 Integer id =

➥ JsonPath.parse(response.getContentAsString()).read("$.id");
 assertNotNull(courseService.getCourseById(id));

 }
}

314 CHAPTER 7 Developing RESTful Web services with Spring Boot

Let’s define various components we used in the class defined in listing 7.13:

 The @SpringBootTest annotation indicates the annotated class runs Spring
Boot-based tests and provides necessary environmental support to run the test
cases. It creates the Spring application context that creates all Spring beans
needed to run the test cases.

 The @AutoConfigureMockMvc annotation enables and auto-configures the
MockMVC framework. This annotation performs the heavy lifting to provide
the necessary support, so we can simply autowire an instance of MockMVC and
use it in the test.

 The @ExtendWith(SpringExtension.class) annotation integrates the Spring
TestContext Framework with JUnit 5’s Jupiter programming model. @Extend-
With is a JUnit 5 annotation that allows you to specify the extension to be used
to run the test case.

 We autowired the CourseService and the MockMvc instance in the class.
 We used the mockMvc instance to perform an HTTP POST operation with a

sample course.

Once the request is fired, we use the andExpect to assert various attributes. We’ve
used the jsonpath to extract the values from the JSON response. Lastly, we validate
the HTTP response status code. Let’s now provide the test case to get the course by
ID. The following listing shows this test case.

@Test
public void testRetrieveCourse() throws Exception {
 Course course = Course.builder()
 .name("Rapid Spring Boot Application Development")
 .category("Spring")
 .rating(5)
 .description("Rapid Spring Boot Application

➥ Development").build();
 ObjectMapper objectMapper = new ObjectMapper();

 MockHttpServletResponse response = mockMvc.perform(post("/courses/")
 .contentType("application/json")
 .content(objectMapper.writeValueAsString(course)))
 .andDo(print())
 .andExpect(jsonPath("$.*", hasSize(5)))
 .andExpect(jsonPath("$.id", greaterThan(0)))
 .andExpect(jsonPath("$.name").value("Rapid Spring Boot

➥ Application Development"))
 .andExpect(jsonPath("$.category").value("Spring"))
 .andExpect(jsonPath("$.rating").value(5))
 .andExpect(status().isCreated()).andReturn().getResponse();
 Integer id = JsonPath.parse(response.getContentAsString()).read("$.id");

 mockMvc.perform(get("/courses/{id}",id))
 .andDo(print())

Listing 7.14 Test case to get a course by a course ID

3157.3 Testing a RESTful API

 .andExpect(jsonPath("$.*", hasSize(5)))
 .andExpect(jsonPath("$.id", greaterThan(0)))
 .andExpect(jsonPath("$.name").value("Rapid Spring Boot

➥ Application Development"))
 .andExpect(jsonPath("$.category").value("Spring"))
 .andExpect(jsonPath("$.rating").value(5))
 .andExpect(status().isOk());

}

In listing 7.14, we’ve first created a course through the post() method and then used
the get() method to retrieve the course details. Like the previous test case, we’ve
asserted the various response parameters along with the HTTP response status code.
Let’s now include the remaining test cases, as shown in the following listing.

@Test
public void testInvalidCouseId() throws Exception {
 mockMvc.perform(get("/courses/{id}",100))
 .andDo(print())
 .andExpect(status().isNotFound());
}

@Test
public void testUpdateCourse() throws Exception {
 Course course = Course.builder()
 .name("Rapid Spring Boot Application Development")
 .category("Spring")
 .rating(3)
 .description("Rapid Spring Boot Application

➥ Development").build();
 ObjectMapper objectMapper = new ObjectMapper();

 MockHttpServletResponse response = mockMvc.perform(post("/courses/")
 .contentType("application/json")
 .content(objectMapper.writeValueAsString(course)))
 .andDo(print())
 .andExpect(jsonPath("$.*", hasSize(5)))
 .andExpect(jsonPath("$.id", greaterThan(0)))
 .andExpect(jsonPath("$.name").value("Rapid Spring Boot

➥ Application Development"))
 .andExpect(jsonPath("$.category").value("Spring"))
 .andExpect(jsonPath("$.rating").value(3))
 .andExpect(status().isCreated()).andReturn().getResponse();
 Integer id = JsonPath.parse(response.getContentAsString()).read("$.id");

 Course updatedCourse = Course.builder()
 .name("Rapid Spring Boot Application Development")
 .category("Spring")
 .rating(5)
 .description("Rapid Spring Boot Application

➥ Development").build();

Listing 7.15 Test cases for the Invalid Couse ID, Update, and Delete Course endpoints

316 CHAPTER 7 Developing RESTful Web services with Spring Boot

 mockMvc.perform(put("/courses/{id}", id)
 .contentType("application/json")
 .content(objectMapper.writeValueAsString(updatedCourse)))
 .andDo(print())
 .andExpect(jsonPath("$.*", hasSize(5)))
 .andExpect(jsonPath("$.id").value(id))
 .andExpect(jsonPath("$.name").value("Rapid Spring Boot

➥ Application Development"))
 .andExpect(jsonPath("$.category").value("Spring"))
 .andExpect(jsonPath("$.rating").value(5))
 .andExpect(status().isOk());

}

@Test
public void testDeleteCourse() throws Exception {
 Course course = Course.builder()
 .name("Rapid Spring Boot Application Development")
 .category("Spring")
 .rating(5)
 .description("Rapid Spring Boot Application

➥ Development").build();
 ObjectMapper objectMapper = new ObjectMapper();

 MockHttpServletResponse response = mockMvc.perform(post("/courses/")
 .contentType("application/json")
 .content(objectMapper.writeValueAsString(course)))
 .andDo(print())
 .andExpect(jsonPath("$.*", hasSize(5)))
 .andExpect(jsonPath("$.id", greaterThan(0)))
 .andExpect(jsonPath("$.name").value("Rapid Spring Boot

➥ Application Development"))
 .andExpect(jsonPath("$.category").value("Spring"))
 .andExpect(jsonPath("$.rating").value(5))
 .andExpect(status().isCreated()).andReturn().getResponse();
 Integer id = JsonPath.parse(response.getContentAsString()).read("$.id");

 mockMvc.perform(delete("/courses/{id}", id))
 .andDo(print())
 .andExpect(status().isOk());

}

In listing 7.15, we’ve defined three test cases:

 The first test case attempts to get the course details for a course ID that is not
available. The application returns an HTTP 404 status code, and we expect the
same in the test case.

 The second test case performs an HTTP PUT operation to test the update
course endpoint.

 The last test case performs the HTTP DELETE operation to delete a course with
a courseId.

3177.4 Documenting a RESTful API

DISCUSSION

Spring MockMVC framework provides an excellent way to test Spring MVC-based
applications. Moreover, Spring Boot autoconfiguration of MockMVC has simplified
defining the test cases even further. With this technique, we’ve demonstrated how to
define test cases for the REST API endpoints with Spring’s MockMVC framework. The
MockMVC framework provides a fluent API that allows you to perform the assertion
of various response parameters. You can find further details regarding MockMVC at
http://mng.bz/do5D.

 Spring also provides an alternate test client called WebTestClient that lets you ver-
ify the response in a much better manner. We’ll demonstrate the use of WebTestClient
in the next chapter.

7.4 Documenting a RESTful API
As part of modern-day application development, APIs play a critical role in the success
of an application. As application features are consumed by a variety of devices, it is
important that APIs are documented. Further, an API represents a contract between
an API provider and consumers. Therefore, a good API should ensure that the API
details are available to its consumers, so consumers can develop their code accord-
ingly. These details include the HTTP request and response structure, HTTP status
code that an endpoint returns, security configurations, and various other details. You
can refer to https://petstore.swagger.io/ for a quick glimpse of the documentation of
the Spring Petclinic application (https://github.com/spring-projects/spring-petclinic).
In this section, we’ll discuss documenting the RESTful APIs through OpenAPI (https://
swagger.io/specification/), which is the most popular and de facto standard of REST-
ful API documentation.

7.4.1 Technique: Documenting a RESTful API with OpenAPI

In this technique, we’ll learn how to document a RESTful API.

PROBLEM

The Course Tracker API is currently undocumented, and there are no means other
than exploring the application source code to find out the details regarding the API.
We need to document this API with OpenAPI, so the API consumers can find the
required details about the API.

SOLUTION

The OpenAPI Specification provides a standard approach to document RESTful APIs,
so the API consumers can find out the details and capabilities of the API in a consis-
tent manner.

Source code
The final version of the Spring Boot project is available at http://mng.bz/raOg.

https://petstore.swagger.io/
https://github.com/spring-projects/spring-petclinic
https://swagger.io/specification/
https://swagger.io/specification/
https://swagger.io/specification/
http://mng.bz/do5D
http://mng.bz/raOg

318 CHAPTER 7 Developing RESTful Web services with Spring Boot

The OpenAPI specification is language-agnostic, which means it is not only limited to
Spring Boot, but it is available for other languages and frameworks as well. For
instance, we can use OpenAPI to document the RESTful API developed through a
Spring Boot application, and the same is possible for a RESTful API developed through
Express JS (https://expressjs.com/).

 In this section, we’ll demonstrate how to document the Course Tracker API with
OpenAPI. To proceed with that, let’s first add the following Maven dependency in the
pom.xml file, as shown in the following listing.

<dependency>
 <groupId>org.springdoc</groupId>
 <artifactId>springdoc-openapi-ui</artifactId>
 <version>1.5.9</version>
</dependency>

The springdoc-openapi (https://springdoc.org/) library automates the generation
of API documentation in a Spring Boot project. It does so by inspecting a Spring Boot
application at runtime to infer the API semantics based on Spring configurations,
class structure, and other annotations. The springdoc-openapi-ui dependency pro-
vides integration between Spring Boot and Swagger UI. It automatically deploys the
swagger-ui to a Spring Boot application and makes it available at http://{server}:
{port}/{context-path}/swagger-ui.html.

 Notice that we’ve introduced Swagger in our discussion. Let’s clarify the difference
between Swagger and OpenAPI. The OpenAPI is the specification that dictates the
guidelines for the API documentation. Swagger is the tool that implements this speci-
fication. Swagger consists of various components, such as Swagger Editor, Swagger UI,
Swagger Codegen, and a few other modules. Please refer to http://mng.bz/ VlNX for
a detailed discussion on Swagger vs. OpenAPI.

 Let’s now proceed with documenting the Course Tracker API. To document the
API, we annotate the endpoints with various annotations. These annotations contain
custom details about the endpoint, such as the purpose of the endpoint, the HTTP
status code it returns, and more. The following listing shows the updated Course-
Controller annotated with the OpenAPI annotations.

package com.manning.sbip.ch07.controller;

// imports

import io.swagger.v3.oas.annotations.Operation;
import io.swagger.v3.oas.annotations.tags.Tag;

@RestController
@RequestMapping("/courses/")

Listing 7.16 OpenAPI Maven dependency

Listing 7.17 The CourseController class

https://springdoc.org/
https://expressjs.com/
http://{server}:{port}/{context-path}/swagger-ui.html
http://{server}:{port}/{context-path}/swagger-ui.html
http://{server}:{port}/{context-path}/swagger-ui.html
http://mng.bz/VlNX

3197.4 Documenting a RESTful API

@Tag(name = "Course Controller", description = "This REST controller

➥ provide services to manage courses in the Course Tracker application")
public class CourseController {

 private CourseService courseService;

 @Autowired
 public CourseController(CourseService courseService) {
 this.courseService = courseService;
 }

 @GetMapping
 @ResponseStatus(code = HttpStatus.OK)
 @Operation(summary = "Provides all courses available in the Course

➥ Tracker application")
 public Iterable<Course> getAllCourses() {
 return courseService.getCourses();
 }

 @GetMapping("{id}")
 @ResponseStatus(code = HttpStatus.OK)
 @Operation(summary = "Provides course details for the supplied course

➥ id from the Course Tracker application")
 public Optional<Course> getCourseById(@PathVariable("id") long courseId)

{
 return courseService.getCourseById(courseId);
 }

 @GetMapping("category/{name}")
 @ResponseStatus(code = HttpStatus.OK)
 @Operation(summary = "Provides course details for the supplied course

➥ category from the Course Tracker application")
 public Iterable<Course> getCourseByCategory(@PathVariable("name")
String category) {
 return courseService.getCoursesByCategory(category);
 }

 @PostMapping
 @ResponseStatus(code = HttpStatus.CREATED)
 @Operation(summary = "Creates a new course in the Course Tracker

➥ application")
 public Course createCourse(@Valid @RequestBody Course course) {
 return courseService.createCourse(course);
 }

 @PutMapping("{id}")
 @ResponseStatus(code = HttpStatus.NO_CONTENT)
 @Operation(summary = "Updates the course details in the Course Tracker

➥ application for the supplied course id")
 public void updateCourse(@PathVariable("id") long courseId, @Valid
@RequestBody Course course) {
 courseService.updateCourse(courseId, course);
 }

320 CHAPTER 7 Developing RESTful Web services with Spring Boot

 @DeleteMapping("{id}")
 @ResponseStatus(code = HttpStatus.NO_CONTENT)
 @Operation(summary = "Deletes the course details for the supplied

➥ course id from the Course Tracker application")
 public void deleteCourseById(@PathVariable("id") long courseId) {
 courseService.deleteCourseById(courseId);
 }

 @DeleteMapping
 @ResponseStatus(code = HttpStatus.NO_CONTENT)
 @Operation(summary = "Deletes all courses from the Course Tracker

➥ application")
 public void deleteCourses() {
 courseService.deleteCourses();
 }

}

In listing 7.17, we annotated the class with @Tag and the endpoints with @Response-
Status and @Operation annotations. The @Tag provides information about the con-
troller. The @ResponseStatus indicates the HTTP status code the endpoint returns.
Notice that the HTTP status code is critical for the API consumer to code their appli-
cation logic, as it defines the status of the API call. Thus, we must take care while
determining the HTTP Status code for the endpoints. Lastly, the @Operation annota-
tion captures details regarding the purpose of the endpoint.

 Let’s now capture a few custom details about the API, such as API version, title,
description, license details, and more. You can do this by defining a Spring bean of
type OpenAPI. Listing 7.18 shows the OpenAPI bean definition. For simplicity, we’ve
defined this bean in the Spring Boot main class, as shown in the following listing. In a
typical application, you should define a separate Spring configuration class that should
contain this @Bean definition.

package com.manning.sbip.ch07;

//imports

import io.swagger.v3.oas.models.OpenAPI;
import io.swagger.v3.oas.models.info.Info;
import io.swagger.v3.oas.models.info.License;

@SpringBootApplication
public class CourseTrackerApiApplication {

 public static void main(String[] args) {
 SpringApplication.run(CourseTrackerApiApplication.class, args);
 }

 @Bean
 public OpenAPI customOpenAPI(@Value("${app.description}") String

Listing 7.18 The OpenAPI bean definition

3217.4 Documenting a RESTful API

➥ appDescription,
 @Value("${app.version}") String appVersion) {

 return new OpenAPI().info(new Info().title("Course Tracker

➥ API").version(appVersion)
 .description(appDescription).termsOfService("http:/ /swag-

ger.io/terms/")
 .license(new License().name("Apache

➥ 2.0").url("http:/ /springdoc.org")));

 }

}

In listing 7.18, we defined the OpenAPI bean, which contains custom API details. In
the following listing, we define the app.description and app.version properties in
the application.properties file.

app.description=Spring Boot Course Tracker API
app.version=v1

That’s all. Let’s start the application and access the swagger-ui to view the API docu-
mentation. You can access swagger-ui for this application at http:/ /localhost:8080/
swagger-ui.html. Figure 7.3 shows the swagger-ui for the Course Tracker API.

Listing 7.19 The application.properties file

Figure 7.3 The Course Tracker swagger documentation. It contains the API description, controller details,
and endpoint details.

322 CHAPTER 7 Developing RESTful Web services with Spring Boot

DISCUSSION

OpenAPI is the de facto choice to document RESTful APIs. As you’ve seen in the
previous example, by adding a few dependencies you have a nice HTML-based API
document that captures the details about the API. However, one issue with the
HTML is that it is difficult to share with the API consumers. To handle this, Swag-
ger also lets you extract the API documentation in JSON format. You can retrieve
this JSON by accessing the http:/ /localhost:8080/v3/api-docs URL. This is shown
in the following listing.

{
 "openapi":"3.0.1",
 "info":{
 "title":"Course Tracker API",
 "description":"Spring Boot Course Tracker API",
 "termsOfService":"http:/ /swagger.io/terms/",
 "license":{
 "name":"Apache 2.0",
 "url":"http:/ /springdoc.org"
 },
 "version":"v1"
 },
 "servers":[
 {
 "url":"http:/ /localhost:8080",
 "description":"Generated server url"
 }
],
 "tags":[
 {
 "name":"Course Controller",
 "description":"This REST controller provides services to manage

➥ courses in the Course Tracker application"
 }
],
 "paths":{
 "/courses/{id}":{
 "get":{
 "tags":[
 "Course Controller"
],

// Remaining part of the JSON is omitted

Swagger provides the Swagger Editor (https://editor.swagger.io/), which allows you to
import this JSON and renders the same HTML layout shown in figure 7.4.

 You can ship this JSON shown in listing 7.20 with API consumers to let them ren-
der it through Swagger Editor. To make life even simpler, Swagger also provides a
Codegen utility that allows you to generate client applications from this JSON. For

Listing 7.20 The API documentation in JSON format

https://editor.swagger.io/

3237.5 Implementing RESTful API versioning

instance, let’s assume that the API client uses Node JS as their preferred language. You
can generate this Node JS client stub with Swagger Codegen. Swagger Codegen also
allows you to generate the client stub for a lot of different languages. Refer to https://
swagger.io/tools/swagger-codegen/ for more details on Swagger Codegen. For fur-
ther details on Spring Doc and OpenAPI integration, refer to Spring Doc reference
documentation available at https://springdoc.org/.

7.5 Implementing RESTful API versioning
In this section, we’ll discuss the various approaches to versioning a RESTful API. How-
ever, before proceeding with the discussion of various versioning techniques, let’s dis-
cuss REST API versioning and why it’s necessary.

 In simple words, versioning a REST API means the ability for the API to support
multiple versions. It is a common occurrence to enhance or upgrade the application
features over time. Various factors could drive these changes. For instance, it could be
the implementation of new business features, adoption of a new technology stack, or
refinement of the existing APIs.

 However, the issue with a breaking API change is that it directly impacts the API
consumers and breaks their application. It also causes a cascading impact on the API
invocation chain. One way to resolve this issue is to implement versioning while
designing your APIs. This way, you may have a version that is stable and available for
your API consumers. For any breaking changes, you can introduce a newer version of
the API that can be progressively adopted by various consumers.

Figure 7.4 Rendering the REST API documentation in the Swagger Editor. The Swagger Editor prefers the YAML
version of the JSON data and automatically converts a JSON to YAML while you paste the JSON in the editor.

https://springdoc.org/
https://swagger.io/tools/swagger-codegen/
https://swagger.io/tools/swagger-codegen/
https://swagger.io/tools/swagger-codegen/

324 CHAPTER 7 Developing RESTful Web services with Spring Boot

 In this section, we’ll discuss the available techniques to implement API versioning.
Following is the list of techniques we’ll discuss in this chapter:

 URI versioning—Uses a version number in the URI
 Request parameter versioning—Uses an HTTP request parameter to identify the

version
 Custom HTTP header versioning—Uses an HTTP request header to distinguish

the version
 Media type versioning—Uses the accept header request header in the request to

identify the version

We’ll demonstrate the different versioning techniques in the next technique. Later,
we’ll provide an analysis on the merits and demerits of the approaches. To better
explain the versioning techniques, we’ll simplify the CourseController class and only
use the GET/courses/ and POST /courses/ endpoint for versioning. Let’s discuss this
in the next technique.

7.5.1 Technique: Implementing versioning in a RESTful API

In this technique, we’ll discuss how to implement versioning in a RESTful API.

PROBLEM

The Course Tracker API has not implemented any versioning strategy. We need to imple-
ment a versioning technique to ensure that the API can handle any breaking changes.

SOLUTION

In this section, we’ll first discuss the URI versioning technique. This is a straight-
forward approach, as it includes a version identifier in the REST URI. For instance,
/courses/v1 represents version 1 of the API, and /courses/v2 represents version 2 of
the API.

Let’s assume we now need to enhance Course Tracker API, and it needs to also sup-
port an additional attribute of course price along with the previous course details.
Introduction of course price could also mean that we can have additional REST end-
points, such as finding courses between a price range or retrieving courses based on
the price order.

NOTE For simplicity reasons and demonstration purposes we are introduc-
ing the price attribute to the Course entity to design a new version of the
API. In actual scenarios, there should be more appropriate reasons for API
versioning.

Source code
The final version of the Spring Boot project is available at http://mng.bz/xv98.

http://mng.bz/xv98

3257.5 Implementing RESTful API versioning

To demonstrate this change, we’ll make changes to the CourseController class in the
Course Tracker application. We’ll rename the existing CourseController class to
LegacyCourseController and keep only GET /courses/ and POST /courses/ end-
points in it. The following listing shows the modified class.

package com.manning.sbip.ch07.controller;

// imports

@RestController
@RequestMapping("/courses/v1")
public class LegacyCourseController {

 private CourseService courseService;

 @Autowired
 public LegacyCourseController(CourseService courseService) {
 this.courseService = courseService;
 }

 @GetMapping
 @ResponseStatus(code = HttpStatus.OK)
 public Iterable<Course> getAllCourses() {
 return courseService.getCourses();
 }

 @PostMapping
 @ResponseStatus(code = HttpStatus.CREATED)
 public Course createCourse(@Valid @RequestBody Course course) {
 return courseService.createCourse(course);
 }
}

The most notable change in listing 7.21 is that we’ve updated the @RequestMapping
URI to /courses/v1. This is now the v1 version of the API. We’ll also introduce a new
RestController called ModernCourseController. This controller class contains the
changes related to the course price. The following listing shows the ModernCourse-
Controller class.

package com.manning.sbip.ch07.controller;

//imports

@RestController
@RequestMapping("/courses/v2")
public class ModernCourseController {

 private ModernCourseRepository modernCourseRepository;

Listing 7.21 The LegacyCourseController class

Listing 7.22 The ModernCourseController class

The request mapping URL contains
the version number. We’ve appended
version v1 to indicate the first
version of the API.

326 CHAPTER 7 Developing RESTful Web services with Spring Boot

 @Autowired
 public ModernCourseController(ModernCourseRepository

➥ modernCourseRepository) {
 this.modernCourseRepository = modernCourseRepository;
 }

 @GetMapping
 @ResponseStatus(code = HttpStatus.OK)
 public Iterable<ModernCourse> getAllCourses() {
 return modernCourseRepository.findAll();
 }

 @PostMapping
 @ResponseStatus(code = HttpStatus.CREATED)
 public ModernCourse createCourse(@Valid @RequestBody ModernCourse

➥ modernCourse) {
 return modernCourseRepository.save(modernCourse);
 }
}

Listing 7.22 represents the v2 version of the API, and we have done this by defining
the @RequestMapping to /courses/v2 URI. We’ve also defined a new JPA entity class
called ModernCourse that contains the new course attribute price along with other
parameters and a new Spring Data repository interface called ModernCourseRepository
available at http://mng.bz/Ax5z. For simplicity, we have skipped the service layer in
the new version of the API.

 That’s it. Now, let’s start the application and access both versions of the API. List-
ing 7.23 shows the output of creating and accessing a course with the v1 version of
the API.

>http POST :8080/courses/v1 name="Mastering Spring Boot" rating=4

➥ category=Spring description="Mastering Spring Boot intends to teach

➥ Spring Boot with practical examples"
HTTP/1.1 201
// Other HTTP Response Headers

{
 "category": "Spring",
 "description": "Mastering Spring Boot intends to teach Spring Boot with

➥ practical examples",
 "id": 1,
 "name": "Mastering Spring Boot",
 "rating": 4
}

>http GET :8080/courses/v1
HTTP/1.1 200
// Other HTTP Response Headers

Listing 7.23 Creating and retrieving courses with v1 version of Courses Tracker API

http://mng.bz/Ax5z

3277.5 Implementing RESTful API versioning

[
 {
 "category": "Spring",
 "description": "Mastering Spring Boot intends to teach Spring Boot

➥ with practical examples",
 "id": 1,
 "name": "Mastering Spring Boot",
 "rating": 4
 }
]

Let’s now create and retrieve courses with the v2 version of the API. The following list-
ing shows the output.

>http POST :8080/courses/v2 name="Mastering Spring Boot" rating=4

➥ category=Spring description="Mastering Spring Boot intends to teach

➥ Spring Boot with practical examples" price=42.34
HTTP/1.1 201
// Other HTTP Response Headers

{
 "category": "Spring",
 "description": "Mastering Spring Boot intends to teach Spring Boot with

➥ practical examples",
 "id": 1,
 "name": "Mastering Spring Boot",
 "price": 42.34,
 "rating": 4
}

>http GET :8080/courses/v2
HTTP/1.1 200
// Other HTTP Response Headers
[
 {
 "category": "Spring",
 "description": "Mastering Spring Boot intends to teach Spring Boot

➥ with practical examples",
 "id": 1,
 "name": "Mastering Spring Boot",
 "price": 42.34,
 "rating": 4
 }
]

As you may have noticed, both versions of the APIs are working fine. In the v1 version
of the API, there is no price parameter. In the v2 version of the API, the price param-
eter is shown.

Listing 7.24 Creating and retrieving courses with v2 version of Course Tracker API

Creating a new course with the new version
(/courses/v2) of the course API. Notice that we’ve

included a new field named price in this endpoint.

328 CHAPTER 7 Developing RESTful Web services with Spring Boot

 Let’s now discuss the second versioning technique of using an HTTP request
parameter to determine the version. We’ll use the same Course Tracker application to
demonstrate this versioning type.

For the HTTP request parameter-based versioning technique, you’ll provide a request
parameter in the REST endpoint URI that dictates which version of the API should be
invoked. Let’s define a new RestController class called RequestParameterVersioning-
CourseController. The following listing shows the RequestParameterVersioning-
CourseController class.

package com.manning.sbip.ch07.controller;

//imports

@RestController
@RequestMapping("/courses/")
public class RequestParameterVersioningCourseController {

 @Autowired
 private CourseService courseService;

 @Autowired
 private ModernCourseRepository modernCourseRepository;

 @GetMapping(params = "version=v1")
 @ResponseStatus(code = HttpStatus.OK)
 public Iterable<Course> getAllLegacyCourses() {
 return courseService.getCourses();
 }

 @PostMapping(params = "version=v1")
 @ResponseStatus(code = HttpStatus.CREATED)
 public Course createCourse(@Valid @RequestBody Course course) {
 return courseService.createCourse(course);
 }

 @GetMapping(params = "version=v2")
 @ResponseStatus(code = HttpStatus.OK)
 public Iterable<ModernCourse> getAllModernCourses() {
 return modernCourseRepository.findAll();
 }

 @PostMapping(params = "version=v2")
 @ResponseStatus(code = HttpStatus.CREATED)

Source code
The final version of the Spring Boot project is available at http://mng.bz/Zzdm.

Listing 7.25 Implementing the versioning with HTTP request parameter

http://mng.bz/Zzdm

3297.5 Implementing RESTful API versioning

 public ModernCourse createCourse(@Valid @RequestBody ModernCourse

➥ modernCourse) {
 return modernCourseRepository.save(modernCourse);
 }
}

In listing 7.25, notice the use of version=v1 and version=v2 request parameters that
determines the endpoint to be invoked. Also notice that we’ve used the CourseService
class for the v1 version of the API and ModernCourseRepository for the v2 version of
the API. Ideally, we should define a service class to wrap the functionalities of the
ModernCourseRepository interface for the version v2 API as well. For simplicity and
demonstration purposes, we have skipped this step. In a real production application,
you should define a service class for the controller.

 You can start the application and access the new endpoints with the version=v2
parameter. The following listing shows the output.

>http POST :8080/courses/?version=v2 name="Mastering Spring Boot" rating=4

➥ category=Spring description="Mastering Spring Boot intends to teach

➥ Spring Boot with practical examples" price=42.34
HTTP/1.1 201
// Other HTTP Response Headers
{
 "category": "Spring",
 "description": "Mastering Spring Boot intends to teach Spring Boot with

➥ practical examples",
 "id": 1,
 "name": "Mastering Spring Boot",
 "price": 42.34,
 "rating": 4
}

>http GET :8080/courses/?version=v2
// Other HTTP Response Headers
[
 {
 "category": "Spring",
 "description": "Mastering Spring Boot intends to teach Spring Boot

➥ with practical examples",
 "id": 1,
 "name": "Mastering Spring Boot",
 "price": 42.45,
 "rating": 4
 }
]

In the v1 version of the API, you’ll notice that the price parameter is not available.
 Let’s now discuss the third API versioning technique that uses a custom HTTP

header to identify the endpoint that needs to be invoked. This is quite similar to the
second technique of using the HTTP request parameter. In this case, instead of an

Listing 7.26 Invoking the v2 version of POST /courses/ endpoint with request parameter

330 CHAPTER 7 Developing RESTful Web services with Spring Boot

HTTP request parameter in the URI, we use a custom HTTP header in the HTTP
request. Let’s define a new class that implements this versioning strategy.

Listing 7.27 shows the CustomHeaderVersioningCourseController class.

package com.manning.sbip.ch07.controller;
// imports

@RestController
@RequestMapping("/courses/")
public class CustomHeaderVersioningCourseController {

 private CourseService courseService;
 private ModernCourseRepository modernCourseRepository;

 @Autowired
 public CustomHeaderVersioningCourseController(CourseService

➥ courseService, ModernCourseRepository modernCourseRepository) {
 this.courseService = courseService;
 this.modernCourseRepository = modernCourseRepository;
 }

 @GetMapping(headers = "X-API-VERSION=v1")
 @ResponseStatus(code = HttpStatus.OK)
 public Iterable<Course> getAllLegacyCourses() {
 return courseService.getCourses();
 }

 @PostMapping(headers = "X-API-VERSION=v1")
 @ResponseStatus(code = HttpStatus.CREATED)
 public Course createCourse(@Valid @RequestBody Course course) {
 return courseService.createCourse(course);
 }

 @GetMapping(headers = "X-API-VERSION=v2")
 @ResponseStatus(code = HttpStatus.OK)
 public Iterable<ModernCourse> getAllModernCourses() {
 return modernCourseRepository.findAll();
 }

 @PostMapping(headers = "X-API-VERSION=v2")
 @ResponseStatus(code = HttpStatus.CREATED)
 public ModernCourse createCourse(@Valid @RequestBody ModernCourse

➥ modernCourse) {
 return modernCourseRepository.save(modernCourse);
 }
}

Source code
The final version of the Spring Boot project is available at http://mng.bz/REjj.

Listing 7.27 Implementing versioning with a custom HTTP header

http://mng.bz/REjj

3317.5 Implementing RESTful API versioning

In listing 7.27, we used a custom HTTP header X-API-VERSION to determine the end-
point that needs to be invoked. To invoke a REST endpoint, you need to supply the
X-API-VERSION header in your HTTP request. The following listing shows the use of
this custom HTTP header.

>http POST :8080/courses/ X-API-VERSION:v2 name="Mastering Spring Boot"

➥ rating=4 category=Spring description="Mastering Spring Boot intends to

➥ teach Spring Boot with practical examples" price=42.34
HTTP/1.1 201
// Other HTTP Response Headers

{
 "category": "Spring",
 "description": "Mastering Spring Boot intends to teach Spring Boot with

➥ practical examples",
 "id": 1,
 "name": "Mastering Spring Boot",
 "price": 42.34,
 "rating": 4
}

>http GET :8080/courses/ X-API-VERSION:v2

// Other HTTP Response Headers

[
 {
 "category": "Spring",
 "description": "Mastering Spring Boot intends to teach Spring Boot

➥ with practical examples",
 "id": 1,
 "name": "Mastering Spring Boot",
 "price": 42.34,
 "rating": 4
 }
]

The last versioning technique we’ll discuss in this section is media-type versioning.
This is also known as the Content Negotiation or Accept Header versioning strategy.
This is due to the use of the Accept HTTP request header. In this technique, instead
of using a custom HTTP header, we leverage the built-in Accept HTTP header. With
the Accept HTTP header, a client indicates a server the content types (through MIME
types) that the client understands. In the HTTP request, the client provides the
Accept header. In the content negotiation (http://mng.bz/2jB8) phase, the server
uses its internal algorithm to determine one of the Accept header values and inform
the choice with the Content-Type response header.

Listing 7.28 Invoking the v2 version of POST /courses/ endpoint with a custom
HTTP header

http://mng.bz/2jB8

332 CHAPTER 7 Developing RESTful Web services with Spring Boot

Let’s define the AcceptHeaderVersioningCourseController class that implements
the versioning technique with the Accept HTTP header. This implementation is shown
in the following listing.

package com.manning.sbip.ch07.controller;

//imports

@RestController
@RequestMapping("/courses/")
public class AcceptHeaderVersioningCourseController {

 private CourseService courseService;
 private ModernCourseRepository modernCourseRepository;

 @Autowired
 public AcceptHeaderVersioningCourseController(CourseService

➥ courseService, ModernCourseRepository modernCourseRepository) {
 this.courseService = courseService;
 this.modernCourseRepository = modernCourseRepository;
 }

 @GetMapping(produces = "application/vnd.sbip.app-v1+json")
 @ResponseStatus(code = HttpStatus.OK)
 public Iterable<Course> getAllLegacyCourses() {
 return courseService.getCourses();
 }

 @PostMapping(produces = "application/vnd.sbip.app-v1+json")
 @ResponseStatus(code = HttpStatus.CREATED)
 public Course createCourse(@Valid @RequestBody Course course) {
 return courseService.createCourse(course);
 }

 @GetMapping(produces = "application/vnd.sbip.app-v2+json")
 @ResponseStatus(code = HttpStatus.OK)
 public Iterable<ModernCourse> getAllModernCourses() {
 return modernCourseRepository.findAll();
 }

 @PostMapping(produces = "application/vnd.sbip.app-v2+json")
 @ResponseStatus(code = HttpStatus.CREATED)
 public ModernCourse createCourse(@Valid @RequestBody ModernCourse

➥ modernCourse) {
 return modernCourseRepository.save(modernCourse);
 }
}

Source code
The final version of the Spring Boot project is available at http://mng.bz/1jl1.

Listing 7.29 Implementing the versioning with Accept HTTP header

http://mng.bz/1jl1

3337.5 Implementing RESTful API versioning

In the following listing, we’ve used the produces attribute of the @GetMapping and
@PostMapping annotations that declares the content the endpoint produces. The
application/vnd.sbip.app-v1+json is a custom MIME type that indicates the v1 ver-
sion of the API, and application/vnd.sbip.app-v2+json specifies the v2 version of
the API. The following listing shows the use of the Accept HTTP header.

>http POST :8080/courses/ Accept:application/vnd.sbip.app-v2+json

➥ name="Mastering Spring Boot" rating=4 category=Spring

➥ description="Mastering Spring Boot intends to teach Spring Boot with

➥ practical examples" price=42.34
HTTP/1.1 201
Connection: keep-alive
Content-Type: application/vnd.sbip.app-v2+json
Date: Fri, 25 Jun 2021 18:42:15 GMT
Keep-Alive: timeout=60
Transfer-Encoding: chunked

{
 "category": "Spring",
 "description": "Mastering Spring Boot intends to teach Spring Boot with

➥ practical examples",
 "id": 1,
 "name": "Mastering Spring Boot",
 "price": 42.34,
 "rating": 4
}

>http GET :8080/courses/ Accept:application/vnd.sbip.app-v2+json
HTTP/1.1 200
Connection: keep-alive
Content-Type: application/vnd.sbip.app-v2+json
Date: Mon, 08 Nov 2021 02:39:29 GMT
Keep-Alive: timeout=60
Transfer-Encoding: chunked

[
 {
 "category": "Spring",
 "description": "Mastering Spring Boot intends to teach Spring Boot

➥ with practical examples",
 "id": 1,
 "name": "Mastering Spring Boot",
 "price": 42.34,
 "rating": 4
 }
]

DISCUSSION

With this technique, we’ve seen the various techniques to implement versioning in a
REST API. Now that you have several choices to implement versioning, the immediate

Listing 7.30 Invoking the v2 version of POST /courses/ endpoint with Accept HTTP header

334 CHAPTER 7 Developing RESTful Web services with Spring Boot

next question that comes to mind is which approach is better and preferable. This is a
difficult question, and there is no straightforward answer to it. This is because none of
the solutions we’ve discussed are perfect.

 For instance, many developers reject the idea of assigning a version number in the
endpoint URI, as it creates URI pollution. Since the version is not part of the actual
URI, many argue the presence of the version identifier is a bad practice. Versioning in
the URI exposes to the API consumers that there are multiple versions of the API that
exist. Many organizations do not expose this fact to the API consumers.

 Similarly, many developers reject the idea of using Accept header for versioning
purposes, as the Accept HTTP header is not designed for this purpose. Using Accept
header for versioning is just a workaround and is not considered a preferred solution
to implement versioning. A similar type of counterargument is available for the other
two versioning techniques.

 If there are multiple versions of the same endpoint available, it causes issues while
documenting the API. For instance, the API consumers may get confused if they find
two different approaches to invoke the same service.

 As you may notice, there are both merits and demerits of the discussed approaches.
Thus, selecting a versioning strategy is a design choice of API designers or the organi-
zations after analyzing the pros and cons of the approach before adopting it to prac-
tice. The following list shows the API versioning approaches adopted by several major
API providers:

 Amazon—Request parameter versioning
 GitHub—Media type versioning
 Microsoft—Custom header versioning
 Twitter—URI versioning

7.6 Securing a RESTful API
In previous sections, we discussed various aspects of developing a RESTful API that
includes developing an API, its documentation, its testing, and its versioning. We are
still left with another core aspect of API development. And it’s the security of the API.
Presently, this API is not secure, and anyone who knows the API endpoints can access
the API.

 There are several ways an API can be secured. The most straightforward approach
is using HTTP basic authentication to secure the API. This is the simplest one to
implement, as it uses a username and password to authenticate the users. You may
remember that in chapter 5, we demonstrated how to implement HTTP basic authen-
tication to secure a Spring Boot application. You can refer to section 5.3.6 in chapter 5
to implement HTTP basic authentication in the Course Tracker API.

 However, you should limit the use of HTTP basic authentication to the extent possi-
ble due to its various shortcomings. Only consider it for your internal testing or devel-
opment purposes. An attentive reader may ask why we are discussing it here if it is not

3357.6 Securing a RESTful API

recommended to use. The use of basic authentication is still widespread (http://
mng.bz/PWKY) due to its simplicity and ease of use. Only recently, some organiza-
tions are deprecating the use of this authentication strategy (http://mng.bz/J1pK).

 Let’s discuss the reasons we should not use it in a production application in the
first place. First, HTTP basic authentication uses the username and password in plain-
text format with Base64 encoding to authenticate the users. The Base64 encoding is
not an encryption technique, and it is extremely easy to retrieve the credentials from a
Based64 encoded string. Thus, without HTTPS, there is a high chance credentials
could be exposed. Second, with HTTP basic authentication technique, both the client
application and the server application act as the password keeper and manage the
user credentials for authentication and authorization purposes. This is again problem-
atic, as there are chances that credentials could be compromised by either party.

 A preferred approach would be managing the user credentials in a centralized
authorization server instead of allowing either the server or the client application to
deal with the user password. The authorization server can issue a token that could be
used for authentication and authorization purposes. Let’s discuss this approach in the
next technique.

7.6.1 Technique: Using JWT to authorize RESTful API requests

In this technique, we will discuss how to authorize RESTful API requests using JWT.

PROBLEM

The Course Tracker RESTful API has not implemented any security measures that can
secure the REST endpoints. Without security configurations, anyone can access the
application endpoints.

SOLUTION

With this technique, we’ll demonstrate how to secure the endpoint access with the
Bearer Token approach. As mentioned previously, we’ll use an authorization server
for authorizing access. However, before proceeding with the implementation, let’s
provide a high-level overview of the REST request and response flow between the
client, REST API server, and the authorization server. Figure 7.5 shows a block dia-
gram of this flow:

 Let’s understand the flow discussed in the figure:

 A client requests to get course details from the Course Tracker REST API by
invoking the GET /courses endpoint.

 As the client is not authenticated, the API responds with 401 Unauthorized and
indicates in the HTTP response header that it needs to authenticate itself with a
Bearer Token.

 The client then requests the authorization server to get a Bearer Token. While
making this request, the client supplied the required details, such as client_id,
username, password, scope, and others. Note that the user for which the Bearer
Token is requested needs to be configured before a token is requested.

http://mng.bz/PWKY
http://mng.bz/PWKY
http://mng.bz/PWKY
http://mng.bz/J1pK

336 CHAPTER 7 Developing RESTful Web services with Spring Boot

 For a valid token request, the authorization server returns an access_token in
JSON Web Token (JWT) format.

 The client application makes a new request to the Course Tracker REST API
and supplies the Bearer token in the request.

 The Course Tracker REST API validates the token with the authorization server
and receives a response.

 For a valid response, the Course Tracker REST API returns the requested
course details. For an invalid response from the authorization server, it returns
an error response to the client.

Note that the flow in figure 7.5 is for a new request if the API client attempts to access
the endpoint without supplying the JWT token. If the client is supplying the token,
the communication starts at step 5.

Let’s now begin with the implementation. The first thing that needs to be done is to
configure the authorization server. We’ll use Keycloak (https://www.keycloak.org/) as
the authorization server. We’ll configure two users, namely john and steve, in the
authorization server. You can refer to the following GitHub wiki http://mng .bz/q27J
to set up the authorization server. It is strongly recommended that you set up the
authorization server before continuing with the next steps.

Source code
The final version of the Spring Boot project is available at http://mng.bz/wn72.

Authorization server

Course Tracker REST API

GET /courses/

401 unauthorized

GET/ authorizeAccess token

GET /courses/ authorization: earerB

200 OK

Client

application

Validate token Token valid

3

1

2

6 7

5

8

4

Figure 7.5 The communication between client application, REST API server, and the authorization server to
access a REST endpoint by a client. We are using the OAuth2 framework for authentication and authorization.

https://www.keycloak.org/
http://mng.bz/q27J
http://mng.bz/wn72

3377.6 Securing a RESTful API

 To keep the example simple, we’ve simplified the Course Tracker application a bit.
The course domain entity now contains only three fields: a course ID, a name, and an
author. The following listing shows the updated course class.

package com.manning.sbip.ch07.model;

// imports

@Entity
@Data
@NoArgsConstructor
@AllArgsConstructor
public class Course {

 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 @Column(name = "ID")
 private Long id;

 @NotEmpty
 @Column(name = "NAME")
 private String name;

 @NotEmpty
 @Column(name = "AUTHOR")
 private String author;
}

We’ve also simplified the CourseController class, and it has the following endpoints:

 Get courses by an author.
 Get course by an ID.
 Create a new course.
 Update an existing course.

To enable JSON Web Token (JWT) support, we need to update the pom.xml with the
dependencies shown in the following listing.

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-oauth2-resource-server</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-oauth2-jose</artifactId>
</dependency>

The first dependency makes the Course Tracker application an OAuth2 resource server.
The second dependency provides support for JWT (https://jwt.io/introduction).

Listing 7.31 The updated course entity

Listing 7.32 The Maven depencies for OAuth2 and JWT support

https://jwt.io/introduction

338 CHAPTER 7 Developing RESTful Web services with Spring Boot

Let’s now include the property in the application.properties file shown in the follow-
ing listing.

spring.security.oauth2.resourceserver.jwt.issuer-

➥ uri=http:/ /localhost:9999/auth/realms/master

Listing 7.33 configures the Keycloak JWT issuer URL. Let’s now explore the updated
CourseController class, as shown in the following listing.

package com.manning.sbip.ch07.controller;

//imports

@RestController
@RequestMapping("/courses/")
public class CourseController {

 private CourseRepository courseRepository;

 @Autowired
 public CourseController(CourseRepository courseRepository) {
 this.courseRepository = courseRepository;
 }

 @GetMapping
 public Iterable<Course> getAllCourses(@AuthenticationPrincipal Jwt

➥ jwt) {
 String author = jwt.getClaim("user_name");
 return courseRepository.findByAuthor(author);
 }

 @GetMapping("{id}")
 public Optional<Course> getCourseById(@PathVariable("id") long courseId)

{
 return courseRepository.findById(courseId);
 }

 @PostMapping
 public Course createCourse(@RequestBody String name,

➥ @AuthenticationPrincipal Jwt jwt) {
 Course course = new Course(null, name, jwt.getClaim("user_name"));
 return courseRepository.save(course);
 }
}

In listing 7.34, we used the @AuthenticationPrincipal annotation to get access to
the JWT token. This JWT instance contains the various details about the user request.
From the JWT, we retrieve the user_name claim, which is the course author name in

Listing 7.33 The JSON Web Token issues URL

Listing 7.34 The updated CourseController class

The user_name is a
custom claim defined in the
authorization server. In this
context, we use it to get the
author name to look up the
courses authored by a user.

3397.6 Securing a RESTful API

this context. Let’s now create two courses: one for the author john and another for
author steve, as shown in the following listing.

@Bean
CommandLineRunner createCourse(CourseRepository courseRepository) {
 return (args) -> {
 Course spring = new Course(null, "Spring", "john");
 Course python = new Course(null, "Python", "steve");
 courseRepository.save(spring);
 courseRepository.save(python);
 };
}

That’s all. Let’s now start the application and try accessing the endpoints. Listing 7.36
shows the outcome while we try to access the GET /courses/ endpoint without supply-
ing a JWT token.

>http GET :8080/courses
HTTP/1.1 401
WWW-Authenticate: Bearer
// HTTP Response Headers

The request is denied with an HTTP 401 unauthorized error response. The API has
also responded with the WWW-Authenticate:Bearer response header indicating the
client needs to provide a Bearer Token in the HTTP request. This is automatically
done by Spring Security. As we are using Bearer Token-based authentication, Spring
Security uses the BearerTokenAuthenticationFilter to process the incoming request.
It attempts to parse the request and generates a JwtAuthenticationToken, which
contains the JWT token details. In the discussion section, we’ll provide more details
on the classes used to process the request. For now, remember that the Bearer-
TokenAuthenticationFilter is the Spring Security filter that performs the authen-
tication. Let’s now try to obtain a Bearer Token for the user john, so the same can be
included in the HTTP request. The following listing shows the command to obtain
a token.

C:\Users\musib>http --form POST http:/ /localhost:9999/auth/realms/master/pro-
tocol/openid-connect/token

➥ grant_type=password client_id=course-tracker scope=course:read

➥ username=john password=password Content-Type:application/x-www-form-

➥ urlencoded
HTTP/1.1 200 OK
// HTTP Response Headers

Listing 7.35 Creating courses in the application

Listing 7.36 Accessing GET /courses/ endpoint without a JWT token

Listing 7.37 Obtaining a JWT from the Keycloak authorization server

340 CHAPTER 7 Developing RESTful Web services with Spring Boot

{
 "access_token":

➥ "eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiSldUIiwia2lkIiA6ICJxY2lKalIxSWNocTk4Qk

➥ VMcEo5cDJiWDBRaF80MzZ1S0ktbkx4UlF3Zk53In0.eyJleHAiOjE2MjQ3NzczOTgsImlhd

➥ CI6MTYyNDc3Mzc5OCwianRpIjoiYTY4OWM0Y2ItYTVhZC00YTM5LWE1YjQtNjFjNGNhNGZk

➥ MjMzIiwiaXNzIjoiaHR0cDovL2xvY2FsaG9zdDo5OTk5L2F1dGgvcmVhbG1zL21hc3RlciI

➥ sImF1ZCI6ImNvdXJzZS10cmFja2VyIiwic3ViIjoiNmQxMTE4MTktZmFlZC00NzQzLWFiNT

➥ EtMzk0YmVmNGQ0ZjBlIiwidHlwIjoiQmVhcmVyIiwiYXpwIjoiY291cnNlLXRyYWNrZXIiL

➥ CJzZXNzaW9uX3N0YXRlIjoiOWIyMTdiOTUtOWM1MS00ZGY0LWI3NTYtYTI3NzdmNmI0MDk2

➥ IiwiYWNyIjoiMSIsInNjb3BlIjoiY291cnNlOndyaXRlIGNvdXJzZTpyZWFkIiwidXNlcl9

➥ uYW1lIjoiam9obiIsImF1dGhvcml0aWVzIjpbInVzZXIiXX0.NgBcrpPvDB36sd2ytaeMUk

➥ qM_1_psUDMsHHkB9zZlT_9sIwF3kdPOhSLSmoMqhFtGpOOJI5CmB92WEBu4rVcNa2lnuh16

➥ lkksnC-0ASn23z8TIRtucrQ-

➥ Px2bOgFyducmRH7ec93gOsLKeZSUnjup0YA9FT_0o7eroKFdWrrqoyOiAxOua9nGg307Lkv

➥ _VKXtCB5wSrPFfPQrp6muw-gcREJaBgcYSx-

➥ 5QKC5UK30cFSsWlKXC9i2ov2O3aPA4DlHIqWx06a_M7AKmvgG3fVpyJSztbi0XHDnU9Y_mJ

➥ Vug-WH5MOIpgRUmYYnSL1Ki3PV24tZ11LolyA13XsA859vg",
 "expires_in": 3600,
 "not-before-policy": 0,
 "refresh_expires_in": 1800,
 "refresh_token":

➥ "eyJhbGciOiJIUzI1NiIsInR5cCIgOiAiSldUIiwia2lkIiA6ICIyYzI4MTNiNy05NmIzLT

➥ RkMzctYmUwOS1lMTE0ZTkzZjJlNTcifQ.eyJleHAiOjE2MjQ3NzU1OTgsImlhdCI6MTYyND

➥ c3Mzc5OCwianRpIjoiMTU4Y2E1ZGQtMDMyNy00NTE4LTk4NWItZGQ5ZTliNzcwNjg5Iiwia

➥ XNzIjoiaHR0cDovL2xvY2FsaG9zdDo5OTk5L2F1dGgvcmVhbG1zL21hc3RlciIsImF1ZCI6

➥ Imh0dHA6Ly9sb2NhbGhvc3Q6OTk5OS9hdXRoL3JlYWxtcy9tYXN0ZXIiLCJzdWIiOiI2ZDE

➥ xMTgxOS1mYWVkLTQ3NDMtYWI1MS0zOTRiZWY0ZDRmMGUiLCJ0eXAiOiJSZWZyZXNoIiwiYX

➥ pwIjoiY291cnNlLXRyYWNrZXIiLCJzZXNzaW9uX3N0YXRlIjoiOWIyMTdiOTUtOWM1MS00Z

➥ GY0LWI3NTYtYTI3NzdmNmI0MDk2Iiwic2NvcGUiOiJjb3Vyc2U6d3JpdGUgY291cnNlOnJl

➥ YWQifQ.a1O4SuspoN5u_RvYdXZsb6WLC3INx1smroEIVdYWG_E",
 "scope": "course:write course:read",
 "session_state": "9b217b95-9c51-4df4-b756-a2777f6b4096",
 "token_type": "Bearer"
}

In listing 7.37, we used the Keycloak authorization server’s token endpoint with the
required parameters. If you recall, we’ve configured all the attributes in the command
while setting up and configuring the client application and the users in the Keycloak
server. Revisit the GitHub wiki link to understand the purpose of these parameters.
Let’s explain the various request parameters we’ve used to access the token details:

 We have used x-www-form-urlencoded as the content type, since the Keycloak
server understands this request.

 The grant_type refers to how an application gets an access token. The grant_
type=password tells the token endpoint that the application is using the
Password grant type.

 A client_id is generated in the authorization server once an application is reg-
istered in the server.

 Scope refers to one or more space-separated strings indicating which permis-
sion the application is requesting. In this case, the scope value we are request-
ing is course:read.

3417.6 Securing a RESTful API

 The username and password fields supply the username and password of the
user.

In the HTTP response, the Keycloak server returns the access_token and the client
scopes configured for the user and token_type. For now, we’ll use the access_token
from this response to include this token in the HTTP GET request to the Course
Tracker API. Note that we’ve configured the access token to be valid for one hour.
Typically, in a production application, tokens are configured to be short-lived for secu-
rity reasons. For simplicity and testing purposes, we’ve configured the token to be
valid for one hour. In your testing, you should generate a new token and should not
use the token provided in listing 7.37. The following listing shows the HTTP GET
/courses/ request with the token.

C:\Users\musib>http GET :8080/courses/ "Authorization:Bearer

➥ eyJhbGciOiJSUzI1NiIsInR5cCIgOiAi…"
HTTP/1.1 200
// HTTP Response Headers
[
 {
 "author": "john",
 "id": 1,
 "name": "Spring"
 }
]

This time the HTTP status code is 200 OK, and we can retrieve the courses authored by
user john.

