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Modern statisticians are familiar with the notion that any finite body of data contains only
a limited amount of information on any point under examination; that this limit is set by
the nature of the data themselves, and cannot be increased by any amount of ingenuity
expended in their statistical examination: that the statistician’s task, in fact, is limited to
the extraction of the whole of the available information on any particular issue.

R. A. Fisher
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Preface

AUDIENCE

This is an introductory textbook in applied statistics and probability for undergraduate
students in engineering and the natural sciences. It begins at a level suitable for those with
no previous exposure to probability and statistics and carries the reader through to a level
of proficiency in various techniques of statistics. This text is divided into two parts: Part I
discusses descriptive statistics, concepts of probability, probability distributions, sampling
distributions, estimation, and testing of hypotheses, and Part II discusses various topics
of applied statistics, including some reliability theory, data mining, cluster analysis, some
nonparametric techniques, categorical data analysis, simple and multiple linear regression
analysis, design and analysis of variance with emphasis on 2k factorial designs, response
surface methodology, and statistical quality control charts of phase I and phase II.

This text is suitable for a one- or two-semester undergraduate course sequence. The
presentation of material gives instructors a lot of flexibility to pick and choose topics
they feel should make up the coverage of material for their courses. However, we feel that
in the first course for engineers and science majors, one may cover Chapter 1 and 2, a
brief discussion of probability in Chapter 3, selected discrete and continuous distributions
from Chapter 4 and 5 with more emphasis on normal distribution, Chapter 7–9, and
couple of topics from Part II that meet the needs and interests of the particular group of
students. For example, some discussion of the material on regression analysis and design
of experiments in Chapter 15 and 17 may serve well. Chapter 11 and 12 may be adequate
to motivate students’ interest in data science and data analytics. A two-semester course
may cover the entire book. The only prerequisite is a first course in calculus, which all
engineering and science students are required to take. Because of space considerations,
some proofs and derivations, certain advanced level topics of interest, including Chapter
20 and 21 on statistical quality control charts of phase I and phase II, are not included in
the text but are available for download via the book’s website: www.wiley.com/college/
gupta/statistics2e.

MOTIVATION

Students encounter data-analysis problems in many areas of engineering or natural science
curricula. Engineers and scientists in their professional lives often encounter situations
requiring analysis of data arising from their areas of practice. Very often, they have to
plan the investigation that generates data (an activity euphemistically called the design
of experiments), analyzes the data obtained, and interprets the results. Other problems
and investigations may pertain to the maintenance of quality of existing products or the
development of new products or to a desired outcome in an investigation of the underlying
mechanisms governing a certain process. Knowing how to “design” a particular investiga-
tion to obtain reliable data must be coupled with knowledge of descriptive and inferential
statistical tools to analyze properly and interpret such data. The intent of this textbook is

xvii
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to expose the uninitiated to statistical methods that deal with the generation of data for
different (but frequently met) types of investigations and to discuss how to analyze and
interpret the generated data.

HISTORY

This text has its roots in the three editions of Introductory Engineering Statistics, first
co-authored by Irwin Guttman and the late, great Samuel Wilks. Professor J. Stuart
Hunter (Princeton University), one of the finest expositors in the statistics profession, a
noted researcher, and a colleague of Professor Wilks, joined Professor Guttman to produce
editions two and three. All editions were published by John Wiley & Sons, with the third
edition appearing in 1982. The first edition of the current text was published in 2013.

APPROACH

In this text, we emphasize both descriptive and inferential statistics. We first give details of
descriptive statistics and then continue with an elementary discussion of the fundamentals
of probability theory underlying many of the statistical techniques discussed in this text.
We next cover a wide range of statistical techniques such as statistical estimation, regres-
sion methods, nonparametric methods, elements of reliability theory, statistical quality
control (with emphasis on phase I and phase II control charts), and process capability
indices, and the like. A feature of these discussions is that all statistical concepts are sup-
ported by a large number of examples using data encountered in real-life situations. We
also illustrate how the statistical packages MINITAB R© Version 18, R R© Version 3.5.1, and
JMP R© Version 9, may be used to aid in the analysis of various data sets.

Another feature of this text is the coverage at an adequate and understandable level
of the design of experiments. This includes a discussion of randomized block designs,
one- and two-way designs, Latin square designs, 2k factorial designs, response surface
designs, among others. The latest version of this text covers materials on supervised and
unsupervised learning techniques used in data mining and cluster analysis with a great
exposure in statistical computing using R software and MINITAB. As previously indicated,
all this is illustrated with real-life situations and accompanying data sets, supported by
MINITAB, R, and JMP. We know of no other book in the market that covers all these
software packages.

WHAT IS NEW IN THIS EDITION

After a careful investigation of the current technological advancement in statistical
software and related applications as well as the feedback received from the current
users of the text, we have successfully incorporated many changes in this new edition.

• R software exhibits along with their R code are included.
• Additional R software help for beginners is included in Appendix D.
• MINITAB software instructions and contents are updated to its latest edition.
• JMP software instructions and contents are updated to its latest edition.
• New chapters on Data Mining and Cluster analysis are included.
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• An improved chapter on Response Surface Design has brought back to the printed
copy from the book website.

• The p-value approach is emphasized, and related practical interpretations are
included.

• The visibility of the theorems and definitions are improved and well formatted.
• Graphical exhibits are provided to improve the visualizations.

HALLMARK FEATURES

Software Integration

As previously indicated, we incorporate MINITAB and R throughout the text and
complete R exhibits with their outputs (Appendix D) and associated JMP exhibits
are available on the book’s website: www.wiley.com/college/gupta/statistics2e. Our
step-by-step approach to the use of the software packages means no prior knowledge
of their use is required. After completing a course that uses this text, students will
be able to use these software packages to analyze statistical data in their fields of
interest.

Breadth of Coverage

Besides the coverage of many popular statistical techniques, we include discussion
of certain aspects of sampling distributions, nonparametric tests, reliability theory,
data mining, cluster analysis, analysis of categorical data, simple and multiple linear
regression, design of experiments, response surface methodology, and phase I and
phase II control charts.

Design of experiments, response surface methodology, regression analysis
are treated in sufficient breadth and depth to be appropriate for a two-course sequence in
engineering statistics that includes probability and the design of experiments.

Real data in examples and homework problems illustrate the importance of statistics
and probability as a tool for engineers and scientists in their professional lives. All the data
sets with 20 or more data points are available on the website in three formats: MINITAB,
Microsoft Excel, and JMP.

Case studies in most chapters further illustrate the importance of statistical tech-
niques in professional practice.

STUDENT RESOURCES

Data sets for all examples and homework exercises from the text are available
to students on the website in MINITAB, Microsoft Excel, and JMP format. The
sample data sets were generated using well-known statistical sampling procedures,
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ensuring that we are dealing with random samples. An inkling of what this may entail
is given throughout the text (see, for example, Section 7.1.2). The field of sampling
is an active topic among research statisticians and practitioners, and references to
sampling techniques are widely available in books and journal articles. Some of these
references are included in the bibliography section.

Other resources on the book website www.wiley.com/college/gupta/statistics2e
available for download include:
Solutions Manual to all odd numbered homework exercises in the text.

INSTRUCTOR RESOURCES

The following resources are available to adopting instructors on the textbook
website: www.wiley.com/college/gupta/statistics2e.

Solutions Manual to all homework exercises in the text.
Lecture slides to aid instructors preparing for lectures.
Data sets for all examples and homework exercises from the book, in three

formats: Minitab, Microsoft Excel, and JMP.

Errata We have thoroughly reviewed the text to make sure it is as error-free as
possible. However, any errors discovered will be listed on the textbook website. If you
encounter any errors as you are using the book, please send them directly to the authors
bcgupta@maine.edu, so that the errors can be corrected in a timely manner on the website,
and for future editions. We also welcome any suggestions for improvement you may have,
and thank you in advance for helping us improve the book for future readers.
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Chapter 1

INTRODUCTION

Statistics, the discipline, is the study of the scientific method. In pursuing this discipline,
statisticians have developed a set of techniques that are extensively used to solve problems
in any field of scientific endeavor, such as in the engineering sciences, biological sciences,
and the chemical, pharmaceutical, and social sciences.

This book is concerned with discussing these techniques and their applications for
certain experimental situations. It begins at a level suitable for those with no previous
exposure to probability and statistics and carries the reader through to a level of proficiency
in various techniques of statistics.

In all scientific areas, whether engineering, biological sciences, medicine, chemical,
pharmaceutical, or social sciences, scientists are inevitably confronted with problems that
need to be investigated. Consider some examples:

• An engineer wants to determine the role of an electronic component needed to detect
the malfunction of the engine of a plane.

• A biologist wants to study various aspects of wildlife, the origin of a disease, or the
genetic aspects of a wild animal.

• A medical researcher is interested in determining the cause of a certain type of cancer.
• A manufacturer of lenses wants to study the quality of the finishing on intraocular lenses.
• A chemist is interested in determining the effect of a catalyst in the production of

low-density polyethylene.
• A pharmaceutical company is interested in developing a vaccination for swine flu.
• A social scientist is interested in exploring a particular aspect of human society.

In all of the examples, the first and foremost work is to define clearly the objective
of the study and precisely formulate the problem. The next important step is to gather
information to help determine what key factors are affecting the problem. Remember
that to determine these factors successfully, you should understand not merely statistical
methodology but relevant nonstatistical knowledge as well. Once the problem is formu-
lated and the key factors of the problem are identified, the next step is to collect the

Statistics and Probability with Applications for Engineers and Scientists using MINITAB, R and JMP,
Second Edition. Bhisham C. Gupta, Irwin Guttman, and Kalanka P. Jayalath.
c© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
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2 1 Introduction

data. There are various methods of data collecting. Four basic methods of statistical data
collecting are as follows:

• A designed experiment
• A survey
• An observational study
• A set of historical data, that is, data collected by an organization or an individual in an

earlier study

1.1 DESIGNED EXPERIMENT

We discuss the concept of a designed experiment with an example, “Development of Screen-
ing Facility for Storm Water Overflows” (taken from Box et al., 1978, and used with
permission). The example illustrates how a sequence of experiments can enable scientists
to gain knowledge of the various important factors affecting the problem and give insight
into the objectives of the investigation. It also indicates how unexpected features of the
problem can become dominant, and how experimental difficulties can occur so that certain
planned experiments cannot be run at all. Most of all, this example shows the importance
of common sense in the conduct of any experimental investigation. The reader may rightly
conclude from this example that the course of a real investigation, like that of true love,
seldom runs smoothly, although the eventual outcome may be satisfactory.

1.1.1 Motivation for the Study
During heavy rainstorms, the total flow coming to a sewage treatment plant may exceed
its capacity, making it necessary to bypass the excess flow around the treatment plant,
as shown in Figure 1.1.1a. Unfortunately, the storm overflow of untreated sewage causes
pollution of the receiving body of water. A possible alternative, sketched in Figure 1.1.1b, is
to screen most of the solids out of the overflow in some way and return them to the plant for
treatment. Only the less objectionable screened overflow is discharged directly to the river.

To determine whether it was economical to construct and operate such a screening
facility, the Federal Water Pollution Control Administration of the Department of the
Interior sponsored a research project at the Sullivan Gulch pump station in Portland,
Oregon. Usually, the flow to the pump station was 20 million gallons per day (mgd), but
during a storm, the flow could exceed 50 mgd.

Figure 1.1.2a shows the original version of the experimental screening unit, which
could handle approximately 1000 gallons per minute (gpm). Figure 1.1.2a is a perspective
view, and Figure 1.1.2b is a simplified schematic diagram. A single unit was about seven ft
high and seven ft in diameter. The flow of raw sewage struck a rotating collar screen at a
velocity of five to 15 ft/s. This speed was a function of the flow rate into the unit and hence
a function of the diameter of the influent pipe. Depending on the speed of the rotation of
this screen and its fineness, up to 90% of the feed penetrated the collar screen. The rest
of the feed dropped to the horizontal screen, which vibrated to remove excess water. The
solids concentrate, which passed through neither screen, was sent to the sewage treatment
plant. Unfortunately, during operation, the screens became clogged with solid matter, not
only sewage but also oil, paint, and fish-packing wastes. Backwash sprays were therefore
installed for both screens to permit cleaning during operation.
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(b)
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Figure 1.1.1 Operation of the sewage treatment plant: (a) standard mode of opera-
tion and (b) modified mode of operation, with screening facility, F = flow; S = settleable
solids.

1.1.2 Investigation
The objective of the investigation was to determine good operating conditions.

1.1.3 Changing Criteria
What are good operating conditions? Initially, it was believed they were those resulting
in the highest possible removal of solids. Referring to Figures 1.1.1b and 1.1.2a, settleable
solids in the influent are denoted by S0 and the settleable solids in the effluent by S1. The
percent solids removed by the screen is therefore y = 100(S0 − S1)/S0. Thus, initially, it
was believed that good operation meant achieving a high value for y. However, it became
evident after the first set of experiments were made, that the percentage of the flow retreated
(flow returned to treatment plant), which we denote by z, also had to be taken into account.
Referring to Figures 1.1.1b and 1.1.2a, influent flow to the screens is denoted by F0 and
effluent flow from the screens to the river by F1. Thus, z = 100(F0 − F1)/F0.
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Figure 1.1.2 Original version of the screening unit (a) detailed diagram and (b) simpli-
fied diagram.
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1.1.4 A Summary of the Various Phases of the
Investigation

Phase a

In this initial phase, an experiment was run in which the roles of three variables were
studied: collar screen mesh size (fine, coarse), horizontal screen mesh size (fine, coarse),
and flow rate (gpm). At this stage,

1. The experimenters were encouraged by the generally high values achieved for y.
2. Highest values for y were apparently achieved by using a horizontal screen with a

coarse mesh and a collar screen with fine mesh.
3. Contrary to expectation, flow rate did not show up as an important variable

affecting y.
4. Most important, the experiment was unexpectedly dominated by the z values, which

measure the flow retreated. These were uniformly very low, with about 0.01% of the
flow being returned to the treatment plant and 99.9% leaving the screen for discharge
into the river. Although it was desirable that the retreated flow be small, the z values
were embarrassingly low. As the experimenters remarked, “[T]he horizontal screen
produced a solid concentrate . . .dry enough to shovel . . . . This represented a waste
of effort of concentrating because the concentrated solids were intended to flow from
the units.”

Phase b

It was now clear (i) that z as well as y were important and (ii) that z was too low. It
was conjectured that the matters might be improved by removing the horizontal screen
altogether. Another experiment was therefore performed with no horizontal screen. The
speed of rotation of the collar screen was introduced as a new variable.

Unfortunately, after only two runs of this experiment, this particular phase had to be
terminated because of the excessive tearing of the cloth screens. From the scanty results
obtained it appeared, however, that with no horizontal screen high solid removal could be
achieved with a higher portion of the flow retreated. It was therefore decided to repeat
these runs with screens made of stainless steel instead of cloth.

Phase c

A third experiment, using stainless steel collar screens of two mesh sizes, similar to that
attempted in phase b, was performed with the same collar screen mesh size, collar screen
speed (rpm), and flow rate (gpm) used before.

In this phase, with a stainless steel collar screen, high removal rates y were possible
for eight sets of conditions for the factors just mentioned. However, these high y values
were obtained with retreated flow z at undesirably high values (before, they had been too
low). The objective was to get reasonably small values for z, but not so small as to make
shoveling necessary; values between 5% and 20% were desirable. It was believed that by
varying flow rate and speed of rotation of the collar screen, this objective could be achieved
without sacrificing solid removal.
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Phase d

Again, using a stainless steel collar screen, another experiment, with two factors, namely
collar screen speed (rpm) and flow rate (gpm),set at two levels each, was run. This time,
high values of solid removal were maintained, but unfortunately, flow retreated values were
even higher than before.

Phase e

It was now conjectured that intermittent back washing could overcome the difficulties.
This procedure was now introduced with influent flow rate and collar screen mesh varied.

The results of this experiment lead to a removal efficiency of y = 89% with a retreated
flow of only z = 8%. This was regarded as a satisfactory and practical solution, and the
investigation was terminated at that point.

For detailed analysis of this experiment, the reader should refer to Box et al. (1978,
p. 354). Of course, these types of experiments and their analyses are discussed in this text
(see Chapter 18).

1.2 A SURVEY

The purpose of a sample survey is to make inferences about certain characteristics of a
population from which samples are drawn. The inferences to be made for a population
usually entails the estimation of population parameters, such as the population total, the
mean, or the population proportion of a certain characteristic of interest. In any sample
survey, a clear statement of its objective is very important. Without a clear statement
about the objectives, it is very easy to miss pertinent information while planning the
survey that can cause difficulties at the end of the study.

In any sample survey, only relevant information should be collected. Sometimes trying
to collect too much information may become very confusing and consequently hinder the
determination of the final goal. Moreover, collecting information in sample surveys costs
money, so that the interested party must determine which and how much information
should be obtained. For example, it is important to describe how much precision in the
final results is desired. Too little information may prevent obtaining good estimates with
desired precision, while too much information may not be needed and may unnecessarily
cost too much money. One way to avoid such problems is to select an appropriate method
of sampling the population. In other words, the sample survey needs to be appropriately
designed. A brief discussion of such designs is given in Chapter 2. For more details on
these designs, the reader may refer to Cochran (1977), Sukhatme and Sukhatme (1970),
or Scheaffer et al. (2006).

1.3 AN OBSERVATIONAL STUDY

An observational study is one that does not involve any experimental studies. Conse-
quently, observational studies do not control any variables. For example, a realtor wishes
to appraise a house value. All the data used for this purpose are observational data. Many
psychiatric studies involve observational data.
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Frequently, in fitting a regression model (see Chapters 15 and 16), we use observational
data. Similarly, in quality control (see Chapters 20 and 21), most of the data used in
studying control charts for attributes are observational data. Note that control charts
for attributes usually do not provide any cause-and-effect relationships. This is because
observational data give us very limited information about cause-and-effect relationships.

As another example, many psychiatric studies involve observational data, and such
data do not provide the cause of patient’s psychiatric problems. An advantage of obser-
vational studies is that they are usually more cost-effective than experimental studies.
The disadvantage of observational studies is that the data may not be as informative as
experimental data.

1.4 A SET OF HISTORICAL DATA

Historical data are not collected by the experimenter. The data are made available to
him/her.

Many fields of study such as the many branches of business studies, use historical data.
A financial advisor for planning purposes uses sets of historical data. Many investment
services provide financial data on a company-by-company basis.

1.5 A BRIEF DESCRIPTION OF WHAT IS
COVERED IN THIS BOOK

Data collection is very important since it can greatly influence the final outcome of subse-
quent data analyses. After collection of the data, it is important to organize, summarize,
present the preliminary outcomes, and interpret them. Various types of tables and graphs
that summarize the data are presented in Chapter 2. Also in that chapter, we give some
methods used to determine certain quantities, called statistics, which are used to summa-
rize some of the key properties of the data.

The basic principles of probability are necessary to study various probability distri-
butions. We present the basic principles of elementary probability theory in Chapter 3.
Probability distributions are fundamental in the development of the various techniques of
statistical inference. The concept of random variables is also discussed in Chapter 3.

Chapters 4 and 5 are devoted to some of the important discrete distributions, con-
tinuous distributions, and their moment-generating functions. In addition, we study in
Chapter 5 some special distributions that are used in reliability theory.

In Chapter 6, we study joint distributions of two or more discrete and continuous
random variables and their moment-generating functions. Included in Chapter 6 is the
study of the bivariate normal distribution.

Chapter 7 is devoted to the probability distributions of some sample statistics, such
as the sample mean, sample proportions, and sample variance. In this chapter, we also
study a fundamental result of probability theory, known as the Central Limit Theorem.
This theorem can be used to approximate the probability distribution of the sample mean
when the sample size is large. In this chapter, we also study some sampling distributions
of some sample statistics for the special case in which the population distribution is the
so-called normal distribution. In addition, we present probability distributions of various
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“order statistics,” such as the largest element in a sample, smallest element in a sample,
and sample median.

Chapter 8 discusses the use of sample data for estimating the unknown population
parameters of interest, such as the population mean, population variance, and popula-
tion proportion. Chapter 8 also discusses the methods of estimating the difference of two
population means, the difference of two population proportions, and the ratio of two pop-
ulation variances and standard deviations. Two types of estimators are included, namely
point estimators and interval estimators (confidence intervals).

Chapter 9 deals with the important topic of statistical tests of hypotheses and discusses
test procedures when concerned with the population means, population variance, and
population proportion for one and two populations. Methods of testing hypotheses using
the confidence intervals studied in Chapter 8 are also presented.

Chapter 10 gives an introduction to the theory of reliability. Methods of estimation
and hypothesis testing using the exponential and Weibull distributions are presented.

In Chapter 11, we introduce the topic of data mining. It includes concepts of big data
and starting steps in data mining. Classification, machine learning, and inference versus
prediction are also discussed.

In Chapter 12, we introduce topic of cluster analysis. Clustering concepts and simi-
larity measures are introduced. The hierarchical and nonhierarchical clustering techniques
and model-based clustering methods are discussed in detail.

Chapter 13 is concerned with the chi-square goodness-of-fit test, which is used to test
whether a set of sample data support the hypothesis that the sampled population follows
some specified probability model. In addition, we apply the chi-square goodness-of-fit test
for testing hypotheses of independence and homogeneity. These tests involve methods of
comparing observed frequencies with those that are expected if a certain hypothesis is true.

Chapter 14 gives a brief look at tests known as “nonparametric tests,” which are used
when the assumption about the underlying distribution having some specified parametric
form cannot be made.

Chapter 15 introduces an important topic of applied statistics: simple linear regres-
sion analysis. Linear regression analysis is frequently used by engineers, social scientists,
health researchers, and biological scientists. This statistical technique explores the rela-
tion between two variables so that one variable can be predicted from the other. In this
chapter, we discuss the least squares method for estimating the simple linear regression
model, called the fitting of this regression model. Also, we discuss how to perform a residual
analysis, which is used to check the adequacy of the regression model, and study certain
transformations that are used when the model is not adequate.

Chapter 16 extends the results of Chapter 15 to multiple linear regressions. Similar
to the simple linear regression model, multiple linear regression analysis is widely used. It
provides statistical techniques that explore the relations among more than two variables,
so that one variable can be predicted from the use of the other variables. In this chapter,
we give a discussion of multiple linear regression, including the matrix approach. Finally,
a brief discussion of logistic regression is given.

In Chapter 17, we introduce the design and analysis of experiments using one, two,
or more factors. Designs for eliminating the effects of one or two nuisance variables along
with a method of estimating one or more missing observations are given. We include two
nonparametric tests, the Kruskal–Wallis and the Friedman test, for analyzing one-way and
randomized complete block designs. Finally, models with fixed effects, mixed effects, and
random effects are also discussed.
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Chapter 18 introduces a special class of designs, the so-called 2k factorial designs.
These designs are widely used in various industrial and scientific applications. An extensive
discussion of unreplicated 2k factorial designs, blocking of 2k factorial designs, confound-
ing in the 2k factorial designs, and Yates’s algorithm for the 2k factorial designs is also
included. We also devote a section to fractional factorial designs, discussing one-half and
one-quarter replications of 2k factorial designs.

In Chapter 19, we introduce the topic of response surface methodology (RSM).
First-order and second-order designs used in RSM are discussed. Methods of determining
optimum or near optimum points using the “method of steepest ascent” and the analysis
of a fitted second-order response surface are also presented.

Chapters 20 and 21 are devoted to control charts for variables and attributes used in
phase I and phase II of a process. “Phase I” refers to the initial stage of a new process,
and “phase II” refers to a matured process. Control charts are used to determine whether
a process involving manufacturing or service is “under statistical control” on the basis of
information contained in a sequence of small samples of items of interest. Due to lack of
space, these two chapters are not included in the text but is available for download from
the book website: www.wiley.com/college/gupta/statistics2e.

All the chapters are supported by three popular statistical software packages,
MINITAB, R, and JMP. The MINITAB and R are fully integrated into the text of each
chapter, whereas JMP is given in an independent section, which is not included in the
text but is available for download from the book website: www.wiley.com/college/gupta/
statistics2e. Frequently, we use the same examples for the discussion of JMP as are used
in the discussion of MINITAB and R. For the use of each of these software packages, no
prior knowledge is assumed, since we give each step, from entering the data to the final
analysis of such data under investigation. Finally, a section of case studies is included in
almost all the chapters.
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Chapter 2

DESCRIBING DATA
GRAPHICALLY AND
NUMERICALLY

The focus of this chapter is a discussion of methods for describing
sets of data.

Topics Covered

• Basic concepts of a population and various types of sampling designs
• Classification of the types of data
• Organizing and summarizing qualitative and quantitative data
• Describing qualitative and quantitative data graphically
• Determining measures of centrality and measures of dispersion for a set of raw data
• Determining measures of centrality and measures of dispersion for grouped data
• Determining measures of relative position
• Constructing a box whisker plot and its use in data analysis
• Determining measures of association
• Using statistical packages MINITAB, R, and JMP

Learning Outcomes

After studying this chapter, the reader will be able to do the following:

• Select an appropriate sampling design for data collection.
• Identify suitable variables in a problem and determine the level of measurement.
• Organize, summarize, present, and interpret the data.
• Identify the difference between a parameter and a statistic.

Statistics and Probability with Applications for Engineers and Scientists using MINITAB, R and JMP,
Second Edition. Bhisham C. Gupta, Irwin Guttman, and Kalanka P. Jayalath.
c© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
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• Calculate measures of the data such as mean, mode, median, variance, standard devia-
tion, coefficient of variation, and measure of association and interpret them.

• Identify outliers if they are present in the data.
• Apply the statistical packages MINITAB, R, and JMP to analyze various sets of data.

2.1 GETTING STARTED WITH STATISTICS

2.1.1 What Is Statistics?
The term statistics is commonly used in two ways. On the one hand, we use the term
statistics in day-to-day communication when we refer to the collection of numbers or
facts. What follows are some examples of statistics:

1. In 2000, the salaries of CEOs from 10 selected companies ranged from $2 million to
$5 million.

2. On average, the starting salary of engineers is 40% higher than that of technicians.
3. In 2007, over 45 million people in the United States did not have health insurance.
4. In 2008, the average tuition of private colleges soared to over $40,000.
5. In the United States, seniors spend a significant portion of their income on health

care.
6. The R&D budget of the pharmaceutical division of a company is higher than the

R&D budget of its biomedical division.
7. In December 2009, a total of 43 states reported rising jobless rates.

On the other hand, statistics is a scientific subject that provides the techniques of
collecting, organizing, summarizing, analyzing, and interpreting the results as input to
make appropriate decisions. In a broad sense, the subject of statistics can be divided into
two parts: descriptive statistics and inferential statistics.

Descriptive statistics uses techniques to organize, summarize, analyze, and interpret
the information contained in a data set to draw conclusions that do not go beyond the
boundaries of the data set. Inferential statistics uses techniques that allow us to draw
conclusions about a large body of data based on the information obtained by analyzing a
small portion of these data. In this book, we study both descriptive statistics and inferential
statistics. This chapter discusses the topics of descriptive statistics. Chapters 3 through
Chapter 7 are devoted to building the necessary tools needed to study inferential statistics,
and the rest of the chapters are mostly dedicated to inferential statistics.

2.1.2 Population and Sample in a Statistical Study
In a very broad sense, statistics may be defined as the science of collecting and analyzing
data. The tradition of collecting data is centuries old. In European countries, numerous
government agencies started keeping records on births, deaths, and marriages about four
centuries ago. However, scientific methods of analyzing such data are not old. Most of the
advanced techniques of analyzing data have in fact been developed only in the twentieth
century, and routine use of these techniques became possible only after the invention of
modern computers.

During the last four decades, the use of advanced statistical techniques has increased
exponentially. The collection and analysis of various kinds of data has become essential in
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the fields of agriculture, pharmaceuticals, business, medicine, engineering, manufacturing,
product distribution, and by government or nongovernment agencies. In a typical field,
there is often need to collect quantitative information on all elements of interest, which is
usually referred to as the population. The problem, however, with collecting all conceivable
values of interest on all elements is that populations are usually so large that examining
each element is not feasible. For instance, suppose that we are interested in determining the
breaking strength of the filament in a type of electric bulb manufactured by a particular
company. Clearly, in this case, examining each and every bulb means that we have to
wait until each bulb dies. Thus, it is unreasonable to collect data on all the elements of
interest. In other cases, as doing so may be either quite expensive, time-consuming, or
both, we cannot examine all the elements. Thus, we always end up examining only a small
portion of a population that is usually referred to as a sample. More formally, we may
define population and sample as follows:

Definition 2.1.1 A population is a collection of all elements that possess a char-
acteristic of interest.

Populations can be finite or infinite. A population where all the elements are easily
countable may be considered as finite, and a population where all the elements are not
easily countable as infinite. For example, a production batch of ball bearings may be
considered a finite population, whereas all the ball bearings that may be produced from a
certain manufacturing line are considered conceptually as being infinite.

Definition 2.1.2 A portion of a population selected for study is called a sample.

Definition 2.1.3 The target population is the population about which we want to
make inferences based on the information contained in a sample.

Definition 2.1.4 The population from which a sample is being selected is called
a sampled population.

The population from which a sample is being selected is called a sampled population,
and the population being studied is called the target population. Usually, these two popu-
lations coincide, since every effort should be made to ensure that the sampled population
is the same as the target population. However, whether for financial reasons, a time con-
straint, a part of the population not being easily accessible, the unexpected loss of a part
of the population, and so forth, we may have situations where the sampled population is
not equivalent to the whole target population. In such cases, conclusions made about the
sampled population are not usually applicable to the target population.
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In almost all statistical studies, the conclusions about a population are based on the
information drawn from a sample. In order to obtain useful information about a population
by studying a sample, it is important that the sample be a representative sample; that is,
the sample should possess the characteristics of the population under investigation. For
example, if we are interested in studying the family incomes in the United States, then
our sample must consist of representative families that are very poor, poor, middle class,
rich, and very rich. One way to achieve this goal is by taking a random sample.

Definition 2.1.5 A sample is called a simple random sample if each element of
the population has the same chance of being included in the sample.

There are several techniques of selecting a random sample, but the concept that each
element of the population has the same chance of being included in a sample forms the basis
of all random sampling, namely simple random sampling, systematic random sampling,
stratified random sampling, and cluster random sampling. These four different types of
sampling schemes are usually referred to as sample designs.

Since collecting each data point costs time and money, it is important that in taking a
sample, some balance be kept between the sample size and resources available. Too small
a sample may not provide much useful information, but too large a sample may result
in a waste of resources. Thus, it is very important that in any sampling procedure, an
appropriate sampling design is selected. In this section, we will review, very briefly, the
four sample designs mentioned previously.

Before taking any sample, we need to divide the target population into nonoverlapping
units, usually known as sampling units. It is important to recognize that the sampling units
in a given population may not always be the same. Sampling units are in fact determined
by the sample design chosen. For example, in sampling voters in a metropolitan area, the
sampling units might be individual voters, all voters in a family, all voters living in a town
block, or all voters in a town. Similarly, in sampling parts from a manufacturing plant,
the sampling units might be an individual part or a box containing several parts.

Definition 2.1.6 A list of all sampling units is called the sampling frame.

The most commonly used sample design is the simple random sampling design, which
consists of selecting n (sample size) sampling units in such a way that each sampling unit
has the same chance of being selected. If, however, the population is finite of size N , say,
then the simple random sampling design may be defined as selecting n sampling units in
such a way that each possible sample of size n has the same chance of being selected. The
number of such samples of size n that may be formed from a finite population of size N
is discussed in Section 3.4.3.

Example 2.1.1 (Simple random sampling) Suppose that an engineer wants to take a
sample of machine parts manufactured during a shift at a given plant. Since the parts
from which the engineer wants to take the sample are manufactured during the same shift
at the same plant, it is quite safe to assume that all parts are representative. Hence in this
case, a simple random sampling design should be appropriate.
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The second sampling design is the stratified random sampling design, which may give
improved results for the same amount of money spent for simple random sampling. How-
ever, a stratified random sampling design is appropriate when a population can be divided
into various nonoverlapping groups called strata. The sampling units in each stratum
are similar but differ from stratum to stratum. Each stratum is treated as a subpop-
ulation, and a simple random sample is taken from each of these subpopulations or
strata.

In the manufacturing world, this type of sampling situation arises quite often. For
instance, in Example 2.1.1, if the sample is taken from a population of parts manufactured
either in different plants or in different shifts, then stratified random sampling can be
more appropriate than simple random sampling. In addition, there is the advantage of
administrative convenience. For example, if the machine parts are manufactured in plants
located in different parts of the country, then stratified random sampling can be beneficial.
Often, each plant (stratum) has a sampling department that can conduct the random
sampling within each plant. In order to obtain best results in this case, the sampling
departments in all the plants need to communicate with one another before sampling in
order to ensure that the same sampling norms are followed. Another example of stratified
random sampling in manufacturing occurs when samples are taken of products that are
produced in different batches; here, products produced in different batches constitute the
different strata.

A third kind of sampling design is systematic random sampling. The systematic ran-
dom sampling procedure is the easiest one. This sampling scheme is particularly useful in
manufacturing processes, when the sampling is done from a continuously operating assem-
bly line. Under this scheme, a first item is selected randomly and thereafter every mth
(m = N/n) item manufactured is selected until we have a sample of the desired size (n).
Systematic sampling is not only easy to employ but, under certain conditions, is also more
precise than simple random sampling.

The fourth and last sampling design is cluster random sampling. In cluster sampling,
each sampling unit is a group of smaller units. In the manufacturing environment, this
sampling scheme is particularly useful since it is difficult to prepare a list of each part
that constitutes a frame. On the other hand, it may be easier to prepare a list of boxes
in which each box contains many parts. Thus, in this case, a cluster random sample is
merely a simple random sample of these boxes. Another advantage of cluster sampling is
that by selecting a simple random sample of only a few clusters, we can in fact have quite
a large sample of smaller units. Such sampling is achieved at minimum cost, since both
preparing the frame and taking the sample are much more economical. In preparing any
frame, we must define precisely the characteristic of interest or variable, where a variable
may be defined as follows:

Definition 2.1.7 A variable is a characteristic of interest that may take different
values for different elements.

For example, an instructor is interested in finding the ages, heights, weights, GPA,
gender, and family incomes of all the students in her engineering class. Thus, in this
example, the variables (characteristics of interest) are ages, heights, weights, GPA, gender,
and family incomes.
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2.2 CLASSIFICATION OF VARIOUS TYPES
OF DATA

In practice, it is common to collect a large amount of nonnumerical and/or numerical data
on a daily basis. For example, we may collect data concerning customer satisfaction, com-
ments of employees, or perceptions of suppliers. Or we may track the number of employees
in various departments of a company or check weekly production volume in units produced
and sales dollars per unit of time, and so on. All the data collected, however, cannot be
treated the same way as there are differences in types of data. Accordingly, statistical data
can normally be divided into two major categories:

• Qualitative
• Quantitative

Each of these categories can be further subdivided into two subcategories each. The two
subcategories of qualitative data are nominal and ordinal, whereas the two subcategories of
quantitative data are interval and ratio. We may summarize this classification of statistical
data as in Figure 2.2.1.

The classification of data as nominal, ordinal, interval, and ratio is arranged in the
order of the amount of information they can provide. Nominal data provide minimum
information, whereas ratio data provide maximum information.

Statistical

data

Qualitative Quantitative

Nominal Ordinal Interval Ratio

Figure 2.2.1 Classifications of statistical data.

2.2.1 Nominal Data
As previously mentioned, nominal data contain the smallest amount of information. Only
symbols are used to label categories of a population. For example, production part numbers
with a 2003 prefix are nominal data, wherein the 2003 prefix indicates only that the
parts were produced in 2003 (in this case, the year 2003 serves as the category). No
arithmetic operation, such as addition, subtraction, multiplication, or division, can be
performed on numbers representing nominal data. As another example, jersey numbers of
baseball, football, or soccer players are nominal. Thus, adding any two jersey numbers and
comparing with another number makes no sense. Other examples of nominal data are ID
numbers of workers, account numbers used by a financial institution, ZIP codes, telephone
numbers, sex, or color.
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2.2.2 Ordinal Data
Ordinal data are more informative than nominal data. When the ordering of categories
becomes important, the data collected are called ordinal. Examples include companies
ranked according to the quality of their product, companies ranked based on their
annual revenues, the severity of burn types, or stage of cancer among cancer-afflicted
patients. Again, no addition, subtraction, multiplication, or division can be used on
ordinal-type data.

Other examples of ordinal data are represented by geographical regions, say designated
as A, B, C, and D for shipping purposes, or preference of vendors who can be called upon
for service, or skill ratings of certain workers of a company, or in electronics engineering,
the color-coded resistors, which represent ascending order data.

2.2.3 Interval Data
Interval data are numerical data, more informative than nominal and ordinal data but less
informative than ratio data. A typical example of interval data is temperature (in Celsius
and Fahrenheit). Arithmetic operations of addition and subtraction are applicable, but
multiplication and division are not applicable. For example, the temperature of three
consecutive parts A, B, and C during a selected step in a manufacturing process are 20◦F,
60◦F, and 30◦F, respectively. Then we can say the temperature difference between parts A
and B is different from the difference between parts B and C. Also we can say that part B is
warmer than part A and part C is warmer than part A, but cooler than part B. However, it
is physically meaningless to say that part B is three times as warm as part A and twice as
warm as part C. Moreover, in interval data, zero does not have the conventional meaning
of nothingness; it is just an arbitrary point on the scale of measurement. For instance,
0◦F and 0◦C (=32◦F) have different values, and they are in fact the arbitrary points on
different scales of measurements. Other examples of interval data are year in which a part
is produced, students’ numeric grades on a test, and date of birth.

2.2.4 Ratio Data
Ratio data are also numerical data that have the potential to produce the most meaningful
information of all data types. All arithmetic operations are applicable on this type of
data. Numerous examples of this type of data exist, such as height, weight, length of rods,
diameter of a ball bearing, RPM of a motor, number of employees in a company, hourly
wages, and annual growth rate of a company. In ratio data, the number zero equates
to nothingness. In other words, the number zero means absence of the characteristics of
interest.

PRACTICE PROBLEMS FOR SECTIONS 2.1 AND 2.2

1. Describe briefly the difference between a sample and a population. Give an example
of a population and a sample.

2. Describe the difference between descriptive statistics and inferential statistics.
3. A university professor is interested in knowing the average GPA of a graduating

class. The professor decided to record the GPA of only those students who were
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in his/her class during the last semester before graduation. Using this information
(the data), the professor estimates the average GPA of the graduating class using
the average of the GPAs he/she collected. Describe the following:
(a) Population of interest
(b) Sample collected by the professor
(c) The variable of interest

4. Describe whether each of the following scenarios would result in qualitative or quan-
titative data:
(a) Time needed to finish a project by a technician
(b) Number of days of stay in a hospital by a patient after bypass surgery
(c) Average number of cars passing through a toll booth each day
(d) Types of beverages served by a restaurant
(e) Size of a rod used in a project
(f) Condition of a home for sale (excellent, good, fair, bad)
(g) Heights of basketball players
(h) Dose of medication prescribed by a physician to his/her patients
(i) Recorded temperatures of a tourist place during the month of January
(j) Ages of persons waiting in a physician’s office
(k) Speed of a vehicle crossing George Washington Bridge in New York
(l) Amount of interest reported in a tax return
(m) Sizes of cars available at a rental company (full, medium, compact, small)
(n) Manufacturers of cars parked in a parking lot

5. Referring to Problem 4, classify the data in each case as nominal, ordinal, interval,
or ratio.

6. A consumer protection agency conducts opinion polls to determine the quality
(excellent, good, fair, bad) of products imported from an Asian country. Suppose
that the agency conducted a poll in which 1000 randomly selected individuals were
contacted by telephone.
(a) What is the population of interest?
(b) What is the sample?
(c) Classify the variable of interest as nominal, ordinal, interval, or ratio.

2.3 FREQUENCY DISTRIBUTION TABLES
FOR QUALITATIVE AND QUANTITATIVE
DATA

In statistical applications, we often encounter large quantities of messy data. To gain
insight into the nature of the data, we often organize and summarize the data by construct-
ing a table called a frequency distribution table. In any statistical application (as noted in
Section 2.2), we can have data that are either qualitative or quantitative. Qualitative and
quantitative are sometimes referred to as categorical or numerical data, respectively. In
this section, we discuss the construction of a frequency distribution table when the data
are qualitative or quantitative.
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2.3.1 Qualitative Data
A frequency distribution table for qualitative data consists of two or more categories along
with the numbers of the data that belong to each category. The number of data belonging
to any particular category is called the frequency or count of that category. We illustrate
the construction of a frequency distribution table when the data are qualitative with the
following example.

Example 2.3.1 (Industrial revenue) Consider a random sample of 110 small to mid-
size companies located in the midwestern region of the United States, and classify them
according to their annual revenues (in millions of dollars). Then construct a frequency
distribution table for the data obtained by this classification.

Solution: We classify the annual revenues into five categories as follows: Under 250,
250–under 500, 500–under 750, 750–under 1000, 1000 or more. Then the data collected
can be represented as shown in Table 2.3.1, where we have used the labels 1, 2, . . . , 5 for
the above categories.

Table 2.3.1 Annual revenues of 110 small to midsize companies located in
mid-western region of the United States.

1 4 3 5 3 4 1 2 3 4 3 1 5 3 4 2 1 1 4 5 3 2 5 2 5 2 1 2 3
3 2 1 2 5 3 2 1 1 2 1 2 4 5 3 5 1 3 1 2 1 4 1 4 5 4 1 1 2
4 1 4 1 2 4 3 3 4 1 4 1 4 1 2 1 5 3 1 5 2 1 2 3 1 2 2 1 1
2 1 5 3 2 5 5 2 5 4 3 5 2 3 2 3 5 2 3 5 5 2 3 2 5 1 4

After tallying the data, we find that of the 110 companies, 28 belong in the first
category, 26 in the second category, 20 in the third category, 16 in the fourth category,
and 20 in the last category. Thus, a frequency distribution table for the data in Table 2.3.1
is as shown in Table 2.3.2.

Table 2.3.2 Frequency distribution for the data in Table 2.3.1.

Frequency Cumulative Cumulative
Categories Tally or count frequency Percentage percentage

1 ///// ///// ///// ///// ///// /// 28 28 25.45 25.45
2 ///// ///// ///// ///// ///// / 26 54 23.64 49.09
3 ///// ///// ///// ///// 20 74 18.18 67.27
4 ///// ///// ///// / 16 90 14.55 81.82
5 ///// ///// ///// ///// 20 110 18.18 100.00

Total 110 100.00

Interestingly, we can put technology to work on data in Table 2.3.1 to produce
Table 2.3.2.
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Example 2.3.2 (Industrial revenue) Using MINITAB and R, construct a frequency dis-
tribution table for the data in Table 2.3.1.

Solution:

MINITAB

1. Enter the data in column C1 of the Worksheet Window and name it Categories.
2. From the Menu bar, select Stat > Tables > Tally Individual Variables . . .

3. In this dialog box, enter C1 in the box under Variables.
4. Check all the boxes under Display and click OK.
5. The frequency distribution table as shown below appears in the Session window.

Categories Count Percent CumCnt CumPct

1 28 25.45 28 25.45

2 26 23.64 54 49.09

3 20 18.18 74 67.27

4 16 14.55 90 81.82

5 20

N = 110

18.18 110 100.00

This frequency distribution table may also be obtained by using R as follows:

USING R

R has built in ‘table()’ function that can be used to get the basic frequency distribution
of categorical data. To get the cumulative frequencies, we can apply built in ‘cumsum()’
function to tabulated frequency data. Then using the ‘cbind()’ function we combine cate-
gories, frequencies, cumulative frequencies, and cumulative percentages to build the final
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distribution table. In addition, we can use the ‘colnames()’ function to name the columns
of the final table as needed. The task can be completed running the following R code in
R Console window.

#Assign given data to the variable data
data = c(4,3,5,3,4,1,2,3,4,3,1,5,3,4,2,1,1,4,5,3,2,5,2,5,2,1,2,3,3,2,
1,5,3,2,1,1,2,1,2,4,5,3,5,1,3,1,2,1,4,1,4,5,4,1,1,2,4,1,4,1,2,4,3,4,1,
4,1,4,1,2,1,5,3,1,5,2,1,2,3,1,2,2,1,1,2,1,5,3,2,5,5,2,5,3,5,2,3,2,3,5,
2,3,5,5,2,3,2,5,1,4)

#To get frequencies
data.freq = table(data)

#To combine necessary columns
freq.dist = cbind(data.freq, cumsum(data.freq), 100*cumsum(data.freq)/sum(data.freq))

#To name the table columns
colnames(freq.dist) = c(‘Frequency’,‘Cum.Frequency’,‘Cum Percentage’)
freq.dist

#R output

Frequency Cum.Frequency Cum Percentage

1 28.00 28.00 25.45
2 26.00 54.00 49.09
3 20.00 74.00 67.27
4 16.00 90.00 81.82
5 20.00 110.00 100.00

Note that sometimes a quantitative data set is such that it consists of only a few
distinct observations that occur repeatedly. These kind of data are usually summarized in
the same manner as the categorical data. The categories are represented by the distinct
observations. We illustrate this scenario with the following example.

Example 2.3.3 (Hospital data) The following data show the number of coronary artery
bypass graft surgeries performed at a hospital in a 24-hour period for each of the last
50 days. Bypass surgeries are usually performed when a patient has multiple blockages or
when the left main coronary artery is blocked. Construct a frequency distribution table for
these data.

1 2 1 5 4 2 3 1 5 4 3 4 6 2 3 3 2 2 3 5 2 5 3 4 3
1 3 2 2 4 2 6 1 2 6 6 1 4 5 4 1 4 2 1 2 5 2 2 4 3

Solution: In this example, the variable of interest is the number of bypass surgeries per-
formed at a hospital in a period of 24 hours. Now, following the discussion in Example 2.3.1,
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we can see that the frequency distribution table for the data in this example is as shown
in Table 2.3.3. Frequency distribution table defined by using a single numerical value is
usually called a single-valued frequency distribution table.

Table 2.3.3 Frequency distribution table for the hospital data.

Frequency Cumulative Cumulative
Categories Tally or count frequency Percentage percentage

1 ///// /// 8 8 16.00 16.00
2 ///// ///// //// 14 22 28.00 44.00
3 ///// //// 9 31 18.00 62.00
4 ///// //// 9 40 18.00 80.00
5 ///// / 6 46 12.00 92.00
6 //// 4 50 8.00 100.00

Total 50 100.00

2.3.2 Quantitative Data
So far, we have discussed frequency distribution tables for qualitative data and quanti-
tative data that can be treated as qualitative data. In this section, we discuss frequency
distribution tables for quantitative data.

Let X1,X2, . . . ,Xn be a set of quantitative data values. To construct a frequency
distribution table for this data set, we follow the steps given below.

Step 1. Find the range R of the data that is defined as

Range = R = largest data point − smallest data point (2.3.1)

Step 2. Divide the data set into an appropriate number of classes. The classes are also
sometimes called categories, cells, or bins. There are no hard and fast rules
to determine the number of classes. As a rule, the number of classes, say m,
should be somewhere between 5 and 20. However, Sturges’s formula is often
used, given by

Number of classes = m = 1 + 3.3 log n (2.3.2)

or
Number of classes = m =

√
n (2.3.3)

where n is the total number of data points in a given data set and log denotes
the log to base 10. The result often gives a good estimate for an appropriate
number of intervals. Note that since m, the number of classes, should always
be a whole number, the reader may have to round up or down the value of m
obtained when using either equation (2.3.2) or (2.3.3).
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Step 3. Determine the width of classes as follows:

Class width = R/m (2.3.4)

The class width should always be a number that is easy to work with, prefer-
ably a whole number. Furthermore, this number should be obtained only
by rounding up (never by rounding down) the value obtained when using
equation (2.3.4).

Step 4. Finally, preparing the frequency distribution table is achieved by assigning
each data point to an appropriate class. While assigning these data points to
a class, one must be particularly careful to ensure that each data point be
assigned to one, and only one, class and that the whole set of data is included
in the table. Another important point is that the class at the lowest end of
the scale must begin at a number that is less than or equal to the smallest
data point and that the class at the highest end of the scale must end with a
number that is greater than or equal to the largest data point in the data set.

Example 2.3.4 (Rod manufacturing) The following data give the lengths (in millimeters)
of 40 randomly selected rods manufactured by a company:

145 140 120 110 135 150 130 132 137 115
142 115 130 124 139 133 118 127 144 143
131 120 117 129 148 130 121 136 133 147
147 128 142 147 152 122 120 145 126 151

Prepare a frequency distribution table for these data.

Solution: Following the steps described previously, we have the following:

1. Range = R = 152 − 110 = 42
2. Number of classes = m = 1 + 3.3 log 40 = 6.29 ≈ 6
3. Class width = R/m = 42/6 = 7

The six classes used to prepare the frequency distribution table are as follows:
110–under 117, 117–under 124, 124–under 131, 131–under 138, 138–under 145, 145–152.

Note that in the case of quantitative data, each class is defined by two numbers. The
smaller of the two numbers is called the lower limit and the larger is called the upper limit.
Also note that except for the last class, the upper limit does not belong to the class. For
example, the data point 117 will be assigned to class two and not class one. Thus, no two
classes have any common point, which ensures that each data point will belong to one and
only one class. For simplification, we will use mathematical notation to denote the classes
above as

[110–117), [117–124), [124–131), [131–138), [138–145), [145–152]

Here, the square bracket symbol “[“ implies that the beginning point belongs to the class,
and the parenthesis”)” implies that the endpoint does not belong to the class. Then, the
frequency distribution table for the data in this example is as shown in Table 2.3.4.
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Table 2.3.4 Frequency table for the data on rod lengths.

Frequency Relative Cumulative
Classes Tally or count frequency Percentage frequency

[110 −−117) /// 3 3/40 7.5 3
[117 −−124) ///// // 7 7/40 17.5 10
[124 −−131) ///// /// 8 8/40 20.0 18
[131 −−138) ///// // 7 7/40 17.5 25
[138 −−145) ///// / 6 6/40 15.0 31
[145 −−152] ///// //// 9 9/40 22.5 40

Total 40 1 100

The same frequency distribution table can be obtained by using MINITAB as follows:

MINITAB

1. Enter the data in column C1.
2. From the Menu bar select Data > Recode > To Text. This prompts the following

dialog box to appear on the screen.
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3. Enter C1 in the box under Recode values in the following columns.
4. Select Recode ranges of values from the pulldown menu next to Method.
5. Enter Lower and Upper endpoints as needed and make sure to change the final

upper endpoint to 152.1. Type Recoded values in the interval format as previously
shown.

6. Select Lower endpoint only from the pulldown menu next to Endpoints to
include. Then, for the Storage location for the recoded columns, select At
the end of the current worksheet from the pulldown menu.

7. Now from the Menu bar select Stat > Tables > Tally Individual Variables.
This prompts the following dialog box to appear on the screen:

8. In this dialog box, enter C2 Recoded Data in the box under variables.
9. Check all the boxes under Display and click OK. The frequency distribution table

as shown below will appear in the Session window

Recoded Data Count Percent CumCnt CumPct

[110,117) 3 7.50 3 7.50

N = 40

[145,152) 9 22.50 40 100.00

[138,145) 6 15.00 31 77.50

[131,138) 7 17.50 25 62.50

[124,131) 8 20.00 18 45.00

[117,124) 7 17.50 10 25.00

This frequency distribution table also can be obtained by using R as follows:

USING R

First, we define the required classes using the built in ‘seq()’ function. Then, we use
the ‘cut()’ function to assign a corresponding class to each observation. As explained in
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Example 2.3.2, we then use the ‘table()’ function on class variable and the ‘cusum()’
function on the frequency results. The task can be completed by running the following R
code in the R Console window.

