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Preface
While there are many good books on numerical methods suitable for students of
mathematics and many others that are accessible to scientists and engineers, but
dedicated to a specific discipline, there is a need for a book that is accessible to students
of science and engineering that is not discipline specific, yet rigorous and comprehensive
in scope. This book is an effort to fill this need.

Herein I provide the logical underpinnings of all of the commonly encountered
numerical methods, namely finite difference, finite element, collocation, and finite
volume methods, at a level of sophistication consistent with the needs and interests of
science and engineering students. Two mathematical concepts, namely polynomial
approximation theory and the method of weighted residuals, form the intellectual
framework for the introduction and explanation of all of these methods.

The approach is to first introduce polynomial approximation theory in one space
dimension followed by the concept of the methods of weighted residuals. Employing
only polynomial approximation theory the finite difference method is easily developed
and presented. With the addition of the method of weighted residuals, finite element,
collocation and finite volume methods are readily accessible. These concepts are
introduced first in one space dimension, then the time dimension, then two space
dimensions, and finally two space dimensions and time.

The equations considered are first order, second order, and second order in space and
first order in time. By design, the book does not focus on any specific area of science or
engineering. It is designed to teach numerical methods as a concept rather than as
applied to a specific discipline. The intent is to provide the student with the ability to
understand numerical methods as encountered in technical readings specific to his/her
discipline and to be able to apply them in practice.

The book assumes a knowledge of matrix algebra and differential equations. A
programming language is also needed if the reader is interested in applying numerical
methods to example problems. No prior knowledge of numerical methods is assumed.
While a few theorems are used, no proofs are presented.

This book stems from a course I teach in Numerical Methods for Engineers. The course
is taught as a precept and typically populated by an approximately equal number of
senior undergraduates and graduate students from different engineering disciplines. A
project of practical significance is assigned that requires the creation of a computer
program capable of solving a second-order two-space dimensional equation using finite
elements.

I am indebted to Xin Kou, my doctoral student in mathematics, for carefully reviewing
the manuscript for his book, identifying notational inconsistencies and making
important suggestions as to how to improve the presentation.
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Chapter 1
Interpolation
In this chapter, we will introduce interpolation theory, the first of two key topics that will
form the foundation of everything that follows in this book. We will find that this
concept leads quite naturally to finite difference methods and, when combined with the
second key topic, the method of weighted residuals, provides the necessary
mathematical concepts needed for all other numerical methods we present. So, let us get
started.

1.1 Purpose
Interpolation is a method of constructing new data points between known values or for
creating a function that fits exactly a known set of discrete data points defined within a
specific range. Interpolation has many applications in science and engineering. In this
book, it will be used to form the basis for numerical differentiation, numerical
quadrature, numerical integration, and as a key part of several numerical methods used
to solve differential and partial differential equations.

1.2 Definitions
We begin by introducing some interpolation notation. Consider a region

as illustrated in Fig. 1.1

Figure 1.1 Discretized line spanning a to b.

Next assume there exists a function f(x) that is a known function of x. We will use this
function momentarily.

Now also consider a function Pn(x) that has the following properties:

1. Pn(x) is a polynomial of degree n, that is.

where the coefficients ai are known constants and xi indicates the variable x to the ith
power.

2. Pn(xi) = f(xi) where xi are particular values of x as seen in Fig. 1.1. In other words at



(1.3)

the locations xi the values of f(x) and Pn(x) are identical.

According to our definition of interpolation, this Pn(x) is an interpolating polynomial of
degree n. Note that by convention, i has a lower bound value of 0 rather than 1. To make
the above clear, consider the following example.

1.3 Example
Consider the sine function shown in Fig. 1.2. and the information presented in Table 1.1

Figure 1.2 Sin (θ) curve with measured points indicated by small black dots (dashed
curve) and interpolated values indicated by large black dots (solid curve).

Table 1.1 Comparison of exact and calculated approximations for the sin
curve.

θ f(θ) P2(θ) E(θ) ≡ f(θ) − P2(θ)

0 0 0 0

π/4 0.707 0.753 − 0.046

π/2 1 1 0

3π/4 0.707 0.751 − 0.044

π 0 0 0

5π/4 − 0.707 − 1.18 0.37

6π/4 − 1 − 2.89 1.89

Let the second-degree polynomial P2(θ) be given by

Now create the special version of Eq. (1.3) that satisfies the three known values of P2(θ),
namely those at  and π. Then, substituting values of P2(θ) from Table 1.1 we
obtain



(1.4)

(1.5)

(1.6)

from which we can generate the set of equations

Solving for the coefficients a0, a1, and a2 we obtain

From this expression, we can obtain values of P(θ) for any θ. In Table 1.1, we calculate
the values of P(θ) for various values of θ. Notice the difference in the error of the
interpolation at θ = π/4 and θ = (5π)/4. Why did this happen? It is due to the fact that
the value θ = 5π/4 lies outside of the range of θ used to define P(θ).

The question now arises as to whether polynomials can be used to represent functions
other than the sine. To answer this question we turn to the Weirstraus approximation
theorem.

1.4 Weirstraus Approximation Theorem
The Weirstraus approximation theorem basically tells us that it is possible to calculate a
polynomial approximation of any desired accuracy, provided you employ a suitably large
number of terms in the polynomial. It states:

Theorem 1 If f(x) is continuous on a finite interval [a, b], then, given any  > 0, there
exists an n and a polynomial Pn(x) of degree n such that |f(x) − Pn(x)| <  for all x in [a,
b].

Although this theorem indicates that a polynomial can be found to represent any
function, it does not mean that the coefficients of all polynomials can be calculated. In
some cases, especially for large n, the coefficient matrix for the polynomial coefficients
can be ill-conditioned (almost singular) and the coefficient values unobtainable.
Fortunately, in our work, we will be using polynomials that do not exhibit this pathology.

1.5 Lagrange Interpolation
Let us now focus on one special kind of interpolation that we will use extensively in

subsequent material. Consider the approximation of a function f(x) denoted as 
written as follows:



(1.7)

(1.8)

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

where we will call E(x) the error of the approximation; in other words E(x) is a measure

of how well  represents f(x).

We now define the form of  in a very special way, that is

where ℓn
j(x) is an as yet undefined polynomial of degree n. Next, substitute Eq. (1.7) into

Eq. (1.6) to obtain

To determine the functional form of the polynomial ℓn
j(x) we will require that E(x), the

error in the approximation, vanishes at selected locations along x, namely at xi, i = 0,
...n. We will call these locations nodes and they are indicated in Fig. 1.1 by the black dots.
Recall that we required f(x) to equal f(xj) in our general definition of a polynomial in
Section 1.2. We can write this requirement formally, in terms of the errors E(xi), as

where we have n + 1 nodes. Now combine Eq. (1.9) with Eq. (1.8) to give

Equation (1.10) is Eq. (1.8) written for the specific nodal locations xi where, by
definition, the error must vanish. Note that the index i identifies the location, that is f(xi)
and ℓ(n)

j(xi) where the polynomial is being evaluated and the index j indicates the term in
the polynomial, that is ℓ(n)

j(xi)f(xj). Let us now expand Eq. (1.10) as

The form of Eq. (1.11) suggests that the polynomials ℓn
j(xi) must have special properties.

In order to satisfy the requirement that

Indeed, at the location x1, for example, Eq. (1.11) must yield the following

In fact we can generalize this statement to any nodal location xi, that is



(1.15)

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)

(1.21)

(1.22)

(1.23)

In other words, our polynomial must be unity at the nodal location for which it is
defined, that is where the indices i and j are the same, and zero at all other nodes.
Writing this in shorthand notation we get that

where δij is the Kronecker delta. The Kronecker delta is defined such that

Now let us assume the special case of n = 1; that is we are considering a linear
polynomial. Let us focus on the jth polynomial, that is.

In light of Eq. (1.17), we can say that the following is true for ℓ1
j(x) evaluated at node x0

Writing this system of equations in matrix form we get

which we can solve to obtain

Substitution of Eq. (1.22) into Eq. (1.18) yields

One can similarly obtain . The functions ℓ1
0(x) and ℓ1

1(x) are linear
Lagrange Polynomials and are presented in Fig. 1.3



(1.24)

(1.25)

(1.26)

(1.27)

Figure 1.3: Linear Lagrange polynomials, one defined for the node located at x0 (solid
line) and one for the node located at x1 (dashed line).

Let us check to see if these functions satisfy the requirements stated in Eqs. (1.19) and
(1.20):

It appears the Lagrange polynomials, as defined above, work for the linear case.

The general form of the nth degree Lagrange polynomial is

where the operator  says that for a specific value of j, each term denoted by the

subscript i, i = 0, 1, ...,n will be multiplied together except for the special case of i = j,
which will be skipped because it would result in a value of zero in the denominator of
that term. For example, Π3

i = 1xi = (x1)(x2)(x3). Thus, for our linear case we obtain

which is the same as we obtained in Eq. (1.23) after multiplying the numerator and
denominator by ( − 1).



(1.28)

(1.29)

The strategy that was used above for the linear polynomial can be extended to define the
quadratic. In this case, as we will see below, there are three unknown coefficients and
therefore one needs three equations. The equations are obtained by imposing the
constraints defined in Eq. (1.16) on the quadratic polynomial. Alternatively, since we
have stated the general polynomial form in Eq. (1.16), we can write directly, by selecting
n = 2 the relationship (where j is now equal to 0):

The shape of this function is shown in Fig. 1.4. Quadratic Lagrange polynomial identified
with node x0. By selecting other values of j, that is j = 1 or j = 2 two additional quadratics
will be generated for location x1 and x2.

Figure 1.4 Quadratic Lagrange polynomial identified with node x0.

1.5.1 Example
Let us use the linear function to represent the function ln(x). The linear Lagrange
polynomials are presented in Fig. 1.3. There will be two terms, one associated with each
node, that is x = x0 and x = x1, as seen in Fig. 1.3. Thus we have that x ∈ [1, 2]

From this equation we see that we need f(x0) and f(x1). To get this information we need
to evaluate ln(x) at x = 1.0 and x = 2.0. The following equation shows how this is used:



(1.30)

A comparison of the function f(x) and the approximation  is presented in Table 1.2.
Note that at the node points x = 1.0 and x = 2.0 the solution is exact, as required by our
definition of the approximating polynomial.

Table 1.2: Values of the function f(x) = ln (x), the approximation to f(x), that

is  and the error 

x f(x) E(x)

1.00 0.00 0.00 0.00

1.25 0.22 0.173 0.047

1.50 0.40 0.347 0.053

1.75 0.56 0.520 0.04

2.0 0.693 0.693 0.00

It is helpful to examine the information provided in Fig. 1.5. The interpolant  is given in
the top pane. It is a straight line since it is made up of the weighted sum or two straight
lines as can be seen from Eq. (1.30). The approximation is the sum of the linear
Lagrange polynomial at x = 1.0 multiplied by the value of ln(1) and the linear Lagrange
polynomial defined at x = 2 multiplied by ln(2). The weighted sum of linear polynomials
always generates a linear polynomial approximation. The lower pane in this figure shows
the comparison between the function f(x) = ln(x) and its approximation 



(1.31)

(1.32)

(1.33)

(1.34)

Figure 1.5: Representation of the ln(x) function using linear Lagrange polynomials.

1.6 Compare P2(θ) and fˆ(θ)
In this section we want to examine the relationship between the use of a quadratic
polynomial, and an approximation based upon quadratic Lagrange polynomials, to
interpolate. We start by writing the approximation of the sin(θ) function,  using
the quadratic Lagrange Polynomials, that is

where, using Eq. (1.28) we obtain three polynomials, one for each node in Fig. 1.4

Now we multiply each function by the appropriate coefficient value f(θ) and get



(1.35)

(1.36)

(1.37)

Next we substitute the definitions of ℓ2
1(θ)

Comparison of this relationship with Eq. (1.5) shows that

In essence, no matter how you manipulate quadratic polynomials, whether or not they
are Lagrange polynomials, you will not change the approximation. The reason we use

Lagrange polynomials and the  machinery will become more evident later.

As to the approximation, the value of ℓ2
1 in Fig. 1.6 is the approximation to the sin (θ)

function.

Figure 1.6: Quadratic polynomial approximation of sin(θ).

1.7 Error of Approximation
The general idea in this section is to determine, in the absence of the function being
approximated being available, how well the polynomial will approximate it. The
argument is rather convoluted in that we need to build a set of concepts and then bring



(1.38)

(1.39)

(1.40)

(1.41)

(1.42)

(1.43)

them all together at the end, so please be patient.

Step 1 (Define a function F(x))
We start by defining

For example for the special case of n = 2 we have the function

which is presented in Fig. 1.7.

Figure 1.7: Function F(x) with zeros at x0, x1, and x2. The locations indicated by an x

along the axis are where 

It is important in this development to note that

because when the term (xi − xi) arises, it is zero and that eliminates the series. In other
words, the function F(x) vanishes at the nodes.

Because the approximation must equal the function at the nodal points xi, we have

Alternatively, we can write

Step 2 (Define a function g(x))
Now we change course and define the following function:

where A is a constant. Why we do this has no answer at this point, but its relevance
becomes evident shortly. Note from Eq. (1.40) and the Fig. 1.7 that there are n + 1 points
xi where F(x) is zero. Therefore, at these points, according to Eq. (1.42) and (1.40)



(1.44)

(1.45)

(1.46)

We now digress once again in Step 3 which follows.

Step 3 (Introduction of the concept of ξ)
Let us choose A such that g(x) = 0 at some arbitrary point xp ∈ [x0, xn]. Now g(x) is
zero at at least n + 2 points, that is at x0, x1, ..., xp, xn − 1, xn (see Fig. 1.8). Since g(x) is
smooth, it must have a minimum or maximum between each pair of zeroes at which
points the derivatives of g(x) vanish. These are indicated by the letter x in Fig. 1.8. Then 

 has at least (n + 2) − 1 = n + 1 zeros in the interval [x0, xn]. Similarly at the points of

inflection  has at least (n + 2) − 1 = n zeros. Using similar logic to look at even

higher derivatives, we finally arrive at the observation that  has (n + 2) − (n + 1) =

1 zero.

Figure 1.8: Function g(x) as presented in Eq. 1.43.

Let x = ξ represent the location of this zero, that is

Since  is a polynomial of degree n,  This observation will be used a little

later.

Step 4 (Calculation of )

It is not obvious, but true, that by differentiating

we obtain



(1.47)

(1.48)

(1.49)

(1.50)

(1.51)

(1.52)

(1.53)

(1.54)

To show this to be the case in at least one situation we provide the following example.
This is not a proof, but provides some degree of confidence.

Example
Consider the example of n = 1

Step 5 (Calculation of A)
Let us now differentiate g(x) n + 1 times (see Eq. (1.43)) to give

Consider what is happening at x = ξ in Eq. (1.51) (we now add letters to refer to the
terms):

We now address each of the terms in Eq. (1.52) one at a time. Term D is zero because,
from Eq. (1.45)

Term B is zero because we are taking the n + 1 derivative of an nth degree polynomial.

From Eq. (1.47) we know that



(1.55)

(1.56)

(1.57)

(1.58)

(1.59)

(1.60)

(1.61)

We now combine this information with Eq. (1.52) to give

or, solving for A

Remember that A is chosen in such a way that g(xp) = 0.

Step 6 (Calculation of E(x))
Now we know by the definition of xp, that at x = xp, g(x) = 0. Thus we have

Rearranging Eq. (1.58) and substituting for A we obtain

Finally, because xp was selected arbitrarily, we can replace it with x to obtain:

so we can write, using the definition of F(x) from Eq. (1.46)

Take a closer look at Eq. (1.61). We see that the error in the interpolation is inversely
proportional to a function of the number of nodes, that is the term  It is directly

proportional to the value of the derivative, that is term  as one examines the

values along x. Finally it is directly proportional to a function of the size of the distance
between the location x and the nodal locations xi, i = 0, ..., n; such that the smaller the
spacing between nodes, the smaller the error. For a given domain length, this is related
to the value of n. So a large n yields a small distance between nodes and they work
together to yield a smaller error.



(1.62)

(1.63)

(1.64)

(1.65)

(1.66)

(1.67)

(1.68)

(1.69)

Example 1
To see how one might use the above concept of error by revisiting the case presented
earlier of

From Eq. (1.30) on page 7 we have the approximation of ln(x) using a piecewise linear
Lagrange polynomial given as

and for x = 1.25 we have the following computed values and computed error

Now let us calculate the theoretical error using Eq. (1.61). Substituting the values for x =
1.25 we have

which upon substitution of f(x) = ln(x) and n = 1 gives

which yields



(1.70)

(1.71)

(1.72)

(1.73)

(1.74)

(1.75)

(1.76)

(1.77)

So what do we do with this? Well we recognize that

so, using the limiting (upper and lower bound) values of ξ we have

or

Note that the actual error according to Eq. (1.64) is E(1.25) = 0.047, which is within the
bounds indicated by Eq. (1.72).

Example 2
Let us consider the quadratic polynomial approximation to the ln(x)   x ∈ [1, 2]. We
have

which evaluated at x = 1.25 gives

From the error expression we have

which, upon substitution of the function f(x) = ln(x) and using n = 2, yields



(1.78)

(1.79)

(1.80)

(1.81)

or, simplifying,

Now we select the point of interest, that is x = 1.25, and substitute it into Eq. (1.79) to get

Now we need to determine a choice of ξ. If we use the upper and lower bounds of the
interval x ∈ [1, 2] and therefore substitute ξ = 1 and ξ = 2 in Eq. (1.80) we obtain

Since the true error is E(1.25) = 0.006, Eq. (1.81) shows that it lies within the computed
interval.

1.8 Multiple Elements
To this point we have been dealing with one interval. We will now introduce some new
notation to consider multiple intervals. We define the interval over which one
polynomial is defined as an element. That element may have any number of nodes
depending upon the degree of the polynomial. The higher the degree of Lagrange
polynomial, the larger the number of nodes we would use per element. We have thus far
considered as high as a quadratic Lagrange polynomial which required three nodes per
element.

In numerical methods we find the use of one element rather uninteresting. Rather we
want to concatenate several elements, and use a low degree Lagrange polynomial for
each element. In this section we extend our earlier work to consider multiple elements.

Firstly, consider a two element approximation using linear Lagrange polynomials in
each element. Such an arrangement is found in Fig. 1.9. Notice that there is a node in
common at the beginning and end of all internal elements. The elements on the ends of
the domain of interest share only one internal node. To introduce and illustrate the
multiple-element concept, we will use once again the function f(x) = ln(x) as our
example. The values of f(x) = ln(x) at each node, that is ln(xj) where j = 1, 2, 3 are used to
define the linear approximations
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Note that the indices in the summation now refer to node numbers, for example x1
denotes the value of x and node 1 and that to simplify notation from this point forward,
we will drop the superscript on ℓ1

j for the linear Lagrange polynomial.

Figure 1.9: Two linear elements and their approximation (solid lines) of the
logarithmic function (dashed line).

These two equations describe the piecewise linear approximations between the nodes in
the upper panel of Fig. 1.9. In panel two, we see the relationship between this
approximation and the function being approximated, that is ln(x). To proceed we need
to find a convenient way to relate information at the local level, for example that is that
associated with the element, to that of the global system for example that is associated
with the assemblage of elements in which the original problem is defined. To achieve
this goal consider the information provided in Fig. (1.10) and Tables 1.3 and 1.4. Figure.
1.10 shows the relationship between the global and local coordinate systems. In the local
coordinate system, each element sees the world from the same perspective. In other
words, an observer at a point in the local system sees only what is happening on the
element on which he/she resides. He/she does not see beyond the nodes defining each
end of the element. The same observer when associating his/her position with respect to
the global system sees the entire domain of interest inclusive of all elements.
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Figure 1.10: Two linear elements in the global (x) and local  coordinate systems.

Table 1.3: Relationship between local and global node numbering.

Element Local Node Global Node
1 0 1

1 1 2

2 0 2

2 1 3

It is helpful to distinguish more clearly between the two types of coordinates. In this
spirit let us define the local coordinate as χ. On the left is always node 0 and coordinate
χ0 and on the right is always node 1 and coordinate χ1. Thus 0 ≤ χ ≤ 1. for each and every
element. Similarly the Lagrange polynomials are always represented as a function of χ ,
that is we have ℓ0(χ) and ℓ1(χ) no matter which element we are in.

From the global perspective you see in Fig. 1.10 that the node numbers are increasing
from left to right as are the coordinate values. Table 1.3 presents the relationship
between nodal numbering at the local or element scale and numbering at the global
scale. Similarly, Table 1.4 shows the relationship between the global and nodal
coordinates.

Table 1.4: Relationship between local and global coordinates

Element χ0 χ1

1 x = 1 x = 1.5

2 x = 1.5 x = 2

Let us see how we can derive a relationship between the two coordinate systems. We
know that in element 1 when χ = χ0, x = x1. We also know that at χ = χ1, x = x2. It is clear
that x is a linear function of χ, so we will write
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From our earlier observations we have

or

Solving for a and b we have

Substitution of Eq. (1.88) into Eq. 1.84 yields

We have seen this structure before; it is an expansion using Lagrange polynomials, in
this case defined in the coordinate system χ. In other words, we can write

where

and

Thus we can see that we can move between the coordinate systems; that is we can
determine a value of x given a value of χ if we know the nodal locations x(χ0) and x(χ1)
which are x1, and x2, respectively in our example. If we were to rewrite Eq. (1.84) as
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(1.94)

(1.95)

(1.96)

we could show that for element 2 (e = 2) in Fig. 1.10

where the element number is indicated by the superscript on the left hand side of the
variable. Equation (1.94) states that, given a value of x, we can determine the value of χ.

1.8.1 Example
Suppose we want to find the value of x at location χ = 0.5 in element 2 in Fig. 1.10. Using
Eq. (1.90) we have

If we assume x3 = 2 and x2 = 1.5 as is the case in our approximation of ln(x) as shown in
Fig. 1.9 we obtain

For multiple elements we have what is shown in Fig. 1.11.
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Figure 1.11: Global and local basis functions (Lagrange Polynomials) for four-node
problem.

Let us now consider the approximations of our logarithm in each element in Fig. 1.9. In
terms of the local coordinate χ it will be of the form (recall that in this context the
element being considered is represented by the superscript 1 or 2):

To obtain our approximation to the logarithm, we substitute appropriate values for f(χj)
k

where k is here used as a generalization of that used above specifically as the element
number. For example, in Fig. 1.9 

 Substituting the appropriate

values observed at the nodes we get

If we now substitute in the definition of the linear Lagrange polynomials we obtain

and

which gives us an interpolation of the logarithm using the local coordinate system. Note
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that the superscripts on the bracketed quantities in Eqs. (1.101) and (1.102) represent the
elements and are not exponents. Now let us calculate the value of ln(1.25). We obtain

since  has been obtained. For the location 1.75 we need to use the approximation
in element 2. Thus we have

Tabulating the results, including the quadratic approximation we obtained in Eq. (1.73),
we get

f(1.25) E(1.25) f(1.75) E(1.75)

one linear element 0.22 0.173 0.047 0.559 0.52 0.04

two linear elements 0.22 0.20 0.02 0.559 0.546 0.013

one quadratic element 0.22 0.22 − 0.006 0.559 0.560 0.001

Note for future reference that Eqs. (1.97) and (1.98) could be written in matrix notation
for an arbitrary element e as

1.9 Hermite Polynomials
In this section we investigate another form of polynomial that allows us to directly
interpolate not only the function f(x) but also its derivative  this is the Hermite

polynomial. The Hermite polynomial is one of a suite of polynomials that when
concatenated make up a numeric function that has a prescribed degree of smoothness.
The point of departure for establishing the form of these piecewise Hermite polynomial
functions is the following expression:

where the functions h0
j(x) and h1

j(x) are the Hermite polynomials. The superscripts here
are identified with the two forms of the Hermite function, one, h0

j associated with the
value of the function at the node xj, that is. f(xj), and the other h1

j(x) associated with the
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derivative at the node, that is  There are four functions, two associated with each

node in the element, and they are shown in Fig. 1.12. To determine the form of the
functions h0

j(x) and h1
j(x) we require that, as in the case of the Lagrange polynomials,

the approximating function exactly represent at the nodes the function being
approximated. However, in addition to these constraints we require that the
approximation of the derivatives of the function being approximated also be exact at the
nodes. These sets of requirement, two at each of two nodes, yields:

Figure 1.12: Hermite polynomials.

We now expand Eq. (1.106) for each of the above conditions; that is we expand the
approximation and then impose the requirements of Eqs. (1.107)-(1.110). The first line of

the two associated with each approximate value, for example  is the expansion
and the second is the value the expansion must represent.
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In general, for Eqs. (1.111) through (1.114) to be satisfied, for any one of the four
equations, the boxed terms in each expression should be equal. For this to be true, the
information appearing in the following tables is required. The first line of Table 1.5, for

example, should be read as follows: In order to have  we should have
h0

0 = 1. In addition, as seen in Table 1.6 h1
0(x0) and h1

1(x0) must also be zero at both x0

and x1 and h0
1(x0) = 0 where the locations x0 and x1 are the two nodal locations in the

element.

Table 1.5: Necessary conditions to be imposed on the Hermite polynomials to assure
that the approximation and function are the same at the nodes.

h0
0 1 0

h0
1 0 1

h1
0 0 0

h1
1 0 0

Table 1.6: Necessary conditions to be imposed on the Hermite polynomials to assure
that the approximation of the derivative and and the derivative are the same at the
nodes.
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(1.116)

(1.117)

0 0

0 0

1 0

0 1

From the first row in Tables 1.5 and 1.6 we see that there are four conditions to be
imposed on h0

0(x) (read horizontally across in each of these tables). For example, h0
0(x)

must take on a value of 1 at x0 and 0 at x1 and  must be 0 at both x0 and x1. Since a

cubic polynomial is completely defined by four conditions (which is the number we have
available for each of the functions h0

0(x), h0
1(x), h0

1(x), and h1
1(x)), let us assume that

each is a cubic polynomial of the form, for example:

The coefficients a0, b0, c0, and d0 can be determined using the information in the above
tables. For example one equation for the case of h0

0(x) we can obtain using the first
element of the first row in Table 1.5; that is h0

0(x) must be 1 at x0. We get:

If we now take the derivative of Eq. (1.115) and evaluate it at x0 we know it must equal
zero from the first row in Table 1.6. If we now collect this information for each element
in row 1 of these tables we obtain the following set of equations for the coefficients a0,
b0, c0 and d0

In reading Eq. (1.117) the information appearing to the right of the matrix equation
identifies the conditions giving rise to each row of the equation.
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Solving for aj, bj, cj, and dj and substituting in cubic polynomial we obtain

where the Lagrange polynomial approximations are used in the definition. One can
make similar arguments to obtain

As noted earlier, the resulting functions are provided in Fig. 1.12. Note that the curves in
this figure satisfy the constraints provided in Tables 1.5 and 1.6.