 Although this approach works well, there is a flaw in the implementation. With the
current security implementation, we can use the token of one user to get details of
the other users. For instance, in this case, we can use the token of john to access the
courses authored by steve, as shown in the following lisitng.

>http GET :8080/courses/2 "Authorization:Bearer

➥ eyJhbGciOiJSUzI1NiIsInR5cCIgOiAi…"
HTTP/1.1 200
// HTTP Response Headers

{
 "author": "steve",
 "id": 2,
 "name": "Python"
}

Ouch! We can access author Steve’s course details (which is course ID 2) with the
token of author John. This is an access control issue in the application known as the
insecure direct object reference (IDOR) problem (see http://mng.bz/7WBe).

Listing 7.38 Accessing GET /courses/ endpoint with a JWT token

Listing 7.39 Accessing author Steve’s course details with author John’s token

For brevity and readability
purposes, we’ve elided the
complete token details.

http://mng.bz/7WBe

342 CHAPTER 7 Developing RESTful Web services with Spring Boot

 This problem occurred because the token for user john is a valid token, and the
endpoint GET /courses/{id} is not performing any access control check. To avoid
this issue, we’ll implement method level security with Spring Security. Simply put, the
method level security allows you to secure the methods. We’ll leverage the Spring
Security @PreAuthorize or @PostAuthorize annotations to implement this. These
annotations take Spring Expression Language (SpEL) expression, which is evaluated
to make the access control decisions.

 Let’s demonstrate the use of the @PostAuthorize annotation to prevent the Insecure
Direct Object Reference problem. The access problem happened because there
were no checks for whether the supplied token belongs to the author requesting
access to the course details performed at the endpoint (with the supplied course ID).
We can retrieve the author name (using the user_name claim) from the token and
compare it with the returned course author name. If there is a mismatch, then we’ll
forbid this access.

 To use the method level security, you need to include the @EnableGlobalMethod-
Security(prePostEnabled = true) in the Spring Boot main class. This annotation
enabled the method level security in the application, as shown in the following listing.

package com.manning.sbip.ch07;

import

➥ org.springframework.security.config.annotation.method.configuration.Ena

➥ bleGlobalMethodSecurity;

//Other imports

@SpringBootApplication
@EnableGlobalMethodSecurity(prePostEnabled = true)
public class CourseTrackerApiApplication {

 public static void main(String[] args) {
 SpringApplication.run(CourseTrackerApiApplication.class, args);
 }
}

Next, you need to include the @PostAuthorize annotation on the offending end-
point. The following listing shows the updated endpoint.

@GetMapping("{id}")
@PostAuthorize("@getAuthor.apply(returnObject,

➥ principal.claims['user_name'])")
public Optional<Course> getCourseById(@PathVariable("id") long courseId) {
 return courseRepository.findById(courseId);
}

Listing 7.40 Configuring the EnableGlobalMethodSecurity annotation

Listing 7.41 Implementing @PostAuthorize to secure access control

3437.6 Securing a RESTful API

We supplied two attributes to a BiFunction implementation that performs the
comparison of the token-supplied author name and the method-returned author
name and returns a Boolean value. We’ve supplied the SpEL expression @getAuthor
.apply(returnObject, principal.claims['user_name']) to perform the access
control. The returnObject is the method return object, which is Optional<Course>,
and the principal.claims['user_name']) provides the author name. Listing 7.42
shows this BiFunction implementation as a bean definition in the Spring Boot main
class. For simplicity, we’ve included this @Bean definition in the Spring Boot main class.
In a real application, define a Spring configuration class to define this bean.

@Bean
BiFunction<Optional<Course>, String, Boolean> getAuthor() {
 return (course, userId) -> course.filter(c ->

➥ c.getAuthor().equals(userId)).isPresent();
}

Let’s again try accessing course ID 2 with the access token of author john. The follow-
ing listing shows the outcome.

C:\Users\musib>http GET :8080/courses/2 "Authorization:Bearer

➥ eyJhbGciOiJSUzI1NiIsInR5cCIgOiAi.."
HTTP/1.1 403
// HTTP Response Headers

We ended up with the 403 Forbidden HTTP status code. The 403 HTTP return code
indicates that the requested user was successfully authenticated to the application but
failed in the authorization while accessing the endpoint.

 The next thing we’ll discuss in this technique is the use of a scope to perform
access control in the application. For instance, we can use a scope called course:read
to ensure that tokens with this scope can access an endpoint.

 A scope defines the access level provided in the token to a client application by a
user. Imagine, you (as the user) have granted access to a third-party client application
to read all the courses authored by you, but you want to restrict that the client applica-
tion should not be able to perform any write operation. Thus, you can grant (through
grant_type=password) the third-party client application to obtain a token (by access-
ing the Keycloak server) only with the course:read scope. If the application attempts
to perform a write operation for any reason, it will receive a 403 Forbidden error, as
the write operation requires a different scope (e.g. course:write), which is not pro-
vided while granting the token.

 We’ll use the @PreAuthorize annotation to implement this. Let’s add the following
annotation in the getCourseById(..) method to the CourseController class, as
shown in the following listing.

Listing 7.42 The BiFunction implementation

Listing 7.43 Accessing author Steve’s course details with author John’s token

344 CHAPTER 7 Developing RESTful Web services with Spring Boot

@GetMapping("{id}")
@PreAuthorize("hasAuthority('SCOPE_course:read')")
@PostAuthorize("@getAuthor.apply(returnObject,

➥ principal.claims['user_name'])")
public Optional<Course> getCourseById(@PathVariable("id") long courseId) {
 return courseRepository.findById(courseId);
}

Spring Security appends the SCOPE_ prefix in the scope. Thus, we’ve configured
the course:read scope as SCOPE_course:read. The @PreAuthorize annotation
checks whether the requester (the client application) has the defined scope and,
based on that, decides the access. We leave it as an exercise to the reader to play
around with the Keycloak server to configure various scopes and explore the access
control outcomes.

DISCUSSION

In this technique, you’ve explored using JWT with an authorization server to secure
REST endpoints. Explaining the OAuth2 and the authorization server in depth is
beyond the scope of this text. You can refer to books dedicated to OAuth2 (https://
www.manning.com/books/oauth-2-in-action), OpenID connect (https://www.manning
.com/books/openid-connect-in-action), and Spring Security (https://www.manning
.com/books/spring-security-in-action) for a better understanding of these subjects.

 In chapter 5, we demonstrated the use of Spring Security to secure Spring Boot
applications. We also discussed that Spring Security uses a FilterChain and a list of fil-
ters that enforces security in the application. For Bearer Token-based authentication,
Spring Security provides BearerTokenAuthenticationFilter. Figure 7.6 shows the flow
of how the JWT is processed and a final JwtAuthenticationToken is generated.

Listing 7.44 Implementing the scope-based access control

BearerTokenAuthenticationFilter

AuthenticationManager

JwtAuthenticationProvider

JwtDecoder JwtAuthenticationConverter

JwtAuthenticationTokenRequest

Figure 7.6 The list
of classes and the
flow to process a JWT
and generate a Jwt-
AuthenticationToken

https://www.manning.com/books/oauth-2-in-action
https://www.manning.com/books/oauth-2-in-action
https://www.manning.com/books/oauth-2-in-action
https://www.manning.com/books/openid-connect-in-action
https://www.manning.com/books/openid-connect-in-action
https://www.manning.com/books/openid-connect-in-action
https://www.manning.com/books/spring-security-in-action
https://www.manning.com/books/spring-security-in-action
https://www.manning.com/books/spring-security-in-action

345Summary

The BearerTokenAuthenticationFilter delegates the JWT processing to an Authen-
ticationManager to perform the authentication. The AuthenticationManager uses
JwtAuthenticationProvider to perform the actual authentication task. It uses a Jwt-
Decoder and JwtAuthenticationConverter that process the request and generate the
JwtAuthenticationToken.

Summary
Let’s summarize the key takeaways of this chapter:

 We developed a RESTful API with Spring Boot application and discussed a few
best practices for developing an API.

 We explored how to perform exception handling and provide appropriate
HTTP response codes.

 We explored the use of OpenAPI to document a REST API.
 We explored various techniques to implement versioning in a REST API. The

techniques we discussed are URI versioning, request parameters, custom head-
ers, and Accept header-based versioning.

 We implemented Bearer Token-based authentication and authorization tech-
niques to secure the REST API.

Part 3

Part 3 of the book consists of one chapter, which discusses reactive applica-
tion development with Spring Boot. Chapter 8 provides an overview of reactive
programming and covers reactive application development with Spring Web-
Flux. This chapter shows how to develop reactive APIs with annotated control-
lers and functional endpoints. It also shows how to test reactive applications.
Lastly, this chapter demonstrates using WebSocket and RSocket with Spring Boot.

349

Reactive Spring Boot
application development

In the previous chapter, we explored how to design and develop RESTful API with
Spring Boot. Spring Framework offers an alternative technology stack with Spring
WebFlux to develop reactive applications. Spring WebFlux, which is based on Proj-
ect Reactor, offers utilities that allow you to design reactive applications with con-
trols, such as nonblocking, backpressure, and writing code in a declarative manner.
It also provides the WebClient utility with a fluent API to consume the APIs.

 In this chapter, we’ll look at RSocket and WebSocket protocols, which offer
support for bidirectional communication between the communicating parties.
Lastly, we’ll demonstrate how to use these protocols in a Spring Boot applica-
tion. Let’s get started.

This chapter covers
 Introducing reactive programming with Spring

WebFlux

 Developing reactive RESTful APIs with annotated
controller and functional endpoints

 Accessing reactive RESTful APIs with WebClient

 Developing Spring Boot applications with RSocket

 Using WebSocket and Spring Boot to develop
applications

350 CHAPTER 8 Reactive Spring Boot application development

8.1 Introduction to reactive programming
Reactive programming is programming with asynchronous data streams. Let’s cover the
asynchronous data stream with a discussion of the terms asynchronous and data streams.

 A data stream refers here to a stream of data in which data is emitted, one data
point after another, within an interval of time. The data stream can be created from a
variety of sources: user inputs, properties, caches, databases, and others. Let’s learn
about this using a comparison between traditional data processing and stream data
processing, as shown in figure 8.1.

In figure 8.1, on the left side, we’ve shown the traditional data processing. A user
request is received by the application, and the requested data is retrieved from the data-
base by the application. The retrieved data is then processed and returned to the user.

 On the right side of figure 8.1, we’ve demonstrated stream processing. In
stream processing, an application subscribes to a data stream and receives data

User request Application

Database

1. Request

1234

Application

4321

8642

8642

Traditional data processing Stream processing

5. Response

2. Query
3. Load

data

4. Process data 1. Subscribe

2. Process

3. Publish

Input stream

Output stream

Figure 8.1 Traditional data processing vs. stream data processing

3518.1 Introduction to reactive programming

when the data is available. The application processes the data and publishes the
processed data into another stream. In figure 8.1, we have a data stream of num-
bers to which the application has subscribed. As the application receives the data
stream, it processes the data elements by multiples of two, and the resultant data is
published into another stream.

 Let’s now discuss the concept of asynchronous processing. The term asynchronous
means that for a request, the associated response appears once it is ready without the
calling thread waiting for the response. Figure 8.2 shows a comparison between syn-
chronous and asynchronous processing.

Before we proceed further, let’s discuss a real-world example of asynchronous data
streams. The typical mouse click events are an example of it. Application users can
click on a button and generate an event, which you can observe and react to by per-
forming an activity in your application. You can imagine these events as a stream of
asynchronous events. Let’s demonstrate this with the diagram shown in figure 8.3.

 As you may notice, a stream is an ongoing event ordered in time. A stream can emit
three things: a value, an error, or a complete signal. The value indicates that the

Client Server 1 Server 2

Response

Request

Response

Request

Client Server 1 Server 2

Request

Response

Request

Response

Synchronous Asynchronous

Waiting for
response; thread

blocked

Waiting for
response; thread

blocked

No blocking;
thread

continues

Figure 8.2 Synchronous and asynchronous processing. In synchronous, the calling thread waits for a response
from the server before proceeding with the next request. Thus, the thread blocks. In asynchronous, the thread
makes the request and continues with other activities (e.g., making another request). It does not wait for a
response. The server sends the response asynchronously once the data is ready.

352 CHAPTER 8 Reactive Spring Boot application development

stream has emitted a value on which you can apply a function to take some action.
The error means the stream has produced an error, and you can invoke some error
handling mechanism. Lastly, the complete signal marks the end of the stream.

 Events are emitted asynchronously, and we listen to those by defining functions.
These functions react when the events have been emitted—for instance, one for the
emitted data, one for the error, and another for the completion of the stream. In reac-
tive programming, this listening is known as subscribing. The functions are the observ-
ers, and the stream is the observable, which is being observed. This is known as the
observer design pattern.

Note
Spring WebFlux, and reactive programming in general, is a large topic, and it is
beyond the scope of this text to provide an in-depth discussion on this subject. In this
chapter, we aim to introduce you to reactive programming and demonstrate how to
develop reactive applications with Spring Boot. In this section, we’ll briefly introduce
you to reactive programming and then discuss Reactive Streams upon which Project
Reactor is based. We’ll then talk about Spring WebFlux, which primarily uses Project
Reactor for its reactive support.

You can refer to the following references for a detailed discussion on this topic:

 Reactive Streams: http://mng.bz/qYOA
 Project Reactor: http://mng.bz/7ydm
 Spring WebFlux: http://mng.bz/mOaP

A click event Another click event This is an error.

Stream completed

Time

Figure 8.3 An example of asynchronous data stream for the mouse click event. We
have a total of four events in the above diagram. After the fourth mouse click event,
there is an error, and the stream terminates.

http://mng.bz/qYOA
http://mng.bz/7ydm
http://mng.bz/mOaP

3538.1 Introduction to reactive programming

8.1.1 Backpressure

Let’s learn about another important concept in reactive programming: backpressure.
However, before discussing it, let’s discuss the notion of push and pull methods in a
producer and consumer setup. A consumer subscribes data from a producer, and the
producer pushes the data to the consumer. This is shown in figure 8.4.

In figure 8.4, a producer pushes the events to the subscribed consumer. This setup is fine
if the consumer’s consumption rate is the same as the producer’s push rate. However,
what if the consumer processes the events at a slower rate than the producer pushes the
events? The consumer can queue the events in a buffer. This is shown in figure 8.5.

The consumer can either choose a bounded or an unbounded buffer to park the addi-
tional events. With a bounded buffer, some events will be dropped, as the buffer has
limited space. The producer may need to resend the dropped events. Resending
events requires additional network, CPU processing overhead, and a complex event
processing setup. The unbounded buffer may lead to an out of memory error in the
application if the buffer fills up rapidly with events. This could result in the unavail-
ability of the application.

 To avoid this problem, we can opt for the pull method instead of the push. In the
pull method, the consumer requests events from the producer based on its processing
capacity, as shown in figure 8.6.

 In figure 8.6, the consumer requests three events from the producer, and it returns
three events. This process allows the consumer to dynamically decide how many
events to pull from the producer based on its capacity and is known as backpressure.

Producer Consumer

E1E2E3

Push event

Figure 8.4 A producer pushes events to a consumer using the push method.

Fast producer

E9

Push event

E1E4

Slow consumerE10 E5

E6

E7

E8

E11
Figure 8.5 A fast producer pushes
more events than a slow consumer
can consume. The consumer parks
the additional events into a buffer.

354 CHAPTER 8 Reactive Spring Boot application development

8.1.2 Benefits of reactive programming

Now that we have some understanding of reactive programming concepts, let’s discuss
a few of its benefits:

 No blocking—Usually with the traditional programming model, developers write
blocking codes. For instance, the calling thread waits for the data, while access-
ing a remote API or makes a database call. Although programs with blocking
code work well, it has scalability and performance issues. Besides, it wastes the
system resources by simply waiting for the data. The reactive programming
model removes these bottlenecks.

 Better asynchronous programming model in JVM —Java provides two approaches to
perform asynchronous programming: through callback and future. With call-
back, an asynchronous method takes an extra callback parameter that is invoked
when the result is available. With future, asynchronous methods immediately
return a Future<T>. The asynchronous method computes a value T, and this
value is wrapped inside the future. The result inside the future is available
only when it is ready. Both these approaches have drawbacks. For instance,
composing callbacks can be difficult to manage. Nesting of callbacks can
quickly get out of hand and is infamously referred to as callback hell. Futures
are a bit better than callbacks, but they also don’t do well in terms of the com-
position of the asynchronous operations.

 Additional features—The reactive programming approach provides a few addi-
tional benefits:
– In the reactive model of programming, the code is declarative. You specify

what needs to be done rather than how something is to be done. This leads
to better code composition and makes the code more readable.

– A rich set of operators you can apply to the data stream.
– The processing or the operations starts only when you invoke the subscribe

on the stream.
– The concept of backpressure is that it lets the consumer signal the producer

that the rate of emission is too high.

You’ll explore a few of these benefits in practice in the next sections.

Producer Consumer

E1E2E3

request(3)

Figure 8.6 A consumer pulls events from a producer using the pull
method. This approach gives the consumer flexibility to pull events based
on their processing capacity.

3558.2 Understanding Project Reactor

8.2 Understanding Project Reactor
The Reactor is a fully nonblocking reactive programming model for the JVM. It is
based on Reactive Streams (https://www.reactive-streams.org/). Reactive Streams is a
standard and specification for Stream-oriented libraries. It processes a potentially
unbounded number of elements in a sequence. It also allows us to asynchronously
pass elements between operators with nonblocking backpressure. The Reactive Streams
API is relatively simple and provides four major interfaces, as shown in the following
listing.

public interface Publisher<T> {
 public void subscribe(Subscriber<? super T> s);
}

public interface Subscriber<T> {
 public void onSubscribe(Subscription s);
 public void onNext(T t);
 public void onError(Throwable t);
 public void onComplete();
}

public interface Subscription {
 public void request(long n);
 public void cancel();
}

public interface Processor<T, R> extends Subscriber<T>, Publisher<R> {
}

Let’s provide a brief overview of these interfaces:

 Publisher—A publisher is a provider of a potentially unbounded number of
sequenced elements and publishes them according to the demand from its sub-
scribers. The subscribe() method of the Publisher interface allows subscrib-
ers to subscribe to the producer.

 Subscriber—A subscriber decides when and how many elements it is able and will-
ing to receive. The onNext() method allows the subscriber to process received
data, onError() to process the error, onComplete() to complete tasks, and
onSubscribe() to subscribe with parameters.

 Subscription—A subscription represents the relationship between a subscriber and
the producer. The subscriber is in control over when elements are requested
and when more elements are no longer required. The request() method is
used to request the data, and the cancel() method is used to cancel subscrip-
tions.

 Processor—A processor represents a processing stage and is bound by both pub-
lisher and subscriber specifications.

Listing 8.1 Reactive Streams API

https://www.reactive-streams.org/

356 CHAPTER 8 Reactive Spring Boot application development

Figure 8.7 shows the communication between the Subscriber, Publisher, and
Subscription interfaces.

Let’s discuss how these APIs communicate with each other:

1 A subscriber uses the subscribe() method of the Publisher interface to add a
subscription to a publisher.

2 A publisher uses the onSubscribe() method of Subscribe interface to send the
Subscription to the subscriber.

3 A subscriber uses the request() or cancel() method of the Subscription
interface to request or cancel data from the publisher.

4 The publisher uses the onNext(), onComplete(), and onError() methods of
the Subscriber interface to send data or an error to a subscriber through the
subscription.

The main component of the Reactor library is the reactor core module, which is built
on top of Reactive Streams specifications and targets Java 8. Reactor provides compos-
able reactive types, such as Flux and Mono, that implement the Publisher interface.

 A Flux is a standard publisher that represents an asynchronous sequence of 0 to N
emitted items, optionally terminated by an error or a completion signal. A Mono is a
specialized publisher that emits at most one item through the onNext signal, which is
then terminated by an onComplete (successful Mono) or only emits a single onError
signal (failed Mono). Figure 8.8 shows the diagrammatic representation of how Flux
produces items.

 Figure 8.9 shows the diagrammatic representation of how Mono transforms items.

Subscriber Publisher

Subscription

1. Subscribe

3. request(n)/cancel

2. onSubscribe

Data

4. onNext(data)

5. onComplete/onError

Reactive streams API

Figure 8.7 Communication between publisher, subscriber, and subscription interfaces in Reactive
Streams API

3578.2 Understanding Project Reactor

Note
If you would like to try out the code snippets shown in listing 8.2, create a Spring Boot
project with the following Maven dependency and paste the contents of listing 8.2
inside the application’s main method.

Operator (..)

Flux
completed

Items emitted by the flux

Resultant flux after transformation

Flux terminated abnormally
with an error represented by X

Indicates a transformation is
applied on the flux

Nature of the transformation

Time

Time

Figure 8.8 The items emitted
by the Flux undergo a user-
defined transformation. Once the
transformation is applied, the
items are converted to another
Flux. Once the Flux terminates
(i.e., it stops producing items), it
is represented by a vertical line.
An error processing an item is
represented with the X symbol.

This Mono is the result of transformation

Mono terminated abnormally
with an error represented by X

Nature of the transformation

Mono
completed

Optional item emitted by Mono

Figure 8.9 A Mono can emit 0..1 element.
In case the Mono emits an item, a user-
defined transformation can be applied to it,
and a new Mono is created. The end of the
Mono is represented by a vertical line. Any
error processing the Mono is represented by
an X symbol.

358 CHAPTER 8 Reactive Spring Boot application development

Now that we’ve discussed what Flux and Mono are, let’s explore several ways to cre-
ate them.

Flux<Integer> intFlux = Flux.just(1,2,3);
Flux<Integer> intFluxRange = Flux.range(1,10);
Flux<String> stringFlux = Flux.fromIterable(List.of("foo", "bar"));
Flux<String> anotherStringFlux = Flux.fromArray(new String[] {"foo", "bar"});

Mono<Integer> emptyMono = Mono.empty();
Mono<Integer> intMono = Mono.just(1);

intFlux.map(i -> i * 2).subscribe(System.out::println);

We’ve also shown a very simple way you can use Flux. We’ll explore ways to create a Flux
and Mono and a way you can use Flux in greater detail in subsequent sections.

8.3 Introducing Spring WebFlux
Spring Framework 5.0 introduced a new framework that supports reactive Web appli-
cation development in Spring. This is done through the Spring WebFlux (http://mng
.bz/mOaP). It is a fully nonblocking library and based on the project reactor. It tar-
gets Web servers, such as Netty, Undertow, and Servlet 3.1+ containers.

 Spring WebFlux provides two programming models: annotated controllers and
functional endpoints. The annotated controller model is consistent with the Spring MVC
framework, and you can use the same set of annotations available in Spring MVC.

 The functional endpoints model provides a lightweight, lambda-based functional
programming model. This model provides a small set of libraries that an application
can use to route and handle HTTP requests.

 Now, let’s discuss how to use the above mentioned reactive programming model to
design a RESTful API. We’ll use the previously used Course Tracker example to design
the APIs. In the next technique, let’s demonstrate how to develop a reactive RESTful
API with an annotated controller approach.

(continued)
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-webflux</artifactId>
</dependency>

We’ll discuss WebFlux in greater detail in the next section.

Listing 8.2 Creating Flux and Mono

Creating
Flux

Creating Mono

Using Flux. The intFlux consists of number 1,2,3.
We map each number to a new number by multiplying

by 2, and then we print each number in the console.

http://mng.bz/mOaP
http://mng.bz/mOaP
http://mng.bz/mOaP

3598.3 Introducing Spring WebFlux

8.3.1 Technique: Developing a reactive RESTful API with annotated
controllers

In this technique, we’ll discuss how to develop a reactive RESTful API with annotated
controllers.

PROBLEM

The Course Tracker REST API developed previously is a blocking API and uses
Spring MVC. You need to use reactive stack to build a nonblocking, scalable API
with Spring WebFlux.

SOLUTION

To develop a reactive nonblocking RESTful API, in this technique, we’ll use Spring
WebFlux annotated controller model. As we’ve discussed previously, this approach
uses the same Spring MVC annotations to build the API. Thus, you can use the famil-
iar @GetMapping, @PostMapping, and other annotations to design the API.

In this technique, we’ll use previously used Course Tracker application. However, as
we are using MongoDB database, there are a few changes in the application. Thus,
we’ll create a new Spring Boot project with the following dependencies, as shown in
the following listing.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http:/ /maven.apache.org/POM/4.0.0"
 xmlns:xsi="http:/ /www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http:/ /maven.apache.org/POM/4.0.0

➥ https:/ /maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>

Using MongoDB database
In this chapter, we’ll use a reactive MongoDB database. You need not install and con-
figure MongoDB to continue with this technique, as we’ll use an embedded MongoDB
database. We only require the Spring Data Reactive MongoDB and Embedded Mon-
goDB dependencies for MongoDB support. Note that you can also continue to use
the H2 database along with the Spring Data R2DBC dependency if you don’t want to
use MongoDB. You need to make necessary changes in the POJO class and the
repository interface if you want to stick to the H2 database.

Source code
The final version of the Spring Boot project is available at http://mng.bz/5Qlz.

Listing 8.3 The pom.xml file

http://mng.bz/5Qlz

360 CHAPTER 8 Reactive Spring Boot application development

 <version>2.6.3</version>
 <relativePath /> <!-- lookup parent from repository -->
 </parent>
 <groupId>com.manning.sbip.ch08</groupId>
 <artifactId>course-tracker-api-annotated-controller</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <name>course-tracker-api-annotated-controller</name>
 <description>Course Tracker REST API</description>
 <properties>
 <java.version>17</java.version>
 </properties>
 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-mongodb-reactive</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-webflux</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-devtools</artifactId>
 <scope>runtime</scope>
 <optional>true</optional>
 </dependency>
 <dependency>
 <groupId>org.projectlombok</groupId>
 <artifactId>lombok</artifactId>
 <optional>true</optional>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>de.flapdoodle.embed</groupId>
 <artifactId>de.flapdoodle.embed.mongo</artifactId>
 </dependency>
 <dependency>
 <groupId>io.projectreactor</groupId>
 <artifactId>reactor-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>

3618.3 Introducing Spring WebFlux

 </plugins>
 </build>
</project>

In listing 8.3, you included spring-boot-starter-webflux, spring-boot-starter-data
-mongodb-reactive, and de.flapdoodle.embed.mongo, among other dependencies.

 The spring-boot-starter-webflux dependency provides necessary support for
Spring WebFlux framework. The mongodb-reactive dependency provides reactive
Spring Data support for MongoDB database. Lastly, the de.flapdoodle.embed.mongo
dependency allows us to use the embedded instance of a MongoDB database in the
application. This ensures you don’t need to install and configure MongoDB in your
machine. Lastly, the reactor-test dependency provides necessary support (classes
and methods) to test reactive applications. Next, we’ll define the CourseRepository
interface shown in the following listing.

package com.manning.sbip.ch08.repository;

import org.springframework.data.mongodb.repository.ReactiveMongoRepository;
import org.springframework.stereotype.Repository;

import com.manning.sbip.ch08.model.Course;

import reactor.core.publisher.Flux;

@Repository
public interface CourseRepository extends ReactiveMongoRepository<Course,

➥ String> {

 Flux<Course> findAllByCategory(String category);
}

Notice in listing 8.4, we used the ReactiveMongoRepository interface. This is the
MongoDB-specific Spring Data repository with reactive support. We’ve also defined a
custom method findAllByCategory(String category) that returns a Flux of courses
that matches the supplied category. Note that the interface in listing 8.3 is quite simi-
lar to the previous repository interfaces, except the method return types are of type
Flux. If you explore the ReactiveMongoRepository interface or its parent interfaces,
you’ll find that other method return types are either Flux or Mono, and the input to
the repository methods in some cases is an instance of a Publisher. Let’s now define
the Course domain model shown in the following listing.

package com.manning.sbip.ch08.model;

import org.springframework.data.mongodb.core.mapping.Document;
// Other Imports

Listing 8.4 The CourseRepository interface

Listing 8.5 The Course domain model

362 CHAPTER 8 Reactive Spring Boot application development

@Data
@Builder
@Document
@NoArgsConstructor
@AllArgsConstructor
public class Course {

 @Id
 private String id;
 private String name;
 private String category;
 private int rating;
 private String description;
}

This is the same POJO class we used previously, except this time we are using the
@Document annotation in place of the @Entity annotation, as we are using MongoDB
database instead of the H2 database. MongoDB stores data records in a document.
Thus, a course detail in MongoDB is a document. Let’s now define the Course Con-
troller class, as shown in the following listing.

package com.manning.sbip.ch08.controller;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.DeleteMapping;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.PutMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

import com.manning.sbip.ch08.model.Course;
import com.manning.sbip.ch08.repository.CourseRepository;

import lombok.extern.slf4j.Slf4j;
import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;

@Slf4j
@RestController
@RequestMapping("/courses/")
public class CourseController {

 private CourseRepository courseRepository;

 @Autowired
 public CourseController(CourseRepository courseRepository) {
 this.courseRepository = courseRepository;
 }

Listing 8.6 The CourseController class

3638.3 Introducing Spring WebFlux

 @GetMapping
 public Flux<Course> getAllCourses() {
 return courseRepository.findAll();
 }

 @GetMapping("{id}")
 public Mono<ResponseEntity<Course>> getCourseById(@PathVariable("id")

➥ String courseId) {
 return courseRepository.findById(courseId)
 .map(course -> ResponseEntity.ok(course))
 .defaultIfEmpty(ResponseEntity.notFound().build());
 }

 @GetMapping("category/{name}")
 public Flux<Course> getCourseByCategory(@PathVariable("name") String

➥ category) {
 return courseRepository.findAllByCategory(category)

 .doOnError(e -> log.error("Failed to create course",

➥ e.getMessage()));
 }

 @PostMapping
 public Mono<Course> createCourse(@RequestBody Course course) {
 return courseRepository.save(course)
 .doOnSuccess(updatedCourse -> log.info("Successfully

➥ created course", updatedCourse))
 .doOnError(e -> log.error("Failed to create course",

➥ e.getMessage()));
 }

 @PutMapping("{id}")
 public Mono<ResponseEntity<Course>> updateCourse(@PathVariable("id")

➥ String courseId, @RequestBody Course course) {

This endpoint returns a Flux of
courses. Recall that Flux can emit
0..N elements. Also, notice the use of
@GetMapping annotation to define
the endpoint route, which is similar
to what you’ve used in Spring MVC.

This endpoint returns a Mono<ResponseEntity
<Course>>. As we are getting a course by ID,
we may or may not find a course with the supplied
course ID. Thus, we are returning a Mono. Recall
that a Mono can emit 0..1 element. We are using
ResponseEntity to wrap the response with HTTP
status 200 OK for a successful response or HTTP
status 404 Not Found if the course is not found. Note the use of map and

defaultIfEmpty operators. If the
findById(..) returns a result, then

we map the result to a success
response. The defaultIfEmpty

operator is invoked if the
findById returns no course.

Finds all courses for the
supplied category and
returns a Flux of courses

For any error, the doOnError is
invoked, and it logs the error
message in the console log.

Creates a new course in the application. If the course is
successfully created, the doOnSuccess is invoked, the

success message is logged, and a Mono<Course>
is returned. For any error, the doOnError is
triggered, and the error message is logged.

Updates an existing
course; if it exists and
returns a 200 OK. If not,
it returns a 404 response.
The response is wrapped
in a Mono instance.

364 CHAPTER 8 Reactive Spring Boot application development

 return

➥ this.courseRepository.findById(courseId).flatMap(existingCourse -> {
 existingCourse.setName(course.getName());
 existingCourse.setRating(course.getRating());
 existingCourse.setCategory(course.getCategory());
 existingCourse.setDescription(course.getDescription());
 return this.courseRepository.save(existingCourse);
 }).map(updatedCourse ->

➥ ResponseEntity.ok(updatedCourse)).defaultIfEmpty(ResponseEntity.notFound

➥ ().build())
 .doOnError(e -> log.error("Failed to update course",

➥ e.getMessage()));

 }

 @DeleteMapping("{id}")
 public Mono<ResponseEntity<Course>>

➥ deleteCourseById(@PathVariable("id") String courseId) {
 return this.courseRepository.findById(courseId).flatMap(
 course ->

➥ this.courseRepository.deleteById(course.getId()).then(Mono.just(ResponseE

➥ ntity.ok(course))))
 .defaultIfEmpty(ResponseEntity.notFound().build());
 }

 @DeleteMapping
 public Mono<Void> deleteCourses() {
 return courseRepository.deleteAll();
 }

}

Listing 8.6 contains the endpoints to perform the CRUD operations in the Course
Tracker application. The endpoints are the same as we defined when we created a
REST API with Spring MVC. Notice the declarative style of coding in the endpoints
and how various operators are composed (e.g., how the map is used or the doOnSuccess
and doOnError are composed). Lastly, let’s define a new Spring @Configuration
file and a CommandLineRunner bean definition to create a few courses, as shown in the
following listing.

package com.manning.sbip.ch08.config;

import org.springframework.boot.CommandLineRunner;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

Listing 8.7 CommandLineRunner bean definition to create a few courses

Deletes a course with the supplied course ID. If a course with the supplied ID is
found, then it is deleted, and an HTTP 200 OK response is created. If a course is
not found, then an HTTP 404 Not Found response is created. This response is
then returned as Mono<ResponseEntity<Course>>.

Deletes all courses from the
application and returns a
Mono<Void>

3658.3 Introducing Spring WebFlux

import com.manning.sbip.ch08.model.Course;
import com.manning.sbip.ch08.repository.CourseRepository;

import reactor.core.publisher.Flux;

@Configuration
public class CourseConfig {

 @Bean
 public CommandLineRunner init(CourseRepository courseRepository) {
 return args -> {

 Course course1 = Course.builder().name("Mastering Spring

➥ Boot").category("Spring").rating(4)
 .description("Mastering Spring Boot").build();
 Course course2 = Course.builder().name("Mastering

➥ Python").category("Python").rating(5)
 .description("Mastering Python").build();
 Course course3 = Course.builder().name("Mastering

➥ Go").category("Go").rating(3).description("Mastering Go")
 .build();

 Flux
 .just(course1, course2, course3)
 .flatMap(courseRepository::save)
 .thenMany(courseRepository.findAll())
 .subscribe(System.out::println);
 };
 }
}

In listing 8.7, we created three sample courses. We then used the static method
just(..) from the Flux class to create a flux with the sample courses. Next, we used
the flatMap(..) operator to save the courses and then the thenMany(..) to find all
the courses. Lastly, we subscribed to Flux to start the processing and print each course
in the console. Note that reactive programming is lazy, and nothing happens until you
invoke the subscribe() method.

 Next, you need to specify the spring.mongodb.embedded.version=3.6.2 property
in the application.properties file. Let’s start the application and test the endpoints.
We’ve already created a few courses in listing 8.7; we’ll use the /courses/ endpoint to
get those courses. The following listing shows the HTTPie command (https://httpie.io/)
to get all the courses.

C:\Users\musib>http :8080/courses/
HTTP/1.1 200 OK
Content-Type: application/json
transfer-encoding: chunked

[
 {
 "category": "Spring",

Listing 8.8 Getting all courses

We are invoking Flux API
to declaratively save and
then print the output of
three courses.

https://httpie.io/

366 CHAPTER 8 Reactive Spring Boot application development

 "description": "Mastering Spring Boot",
 "id": "60fa36d47c237777890dca33",
 "name": "Mastering Spring Boot",
 "rating": 4
 },
 {
 "category": "Python",
 "description": "Mastering Python",
 "id": "60fa36d47c237777890dca34",
 "name": "Mastering Python",
 "rating": 5
 },
 {
 "category": "Go",
 "description": "Mastering Go",
 "id": "60fa36d47c237777890dca35",
 "name": "Mastering Go",
 "rating": 3
 }
]

Similarly, let’s test the delete endpoint by deleting the course with course ID
60fa36d47c237777890dca35. The following listing shows the HTTPie command to
delete a course with a course ID.

C:\Users\musib>http DELETE :8080/courses/60fa36d47c237777890dca35
HTTP/1.1 200 OK
Content-Length: 111
Content-Type: application/json

{
 "category": "Go",
 "description": "Mastering Go",
 "id": "60fa36d47c237777890dca35",
 "name": "Mastering Go",
 "rating": 3
}

Similarly, you can test other endpoints and find that those are also working as expected.

DISCUSSION

With this technique, you’ve seen how to create a REST API with Spring WebFlux. If
you recall, Spring MVC uses a special servlet called DispatcherServlet as a front con-
troller servlet that handles the request and delegates other specialized components to
process the request and generate a response.

 In Spring WebFlux, the DispatcherHandler is the central dispatcher for HTTP
request handlers. It dispatches the requests to registered mappers and handlers to
process the request. The HandlerMapping instances are used to map the request to the
handler object. The HandlerAdapter is used to handle the request with the supported

Listing 8.9 Delete a course with a course

3678.3 Introducing Spring WebFlux

handler object, and it returns a HandlerResult. Lastly, a HandlerResultHandler is
used to handle the HandlerResult.

 In the CourseController class, you used the same annotations as those available
in Spring MVC—the @GetMapping to get the course details, the @PostMapping to
create a new course, and so on. Similarly, you have also used the @PathVariable and
@RequestBody annotations in Spring MVC.

 If you explore the CourseRepository interface or any of its parent interfaces,
you’ll notice that most method names are consistent with what you have seen in the
nonreactive Spring Data interfaces. However, the method arguments and the return
types of these methods are of reactive types. For instance, the findAll(..) method
returns a Flux instead of an Iterable. In the next technique, we’ll explore how to
define functional endpoints with Spring WebFlux.

8.3.2 Technique: Developing a reactive RESTful API with functional
endpoints

In this technique, we’ll discuss how to develop a reactive RESTful API with func-
tional endpoints.

PROBLEM

Another technique for transforming your blocking REST API in a reactive fashion is
the adoption of functional endpoints. You need to build a reactive REST API based on
functional endpoints.

SOLUTION

In the previous technique, we explored building a reactive REST API with Spring
WebFlux using the annotated controller approach. Spring WebFlux provides a lambda-
based, lightweight, and functional programming model. This is a different model than
what we’ve used previously with the Spring MVC and WebFlux annotated controller-
based approach. The functional model provides you a set of utilities (Java methods),
so you can define the routes to handle requests.

 To explore the use of the functional endpoints further, let’s build a REST API with
functional endpoints. With this technique, we’ll continue with our Course Tracker
application to build a REST API with the functional endpoint.

For the Spring Boot project in this technique, you can continue with the Spring Boot
project used in the previous technique. You can also create a new project with the
same set of dependencies as those specified in listing 8.3 and continue with the tech-
nique. Create the CourseRepository interface and Course domain class, as shown in
listings 8.4 and 8.5, respectively.

Source code
The final version of the Spring Boot project is available at http://mng.bz/6X7y.

http://mng.bz/6X7y

368 CHAPTER 8 Reactive Spring Boot application development

 We’ll begin by defining the routes. The routes are the URLs to perform the CRUD
operations. The following listing shows the RouterContext class.

package com.manning.sbip.ch08.configuration;

import static org.springframework.http.MediaType.APPLICATION_JSON;
import static

➥ org.springframework.web.reactive.function.server.RequestPredicates.DELE TE;
import static

➥ org.springframework.web.reactive.function.server.RequestPredicates.GET;
import static

➥ org.springframework.web.reactive.function.server.RequestPredicates.POST;
import static

➥ org.springframework.web.reactive.function.server.RequestPredicates.PUT;
import static

➥ org.springframework.web.reactive.function.server.RequestPredicates.acce pt;
import static

➥ org.springframework.web.reactive.function.server.RouterFunctions.route;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.web.reactive.function.server.RouterFunction;
import org.springframework.web.reactive.function.server.ServerResponse;

import com.manning.sbip.ch08.component.CourseHandler;

@Configuration
public class RouterContext {

 @Bean
 RouterFunction<ServerResponse> routes(CourseHandler courseHandler) {
 return route(GET("/courses").and(accept(APPLICATION_JSON)),

➥ courseHandler::findAllCourses)
 .andRoute(GET("/courses/{id}").and(accept(APPLICATION_JSON)),

➥ courseHandler::findCourseById)
 .andRoute(POST("/courses").and(accept(APPLICATION_JSON)),

➥ courseHandler::createCourse)
 .andRoute(PUT("/courses").and(accept(APPLICATION_JSON)),

➥ courseHandler::updateCourse)
 .andRoute(DELETE("/courses/{id}").and(accept(APPLICATION_JSON)),

➥ courseHandler::deleteCourse)
 .andRoute(DELETE("/courses").and(accept(APPLICATION_JSON)),

➥ courseHandler::deleteAllCourses);
 }

}

Listing 8.10 is a Spring @Configuration class with one RouterFunction bean defini-
tion. The RouterFunction defines the routes to perform the CRUD operation in the
Course Tracker reactive REST API. This bean definition requires the CourseHandler
instance, so once there is a request to any of the routes, it can be forwarded to the

Listing 8.10 The RouterContext class to define the routes

3698.3 Introducing Spring WebFlux

handler to handle the request. We have defined two routes with HTTP GET requests—
one for each of the POST, PUT requests and two for DELETE requests. For each of the
routes, we’ve delegated the request processing to the appropriate methods of the
CourseHandler class.

 Next, let’s define the CourseHandler class, as shown in the following listing. This
class contains the logic to perform the CRUD operations.

package com.manning.sbip.ch08.component;

import static org.springframework.http.MediaType.APPLICATION_JSON;
import static

➥ org.springframework.web.reactive.function.BodyInserters.fromValue;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.http.HttpStatus;
import org.springframework.stereotype.Component;
import org.springframework.web.reactive.function.server.ServerRequest;
import org.springframework.web.reactive.function.server.ServerResponse;

import com.manning.sbip.ch08.model.Course;
import com.manning.sbip.ch08.repository.CourseRepository;

import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;

@Component
public class CourseHandler {

 private CourseRepository courseRepository;

 @Autowired
 public CourseHandler(CourseRepository courseRepository) {
 this.courseRepository = courseRepository;
 }
 public Mono<ServerResponse> findAllCourses(ServerRequest serverRequest) {
 Flux<Course> courses = this.courseRepository.findAll();
 return

➥ ServerResponse.ok().contentType(APPLICATION_JSON).body(courses,
Course.class);

 }

 public Mono<ServerResponse> findCourseById(ServerRequest

➥ serverRequest){
 String courseId = serverRequest.pathVariable("id");
 Mono<Course> courseMono = this.courseRepository.findById(courseId);

Listing 8.11 The CourseHandler class

A handler that finds all courses. The
ServerRequest represents a server-side HTTP

request. We find all courses and prepare a
ServerResponse with the content type as

application/json and list of courses as the
response body. The ServerResponse

represents a server side response.

A handler that finds a course by the supplied course ID. We retrieve
the course from the ServerRequest instance through the pathVariable
method of it, as the course ID was supplied as a path variable. If there
is a course found, we return an HTTP 200 OK ServerResponse or 404
Not Found, otherwise.

370 CHAPTER 8 Reactive Spring Boot application development

 return courseMono.flatMap(course ->

➥ ServerResponse.ok().contentType(APPLICATION_JSON).body(fromValue(course)))
 .switchIfEmpty(notFound());
 }

 public Mono<ServerResponse> createCourse(

➥ ServerRequest serverRequest) {
 Mono<Course> courseMono = serverRequest.bodyToMono(Course.class);

 return courseMono.flatMap(course ->

➥ ServerResponse.status(HttpStatus.CREATED).contentType(APPLICATION_JSON)
 .body(this.courseRepository.save(course), Course.class));
 }

 public Mono<ServerResponse> updateCourse(

➥ ServerRequest serverRequest) {
 String courseId = serverRequest.pathVariable("id");
 Mono<Course> existingCourseMono =

➥ this.courseRepository.findById(courseId);
 Mono<Course> newCourseMono =

➥ serverRequest.bodyToMono(Course.class);
 return newCourseMono
 .zipWith(existingCourseMono,
 (newCourse, existingCourse) ->

➥ Course.builder().id(existingCourse.getId())

➥ .name(newCourse.getName()).category(newCourse.getCategory())

➥ .rating(newCourse.getRating()).description(newCourse.getDescription()).

➥ build())
 .flatMap(course -> ServerResponse
 .ok().contentType(APPLICATION_JSON)
 .body(this.courseRepository.save(course), Course.class))
 .switchIfEmpty(notFound());
 }

 public Mono<ServerResponse> deleteCourse(

➥ ServerRequest serverRequest) {
 String courseId = serverRequest.pathVariable("id");
 return this.courseRepository.findById(courseId)
 .flatMap(existingCourse ->

➥ ServerResponse.ok().build(this.courseRepository.deleteById(courseId)))
 .switchIfEmpty(notFound());
 }

 public Mono<ServerResponse> deleteAllCourses(

➥ ServerRequest serverRequest) {

Creates a new course. We use
the bodyToMono method of

ServerRequest to extract the
HTTP request body and convert
it to a Mono. This Mono is then

used to create the course.

Updates an existing course with the supplied new course
details. We first fetch the course to be updated, and then
extract the existing course and the updated course. We then
prepare to update the course and return a ServerResponse.
For a successful update, an HTTP 200 OK response is
provided or 404 Not Found, otherwise.

Deletes a course with
the supplied course ID

Deletes all
courses

3718.3 Introducing Spring WebFlux

 return

➥ ServerResponse.ok().build(this.courseRepository.deleteAll());
 }

 private Mono<ServerResponse> notFound() {
 return ServerResponse.notFound().build();
 }

}

Next, we’ll create a few courses and save them in the database. You can follow the
same steps as defined in listing 8.7. Additionally, you need to specify the spring
.mongodb.embedded.version=3.6.2 property in the application.properties file.

 Let’s now start the application and test the endpoints. The following listing shows
the HTTPie command to access the /courses/ endpoint with the result.

C:\Users\musib>http :8080/courses/
HTTP/1.1 200 OK
Content-Type: application/json
transfer-encoding: chunked

[
 {
 "category": "Go",
 "description": "Mastering Go",
 "id": "60fa68a55359e82fcc4c3de9",
 "name": "Mastering Go",
 "rating": 3
 },
 {
 "category": "Spring",
 "description": "Mastering Spring Boot",
 "id": "60fa68a55359e82fcc4c3de7",
 "name": "Mastering Spring Boot",
 "rating": 4
 },
 {
 "category": "Python",
 "description": "Mastering Python",
 "id": "60fa68a55359e82fcc4c3de8",
 "name": "Mastering Python",
 "rating": 5
 }
]

If you try accessing the other endpoints, you’ll notice those are also working as expected.

DISCUSSION

With this technique, you’ve seen how to create a REST API with functional endpoints,
which are an alternative approach to defining endpoints. Spring WebFlux included

Listing 8.12 The /courses/ endpoint result

372 CHAPTER 8 Reactive Spring Boot application development

this functional programming model, which allows you to define functions to route
and handle the request. Other than the programming model, both models run on the
same reactive core foundation.

 In the functional model, an HTTP request is handled with a HandlerFunction,
which takes a ServerRequest and returns a Mono<ServerResponse>. The Handler-
Function is equivalent to the body of a @RequestMapping method in the annotation-
based programming model. We defined all our handler functions in the CourseHandler
class. The ServerRequest provides access to the HTTP method, URI, HTTP headers,
and query parameters. The request body is accessed through the various body meth-
ods, and the ServerResponse provides access to the HTTP response.

As shown in figure 8.10, incoming requests are routed to a HandlerFunction through
a RouterFunction , which takes a ServerRequest and returns a HandlerFunction. If
the router function matches, a handler function is returned; otherwise, an empty Mono
is returned. To define router functions, you can use the methods from the Router-
Functions utility class to create the routes. Spring WebFlux recommends using the
route() builder method to create a router function.

 In listing 8.11, we defined several routes. Spring WebFlux evaluates these routes in
order. If the first route does not match, the second route is evaluated, and so on.
Thus, you should define the most specific routes before the generic ones.

8.4 Testing reactive applications
In the previous section, you learned two different approaches to designing REST APIs
with Spring WebFlux. In this section, you’ll learn how to test the APIs. Previously, to
test these API endpoints, we used the HTTPie command-line utility. In this section,
you’ll learn to use the WebClient to build an API client to access a REST API.

Client

Router function Handler functionCourse rackerT

application

Figure 8.10 Incoming request processing in a Spring WebFlux functional endpoint. A
client requests access to the server application with an HTTP endpoint.

3738.4 Testing reactive applications

8.4.1 Technique: Using WebClient to build an API client

In this technique, we’ll demonstrate the use of WebClient.

PROBLEM

You have an external REST API, and you need to define an API client to test this API.

SOLUTION

It is a common occurrence to access external REST API. Spring provides a client
called WebClient to perform HTTP requests. Using this technique, you’ll learn to use
WebClient to build an API client. Previously, we designed a REST API for the Course
Tracker application. We’ll build an API client with WebClient that will access the
Course Tracker REST API.

To begin with, let’s create a Spring Boot project and include the dependencies, as
shown in the following listing.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http:/ /maven.apache.org/POM/4.0.0"
 xmlns:xsi="http:/ /www.w3.org/2001/XMLSchema-instance"

➥ xsi:schemaLocation="http:/ /maven.apache.org/POM/4.0.0

➥ https:/ /maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.6.3</version>
 <relativePath /> <!-- lookup parent from repository -->
 </parent>
 <groupId>com.manning.sbip.ch08</groupId>
 <artifactId>course-tracker-client-api</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <name>course-tracker-client-api</name>
 <description>Course Tracker REST API</description>
 <properties>
 <java.version>17</java.version>
 </properties>
 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-webflux</artifactId>
 </dependency>
 <dependency>
 <groupId>org.projectlombok</groupId>
 <artifactId>lombok</artifactId>

Source code
The final version of the Spring Boot project is available at http://mng.bz/o2eM.

Listing 8.13 The Course Tracker client API pom.xml

http://mng.bz/o2eM

374 CHAPTER 8 Reactive Spring Boot application development

 <optional>true</optional>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>

</project>

You’ll also need to define the Course domain model, as we’ll be dealing with the courses
in the client API. Define the Course Java class as specified in listing 8.5. Let’s start
building the WebClientApi class that contains the client methods to invoke the vari-
ous REST endpoints. The following listing shows this class.

package com.manning.sbip.ch08.api;

import org.springframework.http.ResponseEntity;
import org.springframework.stereotype.Component;
import

➥ org.springframework.web.reactive.function.client.ExchangeFilterFunction;
import org.springframework.web.reactive.function.client.ExchangeStrategies;
import org.springframework.web.reactive.function.client.WebClient;

import com.manning.sbip.ch08.model.Course;

import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;

@Component
public class WebClientApi {

 private static final String BASE_URL =

➥ "http:/ /localhost:8080/courses/";

 private WebClient webClient;

 public WebClientApi() {
 this.webClient = WebClient.builder().baseUrl(BASE_URL).build();
 }

 public Mono<ResponseEntity<Course>> postNewCourse(Course course) {
 return this.webClient
 .post()
 .body(Mono.just(course), Course.class)

Listing 8.14 The Course Tracker client API

Creating the WebClient instance.
We are setting the BASE_URL,
while building the WebClient,
so we can use the relative URLs
while invoking an endpoint.

Creating a new course. We use the
WebClient’s post() method to

invoke the HTTP POST endpoint of
the Course Tracker API.

3758.4 Testing reactive applications

 .retrieve()
 .toEntity(Course.class)
 .doOnSuccess(result -> System.out.println("POST "+ result));
 }

 public Mono<Course> updateCourse(String id, String name, String

➥ category, int rating, String description) {
 return this.webClient
 .put()
 .uri("{id}", id)
 .body(Mono.just(Course
 .builder()
 .id(id)
 .name(name)
 .category(category)
 .rating(rating)
 .description(description)
 .build()), Course.class)
 .retrieve()
 .bodyToMono(Course.class)
 .doOnSuccess(result -> System.out.println("Update Course:

➥ "+result));
 }

 public Mono<Course> getCourseById(String id) {
 return this.webClient
 .get()
 .uri("{id}", id)
 .retrieve()
 .bodyToMono(Course.class)
 .doOnSuccess(c -> System.out.println(c))
 .doOnError((e) -> System.err.println(e.getMessage()));
 }

 public Flux<Course> getAllCourses() {
 return this.webClient
 .get()
 .retrieve()
 .bodyToFlux(Course.class)
 .doOnNext(c -> System.out.println(c))
 .doOnError((e) -> System.err.println(e.getMessage()));
 }
 public Mono<Void> deleteCourse(String id) {
 return this.webClient
 .delete()
 .uri("{id}", id)
 .retrieve()
 .bodyToMono(Void.class)
 .doOnSuccess(result -> System.out.println("DELETE

➥ "+result))
 .doOnError((e) -> System.err.println(e.getMessage()));
 }
}

Updating a course. We’ve
used the WebClient’s put()
method to invoke the HTTP
PUT endpoint of the course
tracker API. We’ve also used
the uri() method to set the
relative URL.