#Assign given data to the variable RodData
RodData = c(145,140,120,110,135,150,130,132,137,115,142,115,130,
124,139,133,118,127,144,143,131,120,117,129,148,130,121,136,133,
147,147,128,142,147,152,122,120,145,126,151)

#To define the intervals
breaks = seq(110, 152, by=7)

#To assign each observation to its interval
RodData.split = cut(RodData, breaks, right=FALSE)

#To obtain the frequency of data in each class
RodData.freq = table(RodData.split)

#To combine necessary columns
freq.dist = cbind(RodData.freq,100*RodData.freq/sum(RodData.freq),
cumsum(RodData.freq), 100*cumsum(RodData.freq)/sum(RodData.freq))

#To name the table columns
colnames(freq.dist) = c(‘Frequency’,‘Percentage’, ‘Cum.Frequency’,‘Cum.Percentage’)
freq.dist

#R output

Frequency Percentage Cum.Frequency Cum.Percentage

[110,117) 3.00 7.69 3.00 7.69
[117,124) 7.00 17.95 10.00 25.64
[124,131) 8.00 20.51 18.00 46.15
[131,138) 7.00 17.95 25.00 64.10
[138,145) 6.00 15.38 31.00 79.49
[145,152) 8.00 20.51 39.00 100.00

PRACTICE PROBLEMS FOR SECTION 2.3

1. The following data give the results of a customer sample survey for product satisfac-
tion conducted by a manufacturing company. The numbers 1, 2, 3, 4, and 5 represent
the satisfaction levels: very satisfied, fairly satisfied, neutral, fairly unsatisfied, and
very unsatisfied, respectively.

1 1 3 3 4 2 4 3 1 5 1 2 2 4 1 1 2 4 4 2 5 4 2 2 1
3 4 4 5 5 2 3 2 3 2 3 2 4 4 3 1 5 1 5 4 1 1 1 5 2
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(a) Prepare a frequency distribution table.
(b) Determine the percentages for all categories.
(c) What percentage of the customers in this sample survey was very satisfied or

fairly satisfied?
2. An engineering school arranged a charity concert to raise funds for Iraq war veterans.

The following data give the status of 40 randomly selected students who attended the
concert. The numbers 1, 2, 3, and 4 represent the categories freshman, sophomore,
junior, and senior, respectively.

2 3 4 1 1 2 1 1 3 2 1 3 3 4 4 4 1 1 3 2
3 3 3 3 3 4 3 3 3 4 2 3 2 2 3 1 4 2 2 3

(a) Prepare a frequency distribution table.
(b) Determine the percentages for all categories.
(c) What percentage of the students in this sample survey were juniors or seniors?

3. The following data give the responses of 36 senior citizens who were asked about the
engine size of their car. The numbers 1, 2, 3, 4, and 5 represent the five categories
3.5, 3.2, 3.0, 2.2, and 1.8L, respectively.

5 4 5 5 1 2 1 1 1 3 5 1 5 4 2 1 3 1
3 2 3 4 1 2 2 1 5 5 3 1 5 2 1 2 2 5

(a) Prepare a frequency distribution table.
(b) Determine the percentages for all categories.
(c) What percentage of the senior citizens drive cars of category 1 or 3?

4. A manufacturing company of condenser retaining bolts for car engines implemented
a quality control system. As part of this quality control system, a team of engineers
decided to record the number of nonconforming bolts produced in each shift. The
following data show the number of nonconforming bolts during the past 45 shifts.

25 30 26 26 25 16 21 22 21 27 15 24 19 20 24
16 30 28 24 23 15 15 21 28 18 15 21 27 26 28
17 19 24 26 27 17 27 19 22 27 16 25 16 30 18

Prepare a complete frequency distribution table, that is, a table having frequency,
relative frequency, percentage, and cumulative frequency columns.

5. The following data give the number of graduate students admitted in all engineering
programs of a prestigious university during the past 30 years (1976–2005).

148 167 171 177 175 165 134 177 168 142 126 166 130 122 157
138 163 129 143 145 141 162 147 141 164 137 149 146 132 157

Prepare a complete frequency distribution table, that is, a table having frequency,
relative frequency, percentage, and cumulative frequency columns.



30 2 Describing Data Graphically and Numerically

6. A temperature-sensing vacuum switch controls the vacuum that is applied to a
vacuum motor operating a valve in the intake snorkel of the air cleaner. As the
engine warms up, the temperature-sensing unit shuts off the vacuum applied to the
motor, allowing the valve to close so that heated air shuts off and outside cooler air
is drawn into the engine. The following data give the temperatures (coded) at which
the sensing unit shuts off the vacuum:

105 101 120 116 108 112 118 119 107 100 107 120 113 113 101
102 102 100 101 100 118 106 114 100 104 101 107 113 110 100
109 108 100 104 110 113 118 100 119 120

Prepare a complete frequency distribution table, that is, a table having frequency,
relative frequency, percentage, and cumulative frequency columns.

2.4 GRAPHICAL DESCRIPTION OF
QUALITATIVE AND QUANTITATIVE DATA

2.4.1 Dot Plot
A dot plot is one of the simplest graphs. To construct this graph, the value of each obser-
vation is plotted on a real line. It provides visual information about the distribution of a
single variable. For illustration, we consider the following example.

Example 2.4.1 (Defective motors) The following data give the number of defective
motors received in 20 different shipments:

8 12 10 16 10 25 21 15 17 5
26 21 29 8 6 21 10 17 15 13

Construct a dot plot for these data.

Solution: To construct a dot plot, draw a horizontal line with its scale beginning with a
number less than the smallest observation and ending at a number greater than the largest

4 8 12 16 20 24 28

Defective motors

Figure 2.4.1 Dot plot for the data on defective motors received in 20 different
shipments.
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observation. Then, construct the dot plot by plotting the given data points as shown in
Figure 2.4.1.

Dot plots are more useful when the sample size is small. A dot plot gives us, for
example, information about how the data are scattered and where most of the observations
are concentrated. For instance, in this example, we see that the minimum number of
defective motors and the maximum number of defective motors received in any shipment
were 5 and 29, respectively. Also, we can see that 75% of the time, the number of defective
motors was between 8 and 21 (inclusive) for these shipments, and so on.

2.4.2 Pie Chart
Pie charts are commonly used to describe qualitative data from one population. It is
constructed by dividing a circle into various slices that represent different categories of a
population. As examples: allocation of the federal budget by sector, revenues of a large
manufacturing company by region or by plant, technicians in a large corporation who are
classified according to their basic qualification: high-school diploma, an associate degree,
an undergraduate degree, a graduate degree, and so on. The pie chart helps us better
understand at a glance the composition of the population with respect to the characteristic
of interest.

To construct a pie chart, divide a circle into slices such that each slice representing
a category is proportional to the size of that category. Since the total angle of a circle is
360◦, the angle of a slice corresponding to a given category is determined as follows:

Angle of a slice = (Relative frequency of the given category) × 360 (2.4.1)

We illustrate the construction of a pie chart with the following example:

Example 2.4.2 (Manufacturing defect types) In a manufacturing operation, we are inter-
ested in understanding defect rates as a function of various process steps. The inspection
points (categories) in the process are initial cutoff, turning, drilling, and assembly. The
frequency distribution table for these data is shown in Table 2.4.1. Construct a pie chart
for these data.

Table 2.4.1 Understanding defect rates as a function of various process steps.

Process steps Frequency Relative frequency Angle size

Initial cutoff 86 86/361 = 23.8% 85.76
Turning 182 182/361 = 50.4% 181.50
Drilling 83 83/361 = 23.0% 82.77
Assembly 10 10/361 = 2.8% 9.97

Total 361 100% 360.00

Solution: The pie chart for these data is constructed by dividing the circle into four slices.
The angle of each slice is given in the last column of Table 2.4.1. Then, the pie chart for
the data of Table 2.4.1 is as shown in the MINITAB printout in Figure 2.4.2. Clearly, the
pie chart gives us a better understanding at a glance about the rate of defects occurring
at different steps of the process.
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Figure 2.4.2 Pie chart for the data in Table 2.4.1 using MINITAB.

MINITAB

Using MINITAB, the pie chart is constructed by taking the following steps:

1. Enter the category in column C1.
2. Enter frequencies of the categories in column C2.
3. From the Menu bar, select Graph > Pie Chart. Then, check the circle next to

Chart values from a table on the pie chart dialog box that appears on the screen.

4. Enter C1 under Categorical values and C2 under Summary variables.
5. Note that if we have the raw data without having the frequencies for different cate-

gories, then check the circle next to Chart counts of unique values. In that case,
the preceding dialog box would not contain a box for Summary variables.

6. Click Pie Options and in the new dialog box that appears select any option you
like and click OK. Click Lables and in the new dialog box that appears select the
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Slice Labels from the box menu and select Percent option and click OK. The pie
chart will appear as shown in Figure 2.4.2.

USING R

We can use the built in ‘pie()’ function in R to generate pie charts. If a pie chart with
percentages desired, then the percentages of the categories should be calculated manually.
Then, these percentages should be used to label the categories. The task can be completed
by running the following R code in the R Console window.

Freq = c(86, 182, 83, 10)

#To label categories
Process = c(‘Initial cutoff’, ‘Turning’, ‘Drilling’, ‘Assembly’)

#To calculate percentages
Percents = round(Freq/sum(Freq)*100,1)
label = paste(Percents, ‘%’, sep=‘ ’) # add % to labels

#Pie Chart with percentages
pie(Freq, labels = label, col=c(2,3,4,5), main=‘Pie Chart of Process Steps’)

#To add a legend. Note: “pch” specifies various point shapes.
legend(‘topleft’, Process, col=c(2,3,4,5), pch=15)

2.4.3 Bar Chart
Bar charts are commonly used to describe qualitative data classified into various categories
based on sector, region, different time periods, or other such factors. Different sectors,
different regions, or different time periods are then labeled as specific categories. A bar
chart is constructed by creating categories that are represented by labeling each category
and which are represented by intervals of equal length on a horizontal axis. The count or
frequency within the corresponding category is represented by a bar of height proportional
to the frequency. We illustrate the construction of a bar chart in the examples that follow.

Example 2.4.3 (Companies’ revenue) The following data give the annual revenues (in
millions of dollars) of five companies A, B, C, D, and E for the year 2011:

78, 92, 95, 94, 102

Construct a bar chart for these data.

Solution: Following the previous discussion, we construct the bar chart as shown in
Figure 2.4.3.
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Figure 2.4.3 Bar chart for annual revenues of five companies for the year 2011.

Example 2.4.4 (Auto part defect types) A company that manufactures auto parts is
interested in studying the types of defects in parts produced at a particular plant. The
following data shows the types of defects that occurred over a certain period:

2 1 3 1 2 1 5 4 3 1 2 3 4 3 1 5 2 3 1 2 3 5 4 3 1
5 1 4 2 3 2 1 2 5 4 2 4 2 5 1 2 1 2 1 5 2 1 3 1 4

Construct a bar chart for the types of defects found in the auto parts.

Solution: In order to construct a bar chart for the data in this example, we first need
to prepare a frequency distribution table. The data in this example are the defect types,
namely 1, 2, 3, 4, and 5. The frequency distribution table is shown in Table 2.4.2. Note
that the frequency distribution table also includes a column of cumulative frequency.

Now, to construct the bar chart, we label the intervals of equal length on the horizontal
line with the category types of defects and then indicate the frequency of observations
associated with each defect by a bar of height proportional to the corresponding frequency.

Table 2.4.2 Frequency distribution table for the data in Example 2.4.4.

Frequency Relative Cumulative
Categories Tally or count frequency frequency

1 ///// ///// //// 14 14/50 14
2 ///// ///// /// 13 13/50 27
3 ///// //// 9 9/50 36
4 ///// // 7 7/50 43
5 ///// // 7 7/50 50

Total 50 1.00
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Figure 2.4.4 Bar graph for the data in Example 2.4.4.

Thus, the desired bar graph, as given in Figure 2.4.4, shows that the defects of type 1 occur
the most frequently, type 2 occur the second most frequently, and so on.

MINITAB

Using MINITAB, the bar chart is constructed by taking the following steps.

1. Enter the category in column C1.
2. Enter frequencies of the categories in C2.
3. From the Menu bar select Graph > Bar Chart. This prompts the following dialog

box to appear on the screen:
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4. Select one of the three options under Bars represent, that is, Counts of unique
values, A function of variables, or Values from a table, depending upon
whether the data are sample values, functions of sample values such as means of
various samples, or categories and their frequencies.

5. Select one of the three possible bar charts that suits your problem. If we are dealing
with only one sample from a single population, then select Simple and click OK.
This prompts another dialog box, as shown below, to appear on the screen:

6. Enter C2 in the box under Graph Variables.
7. Enter C1 in the box under Categorical values.
8. There are several other options such as Chart Option, scale; click them and use

them as needed. Otherwise click OK. The bar chart will appear identical to the one
shown in Figure 2.4.4.

USING R

We can use built in ‘barplot()’ function in R to generate bar charts. First, we obtain
the frequency table via the ‘table()’ function. The resulting tabulated categories and their
frequencies are then inputted into the ‘barplot()’ function as shown in the following R code.

DefectTypes = c(2,1,3,1,2,1,5,4,3,1,2,3,4,3,1,5,2,3,1,2,3,5,4,3,
1,5,1,4,2,3,2,1,2,5,4,2,4,2,5,1,2,1,2,1,5,2,1,3,1,4)

#To obtain the frequencies
counts = table(DefectTypes)

#To obtain the bar chart
barplot(counts, xlab=‘Defect type’, ylab=‘Frequency’)



2.4 Graphical Description of Qualitative and Quantitative Data 37

2.4.4 Histograms
Histograms are extremely powerful graphs that are used to describe quantitative data
graphically. Since the shape of a histogram is determined by the frequency distribution
table of the given set of data, the first step in constructing a histogram is to create a
frequency distribution table. This means that a histogram is not uniquely defined until
the classes or bins are defined for a given set of data. However, a carefully constructed
histogram can be very informative.

For instance, a histogram provides information about the patterns, location/center,
and dispersion of the data. This information is not usually apparent from raw data. We
may define a histogram as follows:

Definition 2.4.1 A histogram is a graphical tool consisting of bars placed side by
side on a set of intervals (classes, bins, or cells) of equal width. The bars represent
the frequency or relative frequency of classes. The height of each bar is proportional
to the frequency or relative frequency of the corresponding class.

To construct a histogram, we take the following steps:

Step 1. Prepare a frequency distribution table for the given data.
Step 2. Use the frequency distribution table prepared in Step 1 to construct the

histogram. From here, the steps involved in constructing a histogram are
exactly the same as those to construct a bar chart, except that in a his-
togram, there is no gap between the intervals marked on the horizontal axis
(the x-axis).

A histogram is called a frequency histogram or a relative frequency histogram depending
on whether the scale on the vertical axis (the y-axis) represents the frequencies or the
relative frequencies. In both types of histograms, the widths of the rectangles are equal
to the class width. The two types of histograms are in fact identical except that the
scales used on the y-axes are different. This point becomes quite clear in the following
example:

Example 2.4.5 (Survival times) The following data give the survival times (in hours) of
50 parts involved in a field test under extraneous operating conditions.

60 100 130 100 115 30 60 145 75 80 89 57 64 92 87 110 180
195 175 179 159 155 146 157 167 174 87 67 73 109 123 135 129 141
154 166 179 37 49 68 74 89 87 109 119 125 56 39 49 190

Construct a frequency distribution table for this data. Then, construct frequency and
relative frequency histograms for these data.
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Solution:
Step 1. Find the range of the data:

R = 195 − 30 = 165

Then, determine the number of classes (see for example the Sturges’ formula
m = 1 + 3.3 log n, in (2.3.2))

m = 1 + 3.3 log 50 = 6.61 ≈ 7

Last, compute the class width:

Class width = R/m = 165/7 = 23.57 ≈ 24

As we noted earlier, the class width number is always rounded up to another
convenient number that is easy to work with. If the number calculated using
(2.3.4) is rounded down, then some of the observations will be left out as
they will not belong to any class. Consequently, the total frequency will be
less than the total count of the data. The frequency distribution table for the
data in this example is shown in Table 2.4.3.

Step 2. Having completed the frequency distribution table, construct the histograms.
To construct the frequency histogram, first mark the classes on the x-axis
and the frequencies on the y-axis. Remember that when marking the classes
and identifying the bins on the x-axis, there must be no gap between them.
Then, on each class marked on the x-axis, place a rectangle, where the
height of each rectangle is proportional to the frequency of the corresponding
class. The frequency histogram for the data with the frequency distribution
given in Table 2.4.3 is shown in Figure 2.4.5. To construct the relative
frequency histogram, the scale is changed on the y-axis (see Figure 2.4.5)
so that instead of plotting the frequencies, we plot relative frequencies. The
resulting graph for this example, shown in Figure 2.4.6, is called the relative
frequency histogram for the data with relative frequency distribution given in
Table 2.4.3.

Table 2.4.3 Frequency distribution table for the survival time of parts.

Frequency Relative Cumulative
Class Tally or count frequency frequency

[30 −−54) ///// 5 5/50 5
[54 −−78) ///// ///// 10 10/50 15
[78 −−102) ///// //// 9 9/50 24
[102 −−126) ///// // 7 7/50 31
[126 −−150) ///// / 6 6/50 37
[150 −−174) ///// / 6 6/50 43
[174 −−198] ///// // 7 7/50 50

Total 50 1
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Figure 2.4.5 Frequency histogram for survival time of parts under extraneous operating
conditions.
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Figure 2.4.6 Relative frequency histogram for survival time of parts under extraneous
operating conditions.

Another graph that becomes the basis of probability distributions, which we will study
in later chapters, is called the frequency polygon or relative frequency polygon depending
on which histogram is used to construct this graph. To construct the frequency or relative
frequency polygon, first mark the midpoints on the top ends of the rectangles of the
corresponding histogram and then simply join these midpoints. Note that classes with
zero frequencies at the lower as well as at the upper end of the histogram are included
so that we can connect the polygon with the x-axis. The lines obtained by joining the
midpoints are called the frequency or relative frequency polygons, as the case may be. The
frequency polygon for the data in Example 2.4.5 is shown in Figure 2.4.7. As the frequency
and the relative frequency histograms are identical in shape, the frequency and relative
frequency polygons are also identical, except for the labeling of the y-axis.

Quite often a data set consists of a large number of observations that result in a
large number of classes of very small widths. In such cases, frequency polygons or relative
frequency polygons become smooth curves. Figure 2.4.8 shows one such smooth curve.
Such smooth curves, usually called frequency distribution curves, represent the probabil-
ity distributions of continuous random variables that we study in Chapter 5. Thus, the
histograms eventually become the basis for information about the probability distributions
from which the sample was obtained.
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Figure 2.4.7 Frequency polygon for survival time of parts under extraneous operating
conditions.
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Figure 2.4.8 Typical frequency distribution curve.

Left skewed Right skewed Symmetric

Figure 2.4.9 Three typical types of frequency distribution curves.

The shape of the frequency distribution curve of a data set depends on the shape of its
histogram and choice of class or bin size. The shape of a frequency distribution curve can
in fact be of any type, but in general, we encounter the three typical types of frequency
distribution curves shown in Figure 2.4.9.

We now turn to outlining the various steps needed when using MINITAB and R.
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MINITAB

1. Enter the data in column C1.
2. From the Menu bar, select Graph > Histogram. This prompts the following dialog

box to appear on the screen.

3. From this dialog box, select an appropriate histogram and click OK. This will
prompt another dialog box to appear.

4. In this dialog box, enter C1 in the box under the Graph variables and click OK.
Then, a histogram graph will appear in the Session window.

5. After creating the histogram, if you want to customize the number of classes (cells
or bins), click twice on any bar of the histogram. This prompts another dialog box
Edit Bars to appear. In the new dialog box, select Binning. This allows the user
to select the desired number of classes, their midpoints or cutpoints.

To create a cumulative frequency histogram, take all the steps as previously
described. Follow this in the dialog box at Histogram-Simple, and select
Scale>Y-Scale Type. Then, check a circle next to Frequency and a square
next to Accumulate values across bins. Click OK. A customized Cumulative
Frequency Histogram using MINITAB is as obtained as shown in Figure 2.4.10.
Note: To get the exact sample cumulative distribution, we used the manual
cutpoints shown in the first column of Table 2.4.3 when Binning.

6. To obtain the frequency polygon in the dialog box Histogram-Simple, select Data
view > Data Display, remove the check mark from Bars, and placing a check
mark on Symbols. Under the Smoother tab, select Lowess for smoother and
change Degree of smoothing to be 0 and Number of steps to be 1. Then, click
OK twice. At this juncture, the polygon needs be modified to get the necessary
cutpoints. We produced by right clicking on the X-axis, and selecting the edit X
scale. Under the Binning tab for Interval Type, select Cutpoint, and under the
Interval Definition, select Midpoint/Cutpoint positions. Now type manually
calculated interval cutpoints. Note that one extra lower and one extra upper cutpoint
should be included so that we can connect the polygon with the x-axis as shown in
Figure 2.4.7.
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Figure 2.4.10 The cumulative frequency histogram for the data in Example 2.4.5.

USING R

We can use the built in ‘hist()’ function in R to generate histograms. Extra arguments
such as ‘breaks’, ‘main’, ‘xlab’, ‘ylab’, ‘col’ can be used to define the break points, graph
heading, x-axis label, y-axis label, and filling color, respectively. The specific argument
‘right = FALSE’ should be used to specify that the upper limit does not belong to the
class. To obtain the cumulative histogram, we apply the ‘cumsum()’ function to frequencies
obtained from the histogram function. The task can be completed by running the following
R code in the R Console window.

SurvTime = c(60,100,130,100,115,30,60,145,75,80,89,57,64,92,87,110,
180,195,175,179,159,155, 146,157,167,174,87,67,73,109,123,135,129,
141,154,166,179,37,49,68,74,89,87,109,119,125,56,39,49,190)

#To plot the histogram
hist(SurvTime, breaks=seq(30,198, by=24), main=‘Histogram of Survival Time’,
xlab=‘Survival Time’, ylab=‘Frequency’, col=‘grey’, right = FALSE)

#To obtain the cumulative histogram, we replace cell
frequencies by their cumulative frequencies
h = hist(SurvTime, breaks=seq(30,198, by=24), right = FALSE)
h$counts = cumsum(h$counts)

#To plot the cumulative histogram
plot(h, main=‘Cumulative Histogram’, xlab=‘Survival Time’,
ylab=‘Cumulative Frequency’, col=‘grey’)

Below, we show the histograms obtained by using the above R code.
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Another graph called the ogive curve, which represents the cumulative frequency dis-
tribution (c.d.f.), is obtained by joining the lower limit of the first bin to the upper limits
of all the bins, including the last bin. Thus, the ogive curve for the data in Example 2.4.5
is as shown in Figure 2.4.11.
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Figure 2.4.11 Ogive curve using MINITAB for the data in Example 2.4.5.
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2.4.5 Line Graph
A line graph, also known as a time-series graph, is commonly used to study any trends
in the variable of interest that might occur over time. In a line graph, time is marked
on the horizontal axis (the x-axis) and the variable on the vertical axis (the y-axis). For
illustration, we use the data of Table 2.4.4 given below in Example 2.4.6.

Example 2.4.6 (Lawn mowers) The data in Table 2.4.4 give the number of lawn mowers
sold by a garden shop over a period of 12 months of a given year. Prepare a line graph for
these data.

Table 2.4.4 Lawn mowers sold by a garden shop over a period of 12 months of a given
year.

Months January February March April May June July August September October November December

LM sold 2 1 4 10 57 62 64 68 40 15 10 5

Solution: To prepare the line graph, plot the data in Table 2.4.4 using the x-axis for the
months and the y-axis for the lawn mowers sold, and then join the plotted points with a
freehand curve. The line graph for the data in this example is as shown in Figure 2.4.12,
which was created using MINITAB (Graph > Time Series Plot).

From the line graph in Figure 2.4.12, we can see that the sale of lawn mowers is
seasonal, since more mowers were sold in the summer months. Another point worth noting
is that a good number of lawn mowers were sold in September when summer is winding
down. This may be explained by the fact that many stores want to clear out such items
as the mowing season is about to end, and many customers take advantage of clearance
sales. Any mower sales during winter months may result because of a discounted price, or
perhaps the store may be located where winters are very mild, and there is still a need for
mowers, but at a much lower rate.
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Figure 2.4.12 Line graph for the data on lawn mowers in Example 2.4.6.
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2.4.6 Stem-and-Leaf Plot
Before discussing this plot, we need the concept of the median of a set of data. The median
is the value, say Md, that divides the data into two equal parts when the data are arranged
in ascending order. A working definition is the following (a more detailed examination and
discussion of the median is given in Section 2.5.1).

Definition 2.4.2 Suppose that we have a set of values, obtained by measuring a
certain variable, say n times. Then, the median of these data, say Md, is the value
of the variable that satisfies the following two conditions:

(i) at most 50% of the values in the set are less than Md, and
(ii) at most 50% of the values in the set are greater than Md.

We now turn our attention to the stem-and-leaf plot invented by John Tukey. This
plot is a graphical tool used to display quantitative data. Each data value is split into
two parts, the part with leading digits is called the stem, and the rest is called the leaf.
Thus, for example, the data value 5.15 is divided in two parts with 5 for a stem and
15 for a leaf.

A stem-and-leaf plot is a powerful tool used to summarize quantitative data. The
stem-and-leaf plot has numerous advantages over both the frequency distribution table
and the frequency histogram. One major advantage of the stem-and-leaf plot over the
frequency distribution table is that from a frequency distribution table, we cannot retrieve
the original data, whereas from a stem-and-leaf plot, we can easily retrieve the data in its
original form. In other words, if we use the information from a stem-and-leaf plot, there is
no loss of information, but this is not true of the frequency distribution table. We illustrate
the construction of the stem-and-leaf plot with the following example.

Example 2.4.7 (Spare parts supply) A manufacturing company has been awarded a huge
contract by the Defense Department to supply spare parts. In order to provide these parts
on schedule, the company needs to hire a large number of new workers. To estimate how
many workers to hire, representatives of the Human Resources Department decided to
take a random sample of 80 workers and find the number of parts each worker produces
per week. The data collected is given in Table 2.4.5. Prepare a stem-and-leaf diagram for
these data.

Table 2.4.5 Number of parts produced per week by each worker.

73 70 68 79 84 85 77 75 61 69 74 80 83 82 86 87 78 81 68 71
74 73 69 68 87 85 86 87 89 90 92 71 93 67 66 65 68 73 72 83
76 74 89 86 91 92 65 64 62 67 63 69 73 69 71 76 77 84 83 85
81 87 93 92 81 80 70 63 65 62 69 74 76 83 85 91 89 90 85 82
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Solution: The stem-and-leaf plot for the data in Table 2.4.5 is as shown in Figure 2.4.13.
The first column in Figure 2.4.13 gives the cumulative frequency starting from the

top and from the bottom of the column but ending at the stem that lies before the stem
containing the median. The number in parentheses indicates the stem that contains the
median value of the data, and the frequency of that stem.

Stem-and-leaf of C1   N = 80

21 1223345556778888999996

(22) 00111233334444566677897

37 00111223333445555566677779998

9 0011222339

Leaf Unit = 1

Figure 2.4.13 Stem-and-leaf plot for the data in Example 2.4.7 with increment 10.

Stem-and-leaf of C1   N = 80

6 6 122334

21 6 555677888899999

35 7 00111233334444

(8) 7 56667789

37 8 0011122333344

24 8 555556667777999

9 9 001122233

Leaf Unit = 1

Figure 2.4.14 Stem-and-leaf plot for the data in Example 2.4.7 with increment 5.

Carefully examining the stem-and-leaf plot in Figure 2.4.13, we note that the data
are clustered together; each stem has many leaves. This situation is the same as when we
have too few classes in a frequency distribution table. Thus having too many leaves on
the stems makes the stem-and-leaf diagram less informative. This problem can be resolved
by splitting each stem into two, five, or more stems depending on the size of the data.
Figure 2.4.14 shows a stem-and-leaf plot when we split each stem into two stems.

The first column in the above stem-and-leaf plots counts from the top, and at the
bottom is the number of workers who have produced up to and beyond certain number
of parts. For example, in Figure 2.4.14, the entry in the third row from the top indicates
that 35 workers produced fewer than 75 parts/wk, whereas the entry in the third row from
the bottom indicates that 37 workers produced at least 80 parts/wk. The number within
parentheses gives the number of observations on that stem and indicates that the middle
value or the median of the data falls on that stem. Furthermore, the stem-and-leaf plots
in Figure 2.4.14 is more informative than Figure 2.4.13. For example, the stem-and-leaf
plot in Figure 2.4.14 clearly indicates that the data is bimodal, whereas Figure 2.4.13 fails
to provide this information. By rotating the stem-and-leaf plot counterclockwise through
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90◦, we see that the plot can serve the same purpose as a histogram, with stems as classes
or bins, leaves as class frequencies, and columns of leaves as rectangles or bars. Unlike
the frequency distribution table and histogram, the stem-and-leaf plot can be used to
answer questions such as, “What percentage of workers produced between 75 and 83 parts
(inclusive)?” Using the stem-and-leaf plot, we readily see that 20 of 80, or 25% of the
workers, produced between 75 and 83 parts (inclusive). However, using the frequency
distribution table, this question cannot be answered, since the interval 80–85 cannot be
broken down to get the number of workers producing between 80 and 83 per week. It is
clear that we can easily retrieve the original data from the stem-and-leaf plot.

MINITAB

1. Enter the data in column C1.
2. From the Menu bar, select Graph > Stem-and-leaf. This prompts the following

dialog box to appear on the screen. In this dialog box,

3. Enter C1 in the box under Graph variables.
4. Enter the desired increment in the box next to Increment. For example, in

Figures 2.4.13 and 2.4.14, we used increments of 10 and 5, respectively.
5. Click OK. The stem-and-leaf plot will appear in the Session window.

USING R

We can use the built in ‘stem()’ function in R to generate stem-and-leaf plots. The extra
argument ‘scale’ can be used to define the length of the stem. The task can be completed
by running the following R code in R Console window.

SpareParts = c(73,70,68,79,84,85,77,75,61,69,74,80,83,82,86,87,78,81,
68,71,74,73,69,68,87,85,86,87,89, 90,92,71,93,67,66,65,68,73,72,83,
76,74,89,86,91,92,65,64,62,67,63,69,73,69,71,76,77,84,83,85,81,87,
93,92,81,80,70,63,65,62,69,74,76,83,85,91,89,90,85,82)
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#To plot stem-and-leaf plot
stem(SpareParts, scale = 1)

#R output

The decimal point is 1 digit(s) to the right of the |
6 | 122334
6 | 555677888899999
7 | 00111233334444
7 | 56667789
8 | 0011122333344
8 | 555556667777999
9 | 001122233

PRACTICE PROBLEMS FOR SECTION 2.4

1. Prepare a pie chart and bar chart for the data in Problem 2 of Section 2.3.
2. Prepare a pie chart and bar chart for the data in Problem 3 of Section 2.3 and

comment on the cars the senior citizens like to drive.
3. Prepare a line graph for the data in Problem 5 of Section 2.3 and state whether

these data show any patterns. Read the data columnwise.
4. Use the data in Problem 6 of Section 2.3 to do the following:

(a) Construct a frequency histogram for these data.
(b) Construct a relative frequency histogram for these data.
(c) Construct a frequency polygon for these data.
(d) Construct an ogive curve for these data.

5. Construct two stem-and-leaf diagrams for the data in Problem 4 of Section 2.3,
using increments of 10 and 5, and comment on which diagram is more informative.

6. Construct a stem-and-leaf diagram for the data in Problem 6 of Section 2.3. Then,
reconstruct the stem-and-leaf diagram you just made by dividing each stem into
two stems and comment on which diagram is more informative.

7. A manufacturing company is very training oriented. Every month the company
sends some of its engineers for six-sigma training. The following data give the
number of engineers who were sent for six-sigma training during the past 30 months:

18 20 16 30 14 16 22 24 16 14 16 19 18 24 23
28 18 12 18 15 17 21 22 25 27 23 19 18 20 26

Using technology, prepare a complete frequency distribution table for these data.
8. A manufacturer of men’s shirts is interested in finding the percentage of cotton in

fabric used for shirts that are in greater demand. In order to achieve her goal, she
took a random sample of 30 men who bought shirts from a targeted market. The



2.4 Graphical Description of Qualitative and Quantitative Data 49

following data shows the cotton content of shirts bought by these men (some men
bought more than one shirt, so that here n = 88 > 30):

35 25 65 35 50 35 40 50 65 55 25 55 65 35 25 35 45 55 65 55 35 45
35 45 20 35 40 45 35 65 35 50 35 30 35 65 35 25 35 20 35 65 35 30
35 65 35 30 25 35 65 35 65 35 20 35 25 35 30 35 65 35 65 35 30 35
30 65 35 30 35 20 35 65 35 55 35 30 35 65 35 65 35 30 35 65 35 35

(a) Prepare a single-valued frequency distribution table for these data.
(b) Prepare a pie chart for these data and comment on the cotton contents in these

shirts.
9. The following data give the number of patients treated per day during the month

of August at an outpatient clinic in a small California town:

20 30 25 35 32 46 40 38 44 41 37 35 40 41 43 38
37 35 32 40 23 26 27 29 21 23 28 33 39 20 29

(a) Prepare a complete frequency distribution table for the data using six classes.
(b) On how many days during August were 36 or more patients treated in the

clinic?
10. The following data give the number of parts that do not meet certain specifications

in 50 consecutive batches manufactured in a given plant of a company:

16 19 22 25 27 18 36 30 20 24 29 40 30 31 34 36 21
25 24 28 26 30 24 16 19 21 30 24 20 22 24 32 27 18
24 20 17 33 35 29 32 36 39 28 26 17 18 25 27 29

Construct a frequency histogram and a frequency polygon for these data.
11. A manufacturer of a part is interested in finding the life span of the part. A random

sample of 30 parts gave the following life spans (in months):

23 25 30 32 36 42 28 24 21 43 46 48 39 30 34
35 24 21 16 54 25 34 37 23 24 28 26 19 27 37

Construct a relative frequency histogram and a cumulative frequency histogram
for these data. Comment on the life span of the part in question.

12. The following data give the number of accidents per week in a manufacturing plant
during a period of 25 weeks:

0 4 1 2 3 4 2 1 0 3 4 0 2 1 3 2 4 2 0 5 3 5 0 1 4
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(a) Construct a single-valued frequency distribution table for these data.
(b) Construct a frequency histogram for these data.
(c) During how many weeks was the number of accidents less than 2?
(d) During how many weeks was the number of accidents at least 3?
(e) What is the relative frequency of 0 accidents?

13. Compressive strengths were measured on 60 samples of a new metal that a car man-
ufacturing company is considering for use in bumpers with better shock-absorbent
properties. The data are shown below:

59.7 58.3 59.0 61.5 58.7 63.8 68.2 65.6 63.5 62.4 59.4 63.2 64.5 60.0 60.5
61.5 68.5 66.6 61.3 58.5 59.2 61.3 60.4 60.6 62.1 63.5 64.4 67.3 67.9 64.2
65.4 69.3 67.3 64.5 62.3 71.7 60.7 60.2 66.7 68.5 64.2 65.1 67.0 59.5 61.7
63.1 67.5 68.5 69.2 61.5 62.3 68.4 66.5 65.7 69.3 62.5 68.0 60.5 62.3 60.5

(a) Prepare a complete frequency distribution table.
(b) Construct a frequency histogram.
(c) Construct a relative frequency histogram.
(d) Construct a frequency and relative frequency polygon.
(e) Construct a cumulative frequency histogram and then draw the ogive curve for

these data.
14. Refer to the data in Problem 13 above. Construct a stem-and-leaf diagram for these

data.
15. The following data give the consumption of electricity in kilowatt-hours during a

given month in 30 rural households in Maine:

260 290 280 240 250 230 310 305 264 286 262 241 209 226 278
206 217 247 268 207 226 247 250 260 264 233 213 265 206 225

(a) Construct, using technology, a stem-and-leaf diagram for these data.
(b) Comment on what you learn from these data.

2.5 NUMERICAL MEASURES OF
QUANTITATIVE DATA

Methods used to derive numerical measures for sample data as well as population data
are known as numerical methods.

Definition 2.5.1 Numerical measures computed by using data of the entire pop-
ulation are referred to as parameters.

Definition 2.5.2 Numerical measures computed by using sample data are referred
to as statistics.
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In the field of statistics, it is standard practice to denote parameters by letters of the
Greek alphabet and statistics by letters of the Roman alphabet.

We divide numerical measures into three categories: (i) measures of centrality, (ii)
measures of dispersion, and (iii) measures of relative position. Measures of centrality give
us information about the center of the data, measures of dispersion give information about
the variation around the center of the data, and measures of relative position tell us what
percentage of the data falls below or above a given measure.

2.5.1 Measures of Centrality
Measures of centrality are also known as measures of central tendency. Whether refer-
ring to measures of centrality or central tendency, the following measures are of primary
importance:

1. Mean
2. Median
3. Mode

The mean, also sometimes referred to as the arithmetic mean, is the most useful and
most commonly used measure of centrality. The median is the second most used, and the
mode is the least used measure of centrality.

Mean
The mean of a sample or a population is calculated by dividing the sum of the data
measurements by the number of measurements in the data. The sample mean is also
known as sample average and is denoted by X̄ (read as X bar), and the population mean
is denoted by the Greek letter μ (read as meu). These terms are defined as follows:

Population mean : μ = (X1 + X2 + · · · + XN )/N =
N∑

i=1

Xi/N (2.5.1)

Sample mean : X̄ = (X1 + X2 + · · · + Xn)/n =
n∑

i=1

Xi/n (2.5.2)

In (2.5.1), Xi denotes the value of the variable X possessed by the ith member of the
population, i = 1, 2, . . . , N . In (2.5.2), the Xi denotes the ith measurement made in a
sample of size n. Here, N and n denote the population and sample size, respectively, and
n < N . The symbol

∑
(read as sigma) denotes the summation over all the measurements.

Note that here X̄ is a statistic, and μ is a parameter.

Example 2.5.1 (Workers’ hourly wages) The data in this example give the hourly wages
(in dollars) of randomly selected workers in a manufacturing company:

8, 6, 9, 10, 8, 7, 11, 9, 8

Find the sample average and thereby estimate the mean hourly wage of these workers.
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Solution: Since wages listed in these data are for only some of the workers in the company,
the data represent a sample. Thus, we have n = 9, and the observed

∑9
i=1 Xi is

n∑
i=1

Xi = (8 + 6 + 9 + 10 + 8 + 7 + 11 + 9 + 8) = 76

Thus, the sample average is observed to be

X̄ =
n∑

i=1

Xi/n = 76/9 = 8.44

In this example, the average hourly wage of these employees is $8.44 an hour.

Example 2.5.2 (Ages of employees) The following data give the ages of all the employees
in a city hardware store:

22, 25, 26, 36, 26, 29, 26, 26

Find the mean age of the employees in that hardware store.

Solution: Since the data give the ages of all the employees of the hardware store, we are
dealing with a population. Thus, we have

N = 8,

N∑
i=1

Xi = (22 + 25 + 26 + 36 + 26 + 29 + 26 + 26) = 216

so that the population mean is

μ =
N∑

i=1

Xi/N = 216/8 = 27

In this example, the mean age of the employees in the hardware store is 27 years.

Even though the formulas for calculating sample average and population mean are very
similar, it is important to make a clear distinction between the sample mean or sample
average X̄ and the population mean μ for all application purposes.

Sometimes, a data set may include a few observations that are quite small or very
large. For examples, the salaries of a group of engineers in a big corporation may include
the salary of its CEO, who also happens to be an engineer and whose salary is much
larger than that of other engineers in the group. In such cases, where there are some very
small and/or very large observations, these values are referred to as extreme values or
outliers. If extreme values are present in the data set, then the mean is not an appropriate
measure of centrality. Note that any extreme values, large or small, adversely affect the
mean value. In such cases, the median is a better measure of centrality since the median is
unaffected by a few extreme values. Next, we discuss the method to calculate the median
of a data set.
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Median

We denote the median of a data set by Md. To determine the median of a data set of size
n, we take the following steps:

Step 1. Arrange the observations in the data set in an ascending order and rank them
from 1 to n.

Step 2. Find the rank of the median that is given by

Rank =

{
(n + 1)/2 if n odd
n/2 and n/2 + 1 if n even

(2.5.3)

We can check manually that the conditions of Definition 2.4.2 are satisfied.
Step 3. Find the value of the observation corresponding to the rank of the median

found in (2.5.3). If x(i) denotes the ith largest value in the sample, and if
(i) n odd, say n = 2m + 1, then the median is x(m+1)
(ii) n even, say n = 2m, then the median is taken as (x(m) + x(m+1))/2

Note that in the second case, we take median as the average of x(m) and x(m+1) because
both satisfy the two conditions of Definition 2.4.2, resulting in their mean being adopted
as a compromise between these two values for the value of Md.

We now give examples of each case, n odd and n even.

Example 2.5.3 (Alignment pins for the case of n odd, n = 11) The following data give
the length (in mm) of an alignment pin for a printer shaft in a batch of production:

30, 24, 34, 28, 32, 35, 29, 26, 36, 30, 33

Find the median alignment pin length.

Solution:
Step 1. Write the data in an ascending order and rank them from 1 to 11, since n = 11.

Observations in ascending order 24 26 28 29 30 30 32 33 34 35 36
Ranks 1 2 3 4 5 6 7 8 9 10 11

Step 2. Rank of the median = (n + 1)/2 = (11 + 1)/2 = 6.
Step 3. Find the value corresponding to rank 6, which in this case is equal to 30.

Thus, the median alignment pin length is Md = 30 mm. This means that at
most 50% alignment pins in the sample are of length less than or equal to 30
and at the most 50% are of length greater than or equal to 30 mm.
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Example 2.5.4 (Sales data) For the case of n even (i.e., n = 16), the following data
describe the sales (in thousands of dollars) for 16 randomly selected sales personnel dis-
tributed throughout the United States:

10 8 15 12 17 7 20 19 22 25 16 15 18 250 300 12

Find the median sale of these individuals.

Solution:
Step 1. Write the data in an ascending order and rank them from 1 to 16, since n = 16.

Observations in ascending order 7 8 10 12 12 15 15 16 17 18 19 20 22 25 250 300
Ranks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Step 2. Rank of the median = (16 + 1)/2 = 8.5.
Step 3. Following our previous discussion, the median in this case is the average of

the values corresponding to their ranks of 8 and 9. Thus, the median of this
data is Md = (16 + 17)/2 = 16.5. In other words, the median sales of the given
individuals is $16,500. We remark that eight observations fall below 16.5, and
eight observations fall above 16.5.

It is important to note that the median may or may not be one of the values of the
data set as in this case. Whenever the sample size is odd, the median is the center value,
and whenever it is even, the median is always the average of the two middle values when
the data are arranged in the ascending order.

Finally, note that the data in this example contain the two values $250,000 and
$300,000. These large values seem to be the sales of top-performing sales personnel and
may be considered as outliers. In this case, the mean of these data is

X̄ = (7 + 8 + 10 + 12 + 12 + 15 + 15 + 16 + 17 + 18 + 19 + 20 + 22 + 25 + 250 + 300)/16

= 47.875

Note that the mean of 47.875 is much larger than the median of 16.5. It is obvious
that the mean of these data has been adversely affected by the outliers. Hence, in this
case, the mean does not adequately represent the measure of centrality of the data set, so
that the median would more accurately identify the location of the center of the data.

Furthermore, if we replace the extreme values of 250 and 300, for example, by 25
and 30, respectively, then the median will not change, whereas the mean becomes 16.937,
namely $16,937. Thus, the new data obtained by replacing the values 250 and 300 with 25
and 30, respectively, do not contain any outliers. The new mean value is more consistent
with the true average sales.

Weighted Mean

Sometimes, we are interested in finding the sample average of a data set where each
observation is given a relative importance expressed numerically by a set of values called
weights. We illustrate the concept of weighted mean with the following example.
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Example 2.5.5 (GPA data) Elizabeth took five courses in a given semester with 5, 4,
3, 3, and 2 credit hours. The grade points she earned in these courses at the end of the
semester were 3.7, 4.0, 3.3, 3.7, and 4.0, respectively. Find her GPA for that semester.

Solution: Note that in this example, the data points 3.7, 4.0, 3.3, 3.7, and 4.0 have
different weights attached to them; that is, the weights are the credit hours for each course.
Thus, to find Elizabeth’s GPA, we cannot simply find the arithmetic mean. Rather, in this
case, we need to find the mean called the weighted mean, which is defined as

X̄w =
w1X1 + w2X2 + · · · + wnXn

w1 + w2 + · · · + wn

=
∑n

i=1 wiXi∑n
i=1 wi

(2.5.4)

where w1, w2, . . . , wn are the weights attached to X1,X2, . . . ,Xn, respectively. Thus, her
GPA is given by

X̄w =
5(3.7) + 4(4.0) + 3(3.3) + 3(3.7) + 2(4.0)

5 + 4 + 3 + 3 + 2
= 3.735

Mode
The mode of a data set is the value that occurs most frequently. The mode is the least
used measure of centrality. When items are produced via mass production, for example,
clothes of certain sizes or rods of certain lengths, the modal value is of great interest. Note
that in any data set, there may be no mode, or conversely, there may be multiple modes.
We denote the mode of a data set by M0.

Example 2.5.6 (Finding a mode) Find the mode for the following data set:

3, 8, 5, 6, 10, 17, 19, 20, 3, 2, 11

Solution: In the data set of this example, each value occurs once except 3, which occurs
twice. Thus, the mode for this set is

M0 = 3

Example 2.5.7 (Data set with no mode) Find the mode for the following data set:

1, 7, 19, 23, 11, 12, 1, 12, 19, 7, 11, 23

Solution: Note that in this data set, each value occurs twice. Thus, this data set does
not have any mode.

Example 2.5.8 (Tri-modal data set) Find the mode for the following data set:

5, 7, 12, 13, 14, 21, 7, 21, 23, 26, 5

Solution: In this data set, values 5, 7, and 21 occur twice, and the rest of the values
occur only once. Thus, in this example, there are three modes, that is,

M0 = 5, 7, and 21
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These examples show that there is no mathematical relationship among the mean,
mode, and median in the sense that if we know any one or two of these measures (i.e., mean,
median, or mode), then we cannot find the missing measure(s) without using the data
values. However, the values of mean, mode, and median do provide important information
about the type or shape of the frequency distribution of the data. Although the shape of the
frequency distribution of a data set could be of any type, in practice, the most frequently
encountered distributions are the three types shown in Figure 2.5.1. The location of the
measures of centrality as shown in Figure 2.5.1 provides the information about the shape
of the frequency distribution of a given data.

Right skewed

Mode < Median < Mean

Symmetric

Mean = Median = Mode

Left skewed

Mean < Median < Mode

Figure 2.5.1 Frequency distributions showing the shape and location of measures of
centrality.

Definition 2.5.3 A data set is symmetric when the values in the data set that lie
equidistant from the mean, on either side, occur with equal frequency.

Definition 2.5.4 A data set is left-skewed when values in the data set that are
greater than the median occur with relatively higher frequency than those values
that are smaller than the median. The values smaller than the median are scattered
to the left far from the median.

Definition 2.5.5 A data set is right-skewed when values in the data set that are
smaller than the median occur with relatively higher frequency than those values
that are greater than the median. The values greater than the median are scattered
to the right far from the median.

2.5.2 Measures of Dispersion
In the previous section, we discussed measures of centrality, which provide information
about the location of the center of frequency distributions of the data sets under
consideration. For example, consider the frequency distribution curves shown in
Figure 2.5.2. Measures of central tendency do not portray the whole picture of any data
set. For example, it can be seen in Figure 2.5.2 that the two frequency distributions have
the same mean, median, and mode. Interestingly, however, the two distributions are very



2.5 Numerical Measures of Quantitative Data 57

Mean = Median = Mode

Figure 2.5.2 Two frequency distribution curves with equal mean, median, and mode
values.

different. The major difference is in the variation among the values associated with each
distribution. It is important, then, for us to know about the variation among the values
of the data set. Information about variation is provided by measures known as measures
of dispersion. In this section, we study three measures of dispersion: range, variance, and
standard deviation.

Range
The range of a data set is the easiest measure of dispersion to calculate. Range is defined as

Range = Largest value − Smallest value (2.5.5)

The range is not an efficient measure of dispersion because it takes into consideration only
the largest and the smallest values and none of the remaining observations. For example,
if a data set has 100 distinct observations, it uses only two observations and ignores
the remaining 98 observations. As a rule of thumb, if the data set contains 10 or fewer
observations, the range is considered a reasonably good measure of dispersion. For data
sets containing more than 10 observations, the range is not considered to be an efficient
measure of dispersion.

Example 2.5.9 (Tensile strength) The following data gives the tensile strength (in psi)
of a sample of certain material submitted for inspection. Find the range for this data set:

8538.24, 8450.16, 8494.27, 8317.34, 8443.99, 8368.04, 8368.94, 8424.41, 8427.34,
8517.64

Solution: The largest and the smallest values in the data set are 8538.24 and 8317.34,
respectively. Therefore, the range for this data set is

Range = 8538.24 − 8317.34 = 220.90

Variance
One of the most interesting pieces of information associated with any data is how the
values in the data set vary from one another. Of course, the range can give us some idea
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of variability. Unfortunately, the range does not help us understand centrality. To better
understand variability, we rely on more powerful indicators such as the variance, which is
a value that focuses on how far the observations within a data set deviate from their mean.

For example, if the values in a data set are X1,X2, . . . ,Xn, and the sample average
is X̄, then X1 − X̄,X2 − X̄, . . . ,Xn − X̄ are the deviations from the sample average. It
is then natural to find the sum of these deviations and to argue that if this sum is large,
the values differ too much from each other, but if this sum is small, they do not differ
from each other too much. Unfortunately, this argument does not hold, since, as is easily
proved, the sum of these deviations is always zero, no matter how much the values in
the data set differ. This is true because some of the deviations are positive and some are
negative. To avoid the fact that this summation is zero, we can square these deviations
and then take their sum. The variance is then the average value of the sum of the squared
deviations from X̄. If the data set represents a population, then the deviations are taken
from the population mean μ. Thus, the population variance, denoted by σ2 (read as sigma
squared), is defined as

σ2 =
1
N

N∑
i=1

(Xi − μ)2 (2.5.6)

Further the sample variance, denoted by S2, is defined as

S2 =
1

n − 1

n∑
i=1

(Xi − X̄)2 (2.5.7)

For computational purposes, we give below the simplified forms for the population variance
and the sample variances.

Population variance : σ2 =
1
N

(
N∑

i=1

X2
i − (

∑N
i=1 Xi)

2

N

)
(2.5.8)

Sample variance : S2 =
1

n − 1

(
n∑

i=1

X2
i − (

∑n
i=1 Xi)

2

n

)
(2.5.9)

Note that one difficulty in using the variance as the measure of dispersion is that
the units for measuring the variance are not the same as those for data values. Rather,
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variance is expressed as a square of the units used for the data values. For example, if
the data values are dollar amounts, then the variance will be expressed in squared dollars.
Therefore, for application purposes, we define another measure of dispersion, called the
standard deviation, that is directly related to the variance. We note that the standard
deviation is measured in the same units as used for the data values (see (2.5.10) and
(2.5.11) given below).

Standard Deviation

A standard deviation is obtained by taking the positive square root (with positive sign)
of the variance. The population standard deviation σ and the sample standard deviation
S are defined as follows:

Population standard deviation : σ = +

√√√√ 1
N

(
N∑

i=1

X2
i − (

∑N
i=1 Xi)2

N

)
(2.5.10)

Sample standard, deviation : S = +

√√√√ 1
n − 1

(
n∑

i=1

X2
i − (

∑n
i=1 Xi)2

n

)
(2.5.11)

Example 2.5.10 (Lengths of certain chips) The following data give the length (in mil-
limeters) of material chips removed during a machining operation:

4, 2, 5, 1, 3, 6, 2, 4, 3, 5

Determine the variance and the standard deviation for these data.

Solution: There are three simple steps to calculate the variance of any data set.

Step 1. Calculate
∑

Xi, the sum of all the data values, that is,∑
Xi = 4 + 2 + 5 + 1 + 3 + 6 + 2 + 4 + 3 + 5 = 35

Step 2. Calculate
∑

X2
i , the sum of squares of all the observations, that is,∑

X2
i = 42 + 22 + 52 + 12 + 32 + 62 + 22 + 42 + 32 + 52 = 145

Step 3. Since the sample size is n = 10, by inserting the values
∑

Xi and
∑

X2
i ,

calculated in Step 1 and Step 2 in formula (2.5.9), the sample variance is
given by

S2 =
1

10 − 1

(
145 − (35)2

10

)
=

1
9
(145 − 122.5) = 2.5

The standard deviation is obtained by taking the square root of the variance, that is

S =
√

2.5 = 1.58
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Note: It is important to remember the value of S2, and therefore of S, is always greater
than zero, except when all the data values are equal, in which case S2 = 0.