Example
Consider the function

which upon differentiation yields

The approximation  is given by introducing the values in Eq. (1.120) and (1.121)
into Eq. (1.106); that is

A visual representation of the resulting approximation is provided in Fig. 1.13
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Figure 1.13: Hermite approximation of the exponential function.

hermite approx to exp

1.10 Error in Approximation by Hermites
We are not going to develop the error of the approximation using Hermites, but simply
provide it for the our case (cubic with two nodes) below, viz.

Example of Hermite Error Approximation
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Since

then using these limits the error bound is

The measured error is

which lies within the error bounds calculated.
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1.11 Chapter Summary
Polynomial approximation theory, the subject of this chapter, is a fundamental
theoretical underpinning for numerical methods. In this chapter we introduce this topic
in the context of using polynomial approximation theory to approximate functions. The
Lagrangian polynomials and the Hermite polynomials are considered along with the
error associated with using them in approximating functions. The concept of discretizing
a domain, say a length along x, into a set of concatenated linear segments called
elements is introduced.

1.12 Problems
1. Determine (derive) the form of ℓ1

1(x) (see Fig. 1.14). The result should be an algebraic
equation that describes the function ℓe

1(x) for any interval (x0, x1). The strategy is to
write the general form of the linear equation and then impose the conditions
required of a linear approximating function.

Figure 1.14: Linear basis function.

2. Using Eq. (1.128) below write the form of the second degree or quadratic Lagrange
polynomial ℓ2

1(x) shown below? How does it satisfy the requirements of a Lagrange
polynomial?

The shape of this function is shown in Fig. 1.15 below.



(1.129)

Figure 1.15: Quadratic Lagrange basis function defined over the interval x0 − x2.

3. Pn(θ) is a polynomial of degree n, that is,

Pn(θi) = f(θi) where θi are particular values of θ. Assume f(x) = sin(θ) (see Fig. 1.16)
and that n = 3 (the polynomial is a cubic). Determine the polynomial represented by
1.129 using points θi = 0, π/4, 3π/4, π. Compare these errors to those presented in
the example in the notes in Section 1.3. Sin (θ) curve with measured points indicated
by small black dots and interpolated values indicated by large black dots.
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Figure 1.16: Plot of  over the range  to 

4. Consider the function

Use a piecewise linear polynomial to determine e0.5. Now calculate the error of your
approximation, that is, determine the difference between the exact value of e0.5 and
your estimate. Using the following equation for the theoretical error

Show that the error of your estimate is consistent with the theoretical estimate.

5. Consider the situation presented in (Fig. 1.17) You know the value of x at the location
at 1.5 in inches and you want to determine the same location in centimeters. Using
the transformations given by

where x is the distance in inches and χ is the distance in centimeters determine the
location X in centimeters.
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Figure 1.17: Representation of a line in terms of inches and centimeters.

6. Please do the following:

a. Using the information in Fig 1.18, draw the linear Lagrange functions ℓi(x) and
ℓi(χ). In the local coordinate system use a solid line for ℓ0(χ) and a dashed line for
ℓ1(χ). Label the horizontal and vertical axis with appropriate values. Give each of
the symbolic xi and χi actual values, (in the sense of values of x0 and χ0 etc.) and
actual numerical values (in the sense of 1.0 etc.) in the spaces provided. You will
have five values of xi of your choosing and the same number of values of χ, but
there will be duplicate values of χ at most of the nodes.

b. What is the value of h = xi + 1 − xi?

c. What is the value of χ1 − χ0?

Figure 1.18: Representation of five points in global (x) and local  coordinate
systems.

7. Given the formula for the Lagrange polynomial, that is

write the form of the cubic Lagrange polynomial. Then use this expression to write
the approximation of the sin (θ) segment from 0 to π. Use four equally spaced values
of π to obtain this approximation (four π values). Now evaluate your polynomial at
the points indicated in Table 1.1, to compute the error, and note how the errors
compare with those already recorded in this table.

8. From the equation
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determine the value of χ at x = 0.75.

9. State the four requirements (constraints) necessary to obtain a Hermite interpolating
polynomial h0

0 as used in the expression

assuming you start with the standard cubic polynomial.

10. Use a linear polynomial to approximate sin θ, 0 ≤ θ ≤ π. shown in Fig. 1.19.
Determine whether the error at π/2 falls within the range predicted by the error
formula.

Figure 1.19: The  function from 0 to 

11. Use quartic (fourth degree) Lagrange polynomials to approximate sin θ using nodes
at 0, π/2, π, (3/2)π and π. Determine the value of sin  θ at (5/4)π. Compare the
estimate to the value obtained using the quadratic Lagrange polynomial. Is it better;
why (or why not)?

12. Given the sin (θ) function shown above and linear polynomials written in terms of
the local coordinate system χ, determine the value of the sin (θ) at χ = 0.5.

13. The goal here is to determine if one can use any two points along the line from x = 0
to x = 2 in Fig. 1.20 to estimate the value at x = 1.0. Please solve this problem by
following these steps:
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Figure 1.20: Problem definition.

a. Assume f(x) can be approximated by

where ℓj(x) is the linear Lagrange polynomial and fj is the value of f(x) at x = xj.

b. Expand this expression to represent that needed for this problem.

c. Evaluate the resulting expression at the point x = 0.0 and x = 0.5. Assume 
 and  You should have two equations in the two

unknown values of f1 and f2 where the subscripts are the two nodal identifiers,
that is node 1 and node 2.

d. Solve for the two unknown values of f1 and f2.

e. Use these values to estimate the value of f(x), where x = 1.0.

Hint: remember that the linear Lagrange polynomials are 1 at the node for which they
are defined and 0 elsewhere, so in this case they are two straight lines crossing at x = 1
and ℓ(1) = 0.5.
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Chapter 2 
Numerical Differentiation

2.1 General Theory
We are now ready to use some of the theory we developed above to derive the
approximation of a continuous derivative that will yield an algebraic approximate
equation that can be used to solve a differential equation numerically using elementary
algebra. Let us begin with the following interpolation formula where ℓn

j(x) are the
Lagrange polynomials of degree n

Now differentiate f(x) to give

Notice that in differentiating f(x) the value of the function at location xj is not affected
because it is a number, not a function of x.

From the equation defining the error associated with approximating functions using
Lagrange polynomials, we have from Eq. (1.61) on page 12

Again, differentiating we have

where we must remember that ξ is an unknown function of x. In order to proceed, we
need to introduce the results of a theorem that will help us understand the term on the
right hand side of Eq. (2.4). A proof of this theorem is found in Ralston, (1965, pg. 77).

Theorem 2 Let

be the error term in the Lagrangian interpolation formula with ξ in the interval
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spanned by x0, x1, ...xn and x. Then if  is continuous,

where η is also in the interval spanned by x0, x1, ..., xn where xi = ih and

Combination of Eq. (2.4) with the results of the above theorem give

Note that at a nodal point xj the first term on the right-hand side of Eq. (2.8) vanishes
(because we are forming a product and when x is a nodal location, one term in the
product is zero, so the whole product is zero) and we have

Notice that we take the derivative  and then evaluate it at xj. If we
were to do the reverse, that is if we introduced xj first then differentiated, we would be

taking the derivative of a number and the term would vanish. Now we can write  as

which says that the derivative  at xk can be represented by the right-hand-side of Eq.

(2.10).
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2.2 Two-Point Difference Formulae
We are now in a position to look at some specific difference approximations arising out
of the expression presented in Eq. (2.10). Consider

Let us take the particular representation of  presented in the following equation:

This equation should be read as the derivative of the approximation, that is  evaluated

at the location xi. We will look first at the case of using the linear Lagrange polynomial
ℓ1

j(x). Expansion of Eq. (2.12) for the two terms associated with having n = 1 gives1

where the linear Lagrange polynomials are provided by the definitions

and

The associated derivatives of these two functions are given by

and

Combining Eqs. (2.16) and (2.17) with (2.13) we have
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or, rearranging

or

We call this a finite difference approximation to . Note that we have not specified

the value of i, so this approximation can be envisioned as being identified with (located
at) either i = 0 or i = 1. However, it is sometimes important to know where the
approximation is perceived to be located, so the following nomenclature is used.

2.2.1 Forward Difference Formula

2.2.2 Backward Difference Formula

Note that the symbol ∇( · ) is not the gradient operator ∇( · ) from the vector calculus
which is a vector quantity.

2.2.3 Example
Consider differentiation of ln(x) evaluated at location xi, that is

We begin with the definition of our approximating derivative 
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Neglecting for the moment the error term , we have from Eq. (2.19)

Since, in this example, we have as the values of f(x0) and f(x1)

and

we get, through substitution in Eq. (2.25) the following:

Let us now investigate the error of this approximation. The exact derivative , our

approximation  and the error  are tabulated below:

2.2.4 Error of the Approximation
In the above table we have documented the observed error in the derivative
approximation when a forward or backward difference is used. Now we will look at how
this relates to the error as described Eq. (2.9) on page 34 which we rewrite here for
convenience as:

For linear elements this equation becomes

or
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If we evaluate this at x0 we have

where O(h) is read as ‘order h ’. Substitution of f(x) = ln(x) gives

If we introduce the limits ξ ∈ [1, 2] and remember that h = 1 because x ∈ [1, 2] and
there are only two nodes, one at x0 and the other at x1, we have

or

or

Thus our observed value of the error of 0.307 as shown in the above table lies within the
predicted error bounds.

The bounds for  can be calculated as
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so the computed error at x1, namely − 0.193 is also within the expected error bounds.

2.3 Two-Point Formulae from Taylor Series
In this section we will present an alternative way of obtaining Two-Point difference
formula. We begin with the definition of a Taylor series, viz.:

If f(x) has continuous derivatives of order k + 1 in [a, b] then by Taylor’s theorem

which we denote as a Taylor series.

Let us consider the interval

Then from the Taylor series we have (keeping in mind that h = x1 − x0 and that we are
looking backwards and therefore h is negative)

Rearranging the terms in Eq. (2.41) we have:

where the labels under the terms indicate their relationship to our earlier development.
We now compare Eq. (2.42) with the following expressions developed previously using
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the Lagrange polynomial approach

Employing Eq. (2.25) we have

and from Eq. (2.32) we obtain

If we combine the above three equations we obtain

Equation (2.46) is equivalent to Eq. (2.42).

At this point we have shown how to develop an approximation of a first derivative using
two equivalent strategies. In the following subsubsection we demonstrate how one can
use such an approximation to solve a simple problem. This is an elementary application
of the method of finite differences first introduced by the famous mathematician Euler
in 1768.

Example Solution of a First-Order Equation
Consider the physical system illustrated in Fig. 2.1. Fluid is entering the pipe with cross-
sectional area A at a rate Q per unit length [L] and has units  per unit length [L]. The

velocity entering the pipe is v = 3 with units  What is the velocity of the pipe along its

length? The governing equation, boundary condition, and known flux Q are given as:
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The analytical solution is

Figure 2.1: Example problem for application of a first derivative finite difference
approximation.

Now let us solve this physical problem using our numerical approximation. Employing a
first-order finite difference representation for the derivative we get

Using the same general formula for each nodal location we obtain
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In matrix form we have

But we know from the boundary conditions that v(0) = 3. Thus we can write

Since we know v0 to be 3, we can multiply each coefficient in the first column by 3 and,
after changing the sign, place the result on the right-hand side of the equation. The first
column of the matrix can now be removed. The result follows:

The values of the unknown velocities are now given by

The result obtained numerically is the same as we would get if we evaluated Eq. (2.53)
for the nodal locations shown in Fig. 2.1. The reason it is exact is that the solution is a
straight line and we are representing it with piecewise linear functions. From Eq. (2.32)
on page 37 we see that when the solution is linear the error of the approximation
vanishes.

2.4 Three-Point Difference Formulae
Now we will extend the above concept to consider a three-node element. We will see that
with three nodes we can get a more accurate approximation of the first derivative and an
approximation of a second derivative (we could not get an approximation of a second
derivative given linear Lagrange polynomials and one element with two nodes).

From the general statement expressing a first derivative in terms of a Lagrangian
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expansion, that is Eq. (2.2) on page 33, we have

Now consider the second-degree Lagrange polynomial (which involves three nodes and
n = 2), that is

2.4.1 First-Order Derivative Difference Formulae
From Eq. (2.64) we have for the case of a quadratic Lagrange polynomial

which upon substitution of the definitions of the quadratic Lagrange polynomials gives:

Let us evaluate this expression at node x1. We obtain

Notice that this formula is peculiar in that the node at which the derivative is being
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defined does not appear in the approximation.

Now let us consider the case for node x0

Note that, based upon what we have provided above, it appears that when using three
nodes and quadratic Lagrange polynomials, the derivative approximation has a different
form depending on where it is being evaluated. In other words

Error of the Approximation
The general definition of the error in representing the first derivative is given by

which, for quadratic Lagrange polynomials, gives for node x1
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Note that this O(h2) compares with O(h) for the linear polynomial approximation of the
first derivative at node x1 (see Eq. (2.33) on page 37), that is

2.4.2 Second-Order Derivatives
To get an approximation for the second order derivative of f(x), differentiate Eq. (2.64)
to give

Expanding this equation we obtain

Substitution of the definitions of ℓ2
j(x) yields
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Differentiating we obtain

If we neglect the error term we can now write the approximated derivative as

It is interesting to note that, like the Two-Point approximation to the first derivative (Eq.
(2.19)), this approximation is the same irrespective of which node you use for the
evaluation. In other words, the approximation is the same for each node of the three
node series.

Error in approximation
From Eq. (2.70) we have

thus, upon differentiation we have

or (see page 34)
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If we select n = 2 this equation becomes

which simplifies to

At the node x1 this expression becomes

which simplifies to
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(2.90)

and finally becomes

Example of the Solution of a Second-Order Equation
In this example we will show how to solve a Second-Order equation using a finite
difference approach. In this spirit, consider the transport of a contaminant c being
transported by a fluid with velocity v and experiencing dispersion with dispersion
coefficient D. Let the interval of interest be x = [0, 1]. The governing equation is

Assume that the concentration at x = 0 is 1 and at x = 1 is 0. Further assume that we are
going to use three nodes located at x0 = 0, x1 = 0.5, and x2 = 1.0. Because the first and
last nodes in the three node sequence are known, we only need to solve for the center
node. This requires one equation in one unknown, namely the unknown value at x = 0.5.
which is located at node 1 in the sequence.

Using centered finite difference approximations for each term in Eq. (2.88), we obtain
for the equation at node i

For the special case of n = 1, this expression becomes

We can write the matrix equation as
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(2.95)
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where the first and last rows exist only to incorporate the boundary conditions. More
specifically, if you multiply the column of ci values by the first row of the matrix you
obtain c0 = 1, which is the boundary condition at x = 0. A similar argument can be made
for the representing the boundary condition at x = 1 by using the last row of the matrix
equation.

Now assume for convenience that D = v = 1 and substitute into Eq. (2.91) which now
becomes

Focusing now on the equation defined by the second row of Eq. (2.92) we obtain through
matrix multiplication

which can now be solved for the value of c at x = 0.5, that is c1 and the result is

Now, just out of curiosity, let us see what happens as we change the coefficient D.
Writing the solution for c1 symbolically using Eq. (2.91) we have (noting that c2 = 0 via
the boundary condition at x = 1)

or

Notice that as D → ∞, c1 → 0.5 and as D → 0, c1 → ∞. The reason for c1 → ∞ is that the



right hand boundary condition is inappropriate and causes a conflict. The solution
approaches 1 everywhere when D = 0 but this is in conflict with c2 = 0 which is the right-
hand boundary condition. As we noted in the previous example, having two boundary
conditions specified for a first-order equation (remember D = 0 is assumed) is incorrect.
The solution for c1 reflects that fact. In practice Eq. (2.88) is difficult to solve when the
ratio of v/D becomes large for a variety of reasons as we will see later.
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2.5 Chapter Summary
The polynomials introduced in the preceding chapter are used to create discrete
approximations to continuous derivatives. The error in these approximations is
introduced and discussed. The resulting discrete approximations to first and second
order derivatives are used to represent differential equations and the result is a set of
algebraic equations which, when solved, generate an approximate solution to the
differential equation. By using different strategies for approximating the continuous
derivatives, the discrete equations can have different numbers of nodal locations in their
approximations and concomitant differences in the order of their errors. As an
illustration of the use of the finite difference methods that arise using this strategy, an
example differential equation is solved employing this approach.

2.6 Problems
1. Consider the equation

Using three nodes located at x = 0, x = 0.5, and x = 1.0, find the value of u(0.5). Note
that there is more than one option for the representation of the variable u1 located at
x = 0.5.

2. Consider the following equation and associated boundary condition

The analytic solution is

so
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Given the mesh shown in Fig. 2.2, calculate v(1) using a backward difference scheme
and compare your results to the exact values.

Figure 2.2 Nodal arrangement for mesh for flow in a pipe.

3. Given Eqs. (2.105)-(2.107) and a mesh made up of three nodes located at x0 = 0, x1 =
0.5, and x2 = 1.0, use a second order correct finite difference scheme to determine the
value of c at x = 0.5. Assume D = 2 and v = 1:

4. Given the error expression

determine the error bounds for  at π/2 and π, using the mesh shown

in Fig. 2.3 and an approximation using linear Lagrange polynomials (n = 1). Are they
equivalent and should they be?
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Figure 2.3 Linear Lagrange polynomials at three nodes and the function 

5. Consider the physical system illustrated in Fig. 2.4. Fluid is entering the pipe at a rate
Q = x per unit length. The velocity entering the pipe is v = 3. What is the velocity of
the pipe along its length? The governing equation, boundary condition, and flux are
given as:

Compare your solution to the analytical one, namely

Figure 2.4 Problem formulation where fluid enters a pipe at x0 and there is a source
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Q = x along the length of the pipe. The input velocity is v = 3.

6. In Fig. 2.5 is displayed the water-level response to a pumping well drawing from a
groundwater reservoir of thickness l. The well produces a drop in water level, h. The
water level drops most at the well and less away from the well. It is assumed that at
some distance re the water level is not disturbed and remains at height He. The
equation describing the drop in water level is given by

where Q is the well discharge. The solution to this equation is

Assume that the thickness l is 10, that re = 100, He = 10, Q = 1, and K = 0.1. Calculate
the value of h at r = 50 using a finite difference scheme based on linear Lagrange
polynomials and a sequence of element sizes beginning with 50 (3 nodes), then 25 (5
nodes), then 12.5 (9 nodes) and finally 6.25 (17 nodes). Compute the magnitude of
the error , where  is the approximate solution at r = 50. Plot the logarithm of
the error at that point for each scheme on the vertical axis and the logarithm of the
element size on the horizontal axis. Calculate the slope of this line. This is an
estimate of the order of the global error. Given the method that you have used to
approximate the derivative, how does the local error compare to the global error?
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Figure 2.5 Diagrammatic representation for problem involving well discharge.

7. The convection diffusion equation is one of the most often encountered in science
and engineering. Solve the following problem that uses this equation Eq. (2.116). The
problem is defined for the interval X ∈ [0, 1] by

where , φ is a measure of concentration and the Peclet number 

 ρ is fluid density, u is fluid velocity, Γ is the diffusivity, and L is a

characteristic length. The goal of this exercise is to see under what values of Pe the
numerical solution of this equation becomes problematic. Notice that by increasing
Pe you are effectively increasing the importance (influence) of the convective term at
the expense of the diffusive term.

1. The analytical solution to this problem is



(2.118)

Proceed as follows:

(a) Replace the value of Pe with the numerical equivalent  that uses the

spacing h as the value of L. Notice that the h in the Ph term is obtained by
multiplying your difference equation through by h, so the h does not

(b) Use two different numerical approximations.

i. the first is a central difference approximation for both the first and second
derivatives.

ii. the second is a central difference approximation for the second derivative and
a backward difference for the first derivative.

(c) Use two different values of Pe:.

i. one case is with Ph = 1.

ii. one case is with Ph = 3.

Since you are using only one value of h in all your simulations, by changing Ph,
you are really changing either u or Γ.

(d) Using a mesh with 17 nodes, calculate the value of φi at each node with the
boundary conditions indicated. Do this for the two values of Ph and each
numerical approximation.

(e) Plot these four solutions along with their analytical equivalent (using Pe = Ph).
Theory suggests that with a value of Pe greater than 2, you should have problems
for the case where the central difference approximation is used for the first
derivative and all the other cases should be fine. Also, theoretically, the solution
for Ph = 1 should be more accurate when the central difference approximation for
the first derivative is used (why should this be true?).

8. Given the sin (θ) function shown in the Fig. 2.6 and linear polynomials determine the
value of the error range of  for the derivative of sin (θ) at θ = 0. Compare this

error to the actual error you get when you attempt to approximate  Is the

actual error within the range determined from 
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Figure 2.6 Sin function from 

9. Use quadratic (fourth degree) Lagrange polynomials to approximate sin θ using
nodes at 0, π/2, π, (3/2) π and π. (see Fig. 2.7). Determine the value of sin θ at (5/4)
π. Compare the estimate to the value obtained using the quadratic Lagrange
polynomial. Is it better; why?

Figure 2.7 Sin (θ) curve with measured points indicated by black dots and
interpolated values indicated by grey dots.

10. Given the equation

determine whether the expression
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is consistent.

11. Show why you cannot use linear Lagrange polynomial functions and two nodes to
approximate a term of the form 

12. Reconsider the problem presented earlier in this chapter, however with a slight
modification. Again we let the velocity entering the pipe be v = 3. The governing
equation, boundary condition, and known flux Q are given as earlier, but A is now
defined as a function of x (see Fig. 2.8)., The problem now is:

The analytical solution is

Figure 2.8 Physical system for problem with linearly decreasing tube diameter.

The wrinkle here is how to handle the coefficient A. One approach is to evaluate the
coefficient at each node, that is, A = 1 − xi/6.

Write a computer code to calculate the solution at each of the nodes and evaluate the
error at each node. Plot the error as a function of the distance along x. Repeat the
calculation and analysis using seven equally space nodes. Plot the error at each of the



nodes for which you have values from each calculation. As a measure of error, take the
largest error among all the nodes for a particular discretization as the measure of error
for that discretization.
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Chapter 3 
Numerical Integration
As we move into a discussion of numerical methods that require the evaluation of
integrals, we discover that there is a need to understand some of the elementary aspects
of numerical integration. There is a vast literature on this topic and this chapter
addresses only those aspects we need later to assist in understanding the finite element
and finite volume methods.

3.1 Newton-Cotes Quadrature Formulas
In this subsection we use the techniques we have developed to date to examine the
family of integration methods know as Newton-Cotes Quadrature formulas. We begin
with reviewing some of the material presented earlier.

3.1.1 Lagrange Interpolation
From the general formula for approximating a function using Lagrange polynomials we
have:

Let us now integrate Eq. (3.1) over an interval from a to b. For n even one can show that
(Ralston, 1965) [9]

and for n odd

We will now see that from these two expressions we can formulate the commonly
encountered quadrature formulae for numerical integration.
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3.1.2 Trapezoidal Rule
Let us start with the simplest quadrature formula, namely the case when n = 1. We
consider the interval x ∈ [0, h] with, as earlier, h ≡ xi − xi − 1, x = ih and xi are nodal
locations along the x axis. Since n = 1 is odd, we use Eq. (3.3), that is

The next step is to substitute our definition of the linear Lagrange polynomial and
recognizing that f(xi) is a number (the value of f(x) at the specific locations xi) and can be
taken out of the integral, we obtain,

Now we perform the integrations appearing on the right-hand side of Eq. (3.5) and
obtain



(3.7)

(3.8)

(3.9)

Substitution of these integrals into 3.5 provides us with the final form for the integral 

Equation 3.9 tells us that we can obtain an approximation to the integral 
as the weighted sum of the values at the end points of the interval, namely f(0) and f(h)

with weighting coefficients  An alternative interpretation is that the integral is
approximated by the arithmetic sum of the values at the ends of the interval, multiplied
by the interval value h. Now let’s extend the concept to the case of three nodes.

3.1.3 Simpson’s Rule
In the case of three nodes, n = 2. If we assume h to be a constant, the interval over which
we are doing our integration becomes x ∈ [0, 2h]. Since n is even, we use Eq. (3.2), that
is



(3.10)

(3.11)

To get a flavor for the process involved in evaluating the terms in Eq. (3.10) , consider
the first term in the the first integrand appearing on the right-hand side of this equation,
viz.

The integral in the error term becomes
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(3.13)

(3.14)

Combination of these integral terms yields

Equation 3.13 states that we can obtain a value for the integral  using

three nodal values of f(x), that is f(x0), f(x1), and f(x2) that is O(h5). Thus we observe that
the use of additional nodes increases the accuracy of the numerical approximation; of
course it also requires more computational effort.

3.1.4 General Form
The general form of the above is

where
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(3.16)

(3.17)

(3.18)
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3.1.5 Example using Simpson’s Rule
As an example, let us perform the integration as seen in Fig. 3.1 . The exact value for this
integral is

Let us use a second degree polynomial such that n = 2. Then from Eq. (3.16) we have k =
2 + 2. We see from Eq. (3.14) that if we use a second degree polynomial, there should be
no error since the fourth derivative of our integrand is zero; let’s see if this holds for our
example. From Simpson’s rule

Thus, as hypothesized, the integration is exact.



(3.20)
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Figure 3.1: Function to be integrated and integral value.