Get a course by the
supplied course ID.
Notice that we’ve used
the get() method to
invoke the HTTP GET
endpoint with relative
URI {id}.

Get all courses. We’ve used
the get() method to invoke
the HTTP GET method.

Delete the course for the
supplied course ID. We’ve used
the delete() method to invoke
the HTTP DELETE endpoint
with relative URI {id}.

376 CHAPTER 8 Reactive Spring Boot application development

Listing 8.14 is a Spring component that defines the API client methods to invoke the
Course Tracker REST API. Notice the HTTP methods of the WebClient class. For
instance, you use the get() method to perform HTTP GET request post() for an
HTTP POST request.

 Let’s now use some of these client methods to invoke the Course Tracker REST
API endpoints. The following listing shows a CommandLineRunner bean definition that
creates a new course and then retrieves all courses.

package com.manning.sbip.ch08.client;

import org.springframework.boot.CommandLineRunner;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

import com.manning.sbip.ch08.api.WebClientApi;
import com.manning.sbip.ch08.model.Course;

@Configuration
public class ApiClient {

 @Bean
 public CommandLineRunner invokeCourseTrackerApi(WebClientApi

➥ webClientApi) {
 return args -> {
 Course course = Course
 .builder()
 .name("Angular Basics")
 .category("JavaScript")
 .rating(3)
 .description("Learn Angular Fundamentals")
 .build();

 webClientApi.postNewCourse(course)
 .thenMany(webClientApi.getAllCourses())
 .subscribe();
 };
 }
}

In listing 8.15, we created a new course instance and used the WebClientApi to post
the course in Course Tracker API. Finally, we are getting all courses from the API.
Notice that the postNewCourse() and getAllCourses() methods are chained together
through the thenMany operator.

 Before we use the client API, we need to ensure the Course Tracker REST API from
the previous section is running and accessible. Let’s now start the client API Spring
Boot project. Once the application started successfully, you’ll notice the following out-
put in the application console, as shown in the following listing.

Listing 8.15 Testing Course Tracker API with API client

3778.4 Testing reactive applications

POST <201,Course(id=60faacfb400a9a1c3adb1bf7, name=Angular Basics,

➥ category=JavaScript, rating=3, description=Learn Angular

➥ Fundamentals),[Content-Type:"application/json", content-length:"135"]>

Course(id=60faaced400a9a1c3adb1bf5, name=Mastering Python, category=Python,

➥ rating=5, description=Mastering Python)
Course(id=60faaced400a9a1c3adb1bf6, name=Mastering Go, category=Go,

➥ rating=3, description=Mastering Go)
Course(id=60faaced400a9a1c3adb1bf4, name=Mastering Spring Boot,

➥ category=Spring, rating=4, description=Mastering Spring Boot)
Course(id=60faacfb400a9a1c3adb1bf7, name=Angular Basics,

➥ category=JavaScript, rating=3, description=Learn Angular Fundamentals)

In listing 8.16, the first block is the output of successful POST request. The next block
shows the list of courses.

DISCUSSION

Spring WebFlux includes the WebClient to perform an HTTP request. As shown in
listing 8.14, WebClient has a functional, fluent API based on Reactor that allows you to
compose asynchronous logic without the need for threads and concurrency. It needs
an HTTP client library to perform the HTTP requests. By default, it has support for
Reactor Netty, Jetty Reactive HttpClient, and Apache HttpComponents.

 The easiest way to create an instance of WebClient is to use the create() static fac-
tory method. If you need to use advanced configuration, such as configuring HTTP
headers, codecs, or cookies or using a specialized HttpClient, you can use the
builder() method. The following listing shows a more complex example of building
a WebClient instance using the builder() method.

private static final String USER_AGENT = "Mozilla/5.0 (Macintosh; Intel Mac

➥ OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko)

➥ Chrome/89.0.4389.114 Safari/537.36";

public WebClientApi() {
 this.webClient = WebClient.builder()
 .baseUrl(BASE_URL)
 .clientConnector(getClientConnector())
 .defaultHeader(HttpHeaders.USER_AGENT, USER_AGENT)

.exchangeStrategies(ExchangeStrategies.builder().codecs(configurer ->

➥ configurer.defaultCodecs().maxInMemorySize(30 * 1024 * 1024)).build())
 .filter(logRequest()).filter(logResponse()).build();
}

Listing 8.16 Client API execution output

Listing 8.17 Building a WebClient using the builder method

Building a WebClient instance. We’ve used a custom HTTP client with additional
configuration. We are also setting a default HTTP header to set the USER_AGENT.
Besides, we are configuring the codecs with a custom maximum memory size. A
codec is a component that takes care of the encoding and decoding of the data.
Lastly, we are using filters to log the HTTP request and response.

378 CHAPTER 8 Reactive Spring Boot application development

public ReactorClientHttpConnector getClientConnector() {
 return new

➥ ReactorClientHttpConnector(HttpClient.create().followRedirect(true).com

➥ press(true).secure()
 .option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 3000));
 }

private static ExchangeFilterFunction logRequest() {
 return ExchangeFilterFunction.ofRequestProcessor(clientRequest -> {

➥ System.out.println("Request: " + clientRequest.method() + " " +

➥ clientRequest.url());
 clientRequest.headers()
 .forEach((name, values) -> values.forEach(value ->

➥ System.out.println(name + " " + value)));
 return Mono.just(clientRequest);
 });
}

private static ExchangeFilterFunction logResponse() {
 return ExchangeFilterFunction.ofResponseProcessor(clientResponse -> {
 System.out.println("Response: " + clientResponse.statusCode());
 clientResponse.headers().asHttpHeaders()
 .forEach((name, values) -> values.forEach(value ->

➥ System.out.println(name + " " + value)));
 return Mono.just(clientResponse);
 });
}

You can refer to section 2 of Spring WebFlux documentation available at http://mng
.bz/mOaP for an in-depth discussion on various supported configurations.

8.5 Introduction to RSocket
In the previous section, we discussed the WebClient and demonstrated its use with Spring
Boot. In this section, we’ll explore the RSocket protocol and its use with Spring Boot.

 RSocket (https://rsocket.io/) is an application protocol for multiplexed, duplex
communication over TCP, WebSocket, and other byte stream transports, such as
Aeron (https://github.com/real-logic/aeron). RSocket allows the following four com-
munication models shown in figure 8.11.

 In RSocket, once the initial handshake between the client and server is done, the
client versus server distinction is lost, as both sides can independently initiate one of the
interactions, as specified in figure 8.11.

Creating a custom HTTP connector. For
requirements, such as timeouts, proxy
configuration, and SSL setup, you may

need to customize the HTTP connector.

Logging the HTTP request.
It prints the HTTP request
method, URL, and all HTTP
headers.

Logging the HTTP
response. It prints the
HTTP response status
code and all HTTP
response headers.

http://mng.bz/mOaP
http://mng.bz/mOaP
http://mng.bz/mOaP
https://rsocket.io/
https://github.com/real-logic/aeron

3798.5 Introduction to RSocket

The RSocket protocol has a few key features and offers several benefits:

 Reactive Streams semantics for streaming requests interactions between request-stream and
channel and support for backpressure signals between the requester and responder—This
allows a requester to slow down a responder at the source. Thus, it reduces reli-
ance on network layer congestion control and network-level buffering.

 Support for request throttling to reduce the number of possible messages—This can be
done after sending a LEASE frame to limit the total number of requests allowed
by other ends for a given time.

 Fragmentation and reassembly of large messages.
 Keepalive through heartbeat messages.

Next, we’ll demonstrate how to use the RSocket protocol in a Spring Boot application.
We’ll implement all four interaction patterns shown in figure 8.11.

8.5.1 Technique: Developing applications using RSocket
and Spring Boot

In this technique we’ll discuss the use of RSocket in a Spring Boot application.

PROBLEM

You learned about RSocket protocol and need to use it in a Spring Boot application.

SOLUTION

Spring Framework provides support for RSocket protocol in the spring-messaging
module. Spring Boot provides the spring-boot-starter-rsocket starter dependency
that includes the relevant dependencies to using RSocket in a Spring Boot application.

Source code
The final version of the Spring Boot project is available at http://mng.bz/nNgK.

Fire & forget Request–response

Request–stream Channel

Figure 8.11 Communication models in RSocket protocol. In the fire-and-forget
pattern, a client sends one message and expects no response from the server.
In the request–response pattern, the client sends one message and receives one
back from the server. In the request–stream pattern, a client sends one message
and expects a stream of messages in response from the server. In the Channel
pattern, the client and server send streams of messages to each other.

http://mng.bz/nNgK

380 CHAPTER 8 Reactive Spring Boot application development

To begin with, let’s create a new Spring Boot project with the dependencies, as shown
in the following listing.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http:/ /maven.apache.org/POM/4.0.0"

➥ xmlns:xsi="http:/ /www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http:/ /maven.apache.org/POM/4.0.0

➥ https:/ /maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.6.3</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>
 <groupId>com.manning.sbip.ch08</groupId>
 <artifactId>spring-boot-rsocket</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <name>spring-boot-rsocket</name>
 <description>Spring Boot RSocket</description>
 <properties>
 <java.version>17</java.version>
 </properties>
 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-rsocket</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-devtools</artifactId>
 <scope>runtime</scope>
 <optional>true</optional>
 </dependency>
 <dependency>
 <groupId>org.projectlombok</groupId>
 <artifactId>lombok</artifactId>
 <optional>true</optional>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>io.projectreactor</groupId>
 <artifactId>reactor-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

Listing 8.18 The pom.xml file

3818.5 Introduction to RSocket

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <configuration>
 <excludes>
 <exclude>
 <groupId>org.projectlombok</groupId>
 <artifactId>lombok</artifactId>
 </exclude>
 </excludes>
 </configuration>
 </plugin>
 </plugins>
 </build>

</project>

The notable dependency in listing 8.18 is the spring-boot-starter-rsocket depen-
dency. This transitively includes the other required dependencies, such as spring-
messaging, rsocket-core, and others. In the application.properties file, let’s include
the properties shown in the following listing.

spring.rsocket.server.port=7000
spring.main.lazy-initialization=true

The first property sets the TCP port for the RSocket server to 7000, and the second
property enables the Spring Boot’s lazy initialization.

 In this Spring Boot application, we’ll continue with the Course domain object. The
updated course model is shown in the following listing.

package com.manning.sbip.ch08.model;

import java.time.Instant;
import java.util.UUID;

import lombok.Data;
import lombok.NoArgsConstructor;

@Data
@NoArgsConstructor
public class Course {

 private UUID courseId = UUID.randomUUID();
 private long created = Instant.now().getEpochSecond();
 private String courseName;

Listing 8.19 Application.properties configuration

Listing 8.20 The Course domain class

382 CHAPTER 8 Reactive Spring Boot application development

 public Course(String courseName) {
 this.courseName = courseName;
 }
}

The Course class has a courseId field, which is a random UUID, a created field that
captures the course creation time, and a courseName field that is supplied by the user.

 Next, let’s define the CourseController class that contains the routes for all four
interaction models, as specified in figure 8.11. The following listing shows the Course-
Controller class.

package com.manning.sbip.ch08.controller;

import java.time.Duration;

import org.springframework.messaging.handler.annotation.MessageMapping;
import org.springframework.stereotype.Controller;

import com.manning.sbip.ch08.model.Course;

import lombok.extern.slf4j.Slf4j;
import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;

@Slf4j
@Controller
public class CourseController {

 @MessageMapping("request-response")
 public Mono<Course> requestResponse(final Course course) {
 log.info("Received request-response course details {} ", course);
 return Mono.just(new Course("Your course name: " +

➥ course.getCourseName()));
 }

 @MessageMapping("fire-and-forget")
 public Mono<Void> fireAndForget(final Course course) {
 log.info("Received fire-and-forget course details {} ", course);
 return Mono.empty();
 }

 @MessageMapping("request-stream")
 public Flux<Course> requestStream(final Course course) {
 log.info("Received request-stream course details {} ", course);
 return Flux
 .interval(Duration.ofSeconds(1))
 .map(index -> new Course("Your course name: " +

➥ course.getCourseName() + ". Response #" + index))

Listing 8.21 The CourseController class

Implements the request-response
interaction pattern. The user is

expected to supply a course, and this
endpoint echoes it back to the caller.

Implements the fire–forget interaction
pattern. The user is expected to supply

a course and expects nothing. Thus,
we are returning an empty Mono.

Implements the request-stream interaction pattern.
The user is expected to supply a course, and this
endpoint returns a stream of course with modified
course name in an interval of one second.

3838.5 Introduction to RSocket

 .log();
 }

 @MessageMapping("stream-stream")
 public Flux<Course> channel(final Flux<Integer> settings) {
 log.info("Received stream-stream (channel) request... ");

 return settings
 .doOnNext(setting -> log.info("Requested interval is {} seconds",

➥ setting))
 .doOnCancel(() -> log.warn("Client cancelled the channel"))
 .switchMap(setting ->

➥ Flux.interval(Duration.ofSeconds(setting)).map(index -> new

➥ Course("Spring. Response #"+index)))
 .log();
 }
}

You can start the application and find that it is running on configured TCP port 7000.
We’ll demonstrate two approaches to test the application. First, we can use RSocket
Client CLI (RSC) to test the routes. It’s a command-line utility that allows you to
access the endpoints. You can go through https://github.com/making/rsc for the
steps to install this in your machine. Once you’ve installed it, access the request-
response route using the command, as shown in the following listing.

C:\Users\musib>rsc --debug --request --data "{\"courseName\":\"Spring\"}" –

➥ -route request-response --stacktrace tcp:/ /localhost:7000
2021-07-29 10:27:54.597 DEBUG 17700 --- [actor-tcp-nio-2]

➥ io.rsocket.FrameLogger : sending ->
Frame => Stream ID: 0 Type: SETUP Flags: 0b0 Length: 75
Data:

2021-07-29 10:27:54.607 DEBUG 17700 --- [actor-tcp-nio-2]

➥ io.rsocket.FrameLogger : sending ->
Frame => Stream ID: 1 Type: REQUEST_RESPONSE Flags: 0b100000000 Length: 53
Metadata:
 +---+
 | 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+---+----------------+
|00000000| fe 00 00 11 10 72 65 71 75 65 73 74 2d 72 65 73 |.....request-res|
|00000010| 70 6f 6e 73 65 |ponse |
+--------+---+----------------+
Data:
 +---+
 | 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+---+----------------+
|00000000| 7b 22 63 6f 75 72 73 65 4e 61 6d 65 22 3a 22 53 |{"courseName":"S|
|00000010| 70 72 69 6e 67 22 7d |pring"} |
+--------+---+----------------+

Listing 8.22 Invoking RSocket endpoint with rsc CLI

Implements the channel interaction pattern. The user is expected
to supply a stream, and this endpoint returns a stream of course

with a modified course name in an interval configured by the user.
The user can specify the interval by invoking the delayElements()

method in the source Flux. Recall that in channel interaction
patterns, both sides can send a stream of data.

https://github.com/making/rsc

384 CHAPTER 8 Reactive Spring Boot application development

2021-07-29 10:27:54.768 DEBUG 17700 --- [actor-tcp-nio-2]

➥ io.rsocket.FrameLogger : receiving ->
Frame => Stream ID: 1 Type: NEXT_COMPLETE Flags: 0b1100000 Length: 118
Data:
 +---+
 | 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+---+----------------+
00000000	7b 22 63 6f 75 72 73 65 49 64 22 3a 22 32 33 39	{"courseId":"239
00000010	66 37 65 64 61 2d 65 31 61 64 2d 34 66 30 36 2d	f7eda-e1ad-4f06-
00000020	62 66 30 64 2d 63 38 31 32 61 66 36 66 65 37 61	bf0d-c812af6fe7a
00000030	63 22 2c 22 63 72 65 61 74 65 64 22 3a 31 36 32	

➥ |c","created":162|
|00000040| 37 35 33 34 36 37 34 2c 22 63 6f 75 72 73 65 4e

➥ |7534674,"courseN|
|00000050| 61 6d 65 22 3a 22 59 6f 75 72 20 63 6f 75 72 73 |ame":"Your cours|
|00000060| 65 20 6e 61 6d 65 3a 20 53 70 72 69 6e 67 22 7d |e name: Spring"}|
+--------+---+----------------+
{"courseId":"239f7eda-e1ad-4f06-bf0d-

➥ c812af6fe7ac","created":1627534674,"courseName":"Your course name:

➥ Spring"}

We have enabled the debug in the command to print the frame details. As you may
notice, the first frame send is SETUP and then REQUEST_RESPONSE with some metadata
and the payload. Lastly, it receives the response from the endpoint. In listing 8.22,
we’ve shown how to test request–response with the RSC client. Similarly, you can test
other patterns also with RSC. Refer to https://rsocket.io/about/protocol for a detailed
understanding of the frame and the protocol in detail.

 Next, we can also write the integration test cases to test the endpoint. The follow-
ing listing shows the test case.

package com.manning.sbip.ch08;

import static org.assertj.core.api.Assertions.assertThat;

import java.time.Duration;

import org.junit.jupiter.api.BeforeAll;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.rsocket.context.LocalRSocketServerPort;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.messaging.rsocket.RSocketRequester;
import org.springframework.messaging.rsocket.RSocketStrategies;

import com.manning.sbip.ch08.model.Course;

import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;
import reactor.test.StepVerifier;

Listing 8.23 Integration test to verify the request–response route

https://rsocket.io/about/

3858.5 Introduction to RSocket

@SpringBootTest
class SpringBootRsocketApplicationTests {

 private static RSocketRequester requester;

 @BeforeAll
 public static void setUpOnce(@Autowired RSocketRequester.Builder

➥ builder, @LocalRSocketServerPort Integer port,

➥ @Autowired RSocketStrategies rSocketStrategies) {

 requester = builder.tcp("localhost", port);
 }

 @Test
 public void testRequestResponse() {

 Mono<Course> courseMono = requester
 .route("request-response")
 .data(new Course("Spring"))
 .retrieveMono(Course.class);

 StepVerifier.create(courseMono)
 .consumeNextWith(course ->

➥ assertThat(course.getCourseName()).isEqualTo("Your course name:

➥ Spring"))
 .verifyComplete();
 }
}

In the testRequestResponse() we send a request to the route and validate the
expected response. In the requester instance, we set the route path and the data and
then retrieve the response. Since this is request-response pattern, we expect a single
response, and it is captured in a Mono. We then use the StepVerifier to consume the
response and assert the expected value from the response. Once the verification is
done, we complete it with verifyComplete().

 Let’s now define the remaining test cases in the SpringBootRsocketApplication-
Tests class. The following listing shows the FireAndForget endpoint.

@Test
public void testFireAndForget() {
 Mono<Void> courseMono = requester
 .route("fire-and-forget")
 .data(new Course("Spring"))
 .retrieveMono(Void.class);

 StepVerifier
 .create(courseMono)
 .verifyComplete();
}

Listing 8.24 Testing the FireAndForget endpoint

Set up the RsocketRequester
instance. The RSocketRequester.Builder

interface lets us create a requester
by connecting to the server.

Send a
request.

Verify the
response.

Send a
request.

Verify the
response.

386 CHAPTER 8 Reactive Spring Boot application development

The following listing shows the test case to test the RequestStream endpoint.

@Test
public void testRequestStream() {

 Flux<Course> courseFlux = requester
 .route("request-stream")
 .data(new Course("Spring"))
 .retrieveFlux(Course.class);

.
 StepVerifier.create(courseFlux)
 .consumeNextWith(course ->

➥ assertThat(course.getCourseName()).isEqualTo("Your course name: Spring.

➥ Response #0"))
 .expectNextCount(0)
 .consumeNextWith(course ->

➥ assertThat(course.getCourseName()).isEqualTo("Your course name: Spring.

➥ Response #1"))
 .thenCancel()
 .verify();
}

The following listing shows the test case to test the channel endpoint.

@Test
public void testChannel() {
 Mono<Integer> setting1 =

➥ Mono.just(Integer.valueOf(2)).delayElement(Duration.ofSeconds(0));
 Mono<Integer> setting2 =

➥ Mono.just(Integer.valueOf(1)).delayElement(Duration.ofSeconds(3));
 Flux<Integer> settings = Flux.concat(setting1, setting2);
 Flux<Course> stream = requester.route("stream-

➥ stream").data(settings).retrieveFlux(Course.class);
 StepVerifier
 .create(stream)
 .consumeNextWith(course ->

➥ assertThat(course.getCourseName()).isEqualTo("Spring. Response #0"))
 .consumeNextWith(course ->

➥ assertThat(course.getCourseName()).isEqualTo("Spring. Response #0"))
 .thenCancel()
 .verify();
}

Listing 8.25 Testing the RequestStream endpoint

Listing 8.26 Testing the channel endpoint

Send a request,
and expect a
stream of courses
as Flux<Course>.

Use StepVerifier to verify the response. We
retrieve two courses from the stream, and
then cancel them to indicate we are not
interested in further data from the stream.

Create first setting after 0
seconds. The server starts

sending after 2 seconds.

Create next setting after 3
seconds. The server starts
sending in after 1 second.

Bundle
settings
into a Flux.

Send a stream of
request messages.

3878.5 Introduction to RSocket

DISCUSSION

With this technique, we’ve demonstrated the use of RSocket protocol in a Spring Boot
application. We’ve seen the use of the spring-boot-starter-rsocket dependency
that brings the necessary dependencies in the application.

 The Spring Boot also provides several autoconfiguration classes that configure the
RSocket in a Spring Boot application. Figure 8.12 shows these classes.

The RsocketMessagingAutoConfiguration autoconfigures the RsocketMessage-
Handler. This class handles RSocket requests for the methods defined with @Connect-
Mapping and @MessageMapping annotations.

 The RsocketRequesterAutoConfiguration autoconfigures the RsocketRequester.
This class provides a fluent API that can be used to accept and return input and out-
put. It also provides methods to prepare routing and other metadata. We’ve used this
class in our test case in listing 8.23.

 The RsocketServerAutoConfiguration autoconfigures the RSocket server. We’ve
configured the spring.rsocket.server.port property to start the standalone RSocket
server at port 7000.

 The RsocketStrategiesAutoConfiguration autoconfigures the RsocketStrategies.
This class defines the strategies for use by RSocket requester and responder components.
Some of the strategies, for instance, are the decoder and encoder for the messages.

 Lastly, the RsocketSecurityAutoConfiguration autoconfigures Spring Security
for an RSocket server. Securing the RSocket server with Spring Security is beyond the
scope of this text. You can refer to the internet on this subject.

RSocketMessagingAutoConfiguration

RSocketRequesterAutoConfiguration

RSocketServerAutoConfiguration

RSocketStrategiesAutoConfiguration

RSocketSecurityAutoConfiguration

RSocket

autoconfiguration

Figure 8.12 Spring Boot RSocket autoconfiguration classes

388 CHAPTER 8 Reactive Spring Boot application development

8.6 Introduction to WebSocket
So far, we’ve discussed the use of HTTP through which we can access contents from
the server. For instance, in the Course Tracker REST API, we initiated an HTTP
request from the browser/HTTPie CLI to the server to get the available courses.
Although HTTP works perfectly well in most scenarios, and it is the dominant proto-
col of the Web, it has a major drawback. The communication between client and
server can only be initiated by the client. It works in a request–response style; the cli-
ent should ask the server what it needs by accessing the URLs. The server can’t initiate
a connection to the client and send data to it. There are workarounds, such as HTTP
streaming and long polling, that attempt to reduce this problem to a certain degree.
However, these are not permanent solutions. For instance, in the case of an HTTP
long polling, the client sends a request to the server, and the server holds the request
until there is something to return to the client. Thus, the client polls the server for
new data, and the server responds when it has something to return to the client.

 In this section, we’ll introduce you to the WebSocket protocol (https://datatracker
.ietf.org/doc/html/rfc6455) that intends to remove the aforementioned drawbacks
of HTTP. This protocol provides a standardized way to establish a full-duplex, two-way
communication channel between client and server over a single TCP connection.
Note the emphasis we put on the standardized part of the definition, as this protocol
is designed for two-way communication, and you need not rely on any workarounds.
WebSocket is a different protocol than HTTP, but it is designed to work over HTTP
and HTTPS, using ports 80 and 443. The client–server communication model in
HTTP and WebSocket is shown in figure 8.13.

Client Server

HTTP

Request

Request

Response

Response

Client Server

WebSocket

Handshake

Bidirectional messages

Acknowledgment

Bidirectional messages

Connection end

Figure 8.13 The client–server communication in HTTP and WebSocket protocol

https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc6455

3898.6 Introduction to WebSocket

In this section, we’ve introduced you to the WebSocket protocol that facilitates two-
way communication between client and server. With WebSocket, once the initial hand-
shake is completed, both client and server can send data to each other. It is important
to know that the HTTP is used for the initial handshake, and once that is done, the
HTTP connection is upgraded to a newly established TCP/IP connection, which is
used by WebSocket.

 Further, the WebSocket protocol is a low-level one, and it defines how a stream of
bytes is transformed to frames. A frame can contain a binary or text message. However,
the message does not carry any additional information related to routing and process-
ing. Thus, it becomes difficult to use raw WebSocket protocol without any additional
coding. However, the WebSocket protocol specification allows using higher-level sub-
protocols that operate on the application level. One such subprotocol supported by
Spring is Simple (or Streaming) Text Oriented Messaging Protocol (STOMP).

 The Spring Framework provides a WebSocket API we can use to write a client and
server-side application that handles WebSocket messages. We’ll provide more details
on how the WebSocket protocol works in the discussion section. For now, let’s explore
how to build a Spring Boot application with WebSocket in the next technique.

8.6.1 Technique: Developing an application using WebSocket and
Spring Boot

In this technique, we’ll discuss how to use WebSocket in a Spring Boot application.

PROBLEM

So far you’ve built applications that use HTTP. You need to explore the use of WebSocket
protocol with Spring Boot for more real-time communication between client and server.

SOLUTION

Let’s begin by building a Spring Boot application with WebSocket and STOMP.

In this demonstration, we’ll build a really simple chat application that echoes the text
provided by the users. Let’s create a new Spring Boot application with the dependen-
cies, as shown in listing 8.27.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http:/ /maven.apache.org/POM/4.0.0"

➥ xmlns:xsi=”http:/ /www.w3.org/2001/XMLSchema-instance”

➥ xsi:schemaLocation="http:/ /maven.apache.org/POM/4.0.0

➥ https:/ /maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

Source code
The final version of the Spring Boot project is available at http://mng.bz/v68M.

Listing 8.27 The pom.xml file

http://mng.bz/v68M

390 CHAPTER 8 Reactive Spring Boot application development

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.6.3</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>
 <groupId>io.musibs.dev.labs</groupId>
 <artifactId>spring-boot-websocket</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <name>spring-boot-websocket</name>
 <description>Demo project for Spring Boot</description>
 <properties>
 <java.version>17</java.version>
 </properties>
 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-websocket</artifactId>
 </dependency>
 <dependency>
 <groupId>org.projectlombok</groupId>
 <artifactId>lombok</artifactId>
 <optional>true</optional>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <configuration>
 <excludes>
 <exclude>
 <groupId>org.projectlombok</groupId>
 <artifactId>lombok</artifactId>
 </exclude>
 </excludes>
 </configuration>
 </plugin>
 </plugins>
 </build>

</project>

In listing 8.27, we included the spring-boot-starter-websocket dependency. The
spring-boot-starter-websocket dependency provides the necessary support for
WebSocket protocol in Spring. Next, let’s configure Spring to enable WebSocket and
STOMP messaging, as shown in the following listing.

3918.6 Introduction to WebSocket

package com.manning.sbip.ch08.config;

import org.springframework.context.annotation.Configuration;
import org.springframework.messaging.simp.config.MessageBrokerRegistry;
import

➥ org.springframework.web.socket.config.annotation.EnableWebSocketMessage

➥ Broker;
import

➥ org.springframework.web.socket.config.annotation.StompEndpointRegistry;
import

➥ org.springframework.web.socket.config.annotation.WebSocketMessageBroker

➥ Configurer;

@Configuration
@EnableWebSocketMessageBroker
public class WebSocketConfiguration implements

➥ WebSocketMessageBrokerConfigurer {
 @Override
 public void registerStompEndpoints(StompEndpointRegistry registry) {
 registry.addEndpoint("/ws").withSockJS();
 }

 @Override
 public void configureMessageBroker(MessageBrokerRegistry registry) {
 registry.enableSimpleBroker("/topic");
 registry.setApplicationDestinationPrefixes("/app");
 }
}

In listing 8.28, the registerStompEndpoints() method allows us to register a STOMP
endpoint over a WebSocket endpoint at the /ws endpoint. Further, the withSockJS()
enables SockJS fallback options. SockJS (https://github.com/sockjs/sockjs-client) allows
our WebSockets to work even if the browser does not support WebSocket protocol.

 The configureMessageBroker method creates an in-memory message broker with
one or more destinations for sending and receiving messages. In listing 8.28, we’ve
created one destination with the prefix as /topic. We’ve also defined the application
destination prefix as /app. This is used to filter destinations by methods annotated
with @MessageMapping. You’ll define these methods in a separate controller class.
After processing the message, the controller sends the message to the broker. In this
example, you’ve used an in-memory message broker. In a production application, you
may choose to use better alternatives, such as RabbitMQ (https://www.rabbitmq
.com/). Next, let’s define the controller, as shown in the following listing.

package com.manning.sbip.ch08.controller;

import java.time.Clock;
import java.time.Instant;

Listing 8.28 Enabling WebSocket and STOMP support

Listing 8.29 The MessageController class

The StompEndpointRegistry
interface lets us register STOMP

over WebSocket endpoints.

The MessageBrokerRegistry lets us
configure message broker options.

https://github.com/sockjs/sockjs-client
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/

392 CHAPTER 8 Reactive Spring Boot application development

import org.springframework.messaging.handler.annotation.MessageMapping;
import org.springframework.messaging.handler.annotation.SendTo;
import org.springframework.stereotype.Controller;

import com.manning.sbip.ch08.model.InputMessage;
import com.manning.sbip.ch08.model.OutputMessage;

import lombok.extern.slf4j.Slf4j;

@Slf4j
@Controller
public class MessageController {

 @MessageMapping("/chat")
 @SendTo("/topic/messages")
 public OutputMessage message(InputMessage message) {
 log.info("Input Message "+message);
 return OutputMessage
 .builder()
 .time(Instant.now(Clock.systemDefaultZone()))
 .content(message.getContent())
 .build();
 }
}

In listing 8.29, you defined the Spring controller, and you defined an endpoint /chat
with @MessageMapping annotation. The @SendTo annotation broadcasts the message to
all clients subscribed to the /topic/messages endpoint. The InputMessage and Output-
Message are two Java POJO classes that represent the input message and the output
message, respectively. Refer to the GitHub repository for the Java files.

 Let’s now define the client-side HTML page we will use to send and receive the
messages. The index.html file located in the src/main/resources folder is shown in
the following listing.

<!DOCTYPE html>
<html lang="en">

<head>
 <meta charset="UTF-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>Spring Boot WebSocket</title>
</head>

<body
 <label for="message-input">Enter your message</label>
 <input type="text" class="form-control" id="message-input">
 <button type="submit" onclick="sendMessage()">Send</button>
 <ul id="message-list">

Listing 8.30 The index.html page

3938.6 Introduction to WebSocket

 <script src="https:/ /cdnjs.cloudflare.com/ajax/libs/sockjs-

➥ client/1.5.1/sockjs.js"></script>
 <script

➥ src="https:/ /cdnjs.cloudflare.com/ajax/libs/stomp.js/2.3.3/stomp.min.js

➥ "></script>
 <script src="js/main.js"></script>
</body>

</html>

In listing 8.30, we’ve done the following:

 We’ve defined a text box and a button, so the user can enter a text message and
send it to the server. Clicking the button invokes the sendMessage() function.

 We’ve also defined an empty unordered list with an ID of message-list, which
is used to print the messages broadcasted by the server.

 Included the SockJS and STOMP JS in the HTML page. You’ll notice the use of
these JS files in the custom JS file called main.js. The main.js file is used to initiate
the WebSocket connection and subscribe to the /topic/messages endpoint.

Let’s now define the main.js file, which is available at the src\main\resources\js folder.
The following listing shows this file.

let sock = new SockJS('http:/ /localhost:8080/ws');

let client = Stomp.over(sock);

function sendMessage() {
 console.log("Sending message");
 let input = document.getElementById('message-input');
 client.send('/app/chat', {}, JSON.stringify({ content: input.value }));
}

client.connect({}, (frame) => {
 client.subscribe('/topic/messages', (payload) => {
 let message_list = document.getElementById('message-list');
 let message = document.createElement('li');
 let output = JSON.parse(payload.body);
 message.appendChild(document.createTextNode(output.content +" at "

➥ +output.time));
 message_list.appendChild(message);
 });
});

Listing 8.31 The main.js file

We are downloading
sock.js and stomp.js

from the CDN.

Create a WebSocket
connection at
http://localhost:8080/ws.

Create a new StompClient object
(from stomp.min.js library) with
the WebSocket endpoint.

Function to send message. This function is invoked while you click on
the Send in the HTML page. It takes the value in the “message-input”
text field and sends it to the server with empty headers ({}).

Start the STOMP communications;
provide a callback for when the

CONNECTED (part of WebSocket
protocol) frame arrives.

Subscribe to
"/topic/messages".

Whenever there is a new
message, add the text in a

list-item element in the
unordered list.

394 CHAPTER 8 Reactive Spring Boot application development

Let’s now start the application and access http:/ /localhost:8080. You can enter text
and notice it is broadcasted back with a timestamp. You can open another tab in your
browser and access the same URL http:/ /localhost:8080. Enter text, and you’ll notice
that the same text message is broadcasted to the first window as well.

DISCUSSION

In this technique, you explored the use of WebSocket protocol in a Spring Boot applica-
tion with a simple messaging application. Let’s now understand how a handshake
between the client and server works in a WebSocket application, as shown in figure 8.14.

In the initial phase of a connection setup the client sends a few special HTTP head-
ers asking for a WebSocket connection. The HTTP headers are shown in the follow-
ing listing.

GET ws:/ /localhost:8080/ws/257/vktswatd/websocket HTTP/1.1
Host: localhost:8080
Connection: Upgrade
Upgrade: websocket
Origin: http:/ /localhost:8080
Sec-WebSocket-Version: 13
Accept-Encoding: gzip, deflate, br
Accept-Language: en-US,en;q=0.9
Sec-WebSocket-Key: kVE6ElOMjfIi4bPZzojWzA==
Sec-WebSocket-Extensions: permessage-deflate; client_max_window_bits

The initial request needs to be an HTTP GET request. Besides, the client begins the interac-
tion with the server with an HTTP Upgrade header to upgrade or switch to WebSocket

Listing 8.32 HTTP request headers

Client Server

Connection upgrade, WebSocket

Connection upgrade, 101

HTTP Handshake

Communication via WebSocket
Figure 8.14 Client and
server communication
through WebSocket protocol

395Summary

protocol. The client also sends additional Sec-* headers for other purposes. For
instance, the Sec-WebSocket-Key is used for security purposes. Refer to the https://
datatracker .ietf.org/doc/html/rfc6455 for more details on these additional headers.

 If the server supports WebSocket protocol, it automatically responds with the HTTP
101 Switching Protocols response instead of the usual HTTP 200 OK status code. The
response headers are shown in the following listing.

HTTP/1.1 101
Vary: Origin
Vary: Access-Control-Request-Method
Vary: Access-Control-Request-Headers
Upgrade: websocket
Connection: upgrade
Sec-WebSocket-Accept: vNLDQJwTllhnlFr6XKRZdjCX2Vk=
Sec-WebSocket-Extensions: permessage-deflate;client_max_window_bits=15
Date: Wed, 28 Jul 2021 10:30:46 GMT

After a successful handshake, the TCP socket underlying the HTTP upgrade request
remains open for both the client and the server to continue sending and receiving
messages.

Summary
 We introduced reactive programming with a focus on asynchronous data

streams and the benefits of reactive programming.
 We introduced Reactive Streams, Project Reactor, and Spring WebFlux.
 We discussed designing a reactive restful API with Spring WebFlux annotated

controllers and functional endpoints.
 We discussed techniques for accessing a reactive application with WebClient.
 We introduced WebSocket protocol and how to use it in a Spring Boot application.
 We introduced RSocket protocol, its different interaction patterns, and how to

use RSocket in a Spring Boot application.

Listing 8.33 The HTTP response headers

https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc6455

Part 4

Part 4 of the book consists of one chapter, which discusses techniques for
deploying Spring Boot applications. Chapter 9 begins with basic JAR- and WAR-
based deployment and then proceeds with PaaS-style deployments with Heroku
and Cloud Foundry. This chapter then shows how to run Spring Boot applica-
tions as containers and deploy them into the Kubernetes cluster as well as into
Red Hat OpenShift.

399

Deploying Spring
Boot applications

Once you are done with your application development and testing, you need to
deploy the applications into your production server to serve the application users.
Spring Boot applications can be deployed through an array of deployment strate-
gies. Based on the application’s scalability, availability, and resilience requirements,
you can decide on your application deployment strategy.

 In this chapter, we’ll introduce you to various approaches to deploy the Spring
Boot application. You’ll learn traditional deployment techniques, such as running
the application as an executable JAR or deploying it into an application server as a
WAR. We’ll then explore deploying into Pivotal Cloud Foundry and Heroku. Later,

This chapter covers
 Running Spring Boot applications as a JAR file

or deploying as a WAR file

 Deploying Spring Boot applications to Cloud
Foundry and Heroku

 Running Spring Boot applications as Docker
containers

 Developing Spring Boot applications for
Kubernetes clusters and the Red Hat OpenShift
platform

400 CHAPTER 9 Deploying Spring Boot applications

we’ll also learn how to run Spring Boot applications as a Docker container and deploy
them into a Kubernetes cluster. Finally, we’ll show how to deploy the application into
Red Hat OpenShift. Let’s get started.

 Developing various types of applications with the Spring Boot framework is a popu-
lar choice among developers and organizations. Due to the framework’s flexibility, ease
of use, and popularity, it is often used to develop a diverse category of applications, such
as Web applications, REST APIs, microservices, and others. Some of these applications
are small and target a limited number of users, whereas some are complex and available
across multiple geographies and a broad range of users. The deployment strategies for
first-category applications are straightforward. However, the latter category is complex
and requires a sophisticated and thoughtful deployment model.

 To meet the need for all categories, Spring Boot supports a wide range of deploy-
ment techniques. You can package your Spring Boot application as an executable JAR
and run it without the need for any application server. Spring Boot provides built-in
support for several embedded Web servers. Similarly, if you need to package your
application as a WAR file and deploy it to an application server, Spring Boot has built-
in support to prepare the WAR file. As you’ll explore shortly, it is straightforward to
package your Spring Boot application as a WAR file without defining a web.xml and
other configurations.

 Deploying the applications through the JAR or WAR files approach has a prerequi-
site you need to build a package for your application. The Pivotal Cloud Foundry
(PCF) (https://www.cloudfoundry.org/) offers an alternative approach with which
you can use your source code directly to deploy the application, and PCF will perform
the required steps. Similarly, if you don’t have your on-premises infrastructure, you
can leverage cloud providers, such as AWS, Azure, Google Cloud Platform (GCP), and
Heroku to deploy your packaged application. In this chapter, we’ll demonstrate how
to deploy your application on Heroku.

 Further, if you need to run your application as a container image, Spring Boot pro-
vides built-in support to generate a container image for your application. You can
then use the image to run your application locally or deploy it to cloud environments.
If you need scalable, high available and fault-tolerant applications, you can deploy
your application to Kubernetes. In this chapter, we’ll demonstrate how to deploy a
Spring Boot application to Kubernetes and Red Hat OpenShift.

NOTE How to deploy an application and serve end-users is a business require-
ment and is done based on multiple factors, such as application performance,
availability, scalability, resilience, compliance needs, and so on. Thus, there
are plenty of deployment techniques and strategies available. There are many
technical toolkits and platforms out there to facilitate the diverse need of the
deployments. In this book, we aim to focus on the Spring Boot application
deployment on popular and commonly used platforms. Due to the vastness of
this subject, it is beyond the scope of this text to provide an in-depth discus-
sion on the technologies and platforms. However, we’ll provide additional

https://www.cloudfoundry.org/

4019.1 Running Spring Boot applications as executable JAR files

references for the specific technology or platform wherever possible and
cover the setup steps (if any) in the book’s companion GitHub wiki.

9.1 Running Spring Boot applications as executable
JAR files
Previously, you’ve seen that you can package a Spring Boot application as an execut-
able JAR file and execute it in local machines or servers. In this section, we’ll explore
this step in detail.

9.1.1 Technique: Packaging and executing a Spring Boot application
as an executable JAR file

In this technique, we’ll demonstrate how to package and execute a Spring Boot appli-
cation as an executable JAR file.

PROBLEM

You have developed a Spring Boot application and need to execute it as an executable
JAR file.

SOLUTION

Once you are done with the application development, you need to execute it to see it
in action. Spring Boot provides several options to deploy the application and run it. In
this technique, we’ll explore Spring Boot’s built-in approach to package the applica-
tion as an executable JAR file and run it. This is one of the popular approaches to
package and run a Spring Boot application.

 To demonstrate how to package the application components and run the applica-
tion as an executable JAR file, we’ll use the Course Tracker Spring Boot application
we’ve developed in the earlier chapters.

To ensure the application is packaged as an executable JAR file, you need to ensure
the following two things:

1 The packaging type in the pom.xml file needs to be set as a JAR. This ensures
the application components will be packaged as a JAR.

2 Configure the spring-boot-maven-plugin in the plugins section of the pom.xml
file, as shown in the following listing.

<plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
</plugin>

Source code
The final version of the Spring Boot project is available at http://mng.bz/oa7Z.

Listing 9.1 The Spring Boot Maven plugin

http://mng.bz/oa7Z

402 CHAPTER 9 Deploying Spring Boot applications

The spring-boot-maven-plugin prepares the executable JAR file when the Maven
package goal is executed. We’ll discuss more on this in the discussion section.

 Open a terminal window, and browse to the location of the pom.xml file. Next,
execute the mvn package command to build and package the application compo-
nents. This ensures the application is compiled, built, and packaged as a JAR file. The
following listing shows the output.

$course-tracker-app\target>mvn package
[INFO] Scanning for projects...
[INFO]
[INFO] ------------< com.manning.sbip.ch09:course-tracker-app-jar >------------
[INFO] Building course-tracker-app-jar 1.0.0
[INFO] --------------------------------[jar]---------------------------------
[INFO]
[INFO] --- maven-resources-plugin:3.2.0:resources (default-resources) @

➥ course-tracker-app-jar ---
[INFO] Using 'UTF-8' encoding to copy filtered resources.
[INFO] Using 'UTF-8' encoding to copy filtered properties files.
[INFO] Copying 1 resource
[INFO] Copying 7 resources
[INFO]
[INFO] --- maven-compiler-plugin:3.8.1:compile (default-compile) @

➥ course-tracker-app-jar ---
[INFO] Changes detected - recompiling the module!
[INFO] Compiling 6 source files to C:\sbip\repo\ch09\course-tracker-app-

➥ jar\target\classes
[INFO]
[INFO] --- maven-resources-plugin:3.2.0:testResources (default-

➥ testResources) @ course-tracker-app-jar ---
[INFO] Using 'UTF-8' encoding to copy filtered resources.
[INFO] Using 'UTF-8' encoding to copy filtered properties files.
[INFO] skip non existing resourceDirectory C:\sbip\repo\ch09\course-

➥ tracker-app-jar\src\test\resources
[INFO]
[INFO] --- maven-compiler-plugin:3.8.1:testCompile (default-testCompile) @

➥ course-tracker-app-jar ---
[INFO] Changes detected - recompiling the module!
[INFO]
[INFO] --- maven-surefire-plugin:2.22.2:test (default-test) @ course-

➥ tracker-app-jar ---
[INFO]
[INFO] --- maven-jar-plugin:3.2.0:jar (default-jar) @ course-tracker-app-

➥ jar ---
[INFO] Building jar: C:\sbip\repo\ch09\course-tracker-app-

➥ jar\target\course-tracker-app-jar-1.0.0.jar
[INFO]
[INFO] --- spring-boot-maven-plugin:2.5.3:repackage (repackage) @ course-

➥ tracker-app-jar ---
[INFO] Replacing main artifact with repackaged archive
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --

Listing 9.2 The mvn package command

4039.1 Running Spring Boot applications as executable JAR files

After successfully packaging, you’ll find there is a target directory created in the
same location as the pom.xml file. This target directory contains an executable JAR
file. By default, the name of the JAR file is <artifactId>-<version>.jar. In our example,
the JAR file name is course-tracker-app-jar.1.0.0.jar. You can execute this JAR file using
the java -jar <jarName> command from your terminal from the target directory.
This is shown in the following listing.

$course-tracker-app\target>java -jar course-tracker-app-jar.1.0.0.jar

You’ll notice the application starts up and is successfully initialized. In this example,
the application starts on default HTTP port 8080. Open a Web browser, and access
http:/ /localhost:8080, then you’ll see the Course Tracker application index page.

DISCUSSION

In this section, we discussed how to create and run an executable JAR file from your
Spring Boot application. In chapter 1, sections 1.3.3 and 1.3.4, we briefly discussed
how the JAR file is created and explored the structure of the JAR file. We discussed
that the repackage goal of spring-boot-maven-plugin hooks in at the Maven package
phase and prepares the executable JAR file. Previously, we discussed that Spring Boot
projects have a parent POM called spring-boot-starter-parent. This POM file
includes the necessary configuration to define the repackage goal. Further, in the
same target directory, you’ll notice that there is another JAR file with naming format
<artifactId>-<version>.jar.original. In our example, this JAR name is course-
tracker-app-jar-1.0.0.jar.original. This is the original JAR file prepared by
Maven. Note that this is not an executable JAR. The contents of this JAR file are subse-
quently packaged by the spring-boot-maven-plugin to create the executable JAR
file. The following listing shows the structure of the Spring Boot-packaged JAR file.

course-tracker-app-jar-1.0.0.jar
 |
 +-META-INF
 | +-MANIFEST.MF
 +-org
 | +-springframework
 | +-boot
 | +-loader
 | +-<spring boot loader classes>
 +-BOOT-INF
 +-classes
 | +-com
 | +-manning
 | +-sbip
 | +-ch09
 | +-CourseTrackerSpringBootApplication.class

Listing 9.3 Executing the Spring Boot executable JAR file

Listing 9.4 Spring Boot-packaged JAR file structure

These loader classes are
used to launch a Spring
Boot application.

404 CHAPTER 9 Deploying Spring Boot applications

 +-lib
 | +-dependency1.jar
 | +-dependency2.jar
 +-classpath.idx
 +-layers.idx

The META-INF folder contains the MANIFEST.MF manifest file. A manifest is a spe-
cial file that contains meta-information about the files packaged in the JAR file. The
following listing shows the sample contents of a manifest file.

Manifest-Version: 1.0
Created-By: Maven Jar Plugin 3.2.0
Build-Jdk-Spec: 17
Implementation-Title: course-tracker-app-jar
Implementation-Version: 1.0.0
Main-Class: org.springframework.boot.loader.JarLauncher
Start-Class: com.manning.sbip.ch09.CourseTrackerSpringBootApplication
Spring-Boot-Version: 2.6.3
Spring-Boot-Classes: BOOT-INF/classes/
Spring-Boot-Lib: BOOT-INF/lib/
Spring-Boot-Classpath-Index: BOOT-INF/classpath.idx
Spring-Boot-Layers-Index: BOOT-INF/layers.idx

Listing 9.5 contains various meta-information about the JAR file. The Main-Class prop-
erty contains the org.springframework.boot.loader.JarLauncher class, which is the
entry point of the execution of the JAR. The Start-Class property contains the actual
Spring Boot application class that begins the initialization of the Spring Boot applica-
tion. The JarLauncher class launches this class specified in Start-Class property.

 The application-specific class files are packaged inside the BOOT-INF\classes, and
the dependencies are packaged inside the BOOT-INF\lib folder. These are the third-
party libraries required by the Spring Boot application to function.

 In addition, the JAR also includes two index files: classpath.idx and layers.idx. The
classpath.idx file contains a list of JAR names (including the directories) in the order
they should be added to the classpath.

 The layers.idx files contain a list of layers and parts of the JAR that should be con-
tained within them. The layers play a crucial role if you need to build a Docker image
from the contents of the JAR file. While creating the Docker file these layers are writ-
ten into different layers in the Docker image. We’ll discuss this in greater depth while
discussing the creation of a Docker image of a Spring Boot application.

 By default, Spring Boot defines the following layers:

 dependencies—Contains all dependencies with a version that does not contain
SNAPSHOT.

 spring-boot-loader—Spring Boot loader classes. For instance, the JarLauncher
class is part of this layer.

Listing 9.5 The MANIFEST.MF file for the Course Tracker JAR file

Third-party libraries required
for the Spring Boot application
to run (e.g., Spring JARs,
logging JARs, etc.)

4059.1 Running Spring Boot applications as executable JAR files

 snapshot-dependencies—Contains all dependencies with a version that con-
tains SNAPSHOT.

 application—Contains application classes and resources.

The last thing we will discuss in this section is to view and extract the aforemen-
tioned layers through layertools JAR mode. Previously, you noticed that you can
execute the executable JAR via the java -jar <jarName> command. You can specify
the -Djarmode=layertools to view the layertools options. The following listing shows
the use of layertools.

$course-tracker-app\target>java -Djarmode=layertools -jar course-tracker-

➥ app-jar-1.0.0.jar
Usage:
 java -Djarmode=layertools -jar course-tracker-app-jar-1.0.0.jar

Available commands:
 list List layers from the jar that can be extracted
 extract Extracts layers from the jar for image creation
 help Help about any command

The layertools provides three options: list the layers, extract the layers, and the
help command for which help is the default option. When you execute the com-
mand, the JarLauncher class is invoked as it is the entry point of the JAR execution.
However, as the jarmode flag is configured, instead of starting the application, it exe-
cutes any of the available commands of layertools. These commands are provided
by another launcher: JarModeLauncher. It is used whenever we invoke java -jar with
-Djarmode=layertools.

 Further, by default Spring Boot packages the layers.idx file. When an executable JAR
with this file is created, Spring Boot automatically provides and packages the spring-
boot-jarmode-layertools JAR. The spring-boot-jarmode-layertools JAR includes
the LayerToolsJarMode class, which provides the necessary support for the layertools
jarmode feature. Let’s now discuss the use of list and extract commands along with
layertools jarmode. The following listing shows the use of the list command.

$course-tracker-app\target> java -Djarmode=layertools -jar course-tracker-

➥ app-jar-1.0.0.jar list
dependencies
spring-boot-loader
snapshot-dependencies
application

Listing 9.7 shows the layers present inside the course-tracker-app-jar-1.0.0.jar file. You
can extract these layers into the file system using the extract command, as shown in
the following listing.

Listing 9.6 Using layertools JAR mode

Listing 9.7 Use of list command in jarmode layertools to view the layers

406 CHAPTER 9 Deploying Spring Boot applications

$course-tracker-app\target>java -Djarmode=layertools -jar course-tracker-

➥ app-jar-1.0.0.jar extract --destination layers

C:\sbip\repo\ch09\course-tracker-app-jar\target>dir layers
 Volume in drive C is OS
 Volume Serial Number is 8EF3-F5B9

 Directory of C:\sbip\repo\ch09\course-tracker-app-jar\target\layers

04/03/2022 01:20 PM <DIR> .
04/03/2022 01:20 PM <DIR> ..
04/03/2022 01:20 PM <DIR> application
04/03/2022 01:20 PM <DIR> dependencies
04/03/2022 01:20 PM <DIR> snapshot-dependencies
04/03/2022 01:20 PM <DIR> spring-boot-loader

In listing 9.8, we first used the extract command and specified a destination folder
called layers to extract the layers. We then use the dir command to show the created
directories. If you browse these directories, you’ll notice the contents of the course-
tracker-app-jar-1.0.0.jar JAR is extracted inside these folders.

 If you are wondering what the need for these layers is and why we are discussing
these in this section, wait until we demonstrate creating Docker images for Spring
Boot applications. You’ll notice that these layers help us to build an optimized docker
image. As we’ve discussed the executable JAR creation and structure in this section,
for continuity purposes, we have provided the layers discussion in the same section.

9.2 Deploying Spring Boot applications as WAR
in the WildFly application server
In the previous section, we explored how to package Spring Boot application compo-
nents in an executable JAR and run it. Although it works fine, at times, you need to
package your application components into a WAR file and deploy them into a Web
server or application servers.

 Before containerization and Kubernetes, deploying applications into a Web
server or application servers were the de facto standards. Application servers offer a
lot of enterprise features that help developers and application architects to leverage
those features and plan application deployment strategies. For instance, most appli-
cation servers provide features, such as support for database connection, session
replication, sticky sessions, clustering, and more. For application server-based deploy-
ments, it is a common scenario to deploy the same instance of the application into
multiple servers and use a load balancer to balance the incoming requests among
the application instances.