Empirical Rule
We now illustrate how the standard deviation of a data set helps us measure the variability
of the data. If the data have a distribution that is approximately bell-shaped, the following
rule, known as the empirical rule, can be used to compute the percentage of data that will
fall within k standard deviations from the mean (k = 1, 2, 3). For the case where the data
set is the set of population values, the empirical rule may be stated as follows:

1. About 68% of the data will fall within one standard deviation of the mean, that is,
between μ − 1σ and μ + 1σ.

2. About 95% of the data will fall within two standard deviations of the mean, that is,
between μ − 2σ and μ + 2σ.

3. About 99.7% of the data will fall within three standard deviations of the mean, that
is, between μ − 3σ and μ + 3σ.

Figure 2.5.3 illustrates these features of the empirical rule.

99.7%

95%

63%

μ – 3σ μ – 2σ μ – σ μ + σ μ + 2σ μ + 3σμ

Figure 2.5.3 Application of the empirical rule.

For the case where μ and σ are unknown, the empirical rule is of the same form, but
μ is replaced by X̄ and σ replaced by S.

Example 2.5.11 (Soft drinks) A soft-drink filling machine is used to fill 16-oz soft-drink
bottles. The amount of beverage slightly varies from bottle to bottle, and it is assumed that
the actual amount of beverage in the bottle forms a bell-shaped distribution with a mean
15.8 oz and standard deviation 0.15 oz. Use the empirical rule to find what percentage of
bottles contain between 15.5 and 16.1 oz of beverage.

Solution: From the information provided to us in this problem, we have μ = 15.8 oz
and σ = 0.15 oz. We are interested in knowing the percentage of bottles that will
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contain between 15.5 and 16.1 oz of beverage. We can see that μ ± 2σ = 15.8 ± 2(0.15) =
(15.5, 16.1). Then comparing Figure 2.5.4 with Figure 2.5.3, it seems that approximately
95% of the bottles contain between 15.5 and 16.1 oz of the beverage, since 15.5 and 16.1
are two standard deviations away from the mean.

16.1μ = 15.8

μ + 2σμ – 2σ
0.3 = 2σ 0.3 = 2σ

15.5

Figure 2.5.4 Distribution of amounts of soft drink contained in bottles.

Example 2.5.12 (Applying the empirical rule) At the end of each fiscal year, a man-
ufacturer writes off or adjusts its financial records to show the number of units of bad
production occurring over all lots of production during the year. Suppose that the dollar
values associated with the various units of bad production form a bell-shaped distribution
with mean X̄ = $35,700 and standard deviation S = $2500. Find the percentage of units
of bad production that has a dollar value between $28,200 and $43,200.

Solution: From the information provided, we have X̄ = $35,700 and S = $2500. Since the
limits $28,200 and $43,200 are three standard deviations away from the mean, applying
the empirical rule shows that approximately 99.7% units of the bad production has dollar
value between $28,200 and $43,200.

28,000 43,200X = 35,700

7500 = 3S 7500 = 3S
X – 3S X + 3S

Figure 2.5.5 Dollar value of units of bad production.

If the population data have a distribution that is not bell-shaped, then we use another
result, called Chebyshev’s inequality, which states:
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Chebyshev’s inequality: For any k > 1, at least (1 − 1/k2)100% of the data values
fall within k standard deviations of the mean.

Figure 2.5.6a,b illustrates the basic concept of Chebyshev’s inequality. Chebyshev’s
inequality is further discussed in Chapter 5.

The shaded area in Figure 2.5.6a contains at least (1 − 1/k2)100% = (1 − 1/22)100% =
75% of the data values. The shaded area in Figure 2.5.6b contains at least (1 −
1/k2)100% = (1 − 1/32)100% ≈ 89% of the data values. Note that Chebyshev’s inequality
is also valid for sample data.

Example 2.5.13 (Using Chebyshev’s inequality) Sodium is an important component of
the metabolic panel. The average sodium level for 1000 American male adults who were
tested for low sodium was found to be 132 mEq/L with a standard deviation of 3 mEq/L.
Using Chebyshev’s inequality, determine at least how many of the adults tested have a
sodium level between 124.5 and 139.5 mEq/L.

μ – 2σ
2σ

μ + 2σμ
2σ

(a)

μ – 3σ
3σ

μ + 3σμ
3σ

(b)

Figure 2.5.6 Shaded area lies within the intervals: (a) [μ − 2σ, μ + 2σ] and
(b) [μ − 3σ, μ + 3σ].

Solution: From the given information, we have that the mean and the standard deviation
of sodium level for these adults are

X̄ = 132 and S = 3

To find how many of 1000 adults have their sodium level between 124.5 and 139.5 mEq/L,
we need to determine the value of k. Since each of these values is 7.5 points away from
the mean, then using Chebyshev’s inequality, the value of k is such that kS = 7.5, so that

k = 7.5/3 = 2.5.

Hence, the number of adults in the sample who have their sodium level between 124.5 and
139.5 mEq/L is at least

(1 − 1/(2.5)2) × 1000 = (1 − 0.16) × 1000 = 840
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Numerical measures can easily be determined by using any one of the statistical pack-
ages discussed in this book. We illustrate the use of MINITAB and R with the following
example. The use of JMP is discussed in Section 2.11, which is available on the book
website: www.wiley.com/college/gupta/statistics2e.

Example 2.5.14 (Using MINITAB and R) Calculate numerical measures for the follow-
ing sample data:

6, 8, 12, 9, 14, 18, 17, 23, 21, 23

MINITAB

1. Enter the data in column C1.
2. From the Menu bar, select Stat > Basic Statistics > Display Descriptive

Statistics. This prompts the following dialog box to appear on the screen:

3. In this dialog box, enter C1 in the box under variables and click at the box
Statistics . . . . Then, the following dialog box appears:
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In this dialog box, check the statistics you would like to determine (for instance, we
checked Mean, Mode, Median, Variance, Standard Deviation, Minimum, Maximum,
and Range) and then click OK, again, click OK. The numerical measures shown
below appear in the Session window:

Statistics

Variable Mean StDev Variance Minimum Median Maximum Mode Mode

N for

Range

C1 15.10 6.26 39.21 6.00 15.50 23.00 17.00 23 2

USING R:

We can use the built in ‘summary()’ function in R to get basic summary statistics. However,
the extra functions ‘mean()’, ‘sd()’, ‘var()’, and ‘median()’ are used to calculate the sample
mean, standard deviation, variance, and median, respectively. The mode can be obtained
using the manual calculation specify in the following R code. The task can be completed
by running the following R code in the R Console window.

data = c(6, 8, 12, 9, 14, 18, 17, 23, 21, 23)

#To obtain summary statistics
summary(data)

Min. 1st Qu. Median Mean 3rd Qu. Max.

6.00 9.75 15.50 15.10 20.25 23.00

#To obtain the mean, median, standard deviation, and variance
mean(data)
[1] 15.1
median(data)
[1] 15.5
sd(data)
[1] 6.261878
var(data)
[1] 39.21111

# To obtain the mode
names(table(data))[table(data) == max(table(data))]
[1] “23”
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PRACTICE PROBLEMS FOR SECTION 2.5

1. The data given below gives the viscosity of paper pulp measured over a period of
30 days:

117.9 117.7 121.9 116.8 118.9 121.2 119.0 117.5 120.1 122.6
120.1 124.1 120.1 118.4 117.2 121.7 122.2 122.0 121.2 120.4
119.8 121.6 118.1 119.3 121.1 119.6 117.9 119.4 120.8 122.1

(a) Determine the mean, median, and mode for these data.
(b) Determine the standard deviation for this sample data set.
(c) Use the results of part (a) to comment on the shape of the data.

2. Use the values of the mean (X̄) and the standard deviation (S) found in Problem 1
to determine the number of data points that fall in the intervals (X̄ − S, X̄ +
S), (X̄ − 2S, X̄ + 2S), and (X̄ − 3S, X̄ + 3S). Assuming that the distribution of
this data set is bell-shaped, use the empirical rule to find the number of data
points that you would expect to fall in these intervals. Compare the two results
and comment.

3. Reconsider the data in Problem 4 of Section 2.3, reproduced below:

25 30 26 26 25 16 21 22 21 27 15 24 19 20 24 16 30 28
24 23 15 15 21 28 18 15 21 27 26 28 17 19 24 26 27 17
27 19 22 27 16 25 16 30 18

(a) Determine the mean and median for these data.
(b) Determine the standard deviation for these data.
(c) Determine what percentage of the data fall within 2.5 standard deviations of

the mean.
4. Reconsider the data in Problem 5 of Section 2.3, reproduced here:

148 167 171 177 175 165 134 177 168 142
126 166 130 122 157 138 163 129 143 145
141 162 147 141 164 137 149 146 132 157

(a) Determine the mean and median for these data.
(b) Determine the range, variance, and the standard deviation for these sam-

ple data.
(c) Determine what percentage of the data fall within two standard deviations of

the mean.
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5. Reconsider the data in Problem 6 of Section 2.3, reproduced here:

105 101 120 116 108 112 118 119 107 100
107 120 113 113 101 102 102 100 101 100
118 106 114 100 104 101 107 113 110 100
109 108 100 104 110 113 118 100 119 120

(a) Determine the mean, median, and mode for these data.
(b) Determine the range, variance, and the standard deviation, for these data.

6. Use the values of the mean (X̄) and the standard deviation (S) found in part (a) of
Problem 5 above to determine the number of data points that fall in the intervals,
(X̄ − S, X̄ + S), (X̄ − 2S, X̄ + 2S), and (X̄ − 3S, X̄ + 3S). Assuming that the dis-
tribution of this data set is bell-shaped, use the empirical rule to find the number
of data points that you would expect to fall in these intervals. Compare the two
results and comment.

7. John is a very hard-working and an ambitious student. In a certain semester, he
took in fact six courses that had 5, 4, 4, 3, 3, and 2 credit hours. The grade points
he earned in these courses at the end of the semester were 3.7, 4.0, 3.3, 4.0, 3.7,
and 4.0, respectively. Find his GPA for that semester.

8. The following data shows the tread depth in millimeters (mm) of 20 of tires selected
randomly from a large shipment received by a dealer:

6.28 7.06 6.50 6.76 6.82 6.92 6.86 7.15 6.57 6.48
6.64 6.94 6.49 7.14 7.16 7.10 7.08 6.48 6.40 6.54

(a) Find the mean and the median for these data.
(b) Find the variance and standard deviation for these data.
(c) If the desired tread depth on these tires is 7 mm, what you can say about the

quality of these tires?
9. The average salary of engineers in a manufacturing company is $55,600 with a

standard deviation of $4500. Assuming that the shape of the distribution of salaries
is bell-shaped, estimate the ranges of salaries within which approximately 68% and
95% of all the engineers’ salaries are expected to fall.

10. According to Chebyshev’s inequality, what we can say about the lower limit of the
percentage of any set of data values that must lie within k standard deviations of
the mean when (a) k = 3, (b) k = 3.5, (c) k = 4, (d) k = 5?

11. Consider the following data giving the lengths (to the nearest centimeter) of a part
used in the fuselage of a plane:

24 22 23 25 22 21 23 24 20 22
22 24 21 23 23 20 22 24 23 25

(a) Determine the mean (X̄) and the standard deviation (S) of these data.
(b) Calculate the intervals (X̄ ± S), (X̄ ± 2S), and (X̄ ± 3S).
(c) Determine the percentage of parts whose length lie within two and three stan-

dard deviations of the mean. Use these percentages to verify if the Chebyshev’s
inequality is valid.
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2.6 NUMERICAL MEASURES OF GROUPED
DATA

A set of data presented in the form of a frequency distribution table is called grouped
data. So far, in this chapter, we have learned how to compute measures of centrality and
measures of dispersion for ungrouped data. In this section, we will learn how to compute
these measures for a grouped data.

Definition 2.6.1 The average of the lower and upper limits of a class (bin) is
called the class midpoint or class mark.

To compute the measures of centrality and dispersion for a grouped data, each mea-
surement in a given class is approximated by its midpoint. Thus, the measures computed
from grouped data are only approximate values of measurements obtained from the origi-
nal data. The actual approximation, of course, depends on the class width. Thus, in certain
cases, the approximate values may be very close to the actual values, and in other cases,
they may be very far apart. A word of caution: measurements obtained from grouped data
should only be used when it is not possible to retrieve the original data.

2.6.1 Mean of a Grouped Data
In order to compute the average of a grouped data set, the first step is to find the midpoint
(m) of each class, which is defined as

m = (Lower limit + Upper limit)/2

Then, the population mean μG and the sample average X̄G are defined as follows:

μG =
∑

fimi/N (2.6.1)

X̄G =
∑

fimi/n (2.6.2)

Here, summation is over the number of classes involved, mi = midpoint of the ith
class, fi = frequency of the ith class, that is, the number of values falling in the ith class,
N = population size, and n = sample size.

Example 2.6.1 (Ages of basketball fans) Find the mean of the grouped data that is the
frequency distribution of a group of 40 basketball fans watching a basketball game (see
Table 2.6.1).

Solution: Using formula (2.6.2), we have

X̄G =
∑

fimi/n = 1350/40 = 33.75
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Table 2.6.1 Age distribution of a group of 40 basketball
fans watching a basketball game.

Class Frequency (fi) Class midpoint (mi) fi × mi

[10, 20) 8 (10+20)/2 = 15 120
[20, 30) 10 (20+30)/2 = 25 250
[30, 40) 6 (30+40)/2 = 35 210
[40, 50) 11 (40+50)/2 = 45 495
[50, 60] 5 (50+60)/2 = 55 275

2.6.2 Median of a Grouped Data
To compute the median MG of a grouped data set, follow the steps given below:

Step 1. Determine the rank of the median that is given by

Rank of MG = (n + 1)/2

Step 2. Locate the class containing the median and then proceed as follows:
Add the frequencies of classes starting from class 1 and continue until the

sum becomes greater than or equal to (n + 1)/2. Then, the class containing
the median is identified.

Step 3. Once we identify the class containing the rank of the median, then the median
is given by

MG = L + (c/f)w (2.6.3)

where

L = lower limit of the class containing the median
c = (n + 1)/2 − (sum of the frequencies of all classes preceding the class containing the

median)
f = frequency of the class containing the median
w = class width of the class containing the median

Example 2.6.2 (Median of a grouped data) Find the median of the grouped data in
Example 2.6.1.

Solution:
Step 1. Rank of the median = (40 + 1)/2 = 20.5.
Step 2. Add the frequencies until the sum becomes greater than or equal to 20.5,

that is,
8 + 10 + 6 = 24 > 20.5

Stop at the class whose frequency is 6, so that the class containing the median
is [30, 40).

Step 3. Using (2.6.3), we have

MG = 30 + {[20.5 − (8 + 10)]/6}10 = 30 + (2.5/6)10 = 34.17
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2.6.3 Mode of a Grouped Data
To find the mode of a grouped data set is simple. This is because we need only to find the
class with the highest frequency. The mode of the grouped data is equal to the midpoint
of that class. But, if there are several classes with the same highest frequency, then there
are several modes that are equal to the midpoints of such classes.

In Example 2.6.1, the mode is equal to the midpoint of the class [40, 50), since it has
the highest frequency, 11. Thus

Mode = (40 + 50)/2 = 45

2.6.4 Variance of a Grouped Data
The population and the sample variance of grouped data are computed by using the
following formulas:

Population variance : σ2
G =

1
N

[∑
fim

2
i −

(
∑

fimi)
2

N

]
(2.6.4)

Sample variance : S2
G =

1
n − 1

[∑
fim

2
i −

(
∑

fimi)
2

n

]
(2.6.5)

where f,m,N, and n are as defined earlier in this section.

Example 2.6.3 (Variance of a grouped data) Determine the variance of the grouped data
in Example 2.6.1.

Solution: From the data in Table 2.6.1, we have∑
fimi = 8(15) + 10(25) + 6(35) + 11(45) + 5(55) = 1350∑

fim
2
i = 8(15)2 + 10(25)2 + 6(35)2 + 11(45)2 + 5(55)2 = 52,800

Substituting these values and n = 40 in formula (2.6.5), we obtain

S2
G =

1
40 − 1

[52,800 − (1350)2/40] =
1
39

[52,800 − 45, 562.5] =
1
39

[7237.5] = 185.577

The population and the sample standard deviation are found by taking the square
root of the corresponding variances. For example, the standard deviation for the grouped
data in Example 2.6.1 is

SG =
√

185.577 = 13.62

PRACTICE PROBLEMS FOR SECTION 2.6

1. Use the frequency distribution table you prepared in Problem 4 of Section 2.3 to do
the following:
(a) Determine the mean, median, and mode of the grouped data.
(b) Determine the variance and the standard deviation of the grouped data.



70 2 Describing Data Graphically and Numerically

2. Use the frequency distribution table you prepared in Problem 5 of Section 2.3, to
do the following:
(a) Determine the mean, median, and mode of the grouped data.
(b) Determine the variance and the standard deviation of the grouped data.

3. Use the frequency distribution table you prepared in Problem 6 of Section 2.3 to do
the following:
(a) Determine the mean, median, and mode of the grouped data.
(b) Determine the variance and the standard deviation of the grouped data.

4. The following data give the systolic blood pressures of 30 US male adults whose
ages are 30–40 years old:

113 122 111 119 125 113 123 122 115 115
112 117 121 116 118 116 109 109 112 116
122 109 110 115 109 115 120 122 125 111

(a) Determine the mean, median, and mode of these data.
(b) Determine the variance and the standard deviation of these data.
(c) Prepare a frequency distribution table for these data.
(d) Use the frequency distribution table of part (c) to determine the mean, median,

and mode of the grouped data. Compare your results with those in part (a) and
comment.

(e) Use the frequency distribution table of part (c) to determine the variance and
the standard deviation of the grouped data. Compare your results with those in
part (b) and comment.

5. The data below gives the time (in minutes) taken by 36 technicians to complete a
small project:

55 58 46 58 49 46 41 60 59 41 59 43
42 40 44 42 58 46 58 58 40 51 59 49
48 46 42 43 56 48 41 54 56 57 48 43

Construct a frequency distribution table for these data. Find the mean and the
standard deviation of the grouped data, and then compare them with the actual
mean and standard deviation (that is, the ungrouped X̄ and S) of these data.

2.7 MEASURES OF RELATIVE POSITION

This section introduces measures of relative position that divide the data into percentages
to help locate any data value in the whole data set. Commonly used measures of relative
position are percentiles and quartiles: percentiles divide the data into one hundred parts,
such that each part contains at the most 1% of the data, and quartiles divide the data
into four parts, such that each part contains at the most 25% of the data. Then from
quartiles, we can derive another measure, which is called the interquartile range (IQR), to
give the range of the middle 50% of the data values. This is obtained by first organizing
the data in an ascending order and then trimming 25% of the data values from the lower
and the upper ends. A quantile is a value which divide a distribution or an ordered sample
such that a specified proportion of observations fall below that value. For instance, the
percentiles and quartiles are very specific quantiles.
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2.7.1 Percentiles
Percentiles divide the data into one hundred equal parts; each part contains at the most
1% of the data and is numbered from 1 to 99. For example, the median of a data set is the
50th percentile, which divides the data into two equal parts so that at most 50% of the
data fall below the median and at most 50% of the data fall above it. The procedure for
determining the percentiles is similar to the procedure used for determining the median.
We compute the percentiles as follows:

Step 1. Write the data values in an ascending order and rank them from 1 to n.
Step 2. Find the rank of the pth percentile (p = 1, 2, . . . , 99), which is given by

Rank of the pth percentile = p × [(n + 1)/100] (2.7.1)

Step 3. Find the data value that corresponds to the rank of the pth percentile.

We illustrate this procedure with the following example.

Example 2.7.1 (Engineers’ salaries) The following data give the salaries (in thousands
of dollars) of 15 engineers in a corporation:

62 48 52 63 85 51 95 76 72 51 69 73 58 55 54

(a) Find the 70th percentile for these data.
(b) Find the percentile corresponding to the salary of $60,000.

Solution: (a) We proceed as follows:

Step 1. Write the data values in the ascending order and rank them from 1 to 15.

Salaries 48 51 51 52 54 55 58 62 63 69 72 73 76 85 95
Ranks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Step 2. Find the rank of the 70th percentile, which from (2.7.1) is given by

70 × ((15 + 1)/100) = 11.2

Step 3. Find the data value that corresponds to the ranks 11 and 12, which in this
example are 72 and 73, respectively. Then, the 70th percentile is given by

70th percentile = 72 + (73 − 72)(0.2) = 72.2

Thus, the 70th percentile of the salary data is $72,200.
That is, at most 70% of the engineers are making less than $72,200 and at
most 30% of the engineers are making more than $72,200.

(b) Now we want to find the percentile p corresponding to a given value x. This can be
done by using the following formula:

p =
Number of data values ≤ x

n + 1
× 100 (2.7.2)
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Thus, the percentile corresponding to the salary of $60,000 is

p =
(

7
15 + 1

)
× 100 = 43.75 ≈ 44

Hence, the engineer who makes a salary of $60,000 is at the 44th percentile. In other words,
at most 44% of the engineers are making less than $60,000, or at most 56% are making
more than $60,000.

2.7.2 Quartiles
In the previous discussion, we considered the percentiles that divide the data into 100
equal parts. Some of the percentiles have special importance, such as the 25th, 50th, and
75th percentiles. These percentiles are also known as the first, second, and third quartiles
(denoted by Q1, Q2, and Q3), respectively. Sometimes, they are also known as the lower,
middle, and upper quartiles, respectively. The second quartile is the same as the median.
Thus, to determine the values of the different quartiles, one has to simply find the 25th,
50th, and 75th percentiles (see Figure 2.7.1).

25% 25% 25% 25%

Q1

25th

Q2

50th

Q3

75th
Quartiles

Percentiles

Figure 2.7.1 Quartiles and percentiles.

2.7.3 Interquartile Range (IQR)
Often we are more interested in finding information about the middle 50% of a population.
A measure of dispersion relative to the middle 50% of the population or sample data is
known as the IQR. This range is obtained by trimming 25% of the values from the bottom
and 25% of the values from the top. This is equivalent to finding the spread between the
first quartile and the third quartile, which is IQR and is defined as

IQR = Q3 − Q1 (2.7.3)

Example 2.7.2 (Engineers’ salaries) Find the IQR for the salary data in Example 2.7.1:

Salaries: 48, 51, 51, 52, 54, 55, 58, 62, 63, 69, 72, 73, 76, 85, 95

Solution: In order to find the IQR, we need to find the quartiles Q1 and Q3 or equivalently
25th percentile and the 75th percentile. We can easily see that the ranks of 25th and 75th
percentile are given by (see (2.7.1))

Rank of 25th percentile = 25 × [(15 + 1)/100] = 4

Rank of 75th percentile = 75 × [(15 + 1)/100] = 12
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Consulting Step 3 of Example 2.7.1, we find that Q1 = 52 (52 has rank 4) and Q3 = 73 (73
has rank 12). Thus, the middle 50% of the engineers earn between $52,000 and $73,000.
The IQR in this example is given by

IQR = $73,000 − $52,000 = $21,000

Notes:

1. The IQR gives an estimate of the range of the middle 50% of the population.
2. The IQR is potentially a more meaningful measure of dispersion than the range as it

is not affected by the extreme values that may be present in the data. By trimming
25% of the data from the bottom and 25% from the top, we eliminate the extreme
values that may be present in the data set. Thus, the IQR is often used as a measure
of comparison between two or more data sets on similar studies.

2.7.4 Coefficient of Variation
The coefficient of variation is usually denoted by cv and is defined as the ratio of the
standard deviation to the mean expressed as a percentage:

cv =
Standard deviation

|Mean| =
S

|X̄| × 100% (2.7.4)

where |X̄| is the absolute value of the mean. The coefficient of variation is a relative
comparison of a standard deviation to its mean and is unitless. The cv is commonly used
to compare the variability in two populations. For example, we might want to compare the
disparity of earnings for technicians who have the same employer but work in two different
countries. In this case, we would compare the coefficient of variation of the two populations
rather than compare the variances, which would be an invalid comparison. The population
with a greater coefficient of variation, generally speaking, has more variability than the
other. As an illustration, we consider the following example.

Example 2.7.3 A company uses two measuring instruments, one to measure the diam-
eters of ball bearings and the other to measure the length of rods it manufactures. The
quality control department of the company wants to find which instrument measures with
more precision. To achieve this goal, a quality control engineer takes several measurements
of a ball bearing by using one instrument and finds the sample average X̄ and the standard
deviation S to be 3.84 and 0.02 mm, respectively. Then, he/she takes several measurements
of a rod by using the other instrument and finds the sample average X̄ and the standard
deviation S to be 29.5 and 0.035 cm, respectively. Estimate the coefficient of variation
from the two sets of measurements.

Solution: Using formula (2.7.4), we have

cv1 = (0.02/3.84)100% = 0.52%

cv2 = (0.035/29.5)100% = 0.119%
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The measurements of the lengths of rod are relatively less variable than of the diameters
of the ball bearings. Therefore, we can say the data show that instrument 2 is more precise
than instrument 1.

Example 2.7.4 (Bus riders) The following data gives the number of persons who take a
bus during the off-peak time schedule (3–4 pm.) from Grand Central to Lower Manhattan
in New York City. Using technology, find the numerical measures for these data:

17 12 12 14 15 16 16 16 16 17 17 18 18 18 19 19 20 20 20 20
20 20 20 20 21 21 21 22 22 23 23 23 24 24 25 26 26 28 28 28

MINITAB

1. Enter the data in column C1.
2. From the Menu bar, select Stat > Basic Statistics > Display Descriptive

Statistics:
3. In the dialog box that appears, enter C1 under variables and select the option

Statistics . . . .
4. A new dialog box Descriptive Statistics: Statistics appears. In this dialog box,

select the desired statistics and click OK in the two dialog boxes. The values of all
the desired statistics as shown below will appear in the Session window.

Statistics

Variable Mean StDev Variance CoefVar Q1 Q3Median Range

C7 20.125 4.090 16.728 20.32 17.000 20.000 23.000 16.000

USING R

We can use a few built in functions in R to get basic summary statistics. Functions
‘mean()’, ‘sd()’, and ‘var()’ are used to calculate the sample mean, standard deviation,
and variance, respectively. The coefficient of variation can be calculated manually using
the mean and variance results. The ‘quantile()’ function is used to obtain three quantiles
and the minimum and maximum. The function ‘range()’ as shown below can be used to
calculate the range of the data. The task can be completed by running the following R
code in the R Console window.

x = c(17,12,12,14,15,16,16,16,16,17,17,18,18,18,19,19,20,20,20,20,20,
20,20,20,21,21,21,22,22,23,23,23, 24,24,25,26,26,28,28,28)

#To concatenate resulting mean, standard deviation, variance, and coefficient of variation
c(mean(x), sd(x), var(x), 100*sd(x)/mean(x))
[1] 20.125000 4.089934 16.727564 20.322656
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#To obtain quartiles including min and max
quantile(x)

0% 25% 50% 75% 100%

12 17 20 23 28

#To obtain the range we find Max-Min
range(x)[2]-range(x)[1]
[1] 16

2.8 BOX-WHISKER PLOT

In the above discussion, several times we made a mention of extreme values. At some point
we may wish to know what values in a data set are extreme values, also known as outliers.
An important tool called the box-whisker plot or simply box plot, and invented by J. Tukey,
helps us answer this question. Figure 2.8.1 illustrates the construction of a box plot for
any data set.

Lower inner fence

Lower outer fence

Upper inner fence

Upper outer fence

L

E
DC

S

BA F

Q1 Q2 Q3

1.5 IQR 1.5 IQR 1.5 IQR 1.5 IQRIQR

Smallest value within the

lower inner fence

Largest value within the

upper inner fence

Region of extreme outlier

Region of mild outliers

Figure 2.8.1 Box-whisker plot.

2.8.1 Construction of a Box Plot

Step 1. Find the quartiles Q1, Q2, and Q3 for the given data set.
Step 2. Draw a box with its outer lines of the box standing at the first quartile (Q1)

and the third quartile (Q3), and then draw a line at the second quartile (Q2).
The line at Q2 divides the box into two boxes, which may or may not be of
equal size.
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Step 3. From the outer lines, draw straight lines extending outwardly up to three times
the IQR and mark them as shown in Figure 2.8.1. Note that each distance
between the points A and B, B and C, D and E, and E and F is equal to
one and a one-half times distance between the points C and D, or one and
one-half times IQR. The points S and L are, respectively, the smallest and
largest data points that fall within the inner fences. The lines from S to C
and D to L are called the whiskers.

2.8.2 How to Use the Box Plot
About the Outliers

1. Any data points that fall beyond the lower and upper outer fences are the extreme
outliers. These points are usually excluded from the analysis.

2. Any data points between the inner and outer fences are the mild outliers. These
points are excluded from the analysis only if we were convinced that these points
are somehow recorded or measured in error.

About the Shape of the Distribution
1. If the second quartile (median) is close to the center of the box and each of the

whiskers is approximately of equal length, then the distribution is symmetric.
2. If the right box is substantially larger than the left box and/or the right whisker is

much longer than the left whisker, then the distribution is right-skewed.
3. If the left box is substantially larger than the right box and/or the left whisker is

much longer than the right whisker, then the distribution is left-skewed.

Example 2.8.1 (Noise levels) The following data gives the noise level measured in decibels
(a usual conversation by humans produces a noise level of about 75 dB) produced by 15
different machines in a very large manufacturing plant:

85 80 88 95 115 110 105 104 89 87 96 140 75 79 99

Construct a box plot and examine whether the data set contains any outliers.

11575

85 96 105

5525 135 165
140

A B

C D

E FWhisker Whisker

Mild outlier

Largest value within

the inner fence

Smallest value within

the inner fence

Figure 2.8.2 Box plot for the data in Example 2.8.1.

Solution: First we arrange the data in the ascending order and rank them.

Data values 75 79 80 85 88 89 95 96 97 99 104 105 110 115 140
Ranks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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We then find the ranks of the quartiles Q1, Q2, and Q3. Thus, we have (n = 15)
Rank of Q1 = (25/100)(15+1) = 4
Rank of Q2 = (50/100)(15+1) = 8
Rank of Q3 = (75/100)(15+1) = 12
Therefore, the values of Q1, Q2, and Q3 are 85, 96, and 105, respectively, and the interquar-
tile range is

IQR = Q3 − Q1 = 105 − 85 = 20

(1.5) × IQR = (1.5) × 20 = 30

Figure 2.8.2 shows the box plot for these data. Figure 2.8.2 shows that the data include
one outlier. In this case, action should be taken to modify the machine that produced a
noise level of 140 dB. Use MINITAB to create a box plot:

MINITAB

1. Enter the data in column C1.
2. From the Menu bar, select Graph > Boxplot. This prompts a dialog box to appear.

In this dialog box, select simple and click OK. This prompts another dialog box
to appear.

3. In this dialog box, enter C1 in the box under the Graph variables and click OK.
Then, the box plot shown in Figure 2.8.3 will appear in the Session window.

70 80 90 100 110 120 130 140

Noise levels (dB)

Box plot of noise levels (dB)

Figure 2.8.3 MNITAB printout of box plot for the data in Example 2.8.1.

USING R

We can use a built in ‘boxplot()’ function in R to generate box plots. Extra arguments
such as inserting a heading, labeling y-axis, and coloring can be done as shown in the
following R code.
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NoiseLevels = c(75,79,80,85,88,89,95,96,97,99,104,105,110,115,140)

#To plot boxplot
boxplot(NoiseLevels, main = ‘Box plot of Noise Levels (dB)’,
ylab = ‘Noise Levels (dB)’, col = ‘grey’)

Example 2.8.2 (Bus riders’) From the bus riders’ data in Example 2.7.4, we have

12 12 14 15 16 16 16 16 17 17 17 18 18 18 19 19 20 20 20 20
20 20 20 20 21 21 21 22 22 23 23 23 24 24 25 26 26 28 28 28

(a) Find the mean, mode, and median for these data.
(b) Prepare the box plot for the data.
(c) Using the results of parts (a) and (b), verify if the data are symmetric or skewed.

Examine whether the conclusions made using the two methods, the results of part (a)
and (b) about the shapes of the distribution, are the same or not.

(d) Using the box plot, check if the data contain any outliers.
(e) If in part (c) the conclusion is that the data are symmetric, then find the standard

deviation and verify if the empirical rule holds or not.

Solution: The sample size in this problem is n = 40. Thus, we have

(a) Mean X̄ =
∑

Xi/n = 800/40 = 20, mode = 20, and median = 20
(b) To prepare the box plot, we first find the quartiles Q1, Q2, and Q3.

Rank of Q1 = (25/100)(40 + 1) = 10.25 Rank of Q2 = (50/100)(40 + 1) = 20.5
Rank of Q3 = (75/100)(40 + 1) = 30.75.

Since the data presented in this problem are already in the ascending order, we can
easily see that the quartiles Q1, Q2, and Q3 are

Q1 = 17, Q2 = 20, and Q3 = 23

The interquartile range is IQR = Q3 − Q1 = 23 − 17 = 6. Thus, 1.5(IQR) = 1.5(6) = 9

2812

17 20 23

8–1 32 41

A B

C D

E FWhisker Whisker

Largest value within

the inner fence

Smallest value within

the inner fence

Figure 2.8.4 Box plot for the data in Example 2.8.2.

The box plot for the data is as shown in Figure 2.8.4.
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(c) Both parts (a) and (b) lead to the same conclusion; that is, the data are symmetric.
(d) From the box plot in Figure 2.8.4, it is clear that the data do not contain any outliers.
(e) In part (c), we concluded that the data are symmetric, so we can proceed to calculate

the standard deviation and then determine whether or not the empirical rule holds.

S2 =
1

40 − 1

(
[122 + · · · + 282] − (12 + · · · + 28)2

40

)
= 18.1538

Thus, the standard deviation is S = 4.26. Now it can be seen that the interval

(X̄ − S, X̄ + S) = (15.74, 24.26)

contains 72.5% of the data and (X̄ − 2S, X̄ + 2S) = (11.48, 28.52) contains 100% of
the data.

The data are slightly more clustered around the mean. But for all practical purposes,
we can say that the empirical rule holds.

PRACTICE PROBLEMS FOR SECTIONS 2.7 AND 2.8

1. The following data give the amount of a beverage in 12 oz cans:

11.38 11.03 11.87 11.98 12.36 11.80 12.32 12.06 11.38 11.07
12.12 12.11 12.24 12.37 11.75 12.25 13.60 11.93 13.11 11.76
12.34 12.08 11.85 11.37 12.32 11.74 12.75 12.76 12.16 11.72
10.97 12.09 12.53 11.88 12.11 11.28 12.01 11.80 12.47 12.32

(a) Find the mean, variance, and standard deviation of these data.
(b) Find the three quartiles and the IQR for these data.
(c) Prepare a box plot for these data and determine if there are any outliers present

in these data.
2. The following data gives the reaction time (in minutes) of a chemical experiment

conducted by 36 chemistry majors:

55 58 46 58 49 46 41 60 59 41 59 42
40 44 42 58 46 58 58 40 51 59 48 46
42 43 56 48 41 54 56 57 48 43 49 43

(a) Find the mean, mode, and median for these data.
(b) Prepare a box plot for these data and check whether this data set contains any

outliers.
3. The following data give the physics lab scores of 24 randomly selected of physics

majors:

21 18 21 18 20 18 18 59 19 20 20 20
19 18 21 58 19 22 19 18 22 18 22 56

Construct a box plot for these data and examine whether this data set contains any
outliers.
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4. The following data provide the number of six sigma black belt Engineers in 36
randomly selected manufacturing companies in the United States:

73 64 80 67 73 78 66 78 59 79 74 75 73 66 63 62 61 58
65 76 60 79 62 63 71 75 56 78 73 75 63 66 71 74 64 43

(a) Find the 60th percentile of these data.
(b) Find the 75th percentile of the data.
(c) Determine the number of data points that fall between the 60th and 75th per-

centiles you found in parts (a) and (b).
(d) Prepare the box plot for these data and comment on the shape of the data:

5. Consider the following two sets of data:

Set I

29 24 25 26 23 24 29 29 24 28 23 27 26 21 20
25 24 30 28 28 29 28 22 26 30 21 26 27 25 23

Set II

46 48 60 43 57 47 42 57 58 59 52 53 41 58 43 50 49 56
57 54 51 46 60 44 55 43 60 50 51 54 50 43 44 53 51 58

(a) Find the mean and standard deviation for the two data sets.
(b) Find the coefficient of variation for these data sets.
(c) Determine whether one of these data sets has higher variation than the other.

6. Reconsider the data in Problem 4 of Section 2.6, and do the following:
(a) Find the mean, variance, and standard deviation of these data.
(b) Find the three quartiles and the IQR for these data.
(c) Prepare a box plot for these data and determine if there are any outliers present

in these data.
7. Reconsider the data in Problem 5 of Section 2.6 and do the following:

(a) Find the mean, variance, and standard deviation of these data.
(b) Find the three quartiles and the IQR for these data.
(c) Prepare a box plot for these data and determine if there are any outliers present

in these data.

2.9 MEASURES OF ASSOCIATION

So far in this chapter, the discussion was focused on only univariate statistics because
we were interested in studying a single characteristic of a subject. In all the examples
we considered, the variable of interest was either qualitative or quantitative. We now
study cases involving two variables; this means examining two characteristics of a subject.
The two variables of interest could be either qualitative or quantitative, but here we will
consider only variables that are quantitative.
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For the consideration of two variables simultaneously, the data obtained are known
as bivariate data. In the examination of bivariate data, the first question is whether there
is any association of interest between the two variables. One effective way to determine
whether there is such an association is to prepare a graph by plotting one variable along
the horizontal scale (x-axis) and the second variable along the vertical scale (y-axis). Each
pair of observations (x, y) is then plotted as a point in the xy-plane. The resulting graph
is called a scatter plot. A scatter plot is a very useful graphical tool because it reveals the
nature and strength of associations between two variables. The following example makes
the concept of association clear.

Example 2.9.1 (Cholesterol level and systolic blood pressure) The cholesterol level and
the systolic blood pressure of 10 randomly selected US males in the age group 40–50 years
are given in Table 2.9.1. Construct a scatter plot of this data and determine if there is any
association between the cholesterol levels and systolic blood pressures.

Solution: Figure 2.9.1 shows the scatter plot of the data in Table 2.9.1. This scatter plot
clearly indicates that there is a fairly strong upward linear trend. Also, if a straight line is
drawn through the data points, then it can be seen that the data points are concentrated
around the straight line within a narrow band. The upward trend indicates a positive
association between the two variables, while the width of the band indicates the strength
of the association, which in this case is quite strong. As the association between the
two variables gets stronger and stronger, the band enclosing the plotted points becomes
narrower and narrower. A downward trend indicates a negative association between the
two variables.

A numerical measure of association between two numerical variables is called the Pear-
son correlation coefficient, named after the English statistician Karl Pearson (1857–1936).
Note that a correlation coefficient does not measure causation. In other words, correlation
and causation are different concepts. Causation causes correlation, but not necessarily the
converse. The correlation coefficient between two numerical variables in a set of sample
data is usually denoted by r, and the correlation coefficient for population data is denoted
by the Greek letter ρ (rho). The correlation coefficient r based on n pairs of (X,Y ), say
(xi, yi), i = 1, 2, . . . , n is defined as

r =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1 (xi − x̄)2

∑n
i=1 (yi − ȳ)2

(2.9.1)

or
r =

∑n
i=1 xiyi − (

∑n
i=1 xi)(

∑n
i=1 yi)/n√

[
∑n

i=1 x2
i − (

∑n
i=1 xi)2/n] [

∑n
i=1 y2

i − (
∑n

i=1 yi)2/n]
(2.9.2)

The correlation coefficient is a dimensionless measure that can attain any value in the
interval [−1,+1]. As the strength of the association between the two variables grows, the
absolute value of r approaches 1. Thus, when there is a perfect association between the
two variables, r = 1 or −1, depending on whether the association is positive or negative.
In other words, r = 1, if the two variables are moving in the same direction, and r = −1,
if the two variables are moving in the opposite direction.
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Table 2.9.1 Cholesterol levels and systolic BP of 10 randomly selected US males.

Subject 1 2 3 4 5 6 7 8 9 10

Cholesterol (x) 195 180 220 160 200 220 200 183 139 155
Systolic BP (y) 130 128 138 122 140 148 142 127 116 123

130 140 150 160 170 180
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Scatterplot for cholesterol level and systolic blood pressure data

Figure 2.9.1 MINITAB printout of scatter plot for the data in Table 2.9.1.

Perfect association means that if we know the value of one variable, then the value of
the other variable can be determined without any error. The other special case is when
r = 0, which does not mean that there is no association between the two variables, but
rather that there is no linear association between the two variables. As a general rule,
the linear association is weak, moderate, or strong when the absolute value of r is less
than 0.3, between 0.3 and 0.7, or greater than 0.7, respectively. For instance, if (2.9.1) is
computed for the data in Table 2.9.1, then r = 0.924. Hence, we can conclude that the
association between the two variables X and Y is strong.

MINITAB:

1. Enter the pairs of data in columns C1 and C2. Label the columns X and Y.
2. From the Menu bar select Graph > Scatterplot . . . . This prompts a dialog box to

appear on the screen. In this dialog box, select scatterplot With Regression and
click OK. This prompts the following dialog box to appear:
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In this dialog box, under the X and Y variables, enter the columns in which you have placed
the data. Use the desired options and click OK. The Scatter plot shown in Figure 2.9.1
appears in the Session window.

3. For calculating the correlation coefficient, select from the Menu bar Stat > Basic
Statistics > Correlation. Then, enter the variables C1 and C2 in the dialog box.

USING R

We can use a built in ‘plot()’ function in R to generate scatter plots. Extra arguments
such as ‘pch’ and ‘cex’ can be used to specify the plotting symbol and size of the symbol,
respectively. Finally, the function ‘abline()’ can be used to embed the trend line to the
scatter plot as follows. The function ‘cor()’ can be used to calculate the Pearson correlation
coefficient. The whole task can be completed by running the following R code in the R
Console window.

x = c(195,180,220,160,200,220,200,183,139,155)
y = c(130,128,138,122,140,148,142,127,116,123)

#To plot the data in a scatter plot
plot(x, y, pch = 20, cex = 2, main = ‘Scatterplot for Cholesterol Level and Sys-
tolic Blood Pressure Data’, xlab = ‘Cholesterol Level’, ylab = ‘Systolic Blood Pres-
sure’)

#To add a trend line
abline(lm(y ∼ x), col = ‘red’)

#To calculate the Pearson correlation coefficient
cor(x, y)
[1] 0.9242063

The resulting R scatter plot for the data in Table 2.9.1 looks exactly the same as in
the MINTAB printout in Figure 2.9.1.

PRACTICE PROBLEMS FOR SECTION 2.9

1. The following data give the heights (cm) and weights (lb) of 10 male undergraduate
students:

Heights 170 167 172 171 165 170 168 172 175 172
Weights 182 172 179 172 174 179 188 168 185 169

(a) Draw a scatter plot for these data. By observing this scatter plot, do you expect
the correlation between heights and weights to be positive or negative?

(b) Determine the correlation coefficient between the heights and weights.
2. The following data give the final exam scores in biology and chemistry of eight

science majors:

Biology scores 85 88 78 92 89 83 79 95
Chemistry scores 90 84 86 95 94 89 84 87
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(a) Draw a scatter plot for these data. By observing this scatter plot, do you expect
the correlation between biology and chemistry scores to be approximately 1, −1,
or 0?

(b) Determine the correlation coefficient between the biology and chemistry scores.
3. The following data show the experience (in years) and yearly salaries (in thousands

of dollars) of 10 engineers:

Experience 10 12 8 15 6 11 14 16 15 12
Salaries 98 95 97 110 88 102 120 128 105 104

(a) Construct a scatter plot for these data. By observing this scatter plot, do you
expect the correlation between experience and salaries to be positive or negative?

(b) Determine the correlation coefficient between the experience and salaries. Is the
value of correlation coefficient consistent with what you concluded in part (a)?

4. The following scores give two managers’ assessments of ten applicants for the position
of a senior engineer:

Manager 1 7 8 9 7 9 8 9 7 9 6
Manager 2 8 6 9 9 8 7 9 8 7 8

(a) Construct a scatter plot for these data. By observing this scatter plot, do you
expect the correlation between assessments of managers 1 and 2 to be positive
or negative?

(b) Determine the correlation coefficient between the assessment managers 1 and
2. Is the value of correlation coefficient consistent with what you concluded in
part (a)?

2.10 CASE STUDIES

Case Study 1 (St. Luke’s Hospital data)1 In the fast-paced world of health care, small
fluctuations in the quarterly patient (mean) satisfaction scores may not raise any red
flags. But that quickly changed for St. Luke’s Hospital in Cedar Rapids, Iowa, during a
leadership retreat in spring 2004. Here, managers received a shocking surprise, the effects
of which are still driving improvement efforts today. The hospital’s inpatient satisfaction
measures, which appeared flat, had actually dipped to the 64th percentile when compared
to other hospitals in the country.

People were shocked because they thought St. Luke’s should be in the 80th or 90th
percentiles, explains Kent Jackson, director of children’s specialty services, and the leader
of the hospital’s patient and family experience team. “What became more significant was
that in the second quarter of 2004, the hospital dropped to the 49th percentile [for inpatient
satisfaction]. So, about the time that people were shocked, it was about to get worse,”
Jackson recalls.

1 Source: Reproduced with permission of ASQ, Jacobson (1998).
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2.10.1 About St. Luke’s Hospital
St. Luke’s Hospital is a fully accredited 560-bed hospital with more than 2600 associates
and 381 physicians who provide 24-hour coverage in east central Iowa. Founded in 1884 as
the community’s first hospital, today St. Luke’s is a member of the Iowa Health System.
The hospital offers a comprehensive array of inpatient services including medical/surgical,
cardiology, oncology, neurology, inpatient and outpatient behavioral health, and neonatal
intensive care; it delivers a broad range of diagnostic and outpatient services, and provides
a 24-hour trauma center and an air ambulance service. St. Luke’s five-point strategy to
gain patient satisfaction focused on:

• Demonstrating better quality
• Becoming the workshop of choice for physicians
• Partnering with associates
• Strengthening the core (making sure the hospital is financially sound)
• Establishing the hospital as a regional workshop of choice to better serve organizations

and promote health care in the region

Tables 2.10.1–2.10.3 document the improvement at St. Luke’s.

Table 2.10.1 Turnaround time for inpatient lab
testing once the swarm method was implemented.

Month/Year Inpatient tests reported within
23 minutes of receipt (%)

June 2007 63
July 2007 84
August 2007 71
September 2007 77
October 2007 84
November 2007 93
December 2007 94

Table 2.10.2 Physician satisfaction scores at
St. Luke’s Hospital before and after the hospital’s
“breaking out of the pack” strategy.

Year Physician satisfaction score (percentile score)

2004 81
2006 95
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Table 2.10.3 Inpatient satisfaction scores after St. Luke’s
implemented the standards of excellence of the four tools
centered on the patient and family experience.

Patient satisfaction score
Quarter-Year (Percentile rank among 400–599 peer)

2nd-2004 49
3rd-2004 65
4th-2004 93
1st-2005 88
2nd-2005 93
3rd-2005 90
4th-2004 93
1st-2006 93
2nd-2006 91
3rd-2006 95
4th-2006 91
1st-2007 90

Construct the relevant graphs summarizing the data in this case study and interpret
them. Then, prepare the progress report that you would like to present to the Board of
Directors of the hospital.

Case Study 2 (Part measurements using a micrometer)2 The goal of this study is to
develop a process with reduced variation among machines producing some parts. During
this study, diameters of a part are measured using a standard micrometer with readings
recorded to 0.0001 of an inch. The data for this case study is available on the book website:
www.wiley.com/college/gupta/statistics2e.
Do the followings:

1. Construct box plots for the three sets of data, that is, from machine-1, machine-2,
and machine-3, and compare average values of the diameter of the parts produced
by the three machines.

2. Determine the variances for the three sets of data, compare them, and write your
conclusions.

3. Determine the coefficient of variation for the three sets of data, compare them, and
write your conclusions.

4. Compare your conclusions in Parts 2 and 3 above, and comment.

2.11 USING JMP

This section is available for download from the book website: www.wiley.com/college/
gupta/statistics2e.

2 Source: Based on data from The Engineering Statistics Handbook, National Institute of Standards and Tech-
nology (NIST).
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Review Practice Problems

1. During a flu season, it is common that many workers cannot come to work because
either they themselves are sick or they have to take care of their sick children. The
following data give the number of employees of a company who did not come to work
on 18 days during a flu season:

7, 5, 10, 12, 6, 7, 8 10, 3, 16, 10, 9, 8, 10, 9, 8, 7, 6

Construct a dot plot for these data. Comment on what you learn from the dot plot.

2. A saving and loan institution wants to find how many of their customers default their
loan payments. The following data give the number of customers who did not make
their payment on time at least once over the past 12 months:

15, 20, 18, 16, 3, 19, 14, 17, 17, 16, 30, 15

Construct a dot plot for these data. Comment on any patterns you observe in
these data.

3. The following data give the number of machines in a shoe factory that had breakdowns
during the past 21 shifts:

3, 2, 1, 0, 2, 1, 4, 2, 0, 1, 2, 3, 1, 0, 4, 2, 1, 10, 2, 1, 2

Construct a dot plot for these data. If you were the maintenance engineer, what would
you learn from these data?

4. The following data classify a group of students who are attending a seminar on envi-
ronmental issues by their class standing:

Class standing Frequency

Freshmen 16
Sophomore 18
Junior 20
Senior 15
Graduate 30

(a) Construct a bar chart for these data.
(b) Construct a pie chart for these data.

5. Suppose there are two fund-raising concerts at a university. The following data give
the number of students by their class standing who attended one or the other of the
concerts:

Class standing Frequency-1 Frequency-1

Freshmen 16 40
Sophomore 18 30
Junior 20 21
Senior 15 20
Graduate 30 15
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(a) Construct a side-by-side bar chart for each of the concert and compare the two
sets of data.

(b) Construct pie charts for each of the concerts. Do you think you can get the same
information by using the two pie charts, as by using the side-by-side bar charts?

6. Refer to the data in Problem 15 of Section 2.4.

(a) Construct a frequency histogram for these data.
(b) Construct a relative-frequency histogram for these data.

7. Suppose that in a midwestern state, a legislator running for governor proposes the
following state budget (in millions of dollars) for the following year:

Education 900
Medicaid 400
Other social programs 500
Road and bridges 350
Agriculture 400
Others 250

Use JMP, MINITAB, or R to do the following:

(a) Construct a bar chart for these data.
(b) Construct a pie chart for these data.
(c) Determine what percentage of the budget is used for all social programs.

8. The following data give the number of defective parts produced in 21 consecutive
shifts of 1 wk

15 14 18 16 17 13 27 14 15 10 30
14 8 14 15 17 15 13 14 16 20

(a) Prepare a line graph of these data.
(b) Check if any peaks or dips appear in the line graph.
(c) As a quality manager of the company, what would you conclude from this line

graph, and what will be your line of action to reduce the number of defective parts
produced?

9. Consider the following stem-and-leaf diagram:

Stem Leaf

3 2 5 7
4 0 3 6 8 9
5 1 2 2 7 8
6 3 5 6 6 9 9
7 1 5 5 7 8

Reproduce the data set represented by the diagram.
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10. The following data give the number of employees from 19 different sectors of a large
company who were absent for at least two days from a certain training program:

7 5 10 12 6 7 8 10 3 16
10 9 8 10 7 6 9 11 2

Construct a dot plot for these data and comment on what you observe in these data.

11. To improve the quality of a crucial part used in fighter jets, a quality control engineer
is interested in finding the type of defects usually found in that part. He labels these
defects as A, B, C, D, and E based on severity of the defect. The following data show
the type of defects found in the defective parts:

B D A B C D B E B E D B C B E C D B
E D B C B D B C D B A B C B D E B E
B E C B D E B C E B E B C B D B

Prepare a bar chart for these data, and comment on the types of defects encountered
in the parts under study.