3.1.6 Gauss Legendre Quadrature
In this subsection we look at a quite different method of integration that we will need
later in our discussion of isoparametric finite element (see Section 8.3 on page 211) and
finite volume methods (see Section 9.2.5 on page 256). This method, called Gauss
Legendre Quadrature, can be presented at various levels of sophistication. The following
approach is consistent with our needs.

Assume the integral of interest can be approximated as

where both the coefficients ci and the locations xi are unknown. We will now determine,
using two terms of this series, the values of c1,c2, x1, and x2 that exactly integrates an
equation of the form

Substitution of Eq. (3.21) into Eq. (3.20) gives us

The exact solution to this equation is
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From Eq. (3.20) we have, for n = 2

Using now the definition of f(xi) from Eq. (3.21), we obtain for the two values of xi

Rearrangement of the terms in this expression yields

We now have two equations that both must be satisfied, these are Eq. (3.23) and Eq.
(3.24). For this to be true

Equation (3.25) represent four non-linear equations in four unknowns. Solution of these
equations yields

Substitution of these values into Eq. (3.24) yields the integration formula we seek.

In application, the general form of the approximation is modified to accommodate
integration limits defined by a = −1, b = +1. This is the form we will use later in the book.
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In this case, the coefficients in Eq. (3.26) become

In Table 3.29, are tabulated the values of ci and xi for a n = 1, 2, 3, 4. In our work we will
need to calculate multidimensional integrals. The formula for two dimensions is a
straight-forward extension of the one-dimensional case and is for 

where n and m are the number of integration points in x and y, ci and dj are weighting
coefficients and f(xi, yj) is the value of the integrand at the specific points
xj ∈ [−1, 1], yi ∈ [−1, 1]. In this formula we introduce dj and yj to denote values
equivalent to cj and xj but taken in the y coordinate direction. In our above example we
considered a cubic polynomial which we observed was exactly integrated with an n = 2.
This is consistent with information presented in Table 3.29. In general, the
polynomial that will be exactly integrated by n points is of degree of 2n − 1.
Notice that there are + and − values for xi so the number of points being considered for,
say, n = 2, is two and for n = 3 is three.
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Example Gauss Integration
Consider the integral we used as an example in Subsubsection 3.7, that is

Step One: Change Variable Limits,
Change the limits of integration to [−1, 1] using the following equation:

and verify the transformation is correct.

If x = 1,

If x = 3,

Now the integral becomes

This is the interval from −1 to 1, we stated that we needed to apply Gauss Legendre
Quadrature as it is used in this book. For convenience define
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Step Two: Evaluate Series

If we choose n = 2, we have

The integration is exact because n = 2 will exactly integrate a cubic and our function is
quadratic.
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(3.39)

3.2 Chapter Summary
Polynomial approximation theory is used in this brief chapter to integrate functions
numerically. The two methods discussed are the Newton-Cotes quadrature and the
Gauss-Legendre quadrature. Common formula  such as the trapezoidal rule and
Simpson’s rule are described and examples of their application provided. An example of
the application of the Gauss Legendre method is also provided. The material in this
chapter demonstrates that integration of polynomials can be done easily using
numerical strategies based upon polynomial approximation theory.

3.3 Problems
1. Use the trapezoidal rule to evaluate the integral of sin θ from 0 to π and check to see

if the error obtained is consistent with the theoretical limits.

2. Use Simpson’s rule to integrate sin θ from 0 to π, compute the error in the numerical
integration and compare this error to the theoretical limits.

3. Develop the one point integration formula for the linear equation f(x) = a0 + a1x.

4. What is the value of the truncation error generated when one applies Simpson’s rule

when f(x) is given by f(x) = a + bx + cx2 + dx3?

5. Use Simpson’s rule to evaluate the integral in Eq. (3.39) and check to see if the error
obtained is consistent with the theoretical limits.

Simpson’s rule is given by Eq. (3.38).
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Chapter 4 
Initial Value Problems
In this section we are interested in expanding the idea of solving differential equations
using the finite difference method we first introduced in Chapter 2 on page 2. More
specifically we will focus in this chapter on solving ordinary differential equations such
as we first encountered in a preliminarily way in Subsection 2.4.2. We will begin this
section with equations of the general form

Since Eq. (4.1) is a first-order equation, it requires one auxiliary condition for its
solution, in this case an initial condition since the independent variable is time. A
suitable condition is of the form

where t0 is the initial time and u0 is a specified known value of u(t). It is assumed that
f(u, t) is also defined and continuous for all t ∈ [a, b]. Formulating a forward difference
approximation of  appearing in Eq. (4.1) yields (see Section 2.3 on page 37)

where

Note that we know this is a forward difference because our point of reference for the
approximation is at ti, and we are looking forward to the value at ti + 1 to create the
approximation.

Substitution of Eq. (4.3) into Eq. (4.1) gives

or, rearranging
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If we neglect the truncation error, we obtain the Euler Forward Integration Method,
that is

where ui is the approximate solution to u(ti). Examination of Eq. (4.7) reveals that one
can step through time explicitly, one step at a time, that is the value of ui + 1 can be
obtained from the known values at ui. The process gets started using u0 which is known
from the initial condition.

4.1 Euler Forward Integration Method Example
Let us now see how we can apply the above concepts. Consider the equation

which has the solution ([4], p. 115).

From Euler’s method Eq. (4.7) we obtain

Substitution of our definition for f(u, t) from Eq. (4.8) gives

For our example consider

such that Eq. (4.11) becomes

After imposing the initial condition, that is

we can write Eq. (4.13) for the first time step as

If we continue this process over several time steps with each newly calculated value



(4.16)

(4.17)

depending only on the preceding time step, we obtain the values in the following table.
Here we present, column-wise from left to right, the elapsed time at the beginning of
each time step, the computed value of ui, the exact value of u(t) at time ti, and the error
as calculated as the difference ui − u(ti). Note that the error reported in the fourth
column is cumulative and getting larger as time increases.

t ui u(ti) E(ti)

0 1.000 1.000 0

0.02 0.9820 0.9825 − 0.0005

0.04 0.9650 0.9659 − 0.0009

0.06 0.9489 0.9502 − 0.0013

0.08 0.9336 0.9354 − 0.0018

0.10 0.9191 0.92123 − 0.0021

⋮ ⋮ ⋮ ⋮

0.20 0.8402 0.8594 − 0.0192

⋮ ⋮ ⋮ ⋮

0.30 0.7862 0.8093 − 0.0231

4.2 Convergence
There are three key properties of numerical approximations like that considered above
that need to be addressed. If these three conditions are not met, the numerical
approximation is of little practical interest. These properties are convergence,
consistency and stability and we will consider each in turn below.

Convergence Definition
A numerical method applied to a given differential equation is termed convergent if,
assuming no computer round-off error, the numerical solution approaches the exact
solution to the differential equation as h → 0.

The above means that as the time step h gets smaller and smaller, the calculated value ui
approaches the exact solution u(ti).

With this definition in mind, we now examine the convergence properties of the Euler
method for this example. From the governing equation we have

and from Taylor’s theorem we know
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This expression can be rearranged to provide an approximation for  We have used

the forward difference approximation in the preceding example, that is

It is important at this stage to realize that u(ti) and ui are different as are  and .

The value u(ti) is the exact solution evaluated at the time ti. The value ui is the value of
the function as computed using a first-order difference approximation for Eq. (4.17).
Thus ui inherently contains any errors that have evolved during the calculation of u1, u2,
u3, ...ui. As a result the accumulated error in the solution can be determined at time ti + 1
by subtracting u(ti + 1) from ui + 1. Let’s do the subtraction, that is subtract Eq. (4.18) from
Eq. (4.19). We obtain

or, using the information from Eq. (4.17) to replace the first derivative in this expression,
we obtain

Now, let us define the error terms as

Substitution of these definitions into Eq. (4.22) and defining

we obtain
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We now require the use of the mean value theorem which states the following:

Given a function f(t) is continuous on the closed interval [a, b], and a < b, and that
that f(t) is differentiable on the open interval (a, b), then there is a point c in (a, b)
such that

In other words, there exists a point c in the interval (a, b) such that the line joining the
function values at the endpoints of the interval [a, b] is parallel to the tangent at c. (see
Fig. 4.1).

Figure 4.1 Illustration of the mean value theorem. The line connecting the endpoints of
the curve is parallel to a tangent of the curve at some point c in the interval a − b.

Now we employ the mean value theorem, Eq. (4.26) , using b ≡ u(ti) and a ≡ ui to write

or

Notice the appearance of the mean value  in this expression.
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Substitution of Eq. (4.28) into Eq. (4.25) gives

Let

such that

To see how the error evolves over time we now make a series of calculations while
advancing through time using the following relationship:

This will allow us to see what happens to i + 1 as we proceed step-wise from the initial
conditions. Here we are considering the special case of p and E constant (which they are
not).

We begin by using the observation that when

Then, by successive substitution we obtain using Eq. (4.32) the following sequence,
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(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

where all the terms of power higher than h are smaller than O(Eh) and are omitted.

Now recall from Eq. (4.24) that

and that

We can now introduce Eqs. (4.41) and (4.42) into Eq. (4.40) to give an expression for i +
1

The above development shows that the total error is one order lower than the
local error (that is the error per time step). Notice that as h goes to zero, i + 1 also goes
to zero, thereby illustrating convergence for the Euler forward integration method.

4.3 Consistency
We will now look at the issue of consistency which, simply stated, is the requirement
that the approximating equation approach the original differential equation as the
increment h approaches zero. Let’s consider an example. Given the equation

or, dividing through by h, we get

then if E/h vanishes as h → 0, (which it will do because E/h =O(h2)/h = O(h)) so h
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(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

appears only in the numerator of E/h), we say the difference equation is consistent
with the differential equation, viz.

Thus, given Eq. (4.46) we have shown that Euler’s method is consistent, that is the
difference equation becomes, in the limit as h → 0, equal to the original differential
equation.

4.4 Stability
The last property to consider is stability. It determines whether, as one advances
through time, the numerical solution behaves as expected (stable) or alternatively
generates an ever-increasing error due to round off in the computer (unstable). Clearly,
an unstable difference equation is of no practical importance.

As an example, consider the approximation to the following equation

given by

Assume an exact solution, free of round-off error, is given by  Then  satisfies

Now subtract  from ui in Eq. (4.48) to give

Let

be the round-off error committed at ti. If  increases as i increases we have a problem.
Let’s take a look at what happens to  as i increases. To do this we first write Eq. (4.50)
as

or
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Now consider the cumulative effect of this error as we proceed through time.

and in general

Examination of Eq. (4.57) reveals that to assure no exponential error growth, the
following inequality has to hold,

This we consider to be a stable approximation, conditional on the requirement
expressed in Eq. (4.58).

4.4.1 Example of Stability
To further illustrate the concept of stability we will consider the following example
which assumes α = −1 in Eq. (4.58). We have

For

we deduce that

which requires

Thus the approximation of Eq. (4.57) is conditionally stable, that is it is stable
provided h ⩽ 2 (since h must always be greater than 0).

4.5 Lax Equivalence Theorem
To determine convergence using the above strategy, one needs to know the solution of
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the equations beforehand, but the reason we are trying to find the solution numerically
is because the exact solution is not, in fact, generally known. Fortunately, there is a
theorem that helps; it is the Lax Equivalence Theorem and it states ([Lax and Richmyer,
1956]):

Theorem 3 Given a properly posed initial value problem and a finite-difference
approximation to it that satisfies the consistency condition, stability is the necessary
and sufficient condition for convergence.

This is a very important result from a practical perspective because it states that , if we
can determine consistency and stability, which do not require knowledge of the exact
solution, we can establish convergence.

For the sake of completeness we are now going to provide some very well known, very
specific methodology for solving initial value problems that are widely used, these are
known as the Runge−Kutta formulas.

4.6 Runge–Kutta Type Formulas
4.6.1 General Form
To illustrate the concepts behind the Runge–Kutta methods, we will consider the
equation of interest to be

The general form of the Runge–Kutta type formula for this equation using a two–term
expansion is

where

4.6.2 Runge–Kutta First Order Form (Euler’s Method)
In Eq. (4.64) let a = 1 and b = 0. Substitution of these values into Eq. (4.64) we get

or, rewriting this expression

This is the forward finite difference approximation we derived earlier and denoted as the
Euler method.

4.6.3 Runge–Kutta Second Order Form
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Now consider the extension of the above method to a two–step scheme. Consider once
again the equation

Let the coefficients in Eq. (4.64) take on the values

Using these values in Eqs. (4.64 – 4.66) we obtain

where

as before and

which, when substituted into Eq. (4.71) gives

Example of Runge–Kutta Second Order Form
Let us now consider an illustrative example in which we consider the equation

with initial condition

and h = 0.025. Since the interval is of length 0.075, there will be three time steps. The
equation to be used is Eq. (4.71). We will proceed by calculating k1 and k2 and then
substitute these into Eq. (4.71). With u in radians we obtain for k1 and k2
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Substitution of these values into Eq. (4.71) we obtain

Now, for step two, we obtain

And finally, for step three, we have
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(4.87)

The analytic solution to this problem is

and for t = 1.075 we obtain u = 1.23 so the solution is exact to three significant figures.

Geometric Interpretation
We will now use Fig. 4.2 to look at one way to explain the difference between Euler’s
method and the Runge–Kutta method. The Euler method uses the equation

Figure 4.2 Schematic visual representation to assist in the explanation of the difference
between Euler’s method and the Runge–Kutta method.
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which, using the original equation Eq. (4.17) is equivalent to

Thus the Euler method projects from ui to ui + 1 as represented by the curve P1.

The Runge–Kutta method uses

which we can interpret as follows: the P1 term is the equivalent of the Euler method. The
term P2 is equivalent to

which is  evaluated at the end of the interval, i.e. at t = t0 + (i + 1)h. The Runge–Kutta
method uses the average of P1 and P2 to yield

which are the slopes at ti and ti + 1. Thus the Runge–Kutta method uses the arithmetic
mean value of the derivatives evaluated at the end points of the interval.
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4.8 Chapter Summary
The solution of initial value problems using numerical approximations is the focus of
this chapter. The three fundamental properties of a numerical approximation, namely
consistency, convergence and stability are presented and examples are provided to assist
in understanding these concepts. Euler’s classical method along with Runge–Kutta
formulations are also described.

4.9 Problems
1. Consider the equation

Since this is a first-order equation in time we need an initial condition. Assume the
initial condition is

Further assume that you are going to solve this equation using the forward difference
scheme

and you are using a value of h = 3. Calculate the first five time steps and observe
whether the approximation is stable or unstable. Now do the same calculation using
h = 3/2 and make the same observation. How is this result consistent with the theory
presented in this chapter?

2. You find it necessary to forecast the rate of heating of a widget. The governing
equation is

where β is an empirical constant and is positive. You decide to use the difference
formula:

where h ≡ ti − ti − 1 and ti = ih. Show how you determine the stability of this scheme
and describe what the stability constraints are.

Include the following steps:

1. 

a. Define your error term and represent it as ei;



b. Substitute the error into equation 4.7;

c. Show how the error evolves over each time step;

d. Determine the requirements on β and Δt for stability.

2. What is the difference between the error of the approximation and the round–off
error?

3. Will the number of significant digits in the representation of a number affect the
stability of an otherwise unstable scheme. In other words, can you use a computer
which represents numbers with more bits to overcome stability problems?

4. In the truncation errors involving h, for example in Eq. (4.3), it is assumed that h ⩽ 1
so that has the power of h increases, its magnitude decreases. What happens when h
> 1? How then do you demonstrate consistency or establish the error of the
approximation?
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Chapter 5
Weighted Residuals Methods
We are now going to discuss the concept of the method of weighted residuals
which, along with the interpolation theory presented above, will allow us to create an
array of different numerical techniques. To start the discussion we consider the equation

From Lagrange interpolation (see Section 1.8, page. 14) we can write the approximation
to u(x) as

or

where

and ℓj(x) is assumed to be a linear Lagrange polynomial with n + 1 nodes on the interval
x ∈ [a, b]. Substitution of Eq. (5.3) into Eq. (5.1) gives

where R(x) ≠ 0 and is defined as a residual error or just a residual. The residual is
the difference between the value of the differential equation using the exact solution u(x)
and the value of the differential equation when we use the approximate solution .

Let wi(x), i = 0, ..., n be a set of weighting functions. At this point, we have not
specified what they might be, but we assume they exist. Next, multiply the residual R(x)
by each of the weighting functions wi(x), and integrate each of the resulting products
over the domain of interest. Now, for each weighting function wi(x), i = 0...n, set the
result to zero. Using mathematical notation we have

This weighted residual relationship is sometimes written using inner-product notation
as
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where ⟨ · ⟩ denotes the inner product.
Next substitute Eq. (5.5) into (5.6) to get

If we introduce the definition of  found in Eq. (5.2) into Eq. (5.8) we get

Since the variables uj are simply numbers, we can take them out of the integration and
obtain

Examination of Eq. (5.10) reveals that we have n + 1 equations, one for each value of i =
0, 1, 2..., n. Each equation has n + 1 unknowns, u(xj), j = 0, 1, ...n. So, at least in theory,
once we select the form of the functions wi(x), we should be able to solve for the n + 1
values of uj. Different Lagrange polynomials ℓj(x) and different weighting
functions wi(x) will give different numerical methods. Once we have calculated
the uj values we can use Eq. (5.4) to obtain  anywhere in the interval x ∈ [a, b]. We
will consider a number of different forms for the weighting functions and thereby derive
a corresponding number of numerical approaches. We will start with the ‘finite volume’
or ‘subdomain’ method.

5.1 Finite Volume or Subdomain Method
To obtain the finite volume method (also known as the subdomain method) we select as
our weighting functions



(5.12)

(5.13)

(5.14)

which are illustrated in Fig. 5.1. In terms of the local coordinate system, that is the one
tied to the element, we have

and

Figure 5.1: Representation of the finite volume weighting function.

Next we decide on the polynomial functions which we wish to use in approximating u(x).
We will call these approximating functions basis functions. As noted earlier, we will
initially use the linear Lagrange polynomials shown in Fig. 1.10 on page 18 as our basis
functions. In the following representation of our approximating function  we
replace u(xj) with simply uj to simplify notation. With this substitution we obtain
for the approximation defined in the local coordinates χ

The linear Lagrange polynomials are given by



(5.15)

(5.16)

and

The x and χ coordinates are defined by Eq. (1.89) on page 16 and in Fig. 1.10. The
combined weighting and basis functions are shown in Fig. 5.2. Keep in mind that we are
using two terms to describe the discretization of the x axis. On one hand, we have the
finite element, this is the distance between any two nodes in a system characterized by
linear basis functions. On the other hand we have the finite volume which is
characterized by the segment of the x axis under the finite volume. So, in Fig. 5.2 an
element ei would be characterized by the segment from node xi − 1 to node xi and the
finite volume associated with the node at xi would be the segment defined by 

Figure 5.2: Weighting function wi(x) and basis function ℓi(x) in global and local
coordinates.

5.1.1 Example
In this subsection we will consider an example of the application of the finite volume
approximation to the equation
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(5.20)

(5.21)

The analytic solution for this problem is

We first write the residual approximation

Next,s we write our linear Lagrange basis functions for two elements (3 nodes). Each
element will be of length ei = 0.5, i = 1, 2 as will the middle volume. The volumes at each
end of the domain are smaller because they are truncated by the existence of the
boundaries.

From the method of weighted residuals (Eq. (5.6)) we have (see Fig. 5.3):

Figure 5.3: Weighting function and basis function for finite volume method example.
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In the example discussed in this section the subscripts i − 1, = 0, i = 1 and i + 1 = 2.

Let us examine the weighting function w0(x); it has the value of 1 only over one-half of
element 1 and 0 elsewhere. Thus, since the integrand is defined only over the first half of
the first element, the integration needs to be performed only over the first half of the
first element, that is

For weighting function w1(x), we have non-zero values of this function over half of the
first element and half of the second as shown in Figs. 5.1 and 5.3. Thus integration is
required over this interval that spans parts of two elements, that is

Finally, for w2(x) we have integration over half of element 2 only, that is

We now perform the integrations, one element at a time. Note that each complete
weighting function generates one equation. This means that the equation for one
weighting function will contain integrals from more than one element. In the case of a
one-dimensional problem such as we are considering here, there will be two element
integrals for each weighting function. In two dimensions we will see that there are
several element integrations per weighting function.

Because the first weighting function w0(x) occupies only the first element, a complete
equation is therefore obtained by integration only over the first element. The
appropriate integration therefore is
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or

This is our first finite volume equation.

Although it is not really necessary for a one-dimensional problem such as we are
considering here, in order to get accustomed to using the local coordinate system χ, we
now consider the above integration using χ. The first step is to transform Eq. (5.22) into
a form that employs χ. Since χ is a function of x, we can write  in terms of χ to give 

where we recall that now the value of h is 1.0. The next challenge is obtaining  We

know from Eq. (1.89) on page 16 that is

so we can differentiate x to get, after rearranging,

Similarly,  Thus Eq. (5.26) becomes (using the definitions provided by Eqs.
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(5.15) and (5.16))

which is the same result as we obtained in Eq. (5.25). Notice the change in the limits of
integration due to the fact that we are now integrating over χ rather than x.

For the second weighting function w1(x), two elements are involved. For element 1 we
have for the global system

and for the local system (using the definitions of ℓ0(χ) and ℓ1(χ) given in Eqs. (1.91) and
(1.92) on page 17)



(5.31)

(5.32)

For element 2, we note that at the local level the integrals are the same as for the case
shown in Eq. (5.29), although the values of the coefficients are now u1 and u2.

We now combine the information regarding w1(x) from both element 1 and element 2.
We need both of these integrals to give us the complete integral for w1(x) and we need
the complete integral to form the equation for w1(x) Thus, combining the integral in Eq.
(5.29) and (5.31) we get

The two integrals in Eq. (5.32) constitute all the information associated with weighting
function w1(χ). Thus, we can set their sum to zero and get a complete equation, that is
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Now consider the last weighting function w2(x). We have only one integral because
w2(x) only appears in the last element. We therefore obtain

Since this is all the information we will obtain using w2, we can write

We now have three equations, Eqs. (5.25), (5.33) and (5.35) in three unknowns, u0, u1,
and u2, which can be written as



(5.36)

(5.37)
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(5.43)

Let us write this as a matrix equation

However, we have information on u0 from Eq. (5.17), namely that u(0) = u0 = 2. Thus we
can replace u0 with 2. Now, since we know u0 we can multiply the first column by 2 and
place the result on the right-hand side of the equation. The result is

Since we know the value of u0, we do not need the first line of the matrix and so we
remove it along with the first column, which is also no longer needed, to obtain

from which we get

With these values of ui(x) and u0(x) we can write from the Lagrange expansion

where the x-dependent Lagrange may span two elements. Thus we can obtain a value for
the approximation  anywhere in the domain of interest. From the analytic solution
we have

and



(5.44)

(5.45)

Location u(x) error

x = 0.5 1.61 1.60 0.01

x = 1.0 1.37 1.38 0.01

The numerical and analytical solutions are remarkably close given only a three volume
approximation was used.

While the above approach to setting up the matrix equation seems like an appropriate
way to proceed, this is not the way the problem is solved in practice. Rather, each
element is allotted its own 2 × 2 matrix which is called the element coefficient
matrix. The elements of the element coefficient matrix are the integrals identified with
that element. To see how this works first refer to Eq. (5.36). Note that there is notation
indicating from which element each coefficient is obtained. The information in the first
row of this equation comes from element 1, the second row from elements 1 and 2 and
the third row from element 2. In the following we collect the information from each
element.

The element-defined terms in the equations must be (and have been) summed to form
complete equations identified with a volume. For example to have all the information
associated with volume weighting function w1 we need to sum the information in the
second row of the matrix associated with element 1 and the first row of element 2 in the
following Eq. (5.44):

Let us sum all the coefficients in both matrices that are associated with each unknown
value of ui. We get

which is identical to the left hand side of Eq. (5.37). The 3 × 3 matrix in Eq. (5.45) is
called the global coefficient matrix. With this information, the equations can be
formulated and solved as seen in Eq. (5.37) through (5.40) above. In practice each
element coefficient matrix is generated and then the information is transferred from
each one to the global matrix.

Recall that we performed the integrations using the local χ coordinate system. To do
this, we needed to know the relationship between the location of the nodes in the global
χ and local x coordinate systems. This relationship is determined through the use of a
table or map such as shown below. For each element the correspondence between the
locations of the node numbers in the global and local coordinates are provided.
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5.1.2 Finite Difference Interpretation of the Finite Volume Method
Consider an interval x ∈ [xa = 0, xb = 2h]. (see Fig. 5.4). Then the integrals appearing in
the preceding example (Section 5.1.1) for the case of w1 are

Combining the integrals we get

Now divide by h, multiply above and below by 2 in the second term, and rearrange the
result to get

Therefore, the finite volume method can be interpreted as being composed of a second-
order correct finite difference representation of the spacial derivative and a numerical
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estimate of the function integral ∫2h
0udx.

Figure 5.4: Diagrammatic sketch for representing finite volume formula as a finite
difference formula.

5.2 Galerkin Method for First Order Equations
In the Galerkin finite element method we simply change the weighting function wi(x) to
be the same as the interpolation or basis function. In other words we let the weighting
function be a Lagrange polynomial. To illustrate the concept consider the equation

and the boundary condition

From the method of weighted residuals we have

where
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Let the weighting function be defined as

and let us approximate u(x) as

Then we can substitute Eq. (5.58) into Eq. (5.55) to obtain

Let us assume that we will use linear Lagrange polynomial basis functions and three
elements. Then n = 3 (four nodes) and we can write Eq. (5.59) in matrix form as
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Consider next the span of the weighting functions. The span is the number of elements
over which a Lagrange polynomial is defined. When linear Lagrange polynomials are
used as weighting functions the Lagrange is usually defined over two elements, one on
each side of the node. This is not true for the first or last nodes (at x0 and xn) which span
only one element. The resulting equation is found below as Eq. (5.61)). Notice that in the
second row, for example, there is a zero in the fourth column. This is because the
weighting function ℓ1(x) does not reach the fourth node, that is the one at x3.. In fact, the
maximum number of non-zero coefficients we will see in a row in a problem of this kind
is three and they form a band around the diagonal.