 Figure 9.1 shows a high-level diagram with the use of application server clustering
to deploy Spring Boot applications. This cluster deployment provides capabilities,

Listing 9.8 Use of extract command in jarmode layertools to extract the layers in the
file system

4079.2 Deploying Spring Boot applications as WAR in the WildFly application server

such as load balancing and high availability. Note that we’ve provided this design for a
high-level understanding and allow you to visualize how the typical application server-
based production deployments work.

 In the following section, you’ll learn how to package your application as a WAR file
and deploy it into a standalone WildFly server (https://www.wildfly.org/). WildFly is
the community edition of the popular Red Hat JBoss Enterprise Application Platform
server and is available free of cost.

9.2.1 Technique: Packaging and deploying a Spring Boot application as
WAR in the WildFly application server

In this technique, we’ll discuss how to package a Spring Boot application as a WAR file
and deploy into WildFly application server.

PROBLEM

You have developed a Spring Boot application and need to package it as a WAR file
and deploy it in the WildFly application server.

SOLUTION

In this section, we’ll demonstrate how to package a Spring Boot application and
deploy it in the WildFly server (https://www.wildfly.org/). You can refer to the version-
specific installation document available at https://docs.wildfly.org/. To demonstrate

Load balancer

Application

Instance 1

Application

Instance 2

Application

Instance 3

User/API

Database

App server App server App server

Figure 9.1 Deploying Spring Boot
application in an application server
cluster. The user request is
received by a load balancer that
front ends the application servers.
Based on the load balancer
configuration, the request is routed
to one of the application server
instances, and a response is
provided back to the user.

https://www.wildfly.org/
https://www.wildfly.org/
https://docs.wildfly.org/

408 CHAPTER 9 Deploying Spring Boot applications

how to package the application components as a WAR file and deploy it in the WildFly
application server, we’ll use the Course Tracker Spring Boot application we developed
in the earlier chapters.

To package the components as WAR files, you need to make two changes:

1 In the pom.xml file, the packaging type should be war, as shown in the follow-
ing listing.

...
<groupId>com.manning.sbip.ch09</groupId>
<artifactId>course-tracker-app-war</artifactId>
<version>1.0.0</version>
<packaging>war</packaging>
<name>course-tracker-app-war</name>
...

2 Define an instance of a WebApplicationInitializer to run the application
from a WAR deployment. The WebApplicationInitializer allows us to config-
ure the ServletContext programmatically in a Servlet 3.0+ environment. If you
create your Spring Boot application through Spring Initializr (available at https://
start.spring.io) with the packaging type as war, then by default Spring Boot pro-
vides a class called ServletInitializer. This class extends the SpringBoot-
ServletInitializer class, which is an instance of WebApplicationInitializer.
The SpringBootServletInitializer class is an opinionated WebApplication-
Initializer implementation provided by Spring Boot to run a Spring Boot
application in a WAR deployment. If you are not creating your Spring Boot
application from Spring Initializr, you have to perform this step manually.

The following listing shows the ServletInitializer class.

package com.manning.sbip.ch09;

import org.springframework.boot.builder.SpringApplicationBuilder;
import

➥ org.springframework.boot.web.servlet.support.SpringBootServletInitial

➥ izer;

public class ServletInitializer extends SpringBootServletInitializer {

Source code
The final version of the Spring Boot project is available at http://mng.bz/nY75.

Listing 9.9 Package type as WAR type in pom.xml file

Listing 9.10 The ServletInitializer class

http://mng.bz/nY75
https://start.spring.io
https://start.spring.io
https://start.spring.io

4099.2 Deploying Spring Boot applications as WAR in the WildFly application server

 @Override
 protected SpringApplicationBuilder configure(SpringApplicationBuilder

➥ application) {
 return application.sources(CourseTrackerSpringBootApplication.class);
 }

}

In listing 9.10, we added the CourseTrackerSpringBootApplication class in Spring-
ApplicationBuilder. Later on, this SpringApplicationBuilder is used to build an
instance of SpringApplication, which is run to start the Spring Boot application.

 Next, let’s exclude the logback-starter dependency from the spring-boot-
starter-web dependency in the pom.xml, as shown in the following listing.

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 <exclusions>
 <exclusion>
 <groupId>ch.qos.logback</groupId>
 <artifactId>logback-classic</artifactId>
 </exclusion>
 </exclusions>
</dependency>

We excluded this dependency, as it conflicts with the slf4j-jboss-logmanager-
1.1.0.Final.jar of the WildFly server. Next, let’s define the context root of the
application to “/”. The following listing shows the associated configuration for jboss-
web.xml file located in the src\main\webapp\WEB-INF folder.

<?xml version="1.0" encoding="UTF-8"?>
<jboss-web>
 <context-root>/</context-root>
</jboss-web>

We are done with all the configurations. Let’s now package the application and deploy
it into the WildFly server. To package the application, you need to execute the mvn
package command from a terminal from the directory where the application’s
pom.xml file is located. After successfully building, you’ll notice that the application is
packaged as a WAR file. You can deploy this WAR file on the WildFly server.

 Before starting deployment, you need to ensure an instance of the WildFly applica-
tion server is running. You can then open a browser window and access the http:/ /
localhost:9990 URL, and you’ll notice the WildFly server management console. Click
on the Deployments menu and then the Upload Deployment button, as shown in fig-
ure 9.2.

Listing 9.11 Excluding the logback-classic dependency from spring-boot-starter-web

Listing 9.12 The jboss-web.xml file

410 CHAPTER 9 Deploying Spring Boot applications

In the next window, upload the previously generated WAR file (e.g. course-tracker-
app-war-1.0.0.war) from the target directory, and click the Next button and then in
the next screen click the Finish button. After successful deployment, you’ll notice the
successful deployment message, as shown in figure 9.3.

Click on the Close button, and the Course Tracker application is ready to be accessed.
Let’s open a browser window and access the http:/ /localhost:8080 URL. You’ll notice
the index page of the Course Tracker application, as shown in figure 9.4.

Figure 9.2 WildFly server Upload Deployment screen to upload a deployment

Figure 9.3 The Course Tracker WAR file uploaded successfully into the server. This indicates the
application deployed successfully and can be accessed.

4119.2 Deploying Spring Boot applications as WAR in the WildFly application server

If you are performing frequent deployments and need to automate the deployment
process, you can use the wildfly-maven-plugin Maven plugin to automatically deploy
the generated WAR file.

To use the wildfly-maven-plugin, you need to add the associated configuration in
the Course Tracker pom.xml file. Following is the summary of the changes. The fol-
lowing listing shows the updated pom.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http:/ /maven.apache.org/POM/4.0.0"

➥ xmlns:xsi="http:/ /www.w3.org/2001/XMLSchema-instance"

➥ xsi:schemaLocation="http:/ /maven.apache.org/POM/4.0.0

➥ https:/ /maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

Source code
The final version of the Spring Boot project with wildfly-maven-plugin is available
at http://mng.bz/44JV.

Listing 9.13 Updated pom.xml file with wildfly-maven-plugin configuration

Figure 9.4 The Course Tracker application index page. This page is served by the WildFly server.

http://mng.bz/44JV

412 CHAPTER 9 Deploying Spring Boot applications

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.6.3</version>
 <relativePath/>
 <!-- lookup parent from repository -->
 </parent>
 <groupId>com.manning.sbip.ch09</groupId>
 <artifactId>course-tracker-app-war-mvn-plugin</artifactId>
 <version>1.0.0</version>
 <packaging>war</packaging>
 <name>course-tracker-app-war-mvn-plugin</name>
 <description>Spring Boot application for Chapter 09</description>
 <properties>
 <java.version>17</java.version>
 <wildfly.deploy.user>${ct.deploy.user}</wildfly.deploy.user>
 <wildfly.deploy.pass>${ct.deploy.pass}</wildfly.deploy.pass>
 <plugin.war.warName>${project.build.finalName}</plugin.war.warName>
 </properties>
 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 <exclusions>
 <exclusion>
 <groupId>ch.qos.logback</groupId>
 <artifactId>logback-classic</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-tomcat</artifactId>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
 </dependency>
 <dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <scope>runtime</scope>
 </dependency>
 <dependency>
 <groupId>org.projectlombok</groupId>
 <artifactId>lombok</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-validation</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-thymeleaf</artifactId>

To deploy the Spring
Boot application WAR

file through the plugin,
you need to configure
the server username,

password, and the
WAR file name that

needs to be deployed.
We are referring these

properties from
settings.xml file. We’ve

provided relevant
settings.xml in the

next listing.

4139.2 Deploying Spring Boot applications as WAR in the WildFly application server

 </dependency>
 <dependency>
 <groupId>org.webjars</groupId>
 <artifactId>bootstrap</artifactId>
 <version>4.4.1</version>
 </dependency>
 <dependency>
 <groupId>org.webjars</groupId>
 <artifactId>jquery</artifactId>
 <version>3.4.1</version>
 </dependency>
 <dependency>
 <groupId>org.webjars</groupId>
 <artifactId>webjars-locator</artifactId>
 <version>0.38</version>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 <exclusions>
 <exclusion>
 <groupId>org.junit.vintage</groupId>
 <artifactId>junit-vintage-engine</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 <plugin>
 <groupId>org.wildfly.plugins</groupId>
 <artifactId>wildfly-maven-plugin</artifactId>
 <version>2.1.0.Beta1</version>
 <configuration>
 <hostname>localhost</hostname>
 <port>9990</port>
 <username>${wildfly.deploy.user}</username>
 <password>${wildfly.deploy.pass}</password>
 <name>${project.build.finalName}.${project.packaging}</name>
 </configuration>
 <executions>
 <execution>
 <id>undeploy</id>
 <phase>clean</phase>
 <goals>
 <goal>undeploy</goal>
 </goals>
 <configuration>
 <ignoreMissingDeployment>true</ignoreMissingDeployment>
 </configuration>
 </execution>

Properties defined in
the properties section

of this pom.xml

414 CHAPTER 9 Deploying Spring Boot applications

 <execution>
 <id>deploy</id>
 <phase>install</phase>
 <goals>
 <goal>deploy</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

To use the wildfly-maven-plugin, you’ve defined the server configuration, including
host, port, username, and password. We’ve also defined two execution configurations:
one to perform the deployment in the Maven install phase and one to perform unde-
ployment in the Maven clean phase. For security reasons, we haven’t configured the
username and password in the pom.xml file. We’re referring those from the Maven set-
tings.xml file. The following listing shows the Maven settings.xml profile configuration.

...
<profile>
 <id>course-tracker-prod</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <properties>
 <ct.deploy.user>user</ct.deploy.user>
 <ct.deploy.pass>password</ct.deploy.pass>
 </properties>
 </profile>
...

We refer to the properties ct.deploy.user and ct.deploy.pass in the pom.xml
properties configuration in listing 9.13, so the username and password could be used
by wildfly-maven-plugin to perform the deploy and undeploy operations.

 Open a terminal window to browse to the course-tracker-app-war-mvn-plugin
application’s pom.xml directory, and execute the mvn install command. You’ll
notice that the application deployed successfully. The following listing shows the mvn
install command’s output.

...

...
[INFO] --- spring-boot-maven-plugin:2.5.3:repackage (repackage) @ course-

➥ tracker-app-war-mvn-plugin ---
[INFO] Replacing main artifact with repackaged archive
[INFO]

Listing 9.14 Maven settings.xml profile configuration inside profiles section

Listing 9.15 The mvn install command output for successful deployment

4159.2 Deploying Spring Boot applications as WAR in the WildFly application server

[INFO] <<< wildfly-maven-plugin:2.1.0.Beta1:deploy (deploy) < package @

➥ course-tracker-app-war-mvn-plugin <<<
[INFO]
[INFO]
[INFO] --- wildfly-maven-plugin:2.1.0.Beta1:deploy (deploy) @ course-

➥ tracker-app-war-mvn-plugin ---
[INFO] JBoss Threads version 2.3.3.Final
[INFO] JBoss Remoting version 5.0.12.Final
[INFO] XNIO version 3.7.2.Final
[INFO] XNIO NIO Implementation Version 3.7.2.Final
[INFO] ELY00001: WildFly Elytron version 1.9.1.Final
[INFO] --
[INFO] BUILD SUCCESS

You can now open a browser window and access the http:/ /localhost:8080/ URL to
use the Course Tracker application. You’ll notice the Course Tracker application
index page. If you need to undeploy the application, you can execute the mvn clean
command, and the application will be undeployed, as shown in the following listing.

$course-tracker-app\target>mvn clean
[INFO] Scanning for projects...
[INFO]
[INFO] ------< com.manning.sbip.ch09:course-tracker-app-war-mvn-plugin >---
[INFO] Building course-tracker-app-war-mvn-plugin 1.0.0
[INFO] --------------------------------[war]-----------------------------
[INFO]
[INFO] --- maven-clean-plugin:3.1.0:clean (default-clean) @ course-tracker-

➥ app-war-m
[INFO] Deleting C:\sbip\repo\ch09\course-tracker-app-war-mvn-plugin\target
[INFO]
[INFO] --- wildfly-maven-plugin:2.1.0.Beta1:undeploy (undeploy) @ course-

➥ tracker-app
[INFO] JBoss Threads version 2.3.3.Final
[INFO] JBoss Remoting version 5.0.12.Final
[INFO] XNIO version 3.7.2.Final
[INFO] XNIO NIO Implementation Version 3.7.2.Final
[INFO] ELY00001: WildFly Elytron version 1.9.1.Final
[INFO] --
[INFO] BUILD SUCCESS

DISCUSSION

With this technique, you’ve learned to deploy a Spring Boot application in an applica-
tion server. We’ve discussed two approaches to achieve this. In the first approach, you
build the WAR file via the mvn install command and then manually deploy the WAR
file via the application server’s Web interface. With the second approach, you’ve used
the wildfly-maven-plugin to automatically deploy the generated WAR file in the appli-
cation server.

 Now that you’ve explored both approaches, you may wonder which approach is
better. I would recommend the wildfly-maven-plugin-based approach, as it enables
a more automated way of deployment and requires less manual intervention.

Listing 9.16 Mvn clean to undeploy the deployed WAR file

416 CHAPTER 9 Deploying Spring Boot applications

9.3 Deploying Spring Boot applications in Cloud Foundry
In the previous sections, we’ve discussed two traditional approaches with JAR and
WAR files to package and deploy a Spring Boot application. In this section, we’ll look
into an alternative application deployment approach through Cloud Foundry.

NOTE Cloud Foundry provides a much more straightforward and easier model
to build, test, and deploy applications. As you’ll notice shortly, Cloud Foundry
allows you to push your source code to the Cloud Foundry server and per-
form the build and deployment from the source code. Finally, it makes the
application available to the end users. Cloud Foundry is a large topic and
offers several features. It is beyond the scope of this text to provide in-depth
coverage of this. Refer to the Cloud Foundry documentation available at
https://docs.cloudfoundry.org/ for more information.

These days, cloud platforms allow us to deploy applications and make them available
across the globe in a short period. The cloud platforms also allow us to scale the appli-
cation on demand without worrying much about infrastructure and its scalability. Fig-
ure 9.5 shows various layers of technology stacks used in an application.

Traditional IT

Application

Data

Runtime

Middleware

OS

Virtualization

Servers

Storage

Networking

Application

Data

Runtime

Middleware

OS

Virtualization

Servers

Storage

Networking

Application

Data

Runtime

Middleware

OS

Virtualization

Servers

Storage

Networking

Application

Data

Runtime

Middleware

OS

Virtualization

Servers

Storage

Networking

Infrastructure

as a service
Platform

as a service

Software

as a service

Layer managed by you Layer delivered as a service

Figure 9.5 Layers of technology stacks required by an application. In traditional IT, all layers of
infrastructure are managed by you. In the IaaS model, the core infrastructure is delivered as a service.
In the PaaS model, only the application and data need to be managed by you, and the rest of all layers
are delivered as a service. In the SaaS model, all layers are delivered as a service. We’ve highlighted
the PaaS model, as Cloud Foundry belongs to this model.

https://docs.cloudfoundry.org/

4179.3 Deploying Spring Boot applications in Cloud Foundry

Cloud Foundry belongs to the platform-as-a-service model, where only the data and
application are managed by you, and all remaining layers are managed by the Cloud
Foundry. But what is Cloud Foundry in the first place? It is an open-source cloud
application platform that allows you to select the cloud platform you want to use,
offers several developer frameworks, and offers other application services. One of the
major benefits of Cloud Foundry over the traditional deployments is that it makes
application building, testing, deployment, and scaling faster and easier. In the next
technique, we’ll explore how to deploy a Spring Boot application to Cloud Foundry.

9.3.1 Technique: Deploying a Spring Boot application to Cloud Foundry

In this technique, we’ll discuss how to deploy a Spring Boot application to Cloud
Foundry.

PROBLEM

Your Spring Boot application is currently running as a standalone JAR file in a Unix
server. You need to deploy it to a cloud platform through Cloud Foundry.

SOLUTION

Using this technique, we’ll explore how to deploy a Spring Boot application in a
Cloud Foundry cloud platform. To deploy your application in Cloud Foundry, you
need a Cloud Foundry instance. You can either run Cloud Foundry yourself, use a
company-provided Cloud Foundry instance, or use a hosted solution. There are sev-
eral hosted solutions available, such as anynines (https://paas.anynines.com/) and
SAP (http://mng.bz/vo7p), which provides a trial version of the Cloud Foundry
instance. In this technique, we’ll use the SAP Cloud Foundry instance. You can browse
the SAP link and follow the steps to set up your trial account.

Once you are done with the Cloud Foundry instance set up, you’ll need to install the
Cloud Foundry command-line interface (CLI). You’ll use this CLI tool to interact with
the Cloud Foundry instance. The CLI runs on a terminal window and makes REST
calls to the Cloud Foundry API. Browse to the https://github.com/cloudfoundry/
cli#downloads link to install CLI on your computer. Once the installation is com-
pleted successfully, run the cf version command from your terminal, and it should
return the installed Cloud Foundry CLI version.

 The next step is to log in to the Cloud Foundry instance, which you can do using
the cf login command. The following listing shows the complete login command.

cf login -a <CLOUDFOUNDRY_API_ENDPOINT> -u <USERNAME>

Source code
The final version of the Spring Boot project is available at http://mng.bz/4jNR.

Listing 9.17 Cloud Foundry login

http://mng.bz/vo7p
http://mng.bz/4jNR
https://github.com/cloudfoundry/cli#downloads
https://github.com/cloudfoundry/cli#downloads
https://github.com/cloudfoundry/cli#downloads
https://paas.anynines.com/

418 CHAPTER 9 Deploying Spring Boot applications

The CLOUDFOUNDRY_API_ENDPOINT is the Cloud Foundry instance URL. If you are
using SAP, you’ll find this on the SAP account page. The USERNAME is your login ID.
For SAP, this is the email ID of the SAP account you just created.

 Invoking the command of listing 9.17 with the API endpoint and the username will
prompt you to enter the password. Enter your SAP account login password. The fol-
lowing listing shows a sample command and the associated output.

cf login -a https:/ /api.cf.eu10.hana.ondemand.com/ -u ****@gmail.com
API endpoint: https:/ /api.cf.eu10.hana.ondemand.com/

Password:

Authenticating...
OK

Targeted org 6****986trial.

Targeted space dev.

API endpoint: https:/ /api.cf.eu10.hana.ondemand.com
API version: 3.102.0
user: ****@gmail.com
org: 6****86trial
space: dev

Next, let’s build the Course Tracker Spring Boot application using the mvn clean
install command. We’ll use the generated JAR file to push to the Cloud Foundry
instance. Instead of pushing the raw JAR file, we’ll define a manifest.yml file in the
application root directory, so Cloud Foundry CLI can read it and perform the deploy-
ment. The following listing shows the manifest.yml file.

applications:
- name: course-tracker-app-cf
 instances: 1
 memory: 1024M
 path: target/course-tracker-app-cf-1.0.0.jar
 random-route: true
 buildpacks:
 - java_buildpack

This is a relatively simple configuration file with minimal details. We’ve specified the
application name, the number of instances required, the memory that needs to be
allocated, and the application executable path. The route details indicate Cloud
Foundry to assign a random route for the deployed application. The buildpacks con-
figuration allows Cloud Foundry to select a Java buildpack to run the application. You

Listing 9.18 Login to Cloud Foundry

Listing 9.19 The manifest.yml file to deploy into Cloud Foundry

4199.3 Deploying Spring Boot applications in Cloud Foundry

can now run the cf push command (from any OS user) to start the deployment, as
shown in the following listing.

cf push

The command takes a while to upload the artifacts, and the deployment begins. Once
the command returns, you can execute the cf apps command to find the running
application and the associated URL. The following listing shows a sample output of
the cf apps command.

> cf apps
Getting apps in org 6****986trial / space dev as ****@gmail.com...

name requested state processes routes
course-tracker-app-cf started web:1/1, task:0/0 course-

➥ tracker-app-cf-active-genet-qh.cfapps.eu10.hana.ondemand.com

In the above example, the course-tracker-app-cf-active-genet-qh.cfapps.eu10
.hana.ondemand.com is the application route (URL). In your case, you might notice a
different routes name. You can copy the routes and access the URL in a browser win-
dow. You’ll notice you are redirected to the Course Tracker application index page.

DISCUSSION

With this technique, we’ve demonstrated how to deploy your Spring Boot application
to Cloud Foundry. To keep things simple, we’ve used the Course Tracker application
with an in-memory database. In a production application, you’ll also have other appli-
cation components, such as database, messaging, caching, and others.

 Based on the Cloud Foundry service provider, you can use the offerings from the
provider. To find the list of offerings, you can execute the cf marketplace command,
and it will return the available services and their details. Based on the need, you can
enable one or more services. To know more about a service offering, you can execute
the cf marketplace -e <SERVICE_OFFERING> command. Replace the SERVICE_OFFERING
placeholder with the actual service name.

 To create a new service, you can use the cf create-service <SERVICE>
<SERVICE_PLAN> <SERVICE_INSTANCE> command. Further, you can find the list of ser-
vices by invoking the cf services command. You can bind service with your applica-
tion using the cf bind-service <APP_NAME> <SERVICE_INSTANCE> command.

 Lastly, once you have the services defined, you may need to access the service-
specific environment variables. For instance, if you’ve created a database, you need
the database URL, username, password, and more to connect and access it. Spring
provides the CloudFoundryVcapEnvironmentPostProcessor (http://mng.bz/QWO6)
class that takes all the Cloud Foundry environment variables and provides in form of

Listing 9.20 Cloud Foundry push command to start deployment

Listing 9.21 Sample output of the cf apps command

http://mng.bz/QWO6

420 CHAPTER 9 Deploying Spring Boot applications

Spring Environment. If you have configured Spring spring-boot-starter-actuator
and enabled the env actuator endpoint, you’ll find the Cloud Foundry properties
through /actuator/env endpoint. You can also refer to the java-cfenv library
(https://github.com/pivotal-cf/java-cfenv) for more information on using Cloud
Foundry environment variables.

9.4 Deploying Spring Boot applications in Heroku
In the previous section, you’ve seen how to deploy an application in Cloud Foundry.
In this section, we’ll discuss deploying a Spring Boot application in Heroku (https://
www.heroku.com/). Heroku is another PaaS solution that allows you to build, run,
and execute applications in the cloud. It can run applications written in Ruby,
Node.js, Java, Python, Clojure, Scala, Go, and PHP.

 Heroku takes the application source code along with the dependencies the appli-
cation requires and prepares an artifact that can be executed. For instance, a Spring
Boot application takes the Spring Boot application source code and the pom.xml for
the required dependencies. Heroku uses Git distributed version control system for
deploying the application. Lastly, Heroku uses Dynos (https://devcenter.heroku.com/
articles/dynos) to execute the applications. Dynos are lightweight Linux containers in
which Heroku runs the application. In the next technique, let’s explore how to deploy
a Spring Boot application in Heroku.

9.4.1 Technique: Deploying a Spring Boot application in Heroku

In this technique, we’ll discuss how to deploy a Spring Boot application in Heroku.

PROBLEM

You need to deploy the application in the Heroku cloud platform.

SOLUTION

Heroku is a PaaS solution that allows you to deploy a Spring Boot application in the
Heroku cloud platform with a few steps. To demonstrate this, we’ll use the previously
used Course Tracker Spring Boot application to deploy into Heroku.

To begin with, you need to create a user account in Heroku. You can navigate to
https://signup.heroku.com/ and sign up for a new account. Next, you need to install
Heroku Command Line Interface (CLI) tool on your machine. This CLI provides a
set of commands to interact with the Heroku cloud platform and also allows you to
deploy the application. Refer to https://devcenter.heroku.com/articles/heroku-cli
for more information on installing the CLI in your machine. You are now ready to
start deploying your application.

Source code
The final version of the Spring Boot project is available at http://mng.bz/XWj9.

https://github.com/pivotal-cf/java-cfenv
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://devcenter.heroku.com/articles/dynos
https://devcenter.heroku.com/articles/dynos
https://devcenter.heroku.com/articles/dynos
https://signup.heroku.com/
https://devcenter.heroku.com/articles/heroku-cli
https://devcenter.heroku.com/articles/heroku-cli
http://mng.bz/XWj9

4219.4 Deploying Spring Boot applications in Heroku

 First, log in to Heroku from your terminal, so that you can execute the next set of
commands to proceed with your deployment. Open a terminal and type heroku
login. This command provides an option to authenticate yourself through a browser-
based login. Once authenticated, you will find output similar to the following listing.

heroku login
heroku: Press any key to open up the browser to login or q to exit:

➥ Opening browser to https:/ /cli-

➥ auth.heroku.com/auth/cli/browser/d4da08df-3725-44b6-bf28-

➥ c0a78fbe54e3?requestor=SFMyNTY.g2gDbQAAAA8xMDMuMjE1LjIyNC4xNTFuBgDw-

➥ iCkewFiAAFRgA.6fS4ju_OBxvr9_YQNkSn5Z7UK68CQNULUhh9VEzCVxQ
Logging in... done
Logged in as *****@gmail.com

Next, as mentioned earlier, Heroku uses a Git-distributed version control system for
deployment. Thus, we need to create a Git repository for the Course Tracker applica-
tion. Browse to the root directory of the Course Tracker application and execute the
commands, as shown in the following listing.

git init
git add .
git commit -am "Course Tracker first commit"

Next, to deploy the application in Heroku, we need to provision a new Heroku appli-
cation. We will do that by executing the heroku create command, as shown in the fol-
lowing listing.

heroku create
Creating app... done, ⬢ secure-journey-03985
➥ https:/ /secure-journey-03985.herokuapp.com/ |

➥ https:/ /git.heroku.com/secure-journey-03985.git

The command in the listing also creates a remote repository called Heroku and adds
its reference in your local Git repo. Heroku generates a random name (in this case
secure-journey-03985) for your Spring Boot application.

 In the Course Tracker application, to keep the example simple and easy to exe-
cute, we’ve used the H2 in-memory database. However, it is seldom the case in a pro-
duction application. To demonstrate how to use a mainstream database, we used
PostgreSQL in the application. Refer to the application pom.xml file for related
configuration. Before we proceed with the deployment, let’s attach a PostgreSQL
database to the application. Execute the heroku addons:create heroku-postgresql

Listing 9.22 Login to Heroku

Listing 9.23 Creating a Git repository for the Course Tracker application

Listing 9.24 Provisioning the Heroku application

Initializes an empty
local Git repository

Add all the files to
the repository.

Commits the
changes in the local
Git repository

422 CHAPTER 9 Deploying Spring Boot applications

command from your terminal to create a PostgreSQL database add-on. Once the add-
on is created, Heroku will automatically populate the environment variables SPRING_
DATASOURCE_URL, SPRING_DATASOURCE_USERNAME, and SPRING_DATASOURCE_PASSWORD.
These environment variables allow the Course Tracker application to connect to the
database. Refer to the application.properties file of the Course Tracker application.
Next, we’ll deploy the code by pushing the changes to the remote Heroku master
branch, as shown in the following listing.

c:\sbip\repo\ch09\course-tracker-app-heroku>git push heroku master
Enumerating objects: 41, done.
Counting objects: 100% (41/41), done.
Delta compression using up to 8 threads
Compressing objects: 100% (30/30), done.
Writing objects: 100% (41/41), 64.32 KiB | 5.85 MiB/s, done.
Total 41 (delta 3), reused 0 (delta 0)
remote: Compressing source files... done.
remote: Building source:
remote:
remote: -----> Building on the Heroku-20 stack
remote: -----> Determining which buildpack to use for this app
remote: -----> Java app detected
remote: -----> Installing JDK 11... done
remote: -----> Executing Maven
remote: $./mvnw -DskipTests clean dependency:list install
…
…
remote: https:/ /secure-journey-03985.herokuapp.com/ deployed to Heroku
remote:
remote: Verifying deploys... done.
To https:/ /git.heroku.com/secure-journey-03985.git
 * [new branch] master -> master

In listing 9.25, you may notice that Heroku uses the Maven wrapper (.mvnw) to deploy
the application. Once the application is successfully built and deployed, it is accessible
via https://secure-journey-03985.herokuapp.com. For you, this URL could be differ-
ent, as Heroku uses a random name for the application. You can also run the heroku
open command to automatically open the application URL in a browser window. You
can check the Spring Boot startup logs by accessing the heroku logs command.

DISCUSSION

In this technique, you’ve deployed a Spring Boot application in the Heroku cloud plat-
form. As you’ve noticed, it is extremely easy to build and deploy a Spring Boot applica-
tion in Heroku. By using a few commands, you’ve got a running application with an
HTTPS URL from your source code. The complexity of building, packaging, and
deploying are taken care of by the platform. To make things further simplified, for
Maven projects, Heroku provides the heroku-maven-plugin (https://github.com/
heroku/heroku-maven-plugin). This plugin allows you to deploy the application

Listing 9.25 Deploying the Spring Boot application in Heroku

https://secure-journey-03985.herokuapp.com
https://github.com/heroku/heroku-maven-plugin
https://github.com/heroku/heroku-maven-plugin
https://github.com/heroku/heroku-maven-plugin

4239.5 Running Spring Boot applications as Docker containers

without using a Git repository. You can find a detailed discussion on how to use the
plugin at http://mng.bz/y47p. You can also refer to the Heroku documentation avail-
able at https://devcenter.heroku.com/ for a detailed discussion on various offerings
and configurations.

9.5 Running Spring Boot applications as Docker
containers
In previous sections, we learned a few deployment techniques. For example, the tradi-
tional deployments in which you package and deploy the application yourself into
some server. The Cloud Foundry-based deployment is where you push the executable
to the platform, and it takes care of the deployment. Lastly, we’ve seen the Heroku
cloud platform in which you provide your source code to the platform, and it does the
build, deployment, and execution.

 In this section, we’ll shift our attention to containers and use the most popular
container implementation Docker to run the Course Tracker application as a contain-
erized application. However, before we proceed to containerize the Course Tracker
application, let’s understand what a container is and why you should care about it.

 A container image is a lightweight, standalone, executable software package that
includes everything the application requires to run itself. These include application
components, runtime, system tools, settings, and libraries. A container image turns
into a container at its runtime, as shown in figure 9.6.

The various components to run a container are shown in figure 9.7.
 One of the most important reasons to use a container in the first place is due to its

promise of reliable execution from one environment to another environment. It is a

Container

image

Container 1

Container 2

Container 3
Figure 9.6 A container image
can be used to create one or
more containers.

http://mng.bz/y47p
https://devcenter.heroku.com/

424 CHAPTER 9 Deploying Spring Boot applications

relatively common occurrence that in a typical infrastructure, applications may
behave differently. For instance, we often found that applications working perfectly in
the Dev environment may have some issues while running in UAT. Containers remove
this problem, as it is a standalone package that contains everything the application
requires to run. Thus, if the same image is used to run the application in Dev or UAT,
it is expected to run uniformly.

 Docker is the most popular and dominant container technology platform and can
be used to deal with container and container images. Docker is so popular that it is
almost synonymous with containers and container technology. However, there are
other container platforms other than Docker, such as rkt (pronounced rocket) from
Red Hat and LXD (pronounced lexdi). In this section, we’ll focus on Docker, discuss
creating a Docker image, and running the image as a container.

9.5.1 Technique: Creating a container image and running a Spring Boot
application as a container

In this technique, we’ll demonstrate how to generate a container image and run a
Spring Boot application as a container.

PROBLEM

You are running the Course Tracker application in your Unix server through the
WildFly application server. However, you’ve heard a lot of good things about contain-
ers and want to run the application as a container.

SOLUTION

To proceed with the next technique, you need to install and configure Docker. You
can refer to Docker documentation available at https://www.docker.com/get-started
for a detailed discussion on installing and configuring Docker. You can also refer to

Infrastructure

Host operating system

Container runtime (Docker)

Container

Application 1

bin/lib

Container

Application 2

bin/lib

Figure 9.7 Various components to run a
container. The infrastructure is at the bottom,
and host operating systems run on top of it. A
container runtime environment, such as Docker,
runs on top of the host operating systems. The
containers are run by the container runtime.

https://www.docker.com/get-started

4259.5 Running Spring Boot applications as Docker containers

Docker in Practice (http://mng.bz/M2aQ) by Ian Miell and Aidan Hobson Sayers from
Manning Publications for an in-depth understanding of Docker.

 In this section, we’ll explore the following approaches to Dockerize the Course
Tracker application:

1 Use Dockerfile to create the container image and then run the image to cre-
ate the container.

2 Use Spring Boot built-in containerization (requires Spring Boot version >=2.3).
This uses the Paketo buildpacks (https://paketo.io/) to build the image.

In these approaches, we’ll use H2 in-memory database with the application to keep
the examples simple.

Let’s begin with the first approach. We’ll use a Dockerfile to create the Docker image
for the Course Tracker application. Before we define the Dockerfile, let’s execute
the mvn clean install command to generate the JAR file of the Course Tracker
application.

 Let’s now define the Dockerfile for the Course Tracker application. A Docker-
file is a text file that contains all the commands needed to assemble and create the
image. You can refer to https://docs.docker.com/engine/reference/builder/ for fur-
ther details on Dockerfile. The following listing shows the sample Dockerfile we’ve
created for the Course Tracker application. This file is located under the root direc-
tory of the application.

FROM adoptopenjdk:11-jre-hotspot
ADD target/*.jar application.jar
ENTRYPOINT ["java", "-jar","application.jar"]
EXPOSE 8080

In listing 9.26, the Dockerfile contains the following:

 FROM—We are using adoptopenjdk:11-jre-hotspot as the base image for our
image. A base image is an image upon which your application Docker image is
built.

 ADD—We then add the JARs from the target directory as application.jar in the
image.

 ENTRYPOINT—This is the entry point where you run the image.
 EXPOSE—We expose HTTP port 8080 in the container.

We can now build an image for the Course Tracker application.

Source code
The final version of the Spring Boot project is available at http://mng.bz/aDrj.

Listing 9.26 Dockerfile to create the Docker image for Course Tracker

https://paketo.io/
https://docs.docker.com/engine/reference/builder/
http://mng.bz/M2aQ
http://mng.bz/aDrj

426 CHAPTER 9 Deploying Spring Boot applications

 Next, let’s execute the command, as shown in listing 9.27 to create the image. You
need to execute the command from the location where the Dockerfile is located.

docker build --tag course-tracker:v1 .

In listing 9.27, note the period (.) at the end of the command. This indicates that the
Dockerfile is available in the current directory. Besides, we tag the image with the
name course-tracker:v1 to refer to the image, while creating a container from
the image. Once you execute the command, it will take a while to build the image.
Once the image is successfully built, you can list the image using the command, as
shown in the following listing.

docker image ls

You can now run the image, and a Docker container will be created. The following list-
ing shows the command to run the image.

docker run -p 8080:8080 course-tracker:v1

We’ve used the docker run command to run the container image. We’ve also used a
port mapping of local machine HTTP port 8080 to the container’s HTTP port 8080.
This ensures the HTTP request to the port 8080 in the local machine is forwarded to
the container’s port 8080.

 Once the command runs successfully, you’ll notice the console log of the Course
Tracker application. Open a browser window, and access the http:/ /localhost:8080
URL, then you’ll be redirected to the Course Tracker index page.

 Let’s now briefly discuss the container image structure we’ve created in listing 9.26.
Your Docker container image consists of multiple layers. If you recall, we started with
the base image (adoptopenjdk:11-jre-hotspot). In our Dockerfile, we performed addi-
tional activities, such as adding the JAR file from the target location to the image. This
has created an additional layer on top of the base image. Figure 9.8 shows the notion
of layers in a Docker image.

 If you are interested to see the various layers of the Docker image, you can use the
dive tool (https://github.com/wagoodman/dive) to view the various layers of the cre-
ated image. To view the layers, install Dive, and execute dive course-tracker:lat-
est. Figure 9.9 shows the layers.

 In the Dockerfile, we’ve added the fat JAR inside the image. However, we could
write a better Dockerfile for Spring Boot applications. Instead of adding the com-
plete JAR, we could add the layers from the generated JAR file. Recall from section 9.1
that Spring Boot provides a means to layer the JAR file through the layers.xml file. It

Listing 9.27 Building a Docker image for Course Tracker application

Listing 9.28 Listing the Docker image

Listing 9.29 Docker run command to run the course-tracker image

https://github.com/wagoodman/dive

4279.5 Running Spring Boot applications as Docker containers

also provides the jarmode option to view and extract the layers. Let’s add the JAR lay-
ers in the Docker image instead of adding the complete JAR file. The following listing
shows the updated Dockerfile.

FROM adoptopenjdk:11-jre-hotspot as builder
WORKDIR application
ARG JAR_FILE=target/*.jar
COPY ${JAR_FILE} application.jar
RUN java -Djarmode=layertools -jar application.jar extract

FROM adoptopenjdk:11-jre-hotspot
WORKDIR application
COPY --from=builder application/dependencies/ ./
COPY --from=builder application/spring-boot-loader/ ./

Listing 9.30 Dockerfile to create a better Docker image

Figure 9.8 Various layers in a
container image. These layers are
added on top of the base image as
per the instructions specified in
the Dockerfile. In the example, the
adoptopenjdk:11-jre-hotspot is the
base image, and the Spring Boot
application JAR is added on top of
the base image as a new layer. Dockerfile

ADD
target/*.jar application.jar

FROM
adoptopenjdk:11-jre-hotspot

Figure 9.9 Using dive tool to view the layers inside a Docker image. In the top-left corner is the list of layers. The
first few layers are from the OpenJDK, and the last layer is formed by adding the jars from the target directory.

428 CHAPTER 9 Deploying Spring Boot applications

COPY --from=builder application/snapshot-dependencies/ ./
COPY --from=builder application/application/ ./
ENTRYPOINT ["java", "org.springframework.boot.loader.JarLauncher"]

Listing 9.30 contains a multi-stage Dockerfile. The builder stage (the first part of the
Dockerfile) extracts the directories used later. Each of the COPY commands relates to
the layers extracted by jarmode. Finally, we’ve used the org.springframework.boot
.loader.JarLauncher as the entry point for the application. You can build the image
using the same command shown in listing 9.27. Figure 9.10 shows the image layers.

Now that you’ve seen how to create an image using Dockerfile, let’s move on to
building the Docker image, using Spring Boot’s built-in approach. Previously, you
noticed the deployment using Heroku or Cloud Foundry. With Heroku, you just pro-
vided the source code, and the platform does the rest to build the code, add a run-
time, and make the application available for the end users. Similarly, Spring Boot
provides support to directly build a Docker image from the source code through
Spring Boot Maven (and also Gradle) plugins. Spring Boot uses Cloud Native build-
packs (https:// buildpacks.io/) to achieve this.

 Buildpacks are the part of the platform (e.g., Cloud Foundry) that takes the appli-
cation code and converts it into something that the platform can run. For instance, in
the Cloud Foundry example, its Java buildpack noticed that you’re pushing a JAR file,
and it automatically adds a relevant JRE. The buildpacks allow us to build a Docker-
compatible image we can run anywhere. Let’s see this in action. You can run the com-
mand, as shown in the following listing, to generate the image.

Figure 9.10 Layers of the course-tracker:v2 Docker image. Instead of the fat JAR, the directories are added as layers.

https://buildpacks.io/

4299.6 Deploying Spring Boot applications in a Kubernetes cluster

mvn spring-boot:build-image -Dspring-boot.build-image.imageName=course-

➥ tracker:v3

The command in listing 9.31 builds a Docker image with the name course-tracker:v3.
By default, Spring Boot uses the artifactId:version to build the image. We’ve used
the -Dspring-boot.build-image.imageName=course-tracker:v3 to customize the
image name to course-tracker:v3. You can run the image in the same manner you’ve
executed the earlier images.

DISCUSSION

In this technique, we’ve learned how to build a Docker image from a Spring Boot appli-
cation and run the image as a Docker container. Containers provide excellent portabil-
ity support, as the container images can be run anywhere reliably. In this section, we’ve
executed the Docker images manually using the docker run command. Although this
approach works well, it does not scale. Imagine if you need to run hundreds of contain-
ers for your applications. It becomes quite tedious to run, update, and manage them.
For instance, in a production system, if a container gets terminated for any reason, you
need to ensure that you can bring up a new container. It will be excellent if there is a
tool that could orchestrate the container management process. Thankfully, Kubernetes
is there to address these concerns. Let’s discuss Kubernetes in the next section.

9.6 Deploying Spring Boot applications
in a Kubernetes cluster
These days there is a trend to use containers to package and deploy applications. Specif-
ically, containers are an excellent choice to package microservices along with their
dependencies and configurations. Based on the demand for microservices, you can
increase the number of containers. However, as the applications grow into multiple con-
tainers and span across multiple servers, it becomes quite difficult to manage them.

 Kubernetes provides an open source API to manage how and where to run the
containers. It orchestrates a set of virtual machines, known as a Kubernetes cluster, in
which it schedules and runs the containers. In Kubernetes, containers are packed
inside a pod, which is the fundamental operational unit.

NOTE In this section, we’ll use a single-node Kubernetes cluster created in
the local machine and focus on how to deploy a Spring Boot application into
a Kubernetes cluster. If you are not familiar with Kubernetes, you can refer to
Kubernetes documentation at https://kubernetes.io/ for an understanding
and installation.

9.6.1 Technique: Deploying a Spring Boot application
in a Kubernetes cluster

In this technique, we’ll demonstrate how to deploy a Spring Boot application in a
Kubernetes cluster.

Listing 9.31 Building a Docker image with Spring Boot Maven plugin

https://kubernetes.io/

430 CHAPTER 9 Deploying Spring Boot applications

PROBLEM

You’ve explored containerization and are fascinated by the way it works. However, you
understand that manually managing containers for a large application is a tedious task,
as there will be so many containers. You heard that Kubernetes is a container orchestra-
tion tool that can orchestrate the containers automatically and want to try it out.

SOLUTION

Using the previous technique, we created a Docker container image for the Spring
Boot application. We’ll use the same course-tracker:v3 image in this technique.
However, before proceeding with Kubernetes deployment let’s tag the image. The fol-
lowing listing shows the command to tag the image.

docker tag course-tracker:v3 musibs/course-tracker

In listing 9.32, we used the docker tag command to tag the image. The first part of
the Docker tag (course-tracker:v3) command specifies the existing image, and the
later part (musibs/course-tracker) is the tagged image with the format repository/
image. We haven’t specified any version here, and the Docker takes the version as the
default value latest.

Once you are done with the tagging, you may push the image to the Docker registry.
The Docker registry is a storage and distribution system for Docker images. You can
pull images to your local machine from the Docker registry or push images from your
local machine to it.

 In this example, we’ll use the Docker Hub (https://hub.docker.com/) as the
Docker registry to store the image. Kubernetes pulls the Docker image from the
Docker registry into the kubelet (the node where the image is run in a Kubernetes
pod), which are not usually connected to the Docker daemon. In this example,
though, as we are using the Kubernetes cluster in the local machine, you can skip this
step. For completeness, be aware that you can use the docker push command (e.g.,
docker push musibs/course-tracker) to push the image to the Docker hub.

 Now that we are ready with the docker image of the application, we are ready to
run the application in Kubernetes. We need the following two things:

1 The Kubernetes CLI (kubectl)
2 A Kubernetes cluster to deploy the application

To interact with Kubernetes, you use the kubectl command to run commands against
the Kubernetes cluster. Refer to https://kubernetes.io/docs/tasks/tools/ to install

Listing 9.32 Docker tag command to tag the image

Source code
The final version of the Spring Boot project is available at http://mng.bz/xvpW.

http://mng.bz/xvpW
https://hub.docker.com/
https://kubernetes.io/docs/tasks/tools/

4319.6 Deploying Spring Boot applications in a Kubernetes cluster

kubectl. For a Kubernetes cluster, we’ll use Kind (https://kind.sigs.k8s.io/) to create
a local Kubernetes cluster. Once Kind is installed, run the following command, as
shown in the following listing, to create a Kubernetes cluster.

kind create cluster

Creating cluster "kind" ...
 ✓ Ensuring node image (kindest/node:v1.20.2)
 ✓ Preparing nodes
 ✓ Writing configuration
 ✓ Starting control-plane
 ✓ Installing CNI
 ✓ Installing StorageClass
Set kubectl context to "kind-kind"
You can now use your cluster with:

kubectl cluster-info --context kind-kind

Thanks for using kind!

Once the cluster is successfully created, Kind automatically configures the Kubernetes
CLI to point to the newly created cluster. To see that everything is set up as expected,
execute the command, as shown in the following listing.

kubectl cluster-info

Kubernetes control plane is running at https:/ /127.0.0.1:49672
KubeDNS is running at https:/ /127.0.0.1:49672/api/v1/namespaces/kube-

➥ system/services/kube-dns:dns/proxy

To further debug and diagnose cluster problems, use 'kubectl cluster-info

➥ dump'.

To deploy an application to Kubernetes, we specify the configurations in a YAML con-
figuration file. However, instead of defining the configurations manually, let’s use the
kubectl command to generate them for us. Create a new directory called k8s any-
where in your machine and run the command, as shown in the following listing from
the k8s directory.

kubectl create deployment course-tracker --image musibs/course-tracker –

➥ dry-run=client -o=YAML > deployment.yaml

The command in listing 9.35 creates the deployment.yaml configuration file in the
k8s directory. The –-dry-run=client option allows us to preview the deployment
object that the kubectl create deployment command creates. The -o option specifies

Listing 9.33 Create a local Kubernetes cluster with Kind

Listing 9.34 Kubernetes cluster information

Listing 9.35 Generate the deployment YAML file

https://kind.sigs.k8s.io/

432 CHAPTER 9 Deploying Spring Boot applications

that the command output is to be written in YAML format. Listing 9.36 shows the con-
tents of the generated file.

apiVersion: apps/v1
kind: Deployment
metadata:
 creationTimestamp: null
 labels:
 app: course-tracker
 name: course-tracker
spec:
 replicas: 1
 selector:
 matchLabels:
 app: course-tracker
 strategy: {}
 template:
 metadata:
 creationTimestamp: null
 labels:
 app: course-tracker
 spec:
 containers:
 - image: musibs/course-tracker
 name: course-tracker
 resources: {}
status: {}

The deployment.yaml file contains the specifications, such as the image to be used,
how many containers to run, and more. Refer to the Kubernetes documentation for a
detailed discussion on the purpose of various tags.

 The deployment.yaml file specifies to Kubernetes how to deploy and manage the
application, but it does not allow the application to be a network service to other
applications. To do that, we need a Kubernetes Service resource. Execute the com-
mand, as shown in the following listing, in the k8s directory to generate the YAML for
the service resource.

kubectl create service clusterip course-tracker-service --tcp 80:8080 -o

➥ yaml --dry-run=client > service.yaml

Listing 9.38 shows the generated YAML configuration for the service.

apiVersion: v1
kind: Service
metadata:

Listing 9.36 The generated deployment.yaml file

Listing 9.37 The Kubectl command to create a service

Listing 9.38 The generated service.yaml file

4339.6 Deploying Spring Boot applications in a Kubernetes cluster

 creationTimestamp: null
 labels:
 app: course-tracker-service
 name: course-tracker-service
spec:
 ports:
 - name: 80-8080
 port: 80
 protocol: TCP
 targetPort: 8080
 selector:
 app: course-tracker-service
 type: ClusterIP
status:
 loadBalancer: {}

Let’s now apply the YAML files (from the k8s directory) to Kubernetes, as shown in
the following listing.

kubectl apply -f .

The command in listing 9.39 creates a new deployment and service. Execute the com-
mand in listing 9.40 to get a status of the created Deployment and Service.

kubectl get all

You’ll notice an output similar to listing 9.41.

NAME READY STATUS RESTARTS AGE

pod/course-tracker-84f4d94d5d-gbw99 1/1 Running 0 25m

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

service/course-tracker-service ClusterIP 10.96.54.100 <none> 80/TCP 25m

service/kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 3h36m

NAME READY UP-TO-DATE AVAILABLE AGE

deployment.apps/course-tracker 1/1 1 1 25m

NAME DESIRED CURRENT READY AGE

replicaset.apps/course-tracker-84f4d94d5d 1 1 1 25m

The last change we need to perform is to use port forward, so we can make an HTTP
request to the application. This is needed, as the service we’ve defined is accessible in
the Kubernetes cluster network and not accessible outside. Let’s execute the following
port-forward command, as shown in listing 9.42. Note that this command runs

Listing 9.39 Apply the configuration in a Kubernetes cluster through kubectl

Listing 9.40 Get the status of all Kubernetes components

Listing 9.41 Status of all Kubernetes components

434 CHAPTER 9 Deploying Spring Boot applications

foreground, and the command does not return. Thus, you can open a new terminal
window and execute the command.

kubectl port-forward pod/course-tracker-84f4d94d5d-gbw99 8080:8080

In your case, the pod name could be different. You can find the pod name (high-
lighted in bold) in listing 9.41 Once the command runs successfully, you’ll see the fol-
lowing output, as shown in listing 9.43.

Forwarding from 127.0.0.1:8080 -> 8080
Forwarding from [::1]:8080 -> 8080

That’s all. You can now open a browser window and access the http:/ /localhost:8080
URL. You’ll notice that you are redirected to the application index page.

DISCUSSION

Using this technique, we’ve explored how to run a container image in a Kubernetes
cluster. We created a local Kubernetes cluster with the use of Kind. We then defined a
deployment and service using the kubectl command. After that, we applied the con-
figurations, so the resources could be created by Kubernetes. Lastly, we applied port
forwarding to the Kubernetes pod, so the application would be accessible outside of
the Kubernetes cluster.

9.7 Deploying Spring Boot applications
in Red Hat OpenShift
Red Hat OpenShift is an enterprise Kubernetes platform with support for several
cloud providers. Previously, you’ve explored how to deploy a Docker container in a
local Kubernetes cluster. Red Hat OpenShift provides the managed Kubernetes plat-
form, on which you can deploy your application. You can find more details about vari-
ous Red Hat OpenShift offerings at https://cloud.redhat.com/learn/what-is-openshift.
In this section, we’ll demonstrate how to deploy a Spring Boot application in the Red
Hat OpenShift platform via the Red Hat OpenShift developer console.

9.7.1 Technique: Deploying a Spring Boot application
in the Red Hat OpenShift platform

In this technique, we’ll discuss how to deploy a Spring Boot application in the Red
Hat OpenShift platform.

PROBLEM

OpenShift provides a self-service platform to create, modify, and deploy applications
and provides faster development and release cycles. You need to deploy the Course
Tracker application into the Red Hat OpenShift platform.

Listing 9.42 Port forwarding to enable HTTP requests to the application

Listing 9.43 Successful port forward output

https://cloud.redhat.com/learn/what-is-openshift

4359.7 Deploying Spring Boot applications in Red Hat OpenShift

SOLUTION

In this technique, you’ll learn how to deploy a Spring Boot application in the Red Hat
OpenShift platform. There are several ways a Spring Boot application can be
deployed in OpenShift, including Dockerfile, container image, Git, and others. In
this section, we’ll demonstrate how to deploy an application through GitHub.

To begin with, you need to create a Red Hat account to access the OpenShift plat-
form. You can visit http://mng.bz/enZ9 for a developer sandbox account. If you don’t
have an existing Red Hat account, create a new one with the required details. If you
already have an account, then log in with your credentials. Once successfully logged
in, you can access the OpenShift Developer sandbox account. You’ll find a page simi-
lar to that in figure 9.11.

In the top left corner, switch to the Developer View from Administrator View, and
you’ll find a screen similar to that in figure 9.12.

 Using this technique, we’ll show you how to deploy a Spring Boot application
using the From Git option. We’ve already created a GitHub repository for the Course
Tracker application, and we’ll use the same. You can access this repository at http://
mng.bz/p275. Click on the From Git option in the Developer Sandbox page, and
you’ll be redirected to the next page, as shown in figure 9.13.

Source code
The final version of the Spring Boot project is available at http://mng.bz/g42e.