12. The following data give the salaries (in thousands of dollars) of 62 randomly selected
engineers from different manufacturing companies located in different regions of the
United States:

65 45 85 68 98 95 58 62 64 54 57 58 85 120 45 56
150 140 123 65 55 66 76 88 45 50 60 66 55 46 48 98
56 66 185 56 55 77 59 67 145 166 67 58 68 69 87 89
92 85 88 77 69 76 86 81 54 145 154 190 205 85

(a) Prepare a box whisker plot for these data.
(b) Do these data contain any mild or extreme outliers?

13. The following data give the number of cars owned by 50 randomly selected families
in a metropolitan area:

3 5 2 1 2 4 3 1 2 3 4 2 3 2 5 3 1 2 4 3 2 1 2 1 4
5 1 2 3 2 3 4 2 3 1 2 3 2 4 2 3 2 1 3 1 2 4 2 3 2

(a) Construct a single-valued frequency distribution table for these data.
(b) Compute the columns of relative frequencies and percentages.
(c) Construct a bar chart for these data.
(d) What percentage of the families own at least 3 cars?
(e) What percentage of the families own at most 2 cars?
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14. The following data give the total cholesterol levels (mg/100 mL) of 100 US males
between 35 to 65 years of age:

177 196 150 167 175 162 195 200 167 170 179 172 176 179 177 153 177
189 185 167 151 177 191 177 175 151 173 199 167 197 188 163 174 151
183 174 177 200 182 195 160 151 177 154 150 180 170 172 153 152 194
197 192 155 174 159 193 182 175 169 180 200 194 182 188 152 196 198
171 176 200 180 161 182 188 168 165 168 160 175 193 159 183 166 198
184 172 180 195 199 156 158 152 174 151 173 166 183 194 156

(a) Construct a frequency distribution table with classes [150, 160), [160, 170), . . .
(b) What percentage of US males between 35 to 65 years of age do you estimate have

cholesterol levels higher than 200 mg/100 mL?
(c) What percentage of US males between 35 to 65 years of age do you estimate have

cholesterol levels less than 180 mg/100 mL?

15. We know that from a grouped data set we cannot retrieve the original data. Generate a
new (hypothetical) data set from the frequency distribution table that you prepared in
Problem 14. Reconstruct a frequency distribution table for the new set and comment
on whether the two frequency tables should be different or not.

16. A group of dental professionals collected some data on dental health and con-
cluded that 10% of the Americans have zero or one cavity, 50% have two or
three cavities, 30% have four cavities, and rest of the 10% have five or more
cavities. Construct a pie chart that describes the dental health of the American
population.

17. Find the mean, median, and mode for the following sample data on credit hours for
which students are registered in a given semester:

7 11 8 12 7 6 14 17 15 13

18. The following data give hourly wages of 20 workers randomly selected from a chip-
maker company:

16 12 18 15 23 29 21 20 21 25
18 27 21 25 22 16 24 26 21 26

Determine the mean, median, and mode for these data. Comment on whether these
data are symmetric or skewed.
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19. The following data give daily sales (in gallons) of gasoline at a gas station during
April:

414 450 380 360 470 400 411 465 390 384
398 412 416 454 459 395 430 439 449 453
464 450 380 398 410 399 416 426 430 425

(a) Find the mean, median, and mode for these data. Comment on whether these
data are symmetric, left skewed, or right skewed.

(b) Find the range, variance, standard deviation, and the coefficient of variation for
these data.

20. The owner of the gas station of Problem 19 also owns another gas station. He decided
to collect similar data for the second gas station during the same period. These data
are given below.

570 590 600 585 567 570 575 580 577 583
589 585 595 570 574 576 581 583 595 591
585 583 580 597 599 600 577 573 574 579

(a) Find the range, variance, standard deviation, and coefficient of variation for
these data.

(b) Compare the standard deviations for the two data sets.
(c) Do you think it will be more prudent to compare the coefficients of variation

rather than the two standard deviations? Why or why not?
(d) Sometimes the observations in a given data set are too large numerically to

compute the standard deviation easily. However, if these observations are small,
particularly when we are using paper, pen, and a small calculator, then there is lit-
tle problem in computing the standard deviation. If observations are large, all one
has to do is to subtract a constant from each of the data points and then find the
standard deviation for the new data. The standard deviation of the new data, usu-
ally called the coded data, is exactly the same as that of the original data. Thus, for
example, in Problem 20, one can subtract 567 (the smallest data point) from each
data point and then find the standard deviation of the set of the coded data. Try it.

21. Collect the closing price of two stocks over a period of 10 sessions. Calculate the
coefficients of variation for the two data sets and then check which stock is more risky.

22. The following data give the number of physicians who work in a hospital and are
classified according to their age:

Age [35–40) [40–45) [45–50) [50–55) [55–60) [60–65]
Frequency 60 75 68 72 90 55

Find the mean and the standard deviation for this set of grouped data.
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23. Prepare a frequency table for the data in Problem 9 of Section 2.4. Find the mean
and the variance for the grouped and the ungrouped data. Then compare the values
of the mean and variance of the grouped and the ungrouped data.

24. The following data give lengths (in mm) of a type of rods used in car engines.

128 118 120 124 135 130 128 116 122 120 118 125 127 123 126
124 120 132 131 119 117 124 129 131 133 115 121 122 127 127
134 128 132 135 125 120 121 126 124 123

(a) Determine the quartiles (Q1, Q2, Q3) for this data.
(b) Find the IQR for these data.
(c) Determine the value of the 70th percentile for these data.
(d) What percentage of the data falls between Q1 and Q3?

25. Compute X̄, S2, and S for the data in Problem 24. Then,
(a) Find the number of data points that fall in the intervals X̄ ± S, X̄ ± 2S, and

X̄ ± 3S
(b) Verify whether the empirical rule holds for these data.

26. A car manufacturer wants to achieve 35 miles/gal on a particular model. The following
data give the gas mileage (rounded to the nearest mile) on 40 randomly selected
brand-new cars of that model. Each car uses regular unleaded gasoline:

34 33 36 32 33 34 35 37 32 33 32 31 34 37 32 33 33 36 34 31
35 36 35 33 32 32 34 35 34 30 34 37 35 32 31 34 32 33 32 33

(a) Find the mean and the standard deviation for these data.
(b) Check whether the empirical rule holds for these data.

27. Refer to the data in Problem 26. Determine the following:
(a) The values of the three quartiles Q1, Q2, and Q3.
(b) The IQR for these data.
(c) Construct a box-plot for these data and verify if the data contains any outliers.

28. The following data give the test scores of 57 students in an introductory statistics
class:

68 78 92 80 87 79 74 85 86 88 91 97 71 72 81 86 60 40 76
77 20 99 80 79 89 87 87 80 83 95 92 98 87 86 95 96 75 76
79 80 85 81 77 76 84 82 83 56 68 69 91 88 69 75 74 59 61

(a) Find the values of three quartiles Q1, Q2, and Q3.
(b) Find the IQR for these data.
(c) Construct the box plot for these data and check whether the data is skewed.
(d) Do these data contain any outliers?
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29. The following data give the overtime wages (in dollars) earned on a particular day by
a group of 40 randomly selected employees of a large manufacturing company:

30 35 45 50 25 30 36 38 42 40 46 36 30 35
24 46 42 50 40 40 35 34 34 30 28 32 30 26
28 36 40 42 40 38 38 36 45 40 36 42

(a) Find the IQR for these data.
(b) Count what percentage of the data falling between the first and the third quartiles.
(c) Do you think the result in part (b) agrees with your expectations?

30. The following data give the time (in minutes) taken by 20 students to complete a class
test:

55 63 70 58 62 71 50 70 60 65
59 62 66 71 58 70 75 70 65 68

(a) Find the mean, median, and mode for these data.
(b) Use values of the mean, median, and mode to comment on the shape of the

frequency distribution of these data.

31. The following data give the yearly suggested budget (in dollars) for undergraduate
books by 20 randomly selected schools from the whole United States:

690 650 800 750 675 725 700 690 650 900
850 825 910 780 860 780 850 870 750 875

(a) Find the mean and the standard deviation for these data.
(b) What percentage of schools has their budget between X̄ − S and X̄ + S?

32. A data set has a mean of 120 and a standard deviation of 10. Using the empirical rule,
find what percentage of data values fall:
(a) Between 110 and 130.
(b) Between 100 and 140.
(c) Between 90 and 150.

33. Suppose that the manager of a pulp and paper company is interested in investigating
how many trees are cut daily by one of its contractors. After some investigation, the
manager finds that the number of trees cut daily by that contractor forms a bell
shaped distribution with mean 90 and standard deviation 8. Using the empirical rule,
determine the percentage of the days he cuts
(a) Between 82 and 98 trees.
(b) Between 66 and 114 trees.
(c) More than 106 trees.
(d) Less than 74 trees.
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34. The following sample data give the number of pizzas sold by a Pizza Hut over a period
of 15 days:

75 45 80 90 85 90 92 86 95 95 90 86 94 99 78

(a) Prepare a box plot for these data and comment on the shape of this data set.
(b) Find the mean, median, and standard deviation of these data.

35. The following sample data give the GRE scores (actual score—2000) of 20 students
who have recently applied for admission to the graduate program in an engineering
school of a top-rated US university:

268 320 290 310 300 270 250 268 330 290
240 269 295 325 316 320 299 286 269 250

(a) Find the sample mean X̄ and the sample standard deviation S.
(b) Determine the percentage of the data that falls in the interval X̄ ± 2S.
(c) Determine the range of the middle 50% of the observations.

36. Assume that the data in Problem 35 come from a population having a bell-shaped
probability distribution. Then, using the empirical rule, determine how many data
values one would expect to fall within the intervals X̄ ± 2S and X̄ ± 3S. Compare
your results with the actual number of data values that fall in these intervals. Also,
using technology, verify the assumption that the observations come from a population
having a bell shaped probability distribution.

37. The following data give the number of defective parts received in the last 15 shipments
at a manufacturing plant:

8 10 12 11 13 9 15 14 10 16 18 12 14 16 13

(a) Find the mean of these data.
(b) Find the standard deviation of these data.
(c) Find the coefficient of variation for these data.

38. The owner of the facility in Problem 37 has another plant where the shipments received
are much larger than at the first plant. The quality engineer at this facility also decides
to collect the data on defectives received in each shipment. The last 15 shipments
provided the following data:

21 30 38 47 58 39 35 15 59 60 43 47 39 30 41

(a) Find the mean and the standard deviation of these data.
(b) Find the coefficient of variation of these data, compare it with the one obtained

in Problem 37, and comment on which facility receives more stable shipments.

39. Prepare box plots for the data in Problems 37 and 38. Comment on the shape of the
distribution of these two data sets.
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40. The following data give the test scores of 40 students in a statistics class:

68 78 92 80 87 79 74 85 86 88 91 97 71 72 81 86 60 40 76 77
20 99 80 79 89 87 87 80 83 95 92 98 87 86 95 96 76 75 79 80

(a) Find the sample mean X̄ and the sample standard deviation S for these data.
(b) Prepare a frequency distribution table for these data.
(c) Use the grouped data in part (b) to determine the grouped mean X̄G and the

grouped standard deviation SG.
(d) Compare the values of X̄G and SG with the values of X̄ and the standard deviation

S. Notice that the grouped mean and grouped standard deviations are only the
approximate values of the actual mean and standard deviations of the original
(i.e., ungrouped) sample.

41. The following two data sets give the number of defective ball bearings found in 20
boxes randomly selected from two shipments:

Shipment I 60 65 79 71 67 68 73 56 59 63
66 59 72 77 79 69 71 70 60 55

Shipment II 45 55 56 50 59 60 48 38 42 41
37 57 55 49 43 39 45 51 53 55

(a) Find the quartiles for each of these two sets.
(b) Prepare the box plots for each of the two data sets and display them side by side

on one sheet of graph paper.
(c) Use part (b) to compare the two shipments. Which shipment in your opinion is

of better quality?

42. The following data give the number of flights that left late at a large airport over the
past 30 days:

50 59 63 30 120 55 49 47 43 51 47 51 57 62 58
50 39 53 50 45 43 46 52 59 48 36 51 33 42 32

(a) Prepare a complete frequency distribution table for these data.
(b) Prepare a box plot for these data to comment on the shape of the distribution of

these data. Does the set contain any outliers?
(c) Find the mean and the standard deviation for these data.

43. The following data gives the inflation rate and interest rates in the United States over
10 consecutive periods. Determine the correlation coefficient between the inflation
rate and the interest rates in the United States. Interpret the value of the correlation
coefficient you determined.

Period 1 2 3 4 5 6 7 8 9 10

Inflation rate 2.34 2.54 2.22 2.67 1.98 3.22 2.51 2.57 2.75 2.67
Interest rate 4.55 4.65 4.75 4.82 4.46 4.85 4.35 4.25 4.55 4.35
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44. The following data gives the heights (in.) and weights (lb) of eight individuals. Deter-
mine the correlation coefficient between the heights and weights. Interpret the value
of the correlation coefficient you have determined.

Individuals 1 2 3 4 5 6 7 8

Heights 77 72 73 76 72 73 77 72
Weights 156 172 195 181 158 164 164 191

45. It is generally believed that students’ performance on a test is related to number of
hours of sleep they have the night before the test. To verify this belief, 12 students
were asked how many hours they slept on the night before the test. The following
data shows the number of hours of sleep on the night before the test and the test
scores of each of the 12 students. Determine the correlation coefficient between the
hours of sleep and test scores. Interpret the value of the correlation coefficient you
have determined.

Student 1 2 3 4 5 6 7 8 9 10 11 12

Hours of sleep 8 8 6 5 8 8 7 6 7 5 4 6
Test scores 89 84 88 85 87 97 93 90 87 90 86 72



Chapter 3

ELEMENTS OF PROBABILITY

The focus of this chapter is the study of basic concepts of probability.

Topics Covered

• Random experiments and sample spaces
• Representations of sample spaces and events using Venn diagrams
• Basic concepts of probability
• Additive and multiplicative rules of probability
• Techniques of counting sample points: permutations, combinations, and tree diagrams
• Conditional probability and Bayes’s theorem
• Introducing random variables

Learning Outcomes

After studying this chapter, the reader will be able to

• Handle basic questions about probability using the definitions and appropriate counting
techniques.

• Understand various characteristics and rules of probability.
• Determine probability of events and identify them as independent or dependent.
• Calculate conditional probabilities and apply Bayes’s theorem for appropriate experi-

ments.
• Understand the concept of random variable defined over a sample space.

3.1 INTRODUCTION

In day-to-day activities and decisions, we often confront two scenarios: one where we are
certain about the outcome of our action and the other where we are uncertain or at a loss.
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For example, in making a decision about outcomes, an engineer knows that a computer
motherboard requires four RAM chips and plans to manufacture 100 motherboards. On
the one hand, the engineer is certain that he will need 400 RAM chips. On the other hand,
the manufacturing process of the RAM chips produces both nondefective and defective
chips. Thus, the engineer has to focus on how many defective chips could be produced at
the end of a given shift and so she is dealing with uncertainty.

Probability is a measure of chance. Chance, in this context, means there is a possibility
that some sort of event will occur or will not occur. For example, the manager needs to
determine the probability that the manufacturing process of RAM chips will produce 10
defective chips in a given shift. In other words, one would like to measure the chance that
in reality, the manufacturing process of RAM chips does produce 10 defective chips in a
given shift. This small example shows that the theory of probability plays a fundamental
role in dealing with problems where there is any kind of uncertainty.

3.2 RANDOM EXPERIMENTS, SAMPLE
SPACES, AND EVENTS

3.2.1 Random Experiments and Sample Spaces
Inherent in any situation where the theory of probability is applicable is the notion of
performing a repetitive operation, that is, performing a trial or experiment that is capable
of being repeated over and over “under essentially the same conditions.” A few examples of
quite familiar repetitive operations are rolling a die, tossing two coins, drawing five screws
“at random” from a box of 100 screws, dealing 13 cards from a thoroughly shuffled deck
of playing cards, filling a 12-oz can with beer by an automatic filling machine, drawing a
piece of steel rod, and testing it on a machine until it breaks, firing a rifle at a target 100
yards away, and burning ten 60-W bulbs with filament of type Z continuously until they
all “expire.”

An important feature of a repetitive operation is illustrated by the repetitive operation
of firing a rifle at a 100-yard target. The shooter either hits the target or misses the target.
The possible outcomes “hit” or “miss” are referred to as outcomes of the experiment “firing
at a target 100 yards away.” This experiment is sometimes called a random experiment. We
will have more discussion of this at a later point. This important feature needs formalizing
with the following definition.

Definition 3.2.1 In probability theory, performing a repetitive operation that
results in one of the possible outcomes is said to be performing a random experiment.

One of the basic features of repetitive operations or random experiments under speci-
fied conditions is that an outcome may vary from trial to trial. This variation leads to the
analysis of the possible outcomes that would arise if a trial were performed only once. The
set of all possible outcomes under specific conditions if an experiment was performed once
is called the sample space of the experiment and is denoted by S. It is convenient to label
an outcome in a sample space S by the letter e, and call e a sample space element or simply
an element or sample point of the sample space S. The sample space S of such elements
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or points is generated by the operations or trials of a random experiment. Consider the
following examples of elements or sample points that constitute a sample space.

Example 3.2.1 (Rolling a die) If a die is rolled once, the sample space S thus generated
consists of six possible outcomes; that is, the die can turn up faces numbered 1, 2, 3, 4, 5,
or 6. Thus, in this case,

S = {1, 2, 3, 4, 5, 6}

Example 3.2.2 (Tossing two coins) If two coins are tossed, say a nickel and a dime, and
if we designate head and tail on a nickel by H and T, respectively, and head and tail on
a dime by h and t, respectively, the sample space S generated by tossing the two coins
consists of four possible outcomes. We then have that

S = {Hh,Ht, Th, T t}

As an example, Ht denotes the outcome that the nickel, when tossed ended up showing
head, while the dime, when tossed, showed tail.

Example 3.2.3 (Sample space for item drawn using random sampling scheme) The sam-
ple space S for drawing five screws “at random” from a box of 100 consists of all possible
sets of five screws that could be drawn from 100; S contains 75,287,520 elements.

Example 3.2.4 (Sample space for playing cards) In dealing 13 cards from a thoroughly
shuffled deck of ordinary playing cards, the sample space S consists of the 635,013,559,600
possible hands of 13 cards that could be dealt from the 52 cards of an ordinary deck.

The sample spaces for these preceding examples are all finite sample spaces: they
contain only a finite number of sample points. A sample space is finite as long as it
contains a countable number of elements, no matter how large that number may be. For
instance, in Example 3.2.4, the number of elements is very large but countable. Many
problems in probability involve infinite sample spaces, that is, sample spaces containing
an infinitely large number of elements that are not countable.

Example 3.2.5 (Sample space for reaction times) A chemist studies the reaction time
when a catalyst is added to a chemical at a certain temperature. In this experiment, the
sample space S contains an indefinitely large number of elements when observing the reac-
tion time.

Example 3.2.6 (Sample space for beer refills) The sample space S when filling a “12-oz”
can with beer with an automatic filling machine under factory conditions, would contain
an indefinitely large number of elements when measuring the fluid content of the filled can.

3.2.2 Events
Suppose that S is the sample space of a random experiment that contains a finite num-
ber of outcomes or elements e1, e2, . . . , em. In most probability problems, we are more
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interested in whether or not an outcome belongs to some set E of outcomes rather than
in an individual outcome. For instance, if playing the game of craps, one is usually more
interested in the total number of dots that appear when the two dice are thrown than
in any particular pair of dots obtained from throwing a pair of dice. The inspector who
examines five screws taken “at random” from a box of 100 is not really interested in any
particular one of the 75,287,250 different sets of five screws he could have drawn; he is
in fact looking for the number of defective screws he gets in the five screws he draws. In
other words, he is interested in whether this outcome belongs to the set of outcomes with
0 defectives, or the set with one defective, or the set with two defectives, and so on.

Any set of outcomes in which there might be some particular interest is called an
event. The following two examples describe two events.

Example 3.2.7 (Sample space generated by tossing two coins) The event E of getting
exactly one head in throwing the two coins of Example 3.2.2 consists of the set of two
elements {Ht, Th} from the sample space S = {Hh,Ht, Th, T t}.

Example 3.2.8 (Sample space for playing cards) Suppose that 13 cards are dealt from
a deck of ordinary playing cards. Such a deck has 13 cards of each of four suits, which
are spades, clubs, hearts, and diamonds. As mentioned in Example 3.2.4, there are
635,013,559,600 possible hands making up the sample space for this experiment (repetitive
operation). Now suppose that we are interested in the number of possible hands (elements
in S) that contains exactly 12 spades. It turns out that this event (set) contains 507
elements, or put another way, there are 507 hands of 13 cards that contain exactly 12
spades out of the possible 635,013,559,600 hands when dealing 13 cards from a deck of 52
playing cards.

Schematically, if the set of points inside the rectangle in Figure 3.2.1 represent a sample
space S, we may represent an event E by the set of points inside a circle and Ē by the
region outside the circle. Such a representation is called a Venn diagram.

E

S
E

Figure 3.2.1 Venn diagram representing events E and Ē.

Events can be described in the language of sets, and the words set and event can be
used interchangeably. If E contains no elements, it is called the empty, impossible, or null
event and is denoted by ∅. The complement Ē of an event E is the event that consists of
all elements in S that are not in E. Note, again, that Ē is an event and that S̄ = ∅.

Now suppose that there are two events E and F in a sample space S. The event
consisting of all elements contained in E or F, or both, is called the union of E and F; it
is written as

E ∪ F (3.2.1)
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E F

E ∩ F

E ∪ F

S

Figure 3.2.2 Venn diagram representing events E,F,E ∪ F , and E ∩ F .

The event consisting of all elements in a sample space S contained in both E and F is
called the intersection of E and F; it is written as

E ∩ F (3.2.2)

Referring to the Venn diagram in Figure 3.2.2, note that if S is represented by the
points inside the rectangle, E by the points inside the left-hand circle, and F by the points
inside the right-hand circle, then E ∪ F is represented by the points in the region not
shaded in the rectangle and E ∩ F is represented by the points in the region in which the
two circles overlap. Also note (see Figure 3.2.1) that E ∪ Ē = S, and E ∩ Ē = ∅.

Example 3.2.9 (Union and intersection) Suppose that S is the set of all possible hands
of 13 cards, E is the set of all hands containing five spades, and F is the set of all
hands containing six honor cards. An honor card is one of either a ten, Jack, Queen,
King, or Ace of any suit. Then, E ∪ F is the set of all hands containing five spades or
six honor cards, or both. E ∩ F is the set of all hands containing five spades and six
honor cards.

If there are no elements that belong to both E and F, then

E ∩ F = ∅, (3.2.3)

and the sets E and F are said to be disjoint, or mutually exclusive.
If all elements in E are also contained in F, then we say that E is a subevent of F, and

we write

E ⊂ F or F ⊃ E (3.2.4)
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This means that if E occurs, then F necessarily occurs. We sometimes say that E is
contained in F, or that F contains E, if (3.2.4) occurs.

Example 3.2.10 (Sub events) Let S be the sample space obtained when five screws
are drawn from a box of 100 screws of which 10 are defective. If E is the event
consisting of all possible sets of five screws containing one defective screw and F is the
event consisting of all possible sets of the five screws containing at least one defective,
then E ⊂ F .

If E ⊂ F and F ⊂ E, then every element of E is an element of F, and vice versa. In
this case, we say that E and F are equal or equivalent events; this is written as

E = F (3.2.5)

The set of elements in E that are not contained in F is called the difference between E
and F; this is written as

E − F (3.2.6)

If F is contained in E, then E − F is the proper difference between E and F. In this case,
we have

E − F = E ∩ F̄ (3.2.7)

Example 3.2.11 (Difference of two events) If E is the set of all possible bridge hands with
exactly five spades and if F is the set of all possible hands with exactly six honor cards (10,
J, Q, K, A), then E − F is the set of all hands with exactly five spades but not containing
exactly six honor cards (e.g. see Figure 3.2.3).

If E1, E2, . . . , Ek are several events in a sample space S, the event consisting of all
elements contained in one or more of the Ei is the union of E1, E2, . . . , Ek written as

E1 ∪ E2 ∪ · · · ∪ Ek, or ∪k
i=1 Ei (3.2.8)

F
E

E – F = E ∩ F

Figure 3.2.3 Venn diagram representing events E,F,E − F , and E ∩ F̄ .
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Similarly the event consisting of all elements contained in all Ei is the intersection of
E1, E2, . . . , Ek written as

E1 ∩ E2 ∩ · · · ∩ Ek, or ∩k
i=1 Ei (3.2.9)

If for every pair of events (Ei, Ej), i �= j, from E1, E2, . . . , Ek we have that Ei ∩ Ej = ∅,
then E1, E2, . . . , Ek are disjoint and mutually exclusive events.

An important result concerning several events is the following theorem.

Theorem 3.2.1 If E1, E2, . . . , Ek are events in a sample space S, then ∪k
i=1Ei and

∩k
i=1Ēi are disjoint events whose union is S.

This result follows by noting that the events ∪k
i=1Ei and ∩k

i=1Ēi are complement of
each other.

3.3 CONCEPTS OF PROBABILITY

Suppose that a sample space S, consists of a finite number, say m, of elements
e1, e2, . . . , em, so that the elements e1, e2, . . . , em are such that ei ∩ ej = ∅ for all i �= j
and also represent an exhaustive list of outcomes in S, so that ∪m

i=1ei = S. If the operation
whose sample space is S is repeated a large number of times, some of these repetitions
will result in e1, some in e2, and so on. (The separate repetitions are often called trials.)
Let f1, f2, . . . , fm be the fractions of the total number of trials resulting in e1, e2, . . . , em,
respectively. Then, f1, f2, . . . , fm are all nonnegative, and their sum is 1. We may think
of f1, f2, . . . , fm as observed weights or measures of occurrence of e1, e2, . . . , em obtained
on the basis of an experiment consisting of a large number of repeated trials. If the entire
experiment is repeated, another set of f ’s would occur with slightly different values, and
so on for further repetitions. If we think of indefinitely many repetitions, we can conceive
of idealized values being obtained for the f ’s. It is impossible, of course, to show that in a
physical experiment, the f ’s converge to limiting values, in a strict mathematical sense, as
the number of trials increases indefinitely. So we postulate values p(e1), p(e2), . . . , p(em)
corresponding to the idealized values of f1, f2, . . . , fm, respectively, for an indefinitely
large number of trials. It is assumed that p(e1), p(e2), . . . , p(em) are all positive numbers
and that

p(e1) + · · · + p(em) = 1 (3.3.1)

The quantities p(e1), p(e2), . . . , p(em) are called probabilities of occurrence of e1, e2, . . . , em,
respectively.

Now suppose that E is any event in S that consists of a set of one or more e’s, say
ei1

, . . . , eir
. Thus E = {ei1

, . . . , eir
}. The probability of the occurrence of E is denoted by
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P (E) and is defined as follows:

P (E) = p(ei1
) + · · · + p(eir

), or P (E) =
r∑

a=1

P (eia
)

If E contains only one element, say ej , it is written as

E = {ej} and P (E) = p(ej)

It is evident, probabilities of events in a finite sample space S are values of an additive set
function P (E) defined on sets E in S, satisfying the following conditions:

1. If E is any event in S, then
P (E) ≥ 0 (3.3.2a)

2. If E is the sample space S itself, then

P (E) = P (S) = 1 (3.3.2b)

3. If E and F are two disjoint events in S, then

P (E ∪ F ) = P (E) + P (F ) (3.3.2c)

These conditions are also sometimes known as axioms of probability. In the case of
an infinite sample space S, condition 3 extends as follows:

if E1, E2, . . . is an infinite sequence of disjoint events, then

P (E1 ∪ E2 ∪ · · · ) = P (E1) + P (E2) + · · · (3.3.2d)

As E and Ē are disjoint events, then from condition 3, we obtain

P (E ∪ Ē) = P (E) + P (Ē) (3.3.3)

But since E ∪ Ē = S and P (S) = 1, we have the following:

Theorem 3.3.1 (Rule of complementation) If E is an event in a sample space S,
then

P (Ē) = 1 − P (E) (3.3.4)

The law of complementation provides a simple method of finding the probability of
an event Ē, if E is an event whose probability is easy to find. We sometimes say that the
odds in favor of E are

Odds(E) = P (E)/P (Ē) (3.3.4a)
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which from (3.3.4) takes the form P (E)/[1 − P (E)]. The reader may note that
0 ≤ Odds(E) ≤ ∞.

Example 3.3.1 (Tossing coins) Suppose that 10 coins are tossed and we ask for the prob-
ability of getting at least 1 head. In this example, the sample space S has 210 = 1024 sample
points. If the coins are unbiased, the sample points are equally likely (sample points are
called equally likely if each sample point has the same probability of occurring), so that to
each of the sample points the probability 1/1024 is assigned. If we denote by E the event
of getting no heads, then E contains only one sample point, and Ē, of course, has 1023
sample points. Thus

P (Ē) = 1 − 1/1024 = 1023/1024

The odds on E and Ē are clearly Odds(E) = 1/1023 and Odds(Ē) = 1023/1.
Referring to the statement in Theorem 3.3.1 that ∪k

i=1Ei and ∩k
i=1Ēi are disjoint events

whose union is S, we have the following rule.

Theorem 3.3.2 (General rule of complementation) If E1, E2, . . . , Ek are events
in a sample space S, then we have

P

(
k
∩

i=1
Ēi

)
= 1 − P

(
k
∪

i=1
Ei

)
(3.3.5)

Another useful result follows readily from (3.3.2c) by mathematical induction

Theorem 3.3.3 (Rule of addition of probabilities for mutually exclusive events)
If E1, E2, . . . , Ek are disjoint events in a sample space S, then

P (E1 ∪ E2 ∪ · · · ∪ Ek) = P (E1) + P (E2) + · · · + P (Ek) (3.3.6)

Example 3.3.2 (Determination of probabilities of some events) Suppose that a nickel and
a dime are tossed, with H and T denoting head and tail for the nickel and h and t denoting
head and tail for the dime. The sample space S consists of the four elements Hh, Ht, Th,
and Tt. If these four elements are all assigned equal probabilities and if E is the event of
getting exactly one head, then E = {Ht} ∪ {Th}, and we have that

P (E) = P ({Ht} ∪ {Th}) = P ({Ht}) + P ({Th}) = 1/4 + 1/4 = 1/2

Now suppose that E1 and E2 are arbitrary events in S. Then from Figure 3.2.2, with
E = E1 and F = E2, it can be easily seen that E1 ∩ E2, E1 ∩ Ē2, Ē1 ∩ E2, are three disjoint
events whose union is E1 ∪ E2. That is,

P (E1 ∪ E2) = P (E1 ∩ E2) + P (E1 ∩ Ē2) + P (Ē1 ∩ E2) (3.3.7)
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Also, E1 ∩ Ē2 and E1 ∩ E2 are disjoint sets whose union is E1. Hence,

P (E1) = P (E1 ∩ Ē2) + P (E1 ∩ E2) (3.3.8)

Similarly
P (E2) = P (Ē1 ∩ E2) + P (E1 ∩ E2) (3.3.9)

Solving (3.3.8) for P (E1 ∩ Ē2) and (3.3.9) for P (Ē1 ∩ E2) and substituting in (3.3.7), we
obtain the following.

Theorem 3.3.4 (Rule for addition of probabilities for two arbitrary events) If E1
and E2 are any two events in a sample space S, then

P (E1 ∪ E2) = P (E1) + P (E2) − P (E1 ∩ E2) (3.3.10)

The rule for three events E1, E2, andE3 is given by

P (E1 ∪ E2 ∪ E3) = P (E1) + P (E2) + P (E3) − P (E1 ∩ E2)

− P (E1 ∩ E3) − P (E2 ∩ E3) + P (E1 ∩ E2 ∩ E3) (3.3.11)

More generally, for n events E1, . . . , En, we have,

P (E1 ∪ · · · ∪ En) =
n∑

i=1

P (Ei) −
n∑

j>i=1

P (Ei ∩ Ej)

+
n∑

k>j>i=1

P (Ei ∩ Ej ∩ Ek) + · · · + (−1)n−1P (E1 ∩ · · · ∩ En) (3.3.12)

Note that for n = 2, if E1 and E2 are disjoint, P (E1 ∩ E2) = 0 and (3.3.10) reduces to
(3.3.6); that is,

P (E1 ∪ E2) = P (E1) + P (E2)

Similarly, if E1, E2, and E3 are disjoint, (3.3.11) reduces to

P (E1 ∪ E2 ∪ E3) = P (E1) + P (E2) + P (E3)
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PRACTICE PROBLEMS FOR SECTIONS 3.2 AND 3.3

1. Consider a sample space S. Let A and B be any two events in S. Write the
expressions in terms of unions, interactions, and complements for the following
events:
(a) At least one of the events A or B occurs.
(b) Both events A and B occur.
(c) Neither A nor B occurs.
(d) Exactly one of the events A or B occurs.
(e) At most one of the events A or B occurs.

2. Draw a Venn diagram for each event described in Problem 1 above.
3. Describe the sample space for each of the following experiments:

(a) Three coins are tossed.
(b) One die is rolled and a coin is tossed.
(c) Two dice are rolled.
(d) A family has three children of different ages, and we are interested in recording

the gender of these children such that the oldest child is recorded first.
(e) One die is rolled and two coins are tossed.

4. Two regular dice are rolled simultaneously. If the numbers showing up are different,
what is the probability of getting a total of 10 points?

5. Three students are randomly selected from a freshmen engineering class, and it is
observed whether they are majoring in chemical, mechanical, or electrical engineer-
ing. Describe the sample space for this experiment. What is the probability that
at most one of the three students is an EE major?

6. A box contains a shipment of n(n > 4) computer chips, of which four are defective.
Four chips are randomly selected and examined as to whether or not the chips are
defective. Describe the sample space for this experiment. What is the probability
that
(a) Exactly one of the four chips is defective?
(b) All four chips are defective?
(c) Two chips are defective?

7. Given a sample space S = {1, 2, 3, 4, 5, 6, 7, 8, 9} and four events A,B,C, and D in
S that are defined as A = {1, 3, 4, 7}, B = {2, 4, 6, 8, 9}, C = {1, 4, 5, 7}, and D =
{1, 3, 5, 7, 9}, describe the following events:
(a) A ∩ B ∩ C, (b) (A ∩ B) ∪ (C ∩ D), (c) A ∩ (B ∪ C ∪ D), (d) Ā ∩ B̄, (e)
(A ∪ B ∪ C ∪ D), and (f) (Ā ∩ B̄ ∩ C̄ ∩ D̄)

8. Given a sample space S = {x|3 < x < 10} and two events A and B in S
defined as A = {x|4 < x < 7} and B = {x|5 < x < 9}, describe the following
events:
(a) Ā, (b) A ∪ B, (c) A ∪ B (d) A ∩ B

9. Suppose that a person is taken to an ER and that A is the event that he is diagnosed
with liver cancer, B is the event that he will need a liver transplant, and C is the
event that the hospital will find a matching liver on time. The Venn diagram
representing these events and various other regions is shown below. Describe in
words the events represented by the following regions:
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A

B C

(a) A ∩ B ∩ C, (b) A ∩ (B ∪ C), (c) Ā ∩ B̄ (d) (Ā ∩ B̄ ∩ C̄)
10. In a random experiment four “lock nuts” are selected and each nut is classified

either as defective (D) or nondefective (N). Write the sample space for this random
experiment.

11. Five women are selected randomly, and their mammograms are examined. Each
mammogram is classified as indicating that the woman has breast cancer (C) or
does not have breast cancer (N). Write the sample space for this random experi-
ment.

12. The time a biology major takes to dissect a frog is recorded to the nearest minute.
Describe the sample space for this random experiment.

13. Three coins are tossed. Describe the following events:
(a) At least two heads occur.
(b) At most one head occurs.
(c) Exactly two heads occur.
(d) No head occurs.
Find the probability for the occurrence of each event.

14. Two dice are rolled and the sum of the points that appear on the uppermost faces
of the two dice is noted. Write all possible outcomes such that:
(a) The sum is seven.
(b) The sum is five or less.
(c) The sum is even or nine.
Find the probability for the occurrence of each event you described in parts (a)
through (c).

3.4 TECHNIQUES OF COUNTING SAMPLE
POINTS

The problem of computing probabilities of events in finite sample spaces where equal
probabilities are assigned to the elements reduces to the operation of counting the elements
that make up the events in the given sample space. Counting such elements is often greatly
simplified by the use of a tree diagram and the rules for permutations and combinations.

3.4.1 Tree Diagram
A tree diagram is a tool that is useful not only in describing the sample points but also in
listing them in a systematic way. The following example illustrates this technique.
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Example 3.4.1 (Constructing a tree diagram) Consider a random experiment consisting
of three trials. The first trial is testing a chip taken from the production line, the second
is randomly selecting a part from the box containing parts produced by six different man-
ufacturers, and the third is, again, testing a chip off the production line. The interest in
this experiment is in describing and listing the sample points in the sample space of the
experiment.

Solution: A tree-diagram technique describes and lists the sample points in the sample
space of the experiment consisting of three trials. The first trial in this experiment has two
possible outcomes: the chip could be defective (D) or nondefective (N); the second trial
has six possible outcomes because the part could come from manufacturer 1, 2, 3, 4, 5, or
6; and the third, again, has two possible outcomes (D, N). The problem of constructing
a tree diagram for a multitrial experiment is sequential in nature: that is, corresponding
to each trial, there is a step of drawing branches of the tree. The tree diagram associated
with this experiment is shown in Figure 3.4.1.

The number of sample points in a sample space is equal to the number of
branches corresponding to the last trial. For instance, in the present example, the
number of sample points in the sample space is equal to the number of branches
corresponding to the third trial, which is 24 (2 × 6 × 2). To list all the sample
points, start counting from o along the paths of all possible connecting branches
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Figure 3.4.1 Tree diagram for the experiment in Example 3.3.1
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until the end of the final set of branches, listing the sample points in the same order
as the various branches are covered. The sample space S in this example is S =
{D1D, D1N, D2D, D2N, D3D, D3N, D4D, D4N, D5D, D5N, D6D, D6N, N1D, N1N,
N2D,N2N,N3D,N3N,N4D,N4N,N5D,N5N,N6D,N6N}.

The tree diagram technique for describing the number of sample points is extendable
to an experiment with a large number of trials, where each trial has several possible
outcomes. For example, if an experiment has n trials and the ith trial has mi possible
outcomes (i = 1, 2, 3, . . . , n), then there will be m1 branches at the starting point o, m2
branches at the end of each of the m1 branches, m3 branches at the end of the each
of m1 × m2 branches, and so on. The total number of branches at the end would be
m1 × m2 × m3 × · · · × mn, which represents all the sample points in the sample space S
of the experiment. This rule of describing the total number of sample points is known as
the Multiplication Rule.

3.4.2 Permutations
Suppose that we have n distinct objects O1, O2, . . . , On. We can determine how many
different sequences of x objects can be formed by choosing x objects in succession from
the n objects where 1 ≤ x ≤ n. For convenience, we may think of a sequence of x places
that are to be filled with x objects. We have n choices of objects to fill the first place.
After the first place is filled, then with n − 1 objects left, we have n − 1 choices to fill the
second place. Each of the n choices for filling the first place can be combined with each of
the n − 1 choices for filling the second place, thus yielding n(n − 1) ways of filling the first
two places. By continuing this argument, we will see that there are n(n − 1) · · · (n − x + 1)
ways of filling the x places by choosing x objects from the set of n objects. Each of these
sequences or arrangements of x objects is called a permutation of x objects from n. The
total number of permutations of x objects from n, denoted by P (n, x), is given by

P (n, x) = n(n − 1) · · · (n − x + 1) (3.4.1)

Note that the number of ways of permuting all the n objects is given by

P (n, n) = n(n − 1) · · · (2)(1) = n! (3.4.2)

where n! is read as n factorial.
Expressed in terms of factorials, we easily find that

P (n, x) =
n!

(n − x)!
(3.4.3)

3.4.3 Combinations
It is easy to see that if we select any set of x objects from n, there are x! ways this particular
set of x objects can be permuted. In other words, there are x! permutations that contain
any set of x objects taken from the n objects. Any set of x objects from n distinct objects
is called a combination of x objects from n objects. The number of such combinations is
usually denoted by

(
n
x

)
. As each combination of each x objects can be permuted in x! ways,
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these
(

n
x

)
combinations give rise to

(
n
x

)
x! permutations. But this is the total number of

permutations when using x objects from the n objects. Hence,
(

n
x

)
x! = P (n, x), so that

(n

x

)
=

P (n, x)
x!

=
n!

x!(n − x)!
(3.4.4)

Example 3.4.2 (Applying concept of combinations) The number of different possible
hands of 13 cards in a pack of 52 ordinary playing cards is the number of combinations of
13 cards from 52 cards, and from (3.4.4) is(

52
13

)
=

52!
13!39!

= 635,013, 559,600

Example 3.4.3 (Applying concept of combinations) The number of samples of 10 objects
that can be selected from a lot of 100 objects is(

100
10

)
=

100!
10!90!

= 17,310, 309,456, 400

Example 3.4.4 (Determining number of combinations) Suppose that we have a collec-
tion of n letters in which x are A’s and n − x are B’s. The number of distinguishable
arrangements of these n letters (x A’s and n − x B’s) written in n places is

(
n
x

)
.

We can think of all n places filled with B’s, and then select x of these places and
replace the B’s in them by A’s. The number of such selections is

(
n
x

)
. This is equivalent

to the number of ways we can arrange x A’s and n − x B’s in n places.
The number

(
n
x

)
is usually called binomial coefficient, since it appears in the binomial

expansion (for integer n ≥ 1)

(a + b)n =
n∑

x=0

(n

x

)
axbn−x (3.4.5)

Example 3.4.5 The coefficient of axbn−x in the expansion of (a + b)n is
(

n
x

)
, since we

can write (a + b)n as

(a + b)(a + b) · · · (a + b) (n factors) (3.4.6)

The coefficient of axbn−x is the number of ways to pick x of these factors and then choose
a from each factor, while taking b from the remaining (n − x) factors.

3.4.4 Arrangements of n Objects Involving Several
Kinds of Objects

Suppose that a collection of n objects are such that there are x1 A1’s, x2 A2’s, . . . , xk Ak’s,
where x1 + x2 + · · · + xk = n. Then total number of distinguishable arrangements of these
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several kinds of A’s denoted by
(

n
x1, . . . ,xk

)
is

(
n

x1, . . . , xk

)
=

n!
x1! · · ·xk!

(3.4.7)

For if we think of each of the n places being originally filled with objects of type A,
there are

(
n
x1

)
ways of choosing x1 A’s to be replaced by A1’s. In each of these

(
n
x1

)
ways,

there are
(

n−x1
x2

)
ways of choosing x2 A’s to be replaced by A2’s. Hence, the number of

ways of choosing x1 A’s and replacing them with A1’s and choosing x2 from the remaining
n − x1 A’s and replacing them with A2’s is

(
n
x1

) (
n−x1

x2

)
. Continuing this argument and

using equation (3.4.4) shows that the number of ways of choosing x1 A’s and replacing
them with A1’s, x2 A’s and replacing them with A2’s, and so on until the last xk A’s
replaced with Ak’s, is(

n

x1

) (
n − x1

x2

)
· · ·

(
n − x1 − · · · − xk−1

xk

)
=

n!
x1!x2! · · ·xk!

=
(

n

x1, . . . , xk

)

To illustrate the application of combinations to probability problems involving finite
sample spaces, we consider the following example.

Example 3.4.6 (Combinations and probability) If 13 cards are dealt from a thoroughly
shuffled deck of 52 ordinary playing cards, the probability of getting five spades is( 13

5

) ( 39
8

)
( 52

13

)

Solution: This result holds because the number of ways of getting five spades from the
13 spades in the deck is

( 13
5

)
, and the number of ways of getting 8 nonspades from the

39 nonspades in the deck is
( 39

8

)
, and hence, the number of ways five spades and eight

nonspades occurs in a hand of 13 cards is the product
( 13

5

) ( 39
8

)
. This is the number of

elements in the sample space constituting the event of “getting five spades in dealing 13
cards from a shuffled deck.” Since the sample space consists of

( 52
13

)
equally likely sample

points, each sample point is assigned the same probability 1/
( 52

13

)
. Hence, the probability

of getting five spades in dealing 13 cards is( 13
5

) ( 39
8

)
( 52

13

)

PRACTICE PROBLEMS FOR SECTION 3.4

1. In a certain clinical trial, a medical team wants to study four different doses of a
new medication for cervical cancer in five patients. In how many different ways can
the team select one dose of the medication and one of the patients?
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2. A small motel with nine rooms has three twin beds in two rooms, two twin beds
in three rooms, and one twin bed in rest of the four rooms. In how many different
ways can the manager of the motel assign these rooms to a group of 16 guests
who told the manager that they have no preference about whom they share the
room with?

3. In how many ways can a class of 30 students select a committee from the class
that consists of a president, a vice president, a treasurer, and a secretary (a) if any
student may serve either of these roles but no student may serve in multiple roles
and (b) if any student may serve in multiple roles?

4. A multiple-choice board exam consists of 15 questions, each question having four
possible answers. In how many different ways can a candidate select one answer to
each question?

5. A chain restaurant offers a dinner menu with four different soups, three different
salads, 10 entrees, and four desserts. In how many ways can a customer choose a
soup, a salad, an entrée, and a dessert?

6. If in Problem 3 above, the committee consists of just four members, then in how
many ways can the class select the committee?

7. If 13 cards are dealt from a thoroughly shuffled deck of 52 ordinary playing cards,
find the probability of getting five spades and four diamonds.

8. How many different permutations can be obtained by arranging the letters of the
word engineering? Cardiologist?

9. A cholesterol-lowering drug is manufactured by four different pharmaceutical
companies in five different strengths and two different forms (tablet and cap-
sule). In how many different ways can a physician prescribe this drug to a
patient?

10. How many different car plates can be issued if the Department of Motor Vehicles
decides to first use two letters of the English alphabet and then any four of the digits
0, 1, 2, . . . , 9?

11. In a random experiment, one die is rolled, one coin is tossed, and a card is drawn
from a well-shuffled regular deck of playing cards and its suit noted. How many
sample points are there in the sample space of this random experiment?

12. Each of 10 websites either contains (C) an ad of a car manufacturer or does not
contain the ad (N). How many sample points are there in the sample space of a
random experiment that selects a website at random?

3.5 CONDITIONAL PROBABILITY

In some probability problems, we are asked to find the probability that an event F occurs
when it is known or given that an event E has occurred. This probability, denoted by
P (F |E) and called the conditional probability of F given E, is obtained essentially by
letting E be a new sample space, sometimes known as an induced sample space, and then
computing the fraction of probability on E that lies on E ∩ F , that is,

P (F |E) =
P (E ∩ F )

P (E)
(3.5.1)
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where, of course, P (E) �= 0. Similarly

P (E|F ) =
P (E ∩ F )

P (F )
(3.5.2)

where P (F ) �= 0. The conditional probability of F̄ , given that E has occurred, using
(3.5.1), is

P (F̄ |E) =
P (E ∩ F̄ )

P (E)

Since we are in the “new” sample space E, we find that (see Figure 3.6.1)

P (F |E) + P (F̄ |E) =
P (E ∩ F ) + P (E ∩ F̄ )

P (E)
=

P (E)
P (E)

= 1

That is, the rule of complementation is preserved in the induced sample space E.

Example 3.5.1 (Concept of conditional probability) The manufacturing department of
a company hires technicians who are college graduates as well as technicians who are not
college graduates. Under their diversity program, the manager of any given department is
careful to hire both male and female technicians. The data in Table 3.5.1 show a classifi-
cation of all technicians in a selected department by qualification and gender. Suppose that
the manager promotes one of the technicians to a supervisory position.

(a) If the promoted technician is a woman, then what is the probability that she is a
nongraduate?

(b) Find the probability that the promoted technician is a nongraduate when it is not known
that the promoted technician is a woman.

Solution: Let S be the sample space associated with this problem, and let E and F be
the two events defined as follows:

E: the promoted technician is a nongraduate
F: the promoted technician is a woman

In Part (a) we are interested in finding the conditional probability P (E|F ).
Since any of the 100 technicians could be promoted, the sample space S consists of

100 equally likely sample points. The sample points that are favorable to the event E are
65, and those that are favorable to the event F are 44. Also the sample points favorable

Table 3.5.1 Classification of technicians by qualification
and gender.

Graduates Nongraduates Total

Male 20 36 56
Female 15 29 44
Total 35 65 100
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to both the events E and F are all the women who are nongraduates and equal to 29. To
describe this situation, we have

P (E) = 65/100, P (F ) = 44/100, P (E ∩ F ) = 29/100

(a) Therefore,

P (E|F ) =
P (E ∩ F )

P (F )
=

29/100
44/100

= 29/44 = 0.659

and for part (b), we have that P (E) = 65/100 = 0.65.
Note that the probability P(E), sometimes known as the absolute probability of E, is

different from the conditional probability P(E|F). If the conditional probability P(E|F) is
the same as the absolute probability P(E), that is, P(E|F) = P(E), then the two events E
and F are said to be independent. In this example, the events E and F are not independent.

Definition 3.5.1 Let S be a sample space, and let E and F be any two events in
S. The events E and F are called independent if and only if any one of the following
is true:

1. P (E|F ) = P (E) (3.5.3)

2. P (F |E) = P (F ) (3.5.4)

3. P (E ∩ F ) = P (E) × P (F ) (3.5.5)

The conditions in equations (3.5.3)–(3.5.5) are equivalent in the sense that if one is
true, then the other two are true. We now have the following theorem, which gives rise to
the so-called multiplication rule.

Theorem 3.5.1 (Rule of multiplication of probabilities) If E and F are events in
a sample space S such that P (E) �= 0, then

P (E ∩ F ) = P (E) · P (F |E) (3.5.6)

Equation (3.5.6) provides a two-step rule for determining the probability of the occurrence
of (E ∩ F ) by first determining the probability of E and then multiplying by the conditional
probability of F given E.

Example 3.5.2 (Applying probability in testing quality) Two of the light bulbs in a box
of six have broken filaments. If the bulbs are tested at random, one at a time, what is the
probability that the second defective bulb is found when the third bulb is tested?

Solution: Let E be the event of getting one good and one defective bulb in the first two
bulbs tested, and let F be the event of getting a defective bulb on drawing the third bulb.
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Then, (E ∩ F ) is the event whose probability we are seeking. Hence,

P (E ∩ F ) = P (E) · P (F |E)

The sample space S in which E lies consists of all possible selections of two bulbs out of
six, the number of elements in S being

( 6
2

)
= 15. The event E consists of all selections of

one good and one defective bulb out of four good and two defective bulbs, and the number
of such selections is 4 × 2 = 8. Therefore, P (E) = 8/15. We now compute P (F |E), the
probability that F occurs given that E occurs. If E has occurred, there are three good
and one defective bulb left in the box. F is the event of drawing the defective one on the
next draw, that is, from a box of four that has three good bulbs and one defective. Thus,
P (F |E) = 1/4. The required probability is

P (E ∩ F ) = P (E) · P (F |E) = (8/15) × (1/4) = 2/15

For the case of three events, E1, E2, and E3, the extended form of (3.5.6) is

P (E1 ∩ E2 ∩ E3) = P (E1) · P (E2|E1) · P (E3|E1 ∩ E2) (3.5.7)

provided that P (E1) and P (E1 ∩ E2) are both not zero. Formula (3.5.7) extends to any
finite number of events E1, . . . , Ek. Note that equation (3.5.5) also can be extended to the
case of several mutually independent events E1, . . . , En so that for these n independent
events

P (E1 ∩ · · · ∩ En) = P (E1) · · ·P (En) (3.5.8)

Example 3.5.3 (Rolling a die n times) If a true die is thrown n times, what is the prob-
ability of never getting an ace (one-spot)?