Figure 5.5: Global and local basis functions (Lagrange polynomials) for four-node
problem.

Now we can focus on the integrals that remain. For weighting functions that span at
most two elements we break the integrations into two one-element integrations.
Examination of Fig. 5.5 will facilitate understanding the step that takes us from Eq.
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(5.61) to Eq. (5.62) below. For completeness we also express this matrix equation using
Lagrange polynomials defined in terms of χ. We obtain

Since integration is only over elements, e.g. spacial increments of [x1,x2] or [χ0, χ1], the
Lagrange polynomials are all of the same form for this problem

We now generate the element coefficient matrix for element 1 that contributes to the
matrix on the left hand side of 5.62

or using local coordinates

For element 2, we get
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or

As noted the element matrices are the same for elements 1, 2, and 3. This would not be
the case if the nodes were not equally spaced since the value of h would change from
element to element and this would change the value of the integrals.

As an example of the integration protocol, consider the evaluation of the following two
terms that appear in element matrix 1. For the first we have

or in local coordinates
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and for the second we obtain

Expressing the above in local coordinates we can write
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Performing similar integrations for the other elements of the element matrix we obtain

and assuming f(x) = α, we get for the term on the right-hand side of Eq. (5.62) (because
we assumed α to be constant over an element)

If we now replace the integrals in Eq. (5.62) we obtain
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or

The manner in which the element matrices are organized to produce the global
coefficient matrix in Eq. (5.74) is illustrated in Fig. 5.6. Each element matrix is indicated
by the dashed perimeter.

Figure 5.6: Arrangement of element coefficient matrices to form a global matrix. Each
box with a dashed perimeter is an element coefficient matrix.

Another way to look at this information is shown in Fig. 5.7. In this rendition one can see
the interconnectedness of the information from element to element.
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Figure 5.7: Selection of matrix elements to illustrate overlap of element information.

To permit a comparison with the analytic solution let u0 = 1, α = 2 and h = 3; then we
have

or

If we now enter these coefficient values into the approximating series for  the result
is

The analytic solution is

If you select an x value at a node such that only one term in Eq. (5.78) is non-zero it is
easy to see that the solution is exact. This is to be expected since the solution is a linear
function of x. so it can be exactly represented by a sum of linear Lagrange polynomials.

5.2.1 Finite-Difference Interpretation of the Galerkin Approximation
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If one expands the matrix product appearing on the left-hand-side of Eq. (5.74) it is seen
that the result is a series of finite difference approximations to the first derivative. In
viewing the following, keep in mind that each equation is identified with the node that
corresponds to the equation. For example, the first equation is identified with an
approximation centered at node zero, the second at node 1 etc.

From the above we observe that, but for the first and last nodes in the sequence, the
finite element approximation in this particular case is equivalent to a second-order
correct finite difference scheme.

5.3 Galerkin Method for Second-Order Equations
Consider the second-order equation

As earlier, let the approximation for u(x) be defined as

Let us define the residual associated with Eq. (5.84) as

As in the case of first-order equations, from the theory underlying the Galerkin finite
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element method we use the basis function as the weighting function to define the
residual. We obtain

Substitute Eq. (5.88) into (5.89) to obtain

Consider the second-order derivative term in this expression. There is a problem here
because, if one looks at the behavior of the second derivative of a linear Lagrange
polynomial, one observes that at a node the derivative is discontinuous. While such a
discontinuity can be accommodated, it is not convenient to do so.

To avoid this problem we proceed as follows. Using integration by parts for the
interval x0 to xn we have

but

Now let’s consider the right-hand-side term in Eq. (5.92). First we expand it to give

and

Notice that while there are n + 1 possible terms in Eq. (5.94), only two survive Eq. (5.95).
This is because the values of ℓi(x) for i ≠ 0 or n vanish at x = x0 and x = xn, the endpoints
of the interval. Combination of Eq. (5.92) and Eq. (5.91) gives us
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Let us now use Eq. (5.96) to rewrite Eq. (5.90) as

Expanding the approximation  and combining the last two terms we obtain

Now consider element-wise integration of the terms in Eq. (5.98) assuming g1 and g2 to
be given constants. For the first element we obtain

or, using local coordinates
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If we consider one term in Eq. (5.100) at a time we can evaluate the integrals defined in
the local χ coordinate system. In the case of the weighting function ℓ0(χ) we obtain for
the second-order terms,

and

For the first-order terms and using the weighting function ℓ0(χ) we get

and
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Finally for the zero order terms we obtain

and, finally

At this point we have evaluations for each term in Eq. (5.100). To see how this fits into
the scheme of things, we now generate an element coefficient matrix. Since each element
has two nodes and each node is identified with both an equation and the approximation
of the unknown value of , each element coefficient matrix will be 2 × 2. In looking
at the element coefficient matrices remember that the rows are associated with the
weighting functions and the columns are associated with the unknown ui values. Thus
the first rows of the following matrices are associated with the weighting function ℓ0(χ)
and the first columns are associated with the term in the expansion of  associated
with u0:
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It is now possible to provide numbers for the coefficients in Eq. (5.107) using Eqs.
(5.101) through (5.106). The result is

As long as the elements remain the same length and the functions g1 and g2 remain
constant, the above element matrices are all that is needed since each element matrix
will be the same. One simply uses the same element matrix for each element along the
interval x = x0 to x = xn.

Now consider the last term in Eq. (5.98) for the special case of the equation written for
the weighting function ℓ0(x). Only information in element 1, the first element, has a
contribution to this equation, viz.

But since ℓ0 is unity at x0

Since the term  is associated with the flux evaluated at the boundary, it is a flux-

type boundary condition. Thus, a second type ( also know as a Neumann or flux
boundary condition), is imbedded in the equation approximation directly.

Let us now return to our original problem. For interior nodes (not including the
boundary nodes of 0 and n) we have, using Eqs. (5.90) and (5.91)

and after substitution of the approximation in Eq. (5.87) into Eq. (5.111) we get
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(5.113)

(5.114)

(5.115)

(5.116)

For node zero we have information only from the first element

Similarly for node n we have

This provides us with n + 1 equations in n + 1 unknowns, which we can assemble into a
matrix equation of the form (after accommodation of boundary conditions)

where
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(5.118)

(5.119)

(5.120)

(5.121)

(5.122)

(5.123)

From Eq. (5.86) we have

where u0 and  are given. Substitution of this information into Eq. (5.116), then
multiplication of the known value u0 by column 1 and transfer of this information to the
right hand side of the equation, and finally elimination of the first row and column,
provides

As shown earlier, the necessary integrations can be performed in the local χ coordinate
system using linear Lagrange functions ℓj(χ)   j = 0, 1. The integrals for each term,
defined in the global coordinate system are presented below for each of three cases
depending upon the matrix indices. These are the same integrals we evaluated earlier in
Eqs. (5.107) and (5.108) using local coordinates, but now we have combined information
from the two elements associated with a common node to get the equivalent global
values. This is evident from the fact that the limits of integration in the following
equations are from − h to h and therefore represent a span of two elements.

For the second-order term we have:
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(5.128)
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(5.132)
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(5.134)

(5.135)

For the first-order term we have

For the zero order term we have
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(5.137)

(5.138)

(5.139)

As noted earlier, the coefficients of the known state-variable values (first column of the
matrix) are multiplied by the known state-variable values and the result is placed on the
right-hand side of the equation. The redundant first column and first row in the matrix
equation are then removed. Subsequent substitution of the integral values into the
resulting element coefficient matrices, and then into the global coefficient matrix, yields
the specific form of Eq. (5.121) appropriate for the general form of the problem being
considered, that is

To come up with some concrete numbers we assume the following: h = 1; g1 = 1; 

 n = 3. The resulting set of equations is

with the solution
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(5.141)

(5.142)

(5.143)

(5.144)

(5.145)

The analytic solution is

and a comparison of numerical and analytical values is presented in the following table

Location Analytical Numerical Difference

x = 1 0.200 0.234 0.036

x = 2 − 0.158 − 0.121 0.037

x = 3 − 0.241 − 0.213 0.028

This is not a bad (but not great) result considering the number of nodes appearing in the
approximating equation.

5.3.1 Finite Difference Interpretation of Second-Order Galerkin Method
In this subsection we will show how the finite difference and finite element
approximations for the second-order equation considered above are related. Let us
consider each term in the second row of Eq. (5.137). After each term is divided by h and
the final expression in Eq. (5.144) is multiplied above and below by 2 we obtain

Combination of these terms yields

From this equation we see that each full equation (not the ones associated with the end
nodes) consists of a second-order correct finite-difference approximation to both the
first and second-order terms in the original differential equation. For the zero-order
term the value of  is obtained using Simpson’s rule divided by the the length
of the interval over which the integration is being performed, that is 2h.

5.4 Finite Volume Method for Second-Order Equations
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(5.147)
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(5.149)

(5.150)

We have seen how to formulate the finite volume approximations in one dimension for
first-order equations. We now extend that work to consider equations with second
derivatives. Consider once again the equation

From the method of weighted residuals we have

where the weighting function wi(x) is, as earlier, defined as (see Fig. 5.8)
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(5.156)

(5.157)

Figure 5.8: Basis functions ℓj(x) and weighting functions wi(x) for finite volume
method.

The residual is defined as earlier as

Substitution of Eq. (5.151) into Eq. (5.149) gives

Let us now apply integration by parts to the second-order term to obtain

Consider the second-order term integrated over the first element, that is

The term of special interest is

The derivative of a step function such as wi is defined at the point x = a (as shown in Fig.
5.8) as

and
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(5.159)

(5.160)

(5.161)

(5.162)

(5.163)

(5.164)

(5.165)

where δi(x − xi) is the Dirac delta function. The definition of the Dirac delta function
is such that

Thus

If we now introduce our approximation for u(x)

into the right-hand side of Eq. (5.160), the term  can be written

Let us now consider the terms which, in our Galerkin development, gave rise to the
imbedded second type boundary conditions. These are, for one element of length h

which upon expansion gives

Note that the terms  and  vanish because w0(x)|h is 0 and w1(x)|0

is 0.

We now formulate the coefficient matrices for Eq. (5.153). We assume that the values for
each element coefficient matrix are
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(5.168)

(5.169)

Element 1

which can be transformed using Eqs. (5.154) through (5.160) to give

Element 1

or in local coordinates

Element 1

For element 2 we have

Element 2



(5.170)

(5.171)

or again using Eqs. (5.154) through (5.160)

Element 2

In local coordinates we have

Element 2

One observes that, as in earlier examples, given h is the same in the two elements, the
element matrices in local (and also in global) coordinates are identical.

Now we combine the two matrices given by Eqs. (5.167) and (5.170) to create the global
matrix. We could also have used the element matrices in local coordinates, that is Eqs.
(5.168) and (5.171)



(5.172)

(5.173)

(5.174)

5.4.1 Example of Finite-Volume Solution of a Second-Order Equation
Consider the following equation:



(5.175)

(5.176)

(5.177)

Using three nodes and the finite volume method we will determine the solution at x =
0.5

The weighting function is, as earlier, defined as (see Fig. 5.9)

Figure 5.9: As presented earlier, basis functions ℓj(x) and weighting functions wi(x) for
the finite volume method.
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(5.181)

(5.182)

(5.183)

(5.184)

The residual is defined as earlier as

Substitution of Eq. (5.178) into (5.176) gives

Let us now use integration by parts to obtain

Consider the second-order term integrated over the first element, that is

The term of interest is

It is defined as

and

Substitution of Eqs. (5.183) and (5.184) into Eq. (5.181) results in



(5.185)

(5.186)

(5.187)

(5.188)

(5.189)

Consider now how to represent the terms

which expanded out, give

and

If the term represented in the first line of Eq. (5.188) appears on the left hand side of the
domain of interest, it represents a second or Neumann type boundary condition. If a
term like that found in Eq. (5.189) is located on the right-hand side of the domain, it also
represents a second or Neumann type boundary condition.

Finally, consider now the terms



(5.190)

(5.191)

(5.192)

We now formulate the coefficient matrices for Eq. (5.180) that is.

Element 1

which in local coordinates becomes

Element 1

Consider also element 2

Element 2



(5.193)

(5.194)

(5.195)

(5.196)

which using local coordinates yields

Element 2

Since the element matrices are identical in local coordinates (because the space
increment is constant) we will consider only the element 1 matrix hereinafter.

We first introduce the local Lagrange polynomials and the derivative transforms
evaluated for this problem into Eqs. (5.192) and (5.194) to obtain

Element 1

Element 1



(5.197)

(5.198)

(5.199)

(5.200)

(5.201)

(5.202)

Element 1

Now we combine the two element matrices to create the global matrix

or, adding up the components of each term we get

Now we impose the boundary conditions and reduce the matrix to get

Taking the inverse and rearranging the equation we arrive at the solution for u1 and u2,
that is
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(5.204)

(5.205)

(5.206)

(5.207)

(5.208)

(5.209)

To obtain a solution at  you use the approximation for the first element, that is

or

The analytical solution is

This gives

A comparison between the analytic and numerical results is given in the following table.

x Analytic Numerical Difference

0.5 − 0.129 0.265 0.384

1 − 0.802 − 0.474 0.328

2 − 1.22 − 0.853 0.36

and in Fig. 5.10



Figure 5.10: Graph of the analytical solution to Eqs. given in Eqs. (5.206)–(5.147). The
black dots are the computed values using three nodes (two element) and the finite
volume method.

This is not a particularly impressive result and this is due to the form of the function u(x)
and the way the third term in the differential equations is approximated numerically . To
provide confidence that the algorithm provides a solution that does, indeed, converge to
the correct solution as h approaches zero, we plot in Fig. 5.11 the relationship between
the error between the analytical and numerical solutions and h as h decreases. It is
evident from this graph that the method is second-order accurate (the slope of the line is
2.0) and the error is decreasing as the square of h as expected. See Section 4.3 on page
69 for a discussion of convergence.



(5.210)

Figure 5.11: Plot of the error between the analytical and numerical solutions as the
space increment h is reduced. The slope of the line is 2.0 demonstrating that the method
of solution (finite volume) is second-order accurate.

5.4.2 Finite Difference Representation of the Finite-Volume Method for
Second-Order Equations
Consider the equation written for the weighting function w1. It is formed by the middle
row in Eq. (5.172), that is



(5.211)

(5.212)

(5.213)

(5.214)

(5.215)

Upon integration we obtain

Rearranging this expression we get 

 0. If we

divide this equation by h we have

We see from Eq. (5.212) that the finite volume method applied to this one dimensional
equation is equivalent to a second-order difference approximation for the second and
first derivatives and an integrated average over the two element interval for u(x). One
feature of the integration formula is that with the  weighting there is more

emphasis put on the diagonal element of the matrix that with the   weighting of
Simpson’s rule encountered in the Galerkin finite element method.

5.5 Collocation Method
5.5.1 Collocation Method for First-Order Equations
In this section we introduce the collocation method. As will be seen, this is a very
attractive method inasmuch as it is not necessary to perform any integrations. The
downside of the method is that it requires the use of Hermite polynomials, rather than
Lagrange polynomials as basis functions for second-order derivatives. In the case of
first-order equations as considered in this subsection, we will not require Hermites. So,
starting with first-order equations, let’s get started. Consider the equation

As usual, let u(x) be represented as

and

Further, let the residual R(x) be defined as



(5.216)

(5.217)

(5.218)

(5.219)

(5.220)

From the method of weighted residuals

The bounds on the integral stem from the definition of the domain as presented in Eq.
(5.213).

Let us choose the weighting function wi(x) to be

where  is the Dirac delta function. This choice defines the collocation
method .

From the definition of the Dirac delta function, ()we can write the following

Then our equations for the collocation method are obtained from

where  are called collocation points. Optimal accuracy is achieved by letting
the collocation points be the Gauss points. These are the same points introduced
in our discussion of Gaussian –Legendre quadrature integration in Section 3.1.6 on page
59. The required point values of these points are tabulated in reference books.

Next substitute for R(x) using Eq. (5.216) to give



(5.221)

(5.222)

(5.223)

(5.224)

(5.225)

(5.226)

(5.227)

Now substitute the definition of  using Eq. (5.215) to give

We can now write Eq. (5.222) using matrix notation as

where

and

After substitution of the values of ℓj(x), Eq. (5.223)

Now evaluate    i = 0, 1 at the Gauss points and set the result to zero for each point.
We obtain



(5.228)

(5.229)

or

Next substitute for  using Eq. (5.226) to get

Figure 5.12: Element array for collocation method explanation.

Now, using the Gauss Legendre integration points selected from Table 3.29. Because our
basis functions are piecewise linear we require one Gaussian point per element and
these points are located at  and  (keep in mind that the table
assumes a [ − 1, 1] coordinate system for each element). From Eq. (5.229) we obtain the
following matrix equation:



(5.230)

(5.231)

(5.232)

(5.233)

(5.234)

(5.235)

Notice that this is a rectangular matrix, a phenomenon identified with collocation. No
integrations appear in Eq. (5.230), so the coefficients are easily evaluated by inspection
of the function values via Fig. 5.12. We obtain through substitution of the collocation
point locations

or

The rectangular form of the coefficient matrix would normally be problematic, but we
have a solution to the problem. We now impose the boundary condition which states
that u0 = 1. After multiplying the first column by this value and transferring the
information to the right-hand side we have

which is a solvable system of equations. From this equation we get

while the analytical solution is



(5.236)

(5.237)

(5.238)

(5.239)

(5.240)

which is quite accurate considering we are using only three nodes.

5.5.2 Collocation Method for Second-Order Equations
In this subsection we will extend our discussion of the collocation method to consider
second derivatives. It is at this point that we will need to introduce the Hermite
polynomials as basis functions. The Hermite polynomial was introduced earlier in
Subsection 1.9 on page 20.

Consider now the second-order equation

Following the strategy we used in the preceding subsection, we define our weighted
residual operator as

where the residual is defined as

from which we get

We see immediately that if we use linear functions to represent u(x) we will have
difficulty because the second derivative is zero at the collocation points. Your first
inclination probably is to use quadratic Lagrange polynomials, since their second
derivatives will be defined everywhere except at the end-of-the-element nodes. However,
one cannot ignore these end points since the collocation method does not have
restrictions on where the collocation points should be. As noted earlier, the simplest
answer is to use Hermite polynomials which we introduced in Section 1.9 on page 20,
that is use

(see Fig. 5.13) which provides us with 2(n + 1) unknowns. The Hermite basis functions
are defined as
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(5.242)
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and

where, for convenience, the Lagrange polynomial approximations are used in the
definition.

Figure 5.13: Cubic Hermite polynomials.

To make the notation tolerable, let us define the following operator:

where you can replace the dot with any suitable function, for example u(x). Using this
operator, and assuming two collocation points per element, our collocation equations
become

or



(5.245)

(5.246)

(5.247)

which gives us 2n equations, which as we will see, is the number we need after
implementation of boundary conditions.

If we now write Eq. (5.245) for the specific system of functions and collocation points
shown in Figs 5.14 and 5.15 as a matrix equation. we obtain

where

Note that the Hermite polynomials are defined element-wise and that the collocation
points  and  are in element 1 and  and  are in element 2.
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(5.249)

Figure 5.14: Hermite function h0
i (x).

Figure 5.15: Hermite function h1
i (x).

Assume that the boundary conditions on this problem are



(5.250)

(5.251)

(5.252)

(5.253)

(5.254)

(5.255)

Then Eq. (5.246) becomes, after reducing the set of equations to accommodate these
boundary conditions

or

from which we get formally

Substitution of {u} into Eq. (5.240) gives the required approximate solution across the
entire domain:

Let us now apply the collocation method to the equation we used earlier, namely

To solve this problem we will introduce the coordinate system − 1 ⩽ ξ ⩽ 1 which is
the same coordinate system we used in our discussion of Gauss-Legendre quadrature
integration (Section 3.1.6 on page 59, but there we used the x notation. In this
coordinate system, the collocation equations become, for a problem involving only three
nodes (two elements)
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(5.259)

(5.260)

(5.261)

(5.262)

(5.263)

where

Note that the Hermite polynomials have a very simple form in this ξ coordinate system,
that is

To approximate Eq. (5.253) we will need the first and second derivatives of Eq. (5.257)
through Eq. (5.260), that is



(5.264)
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(5.266)

(5.267)

(5.268)

(5.269)

(5.270)

(5.271)

(5.272)

(5.273)

(5.274)

and

where the first derivatives are, from Eq. (5.257) through 5.260

and the second derivatives are
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(5.276)

(5.277)

(5.278)

(5.279)

For terms such as  we have, using the definitions presented above,



(5.280)

(5.281)

(5.282)

The matrix equation that one obtains after evaluating Eqs. (5.277) through (5.280) at the
two Gauss Legendre points, that is at ξ = ±0.577 (see table on pg. 8.1) and at the end
points x = 0 (where ξ = −1 in the first element) and x = 2 (where ξ = 1 in the second
element) is

The solution to this problem is

and it is compared with the analytical solution in the following table:

Function Location Analytical Numerical Difference

x = 0 − 2.80 − 2.80 − .000

u1 x = 1 − 0.801 − 0.804 − 003

x = 1 − 0.965 − 0.976 − 0.011

u2 x = 2 − 1.22 − 1.22 0

This is again a remarkable result considering that only two elements were employed.
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5.6 Chapter Summary
In this chapter we introduced the key elements underlying the theory that we will use for
all of the numerical methods presented in this book, except finite differences. The key
concepts are the weighted residual formalism and the use of polynomial approximation
theory to represent the unknown and sought-after solutions to differential equations and
their associated boundary conditions. By selecting different definitions of the weighting
functions in the weighted residual formulations, the Galerkin finite element method, the
finite volume method and the collocation method are defined. The programming
strategy that is generally used to implement these methods is based upon the concept of
first evaluating the integrals that are required by the formulation at the element level
using a local 0 ⩽ χ ⩽ 1 coordinate system. Thus there is generated an element coefficient
matrix for each element. The information from each element is then collected to form
the global coefficient matrix that is actually used to solve the problem. To tie the various
methods together, the Galerkin finite element and finite volume methods are interpreted
in terms of finite difference formulae. Examples for each numerical approach are
presented and their results compared to those generated analytically.

5.7 Problems
1. Consider

Calculate the value at u(1) using the finite volume method and one element.

2. Consider the equation

Use the finite element method with three nodes to solve for x = 0.5.

3. Assume we have an integral of the form
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Transform this integral into local 0 ⩽ χ ⩽ 1 coordinates and evaluate the integral.

Figure 5.16: Sketch of finite volume configuration for solving problem 1.

4. Consider the equation

Solve this equation using both the finite difference method and the finite volume or
subdomain method and compare the results for the analytical solution

You will use 17 nodes. In the case of the finite difference method represent the u(x)
term as ui. and a backward difference approximation. Alternatively, you could
imagine you are standing in the middle between two nodes and define  =

 as the approximation You can also use a second-order finite difference

approximation for the first derivative.

To do the finite volume model:

1. 

a. create the element coefficient matrix; it will be 2 × 2 and the same for every
element.
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b. create the global matrix by using a strategy that relates the global node numbers
to the local node numbers

c. impose the boundary conditions

d. solve the problem

Now, plot the solutions for the two finite-difference methods, subdomain method and
the analytic solution. Compare the relative errors of the three methods and discuss why
they are different.

5. Consider the equation

Develop the Galerkin finite element representation of this equation at the node i in
Fig. 5.17. Do the following:

a. write the weighted residual approximation using the linear Lagrange polynomial
as the weighting function

b. substitute the above equation replacing u(x) by  into the weighted residual
formulation

c. apply integration by parts to the second-order term yielding an integral of the
product of two first-order terms and two boundary terms (ignore the boundary
terms)

d. introduce the definitions for  that is introduce the Lagrange polynomial
expansion.

e. write the element matrix equations with the coefficients in the matrix presented
in symbolic form, that is show them as integrals with appropriate integration
limits.

f. assemble the global matrix equation using the information generated in the
preceding step.

Note: Do not do anything in local coordinates and do not do the integrations

Figure 5.17: Nodal arrangement used to solve problem 5.7.

6. In Section 5.3 on page 102 we developed the solution to the problem
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with analytic solution

The problem is to determine how your numerical solution to this problem changes as
you change the value of h. Please do the following:

a. Create a Matlab code that solves the above problem using the Galerkin finite-
element formulation shown in Section 5.3;

b. Solve the same problem using h = h/2, h/3, h/4, h/5; you should have a common
node at x = 1.0 and 2.0;

c. Determine the error at x = 1 and x = 2 for each spacing;

d. Plot the log of the error at x = 1.0 and 2.0 versus the log of the spacing and
calculate the slope. The slope of this line relates to the order n of the error of the
approximation, that is O(hn);

e. What is the order of the error, that is, what is n.

f. Explain why a cubic Lagrange polynomial cannot be used for the collocation
solution to a second-order equation and a cubic Hermite can.

g. What are the advantages and disadvantages of using two finite elements with
three linear basis functions versus one element using three quadratic basis
functions.

h. The finite volume method is said to exactly preserve local mass conservation
when solving the time independent convective-diffusion equation, that is

The reason for this lies in the fact that the finite volume boundaries have the
same value of the derivative approximation  on each side. Show why this is the

case.
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Chapter 6 
Initial Boundary-Value Problems

6.1 Introduction
In this chapter we are interested in solving problems that have both a spatial and
temporal component. As a point of departure, let us consider the equation

A typical initial condition for this equation would be to specify the state of the system at
some time designated as zero such as

and a typical boundary condition that could be a function of time as

6.2 Two Dimensional Polynomial Approximations
To achieve this goal we need to extend our early Lagrange polynomial approximation
strategy to consider two dimensions, namely space and time. To this end we define the
following quantities:

Note that this means that to define the Lagrange polynomial  there are n + 1
nodes in the x direction between a and b. Similarly, to define the Lagrange polynomial in
time  there are m + 1 nodes in the time dimension between c and d. The
appropriate approximation for f(x, t) is obtained by taking the product of these two
functions, that is
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(6.13)

where Enm is the error term. Let

A pictorial representation of   is found in Fig. 6.1 for the case of n = i and m
= j.