Figure 9.11 Red Hat Developer sandbox home page with administrator views. By default, Red Hat creates two
projects, dev and stage, for us.

http://mng.bz/g42e
http://mng.bz/enZ9
http://mng.bz/p275
http://mng.bz/p275
http://mng.bz/p275

436 CHAPTER 9 Deploying Spring Boot applications

Figure 9.12 Red Hat sandbox Developer View. From this screen, you can select your application configuration
for deployment. For instance, you can select the From Git option and provide your Git repository path.

Figure 9.13 The Import from Git page to create a deployment from Git

4379.7 Deploying Spring Boot applications in Red Hat OpenShift

Provide the GitHub repository URL for the Course Tracker application, and click
Create. After successful deployment, you’ll find a page similar to that in figure 9.14.

You can find the application URL in the bottom right corner in the Routes section.
Click on the link, and you’ll be redirected to the index page of the Course Tracker
application.

DISCUSSION

With this technique, you’ve explored how to deploy a Spring Boot application in the
Red Hat OpenShift platform. OpenShift supports a variety of approaches for deploy-
ing an application. For instance, in this example, you’ve provided the application
source code from the GitHub repository, and OpenShift does the heavy lifting for us.
It has taken the source code, built it, deployed it into a Kubernetes Pod, and made the
application available to the external world.

 OpenShift provides many features and configurations you can use in your applica-
tion. For instance, in your application, you can add various health checks, such as
startup probe, readiness probe, liveness probe, and others. These probes allow you to
verify your application status. For instance, the liveness probe checks whether the
application container is running. Failure of the liveness probe means the container is
killed. To learn more about OpenShift, you can play around with the OpenShift
Developer sandbox available at https://developers.redhat.com/developer-sandbox.

Figure 9.14 Course Tracker application deployed successfully

https://developers.redhat.com/developer-sandbox

438 CHAPTER 9 Deploying Spring Boot applications

Summary
 We discussed deploying a Spring Boot application as an executable JAR file,

and deployed it as a WAR file in the WildFly application server.
 We introduced deploying Spring Boot applications to Cloud Foundry and

Heroku.
 We covered running Spring Boot applications as Docker containers and deploy-

ing them into Kubernetes clusters.
 We introduced deploying a Spring Boot application as a container in the Red

Hat OpenShift platform.

Part 5

Part 5 of the book contains one chapter, which discusses Spring Boot with
Kotlin, Native Image, and GraphQL. Chapter 10 starts with using Kotlin and
Kotlin DSLs in the Spring Boot application. It then demonstrates how to use
Spring Native in the Spring Boot application and generate a GraalVM native
image. Finally, this chapter shows how to use GraphQL as an alternative to REST-
style API development in a Spring Boot application.

441

Spring Boot with
Kotlin, Native Image,

and GraphQL

In the previous chapter, you explored how to deploy Spring Boot applications on
various platforms. In this final chapter of this book, we’ll discuss Spring Boot with
Kotlin, GraalVM Native Image, and GraphQL.

 Spring Framework 5.0 provided extensive support for Kotlin programming lan-
guage, and the nature of the support is such that you can develop Spring Boot applica-
tions with Kotlin without even writing a single line of Java code. Besides, Spring Boot
provides several domain-specific languages (DSLs) to further simplify the code syntax.

 GraalVM Native Image and GraphQL are two major technologies for which
Spring Boot extends its support. Currently, these technologies have experimental
support in Spring Boot, and features are under development. GraalVM Native
Image turns the Spring Boot applications into an architecture-specific native exe-
cutable, which has a faster start-up time and has a smaller memory footprint.
GraphQL offers an alternative approach to REST APIs to develop efficient APIs.
Let’s see these in practice with Spring Boot.

This chapter covers
 Using Spring Boot with Kotlin and Kotlin DSLs

 Using Spring Boot Native Image with GraalVM

 Using Spring Boot with GraphQL

442 CHAPTER 10 Spring Boot with Kotlin, Native Image, and GraphQL

10.1 Spring Boot with Kotlin
From its inception, Spring has been a Java-based framework and developers primarily
use Java to develop Spring applications. Spring Framework 5.0 included dedicated
support for the Kotlin programming language (http://mng.bz/Bxp0). With this, you
can develop Spring applications with Kotlin without using Java. In this section, we’ll
introduce you to using Kotlin to develop Spring Boot applications.

 Spring provides several Kotlin DSLs that makes code clean and concise. We’ll
explore some of the Kotlin DSLs in this section. However, before continuing with the
Kotlin DSLs, let’s explore how to develop a Spring Boot application with Kotlin. We’ll
rewrite the Course Tracker application with Kotlin.

Note
In this chapter, we will explore the use of Kotlin, GraalVM, and GraphQL along with
Spring Boot. Note that all these topics are quite large, and there could be dedicated
books on each of these subjects. Thus, in this book, we’ll not deep dive into any of
these technologies and just focus on introducing you to these technologies in the
context of Spring Boot. Once you understand the basics, we recommend you read
more of these subjects and explore more on your own or refer to dedicated texts on
the topics. Following are a few useful documentation references:

 Kotlin—https://kotlinlang.org/docs/home.html
 GraalVM—https://www.graalvm.org/docs/introduction/
 Spring Native—http://mng.bz/Dx6n
 GraphQL—https://graphql.org/learn/
 Spring GraphQL—http://mng.bz/la76

Note
Kotlin is a full-fledged programming language with many excellent features, and it is
beyond the scope of this text to provide in-depth coverage. In this chapter, we intend
to show you how you can use Kotlin with Spring Boot and Spring Boot Kotlin DSLs. To
keep the focus on Spring Boot, we won’t dive into Kotlin and its features here. Thus, if
you are not familiar with Kotlin, we recommend that you refer to Kotlin documentation.

For a better understanding of Kotlin, you can refer to the documentation available at
https://kotlinlang.org/docs/home.html. Kotlin also provides a playground available
at https://play.kotlinlang.org/, where you can try out various Kotlin features. The
https://play.kotlinlang.org/byExample/overview provides a good starting point if you
are completely new to Kotlin. You can also refer to Manning’s Functional Program-
ming in Kotlin by Marco Vermeulen, Rúnar Bjarnason, and Paul Chiusano (http://mng
.bz/VlAP) to learn Kotlin.

https://kotlinlang.org/docs/home.html
https://play.kotlinlang.org/
https://kotlinlang.org/docs/home.html
https://www.graalvm.org/docs/introduction/
http://mng.bz/Dx6n
https://play.kotlinlang.org/byExample/overview
http://mng.bz/la76
http://mng.bz/VlAP
http://mng.bz/VlAP
http://mng.bz/VlAP
https://graphql.org/learn/

44310.1 Spring Boot with Kotlin

10.1.1 Technique: Developing a Spring Boot application with Kotlin

In this technique, we’ll demonstrate how to develop Spring Boot application with Kotlin.

PROBLEM
You have developed Spring Boot applications with Java. You recently learned Kotlin
and were impressed with its conciseness, null safety, extensions, and many other pow-
erful features. As Spring provides dedicated support for Kotlin, you can develop Spring
Boot applications with Kotlin.

SOLUTION

In this section, we’ll rewrite the Course Tracker Spring Boot application with Kotlin.
We are using the same application, as we are already familiar with it, and we can keep
ourselves focused on Kotlin-specific changes.

To start with, let’s create a new Spring Boot application through Spring Initializr
(https://start.spring.io/) with the language as Kotlin. Select Web, validation, JPA, h2,
and Thymeleaf dependencies. You can refer to appendix A of this book for more
information about using Spring Initializr. We’ll also need the Web JAR dependencies
for the UI. The following listing shows the final pom.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http:/ /maven.apache.org/POM/4.0.0"

➥ xmlns:xsi=”http:/ /www.w3.org/2001/XMLSchema-instance”

➥ xsi:schemaLocation="http:/ /maven.apache.org/POM/4.0.0

➥ https:/ /maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.6.3</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>
 <groupId>com.manning.sbip.ch10</groupId>
 <artifactId>course-tracker-kotlin-app</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <name>course-tracker-kotlin-app</name>
 <description>Course Tracker Kotlin Application</description>
 <properties>
 <java.version>17</java.version>
 <kotlin.version>1.6.10</kotlin.version>
 </properties>
 <dependencies>
 <dependency>

Source code
The final version of the Spring Boot project is available at http://mng.bz/Axez.

Listing 10.1 Maven pom.xml file

https://start.spring.io/
http://mng.bz/Axez

444 CHAPTER 10 Spring Boot with Kotlin, Native Image, and GraphQL

 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-thymeleaf</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-validation</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <dependency>
 <groupId>com.fasterxml.jackson.module</groupId>
 <artifactId>jackson-module-kotlin</artifactId>
 </dependency>
 <dependency>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>kotlin-reflect</artifactId>
 </dependency>
 <dependency>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>kotlin-stdlib-jdk8</artifactId>
 </dependency>
 <dependency>
 <groupId>org.webjars</groupId>
 <artifactId>bootstrap</artifactId>
 <version>4.4.1</version>
 </dependency>
 <dependency>
 <groupId>org.webjars</groupId>
 <artifactId>jquery</artifactId>
 <version>3.4.1</version>
 </dependency>
 <dependency>
 <groupId>org.webjars</groupId>
 <artifactId>webjars-locator</artifactId>
 <version>0.38</version>
 </dependency>

 <dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <scope>runtime</scope>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

44510.1 Spring Boot with Kotlin

 <build>
 <sourceDirectory>${project.basedir}/src/main/kotlin</sourceDirectory>

<testSourceDirectory>${project.basedir}/src/test/kotlin</testSourceDirectory>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 <plugin>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>kotlin-maven-plugin</artifactId>
 <configuration>
 <args>
 <arg>-Xjsr305=strict</arg>
 </args>
 <compilerPlugins>
 <plugin>spring</plugin>
 </compilerPlugins>
 </configuration>
 <dependencies>
 <dependency>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>kotlin-maven-allopen</artifactId>
 <version>${kotlin.version}</version>
 </dependency>
 </dependencies>
 </plugin>
 </plugins>
 </build>

</project>

In listing 10.1, you may notice additional dependencies and plugins are config-
ured, as we’ve selected the language type as Kotlin. Let’s discuss each of these
dependencies and plugins:

 jackson-module-kotlin—This dependency provides support serialization and
deserialization for Kotlin classes and data classes (https://kotlinlang.org/docs/
data-classes.html). As we have included the spring-boot-starter-web depen-
dency in the application, this is included automatically. You can find more
details about this dependency at https://github.com/FasterXML/jackson-module-
kotlin.

 kotlin-reflect—This is the Kotlin reflection library. Like Java, Kotlin also
provides support for reflection to allow introspecting the Kotlin program at
runtime. To avoid unnecessary bloating of the runtime libraries, Kotlin distrib-
utes the reflection features separately with the kotlin-reflect dependency.
You can find more details on this at https://kotlinlang.org/docs/reflection.html.

 kotlin-stdlib-jdk8—Kotlin provides its standard library through the kotlin-
stdlib dependency. The kotlin-stdlib-jdk8 is the Java 8 extension of the

https://kotlinlang.org/docs/data-classes.html
https://kotlinlang.org/docs/data-classes.html
https://kotlinlang.org/docs/data-classes.html
https://github.com/FasterXML/jackson-module-kotlin
https://github.com/FasterXML/jackson-module-kotlin
https://kotlinlang.org/docs/reflection.html

446 CHAPTER 10 Spring Boot with Kotlin, Native Image, and GraphQL

kotlin-stdlib dependency. You can find more details about kotlin-stdlib at
https://kotlinlang.org/api/latest/jvm/stdlib/.

 kotlin-maven-plugin—This plugin compiles Kotlin sources and modules.
The -Xjsr305=strict enables strict support for JSR 305, which deals with null
safety (https://kotlinlang.org/docs/null-safety.html) in the application.

Next, let’s create the Course class, as shown in the following listing.

package com.manning.sbip.ch10.model

import javax.persistence.*;
import javax.validation.constraints.*;

@Entity
@Table(name = "Courses")
class Course(

 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 @Column(name = "ID")
 var id: Long? = 0,

 @Column(name = "NAME")
 @NotEmpty(message = "Course name field can't be empty")
 var name: String? = "",

 @Column(name = "CATEGORY")
 @NotEmpty(message = "Course category field can't be empty")
 var category: String? = "",

 @Column(name = "RATING")
 @Min(value = 1)
 @Max(value = 5)
 var rating : Int? = 0,

 @Column(name = "DESCRIPTION")
 @NotEmpty(message = "Course description field can't be empty")
 var description: String? = ""
)

Next, let’s define the data access layer. We’ll define the CourseRepository interface,
as shown in the following listing.

package com.manning.sbip.ch10.repository

import com.manning.sbip.ch10.model.Course
import org.springframework.data.repository.CrudRepository
import org.springframework.stereotype.Repository

Listing 10.2 The Course JPA entity

Listing 10.3 The CourseRepository interface

We are using the @Entity, @Table, @Id,
@GeneratedValue, and @GeneratedType
from this package.

We are using the @NotEmpty,
@Min, and @Max annotations
from this package.

We declare a
variable with the var
keyword in Kotlin.
Also, the type of the
variable is declared
after the variable
declaration. The ?
along with the type
indicates that the
variable can contain
a null value. By
default, variables in
Kotlin can’t have
null values.

https://kotlinlang.org/api/latest/jvm/stdlib/
https://kotlinlang.org/docs/null-safety.html

44710.1 Spring Boot with Kotlin

@Repository
interface CourseRepository : CrudRepository<Course, Long>

Next, let’s define the service layer. First, we’ll create an interface with a list of operations
available in the service layer. The following listing shows the CourseService interface.

package com.manning.sbip.ch10.service

import com.manning.sbip.ch10.model.Course

interface CourseService {
 fun createCourse(course: Course): Course
 fun findCourseById(courseId: Long): Course
 fun findAllCourses(): Iterable<Course>
 fun updateCourse(courseId: Long, updatedCourse: Course): Course
 fun deleteCourseById(courseId: Long)
}

Next, let’s provide an implementation of this interface. The following listing shows
the DefaultCourseService class.

package com.manning.sbip.ch10.service

import com.manning.sbip.ch10.exception.CourseNotFoundException
import com.manning.sbip.ch10.model.Course
import com.manning.sbip.ch10.repository.CourseRepository
import org.springframework.http.HttpStatus
import org.springframework.stereotype.Service

@Service
class DefaultCourseService (private val courseRepository: CourseRepository)

➥ : CourseService {

 override fun createCourse(course: Course): Course =

➥ courseRepository.save(course)

 override fun findCourseById(courseId: Long): Course =

➥ courseRepository.findById(courseId)
 .orElseThrow {

➥ CourseNotFoundException(HttpStatus.NOT_FOUND, "No course with supplied

➥ course id was found") }

 override fun findAllCourses(): Iterable<Course> =

➥ courseRepository.findAll()

 override fun updateCourse(courseId: Long, updatedCourse: Course):

➥ Course {
 return if(courseRepository.existsById(courseId)) {
 courseRepository.save(

Listing 10.4 The CourseService interface

Listing 10.5 The DefaultCourseService class

In Kotlin, we declare
a function with the
fun keyword.

448 CHAPTER 10 Spring Boot with Kotlin, Native Image, and GraphQL

 Course(
 id = updatedCourse.id,
 name = updatedCourse.name,
 category = updatedCourse.category,
 rating = updatedCourse.rating,
 description = updatedCourse.description
)
)
 }
 else throw CourseNotFoundException(HttpStatus.NOT_FOUND, "No course

➥ with supplied course id was found")
 }

 override fun deleteCourseById(courseId: Long) {
 return if (courseRepository.existsById(courseId)) {
 courseRepository.deleteById(courseId)
 }
 else throw CourseNotFoundException(HttpStatus.NOT_FOUND, "No course

➥ with supplied course id was found")
 }
}

Next, let’s define the custom CourseNotFoundException class. We are throwing this
exception if there is an attempt to delete or update a course that does not exist. The
following listing shows this class.

package com.manning.sbip.ch10.exception

import org.springframework.http.HttpStatus

class CourseNotFoundException(status: HttpStatus, message: String) :

➥ RuntimeException()

You can find the Course Tracker HTML and CSS files in the project source code avail-
able on GitHub. These are the same files we’ve used previously in the application.
Let’s start the application using the mvn spring-boot:run command. You can access
http:/ /localhost:8080 from your browser to find the index page of the application.

DISCUSSION
In this section, you’ve explored the use of Kotlin in a Spring Boot application. We’ve
shown you the previously developed Java-based Couse Tracker application with Kotlin.
As you may have already noticed, there are not many differences in terms of the appli-
cation design from the Java version. Thus, using Kotlin programming language in a
Spring Boot application is a matter of preference of the user. The main benefit of
using Kotlin over Java is that Kotlin provides several built-in features, such as null-
safety, when expressions, and others, and its concise way of coding. There are several
Kotlin DSLs that make the code less verbose and clean as you’ll see in the upcoming
technique. In the next technique, we’ll discuss some of these DSLs.

Listing 10.6 The CourseNotFoundException class

44910.1 Spring Boot with Kotlin

10.1.2 Technique: Securing a Spring Boot Kotlin application
with Spring Security

In this technique, we will discuss how to secure a Spring Boot Kotlin application
using Spring Security.

PROBLEM

With the previous technique, you developed a Spring Boot application with Kotlin.
You need to secure the application with Spring Security.

SOLUTION

The Spring Boot Kotlin application developed in the previous technique works well
but has one issue: there is no security mechanism in place. Let’s enable form-based
login to secure the application access. Form-based login allows the user to log in to
the application with a login form.

To continue with this technique, you can continue with the Spring Boot Kotlin appli-
cation used in the previous technique. As we want to enable security through Spring
Security, we need to introduce the spring-boot-starter-security in the pom.xml
file. Include the following dependency in your Spring Boot application pom.xml, as
shown in the following listing.

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
</dependency>

Next, we’ll enable the Spring Security configuration in the application. Listing 10.8
shows the KotlinSecurityConfiguration class that contains the necessary security
configurations to enable form-based security in the Course Tracker application.

package com.manning.sbip.ch10.security

//imports

@EnableWebSecurity
class KotlinSecurityConfiguration : WebSecurityConfigurerAdapter(),

➥ ApplicationContextInitializer<GenericApplicationContext> {

Source code
The final version of the Spring Boot project is available at http://mng.bz/Zz1P.

Listing 10.7 The Spring Boot starter dependency

Listing 10.8 The KotlinSecurityConfiguration class

The KotlinSecurityConfiguration
class extends WebSecurityConfigurerAdapter

and implements the ApplicationContextInitializer
interface.

https://shortener.manning.com/Zz1P

450 CHAPTER 10 Spring Boot with Kotlin, Native Image, and GraphQL

 val beans = beans {
 bean("passwordEncoder") {
 BCryptPasswordEncoder()
 }
 bean {
 fun user(user : String, password: String, vararg roles :

➥ String) = User
 .builder()
 .username(user)
 .password(ref<PasswordEncoder>().encode(password))
 .roles(*roles)
 .build()

 InMemoryUserDetailsManager(user("user", "password", "USER"),

➥ user("admin", "password", "ADMIN"))
 }
 }

override fun initialize(applicationContext: GenericApplicationContext){
 beans.initialize(applicationContext)
 }

 override fun configure(http: HttpSecurity?) {
 http {
 formLogin {
 loginPage = "/login"
 failureUrl = "/login-error"
 }
 authorizeRequests {
 authorize("/login", permitAll)
 authorize("/login-error", permitAll)
 authorize(anyRequest, authenticated)
 }
 }
 }

}

If you’ve gone through the technique in section 5.3.2 in chapter 5, then the code snip-
pet in listing 10.8 should look familiar to you. Nonetheless, it’s the same Spring Secu-
rity configuration that enables form-based, in-memory authentication in the Course
Tracker application. However, the code in listing 10.8 is in Kotlin, and more precisely,
we are using Kotlin’s Spring Beans and Spring Security DSLs. The DSL provides syn-
tactic sugar on top of existing APIs that make the code more expressive, concise, and
readable.

 In listing 10.8, we’ve defined passwordEncoder and the InMemoryUserDetails-
Manager beans through the Beans DSL. The passwordEncoder bean definition is
straightforward. We’ve created the BCryptPasswordEncoder bean. If you recall, a
password encoder encodes a plain-text password to a scrambled text for security

Defining the passwordEncoder,
InMemoryUserDetailsManager beans, using the
Spring Boot Kotlin Beans DSL. Note the concise
nature of the code due to the use of beans DSL.

Overidden method of ApplicationContextInitializer.
This is needed to initialize the beans defined previously.

Overidden method of
WebSecurityConfigurerAdapter
class. We are using the Spring
Security Kotlin Beans DSL.
Again, note the use of the
DSL and how concisely the
code is written.

45110.1 Spring Boot with Kotlin

purposes. Next, we are defining the InMemoryUserDetailsManager bean, as shown
in the following listing.

bean {
 fun user(user : String, password: String, vararg roles :

➥ String) =

➥ User.builder().username(user).password(ref<PasswordEncoder>().encode(pa

➥ ssword)).roles(*roles).build()
 InMemoryUserDetailsManager(user("user", "password", "USER"),

➥ user("admin", "password", "ADMIN"))
 }

To define the InMemoryUserDetailsManager bean, we’ve first created a function
called user that allows us to define Spring Security User instances. Pay attention to
how we are referencing the other passwordEncoder bean to encode the password.
We’ve created two users, user and admin, in the InMemoryUserDetailsManager bean.

 In the KotlinSecurityConfiguration class, we are extending the WebSecurity-
ConfigurerAdapter class, so we can customize the HttpSecurity configuration. We’ve
overridden the configure() method to configure the form-based login, as shown in
the following listing.

override fun configure(http: HttpSecurity?) {
 http {
 formLogin {
 loginPage = "/login"
 failureUrl = "/login-error"
 }
 authorizeRequests {
 authorize("/login", permitAll)
 authorize("/login-error", permitAll)
 authorize(anyRequest, authenticated)
 }
 }
}

In listing 10.10, we used the Spring Security Kotlin DSL to define the HTTP security
configuration. We enabled form-based login with login URL as /login and failed
login URL as /login-error. Also, we are allowing access to /login and /login-error
endpoints to all users. Any other endpoints (anyrequest) requires users to be authen-
ticated. Next, we’ll configure the following property in the application.properties, as
shown in the following listing.

context.initializer.classes=com.manning.sbip.ch10.security.KotlinSecurityCo

➥ nfiguration

Listing 10.9 The InMemoryUserDetailsManager bean definition

Listing 10.10 Customizing HttpSecurity configuration

Listing 10.11 The context.initializer.classes property

452 CHAPTER 10 Spring Boot with Kotlin, Native Image, and GraphQL

In listing 10.11, we are configuring the context.initializer.classes property for
the KotlinSecurityConfiguration class, so the beans defined in the class are initial-
ized. Next, let’s define the LoginController class that defines the /login and
/login-error endpoints. This Spring controller class is shown in the following listing.

package com.manning.sbip.ch10.controller

import org.springframework.stereotype.Controller
import org.springframework.ui.Model
import org.springframework.ui.set
import org.springframework.web.bind.annotation.GetMapping

@Controller
class LoginController {

 @GetMapping("/login")
 fun login(): String {
 return "login"
 }

 @GetMapping("/login-error")
 fun loginError(model: Model): String {
 model["loginError"] = true
 return "login"
 }
}

The /login endpoint returns the user to login.html page. The /login-error end-
point redirects the user to the login page with the loginError flag set to true. This
flag is used in the login.html page to display that the user login has failed.

 Let’s now start the application and access the http:/ /localhost:8080 URL from the
browser. You’ll notice you are redirected to the application login page. Use any of the
configured username and password to log in to the application. For instance, you can
use the username as user and password as password to log in. For a successful login,
you’ll be redirected to the application index page.

DISCUSSION

In this technique, we have shown you how to secure a Spring Boot Kotlin application
with Spring Security DSLs. We’ve also demonstrated how to use the Spring Beans
Kotlin Beans DSL to define the bean definitions. These DSLs provide a very neat and
clean approach to writing the code. There is the Spring Router Kotlin DSL that allows
you to define the REST endpoints. You can find an example of the router DSL avail-
able at http://mng.bz/REdK.

Listing 10.12 The LoginController class

http://mng.bz/REdK

45310.2 Introducing Spring Native

10.2 Introducing Spring Native
Spring Native provides support to compiling Spring applications to architecture-specific
native executables using the GraalVM native-image compiler. Native images offer sev-
eral benefits compared to the traditional JVM-based approach in terms of a fast startup
and a smaller memory footprint. A native image platform, such as GraalVM, statically
analyzes the application source code and the classpath at compilation time. It consid-
ers only the codebase that will be used at runtime and discards everything else. This
enables the native images to contain only the contents required at runtime.

 In this section, we’ll focus on Spring Native with GraalVM (https://www.graalvm
.org/) and explore the approaches to using GraalVM with Spring Boot applications.
However, before we dive into the use of it, let’s understand GraalVM.

10.2.1 Introduction to GraalVM

GraalVM is a high-performance JDK distribution from Oracle that aims to acceler-
ate the execution of Java and other JVM applications. It also supports non-JVM lan-
guages, such as JavaScript, Ruby, Python, and several others. This polyglot capability
of GraalVM allows mixing multiple languages in an application. Before we explore
some of these features, let’s understand the high-level architecture of GraalVM, as
shown in figure 10.1.

The GraalVM includes an advanced just-in-time (JIT) compiler on top of HotSpot
Virtual Machine. It also includes the Truffle language implementation framework
(http://mng.bz/2jP0) that allows GraalVM to run languages, such as NodeJs, Python,
and others. Due to the GraalVM Truffle framework, it is possible for Java and other lan-
guages to directly interoperate with each other. The interpreters for the Truffle language
that supports the other languages are Java programs running on the JVM. Thus, it is

JS Node.js Python Ruby LLVM WA

Java HotSpot VM

GraalVM compiler

Language implementation frameworkJavaScalaKotlin

Figure 10.1 GraalVM architecture. The GraalVM just-in-time compiler is on top of the Java
HotSpot compiler. The Truffle language implementation framework provides support for other
non-JVM languages, such as JavaScript, Python, and others.

https://www.graalvm.org/
https://www.graalvm.org/
https://www.graalvm.org/
https://shortener.manning.com/2jP0

454 CHAPTER 10 Spring Boot with Kotlin, Native Image, and GraphQL

possible to define and invoke JavaScript code in your Java application. The following list-
ing shows a sample.

import org.graalvm.polyglot.*;
import java.io.PrintStream;
import java.util.Set;

public class Polyglot {

 public static void main(String[] args) {

 Context context = Context.newBuilder().allowAllAccess(true).build();
 Set<String> languages = context.getEngine().getLanguages().keySet();
 System.out.println("Languages available in GraalVM: " + languages);

 System.out.println("Java: Hello World");

 context.eval("js","console.log('JavaScript: Hello World')");
 }
}

Further, the GraalVM provides several runtime modes of operation: JVM runtime mode,
Native Image, and Java on Truffle. While running applications on the HotSpot JVM,
GraalVM uses the GraalVM compiler as the top-tier JIT compiler. At runtime, the appli-
cation is executed normally on the JVM. The JVM passes the Java or JVM-native lan-
guage to the compiler, which returns the machine code. In this book, we’ll focus on
GraalVM Native Image. You may refer to GraalVM documentation at https://www
.graalvm.org/docs/introduction/ for further details on additional features.

10.2.2 GraalVM native image

GraalVM contains a native-image build tool. The native image is a new technology
that compiles Java code directly into a standalone binary executable or a native shared
library. The native image build includes application classes, dependencies, third-party
libraries, and any JDK classes that are required in the application runtime. The gener-
ated native executables are specific to the operating system and machine architecture
and do not require a JVM.

 In a typical Java application compilation, first, the Java source code complies with
the bytecode, and the bytecode is interpreted by the JVM. The JIT compiler identifies
the frequently accessed bytecode and compiles it directly into native architecture-
specific code for better performance.

 The ahead-of-time (AOT) compiler in native-image builder takes the application
components and statically analyzes them. It discards everything which is not relevant
at runtime. This process takes a very long time, as the compiling process requires scan-
ning all source files and the associated classpaths. The resulting native code after the
compilation is relatively small, as it contains only the components needed at runtime.

Listing 10.13 Calling JavaScript code from Java

https://www.graalvm.org/docs/introduction/
https://www.graalvm.org/docs/introduction/
https://www.graalvm.org/docs/introduction/

45510.2 Introducing Spring Native

It contains the minimum JRE and minimum types from all the libraries from the class-
path that are required to support the application. You’ll notice shortly that it is possi-
ble to generate the native image of a Spring Boot application that contains a Web
server, data access support, and the minimum JRE.

10.2.3 Spring Boot native image

Spring provides support to generate the native image of Spring applications through
the Spring Native project. There are two approaches to building a native image of a
Spring Boot application:

 Spring Boot buildpacks support—Generates a lightweight container containing
a native executable

 GraalVM native image Maven plugin —Maven plugin that generates a native
executable

Let’s discuss these two approaches in the next two techniques.

10.2.4 Technique: Generating Spring Boot native image using
buildpacks

In this technique, we’ll demonstrate how to generate native image using buildpacks
for a Spring Boot application.

PROBLEM
So far, the Course Tracker application is built and executed using a traditional approach.
You need to generate a native image of the Course Tracker application and run it.

SOLUTION

Spring Native provides built-in support to generate the native image of a Spring Boot
application through buildpacks. Buildpacks allow you to convert your source code to a
container image. You can refer to https://buildpacks.io/docs/concepts/ for more
details on buildpacks.

GraalVM editions and installation
GraalVM is available in two editions: GraalVM Community and GraalVM Enterprise. It
also has support for Java 8, Java 11, and Java 17. The community edition of GraalVM
is based on OpenJDK, whereas the enterprise edition is based on Oracle JDK. You
can download GraalVM from the https://www.graalvm.org/downloads/ URL. To con-
figure it in your machine, you can refer to http://mng.bz/1j1j.

Source code
The final version of the Spring Boot project is available at http://mng.bz/PWln.

https://www.graalvm.org/downloads/
http://mng.bz/1j1j
https://buildpacks.io/docs/concepts/
http://mng.bz/PWln

456 CHAPTER 10 Spring Boot with Kotlin, Native Image, and GraphQL

To continue with this project, you need to have Docker configured and running in your
machine. The native image building process requires the Docker daemon to be available.

 To start this technique, we’ll use the same Course Tracker application we’ve
used in the book so far. Let’s create a new Spring Boot application with the follow-
ing dependencies:

 Spring Native
 Spring Web
 Lombok

Listing 10.14 shows the final pom.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http:/ /maven.apache.org/POM/4.0.0"

➥ xmlns:xsi="http:/ /www.w3.org/2001/XMLSchema-instance"

➥ xsi:schemaLocation="http:/ /maven.apache.org/POM/4.0.0

➥ https:/ /maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.6.3</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>
 <groupId>com.manning.sbip.ch10</groupId>
 <artifactId>course-tracker-native-app</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <name>native</name>
 <description>course-tracker-native-app</description>
 <properties>
 <java.version>17</java.version>
 <repackage.classifier/>
 <spring-native.version>0.11.2</spring-native.version>
 </properties>
 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.experimental</groupId>
 <artifactId>spring-native</artifactId>
 <version>${spring-native.version}</version>
 </dependency>
 <dependency>
 <groupId>org.projectlombok</groupId>
 <artifactId>lombok</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>

Listing 10.14 The pom.xml file for Spring Native application

45710.2 Introducing Spring Native

 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <configuration>
 <classifier>${repackage.classifier}</classifier>
 
 </configuration>
 </plugin>

 <plugin>
 <groupId>org.springframework.experimental</groupId>
 <artifactId>spring-aot-maven-plugin</artifactId>
 <version>${spring-native.version}</version>
 <executions>
 <execution>
 <id>test-generate</id>
 <goals>
 <goal>test-generate</goal>
 </goals>
 </execution>
 <execution>
 <id>generate</id>
 <goals>
 <goal>generate</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 <repositories>
 <repository>
 <id>spring-releases</id>
 <name>Spring Releases</name>
 <url>https:/ /repo.spring.io/release</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>

458 CHAPTER 10 Spring Boot with Kotlin, Native Image, and GraphQL

 <id>spring-releases</id>
 <name>Spring Releases</name>
 <url>https:/ /repo.spring.io/release</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>

 <profiles>
 <profile>
 <id>native</id>
 <properties>
 <repackage.classifier>exec</repackage.classifier>
 <native-buildtools.version>0.9.9</native-

➥ buildtools.version>
 </properties>
 <dependencies>
 <dependency>
 <groupId>org.graalvm.buildtools</groupId>
 <artifactId>junit-platform-native</artifactId>
 <version>${native-buildtools.version}</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <groupId>org.graalvm.buildtools</groupId>
 <artifactId>native-maven-plugin</artifactId>
 <version>${native-buildtools.version}</version>
 <executions>
 <execution>
 <id>test-native</id>
 <phase>test</phase>
 <goals>
 <goal>test</goal>
 </goals>
 </execution>
 <execution>
 <id>build-native</id>
 <phase>package</phase>
 <goals>
 <goal>build</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 </profile>
 </profiles>

</project>

45910.2 Introducing Spring Native

So far, Spring Native has experimental support, as this project is under development.
In listing 10.14, let’s focus on the spring-boot-maven-plugin and spring-boot-aot-
plugin plugins configuration. In the spring-boot-maven-plugin, the Paketo build-
packs are used to generate the Docker Image. The BP_NATIVE_IMAGE argument is
used to indicate a native image needs to be built. The spring-aot-maven-plugin pro-
vides the ahead-of-time compiler to compile the code. Note that this plugin is also in
experimental mode. We’ll deep dive into the role of this plugin and how it compiles
the source later in this section.

 We have also defined the Course domain object and created two courses. Refer to
the application source code for further details. Let’s start building the native image
using the command, as shown in the following listing.

mvn clean package spring-boot:build-image

This command takes a while to generate the container image. After a successful build,
you’ll find output similar to what’s shown in figure 10.2.

Once the image is built, you can start the application using the command, as shown in
the following listing.

Listing 10.15 Generating native image

Figure 10.2 Building a native image of the Course Tracker application. Based on the CPU and RAM
configuration, this process takes a little while to generate the image.

460 CHAPTER 10 Spring Boot with Kotlin, Native Image, and GraphQL

docker run -p 8080:8080 course-tracker-native-app:0.0.1-SNAPSHOT

You’ll find output similar to what’s shown in figure 10.3.

In figure 10.3, note the application start up time. In the example, the application
started in 85 milliseconds. You can access the http:/ /localhost:8080/courses endpoint
and find the course details.

DISCUSSION

Using this technique, we’ve demonstrated how to generate a native image of a Spring
Boot application. Spring Boot uses Paketo buildpacks (https://paketo.io/) to gener-
ate the image. First, the AOT compiler compiles the source code and identifies the
smaller subset of code needed in the runtime. The spring-boot-maven-plugin uses
this code to generate the Docker image. There is another approach to generate the
native image without building a container image using the native-maven-plugin.
Let’s discuss that in the next technique.

10.2.5 Technique: Generating Spring Boot native image
using a Maven plugin

In this technique, we’ll demonstrate how to generate a native image using Maven for a
Spring Boot application.

PROBLEM
In the previous technique, you explored the use of buildpacks to generate a native
image. Spring Boot offers a Maven plugin-based approach to generate the native
image. You need to explore this alternative approach.

Listing 10.16 Docker command to run the generated image

Figure 10.3 Spring Boot Course Tracker native image startup logs. The application started in 85 milliseconds.

https://paketo.io/

46110.2 Introducing Spring Native

SOLUTION

Spring Boot offers an alternative approach to building the native image of a Spring
Boot application using the native-maven-plugin. This approach does not require
you to have a Docker setup, and you can generate the native image via Maven build.

 To continue with this approach, we’ll continue with the Course Tracker applica-
tion we’ve used in the previous technique. You’ll notice in listing 10.14 that in the
pom.xml there is a profile called native, and it contains the native-maven-plugin
plugin among other details. Let’s generate the native image using this plugin.

NOTE On Windows, you need to use x64 Native Tools Command Prompt. It
is recommended in the GraalVM native-image prerequisites.

The following listing shows the Maven build command. The -Pnative instructs Maven
to use the native profile. The -DskipTests argument indicates Maven skipped execut-
ing the test cases.

mvn -Pnative -DskipTests package

Once the build succeeds, you’ll notice an output similar to that shown in figure 10.4.

Once the image generation is successful, you can browse to the target of the applica-
tion and find the generated native executable, as shown in figure 10.5.

Listing 10.17 Generating a native image using Maven plugin

Figure 10.4 Native image generation through Maven Plugin

462 CHAPTER 10 Spring Boot with Kotlin, Native Image, and GraphQL

To execute the native executable, you can either run it through the command line or
double click on the executable file. In this example, the executable file is course-
tracker-native-app.exe. Figure 10.6 shows the output.

DISCUSSION

In this technique, we’ve explored the use of the native-maven-plugin to generate
the native image of a Spring Boot application. The native-maven-plugin configu-
ration is available through the native profile configuration in the pom.xml file.
We’ve enabled this profile with -Pnative flag in the Maven package command,

Figure 10.5 Generated native executable in the applications target folder.

Figure 10.6 Executing the native image. The Spring Boot application starts in 387 milliseconds.

46310.2 Introducing Spring Native

which generates the executable. In the next section, we’ll learn the spring-aot-
maven-plugin compilation process.

10.2.6 Understanding Spring AOT Maven Plugin

In the previous section, we discussed that the Spring AOT plugin provided ahead-of-
time compilation support. The AOT compiler statically analyzes the application
source code and the application classpath and determines the types needed at appli-
cation runtime. Let’s trigger the AOT compiler in the previously used Course Tracker
application and explore its outcome. Listing 10.18 shows the Spring AOT command
to trigger the spring AOT plugin’s generate goal. Recall that in the pom.xml file we
have the spring-aot-maven-plugin that allows us to execute this goal.

mvn clean package spring-aot:generate

Once the command executes successfully, navigate to the target\generated-sources\
spring-aot folder, and you’ll notice an output similar to that shown in figure 10.7.

The src\main\java folder contains the minimal source code needed at application run-
time. You can inspect the StaticSpringFactories class that contains Spring Boot Fac-
tory classes, interfaces, and more. The other packages (e.g., boot and core.io.support)
contain various other Spring Boot and other additional configurations. The spring-aot
folder inside the resources folder contains several important configurations used by
the GraalVM native image builder. The following configuration files are provided:

 native-image.properties
 proxy-config.json

Listing 10.18 Invoking Spring AOT generate goal

Figure 10.7 The Spring
AOT-generated sources. The
src\main\java folder contains the
AOT generated source code, and
the src\main\resources contains
the generated configurations.

464 CHAPTER 10 Spring Boot with Kotlin, Native Image, and GraphQL

 reflect-config.json
 resource-config.json
 serialization-config.json

The native-image.properties files contain the arguments used by the native-image builder
to generate the image. The other four configuration files provide details for the native-
image builder related to the proxy, reflect, resource, and serialization configuration,
respectively. All these features are related to application runtime behavior. For instance,
by default the native image builder does not integrate to any resource (e.g., files, images,
etc.) present in the classpath. Thus, if at runtime your code attempts to load these files, it
won’t be available. Therefore, you need to explicitly specify the AOT compiler about this.

 Similarly, the Java reflection API allows inspecting classes, methods, and fields at
runtime. The native-image builder needs to know about the reflectively accessed pro-
gram elements ahead of time.

NOTE You can find further details about the native image and other configura-
tions available at https://www.graalvm.org/reference-manual/native-image/.

10.3 Spring Boot with GraphQL
In this section, we’ll discuss GraphQL and how to use GraphQL with a Spring Boot
application.

10.3.1 Issues with REST

In chapter 8, you learned how to build REST APIs with Spring Boot. A REST API
allows you to expose the application functionality through API endpoints. An API cli-
ent can access the exposed API endpoints and interact with the application. For
instance, in chapter 8, for our Course Tracker application, we developed a REST API
that allows the API clients to interact with the application through the available end-
points. To get existing course details, a client can access the GET /courses endpoint
and get all available courses. Similarly, to create a new course, a client can invoke POST
/courses endpoint with a course request body, and the API creates a new course.

 The above REST API-based approach works well, and REST has become the de facto
standard to develop APIs. However, although REST is commonly adopted, it has some
issues as well. One major issue with REST is it’s overfetching of application data. The
other issue is multiple API calls to retrieve the desired data. Let’s explain these in detail.

 In a REST API, you define endpoint per resource. A resource represents a specific
part or feature of the application. For instance, in the Course Tracker application, the
course is a resource we manage. For instance, if an API client requests details about
course ID 123, all the details about the specific course ID are returned to the user. This
includes course ID, name, category, rating, and description. This is where we have the
problem of data overfetching. The API client doesn’t have the flexibility to specify the
set of fields they are interested in. It is always forced to consume the data the server

https://www.graalvm.org/reference-manual/native-image/

46510.3 Spring Boot with GraphQL

provides. Thus, although the API client needs only a subset of the fields, it is overfetch-
ing the data. You’ll notice how GraphQL solves this problem in the following sections.

 Let’s now talk about the multiple API invocation issues with REST API. As we’ve
discussed in the previous paragraph, REST API endpoints are defined based on the
application resource. The more application resources you have, the more endpoints
you need to define in the REST API. Let’s consider an example of a different scenario
in the Course Tracker application. Imagine you are managing course details and the
course reviews in the application, as shown in figure 10.8. Thus, you have two
resources to manage: the course and its reviews. Hence, you need to define one set of
endpoints related to the course and another set related to reviews.

Let’s now imagine that an API client needs to access course details by a course name
and reviews for the course. In a REST API, the client first needs to make an API call to
obtain the course details and get the course ID. It then needs to make another API
call to get all the reviews using the course ID obtained in the first API call. This is
shown in figure 10.9.

It will be better if the API client could access all these requested details in a single API
call. In the next sections, you’ll notice how GraphQL solves this problem of REST API.

ReviewCourse
1 0..N

Figure 10.8 A course can
have zero or more reviews.

Client Course service Review service

Get course details by name

Courses (contains course ID)

Get course reviews by course ID

Course reviews

Figure 10.9 Multiple API calls to get the review details for a course

466 CHAPTER 10 Spring Boot with Kotlin, Native Image, and GraphQL

10.3.2 Introduction to GraphQL

NOTE GraphQL is a large topic, and it is beyond the scope of this text to pro-
vide in-depth coverage. In this chapter, we intend to show you the use of
GraphQL with Spring Boot and will focus on that. For a better understanding
of GraphQL, you can refer to GraphQL documentation available at https://
graphql.org/learn/.

GraphQL is a query language for API and a server-side runtime for executing queries.
It uses a type system to define the application data model. We create a GraphQL ser-
vice by defining types and the fields associated with those types. For instance, we can
define a GraphQL service that returns all courses. We do this by defining a GraphQL
Query type and a regular object type. Listing 10.19 shows this for the Course type.
Create a folder called ghraphql inside the src\main\resources directory. Create a file
called schema.graphqls inside the graphql folder, and insert the content from the
following listing.

type Query {
 courses : [Course]
}

type Course {
 id: ID
 name: String
 category: String
 description: String
 reviews: [Review]
}

In listing 10.19, we’ve defined a GraphQL type Query. A Query is a specialized
GraphQL type that allows you to define query services to fetch data from a GraphQL
server. Inside the Query type, we’ve defined a course service that returns an array of
courses, which is represented with [Course]. Next, we’ve defined a regular GraphQL
type that represents the type of data that is returned to the client. In the above exam-
ple, we’ve defined the Course GraphQL type with the associated fields and their types.

 The Query type allows a client to fetch data from a GraphQL server. GraphQL pro-
vides other specialized types: Mutation and Subscription. As the name suggests, the
Mutation type allows you to define services to modify data in the GraphQL server. The
Subscription type allows you to define Subscription to events in the GraphQL
server. The following listing shows a sample of Mutation and Subscription type defi-
nitions in the previously defined schema.graphqls file.

type Mutation {
 addCourse(name: String, category: String, description: String) : Course
}

Listing 10.19 Defining a Query and a regular GraphQL type

Listing 10.20 GraphQL mutation type definition

We’ll define the Review
type shortly. To keep the
example lean, we kept
only the Course type.

https://graphql.org/learn/
https://graphql.org/learn/
https://graphql.org/learn/

46710.3 Spring Boot with GraphQL

type Subscription {
 reviewEvents (courseId: Int) : Review
}

In listing 10.20, we defined a GraphQL Mutation type and defined a service that allows
us to add a new course. Note that the service accepts several arguments and returns a
Course type. Similarly, the Subscription type defines a subscription to review events
and returns a stream of reviews.

10.3.3 Using GraphQL with Spring Boot

Now that we’ve introduced you to GraphQL, let’s explore the use of it along with
Spring Boot. We’ll discuss two techniques: in the first one, we’ll show you how to
design an API with GraphQL that allows you to retrieve data, create new resources, or
modify existing resources. In the second technique, we’ll explore the notion of sub-
scription over WebSocket in a GraphQL API. Let’s start with the first technique.

10.3.4 Technique: Developing a GraphQL API with a Spring Boot
application

In this technique, we’ll discuss how to develop a GraphQL API with a Spring Boot
application.

PROBLEM
Previously, you developed REST APIs with Spring Boot. You recently explored GraphQL
and need to redesign the Course Tracker REST API with GraphQL.

SOLUTION

With this technique, we’ll show you how to build a GraphQL API with a Spring Boot
application. We’ll use the previously used Course Tracker application with a few modi-
fications to design the API.

Let’s begin by creating a new Spring Boot project through Spring Initializr with the
following dependencies:

1 Spring Data R2DBC
2 Spring Reactive Web
3 Lombok
4 H2 Database

Note that the GraphQL support in Spring Boot is in experimental mode. This means
GraphQL support is an experimental feature and under development. Thus, Spring

Source code
The final version of the Spring Boot project is available at http://mng.bz/J1jV.

http://mng.bz/J1jV

468 CHAPTER 10 Spring Boot with Kotlin, Native Image, and GraphQL

Boot GraphQL is not available in the Spring Initializr. We’ll need to include this
dependency manually in the pom.xml. Listing 10.21 shows the final pom.xml.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http:/ /maven.apache.org/POM/4.0.0"

➥ xmlns:xsi="http:/ /www.w3.org/2001/XMLSchema-instance"

➥ xsi:schemaLocation="http:/ /maven.apache.org/POM/4.0.0

➥ https:/ /maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.6.0</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>
 <groupId>com.manning.sbip.ch10</groupId>
 <artifactId>course-tracker-graphql-app</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <name>course-tracker-graphql-api</name>
 <description>Course Tracker GraphQL API</description>
 <properties>
 <java.version>17</java.version>
 </properties>
 <dependencies>

 <dependency>
 <groupId>org.springframework.experimental</groupId>
 <artifactId>graphql-spring-boot-starter</artifactId>
 <version>1.0.0-M2</version>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-webflux</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-r2dbc</artifactId>
 </dependency>
 <dependency>
 <groupId>io.r2dbc</groupId>
 <artifactId>r2dbc-h2</artifactId>
 <scope>runtime</scope>
 </dependency>
 <dependency>
 <groupId>org.projectlombok</groupId>
 <artifactId>lombok</artifactId>
 <optional>true</optional>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>

Listing 10.21 The pom.xml file for a Spring Boot GraphQL application

46910.3 Spring Boot with GraphQL

 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <configuration>
 <excludes>
 <exclude>
 <groupId>org.projectlombok</groupId>
 <artifactId>lombok</artifactId>
 </exclude>
 </excludes>
 </configuration>
 </plugin>
 </plugins>
 </build>

 <repositories>
 <repository>
 <id>spring-milestones</id>
 <name>Spring Milestones</name>
 <url>https:/ /repo.spring.io/milestone</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 <repository>
 <id>spring-snapshots</id>
 <name>Spring Snapshots</name>
 <url>https:/ /repo.spring.io/snapshot</url>
 <releases>
 <enabled>false</enabled>
 </releases>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>spring-milestones</id>
 <name>Spring Milestones</name>
 <url>https:/ /repo.spring.io/milestone</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 <pluginRepository>
 <id>spring-snapshots</id>
 <name>Spring Snapshots</name>
 <url>https:/ /repo.spring.io/snapshot</url>
 <releases>
 <enabled>false</enabled>
 </releases>
 </pluginRepository>

470 CHAPTER 10 Spring Boot with Kotlin, Native Image, and GraphQL

 </pluginRepositories>
</project>

We’ve included the graphql-spring-boot-starter dependency in the pom.xml file.
Notice that the group ID of the dependency is org.springframework.experimental.
Also, the artifact ID of the dependency is different than the other Spring Boot starter
dependency. Lastly, the release version of the dependency indicates it is a milestone
release. Due to this, we’ve included the spring-milestones and spring-snapshots
repositories in the pom.xml, so Maven can download the required libraries.

 Next, let’s include the Course domain object, as shown in listing 10.22. Notice
that we’ve removed the rating field, which we have used in the previous examples.
As you’ll notice shortly, we are using another domain object called Review to explain a
GraphQL concept.

package com.manning.sbip.ch10.model;

import lombok.AllArgsConstructor;
import lombok.Data;
import org.springframework.data.annotation.Id;

@Data
@AllArgsConstructor
public class Course {
 @Id
 private Integer id;
 private String name;
 private String category;
 private String description;
}

Each course can be reviewed by its users, and the review details are captured in the
Review domain object, as shown in the following listing.

package com.manning.sbip.ch10.model;

import lombok.AllArgsConstructor;
import lombok.Data;
import org.springframework.data.annotation.Id;

@Data
@AllArgsConstructor
public class Review {

 @Id
 private Integer id;
 private Integer courseId;
 private String reviewerName;

Listing 10.22 The Course domain object

Listing 10.23 The Review domain object

A review belongs to a course.
Thus, the courseId is part of
the review.

47110.3 Spring Boot with GraphQL

 private Integer rating;
 private String comment;
}

Let’s create the repository interfaces to manage the Course and the Review details in
the application. The following listing shows the CourseRepository interface.

package com.manning.sbip.ch10.repository;

import com.manning.sbip.ch10.model.Course;
import org.springframework.data.repository.reactive.ReactiveCrudRepository;
import org.springframework.stereotype.Repository;
import reactor.core.publisher.Flux;

@Repository
public interface CourseRepository extends ReactiveCrudRepository<Course,

Integer> {

 Flux<Course> findByCategory(String category);
}

Listing 10.24 contains a custom method called findByCategory(..) that returns a
Flux of courses for a given course category. Also, the CourseRepository interface
extends the ReactiveCrudRepository interface, which provides the CRUD operation
support for the bounded domain object (e.g., Course). We’ve covered reactive Spring
Boot application development in chapter 8. Let’s now define the ReviewRepository
interface, as shown in the following listing.

package com.manning.sbip.ch10.repository;

import com.manning.sbip.ch10.model.Review;
import org.springframework.data.repository.reactive.ReactiveCrudRepository;
import org.springframework.stereotype.Repository;
import reactor.core.publisher.Flux;

@Repository
public interface ReviewRepository extends ReactiveCrudRepository<Review,

➥ Integer> {

 Flux<Review> findByCourseId(Integer courseId);
}

Listing 10.25 contains a custom method called findByCourseId(..) that returns a
Flux of reviews for a given courseId.

 Now that we’ve defined the domain objects and the associated repository inter-
faces, let’s start building the GraphQL schema. Create a file called schema.graphqls in

Listing 10.24 The CourseRepository interface

Listing 10.25 The ReviewRepository interface

472 CHAPTER 10 Spring Boot with Kotlin, Native Image, and GraphQL

the src\main\resources\graphql folder. The following listing shows the contents of the
schema.graphqls file.

type Query {
 courses : [Course]
 coursesByCategory (category: String) : [Course]!
 reviews (courseId: Int) : [Review]!
}

type Course {
 id: ID
 name: String
 category: String
 description: String
 reviews: [Review]!
}

type Review {
 id: ID,
 courseId: Int,
 reviewerName: String
 rating: Int,
 comment: String
}

type Mutation {
 addCourse(name: String, category: String, description: String) : Course
 addReview(courseId: Int, reviewerName: String, rating: Int, comment:

➥ String) : Review
}

In listing 10.26, we defined four GraphQL types: the Query, Course, Review, and
Mutation. The query and mutation are special GraphQL types, whereas the course
and the review are regular object types. The difference between special types and reg-
ular types is that special types provide an entry point to the GraphQL schema. For
instance, the Query type allows us to fetch data from the server. The mutation type
allows us to change data in the server.

 In listing 10.26, in the Query type, we defined the following queries:

 courses: [Course]—Returns an array of courses, which is represented as
[Course].

 coursesByCategory (category: String) : [Course]!—It takes an argument
of string type called category and returns an array of courses. The exclamation
mark indicates the returned array can be empty.

 reviews (courseId: Int) : [Review]!—Takes an argument of integer type
called courseId and returns an array of type Review.