Solution: Let E1 be the event of not getting an ace on the first throw, E2 the event of
not getting an ace on the second throw, and so on. Assuming independence of the events
E1, . . . , En and a “true” die, we have P (E1) = · · · = P (En) = 5/6. Hence, the required
probability from (3.5.8) is

P (E1 ∩ · · · ∩ En) = P (E1) · · ·P (En) = (5/6)n

3.6 BAYES’S THEOREM

An interesting version of the conditional probability formula (3.5.1) comes from the work
of the Reverend Thomas Bayes. Bayes’s result was published posthumously in 1763.

Suppose that E and F are two events in a sample space S and such that E ∩ F �= ∅.
From the Venn diagram in Figure 3.6.1, we can see that the events (E ∩ F ) and (E ∩ F̄ )
are disjoint and that their union is E, so that

P (E) = P (E ∩ F ) + P (E ∩ F̄ ) (3.6.1)

Using the rule given by (3.5.6), we can rewrite equation (3.6.1) as

P (E) = P (F )P (E|F ) + P (F̄ )P (E|F̄ ) (3.6.2)
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F
E

E ∩ F
E ∩ F

Figure 3.6.1 Venn diagram showing events (E ∩ F ) and (E ∩ F ).

We can rewrite (3.5.1) in the form

P (F |E) =
P (F )P (E|F )

P (F )P (E|F ) + P (F̄ )P (E|F̄ )
(3.6.3)

The rule provided by (3.6.3) is known as Bayes’s theorem for two events E and F; the prob-
abilities P (F ) and P (F̄ ) are sometimes referred to as the prior probabilities of events F and
F̄ , respectively (note that F ∪ F̄ = S, F ∩ F̄ = ∅). The conditional probability P (F |E) as
given by Bayes’s theorem (3.6.3), is referred to as the posterior probability of F, given that
the event E has occurred. An interpretation of (3.6.3) is that, posterior to observing that
the event E has occurred, the probability of F changes from P (F ), the prior probability,
to P (F |E), the posterior probability.

Example 3.6.1 (Bayes’s theorem in action) The Gimmick TV model A uses a printed
circuit, and the company has a routine method for diagnosing defects in the circuitry when
a set fails. Over the years, the experience with this routine diagnostic method yields the
following pertinent information: the probability that a set that fails due to printed circuit
defects (PCD) is correctly diagnosed as failing because of PCD is 80%. The probability
that a set that fails due to causes other than PCD has been diagnosed incorrectly as failing
because of PCD is 30%. Experience with printed circuits further shows that about 25% of
all model A failures are due to PCD. Find the probability that the model A set’s failure is
due to PCD, given that it has been diagnosed as being due to PCD.

Solution: To answer this question, we use Bayes’s theorem (3.6.3) to find the posterior
probability of a set’s failure being due to PCD, after observing that the failure is diagnosed
as being due to a faulty PCD. We let

F = event, set fails due to PCD
E = event, set failure is diagnosed as being due to PCD

and we wish to determine the posterior probability P (F |E).
We are given that P (F ) = 0.25 so that P (F̄ ) = 0.75, and that P (E|F ) = 0.80 and

P (E|F̄ ) = 0.30. Applying (3.6.3) gives

P (F |E) =
P (F )P (E|F )

P (F )P (E|F ) + P (F̄ )P (E|F̄ )

=
(0.25)(0.80)

(0.25)(0.80) + (0.75)(0.30)
= 0.471
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Notice that in light of the event E having occurred, the probability of F has changed from
the prior probability of 25% to the posterior probability of 47.1%.

Formula (3.6.3) can be generalized to more complicated situations. Indeed Bayes stated
his theorem for the more general situation, which appears below.

F1

F2 Fk

F3

E

Figure 3.6.2 Venn diagram showing F1, F2, . . . , Fk mutually exclusive events in S.

Theorem 3.6.1 (Bayes’s theorem) Suppose that F1, F2, . . . , Fk are mutually
exclusive events in S such that

∑k
i=1 P (Fi) = 1, and E is any other event in S.

Then
P (Fi|E) =

P (Fi)P (E|Fi)∑k
i=1 P (Fi)P (E|Fi)

(3.6.4)

We note that (3.6.3) is a special case of (3.6.4), with k = 2, F1 = F , and F2 = F̄ .
Bayes’s theorem for k events Fi has aroused much controversy. The reason for this is that
in many situations, the prior probabilities P (Fi) are unknown. In practice, when not much
is known about a priori, these have often been set equal to 1/k as advocated by Bayes
himself. The setting of P (Fi) = 1/k in what is called the “in-ignorance” situation is the
source of the controversy. Of course, when the P (Fi)’s are known or may be estimated
on the basis of considerable past experience, (3.6.4) provides a way of incorporating prior
knowledge about the Fi to determine the conditional probabilities P (Fi|E) as given by
(3.6.4). We illustrate (3.6.4) with the following example.

Example 3.6.2 (Applying Bayes’s theorem) David, Kevin, and Anita are three doctors
in a clinic. Dr. David sees 40% of the patients, Dr. Anita sees 25% of the patients, and
35% of the patients are seen by Dr. Kevin. Further 10% of Dr. David’s patients are on
Medicare, while 15% of Dr. Anita’s and 20% of Dr. Kevin’s patients are on Medicare. It
is found that a randomly selected patient is a Medicare patient. Find the probability that
he/she is Dr. Kevin’s patient.

Solution: Let

F1 = Person is Dr. Kevin’s patient
E = Person is a Medicare patient
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and let

F2 = Person is Dr. Anita’s patient
F3 = Person is Dr. David’s patient

We are given that P (F1) = 0.35, P (F2) = 0.25, P (F3) = 0.40 while P (E|F1) = 0.20,
P (E|F2) = 0.15 and P (E|F3) = 0.10. We wish to find P (F1|E). Using (3.6.4) with k = 3,
we have

P (F1|E) =
P (F1)P (E|F1)∑3
i=1 P (Fi)P (E|Fi)

=
(0.35)(0.20)

(0.35)(0.20) + (0.25)(0.15) + (0.40)(0.10)
= 0.475

We note that the posterior probability of F1, given E, is 0.475, while the prior probability
of F1 was P (F1) = 0.35. We sometimes say that the prior information about F1 has been
updated in light of the information that E occurred to the posterior probability of F1,
given E, through Bayes’s theorem.

PRACTICE PROBLEMS FOR SECTIONS 3.5 AND 3.6

1. A regular die is rolled. If the number that showed up is odd, what is the probability
that it is 3 or 5?

2. Three balanced coins are tossed simultaneously. What is the probability that exactly
two heads appear given that at least one head has appeared?

3. Suppose that A1, A2, A3, A4, and A5 are five mutually exclusive and exhaustive
events in a sample space S, and suppose that P (A1) = 0.2, P (A2) = 0.1, P (A3) =
0.15, P (A4) = 0.3, and P (A5) = 0.25. Another event E in S is such that P (E|A1) =
0.2, P (E|A2) = 0.1, P (E|A3) = 0.35, P (E|A4) = 0.3, and P (E|A5) = 0.25. Find the
probabilities P (A1|E), P (A2|E), P (A3|E), P (A4|E), and P (A5|E).

4. Suppose that four attorneys A1, A2, A3, and A4 deal with all the criminal cases in
a district court. The following table gives the percentages of the cases that each of
these attorneys handles, and also the probability that each loses the case;

Attorney Probability of
handling the case

Probability of
losing the case

A1 0.40 0.15
A2 0.25 0.30
A3 0.25 0.20
A4 0.10 0.40

Suppose that a criminal case was lost in the court. Find the probability that this
case was handled by Attorney A2.

5. Suppose that a random experiment consists of randomly selecting one of four coins
C1, C2, C3, and C4, tossing it and observing whether a head or a tail occurs. Further
suppose that the coins C1, C2, and C3 are biased such that the probabilities of a
head occurring for coins C1, C2, and C3 are 0.9, 0.75, and 0.60, respectively, while
the fourth coin C4 is a fair coin.
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(a) If the outcome of the experiment was a head, find the probability that coin C2
was tossed.

(b) If the outcome of the experiment was a tail, find the probability that coin C4
was tossed.

6. An industry uses three methods, M1,M2, and M3 to manufacture a part. Of all
the parts manufactured, 45% are produced by method M1, 32% by method M2,
and the rest 23% by method M3. Further it has been noted that 3% of the parts
manufactured by method M1 are defective, while 2% manufactured by method M2
and 1.5% by method M3 are defective. A randomly selected part is found to be
defective. Find the probability that the part was manufactured by (a) method M1,
(b) method M2.

7. There are four roads connecting location A and location B. The probabilities that
if a person takes Road I, Road II, Road III, or Road IV from location A to B,
then he/she will arrive late because of getting stuck in the traffic are 0.3, 0.20, 0.60,
and 0.35, respectively. Suppose that a person chooses a road randomly and he/she
arrives late. What is the probability that the person chose to take Road III?

8. Suppose that in a ball-bearing manufacturing plant four machines M1,M2,M3, and
M4 manufacture 36%, 25%, 23%, and 16% of the ball bearings, respectively. It
is observed that the four machines produce 2%, 2.5%, 2.6%, and 3% defective ball
bearings, respectively. If the ball bearings manufactured by these machines are mixed
in a well-mixed lot and then a randomly selected ball bearing is found to be defective,
find the probability that the defective ball bearing is manufactured by (a) machine
M1, (b) machine M2, (c) machine M3, (d) machine M4.

9. An urn contains five coins of which three are fair, one is two-headed and one is
two-tailed. A coin is drawn at random and tossed twice. If a head appears both
times, what is the probability that the coin is two-headed?

3.7 INTRODUCING RANDOM VARIABLES

Suppose that a finite sample space S consists of m elements e1, e2, . . . , em. There are 2m

possible events that can be formed from these elements, provided that the empty event ∅
and the entire sample space S are counted as two of the events. This is revealed by the
fact that we have the choice of selecting or not selecting each of the m elements in making
up an event. Rarely, if ever, is one interested in all these 2m events and their probabilities.
Rather, the interest lies in a relatively small number of events produced by specified values
of some function defined over the elements of a sample space. For instance, in the sample
space S of the

( 52
13

)
possible hands of 13 bridge cards, we are usually interested in events

such as getting two aces, or eight spades, or 10 honor cards, and so on.
A real and single-valued function X(e) defined on each element e in the sample space

S is called a random variable. Suppose that X(e) can take on the values x1, x2, . . . , xk.
Let E1, E2, . . . , Ek be the events that are mutually exclusive and exhaustive in the sam-
ple space S, for which X(e) = x1,X(e) = x2, . . . ,X(e) = xk, respectively. Let P (E1) =
p(x1), . . . , P (Ek) = p(xk). Then, we say that X(e) is a random variable defined over the
sample space S and is a discrete random variable which takes the values x1, x2, . . . , xk with
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the probabilities p(x1), p(x2), . . . , p(xk), respectively. Since E1, E2, . . . , Ek are disjoint and
their union is equal to the entire sample space S, we have

p(x1) + · · · + p(xk) = 1 (3.7.1)

We can arrange the values of X and the corresponding probabilities in table form as
follows:

X = x x1 x2 · · · xk

p(x) p(x1) p(x2) · · · p(xk)
(3.7.2)

The values of the discrete random variable X(e) together with their associated probabilities
are called the discrete distribution of X(e). The function p(xi), defined by

P (X(e) = xi) = p(xi), i = 1, 2, . . . , k (3.7.3)

is called the probability function (p.f.) of X(e). Ordinarily, we drop the e and refer to the
random variable as X. The set of possible values x1, x2, . . . , xk is called the sample space
of the random variable X.

Example 3.7.1 (Defining concept of the probability function) Let X be a random variable
denoting the sum of the number of dots that appear when two dice are thrown. If each of
the 36 elements in the sample space is assigned the same probability, namely 1/36, then
p(x), the probability function of X, is as follows:

x 2 3 4 5 6 7 8 9 10 11 12
p(x) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

If the sample space S has an infinite number of elements and if the random variable x can
take on a countably infinite set of values x1, x2, . . . , we have a discrete random variable
with sample space –x1, x2, . . . ˝.

Example 3.7.2 (Probability function for an event to occur) Let X be a random variable
denoting the number of times a die is thrown until an ace appears. The sample space of X
is 1, 2, . . . , and the probability function p(x) = P (X = x) is given by the table:

x 1 2 · · · x · · ·
p(x) 1/6 5/62 · · · 5x−1/6x · · ·

since
p(x) =

5x−1

6x−1 × 1
6

=
5x−1

6x
, x = 1, 2, . . .

Note that the probability function p(x) must possess the following properties.
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(i) p(x) ≥ 0 and (ii)
∑

x

p(x) = 1

If any one of these properties does not hold, then p(x) is not a probability function.
We conclude this section with the comment that in this section, we have discussed

only discrete random variables. There is indeed another type of random variables, called
continuous random variables, discussed extensively in Chapter 5. Suffice it to say here that
a continuous random variable may take all values in at least one interval, and it, of course,
contains an infinite number of values that are not countable. This is in contrast with a
discrete random variable, which takes values that are countable, as discussed here and in
Chapter 4.

Review Practice Problems

1. Certain pieces made by an automatic lathe are subject to three kinds of defects X, Y,
Z. A sample of 1000 pieces was inspected with the following results: 2.1% had type X
defect, 2.4% had type Y defect, and 2.8% had type Z defect. 0.3% had both type X
and type Y defects, 0.4% had both type X and type Z defects, and 0.6% had both
type Y and type Z defects. 0.1% had type X, type Y , and type Z defects.
Then find:
(a) What percent had none of these defects?
(b) What percent had at least one of these defects?
(c) What percent were free of type X and/or type Y defects?
(d) What percent had not more than one of these defects?

2. Two inspectors A and B independently inspected the same lot of items. Four percent
of the items are actually defective. The results turn out to be as follows: 5% of the
items are called defective by A, and 6% of the items are called defective by B. 2% of
the items are correctly called defective by A, and 3% of the items are correctly called
defective by B. 4% of the items are called defective by both A and B, and 1% of the
items are correctly called defective by both A and B.
(a) Make a Venn diagram showing percentages of items in the eight possible dis-

joint classes generated by the classification of the two inspectors and the true
classification of the items.

(b) What percent of the truly defective items are missed by inspectors?

3. (a) A box of 100 items contains 90 nondefective items, seven with type A defects,
five with type B defects, and two with both types of defects. Let S be the sample
space generated by the operation of drawing one item blindly from the box. Let
EA be the event of getting a type A defective and EB the event of getting a type B
defective. Set up a Venn diagram and show the following events: EA ∩ EB , EA ∩
ĒB , EA ∩ ĒB , and ĒA ∩ ĒB indicating the number of elements in each. How many
elements are in EA ∪ EB?

(b) In the box described in part (a) of this problem, let S∗ be the sample space
generated by blindly drawing two items simultaneously from the box. Let G be
the event that corresponds to pairs of nondefective items. Let GA be the event
that corresponds to pairs of items containing at least one type A defective while
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GB is the event that corresponds to pairs of items containing at least one type B
defective. Set up a Venn diagram and show the eight basic events in S∗ obtained
by placing or omitting a bar over each label in G ∩ GA ∩ GB , and write in the
number of elements in each of the eight basic events.

4. A “true” icosahedral (Japanese) die has 20 sides, two sides marked with 0, two sides
with 1, two sides with 2, . . . , two sides with 9. The probabilities assigned to the 20
faces are all equal. Suppose then that three such dice are thrown. Find the following
probabilities:
(a) That no two top faces will be alike.
(b) That at least two top faces will be alike.
(c) That all three top faces will be different even numbers (0 is considered an even

number).
(d) Generalize parts (a) and (b) to the case of a true 2n-sided die with two sides

marked 1, two sides marked 2, . . . , two sides marked n.

5. Ten defective items are known to be in a box of 100 items.
(a) If they are located by testing the items one at a time until all defectives are found,

what is the probability that the 10th (last) defective item is located when the 50th
item is tested?

(b) What is the probability that if 50 items are drawn at random from the box and
tested, all 10 defectives will be found?

(c) If 20 are tested and found to be nondefective, what is the probability that all
defectives will be found among the next 30 tested?

6. If a lot of 1000 articles has 100 defectives and if a sample of 10 articles is selected at
random from the lot, what is the probability that the sample will contain:
(a) No defectives?
(b) At least one defective?

7. Assume that a given type of aircraft motor will operate eight hours without failure
with probability 0.99. Assume that a two-motor plane can fly with at least one motor,
that a four-motor plane can fly with at least two motors, and that failure of one motor
is independent of the failure of another.
(a) If a two-motor plane and a four-motor plane take off for an eight hour flight, show

that the two-motor plane is more than 25 times more likely to be forced down by
motor failure than the four-motor plane.

(b) Compute the respective probabilities that the planes will not be forced down by
motor failure.

(c) What is the answer to (b) if the probability of failure of a motor during an 8-hour
period is p rather than 0.01?

8. Suppose 10 chips are marked 1, 2, . . . , 10, respectively, and put in a hat. If two chips
are simultaneously drawn at random, what is the probability that
(a) Their difference will be exactly 1?
(b) Neither number will exceed 5?
(c) Both numbers will be even?
(d) At least one of the numbers will be 1 or 10?

9. If the probability is 0.001 that a type-X 20-W bulb will fail in a 10-hour test, what is
the probability that a sign constructed from 1000 such bulbs will burn 10 hours:
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(a) With no bulb failures?
(b) With one bulb failure?
(c) With k bulb failures?

10. The game of craps is played with two ordinary six-sided dice as follows: If the shooter
throws 7 or 11, he wins without further throwing; if he throws 2, 3, or 12, he loses
without further throwing. If he throws 4, 5, 6, 8, 9, or 10, he must continue throwing
until a 7 or the “point” he initially threw appears. If after continuing a 7 appears
first he loses; if the “point” he initially threw appears first, he wins. Show that the
probability is approximately 0.4929 that the shooter wins (assuming true dice).

11. In a group of 11 persons, no two persons are of the same age. We are to choose five
people at random from this group of 11.
(a) What is the probability that the oldest and the youngest persons of the 11 will

be among those chosen?
(b) What is the probability that the third youngest of the 5 chosen will be the 6th

youngest of the 11?
(c) What is the probability that at least three of four of the youngest of the 11 will

be chosen?

12. Suppose that the probability is 1/365 that a person selected at random was born
on any specified day of the year (ignoring persons born on February 29). What is the
probability that if r people are randomly selected, no two will have the same birthday?
(The smallest value of r for which the probability that at least two will have a common
birthday exceeds 0.5 is 23.)

13. Suppose that six true dice are rolled simultaneously. What is the probability of getting
(a) All faces alike?
(b) No two faces alike?
(c) Only five different faces?

14. A, B, C, and D are four events that are such that
P (A) = P (B) = P (C) = P (D) = p1, P (A ∩ B) = P (A ∩ C) = · · · = P (C ∩ D) = p2
P (A ∩ B ∩ C) = P (A ∩ B ∩ D) = P (A ∩ C ∩ D) = P (B ∩ C ∩ D) = p3, P (A ∩ B ∩
C ∩ D) = p4. Express the values of the following probabilities in terms of p1, p2,
p3, and p4:
(a) P (A ∪ B ∪ C)
(b) P (A ∪ B ∪ C ∪ D)
(c) P (A ∩ B|C ∩ D)
(d) Probability of the occurrence of exactly 1, exactly 2, exactly 3, of the events

A,B,C,D.

15. If four addressed letters are inserted into four addressed envelopes at random, what
is the probability that
(a) No letter is inserted into its own envelope?
(b) At least one letter is inserted into its own envelope?

16. Three machines A, B, and C produce 40%, 45%, and 15%, respectively, of the total
number of nuts produced by a certain factory. The percentages of defective output of
these machines are 3%, 6%, and 9%. If a nut is selected at random, find the probability
that the item is defective.
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17. In Problem 16, suppose that a nut is selected at random and is found to be defective.
Find the probability that the item was produced by machine A.

18. Enrollment data at a certain college shows that 30% of the men and 10% of the women
are studying statistics and that the men form 45% of the student body. If a student is
selected at random and is found to be studying statistics, determine the probability
that the student is a woman.

19. A certain cancer diagnostic test is 95% accurate on those that do have cancer, and
90% accurate on those that do not have cancer. If 0.5% of the population actually
does have cancer, compute the probability that a particular individual has cancer if
the test finds that he has cancer.

20. An urn contains three blue and seven white chips. A chip is selected at random. If the
color of the chip selected is white, it is replaced and two more white chips are added
to the urn. However, if the chip drawn is blue, it is not replaced and no additional
chips are put in the urn. A chip is then drawn from the urn a second time. What is
the probability that it is white?

21. Referring to Problem 20, suppose that we are given that the chip selected for the
second time is white. What is the probability that the chip selected at the first stage
is blue?

22. Referring to Problem 5, suppose that it takes 11 tests to find all the 10 defectives,
that is, the 11th test produces the last defective. What is the probability that the first
item is nondefective?

23. A bag contains a nickel, quarter, and “dime”, with the dime being a fake coin and
having two heads. A coin is chosen at random from the bag and tossed four times in
succession. If the result is four heads, what is the probability that the fake dime has
been used?

24. In a playground, there are 18 players, 11 of them boys and seven are girls. Eight of
the boys and three of the girls are soccer players; the rest are basketball players. The
name of each player is written on a separate slip, and then these slips are put into an
urn. One slip is drawn randomly from the urn; the player whose name appears on this
slip is given a prize. What is the probability that a soccer player gets the prize given
that a boy gets the prize?

25. Let A1, A2, A3, and A4 be mutually exclusive and exhaustive events in a sample space
S, and let P (A1) = 0.2, P (A2) = 0.1, P (A3) = 0.4, and P (A4) = 0.3. Let B be another
event in S such that P (B|A1) = 0.4, P (B|A2) = 0.1, P (B|A3) = 0.6, and P (B|A4) =
0.2. Find the probabilities P (A1|B), P (A2|B), P (A3|B), and P (A4|B).

26. An industry uses three methods M1,M2, and M3 to train their workers. Of all the
workers trained, 50% are trained by method M1, 28% by method M2, and the rest,
22%, by method M3. Further 10% of those trained by method M1 do not perform
their job well, while 5% trained by method M2 and 15% by methods M3 also do not
perform their job well. A randomly selected worker does not perform his job well.
Find the probability that the worker was trained by (a) method M1, (b) method M2,
and (c) method M3.

27. Suppose that an insurance company finds that during the past three years, 60% of
their policy holders have no accident, 25% had one accident, and the remaining 15%
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had two or more accidents. Further, from their past 10 year history, the insurance
company concludes that those who did not have any accident have a 1% chance of
having an accident in the future, while those who had one accident have a 3% chance
of having an accident in the future. Those who had two or more accidents in the
past three years have 10% chances having an accident in the future. Suppose that
shortly after the above study, one of their policy holders has an accident. What is the
probability that this policy holder did not have any accident in the past three years?

28. Suppose that in a bolt manufacturing plant, machines A, B, and C manufacture,
respectively, 45%, 25%, and 30% of the bolts. It is observed that the three machines
produce, respectively, 5%, 2%, and 3% defective bolts. If the bolts produced by these
machines are mixed in a well-mixed lot and then a randomly selected bolt is found to
be defective, find the probability that the defective bolt is produced by (a) machine
A, (b) machine B, and (c) machine C.

29. A poll was conducted among 1000 registered voters in a metropolitan area asking
their position on bringing a casino in that city. The results of the poll are shown in
the following table:

Sex Percentage of Percentage Percentage not Percentage
voters polled favoring

casino
favoring casino having no

opinion

Male 55% 75% 20% 5%
Female 45% 40% 50% 10%

What is the probability that a registered voter selected at random
(a) Was a man, given that the voter favored the casino?
(b) Was a woman, given that the voter has no opinion about the casino?
(c) Was a woman, given that the voter did not favor the bringing in of a casino?

30. Let a random variable be distributed as shown below.

X = x 0 1 2 3 4 5 6
p(x) 0.1 0.09 0.2 0.15 0.16 0.2

(a) Find the probability p(6).
(b) Find the probability P (3 ≤ X ≤ 5).
(c) Find the probability P (X ≤ 4).
(d) Find the probability P (X > 2).

31. Determine which of the following distributions do not represent a probability distri-
bution. Justify your answer.
(a)

X = x 0 1 2 3 4 5
p(x) 0.1 0.09 0.2 0.15 0.16 0.2
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(b)
X = x 0 1 2 3 4 5
p(x) −0.1 0.09 0.3 0.15 0.16 0.4

(c)
X = x 0 1 2 3 4 5
p(x) 0.2 0.09 0.2 0.15 0.16 0.2

32. In Problem 31, construct a bar chart for the probability distribution that satisfies the
conditions of a probability distribution.

33. The following Venn diagram describes the sample space S of a random experiment
and events A, B, and C associated with the experiment. (S consists of 12 elements,
denoted by ei=

∗i, i = 1, 2, . . . , 12.)

A

*1

*2

*10

*12

*3 *4

*5

*7
*8 C

S

*6

*11

*9

B

(a) Express the events A, B, and C in terms of the elements ∗i.
(b) Suppose that the sample points in the sample space S are equally likely.
Find the following probabilities:

(i) P (A)
(ii) P (B)
(iii) P (C)
(iv) P (A ∩ B)
(v) P (A ∩ B ∩ C)
(vi) P (A ∩ B ∩ C)
(vii) P (A ∪ B ∪ C)
(viii) P (A ∪ B ∪ C)
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DISCRETE RANDOM
VARIABLES AND SOME
IMPORTANT DISCRETE
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DISTRIBUTIONS

The focus of this chapter is a discussion of some important discrete
probability distributions.

Topics Covered

• Discrete random variables and some important probability distributions
• Approximation of the binomial by the Poisson distribution
• Determination of the cumulative distribution functions (c.d.f.) from probability func-

tions
• Determination of the mean and variance of different discrete random variables
• Determination of the probabilities of events involving discrete random variables using

the statistical packages MINITAB, R, and JMP

Learning Outcomes

After studying this chapter, the reader will be able to

• Understand various important discrete distributions and apply them to determine prob-
abilities in real-world problems.
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• Determine approximate probabilities of rare events.
• Determine the mean and the variance of discrete random variables using general tech-

niques and moment-generating functions.
• Apply the statistical packages MINITAB, R, and JMP to calculate probabilities when

using different discrete probability models.

4.1 GRAPHICAL DESCRIPTIONS OF DISCRETE
DISTRIBUTIONS

In Chapter 2, we discussed methods of describing empirical distributions, that is, distribu-
tions of the numerical values of the measurements obtained in a sample. In Chapter 3, we
discussed basic concepts of probability theory. In this chapter, we discuss methods that
can be used for describing theoretical discrete distributions. In Section 3.7, we introduced
the concept of a discrete random variable. The set of possible values of a discrete ran-
dom variable X, together with their associated probabilities (see Section 3.7), is called
the probability function (p.f.) of the discrete random variable. Discrete distributions are
conveniently described graphically. Thus, in general, suppose that the probability function
of a discrete random variable X is as described below in (4.1.1):

X = x x1 x2 · · · xk

p(x) p(x1) p(x2) · · · p(xk)
(4.1.1)

The probability graph for this discrete probability function is shown in Figure 4.1.1, where
the lengths of the vertical lines represent the magnitudes of the probabilities.

The cumulative distribution function (c.d.f.), F (x), provides an alternative way of
describing a discrete random variable X. For any real number x, F (x) is defined as follows:

F (x) = P (X ≤ x) =
∑

i

p(xi) (4.1.2)

where
∑
i

denotes summation for all values of i for which xi ≤ x.

p(x)

p(xi)

x1 x2 x3 xi xk

Figure 4.1.1 Graphical representation of the discrete probability function in (4.1.1).
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F(x)

1

p(xi)

x1 x2 x3 xi xk

x

Figure 4.1.2 Graph of cumulative distribution function F (x) of a discrete random vari-
able X.

It will be observed that

F (x1) = p(x1)

F (x2) = p(x1) + p(x2)

...

F (xi) = p(x1) + · · · + p(xi) (4.1.3)

...

F (xk) = p(x1) + · · · + p(xk) = 1

It can easily be seen that F (x) is a step function defined for all (real) values of x having
a graph as shown in Figure 4.1.2. Note that the steps in the graph occur at the x points
for which x = x1, x2, . . . , xk.

Actually the c.d.f. is a more convenient device for describing the probability distribu-
tions of what are called continuous random variables (discussed in Chapter 5). But the
introduction of F (x) for the case of discrete random variables at this point simplifies the
interpretation of F (x) for a continuous random variable (see Chapter 5).

4.2 MEAN AND VARIANCE OF A DISCRETE
RANDOM VARIABLE

4.2.1 Expected Value of Discrete Random Variables
and Their Functions

In Chapter 2, we defined the average of a sample of measurements. In a similar way, we
define the population mean E(X) (denoted by μ) of the discrete random variable X having
probability function given in (4.1.1) as follows:
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μ = E(X) =
k∑

i=1

xip(xi) (4.2.1)

Clearly, E(X) defined in (4.2.1) is a weighted average of the possible values x1, x2, . . . , xk

of the random variable X, where the weights are the associated probabilities
p(x1), p(x2), . . . , p(xk). E(X) is often called the expected value or expectation of the
random variable X.

Note that the word average identifies X̄ =
∑n

i=1 Xi/n, a quantity that depends on the
sample alone. We call such quantities statistics. Furthermore, in this book, the word mean
is used to identify a characteristic of the population (4.1.1) from which the sample is to
be drawn, where the p(xi) gives the theoretical distribution of the population values. We
call theoretical quantities such as μ the parameters of the distribution.

Corresponding to the procedure for defining the variance S2 of a sample of measure-
ments, we define the variance of the discrete random variable X, V ar(X) (denoted by σ2),
as follows:

σ2 = V ar(X) =
k∑

i=1

(xi − μ)2p(xi) (4.2.2a)

σ2 =
k∑

i=1

x2
ip(xi) − μ2 = E(X2) − μ2 (4.2.2b)

It should be noted that V ar(X) is a weighted average of the squared deviations of
x1, x2, . . . , xk from the mean μ, the weights again being the probabilities. A useful alter-
native expression for σ2 is given by (4.2.2b). This alternative expression is obtained by
expanding the squared term (xi − μ)2 in (4.2.2a), performing the summation, and simpli-
fying the results.

So far, we have defined the mean and variance of discrete random variables. More
generally, if X is a discrete random variable, as defined in Section 4.1, and g(X) is a
function (real and single-valued) of X, the mean value or expectation of g(X), written as
E(g(X)), is defined by

E(g(X)) =
k∑

i=1

g(xi)p(xi) (4.2.3)

If we take, for example, g(X) = Xr, then (4.2.3) takes the form

E(Xr) =
k∑

i=1

xr
i p(xi) = μ′

r (4.2.4)
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The quantity μ′
r defined by (4.2.4) is called the rth moment of the random variable X

about the origin. Note that if r = 0, we have

E(X0) = E(1) = 1

and if r = 1, we have
E(X) = μ

Often, E(Xr) is denoted by μ′
r, as mentioned in (4.2.4).

Now, if we put g(X) = (X − μ)r, (4.2.3) takes the form

E[(X − μ)r] =
k∑

i=1

(xi − μ)rp(xi) (4.2.5)

The quantity defined by (4.2.5) is called the rth moment of X about its mean and denoted
by μr. Note that r = 0 gives E[(X − μ)0] = 1, and if r = 1, it is easily proved that μ1 = 0.
Also note that μ2 = E[(X − μ)2] is the variance of X which we denote by σ2. The reader
should verify that if c is a constant, then (see Theorem 4.2.2)

E(cX) = cE(X), V ar(cX) = c2V ar(X) (4.2.6)

We now provide some general results in the form of theorems about the expected values
of discrete random variables.

Theorem 4.2.1 Let c be a constant and X be a discrete random variable dis-
tributed with probability function p(x). Then,

E(c) =
∑

cp(x) = c
∑

p(x) = c × 1 = c (4.2.7)

Theorem 4.2.2 Let c be a constant and g(X) be a function of a discrete random
variable X that is distributed with probability function p(x). Then,

E(cg(X)) = cE(g(X)) (4.2.8)

Theorem 4.2.3 Let gi(X), i = 1, 2, . . . , n be n functions of a discrete random vari-
able X that is distributed with probability function p(x). Then,

E

[
n∑

i=1

gi(X)

]
=

n∑
i=1

E[gi(X)] (4.2.9)
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Proof:

E

[
n∑

i=1

gi(X)

]
=

∑
x

[
n∑

i=1

gi(x)

]
× p(x) =

n∑
i=1

[∑
x

gi(x) × p(x)

]
=

n∑
i=1

E[gi(X)]

�

4.2.2 The Moment-Generating Function-Expected
Value of a Special Function of X

Referring to (4.2.3), suppose that we set g(X) = eXt and find its expected value; then

E(eXt) =
n∑

i=1

exitp(xi) (4.2.10)

The function of t so obtained is called the moment-generating function of the random
variable X, and is denoted by MX(t), that is,

MX(t) = E(eXt) (4.2.11)

Note that MX(t) can be written as

MX(t) = E

(
1 + Xt +

X2t2

2!
+ · · · + Xktk

k!
+ · · ·

)

= 1 + tE(X) +
t2

2!
E(X2) + · · · + tk

k!
E(Xk) + · · ·

Thus, we have

MX(t) = 1 + tμ′
1 +

t2

2!
μ′

2 + · · · + tk

k!
μ′

k + · · · (4.2.12)

if the moments μ′
1, μ

′
2, . . . , are all finite, then the coefficient of tk/k! in the expansion of

the moment generating function (m.g.f.) is the kth moment about the origin of X. If we
differentiate MX(t) k times, we obtain (assuming differentiability under summation signs)

dk

dtk
MX(t) = E(XkeXt) (4.2.13)

If we then set t = 0, we have

dk

dtk
MX(0) = E(Xk) = μ′

k (4.2.14)
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We now mention some important properties of MX(t) the m.g.f. of X. First, if we are
interested in the random variable cX, where c is any constant, then by definition, the
m.g.f. of cX is

McX(t) = E(ecXt) = E(eXct) = MX(ct) (4.2.15)

Second, the m.g.f. for X + a, where a is a constant, is

MX+a(t) = E(e(X+a)t) = E(eateXt) = eatMX(t) (4.2.16)

Note that (4.2.16) enables us to find moments of X about its mean by setting a = −μ.

PRACTICE PROBLEM FOR SECTIONS 4.1 AND 4.2

1. A hospital is known for coronary artery bypass grafting. Let X be the number
of such surgeries done on a given day. The following table gives the probability
distribution of the random variable X:

X = x 0 1 2 3 4 5

p(x) 0.02 0.05 0.10 0.15 0.18 0.50

Find the following probabilities:
(a) P (X ≤ 2)
(b) P (2 < X < 5)
(c) P (X ≥ 2)
(d) P (1 ≤ X ≤ 4)

2. Each of the following tables lists the values of a random variable X and presum-
ably their corresponding probabilities. Determine whether or not each represents
a probability distribution. Justify your answer.
(a) .

X = x 2 3 4 5

p(x) 0.15 0.25 0.35 0.45

(b) .

X = x 4 7 8 9

p(x) 0.15 0.15 0.45 0.30



4.2 Mean and Variance of a Discrete Random Variable 135

(c) .

X = x 2 5 7 9 11

p(x) 0.10 0.15 0.35 0.23 0.17

3. Each of the following tables lists the values of a random variable X and presum-
ably their corresponding probabilities. Determine whether or not each represents
a probability distribution. Justify your answer.
(a) .

X = x 1 2 3 4 5

p(x) 0.12 0.17 0.31 0.23 0.17

(b) .

X = x 0 1 2 4

p(x) 0.15 0.15 0.33 0.47

(c) .

X = x 2 3 4 5

p(x) ?0.05 0.25 0.35 0.45

4. A manufacturer of car parts ships five exhaust gas temperature sensors, each of
which is independently declared to be either conforming or not conforming. Assume
that the probability that a sensor is conforming is 0.75. Let X be the number of sen-
sors of the five shipped that are conforming. Find the probability distribution of
the random variable X.

5. Refer to Problem 4. Find the mean and the variance of the random variable X.
6. Suppose that the moment-generating function of a random variable X is given by

MX(t) = (0.4et + 0.6)10

Determine the mean and variance of the random variable X.
7. A pair of fair dice is rolled and a random variable X, the sum of points that turn

up, is observed. Find the probability distribution of the random variable X and
determine the mean and the variance of the distribution you obtained.

8. A company developed a new shampoo to reduce dandruff. Six persons tried that
shampoo. Assume that the probability that a person gets some relief is 0.60. Let X
be the number of persons out of the six who find some relief. Determine the prob-
ability distribution of the random variable X and then find its mean and variance.

9. Refer to Problem 7. Find the mean and the variance of the random variable (a)
Y = 3X and (b) Y = 2X + 5.

10. Suppose that the moment-generating function of a random variable X is given by

MX(t) = (0.3et + 0.7)10

Find the moment-generating function of a random variable (a) Y = 2X and (b)
Y = 3X + 5.
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4.3 THE DISCRETE UNIFORM DISTRIBUTION

The discrete uniform distribution is perhaps the simplest discrete probability distribution.
Consider a discrete random variable X and let x1, x2, . . . , xi, . . . , xN be the values that
it can assume. Then X is said to be distributed by the uniform distribution if it assumes
each of its possible values xi, i = 1, 2, 3, . . . , N with equal probability.

Here, the probability function of a discrete uniform distribution is given below in
(4.3.1), and its graphical representation is shown in Figure 4.3.1.

X = x x1 x2 · · · xN

p(x) 1/N 1/N · · · 1/N
(4.3.1)

p(x)

x1 x2 x3 xi xN

1

N

Figure 4.3.1 Graph of uniform probability function given in (4.3.1).

Example 4.3.1 (Uniform distribution) Consider an experiment of tossing a fair die
and observing the number that appears. The sample space of this experiment is S =
{1, 2, 3, 4, 5, 6}, and each element of the sample space occurs with probability 1/6. Thus,
in this example, the random variable X, denoting the number that appears on the die, is
distributed by the uniform distribution, which is written as

X = x 1 2 · · · 6

p(x) 1/6 1/6 · · · 1/6

The mean and variance of the discrete uniform distribution with probability function given
in equation (4.3.1) are given by

μ = E(X) =
N∑

i=1

xip(xi) =
1
N

N∑
i=1

xi and σ2 = E(X − μ)2 =
N∑

i=1

(xi − μ)2p(xi)

=
1
N

N∑
i=1

(xi − μ)2

respectively. In general, if xi = 1, 2, 3, . . . , N , then

μ = (N + 1)/2 and σ2 = (N 2 − 1)/12 (4.3.2)
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Example 4.3.2 (Mean and variance of the uniform distribution) The mean and variance
of the random variable X in Example 4.3.1 are obtained by using (4.3.2).

That is,

μ = (N + 1)/2 = (6 + 1)/2 = 3.5 and σ2 = (N 2 − 1)/12 = (62 − 1)/12 = 2.917

4.4 THE HYPERGEOMETRIC DISTRIBUTION

The hypergeometric probability function provides probabilities of certain events when a
sample of n objects is drawn at random from a finite population of N objects, where the
sampling is conducted without replacement, and where each element of the population may
be dichotomized in some simple fashion as belonging to one of two disjoint classes.

As an example of sampling from a dichotomous population, we consider first a hand
of bridge and ask for the probability of getting exactly x spades. Here, the dichotomy is
“spades” and “nonspades (i.e., clubs, hearts, and diamonds)”; the population consists of
N = 52 cards; the sample consists of n = 13 cards. Or, consider a lot of N transistors, of
which 100p% are defective and 100(1 − p)% are nondefective, where 0 ≤ p ≤ 1. If these
are packaged in boxes of n transistors, interest may be in finding the probability that x
transistors in a given box are defective. Here, the population is the lot of N transistors,
and the sample size is n. The dichotomy in this example is, of course, “defective” and
“nondefective.”

In general, suppose that a random sample of n observations is taken from a population
of size N without replacement and that the observations are examined as to having an
attribute A or not having this attribute. Objects of the former kind will be called type
A and the latter type Ā. Suppose that N1 objects of the population are of type A and
N2 = N − N1 are of type Ā. We want to determine the probability that x of the objects
in a random sample of size n are of type A (and thus n − x are of type Ā).

We know that the total number of ways of choosing a random sample (without replace-
ment) of n from N is

(
N
n

)
, which is the number of elements in the sample space S for this

problem. Each of these elements will be assigned the probability 1
/ (

N
n

)
. The number of

ways of choosing x objects of type A from N1 is
(

N1
x

)
, 0 ≤ x ≤ N1, and the number of

ways of obtaining n − x objects of type Ā from N2 is
(

N2
n−x

)
, 0 ≤ n − x ≤ N2 = N − N1.

Each of these latter ways may be combined with each of the former so that the number of
elements in S comprising the event of getting x objects of type A is

(
N1
x

) (
N−N1
n−x

)
. Note

that x is a value of a random variable X. Hence, the probability we seek is given by

h(x) =

(
N1
x

) (
N−N1
n−x

)
(

N
n

) (4.4.1)

The sample space of X is the set of integers x that satisfies the inequalities max[0, n −
(N − N1)] ≤ x ≤ min(n,N1), since 0 ≤ x ≤ N1 and 0 ≤ n − x ≤ N − N1.
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Expression (4.4.1) is the probability function of the hypergeometric distribution. It can
easily be seen that the sum of h(x) over all values of x in the sample space of X is 1. Further
we note that h(x) is the probability of obtaining x objects of type A in a random sample
of size n, when sampling without replacement from a population of size N that contains
N1 objects of type A and N2 = N − N1 objects of type Ā.

Example 4.4.1 (Applying concept of hypergeometric distribution) Let us consider the
probability of getting x spades in a hand of bridge. In the framework above, A denotes a
spade, and Ā denotes any card other than a spade. Hence, N = 52, N1 = 13, N2 = N −
N1 = 39. If X denotes the number of spades in a hand of n = 13 cards, X has the sample
space max[0, 13 − (52 − 13)] ≤ x ≤ min[13, 13], that is, 0 ≤ x ≤ 13, and X has probability
function given by

h(x) =

( 13
x

) ( 39
13−x

)
( 52

13

)

For instance, if x = 0, then the probability of getting 0 spades in a hand is given by

h(0) =

( 13
0

) ( 39
13

)
( 52

13

) = 0.0128

In engineering applications, it is more convenient to consider the hypergeometric distri-
bution from the following point of view. Consider a dichotomized finite population or lot of
size N, consisting of Np objects of type A and N(1 − p) objects of type Ā, where 0 ≤ p ≤ 1.
Note that N1 and N2 = N − N1 have been replaced by Np and N(1 − p), respectively,
where p = N1/N . If a sample of size n is drawn without replacement, then the probability
of obtaining x objects of type A is

h(x) =

(
Np
x

) (
N(1−p)

n−x

)
(

N
n

) (4.4.2)

The sample space of X consists of the integers x that satisfy the inequalities max[0, n −
N(1 − p)] ≤ x ≤ min(n,Np).

The mean and the variance of the hypergeometric distribution with probability func-
tion in equation (4.4.2) are given by

μ = np, σ2 =
(

N − n

N − 1

)
npq, p = N1/N, q = 1 − p (4.4.3)

The derivations of (4.4.3) appear in Section 4.10.

Example 4.4.2 (Detecting defective light bulbs) A carton contains 24 light bulbs,
12.5% of which are defective. What is the probability that, if a sample of six is chosen at
random from the carton of the bulbs, then x = 0, 1, 2, 3 will be defective?
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Solution: Using (4.4.2), we have, since 12.5% of 24 is 3,

h(x) =

( 3
x

) ( 21
6−x

)
( 24

6

) , 0 ≤ x ≤ 3

This gives

h(0) =

( 3
0

) ( 21
6

)
( 24

6

) = 0.40316, h(1) =

( 3
1

) ( 21
5

)
( 24

6

) = 0.45356

h(2) =

( 3
2

) ( 21
4

)
( 24

6

) = 0.13340, h(3) =

( 3
3

) ( 21
3

)
( 24

6

) = 0.00988

Note here that
∑3

x=0 h(x) = 1.

Example 4.4.3 (Using MINITAB and R) Refer to Example 4.4.1. Find the probabilities
of getting x = 0, 1, 2, 3, . . . , 13, spades in a hand of bridge.

Solution: Again, in the framework of this example, A denotes a spade, and Ā denotes
any card other than a spade. Hence, N1 = 13, N − N1 = 39. Let X denote the number of
spades in a hand of n = 13 cards. To find the probabilities of obtaining x = 0, 1, 2, 3, . . . , 13
spades in a hand of bridge, proceed as follows:

MINITAB

1. Enter the vales 0, 1, 2, . . . , 13 in column C1.
2. From the Menu bar, select Calc > Probability Distributions > Hypergeo-

metric.
3. In the dialog box that appears on the screen, click the circle next to Probability.
4. Enter 52 in the box next to Population size (N), 13 in the box next to Event

count in population (M) (this is the population size of category A), and, again,
13 in the box next to Sample size (n).

5. Click the circle next to Input column and type C1 in the box next to it. Click
OK. The desired probabilities will show up in the Session Window as:

Hypergeometric with N = 52, M = 13, and n = 13

  x P(X = x)

  0 0.012791

  1 0.080062

  2 0.205873

  3 0.286330

  4 0.238608

  5 0.124692

  6 0.041564

  7 0.008817

  8 0.001167

  9 0.000093

10 0.000004

11 0.000000

12 0.000000

13 0.000000
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USING R

R has a built in ‘dhyper(x, m, n, k)’ function in ‘stats’ library that can be used to calculate
the Hypergeometric probabilities, where x is the number of type A objects being selected,
m is the number of type A objects in the population, n is the number of type Ā objects
in the population, and k is the total number of objects being selected. Probabilities that
x = 0, 1, 2, 3, . . . , 13 can be obtained by running the following R code in the R Console
window.

prob = dhyper(c(0:13), 13, 39, 13)

round(prob, 6)

#R output

[1] 0.012791 0.080062 0.205873 0.286330 0.238608 0.124692 0.041564
[8] 0.008817 0.001167 0.000093 0.000004 0.000000 0.000000 0.000000

PRACTICE PROBLEMS FOR SECTIONS 4.3 AND 4.4

1. A box contains 10 chips numbered from 1 to 10. A chip is selected (with replace-
ment) randomly and the number on that chip is jotted down. Let this number be
denoted by a random variable X. Determine the probability distribution of X and
then find its mean and variance.

2. Suppose that the probability distribution of a random variable X is as shown below.
Determine the mean and variance of the random variable Y = 3X.

X = x 1 2 3 4 5 6 7 8

p(x) 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125

3. Suppose that the random variable X has a hypergeometric distribution with
N = 12, n = 4, and N1 = 6. Determine the probability distribution of the random
variable X and then find its mean and variance.

4. A shipment contains 20 assembled circuit boards of which five are defective. Ten
circuit boards from the shipment are selected without replacement. Suppose that X
denotes the number of defective boards out of the 10 selected. Find the probability
distribution of the random variable X and then find its mean and variance.

5. Twenty identical chips marked as 1, 2, . . . , 20 are put in a container and mixed
well. A chip is drawn randomly and the number on the chip is observed. Find the
following probabilities that the observed number is (a) greater than 15, (b) between
10 and 18 (inclusive), (c) less than 10.

6. Referring to Problem 5, let a random variable X denote the number observed. Find
the probability distribution of the random variable X and determine the mean and
the variance of the distribution you obtained.

7. A manager of a manufacturing company has 8 female and 12 male engineers in her
department. The manager randomly selected a team of six engineers to attend a
business meeting. Find the probability that the team had (a) two female engineers
and (b) at least three female engineers.
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8. An IRS inspector randomly selects five persons from a group of 20 who are potential
candidates to be audited. Of the 20 persons, nine were audited in the past, while
the other 11 have never been audited before. Find the probability that the number
of persons selected who were audited in the past is (a) exactly three, (b) more than
two, (c) at least two, (d) at most three.

9. A movie store has five fiction and seven other movies on display. A customer selects
four of these 12 at random. What is the probability that the number of fiction
movies among the four selected movies is (a) exactly two, (b) between two and
four (inclusive), (c) at most two.

10. An electronic company ships a lot of 50 computer hard drives to a store. At the
arrival of the shipment, the store manager selects at random three hard drives to
test. If the lot had five defective hard drives, find the probability that the number
of defective hard drives among the three selected is (a) exactly one, (b) none, (c)
at most one.

4.5 THE BERNOULLI DISTRIBUTION

Consider a random experiment E consisting of repeated trials where each trial has only two
possible outcomes, referred to as success S and failure F. Then, a sequence of independent
trials (repetitions), where the probability of success on each trial remains a constant p
and the probability of failure is (1 − p), which is called a sequence of Bernoulli trials (note
that the probability of failure (1 − p) is commonly denoted by q so that p + q = 1). For
example, if we toss a coin repeatedly, we would have Bernoulli trials; in each trial, the
probability of a head as well as of a tail remains constant.

Let X be a random variable denoting a success or failure in each Bernoulli trial. Clearly,
if we set X = 1 or 0, if the trial is observed to be a success or a failure, respectively, then

P (X = 1) = p, P (X = 0) = 1 − p = q (4.5.1)

Thus, the probability function of the Bernoulli random variable X is given by (4.5.1),
which may be summarized as shown in (4.5.2).

p(x) = pxq1−x, x = 0, 1 (4.5.2)

A random variable X is said to be distributed by the Bernoulli distribution if its probability
function is defined as in Equation (4.5.2). Note that the Bernoulli distribution is also
sometimes known as a point binomial distribution.

The mean and variance of a Bernoulli distribution are given, respectively, by

μ = p, σ2 = pq (4.5.3)
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It can easily be shown that the moment-generating function of the Bernoulli distribution is

MX(t) = pet + q (4.5.4)

4.6 THE BINOMIAL DISTRIBUTION

The binomial distribution is one of the most commonly used discrete probability distribu-
tions. It is applicable whenever an experiment possesses the following characteristics:

1. The experiment consists of n independent trials.
2. Each trial has two possible outcomes, usually referred to as success and failure.
3. The probability of success, p, for each trial is constant throughout the experiment,

and consequently the probability q of failure is constant throughout the experiment.

The probabilities given by the binomial distribution may arise in the following ways:

1. Sampling from a finite population with replacement
2. Sampling from an infinite population (often referred to as an indefinitely large pop-

ulation), with or without replacement.

Suppose that we wish to draw a sample of size n from a lot of N objects of which Np
are defectives and Nq are nondefectives, and the sampling is done with replacement. In
other words, we draw at random a member of the lot, examine it, record the result, and
replace it in the lot, “mix thoroughly,” and repeat the procedure a further n − 1 times.
We want to determine the probability of obtaining x defectives in the sample of n trials.

For example, if D denotes the event “defective” and D̄ “nondefective,” then the sample
space consists of the 2n possible sequences of n outcomes, a D, or a D̄. Thus, x defectives
would occur in n trials in some sequence of x D’s and (n − x) D̄’s, such as

DD̄DDD̄D̄ · · ·DD̄

Since the trials are independent, the probability associated with such a sequence is

p × q × p × p × q × q × · · · × p × q

where, of course, there are x factors having the value p, and n − x factors having the value
q. Thus, the probability of such a sequence is

pxq(n−x) (4.6.1)

Now, there are
(

n
x

)
different possible sequences of x D’s and (n − x) D̄’s in the sample

space. The probability that any one of these occurs is pxq(n−x). Since these
(

n
x

)
different

sequences are mutually exclusive elements in the sample space, the probability of obtaining
x defectives in n trials is therefore given by
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b(x) =
(n

x

)
pxq(n−x), 0 ≤ x ≤ n (4.6.2)

Now let X be the number of defectives obtained in the n trials. Then, the sample space
of X is 0, 1, . . . , n, that is X, the number of D’s has values ranging over the elements of
the sample space and is called a binomial random variable, with P (X = x) = b(x).

Thus, the expression given by (4.6.2) is the probability function of the binomial ran-
dom variable X with parameter 0 < p < 1 and x = 0, 1, 2, . . . , n. It derives its name from
the fact that the probabilities are the successive terms in the expansion of the binomial
(q + p)n since the (x + 1)st term in the expansion of the (q+p)n is the expression for
b(x). Thus,

n∑
x=0

b(x) =
n∑

x=0

(n

x

)
pxq(n−x) = [q + p]n = 1

that is, the sum of b(x) over all points in the sample space of X is unity.
The mean and variance of the binomial distribution with probability function given

in Equation (4.6.2) are given by

μ = np, σ2 = npq (4.6.3)

The derivations of (4.6.3) appear in Section 4.10.