Figure 6.1: A conceptual representation of the function ℓn
i(x)ℓj

m(t). The dots represent
nodes and the maximum function value is unity.

 

Recall the definition

where Πi is the product operator. Using this notation we can write the form of the error
Enm in Eq. (6.10) as (see [1])
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(6.15)

(6.16)

(6.17)

6.2.1 Example of a Two Dimensional Polynomial Approximation
Now we consider an example that illustrates the approximation of a function in two
space dimensions using Eq. (6.11). We will consider the representation of exp (x, t) over
[−1, 1] × [−1, 1] with m = n = 2 and Δx = Δt = 1 (see Fig. 6.2). From Eq. (6.11) we have for
the representation of exp (x, t)

where

The functions  have an analogous form in the time domain.

Figure 6.2: Nodal array template for determination of . A value of exp (x, t)
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(6.20)

(6.21)

(6.22)

is required at each nodal location and these values are used in Eq. (6.19).

If we neglect the error term and substitute the definitions of the Lagrange polynomials
into Eq. (6.14) we obtain

where the exp (x, t) values in the expansion are those found at the nodes. Thus Eq. (6.19)
allows the determination of the value of exp (x, t) anywhere in the area
x ∈ [−1, 1], y ∈ [−1, 1] based upon the point values at the nodes as indicated in Fig. 6.2.

6.3 Finite Difference Approximation
Following the logic we used earlier for one dimensional problems, we now formulate the
approximation of a derivative of f(x, t) defined in two dimensions, for example, 

. Consider the segment of the grid shown in grey in Fig. 6.3. This area can be

expressed as

The approximation of  over this rectangular area can be obtained directly by

differentiation of Eq. (6.10). We obtain

which, when customized for our problem, becomes



(6.23)

(6.24)

(6.25)

Substitution of the definitions of the Lagrange polynomials yields

Upon substitution of nodal coordinates we get (note that p1 = (x − x0)(x − x1))



(6.26)

(6.27)

After defining Δx ≡ xi + 1 − xi and Δt = tj + 1 − tj we can write

Similarly one can show that

Figure 6.3: Computational molecule for Eqs. (6.26) and (6.27) shown in grey.
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(6.29)

(6.30)

(6.31)

(6.32)

Figure 6.4: Computational molecule for node location i, j associated with Fig. 6.3.

A computational molecule (or template) of the approximation shown in Eqs. (6.26) and
(6.27) is found in Fig. 6.3. The gray area is the area represented by this molecule.

6.3.1 Example of Implicit First-Order Accurate Finite Difference
Calculation
Consider the type equation presented above, namely

and impose the following initial and boundary conditions

Now evaluate Eq. (6.24) at location i + 1, j + 1, that is evaluate  Also

obtain  Let i = 0, 1, 2 and j = 0, 1, 2. Also assume Δx = Δt = 1. For

convenience, define . The finite-difference expression for Eq. (6.28)
using the node xi + 1,tj + 1 as the point of reference is

The computational molecule for this expression is found in Fig. 6.5. Rearranging Eq.
(6.31) we obtain



(6.33)

(6.34)

Figure 6.5: Computational molecule for implicit backward in time and backward in
space first derivative approximations.

Time Step One
Consider the nodal arrangement in Fig. 6.6. Along the x axis the values are known for
the 0 level time step, t = jΔt = 0 from the initial conditions. Thus there is a value of 0
associated with each of these nodes. For the left-hand boundary, x = 0, the values are
known for all time by the boundary condition; therefore the value at x = 0 for all time is
1. So, the first value we actually need to calculate is at node 1, 1. The equation is

Now that we know the value  we can proceed to node 2, 1. The equation at node
2, 1 is

This completes the calculations for time step one.



(6.35)

Figure 6.6: Values assigned at beginning of calculation sequence for example problem.

Time Step Two
We are now on the third row of the computational molecule at location t = 2. The first
unknown value moving left to right along the line at t = 2 is

and once the value at u1, 2 is known we can proceed to u2, 2 where the equation is



(6.36)

(6.37)

(6.38)

(6.39)

We have now completed two time steps. The solution for each time step is shown
graphically in Fig. 6.7

Figure 6.7: Solution to finite difference approximation after two time steps have been
executed.

6.3.2 Example of Second Order Accurate Finite Difference
Approximation in Space
We will now consider the possibility of representing the space derivative in the example
problem using a different spatial approximation. Consider once again the type equation
presented above, namely

and impose the following initial and boundary conditions

We now need to select a suitable finite difference approximation to this equation. Let us
use the following centered in space and backward in time approximations



(6.40)

(6.41)

(6.42)

(6.43)

or, upon rearranging so the unknown information is on the left hand side of the equation
and the known information is on the right,

The template we wish to use for this equation is shown in Fig. 6.8 where the unknown
values are located at filled in circles and the known information is at the open circles.

Figure 6.8: Computational molecule for an implict first order accurate finite difference
calculation in time and a second-order accurated approximation in space.

Step One
Write Eq. (6.41) for the special case of Δt = 1 and Δx = 1 as shown in Fig. 6.6 which is

Now we use the fact that the initial condition is given as u(x, 0) = 0 which implies that
u1, 0 = 0. Because the boundary condition is u(0, t) = 1 we have u0, 1 = 1. Introducing
these conditions into Eq. (6.42) we obtain

We cannot write an equation for node 2, 1 using Eq. (6.41) because there is no node to
the right of node 2, 1 which would be the i + 1 node in Eq. (6.41). Thus Eq. (6.43) has two
unknowns. How can we solve this equation? One strategy is to use a backward in space
approximation for node 2, 1. A suitable expression is



(6.44)

(6.45)

(6.46)

(6.47)

which for our specific case becomes

This would provide two equations in two unknowns which can be solved. This is an
implicit approximation. An implicit approximation requires that one solve an
equation involving both the current state of the system and the later one. This requires
the solution of a system of equations, and in this case the set of equations can be written
in matrix form as

where the term identified as A represents the space derivative and the term identified as
B the time derivative. Note that some unknown variables have been replaced by known
values represented by initial and boundary conditions.

Since u(0, t) is known to be 1, the first column can be multiplied by this value and the
first row and column now contain no useful information and can be eliminated to give

The term C now contains the information about the boundary condition.
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(6.49)

(6.50)

(6.51)

(6.52)

(6.53)

(6.54)

Now collect all the information regarding the unknown vector  to the left-hand

side of the equation to yield

We now substitute the specific values for Δx = 1 and Δt = 1 to give

which reduces to

or

which yields

Now let us calculate the next time step. This is done by substituting the newly calculated
solution into Eq. (6.50) to get

which simplifies to

We can solve this equation by taking the inverse of the coefficient matrix and we obtain
for the unknown values u1,1 and u2,1
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(6.59)

(6.60)

(6.61)

(6.62)

This ends the calculation for the first time step and the process is repeated until the
target time period is completed.

In the above example we have introduced two ideas we will use again later. The first is
the concept of introducing the specified value boundary condition (first or Dirichlet
type) by using a value of 1 on the diagonal of the first row. The second is reducing the
matrix rank by removing rows and columns through the process of the accommodation
of the boundary condition.

6.4 Stability of Finite Difference Approximations
Several approaches exist to determine the stability of a numerical scheme that involves
derivatives in space and time. The approach we will employ is called the Matrix
Method. Consider the equation

with boundary and initial conditions (note that this is second order in space, so we will
need two boundary conditions in x as well as an initial condition)

In this development we will employ, as an example, an explicit forward difference
approximation in time and a centered finite difference approximation in space.
Introduction of these approximations yields the finite difference equation

To simplify notation let

and rewrite the finite difference formula as

Now we write the matrix form of Eq. (6.62) for the j + 1 time step. After imposing the
boundary conditions (remember the boundary conditions are zero so no term appears
on the right hand side to identify them) we have



(6.63)

(6.64)

(6.65)

(6.66)

(6.67)

(6.68)

(6.69)

(6.70)

(6.71)

We can write Eq. (6.63) symbolically as

Assume an exact solution, free of round-off error is given by . Note that this

vector contains the values of ui, j + 1 at all nodes, except the Dirichlet boundary nodes, at

time (j + 1)Δt. Since  is a solution to our equation we can write

Now subtract Eq. (6.65) from Eq. (6.64) to obtain a measure of the error or difference
between the exact and computed values, that is

Next define this error as

We can now rewrite Eq. (6.66) as

Assuming no further errors are committed, other than the round-off errors that exist at
u0 we have

which illustrates how the error {ε}j changes as the solution advances through time.
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In the next step we analyze the behavior of this scheme through the use of eigenvalues.
Assume: (1) there exist N − 1 different eigenvalues of [A], that is λs,  s = 1, 2, ...,
N − 1 and (2) there exist a set of linearly independent eigenvectors, {v}s, s = 1, ..., N − 1.
Using these eigenvectors as a kind of basis, we can write

where cs, s = 1, ..., N − 1 are numbers. Note also that by definition

Now substitute Eq. (6.72) in Eq. (6.71) to obtain

We now proceed through a series of apparently unrelated steps in pursuit of a specific
result. We begin with the modification of Eq. (6.74), that is

Note that we can use Eq. (6.73) to modify the last expression, that is
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So we have

Examination of Eq. (6.77) indicates that the error {ε}j will grow if the eigenvalue λs is
greater than 1.

The matrix [A] is known to have the eigenvalues

where N′ is the maximum number of nodes. Thus to assure stability

or
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which translates into

Because  is always positive, the upper bound is always satisfied. For the

lower bound we have

The worst case scenario is when

Then the constraint on stability is, according to Eq. (6.86)

Recalling the definition of r (see Eq. (6.61)) we obtain

Equation (6.89) states that to assure stability, the time step must be related to the space
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increment such that 

6.4.1 Example of Stability

Case of r = 1
Consider the approximation for

provided in Eq. (6.62) for the case of four nodes in space, namely

with boundary and initial conditions

The problem is defined in Fig. 6.9

Figure 6.9: Nodal array for the finite difference solution to Eqs. (6.90)–(6.94).
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The template or computational molecule for the finite difference approximation to Eq.
(6.90) given by Eq. (6.91) is shown in Fig. 6.10. As the calculations proceed, only the
shaded node is unknown, that is the clear nodes are known from the preceding time
level.

Figure 6.10: Computational molecule for the Euler (forward difference) approximation
to Eq. (6.90) given by Eq. (6.91).

Step One (j = 0)
Substitution of j = 0 into Eq. (6.91) yields

where the values under the variable names indicate the current value of those variables.

Step Two (j = 1)

Step Three (j = 2)
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The solution for the first three time steps (j = 0, 1, 2) is shown in Fig. 6.11. It is clearly
unstable.

Figure 6.11: Explicit unstable solution for time steps j = 0, 1, 2.

Case of r = 1/4
Now we reduce the value of r to r = 1/4. The calculations follow:

Step One (j = 0)

Step Two (j = 1)
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(6.104)
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(6.106)

Step Three (j = 2)

The solution for the first three steps is provided in Fig. 6.12

Figure 6.12: Solution for first three time steps for cane of 

It is clear from Fig. 6.12 that the solution is stable.

While these two examples do not prove that the constraints on r are necessary, they do
suggest that to be the case.

6.4.2 Example Simulation
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Let us assume we have the following equation and boundary conditions

with

A centered in space, backwards in time finite difference expression for this equation is

We assume that there are four nodes equally separated by distance Δx . The second
through fourth row of the matrix equation for this problem are obtained using Eq.
(6.109) for nodes 1, and 2. The first row is used to accommodate the first type (Dirichlet)
boundary condition and the last for the second type (Neumann) boundary condition
which is obtained by using a backward difference in space approximation for the
expression appearing in Eq. (6.108), that is

Collecting the coefficients multiplying the unknown vector at time (j + 1)Δt on the left
hand side of the equation we obtain



(6.111)

(6.112)

(6.113)

where the first and last rows provide for the boundary conditions. Now we begin
calculating. Since ci, j is zero for j = 0 we have

The initial conditions can now be employed to replace c1, 0 and c2, 0 with known values to
yield

Assume that we solve these equations for time step 1 and proceed to time step 2. The
resulting equation is the same as the above but for the updated ones in time
concentrations:
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(6.117)
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Repeating this process one more time we obtain for time step 3

and so on.

6.5 Galerkin Finite Element Approximations in Time
In this section we extend the ideas introduced in Section 6.3 to consider a time-
dependant Galerkin finite-element formulation. We will consider the same equation as
6.107, but assume D = 1, that is

with initial and boundary conditions

We begin with the definition of the approximating function for one element; this is
similar to Eq. (5.58) on page 95, but in this case  is a function of both space x and



(6.120)
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(6.125)

time t. We first represent u(x, t) as

and then define  as follows:

Note the structure of this expression. Where we have previously had constant
coefficients uj we now have functions of time uj(t). We could have used another strategy
in which we represent the time dimension using a Lagrange polynomial  and our
approximating expression would be

but the strategy presented in 6.121 is a more commonly used approach.

As earlier, we now apply Galerkin’s method of weighted residuals for one element, again
using the basis function as the weighting function. We obtain

Using integration by parts on the second-order derivative results in

We now substitute Eq. (6.121) into Eq. (6.124) to obtain, once again for one element,

Examination of Eq. (6.125) reveals that it is similar to earlier Galerkin finite element
expressions but for one important detail. Both the function uj(t) and the time derivative

of this function,  appear in this equation. In other words we have a set of n + 1

ordinary differential equations in time. If we assume a value for n, say n = 1 for linear
Lagrange functions, we can look at multiple elements by changing the notation to
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(6.127)

(6.128)

where N is the total number of nodes and ℓj(x) is the node-wise defined Lagrange
polynomial; that is each ℓj(x) ranges over multiple elements (in this case, two). Since Eq.
(6.126) now represents a system of elements with N + 1 equations in N + 1 unknowns, we
can write it in matrix form

where the coefficients of matrices [A] and [B] are defined as

where, as we saw earlier,
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(6.137)

Where there is one or two second type or Neumann boundary conditions we also have

defined as non-zero in either the first or last row of the vector of known values, fi,
depending upon whether the Neumann condition is specified at the first or last node,
respectively. Otherwise fi contains information on Dirichlet boundary conditions (such
as in the above example).

So the question arises as to how to efficiently treat the time derivative. We will consider
two possibilities.

6.5.1 Strategy One: Forward Difference Approximation

Let us approximate  by a forward difference approximation

Then substitute Eq. (6.133) into Eq. (6.127) to obtain from

the expression

Note that the spacial approximation involving [A]{u}k is evaluated at the time t = kΔt.
We now rearrange this equation to give

Because the coefficients
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create a tridiagonal [B] matrix, Eq. (6.136) constitutes a system of equations. The
solution of the problem is written formally as

An important observation is that although we are using a forward difference equation,
which in the case of finite difference approximations yielded one equation in one
unknown, here, as noted, we have a matrix equation. This is due to the fact that the
matrix [B] is no longer diagonal. In other words, the three elements in each row of the
matrix [B] tie adjacent nodes together. The consequence of this from a practical
perspective is that, although the method is explicit, with its stability limitations, it is
nevertheless necessary to take an inverse of matrix [B] to get a solution.

6.5.2 Strategy Two: Backward Difference Approximation
In this approach we employ a backward difference in time approximation

Then from Eq. (6.127) we have

which becomes

We can rearrange this equation to give

We can rewrite this expression as

where

One can formally obtain as a solution for {u}k + 1, that is

As noted earlier, the formulation that generates Eq. (6.138) is explicit. That is the space
derivative is at the old time level j and the solution is computed at the new time level j +
1. This formulation is conditionally stable, that is there is a restriction on the value of 

, although we do not prove it here. On the other hand, the formulation that



generates Eq. (6.145) is implicit. The space derivative approximation is at the new time
level. It is unconditionally stable.

If the [B] matrix were to be diagonal, that is there are non-zero values only along the
diagonal, then, as before, the explicit formulation would be very efficient, involving one
equation in one unknown for each row of the matrix equation. However, it is not, so a
complete matrix solution is required.

On the other hand, the implicit formulation shown in Eq. (6.145), which requires a
complete matrix equation solution, is unconditionally stable and therefore one can move
forward in time with larger time steps. In essence, the advantage of the explicit
approximation in the finite difference formulation (where we have one equation in one
unknown for each node), is normally not transferable to the finite element case.
There is a procedure called mass lumping which we discuss later in Section 10 on page
273 that allows for a more efficient solution to the explicit formulation equations.
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6.6 Chapter Summary
In this chapter we introduce the extension of spatial approximations to include time
dependence. Using polynomial approximation theory we create finite difference
formulae that address transient one space- dimensional partial-differential equations.
This is followed by a discussion of stability including illustrative examples of how an
instability can be exhibited. The Galerkin finite element method is then reformulated to
consider time dependent problems in which both forward and backward in time finite
difference methods are presented.

6.7 Problems
1. Consider the segment of the grid shown in gray in Figure 6.3. This area can be

expressed as

Obtain a finite difference approximation to  over this rectangular area.

Begin with Eq. (6.10)

and customize it for this use. Then use the definitions of the Lagrange polynomials to
obtain the finite-difference form.

2. Consider the type equation

and impose the following initial and boundary conditions

Now approximate Eq. (6.28) at location i, j + 1 using a backward difference in time.
Let i = 0, 1, 2, and j = 0, 1, 2, where x = iΔx and t = jΔt. Also assume Δx = Δt = 1, such
that  The finite difference expression for Eq. (6.28) using the node

xi,tj + 1 as the point of reference is
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(6.154)

The computational molecule for this expression is found in Figure 6.13. Calculate the
values of u at time levels Δt and 2Δt. Here you have an ambiguity at ui−1, j. Assume
the initial condition as the boundary condition at this node to resolve this. Should
this scheme be stable? How do you know?

Figure 6.13: Computational molecule for Eq. (6.153).

3. Consider the type equation

a. obtain a finite difference form of Eq. (6.154) at location i, j + 1/2, that is, evaluate 

b. obtain the finite difference form of 

Write the finite difference equation at the point (i, j + 1/2) (see Fig. 6.14).
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Figure 6.14: Computational molecule for problem 6.14.

4. Consider the equation

with boundary and initial conditions

If you employ an implicit backward difference approximation in time and a centered
finite difference approximation in space, you will obtain

To simplify notation let

The task is to show that the above formulation is unconditionally stable. To achieve
this note also that given a matrix [A], eigenvalues λs and eigenvectors {v}s the
following relationships hold:
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and that

5. If you were to approximate the equation

using a backward in time, backward in space approximation, you require one
boundary defined at x = 0 and one initial condition. What would happen if you were
to apply a second boundary condition at the terminal end of the interval? What
would happen if you used a central difference approximation for the space derivative
and a boundary condition at the terminal end of the interval. To make these
determinations, generate a nodal array with one element in the vertical (time)
dimension and three in the horizontal (space) dimension and the computational
molecule for both formulations and use this information in your explanation.

6. Approximate the equation

using three nodes and a centered finite difference approximation in space and a
backward finite difference equation in time for the central spatial node. Now do the
same problem using a linear finite element in space and backward difference in time
formulation for the central spatial node. What is the fundamental difference in the
algebraic equations and describe what you think this means in terms of how the time
derivative is handled.

7. Write the finite difference approximation at the location x = iΔx and t = Δt/2. for the
equation

Hint: you will need the space approximation at both the t = 0 and t = Δt levels.
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Chapter 7
Finite Difference Methods in Two Space
In this chapter we will consider the finite difference approximation to a steady-state
(time-independent) problem a two-space dimensional system. The “type” equation we
will initially consider is the Poisson’s equation

Since this equation is second order in both x and y, we need two boundary conditions for
each coordinate direction. Thus we have, for example,

where u0(x, y) and  are known functions and the notation ∂Ωx and ∂Ωy

denote the portion of the perimeter as indicated in Fig. 7.1.

Figure 7.1 Domain of interest regarding the boundary conditions specified in Eq. (7.2)



(7.5)

(7.6)

through 7.4.

For the case of rectangular elements and a finite difference approximation, the two-
space dimensional case is analogous to the two-dimensional space-time case see Eq.
(6.10). One simply replaces the time coordinate with a second space coordinate. The
approximating function over three nodes becomes

which is illustrated in Fig. 7.2 for the case when the superscripts n and m (the degrees of
the Lagrange polynomials in x and y, respectively) are both 1. Figure 7.3 presents the
quadratic basis function defined over one element. Notice that we have hijacked the
subscript i. Earlier it was identified in general with a node, but in the case of weighted
residuals, also the weighting function. Now it represents the x coordinate for the node i
only, that is x = iΔx but there is no reference to its use as an index for a weighting
function. We will only use i in this way in this section and redefine it in the following
section. Note that along both the x and y directions the function is linear, but in the
diagonal directions it is a quadratic because of the product ℓ1

i(x)ℓj
1(y). We can use these

functions to represent the first derivative, but for the second derivative we need to use at
least a quadratic-second degree Lagrange polynomial. If we differentiate Eq. (7.5) twice
when n = m = 2 and evaluate the result at point xi = iΔx and yj = jΔy we obtain

Figure 7.2 Diagrammatic representation of the function ℓ1
i(x)ℓj

1(y).
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(7.8)
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Figure 7.3 Quadratic polynomials in two dimensions. The circles are the nodes and the
black circles indicate the location for which the polynomial is defined, that is, the
location at which it equals unity (modified from [Felippa, 2015]).

and

Substitution of Eqs. (7.6) and (7.7) into Eq. (7.1) yields our two-dimensional finite-
difference approximation of Eq. (7.1) which is given by

If we neglect the error Ei, j this equation becomes



(7.10)

(7.11)

and the computational molecule for this equation is given in Fig. 7.4. In this figure, the
weights for each of the nodal values of ui, u etc. are shown assuming Δx = Δy = 1

Figure 7.4 Computational molecule for Eq. 7.9 where Δx = Δy = 1.

We will now consider an example to illustrate how this equation is used when a cross-
derivative is involved. Consider the generalization of Eq. (7.1). This type of equation
arrises when the coefficients in the equation a tenors, that is

where coefficients are known constants. Now the finite difference approximation is a
little more complicated. We begin by writing the second degree Lagrange approximation
for  viz.

Now we differentiate this expression with respect to x and then y to get
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(7.19)

Next differentiate Eq. (7.12) with respect to x and Eq. (7.13) with respect to y.
Performing these actions we get

We can now reverse the procedure and differential Eq. (7.12) with respect to y and Eq.
(7.13) with respect to x. When this is done one obtains

We have evaluated these derivatives above in Eqs. (7.6) and (7.7) and we found

The cross derivatives are a little tricky. One can show by expanding the derivatives found
in Eqs. (7.16) and (7.17) that the complete expansion will consist of nine terms, one for
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(7.21)

each of the nine nodes found in the Fig. [?]. However, all but four of them vanish
because of the nature of the nature of the functions. They are zero on at least two sides of
the square and, therefore their derivatives are zero along the tangent to those sides.
What remains are the terms

The various derivatives found in this equation evaluated at (xi.yj) are as follows:
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Similarly, for the y direction we get the following using a similar reasoning

Substituting the above derivative approximations into Eq. (7.20) we get

To get the final form of the approximation we combine Eqs. (7.19), (7.18) and (7.26) to
get



(7.27)

(7.28)

If we assume Δx = Δy = axx = axy = ayx = ayyy = 1 the computational molecule for this
cross-derivative bearing equations is given in Fig. 7.5. Notice that now there are nine,
not five, nodes in the molecule. The cross derivative added four. From a computational
point of view this is not a good thing. The matrix used to solve a problem with this
formulation will have four extra bands parallel to the diagonal and this means
significantly more effort is needed to solve the resulting set of equations when standard
matrix algebra methods are used.

Figure 7.5 Computational molecule for Eq. 7.28 when we assume Δx = Δy = axx = axy =
ayx = ayy = 1.

7.1 Example Problem
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Consider the problem defined by equation

shown in Fig. 7.6.

Figure 7.6 Grid for the example considered in Section 7.6.

Assume boundary conditions

The finite difference expression for this problem is obtained directly from Eq. (7.8) by
assigning the appropriate nodal identifiers. Because only the node (1, 1) is unknown in
this problem (the rest are known from boundary conditions), the difference equation is

Substitution of values known from boundary conditions yields
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which simplifies to

and finally

If we assume there is no flux, that is, Q = 0 we get

which reduces to

and
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7.2 Chapter Summary
In this brief chapter, we introduce the concept of representing a two-dimensional
problem using finite difference approximations and present an elementary example.

7.3 Problems
1. Consider the finite difference mesh indicated in Fig. 7.7. The equation of interest is

with boundary conditions

Do the following:

a. Write the finite difference expression for Eq. (7.41). You should have five terms in
your approximation.

b. Write a finite difference approximation for the Neumann boundary conditions
(Eqs. (7.43)-(7.45)).

c. Write the finite difference equation for Eq. (7.42). You now have enough
equations.

d. Substitute the information from steps 1b and 1c into step 1a.

e. Solve the resulting equation for the unknown nodes.

2. The approximation of u for the case of the two-dimensional element shown in Fig 7.7
is written as

where the ℓi(x) and ℓj(y) are quadratic Lagrange polynomials defined as
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with a similar set of definitions for ℓj(y), 1 = 0, 1, 2.

Figure 7.7 Mesh and nodal arrangement for problems 1 (panel a) and 2 (panel b).
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3. You are to obtain the finite difference representation of

Please proceed in the following steps:

a. Differentiate Eq. (7.46) first with respect to y and then the result with respect to
x. You should have nine terms. of the general form

b. Place these into Eq. (7.46) after differentiation and evaluate the nine terms using
Eq. (7.47)

c. Replace the various spatial increments with the values from the above figure, that
is x1 − x0 = 1 etc.; be careful with your signs.

d. Now evaluate the result at the center node u(1, 1), since that is where you are
writing the approximation

e. The result should be
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Chapter 8
Finite Element Methods in Two Space

8.1 Finite Element Approximations over Rectangles
In this section we extend the one-dimensional finite element method of approximation
to two space dimensions. We begin with rectangular elements because our earlier theory
lends itself most readily to this approach. We begin by once again considering the
Poisson’s equation on a rectangular domain

Figure 8.1: Definition sketch of the region of interest for Eq. 8.1.