Listing 10.26 The GraphQL schema file

47310.3 Spring Boot with GraphQL

Next, we defined the type of Course. It has the same fields specified in the Course
domain object, as shown in listing 10.22. We’ve additionally included reviews that
return the array of reviews for the Course. Note that the GraphQL types are slightly
different than what has defined the Course Java types. The id field has a type of
GraphQL type ID, the reviews field has an array type of Review, and all other fields
are of GraphQL String type.

 Next, we’ve defined the type of Review. It contains the same fields as specified in
the Review domain object. Note that the id field has a GraphQL type ID, and the
rating field has a GraphQL type Int. The other fields are of GraphQL String type.

 Lastly, we defined the type Mutation and defined two different fields: add-
Course and addReview. The addCourse field creates a new Course in the server and
accepts name, category, and description as the arguments. It returns the created
Course details. Similarly, the addReview field creates a new Review and accepts
courseId, reviewerName, rating, and comment as the arguments. It returns the cre-
ated Review details.

NOTE You can find more information about GraphQL schema and types in
the GraphQL documentation at https://graphql.org/learn/schema/.

Let’s now define a Spring controller to define the GraphQL endpoints, as shown in
the following listing.

package com.manning.sbip.ch10.controller;

import com.manning.sbip.ch10.model.Course;
import com.manning.sbip.ch10.model.Review;
import com.manning.sbip.ch10.repository.CourseRepository;
import com.manning.sbip.ch10.repository.ReviewRepository;
import lombok.RequiredArgsConstructor;
import org.springframework.graphql.data.method.annotation.*;
import org.springframework.stereotype.Controller;
import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;

import java.time.Duration;

@Controller
@RequiredArgsConstructor
public class GraphqlCourseController {

 private final CourseRepository courseRepository;
 private final ReviewRepository reviewRepository;

 @QueryMapping
 Flux<Course> courses() {
 return this.courseRepository.findAll();
 }

Listing 10.27 The GraphQL Spring controller

https://graphql.org/learn/schema/

474 CHAPTER 10 Spring Boot with Kotlin, Native Image, and GraphQL

 @QueryMapping
 Flux<Review> reviews(@Argument Integer courseId) {
 return this.reviewRepository.findByCourseId(courseId);
 }

 @QueryMapping
 Flux<Course> coursesByCategory(@Argument String category) {
 return this.courseRepository.findByCategory(category);
 }

 @MutationMapping
 Mono<Course> addCourse(@Argument String name, @Argument String

➥ category, @Argument String description) {
 return this.courseRepository.save(new Course(null, name, category,

➥ description));
 }

 @MutationMapping
 Mono<Review> addReview(@Argument Integer courseId, @Argument String

➥ reviewerName, @Argument Integer rating, @Argument String comment) {
 return this.reviewRepository.save(new Review(null, courseId,

➥ reviewerName, rating, comment));
 }
}

Listing 10.27 is a Spring controller class consisting of three QueryMapping and two
MutationMapping definitions. Recall from the GraphQL schema definition that we
have three queries and two mutations defined in it. We’ve defined the GraphQL end-
points accordingly in the controller.

 Let’s now define the course and review table DDLs and add a few sample course
and review details. Create a file named schema.sql in the src\main\resources folder.
The following listing shows the contents of the schema.sql file.

CREATE TABLE COURSE (
 ID INT auto_increment,
 NAME VARCHAR(255),
 CATEGORY VARCHAR(255),
 DESCRIPTION VARCHAR(255),
 PRIMARY KEY (id)
);

CREATE TABLE REVIEW
(
 ID INT auto_increment,
 COURSE_ID INT,
 REVIEWER_NAME VARCHAR(100),
 RATING INT,
 COMMENT VARCHAR(2000)
)

Listing 10.28 The schema.sql file

47510.3 Spring Boot with GraphQL

Next, let’s create a file called data.sql in the src\main\resources folder. The following
listing shows the contents of this file.

INSERT INTO COURSE(ID, NAME, CATEGORY, DESCRIPTION) VALUES(1, 'Rapid

➥ Spring Boot Application Development’, ‘Spring’, ‘Learn Enterprise

➥ Application Development with Spring Boot');
INSERT INTO COURSE(ID, NAME, CATEGORY, DESCRIPTION) VALUES(2, 'Getting

➥ Started with Spring Security DSL', 'Spring', 'Learn Spring Security DSL

➥ in Easy Steps');
INSERT INTO COURSE(ID, NAME, CATEGORY, DESCRIPTION) VALUES(3, 'Getting

➥ Started with Spring Cloud Kubernetes', 'Spring', 'Master Spring Boot

➥ Application Deployment with Kubernetes');

INSERT INTO REVIEW(ID, COURSE_ID, REVIEWER_NAME, RATING, COMMENT)

➥ VALUES(1,1, 'John', 4, 'Excellent Course');
INSERT INTO REVIEW(ID, COURSE_ID, REVIEWER_NAME, RATING, COMMENT)

➥ VALUES(2,1, 'Jane', 5, 'Awesome Course');
INSERT INTO REVIEW(ID, COURSE_ID, REVIEWER_NAME, RATING, COMMENT)

➥ VALUES(1,2, 'Mark', 4, 'Useful');
INSERT INTO REVIEW(ID, COURSE_ID, REVIEWER_NAME, RATING, COMMENT)

➥ VALUES(2,2, 'Josh', 4, 'Recommended Course for all');
INSERT INTO REVIEW(ID, COURSE_ID, REVIEWER_NAME, RATING, COMMENT)

➥ VALUES(1,3, 'Stephen', 3, 'Good for beginners');
INSERT INTO REVIEW(ID, COURSE_ID, REVIEWER_NAME, RATING, COMMENT)

➥ VALUES(2,3, 'Laura', 4, 'Engaging Content');

That’s it. Let’s now start the application and test the GraphQL endpoints. There are
several ways we can test the GraphQL endpoints. With this technique, we’ll demon-
strate three alternatives:

 GraphiQL
 Postman
 Httpie

GraphiQL (https://github.com/graphql/graphiql) is a browser-based IDE that allows
you to explore GraphQL endpoints. It is an official project under the GraphQL Foun-
dation. Let’s demonstrate how to test the courses endpoint with GraphiQL. Open a
browser window and navigate to http:/ /localhost:8080/graphiql?path=/graphql. You’ll
find a screen similar to that shown in figure 10.10.

 Let’s now access the courses GraphQL endpoint. Figure 10.11 shows the output.
 Notice that, unlike a REST API, in the GraphQL API, you have the flexibility to

request the fields you are interested in. You are not forced to retrieve all fields of the
domain object, as this happens with a REST API. For instance, we can request only
course name and category, and the GraphQL will return only the requested fields.
This is shown in figure 10.12.

Listing 10.29 The data.sql file

https://github.com/graphql/graphiql

476 CHAPTER 10 Spring Boot with Kotlin, Native Image, and GraphQL

Figure 10.10 The GraphiQL in-browser IDE. The top-left window is the place we define the GraphQL queries and
mutations. The bottom-left window is where we defined the query variables (if any) used in the GraphQL query. The
right-side window is where the output is presented.

Figure 10.11 Accessing the courses endpoint in GraphiQL IDE. We’ve requested the ID, name, category, and
description fields. On the right-hand side, the result is presented.

47710.3 Spring Boot with GraphQL

Let’s now demonstrate how to use Postman to access the courses endpoint. Open Post-
man and create a new HTTP request. Create a POST request with the URL http:/ /
localhost:8080/graphql with the request body, as shown in the following listing.

query {
 courses {
 id,
 name,
 category,
 description,
 }
}

Note that you need to use the GraphQL radio button to indicate this is a GraphQL
request. Figure 10.13 shows this. Click on the Send button, and you’ll find the details
of all courses.

 Let’s now demonstrate how to access GraphQL endpoint through HTTPie
(https://httpie.io/). Open a command prompt or terminal window, and access the
command, as shown in the following listing.

http POST :8080/graphql query="{courses{id,name,category,description}}"

You’ll find the output as shown in listing 10.32.

Listing 10.30 The GraphQL query for the courses endpoint

Listing 10.31 Httpie command to access the courses GraphQL endpoint

Figure 10.12 Accessing courses endpoint requesting only the name and category fields. The presented result
provides names and categories for all available courses.

https://httpie.io/

478 CHAPTER 10 Spring Boot with Kotlin, Native Image, and GraphQL

HTTP/1.1 200 OK
Content-Length: 474
Content-Type: application/json

{
 "data": {
 "courses": [
 {
 "category": "Spring",
 "description": "Learn Enterprise Application Development with

Spring Boot",
 "id": "1",
 "name": "Rapid Spring Boot Application Development"
 },
 {
 "category": "Spring",
 "description": "Learn Spring Security DSL in Easy Steps",
 "id": "2",
 "name": "Getting Started with Spring Security DSL"
 },
 {
 "category": "Spring",
 "description": "Master Spring Boot Application Deployment

with Kubernetes",
 "id": "3",

Listing 10.32 Httpie command output of courses GraphQL endpoint

Figure 10.13 The GraphQL query request in Postman

47910.3 Spring Boot with GraphQL

 "name": "Getting Started with Spring Cloud Kubernetes"
 }
]
 }
}

Let’s now explore how to access the reviews GraphQL endpoint. Note that this end-
point accepts a courseId argument. Figure 10.14 shows how to supply the courseId
argument in the request and the associated result.

You have another query-based GraphQL endpoint coursesByCategory. We leave that
as an exercise for you to try.

 Let’s now focus on the mutation types. We have defined two mutation types:
addCourse and addReview. Let’s add a new course using the addCourse mutation type.
The following listing shows the request of the addCourse mutation type.

mutation {
 addCourse(name: "GraphQL in Action", category: "GraphQL", description:

➥ "GraphQL in Action gives you a solid overview of GraphQL") {
 id,
 name,
 description
 }
}

In listing 10.33, the type is mutation, and the addCourse accepts the name, category,
and description arguments. In the same definition, we also query for id, name,

Listing 10.33 The addCourse GraphQL mutation request

Figure 10.14 Accessing reviews GraphQL endpoint for courseId 1 and the associated output

480 CHAPTER 10 Spring Boot with Kotlin, Native Image, and GraphQL

and description fields. Let’s execute this request through GraphiQL IDE, as shown
in figure 10.15.

We have another mutation type, addReview, which allows you to add a review for a
given course. We leave that as an exercise for you to create a review for one of the
existing courses.

 Now that we are done with the basic endpoints, let’s now understand another
important concept. If you recall, the Course GraphQL type has the following defini-
tion, as shown in the following listing.

type Course {
 id: ID
 name: String
 category: String
 description: String
 reviews: [Review]!
}

In listing 10.34, the Course GraphQL type has the reviews additional field along with
the id, name, category, and description (which are also part of the equivalent Java
Course type). Thus, in our GraphQL courses query, we can also access the reviews
field. The following listing shows the modified courses GraphQL query request along
with the review type.

Listing 10.34 The GraphQL course type definition

Figure 10.15 Accessing addCourse mutation endpoint to add a new Course. We are accessing the ID, name, and
description fields of the newly created course. On the right-hand side, the server presents the requested course
details.

48110.3 Spring Boot with GraphQL

query {
 courses {
 id,
 name,
 category,
 description,
 reviews {
 id,
 courseId,
 rating,
 comment
 }
 }
}

However, if you try to access the reviews field, you’ll find the reviews field for all
courses are appearing as null. The output is shown in figure 10.16.

Although each course we’ve created in this application has reviews available, there is
no mapping between a course and the associated review in the GraphQL schema.
Let’s do the schema mapping between the course and reviews. In the Spring Boot con-
troller class, add the following SchemaMapping annotation, as shown in the follow-
ing listing.

Listing 10.35 The modified courses GraphQL query request

Figure 10.16 The courses GraphQL query output. The reviews fields in all courses are presented as null.

482 CHAPTER 10 Spring Boot with Kotlin, Native Image, and GraphQL

@SchemaMapping(typeName = "Course")
Flux<Review> reviews(Course course) {
 return this.reviewRepository.findByCourseId(course.getId());
}

In listing 10.36, we provided the mapping through @SchemaMapping annotation for
the Course type. The mapping is defined such that for a given course it returns all the
reviews. Restart the application, and execute the GraphQL query, which is provided in
listing 10.35. Figure 10.17 shows the query and the associated output.

DISCUSSION

With this technique, you’ve learned how to develop a GraphQL API with Spring Boot.
Spring GraphQL is intended to provide GraphQL support on Spring Framework and
is based on graphql-java (https://www.graphql-java.com/). The graphql-java proj-
ect is the Java implementation of GraphQL.

 Spring Boot provides support for GraphQL through the graphql-spring-boot-
starter dependency. This dependency provides the necessary support for GraphQL
autoconfiguration and brings necessary GraphQL libraries.

 To define a GraphQL Spring Boot application, we’ve provided the GraphQL schema
file inside the src\main\resources\graphql directory. You can customize this path by con-
figuring the spring.graphql.schema.locations property in the application.properties
file. Besides, in the Course Tracker example, we’ve placed all GraphQL type definitions
in a single file. However, you can provide multiple graphqls files inside the graphql

Listing 10.36 Schema mapping between course and review

Figure 10.17 The courses GraphQL endpoint output with the reviews mapping

https://www.graphql-java.com/

48310.3 Spring Boot with GraphQL

schema location if you need to segregate the type definitions. Further, by default, the
Spring Boot GraphQL application runs on the /graphql path. You can customize the
path to the spring.graphql.path property.

 With this technique, we’ve used the Spring Boot GraphQL with the transport as
HTTP. You can also use other protocols such as WebSocket as transport. Besides, with
this technique, you’ve explored the Query and Mutation GraphQL types. We have
another GraphQL type called Subscription. Let us explore these concepts in the
next technique.

10.3.5 Technique: Developing a GraphQL API over WebSocket
with a Spring Boot application

In this technique, we’ll develop a GraphQL API over WebSocket protocol with a
Spring Boot application.

PROBLEM
In the previous technique, we saw the use of Spring Boot GraphQL over HTTP. We used
the Query and Mutation GraphQL types. You want to explore the use of WebSocket as
the transport. You also want to explore the use of the Subscription GraphQL type.

SOLUTION

Previously, we used HTTP as the transport for the GraphQL Spring Boot application.
Spring Boot GraphQL also allows you to use other protocols, such as WebSocket in place
of HTTP. As we discussed in chapter 8, WebSocket is a different protocol that allows two-
way communication between the client and server. With this technique, we’ll explore
using WebSocket protocol in the Course Tracker GraphQL Spring Boot application.

To continue with this technique, we’ll use the Spring Boot project used in the previ-
ous technique. The first change we’ll introduce is adding the following properties to
the application.properties file, as shown in the following listing.

spring.graphql.websocket.connection-init-timeout=60
spring.graphql.websocket.path=/graphql

The first property defines the WebSocket connection initialization timeout to 60 sec-
onds. It indicates the time within which a CONNECTION_INIT message must be received
from the client. The second property enables WebSocket support in the application.
Note that since we are using WebFlux in the current Course Tracker application, con-
figuring the spring.graphql.websocket.path property is sufficient to enable the

Source code
The final version of the Spring Boot project is available at http://mng.bz/wnNP.

Listing 10.37 Enable WebSocket support in the application

484 CHAPTER 10 Spring Boot with Kotlin, Native Image, and GraphQL

WebFlux support. If you intend to use a Web MVC-based application, you need to
include the spring-boot-starter-websocket dependency.

 Next, let’s define the Subscription type in the GraphQL schema. Open the
schema.graphqls file available in the src\main\resources\graphql folder and include
the following Subscription type definition, as shown in the following listing.

type Subscription {
 reviewEvents (courseId: Int) : Review
}

In listing 10.38, we defined a GraphQL subscription type called reviewEvents. It
accepts an argument called courseId of GraphQL type Int and returns a Review.

 Let’s now define the associated subscription mapping in the Spring controller
class. Open the GraphqlCourseController class, and include the following subscrip-
tion mapping, as shown in the following listing.

@SubscriptionMapping
Flux<Review> reviewEvents(@Argument Integer courseId) {
 return this.courseRepository.findById(courseId)
 .flatMapMany(review ->

➥ this.reviewRepository.findByCourseId(review.getId()))
 .delayElements(Duration.ofSeconds(1))
 .take(5);
}

In listing 10.39, the reviewEvents mapping accepts the courseId argument and finds
the available course. The @Argument annotation binds the courseId method parame-
ter to the GraphQL input. Next, for the course, all available reviews are retrieved and
sent back in one second. Note that, for simplicity reasons, we take a maximum of five
reviews from the publisher.

 The next step is to test the Subscription GraphQL endpoint. The tools, such as
GraphiQL, Postman, and HTTPie, we’ve used to test the Query and Mutation end-
points are not suitable for Subscription type. Thus, we’ll use a JavaScript-based HTML
client to test the subscription mapping. The client is available at http://mng.bz/q2Kr.
In this client, we are using a JavaScript library called graphql-ws, and this JavaScript
file is intended for testing Subscriptions.

 Start the application, and access the http:/ /localhost:8080/index.html URL. Open
the browser console, and you’ll notice the following review details printed in the
browser console, as shown in figure 10.18.

DISCUSSION

With this technique, you’ve explored the use of WebSocket in a Spring Boot GraphQL
application. Also, we’ve demonstrated the use of GraphQL Subscription type with

Listing 10.38 The subscription type definition

Listing 10.39 The reviewEvents subscription mapping

http://mng.bz/q2Kr

485Summary

Spring Boot GraphQL subscription mapping. A subscription allows a client to sub-
scribe to the events, and once the client accesses them, the events are streamed to
the client. Like the other GraphQL types, Spring Boot provides the @Subscription-
Mapping annotation to define a subscription mapping.

 With the previous two techniques, we’ve covered how to define the create and
read operations in a GraphQL API. You can also define the delete and update
operations in a GraphQL API through the GraphQL Mutation type. We leave this
as an exercise to you to develop the delete and update operations through the
GraphQL mutation type.

 Another important aspect is the GraphQL API security. Like you can secure REST
API endpoints, you can also secure GraphQL API endpoints. Again, we are leaving using
Spring Security to secure the endpoints as an exercise for the reader. You can find a sam-
ple application with HTTP Basic authentication available at http://mng.bz/7Wov.

Summary
 We introduced developing Spring Boot applications with Kotlin.
 We explored the use of Spring Boot with Kotlin DSLs.
 We covered generating Native Image of Spring Boot applications with GraalVM

native image.
 We explored the use of buildpacks for building Spring Boot native image.
 We introduced generating a native image of Spring Boot application using

GraalVM native build tools.
 We covered developing efficient APIs with Spring Boot GraphQL.
 We explored performing Query, Mutation, and Subscription with GraphQL.

Figure 10.18 Browser console output of the GraphQL subscription mapping. The reviews are printed in one second.

http://mng.bz/7Wov

486

appendix A
Generating and building

Spring Boot projects

In chapter 1, you learned the need for Spring Boot and its features and various
components. In the next section, you’ll learn the Spring Initializr tool and, subse-
quently, explore Spring Boot command-line interface (CLI).

A.1 Generating Spring Boot applications
with Spring Initializr
In this section, we’ll introduce the Spring Initializr tool and learn various tech-
niques for generating a Spring Boot project through it.

A.1.1 Introducing Spring Initializr

Spring Initializr (https://start.spring.io/) is a project generation utility that allows
you to generate Spring Boot projects. It also enables you to inspect the generated
project structure before you download or share it. The generated project includes
detail, such as the Spring Boot version; the project language, such as Java, Kotlin,
or Groovy; the build framework, such as Maven or Gradle; and a few other configu-
ration parameters.

 Spring Initializr has an extensible API, which means you can customize it to suit
your requirements. You can use the Web version of Spring Initializr API through a
Web browser by visiting https://start.spring.io. You can also use the embedded ver-
sion of this API integrated into popular IDEs, such as IntelliJ IDEA, Spring Tool
Suite, and Microsoft Visual Studio Code.

https://start.spring.io
https://start.spring.io/

487A.1 Generating Spring Boot applications with Spring Initializr

A.1.2 Technique: Generating a Spring Boot application with the Spring
Initializr Web user interface

In this technique, we’ll demonstrate how to generate a Spring Boot application with
Spring Initializr Web user interface.

PROBLEM
You want to generate a Spring Boot Project through Spring Initializr Web user interface.

SOLUTION

Spring Boot provides a default instance of Spring Initializr at https://start.spring.io.
This application has a Web-based user interface that allows you to choose various
options to generate a Spring Boot project. These options include the project build tool
(e.g., Maven or Gradle), language (e.g., Java, Kotlin, or Groovy), Spring Boot release
version, and other options.

Figure A.1 shows the https://start.spring.io Web page with the required details. Along
with the basic details, such as the Spring Boot version and project metadata, you’ve
also selected Spring Web dependency in this example. This dependency provides nec-
essary supports for Web application development.

Maven or Gradle?
Spring Initializr allows you to choose the build framework, while you generate a Spring
Boot project. It supports two popular build frameworks: Apache Maven (https://
maven.apache.org/) and Gradle (https://gradle.org/). Both frameworks have their
merits and demerits. Many developers are comfortable with Maven, due to its wide-
spread usage and familiar XML-based syntax; however, some developers prefer Gra-
dle due to its conciseness, flexibility, and performance.

Either way, feel free to use your preferred build framework. In this book, our primary
focus is on the Spring Boot features with minimal reference to the build tool. Thus,
your selection of a build framework plays a small role in continuing with the tech-
niques presented in this book.

We’ll use Apache Maven as the default build tool in all techniques, as most readers
are familiar with it. However, if you prefer Gradle over Maven, it should not be difficult
to port the code snippets to Gradle-based project.

Spring Boot and Java version
Spring Boot and Java release new versions based on their release calendar. Thus,
depending on when you access the Spring Initializr (website, IDE, or through other
means), you’ll find a different version than what is shown in this appendix. While you
create Spring Boot projects, select the appropriate version available at the time you
access the Spring Initializr.

https://start.spring.io
https://start.spring.io
https://maven.apache.org/
https://maven.apache.org/
https://gradle.org/

488 APPENDIX A Generating and building Spring Boot projects

Spring Initializr changes its user interface periodically. Thus, you may find an altered
user interface, depending on when you are reading this book. You may also find a dif-
ferent Spring Boot version if a new Spring Boot version is released.

 Following are the list of supported Spring Initializr options for generating a
Spring Boot project:

 Spring Boot version—This option allows you to select the Spring Boot version.
Spring Initializr provides the current stable version, previous stable versions,
and the snapshot versions. The default selected value is the current stable
version.

 Build system—You can select the build framework for the generated project. The
supported build systems are Apache Maven and Gradle. By default, Spring Ini-
tializr generates a Maven project.

 JVM language—You can choose the JVM language for the generated project. For
instance, you can generate a Java, Kotlin, or Groovy-based project. The default
language is Java.

 Packaging—A generated Spring Boot project can be packaged as a WAR or JAR
file. You can select the packaging type as either JAR or WAR when generating
the project. Based on the selection, Spring Initializr provides the packaging
configuration in the generated project.

 Java version—Spring Initializr allows you to choose the Java version for the gen-
erated project. Supported versions are Java 15, 11, and 8, where Java 11 is the
default Java version. Note that Spring Initializr updates the Java version with

Figure A.1 Spring Initializr Web User Interface at https://start.spring.io

https://start.spring.io

489A.1 Generating Spring Boot applications with Spring Initializr

newly released Java versions. Therefore, you’ll find different values, depending
on when you are accessing this content.

 Dependencies—Spring Initializr lists the frequently used Spring Boot starters and
other required dependencies for you to choose from while generating the proj-
ect. You can select one or more of these dependencies, depending on your
requirement. For instance, if you are generating a Spring Boot Web project
with Thymeleaf (https://www.thymeleaf.org), you can select the Spring Web
and the Thymeleaf dependencies.

Specify all the parameters in the https://start.spring.io page, and select the required
dependencies, as shown in figure A.1. You can then press the Generate button to gen-
erate and download the project to your machine. Spring Initializr provides a ZIP
archive of the generated project. Figure A.2 shows the folder structure of the gener-
ated Spring Boot Maven project.

Figure A.2 Spring Boot Maven project structure

https://www.thymeleaf.org
https://start.spring.io

490 APPENDIX A Generating and building Spring Boot projects

The generated project contains the following components:

 Maven wrapper
 Project source code
 Project test code
 Project resources

Spring Initializr provides a Maven wrapper to build the generated project. The pur-
pose of it is that you can build the Spring Boot application with Maven without explic-
itly installing Maven on your machine. You can use the mvnw install command to
build the application, as shown in figure A.3. Similarly, if you’ve generated a Gradle-
based project, Spring Initializr provides a Gradle wrapper to build the application
without explicitly installing Gradle in your machine.

In the project source code, Spring Initializr generates a Java class with the main method
in the generated Spring Boot application (e.g., SpringBootAppDemoApplication.java).
This class allows you to start the Spring Boot application. You can run this Java file
using your IDE’s application start option and see the generated Spring Boot project
has started in the HTTP port 8080.

 In the project test code, Spring Initializr provides an empty test class (e.g.,
SpringBootAppDemoApplicationTests.java) to write test cases for your project.
Spring Boot automatically includes a few commonly used testing frameworks, such as

Figure A.3 Building the generated application with Maven wrapper

491A.1 Generating Spring Boot applications with Spring Initializr

JUnit, Mockito (https://site.mockito.org/), and XMLUnit (https://www.xmlunit.org/)
in your project.

 In the resources folder, the generated Spring Boot project has an empty configura-
tion file called application.properties. You can use this file to provide additional con-
figuration to control the application’s behavior. For instance, if you want to run the
project in a different HTTP port other than the Spring Boot default port 8080, you
can configure it here by specifying the server.port property. Besides, since we’ve
selected Spring Web dependency, Spring Initializr has also created the static and tem-
plate folders for the static Web resources, such as CSS files, images, and HTML tem-
plate files, respectively.

 Spring Initializr also provides two additional features to view and share the gener-
ated project for convenience:

 You can explore the generated project structure on the user interface before
downloading it to the local machine. This is a convenient feature that allows
you to explore the project components before you download them. Figure A.4
shows the pom.xml file from the explored project components.

 You can also generate a URL of the project that contains the configurations
you’ve selected. This URL can be shared with anyone, and they can find the
same selected details and dependencies once they access the shared URL. For
example, in listing A.1, the following URL has configurations with Gradle build
system, Kotlin language, Java 15, and WAR packaging.

Figure A.4 Exploring the project structure of generated Spring Boot project in https://start.spring.io

https://start.spring.io
https://site.mockito.org/
https://www.xmlunit.org/

492 APPENDIX A Generating and building Spring Boot projects

https:/ /start.spring.io/#!type=gradle-

➥ project&language=kotlin&platformVersion=2.4.3.RELEASE&packaging=war&jvm

➥ Version=15&groupId=com.manning%2Csbip.a01&artifactId=spring-boot-

➥ app&name=spring-boot-

➥ app&description=Spring%20Boot%20project%20for%20Appendix%20A&packageNam

➥ e=com.manning%2Csbip.a01.spring-boot-app&dependencies=web

DISCUSSION

Spring Initializr is a fantastic tool that has made Spring Boot project generation an
extremely easy task. The Web-based UI allows you to provide the configuration
parameters needed to generate the project, and in a single click you have a work-
able project. It also allows you to inspect the generated project structure before you
download it to your machine.

 Although the Web-based version is useful, you’ll eventually need to import the gen-
erated project into an IDE to continue with the application development. To make
this process further simplified, Spring Initializr provides an extensible API that major
IDE vendors embed, so you can generate the project in the IDE itself. Let’s explore
this, using the next technique.

A.1.3 Technique: Generating a Spring Boot application with Spring
Initializr in IntelliJ IDEA IDE

In this technique, we’ll show how to generate a Spring Boot application with Spring
Initializr in Intellij IDEA IDE.

PROBLEM

You want to generate a Spring Boot project through Spring Initializr in IntelliJ IDEA IDE.

SOLUTION

Spring Initializr is a flexible API and is frequently used in standalone mode through
the Web and the CLI. However, to further simplify the project generation, major IDE
vendors have embedded Spring Initializr support into their IDEs. With this technique,
you’ll see how to generate a Spring Boot project in IntelliJ IDEA IDE using its built-in
Spring Initializr support. You can find the generated project in the companion
GitHub repository of this book at http://mng.bz/KByP.

Listing A.1 Sharable URL of the generated project

IntelliJ IDEA editions
IntelliJ IDEA is available in two editions: Community and Ultimate (https://www.jetbrains
.com/idea/download/). The Community edition does not have built-in support for
Spring Initializr. However, the Ultimate edition, the paid version of the IDE, supports
Spring Initializr. If you want to use the steps provided in this technique, you need to
use the Ultimate edition. Although it is a paid version, the Ultimate edition is available
for trial for 30 days, so you can try out the features it offers.

http://mng.bz/KByP
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/

493A.1 Generating Spring Boot applications with Spring Initializr

To generate a Spring Boot project, browse to File > New > Project, and Select Spring
Initializr, as shown in figure A.5. By default, the IDE selects https://start.spring.io as
the Initializr service URL. Alternatively, you can provide your own Spring Initializr
URL if you have customized the Initializr Service.

On the subsequent page, you’ll see the options to provide additional project meta-
data, such as project coordinates (e.g., group ID, artifact ID, and version), language,
packaging type, and Java version, as shown in figure A.6. The group ID, artifact ID,
and version allow you to uniquely identify your application. In general, the group ID
represents the group or unit the application belongs to. The artifact ID is the applica-
tion name, and the version is the application version. As you include new features to
your application, you increase this version.

 The type field indicates the build tool we’ll use in our application. Supported types
are Apache Maven and Gradle. Language represents the programming language you’ll
use to develop the application. Supported languages are Java, Kotlin, and Groovy. Pack-
aging represents, once you build the application, how it should be packaged. JAR and
WAR are supported types.

If you don’t have access to the Ultimate edition, you can continue with the Community
edition by generating the Spring Boot project through the https://start.spring.io, as
shown in the previous technique and importing the extracted archive in the IDE.

Figure A.5 Generating a Spring Boot Project in IntelliJ IDEA with built-in Spring Initializr support

https://start.spring.io
https://start.spring.io

494 APPENDIX A Generating and building Spring Boot projects

On the next page, you can choose the dependencies required for your project and the
Spring Boot version, as shown in figure A.7.

Figure A.6 Providing project metadata for the generated Spring Boot Project in IntelliJ IDEA

Figure A.7 Spring Boot dependencies list in IntelliJ IDEA

495A.1 Generating Spring Boot applications with Spring Initializr

As shown in figure A.7, you can find the dependencies are categorized in the relevant
headers, and all the related dependencies are listed under each category. After select-
ing the required dependencies, you can choose the project name and location and
generate the project.

 The IDE pulls the selected dependencies from the central repository and config-
ures the project. Figure A.8 shows the final generated project in the IntelliJ IDEA. If
you run the SpringBootAppIdeaApplication using the IDE’s run option, you’ll see
the generated Spring Boot project starts in the default HTTP 8080 port.

DISCUSSION

In this technique, you’ve seen how to generate a Spring Boot project in IntelliJ IDEA
IDE. The IDE allows you to specify the Spring Initializr options to generate the proj-
ect. Once you’ve provided all the required details, it generates the project and shows
it in the project explorer. In the next technique, let’s discuss generating a Spring Boot
project in the Spring Tool Suite.

A.1.4 Technique: Generating a Spring Boot Application
with Spring Initializr using the Spring Tool Suite

In this technique, we’ll discuss how to generate a Spring Boot application with Spring
Initializr in Spring Tool Suite (STS).

PROBLEM

You want to generate a Spring Boot application through the built-in Spring Initializr
in Spring Tool Suite.

SOLUTION

Spring Tool Suite (https://spring.io/tools) is an eclipse-based IDE by the Spring team
for Spring-based application development. Like the IntelliJ IDEA, STS also has built-
in integration with Spring Initializr service and allows you to generate a Spring Boot
project through the IDE.

Figure A.8 Generated Spring Boot Project in IntelliJ IDEA

https://spring.io/tools

496 APPENDIX A Generating and building Spring Boot projects

 To create a Spring Boot application in STS, click on File > New > Spring Starter
Project, and you’ll see the screen shown in figure A.9. You can find the generated
project in the companion GitHub repository of this book at http://mng.bz/9Krx.

STS loads these parameters and the default values from https://start.spring.io. On the
next page, STS allows you to select the Spring Boot version and specify the required
dependencies for your project, as shown in figure A.10.

 After selecting the dependencies, STS generates the Spring Boot project and loads
the selected dependencies, as shown in figure A.11.

 STS provides a boot dashboard for developer convenience. It displays all Spring
Boot projects available in the workspace and provides quick control, allowing you to
perform several activities, such as restarting and debugging your application. You can

Figure A.9 Generating a Spring Boot project in Spring Tool Suite

http://mng.bz/9Krx
https://start.spring.io

497A.1 Generating Spring Boot applications with Spring Initializr

Figure A.10 Spring Boot
Version and Dependencies list
in Spring Tool Suite

Figure A.11 Generated Spring Boot project and the Spring Boot dashboard in the Spring Tool Suite

498 APPENDIX A Generating and building Spring Boot projects

run the SpringBootAppStsApplication Java file using the IDE’s run option and see
that STS starts the generated Spring Boot project in the default HTTP port 8080.

DISCUSSION

In this technique, you’ve learned how to generate a Spring Boot project in Spring
Tool Suite. Spring Tool Suite, which is a customized version of eclipse for Spring
application development, also implements Spring Initializr API and allows you to
specify the required options to generate the project. The generated project is then
displayed in the project explorer. In the next technique, let’s learn how to generate a
Spring Boot project in Microsoft Visual Studio Code—one of the most popular code
editors across the technology spectrum.

A.1.5 Technique: Generating a Spring application with Spring Initializr
in Visual Studio Code

In this technique, we’ll discuss how to generate a Spring Boot application with Spring
Initializr in Visual Studio Code.

PROBLEM

You want to generate a Spring Boot application with Spring Initializr in Visual Stu-
dio Code.

SOLUTION

Visual Studio Code (https://code.visualstudio.com/) is an extension-based popular
text editor from Microsoft. This code editor is a lightweight alternative to the popular
IDEs to develop Spring Boot applications.

 To be able to generate a Spring Boot project in Visual Studio Code or VS Code in
short, you need to install the following extensions:

 Spring Boot tools—This extension provides support for the validation and con-
tent assist for Spring Boot application.properties and application.yml proper-
ties files, and Spring Boot-specific support for Java files.

 Spring Initializr Java support—This is a lightweight extension to generate Spring
Boot projects using Spring Initializr. This also supports Kotlin and Groovy-
based project generation.

 Spring Boot dashboard—This extension allows you to view and manage all Spring
Boot applications in the workspace with features, such as starting, stopping, and
debugging the applications.

Configuring JAVA_HOME
You need to configure the Java home path for Visual Studio Code to use the appro-
priate Java version. You can do this by configuring java.home variable in Visual Stu-
dio Code. To set java.home, navigate to File > Preferences > Settings > Workspace,
and search for java.home. You can find the option Edit in settings.json and pro-
vide the Java version of your choice.

https://code.visualstudio.com/

499A.1 Generating Spring Boot applications with Spring Initializr

Pivotal (the company behind Spring Framework) provides an extension pack to
develop Spring Boot application applications in VS Code. This pack consists of several
extensions, including the three mentioned earlier. You can install this Spring Boot
Extension Pack to access the complete extension suite. To install the extension pack,
browse to the extensions option in the editor, and search for Spring Boot, as shown in
figure A.12.

After successfully installing the extension pack, you can create Spring Boot projects in
the editor. To start creating a Spring Boot project, open the Command Palette by brows-
ing to View > Command Palette and searching for Spring Initializr. You’ll find options to
create a Maven- or Gradle-based Spring Boot application, as shown in figure A.13.

 To create a project, select the required options, and follow along with the parame-
ters. After the project is successfully generated, you will find the folder structure, as
shown in figure A.14. On the left side, there is the generated project structure Spring
Boot dashboard to start and stop the application, and in the editor, you can explore
the project components.

Note that Visual Studio Code does not let you select the Java version while you gen-
erate the Spring Boot Project with it. By default, it selects Java 1.8, while generating
the project. You can edit the generated project’s pom.xml (for Maven) or the build.gra-
dle (for Gradle) file to provide the Java version you have configured in java.home.

Figure A.12 Spring Boot extensions in Visual Studio Code

500 APPENDIX A Generating and building Spring Boot projects

Figure A.13 Generating a Maven or Gradle Project in Visual Studio Code

Figure A.14 Generated Spring Boot project in Visual Studio Code

501A.1 Generating Spring Boot applications with Spring Initializr

You can find the generated project in the companion GitHub repository of this book
at http://mng.bz/jyJz. After project generation, if you need to add additional depen-
dencies, you can do it by using the Edit Starters option of the editor. You can navigate
to the pom file and right-click to select the Edit Starters option. The editor will display
the previously selected dependencies with the right tick symbol and allow you to spec-
ify additional dependencies, as shown in figure A.16.

 In figure A.15, we have selected the Edit Starters option, and the Visual Studio
Code shows us the previously selected dependencies with the right-tick symbol. We
have also selected the Spring Boot DevTools Developer Tools dependency this time.

As shown in figure A.16, you can start the application from Spring-Boot Dashboard by
clicking the start button and seeing the generated Spring project has started in
default HTTP port 8080. Application startup logs are visible in the debug console.

DISCUSSION

With this technique, you’ve seen how to enable Spring Boot support in VS Code editor
and generate a Spring Boot project. VS Code is a popular code editor, and many devel-
opers prefer this lightweight alternative for Spring Boot application development.

 So far, you’ve seen the UI-based approaches to generate Spring Boot applications.
However, there is a community of developers that prefers command-line utilities for
their conciseness and simplicity. In the next technique, you’ll see the use of Spring
Boot CLI to generate a Spring Boot application.

Figure A.15 Editing starter dependencies in Visual Studio Code

http://mng.bz/jyJz

502 APPENDIX A Generating and building Spring Boot projects

A.1.6 Technique: Generating a Spring Boot application with Spring
Initializr using Command Line Interface

In this technique, we’ll demonstrate how to generate a Spring Boot application with
Spring Initializr using Command Line Interface.

PROBLEM
You want to generate a Spring Boot Project with Spring Initializr through CLI.

SOLUTION

Spring Initializr has an extensible API and provides various ways to generate a Spring
Boot project. The Spring Initializr Web interface is a popular option for Spring proj-
ect generation. However, many developers prefer to use command-line tools to gener-
ate the project. Spring Initializr supports several popular third-party command-line
tools, such as cURL, HTTPie (https://httpie.org/), and Spring’s own CLI to create a
Spring Boot project from the command line.

 However, one of the drawbacks while using the CLI is that you need to be familiar
with the parameter and dependency names beforehand to use those in the CLI com-
mand. To avoid this drawback, Spring provides nicely formatted tabular details of
Spring Initializr options, which consist of the build framework, project parameters,
and dependency names. This detail can be obtained by accessing the https://start
.spring.io URL. Let’s view these details from your command-line tool using the follow-
ing command: curl https://start.spring.io.

Figure A.16 Spring Boot dashboard and debug console in Visual Studio Code

https://start.spring.io
https://start.spring.io
https://start.spring.io
https://start.spring.io.
https://httpie.org/

503A.1 Generating Spring Boot applications with Spring Initializr

 Figure A.17 displays the options of Spring Initializr service in three different
sections:

1 The first table provides the available project types. For instance, it lists four proj-
ect types: gradle-build, gradle-project, maven-build, and maven-project.

2 The second table provides the set of available parameters, a brief description,
and the default values. Most of these parameters are similar to what is available
in the Web version with a difference in the applicationName and baseDir. The
application name parameter can be used to define the application name
instead of deducing it from the name parameter. The baseDir can be used to
create a base directory in the generated archive, so you can extract the gener-
ated ZIP without creating a directory for it first.

3 The third table lists all the available dependencies you can use in your project.

Figure A.17 Accessing https://start.spring.io through cURL

https://start.spring.io

504 APPENDIX A Generating and building Spring Boot projects

You can generate a Spring Boot project with these parameters and the dependencies
specified with the -d parameter. Table A.1 demonstrates the usage of Spring Boot
project generation with cURL utility.

DISCUSSION

Using this technique, you’ve seen how to use the command-line utility cURL to gener-
ate a Spring Boot project. This CLI approach is flexible, and you can control the proj-
ect generation using the appropriate parameters. Now that you’ve learned to generate
a Spring Boot project, let’s explore the various components of the generated project
in the next section.

A.2 Bootstrapping and executing a Spring Boot application
with Spring Boot CLI
The Spring Boot CLI is a command-line utility that allows you to create prototypes for
Spring applications. It allows you to quickly bootstrap a Spring Boot application with-
out the need for a dependency management tool, such as Maven or Gradle. Besides,
Spring Boot CLI allows you to use Groovy (https://groovy-lang.org/) script, so you
can use familiar, Java-like syntax but with less noisy syntax. For example, Groovy auto-
matically includes several Java packages in your code, and you need not provide
import statements for the members from these packages, as shown in listing A.2.

import java.lang.*
import java.util.*
import java.io.*
import java.net.*

You will also investigate a few other features of Groovy, where it is less noisy than Java.
But before that, you’ll install Spring Boot CLI and have some hands-on experience.

Table A.1 Using cURL to generate a Spring Boot project

Command Remarks

curl https:/ /start.spring.io/starter.zip
-o demo.zip

This command generates a Spring Boot
project with all default parameters. In the
command, we download the generated
project as demo.zip.

curl https:/ /start.spring.io/starter.zip
-d dependencies=web,data-jpa
-d type=gradle-project

This command generates a Spring Boot
Gradle project with Spring Web and Spring
Data JPA dependencies.

curl https:/ /start.spring.io/
build.gradle -d packaging=war -d
javaVersion=15 -o build.gradle

This command generates only a Gradle
build file (build.gradle) with WAR packag-
ing and Java version 15.

Listing A.2 Packages imported by Groovy by default

https://groovy-lang.org/

505A.2 Bootstrapping and executing a Spring Boot application with Spring Boot CLI

A.2.1 Installing the Spring Boot CLI

Installing the Spring Boot CLI is easy and can be done in several ways. You can follow
any of the following approaches to install Spring Boot CLI:

1 Manual installation through the Spring Boot CLI ZIP
Take the following steps to configure Spring Boot CLI manually:

– Download the latest Spring Boot CLI archive from the Spring software repos-
itory (http://mng.bz/W794) to your machine.

– Extract the ZIP to the development folder, and you’ll find a folder structure,
as shown in figure A.18.

– Figure A.18 shows Spring Boot CLI components.
– Inside the bin directory, you can find the Spring Boot CLI executables.
– Set the bin directory path in your system’s path environment variable, so you

can access CLI’s spring command from anywhere in the command prompt
or terminal.

2 Install through the package managers, such as Homebrew or Chocolatey
A package manager is software that automates the process of installing, upgrad-
ing, configuring, and removing software on your computer. You can use differ-
ent package managers to install Spring Boot CLI, depending on the operating
system you are using. For example, if you are using macOS, you can use Home-
brew (https://brew.sh/) to install Spring Boot CLI, as shown in the following
listing.

Spring Boot CLI and Groovy
Spring Boot CLI uses Groovy language. The primary agenda of the Spring Boot CLI
tool is to quickly prototype a Spring Boot application and try out various features
offered by Spring. Spring Boot CLI does not use a dependency management tool,
such as Maven or Gradle, to keep things easy and straightforward. Groovy, being a
less verbose language, is the choice while working with Spring Boot CLI. Furthermore,
much of the Groovy syntax is similar to Java. Thus, to follow along with the code exam-
ples in this section, most of your Java knowledge will be sufficient. In the code exam-
ples, if we are using features specific to Groovy, we’ll explain.

Figure A.18

http://mng.bz/W794
https://brew.sh/

506 APPENDIX A Generating and building Spring Boot projects

brew tap pivotal/tap
brew install springboot (for macOS)

If you are using Windows, you can use Chocolatey (https://chocolatey.org/) to
install Spring Boot CLI using the command shown in the following listing.

choco install spring-boot-cli

Note that you need to install the package manager before you use it to install
Spring Boot CLI. You can refer to the links of the package managers for further
information on the installation.

3 Install through the Software Development Kit Manager (SDKMAN)
SDKMAN! (https://sdkman.io/) is a software tool for managing Software Devel-
opment Kits (SDK) in your machine, including Spring Boot CLI. You can down-
load the SDKMAN from their website and install it on your machine. After that,
you can use the command shown in the following listing to install Spring Boot
CLI using SDKMAN.

 sdk install springboot

Once you have installed and configured Spring Boot CLI, you can verify the installa-
tion by accessing the CLI. To access Spring Boot CLI, open the command prompt (in
Windows) or a terminal (in macOS/Linux) and type the command shown in the fol-
lowing listing. You can see the output as the installed CLI version.

$ spring --version
Spring CLI v2.3.0.RELEASE

You can now use the installed CLI to generate a Spring Boot project. Spring Boot CLI
defines an init command that connects to https://start.spring.io and allows you to
generate a project through Spring Initializr. Like the cURL command, you can obtain
a textual representation of the Spring Initializr service by running the spring init
--list command. You’ll see a similar screen as that shown in figure A.19.

 You can generate a Spring Boot project through the CLI by providing the project
parameters and dependencies, as shown in the following listing.

spring init --dependencies=web,h2 --type=gradle-project --java-version=15 –

➥ -packaging=war spring-boot-gradle-app.zip

Listing A.3 Installing Spring Boot CLI in macOS using Homebrew

Listing A.4 Installing Spring Boot CLI in Windows using Chocolatey

Listing A.5 Installing Spring Boot CLI through SDKMAN

Listing A.6 Spring Boot CLI version

Listing A.7 Spring Boot CLI to generate a Spring Boot project

https://start.spring.io
https://sdkman.io/
https://chocolatey.org/

507A.2 Bootstrapping and executing a Spring Boot application with Spring Boot CLI

The command in listing A.7 generates a Spring Boot Gradle project with the Spring
Web and H2 in-memory database dependencies, Java version as Java 15, and project
packaging types as WAR. It stores the generated project artifact with the name spring-
boot-gradle-app.zip.

A.2.2 Technique: Developing a simple Spring Boot application
with Spring Boot CLI

In this technique, we’ll discuss how to develop a Spring Boot application with Spring
Boot CLI.

Figure A.19 Accessing https://start.spring.io through cURL

https://start.spring.io

508 APPENDIX A Generating and building Spring Boot projects

PROBLEM

You have successfully installed Spring Boot CLI on your machine, and you want to cre-
ate a Spring Boot application with it.

SOLUTION

It is straightforward to create a Spring application using Spring Boot CLI. You can
simply start with a text editor. Let’s begin by defining a basic REST controller that
returns with a message. Although this is a straightforward example, you’ll shortly
notice the simplicity of the CLI tool and the concise nature of Groovy. It’ll also pro-
vide insight into how easy it is to use Spring Boot CLI. Don’t worry if you don’t know
what a REST controller is. You’ll learn about it later in the book.

 You’ll compare this REST controller with the equivalent Java version to understand
the verbosity and the boilerplate code you will need to write if the same controller is
written with Java. Create a folder called cli-introduction in C:\ drive (in Windows) or
in the home directory (in macOS or Linux). Then, create a file called applica-
tion.groovy with the following content inside the cli-introduction folder, as shown in
the following listing.

@RestController
class DemoRestController {
 @GetMapping("/")
 def hello() {
 "Welcome to Spring Boot CLI"
 }
}

In the above Groovy code, you’ve defined a REST controller, which returns a string
Welcome to Spring Boot CLI as the output. You can execute this file using the run
command of Spring Boot CLI. Open command prompt (in Windows) from C:\cli-
introduction or a terminal (in macOS and Linux) and execute the command shown
in the following listing.

$ spring run application.groovy

You can access this REST endpoint through the Web browser on http:/ /localhost:8080
and notice the output, as shown in figure A.20.

Listing A.8 Groovy REST Controller in Spring Boot CLI

Listing A.9 Executing application.groovy with Spring Boot CLI

Spring Boot
REST controller

Maps all HTTP
GET requests
to this methodResponse to all GET requests. The return

keyword is optional and can be skipped.

Figure A.20 Spring Boot
REST endpoint output

509A.2 Bootstrapping and executing a Spring Boot application with Spring Boot CLI

Let’s now see the Java equivalent of the Groovy code, as shown in the following listing.

package com.manning.spring.boot;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController
@SpringBootApplication
public class DemoSpringBootApplication {

 public static void main(String[] args) {
 SpringApplication.run(DemoSpringBootApplication.class, args);
 }
 @GetMapping
 public String hello() {
 return "Welcome to Spring Boot CLI";
 }
}

The Java version has several boilerplate codes compared to the CLI’s Groovy version:

1 Import all the classes and annotations you are using in the Java file.
2 Specify the @SpringBootApplication annotation for Spring Boot to perform

the autoconfiguration of the application.
3 Write a main() method to start the application and make this REST endpoint

available to others.

UNDERSTANDING THE SPRING BOOT CLI COMMANDS

You’ve already seen how to compile and run the Groovy source code using the Spring
Boot CLI run command. Following is the complete description of the run command:
$ spring run [options] <files> [--] [arguments]. It takes one or more Groovy files
with additional options and arguments. Note that -- is used to separate the applica-
tion options from the spring command line arguments. For example, to start the
application in a port other than the default 8080, you can specify a different port
using the --server.port argument: $ spring run application.groovy -- --server
.port=9090. To find a full list of options supported by the Spring Boot CLI run com-
mand, you can use the help command of Spring Boot CLI. For example, if you exe-
cute spring run help, you can find the output, as shown in figure A.21.

 So far, you are running the application through the Spring Boot CLI tool from the
command line. However, this might be fine for quick prototyping and to try out
Spring Boot features. But you might not always want to run the application from the
command line. You may wish to create a runnable JAR file or create a WAR file to

Listing A.10 Java equivalent code of the Groovy REST controller

Required
import
statements

A Spring REST controller

Enables Spring
Boot features

Maps all HTTP GET
requests to this method

Response to all HTTP
GET requests. The return
keyword is optional.

510 APPENDIX A Generating and building Spring Boot projects

deploy the application in any of your environments. With the Spring Boot CLI, you
can easily create a runnable JAR or a WAR file.

 For example, you can create a runnable JAR file by using the following command:
$ spring jar app.jar application.groovy. This command produces a runnable JAR
file that can be executed using the java -jar command. Similarly, you can create a
WAR file using the following command: $ spring war app.war application.groovy.

Groovy includes a @Grab annotation, which allows you to explicitly declare third-party
dependencies in your application. This annotation allows you to download JAR files,
such as a dependency management tool like Maven or Gradle. Spring Boot extends
this grabbing technique and attempts to deduce the libraries based on the contents of
your code as grab hints.

 For instance, the presence of @EnableJms in your code hints Spring Boot CLI to
download the necessary libraries required for a Java Messaging Service (http://mng
.bz/8ldZ) application. Table A.2 shows the list of grab hints. Some of the grab hints

Grab Hints vs. @Grab annotation
Spring Boot CLI uses two techniques to download the dependencies needed for your
application. The first and implicit technique is known as grab hints. These hints are
mostly in form of Java classes and annotations. If these classes or annotations are
present in your application code, Spring Boot CLI automatically detects the relevant
dependencies and downloads them. You can refer to table A.2 for the list of grab hints.

However, as you might have already noticed, these grab hints are limited and might
not suffice your needs. The second technique, @Grab annotation, resolves this lim-
itation. The @Grab annotation allows you to explicitly specify the dependencies
needed in your application. Spring Boot CLI pulls these dependencies, as specified
in the @Grab annotation.

Figure A.21 Spring Boot CLI run command options

http://mng.bz/8ldZ
http://mng.bz/8ldZ
http://mng.bz/8ldZ

511A.2 Bootstrapping and executing a Spring Boot application with Spring Boot CLI

are classes, and some are annotations. You’ll see the use of @Grab annotation shortly in
this section.

You’ve already seen the use of @RestController in the application.groovy file. The
presence of this annotation allows Spring Boot to download necessary dependencies
for a Spring MVC application and provides an embedded Tomcat server.

 Let’s now provide an additional grab hint in our application.groovy to demonstrate
this feature further. Let’s say you want to use Spring Security in the application and
leverage the default security features provided by Spring Security. To do so, let’s add
@EnableWebSecurity in the application.groovy file, as shown in the following listing.

@EnableWebSecurity
@RestController
class DemoRestController {

 @GetMapping("/")
 def hello() {
 "Spring Boot CLI"
 }
}

Run this application, and you can see that our application now has default Spring
Security features enabled. Spring Boot now redirects us to a login page to access the
endpoint. You can find the generated password from the console and log in with this
and user as user.