Example 4.6.1 (Gambling and probabilities) Two dice are thrown 100 times, and the
number of nines is recorded. What is the probability that x nines occur? That at least three
nines occur?

Solution: It is apparent that we are examining each roll of the two dice for the events
nine or non-nine. The probability of obtaining a nine by throwing two dice is 4/36 = 1/9,
that is, p = 1/9. Hence, the probability that x nines occur in 100 throws of the two dice is

b(x) =
(

100
x

) (
1
9

)x(
8
9

)100−x

; x = 0, 1, 2, . . . , 100

In answer to the second question of at least three nines appearing, we have

P (X ≥ 3) = 1 − P (X < 3) = 1 − P (X ≤ 2)

= 1 −
2∑

x=0

(
100
x

)(
1
9

)x(
8
9

)100−x

= 1 − (0.000008 + 0.000097 + 0.000599)

= 1 − 0.0007 = 0.9993
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Example 4.6.2 (Applying MINITAB and R) Refer to Example 4.6.1. Using MINITAB
and R, find the probability that x number of nines occur, where x = 0, 1, 2, . . . , 6.

Solution: From our discussion in Example 4.6.1, we have n = 100, p = 1/9 = 0.111. We
want to find the probability P (X = x), where x = 0, 1, 2, . . . , 6. To find these probabilities,
we proceed as follows:

MINITAB

1. Enter the values 0, 1, 2, . . . , 6 in column C1.
2. From the Menu bar, select Calc > Probability Distributions > Binomial.
3. In the dialog box, click the circle next to Probability.
4. Enter 100 (the number of trials) in the box next to Number of trials and 0.111

(the probability of success) in the box next to Event Probability.
5. Click the circle next to Input column and type C1 in the box next to it.
6. Click OK. The desired probabilities will show up in the Session window as:

Binomical with n = 100 and p = 0.111

x P( X = x )

0 0.0000078

1 0.0000970

2 0.0005993

3 0.0024443

4 0.0074009

5 0.0177421

6 0.0350751

If we want to store these probabilities in a column, say in column C2, then type C2 in the
box next to Optional storage.

USING R

R has a built in ‘dbinom(x, size, prob)’ function in ‘stats’ library that can be used to
calculate the binomial probabilities, where x is the number of successes, size is the total
number of trials, and prob is probability of success in a single trial. Probabilities that
x = 0, 1, 2, 3, . . . , 6 can be obtained by running the following R code in the R Console
window.

prob = dbinom(c(0:6), 100, .111)

round(prob, 6)

#R output

[1] 0.000008 0.000097 0.000599 0.002444 0.007401 0.017742 0.035075
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Theorem 4.6.1 The moment-generating function of the binomial random variable
X is given by

MX(t) = (pet + q)n (4.6.4)

Proof:

MX(t) = E(etX) =
n∑

x=0

etx
(n

x

)
pxqn−x =

n∑
x=0

(n

x

)
(pet)xqn−x = (pet + q)n

�

PRACTICE PROBLEMS FOR SECTIONS 4.5 AND 4.6

1. A sample of 16 PCV valves for gas engines is randomly selected from a very large
batch and tested. Let X denote the number of valves out of the 16 selected that are
found defective when tested. Valves are defective or nondefective independently. If
the probability of a valve being defective is 0.02, find the following probabilities:
(a) No valve is defective.
(b) At the most one valve is defective.
(c) At least one valve is defective.

2. Suppose that the probability that a patient admitted in a hospital is diagnosed
with a certain type of cancer is 0.03. Suppose that on a given day 10 patients are
admitted and X denotes the number of patients diagnosed with this type of cancer.
Determine the probability distribution of the random variable X. Find the mean
and the variance of X.

3. Define Bernoulli trials in words. Suppose that the probability of success of a
Bernoulli trial is p, and you are interested in determining the probability of X
successes in n independent Bernoulli trials. Describe the probability distribution of
the random variable X.

4. Six missiles are fired at a certain target. The probability that a missile will hit
the target is 75%. What is the probability that of the six missiles fired (a) exactly
five will hit the target, (b) at least three will hit the target, (c) all six will hit the
target?

5. The mean and the variance of a binomial distribution with parameters n and p
are 12 and 3. Find the following probabilities: (a) P (X < 4), (b) P (4 ≤ X ≤ 11),
(c) P (X ≥ 7).

6. A multiple choice test consists of 12 questions with each question having three
choices. If a student checks the answers randomly, find the probability that the
student gets (a) five correct answers, (b) between four and eight (inclusive) correct
answers, (c) at most five correct answers.

7. In Problem 5, clearly state the probability distribution of the binomial random
variable X. What is the probability that the random variable X falls in the interval
[μ − 3σ, μ + 3σ]?

8. In a survey conducted by a social worker, 30% of the women responded that they
were the victims of domestic violence. Assume that this percentage is true for all
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women in the United States. Using the binomial probability distribution (Table
A.2), find the probability that the number of women in a random sample of 20 who
were victims of domestic violence is (a) at least 6, (b) between 7 and 11 (inclusive),
(c) at most 8.

9. An electronic system is designed to work as long as at least five of its eight major
components function. Each of these components work independently with proba-
bility 0.6. What is the probability that the system will work?

10. It has been claimed that at least 40% of all the personal bankruptcies in the United
States are due to medical bills. If in a given county, 10 personal bankruptcies
occur during a certain period, then find the probability that at least four of these
bankruptcies are due to the medical bills.

4.7 THE MULTINOMIAL DISTRIBUTION

Suppose that a trial results in one and only one of k mutually exclusive events
E1, E2, . . . , Ek with probabilities p1, p2, . . . , pk, respectively, where p1 + p2 + · · · + pk = 1.
If n independent trials are made, then it is seen, by an argument similar to that by
which the probability function (4.6.2) of the binomial distribution is obtained, that the
probability of getting x1 E ′

1s, x2 E ′
2s, . . . , xk E ′

ks is given by

m(x1, x2, . . . , xk) =
n!

x1!x2! · · · xk!
px1

1 px2
2 · · · pxk

k (4.7.1)

where 0 ≤ xi ≤ n, i = 1, 2, . . . , k, and x1 + x2 + · · · + xk = n. This is the probability func-
tion of the multinomial distribution. The name derives from the fact that the probabilities
are the terms in the expansion of (p1 + p2 + · · · + pk)n. Note that if k = 2, we have the
binomial distribution, and hence the multinomial distribution is essentially an extension
of the binomial distribution.

Example 4.7.1 (Probabilities for a trinomial situation) Consider the production of ball
bearings of a certain type whose diameters should be 0.2500 in. Because of the inherent
variability in the manufacturing process and because of consumer demand, the bearings
are classified as undersize, oversize, or acceptable if they measure less than 0.2495 in.,
more than 0.2505 in., or between 0.2495 and 0.2505 in., respectively. Suppose that the
production process for these bearings is such that 4% of the bearings are undersize, 6%
are oversize, and 90% are acceptable. If 100 of these bearings are picked at random, the
probability of getting x1 undersize, x2 oversize, and x3 acceptable bearings is given by

m(x1, x2, x3) =
100!

x1!x2!x3!
(0.04)x1 (0.06)x2 (0.90)x3 (4.7.2)

where 0 ≤ x1 ≤ 100, 0 ≤ x2 ≤ 100, 0 ≤ x3 ≤ 100, and
∑3

i=1 xi = 100.

Note that (4.7.2) is an example of a multivariate probability function; a more thorough
discussion of multivariate probability functions is given in Chapter 6.
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PRACTICE PROBLEMS FOR SECTION 4.7

1. In a certain city, too many accidents occur every year, so the motor vehicle depart-
ment has been quite strict about passing or failing the persons who take their driving
test. The probabilities that a person who takes this test will pass in the first, second,
or third attempt are 0.25, 0.30, and 0.45, respectively. What is the probability that
among the 19 persons who take the test four will pass in the first attempt, five in
the second, and the rest of these 19, namely 10, in the third attempt?

2. The records of a cardiology department of a hospital show that patients after their
bypass surgery remain in the hospital for five, seven, or 10 days with probability
0.45, 0.35, and 0.20, respectively. What is the probability that of the next 25 patients
who go through bypass surgery, 10 will stay for five days, eight for seven days, and
the rest of these patients, namely seven, will stay for 10 days?

3. The quality control department of a company has determined that shipments from
a certain supplier find four, six, seven, or nine defective items with probabilities
0.55, 0.20, 0.15, and 0.10, respectively. What is the probability that in the next 10
shipments they will find four defective items in each of three shipments, and six
defective items in each of the remaining seven shipments?

4. An urn contains six red, eight green, and 11 yellow marbles. A random sample
drawn with replacement of 20 marbles is taken. What is the probability that of the
20 marbles seven are red, six green, and seven are yellow.

5. A computer store receives flash drives in shipments consisting of four different mem-
ories. A particular shipment contains 100 flash drives of which 30% are of 1 GB, 25%
of 2 GB, 25% of 8 GB, and the remaining 20% are of 16 GB memory. A random
sample of 20 flash drives is selected from that shipment. What is the probability
that the selected sample has six flash drives of 1 GB memory, four of 2 GB, seven
of 8 GB, and the remaining have 16 GB memory?

6. A regular die is rolled 12 times. What is the probability of getting two threes, four
ones, and three fives?

7. It is believed that the probability of auditing a tax return by the IRS depends on
the gross income. Suppose that these probabilities are 0.15, 0.18, 0.27, and 0.40
for the tax returns being audited if their gross incomes are $100K or less, more
than $100K but less than $250K, more than $250K but less than $500K, and
more than $500K, respectively. What is the probability that among 60 tax returns
being audited, 10 have gross income of $100K or less, 15 have gross income of
$100K or more but less than $250K, 10 have gross income of $250K or more but
less than or equal to $500K, and the remaining 25 have the gross income of $500K
or more?

4.8 THE POISSON DISTRIBUTION

4.8.1 Definition and Properties of the Poisson
Distribution

We now consider an important probability distribution, the Poisson distribution, obtained
as a limiting form of the probability function b(x) of the binomial distribution as n → ∞
and p → 0 in such a way that np remains constant. Since p → 0, the Poisson distribution
is also known as a probability distribution of rare events. Thus, for example, the Poisson
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distribution may be used to find the probability of the number of occurrences of a particular
(rare) event that happens over a specified period of time, or over a specified length of
measurement (e.g., the length of an electric wire), or over a specified area or specified
volume, when the probability of the event of interest happening is very small. It has
application in many areas, in particular as a description of count phenomena.

For example, we may be interested in finding the probability of a number of accidents
occurring in a manufacturing plant, the number of patients admitted in a hospital, the
number of cars passing through a toll booth, the number of customers entering a bank,
or the number of telephone calls received by a receptionist over a specified period of time.
Similarly, we may be interested in finding the probability of an electric wire of specified
length having a certain kind of defect, the number of scratches over a specified area of a
smooth surface, number of holes in a roll of paper, or the number of radioactive particles
in a specified volume of space. All these examples have one thing in common: the random
variable X denoting the number of occurrences of events that may occur over a specified
period of time, length, area, or volume must satisfy the conditions of a process known as
the Poisson process for us to be able to use the Poisson distribution.

4.8.2 Poisson Process
Let X(t) denote the number of times a particular event occurs randomly in a time period
t. Then, these events are said to form a Poisson process having rate λ (λ > 0) (i.e., for
t = 1,X(1) = λ), if

1. X(0) = 0.
2. The number of events that occur in any two nonoverlapping intervals are indepen-

dent.
3. The average number of events occurring in any interval is proportional to the size

of the interval and does not depend on when or where they occur.
4. The probability of precisely one occurrence in a very small interval (t, t + δt) of time

is equal to λ(δt), and the probability of two or more occurrences in such a small
interval is zero.

4.8.3 Poisson Distribution as a Limiting Form of the
Binomial

Consider the binomial probability function,

b(x) =
(n

x

)
px(1 − p)n−x =

n!
x!(n − x)!

px (1 − p)n

(1 − p)x

If n → ∞ and p → 0 in such a way that np remains fixed at a value λ, we obtain
(p = λ/n)

lim
n→∞

b(x) = lim
n→∞

n!
x!(n − x)!

λx

nx

(1 − λ/n)n

(1 − λ/n)x

= lim
n→∞

n(n − 1) · · · (n − x + 1)
x!

λx

nx

(1 − λ/n)n

(1 − λ/n)x
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= lim
n→∞

1
(

1 − 1
n

)
· · ·

(
1 − x − 1

n

)
λx

x!
(1 − λ/n)n

(1 − λ/n)x

=
λx

x!
e−λ

The sample space of X is clearly 0, 1, 2, . . . , and, of course, e is the base of natural logarithm
with value 2.71828. Denoting this limit by p(x), we may write

p(x) =
e−λλx

x!
; x = 0, 1, 2, . . . (4.8.1)

which is the probability function of the Poisson distribution. As the result above suggests,
we may use it to approximate b(x) for large n and small p as follows:

b(x) ≈ e−np(np)x

x!
(4.8.2)

The approximation above works well for n large, p small such that np < 10. Note that

∞∑
x=0

p(x) =
∞∑

x=0

e−λλx

x!
= e−λ

(
1 + λ +

λ2

2!
+ · · ·

)
= e−λeλ = 1

that is, the sum of p(x) over all points in the infinite sample space of X is 1.

Example 4.8.1 (Approximating binomial probability using the Poisson distribution)
Two percent of the screws made by a machine are defective, the defectives occurring at
random during production. If the screws are packaged 100 per box, what is the probability
that a given box will contain x defectives?

Solution: We assume that the number of screws is produced very large, so we may use
the binomial distribution. The probability that the box contains x defectives as given by
the binomial distribution is

p(x) ≈ b(x) =
(

100
x

)
(0.02)x(1 − 0.02)100−x; x = 0, 1, . . . , 100

Since n = 100, p = 0.02, and np = 2, the Poisson approximation to the b(x) above is
given by

b(x) ≈ e−2(2)x

x!

A comparison of b(x) and its Poisson approximation is given in Table 4.8.1.
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Table 4.8.1 Values of b(x) and p(x)
for n = 100, p = 0.02, λ = 2.

x b(x) p(x)

0 0.1326 0.1353
1 0.2707 0.2707
2 0.2734 0.2707
3 0.1823 0.1804
4 0.0902 0.0902
5 0.0353 0.0361
6 0.0114 0.0120
7 0.0031 0.0034
8 0.0007 0.0009
9 0.0002 0.0002
10 0.0000 0.0000

Note that if a certain type of wire, for example, is insulated by an enameling process,
and if the occurrence of an insulation break follows a Poisson process, then the probability
that x insulation breaks will occur in a length L of wire, say px(L), is given by

px(L) =
e−λL(λL)x

x!
(4.8.3)

where λ is the mean number of insulation breaks per unit length.

Example 4.8.2 (Poisson experiment) It is known that in a certain enameling process,
the number of insulation breaks per yard is 0.07. What is the probability of finding X such
breaks in a piece of wire 16 yards long?

Solution: For a piece of wire 16 yards long, the expected number of insulation breaks is
λL = (0.07) × 16 = 1.12. Hence, the probability function for x breaks in a piece of wire 16
yards long is Poisson with mean 1.12, that is

px(L) =
e−1.12(1.12)x

x!

Example 4.8.3 (Using MINITAB and R) A manufacturing company of car parts found
that one of its machines randomly produces some defective parts. Further, the company
determined that X, the number of defective parts it produces in each shift, is distributed by
the Poisson distribution with mean λ = 3. Find using MINITAB and R the probability that
it will produce x number of defective parts in the next two shifts, where x = 0, 1, 2, . . . , 10.

Solution: From equation (4.8.3), it follows that X the number of defective parts the
machine will produce in two shifts is distributed as Poisson with mean 3 × 2 = 6. To find
the probabilities p(X = x), x = 0, 1, 2, . . . , 10, proceed as follows:
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MINITAB

1. Enter the values 0, 1, 2, . . . , 10 in column C1.
2. From the Menu bar, select Calc > Probability Distributions > Poisson.
3. In the dialog box that appears on the screen, click the circle next to Probability.
4. Enter 6 (the value of the mean λL) in the box next to Mean.
5. Click the circle next to Input column and type C1 in the box next to it.
6. Click OK. The desired probabilities will show up in the Session window as:

Position with mean = 6

  x P( X = x )

  0 0.002479

  1 0.014873

  2 0.044618

  3 0.089235

  4 0.133853

  5 0.160623

  6 0.160623

  7 0.137677

  8 0.103258

  9 0.068838

10 0.041303

If we want to store these probabilities in a column, say in column C2, then type C2 in the
box next to Optional storage.

USING R

R has the built in ‘dpois(x, lambda)’ function in ‘stats’ library that can be used to calculate
the Poisson probabilities, where x is a nonnegative integer (a quantile), and here, λ is the
mean of the Poisson distribution. Probabilities that x = 0, 1, 2, 3, . . . , 10 can be obtained
by running the following R code in the R Console window.

prob = dpois(c(0:10), lambda=6)

round(prob, 6)

We now turn to the moment-generating function (see Section 4.2) of the Poisson
distribution random variable X which is given by

MX(t) = exp{λ(et − 1)} (4.8.4)
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For the derivation of the moment-generating function and some moments, see Section 4.10.
The mean and variance of a Poisson random variable X are given by

μ = λ, σ2 = λ (4.8.5)

Note that the mean and variance of a Poisson random variable are both equal to λ.
For a proof of the results (4.8.5), see Section 4.10.

PRACTICE PROBLEMS FOR SECTION 4.8

1. A random variable X is distributed as Poisson distribution with λ = 3.5. Use
this Poisson distribution (Table A.3) to determine the following probabilities: (a)
P (X < 5), (b) P (2 ≤ X ≤ 6), (c) P (X > 7), (d) P (X ≥ 5).

2. A machine in a manufacturing plant has on the average two breakdowns per month.
Find the probability that during the next three months it has (a) at least five
breakdowns, (b) at most eight breakdowns, (c) more than five breakdowns.

3. The number of defective parts produced per shift can be modeled using a random
variable that has the Poisson distribution. Assume that, on average, three defective
parts per shift are produced.
(a) What is the probability that exactly four defective parts are produced in a given

shift?
(b) What is the probability that more than seven defective parts are produced in

the next two shifts?
(c) What is the probability that at the most eight defective parts are produced in

the next three shifts?
4. The probability that a woman will die from breast or cervical cancer is 0.00027. Find

the probability that of the 10,000 women who are monitored for breast or cervical
cancer: (a) three will die from breast or cervical cancer, (b) at most four will die
from breast or cervical cancer, or (c) at least two will die from breast or cervical
cancer.

5. Based on past records, a retail store manager knows that on average, 30 customers
per hour come to the store. Find the probability that in a given five-minute period:
(a) At least two will come to the store
(b) Exactly four will come to the store
(c) At most six will come to the store

6. The number of complaints that a discount store receives on their product per week
is a random variable having Poisson distribution with λ = 5. Find the probability
that during any given period of two weeks it will receive: (a) at least 10, (b) exactly
nine, (c) at most 12.

7. Suppose that the probability that an insurance company pays out a claim in a given
six-month period against a car theft is 0.0003. Find the probability that of the 15,000
insurers against car theft, it will pay out at least 10 claims during any given year.

8. A random variable X is distributed by the binomial distribution with n = 15, p = 0.1.
Find the following probabilities, first using the binomial distribution and then using
the Poisson approximation to the binomial distribution. Compare your results.
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(a) P (X < 6)
(b) P (4 ≤ X ≤ 9)
(c) P (X ≥ 5)
(d) P (X ≤ 8)

4.9 THE NEGATIVE BINOMIAL DISTRIBUTION

The negative binomial distribution is applicable whenever an experiment possesses the
following characteristics:

1. The experiment consists of a sequence of independent trials.
2. Each trial results in either one of two possible outcomes, usually referred to as success

and failure.
3. The probability of success for each trial, p, is constant across the experiment, and

consequently the probability, q, of failure is constant throughout the experiment.
4. The experiment continues until a fixed number of successes has been achieved.

Let A denote the event that a trial is a success and Ā the event that a trial is a failure,
and suppose that P (A) = p and P (Ā) = q. We now determine the probability that the
number of trials required to obtain exactly k successes is x. Note that in the binomial
distribution, the number of trials is fixed but that the number of successes found in a fixed
number of trials is a random variable. In the negative binomial scenario, this is reversed;
that is, the number of trials X is a random variable, while the number of successes is fixed.

To determine the probability of k successes at the xth trial, suppose that we let E be
the event of obtaining k − 1 A’s in the first x − 1 trials and F be the event of getting an
A on the xth trial. Since trials are independent and since we are interested in the event
E ∩ F , where E and F are independent events, we have

P (X = x) = P (E ∩ F ) = P (E)P (F ) (4.9.1)

But the probability P (E) in equation (4.9.1) is the binomial probability of (k − 1)
successes in (x − 1) trials, which is, since (x − 1) − (k − 1) = x − k, given by,

P (E) =
(

x − 1
k − 1

)
pk−1qx−k (4.9.2)

Also, P (F ) = p, the probability of success in the xth trial. Thus p(x), the probability
function of the negative binomial random variable X, is given by

p(x) = P (E)P (F ) =
(

x − 1
k − 1

)
pkqx−k; x = k, k + 1, . . . (4.9.3)

This is called the negative binomial distribution because p(x) is the (x − k + 1)th term
obtained in the expansion of pk(1 − q)−k, when (1 − q)−k (a binomial (1 − q) with negative
exponent −k) is expanded into a series in powers of q, where of course q = 1 − p. It is
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interesting also to note that (4.9.3) is sometimes referred to as the binomial waiting-time
distribution, since the probability function p(x) is simply the probability that one must
wait through x independent trials in order to obtain k successes, that is, k A’s.

Example 4.9.1 (Negative binomial probabilities) Two dice are thrown and the sum
of the dots obtained on the uppermost faces are recorded. What is the probability that a
7 occurs for the third time on the third throw? On the fourth throw? On the xth throw
(x ≥ 3)?

Solution: Consulting Example 3.7.1, we have that p = p(7) = 6/36 = 1/6 and that the
number of throws x, needed to get k = 3 sevens (event A is the event “a seven”) has
probabilities given by the negative binomial distribution (see (4.9.3)), so that

p(x) =
(

x − 1
2

)
p3qx−3 =

(
x − 1

2

)
5x−3

6x
; for x ≥ 3

Hence,

p(3) = 1/216 = 0.00463, p(4) = 15/1296 = 0.01157, p(5) = 150/7776 = 0.01929

We determine the probabilities for x = 6, 7, . . . , by using MINITAB and R as follows.

MINITAB

1. Enter the values 6, 7, . . . , in column C1.
2. From the Menu bar select Calc > Probability Distributions > Negative Bino-

mial.
3. In the dialog box that appears on the screen, click the circle next to Probability.
4. Enter 3 (the number of successes) in the box next to Number of Events needed

and 0.1667 = 1/6 (the probability of success) in the box next to Event Probability.
5. Click the circle next to Input column and type C1 in the box next to it.
6. Click OK. The desired probabilities will show up in the Session window as:

Negative binomial with p = 0.1667 and r = 3

  x P( X = x )

  6 0.0268047

  7 0.0335045

  8 0.0390871

  9 0.0434283

10 0.0465285

11 0.0484652

12 0.0493608

13 0.0493588

14 0.0486090

15 0.0472569

16 0.0454375

17 0.0432720

18 0.0408664

19 0.0383107

NOTE: X = total number of trials, and in MINITAB k is denoted by r.
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If we want to store these probabilities in a column, say in column C2, then type C2 in the
box next to Optional storage.

USING R

R has the built in ‘dnbinom(x, size, prob)’ function in ‘stats’ library that can be used
to calculate the Negative Binomial probabilities, where ‘x’ is the number failures prior
to r many successes (‘size’). Also, ‘prob’ is the probability of success in a single trial. To
get three successes at the sixth trial, we should have three failures. Therefore, to get the
required probabilities as shown in the previously mentioned MINITAB output, we have to
input the number of failures x = 3, 4, 5, 6, . . . , 16. Required probabilities can be obtained
by running the following R code in the R Console window.

probabilities = dnbinom(c(3:16), 3, 0.1667)

round(probabilities, 6)

#R output

[1] 0.026805 0.033505 0.039087 0.043428 0.046528 0.048465 0.049361
[8] 0.049359 0.048609 0.047257 0.045437 0.043272 0.040866 0.038311

The mean and variance of the negative binomial distribution with probability function
given in Equation (4.9.3) are

μ = k/p, σ2 = kq/p2 (4.9.4)

As an example, if the aforementioned experiment was repeated a large number of
times, the mean wait (k/p) needed to get 3 sevens would be 3/(1/6) = 18 throws. It can
easily be shown that the moment-generating function of the negative binomial distribution
is given by

MX(t) =
(

pet

1 − qet

)k

(4.9.5)

PRACTICE PROBLEMS FOR SECTION 4.9

1. A manufacturing company of wind turbines found that the probability that a turbine
is nonconforming is 0.03. Assume that the turbines are conforming or nonconforming
independently. Find the probability that the third nonconforming turbine is the
100th turbine manufactured by that company.
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2. Consider a sequence of independent Bernoulli trials with probability of success being
0.25. Determine the probability that (a) the fifth success occurs at the 16th trial,
(b) the fourth success occurs at the 10th trial.

3. Suppose that independent trials are carried out, each resulting in a success with
probability 0.6. What is the probability that the ninth success occurs in the 20th
trial?

4. Referring to Problem 3, find the probability that the 14th success occurs before the
12th failure.

5. The night shift in a manufacturing plant is known to produce 10% of its items
defective. A quality control engineer inspects all the items that were manufactured
in a given night shift. What is the probability that to find the fifth defective item,
the engineer will have to inspect at least 31 items?

6. The probability that a baseball player hits a home run in any one inning is 0.30.
What is the probability that he will hit a second home run in the eighth inning if
he bats every inning?

7. A quality control engineer in a manufacturing company detects that a recently
purchased machine produces 5% of parts that do not meet the specifications. What
is the probability that the third part that does not meet the specifications is the
40th part produced by that machine?

4.10 SOME DERIVATIONS AND PROOFS
(OPTIONAL)

This section is available for download from the book website: www.wiley.com/college/
gupta/statistics2e.

4.11 A CASE STUDY

Case Study (Reducing errors by vendors processing credit-card applications)1 This case
study pertains to the problem of reducing errors by vendors who process credit-card appli-
cations for a large credit-card bank. Each vendor has workers who physically process the
applications by checking them for completeness and then entering the information into
a computer. In this case study, the quality control sampling plan proceeds by selecting
a sample of size 50 completed credit-card applications every day from each vendor. A
processed credit-card application is labeled defective (nonconforming) if there is any error
on the application. In this case study, the authors obtained the data for four particular
vendors for period of time ranging from 107 to 207 days. The data for this case study are
available on the book website: www.wiley.com/college/gupta/statistics2e.

(a) Find the average number of nonconforming applications per sample for each of the
four vendors.

(b) Using the results you obtained in part (a) and employing the Poisson distribution, find
the probabilities for each vendor of finding X = 0, 1, . . . , 5 nonconforming applications.

1 Source: Lucas, Davis, and Saniga (2006) and Saniga, Davis, and Lucas (2009). Used with permission.
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(c) Compare the probabilities you determined in part (b) and comment on the quality of
work of these vendors.

4.12 USING JMP

This section is not included here but is available for download from the book website:
www.wiley.com/college/gupta/statistics2e.

Review Practice Problems

1. Suppose that a lot of 50 fuses, of which seven are known to be defective, is available
for sampling. It is proposed to draw 10 fuses at random (without replacement) and
test them. What is the probability that such random samples of 10 will contain 0, 1,
2, . . . , 7 defective fuses?

2. A lot contains 30 items, six of which are defective. What is the probability that a
random sample of five items from the lot will contain no defective items? No more
than one defective? More than two defectives? (Assume that sampling is without
replacement.)

3. In rolling five true dice, find the probability of obtaining at least one ace, exactly one
ace, exactly two aces. (Here, ace implies one point.)

4. If the probability of hitting a target is 0.2 and 10 shots are fired independently, what
is the probability that the target will be hit at least once? At least twice?

5. What is the probability of drawing a 13-card hand containing no aces, kings, queens,
or jacks?

6. Suppose that 5% of the aspirins pressed by a certain type of machine are chipped.
The tablets are boxed 12 per box. What percent of the boxes would you estimate:
(a) To be free of chipped tablets?
(b) To have not more than one chipped tablet?
(c) To have exactly x chipped tablets?

7. Suppose that 13 cards are dealt from a thoroughly shuffled deck of ordinary playing
cards.
(a) What is the probability of getting x spades?
(b) What is the probability of getting y hearts? Describe the sample space of y.
(c) What is the probability of getting x spades and y hearts? Describe the sample

space of (x, y).

8. What is the probability of throwing two heads three times in four throws of five coins?

9. It is known that 0.0005% of the insured males die from a certain kind of accident each
year. What is the probability that an insurance company must pay off on more than
three of 10,000 insured against such accidents in a given year?

10. A bag of grass seed is known to contain 1% weed seeds. A sample of 100 seeds is
drawn. Find the probabilities of 0, 1, 2, 3, . . . , 7 weed seeds being in the sample.
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11. A process for making plate glass produces an average of four “seeds” (small bubbles)
scattered at random in the glass per 100 ft2. With the use of the Poisson distribution,
what is the probability that
(a) A piece of plate glass five ft by 10 ft will contain more than two seeds?
(b) Six pieces of plate glass five ft by five ft will all be free of seeds?

12. Small brass pins are made by company ABC. Of the pins manufactured, 2% are
undersized, 6% are oversized, and 92% are satisfactory. The pins are boxed 100 per
box. A box is taken at random. Write down the expression for the probabilities of the
following events:
(a) The box contains x satisfactory pins and y undersized pins, the remaining pins

being oversized.
(b) The box contains no undersized pins.
(c) The box contains only satisfactory pins.

13. Suppose that 10 people each throw two coins. What is the probability that:
(a) Three people throw two heads, three people throw two tails, and four people throw

one head and one tail?
(b) No one threw a head and a tail?

14. Two coins are tossed n times. Find the probability of x, the number of times no heads
appear; y, the number of times one head appears; and z, the number of times two
heads appear (x + y + z = n).

15. An urn contains 10 white and 20 black balls. Balls are drawn one by one, without
replacement, until five white ones have appeared. Let X be the number of draws
necessary to find five white balls. What is the sample space of X? Find an expression
for the probability of the event X = x.

16. Suppose that a lot of 10,000 articles has 200 defectives and that a random sample of
100 articles is drawn from the lot (without replacement).
(a) What is the probability of getting exactly x defectives in the sample?
(b) Determine the binomial approximation for the probability in (a).
(c) Determine the Poisson approximation for the probability in (a).

17. The fraction of articles turned out by a machine that is defective is equal to p. The
defectives occur “at random” during production. The articles are boxed m per box
and cartoned n boxes per carton (assume production numbers are large).
(a) If a box of articles is taken at random, what is the probability it contains exactly

x defectives?
(b) If a carton is taken at random, what is the probability that exactly y of its boxes

will be free of defectives?

18. In Problem 17, what is the probability that
(a) The machine will produce k good (nondefective) articles before it turns out a

defective?
(b) The machine has to turn out a total of x articles in order to produce exactly k

good ones?

19. If the probability is 0.6 that an engineer will pass the six-sigma black belt test in the
first attempt, use the formula for the binomial distribution to find the probability that
6 of 10 engineers taking that test will pass in the first attempt.
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20. A lot of N articles has d defectives. If articles are taken at random from the lot one
at a time, what is the probability, assuming sampling without replacement, that
(a) Exactly x articles have to be examined to find the first defective?
(b) Exactly x articles have to be examined to find the dth (last) defective?

21. In testing a relay, suppose that the probability is p that it fails to make satisfactory
contact in a single trial and that p remains unchanged over a very large number of
trials. By assuming the outcomes of successive trials to be independent, what is the
probability that
(a) x trials have to be made to obtain the first failure?
(b) x trials have to be made to obtain the kth failure?

22. In 1970s, the proportion of successful launches at a test missile site has been 0.85.
Suppose that an experiment is planned that requires three successful launches. What
is the probability that exactly x attempts will be necessary? exactly five? exactly
seven? fewer than six?

23. In Problem 22, suppose that another experiment requires four successful launches.
What is the probability that six attempts will be required? What is the probability
that x attempts will be required?

24. A device fails to operate on a single trial with probability p. Let X be a random
variable denoting the number of trials required to obtain a total of k failures. If results
of successive trials are independent, show that the probability function of X is given
by

p(x) =
(

x − 1
k − 1

)
pkqx−k; x = k, k + 1, . . .

Show that the mean and variance of X are given by

E(X) =
k

p
, V ar(X) =

kq

p2

25. In the Problem 24 above, suppose k = 1. Show that if Y is a random variable denoting
the number of trials required to obtain one failure, then the p.f. of Y is

p(y) = pqy−1, y = 1, 2, . . .

and that its mean and variance are 1/p and q/p2, respectively. This distribution is
called the geometric distribution. Show that

∑∞
y=1 p(y) = 1.

26. Referring to Problem 25, show that P (Y > s + t|Y > s) = P (Y > t) =
∑∞

y=t+1 pqy−1.
(This result implies that the geometric distribution has no memory, for if the
event of a failure has not occurred during the first s trials, then the probability
that a failure will not occur in the next t trials is the same as the probability
that it will not occur in the first t trials. In other words, the information that
a failure has not occurred in the first s trials is “forgotten” in the subsequent
calculations.)

27. A lot contains N articles of which Np are defective. Articles are drawn successively
at random and without replacement until k defectives are drawn. Let X be a random
variable denoting the number of articles that must be drawn to achieve this objective.
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Show that the p.f. of x is given by

p(x) =

(
x−1
k−1

) (
N−x
Np−k

)
(

N
Np

) ; x = k, k + 1, . . .

and that E(X) =
k(N + 1)
Np + 1

.

28. By using the moment-generating function (4.6.4) of a random variable X having the
binomial distribution (4.6.2), show that the mean and variance of X are np and npq,
respectively.

29. In testing electric bulbs for a certain kind of projector, it is found that 40% of the
bulbs burn out before the warranty period. Suppose that the engineering department
of a school buys 12 such bulbs. Find the probability that:
(a) Between four to six bulbs (inclusive) burn out before the warranty period.
(b) More than five bulbs burn out before the warranty period.
(c) Fewer than eight bulbs burn out before the warranty period.
(d) No bulb burns out before the warranty period.

30. Let X be a random variable distributed as binomial distribution with n = 25 and
p = 0.35. Find the mean, variance, and the standard deviation of the random variable
X.

31. The drug Xanax is used to control an anxiety problem. However, it is believed that
70% of the users get addicted to the drug. Suppose that we take a random sample of 15
Xanax users and find the number of persons addicted to Xanax. Find the probability
that:
(a) More than 10 are addicted to Xanax.
(b) Fewer than eight are addicted to Xanax.
(c) Between 10 to 12 inclusive are addicted to Xanax.

32. A box of 100 computer chips contains eight defective chips. Suppose that a ran-
dom sample of size 10 chips is selected without replacement from that box. Find the
probability that the sample had
(a) At least one defective chip.
(b) All defective chips.
(c) Nine defective chips.
(d) No defective chips.

33. In Problem 32, let X denote the number of defective chips. Find the mean, variance,
and the standard deviation of the random variable X.

34. An engineering club consists of five seniors and seven juniors. Suppose that five club
members are selected randomly to form a committee. Find the probability that
(a) The committee has at least two juniors.
(b) The committee has three or more seniors.
(c) The committee has no more than two seniors.
(d) The committee has no junior.

35. An insurance company discovered that three policyholders out of every 1000 insured
against a particular kind of accident file a claim every year. Suppose that the company
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has 2000 persons who are insured against that kind of accident. Find the probabil-
ity that
(a) During a given year at least four will file the claim.
(b) No more than 10 will file the claim.
(c) Between five to eight (inclusive) will file the claim.
(d) Fewer than two will file the claim.
(e) More than two will file the claim.

36. A programmer makes two wrong entries every hour, on the average. Find the proba-
bility that during the next five hours she will make
(a) Fewer than eight wrong entries.
(b) At least four wrong entries.
(c) Between three to five (inclusive) wrong entries.
(d) More than one wrong entry.

37. On average, the number of customers arriving per every ten minutes at a teller’s
window in a bank is four. Find the probability that during the next 10 min:
(a) At least five customers will arrive at that teller’s window.
(b) No more than two customers will arrive at that teller’s window.
(c) Between two to six (inclusive) customers will arrive at that teller’s window.
(d) Less than six customers will arrive at that teller’s window.

38. Indicate which of the following experiments can be studied using a binomial model.
Justify your answer.
(a) Drawing five ball-bearings with replacement from a box containing 25

ball-bearings, 10 of which are of diameter 10 mm and 15 of diameter 20 mm, and
observing the diameters of the drawn ball-bearings.

(b) Selecting randomly four engineers to be on a contract negotiating team from a
group of 50 engineers, 20 of whom are six sigma green belts, and observing how
many of selected engineers are six sigma green belts.

(c) A fair die is rolled and the number that turns up is observed.
(d) Selecting a manufacturing company from the midwestern part of the United States

and observing whether its annual revenues are more than $1 billion or not when
it is known that 30% of all manufacturing companies in that region have annual
revenues totaling more than $1 billion.

39. Just before the 2006 midterm elections of the United States, one of the polling agencies
found that 60% of the voters were against the Iraq war. Assume that this result is
valid for all the voters in the entire country. Using the binomial distribution table
(Table A.2), compute the probability that in a random sample of 20 American voters,
the number of those against the Iraq war are
(a) At least five.
(b) At the most seven.
(c) More than five but less than 10.
(d) Exactly eight.
(e) Less than or equal to nine.

40. A six-sigma green belt quality control engineer found that on average, batches of 500
computer chips have exactly two defective chips.
(a) Using the formula for the Poisson distribution, determine the probability that a

box of 1000 chips will have exactly 5 defective chips.
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(b) Using the Poisson distribution (Table A.3), compute the probability that a box of
1000 chips will have (i) more than five defective chips, (ii) at the most six defective
chips, (iii) between four and eight (inclusive) defective chips.

41. A batch of 500 car batteries is scheduled to be shipped if a random sample of 20 from
the batch has two or fewer defective batteries. If it is known that there are 60 defective
batteries in the batch, find the probability that the batch will be shipped.

42. The number of patients admitted in an emergency room of a metropolitan hospital can
be modeled as a Poisson random variable. Assume that on the average, five patients
are admitted every hour.
(a) What is the probability that exactly four patients are admitted in the next one

hour?
(b) What is the probability that more than seven patients are admitted in the next

two hours?
(c) What is the probability that at the most eight patients are admitted in the next

90 min?
(d) What is the probability that more than five, but less than 10, patients are admitted

in the next two hours?

43. Which of the following functions are valid probability functions? Explain.
(a) p(x) = x/20;x = 1, 2, 3, 4, 5, 6 and zero elsewhere.
(b) p(x) = x2/140;x = 1, 2, 3, 4, 5, 6, 7 and zero elsewhere.
(c) p(x) = (x − 3)/5;x = 2, 3, 4, 5, 6 and zero elsewhere.

44. For the functions that are valid probability functions in Problem 43, find the mean
and the variance of X.

45. Determine the value of the constant c such that the following functions are valid
probability functions:
(a) p(x) = cx/20;x = 1, 2, 3, 4, 5, 6 and zero elsewhere.
(b) p(x) = c(x2 + 1);x = 1, 2, 3, 4, 5 and zero elsewhere.
(c) p(x) = c(x − 1);x = 1, 2, 3, 4, 5, 6 and zero elsewhere.

46. Refer to Problem 45. In each case, determine the mean and the variance of X.

47. Determine the mean and the variance of the following probability functions:
(a) p(x) = x/21;x = 1, 2, 3, 4, 5, 6 and zero elsewhere.
(b) p(x) = (x2 − 1)/50;x = 1, 2, 3, 4, 5 and zero elsewhere.

48. Let X be a random variable having the uniform distribution on x = 1, 2, . . . , N . Find
the mean and the variance of X.

49. Let X be a random variable that is Bernoulli distributed with parameter p. Find the
moment-generating function of X. Then, use the moment-generating function to find
the mean and the variance of X.

50. Let the random variable X have a discrete uniform distribution on the integers 0 ≤
x ≤ 50. Determine the mean and the variance of X.

51. Refer to Problem 48. Find the mean and the variance of X + c (c is constant) and
comment.

52. In analyzing a large data set, a life insurance company estimated the probability that
a person in the 70-80 years of age group dies due to natural causes in any given year
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as 0.000002. If the company has 500,000 insurers in that age group, determine the
probability that due to death from natural causes, the company will have to pay off
during any given year:
(a) At least three claims.
(b) No more than four claims.
(c) Between three and five (inclusive) claims.

53. A circuit board of a very complex electronic system has 500 soldered joints. The
probability that a joint becomes loose in one year use of the circuit board is 0.001.
(a) What is the probability that in one year three joints become loose?
(b) What is the probability that in one year at least two joints become loose?
(c) The circuit board becomes dysfunctional if any joint becomes loose. Find the

probability that in two years the circuit board becomes dysfunctional.

54. The probability that a part manufactured at a plant being defective is 0.001. On a
given day, the plant manufactured 10,000 parts. Find the following probabilities:
(a) At least five parts are defective.
(b) No more than eight parts are defective.
(c) Between four and nine (inclusive) parts are defective.

55. A quality control engineer is interested to find how many parts he/she needs to inspect
to detect the first defective part. If the probability that a randomly selected part is
defective is p and X is the number of parts inspected needed to detect the first defective
part, then X is a random variable that is distributed by the geometric distribution.
(a) Determine the probability distribution of the random variable X.
(b) Determine the expected value and the variance of X.
(c) Determine P (X = 20), given that p = 0.07.

56. The random variable X is distributed by the geometric distribution with p = 0.05.
Determine the following probabilities: (a) P (X ≥ 24), (b) P (15 ≤ X ≤ 30), (c) P (X >
28).

57. A pool of 15 applicants for the position of a manager for a firm consists of 10 appli-
cants holding master’s degrees and five holding PhD degrees. An interviewer randomly
selects eight applicants to interview. Determine the probabilities of the following
events:
(a) He/she selects three applicants with a PhD degree.
(b) He/she selects at least two applicants with a PhD degree.
(c) He/she selects no more than two applicants with a PhD degree.

58. Of all customers buying cars at a car fair, 60% buy an American car. Let a random
variable X represent the number of customers who bought an American car out of a
total 50 cars sold at the fair.
(a) Describe the probability distribution of the random variable X.
(b) Determine the expected value and the variance of X.
(c) Determine the probability P (X ≤ 30).
(d) Determine the probability P (15 ≤ X ≤ 25).
(e) Determine the probability P (X > 20).



Chapter 5

CONTINUOUS RANDOM
VARIABLES AND SOME
IMPORTANT CONTINUOUS
PROBABILITY
DISTRIBUTIONS

The focus of this chapter is a discussion of some important contin-
uous probability distributions.

Topics Covered

• Continuous random variables and their probability distributions
• Determination of cumulative distribution functions (c.d.f.’s) from probability density

functions (p.d.f.’s)
• Determination of cumulative probabilities for different probability distributions
• Determination of the mean and variance of different continuous probability distributions,

including the normal, exponential, gamma, and Weibull distributions
• Determination of the cumulative probabilities for different probability distributions

using the statistical packages MINITAB, R, and JMP
• Approximation of the binomial and Poisson distributions by the normal distribution
• Determination of the mean and the variance of linear functions of independent normal

random variables
• Test of normality
• Some reliability theory related probability models: lognormal, exponential, gamma, and

Weibull distribution
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Learning Outcomes

After studying this chapter, the reader will be able to

• Understand the difference between discrete and continuous random variables.
• Understand various important continuous distributions and apply them to determine

probabilities in real-world problems.
• Determine approximate probabilities of discrete random variables using the normal dis-

tribution.
• Determine the mean and the variance of continuous random variables using the usual

techniques, and/or moment-generating functions (m.g.f.s).
• Understand various probability models extensively used in reliability theory.
• Apply statistical packages MINITAB, R, and JMP to calculate probabilities when using

different probability models of continuous random variables.

5.1 CONTINUOUS RANDOM VARIABLES

In Chapter 4, we discussed discrete random variables, for which the sample space contains
a countable number of values. In many applications, the sample space contains an infinite
number of uncountable values. In such cases, we cannot associate probabilities with the
different possible values that the random variable can take on in the same way as for a
discrete random variable. For this scenario, we develop another class of random variables
called continuous random variables. In dealing with continuous random variables, we are
always interested in calculating the probability of random variables taking any value in
an interval rather than taking on any individual values. For example, consider a problem
of finding the probability that a technician takes certain time to finish a job. Consider a
random variable X denoting the time (in hours) taken by the technician to finish the job.
Then, we may be interested in finding, for example, the probability P (3.0 ≤ X ≤ 3.5), that
is, the probability that she takes between three and three-and-one-half hours to finish the
job, rather than finding the probability that she will take exactly three hours, 10 minutes,
and 15 seconds to finish the job. In this case, the event associated with completing the job
in exactly three hours, 10 minutes, and 15 seconds is virtually impossible. In other words,
as we will see, the probability of such an event is zero.

Definition 5.1.1 A random variable X is said to be of the continuous type if its
sample space consists of all values in an interval or in many intervals.

Suppose S is a sample space with an uncountable number of values, and let Ex be
the event consisting of all values e for which X(e) ≤ x or expressed more briefly the set
{e : X(e) ≤ x}. We assign a probability, say F (x) to Ex, for every value of x. That is, we
have

P [X(e) ≤ x] = P (Ex) = F (x).

Clearly, F (x), the so-called (c.d.f.) of X, is such that
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1

F (xʹ)

xʹ

Figure 5.1.1 Graph of the cumulative distribution for a continuous variable.

0 ≤ F (x) ≤ 1 (5.1.1a)

If x1 < x2, then F (x1) ≤ F (x2) (5.1.1b)

F (−∞) = 0, F (+∞) = 1 (5.1.1c)

If F (x) is continuous in x, we say that X is a continuous random variable and that F (x)
is the c.d.f. of X. We have seen in Section 4.1 that if X is a discrete random variable, then
the c.d.f. F (x) is a step function, as shown in Figure 4.1.2.

In the case of a continuous random variable X, the graph F (x) is as illustrated in
Figure 5.1.1; that is, it has no vertical jumps. For any point x′, F (x′) represents the total
amount of probability “smeared” along the x-axis to the left of x′.

If F (x) has a derivative f(x), then f(x) is nonnegative and is called the p.d.f. of the
random variable X. The relationship between F (x) and f(x) is as follows:

P (a ≤ X ≤ b) = F (b) − F (a) =
∫ b

a

f(x)dx (5.1.2)

Note that the p.d.f. of a continuous random variable possesses the following properties:

f(x) ≥ 0 (5.1.3a)∫ ∞

−∞
f(x)dx = 1 (5.1.3b)
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a b

Figure 5.1.2 The probability P (a ≤ X ≤ b) that the random variable X falls in an inter-
val [a, b] is represented by the shaded area.

P (a ≤ X ≤ b) =
∫ b

a

f(x)dx (5.1.3c)

P (a ≤ X ≤ b) = area under the density function f(x) within the interval (a, b)

The mathematical expression in (5.1.3b) represents the total area enclosed by the
probability density curve and the x-axis. That is, the total area, which represents the total
probability, is equal to one. The probability P (a ≤ X ≤ b) that the random variable X
falls in an interval [a, b] is the shaded area shown in Figure 5.1.2.

If in Figure 5.1.2 we take a = b, then the shaded area is zero, which implies that
P (X = a) = P (X = b) = 0. That is, the probability of the continuous random variable
taking any exact value is zero. This fact leads to an important result in that it does not
matter if the endpoints of an interval are included or not while calculating the probability
that the continuous random variable X falls in an interval (a, b). Hence, if X is a continuous
random variable, then

P (a ≤ X ≤ b) = P (a ≤ X < b) = P (a < X ≤ b) = P (a < X < b) (5.1.4)

So far, we have had a very general discussion about the probability distributions
of continuous random variables. In this chapter, we discuss some special continuous-
probability distributions that we encounter frequently in applied statistics and their
properties.
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5.2 MEAN AND VARIANCE OF CONTINUOUS
RANDOM VARIABLES

5.2.1 Expected Value of Continuous Random
Variables and Their Functions

Suppose a continuous random variable X has a p.d.f. f(x). The expectation E(X) of the
random variable X is defined as follows:

E(X) =
∫ ∞

−∞
xf(x)dx = μ (5.2.1)

which may be interpreted as the center of gravity or first moment of the probability density
function f(x). E(X) is often referred to as the mean value of X or simply the mean of X.
The variance of a continuous random variable X is defined as

V ar(X) =
∫ ∞

−∞
(x − μ)2f(x)dx = σ2 (5.2.2)

As in the discrete case, there is a more convenient expression for the calculation of σ2,
given by

σ2 =
∫ ∞

−∞
x2f(x)dx − μ2 (5.2.3)

The standard deviation of a random variable X is defined as SD(X)=+
√

V ar(X)=σ.

Example 5.2.1 Suppose a continuous random variable X has the p.d.f. given by

f(x) =

⎧⎪⎨
⎪⎩

0 if x ≤ 0
2x/R2 if 0 < x ≤ R

0 if x > R
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Then, using (5.2.1), we have that the mean of X is given by

μx = E(X) =
∫ ∞

−∞
xf(x)dx

so that

μx = E(X) =
2

R2

∫ R

0
x2dx =

(
2

R2

) [(
x3

3

)∣∣∣∣
R

0

]
=

2R

3

Now, using (5.2.3), we find that the variance σ2
x of X is given by

σ2
x =

2
R2

∫ R

0
x3dx −

(
2R

3

)2

=
(

2
R2

) [(
x4

4

)∣∣∣∣
R

0

]
− 4R2

9
=

R2

18

Note that the integration in Example 5.2.1 was straightforward. Sometimes integration
by parts is necessary, as in the following example.

Example 5.2.2 (Exponential distribution) Suppose a random variable X has the p.d.f.
f(x) given by

f(x) = λe−λx, x > 0, λ > 0 (5.2.4)

and zero otherwise. Then, the mean of X is

μx =
∫ ∞

−∞
xf(x)dx =

∫ ∞

0
xλe−λxdx

We see that integration by parts is necessary. To this end, suppose we set u = x and
dv = λe−λxdx. We then have that du = dx and v = −e−λx. Using the well-known formula
for integration by parts,

∫
u dv = uv −

∫
v du, the reader may verify that

μx = 1/λ (5.2.5)

Further, using (5.2.3), the variance of X is

σ2
x = V ar(X) =

∫ ∞

0
x2λe−λxdx − (1/λ)2

The reader may verify that two applications of integration by parts yield

σ2
x = V ar(X) = 2(1/λ)2 − (1/λ)2 = 1/λ2 (5.2.6)

That is, the mean and variance of the random variable X, which has a distribution
whose p.d.f. is given by (5.2.4), are 1/λ and 1/λ2, respectively. The distribution in (5.2.4)
is called the exponential distribution and will be discussed later in this chapter. Both the
mean and the standard deviation of this distribution is equal to 1/λ and is a unique
property of this distribution.



170 5 Continuous Random Variables

Certain Properties of an Expected Value and Variance of a
Random Variable

Using elementary properties of integrals, we have, in general, that (5.2.7) holds:

E(cX) = cE(X), V ar(cX) = c2V ar(X) (5.2.7)

In Section 4.2, we discussed certain results about expected values of a discrete random
variable and its functions. Similar results are also valid for a continuous random variable
and its functions. Below we state these results.