We now digress briefly to introduce some notation. As we have done earlier, let us begin
with the approximation of u(x, y) by . We will use the same point of departure as
we used for the finite difference approximations in Chapter 7, that is



(8.5)

where we assume we are working with Lagrange polynomials of degree n and m. But
now we make a change in notation which, while not critical for our current discussion of
rectangular elements, will be essential when we talk about triangular elements in the
next section. The strategy is to replace the i, j notation for a nodal location in two-
dimensional problems with a single index.

Earlier, in the case of problems defined in one space dimension, there was no ambiguity;
the i, j index played the role of both nodal identifier and nodal location through the
relationship x = iΔx. and y = jΔy. However this is all about to change. To make a long
story short, we will replace the double i, j subscript notation for a node location (that is
based on the idea of i associated with a row and j associated with a column) with a new
pα index where α in this instance could take on the value i or j... The i, j notation was
convenient because it identified the node by the value i, j and also identified its location
x = iΔx and y = jΔy (assuming Δx and Δy are constant everywhere.

Note that pα does not, in and of itself, tell you where the node pα is located. We need
additional information. For example, we need to know that node number pα is located at

 In other words we need a table that relates our node number pα to the its
location in terms of xα and yα. The index pα is simply a nodal number and, in general, x
≠ pαΔx and y ≠ pαΔy.

To solidify this idea, consider the node located at p5 in Fig. 8.2. Unless we know that p5
is located at location (x5, y5) = (1, 1) the knowledge that pα = p5 is meaningless. Whereas,
using i, j notation we would know both that the node is identified by the unique values of
i = 1 and j = 1, that is if we have ℓn

1(x)ℓ1
m(y) we know it is located at (1, 1). Somehow

using the single index does not seem like progress, but let us go a little further.
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Figure 8.2: Single digit numbering for the finite element method of solution.

Let us take a look at how we would describe a Lagrangian polynomial using this
notation. First of all, the Lagrangian polynomial now needs only one subscript to be
identified uniquely . Because any two-dimensional Lagrangian is the product of a one
dimensional Lagrangian in x and another in y, we can write

This holds as long as the index i refers to a node, irrespective of where that node is
located.

To make the value of Eq. (8.6) unique, we need to know where the node i is located. To
illustrate our point, assume function ℓi(x, y) is identified with a node located at p5 =
(x5,y5). Then we know from our earlier discussion that the Lagrange polynomial is
identified with a node located at (x5, y5) = (1, 1). If we know this information and the
mesh spacing, we have a unique representation of ℓ5(x, y) provided we have similar
information about all the nodes in the neighborhood (because all connecting node
locations are part of the definition of ℓ5(x, y)). For the case in point, those are all the
nodes appearing in Fig. 8.2.

In summary, if you have a Lagrange polynomial (or its derivatives) with subscript i, you
need to know where node i is located. A table will tell you that node i is located at
location pi and that location pi is  You will see that you will need to have this



(8.7)

(8.8)

(8.9)

(8.10)

(8.11)

location information when you need to evaluate ℓi(x, y) when, for example, you need to
calculate an integral to obtain a coefficient.

It is helpful at this point to compare Fig. 8.2 with Fig. 7.6 to see the correspondence
between the two notations. Employing the double index notation, the approximating
function  shown in Fig. 7.6 is

and for the grid shown in Fig. 8.2, which uses only one index we have

We have used the index k in Eq. (8.8) to avoid confusion with the use of the index i in
Eq. (8.7). These two expressions, Eq. (8.7) and (8.8), represent the same information in
the special case of rectangular elements, provided the relationship between the index k
and the location pk is provided. So, in the future, when you see an index i or j you must
identify each with a unique location pi or pj in order to proceed. Note that both indices i
and j can take on the same pα value since either i or j (or both) may be identified with

location 

With the notation issue behind us, let us proceed by stating the residual, which is
obtained by replacing u(x, y) with  in Eq. (8.1), that is,

The appropriate weighted residual formulation is

where N is the number of nodes. Now, substitute for R(x, y) from Eq. (8.9).

Next employ Green’s Theorem (two-dimensional version of integration by parts ) to the
second-order terms. We get
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where dℓ is taken along the side ∂Ω in a counterclockwise direction. We will explain how
to handle the term

later on page 191. Substitution for  yields

Keep in mind that we are now using single valued indices so the subscripts i and j are
now referring to basis functions and weighting functions located at nodes i and j.

Let us assume we are working with the same problem presented earlier and reproduced
as Fig. 8.2. We now write Eq. (8.13) for this problem

The matrix form of this equation is
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or in more simplified notation.

The elements of the coefficient matrix [A] are defined as follows

The information appearing on the right-hand side will be known from a specification of
Q(x, y) or, as will be seen later, by boundary conditions. Now consider the evaluation of
the integral appearing in Eq. (8.17). In our earlier work (see Section 5.2 on page 94) we
performed the integrations over the elements. We will do the same thing here. We
rewrite Eq. (8.17) as

where the integration is now over element Ωe.

Consider a typical element such as shown in Fig. 8.3; in our case it happens to be a unit
square, but that is not necessary. Note that element numbers are shown circled. The
contribution of this element for node (i, j) is

We can expand the definitions of the basis and weighting functions using Eq. (8.6) to
give



(8.21)

This looks like a backwards step, but, as we will see in a moment, it actually simplifies
our development.

Figure 8.3: Finite difference grid of two-dimensional problem in space.
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Figure 8.4: One local element defined in  local coordinates.

To set the stage for what follows, we will change direction and consider the case of a
generic element with node numbering 1, 2, 5 4 shown in Fig. 8.3. There are a lot of
numbers in this figure, so let us take a minute to clarify them. The ones and zeros
around the outside of the array of nodes are the boundary condition values. The
numbers to the lower right of the nodes are the node numbers; they go from 1 to 9. The
numbers in the circles are the element numbers. There are four of them and the one in
the lower left of the figure is shaded. At the far left and bottom of the figure are the
distances along y and x, respectively. The ranges are x ∈ [0, 2] and y = [0, 2]. Then the
translation in numbering between our actual or ‘global’ element and out generic or
‘local element’ is given in the following table. Take a moment to study this little table.
In the first row are the nodes defined in the local coordinate system (ξ, η). In the second
row are the corresponding values in the global coordinate system. Thus, for example, if
you look in the second column you see that the local node 1 corresponds to the global
node 1 but in the case of column 4 the local node 3 corresponds to the global node 5.

The integrations we need to perform to employ the Galerkin finite element method can
be accomplished for this element using local coordinates χ for x and η for y (see Section
1.8 on page 14 for an introduction to local coordinates):
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Expansion of the derivatives and noting that since χ and η are orthogonal so that terms
such as  yields

Notice the subtle difference between Eqs. (8.23) and (8.24).

Consider, as an example, the term associated with I = 1, J = 1, that is

From the definitions of the Lagrange polynomials in local coordinates (see Eq. 5.15 on
page 85) we have, after performing the required differentiations,

or, on further substitution
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which reduces to

Evaluation of the integrals gives the (1, 1) entry of the local coefficient matrix, that is

As a second example, consider I = 1, J = 2. which produces an off-diagonal coefficient.
From Eq. (8.24) we get

Again we substitute for the definitions of the Lagrange polynomials and differentiate to
give

which upon further substitution yields,
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which simplifies to

and finally yields, upon integration,

If we perform similar integrations for the remaining nodal combinations in this element
we obtain the local coefficient matrix which we provide as a table. For convenience in
this table we have identified the nodes in row 2 and also in column 5

The form of the matrix is

All the element matrices will be the same in this case so we can construct the global
matrix using the local-global coefficient transformation table, that is the table shown as
Eq. (8.37). To be sure we understand this table, let us take a minute to examine it. The
second row contains the nodal locations expressed in terms of global coordinates (see
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Fig. 8.5). The last column on the right contains the element numbers. The third row
contains the local coordinate node numbers in element 1 corresponding to the same
nodes defined in the global numbering system. For example, global node 5 shown in the
second row corresponds to the local node 3 identified in the third row with the local
coordinate system for element 1. Since this mapping from global node numbers to local
node numbers is a basic concept, the reader is encouraged to review this paragraph
until it is clearly understood.



Figure 8.5: Figure used to relate the location of nodes in the local and global
coordinate systems.

The global matrix is shown in Eq. (8.38). Let us see how it is obtained. Consider the (1,
1) coefficient in Fig. (8.38). This coefficient is associated only with global node 1. We first
locate the element in which global node 1 is located (please refer to Fig. 8.5). We see that
it is in element number 1. Next find the local node that corresponds to the global node (1,
1) in local element 1; it is local node 1. So the value we seek to fill location (1, 1) in the
global matrix is the coefficient (1, 1) in local element matrix 1. Equation Eq. (8.35) or Eq.
(8.36) tell us that the value we seek is  Since node 1 in the global matrix appears in
only one element, the information in location (1, 1) is all that is available. Thus placing
the value  in the global matrix at location (1, 1) completes the operation to fill this
global coefficient location.

The global location (2, 2) is different because it involves information from both elements
1 and 2. This is because the weighting function for this node spans both elements. Thus,
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to obtain this coefficient, it is necessary to use the table in Eq. (8.37) for element 1 and 2.
For the first element we see that global node 2 corresponds to local node 2. Therefore we
need to take the value (2, 2) from the element coefficient matrix and this is again  and
place it in global matrix location (2, 2).

But we are not finished. We now need to obtain the contribution from element 2. Global
node 2 in element 2 is local node 1 as seen from the table in row 4, column 3. Going to
Eq. (8.36) we again find in element (1, 1) a value of  We need to add this to to the

global coefficient location (2, 2). Thus we have  from element 1 and  from element

2 which gives a total of  which we found in the global matrix at

location (2, 2). It would be prudent for the reader to try and obtain the global coefficient
(2, 5), which involves yet another concept:.

Consider now the integral associated with the right-hand side of our matrix equation the
includes the source term Q(x, y), namely

which, assuming Q(x, y) constant over the element, is for our local element

Consider the case of I = 1
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or, substituting for ℓ1(x, y), we obtain

Upon substitution of the definitions of the Lagrange polynomials we get

or

Integration of this equation provides our final result, namely

In general we also have a term of the form (see Eq. (8.18)) which represents a Neumann,
second type or flux boundary condition, that is,

Writing this integral in local coordinates we obtain for integration along the η direction

or

Let us select I = 1 to provide a concrete example
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Note that the value of ℓ1(χ) at χ = 0 is unity and thus the (1) in the last equation. Eq.
(8.49) states that one half of the flux entering the side of the element of length 1 is
allocated to node 1. The other half would be allocated to the adjacent node along the
external face of the element being considered. The f(χ, η) vector is obtained by
examining all the nodes in the global system, that is

If we combine the information provided above about our approximation of Eq. (8.1), we
obtain the matrix equation
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Application of the boundary conditions gives
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which simplifies for this simple case to

where the surface integral associated with this equation (Eq. (8.53)) is zero because ℓ5(x,
y) is zero along the external boundary.

Assuming Q = 1

This is the same result we obtained with the finite difference method.

If we assume Q = 0 we have

which compares with  obtained using the finite difference method. The secret as
to why these solutions are different lies in the way that the source term Q is handled. In
essence we use a point value at the center node for the finite difference representation
and an averaged value in the finite element formulation. This will be better understood
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after reading the following discussion on how the finite difference and finite element
methods differ for this problem.

To see how the finite difference and finite element approximations are different we
expand the equation for u5 to obtain

We now modify this equation through addition and extraction of these eight values to
give something that resembles a series of second derivative approximations, that is

Next we multiply and divide the first term by Δx2and the second by Δy2. The result is

The next step is to divide the equation through by ΔxΔy to yield

We now simplify and rearrange the terms multiplying the contents of the square
brackets. The result is
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Finally, we recognize that the multipliers of the second derivative approximations are
those used in Simpson’s rule. We take advantage of this relationship to give the
following equation.

Equation 8.61 states that the finite element formulation for the problem analyzed
produces a discrete equation that uses the finite difference approximations to the second
derivative terms defined in one coordinate direction averaged over the coordinate
direction orthogonal to that of the derivatives.

The template for the finite element algorithm described above is found in Fig. 8.6. It is
made up of the template for the x-derivative (Fig. 8.7) added to the template of the y-
derivative (Fig. 8.8).



Figure 8.6: Finite element mesh with weights.

Figure 8.7: Finite element template for x-derivative.
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Figure 8.8: Finite element template for y-derivative.

8.2 Finite Element Approximations over Triangles
Consider once again the equation

defined on the irregular domain illustrated in Fig. 8.9. As earlier, the interior of the
domain is defined as Ω and the perimeter as ∂Ω



(8.66)

Figure 8.9: Region of interest for the triangular finite element method. The area is Ω
and the perimeter is ∂Ω.

We begin the analysis by defining the approximating function applicable to this
problem, that is

In this expression we have replaced our Lagrangian basis functions with a new
functional form φj(x, y). This is a polynomial basis function defined on a triangular
subspace which we denote as a triangular finite element. The triangular element
discretization of the domain shown in Fig. 8.9 is shown in Fig. 8.10.



Figure 8.10: Array of finite elements which discretize the area Ω. Note that the
boundary of Ω, denoted as ∂Ω, is subdived into linear elements ∂Ωe that are also the
sides of the interior triangles. Observe that nodes are located at the vertices of each
element.

The triangular basis function for a typical node is shown in Fig. 8.11. Note that, as usual,
the basis function is unity at the node for which it is defined and zero at all other nodes.
In Fig. 8.12 we show the set of three basis functions for the three nodes in the triangle.
Note that everywhere they sum to unity. It is important that the elements be numbered
in the counterclockwise order for the formulae to be presented below for integration to
provide correct answers.



Figure 8.11: Triangular basis function for node I. The patterned inclined plane is the
function denoted as the ‘basis’ and the corresponding element is the solid surface in the
x-y plane identified as the ‘element’.
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Figure 8.12: Diagrammatic representation of three triangular basis function, one for
each node of the triangle. Note that the values of the triangles sum to unity anywhere on
the triangle.

8.2.1 Formulation of Triangular Basis Functions
Consider one basis function, for example the one located at node I in Fig. 8.11. Note that
this triangle employs the local indices I, I + 1 and I + 2. Thus the index I can take on any
of the nodal values in global coordinates shown in Fig. 8.10. To be more specific, if we
consider the shaded element in Fig. 8.10 we could choose I to be node number 1, 3, or
10. If we chose I = 1, then I + 1 would be 3 and I + 2 would be 10.

In developing the equations for the triangular basis functions we will require, as noted
above, that they be unity at the node for which they are defined and zero at the other two
nodes in the triangle. In other words we have for the basis function at node I
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where the notation φI(xI, yI) denotes the value of φI at the nodal location (xI, yI).

To begin our development, note that the equation of a plane defined in the x − y
coordinate system is

If we now evaluate this expression at each node, we have

which can be written in matrix form as

or, written symbolically

The solution to this equation gives the expression of φI(x, y):

where det [P] is the determinant of the matrix [P]. A similar formulation leads to
equations for φI + 1(x, y) and φI + 2(x, y), that is

and
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It turns out that there is a simple integration formula for triangular elements as defined
above; the formula is:

where mI is the power to which the φI polynomial is raised. For example in the integral

mI, mI + 1, and mI + 2 are all unity, while in the integral

or, written slightly differently,

mI, mI + 1, and mI + 2 are 2, 0, 1 respectively.

The area of the triangle A is given by

Integration Example
Consider the following integral

Since the function I appears alone in the integral, mI = 1, mI + 1 = 0, and mI + 2 = 0. Using
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Eq. (8.79) and recalling that the factorial of zero is defined to be 1, we obtain

8.2.2 Example Problem of Finite Element Approximation over Triangles
The equation of interest is, once again,

where (see Fig. 8.13)

These boundary conditions were selected to simplify the calculations by having the area
of each triangle be unity and while letting the Dirichlet boundary values vary linearly
along the sides of the triangle.
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Figure 8.13: Illustration of triangle used as example in this subsection.

We begin by selecting our approximation for u(x, y) as

where the basis functions φj(x, y) are defined using Eqs. (8.76) – (8.78). As earlier, we
now define the residual by substituting the approximation  into the governing
equation, in this case Eq. (8.86) and obtain the residual R(x, y)

Using Galerkin’s method we weight the residual by the same set of functions we are
using for the basis functions, that is φi(x, y) i = 1, ..., 4, and integrate each of the four
products over Ω = Ω1 + Ω2 + Ω3. The result is

Substitution of Eqs. (8.90) and (8.91) into (8.92) yields
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We now apply Green’s theorem to Eq. (8.93) to obtain:

The equations represented by Eq. (8.93) are of the form

or

where the coefficients in Eq. (8.95) are defined using Eq. (8.94) as

Note that Ω is now represented explicitly using the individual elements denoted by the
index e. The basis functions are identified with the element over which the integration is
being performed. For example when integrating the basis function defined for node 1
over element 3, φi(x, y) would appear as φ1(x, y) defined over element 3.

As in our earlier example on page 189 we need a transformation table. Using the I local
index notation introduced for triangles we have

Global

1 2 3 4 Element

I I+1 I+2 1
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Local I+1 I I+2 2
I I+1 I+2 3

Again take a moment to review this table. The global node numbers are provided in the
second row and go from 1 to 4. From the third row we find that the Ith node for triangle 1
was selected as the global node 1. Once this decision is made, the other two local nodes,
namely I + 1 and I + 2, are automatically assigned to global node numbers 2 and 3,
respectively. We know this order to be the case not only because of the table, but also
because we know that we must number the nodes in each element in counterclockwise
order.

Element Coefficient Matrix
Because we are using triangles, as indicated in the above table, there will be three nodes
for each element and therefore the element coefficient matrix will have nine entries, that
is

The corresponding coefficient matrix for element 1, using global numbering would
be

as can also be seen from the above table. The integral associated with coefficient a11 in
the matrix defined by Eq. (8.100) is obtained from Eq. (8.97) using the local I
numbering system:

The next step is to use Eq. (8.76), reproduced below, to obtain the derivatives needed:

from which we obtain upon differentiation
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and

where

We now substitute Eqs. (8.103) and (8.104) into (8.101) to get

Using our global-local coordinate table, and recalling that

this term becomes

As a second example of element integration, let us evaluate coefficient a21 of element 1.
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The required integral becomes

From Eqs. (8.76) and (8.77) on page 198 we have

The required integral becomes (recalling that the area of each triangle is, for
convenience, designed to be unity)

Global Coefficient Matrix
When calculations such as shown above are completed for each of the nodes and each of
the elements, the following element coefficient matrices are generated
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The next step is to assemble the global matrix by taking the coefficients for each node
from all the elements and adding them together as illustrated below

Before we can solve the problem, we need to evaluate the forcing function
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which is the same as

From Eq. (8.85) we have

so we can rewrite Eq. (8.120) for each node (again keeping in mind that the area of each
element in this problem is unity).
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Thus, the right-hand side vector becomes

You may be wondering what we will do with the normal derivative appearing on the
right-hand side of Eq. (8.126). As you will see, if we need it, it is provided as a boundary
condition. If we do not have a derivative-type boundary condition, this term will not be
needed.

Solution of Equations
The matrix equation now becomes



(8.127)

(8.128)

(8.129)

(8.130)

(8.131)

(8.132)

Application of boundary conditions provides the following:

which can be reduced to

or

Notice that the equations containing the derivative on the right-hand side have been
eliminated by virtue of the specification of the function value of u(x, y). Thus, because
we did not have any Neumann boundary conditions, the equations containing this
information disappeared by virtue of the alternative specification of the Dirichlet
condition. We will see in the next subsection what to do when there is a Neumann
condition specified. The complete approximation for u(x, y) for this problem becomes

8.2.3 Second Type or Neumann Boundary-Value Problem
In this section we will modify our earlier problem presented in Section 8.2.2 to consider
a Neumann boundary condition. The problem definition is provided below:

where (see Fig. 8.13)
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where we have assumed that nodes 1 and 2 are associated with ∂Ω1. The only changes we
need to make to our earlier formulation is to modify the right-hand side to accommodate
the new boundary conditions. The new boundary specifications are shown in Fig. 8.14.
We first write the earlier formulation

The terms of interest are in the boxes in Eq. (8.136).

Figure 8.14: Repeated for reference, illustration of triangle used as example in this



(8.137)

(8.138)

(8.139)

subsection, that is Section 8.2.2.

Consider the term associated with the first row, that is the equation identified with node
1 and therefore weighting function 1. The first thing to note is that the triangular basis
function shown in Fig. 8.11 is a linear Lagrange polynomial along the side of the triangle.
Thus the following holds

If we assume  constant along the boundary segment ∂Ω1, which is the normal

procedure in linear triangular elements, it can be taken out of the integral and we obtain

The function φ1(x, y), which is defined only along the boundary ∂Ω1 of the triangle, will
be a linear Lagrange polynomial. We use the symbol σ to denote distance along this side.
In other words σ is the one-dimensional coordinate defined along the line ∂Ω1. Using
this notation we obtain

where σ1 and σ2 are the locations of nodes 1 and 2 in the σ coordinate system. In Fig. 8.11
we see, for example, that σ1 and σ2 could correspond to nodes I and I + 1 and the
integration would be performed along the line connecting them. Integration now yields
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The interpretation of Eq. (8.140) is that the the portion of the contribution of 

associated with node 1 is  Thus the integral in the first row on the right-hand-side

of Eq. (8.136) will take on the value presented in the last line of Eq. 8.140. The
coordinate σ2 is determined by inspection from Fig. 8.14 to be 2.63 length units (see the
length of the side of the triangle along x) and . Thus we have

A similar argument can be used to obtain  and this turns out

to be the same value, namely 1.32.

We are now in a position to modify our matrix to accommodate the boundary
conditions. We obtain
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You will notice that the integral in the last row remains unevaluated. We will see in the
next step that the reason for this is that it will not be needed. Using the information from
the Dirichlet boundary condition that u4 = 0, as we implicitly did in the last example
Section 8.2.2, we can multiply this value by the last column of the matrix, put the
resulting information on the right-hand side of the matrix equation, and eliminate the
last row and last column of the matrix. Note that we now have three unknowns since
nodes 1 and 2 are not specified u(x, y) values. Simplifying Eq. (8.142) we have

or

Taking the inverse of the coefficient matrix, that is

we can solve Eq. (8.144) directly as follows:

Thus the solution to our problem is [u1, u2, u3]T = [1.09, 1.09, 0.53]T where T denotes,
transpose.

To understand the results, one must remember that the vector n associated with  is
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outward directed. Thus, if u is a state variable, such as mass, there is mass attempting to
enter the system along-side ∂Ω1. Thus we would expect that the values of u near ∂Ω1
would be higher than further away, say, at node 3. However, we also have a flux Q = 1
exiting the system that must be satisfied, in part through inward flow along the
boundary. Node 4 must remain at zero because that is the fixed boundary condition
value for u at that node.

If we assume that Q = 0, that is there is no source term in the equation, we get

or

or

or

One now observes that the slope of the surface has changed. The high side along ∂Ω1 is
even higher since this is the side from which the mass flows inwards. If the domain were
rectangular, we would expect a uniform slope across the domain from the left to the
right. However, the domain is triangular and so the surface is not perfectly flat, but it is
close.

As a variant on this example, let us see what happens if we again remove the uniform
flux, that is let Q = 0, but also reverse the sense of the flux boundary condition, that is
set
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The matrix equation becomes

for which the solution is

or (ui, u2, u3)T = −(4.42, 4.49, 2.96)T. One now observes that the slope of the surface has
changed. The low side is along ∂Ω1 since this is the side from which the mass flows
outwards. If the domain were rectangular, we would expect a uniform positive slope
across the domain from the left to the right.

8.3 Isoparametric Finite Element Approximation
In this section we will introduce the concept of isoparametric finite elements. These
elements are characteristically irregular in their geometry. They are essentially deformed
rectangles. However the concept can be further extended to allow for sides that have
curvature. They are useful in some specific engineering applications. A necessary tool for
understanding this concept is the idea of a ‘natural coordinate system’ which is a special
form of local coordinate system and which we will now introduce.

8.3.1 Natural Coordinate Systems

One Dimensional Natural Coordinate Systems
A natural coordinate system is a local coordinate system (see page 16) which is special in
that it permits the specification of a point within an element by a set of dimensionless
numbers whose magnitudes never exceed unity. Consider the information presented in
Fig. 8.15. The variable x is a global coordinate and L is a local coordinate which is
also a natural coordinate. Notice that any point along the indicated interval [x1, x2]
can be specified by a number whose absolute magnitude does not exceed unity in the L
coordinate system.
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Figure 8.15: Illustration of the natural coordinate system, L.

Our first task is to determine how to relate the natural and local coordinate systems one
to the other. From Fig. 8.15 we observe the following: a point xp somewhere within the
interval (x1, x2) is related to a point Lp located in the interval ( − 1, 1) by the expression

In general, for any x, we have

We can solve for x in Eq. (8.157) and obtain

A little algebra gives

We now rearrange the terms in this expression with malice of forethought to give

Eq. (8.160) can also be written as

where
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Let us now look more carefully at the function φi(L). We observe the following:

It appears that the values of i(L) satisfy the requirements of basis functions for the
interpolation of the coordinate x in terms of the end points of the interval (we did
something similar in Section 1.5 on page 4 )!

Two-Dimensional Natural Coordinate Systems
The one-dimensional transformation just presented was rather straight-forward.
However, the two-dimensional version is a little more complicated. The local and global
elements are shown in Figs. 8.16 and Fig. 8.17, respectively. Now let us examine the
relationship between them. To be a one-to-one transformation we will require the
following:

where the symbol → is to be interpreted as ‘corresponds to.’ Building upon what we
learned from our one-dimensional example, namely Eq. (8.161), we want to be able to
determine the coordinates of x and y within the global element using a relationship of
the form:



(8.170)

Figure 8.16: Local element in local ξ − η coordinate system.
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Figure 8.17: Isoparametric element defined in local  and global (x, y) coordinates.

We will return to this relationship shortly. However, for now let us consider a different
strategy for representing x.