Table A.2 Groovy grab hints

Code item Grabs

JdbcTemplate, DataSource,
NamedParameterJdbcTemplate

Adds dependencies required for a JDBC application

@EnableJms Provides dependencies required for a JMS application

@EnableCaching Provides caching abstractions

@EnableRabbit Adds dependencies required for a RabbitMQ

@EnableWebSecurity Provides support for Spring Security

@EnableTransactionManagement Spring transaction management

@Controller, @RestController,
@EnableWebMvc

Provides support for a Spring MVC application with
embedded Tomcat

@EnableBatchProcessing Adds support required for a Spring Batch application

@EnableIntegration
@MessageEndpoint

Provides support for Spring Integration

Listing A.11 A simple Spring Boot REST controller

512 APPENDIX A Generating and building Spring Boot projects

 Although grab hints seem to be a powerful feature, they are limited, as we have a
limited number of such hints. You might need to use a third-party library outside of
these hints. To remove this limitation, Spring Boot extends Groovy’s standard @Grab
annotation by allowing you to specify a dependency. Therefore, if there is a Groovy hint
already in your application, the framework attempts to download it automatically. Later,
when no hint is available, you can explicitly add dependencies using @Grab annotation.

 For instance, we can tweak our previous example and use @Grab annotation to add
the spring-boot-starter-security dependency, as shown in the following listing.
Thus, by using @Grab annotation, you can explicitly specify the dependencies needed
in your application.

@Grab("spring-boot-starter-security")
@RestController
class DemoRestController {

 @GetMapping("/")
 def hello() {
 "Welcome to Spring Boot CLI"
 }
}

The code in listing A.12 downloads the spring-boot-starter-security dependen-
cies. If you run this file with Spring Boot CLI, you can see the CLI is resolving the
dependencies and asking you to log in to access the endpoint.

DISCUSSION

With this technique, you’ve seen the use of Spring Boot CLI by developing a tiny Spring
REST Web service. The major takeaway in this technique is the use of Groovy language,
which allows you to write concise code. You also don’t need any build framework for
dependency management and application packaging. With the next technique, we’ll
take this concept further by building a Web application consisting of UI and database.

A.2.3 Technique: Building a Web application using Spring Boot CLI

In this technique, we’ll discuss how to build a Web application using Spring Boot CLI.

PROBLEM

You want to build a Web application with UI and database support using Spring
Boot CLI.

SOLUTION

With the previous technique, you’ve explored Spring Boot CLI and learned the major
commands to play with it. Using this technique, you’ll extend that understanding fur-
ther by developing a Web application with the Spring Boot CLI.

 You’ll build a UI-based application that keeps track of the courses in an e-learning
platform. In this application, you will use Thymeleaf (https://www.thymeleaf.org/) to

Listing A.12 Using Groovy @Grab annotation to specify additional dependency

https://www.thymeleaf.org/

513A.2 Bootstrapping and executing a Spring Boot application with Spring Boot CLI

manage the UI components and H2 in-memory database (https://www.h2database
.com/html/main.html) to persist the course data. Figure A.22 shows the outcome of
the application you will build in this technique.

In the development process, you will explore a few of the Spring Boot features,
which will be useful in the chapters throughout the book. You can download the
completed version of this application from this book’s companion GitHub reposi-
tory at http://mng.bz/NxgN.

 To begin with, create a folder named $ mkdir course-tracker-cli. This folder acts as
the root folder of the application. You’ll create two more folders, config and tem-
plates, inside the root folder: $ mkdir config templates.

 The config folder contains the application.properties file, and the templates folder
contains HTML templates. The application.properties file contains optional Spring Boot
configuration parameters. For instance, if you need to start the application on a different
port than the default port 8080, you can configure the custom port in the applica-
tion.properties. You can also specify your database or logging configurations in this file.

 Figure A.23 shows the UML class diagram of the application you are going to
build. You have a Course as the business domain class and a CourseRepository inter-
face where you define the data access methods. The default implementation of this
interface is represented by the CourseRepositoryImpl class. Lastly, you have a Course-
Controller class that has an instance of the CourseRepository.

 In this application, the Course is the domain class, which represents a course in
the application. A course consists of a course ID, name, category, rating, and descrip-
tion. Following is the course.groovy class, as shown in listing A.13.

Figure A.22 Course Tracker application using Spring Boot CLI

https://www.h2database.com/html/main.html
https://www.h2database.com/html/main.html
https://www.h2database.com/html/main.html
http://mng.bz/NxgN

514 APPENDIX A Generating and building Spring Boot projects

class Course {
 long id
 String name
 String category
 int rating
 String description
}

You will use Spring JDBC to communicate with the database. Thus, you will need to
create the data access layer, using Spring JdbcTemplate. A JdbcTemplate is Spring’s
template-based approach that simplifies the use of JDBC and allows you to avoid com-
mon JDBC errors.

 Let’s define the CourseRepository interface inside the course-tracker-cli folder
with the data access methods shown in listing A.14. In this interface, you declare dif-
ferent data access methods to find course details.

interface CourseRepository {
 Iterable<Course> findAll()
 Iterable<Course> findAllByCourseCategory(String category)
}

These data access methods perform the following activities and fetch information
from the database:

1 findAll: Finds all courses available in the application
2 findAllByCourseCategory: Given a course category, it returns all courses that

belong to the supplied category

You’ll now define CourseRepositoryImpl class inside the course-tracker-cli folder.
This class implements the CourseRepository interface and defines the behaviors of
the interface methods.

Listing A.13 Course POJO class

Listing A.14 Course repository interface to define data access methods

Figure A.23 Conference Tracker
application using Spring Boot CLI

515A.2 Bootstrapping and executing a Spring Boot application with Spring Boot CLI

 Le’s explain the actions you’ll perform inside the CourseRepositoryImpl class:

 You need to annotate this class with @Repository annotation. @Repository anno-
tation is a stereotype annotation that indicates that the annotated class is a
Spring data repository. Spring Framework provides you a few special annota-
tions that allow you to create an instance of the annotated class automatically.
These annotations are known as stereotype annotations, and @Repository annota-
tion is one of them. You’ll find a detailed explanation of the @Repository inter-
face in chapter 3.

 You’ll need an instance of JdbcTemplate in the implemented class, so you can
communicate to the database. You’ll use @autowire annotation to do this. By
providing this annotation, you ask Spring to provide an instance of JdbcTemplate
when it creates an object of CourseRepositoryImpl class. Besides, declaring
JdbcTemplate is a grab hint to the Spring Boot CLI to perform the necessary
JDBC setup.

 Lastly, you’ll provide an implementation for all methods defined in the Course-
Repository interface. You’ve used Groovy closure to map the Course objects
from the result set. If you are familiar with Java lambda expressions, then you
can relate Groovy closures with them. You can refer to https://groovy-lang.org/
closures.html to read more about Groovy closures.

Create a file called CourseRepositoryImpl inside the root folder of your application
with the following content, as shown in the following listing.

@Repository
class CourseRepositoryImpl implements CourseRepository {

 @Autowired
 JdbcTemplate jdbcTemplate;

 Iterable<Course> findAll() {
 jdbcTemplate.query("""SELECT COURSE_ID, COURSE_NAME,

➥ COURSE_CATEGORY, COURSE_RATING, COURSE_DESCRIPTION FROM COURSES""", {
 resultSet, newRow -> new Course(
 id : resultSet.getLong(1),
 name : resultSet.getString(2),
 category : resultSet.getString(3),
 rating : resultSet.getInt(4),
 description : resultSet.getString(5))
 } as RowMapper)
 }

 Iterable<Course> findAllByCourseCategory(String category) {
 jdbcTemplate.query("""SELECT COURSE_ID, COURSE_NAME,

➥ COURSE_CATEGORY, COURSE_RATING, COURSE_DESCRIPTION FROM COURSES WHERE

➥ COURSE_CATEGORY=?""", {

Listing A.15 CourseRepositoryImpl class

Spring stereotype annotation indicates
that this class is a Spring Data repository.

An instance of JdbcTemplate is
autowired by Spring. This class lets
you access the database easily.

Implementation of
findAll method to
fetch all courses
from the database

Implementation of
findAllByCourseCategory
method that fetches all
courses belongs to the
supplied category from

the database

https://groovy-lang.org/closures.html
https://groovy-lang.org/closures.html

516 APPENDIX A Generating and building Spring Boot projects

 resultSet, newRow -> new Course(
 id : resultSet.getLong(1),
 name : resultSet.getString(2),
 category : resultSet.getString(3),
 rating : resultSet.getInt(4),
 description : resultSet.getString(5))
 } as RowMapper, category)
 }
}

Now that we are ready with the data access methods, let’s define a Spring controller class
to handle the incoming user requests. You’ll create the CourseController class inside
the course-tracker-cli folder of the application to do this task, as shown in listing A.15.

 Apart from handling the incoming request, you are performing several additional
activities in the controller. Let’s explain these step by step:

 You have defined this class with @controller annotation. This indicates the
class as a Spring controller to handle an incoming request.

 You have defined two endpoints to handle the incoming requests. To keep the
application simple, you have defined HTTP GET endpoints only. Below are the
endpoints:
– /—Default endpoint, which returns all courses available in our application
– /{category}—Provides all courses that belong to the supplied category

 As discussed previously, you are using the H2 in-memory database for the back-
end database and Thymeleaf to manage the HTML templates for the UI. Thus,
you have used h2 and spring-boot-starter-thymeleaf dependencies.

 When you access any of the endpoints, the following activities are done:

– The HTTP GET request is mapped to the appropriate controller method, as
defined in the CourseController class.

– The database repository class is invoked to fetch the data from the database.
– This data with a view name is returned by the controller method. In listing

A.16, you used a view named Course.
– The view is then rendered with the fetched data and displayed on the screen.

@Grab("h2")
@Grab("spring-boot-starter-thymeleaf")

@Controller
@RequestMapping
class CourseController {

 @Autowired
 CourseRepository courseRepository;

Listing A.16 Course REST controller

Using Groovy’s @Grab annotation
to tell Spring Boot to get the H2
database and spring-boot-starter
dependencies

Defines this class as a Spring controller, and
HTTP requests can be mapped to this class

Autowiring the CourseRepository
implementation. In this case,
CourseRepositoryImpl will be
injected by Spring here.

517A.2 Bootstrapping and executing a Spring Boot application with Spring Boot CLI

 @GetMapping
 def getAllCourses(Model model) {
 model.addAttribute("courses", courseRepository.findAll());
 "courses";
 }

 @GetMapping("{category}")
 def getAllCourses(@PathVariable("category") String category, Model

➥ model) {
 model.addAttribute("courses",

➥ courseRepository.findAllByCourseCategory(category));
 "courses";
 } }

You’ve defined the data access object and the controller class to handle the HTTP
incoming requests. Let’s now define the view of the application. Create a file
named courses.html inside the templates folder of the course-tracker-cli, as shown
in listing A.17.

 In the view, you’ve done the following:

 Used Thymeleaf to iterate the courses and displayed the course details in a tab-
ular format. You can refer to appendix B to learn Thymeleaf.

 You have used Bootstrap (https://getbootstrap.com/) to style the HTML page.
If you haven’t worked with Bootstrap before, it is a CSS library that allows you to
design your HTML pages.

<html xmlns:th="http:/ /www.thymeleaf.org">
<head>
 <title>Course Tracker</title>
 <meta charset="utf-8"/>
 <meta name="viewport" content="width=device-width, initial-scale=1"/>
 <link rel="stylesheet"

➥ href="https:/ /maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min

➥ .css"/>
 <script

➥ src="https:/ /ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js">

➥ </script>
 <script

➥ src=”https:/ /cdnjs.cloudflare.com/ajax/libs/popper.js/1.12.9/umd/popper

➥ .min.js"></script>
 <script

➥ src="https:/ /maxcdn.bootstrapcdn.com/bootstrap/4.0.0/js/bootstrap.min.j

➥ s"></script>
</head>
<body>
<nav class="navbar navbar-dark bg-dark">
 <div class="container-fluid">

Listing A.17 Course Tracker HTML template

HTTP GET request mapping endpoint to
address all GET requests with endpoint /

HTTP GET request mapping endpoint to
address GET requests with /{category}. The

category is a PathVariable and is replaced with
the actual course category.

https://getbootstrap.com/

518 APPENDIX A Generating and building Spring Boot projects

 <div class="navbar-header">
 Course Tracker
 </div>
 </div>
</nav>
<div class="container h-100">
 <div class="row justify-content-left mt-5 mb-1">
 <h3 id="heading">List of available courses:</h3>
 </div>
 <div class="row table-responsive">
 <table class="table table-striped">
 <thead class="thead-light">
 <tr>
 <th>Id</th>
 <th>Name</th>
 <th>Category</th>
 <th>Rating</th>
 <th>Description</th>
 </tr>
 </thead>
 <tbody>
 <tr th:each="course : ${courses}">
 <td th:text="${course.id}">ID</td>
 <td th:text="${course.name}">Name</td>
 <td th:text="${course.category}">Category</td>
 <td th:text="${course.rating}">Rating</td>
 <td th:text="${course.description}">Description</td>
 </tr>
 </tbody>
 </table>
 </div>
</div>
</body>
</html>

You are almost done with the application, except the database schema definition. If
you recall, we are using the H2 in-memory database to persist the data. Spring Boot
uses a convention to detect the schema definition files and the data files. It automati-
cally loads the schema if it finds a file called schema.sql and loads the data if it detects
a file called data.sql. For now, let’s create both these files inside the course-tracker-cli
folder of our application. The following listing shows the schema.sql file in which you
are creating the COURSES table.

create table COURSES (
 COURSE_ID identity not null,
 COURSE_NAME varchar(100) not null,
 COURSE_CATEGORY varchar(10) not null,
 COURSE_RATING tinyint not null,
 COURSE_DESCRIPTION varchar(500) not null
);

Listing A.18 The schema.sql file to create the COURSES database table

519A.2 Bootstrapping and executing a Spring Boot application with Spring Boot CLI

We also want to load some course details to populate the table with data. The follow-
ing listing shows the data.sql file containing a few SQL insert statements.

INSERT INTO COURSES(COURSE_ID, COURSE_NAME, COURSE_CATEGORY, COURSE_RATING,

➥ COURSE_DESCRIPTION) VALUES(1, 'Rapid Spring Boot Application

➥ Development', 'Spring', 4, 'Spring Boot gives all the features of the

➥ Spring Framework without all of the complexity');
INSERT INTO COURSES(COURSE_ID, COURSE_NAME, COURSE_CATEGORY, COURSE_RATING,

➥ COURSE_DESCRIPTION) VALUES(2, 'Getting Started with Spring Security

➥ DSL', 'Spring', 5, 'Learn Spring Security DSL in easy steps');
INSERT INTO COURSES(COURSE_ID, COURSE_NAME, COURSE_CATEGORY, COURSE_RATING,

➥ COURSE_DESCRIPTION) VALUES(3, 'Getting Started with Spring Cloud

➥ Kubernetes', 'Spring', 5, 'Master Spring Boot application deployment

➥ with Kubernetes');
INSERT INTO COURSES(COURSE_ID, COURSE_NAME, COURSE_CATEGORY, COURSE_RATING,

➥ COURSE_DESCRIPTION) VALUES(4, 'Getting Started with Python', 'Python',

➥ 3, 'Learn Python concepts in easy steps');
INSERT INTO COURSES(COURSE_ID, COURSE_NAME, COURSE_CATEGORY, COURSE_RATING,

➥ COURSE_DESCRIPTION) VALUES(5, 'Game Development with Python', 'Python',

➥ 4, 'Learn Python by developing 10 wonderful games');
INSERT INTO COURSES(COURSE_ID, COURSE_NAME, COURSE_CATEGORY, COURSE_RATING,

➥ COURSE_DESCRIPTION) VALUES(6, 'JavaScript for All', 'JavaScript', 3,

➥ 'Learn basic JavaScript syntax that can apply to anywhere');
INSERT INTO COURSES(COURSE_ID, COURSE_NAME, COURSE_CATEGORY, COURSE_RATING,

➥ COURSE_DESCRIPTION) VALUES(7, 'JavaScript Complete Guide',

➥ 'JavaScript', 3, 'Master JavaScript with Core Concepts and Web

➥ Development');

The last change before you can execute the application is configuring the H2 database.
So far, we’ve only provided the H2 database dependency in the Groovy file. But we also
need to provide details, including database username, password, driver class, and URL.

 Create a file called application.properties inside the config folder with the details
shown in listing A.20. Spring Boot reads these details at the application startup and
configures the H2 database automatically.

spring.h2.console.enabled=true
spring.datasource.url=jdbc:h2:mem:testdb
spring.datasource.driverClassName=org.h2.Driver
spring.datasource.username=sa
spring.datasource.password=password

Adding the database configuration completes the application development, and you
are ready to execute the application. You can run the application by executing the
spring Boot CLI run command. Open your command prompt or the terminal window
and run the following command from the course-tracker-cli folder: $ spring run *.
You can see the application starts up and the startup logs in the console. By default,

Listing A.19 The data.sql file to load the sample data by Spring Boot

Listing A.20 H2 database configuration

This ensures that you can
access the H2 database
console through http://
localhost:8080/h2-console.

520 APPENDIX A Generating and building Spring Boot projects

HTTP port 8080 is used to run the application. If you access http:/ /localhost:8080,
you can see the output, as shown in figure A.24:

You can also access other endpoints, such as finding all courses that belong to a cate-
gory by navigating to http:/ /localhost:8080/{category}. For instance, if you visit http:/ /
localhost:8080/Spring, you can see all courses belonging to the Spring category. Fig-
ure A.25 shows the output. Nice! Thanks to the features of Spring Boot CLI we can
track our favorite Spring courses!

Figure A.24 Conference Tracker application displaying all conferences

Figure A.25 List of courses belongs to the Spring category

521A.2 Bootstrapping and executing a Spring Boot application with Spring Boot CLI

DISCUSSION

Using this technique, you’ve seen the use of Spring Boot CLI for building a full-scale
Web application with a frontend and a backend database. You haven’t used any depen-
dency management tool, such as Maven or Gradle; instead, Spring Boot CLI manages
the dependencies for us.

522

appendix B
Spring MVC and

Thymeleaf Template Engine

In the next section, we’ll revisit Spring MVC and provide an overview to Thymeleaf
template engine.

B.1 Revisiting Spring MVC
Spring MVC is one of the important modules of the Spring Framework. The
model–view–controller (MVC) is the popular design pattern to build UI-based Web
applications. MVC allows you to decouple the application design in terms of model,
view, and controller. A model encapsulates business data which is presented by a
view. A controller is responsible for addressing the user requests and invoking back-
end business services. After business service invocation, the controller prepares the
model with the data for the views to render in the UI.

 Spring MVC is the Spring Framework’s implementation of the MVC design
pattern. One of the powerful and key features of Spring MVC is that it is based on
the Spring IoC container and tightly integrated with it to provide a simplistic
configuration.

 In this section, you’ll revisit important Spring MVC concepts, such as the front con-
troller design pattern and various other components Spring MVC uses heavily while
processing the user requests. If you are not familiar with Spring MVC, refer to the
Spring MVC documentation (http://mng.bz/YgWo) or introductory Spring MVC
texts. Providing an in-depth guide to Spring MVC is beyond the scope of this text.

B.1.1 Front controller design pattern

Spring MVC is designed around a design pattern known as the front controller pat-
tern. In this design, a central servlet is primarily responsible to handle all the

http://mng.bz/YgWo

523B.1 Revisiting Spring MVC

requests. In Spring parlance, this central servlet is known as the dispatcher servlet.
Although the dispatcher servlet handles all requests, it delegates the actual request
processing task to several configurable delegated components.

 In a typical Spring MVC application, you’ll need to configure the Dispatcher-
Servlet in the application’s deployment descriptor file (web.xml) or in a class that
implements ServletContainerInitializer interface. Listing B.1 shows a sample con-
figuration to configure a DispatcherServlet programmatically.

public class CourseCourtServletContainerInitializer implements

➥ ServletContainerInitializer {
 @Override
 public void onStartup(Set<Class<?>> set, ServletContext servletContext)

➥ throws ServletException {

 AnnotationConfigWebApplicationContext applicationContext = new

➥ AnnotationConfigWebApplicationContext();
 applicationContext.register(CourseConfiguration.class);
 DispatcherServlet dispatcherServlet = new

➥ DispatcherServlet(applicationContext);
 ServletRegistration.Dynamic servletRegistration =

➥ servletContext.addServlet("course", dispatcherServlet);
 servletRegistration.setLoadOnStartup(1);
 servletRegistration.addMapping("/");
 }
}

B.1.2 Understanding request processing

Now that you’ve learned how to configure a dispatcher servlet, let’s discuss how it pro-
cesses an incoming request. In this section, you’ll explore the steps a dispatcher servlet
executes to process the incoming requests. Figure B.1 shows the sequence of steps.

 Following is an overly simplified and high-level step of a request handling by the
dispatcher servlet:

1 Any request to a Spring MVC-based application is initially addressed by the dis-
patcher servlet.

2 Once a request is received, the dispatcher servlet first delegates the incoming
request to a HandlerMapping. A HandlerMapping finds a Spring controller con-
figured to address the request.

3 Once a controller is found, the dispatcher servlet delegates the request to a
HandlerAdapter that invokes the controller.

4 Generally, a controller invokes the business services and retrieves the applica-
tion data.

Listing B.1 Configure a dispatcher servlet programmatically

Create an instance of
ApplicationContext

Create an instance
of DispatcherServlet
with the previously
created application
context

Dynamically register the
DispatcherServlet with

the ServletContext

524 APPENDIX B Spring MVC and Thymeleaf Template Engine

5 After business invocation, a controller prepares a model that contains the
returned business data. The controller also returns a logical view name to the
dispatcher servlet.

6 The DispatcherServlet then invokes a ViewResolver, which maps the logical
view name to the actual view.

7 The returned view uses the model data and renders it to the screen.
8 Once the view is rendered on the screen, the request is considered to be

addressed.

Let’s now briefly discuss a few of the Spring MVC components that dispatcher servlet
uses for task delegation:

 HandlerMapping—This interface provides a mapping between the request URL
and the handler objects. Spring MVC includes two major implementations of
the HandlerMapping interface: BeanNameUrlHandlerMapping and Request-
MappingHandlerMapping. The BeanNameUrlHandlerMapping implementation
maps the request URL to the bean name of the same name. This is the default
implementation used by Spring MVC. A HandlerMapping returns a Handler-
ExecutionChain, which contains the handler object and a list of interceptors.
Depending on the configuration (i.e., pre/post), these interceptors are invoked
while addressing the request.

Dispatcher

servlet

Handler

mapping

Handler

adapter
Controller

View

name

Service

Repository

Database

View

resolver

View Model Business logic

execution

2 3

1

4

5

67

8

Fetch data from the model to render

in the UI.

Resolve view

Figure B.1 Spring MVC components. The DispatcherServlet is the primary component, and it delegates the
request to various other components.

525B.1 Revisiting Spring MVC

 HandlerAdapter—This interface helps the dispatcher servlet to invoke a han-
dler mapped to a request. The main benefit of this interface is that it shields the
dispatcher servlet from the implementation details of the handler. Spring MVC
provides four implementations of this interface: RequestMappingHandler-
Adapter, HttpRequestHandlerAdapter, SimpleControllerHandlerAdapter,
and SimpleServletHandlerAdapter.

 ViewResolver—Resolves the logical string-based view names to the actual view.
Spring framework provides several ViewResolver and View implementations.
Refer to http://mng.bz/GGvM for the list of ViewResolver implementations.

 LocaleResolver—This interface allows the dispatcher servlet to automatically
resolve messages based on the client’s locale configuration. For all the incom-
ing requests, the dispatcher servlet asks the configured LocaleResolver imple-
mentation to resolve the locale and set it in the HttpServletResponse. Spring
framework provides several LocaleResolver implementations. Figure B.2 shows
the list of available LocaleResolvers. The default implementation used by the
Spring MVC is AcceptHeaderLocaleResolver.

 HandlerExceptionResolver—This interface allows resolve exceptions to be
thrown during handler mapping or execution. In case of an exception, the
dispatcher servlet delegates to a chain of HandlerExceptionResolver. An
exception resolver can either choose to handle the exception or delegate to
another resolver implementation. A HandlerExceptionResolver can do any of
the following:
– Return a ModelAndView that points to an error view.
– An empty ModelAndView if the exception is already handled in the Handler-

ExceptionResolver.
– Return null if the exception is unresolved, and the subsequent resolvers

should attempt to handle it. If the exception is unresolved till the end, it is
finally addressed by the Servlet container.

Figure B.2 Spring MVC LocaleResolver class hierarchy. The default implementation is
AcceptHeaderLocaleResolver.

http://mng.bz/GGvM

526 APPENDIX B Spring MVC and Thymeleaf Template Engine

The major HandlerExceptionResolver implementations are SimpleMappingException-
Resolver, ExceptionHandlerExceptionResolver, ResponseStatusExceptionResolver,
and DefaultHandlerExceptionResolver. Now that you’ve refreshed the Spring MVC
concepts and their various components, let’s discuss the Thymeleaf template engine.

B.2 Understanding Thymeleaf
In this section, you’ll learn the basics of Thymeleaf and its integration with Spring
Boot. Thymeleaf is a server-side template engine that allows you to define several types
of template. For instance, a Thymeleaf HTML template is an HTML page that con-
tains HTML tags with special Thymeleaf tags. These Thymeleaf tags are processed at
runtime by the Thymeleaf processing engine and replaced with the supplied data and
plain HTML content is rendered on the browser.

 Thymeleaf supports six types of templates: HTML, XML, TEXT, JAVASCRIPT, CSS, and
RAW. Of these types, the HTML-based template is the most popular and frequently used
for developing Java-based Web applications. In this section and the subsequent tech-
nique, you’ll learn more about the usage of HTML-based Thymeleaf templates in the
Spring Boot application.

 A detailed explanation of Thymeleaf is beyond the scope of this book. You can refer
to the Thymeleaf documentation (https://www.thymeleaf.org/documentation.html) for
an in-depth understanding of Thymeleaf. Let’s start with the necessary components of
Thymeleaf.

B.2.1 Displaying attributes

Sometimes you send data from a Spring Boot controller through a model to the view
layer to render the data in the UI. Along with the model, you typically send a view
name in which the associated model data is rendered. The view name is mapped with
the appropriate HTML page, and the Thymeleaf processing engine processes the
Thymeleaf-specific tags to replace them with the supplied application data. Figure B.3
shows this process through a block diagram.

Controller

Thymeleaf HTML template

Thymeleaf processing engine

process Processed

HTML page
model

Figure B.3 Processing of Thymeleaf templates with Spring model by Thymeleaf template processing engine

https://www.thymeleaf.org/documentation.html

527B.2 Understanding Thymeleaf

In Spring MVC, a model typically stores the data in a key-value pair. If the value is a
simple type, you can directly access it in the UI using the key. Listing B.2 shows how
you can use the key provided in the model in the Thymeleaf template.

Let’s understand the above syntax in detail:

 The is an HTML tag that allows you to mark up a part of the text.
 The th specifies the Thymeleaf XML namespace in which all other Thymeleaf-

specific tags (e.g., text) are defined. You can define the th tag in the HTML
document, as shown in the following listing.

<html xmlns:th="http:/ /www.thymeleaf.org">

 The ${key} replaces the value of the key with the appropriate value.

For example, let’s say you need to render the logged-in user’s name in the UI. So in
your controller, you can add the userName as a key, and the user’s name as the value.
In the Spring controller, you define an HTTP endpoint (e.g., @GetMapping) and pop-
ulate the model with the values, as shown in the following listing.

@GetMapping
public String getLoggedInUserName(Model model) {
 model.addAttribute("userName", user.getName());
 return "index";
}

The associated HTML code to display the value of the userName attribute is the follow-
ing: Logged In user: . The userName value from the
model is rendered in the UI by the key name you have specified. Sometimes, you can
have a collection of objects instead of a simple attribute type. For example, you can
return a list of courses that should be rendered in the UI. So in the controller, you
add the list of courses as follows:

List<Course> courseList = // Business service returns a list of course
model.addAttribute("courses", courseList);

You can use the Thymeleaf template code to iterate over the list to print the returned
object details. For instance, you can display the course details in an HTML table, as
shown in the following listing.

Listing B.2 Use of the th:text Thymeleaf tag

Listing B.3 The Thymeleaf namespace

Listing B.4 Use of Spring model in a Spring controller

Defines an HTTP GET endpoint
Adds the userName
attribute with the
username value to
the modelReturns a view

named index

528 APPENDIX B Spring MVC and Thymeleaf Template Engine

<tbody>
 <tr th:each="course: ${courses}">
 <td th:text="${course.id}" />
 <td th:text="${course.name}" />
 <td th:text="${course.description}" />
 </tr>
</tbody>

B.2.2 Conditional evaluation

Sometimes you want to render texts in the UI based on some condition evaluation.
The th:if tag allows you to display a section of the view if the condition is met. On
the other hand, th:unless tag allows you to display a section of the view if the condi-
tion is not met. The following snippet shows the complete syntax:

th:if="${condition}"
th:unless="${condition}"

Imagine you have an entity called Author in your course-tracker application, and it
has a property called gender, which can have two possible values (M or F) to indicate
the author’s gender. If you intend to display the words Male or Female instead of the
single M or F character, we could accomplish this by using the following Thymeleaf
code, as shown in the following listing.

<td>

</td>

If you would like to use switch and case, you can do that as well. The th:switch and
th:case tags are used to render content conditionally, using the switch statement
structure. Imagine you want to render some information based on the course cate-
gory. You can use the following switch-case code snippet to render different content
based on the course content, as shown in the following listing.

<div th:switch="${course.category}">
 <div th:case="'Spring'">
 <h2>Spring Course</h2>
 </div>

Listing B.5 Use of the Thymeleaf th:each tag

Listing B.6 Use of th:if and th:unless Thymeleaf tags

Listing B.7 Use of Thymeleaf th:switch and th:case tags

HTML Table Body

The tr tag represents an HTML
table row. The th:each tag
represents a for loop here. You
iterate the list of courses and
for each course, and you access
the associated properties.The td tag represents the column data for the

row. You access the individual property value
from the course object and put into the column of
the row. Recall that, for a single property, you can
use the th:text tag to access the associated value.

Using Thymeleaf
switch-case statements
to evaluate condition

529B.2 Understanding Thymeleaf

 <div th:case="'Python'">
 <h2>Python Course</h2>
 </div>
 <div th:case="'JavScript'">
 <h2>JavaScript Course</h2>
 </div>
 <div th:case="*">
 <h2>Some other course:</h2>
 </div>
</div>

Notice that you’ve used the th:case="*" to handle the default case. If the value of the
course.category is Spring, then it renders the message, Spring Course. If the course
category is not Spring, Python, or JavaScript values, then the message Some Other
Course is rendered.

B.2.3 Managing forms

HTML forms are an essential part of any Web application. You can use forms to collect
and submit bulk data to the application backend. You also need to validate the form
data to ensure appropriate value is keyed-in in the form fields.

 You can manage the form data and validation errors easily with Thymeleaf. You
can use the form action and input data with th:action and th:object attributes. The
following listing shows this syntax.

th:action="@{url}"
th:object="${object}"

The th:action tag allows you to specify the form action URL where the form data
needs to be submitted. Notice the tag name is the same as the action attribute of an
HTML form. The th:object tag allows you to specify an object in which the submit-
ted form data is bounded.

 The individual fields are mapped using the th:field="*{name}" attribute, where
the name is the property defined in the Java object. For instance, if you are using the
th:object="${course}", then you can access all properties of the Course object in
the th:field.

 As discussed, you also need to show validation error messages to the user if there
are any validation errors in the field. Thymeleaf provide few functions in the #fields
object and the th:errors attribute for this purpose. The hasErrors(..) method of
the #field object accepts a field expression as a parameter (e.g., name) and returns
a boolean value specifying whether any validation errors exist for that field. The
th:errors tag builds a list with all the available errors. The errors are separated by the

 tag. The following listing shows an example of the usage of hasErrors(..) and
th:errors tags.

Listing B.8 Thymeleaf th:action and th:object tag syntax

530 APPENDIX B Spring MVC and Thymeleaf Template Engine

<span th:if="${#fields.hasErrors('name')}" th:errors="*{name}" class="text-

➥ danger">

Let’s understand these concepts by defining a complete HTML form that allows you
to create a course. The following listing shows the form snippet.

<form action="#" th:action="@{/addcourse}" th:object="${course}"

➥ method="post">
 <div class="row">
 <div class="form-group col-md-6">
 <label for="name" class="col-form-label">Name</label>
 <input type="text" th:field="*{name}" class="form-control"

➥ id="name" placeholder="Name">
 <span th:if="${#fields.hasErrors('name')}" th:errors="*{name}"

➥ class="text-danger">
 </div>
 <div class="form-group col-md-6">
 <label for="email" class="col-form-label">Description</label>
 <input type="text" th:field="*{description}" class="form-

➥ control" id="email" placeholder="Description">
 <span th:if="${#fields.hasErrors('description')}"

➥ th:errors="*{description}" class="text-danger">
 </div>
 </div>
 <div class="row">
 <div class="col-md-6 mt-5">
 <input type="submit" class="btn btn-primary" value="Add Course">
 </div>
 </div>
</form>

In the form specified in listing B.10, the /addcourse is the form action URL. The
course object in the th:object holds the add course form data that is submitted.
Let’s show the addcourse HTTP endpoint, which is part of the controller to under-
stand how the form and the controller interact. The following listing shows the associ-
ated HTTP POST endpoint from the Course example we are using in this chapter.

@PostMapping("/addcourse")
public String addCourse(@Valid Course course, BindingResult result, Model

➥ model) {
 if (result.hasErrors()) {
 return "add-course";
 }

Listing B.9 Thymeleaf #fields.hasErrors and th:errors tag syntax

Listing B.10 The add course form with Thymeleaf tag

Listing B.11 The sample addCourse HTTP POST endpoint

Defines an HTML form. The th:action invokes the addcourse HTTP endpoint
defined in the Spring controller. You have also defined the th:object that
binds the provided form data into the course.

You are using Bootstrap
library to design the form.

Checks if there are any errors for
the name field. If there are any,

then th:errors list them.

Defines an HTTP POST endpoint with URL /addcourse

The @Valid annotation evaluates all
constraints defined in the Course class.
BindingResult holds the validation errors.

531B.3 Enabling a template engine in Spring Boot

 // Save the course details in database
 model.addAttribute("courses", //Get all courses from the database);
 return "redirect:/index";
}

Although the code snippet in the listing only contains a few lines, there are quite a few
functionalities involved here:

 You’ve annotated the class with @PostMapping to ensure an HTTP POST request
can be addressed by this endpoint. You’ve also declared the form with method=
"post" attribute. As an HTTP form contains bulk data, it is submitted through
the HTTP POST method, so data can be part of the HTTP request body.

 The @Valid annotation ensures that all validations defined on the supplied object,
and its properties, are performed. This annotation triggers Spring to invoke the
validators associated with the object to be validated.

 The BindingResult is a Spring object that holds the result of validation and
binding. It also contains the errors that it might have encountered in validation
and binding. If BindingResult contains any error, you return to the HTML
page showing the add-course form and the field errors.

 You’ve already seen the usage of the model in earlier discussions. In this exam-
ple, Spring Boot autowires an instance of the model. You then load all course
details into the model with key as courses and a list of courses as the value.

 You use the redirect prefix to redirect the flow to a view called index. This
ensures a redirection happens to the index view, and it renders in the UI.

In this section, you learned the building blocks of Thymeleaf and saw the usage of a
few tags you’ll typically use frequently with a Spring Boot application. Let’s apply this
knowledge by building a complete Spring Boot application with Thymeleaf in the
next technique.

B.3 Enabling a template engine in Spring Boot
Spring Boot applications are heavily used to develop Web-based applications. There
are two major patterns for developing Web applications where Spring Boot suits well:

 In the first type, Spring Boot applications are used as the backend application
in conjunction with single-page, application-based frontends, such as Angular
(https://angular.io/), React (https://reactjs.org/), or Vue JS (https://vuejs.org/).
In this pattern, the Spring Boot application is configured with the REST Web
services, which provide data to the frontend for rendering.

In figure B.4, the single-page application requests data through its HTTP
library. This request is intercepted by the Spring Boot REST controller. The
REST controller uses the underlying Spring Data (JPA) to communicate to the
database. The returned result is then handed over to the HTTP library and sub-
sequently rendered in the frontend application UI.

https://angular.io/
https://reactjs.org/
https://vuejs.org/

532 APPENDIX B Spring MVC and Thymeleaf Template Engine

 In the second type, you use a complete Java-based technology stack and don’t
use JavaScript-based frontend frameworks. In this pattern, you use the traditional
Spring MVC design pattern with frontend template engines, such as Thymeleaf
(https://www.thymeleaf.org/), FreeMarker (https://freemarker.apache.org/),
or Mustache (https://mustache.github.io/). Out of these template engines,

Spring oot applicationB

UI

components

HTTP

library

Spring

REST controller
Spring ata JPAD

Database

Single page application

(eact/ ngular)R A

H2

Figure B.4 Web application design
pattern with SPA-based frontend
and Spring Boot application

https://www.thymeleaf.org/
https://freemarker.apache.org/
https://mustache.github.io/

533B.3 Enabling a template engine in Spring Boot

Thymeleaf is a popular and most widely used template engine used along with
Spring Boot applications. Figure B.5 shows a sample of this pattern through a
block diagram.

Figure B.5 shows a typical Spring MVC-based design, where both the frontend and
backend components of the application are part of the same Spring Boot application.
In this pattern, the view layer is represented by an HTML-based template engine, such
as Thymeleaf. A model is a container that carries application data to or from the con-
troller to or from the view layer. The data provided in the model is processed in the
view layer by the template engines and rendered on the screen.

B.3.1 Technique: Building a Spring Boot Web application
with Thymeleaf

In this technique, we’ll demonstrate how to build a Spring Boot Web application with
a Thymeleaf template engine.

PROBLEM

You want to build a Web application with the Spring Boot and Thymeleaf template
engine.

SOLUTION

Thymeleaf is a popular and widely used server-side frontend template engine that is
often used with Spring Boot to develop production-grade Web applications. Thymeleaf
also provides excellent integration with the Spring framework, and in fact, there is a
Spring Boot Thymeleaf starter that allows you to directly use Thymeleaf in Spring Boot
applications.

 To use Thymeleaf in a Spring Boot application, you create Thymeleaf HTML tem-
plates and place them into the src\main\resources\templates folder. From your Spring

Front controller Controller

View layer

(hymeleaf)T

model

Desktop

model

model

model

model

model

Figure B.5 Web application design pattern with Spring MVC and Thymeleaf

534 APPENDIX B Spring MVC and Thymeleaf Template Engine

Boot controller, you return the logical view name that gets mapped to the HTML
pages. You use the Spring model to send the data that is used in the HTML page.

 As usual, to proceed with this technique, you can continue with the Spring Boot
project you’ve used previously. We’ve added the spring-boot-starter-thymeleaf
dependency in the pom.xml file to enable Thymeleaf support in the application.

 You can find the base Spring Boot project for this technique in the book’s compan-
ion GitHub repository at http://mng.bz/zQ7w. You can clone this project and con-
tinue with this technique.

 With this technique, you’ll build a Spring Boot that uses a Thymeleaf-based user
interface along with a service layer implementation. Before we proceed further, we’ll
add the spring.mvc.hiddenmethod.filter.enabled=true property to the applica-
tion.properties file. Listing B.12 shows the modified application.properties.

spring.mvc.hiddenmethod.filter.enabled=true

This property enables HiddenHttpMethodFilter in your Spring Boot application.
Sometimes in your application, you need to support HTTP methods, such as PUT,
PATCH, and DELETE, which are not supported by the browser. To overcome this issue,
you add a hidden form field (_method) in your HTML form that indicates the actual
HTTP method. The HiddenHttpMethodFilter performs this conversion. You’ll see
the usage of this filter in the Update and Delete course operations. Figure B.6 shows
the high-level block diagram of the application flow.

Listing B.12 Application.properties file

Property that enables HiddenHttp-
MethodFilter in the application

User

Spring

controller

Thymeleaf

template

Service

layer

Repository

layer

1

2 3 4

56

789

10
User accesses a Thymeleaf template (HTML Page)

2

3

4

5

User request is sent to the Spring controller

Spring controller uses service layer to handle the request

Service uses repository layer to access the database

Repository layer connects to the database and performs

the required operation

6 10 Data is sent back to the intermediate layers and

finally rendered by Thymeleaf template (the same

or a new template)

H2

1

Figure B.6 Spring MVC-based Web application Thymeleaf flow diagram

http://mng.bz/zQ7w

535B.3 Enabling a template engine in Spring Boot

In this technique, you are using the Course Java POJO as the business domain entity.
We’ve added the @NotEmpty annotation to the rating, category, and description
properties. This annotation is from javax.validation.constraints package that
ensures that the supplied fields are not empty. We’ve added it here only to demon-
strate how you can leverage this built-in annotation to perform field validation in the
Thymeleaf UI. The following listing shows the updated content of the Course entity.

package com.manning.sbip.a02.model;

import javax.validation.constraints.*;

public class Course {

 private int id;

 @NotEmpty(message = "Course name field can't be empty")
 private String name;

 @NotEmpty(message = "Course category field can't be empty")
 private String category;

 @Min(value = 1)
 @Max(value = 5)
 private int rating;

 @NotEmpty(message = "Course description field can't be empty")
 private String description;

 // Constructor, Getter, Setter
}

Let’s first focus on the service layer of the application. As a practice, you first define an
interface that represents the operations supported by the service layer. You can then
provide an implementation of it by defining the operations. With this technique,
you’ve defined the CourseSevice interface to manage the course CRUD operations.
The following listing shows this interface.

package com.manning.sbip.a02.service;

import com.manning.sbip.a02.model.Course;

import java.util.Optional;
public interface CourseService {
 Iterable<Course> createCourse(Course course);
 Optional<Course> findCourseById(int courseId);
 Iterable<Course> findAllCourses();
 Iterable<Course> updateCourse(Course course);

Listing B.13 The updated Course entity

Listing B.14 The CourseService interface

Defines the
operations
supported in
the course-
tracker
application

Creates
a new

course

Loads a course by the
supplied courseID. The
Optional return type
indicates there might
not be a course
available with the
supplied ID.

Loads all
available courses

Updates a
course detail

536 APPENDIX B Spring MVC and Thymeleaf Template Engine

 Iterable<Course> deleteCourseById(int courseId);
}

You can refer to the inline code documentation to learn the purpose of the defined
operations. The purpose of using an interface to define the services is that you can
always provide a different implementation based on your requirement.

 Let’s now provide an implementation of these operations. In this example, we are
not connecting to any database; instead using an in-memory map to store the course
information. Listing B.15 shows the DefaultCourseService class.

package com.manning.sbip.a02.service;

import com.manning.sbip.a02.model.Course;
import org.springframework.stereotype.Service;

import java.util.*;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.stream.Collectors;

@Service
public class DefaultCourseService implements CourseService {
 private Map<Integer, Course> courses;
 private AtomicInteger courseIdGenerator;

 public DefaultCourseService() {
 this.courses = new HashMap<>();
 this.courseIdGenerator = new AtomicInteger(0);
 initializeCourses();
 }

 @Override
 public Iterable<Course> createCourse(Course course) {
 int courseId = course.getId();
 if(courseId == 0){
 courseId = getCourseId();
 course.setId(courseId);
 }else {
 courseId = course.getId();
 }
 courses.put(courseId, course);
 return findAllCourses();
 }

 @Override
 public Optional<Course> findCourseById(int courseId) {
 return Optional.of(courses.get(courseId));
 }

Listing B.15 Default CourseService implementation

Deletes a course
by the supplied
courseId

Provides an
implementation of the

CourseService interface

This map acts as the
backing data store for
the application, as we
are not using any
database.

Generates the
course IDs

537B.3 Enabling a template engine in Spring Boot

 @Override
 public List<Course> findAllCourses() {
 List<Course> courseList = new ArrayList<>();
 for(Map.Entry<Integer, Course> courseSet : courses.entrySet()) {
 courseList.add(courseSet.getValue());
 }
 return courseList;
 }

 @Override
 public Iterable<Course> updateCourse(Course course) {
 return createCourse(course);
 }

 @Override
 public Iterable<Course> deleteCourseById(int courseId) {
 courses.remove(courseId);
 return findAllCourses();
 }
 private void initializeCourses() {
 Course rapidSpringBootCourse = new Course(getCourseId(), "Rapid

➥ Spring Boot Application Development", "Spring", 4, "Spring Boot gives

➥ all the power of the Spring Framework without all of the complexity");
 Course springSecurityDslCourse = new Course(getCourseId(), "Getting

➥ Started with Spring Security DSL", "Spring", 2, "Learn Spring Security

➥ DSL in easy steps");
 Course springCloudKubernetesCourse = new Course(getCourseId(),

➥ "Getting Started with Spring Cloud Kubernetes", "Spring", 4, "Master

➥ Spring Boot application deployment with Kubernetes");
 courses.put(rapidSpringBootCourse.getId(), rapidSpringBootCourse);
 courses.put(springSecurityDslCourse.getId(),

➥ springSecurityDslCourse);
 courses.put(springCloudKubernetesCourse.getId(),

➥ springCloudKubernetesCourse);
 }

 private int getCourseId() {
 return courseIdGenerator.incrementAndGet();
 }
}

You can refer to the inline code documentation of the listing to understand the imple-
mented operations.

 Let’s define the CourseController that provides CRUD operations support to the
application. You’ll use these endpoints from the Thymeleaf templates. The following
listing shows the CourseController class.

package com.manning.sbip.a02.controller;

import com.manning.sbip.a02.model.Course;
import com.manning.sbip.a02.service.CourseService;

Listing B.16 The CourseController Spring controller

Creates a few sample
courses and stores
in the map

538 APPENDIX B Spring MVC and Thymeleaf Template Engine

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.validation.BindingResult;
import org.springframework.web.bind.annotation.*;

import javax.validation.Valid;
import java.util.Collections;
import java.util.List;

@Controller
public class CourseController {

 private final CourseService courseService;
 @Autowired
 public CourseController(CourseService courseService) {
 this.courseService = courseService;
 }

 @GetMapping("/")
 public String index() {
 return "redirect:/index";

 @GetMapping("/index")
 public String index(Model model) {
 List<Course> courseList = (List<Course>)

➥ courseService.findAllCourses();
 model.addAttribute("courses", courseList.isEmpty() ?

➥ Collections.EMPTY_LIST : courseList);
 return "index";
 }

 @GetMapping("/addcourse")
 public String showAddCourseForm(Course course) {
 return "add-course";
 }

An instance of the CourseService that is used by
the controller to perform the CRUD operations.

Notice that you’ve not used the actual
implementation of DefaultCourseService. Coding

to interfaces is always a best practice, as this
approach lets you switch the implementation at
your convenience. In this technique, you’ve only

DefaultCourseService implementation. Thus,
Spring can autowire this instance. If you have

more than one service implementation, then you
can use @Qualifier annotation to tell Spring

which implementation qualifies for autowiring.

An HTTP GET endpoint that returns all courses
that need to be displayed on the index HTML page.
If the course list is empty, then it returns an empty
collection. Otherwise, all available courses are
provided. You use a Spring model to add the
courseList along with the key named courses. You
also return a string called index, which is a logical
view name. Spring Boot takes this view name and
prepares the physical view named index.html. All
views for Thymelaf are located inside the
src\main\resources\templates folder.

An HTTP GET endpoint that returns the add-course
view name. Based on this name, Spring Boot figures out the

add-course.html page from the src\main\resources\templates
directory and renders in the UI.

539B.3 Enabling a template engine in Spring Boot

 @PostMapping("/addcourse")
 public String addCourse(@Valid Course course, BindingResult result,

➥ Model model){
 if (result.hasErrors()) {
 return "add-course";
 }
 model.addAttribute("courses", courseService.createCourse(course));
 return "redirect:/index";
 }

 @GetMapping("/update/{id}")
 public String showUpdateCourseForm(@PathVariable("id") long id, Model

➥ model) {
 model.addAttribute("course", courseService.findCourseById(id).get());
 return "update-course";
 }

 @PutMapping("/update/{id}")
 public String updateCourse(@PathVariable("id") long id, @Valid Course

➥ course, BindingResult result, Model model) {
 if (result.hasErrors()) {
 course.setId(id);
 return "update-course";
 }
 model.addAttribute("courses", courseService.updateCourse(course));
 return "redirect:/index";
 }

 @DeleteMapping("/delete/{id}")
 public String deleteCourse(@PathVariable("id") long id, Model model) {
 model.addAttribute("courses", courseService.deleteCourseById(id));
 return "redirect:/index";
 }
}

An HTTP POST endpoint that lets you create a course. The @Valid annotation enables Spring Boot to run all the
validations associated with the Course class. If you recall, you’ve added the @NotEmpty annotation for a couple of
the properties. Thus, if any of the annotated properties are empty, then the associated validation error will be
recorded and stored inside the BindingResult. Also, notice how you’ve used the same endpoint name (/addcourse)
in the previous @GetMapping as well. This is a general practice to drive the endpoints through the associated HTTP
methods. You typically show an HTML page (e.g., a form) when the user accesses the endpoint over the HTTP GET
method. Then, once the user submits the form, you invoke the HTTP POST endpoint. This enables you to accept the
form data through the HTTP body and invoke the necessary CRUD operations.

An HTTP GET endpoint that returns the update-
course view name. Based on this name, Spring
Boot figures out the update-course.html page
from the src\main\resources\templates
directory and renders it in the UI. Notice that
you’ve also supplied the course ID as the URL
path variable. This ID is used to fetch the course
details and attach them with the update-course
view so that the same can be rendered in the UI.
This ensures the user sees the current value in
the UI and can make necessary modifications.

An HTTP PUT endpoint that lets you update a course. It first
checks whether there are any validation errors, such as the

fields being blank. It then saves the updated course details to
the database and redirects the user to the index page with the

course details. The HTTP PUT operation is used to update an
existing entity. Also, notice that we’ve again used the HTTP

method to drive the endpoint. The /update/{id} for GET
returns the HTML page, whereas the PUT method for the same

endpoint performs the actual update operation.

An HTTP DELETE endpoint that lets you delete a
course by the courseId. It deletes the course if it

exists and redirects the user to the index page. Notice
that you are using the DELETE HTTP method to delete

an entity, which is the designated HTTP method to
perform a delete operation.

540 APPENDIX B Spring MVC and Thymeleaf Template Engine

You’ve defined all Java components (class and interface) required in the application.
Let’s now focus to define the HTML-based Thymeleaf templates. There are three
Thymeleaf templates:

 index.html—Defines the index page of the application. It shows the user all
available courses with an option to edit or delete a course. It also provides an
option to create a new course. If there are no courses previously created, it
allows the user to create a new course.

 add-course.html—Allows you to add a new course. This contains an HTML that
allows you to key in course properties.

 update-course.html—Displays existing course details and provides you an option
to update the existing details.

Let’s now start with the index page. Listing B.17 shows the created index.html page
available at src\main\resources\templates folder.

<!DOCTYPE html>
<html xmlns:th="http:/ /www.thymeleaf.org">
<head>
 <meta charset="utf-8">
 <meta http-equiv="x-ua-compatible" content="ie=edge">
 <title>Courses</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">

 <link rel="stylesheet"

➥ href="https:/ /stackpath.bootstrapcdn.com/bootstrap/4.5.2/css/bootstrap.

➥ min.css">
 <link rel="stylesheet"

➥ href="https:/ /use.fontawesome.com/releases/v5.4.1/css/all.css">
</head>
<body>
<div th:switch="${#lists.size(courses)}" class="container my-5">
 <div class="row">
 <div class="col-md-2"></div>
 <div class="col-md-8">

 <div th:case="'0'">
 <h2>You haven't added any course yet!</h2>
 <p class="text-success">Add a course by clicking below!</p>
 </div>
 <div th:case="*">
 <h2 class="my-5">Courses</h2>
 <table class="table table-striped table-responsive-md">
 <thead>
 <tr>

Listing B.17 The index HTML page with Thymeleaf tags

Links the Bootstrap and Font Awesome libraries.
Both the libraries are loaded from their respective
Content Delivery Network (CDN). A CDN hosts the
libraries, and the specified libraries are loaded
when this page is rendered.

Uses Thymeleaf switch-case to determine whether the
courses list is empty or contains course details. Recall
that in the CourseController /index endpoint, you are
returning an empty list or list of courses based on the

course availability. Besides, #lists is a utility object
from Thymeleaf that lets you perform useful

operations on a list. In this example, you
have used the size method to calculate

the list size.