Theorem 5.2.1 Suppose c is a constant and X is a continuous random variable
that is distributed with p.d.f. f(x). Then,

E(c) = c (5.2.8)

Proof: E(c) =
∫ ∞
−∞ cf(x)dx = c

∫ ∞
−∞ f(x)dx = c × 1 = c �

Theorem 5.2.2 Let c be a constant and g(x) be a function of a continuous random
variable X that is distributed with p.d.f. f(x). Then,

E(cg(X)) = cE(g(X)) (5.2.9)

Proof: Using Equation (5.2.7), we have

E(cg(X)) =
∫ ∞

−∞
cg(X)f(x)dx = c

∫ ∞

−∞
g(X)f(x)dx = cE(g(X)) �

Theorem 5.2.3 Let gi(x), i = 1, 2, . . . , n be n functions of a continuous random
variable X that is distributed with p.d.f. f(x). Then,

E

[
n∑

i=1

gi(X)

]
=

n∑
i=1

E[gi(X)] (5.2.10)

Proof:

E

[
n∑

i=1

gi(X)

]
=

∫ ∞

−∞

[
n∑

i=1

gi(X)

]
f(x)dx =

n∑
i=1

[∫ ∞

−∞
gi(X)f(x)dx

]
=

n∑
i=1

E[gi(X)]. �



5.2 Mean and Variance of Continuous Random Variables 171

5.2.2 The Moment-Generating Function
and Expected Value of a Special Function of X

Referring to (5.2.9) with c = 1, if we set g(X) = eXt and find its expectation, we obtain

E(eXt) =
∫ ∞

−∞
extf(x)dx (5.2.11)

The function of t so obtained is called the m.g.f. of the random variable X and is denoted
by MX(t), as recorded below in (5.2.12).

Moment-generating function of a random variable X:

MX(t) = E(eXt) (5.2.12)

Note that MX(t) can be written as

MX(t) = E

(
1 + Xt +

X2t2

2!
+ · · · + Xktk

k!
+ · · ·

)

= 1 + tE(X) +
t2

2!
E(X2) + · · · + tk

k!
E(Xk) + · · · (5.2.13)

We then have

MX(t) = 1 + tμ′
1 +

t2

2!
μ′

2 + · · · + tk

k!
μ′

k + · · · (5.2.14)

and we note that if the moments about the origin μ′
1, μ

′
2, . . . are all finite, then the coeffi-

cient of tk/k! in the expansion of the m.g.f. is the kth moment of X about the origin. If we
differentiate MX(t) k times, we obtain (assuming differentiability under integral signs),

dk

dtk
MX(t) = E(XkeXt) (5.2.15)

and if we then set t = 0, we find the result (5.2.16) below.

Expression for obtaining moments about the origin using the moment-generating
function:

dk

dtk
MX(0) = E(Xk) = μ′

k. (5.2.16)

We now present some important properties of the m.g.f. of X, MX(t). First, if we are
interested in the random variable cX, where c is any constant, then, by definition,

McX(t) = E(ecXt) = E(eXct) = MX(ct) (5.2.17)
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Second, the m.g.f. for X + a, where a is a constant, is

MX+a(t) = E(e(X+a)t) = E(eateXt) = eatMX(t) (5.2.18)

Note that (5.2.18) enables us to find moments of X about its mean. If we set a = −μ, we
have

MX−μ(t) = E(e(X−μ)t) (5.2.19)

A straightforward differentiation gives the result in (5.2.20).

Expression for obtaining central moments using the moment generating function

dk

dtk
MX−μ(0) = μk. (5.2.20)

We now state an important theorem. The proof of this theorem is beyond the scope of
this book.

Theorem 5.2.4 If two random variables X and Y have the same m.g.f. M(t), then
their c.d.f.’s are identical. We then say that X and Y have the same distribution.

PRACTICE PROBLEMS FOR SECTIONS 5.1 AND 5.2

1. Suppose that the p.d.f. of a random variable X is f(x) = 2e−2x for x > 0. Determine
the following probabilities:
(a) P (X > 4), (b) P (X < 5), (c) P (2 < X < 7), (d) P (X = 5).

2. Determine the value of c such that f(x) =
c

x2 for x > 1 represents the p.d.f. of a
random variable X.

3. The probability function of the amount of soft drink in a can is f(x) = 4cx for
11.5 < X < 12.5 oz. Determine the value of c such that f(x) represents a p.d.f..
Then, find the following probabilities:
(a) P (X > 11.5), (b) P (X < 12.25), and (c) P (11.75 < X < 12.25).

4. In Problem 3, find the mean μ and the variance σ2 of the random variable X.
5. The lifetime X (in units of 10 years) of a certain component of a home-heating

furnace is a random variable with p.d.f.

f(x) =

{
cx2(1 − x), if 0 < x < 1
0, otherwise

Determine the value of c. Then find the probability that the life of such a component
is more than eight years.

6. Refer to Problem 5. Find the mean μ and the variance σ2 of the random variable X.
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7. Suppose a random variable X has the p.d.f. f(x) given by

f(x) = λe−λx, x > 0, λ > 0

Find the m.g.f. of the random variable X and use your result to find the mean μ
and the variance σ2 of the random variable X.

8. The amount of time X (in minutes) by which the departure of a flight is rescheduled
has the probability distribution

f(x) =

{
c(100 − x2), −10 < x < 10
0, otherwise

Find the value of c. Then, find the following:
(a) The mean μ and standard deviation σ of X.
(b) The mean and standard deviation of 60X. This gives the mean and standard

deviation in seconds.
(c) The mean and standard deviation of X/60. This gives the mean and standard

deviation in hours.
9. Refer to Problems 3 and 4 above and find the following probabilities:

(a) P (μ − σ < X < μ + σ)
(b) P (μ − 2σ < X < μ + 2σ)
(c) P (μ − 3σ < X < μ + 3σ)

5.3 CHEBYSHEV’S INEQUALITY

Sometimes it is desirable to have a notion about how much probability there is in the
tails of a probability function or a p.d.f. A theorem that gives an upper bound for such
probabilities may be stated as in (5.3.1) below.

Theorem 5.3.1 If X is a random variable having finite mean μ and variance σ2,
then

P (|X − μ| ≥ kσ) ≤ 1
k2 (5.3.1)

where k > 1.

The proof of this theorem is not given here but is available on the book website at:
www.wiley.com/college/gupta/statistics2e

This inequality (5.3.1) is called Chebyshev’s inequality. Note that the theorem states
that no matter what distribution a random variable X may have, if its mean μ and variance
σ2 are finite, the total amount of probability lying in the two tails (−∞, μ − kσ] and
[μ + kσ,+∞) is no greater than 1/k2, which implies that the amount of probability lying
in the interval (μ − kσ, μ + kσ) is greater than or equal to 1 − 1/k2.

Example 5.3.1 (Applying Chebyshev’s inequality) If a sample size n is taken from a lot
of N items containing 10% defectives, show by using the Chebyshev’s inequality that the
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probability exceeds 0.99 that the number of defectives in the sample differs from n/10 by
not more than 3

√
n
√

(N − n)/(N − 1).

Solution: We know from Section 4.4 that, if D is the number of defectives in the sample
and p is the fraction of defectives in the lot, where p = 1/10 in this example, then

E(D) =
n

10
and V ar(D) =

9n

100

(
N − n

N − 1

)

Thus,
μd =

n

10
, σd =

3
10

√
n
√

(N − n)/(N − 1)

and, since 1 − 1/k2 = 0.99, or k2 = 100, we have that

kσd = 3
√

n
√

(N − n)/(N − 1),

Since k = 10. Hence, it follows from (5.3.1) that

P

(∣∣∣D − n

10

∣∣∣ < 3
√

n

√
N − n

N − 1

)
≥ 1 − 1

100
= 0.99

thus establishing the desired result.

PRACTICE PROBLEMS FOR SECTION 5.3

1. The following data give the number of calls received by a receptionist in 20 randomly
selected intervals of one hour each:

16 19 19 15 15 19 17 18 18 20
18 18 17 17 16 16 17 18 18 20

Find the sample mean X̄ and the sample standard deviation S. Find the percentage
of data points that fall in each of the following intervals: (X̄ ± 1.5S), (X̄ ± 2S), (X̄ ±
3S). Compare your result with the corresponding percentages given by Chebyshev’s
inequality.

2. A random variable X is distributed with mean 16 and standard deviation 3. Using
Chebyshev’s inequality, find lower or upper bounds for the following probabilities:
(a) P (|X − 16| ≤ 6)
(b) P (|X − 16| ≥ 7.5)
(c) P (11.5 ≤ X ≤ 20.5)

3. The following data give the number of defective parts manufactured in the last 20
shifts:

6 18 10 12 11 10 11 9 14 7
13 6 9 10 7 12 8 16 12 17
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Find the sample mean X̄ and the sample standard deviation S. Find the percentage
of data points that fall in each of the following intervals: (X̄ ± 1.5S), (X̄ ± 2S), (X̄ ±
3S). Compare your result with the corresponding percentages given by Chebyshev’s
inequality.

4. According to Chebyshev’s inequality, what can we say about the proportion of the
data of a given data set that must fall within k standard deviations of the mean, for
values of k as follows? (a) k = 3, (b) k = 4, (c) k = 8.

5. Hospital records indicate that patients with heart surgery spend time (in days) in the
hospital having a probability distribution with mean six days and standard deviation
1.5 days. Use Chebyshev’s inequality to find the lower bound of the percentage of
patients who stay between three and nine days (inclusive).

6. Suppose that X is a random variable having probability distribution with mean 16
and standard deviation 2.5. What can you say about the probability P (8.5 ≤ X ≤
23.5)? (Hint: use Chebyshev’s inequality.)

5.4 THE UNIFORM DISTRIBUTION

5.4.1 Definition and Properties
The uniform distribution, because of its shape, is also sometimes known as the rectangu-
lar distribution. Because of the shape of its p.d.f., it is perhaps the simplest continuous
probability distribution.

Definition 5.4.1 A random variable X is said to be uniformly distributed over an
interval [a, b] if its p.d.f. is given by

f(x) =

⎧⎨
⎩

1
b − a

, for a ≤ x ≤ b

0, otherwise
(5.4.1)

Note that the density function f(x) in (5.4.1) is constant for all values of x in the
interval [a, b]. Figure 5.4.1 shows the graphical representation of a uniform distribution of
the random variable X distributed over the interval [a, b], where a < b.

The probability that the random variable X takes the values in an interval [x1, x2],
where a ≤ x1 < x2 ≤ b is indicated by the shaded area in Figure 5.4.2 and is equal to

P (x1 ≤ X ≤ x2) =
x2 − x1

b − a
(5.4.2)

Example 5.4.1 (Uniform distribution) Let a random variable X be the time taken by a
technician to complete a project. In this example, assume the time taken by the technician
can be anywhere between two to six months and that the random variable X is uniformly
distributed over the interval [2, 6]. Find the following probabilities:
(a) P (3 ≤ X ≤ 5), (b) P (X ≤ 4), and (c) P (X ≥ 5).
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f (x)

a b

1

(b – a)

Figure 5.4.1 Uniform distribution over the interval [a, b].

f (x)

a x1 x2 b

1

(b – a)

Figure 5.4.2 The probability P (x1 ≤ X ≤ x2) for the uniform random variable X in
[a, b].

Solution: (a) To find the probability P (3 ≤ X ≤ 5), we use the result given in (5.4.2),
where we have a = 2, b = 6, x1 = 3, and x2 = 5. Thus,

P (3 ≤ X ≤ 5) =
5 − 3
6 − 2

=
2
4

= 0.5

(b) In this part, we want to find the probability P (X ≤ 4). This probability is equivalent
to finding the probability P (2 ≤ X ≤ 4), since the probability for any interval that falls
below the point x = 2 is zero. Again, using the result in (5.4.2), we have

P (X ≤ 4) = P (2 ≤ X ≤ 4) =
4 − 2
6 − 2

=
2
4

= 0.5

(c) By a similar argument as in part (b), P (X ≥ 5) = P (5 ≤ X ≤ 6). Thus,

P (X ≥ 5) = P (5 ≤ X ≤ 6) =
6 − 5
6 − 2

=
1
4

= 0.25

Example 5.4.2 (Uniform distribution) Suppose a delay in starting production due to
an unexpected mechanical failure is anywhere from 0 to 30 minutes. Find the following
probabilities:
(a) Production will be delayed by less than 10 minutes.
(b) Production will be delayed by more than 20 minutes.
(c) Production will be delayed by 12–22 minutes.
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Solution: Let X be a random variable denoting the time by which production will be
delayed. From the given information, we see that the random variable X is uniformly
distributed over the interval [0, 30]. With this information, the desired probabilities are as
follows:

(a) P (X ≤ 10) = P (0 ≤ X ≤ 10) =
10 − 0
30 − 0

=
10
30

=
1
3

(b) P (X > 20) = P (20 < X ≤ 30) =
30 − 20
30 − 0

=
10
30

=
1
3

(c) P (12 ≤ X ≤ 22) =
22 − 12
30 − 0

=
10
30

=
1
3

In each case of this example, the probability turned out to be 1/3, demonstrating that in
a uniform distribution, the probability depends upon the length of the interval and not on
the location of the interval. In each case, the length of the interval is equal to 10.

Example 5.4.3 (Uniform distribution) A random variable X is the time taken by an
engineer to develop a design of a new product. Here, the time taken by the engineer is
anywhere between five to ten months, so that the random variable X is uniformly distributed
over the interval [5, 10]. Find the probability P (6 ≤ X ≤ 8), using MINITAB and R.

Solution: In order to determine the probability P (6 ≤ X ≤ 8), we first have to find the
probabilities P (X ≤ 6) and P (X ≤ 8). Then, P (6 ≤ X ≤ 8) = P (X ≤ 8) − P (X ≤ 6). To
find the probabilities P (X ≤ 8) and P (X ≤ 6), we proceed as follows:

MINITAB

1. Enter the values 6 and 8 in column C1.
2. From the menu bar, select Calc > Probability Distribution > Uniform.
3. In the dialog box that appears on the screen, click the circle next to Cumulative

probability.



178 5 Continuous Random Variables

4. Enter 5 in the box next to Lower endpoint and 10 in the box next to Upper
endpoint. Click the circle next to Input column and type C1 in the box next to
it.

5. Click OK.
6. In the session window, text will appear as shown in the following box. Using this, we

have that P (6 ≤ X ≤ 8) = P (X ≤ 8) − P (X ≤ 6) = 0.6 − 0.2 = 0.4.

Cumulative Distribution Function
Continuous uniform on 5 to 10

x P( X = x )

6     0.2

8     0.6

USING R
R has a built in cumulative uniform distribution function ‘punif(q, min, max)’, where q
is the quantile, and min and max are the lower and upper boundaries of the uniform
distribution, respectively. So, referring to Example 5.4.3, we are asked to find P (6 ≤ X ≤
8), which can be computed by typing punif(8, 5, 10) - punif(6, 5, 10) in the R Console
window as follows.

punif(8, 5, 10) - punif(6, 5, 10)

#R output
[1] 0.4

5.4.2 Mean and Standard Deviation of the Uniform
Distribution

Let X be a random variable distributed uniformly over an interval [a, b]. Then, the reader
should verify that the mean μ and the variance σ2 of the random variable X are given by

μ = E(X) =
∫ b

a

x

(
1

b − a

)
dx =

a + b

2
(5.4.3)

σ2 = E(X − μ)2 =
∫ b

a

(x − μ)2
(

1
b − a

)
dx =

(b − a)2

12
(5.4.4)

The m.g.f. of the random variable X having a uniform distribution given in Equation (5.4.1)
is (as the reader should verify) stated in (5.4.5).

MX(t) =

⎧⎨
⎩

etb − eta

t(b − a)
, t �= 0

1, t = 0
(5.4.5)
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The c.d.f. F (x) of a random variable X distributed uniformly over an interval [a, b] is
given by

F (x) = P (X ≤ x), a ≤ x ≤ b

= P (a ≤ X ≤ x) (5.4.6)

=
x − a

b − a
, a ≤ x ≤ b

We note that F (x) = 0, if x < a and F (x) = 1, if x > b.

Example 5.4.4 (Uniform distribution) A random variable X denotes the time spent
(in minutes) for a coffee break that a technician takes every morning. Suppose this ran-
dom variable X is uniformly distributed over an interval [0, 16]. Find the mean μ and the
standard deviation σ of the distribution.

Solution: Using Equations (5.4.3) and (5.4.4), we get

μ =
a + b

2
=

0 + 16
2

= 8, σ =
b − a√

12
=

16 − 0√
12

= 4.619

Example 5.4.5 (Example 5.4.4, continued) In Example 5.4.4, find the following values
of the distribution function of the random variable X: (a) F (3) (b) F (5) (c) F (12).

Solution: Using the result of Equation (5.4.6), we obtain

(a) F (3) =
x − a

b − a
=

3 − 0
16 − 0

=
3
16

(b) F (5) =
x − a

b − a
=

5 − 0
16 − 0

=
5
16

(c) F (12) =
x − a

b − a
=

12 − 0
16 − 0

=
3
4

PRACTICE PROBLEMS FOR SECTION 5.4

1. The time taken to download software from the internet is uniformly distributed
between four and 10 minutes.
(a) What is the probability that the downloading time for software is more than

six minutes?
(b) What is the probability that the downloading time for software is between five

and eight minutes?
(c) What is the probability that the downloading time for software is less than

seven minutes?
2. The city buses stop at an assigned point every 15 minutes. A passenger who takes

the bus from that point has arrived there but does not know when the last bus came.
(a) What is the probability that the passenger will have to wait for more than

eight minutes to take the next bus?
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(b) What is the probability that the passenger will have to wait for less than 10
minutes to take the next bus?

(c) What is the probability that the passenger will have to wait for five to nine
minutes to take the next bus?

3. Referring to Problem 2, let the random variable X denote the time that the pas-
senger has to wait. Find the mean, variance, and standard deviation of the random
variable X.

4. A random variable X is uniformly distributed with mean 12 and variance three.
Find the m.g.f. of the random variable X.

5. The hourly wages of certain group of workers in a large manufacturing company
are uniformly distributed on the interval [20, 32]. What percentage of these workers
are making over $25 an hour?

6. Suppose that a random variable X is distributed uniformly over an interval [15, 25].
Find the following probabilities: (a) P (20 ≤ X ≤ 25), (b) P (X ≤ 25), (c) P (15 ≤
X ≤ 25), (d) P (X ≤ 15).

7. The time X (in hours) taken by students to complete a standardized test is uni-
formly distributed over the interval [2, 4]. Find the mean and the standard deviation
of X. Then, find the probability P (μ − 2σ < X < μ + 2σ).

8. A manufacturing company has designed a fuel-injection system for medium-size
cars such that the cars yield X mpg uniformly distributed over an interval [45, 50].
Find the mean and variance of X. Find the probability P (X > μ − σ).

5.5 THE NORMAL DISTRIBUTION

5.5.1 Definition and Properties
The normal distribution plays a fundamental role in all of mathematical statistics, and, as
we shall see in later chapters, important statistical techniques are based on this distribu-
tion. The purpose of this section is to discuss the normal distribution, its properties, and
some of its applications.

Definition 5.5.1 A random variable X is said to be distributed by the normal
distribution, say N(μ, σ2), if its p.d.f. is given by

f(x) =
1

σ
√

2π
exp

[
− 1

2σ2 (x − μ)2
]

,−∞ < x < +∞ (5.5.1)

where μ and σ are parameters that obey the conditions −∞ < μ < +∞ and σ > 0.

We shall show that the parameters μ and σ in the above definition are the mean and
standard deviation of X, respectively. We note that f(x) > 0 for −∞ < x < +∞ As may
be proved, the density (5.5.1) is such that

∫ ∞
−∞ f(x)dx = 1. The graph of the p.d.f. f(x)

given by (5.5.1) is shown in Figure 5.5.1.
To determine the mean of X, we have

E(X) =
∫ ∞

−∞
x

1
σ
√

2π
exp

[
− 1

2σ2 (x − μ)2
]

dx (5.5.2)
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μ – 3σ μ + 3σμ – 2σ μ + 2σμ – σ μ + σμ

Figure 5.5.1 Graph of the normal p.d.f. given in (5.5.1).

In the integral, set (x − μ)/σ = z. Then (5.5.2) takes the form

E(X) =
∫ ∞

−∞

1√
2π

(μ + σz)e−z2/2dz

or
E(X) = μ

∫ ∞

−∞

1√
2π

e−z2/2dz + σ

∫ ∞

−∞

1√
2π

ze−z2/2dz

The integrand of the first integral in the preceding line is that of the normal density
function (5.5.1) having μ = 0, σ = 1. Hence, the value of this integral is 1. For the second
integral, we have

σ

∫ ∞

−∞

1√
2π

ze−z2/2dz =

[
−e−z2/2

√
2π

]∞

−∞

= 0

Putting these results together, we find that the mean or the expected value E(X) of the
normal random variable X with p.d.f. given by (5.5.1) is μ. Similarly, it can be shown that
for the variance of X, we have

V ar(X) = E[X − E(X)]2 = E(X − μ)2 = σ2 (5.5.3)

That is, we have that the variance of the normal random variable X is σ2. In summary, we
find that the p.d.f. f(x) of the normal distribution N(μ, σ2) given by (5.5.1) has its mean
μ and standard deviation σ built in as parameters.

Some of the characteristics of the normal density function are listed below.

1. The normal density function curve is bell-shaped and completely symmetric
about its mean μ. For this reason, the normal distribution is also known as a
bell-shaped distribution.

2. The tails of the density function extend from −∞ to +∞.
3. The total area under the curve is 1.0. However, 99.73% of the area falls within

three standard deviations of the mean μ.
4. The area under the normal curve to the right of μ is 0.5 and to the left of μ is

also 0.5.
5. As the mean μ and the standard deviation change, the location and the shape

of the normal curve change (see Figures 5.5.2 and 5.5.3).
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μ = 3 μ = 5 μ = 7

Figure 5.5.2 Curves representing the normal density function with different means but
the same standard deviation.

μ

σ = 1

σ = 2

σ = 3

Figure 5.5.3 Curves representing the normal density function with different standard
deviations but the same mean.

5.5.2 The Standard Normal Distribution
A random variable having the standard normal distribution N(0, 1) has the special desig-
nation Z throughout this book, and its particular values are designated by z. We then call
Z the standard normal variable, and its p.d.f. is usually denoted by f(z), where

f(z) =
1√
2π

e−z2/2,−∞ < z < +∞ (5.5.4)

By comparing (5.5.1) with (5.5.4), it is evident that E(Z) = 0 and V ar(Z) = 1. To find
values of the c.d.f. of Z, denoted by Φ(z), we use Table A.4, which provides values of
P (Z ≤ z) = Φ(z) for all z such that (−3.4 ≤ z ≤ 3.4) in increments of 0.01. The c.d.f. of
Z is given below.

Φ(z) =
∫ z

−∞
f(x)dx (5.5.5)
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In view of the symmetry of f(z) about z = 0, the reader should note that, for any z,

Φ(−z) = 1 − Φ(z) (5.5.6)

We may restate (5.5.6) as

P (Z ≤ −z) = 1 − P (Z ≤ z) = P (Z ≥ z)

that is,
P (Z ≤ −z) = P (Z ≥ z)

By using tables of Φ(z), we can find the probabilities associated with events concerning any
normal random variable. Suppose we have a random variable X that has the distribution
N(μ, σ2), and, for any given value x′, we wish to find the probability

P (X ≤ x′) =
∫ x′

−∞

1
σ
√

2π
exp

[
−1

2

(
x − μ

σ

)2
]

dx (5.5.7)

This probability is represented by the shaded area in Figure 5.5.4. We do not have tables
of P (X ≤ x′) for every possible value of μ and σ2 because we do not need them. Suppose
in the integral (5.5.7) we let z = (x − μ)/σ. Then, it easily follows that

P (X ≤ x′) =
∫ (x′−μ)/σ

−∞

1√
2π

e−z2/2dz = Φ
(

x′ − μ

σ

)
= P

(
Z ≤ x′ − μ

σ

)
(5.5.8)

where Z is the standard normal variable. Thus, in order to evaluate P (X ≤ x′), where X
has the normal distribution N(μ, σ2), we note that the event (X ≤ x′) is equivalent to

the event (X − μ ≤ x′ − μ), which in turn is equivalent to the event
(

X − μ

σ
≤ x′ − μ

σ

)
.

Hence, we write

P (X ≤ x′) = P (X − μ ≤ x′ − μ) = P

(
X − μ

σ
≤ x′ − μ

σ

)
(5.5.9)

μ – 3σ

–3 –2 –1 0 1 2 3

μ + 3σμ – 2σ μ + 2σμ – σ μ + σμxʹ

xʹ – μ
σ

Figure 5.5.4 Graph of the normal p.d.f. f(x) given by (5.5.1) showing the relationship
between the x-axis and z-axis. The shaded area of this normal density is P (X ≤ x′) as
given by (5.5.7).
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xʹ – μ
σ

μ – 3σ

–3 –2 –1 0

0.5

1

1 2

P(X ≤ xʹ ) = Φ((xʹ – μ)/σ)

3

μ + 3σμ – 2σ μ + 2σμ – σ μ + σμxʹ

z

x

Figure 5.5.5 Graph of the normal c.d.f. (5.5.7), showing the relationship between the
x-axis and the z-axis.

But from (5.5.8), we have

P

(
X − μ

σ
≤ x′ − μ

σ

)
= P

(
Z ≤ x′ − μ

σ

)
= Φ

(
x′ − μ

σ

)
(5.5.10)

That is, the probability that X ≤ x′ is the same as the probability that P (Z ≤ (x′ − μ)/σ),
where Z is the standardized normal variable having a p.d.f. f(z) given by (5.5.4). The
graph of the c.d.f. P (X ≤ x′) as given by (5.5.7) is shown in Figure 5.5.5. The relationship
between the x-scale and the z-scale is shown graphically in Figures 5.5.4 and 5.5.5.

For convenience, we often abbreviate the phrase “X is a random variable having the
normal distribution N(μ, σ2)” by saying “X is a N(μ, σ2) random variable” or “X is from
a N(μ, σ2) population.”

Example 5.5.1 (Normally distributed quality characteristic) Suppose a quality char-
acteristic of a product is normally distributed with mean μ = 18 and standard deviation
σ = 1.5. The specification limits furnished by the customer are (15, 21). Determine what
percentage of the product meets the specifications set by the customer.

Solution: The random variable X denotes the quality characteristic of interest. Then, X is
normally distributed with mean μ = 18 and standard deviation σ = 1.5. We are interested
in finding the percentage of product with the characteristic of interest within the limits
(15, 21), which is equivalent to finding the probability P (15 ≤ X ≤ 21) and multiplying it
by 100. That is, first we determine

P (15 ≤ X ≤ 21) = P

(
15 − 18

1.5
≤ X − 18

1.5
≤ 21 − 18

1.5

)
= P (−2.0 ≤ Z ≤ 2.0)

= P (Z ≤ 2.0) − P (Z ≤ −2.0)

= 0.9772 − 0.0228

= 0.9554

Then, the percentage of product that will meet the specifications set by the customer is
95.44%.
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Example 5.5.2 (Normally distributed pin-diameters) A manufacturer knows from expe-
rience that the diameters of 0.250 in. precision-made pins he produces have a normal
distribution with mean 0.25000 in. and standard deviation 0.00025 in. What percentages
of the pins have diameters between 0.24951 and 0.25049 in? This question is equivalent
to finding the probability that the diameter, say X, of a pin taken at random from the
production lies between 0.24951 and 0.25049 in.

Solution: We must find P (0.24951 ≤ X ≤ 0.25049), where X has the distribution
N(0.25000, (0.00025)2). We proceed with operations indicated in (5.5.10) and
obtain:

P (0.24951≤X ≤ 0.25049) = P

(
0.24951 − 0.25000

0.00025
≤ X − 0.25000

0.00025
≤ 0.25049 − 0.25000

0.00025

)
= P (−1.96 ≤ Z ≤ 1.96)

= P (Z ≤ 1.96) − P (Z ≤ −1.96)

= 0.975 − 0.025 = 0.95

That is, 95% of the production lies between 0.24951 and 0.25049 in.

Example 5.5.3 (Production process of chalks) A process for producing batches of chalk
is such that the bulk density X of a batch of chalk is a normally distributed random variable
with mean 0.8000g/cc and standard deviation 0.0030 g/cc. Find: (a) P (X ≤ 0.8036), (b)
P (|X − 0.8000| ≤ 0.0060). (c) Find c such that P (X ≤ c) = 0.95

Solution: Here, X is an N(0.8000, (0.003)2) variable. Thus,

(a) . P (X ≤ 0.8036) = P

(
X − 0.8000

0.0030
≤ 0.8036 − 0.8000

0.0030

)
= P (Z ≤ 1.2) = 0.8849

(b) . P (|X − 0.8000| ≤ 0.0060) = P

(
|X − 0.8000|

0.0030
≤ 0.0060

0.0030

)
= P (|Z| ≤ 2) = P (−2 ≤ Z ≤ 2)

= P (Z ≤ 2) − P (Z ≤ −2)

= 0.97725 − 0.02275 = 0.95450

(c) From P (X ≤ c) = 0.95, we have that

P

(
X − 0.8000

0.0030
≤ c − 0.8000

0.0030

)
= P

(
Z ≤ c − 0.8000

0.0030

)
= 0.95
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This implies that
c − 0.8000

0.0030
= 1.645, since P (Z ≤ 1.645) = Φ(1.645) = 0.95

(see Table A.4). Thus, we have

c = 0.8000 + (0.0030)(1.645) = 0.804935

Throughout this book, we use the notation zα to denote the 100(1 − α) percentage
point of the standard normal distribution, so that zα is determined by:

P (Z ≥ zα) =
∫ ∞

zα

f(z)dz = α

or expressed alternatively,

Φ(zα) = P (Z ≤ zα) = 1 − α

Note that zα = −z1−α. For convenience, we list a few of the most important and commonly
used values of zα in Table 5.5.1.

Table 5.5.1 Some percentage points of the normal distribution.

α 0.10 0.05 0.025 0.01 0.005

zα 1.282 1.645 1.960 2.326 2.576

We often note that zα is the point exceeded with probability α when using the standard
normal distribution. The percentage points zα are often called significance points. For
example, z0.05 = 1.645 is the 5% significance point of the standard normal distribution.

Example 5.5.4 (Using MINITAB and R for normal probabilities) A random variable X
is distributed as normal with mean μ = 6 and standard deviation σ = 4. Determine the
probability P (8.0 ≤ X ≤ 14.0), using MINITAB and R.

Solution: In order to determine the probability P (8.0 ≤ X ≤ 14.0), we first have to
find the probabilities P (X ≤ 8.0) and P (X ≤ 14.0). Then, P (8.0 ≤ X ≤ 14.0) = P (X ≤
14.0) − P (X ≤ 8.0). To find the probabilities P (X ≤ 8.0) and P (X ≤ 14.0), we proceed
as follows:

MINITAB

1. Enter the values 8 and 14 in column C1.
2. From the Menu bar, select Calc > Probability Distribution > Normal.
3. In the dialog box, click the circle next to Cumulative probability.
4. Enter 6 (the value of the mean) in the box next to Mean and 4 (the value of the

standard deviation) in the box next to Standard deviation.
5. Click the circle next to Input column and type C1 in the box next to it.
6. Click OK.
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7. In the session window, text will appear as shown in the following box. Thus, P (8.0 ≤
X ≤ 14.0) = P (X ≤ 14.0) − P (X ≤ 8.0) = 0.977250 − 0.691462 ≈ 0.2858

Cumulative Distribution Function
Normal with mean = 6 and standard deviation = 4

x     P( X = x )

  8 0.691462

14 0.977250

USING R

R has a built in cumulative normal distribution function ‘pnorm(q, mean, sd)’, where q
is the quantile, and mean and sd are the mean and the standard deviation of the normal
distribution, respectively.

So, referring to Example 5.5.4, we are asked to find P (8.0 ≤ X ≤ 14.0), which can be
computed by typing the following in the R Console window.

pnorm(14, 6, 4) - pnorm(8, 6, 4)

#R output
[1] 0.2857874

MINITAB and R answers are equal up to the fifth decimal place.

5.5.3 The Moment-Generating Function of the
Normal Distribution

From our discussion of the m.g.f. in Chapter 4 and Equation (5.2.12), it follows that the
m.g.f. of a random variable X having the normal distribution N(μ, σ2) is: (The derivation
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is not given here but is available on the book website at: www.wiley.com/college/gupta/
statistics2e)

MX(t) = exp(μt + σ2t2/2) (5.5.11)

Differentiating MX(t) with respect to t, we have

M ′
X(t) = (μ + σ2t)eμt+σ2t2/2

M ′′
X(t) = σ2eμt+σ2t2/2 + (μ + σ2t)2eμt+σ2t2/2

and hence M ′
X(0) = μ, M ′′

X(0) = σ2 + μ2, that is, E(X) = μ and E(X2) = σ2 + μ2. We
thus have confirmation of (5.5.3) that

E(X) = μ

V ar(X) = E(X2) − [E(X)]2 = σ2 + μ2 − μ2 = σ2

Note that the m.g.f. of the normal distribution has, in the exponent of e, its mean as the
coefficient of t, and the variance of the distribution as the coefficient of (1/2)t2. Summa-
rizing, we may state the following theorem.

Theorem 5.5.1 If X is an N(μ, σ2) random variable, then the m.g.f. MX(t) is
given by

MX(t) = eμt+σ2t2/2

where E(X) = μ and V ar(X) = σ2.

PRACTICE PROBLEMS FOR SECTION 5.5

1. A random variable X is normally distributed with mean μ = 10 and standard devi-
ation σ = 1.5. Find the following probabilities: (a) P (8 ≤ X ≤ 12), (b) P (X ≤ 12),
(c) P (X ≥ 8.5).

2. A random variable X is normally distributed with unknown mean μ and unknown
standard deviation σ. Find μ and σ if it is known that the probability that X is less
than 10 is 0.6950 and the probability that X exceeds 6 is 0.7939.

3. The weights of Maine lobsters at the time of their catch are normally distributed
with a mean of 1.8 lb and a standard deviation of 0.25 lb. What is the probability
that a randomly selected lobster weighs (a) between 1.5 and 2 lb?, (b) more than
1.55 lb?, (c) less than 2.2 lb?

4. The postsurgery survival time of a breast cancer patient is normally distributed with
a mean of eight years and a standard deviation of 1.5 years. Find the probabilities
that a woman with breast cancer will survive after her surgery: (a) between five and
seven years, (b) more than 11 years, (c) less than six years.

5. The amount of beverage in a 16-oz bottle is normally distributed with a mean of
16.2 oz and a standard deviation of 0.1 oz. Find the probability that the amount of
beverage in a randomly select can is (a) between 15.5 and 16.2 oz, (b) more than
16.4 oz, (c) less than 16.1 oz.
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6. The total cholesterol level (LDL + HDL + 20% of triglyceride) of US males
between 60 and 70 years of age is approximately normally distributed with a mean
of 175 mg/100 ml and a standard deviation of 20 mg/100 ml. Find the probability
that a randomly selected person from this population has total cholesterol level: (a)
between 150 and 250 mg/100 ml, (b) more than 155 mg/100 ml, and (c) less than
215 mg/100 ml.

7. The height of a certain population of female teenagers is approximately normally
distributed with a mean of 155 cm and a standard deviation of 7 cm. Find the prob-
ability that a randomly selected teenager has height (a) between 145 and 165 cm,
(b) more than 150 cm, and (c) less than 169 cm.

8. A car manufacturer claims that its new hybrid car can travel at speeds more than
60 mpg. The actual mpg is approximately normally distributed with a mean of 52
miles and a standard deviation of three miles. What is the probability that the
manufacturer’s claim is valid? Comment on this claim.

5.6 DISTRIBUTION OF LINEAR COMBINATION
OF INDEPENDENT NORMAL VARIABLES

In general, we know that if X1, . . . ,Xn are independent random variables with means and
variances μi, σ

2
i , i = 1, 2, . . . , n, respectively, then a linear combination of the Xi, say

Y =
n∑

i=1

ciXi

is such that

μY = E(Y ) =
n∑

i=1

ciμi (5.6.1)

and

σ2
Y = E(Y − μY )2 =

n∑
i=1

c2
iσ

2
i (5.6.2)

Indeed, if X1, . . . ,Xn are normal independent random variables, then we have an impor-
tant result about the normal distribution that may be stated as in Theorem 5.6.1.

Theorem 5.6.1 Let X1, . . . ,Xn be n random independent variables having distri-
bution N(μ1, σ

2
1), . . . , N(μn, σ2

n). Then, the random variable Y =
∑n

i=1 ciXi, that is,
a linear combination of independent normal variables, is normally distributed with
mean

∑n
i=1 ciμi and variance

∑n
i=1 c2

iσ
2
i .

The proof of this theorem follows immediately using the result of Theorem 5.5.1, and
the fact that the m.g.f. of the sum of independent random variables is the product of their
m.g.f.s.
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Now, if the Xi’s are N(μ, σ2) random variables and are independent, that is, if
(X1, . . . ,Xn) is a random sample of size n from N(μ, σ2), then

X̄ =
1
n

n∑
i=1

Xi =
n∑

i=1

1
n

Xi

is a linear combination of the Xi with ci = 1/n, i = 1, 2, . . . , n.
Hence, we have that the sample mean or average, X̄, is itself normally distributed

with mean and variance given by

μx̄ =
n∑

i=1

ciμi =
n∑

i=1

1
n

μ = μ (5.6.3)

σ2
x̄ =

n∑
i=1

c2
iσ

2
i =

n∑
i=1

1
n2 σ2 =

σ2

n
(5.6.4)

This is a very important result that we restate in the following theorem.

Theorem 5.6.2 If X1, . . . ,Xn is a random sample of size n from N(μ, σ2), then
X̄ is a N(μ, σ2/n) random variable.

We note that if T is the sample sum defined by

T = X1 + · · · + Xn =
n∑

i=1

Xi (5.6.5)

then T may be regarded as linear combination of the Xi with ci = 1, i = 1, 2, . . . , n. Thus,
we have the following theorem, whose proof follows from Theorem 5.6.1.

Theorem 5.6.3 If X1, . . . ,Xn is a random sample of size n from N(μ, σ2), then
T =

∑n
i=1 Xi is a N(nμ, nσ2) random variable.

If the sample X1, . . . ,Xn is a random sample from any population having mean μ and
variance σ2 (both finite), it can be shown that as n → ∞, (T − nμ)/

√
nσ2 or equivalently

(X̄ − μ)
√

n/σ is a random variable having N(0, 1) as its limiting distribution. This result
is known as the central limit theorem. We note that this theorem has the implication that
even though Xi, i = 1, . . . , n, is a random sample of size n from a nonnormal distribution,
if n is large, T is approximately an N(nμ, nσ2) random variable, with error of approxi-
mation tending to zero as n → ∞. We will revisit this theorem in Chapter 7 on sampling
distributions.

In engineering statistics, there often arises a need to compare two populations or
processes involving two independent random variables X and Y, and in many cases, it is
useful to examine the difference (or the contrast) L = X − Y . If we know the means and
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variances of X and Y, we can compute the mean and variance of L from (5.6.1) and (5.6.2)
to find

μL = E(L) = μx − μy (5.6.6)

σ2
L = V ar(L) = σ2

x + σ2
y (5.6.7)

and hence the standard deviation of L is given by

σL = V ar(L) =
√

σ2
x + σ2

y (5.6.8)

Furthermore, it can easily be shown that if X and Y are normally distributed, so is L.

Example 5.6.1 (Matching normally distributed pin diameters) In manufacturing
precision-made pins, assume that “0.5-inch pins” have diameters that are (approximately)
normally distributed with mean 0.4995 in. and standard deviation 0.0003 in. and that
matching parts with holes to receive these pins have diameters that are (approximately)
normally distributed with mean 0.5005 and standard deviation 0.0004 in. If pins and holes
are matched at random, in what fraction of the matches would the pin fit?

Solution: Let Dp be the diameter in inches of a pin and Dm be the diameter in inches of
the hole of a matching part. Consider D = Dm − Dp. We then have a fit if D > 0. Now,
the mean of D is

μd = μdm
− μdp

= 0.5005 − 0.4995 = 0.0010

and the variance of D is given by

σ2
d = σ2

dm
+ σ2

dp
= 16 × 10−8 + 9 × 10−8 = 25 × 10−8

so that the standard deviation of D is σd = 5 × 10−4 = 0.0005. Furthermore, D is a lin-
ear combination of normally distributed variables and thus is itself normally distributed.
Again, a pin fits a matching part if, and only if, D > 0, and the probability of this is

P (D > 0) = P

(
D − 0.0010

0.0005
>

−0.0010
0.0005

)
= P (Z > −2) = 0.9772

That is, in 97.72% of the matches, the pins would fit.

Example 5.6.2 (Boxes filled with corn flakes) The distribution of gross weights of 8-oz
boxes of cornflakes is known to be normal with mean 9.60 oz and standard deviation 0.80 oz.
Suppose that the boxes are packed 24 to a carton and the population of weights of empty
cartons is also normal with mean 24.00 oz and standard deviation 2.20 oz. Determine the
mean and the variance of the population of weights of filled cartons. What percentage of
the filled cartons will have weights between 250 and 260 oz?

Solution: Let Xi be the gross weight of the ith box in the sample of 24 boxes, i =
1, 2, . . . , 24, and let T be the total weight of 24 boxes of cornflakes, that is,

T = X1 + X2 + · · · + X24
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From (5.6.1) and (5.6.2) we have, since μxi
= μx = 9.60, that

μT = μx + μx + · · · + μx = 24μx = 24(9.60) = 230.4 oz

and since σ2
xi

= σ2
x = (0.8)2 = 0.64, σ2

T is given by

σ2
T = σ2

x + σ2
x + · · · + σ2

x = 24σ2
x = 24(0.64) = 15.36 oz2

Let W = T + Y , where Y is the weight of an empty carton. Then,

μW = μT + μY = 230.4 + 24.0 = 254.4 oz

σ2
W = σ2

T + σ2
Y = 15.36 + 4.84 = 20.2 oz2

σW = 4.494 oz

To answer the second question, we must evaluate P (250 < W < 260), which, when reduced
in terms of the standard normal variable Z, has the value

P (−0.979 < Z < 1.246) = Φ(1.246) − Φ(−0.979) = Φ(1.246) − (1 − Φ(0.979)) = 0.7299.

Thus, approximately 73% of the filled cartons have weights between 250 and 260 oz.

Often, situations arise that uses the result of the useful theorem 5.6.4 given below.

Theorem 5.6.4 Let X̄1 and X̄2 be sample means of independent samples of sizes
n1 and n2 from normal distributions N(μ1, σ

2
1) and N(μ2, σ

2
2), respectively. Then,

X̄1 − X̄2 is distributed normally with mean μ1 − μ2 and variance σ2
1/n1 + σ2

2/n2. The
proof of this theorem follows directly from Equations (5.6.3), (5.6.4), and Theorem
5.6.2 along with Equations (5.6.6) and (5.6.7).

PRACTICE PROBLEMS FOR SECTION 5.6

1. Suppose that independent random variables, say X and Y, are normally distributed
with means of 10 and 15, and standard deviations of 3 and 4, respectively. Find the
following probabilities: (a) P (X + Y ≥ 33), (b) P (−8 ≤ X − Y ≤ 6), (c) P (20 ≤
X + Y ≤ 28), (d) P (X − 2Y ≤ −10).

2. Suppose that independent random variables X and Y are normally distributed with
means of 12 and 15 and standard deviations of 4 and 5, respectively. Find the m.g.f.
of the random variable X + 2Y .

3. The times required to finish two projects, say X and Y, are independently and
normally distributed with means of 70 and 75 minutes and standard deviations of 8
and 10 minutes, respectively. Find the following probabilities: (a) P (X + Y ≥ 145),
(b) P (−18 ≤ X − Y ≤ 16), (c) P (122 ≤ X + Y ≤ 168).

4. Referring to Problem 3, determine the probability distribution of the random vari-
able U = 2X + 3Y .
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5. Scores obtained by students in three sections of the Medical College Admission
Test (MCAT) are independently normally distributed with means 10, 12, and 10
and standard deviations 2.6, 1.2, and 1.3, respectively. Determine the probability
distribution of the total scores obtained by these students.

6. Suppose in Problem 5 the total scores of a student are denoted by a random variable
U. Then, find the following probabilities: (a) P (U ≥ 33), (b) P (30 ≤ U ≤ 38), (c)
P (U ≥ 38).

5.7 APPROXIMATION OF THE BINOMIAL
AND POISSON DISTRIBUTIONS BY THE
NORMAL DISTRIBUTION

5.7.1 Approximation of the Binomial Distribution
by the Normal Distribution

We now turn to a remarkable application of the normal distribution, namely, that of
approximating probabilities associated with the binomial distribution. We recall from
Chapter 4 that if X is a random variable having the binomial distribution (X ∼ b(x|n; p)),
then its mean is np, and its variance is np(1 − p). We now state a very useful theorem:

Theorem 5.7.1 As n → ∞, the distribution of the random variable

Z =
X − np√
np(1 − p)

(5.7.1)

has the N(0, 1) distribution as its limiting distribution.

This theorem was first proved by the French mathematician Abraham de Moivre. Use
of this theorem enables us to approximate, for large n, sums of probabilities given by the
binomial distribution by appropriate integrals of the standard normal distribution. More
precisely, the theorem states that for large n, the random variable X has approximately
the normal distribution N(np, np(1 − p)). The approximation improves as n increases and
is “quite good” for values of “p” not too close to zero or one. Further the approximation
is appropriate when n and p are such that np > 5 and n(1 − p) > 5.

Example 5.7.1 (Binomial probabilities using the normal approximation) If X is a ran-
dom variable having the binomial probability function

b(x) =
(

16
x

)(
1
2

)x(
1
2

)16−x

, x = 0, 1, 2, . . . , 16

approximate the value of PB(6 ≤ X ≤ 10) using the normal distribution. Here,
n = 16 and p = 1/2, so that np = 8 > 5 and n(1 − p) = 8 > 5. The exact value of the
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required probability is

PB(6 ≤ X ≤ 10) =
10∑

x=6

(
16
x

) (
1
2

)16

By using the normal approximation, say N(μ, σ2), we set μ = E(X) = np = 8, σ2 =
V ar(X) = np(1 − p) = 4, and we find that after matching a so-called “half-integer” or
“continuity” correction, (see Figure 5.7.1), that

PB(6 ≤ X ≤ 10) ≈ PN (5.5 ≤ X ≤ 10.5)

= PN

(
5.5 − 8

2
≤ X − 8

2
≤ 10.5 − 8

2

)
= PN (−1.25 ≤ Z ≤ 1.25)

= P (Z ≤ 1.25) − P (Z ≤ −1.25)

= 0.8944 − 0.1056

= 0.7888

That is, the normal approximation for PB(6 ≤ X ≤ 10) is 0.7888. The exact value of
PB(6 ≤ X ≤ 10) is 0.7898.

The reason for using 5.5 and 10.5 rather than 6 and 10 in PN (usually called half-integer
corrections for continuity) is evident when we look at Figure 5.7.1. If we graph the proba-
bilities given by the binomial probability function b(x) by drawing rectangles having bases
equal to 1 and centered at x = 0, 1, . . . , 16 and heights given by b(0), b(1), . . . , b(16), the
area under the resulting probability histogram is 1 since each rectangle is of area b(x) × 1
and

16∑
x=0

b(x) = 1

The probability histogram is often called the probability bar chart.

Distribution plot

0.20 Distribution

Binomial

n
16 0.5 

p

Distribution

Normal 8 2

Mean StDev

0.15

0.10

D
e
n
s
it
y

0.05

0.00
0 2 4 6 8

X

10 12 14 16

Figure 5.7.1 Graph of the binomial probability histogram in Example 5.7.1 and of the
approximating normal distribution N(8, 4).
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When computing PB(6 ≤ X ≤ 10) =
∑10

x=6 b(x), we are summing areas of rectangles,
the first of which has a base with left-hand endpoint 5.5 and the last of which has a
base with right-hand endpoint 10.5. Now, if we approximate PB(6 ≤ X ≤ 10) by PN (6 ≤
X ≤ 10), that is, if we do not make the half-integer correction, we are, in effect, omitting
about half of the first and half of the last rectangle of the probability bar charts from
consideration, thus underestimating the required probability.

We can also approximate individual binomial probabilities. For instance,

PB(X = 8) ≈ PN (7.5 ≤ X ≤ 8.5)

= PN (−0.5/2 ≤ Z ≤ 0.5/2)

= PN (−0.25 ≤ Z ≤ 0.25)

= 0.5987 − 0.4013

= 0.1974

Using binomial probability tables, we can see that the exact value of PB(X = 8) is 0.1964.
Thus, we see from Example 5.7.1 that the procedure to approximate binomial probabil-
ities by the normal distribution involves setting the mean and variance of the binomial
distribution equal to the mean and variance of the approximating normal distribution and
then making the needed half-integer corrections for continuity.

Example 5.7.2 (Monitoring defects using normal approximation) A machine produces
items in a certain plant using a mass-production process. Its record is that 5% of the items
produced are defective. (a) If a sample of 1000 items is chosen at random, what is the
probability that no more than 40 defectives occur in the sample? (b) that between 40 and
60, inclusive, of the items in the sample are defective?

Note here μ = np = 1000 × (1/20) = 50, σ2 = np(1 − p) = 95/2 = 47.5, and
σ = 6.892.

Solution: Let X = the number of defectives in the sample of 1000 items. Since np = 50 > 5
and n(1 − p) = 950 > 5, using the normal approximation, we find:

(a) . PB(X ≤ 40) ≈ PN (X ≤ 40.5)

= PN

(
Z ≤ 40.5 − 50

6.892

)
= PN (Z ≤ −1.38)

= 0.084

(b) . PB(40 ≤ X ≤ 60) ≈ PN (39.5 ≤ X ≤ 60.5)

= PN

(
−10.5
6.892

≤ Z ≤ 10.5
6.892

)
= PN (−1.52 ≤ Z ≤ 1.52)

= 0.871
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5.7.2 Approximation of the Poisson Distribution
by the Normal Distribution

If X is a Poisson random variable with mean and variance λ, we then have the result given
below.

P (a ≤ X ≤ b) ≈ P

(
(a − 0.5) − λ√

λ
≤ Z ≤ (b + 0.5) − λ√

λ

)
(5.7.2)

where a and b are nonnegative integers, Z is a standard normal random variable, and ±0.5
is a continuity correction factor. The continuity correction factor is applied in the same
manner as for the binomial distribution.

5.8 A TEST OF NORMALITY

Normal probability graph paper has the property that the graph of the c.d.f. of a normal
distribution, when plotted on this special paper, is a straight line. That is, by an appro-
priate stretch of the scale of ordinates for low and high percentages, the graph of the c.d.f.
of an N(μ, σ2) random variable, as shown in Figure 5.5.5, is transformed into a straight
line as shown in Figure 5.8.1.
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Figure 5.8.1 Graph of the cumulative normal distribution function on probability graph
paper.
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Normal probability paper provides a rough check on whether a sample can reasonably
be regarded as having come from a normal population. We illustrate the use of normal
probability paper with the following example.

Example 5.8.1 (A graphical test of normality) The data below are the systolic blood
pressures of 16 randomly selected breast cancer patients in a large metropolitan hospital.
Using normal probability paper, we want to verify if these data can reasonably be regarded
as having come from a normal population.

134,138, 133,125, 128,123, 130,134, 114,136, 124,146, 147,119, 133,135

Solution: We plot the normal probability paper using the following steps:

Step 1. Arrange the data in ascending order, so that we have 114,119, 123,125, 125,128,
130,133, 133,134, 134,135, 136,138, 146,147.

Step 2. Compute pi = (i − 1/2)/n, where i takes values 1, . . . , n; n is the total number
of observations, and pi is the ith cumulative probability corresponding to the
ith-ordered observation (see Step 1 above).

Step 3. Plot the ith ordered observation on the horizontal axis and the corresponding
pi on the vertical axis.

Note that if the data comes from a normal population, then all the points plotted on
the normal probability paper should fall on, or be close to, a straight line. The normal
probability plot for the data in this example is shown in Figure 5.8.2, which clearly indicates
that the plotted data points fall either on or close to a straight line. Thus, we conclude
that these data come from a normal population. Furthermore, if all the points plotted on
the normal probability paper fall on or very close to the straight line, then we use the
50th percentile of the sample to estimate the mean μ and the difference between the 84th
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Figure 5.8.2 Normal probability plot for the data in Example 5.8.1.
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and 50th percentiles to estimate the standard deviation σ. For example, from Figure 5.8.2,
we get an estimate of the mean μ and standard deviation σ as 131 and 140 − 131 = 9,
respectively.