Let us impose the constraint that a line that forms an element side that is a straight line
in the global coordinate system is also a straight line in the local coordinate system. If
this is to be true, we need to be able to have x vary linearly along ξ and y vary linearly
along η. A function of ξ and η that varies linearly along ξ will have the form

To see that this equation satisfies the requirement of being linear along ξ, substitute η =
1. This gives

which is a linear function of ξ. Similarly if we substitute η = −1 we have

Both Eqs. (8.172) and (8.173) provide a linear change in x with a linear change in ξ, thus
satisfying the requirement that an element side that is linear in the global system is
linear in the local system.

One can, using a similar argument, show that the appropriate form of the interpolator
for y is

It can be shown that when ξ is ± 1, y is a linear function of η.

We would like to find out what the values of α and β are. To achieve this we impose on
Eqs. (8.173) and (8.174) the requirement of one-to-one correspondence between the
nodal locations in the global and local coordinate systems as shown in the above table.
We obtain by substituting the corresponding values of x, ξ, and η into Eq. (8.173) the
following matrix equation for the unknown values of ai,i = 1, ..., 4:

Substitution of the local coordinate values for ξ and η we yields
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Inverting the coefficient matrix provides the solution for {a}T, that is,

Recall from Eq. (8.169) that we can express x as a function of the nodal coordinates via
the expression
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and from Eq. (8.171)

But, we have another representation of the α vector from Eq. (8.177), so we can
substitute that relationship into Eq. (8.179) to obtain

We now examine Eqs. (8.178) and (8.180) and see that both of these equations describe
the behavior of x. Thus we can equate their right-hand-sides to give the relationship

To obtain further insight into this relationship, consider the functions φi(ξ, η). We have
from Eq. (8.181)
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The above functions are called Coordinate Transformation Functions.

Example Problem
Consider the point located with the X in the lower panel of Fig. 8.18. The goal is to find
the global coordinate location for this point. The first step is to write the general form of
the global-local transformation. One obtains global coordinates in terms of the global
coordinate node locations and the local coordinate transformation functions as

Next substitute for the xi and yi values to get

which gives, using Eqs. (8.182)–(8.185)
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Figure 8.18: Element in local and global coordinates used for example problem. The ξ
in the lower panel maps to the X in the upper panel via Eqs. 8.186 and 8.187.

Similarly for the y1 coordinate location

So, the calculations indicate that the location (ξ, η) = (0.25, 0.25) maps to (x, y) = (1.25,
1.78). as shown in the upper panel of Fig. 8.18 Now that we have the coordinate
transformation functions, let us consider the basis functions.

8.3.2 Basis Functions
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As usual, we are seeking to represent our approximating function  by a series
employing the product of coefficients and basis functions. Consider for example the
approximation of u(x, y) over one element

where ψk(ξ, η) are the basis functions. To ensure that a function is approximated linearly
along a linear side (see Eq. (8.172)) we consider the relationship

Consider as an example the conditions that apply to basis functions in general and ψ1(ξ,
η) in particular, namely that

and

Combination of these constraints with the definition provided in Eq. (8.193) yields, for
ψ1(ξ, η),

or
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Solving for the α vector we obtain

From Eq. (8.193) we have for ψ1(ξ, η)

or using Eq. (8.198)

In order to demonstrate a concept, we now rearrange this equation to give

Thus we see by comparison of Eq. (8.201) to Eq. (8.182) that φ1(ξ, η) and ψ1(ξ, η) are
identical. Thus φi(ξ, η)  is both the coordinate transformation function and
the basis function.

8.3.3 Calculation of the Jacobian
To see how to use the isoparametric element we will address an example problem.
Consider the equation

Using our standard approach we can write an approximation for u(x, y) as
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From Galerkin’s method we have

Application of Green’s theorem to the second-order terms yields

Substituting Eq. (8.203) into Eq. (8.204), and introducing the local indices I and J, we
get for each element that consists of four nodes

where n is now the outward-directed normal to the element face. Notice that this is not
an equation equal to zero because we are considering only one element and we would
need to sum the information contributed by all the elements associated with node I
before we could write an equation for node I.

Typical integrals in Eq. (8.207) are of the form
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and

Let us see how we evaluate these integrals. Since

and

from the chain rule we have

We can assemble these equations into matrix form to obtain

By convention we define the Jacobian matrix [J] as

such that

However we see in Eqs. (8.212) and (8.213) that we need terms of the form
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and

To obtain this form, we need to take the inverse of [J] to yield

Computing [J]− 1 we have

Combination of Eqs. (8.219) and (8.220) yields

The next problem is to determine how to get the Jacobian matrix [J]?

Recall that

and

We can now use the relationships in Eqs. (8.222) and (8.223) and write
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We can now evaluate the Jacobian. We have

One can also show that

and

We are now in a position to evaluate the integrals of interest. Consider as an example

We can write the integral in natural coordinates using Eqs. (8.212)–(8.221) and Eqs.
(8.230)–(8.231) as
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The challenge now is to evaluate the integrals appearing on the right-hand side of Eq.
(8.233). This is accomplished using Gauss–Legendre Quadrature introduced in Section
3.1.6 on page 59.

8.3.4 Example of Isoparametric Formulation
Let us consider the problem of solving for the temperature distribution in the x − y
plane. The problem is defined in Fig. 8.19. The governing equation is

with boundary conditions
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Figure 8.19: Finite element mesh for the example problem considered in Section 8.3.4.

Galerkin Formulation
Let us assume the temperature can be represented by the series

Define the residual

From the Galerkin method we have

Expanding R(x, y) we have

Substitution of 8.239 into 8.242 gives
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We can now apply Green’s theorem to modify the second derivative terms and obtain

This set of equations can be written in global coordinates as

Since we know from the boundary conditions that

and

we can reduce the coefficient matrix to give

Although it may not be obvious, we can show from symmetry that

and from geometry that
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With these considerations in mind, we are left with the coefficients

Consider coefficient a31:

The integration for this coefficient is restricted to element 1 because nodes 1 and 3 are
only connected in element 1 as seen in Fig. 8.19. We now do the integration over only
element 1 and we do this in the local coordinate system. The process is as follows.

Transform Integrals to Natural Coordinate System
The relationship between the natural and global coordinate systems for the first element
are provided in the following table:

Consider, for element 1 in natural coordinates, the integral (see Section 8.3.3 on page
219 above for insight into how this is done)

We need functions of the form  defined in natural coordinates. We start with the

relationship derived from the chain rule, that is,

From Eq. (8.229) on page 222, reproduced below, we can write the coefficient matrix in
Eq. (8.262) as
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So, for the particular case of φ1(ξ, η) we substitute Eq. (8.263) into Eq. (8.262) to obtain

or

Similarly we have

Taking the inverse of the Jacobian matrix we have

and.
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This is the relationship we need to transform our derivatives in Eq. (8.261) so they are in
the form we need.

To see how this is done, we return to our integral of interest, that is

which becomes, using Eqs. (8.268) and (8.269) as follows:

and det [J] is given by

Perform Integrations
We now use Gauss Quadrature (see Section 3.1.6 on page 59) to evaluate integrals of the
form found in Eq. (8.271). The Gauss points are at
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where  and the weighting function is Hi = 1.0 . Consider the first term in

the integral on the right-hand side of Eq. (8.271). From the definitions of φ1(ξ, η) and
φ2(ξ, η) given by

and

we have for the first term in Eq. (8.271),

Note that the notation  means that you substitute in the values  into
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the argument sequentially and sum the result. Thus there will be four terms in the
summation on the right-hand side of the above equation. Now consider the second term
on the right-hand-side of Eq. (8.271).

The total term is the sum of  We now have the value for the coefficient (13)
in the local coefficient matrix for element 1.

Matrix Assembly
If we evaluate all the integral terms for both elements, we can obtain the element
coefficient matrices.

To obtain the global coefficient matrix we need a transformation table for the global and
local nodal numbers. In the top row we have the global node numbers. In the second
row, the local element node numbers of each node value for element 1 is provided. For
example, the local node number in element 1 for global node 2 is 4. The same
information for element 2 is found in the last row.
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Element 1 and element 2 have the same coefficient values since they have the same
geometry and properties, that is

The global matrix is obtained by combining information from the two element matrices
and the transformation table. As an example, consider the global coefficient (b11). This
coefficient is according to the table, the (a11) coefficient of the element coefficient matrix
for element 1; this value is 5/6 and this value appears as the (b11) coefficient in the global
matrix given in Eq. (8.280) below. Now let us consider a more interesting case. Node 3
in Fig. 8.19 lies at the interface of the two elements. Thus this coefficient in the global
matrix draws information from both of these elements. We see this in the table because
global node 3 is the same as local node 2 in element 1 it is the same as local node 1 in
element 2. So, to build the global coefficient (b33) we need to add the (a22) coefficient
from element 1 to the (a11) coefficient from element 2. We obtain 5/6 + 5/6 as is seen in
the (b33) location of the matrix in Eq. (8.280).

As a final example we take the most complicated situation, the formation of global
element coefficient (b34). This coefficient involves information from two nodes, each
located at the interface of two elements. From the table we see that in the first element,
global node (b34) is equivalent to element node (a23) in element 1 and (a1, 4) in element
2. Thus we need to add these two values together to obtain the global coefficient (b34)
and so we obtain − 7/12 − 7/12 as seen in coefficient location (b34).

Note that for this second-order equation both the global [B] and local [A] coefficient
matrices are symmetric and the rows and columns sum to zero.
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The complete matrix equation is

where

Introducing the boundary conditions we have

which after bringing information to the right-hand side of the equation simplifies to
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Solving for the unknown vector we get (on inversion of the coefficient matrix)

which is the exact solution.
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8.4 Chapter Summary
In this chapter we introduce the Galerkin finite element method. We begin with
rectangular elements. The approach used for rectangles is next extended to triangular
finite elements, a method that is somewhat more abstract than the case of rectangular
elements. The rectangular finite element formulation was next generalized to the case of
isoparametric finite element that allowed for elements that are squares in a local
coordinate system but can be deformed rectangles or trapezoids in the global coordinate
system. The integrations inherent in the finite element method are easily performed in
this local coordinate system.

8.5 Problems
1. Given a triangle with nodes at (0, 0), (2, 0) and (1, 2) as shown below in Fig. 8.20 and

the values u(0, 0) = 1, u(2.0) = 2, and u(1, 2) = 0, determine the value of u(1, 1) and
show that it is 1.0 This can be determined from the following two relationships:

where Li(x, y) is a triangular basis function.

Figure 8.20: Triangular element and target location for problem 1.

2. Given the following equation that is used in the isoparametric formulation,
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and the information in Figs. 8.21 and 8.22, calculate the value of  and 

and show that they are as follows:

Hint: You can do this problem just through careful observation of the figures below
and the properties of basis functions, but just in case you need them here are the
equations for the basis functions: φj(x, y) = φj(x)φj(y) where  and

φj(ξ, η) = φj(ξ)φj(η) where 

Figure 8.21: Explanation sketch for problem 2.
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Figure 8.22: Explanation sketch for problem 2.

3. Consider the finite element array found in Fig. 8.5 the following figure. Assume the
global matrix for this problem is

and the element matrix for element e = 1 is

The transformation table is

Global 1 2 3 4

Element one 1 2 3

Element two 1 2 3

Please fill in the values for element matrix e = 2
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4. Given a triangle as illustrated in Fig. 8.5, with nodes at (0, 0), (2, 0), and (1, 2) as
shown below and the values u(0, 0) = 1, u(2.0) = 2, and u(1, 2) = 0, and the basis
functions

where

and A = 2 is the area of the triangle, show, using the above basis functions, that the
value of  at the location (x, y) = (0.5, 0.5) is 0.5.



5. Given the finite element mesh in Fig. 8.5, locate and place the global nodal numbers
on the figure (in the circles). In the following table, the global numbers are in bold
and the element numbers are in italics. Remember that local element numbering (the
I, I+1, I+2) is counter-clockwise.

1 2 3 4 5
1 I I+1 I+2

2 I I+2 I+1

3 I+2 I I+1

4 I I+1 I+2
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7. Consider the equation

defined in the one-element domain shown in Fig. 8.23 with boundary conditions

Solve for the value at node 3, namely u(0, 1), or equivalently u3, using a Galerkin finite
element method.



Figure 8.23: One-element domain with the basis function at node one illustrated.

Steps

1. Write the approximation for u(x, y), that is, .

2. Generate the weighted residual equations (there are three).

3. Substitute for  in the weighted residual equation.

4. Write the matrix equation symbolically, that is the global matrix (3 × 3) in terms of
the integral such as  the unknown vector of values of uj and the right-

hand side (which at this stage is zero).

5. Impose the two boundary conditions (you will now have one unknown, u3) and note
that you will now have integrals in the (1 × 1) global matrix and on the right-hand
side (two of them).

6. Evaluate the integrals using the geometry shown in the figure to define the
derivatives of φj and the relationship  (you actually don’t need this last

relationship, but in case you don’t see why, here it is).

7. You now have one equation in one unknown, u3. Solve for it.

8. Check your answer by determining whether the derivatives of u(x, y) satisfy the
original differential equation.
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Chapter 9
Finite Volume Approximation in Two Space

9.1 Finite Volume Formulation
In this section we will extend the finite volume formulation we introduced in Section 5.1
on page 84 to two-dimensional problems. The system we will consider is one that allows

for a cross derivative such as , namely

where, as earlier, ∂ΩD and ∂ΩN are the segments of the boundary ∂Ω of the domain Ω
along which Dirichlet and Neumann boundary conditions are defined respectively.

The formulation of the finite volume method in two space dimensions can be done using
more than one approach. The one we have selected is chosen because it is consistent
with the method of weighted residuals which we have used as the intellectual glue to
hold together the various methods we have introduced thus far. With this in mind, as in
the case of earlier methods, we begin with a representation of u(x, y) as

where, as in Section 8.2 on page 195, we use basis functions defined on triangular
elements.

A typical finite element arrangement is seen in Fig. 9.1. The black dots are the nodes.
The small circles are the circumcenters of the triangles. The circumcenter is the location
of the intersection of the perpendicular bisectors of each side. It is also the center of a
circle that passes through all three of the nodes of the triangular element. We will make



reference to circumcenters in the next paragraph.

Figure 9.1: Domain of interest subdivided into elements as part of the finite volume
formulation presentation. The small circles are the approximate locations of the
circumcenters of the triangles.

To begin the development of the finite volume approximation, a series of polygons is
constructed within the array of elements as seen in Fig. 9.2. The polygons are created by
connecting the circumcenters of each triangle. Note that the sides of the polygons are
orthogonal to the sides of the triangles and are continuous across them. The polygons, in
the absence of the triangles, are shown in Fig. 9.3. We will now discuss the rationale for
the various steps just presented and we will explain, via two examples, how to employ
the resulting finite-volume formulation.



(9.7)

Figure 9.2: Polygonal finite volumes generated from the finite element array shown in
Fig. 9.1.

Figure 9.3: Finite volume mesh after removal of the triangular elements.

Once we have the finite element basis functions defined, as presented in Eq. (9.6) and
discussed in more detail later, the next step is to write the weighted residual
formulation, that is

which contains the weighting function wi(x, y). The choice of the weighting function for
the two-dimensional finite-volume method is a direct extension of the one-dimensional
case discussed in Section 5.4 on page 112.

To visualize our choice, imagine extending a line of unit length vertically at the
circumcenter of each triangle as denoted by the letter C in Fig. 9.5. Connect the tops of
the resulting lines to form the polygon at a height of 1 unit (this is the surface B in Fig.
9.5). Finally stretch a hypothetical membrane over the polygon on the top and then
enclose each of the vertical lines just constructed with the membrane. The resulting
‘tower’ is the needed weighting function wi(x, y) and is consistent with the finite element
finite-volume array shown in Fig. 9.6. The projection of the weighting function onto the
x-y plane is illustrated in Figs. 9.5 and 9.6. We will learn why we have selected this
functional form for the weighting function a little later.

As we have done in earlier examples, we now expand the weighted residual formulation
of Eq. (9.1) to give



(9.8)

(9.9)

Now we apply Green’s theorem to the second-order terms in Eq. (9.8) and we get

where nx and ny are the components of the vector n that is normal to Ω in the x and y
directions respectively.

Consider now the information provided in Fig. 9.4. Here you see a typical finite element
with the coordinates x, y, n and τ defined. Note that n is orthogonal to the side of the
finite-volume and τ is tangential to it.
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Figure 9.4: Coordinate system relationship associated with finite-volume formulation.
Note that the positive angle for θ is counter-clockwise.

Next we chain out the wi derivatives with respect to τ and n. To see how this is done,
recall that by definition

and

The unit vectors in the x and y coordinate directions are given by i and j respectively. We
can also use the definition of the gradient operator to write it in the normal-tangential
coordinate system

and

where, in this case

and n and τ are the unit vectors in the n, and τ coordinate directions respectively.

Now we expand this relationship to give
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We can now rewrite this expression as

Similarly, for  we obtain

As noted earlier and illustrated in Figs. 9.5 and 9.6, the weighting function wi(x, y) is a

constant in the τ direction such that the terms of the form of  are zero. Using
this property, the above equations become

and

where  is the Dirac delta function defined along ∂Ωi.



Figure 9.5: The weighting function used in the finite-volume formulation. The top of
the function is denoted by the dark-grey polygon.

Figure 9.6: Finite volume (gray) and finite elements with illustration of normal n and
tangential  coordinate directions.

Now we need to determine the product n · j. Referring to Fig. 9.4 we see that the vector
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from a to c in the n direction can be expressed as

To normalize this vector to obtain the unit vector n, we divide by the length of nac , that
is

Thus we find the unit vector coordinates for nx to be

and for ny to be

Note that the above calculations could be performed using the coordinates at the
locations c, m, and n in lieu of c, a, and b with the same results.

We return to Eq. (9.10) and introduce the relationships developed above to obtain

where  is presented in Eq. (9.6). From the definition of the Dirac delta function,
this equation can be rewritten as



(9.25)

(9.26)

Notice that integration is now over the finite-volume perimeter and that there are two
uses of the notation nx and ny. One is associated with the finite volume i and the other
with the region Ω.

As a final step, we introduce the triangular basis functions φj(x, y) to give the final form
we will use in the following examples

The above development may seem a bit abstract at this point, but how we use this
information in application will be clearer after we work through the following two
examples:

9.2 Finite Volume Example Problem 1
9.2.1 Problem Definition
Consider the system of equations presented above modified to be descriptive of the
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problem presented in Fig. 9.7, namely

Figure 9.7: Definition drawing of finite volume problem presented as ‘example one’ in
Section 9.2.

9.2.2 Weighted Residual Formulation
The domain of interest presented in Fig. 9.7 has four large triangular elements and
five finite volumes. The finite volumes consist of the square of area 2 in the middle
and the four triangles in the corners. In other words, there is one square volume
element and four small triangular volume elements.

We begin by employing Eq. (9.26). We have for our problem
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(9.33)

(9.34)

(9.35)

where the number of elements identified with (attached to) each node i, where i
identifies the finite volume of interest, is given by Ei. If we write Eq. (9.32) in matrix
form we have

The number of rows in the coefficient matrix in Eq. (9.33) is five, which corresponds to
the number of finite volumes. The number of columns is also five and represents the
number of unknown values of uj at the nodes.

At this point we realize that we actually have only one unknown, namely the value of uj
at node 3, because the values of uj at other nodes are all provided by the boundary
conditions. Thus, due to the imposition of Dirichlet boundary conditions, the rows
associated with these known values can be eliminated. As a result this system of
equations reduces to

or

9.2.3 Element Coefficient Matrices
The first step in evaluating the coefficients is to recognize that e = 1, 2, 3, 4 and therefore
we have four 3 × 3 element coefficient matrices of the form.
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(9.37)
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where I are local coordinates (the concept of local coordinates for triangles was
introduced in Section 8.2.1 on page 196). Recall once again that the rows represent the
nodes defining where the finite volumes are centered and the columns with the nodes
that define the location of the triangular basis functions.

The local coefficient matrix for element e is (where we again assume φI(x, y) can be
represented by φI)

The table relating the global and local numbering for the problem shown in Fig. 9.7:

If the values in the above table are introduced into Eq. (9.37) one obtains for the global
coefficient matrix elements
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(9.42)
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(9.44)

where the subscripts on the φi(x, y) values are in global coordinates.

9.2.4 Evaluation of the Line Integral
The global coefficient a31 contributed by element 1 is calculated for basis function φ1 and
weighting function w3 as follows. First we substitute the values of I = 3 and J = 1 to give

 

where |EA is the segment of side ∂Ωe
3 that is composed of the line  and |DE is the

segment along the line  Now we recall the definition of the the basis and obtain their
derivatives, that is

from which
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and

Therefore, Eq. (9.42) becomes

Next observe in Fig. 9.7, the location of the line that defines the side of the triangle
connecting the location of node 3, which identifies the volume of interest, and the node 1
which identifies the element basis function of interest. If we now imagine being at the
node 3 and direct our attention towards node 1, we observe that the resulting line is
given by (x3 − x1, y3 − y1). We now need the nx and ny values to complete the evaluation
associated with Eq. (9.46). From Eq. (9.22) we see that the value of nx is given by

Similarly for the evaluation of ny we have

Now we can combine this information to give
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(9.52)

But we still need to have the information relevant to side  Following the strategy
presented above we get

and

such that

We now substitute these values into Eq. (9.42) to give
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After substituting the coordinate locations of xi, yi we get

We can calculate the  from the coordinate matrix which, for this element, is
defined using the above table as

We can determine  either by calculation from Eq. (9.55), or from the known
relationship that  presented earlier in Section 8.2.1 on page 196. In either
event we determine that  and Eq. (9.54) becomes
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Thus the line integral component of the coefficient for I + 1 = 3, J = 1 for element 1 is 1.0.

As a second example consider I + 1 = 3, J + 2 = 1 and substitute this information in Eq.
(9.42) for element 2. We obtain
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(9.64)

so the coefficient for I + 1 = 3, J + 2 = 2 is 0.5 in element 2.

In this, the third example, we consider the corner finite volume, that is the one
associated with node 2, element 3, and the basis function identified with node 2, that is I
+ 2 = 2 and J + 2 = 2. Substitution in Eq. (9.42) gives

The finite volume perimeter of interest is

so Eq. (9.58) becomes, where  is the segment connecting node 2 and point G,

The normal vector to  is given by (see Eqs. (9.47) to (9.49))

and

The next step is to obtain the derivatives of the basis function for φ2(x, y) which we
obtain from Eq. (9.44) and 9.45, that is
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and

We can now evaluate the equation of interest, namely

Thus, the coefficient located at I + 2 = 2, J + 2 = 2 in element 3 is 0.25.

Finally, we consider the case of the contribution to coefficient a33 attributable to element
3, that is I + 1 = 3 and J + 1 = 3 The two segments of the boundary of the finite volume of
interest are

The term of interest is
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(9.69)
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(9.71)

The derivatives of the basis function φ3(x, y) are

and

The values of  and  are computed as follows:
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(9.74)

(9.75)

(9.76)

We can now evaluate our coefficient

Thus the coefficient i = 3, j = 3 of element 3 is − 2

If we evaluate all the coefficients in each element coefficient matrix we obtain for the
line-integral component:

Element 1

Element 2

Element 3

Element 4



(9.77)

9.2.5 Evaluation of the Area Integral
We need to also evaluate integrals in Eq. (9.32) of the form

for the system shown in Fig. 9.7. As an example of how this can be done consider
element 1 shown in Fig. 9.8 which is the same as element 1 in Fig. 9.7 rotated clockwise
45 degrees so that the sides of the element line up with the x and y axes. The value of the
integral does not change by doing this, but the presentation is simplified. Let values of i
and j both be 3.

Figure 9.8: Representation of the finite element configuration for calculation of the
area integral.

The finite volume of interest is the shaded square area in Fig. 9.8. In this example, the
length of the line  is one half the length of the side  The basis function in element 1
identified with node 3 has a value of 1 at node 3 and zero at nodes 1 and 4. Thus, at the
point  c the value of φ3 is 1.0, at the points b and d the values are 0.5. and at e and g the
values are 0.

Two approaches to obtaining this integral are presented. The first is based upon
geometric considerations and the second on upon numerical integration.

Geometric Approach
To obtain the integral of φ3 located under the shaded square, one first calculates the area
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under the triangle Δecg. This is obtained from the equation given in Eq. (8.83) and the
integration formula 8.121 Using this information, the formula for evaluating the integral
is

where  is the determinant of the matrix [P] defined for triangle ecg.

Next subtract the integral

and the integral

from Eq. (9.78). The result is the portion of the integral in Eq. (9.78) under the
weighting function associated with the finite volume located at 3. This calculation
provides the element coefficient value at i = 3, j = 3. More specifically the coefficient
value is

To obtain the value for coefficient at i = 3, j = 4, one uses the value obtained in Eq. (9.79)
and for coefficient at i = 3, j = 1 the value is given by Eq. (9.80). Evaluation of all of the

integrals of the form  for element 1 gives the coefficient matrix:

Because of the geometry, the coefficient matrix for each element, in terms of the local
coordinates I, I + 1, and I + 2, is the same in this example.

Numerical Integration Approach
While the above strategy works for the topology of the special case we are considering, it
is awkward to use in a more general case. An alternative approach uses the
isoparametric transformation concept which we introduced in Section 8.3. In this
approach we transform our coordinate system from (x, y) to (ξ, η) where − 1 ≤ ξ, η ≤ 1.
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The first step is to formulate the transformation equations. As earlier we proceed as
follows:

and

where, referring to Fig. 8.17 we have

For the problem at hand we need to transform our integral from the (x, y) system to the
(ξ, η) system. The new integral takes the form

where J(ξ, η) is the Jacobian of the transformation and defined as

In our example, the square area of interest is such that the (x, y) coordinates are colinear
with (ξ, η). This simplifies the problem since some of the terms in the transformation

vanish and we get for 
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and for 

Using a similar strategy for the other elements of the Jacobian we get

The integral appearing in Eq. (9.89) now takes the form

So, for the case of φi(x, y) = φ3(x, y) we have

The next step is to determine φ3[P(ξ, η), Q(ξ, η)]. To do this we need to write out the
definition of φ3(x, y) which is obtained from the definition we have used earlier, namely
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Substitution for the values of I, I + 2, and I + 3 from Fig. 9.8 into this expression we get

which, after providing the location values, gives

or

This looks pretty messy, but there is an easy solution to the evaluation of this expression.
Recall that we introduced Gaussian quadrature in Section 3.1.6 Let us try one Gauss
point to see how well this procedure approximates this integral. The value of the single
Gauss point is (0, 0) and the weighting is 2. Using this information, Eq. (9.100) becomes



(9.101)

This is the same value we obtained from geometric consideration in Eq. (9.81). Note that
this approach is general and holds for any finite volume mesh.