Thymeleaf switch-case if
the courses list is empty

Thymeleaf
switch-case if

the courses list
is not empty

541B.3 Enabling a template engine in Spring Boot

 <th>Course Name</th>
 <th>Course Category</th>
 <th>Course Rating</th>
 <th>Course Description</th>
 <th>Edit</th>
 <th>Delete</th>
 </tr>
 </thead>
 <tbody>
 <tr th:each="course : ${courses}">
 <td th:text="${course.name}"></td>
 <td th:text="${course.category}"></td>
 <td th:text="${course.rating}"></td>
 <td th:text="${course.description}"></td>
 <td><a th:href="@{/update/{id}(id=${course.id})}"

➥ class="btn btn-primary"><i class="fas fa-edit"></i></td>
 <td>
 <form action="#"

➥ th:action="@{/delete/{id}(id=${course.id})}" th:method="delete">
 <button type="submit" class="btn btn-

➥ danger">
 <i class="fas fa-trash"></i>
 </button>
 </form>
 </td>
 </tr>
 </tbody>
 </table>
 </div>
 <p class="my-5"><i

➥ class="fas fa-plus-square"></i></p>
 </div>
 <div class="col-md-2"></div>
 </div>
</div>
</body>
</html>

Figure B.7 shows the index page with the available courses.
 Let’s now add the add course page. Listing B.18 shows the created add-course

.html page in the src\main\resources\templates folder. It allows you to add a new course.
It has an HTML form that contains four fields: course name, category, rating, and
description. The th:object binds this form data into the course object and is made
available to the HTTP endpoint. Once you submit the form, the action (th:action)
invokes the /addcourse HTTP POST endpoint provided in the controller. The
fields.hasErrors(..) checks if there are any validation errors for any of the fields.
The th:errors print the error messages if there are any.

An HTML anchor tag with
Thymeleaf tags. The th:href
tag lets you build the relative
URL. The {id} represents
the path variable in Spring
controller. You set the course
id to the path variable using
(id=${course.id}) part of
the URL.

Here you’ve used the th:action tag, as you are submitting a form.
The th:method tag deserves special attention. Recall that this delete

endpoint supports only the HTTP Delete method. But from a browser,
you can only send HTTP or POST requests. The th:method instructs
Thymeleaf to include a hidden input param <input type="hidden"

name="_method" value="DELETE">. This hidden attribute is
processed by Spring’s HiddenHttpMethodFilter filter and changes

the supplied HTTP POST method to the HTTP DELETE method.

Shows a link to add a new
course. If you click this link,
it invokes addcourse HTTP
GET endpoint.

542 APPENDIX B Spring MVC and Thymeleaf Template Engine

<!DOCTYPE html>
<html xmlns:th="http:/ /www.thymeleaf.org">
<head>
 <meta charset="utf-8">
 <meta http-equiv="x-ua-compatible" content="ie=edge">
 <title>Add a Course</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet"

➥ href="https:/ /stackpath.bootstrapcdn.com/bootstrap/4.5.2/css/bootstrap.

➥ min.css">
 <link rel="stylesheet"

➥ href="https:/ /use.fontawesome.com/releases/v5.4.1/css/all.css">
</head>
<body>
<div class="container my-5">
 <div class="row">
 <div class="col-md-3"></div>
 <div class="col-md-6">
 <h2 class="mb-5">Add a Course</h2>
 </div>
 <div class="col-md-3"></div>
 </div>

Listing B.18 The Add Course HTML page with Thymeleaf tags

Figure B.7 Spring Boot Thymeleaf index page

543B.3 Enabling a template engine in Spring Boot

 <div class="row">
 <div class="col-md-3"></div>
 <div class="col-md-9">
 <form action="#" th:action="@{/addcourse}"

➥ th:object="${course}" method="post">
 <div class="form-row">
 <div class="form-group col-md-9">
 <label for="name" class="col-form-

➥ label">Name</label>
 <input type="text" th:field="*{name}" class="form-

➥ control" id="name" placeholder="Course Name">
 <span th:if="${#fields.hasErrors('name')}"

➥ th:errors="*{name}" class="text-danger">
 </div>
 <div class="form-group col-md-9">
 <label for="category" class="col-form-

➥ label">Category</label>
 <input th:field="*{category}" class="form-control"

➥ id="category" placeholder="Course Category"></input>
 <span th:if="${#fields.hasErrors('category')}"

➥ th:errors="*{category}" class="text-danger">
 </div>
 <div class="form-group col-md-9">
 <label for="rating" class="col-form-label">Course

➥ Rating</label>
 <select th:field="*{rating}" class="form-control"

➥ id="rating">
 <option th:value="1">1 (Lowest)</option>
 <option th:value="2">2</option>
 <option th:value="3">3</option>
 <option th:value="4">4</option>
 <option th:value="5">5 (Highest)</option>
 </select>
 <span th:if="${#fields.hasErrors('category')}"

➥ th:errors="*{rating}" class="text-danger">
 </div>
 <div class="form-group col-md-9">
 <label for="description" class="col-form-

➥ label">Description</label>
 <textarea th:field="*{description}" class="form-

➥ control" id="description" placeholder="Course Description"></textarea>
 <span th:if="${#fields.hasErrors('description')}"

➥ th:errors="*{description}" class="text-danger">
 </div>
 </div>
 <div class="row">
 <div class="col-md-6 mt-5">
 <input type="submit" class="btn btn-primary center"

➥ value="Add Course">
 </div>
 </div>
 </form>
 </div>

544 APPENDIX B Spring MVC and Thymeleaf Template Engine

 <div class="col-md-3"></div>
 </div>
</div>
</body>
</html>

Figure B.8 shows the Add a Course HTML page.

You have added the Name, Category, and Description fields as mandatory. If you
attempt to submit the page without these details, you can now see the inline error
messages, as shown in figure B.9.

 Once you add a course, the course details are stored in the in-memory map, and
the user is redirected to the index page. This time the index page shows the course
you’ve added. Figure B.10 shows the index page with the list of courses.

 For each course, you have an option to edit the course details. You can also delete
a course. For example, once you click on the Edit icon, you see the Update Course
HTML page, as shown in Figure B.11.

Figure B.8 Spring Boot Thymeleaf Add a Course page

545B.3 Enabling a template engine in Spring Boot

Figure B.9 Spring Boot Thymeleaf Add a Course page with the inline error messages

Figure B.10 Spring Boot Thymeleaf index page with courses

546 APPENDIX B Spring MVC and Thymeleaf Template Engine

If you update the course details, you’ll be redirected to the index page with the
updated course list. Listing B.19 shows the update course HTML page in the src\main\
resources\template folder.

<!DOCTYPE html>
<html xmlns:th="http:/ /www.thymeleaf.org">
<head>
 <meta charset="utf-8">
 <meta http-equiv="x-ua-compatible" content="ie=edge">
 <title>Update Course</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet"

➥ href="https:/ /stackpath.bootstrapcdn.com/bootstrap/4.5.2/css/bootstrap.

➥ min.css">
 <link rel="stylesheet"

➥ href="https:/ /use.fontawesome.com/releases/v5.4.1/css/all.css">
</head>
<body>
<div class="container my-5">
 <div class="row">
 <div class="col-md-3"></div>
 <div class="col-md-6">

Listing B.19 The Update Course HTML page with Thymeleaf tags

Figure B.11 Spring Boot Thymeleaf Update Course index page

547B.3 Enabling a template engine in Spring Boot

 <h2 class="mb-5">Update Course</h2>
 </div>
 </div>
 <h2 class="mb-5"></h2>
 <div class="row">
 <div class="col-md-3"></div>
 <div class="col-md-6">
 <form action="#" th:action="@{/update/{id}(id=${course.id})}"

➥ th:object="${course}" method="post" th:method="put">
 <div class="form-row">
 <div class="form-group col-md-9">
 <label for="name" class="col-form-

➥ label">Name</label>
 <input type="text" th:field="*{name}" class="form-

➥ control" id="name" placeholder="Course Name">
 <span th:if="${#fields.hasErrors('name')}"

➥ th:errors="*{name}" class="text-danger">
 </div>
 <div class="form-group col-md-9">
 <label for="category" class="col-form-

➥ label">Category</label>
 <input th:field="*{category}" class="form-control"

➥ id="category" placeholder="Course Category"></input>
 <span th:if="${#fields.hasErrors('category')}"

➥ th:errors="*{category}" class="text-danger">
 </div>
 <div class="form-group col-md-9">
 <label for="rating" class="col-form-label">Course

➥ Rating</label>
 <select th:field="*{rating}" class="form-control"

➥ id="rating">
 <option th:value="1">1 (Lowest)</option>
 <option th:value="2">2</option>
 <option th:value="3">3</option>
 <option th:value="4">4</option>
 <option th:value="5">5 (Highest)</option>
 </select>
 <span th:if="${#fields.hasErrors('category')}"

➥ th:errors="*{rating}" class="text-danger">
 </div>
 <div class="form-group col-md-9">
 <label for="description" class="col-form-

➥ label">Description</label>
 <textarea th:field="*{description}" class="form-

➥ control" id="description" placeholder="Course Description"></textarea>
 <span th:if="${#fields.hasErrors('description')}"

➥ th:errors="*{description}" class="text-danger">
 </div>
 </div>
 <div class="row">
 <div class="col-md-6 mt-5">
 <input type="submit" class="btn btn-primary"

➥ value="Update Course">
 </div>
 </div>

548 APPENDIX B Spring MVC and Thymeleaf Template Engine

 </form>
 </div>
 <div class="col-md-3"></div>
 </div>
</div>
</body>
</html>

The last operation is to delete the added course. In the index page course list, you
have an option to delete a course. If you click on the Delete icon, the selected course
will be deleted. You can download the completed version of the Spring Boot project
used in this technique at http://mng.bz/0wjp.

DISCUSSION

With this technique, you built a complete CRUD application with Spring Boot and
Thymeleaf. You’ve seen how seamless it is to integrate Thymeleaf with Spring Boot.
You haven’t added any special configuration other than adding the Spring Boot
Thymeleaf starter dependency. You’ve also noticed the several powerful capabilities of
Thymeleaf, such as conditional rendering, looping through the list, and handling val-
idation with the #field utility class.

http://mng.bz/0wjp

549

index

Numerics

200 OK HTTP status code 341
403 Forbidden error message 295, 343
404 Not Found HTTP response code 310
500 Internal Server HTTP response code 309

A

Accept header 331
AcceptHeaderVersioningCourseController

class 332
Accept HTTP header 331
accessDenied endpoint 210
AccountController class 279
account endpoint 279
/actuator/env endpoint 420
addCourse mutation type 479
addReview mutation type 479–480
adduser endpoint 274
adduser HTTP GET endpoint 247
adduser HTTP POST endpoint 247
admin role 295
admin user 295
admin username 211, 218
annotated controller model 358
api.courses.created.gauge Gauge metric 177
api.courses.creation.time metric 177
app.description property 321
ApplicationContextInitializer interface 449
application deployment 399–438

deploying as WAR in WildFly application
server 406–415

deploying in Cloud Foundry 416–420
deploying in Heroku 420–423
deploying in Kubernetes cluster 429–434

deploying in Red Hat OpenShift 434–437
running as Docker containers 423–429
running as executable JAR files 401–406

ApplicationEvent class 255
application layer 405
ApplicationListener class 255
application.properties file 19–20
ApplicationUser class 244, 250, 253
ApplicationUser domain entity class 242
ApplicationUserRepository interface 220
application/vnd.sbip.app-v1+json custom MIME

type 333
app.version property 321
@Argument annotation 484
asynchronous data stream 350
asynchronous processing 351
authenticate(..) method 198
authentication 214
AuthenticationEntryPoint implementations 198
AuthenticationException exception type 197
AuthenticationFailureHandler interface 259
AuthenticationFilters class 197
AuthenticationManagerBuilder class 211
authentication parameter 290
@AuthenticationPrincipal annotation 338
AuthenticationProvider class 198
AuthenticationSuccessEventListener class 264
AuthenticationSuccessHandler interface 278
Authorization 214
Authorization header 232
autoconfiguration 26, 132–139

@Conditional annotation 134–135
Spring Security 200–202

SecurityAutoConfiguration 200–202
UserDetailsServiceAutoConfiguration 202

@AutoConfigureMockMvc annotation 314

INDEX550

B

backpressure 353
BasicAuthenticationFilter filter 197
BCryptPasswordEncoder bean 450
@Bean definition 320, 343
Bean Validation 60–69

built-in annotations 60–63
defining and using custom annotations 63–69

BiFunction 343
Bjarnason, Rúnar 442
body methods 372
bodyToMono method 370
boolean variable 253
bounded buffer 353
builder() method 377

C

CA (certificate authority) 235
Cache-Control header 186
callback 354
cancel() method 355–356
CAPTCHA 270
captcha.secret.key key name 273
cf apps command 419
cf login command 417
cf marketplace command 419
cf push command 419
cf services command 419
cf version command 417
Chiusano, Paul 442
client distinction 378
Close button 410
Cloud Foundry, deploying applications in 416–420
CloudFoundryVcapEnvironmentPostProcessor

class 419
Codegen utility 322
CommandLineRunner 46–51, 364, 376
@Component annotation 310
@Conditional annotation 134–135
Config data file 35–38
@Configuration class 368
configuration management 32–40

application.properties file 19–20
Config data file 35–38
OS environment variable 38–40
@PropertySource 33–34
SpringApplication class 32–33

@ConfigurationProperties annotation 40–46
configure() method 451
configure(AuthenticationManagerBuilder auth)

method 209, 218, 223
configure(HttpSecurity http) method 206–207
configure(WebSecurity web) method 206

configureMessageBroker method 391
configureTotp parameter 279
CONNECTION_INIT message 483
@ConnectMapping annotation 387
Content Negotiation versioning strategy 331
Content-Type header 186, 331
context.initializer.classes property 452
@ControllerAdvice annotation 310
@Controller annotation 304, 306
@controller annotation 306
COPY commands 428
count(..) method 177
Counter metric 174–177
COUNT property 180
Course class 382, 446
CourseController class 302, 324–325, 337–338,

343, 367, 382
Course domain object 381, 459, 470, 473
Course GraphQL type 472, 480
CourseHandler class 369, 372
courseId integer type 472
courseId method parameter 484
CourseNotFoundException class 448
CourseRepository interface 300, 361, 367, 446, 471
/courses/{id} endpoint 299
coursesByCategory GraphQL endpoint 479
/courses/category/{name} endpoint 299
Courses Created panel 182
/courses/ endpoint 299, 365, 371
CourseService class 329
CourseServiceImpl class 301–302, 308–309
CourseService interface 300, 447
courses query 480
CourseTracker application 174, 177, 179, 244
CourseTrackerMetricsConfiguration class

175–177, 179
course-tracker-remember-me cookie 269
CourseTrackerSpringBootApplication class 237,

409
Course type 466–467, 482
create() static factory method 377
createCourse(..) method 175, 177, 179
createCourseCounter bean definition 175
create operation 485
createUser(..) method 245–246
Criteria API 111–114
CrudRepository interface 86–96, 300

custom repositories with Spring Data JPA 94–96
domain object management with Spring Data

JPA 88–94
CrudRepository method signature 95
CSRF (cross-site request forgery) attacks 185
ct.deploy.pass property 414
ct.deploy.user property 414
CustomAccessDeniedHandler class 210

INDEX 551

CustomAuthenticationFailureHandler class 259,
265

CustomHeaderVersioningCourseController
class 330

CustomUserDetailsService class 222, 247, 264, 281

D

database access 70–130
CrudRepository interface 86–96
database configuration 74–86

initializing relational database schema 82–86
MongoDB databases 79–82
relational databases 74–79

data retrieval 97–107
@NamedQuery 104–107
PagingAndSortingRepository 101–104
query method definition 97–101

domain object relationship management
119–129

@JoinColumn 126–129
@JoinTable 126
@ManyToMany 125–126

query specification using @Query 107–111
reasons for using Spring Data 72
Spring Data modules 72–73
using Criteria API with 111–114
using QueryDSL with 114–118

data retrieval 97–107
@NamedQuery 104–107
PagingAndSortingRepository 101–104
query method definition 97–101

data streams 350
DefaultAuthenticationSuccessHandler class 278
DefaultCourseService class 175, 447
defaultIfEmpty operator 363
DefaultRedirectStrategy class 260
DefaultUserService class 249
delayElements() method 383
DelegatingFilterProxy filter 193–195
delete() method 375
delete endpoint 209
DELETE request 369
destroy() method 193–194
DigestAuthenticationFilter filter 197
dir command 406
DispatcherServlet servlet 192–193, 366
distribution summaries 179
DistributionSummary metric 174, 179
Docker containers, running applications

as 423–429
Docker in Practice (Miell and Sayers) 425
docker push command 430
docker run command 426, 429
docker tag command 430

@Document annotation 362
doFilter() method 193–194
domain object management

custom repositories with Spring Data JPA 94–96
in relational databases with named queries

105–107
in relational databases with Spring Data JPA

88–94
with Criteria API 111–114
with named queries 105–107
with QueryDSL 114–118

domain object relationship management 119–129

E

email verification at user registration 251–261
EmailVerificationController class 257
EmailVerification entity class 254
EmailVerificationListener class 256–257
EmailVerificationService class 254
@EnableGlobalAuthentication annotation 201
@EnableGlobalAuthentication configuration 201
@EnableWebSecurity annotation 201
ENDPOINT_ADMIN role 294–295
endpoints 146

creating custom 164–182
creating custom metrics 174–176
dashboard with Prometheus and

Grafana 179–182
Gauge metric 176–179
metrics 170–174

custom Spring Boot HealthIndicator 154–158
developing reactive RESTful API with functional

endpoints 367–372
health endpoint 150–154
info endpoint 158–163

configuring 158–162
configuring custom info contributor 162–163

managing 149–150
@Entity annotation 362
ExceptionHandler implementations 309
@ExceptionHandler methods 310
exception management, in RESTful API 306–311
ExceptionTranslationFilter class 197
@ExtendWith(SpringExtension.class)

annotation 314
extract option 405

F

failure analyzers
custom 140–144
overview 26

Fielding, Roy 298
Filter 192–194

INDEX552

FilterChain 192–194
FilterChainProxy class 195
FilterChainProxy filter 194–195
findAll(..) method 367
findAllByCategory(String category) custom

method 361
findAllByCategory method 99, 300
findByCategory(..) custom method 471
findByCourseId(..) custom method 471
findById returns 363
findByUsername() method 221, 245–246
flatMap(..) operator 365
Flux class 365
Flux type 356, 361
functional endpoints model 358
Functional Programming in Kotlin (Vermeulen,

Bjarnason, Chiusano) 442
fun keyword 447

G

Gauge meter 174
Gauge metric 174, 176–179
get() method 315, 375–376
getAllCourses() method 376
getCourseById(..) method 343
GET /courses/{id} endpoint 305, 342
GET/courses/ endpoint 324–325, 335, 339, 464
getFilters(..) method 195
@GetMapping annotation 333, 359, 363
GlobalExceptionHandler class 309
Google Authenticator 276–287
GraalVM

native image 454–455
overview 453–454

Gradle 9
Grafana 179–182
GraphQL

developing API over WebSocket 483–485
developing API with Spring Boot

application 467–483
issues with REST 464–465
overview 466–467
using 467

GraphqlCourseController class 484
graphql-java project 482
graphql-spring-boot-starter dependency 470, 482
graphql-ws library 484

H

handleExceptionInternal(..) superclass
method 310

HashiCorp Vault 239–242
health endpoint 150–154, 295

help command 405
Heroku, deploying applications in 420–423
heroku addons:create heroku-postgresql

command 422
Heroku Command Line Interface tool 420
heroku create command 421
heroku login type 421
heroku logs command 422
heroku open command 422
HOTP (HMAC-based OTP algorithm) 287
HSTS (HTTP Strict Transport Security) 186
HTTP 101 Switching Protocols response 395
HTTP 200 OK response 364, 370
HTTP 400 Bad Request status code 308
HTTP 404 Not Found error 308
HTTP 404 Not Found response 364
HTTP basic authentication 229–232
HTTP DELETE operation 304, 316
HTTP GET /courses/ endpoint 303
HTTP GET requests 303, 369, 394
HTTPie command 365–366
HTTP POST requests 303, 376
HTTP PUT operations 303, 316
HTTPS 235–238
HttpSecurityConfiguration 201, 205, 209, 269, 451
HttpSessionSecurityContextRepository 197
HTTP Upgrade header 394

I

@Id annotation 92
ID GraphQL type 473
incorrect log-in attempt control 261–267
/index endpoint 290
info endpoint 158–163

configuring 158–162
configuring custom info contributor 162–163

init() method 193
inMemoryAuthentication(..) method 212
InMemoryUserDetailsManager 208–209, 211,

450–451
InputMessage Java POJO class 392
install phase 414
IntelliJ IDEA IDE 492–495
Int GraphQL type 473, 484
isBlocked(..) method 264

J

jackson-module-kotlin dependency 445
JAR files

creating executable 20
exploring 20–21
running applications as 401–406

JarLauncher class 404–405

INDEX 553

jarmode flag 405
JarModeLauncher launcher 405
jarmode option 427
Java 9
java-cfenv library 420
java -jar command 403, 405
javax.servlet package 192
javax.validation.constraints annotations 243
JConsole tool 170
JDBC authentication

configuring 215–218
implementing with custom

UserDetailsService 219–224
jdbcAuthentication(..) method 212
JdbcDaoImpl class 218
JdbcUserDetailsManager class 218
@JoinColumn annotation 126–129
@JoinTable annotation 126
just(..) static method 365
JvmGcMetrics class 174
jvm.gc.pause metric 171
JvmMemoryMetrics class 174
JvmMetricsAutoConfiguration class 174
JvmThreadMetrics class 174
JWT (JSON Web Token) 335–345

K

keytool utility 235
Kotlin 442

application development 443–448
Java vs. 9
securing applications with Spring Security
449–452

kotlin-maven-plugin plugin 441
kotlin-reflect dependency 445
kotlin-reflect reflection library 441
KotlinSecurityConfiguration class 449, 451–452
kotlin-stdlib dependency 445–446
kotlin-stdlib-jdk8 Java 8 extension 445
kubectl command 430–431
kubectl create deployment command 431
Kubernetes clusters, deploying applications

in 429–434

L

last_name user detail 220
layertools JAR mode 405
layertools options 405
LDAP authentication 224–229
ldapAuthentication(..) method 212
LDIF (LDAP Data Interchange Format) 225
LEASE frame 379
Less secure app access option 253

listening events 23–25
using SpringApplication 24–25
using spring.factories file 25

list option 405
loadUserByUsername() method 199, 218, 221–222
loadUserByUsername (String username)

method 199
Log4j2 56–59
logback-starter dependency 409
logging 51–59

understanding and customizing 52–56
using Log4j2 to configure 56–59

LoginAttemptService class 262, 264
LoginController class 248, 250, 452
/login-disabled endpoint 260
/login endpoint 451–452
login endpoint 204–205, 207
loginError attribute 248
/login-error endpoint 451–452
login-error endpoint 249
loginError flag 248, 452
login-error HTTP GET enpoint 248
login HTTP endpoint 204
login HTTP GET endpoint 207
login-locked endpoint 265–266
loginLocked flag 266
/logout endpoint 189
Lombok 9

M

Main-Class property 404
@ManyToMany annotation 125–126
matches(..) method 195
Maven

generating Spring Boot native image using
plugin 460–463

Gradle vs. 9
pom.xml file 11–15
Spring AOT Maven Plugin 463–464

@Max annotation 446
@MessageMapping annotation 387, 392
metrics actuator endpoint 170
/metrics endpoint 177
metrics endpoint 174
MFA (multi-factor authentication) 276
micrometer-registry-prometheus dependency 173
Miell, Ian 425
@Min annotation 446
ModernCourseController class 325
ModernCourse JPA entity class 326
ModernCourseRepository interface 329
MongoDB databases 79–82
mongodb-reactive dependency 361
Mono type 356, 361

INDEX554

Mutation endpoint 484
Mutation GraphQL type 472
MutationMapping definitions 474
Mutation type 466–467, 473
mvn clean command 415
mvn clean install command 418, 425
mvn install command 414–415
mvn package command 402
mvn spring-boot:run command 448

N

@NamedQuery annotation
managing domain objects in relational

databases 105–107
query specification 104–105

native-maven-plugin plugin 460–462
NoOpPasswordEncoder implementation 212
@NotEmpty annotation 446

O

oadUserByUsername() method 219
OAuth2 287–292
Oauth2AuthenticationSuccessHandler

implementation 289
OAuth2LoginAuthenticationFilter filter 291
OAuth2LoginConfigurer class 289, 291
onComplete() method 356
onError() method 356
onError signal 356
onNext() method 355–356
onSubscribe() method 356
-o option 431
OpenAPI 317–323
openssl utility 235
@Operation annotation 320
@Order annotation 196
org.springframework.boot.loader.JarLauncher

class 404
OS environment variable 38–40
OTP (one-time password) 203, 234
OutputMessage Java POJO class 392

P

packaging type 401
PagingAndSortingRepository

implementing pagination with 101
paginating and sorting data 101–104

PasswordEncoder bean 212, 450–451
PasswordEncoderFactories factory class 212
@PathVariable annotation 367
pathVariable method 369
Pbkdf2PasswordEncoder implementation 212

PCF (Pivotal Cloud Foundry) 400
-Pnative flag 462
POJO 63–69
pom.xml properties configuration 414
port-forward command 433
post() method 315, 374
@PostAuthorize annotation 342
POST /courses/ endpoint 304, 324–325, 464
@PostMapping annotation 333, 359
postNewCourse() method 376
POST request 369
@PreAuthorize annotation 342–344
price attribute 326
Processor interface 355
produces attribute 333
Project Reactor 355–358
Prometheus 179–182
PrometheusMeterRegistry bean 181
PrometheusMetricsExportAutoConfiguration

class 181
PromQL (Prometheus Query Language) 181
@PropertySource annotation 33–34
Publisher interface 355–356
pull method 353–354
push method 353
put method 374
PUT request 369

Q

@Query annotation 107–111
QueryDSL 114–118
Query endpoint 484
Query GraphQL type 472
QueryMapping definition 474
query method definition 97–101
query specification, using @Query 107–111
Query type 466, 472

R

reactive application development 349–395
backpressure 353
benefits of 354
Project Reactor 355–358
RSocket 378–387
Spring WebFlux 358–372

developing reactive RESTful API with anno-
tated controllers 359–367

developing reactive RESTful API with func-
tional endpoints 367–372

testing reactive applications 372–378
WebSocket 388–395

ReactiveCrudRepository interface 471
ReactiveMongoRepository interface 361

INDEX 555

reactor-test dependency 361
read operation 485
reCAPTCHA 270–275
RecaptchaDto class 273
recordCallable(..) method 178
Red Hat OpenShift, deploying applications

in 434–437
Register option 260, 274
registerStompEndpoints() method 391
RegistrationController class 256, 274
relational databases

configuring 74–79
custom repositories with Spring Data JPA

94–96
defining custom query methods to retrieve

domain objects from 98–101
domain object management

with Criteria API 111–114
with many-to-many relationships 121–129
with named queries 105–107
with QueryDSL 114–118
with Spring Data JPA 88–94

initializing schema 82–86
query definition with Spring Data JPA 107–111

rememberMe() method 269
remember-me configuration 268
remember-me cookie 267, 269–270
Remember Me feature 267–270
remember-me feature 267–268
remember-me token 270
request() method 355–356
@RequestBody annotation 303, 367
@RequestMapping annotated methods 310
RequestMapping annotation 303
RequestMatcher interface 195
RequestParameterVersioningCourseController

class 328
request-response pattern 385
request-response route 383
RequestStream endpoint 386
@ResponseBody annotation 306
ResponseEntityExceptionHandler class 310
@ResponseStatus annotation 320
REST (representational state transfer) 298
@RestController annotation 304, 306
RestController class 328
RESTful Web services 297–345

developing API 298–306
developing reactive API

with annotated controllers 359–367
with functional endpoints 367–372

documenting API 317
exception management 306–311
GraphQL and 464–465
securing 334–345

testing 311–317
versioning 323–334

RestTemplate configuration 273
Review domain object 470, 473
reviewEvents mapping 484
reviewEvents subscription type 484
Review GraphQL type 472
ReviewRepository interface 471
reviews GraphQL endpoint 479
Review type 472–473
roles 215
ROLE_USER authority 282
route() builder method 372
RouterContext class 368
RouterFunction bean definition 368
RouterFunctions utility class 372
RSC (RSocket Client CLI) 383
RSocket 378–387
rsocket-core dependency 349
RSocket requester 387
RSocketRequester.Builder interface 385

S

save(..) method 178
Sayers, Aidan Hobson 425
@SchemaMapping annotation 482
SchemaMapping annotation 481
SCOPE_ prefix 344
SCryptPasswordEncoder implementation 212
ScurityConfiguration class 248
Secret management 234
SecurityAutoConfiguration 200–202
SecurityConfiguration class 205–208, 222, 226,

230, 236, 250, 258, 268, 284
SecurityContextHolder class 197, 284
SecurityContextLogoutHandler class 211
SecurityDataConfiguration class 200, 202
SecurityEvaluationContextExtension bean 202
SecurityFilterAutoConfiguration configuration

class 200, 202
SecurityFilterChain class 195
SecurityFilterChain interface 194–195
sendMessage() function 393
@SendTo annotation 392
@Service annotation 302
SERVICE_OFFERING placeholder 419
Service resource 432
ServletInitializer class 408
SimpleMailMessage class 257
snapshot-dependencies layer 405
@SneakyThrows annotation 178
SpEL (Spring Expression Language)

expression 202, 342
Spilcă, Laurent̨iu 192, 288

INDEX556

Spring AOT Maven Plugin 463–464
spring-aot-maven-plugin compilation process 463
spring-aot-maven-plugin plugin 459
SpringApplication 24–25, 32–33
Spring Boot 3–28, 31–69, 131–183

autoconfiguration 132–139
code examples 9

database support 9
Java vs. Kotlin 9
Lombok 9
Maven vs. Gradle 9

code execution on startup 46–51
components of 7–8
configuration management 32–40

Config data file 35–38
OS environment variable 38–40
@PropertySource 33–34
SpringApplication class 32–33

core features of 6
creating custom properties with

@ConfigurationProperties 40–46
custom autoconfiguration 26
custom failure analyzers 140–144
custom starters 25
defined 5–6
enabling template engine in 531–548
failure analyzers 26
JAR files

creating executable 20
exploring 20–21

listening events 23–25
using SpringApplication 24–25
using spring.factories file 25

logging 51–59
understanding and customizing 52–56
using Log4j2 to configure 56–59

projects 10
project structure 10–20

application.properties file 19–20
Maven pom.xml file 11–15
Spring Boot main class 15–19

reasons for using 4–5
shutting down 21–22
Spring Boot DevTools 139–140

automatic restart 140
live reload 140
property defaults 139

startup events 22–23
user data validation 60–69

built-in Bean Validation annotations
60–63

defining and using custom Bean Validation
annotations 63–69

Spring Boot Actuator 26–27, 144–158
configuring 145–146

creating custom endpoints 164–182
creating custom metrics 174–176
dashboard with Prometheus and

Grafana 179–182
Gauge metric 176–179
Spring Boot actuator metrics 170–174

endpoints 146
custom Spring Boot HealthIndicator

154–158
health endpoint 150–154
managing 149–150
securing 292–295

info endpoint 158–163
configuring 158–162
configuring custom info contributor

162–163
spring-boot-aot-plugin plugin 459
Spring Boot buildpacks support 455
Spring Boot CLI 504–521

commands 509–512
developing simple application 507–512
developing Web application 512–521
installing 505–507

Spring Boot DevTools 27, 139–140
automatic restart 140
live reload 140
property defaults 139

Spring Boot FailureAnalyzer 141–144
spring-boot-jarmode-layertools JAR 405
spring-boot-loader layer 404
spring-boot-maven-plugin plugin 401–403,

459–460
Spring Boot native image 455

generating using buildpacks 455–460
generating using Maven plugin 460–463

SpringBootRsocketApplicationTests class 385
SpringBootServletInitializer class 408
spring-boot-starter-data-mongodb-reactive

dependency 349
spring-boot-starter-mail dependency 252
spring-boot-starter-oauth2-client dependency

288
spring-boot-starter-parent parent POM 403
spring-boot-starter-rsocket dependency 379, 381,

387
spring-boot-starter-security dependency 185, 187,

189
spring-boot-starter-web dependency 445
spring-boot-starter-webflux dependency 349, 361
spring-boot-starter-websocket dependency 390,

484
@SpringBootTest annotation 96, 314
SpringBootWebSecurityConfiguration class

200–201
Spring Cloud Vault 238–242

INDEX 557

Spring Data 70–130
CrudRepository interface 86–96
database configuration 74–86

initializing relational database schema 82–86
MongoDB databases 79–82
relational databases 74–79

data retrieval 97–107
@NamedQuery 104–107
PagingAndSortingRepository 101–104
query method definition 97–101

domain object relationship management
119–129

@JoinColumn 126–129
@JoinTable 126
@ManyToMany 125–126

modules 72–73
query specification using @Query 107–111
reasons for using 72
using Criteria API with 111–114
using QueryDSL with 114–118

SPRING_DATASOURCE_PASSWORD
environment 422

SPRING_DATASOURCE_URL environent
variable 422

SPRING_DATASOURCE_USERNAME environ-
ment variable 422

springdoc-openapi library 318
springdoc-openapi-ui dependency 318
spring.factories file 25
spring.graphql.path property 483
spring.graphql.schema.locations property 482
spring.graphql.websocket.path property 483
Spring Initializr 486–504

CLI 502–504
IntelliJ IDEA IDE 492–495
overview 486
Spring Initializr Web user interface 487–492
Spring Tool Suite 495–498
Visual Studio Code 498–501

spring-ldap-core dependency 184
spring-messaging dependency 381
spring-messaging module 379
spring-milestones repository 470
spring.mongodb.embedded.version 365, 371
Spring MVC (model-view-controller) 522–526

front controller design pattern 522–523
request processing 523–526

Spring Native 453–464
GraalVM 453–454
GraalVM native image 454–455
Spring AOT Maven Plugin 463–464
Spring Boot native image 455

generating using buildpacks 455–460
generating using Maven plugin 460–463

spring.rsocket.server.port property 387

Spring Security 184–296
architecture 195
authentication with OAuth2 287–292
autoconfiguration 200–202

SecurityAutoConfiguration 200–202
UserDetailsServiceAutoConfiguration 202

configuring in-memory authentication with cus-
tom users 207–214

customizing default login page 202–207
email verification at user registration 251–261
enabling 187–190
Filter and FilterChain 192–194
HTTP basic authentication 229–232
HTTPS 235–238
incorrect log-in attempt control 261–267
JDBC authentication

configuring 215–218
implementing with custom

UserDetailsService 219–224
Kotlin applications 449–452
LDAP authentication 224–229
overview 185
reCAPTCHA 270–275
Remember Me feature 267–270
securing Actuator endpoints 292–295
Spring Cloud Vault 238–242
two-factor authentication with Google

Authenticator 276–287
user authentication 197–198
user registration 242–251

spring-security-config Spring security library 187,
190

Spring Security in Action (Spilcă) 192, 216, 288
spring-security-ldap dependency 225
spring-security-web Spring Security library 187, 190
spring-snapshots repository 470
Spring Tool Suite 495–498
Spring WebFlux 358–372

developing reactive RESTful API with annotated
controllers 359–367

developing reactive RESTful API with functional
endpoints 367–372

Start-Class property 404
startup

code execution on startup 46–51
custom starters 25
startup events 22–23

StaticSpringFactories class 463
STOMP (Simple [or Streaming] Text Oriented

Messaging Protocol) 389
StompClient object 393
StompEndpointRegistry interface 391
stomp.min.js library 393
Strict-Transport-Security header 186
String type 473

INDEX558

subscribe() method 355–356, 365
Subscribe interface 356
Subscriber interface 355–356
subscribing 352
Subscription GraphQL endpoint 484
Subscription GraphQL type 483
Subscription interface 355–356
@SubscriptionMapping annotation 485
Subscription type 466–467, 484
Subscription type definition 466, 484
supports(..) method 198

T

target directory 403
thenMany operator 376
Thymeleaf 526–531

conditional evaluation 528–529
developing Web application 533–548
displaying attributes 526–527
managing forms 529–531

Timer interface 178
Timer meter 174
Timer metric 174, 177–178
TomcatServletWebServerFactory class 238
/topic/messages endpoint 392–393
TOTP (time-based one-time password) 276, 287
TOTP_AUTH_AUTHORITY authority 281–282,

284–285
TotpAuthFilter class 282
TotpDetails class 277
totpEnabled parameter 279
totp-login endpoint 279
TotpService class 280–281
two-factor authentication 276–287

U

unbounded buffer 353
uri() method 375
URI versioning 324
user authentication 197–198
User class 214, 250
user data validation 60–69

built-in Bean Validation annotations 60–63
defining and using custom Bean Validation

annotations 63–69
UserDetails implementation 219
UserDetails interface 199
userDetailsService() method 269
UserDetailsServiceAutoConfiguration 202
UserDetailsService class 198, 250
UserDetailsService interface 199, 202, 219, 222–

224, 246
UserDto class 242–244, 247, 250

UserDto object 246, 248
user function 451
UsernameNotFoundException exception 221, 247
UsernamePasswordAuthenticationFilter filter 194
UsernamePasswordAuthenticationToken

token 284
USER password 209
User registration 234, 242–251

email verification at 251–261
implementing 242–251

UserRegistrationEvent class 256
UserRepository interface 244
UserRepository service 250
USER role 294–295
UserService class 250
UserService implementation 247
UserService interface 245

V

var keyword 446
vault operator init command 242
Vermeulen, Marco 442
versioning 323–334
Visual Studio Code 498–501

W

WebApplicationInitializer implementation 408
WebClient 373–378
WebClientApi class 374
WebSecurityConfiguration configuration 201
WebSecurityConfigurerAdapter class 202, 205–207,

236, 450–451
WebSecurityConfigurer interface 202
WebSecurityEnablerConfiguration class 200–201
WebSecurity implementation 202
WebSocket

developing GraphQL API over 483–485
overview 388–395

WildFly, deploying applications as WAR in 406–415
wildfly-maven-plugin Maven plugin 411, 414–415
/ws endpoint 391
WWW-Authenticate:Bearer response header 339
WWW-Authenticate HTTP response header 232

X

X-API-VERSION custom HTTP header 331
X-Content-Type-Options header 186
X-Frame-Options HTTP header 186
X-XSS-Protection HTTP header 187

Y

YAML format 432

ISBN-13: 978-1-61729-881-3

W
ith Spring Boot, it’s a snap to create standalone
Spring applications that require minimal manual
setup. Spring Boot directly embeds a server like

Tomcat or Jetty into your project and preconfi gures core
Spring settings, third-party libraries, security, and other key
elements. It’s a big framework, with lots of powerful features.
Th is book provides a rich collection of techniques to help
you get the most out of Spring Boot.

Spring Boot in Practice is a cookbook-style guide to Spring
application development. Following a convenient Problem-
Solution-Discussion format, it takes you technique-by-
technique through Spring Boot fundamentals. You’ll dive
deep into auto-confi guration, security, microservices, and
more. Along the way, you’ll also discover numerous advanced
and hidden features. All the book’s source code is open
source, so you can integrate the detailed samples into your
own projects.

What’s Inside
● Instantly useful techniques with reusable source code
● Confi guring, logging, and monitoring Spring Boot
 applications
● Eff ective methods for database communication
● Securing Spring applications in production
● Microservices and RESTful APIs

For Spring Boot beginners with some Spring experience.

Somnath Musib has over a decade of development experience,
and has been actively working with Spring Boot since 2015.

Register this print book to get free access to all ebook formats.
Visit https://www.manning.com/freebook

Spring Boot IN PRACTICE

SPRING / JAVA

M A N N I N G

“Your reliable guide to
Spring…Somnath Musib does

a great job, and his expert
guidance makes it easy
to focus on the journey

that matters: the journey
 to production.”—Josh Long, Spring Developer

Advocate, Tanzu, a division
of VMWare

“A–Z guide for
 Spring Boot.”—Najeeb Arif, Th oughtworks

“Hands-on recipes and best
practices that help you build

applications faster.”—João Miguel Pires Dias
Mercedes-Benz.io

“Invaluable for creating
robust API frameworks
rapidly and leveraging

 microservice best practices.”—Lachman Dhalliwal
Netcompany

See first page

Somnath Musib ● Foreword by Josh Long

	Spring Boot in Practice
	brief contents
	contents
	foreword
	We might be on to something

	preface
	acknowledgments
	about this book
	Who should read this book?
	How this book is organized: A roadmap
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration
	Part 1
	1 Booting Spring Boot
	1.1 Introducing Spring Boot
	1.1.1 Why Spring Boot?
	1.1.2 What is Spring Boot?
	1.1.3 Spring Boot core features
	1.1.4 Spring Boot components

	1.2 Code examples
	1.2.1 Maven vs. Gradle
	1.2.2 Java vs. Kotlin
	1.2.3 Database support
	1.2.4 Lombok

	1.3 Getting started with Spring Boot
	1.3.1 Your first Spring Boot project
	1.3.2 Spring Boot project structure
	1.3.3 Creating an executable JAR file
	1.3.4 Exploring the JAR file
	1.3.5 Shutting down a Spring Boot application

	1.4 Spring Boot additional concepts
	1.4.1 Spring Boot startup events
	1.4.2 Listening events in a Spring Boot application
	1.4.3 Custom Spring Boot starters
	1.4.4 Custom autoconfiguration
	1.4.5 Failure analyzers
	1.4.6 Spring Boot actuator
	1.4.7 Spring Boot developer tool

	Summary

	Part 2
	2 Common Spring Boot tasks
	2.1 Managing configurations
	2.1.1 Using the SpringApplication class
	2.1.2 Using @PropertySource
	2.1.3 Config data file
	2.1.4 OS environment variable

	2.2 Creating custom properties with @ConfigurationProperties
	2.2.1 Technique: Defining custom properties with @ConfigurationProperties in a Spring Boot application

	2.3 Executing code on Spring Boot application startup
	2.3.1 Technique: Using CommandLineRunner to execute code at Spring Boot application startup

	2.4 Customizing logging in a Spring Boot application
	2.4.1 Technique: Understanding and customizing default Spring Boot logging in a Spring Boot application
	2.4.2 Technique: Using Log4j2 to configure logging in a Spring Boot application

	2.5 Validate user data using Bean Validation
	2.5.1 Technique: Using built-in Bean Validation annotations to validate business entity in a Spring Boot application
	2.5.2 Technique: Defining and using custom Bean Validation annotation to validate a POJO in a Spring Boot application

	Summary

	3 Database access with Spring Data
	3.1 Introducing Spring Data
	3.1.1 Why Spring Data?
	3.1.2 Spring Data modules

	3.2 Configuring a database in a Spring Boot application
	3.2.1 Technique: Configuring a relational database in a Spring Boot application
	3.2.2 Technique: Configuring MongoDB database in a Spring Boot application
	3.2.3 Technique: Initializing a relational database schema with a Spring Boot application

	3.3 Understanding the CrudRepository interface
	3.3.1 Technique: Managing domain objects in a relational database with Spring Data JPA
	3.3.2 Technique: Creating a custom Spring Data repository with Spring Data JPA to manage domain objects in a relational database

	3.4 Retrieve data from a database using Spring Data
	3.4.1 Defining query methods
	3.4.2 Technique: Defining custom query methods to retrieve domain objects from a relational database with Spring Data JPA
	3.4.3 Implementing pagination with PagingAndSortingRepository
	3.4.4 Technique: Using PagingAndSortingRepository interface to paginate and sort the data
	3.4.5 Specifying query using @NamedQuery
	3.4.6 Technique: Using a named query to manage domain objects in a relational database with Spring Data JPA

	3.5 Specifying query using @Query
	3.5.1 Technique: Using @Query annotation to define queries and retrieve domain objects in a relational database with Spring Data JPA

	3.6 Using Criteria API with Spring Data JPA
	3.6.1 Technique: Using Criteria API to manage domain objects in a relational database with Spring Data JPA

	3.7 Using QueryDSL with Spring Data JPA
	3.7.1 Technique: Using QueryDSL to manage domain objects in a relational database with Spring Data JPA

	3.8 Managing domain object relationships
	3.8.1 Technique: Managing domain objects with many-to-many relationships in a relational database with Spring Data JPA

	Summary

	4 Spring Boot: Autoconfiguration and Actuator
	4.1 Understanding Spring Boot autoconfiguration
	4.1.1 Understanding @Conditional annotation
	4.1.2 Deep dive into autoconfiguration

	4.2 Using Spring Boot DevTools
	4.2.1 Property defaults
	4.2.2 Automatic restart
	4.2.3 Live reload

	4.3 Creating a custom failure analyzer
	4.3.1 Technique: Creating a custom Spring Boot FailureAnalyzer

	4.4 Spring Boot Actuator
	4.4.1 Technique: Configuring Spring Boot Actuator in a Spring Boot application
	4.4.2 Understanding Spring Boot Actuator endpoints
	4.4.3 Managing Spring Boot Actuator endpoints
	4.4.4 Health endpoint deep dive
	4.4.5 Creating a custom Spring Boot HealthIndicator
	4.4.6 Technique: Defining a custom Spring Boot actuator HealthIndicator

	4.5 Info endpoint deep dive
	4.5.1 Technique: Configuring info Spring Boot Actuator endpoint
	4.5.2 Technique: Configuring a custom info contributor to provide custom application info in the Spring Boot Actuator endpoint

	4.6 Creating a custom Spring Boot Actuator endpoint
	4.6.1 Technique: Creating a custom Spring Boot actuator endpoint
	4.6.2 Spring Boot actuator metrics
	4.6.3 Creating custom metrics
	4.6.4 Gauge
	4.6.5 Metrics dashboard with Prometheus and Grafana

	Summary

	5 Securing Spring Boot applications
	5.1 Introducing Spring Security
	5.2 Hello Spring Security with Spring Boot
	5.2.1 Technique: Enabling application security with Spring Security in a Spring Boot application
	5.2.2 Filter, FilterChain, and Spring Security
	5.2.3 Spring Security architecture
	5.2.4 Authenticating a user
	5.2.5 Spring Security autoconfiguration

	5.3 Using Spring Security
	5.3.1 Technique: Customizing the default Spring Security login page of a Spring Boot application
	5.3.2 Technique: Configuring in-memory authentication with custom users in Spring Security in a Spring Boot application
	5.3.3 Technique: Configuring JDBC authentication with Spring Security in a Spring Boot application
	5.3.4 Technique: Implementing JDBC authentication with custom UserDetailsService in a Spring Boot application
	5.3.5 Technique: Implementing LDAP authentication in a Spring Boot application
	5.3.6 Technique: Implementing HTTP basic authentication in a Spring Boot application

	Summary

	6 Implementing additional security with Spring Security
	6.1 Enabling HTTPS in a Spring Boot application
	6.1.1 Technique: Enabling HTTPS in a Spring Boot application

	6.2 Securing secrets in Spring Cloud Vault
	6.2.1 Technique: Managing application secrets with HashiCorp Vault in a Spring Boot application

	6.3 Implementing user registration
	6.3.1 Technique: Implementing user registration with Spring Security in a Spring Boot application

	6.4 Implementing email verification at user registration
	6.4.1 Technique: Validating user email addresses in a Spring Boot application

	6.5 Controlling multiple incorrect login attempts
	6.5.1 Technique: Controlling multiple incorrect login attempts in a Spring Boot application

	6.6 Implementing a Remember Me feature
	6.6.1 Technique: Enabling a Remember Me feature in a Spring Boot application with Spring Security

	6.7 Implementing reCAPTCHA
	6.7.1 Technique: Enabling Google reCAPTCHA in a Spring Boot application with Spring Security

	6.8 Enabling two-factor authentication with Google Authenticator
	6.8.1 Technique: Enabling two-factor authentication in a Spring Boot application

	6.9 Authentication with OAuth2
	6.9.1 Technique: Enabling sign in with Google in a Spring Boot application

	6.10 Securing Actuator endpoints
	6.10.1 Technique: Securing Spring Boot Actuator endpoints

	Summary

	7 Developing RESTful Web services with Spring Boot
	7.1 Developing a RESTful API with Spring Boot
	7.1.1 Technique: Developing a RESTful API using Spring Boot

	7.2 Managing exceptions in a Spring Boot RESTful API
	7.2.1 Technique: Handling exceptions in a RESTful API

	7.3 Testing a RESTful API
	7.3.1 Technique: Testing a RESTful API in a Spring Boot application

	7.4 Documenting a RESTful API
	7.4.1 Technique: Documenting a RESTful API with OpenAPI

	7.5 Implementing RESTful API versioning
	7.5.1 Technique: Implementing versioning in a RESTful API

	7.6 Securing a RESTful API
	7.6.1 Technique: Using JWT to authorize RESTful API requests

	Summary

	Part 3
	8 Reactive Spring Boot application development
	8.1 Introduction to reactive programming
	8.1.1 Backpressure
	8.1.2 Benefits of reactive programming

	8.2 Understanding Project Reactor
	8.3 Introducing Spring WebFlux
	8.3.1 Technique: Developing a reactive RESTful API with annotated controllers
	8.3.2 Technique: Developing a reactive RESTful API with functional endpoints

	8.4 Testing reactive applications
	8.4.1 Technique: Using WebClient to build an API client

	8.5 Introduction to RSocket
	8.5.1 Technique: Developing applications using RSocket and Spring Boot

	8.6 Introduction to WebSocket
	8.6.1 Technique: Developing an application using WebSocket and Spring Boot

	Summary

	Part 4
	9 Deploying Spring Boot applications
	9.1 Running Spring Boot applications as executable JAR files
	9.1.1 Technique: Packaging and executing a Spring Boot application as an executable JAR file

	9.2 Deploying Spring Boot applications as WAR in the WildFly application server
	9.2.1 Technique: Packaging and deploying a Spring Boot application as WAR in the WildFly application server

	9.3 Deploying Spring Boot applications in Cloud Foundry
	9.3.1 Technique: Deploying a Spring Boot application to Cloud Foundry

	9.4 Deploying Spring Boot applications in Heroku
	9.4.1 Technique: Deploying a Spring Boot application in Heroku

	9.5 Running Spring Boot applications as Docker containers
	9.5.1 Technique: Creating a container image and running a Spring Boot application as a container

	9.6 Deploying Spring Boot applications in a Kubernetes cluster
	9.6.1 Technique: Deploying a Spring Boot application in a Kubernetes cluster

	9.7 Deploying Spring Boot applications in Red Hat OpenShift
	9.7.1 Technique: Deploying a Spring Boot application in the Red Hat OpenShift platform

	Summary

	Part 5
	10 Spring Boot with Kotlin, Native Image, and GraphQL
	10.1 Spring Boot with Kotlin
	10.1.1 Technique: Developing a Spring Boot application with Kotlin
	10.1.2 Technique: Securing a Spring Boot Kotlin application with Spring Security

	10.2 Introducing Spring Native
	10.2.1 Introduction to GraalVM
	10.2.2 GraalVM native image
	10.2.3 Spring Boot native image
	10.2.4 Technique: Generating Spring Boot native image using buildpacks
	10.2.5 Technique: Generating Spring Boot native image using a Maven plugin
	10.2.6 Understanding Spring AOT Maven Plugin

	10.3 Spring Boot with GraphQL
	10.3.1 Issues with REST
	10.3.2 Introduction to GraphQL
	10.3.3 Using GraphQL with Spring Boot
	10.3.4 Technique: Developing a GraphQL API with a Spring Boot application
	10.3.5 Technique: Developing a GraphQL API over WebSocket with a Spring Boot application

	Summary

	appendix A—Generating and building Spring Boot projects
	A.1 Generating Spring Boot applications with Spring Initializr
	A.1.1 Introducing Spring Initializr
	A.1.2 Technique: Generating a Spring Boot application with the Spring Initializr Web user interface
	A.1.3 Technique: Generating a Spring Boot application with Spring Initializr in IntelliJ IDEA IDE
	A.1.4 Technique: Generating a Spring Boot Application with Spring Initializr using the Spring Tool Suite
	A.1.5 Technique: Generating a Spring application with Spring Initializr in Visual Studio Code
	A.1.6 Technique: Generating a Spring Boot application with Spring Initializr using Command Line Interface

	A.2 Bootstrapping and executing a Spring Boot application with Spring Boot CLI
	A.2.1 Installing the Spring Boot CLI
	A.2.2 Technique: Developing a simple Spring Boot application with Spring Boot CLI
	A.2.3 Technique: Building a Web application using Spring Boot CLI

	appendix B—Spring MVC and Thymeleaf Template Engine
	B.1 Revisiting Spring MVC
	B.1.1 Front controller design pattern
	B.1.2 Understanding request processing

	B.2 Understanding Thymeleaf
	B.2.1 Displaying attributes
	B.2.2 Conditional evaluation
	B.2.3 Managing forms

	B.3 Enabling a template engine in Spring Boot
	B.3.1 Technique: Building a Spring Boot Web application with Thymeleaf

	index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