9.2.6 Global Matrix Assembly

We are now in a position to evaluate our global coefficients  and a34. We do
this using the element matrices presented earlier and Table 9.1 relating the global and
local matrix coefficients. For example, the line integral global values for a31, a33 and a34
we obtain are as shown in the following table:

Table 9.1 Table relating global and local coordinates.

Global
1 2 3 4 5 Element
I I+1 I+2 1

Local I+2 I I+1 2

I+2 I+1 I 3

I+1 I I+2 4

element
1 2 3 4

a31 1.0 0.5

coefficient a33 −2 −1 −2 −1

a34 1.0 0.5

.

For the area integral we get

element
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(9.103)

(9.104)

(9.105)

(9.106)

(9.107)

(9.108)

1 2 3 4
a31 0.125 0.125

coefficient a33 0.25 0.25 0.25 0.25

a34 0.125 0.125

.

The complete line-integral global matrix is

and the complete area integral global matrix is

The combined final coefficient matrix is

Collecting the information from the above table and assuming κ = 1, we obtain

Returning to our equation we have

If κ is taken as 0, the result becomes u3 = 0.5.
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9.3 Finite Volume Example Problem Two
9.3.1 Problem Definition
Example problem 2 is provided to illustrate the application of the finite volume
approach when a cross derivative is involved. The problem is generated by rotation of
the problem presented as example 1 and is shown in Fig. 9.9. The equations in the
rotated system exhibit a cross derivative. The solution to both the first and second
problems should be the same for the case of κ = 0:



(9.114)
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Figure 9.9: Definition diagram for example two of the finite volume methods
considered in Section 9.3.

The domain of interest is presented in Fig. 9.9, and as in example problem 1, has four
triangular elements and five finite volumes. The finite volumes consist of the square in
the middle and the four triangles in the corners (note that each corner volume is actually
made up of two smaller elements).

9.3.2 Weighted Residual Formulation

Beginning with Eq. (9.109) we have, after substituting our approximation  for
u(x, y), applying the method of weighted residuals using wi(x, y) as the weighting
function, and finally, employing Green’s theorem to the second-order term

where, as earlier in Section 9.2 on page 246, the number of elements identified with
(attached to) each node is give by Ei.

Let us now return to our example problem. We can write Eq. (9.114) in matrix form for
the problem presented in Fig. 9.9 as

where the coefficients aij are given by

Note that each row of the matrix corresponds to a finite volume and each column
contains information from all finite element nodes connected to that finite volume.
Thus, for example, a15 is zero because the volume centered at node 1 does not have a
connection to the finite element node 5.

At this point we realize, as in the first example, that we have only one unknown, namely
node 3, because Dirichlet conditions are specified at all the other nodes and thus the
values there are known. The resulting system of equations reduces to
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or

The coefficient a31, is of the form (where, as earlier, the first index, in this case 3, is the
element number and the second index 1 is the connecting node).

9.3.3 Element Coefficient Matrices
Let us evaluate this coefficient for element 1. As in example problem 1, we need to
consider two sides of the finite volume centered at node 3, namely the side  and 
From

we obtain for 

Similarly,

which gives for 
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where  is given by Eq. (9.56).

Using Eqs. (9.22) and 9.23 on page 243 we obtain

We now substitute Eqs. 9.121–9.127 into Eq. (9.119) and obtain for the coefficient a31 of
element 1

Notice that this coefficient, namely that for a31 for element 1, is equivalent to the element
coefficient at I + 1, J in element 1. Returning to element coefficient matrix 1 in example
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problem 1, (the matrix noted as Eq. (9.74) on page 256) you will observe that the
coefficient at I + 1, J has the value 1.0. In fact all the coefficient values in all the element
matrices are the same for the line-integral part of problem 1 and Problem 2. In fact,
since Table 9.1 on page 249 that relates the global coordinates to the local coordinates is
the same for both example problems, the global matrix for the line-integral part is also
the same for both problems. This is a result of the peculiar nature of the specific example
problems considered here and would not generally be the case. As a result, it is not
necessary to detail the coefficient evaluation of the matrix equation for this problem.

9.3.4 Evaluation of the Source Term
The remaining term has the following form

which for constant Q over each finite volume becomes

As an example, for element 1 and finite volume 3 we obtain

where [P] is identified with element 1.

If we let Q = 0. we have for our equation

which is the same answer we obtained in the original system before rotation. If we let Q3
= 1 we obtain

and



(9.134)

The above provides the protocol for solving time-independent problems using the finite-
volume method for problems with variable coefficients and cross-derivatives. Extension
to time dependent problems follows the strategy to be provided in Chapter 10.
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9.4 Chapter Summary
The finite volume method is presented. A weighted residual strategy is used that is
consistent with the finite element method. The formulation of the element coefficient
matrices and their collection into the global coefficient matrix is analogous to the
procedure used earlier with the finite element method. Two examples are presented in
detail. The second is the equivalent of the first but for the rotation of the coordinate
system so that a cross-derivative appears in the equation.

9.5 Problems
1. Fig. 9.10 illustrates five finite volumes and four finite elements. The finite volume

associated with node 5 is square and shaded. The other finite volumes are triangular
and centered at the nodes 1–4. Assume the element coefficient matrices are as
follows ( e is the number of the element)

The relationship between the global and local element node numbers is given below. The
top row of numbers are the global node numbers. The second row of numbers contains
the corresponding element node numbers for the first element, element 1 with element
entries aij.

Global Element

1 2 3 4 5

1 2 3 1 (a)

Local 1 3 2 2 (b)

3 2 1 3 (c)



2 1 5 4 (d)

The global coefficient matrix will have 5 rows and 5 columns as shown below. Your task
is to populate this matrix with the values from the four element matrices shown in Eqs.
(9.135)–(9.140). One coefficient is completed as an example:

2. Please fill in the spaces in the columns with an X where appropriate. For example in
the first row we ask what methods generate a 4 × 4 element coefficient matrix. Finite
volume may do so and isoparametric always does, so a X is placed in the first and
third columns. A blank is not counted one way or the other.

Attribute FV FE Iso

method generates a 4 × 4 element coefficient matrix X X

uses prism with polygonal cross section for weighting function

uses basis function as weighting function

employs basis functions defined on triangular subspaces

uses basis functions defined on a natural coordinate system

approximation uses Green’s theorem (integration by parts)

elements are defined by straight lines connecting nodes

uses Jacobian matrix in formulation

conserves extensive property (for example mass)

type two (specified flux) boundary conditions are

an integral part of the approximate equation

employs the Dirac delta function in the equation formulation

approximation of a derivative is constant over an element

elements are, in general, four-sided shapes with

straight sides and no sides parallel

can easily provide small elements in the

neighborhood of singularities, for example, a well

creates a 4 × 4 element coefficient matrix

uses method of weighted residuals in formulation

FV = is finite Volume,

FE = is finite Element,
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iso = is isoparametric

1. Consider the finite volume mesh presented in Fig. 9.11 the following figure. the
letters are the finite volumes, the italic numbers are the elements and the rest are
nodes. Please answer the following:

a. In the global matrix, how many non-zero coefficients will be found in the first line
of the matrix 

b. How many zero coefficients will be found in the matrix of the first line of the
global matrix equation _____?

c. What equations (row numbers) will contain information from node 1

___________________?

d. Given the equations

what is the value of E8 ______?

Figure 9.10: The figure illustrates four triangular elements and five finite volumes. The
finite volume associated with node 5 is shaded. The finite volume numbers correspond



to the nodal numbers and the bold numbers are associated with the finite elements.

Figure 9.11: Definition sketch for question 9.5.
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Chapter 10
Initial Boundary-Value Problems
In this section we will extend our two-space dimensional analysis to consider time-
dependent problems. The equation we will consider is the convective-diffusion
equations, that is

with boundary and initial conditions

We now proceed in a fashion analogous to that presented in Section 6.5 on page 158. The
first step is to define the approximation to u(x, y), namely 

Note that the unknown coefficients uj (t) are now a function of time and the
basis functions φi (x, y) are a function only of space.

We now define a residual as

From Galerkin’s method we have

Substituting Eq. (10.6) into Eq. (10.7) we have
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If we now substitute Eq. (10.5) into Eq. (10.8) we obtain

Following our earlier protocol we now apply Green’s theorem to the second-order term
(it is also possible to apply Green’s theorem to the first order in space term). You obtain

We can now write this expression in matrix form to obtain

where

Of the above equations, only Eq. (10.14) is new; the rest we have encountered earlier. Let
us consider the specific case of triangular elements. We have the following for one
element:
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Note that, assuming the coefficient a to be a constant over the element we have

We can integrate the term appearing in Eq. (10.17) using the relationship given earlier
for integrating terms of this kind; the relationship is

The coefficients mI, mI + 1, and mI + 2 are for Eq. (10.17) 1, 1, and 0. The zero value exists
because we have only two linear basis functions represented in Eq. (10.17). We can now
evaluate the integral as follows.

For the case of i = j we have
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The matrix equation Eq. (10.12) represents a set of N ordinary differential equations in
time. We now approximate the time derivative using finite difference methods to obtain

Grouping terms we obtain

which can be simplified to read

where

and

Thus we can solve Eq. (10.23) symbolically as
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10.1 Mass Lumping
While the form of the [N] matrix as presented can be, and is used in practice, there are
alternative strategies. One approach is to lump the matrix [N]. Lumping is defined as
follows

Under this strategy the diagonal elements of [N] are the only non-zero elements.
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10.2 Chapter Summary
In this chapter we extended the finite difference and finite element methods introduced
earlier to tackle the transient case.

10.3 Problems
1. Assume that you want to solve the equation, New

using linear the approximation

a. assuming you want to employ a linear approximation, that is one where there are
no second degree terms in φj(x, y, t), what two geometric forms can φj(x, y, t)
take?

b. sketch one three-dimensional finite element of each form with views showing the
x − y and x − t planes.

c. explain why the bandwidth of the coefficient matrix increases when the

formulation based upon  is used rather

than 
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Chapter 11
Boundary-Value Problems in Three Space
In this chapter we will extend the concepts introduced earlier for the solution of
problems in two space dimensions to problems in three space dimensions. We begin
with the finite difference approximations.

11.1 Finite Difference Approximations
The point of departure for the approximation of three-dimensional problems using finite
difference methods is the material found in Section 7 on page 167. Eq. (7.5) which
represented a function in the (x, y) coordinate system using Lagrange polynomials is
now expanded to consider three space dimensions and is written as

where k is the index and p is the order of the Lagrange polynomial in the z direction.

We can now obtain an approximation of the derivatives we normally encounter in the
solution of the spatially-dependent partial-differential equations of interest to us. For
the first order derivatives we have

and for the second derivatives we obtain



(11.8)

(11.9)

Now, let us use these approximations in the equation

where αxx, and βz are known coefficients which may be a function

of space. Substitution of the approximations for the node (iΔx, jΔy, kΔz) in Eq. (11.8)
yields

The computational molecule for this finite difference approximation is seen in Fig. 11.1.
The reference point is at (iΔx, jΔy, kΔz). It is a straight-forward extension of the two
dimensional finite difference in space molecule; the only change is the number of
subscripts and the addition of the vertical space dimension. In contrast to the two
dimensional case, each equation (row) of the matrix equation will now have seven non-
zero coefficients organized into seven diagonal bands. The matrix is generated by using
the template of Eq. (11.9) for each node in the finite difference mesh. Boundary
conditions are handled in the same manner as for the two-dimensional problem.



(11.10)

Figure 11.1: Computational molecule for three space dimension finite difference
approximation.

11.2 Finite Element Approximations
The extension of the two-dimensional finite element approximation method can be
approached in two ways, the choice depending upon the nature of physical system being
considered. We will illustrate the methodology using the example equation presented
above, that is

The first step is to employ the Galerkin method of approximation to obtain the weighted
residual formulation. To do this we first define a residual by substituting the sought-
after function u(x, y, z) with an approximate value . The result is



(11.11)

(11.12)

(11.13)

The second step is to weight the residual defined in Eq. (11.11) by a test function i(x, y,
z), the nature of which will be explained shortly, and integrate over the domain of
interest. The region Ω(x, y, z) is now three-dimensional (see Fig. 11.2), rather than the
two-dimensional form shown in Fig. 8.9 on page 8.9. This process yields

Figure 11.2: Three-dimensional region as encountered in three-dimensional finite
element analysis.

The approximating function  is now approximated as

where the functions j(x, y, z) are the same as those used as the weighting functions in
Eq. (11.12). Substitution of Eqs. (11.13) and (11.11) into Eq. (11.12) yields



(11.14)

(11.15)

The next step is to introduce the finite element notation which replaces the domain Ω
with a series of E finite elements. in Eq. (11.14). Application of Green’s theorem changes
the form of the second order terms in this equation. In the process, a line integral along
the boundary ∂Ω is created. The result is

We now introduce the concept of integration over finite elements where e denotes the
element number. This yields



(11.16)

where the subscript e on the coefficients a indicate that they are considered as element-
wise constant values. Imbedded in Eq. (11.16) are the i(x, y, z) and i(x, y, z) basis and
weighting functions respectively.

The remaining task is to define the functions i(x, y, z) and j(x, y, z) which are defined
element-wise as was done in Section 8.2.1 on page 196. There natural choice for three
dimensional simulation is the three-dimensional extension of the triangle, the
tetrahedron. A typical tetrahedral element is seen in Fig. 11.3.

Figure 11.3: Tetrahedral finite elements to be used in three-dimensional finite element
analysis.

To formulate the appropriate tetrahedral basis functions we follow the same procedure
we did for triangles (see Section 8.2.1). We begin by expressing the functions i(x, y, z)
using the expression definition of a the triangular-based pyramid, that is,



(11.17)

(11.18)

(11.19)

(11.20)

(11.21)

(11.22)

and impose the requirements of a basis function, namely that i(x, y, z) must be unity at
the node for which it is defined (here node i) and zero at all other nodes. Thus we can
write the following set of equations for I(x, y, z), where I is the local element index as
seen in Fig. 11.3

The solution to Eq. (11.17) is given as

where

and



(11.23)

(11.24)

(11.25)

The equations for I + 2, I + 3, and I + 3 can be obtained by rotating through the remaining
nodes and populating the various determinants using the right-hand rule. As an
example,

Recall that the area of an element is related to its determinant. (see p. 199)

Remember also that with triangles we had to number the nodes (corners) in a
counterclockwise manner to assure that the determinant was positive. Similarly in the
case of tetrahedral elements the numbering matters. One scheme that assures that the
determinant in Eq. (11.23) will be positive is the following: take any node location and
call it I. Now select a side and number the nodes increasing counterclockwise. For
example in Fig. 11.3 we number the side as I, I + 1, I + 2 and the fourth node, off the
plane of the others, on the opposite side of the tetrahedral element, is I + 3 In the
evaluation process, the values of I, I + 1, I + 2 and I + 3 would be replaced by global
nodal values with their associated locations when populating the determinants noted
above.

The rest of the process of formulating and solving the discrete equations follows the
process outlined in Section 8.2.1. The extension to the transient case is also achieved
using the same procedure as outlined for the triangular element case in Section 10 on
page 273.

There remains to be considered the term

In the three dimensional formulation this is a integral over the boundary of the area of
interest, considered on element at a time. Consequently this integration is the same as
that considered for triangular elements. In this case, the i(x, y, z) term is a triangle on
the surface of the domain. The integrated values are then allocated to each of the three
nodes per element.

Integrations in three dimensions can be achieved using a formula analogous to that used
for triangles. The formula is



(11.26)

where, as earlier, mI is the power to which the polynomial is raised



11.3 Chapter Summary
In this chapter we extended our earlier analysis of finite difference and finite element
from two space dimensions to three. The fundamental formulation in three dimensions
for finite difference is very similar to that for two dimensions. In the case of finite
elements, it is necessary to introduce a new finite element based upon the tetrahedron.
Again, the basic theory is analogous to that developed for two dimensions. Although we
did not consider collocation or finite volume extensions to three dimensions, such
extensions introduce no new concepts.
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Chapter 12
Nomenclature

Latin alphabet

line segment connection node 2 to point G

ai known constant

aij matrix coefficient of matrix [A]

axx,axy,ayx,ayy components of coefficient tensor

line segment connecting point A to point F

b constant

bj known constant

bij coefficient in matrix [B]

c constant

c (x, t) concentration

d a constant

ei value in vector [e]

e element number index when used as superscript

D dispersion coefficient

f(x) function of coordinate x

approximation of function f (x)

f (xi) function f (x) evaluated at location xi



line segment connecting point E to point A

line segment connecting point F to point B

g(x) function of coordinate x

line segment connecting point G to point B

line segment connecting point G to point C

hk
i Hermite cubic basis function of type 0 at node i

h1
i Hermite cubic basis function of type 1 at node i

i unit vector in x coordinate direction

j unit vector in y coordinate direction

ℓn
j Lagrange polynomial of degree n defined at node j

L characteristic length and also natural coordinate system
coordinate

mI power to which the function φI, is raised e.g. φmII

m degree of Lagrange polynomial in time

n normal coordinate in (n, τ) coordinate system

O(x) order of x

Pe Peclet number

polynomial of degree n defined in the x coordinate direction

Q flow rate entering a pipe

u (x) a function of coordinate x



approximation of u (x)

ui value of variable u at node location i

v velocity

ui, j value of u at location x + iΔx, j + jΔy

n degree of Lagrange polynomial in space

xI x coordinate location for local element index I

yI y coordinate location for local element index I

ki values associated with Runge-Kutta formulations

T temperature and also indicates
transpose of a matrix when used as a superscript

wi(x) weighting function defined in x coordinate system

w(x, y) weighting function defined in x − y coordinate system

R(x) residual defined in x coordinate direction

R(x, y) residual defined in x coordinate direction

xi nodal location i in along the x − y coordinate system

Greek alphabet

β r eal coefficient

βi constant

δij Kronecker delta

Γ diffusivity

δ(x − xi) Dirac delta function defined for location 



measure of error

ξ natural coordinate

η natural coordinate

θ trigonometric angle

κ coefficient

λi eigenvalue

Πj
i multiplication operator

ρ density

σ coordinate direction for integration along a two-dimensional
element boundary

τ unit vector in τ coordinate direction

τ tangential coordinate in (n, τ) coordinate system

φj(x, y) triangular basis function defined at node j

χ local coordinate

ψj(ξ, η)i basis function defined at node j

Matrices

[A] space matrix

{ } error vector

[J] Jacobian matrix

[P] matrix of nodal location information used in defining element
matrix coefficients



Expressions

error between function u and its approximation 

E(θ) ≡ f(θ) − P2(θ) error as a function of coordinate θ

h ≡ xi − xi − 1 incremental distance

mathematical operator as defined

pn(x) = Πi = n
i = 0(x −

xi)
 

Δx ≡ xi + 1 − xi spatial increment in coordinate x

Δy ≡ yj + 1 − yj spatial increment in coordinate y

Δt ≡ t − ti − 1 increment in time t

∂Ω line or surface of Ω when Ω is an area or volume respectively

∂Ωe
I line emanating from node I in element e

∂ΩD segment of boundary of Ω designated as a Dirichlet boundary
condition

∂ΩN segment of boundary of Ω designated as a Neumann boundary
condition



Index
numerical integration common formulas, 56

approximation of a function, 4

backward dierence approximation, 36, 161

backward in time approximation, 147

basis functions, 85, 95, 184, 217, 273

Lagrange, 85

triangular, 196

boundary conditions, 107, 120, 144, 163, 273

Dirichlet, 149

Neumann, 206

boundary-value problems in three space coordinates, 279

centered in space time approximation, 147

chapter summary

chapter eight, 230

chapter eleven, 285

chapter five, 133

chapter four, 78

chapter nine, 266

chapter one, 24

chapter seven, 175

chapter six, 162

chapter ten, 276

chapter three, 62

chapter two, 46

collocation method, 123, 124

first-order equations, 123

second-order equations, 126

collocation points, 124

computational molecule, 143

conditional stability, 162



consistency

definition, 72

convergence

definition, 69

coordinate transformation function, 216, 219

coordinates

global, 196

local, 211

natural, 211

cross derivative, 262

finite volume formulation, 241

difference approximation

first derivative, 102

second derivative, 279

difference equation, 73

Dirac delta function, 113, 124, 243

Dirichlet boundary condition, 150, 263

discretization, 2

eigenvalue, 151

eigenvector, 151

element coefficient matrix, 92, 105

for triangular elements, 202

linear elements, 120

error of the approximation, 4

finite dierence formulae, 36

first-order derivative, 42, 43

Hermites, 23

quadratic Lagrange polynomial, 9

Euler forward integration formula, 68

Euler forward integration method example, 68

finite dierence approximation, 35, 169

in three space variables, 279

two space dimensions, 141



finite difference interpretation

of the rst-order Galerkin approximation, 102

of the second-order Galerkin approximation, 111

finite element

approximation in three space variables, 280

approximation over triangles, 195

example problem, 199

approximations over rectangles, 181

Galerkin approximation in time, 158, 161

forward difference approximation, 160

isoparametric, 211

basis functions, 217

tetrahedral, 283

triangular, 196

finite volume

application of Green’s theorem, 241

approximation, 239

approximation t o second-order equations, 112

example problem, 262

example problem 1, 246

element coefficient matrices, 248

evaluation of the area integral, 256

evaluation of the line integral, 249

global matrix assembly, 260

weighted residual formulation, 246

example problem 2

element coefficient matrices, 263

evaluation of the source term, 265

problem definition, 262

weighted residual formulation, 262

finite difference interpreation, 122

finite difference interpretation for second-order equations, 122

finite element and polygon domain, 240

interpretation in terms of finite difference method, 93

mesh, 240



method, 133

normal-tangential boundary condition, 242

vector normalization, 243

weighted residual formulation, 240

weighting function, 84

weighting function in two space dimensions, 240

first derivative difference approximation, 41, 102

flux type boundary condition, 106

forward difference, 35, 160

Galerkin method, 94, 159, 200

finite element approximation in time, 158

for first-order equations, 94

for second-order equations, 102

time approximation

backward difference approximation, 161

Gauss integration, 61

Gauss points, 124

Gauss quadrature, 59, 124

global coefficient matrix, 93, 120, 204, 265

global coordinates, 196

global system, 89

Green’s theorem, 184, 201, 241, 274

Hermite polynomials, 20, 127

development of expression for, 20

implicit approximation, 148

incremental distance h, 35

initial boundary value problems, 273

mass lumping, 276

initial conditions, 67, 144, 163, 273

initial value problems, 67

inner product, 84

integration

finite volume method, 251



for isoparametric finite elements, 227

formula for triangular element, 198

three dimensional finite elements (tetrahedral elements), 285

integration by parts, 103, 117, 159, 184

interpolant, 7

interpolation, 1

interpretation of finite volume method in terms of the finite difference method, 93

isoparametric finite element, 211

basis functions, 217, 218

coordinate transformation functions, 216

example problem, 223

Gauss-quadrature integration, 227

Jacobian calculation, 219

matrix assembly, 228

natural coordinate system, 211

relationship between natural and global coordinates, 225

two-dimensional natural coordinate system, 212

Jacobian, 219

calculation of, 219

Jacobian matrix, 221

Kronecker delta, 5

Lagrange basis functions, 86

Lagrange interpolation, 4, 8, 55

Lagrange polynomials, 35, 55, 96, 141, 162, 170

linear, 5, 85

local coordinate system, 107

quadratic, 8

linear Lagrange polynomial, 207

local coefficient matrix, 187

local coordinates, 88, 98, 104, 191

local Lagrange polynomials, 120

local system, 90

local – global coeffcient transformation matrix, 189

locally defined Lagrange polynomials, 96



mass lumping, 276

matrix assembly isoparametric elements, 228

matrix method of stability analysis, 149

method of weighted residuals, 83, 112, 123, 159, 183, 240

multiple elements, 14

natural coordinate systems

one dimensional natural coordinate systems, 211

two dimensional natural coordinate systems, 212

use in isoparametric integration, 222

Neumann boundary condition, 106, 206

Newton–Cotes quadrature formulae, 55

node, 4

numerical differentiation, 33

general theory, 33

numerical integration, 55

numerical solution of boundary value problems in two space dimensions

finite difference approximations, 169

finite element approximations over rectangles, 181

finite element approximations over triangles, 195

finite volume approximation, 239

numerical solution of boundary value problems in two space dimensions and time,
169

numerical solution of initial boundary-value problems, 139

numerical solution of ordinary differential equations, 67

II, definition of, 6

quadratic Lagrange polynomial, 8

residual error, 83

round-off error, 150

Runge-Kutta

geometric interpretation, 77

second-order form, 75

Runge-Kutta

type formulae, 75



second type or Neumann boundary value problem, 206

second-order derivatives, 43

σ coordinate system, 207

Simpsons rule, 57

stability, 73, 151

example of, 153

example simulation, 156

stability of finite difference approximations to boundary value problems, 149

steady state behavior, 169

subdomain method, 84

tetrahedral element, 284

three space dimensions, 279

finite element approximations, 280

finite-difference approximations, 279

three-point difference formulae, 40

trapezoidal rule, 56

triangular basis functions

formulation, 196

tridiagonal matrix, 161

two dimensional natural coordinate systems, 212

two-dimensional polynomial approximation, 139, 169

two-point difference formulae, 34

two-point formulae from Taylor Series, 37

weighting function, 83, 106, 124, 184

finite volume method, 84

Galerkin’s method, 95

Weirstraus Approximation Theorem, 3
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