We may also test if the data in Example 5.8.1 can reasonably be regarded has having
come from a normal population using MINITAB and R. In order to do so, we proceed as
follows:

MINITAB

1. Enter the 16 values in column C1.
2. From the Menu bar, select Stat > Basic Statistics > Normality Test.
3. The following dialog box appears on the screen.

4. Enter C1 in the box next to variable and select the circle next to At Y Values.
5. Under Test for Normality check the circle next to one of the three possible tests,

say Anderson-Darling.
6. If you like, put the title of the problem in the box next to Title and Click OK.

Then in the session window, the Normal Probability Graph will appear as shown in
Figure 5.8.3.

The small box in the right hand corner in Figure 5.8.3 provides various statistics. The last
statistic gives a so-called p-value (to be studied in Chapter 9). In general, if the p-value is
> 0.05, we have sufficient evidence to assume that the data come from a normal population.
Thus, we can say that the data in Example 5.8.1 come from a normal population.

USING R
In R, the built in function ‘qqnorm()’ can be used to plot the normal quantile-quantile plot
(q-q plot). The x-axis of this graph shows the observed sample quantiles, while the y-axis
shows the theoretical standard normal quantiles. Exclusion of the option ‘datax=TRUE’
would swap the x and y axes. The additional option ‘main’ can be used to get the title
if needed, and the options ‘pch’, ‘cex’, and ‘col’ can be used to get shaded, double-sized
colored points. An additional straight line ‘qqline()’ can be added to visualize the devia-
tions of the observed data from the normal distribution. The options ‘col = 2’, ‘lwd = 2’,
and ‘lty =2’ are used to get a red-colored, double-sized, dashed line. However, this line is
slightly different from Minitab as Minitab generates the line based on the mean and stan-
dard deviation of a normal distribution fitted to the data, but R draws a line between the
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Figure 5.8.3 MINITAB normal probability plot for the data in Example 5.8.1.

first and third quantiles for the sample and theoretical quantiles. The normal probability
plot for the data in Example 5.8.1 is shown in Figure 5.8.4 and can be obtained by typing
the following commands in the R Console window.

x = c(134,138,133,125,128,123,130,134,114,136,124,146,147,119,133,135)
qqnorm(x, datax=TRUE, main=“Systolic blood pressures of 16 cancer patients”,
pch=20, col=4, cex=1.5)
qqline(x, col = 2, lwd=2, lty=2, datax=TRUE)

Again, from Figure 5.8.4, we can conclude that the data from Example 5.8.1 comes
from a normal population because the plotted points fall almost on a straight line.

PRACTICE PROBLEMS FOR SECTIONS 5.7 AND 5.8

1. The following data give the time to the nearest minute needed for a computer to
execute certain simulation problems:

30 28 35 28 36 29 35 24
26 25 21 25 22 22 26 28

Use normal probability paper (or one of the statistical packages) to verify whether
or not this data set comes from a normal population. Find the sample mean and
sample standard deviation.
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Figure 5.8.4 R normal probability plot for the data in Example 5.8.1.

2. The following data give the amount of effluent water discharged per second from a
sewage treatment facility measured over 20 days:

61 61 76 67 76 62 67 67 70 70
69 66 76 73 69 69 70 73 65 65

Use normal probability paper (or one of the statistical packages) to verify whether
or not these data come from a normal population. Find the sample mean and sample
standard deviation.

3. Use normal probability paper (or one of the statistical packages) to verify whether
or not the following data come from a normal population:

11 14 6 12 11 10 8 8 11 8

4. Referring to Problem 3, if you conclude that the data come from a normal popu-
lation, then use normal probability paper to estimate the mean and the standard
deviation of the population.
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5. Let X be a binomial random variable with parameters n = 20 and p = 0.4.
(a) Use the binomial tables (Table A.2) to determine P (4 ≤ X ≤ 12).
(b) Find the mean and the standard deviation of the binomial distribution, and then

use the appropriate normal approximation to find P (4 ≤ X ≤ 12). Compare the
approximate probability with the actual probability you determined in (a).

6. Find the following probabilities using the normal approximation to the binomial dis-
tribution with parameters n = 100, p = 0.8: (a) P (73 ≤ X ≤ 87), (b) P (73 < X <
88), (c) P (X ≥ 81), (d) P (X < 77).

7. A semiconductor manufacturer recently found that 3% of the chips produced at
its new plant are defective. Assume that the chips are independently defective or
nondefective. Use a normal approximation to determine the probability that a box
of 500 chips contains: (a) at least 10 defective chips (b) between 15 and 20 (inclusive)
defective chips.

8. A pathology lab does not deliver 10% of the test results in a timely manner. Suppose
that in a given week, it delivered 400 test results to a certain hospital. Use the normal
approximation to the binomial to find the following probabilities, assuming that test
results delivered are independent of one another.
(a) At least 30 test results were not delivered in a timely manner.
(b) Between 25 and 35 (inclusive) test results were not delivered in a timely manner.
(c) At most 40 test results were not delivered in a timely manner.

9. An European airline company flies jets that can hold 200 passengers. The company
knows from past experience that on the average, 8% of the booked passengers do
not show up on time to take their flight. If the company booked 212 passengers for
a particular flight, then what is the probability that the plane will have some empty
seats? Assume that the passengers for that flight show up independently.

10. A random variable X is distributed as binomial with parameters n = 20, p = 0.4.
Compute the exact and the normal approximation to P (10 ≤ X ≤ 16) and compare
the two probabilities.

5.9 PROBABILITY MODELS COMMONLY USED
IN RELIABILITY THEORY

An important industrial application of statistics concerns the reliability and life testing
of manufactured devices or systems. Reliability is defined as the probability that a device
or system performs properly, for the period of time intended, under acceptable operating
conditions. A life test is done by exposing a device to an environment typical of the
acceptable operating conditions and noting the time to failure. Accelerated life tests occur
when extreme environment stresses are applied. A subject closely allied to reliability is
that of the actuarial sciences wherein histories of the times to death of individuals are
used to determine insurance strategies.

Here, we study the four distributions that are used quite often in reliability theory,
namely the lognormal distribution, exponential distribution, gamma distribution, and the
Weibull distribution. We will discuss reliability theory later, in Chapter 10.
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5.9.1 The Lognormal Distribution

Definition 5.9.1 A random variable X is said to be distributed as lognormal
with parameters μ and σ2 if the random variable Y = lnX is distributed as N(μ, σ2).
The p.d.f. of the random variable X is given by

f(x) =

⎧⎨
⎩

1
σx

√
2π

e−
(ln x−μ)2

2σ2 , x > 0

0, elsewhere
(5.9.1)

Alternatively, we say that the random variable X = eY is distributed as lognormal
with parameters μ and σ2 if Y is N(μ, σ2). The graph in Figure 5.9.1 gives the shapes
of lognormal density function for various values of σ and μ = 0. The reader should note
that μ and σ2 are the mean and variance of the random variable Y and not of X.

We may also describe a lognormal random variable as follows: if a random variable Y
is distributed as N(μ, σ2), then the random variable X = eY is distributed as lognormal
so that

E(X) = E(eY ) and V ar(X) = V ar(eY ),

where Y is a N(μ, σ2) random variable.
Now using (5.2.1) and (5.2.3), we state the mean and variance of the lognormal dis-

tribution with parameters μ and σ2 in the results (5.9.2) and (5.9.3) stated below.
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Figure 5.9.1 MINITAB graphs of lognormal density function for σ = 0.25, 0.5, and 1.0,
with μ = 0.
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Mean and variance of the lognormal distribution with parameters μ and σ2:

E(X) = exp(μ + σ2/2) (5.9.2)

V ar(X) = exp(2μ + 2σ2) − exp(2μ + σ2) (5.9.3)

These results can be obtained using the m.g.f. of the normal distribution, that is,

E(etY ) = exp(μt + (1/2)σ2t2),

where Y is distributed as N(μ, σ2), and that E(X) = E(eY ), and V ar(X) = V ar(eY ) =
E(eY )2 − (E(eY ))2 = E(e2Y ) − (E(eY ))2.

Example 5.9.1 (Mean and variance of lognormal random variable) The random variable
X denotes the lifetime of an active ingredient in a drug that is modeled by the lognormal dis-
tribution with μ = 1.20 yr and σ2 = 0.10 (yr)2. Find the mean and the standard deviation
of the lifetime of the active ingredient.

Solution: .

Mean = E(X) = exp(μ + σ2/2)

= e1.20+0.10/2 = e1.25

= 3.49 yr

V ar(X) = exp(2μ + 2σ2) − exp(2μ + σ2)

= e2.40+0.20 − e2.40+0.10 = e2.60 − e2.50

= 1.28 (yr)2

Therefore, the standard deviation is 1.13 year.
The probabilities for the lognormal distribution can be found using tables of the

standard normal distribution, as illustrated by the following example.

Example 5.9.2 (Lognormal probabilities) Refer to Example 5.9.1. Find the following
probabilities: (a) P (X ≥ 4), (b) P (X ≤ 2), (c) P (3 ≤ X ≤ 5).

Solution: Since ln X is distributed as N(1.20, 0.10), to find the probabilities above,
we proceed as follows:

(a) . P (X ≥ 4) = P (ln X ≥ ln 4)

= P (ln X ≥ 1.386)

= P

(
ln X − 1.20

0.316
≥ 1.386 − 1.20

0.316

)
= P (Z ≥ 0.59) ≈ 0.2776.
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(b) . P (X ≤ 2) = P (ln X ≤ ln 2)

= P (ln X ≤ 0.693)

= P

(
ln X − 1.20

0.316
≤ 0.693 − 1.20

0.316

)
= P (Z ≤ −1.60) ≈ 0.0548.

(c) . P (3 ≤ X ≤ 5) = P (ln 3 ≤ ln X ≤ ln 5)

= P (1.0986 ≤ ln X ≤ 1.6094)

= P

(
1.0986 − 1.20

0.316
≤ ln X − 1.20

0.316
≤ 1.6094 − 1.20

0.316

)
= P (−0.32 ≤ Z ≤ 1.30) ≈ 0.5287.

The reader can also determine these probabilities using MINITAB or R. For example, to
find the probability in Part (c) above, by proceeding as follows:

MINITAB

1. Enter the values 3 and 5 in column C1.
2. From the Menu bar, select Calc > Probability Distribution > Lognormal.
3. In the dialog box, click the circle next to Cumulative probability.

4. Enter 1.20 (the value of μ) in the box next to Location, 0.316 (the value of σ) next
to Scale, and zero next to Threshold.

5. Click the circle next to Input column and type C1 in the box next to it.
6. Click OK.
7. In the session window, text appears as shown in the following box. Thus, P (3.0 ≤

X ≤ 5.0) = P (X ≤ 5.0) − P (X ≤ 3.0) = 0.902459 − 0.374163 = 0.5283.
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Cumulative Distribution Function
Lognormal with location = 1.2 and scale = 0.316 

x       P( X ≤ x )

3 0.374163

5 0.902459

USING R
R has a built in cumulative lognormal distribution function ‘plnorm(q, meanlog, sdlog)’,
where q is the quantile and meanlog and sdlog are the mean and the standard deviation of
the lognormal distribution, respectively. So, referring to Example (5.9.1), we are asked to
find P (3.0 ≤ X ≤ 5.0), which can be computed by typing the following in the R Console
window.

plnorm(5, 1.2, 0.316) - plnorm(3, 1.2, 0.316)

#R output
[1] 0.5282957

We find that P (3.0 ≤ X ≤ 5.0) ≈ 0.5283, the same value found using MINITAB.
We now state another important result related to lognormal random variables.

Let Xi, i = 1, 2, . . . , n, be n independent lognormal random variables with param-
eters μi and σ2

i ; then, the random variable Y =
∏n

i=1 Xi is also lognormal with
parameters μ = μ1 + · · · + μn and σ2 = σ2

1 + · · · + σ2
n. This result follows immedi-

ately by noting that lnY =
∑n

i=1 ln Xi and then using Definition 5.9.1 and the result
of Theorem 5.6.1.

PRACTICE PROBLEMS FOR SECTION 5.9.1

1. The lifetime, in hours, of a head gasket of a cylinder in a car engine is distributed as
lognormal with mean 6000 and standard deviation 5000 hours. Find the probability
that the lifetime of the head gasket is more than 8000 hours.

2. The size of a computer chip is distributed as lognormal with parameters μ and σ
The following data give the sizes of eight randomly selected chips:

4.18 2.83 3.76 4.79 3.59 2.98 4.16 2.12

Estimate μ and σ.
3. Suppose that a random variable X is distributed as lognormal with parameters μ = 2

and σ = 0.5. Find the mean and the variance of the random variable X.
4. Suppose that a random variable X is normally distributed with μ = 4 and σ2 =

4. If the lifetime Y (hours), of an electronic component can be modeled with the
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distribution of the random variable Y = eX , then find the following: (a) the mean
and the standard deviation of Y, (b) P (Y > 4000), (c) P (Y ≤ 5000).

5. Suppose that a random variable Y has a lognormal distribution with parameters
μ = 4 and σ2 = 4. Determine the following: (a) the mean and standard deviation of
Y, (b) P (Y > 250), (c) P (100 < Y < 200).

6. Suppose that the lifetime X, in hours, of a surgical instrument can be modeled
with lognormal distribution having parameters μ = 8 and σ2 = 2. Determine the
following: (a) P (X ≥ 25,000), (b) P (X > 24,000), (c) P (22,000 < X < 28,000).

5.9.2 The Exponential Distribution
In Chapter 4, we studied the Poisson probability distribution, which describes the phe-
nomenon of random events that occur in a Poisson process. The events in the Poisson
process occur randomly. This suggests, for example, that the time between the occur-
rences of any two consecutive events, say T, is a random variable. The random variable T
is then distributed as exponential. As another example, the distance between two defects
in a telephone or electric wire is distributed as an exponential when these defects follow
the Poisson process. The exponential distribution has a wide range of applications in any
process that does not take the aging/anti-aging factor into account. For example, if a
machine is always as good as new, then to study its reliability, we use the exponential
distribution.

Definition 5.9.2 A random variable X is said to be distributed by the exponential
distribution with parameter λ, if its p.d.f. is defined as follows:

f(x) =

{
λe−λx for x ≥ 0
0 otherwise

(5.9.4)

In Definition 5.9.2, λ > 0 is the only parameter of the distribution and e ≈ 2.71828.
It is important to note that λ is the number of events occurring per unit time, per unit
length, per unit area, or per unit volume in a Poisson process. The shape of the density
function of an exponential distribution changes as the value of λ changes. Figure 5.9.2
shows density functions of exponential distributions for some selected values of λ.

Now from (5.2.7) and (5.2.8), the mean and standard deviation of the exponential
distribution with p.d.f. given by (5.9.4) are

μ = E(X) = 1/λ and σ =
√

V ar(X) = 1/λ (5.9.5)

The shape of the density function of a random variable X distributed as exponential
distribution changes as the value of the parameter λ changes (see Figure 5.9.2).
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Figure 5.9.2 Graphs of exponential density function for λ = 0.1, 0.5, 1.0, and 2.0.

Distribution Function F (x) of the Exponential Distribution

Consulting (5.9.4), an exponential random variable with parameter λ has its c.d.f., for
x > 0, given by

F (x) = P (X ≤ x)

=
∫ x

0
λe−λtdt (5.9.6)

= 1 − e−λx

It follows that

P (X > x) = 1 − P (X ≤ x)

= 1 − F (x) (5.9.7)

= 1 − (1 − e−λx) = e−λx

Equation (5.9.7) leads us to an important property known as the memoryless property of
the exponential distribution. As an illustration of this property, we consider the following
example.

Example 5.9.3 (Memoryless property of the exponential distribution) Let the break-
downs of a machine follow the Poisson process so that the random variable X denoting
the number of breakdowns per unit of time is distributed as a Poisson distribution. Then,
the time between any two consecutive failures is also a random variable T (say) that is
distributed as an exponential with parameter λ. Assuming λ = 0.1, determine the following
probabilities:

(a) P (T > t), that is, the probability that the machine will function for at least time t
before it breaks down again.
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(b) P (T > t + t1|T > t1). Note that the condition T > t1 means that it is known the
machine has already operated for time t1 after a breakdown, and then we wish to
find the probability it will function for at least t more units of time starting from
time t1. Hence, we wish to find the probability that the machine will function for
a total time of at least t + t1 before its next breakdown given that it has already
functioned for time t1 since the previous breakdown. Here, t1 and t are positive
numbers.

Solution: (a) Given that λ = 0.1, we want to find the probability P (T > t). From (5.9.7),
this probability is given by

P (T > t) = e−λt = e−(0.1)t = e−t/10

(b) In this case, we are interested in finding the conditional probability P (T > t + t1|T >
t1). Using the definition of conditional probability, we wish to find

P (T > t + t1|T > t1) =
P [(T > t + t1) ∩ (T > t1)]

P (T > t1)

But the event [(T > t + t1) ∩ (T > t1)] means that T > t + t1 and T > t1. This implies
that (T > t + t1), since t > 0 and T > t1 > 0. Thus, we have

P (T > t + t1|T > t1) =
P (T > t + t1)

P (T > t1)

Now using the result in (5.9.7), we have

P (T > t + t1|T > t1) =
e−λ(t+t1)

e−λt1

= e−λt

= e−t/10

since λ = 0.1. Therefore, the probability P (T > t + t1|T > t1) is the same as the prob-
ability P (T > t). This result means that under the exponential model, the probability
P (T > t) remains the same no matter from what point we measure the time t. In other
words, it does not remember when the machine has had its last breakdown. For this reason,
the exponential distribution is known to have a memoryless property.

From the previous discussion, we can see that it does not matter when we start
observing the system since it does not take into account an aging factor. That is, whether
the machine is brand new or 20 years old, we have the same result (or exponential
model) as long as we model the system using the same Poisson process. In practice,
however, this conclusion is not completely valid. For example, if we are investigating
how toll booths function during rush hours and nonrush hours, and we model it
with the same Poisson process, then the results may not be valid because of the two
different time periods in the traffic flow. It would make more sense that when there
is clear distinction between the two scenarios, we should model them by two different
processes.
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It is easy to see that the m.g.f. of the exponential random variable X is as given in
(5.9.8) below.

Moment-generating function of the exponential random variable X:

MX(t) = λ

∫ ∞

0
e−x(λ−t)dx = (1 − t/λ)−1 for λ > t (5.9.8)

Now by taking the first and second derivative of MX(t) in Equation (5.9.8) and then
substituting t = 0, it is easy to prove that the mean and the variance of the exponential
distribution (5.9.4) is given below.

Mean and variance of the exponential distribution:

μ = E(X) =
1
λ

and σ2 = V ar(X) =
1
λ2 (5.9.9)

Example 5.9.4 (Using MINITAB and R for exponential probabilities) Let X be a ran-
dom variable distributed as an exponential distribution with λ = 2 or mean value equal to
0.5, which is the scale parameter. Determine the following probabilities using MINITAB
and R: (a) P (X ≥ 3), (b) P (X ≤ 5.0), (c) P (3.0 ≤ X ≤ 5.0).

Solution: In order to determine the probabilities P (X ≥ 3.0), P (X ≤ 5.0), and P (3.0 ≤
X ≤ 5.0), we have to first find the probabilities P (X ≤ 3.0) and P (X ≤ 5.0). Then, P (X ≥
3.0) = 1 − P (X ≤ 3.0), P (3.0 ≤ X ≤ 5.0) = P (X ≤ 5.0) − (X ≤ 3.0). To find the proba-
bilities P (X ≤ 3.0) and P (X ≤ 5.0), we proceed as follows:

MINITAB

1. Enter the values 3 and 5 in column C1.
2. From the Menu bar, select Calc > Probability Distribution > Exponential.
3. In the following dialog box, click the circle next to Cumulative probability.
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4. Enter 0.5 (the value of the mean) in the box next to Scale, since the threshold
parameter is zero.

5. Click the circle next to Input column and type C1 in the box next to it and Click
OK.

6. In the Session window, text will appear as shown below, in the following box. Thus,
P (X ≥ 3.0) = 1 − P (X ≤ 3.0) = 1 − 0.997521 = 0.002479;P (X ≤ 5.0) = 0.999955,
so that P (3.0 ≤ X ≤ 5.0) = P (X ≤ 5.0) − P (X ≤ 3.0) = 0.999955 − 0.997521 =
0.002434

Cumulative Distribution Function
Exponential with mean = 0.5

x       P( X ≤ x )

3 0.997521

5 0.999955

USING R

R has a built in cumulative exponential distribution function ‘pexp(q, rate)’, where q is
the quantile and rate is the rate parameter which is equal to 1/mean of the exponential
distribution. So, referring to Example 5.9.4, we are asked to find P (3.0 ≤ X ≤ 5.0), which
can be computed by typing the following in the R Console window.

pexp(5, 2) - pexp(3, 2) #Note that: rate = 1/0.5 = 2

#R output
[1] 0.002433352

PRACTICE PROBLEMS FOR SECTION 5.9.2

1. The waiting time T at a bank teller’s window between two successive customers is
distributed as exponential with a mean of four minutes. Find the following proba-
bilities:
(a) P (T ≥ 5, (b) P (3 ≤ T ≤ 6), (c) P (T ≤ 4), and (d) P (T < 5).

2. Suppose that a random variable X is distributed as exponential distribution with
parameter λ. Show that P (X ≤ 10) = P (X ≤ 17|X ≥ 7). This property of exponen-
tial distribution is known as the “memoryless” property.

3. Suppose that the lapse of time between two successive accidents in a paper mill is
exponentially distributed with a mean of 15 days. Find the probability that the time
between two successive accidents at that mill is more than 20days.

4. Let a random variable X be distributed exponentially with mean equal to 10. Find
the m.g.f. of the random variable Y = 4 + 3X. Then, use this m.g.f. to find the mean
and variance of the random variable Y.

5. Suppose that a computer lab in a small liberal arts college has 20 similar computers.
Let the random variable T denote the time, in years, to failure of this type of
computer. If the random variable T follows the exponential distribution with mean
equal to three years, then find the probability that 15 of the 20 computers are still
functioning after five years.
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6. The lifetime X, in years, of car batteries has an exponential distribution with a mean
life of five years. If you buy a new car and plan to keep it for six years, then find
the probability that you will change the battery during your ownership.

7. The time T, in minutes, between the arrival of two successive patients in an emer-
gency room can be modeled as an exponential distribution with mean 20 minutes.
Determine the following probabilities:
(a) P (T > 30), (b) P (12 < T < 18), (c) P (T < 25).

8. Suppose that the time between arrivals of two buses at a city bus station is exponen-
tially distributed with a mean of five minutes. Determine the following probabilities:
(a) More than two buses arrive during an interval of 5 minutes.
(b) No bus arrives during an interval of 10 minutes.
(c) No more than two buses arrive during an interval of 15 minutes.

5.9.3 The Gamma Distribution
Another probability distribution found useful in reliability theory is the gamma distribu-
tion. The gamma distribution is frequently used as a probability model for waiting times.
For example, in life testing, the waiting time until death is a random variable that is
usually modeled with a gamma distribution.

Definition 5.9.3 The random variable T is said to be a gamma variable of order
γ with parameter λ if its p.d.f. is given by

f(t|γ, λ) =

⎧⎨
⎩

λγ

Γ(γ)
tγ−1e−λt, if t ≥ 0

0, if t < 0
(5.9.10)

for γ > 0, λ > 0.

Note that γ is sometimes called the shape parameter, and 1/λ is called the scale
parameter. The shape of the gamma p.d.f. (5.9.10) changes as the parameters λ and γ
change. The p.d.f. of the gamma distribution for various values of the shape parameter γ
and the scale parameter λ = 1 is shown in Figure 5.9.3.

Further note that Γ(γ) is defined as

Γ(γ) =
∫ ∞

0
xγ−1e−xdx, γ > 0 (5.9.11)

When the random variable T must originate at some threshold parameter value τc > 0, the
gamma distribution is written as

f(t|γ, λ, τc) =

⎧⎨
⎩

λγ

Γ(γ)
(t − τc)

γ−1e−λ(t−τc), if t ≥ τc

0, if t < τc

(5.9.12)

We remark that it can easily be shown that

Γ(γ) = (γ − 1)Γ(γ − 1) (5.9.13)
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Figure 5.9.3 Probability density function of the gamma distribution for various values
of the shape parameter γ and the scale parameter λ = 1.

so that if γ is a positive integer
Γ(γ) = (γ − 1)! (5.9.14)

and
Γ(1) = 0! = 1 (5.9.15)

The m.g.f. of the gamma random variable X is given below.

Moment-generating function of the gamma distribution:

MX(t) =
(

1 − t

λ

)−γ

(5.9.16)

Now, by taking the first and second derivative of MX(t) in Equation (5.9.16) and then
substituting t = 0, it is easy to prove that the mean and the variance of the gamma
distribution (5.9.10) are as given in (5.9.17) below.

Mean and variance of the gamma distribution:

μ = E(X) = γ/λ and σ2 = V ar(X) = γ/λ2 (5.9.17)



5.9 Probability Models Commonly used in Reliability Theory 213

We note that the gamma distribution (5.9.10) becomes the exponential distribution when
γ = 1.

Example 5.9.5 (Gamma model for industrial breakdowns) Suppose that the length of
time T (in months) between two major breakdowns in a manufacturing company can be
modeled by a gamma distribution with γ = 9 and λ = 0.25. Find the mean μ and the
standard deviation σ of the time between the two major breakdowns in that company. If
the model above is valid, how likely is it that the time between two major breakdowns could
be as great as 45 months?

Solution: Using the expression for the mean and the variance in Equation (5.9.17), we
have

μ = 9/0.25 = 36, σ =
√

γ/λ = 3/0.25 = 12

Since the period of 45 months falls within one standard deviation of the mean, it is very
likely that the time between the two major breakdowns could be as great as 45 months.

Example 5.9.6 (Using MINITAB and R for gamma probabilities) The lead time (in
days) for orders by company A of a certain part from a manufacturer is modeled by
a gamma distribution with shape parameter γ = 9 and scale parameter 1/λ = 4. Using
MINITAB and R, find the probability that the lead time for an order is less than or equal to
45 days.

MINITAB

1. Enter the value 45 in column C1.
2. From the Menu bar, select Calc > Probability Distribution > Gamma.
3. In the dialog box, click the circle next to Cumulative probability.

4. Enter 9 in the box next to Shape parameter, 4 in the box next to Scale, and 0
in the box next to Threshold parameter.



214 5 Continuous Random Variables

5. Click the circle next to Input column and type C1 in the box and Click OK.
6. In the session window, text appears as shown in the following box. Thus, P (X ≤

45) = 0.789459.

x     P( X ≤ x )

45 0.789459

Cumulative Distribution Function
Gamma with shape = 9 and scale = 4

USING R

R has a built-in cumulative gamma distribution function ‘pgamma(q, shape, rate, scale =
1/rate)’, where q is the quantile and shape and scale are the shape and scale parameters
of the gamma distribution, respectively. Alternatively, one can specify the rate parameter,
which is equal to 1/scale. So, referring to Example 5.9.6, we are asked to find P (X ≤ 45),
which can be computed by typing the following in the R Console window.

pgamma(45, shape = 9, scale = 4)

#R output
[1] 0.7894591

This is the same value found using the MINITAB calculation.

5.9.4 The Weibull Distribution
Consider a random variable X distributed as the exponential distribution with λ = 1, so
that its p.d.f. is given by f(x) = e−x, x > 0. Now define a new random variable T, such
that X = [(T − τ)/α]β , T > τ , so that dx = (β/α)[(t − τ)/α]β−1dt. Here, α > 0, β > 0,
and τ ≥ 0 are called the scale, shape, and threshold parameters, respectively. The result-
ing distribution of the random variable T is called the Weibull distribution. The Weibull
distribution, named after its inventor, is used extensively in quality and reliability engi-
neering (see Weibull, 1951). Unlike the exponential distribution, the Weibull distribution
takes into account an aging/antiaging factor.

Definition 5.9.4 A random variable T is said to be distributed as the Weibull
distribution if its probability density function is given by

f(t|α, β, τ) =

⎧⎪⎨
⎪⎩

β

α

(
t − τ

α

)β−1

e−[(t−τ)/α]β , for t > τ

0, otherwise
(5.9.18)

where α > 0, β > 0, τ ≥ 0.
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Usually, α is called the scale parameter, β the shape parameter, and τ the location or
threshold parameter. The c.d.f. of the Weibull distribution is given by

F (t) =

{
P (T ≤ t) = 1 − e−[(t−τ)/α]β , for t > τ

0, for t < τ
(5.9.19)

From (5.9.19), it follows that

P (T ≥ t) = 1 − P (T ≤ t) = 1 − (1 − e−[(t−τ)/α]β ) = e−[(t−τ)/α]β (5.9.20)

Setting the location parameter value τ = 0 and the scale parameter α = 1 gives the Weibull
distribution in its standard form, that is,

f(t|β) = βtβ−1e−tβ

, β > 0, t > 0 (5.9.21)

Graphs of the Weibull distribution for α = 1 and β = 1, 3, and 5 for τ = 0 are shown in
Figure 5.9.4.
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Figure 5.9.4 The p.d.f. of the Weibull distribution for various values of β and α = 1,
with τ = 0.

Mean and Variance of the Weibull Distribution
Now, if T has p.d.f. (5.9.18) for τ = 0, then E(T ) = μ and V ar(T ) = σ2 are given by

Mean and variance of Weibull distribution:

μ = E(T ) = αΓ
(

1 +
1
β

)
(5.9.22)
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σ2 = V ar(T ) = α2

[
Γ

(
1 +

2
β

)
−

(
Γ

(
1 +

1
β

))2
]

(5.9.23)

where Γ(n) is the gamma function. As mentioned in Section 5.9.3, when n is a positive
integer, then Γ(n) = (n − 1)!.

Example 5.9.7 (Weibull probabilities) From a given data set on lifetime T of a certain
system, the parameters of a Weibull distribution are estimated to be α = 4 and β = 0.5,
where t is measured in thousands of hours with τ = 0. Determine the following: (a) mean
time before the system breaks down, (b) P (T ≥ 5), (c) P (T ≥ 10), (d) P (T ≤ 10).

Solution: (a). Using the expression in (5.9.22) for the mean, we have

μ = 4 × Γ(1 + 1/0.5) = 4 × Γ(3) = 4 × (2!) = 8

(b) Using the result in (5.9.20) and taking τ = 0, we have

P (T ≥ 5) = e−(5/4)0.5
= e−(1.25)0.5

= e−1.118 = 0.3269

(c) Again, using the result in (5.9.20) and taking τ = 0, we have

P (T ≥ 10) = e−(10/4)0.5
= e−1.581 = 0.2058

(d) The probability P (T ≤ 10) can be found using the result in (c), that is,

P (T ≤ 10) = 1 − P (T ≥ 10) = 1 − 0.2058 = 0.7942.

It turns out that statistical packages are able to handle problems of this type. We illustrate
with the following examples.

Example 5.9.8 (Using MINITAB and R for Weibull probabilities) From a data set on a
system, the parameters of a Weibull distribution are estimated to be α̂ = 4 and β̂ = 0.5;
here, time T is measured in thousands of hours. Using MINITAB and R, find the probability
P (T ≤ 10).

Solution: In order to determine the probability P (T ≤ 10), we proceed as follows:

MINITAB

1. Enter the value 10 in column C1.
2. From the Menu bar, select Calc > Probability Distribution > Weibull.
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3. In the dialog box, click the circle next to Cumulative probability.

4. Enter 0.5 in the box next to Shape parameter, 4 in the box next to Scale, and 0
in the box next to Threshold parameter.

5. Click the circle next to Input column and type C1 in the next box and Click OK.
6. In the session window, text appears as shown in the following box.

Cumulative Distribution Function
Weibull with shape = 0.5 and scale = 4

x     P( X ≤ x )

10 0.794259

USING R

R has a built in cumulative Weibull distribution function ‘pweibull(q, shape, scale)’, where
q is the quantile and shape and scale are the shape and scale parameters of the Weibull
distribution. So, referring to Example 5.9.8, we are asked to find P (T ≤ 10), which can be
computed by typing the following in the R Console window as follows.

pweibull(10, shape = 0.5, scale = 4)

#R output
[1] 0.7942593

This is the same value found using the MINITAB calculation.

PRACTICE PROBLEMS FOR SECTIONS 5.9.3 AND 5.9.4

1. Suppose that a random variable T denoting the time, in years, to failure of a type
of computer is distributed by a gamma probability distribution with γ = 6, λ = 2.
Find the probability that 12 of 15 such computers are still functioning after five
years.
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2. The lifetime, in years, of a computer hard drive follows a gamma distribution with
mean of five years and standard deviation three years. Find the probability that the
hard drive will last:
(a) no more than six years, (b) at least four years, (c) between five and seven years.

3. The time, in hours, required to perform a quadruple bypass surgery follows the
gamma distribution with mean eight hours and standard deviation two hours. Find
the probability that a quadruple bypass surgery will last:
(a) no more than 12 hours, (b) at least six hours, (c) between six and 10 hours.

4. Suppose that a random variable T is distributed as Weibull with parameters α =
250, β = 0.25, and threshold parameter τ = 0.
(a) Find the mean and the variance of the random variable T.
(b) Find the probability P (5000 < T < 7000).

5. The lifetime, in years, of a sport utility vehicle (SUV) is distributed as Weibull with
parameters α = 6, β = 0.5, and threshold parameter τ = 0.
(a) Find the mean and the variance of the lifetime of the SUV.
(b) Find the probability that the SUV will last more than 10 years.
(c) Find the probability that the SUV will last less than 15 years.

6. The lifetime T of certain pieces of medical equipment is distributed as Weibull with
parameters α = 6, β = 0.25, and threshold parameter τ = 0.
(a) Find the mean and the variance of the lifetime of the equipment.
(b) Find the probability P (130 < T < 160).

7. Suppose that the time T (in hours) needed to repair a water pump can be modeled
as gamma with γ = 2, λ = 2. What is the probability that the next repair of water
pump will need:
(a) at least 1 hour, (b) at most 2 hours, and (c) between 1 and 2 hours?

8. Suppose that the lifetime (in years) of a battery for a Movado watch is a random
variable having a gamma distribution with γ = 2, λ = 0.5.
(a) What is the expected life of such a battery?
(b) What is the probability that such a battery will be working after five years?

9. Suppose that in Problem 8 the lifetime of the battery has the Weibull distribution
with α = 2, β = 0.5 instead of the gamma distribution of Problem 8.
(a) What is the expected life of such a battery?
(b) What is the probability that such a battery will be working after five years?

10. Suppose that the lifetime T (yr) of a shock absorber in a car has the Weibull distri-
bution with α = 1, β = 0.4.
(a) What is the expected life of such a shock absorber?
(b) What is the probability that such a shock absorber will be working after 10

years?

5.10 A CASE STUDY

Case Study (Emissions from cars)1 McDonald, Vance, and Gibbons studied the effect of
odometer mileage on the emission control system in cars. The data in Table 5.10.1 give

1 Source: McDonald, Vance, and Gibbons (1995) [Data used with permission].
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Table 5.10.1 Data on emissions from cars.

0 Miles 4000 Miles 24,000 Miles 24,000 Miles
(before maintenance) (after maintenance)

Car HC CO NOx HC CO NOx HC CO NOx HC CO NOx

1 0.16 2.89 2.21 0.26 1.16 1.99 0.23 2.64 2.18 0.36 3.15 1.79
2 0.38 2.17 1.75 0.48 1.75 1.90 0.41 2.43 1.59 0.40 3.74 1.81
3 0.20 1.56 1.11 0.40 1.64 1.89 0.35 2.20 1.99 0.26 2.36 1.68
4 0.18 3.49 2.55 0.38 1.54 2.45 0.26 1.88 2.29 0.26 2.47 2.58
5 0.33 3.10 1.79 0.31 1.45 1.54 0.43 2.58 1.95 0.35 3.81 1.92
6 0.34 1.61 1.88 0.49 2.59 2.01 0.48 4.08 2.21 0.65 4.88 2.22
7 0.27 1.14 2.20 0.25 1.39 1.95 0.41 2.49 2.51 0.40 2.82 2.51
8 0.30 2.50 2.46 0.23 1.26 2.17 0.36 2.23 1.88 0.30 2.79 2.07
9 0.41 2.22 1.77 0.39 2.72 1.93 0.41 4.76 2.48 0.45 3.59 2.87
10 0.31 2.33 2.60 0.21 2.23 2.58 0.26 3.73 2.70 0.30 3.78 2.68
11 0.15 2.68 2.12 0.22 3.94 2.12 0.58 2.48 2.32 0.52 3.94 2.61
12 0.36 1.63 2.34 0.45 1.88 1.80 0.70 3.10 2.18 0.60 3.41 2.23
13 0.33 1.58 1.76 0.39 1.49 1.46 0.48 2.64 1.69 0.44 2.44 1.76
14 0.19 1.54 2.07 0.36 1.81 1.89 0.33 2.99 2.35 0.31 2.97 2.37
15 0.23 1.75 1.59 0.44 2.90 1.85 0.48 3.04 1.79 0.44 3.90 1.71
16 0.16 1.47 2.25 0.22 1.16 2.21 0.45 3.78 2.03 0.47 2.42 2.04

Note: Hydrocarbon (HC), Carbon Monoxide (CO), and Nitrogen Oxide (NOx).

three types of emissions: hydrocarbon (HC), carbon monoxide (CO), and nitrogen oxide
(NOx), with their corresponding mileage conditions.

(a) Transform the CO emission at different mileage using the transformation y = lnx.
(b) Plot the transformed data in each case on normal probability paper and determine

whether the transformed data fits a normal model satisfactorily.
(c) If, in (b), the normal model has been found satisfactory, then use the normal proba-

bility plot in (b) to estimate the mean μ and the standard deviation σ of the normal
model.

(d) Find the probability that the CO emission at 4000 miles is between 2 and 4 g.
(e) Repeat (a) through (c) for HC and NOx emissions.
(f) Find the probability that the HC and NOx emission at 4000 miles is between (0.3, 0.7)

and (1.5, 3.0) g, respectively.

Note that in (d) through (f), it is important to use the information that if in (b) the
transformed data fits a normal model satisfactorily, then the original emission values are
distributed as lognormal.

5.11 USING JMP

This section is not included here but is available for download from the book website:
www.wiley.com/college/gupta/statistics2e.
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Review Practice Problems

1. A random variable X has the distribution N(1500, (200)2). Find:
(a) P (X < 1400)
(b) P (X > 1700)
(c) A, where P (X > A) = 0.05
(d) B, where P (1500 − B < X < 1500 + B) = 0.95

2. If X has the distribution N(15.0, 6.25), find
(a) P (X < 12.0)
(b) P (X > 16.5)
(c) C, where P (X < C) = 0.90
(d) D, where P (X > D) = 0.025
(e) E, where P (|X − 15.0| < E) = 0.99

3. Suppose that a machine set for filling 1-lb boxes of sugar yields a population of fillings,
whose weights are (approximately) normally distributed with a mean of 16.30 oz and
a standard deviation of 0.15 oz. Estimate:
(a) The percentage of fillings that will be underweight (i.e., less than 1 lb)
(b) The percentage of fillings within 16.3 ± 0.2 oz

4. Show that P (a < X < a + l), where l is a positive constant and X has the distribution
N(μ, σ2) is maximized if a = μ − l/2.

5. A process for making quarter inch ball bearings yields a population of ball bear-
ings with diameters having mean 0.2497 in. and standard deviation of 0.0002 in. If we
assume approximate normality of diameters and if specifications call for bearings with
diameters to be within 0.2500 ± 0.0003 inch:
(a) What fraction of bearings turned out under the setup are defective, that is, do

not meet diameter specifications?
(b) If minor adjustments of the process result in changing the mean diameter but not

the standard deviation, what mean should be aimed at in the process setup so as
to minimize the percentage of defectives?

(c) What is the percentage of defectives in such a setup?

6. In Example 5.6.1, if “acceptable fits” are those in which the difference between hole
diameter and pin diameter lies within 0.0010 ± 0.0005 inch, what fraction of random
matches would yield acceptable fits?

7. Suppose that the life spans (in months) of 15 patients after they are diagnosed with
a particular kind of cancer are found to be as follows:

47 50 37 44 37 44 38 35 40 38 49 42 39 38 44

Using MINITAB, R, or JMP, verify if it is appropriate to assume that these data come
from a normal population.

8. A fair coin is tossed 20 times. Find the exact and the normal approximation of the
probability of obtaining 13 heads. Compare the two probabilities.
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9. Suppose that 20% of the articles produced by a machine are defective, the defectives
occurring at random during production. Using the normal distribution for determining
approximations,
(a) What is the approximate probability that if a sample of 400 items is taken from

the production, more than 100 will be defective?
(b) For what value of K is the probability 0.95 that the number of defectives in the

sample will fall within 80 ± K?

10. If a sack of 400 nickels is emptied on a table and spread out, determine:
(a) The probability (approximately) of getting between 175 and 225 heads (inclusive)?
(b) The probability (approximately) that the number of heads is less than y? Express

the answer in terms of the function Φ(z).

11. If 10% of the articles produced by a given process are defective:
(a) What is the probability (approximately) that more than 15% of a random sample

of 400 items will be defective?
(b) For what value of K is the probability (approximately) 0.90 that the number of

defectives in a sample of 400 lies within 40 ± K?

12. It is known that the probability of dealing a bridge hand with at least one ace is
approximately 0.7. If a person plays 100 hands of bridge, what is the approximate
probability
(a) That the number of hands he/she receives containing at least one ace is between

60 and 80 inclusive?
(b) That he/she receives at most 20 hands with no aces?

13. A die is rolled 720 times. Using a normal distribution to approximate probabilities,
estimate the probability that
(a) More than 130 sixes turn up.
(b) The number of sixes obtained lie between 100 and 140 inclusive.

14. A mass-produced laminated item is made up of five layers. A study of the thickness
of individual layers shows that each of the two outside layers have mean thickness
of 0.062 in., and each of the three middle layers have mean thickness 0.042 in. The
standard deviation of thickness of outside layers is 0.004 in. and that of inside layers
is 0.003 in.
(a) If random assembly is employed, what are the mean thicknesses of the laminated

items?
(b) What is the standard deviation of the thicknesses of the laminated items?
(c) Assuming the thicknesses of the individual sections to be approximately nor-

mally distributed, what percentage of items have thicknesses between 0.240 and
0.260 in.?

(d) For what value of K will 90% of the items have thicknesses falling within 0.250 ±
K?

15. An article is made up of three independent parts A, B, and C. The weights of the
A’s have an (approximately) normal distribution with mean 2.05 oz and standard
deviation 0.03 oz. Those of the B’s have an (approximately) normal distribution with
mean 3.10 oz and standard deviation 0.04 oz. Those of the C’s have an (approximately)
normal distribution with mean 10.5 oz and deviation of 0.12 oz. Then approximately
(a) What fraction of the assembled articles have weights exceeding 1 lb?
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(b) The probability is 0.95 that four articles picked at random will have a total weight
less than what value?

16. Suppose that items of a certain kind are counted by weighing a box of 100 of these
items. The population of individual items has a mean weight of 1.45 oz and standard
deviation of 0.02 oz. A batch of items weighing between 144.5 and 145.5 items is
counted as 100 items. What is the probability:
(a) That a batch of 100 items will be counted correctly?
(b) That 101 items will be passed as 100?

17. A resistor is composed of eight component parts soldered together in series, so that
the total resistance of the resistor equals the sum of the resistances of the component
parts. Three of the components are drawn from a production lot that has a mean of
200 Ω and a standard deviation of 2 Ω, four components from a lot that has a mean
of 150 Ω and standard deviation of 3 Ω, and one component from a lot that has a
mean of 250 Ω and standard deviation of 1 Ω. Assume that the total resistance of the
assembled resistors is approximately normally distributed.
(a) Five percent of such resistors have a resistance less than what value?
(b) What is the probability that a sample of four such resistors manufactured from

these components have an average resistance in excess of 1443 Ω?

18. Let Z be a random variable distributed as the standard normal. Determine the prob-
ability that the random variable Z takes a value (a) within one standard deviation of
the mean, (b) within two standard deviation of the mean, (c) within three standard
deviation of the mean.

19. Let Z be a random variable distributed as the standard normal. Using the normal
distribution table (Table A.4) determine the following probabilities: (a) P (Z ≤ 2.11),
(b) P (Z ≥ −1.2), (c) P (−1.58 ≤ Z ≤ 2.40), (d) P (Z ≥ 1.96), (e) P (Z ≤ −1.96).

20. Let X be a random variable distributed by the exponential distribution with λ = 1.5.
Determine the probability that the random variable X assumes a value: (a) greater
than 2, (b) less than 4, (c) between 2 and 4, (d) less than 0.

21. Let X be a random variable distributed as an exponential distribution with λ = 2.
Determine the probability that the random variable X assumes a value: (a) greater
than 1, (b) greater than 2, (c) between 1 and 2, (d) greater than 0.

22. Let X be a random variable distributed as the Weibull distribution with α = 100 and
β = 0.5. Determine the mean and the variance of the random variable X. (Assume
that τ , the threshold parameter, has value τ = 0.)

23. In Problem 22, determine the probability that the random variable X assumes a value:
(a) greater than 450 and (b) greater than 700.

24. Suppose that the life of a motor (in hours) follows the Weibull distribution with
α = 1000 and β = 2.0. Determine the mean and the variance of the random variable X.

25. In Problem 24, determine the probabilities of the following events:
(a) The motor fails before 800 hours.
(b) The motor lasts more than 1000 hours.
(c) The motor lasts between 1000 and 1500 hours.
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26. The time (in hours) needed to finish a paint job of a car is an exponentially distributed
random variable with λ = 0.2.
(a) Find the probability that a paint job exceeds seven hours.
(b) Find the probability that a paint job exceeds seven hours but finishes before 10

hours.
(c) Find the probability that a paint job lasts at least eight hours, given that it

exceeds five hours.
(d) Find the probability that a paint job finishes before seven hours.

27. The number of years a computer functions is exponentially distributed with λ = 0.1.
David bought a five-year-old computer that is functioning well. What is the probability
that David’s computer will last another nine years?

28. Suppose that the lifetime of a serpentine belt of a car is distributed as an exponential
random variable with λ = 0.00125. What is the probability that a serpentine belt lasts
(a) 700 hours?
(b) More than 850 hours?
(c) Between 600 and 900 hours?
(d) At least 650 hours?

29. Suppose that the length of time X (in months) taken by two different medications,
say Lipitor and Zocor, to lower the bad cholesterol (LDL) level by 20 mg/dl can be
modeled by two gamma distributions with parameters γ = 3, λ = 1 and γ = 6, λ = 1.5,
respectively.
(a) Find the mean and variance of time taken by the medication Lipitor to lower the

bad cholesterol (LDL) level by 20 mg/dl.
(b) Find the mean and variance of time taken by the medication Zocor to lower the

bad cholesterol (LDL) level by 20 mg/dl.

30. In Problem 29, find the following probabilities:
(a) Lipitor takes at least two months to lower the bad cholesterol (LDL) level by

20 m·g/dl
(b) Zocor takes at least three months to lower the bad cholesterol (LDL) level by

20 mg/dl

31. If X is a continuous random variable with p.d.f. f(x), the pth percentile of x (sometimes
called thepth percentile of the population) is defined as that value xp for which

P (X ≤ xp) =
∫ xp

−∞
f(x)dx = p/100

The 50th percentile is called the population median. Also, suppose that a continuous
random variable has cumulative distribution

F (x) =

⎧⎪⎨
⎪⎩

0, x > 1
xn, 0 < x ≤ 1
1, x > 1

where n ≥ 1. Then,
(a) Find the probability density function f(x).
(b) Find the median of X.
(c) Find the mean and variance of X.
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32. If a defective spot occurs in a glass disk R inches in radius, assume that it is equally
likely to occur anywhere on the disk. Let X be a random variable indicating the
distance between the point of occurrence of a defective spot and the center of the disk.
(a) Find the expression for F (x) and f(x).
(b) Find the median of X.
(c) Find the mean and variance of the random variable X.

33. A continuous random variable X has the probability density function

f(x) =

{
3x2, 0 < x < 1
0, otherwise

(a) Find the c.d.f. F (x).
(b) Find the numerical values of F (1/3), F (9/10), and P (1/3 < X ≤ 1/2).
(c) Find the value of a which is such that P (X ≤ a) = 1/4 (a is the 25th percentile

of X).
(d) Find the mean μ and variance σ2 of X.

34. Determine which of the following functions are probability density functions:
(a) f(x) = x(3 − x), 0 ≤ x ≤ 3
(b) f(x) = x2(3 − x), 0 ≤ x ≤ 3
(c) f(x) = x(3 − x), 0 ≤ x ≤ 2

(d) f(x) =
1
λ

e−(x−2)/λ, x ≥ 2

35. Determine the value of c so that the following functions are probability density func-
tions:
(a) f(x) = cx(3 − x), 0 ≤ x ≤ 3
(b) f(x) = cx2(3 − x), 0 ≤ x ≤ 3
(c) f(x) = cx3(3 − x), 0 ≤ x ≤ 1

36. Find the mean and the variance for each of the following probability density functions:
(a) f(x) = 1/2, 1 ≤ x ≤ 3, and zero elsewhere.
(b) f(x) = θe−θx, x > 0, θ > 0, and zero elsewhere.
(c) f(x) = 12x2(1 − x), 0 ≤ x ≤ 1, and zero elsewhere.

37. Referring to Problem 36, in (a) and (c) find the exact probability P (|X − μ| ≤ 2σ).
Then, find the lower bound of these probabilities using Chebyshev’s inequality. Com-
pare the two results and comment.

38. Repeat Problem 37 for the exact probability P (|X − μ| ≤ 4σ).

39. Suppose that the length of life (in months) of a computer chip follows a gamma
distribution with γ = 4, λ = 0.05. Determine the following probabilities:
(a) P (40 < X < 120)
(b) P (X > 80)
(c) P (X < 100)

40. If the life (in thousands of miles) of a car tire follows a gamma distribution with
γ = 6, λ = 0.1, determine the following probabilities:
(a) P (35 < X < 85)
(b) P (X > 75)
(c) P (X < 50)
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41. In Problem 39, find the mean and the variance of X, the length of life of the com-
puter chip.

42. Referring to Problem 40, suppose that a customer bought a new car with tires of that
brand. Find the probabilities of the following events:
(a) All the tires will last at least 50,000 miles.
(b) At least one tire will last 50,000 miles or more.
(c) None of the tires will last more than 50,000 miles.

43. The time between arrivals (in minutes) of customers at a teller’s window in a bank,
is a gamma random variable with γ = 1, λ = 0.1. Find the following probabilities:
(a) The time between arrivals of two customers is more than 10 minutes.
(b) The time between arrivals of two customers is less than 15 minutes.
(c) The time between arrivals of two customers is more than 10 minutes, but less than

15 minutes.

44. The waiting time, say X hours in an emergency room, is distributed as a gamma with
mean μ = 2 and variance σ2 = 3.
(a) Determine the probability density function for the waiting time.
(b) Determine the probability that randomly selected patient has to wait more than

2.5 hours.

45. Referring to Problem 44:
(a) Use Chebyshev’s theorem to find an interval that contains at least 88.8% of the

waiting times.
(b) Determine the actual probability of waiting times to fall in the interval you deter-

mined in part (a).

46. The time lapse between two accidents in a large manufacturing plant has an approx-
imately exponential distribution with a mean of two months.
(a) What is the probability that the time lapse between two accidents is less than

three months?
(b) What is the probability that the time lapse between two accidents is less than

two months?

47. Referring to Problem 46:
(a) Determine the probability that at least two accidents take place in three months.
(b) Determine the probability that less than two accidents take place in two months.

48. Suppose that a random variable X (in thousands) is distributed as lognormal with
parameters μ = 3 and σ2 = 4. Determine the following probabilities: (a) P (X ≤ 5500),
(b) P (X ≥ 2000).

49. Suppose that random variable X (in thousands) is distributed as lognormal with
parameters μ = 5 and σ2 = 9. Determine the following probabilities: (a) P (3500 ≤
X ≤ 9500), (b) P (1500 ≤ X ≤ 2500).

50. Suppose that random variable X (in hundreds) is distributed as lognormal with param-
eters μ = 2 and σ2 = 4. Determine the following probabilities: (a) P (X ≤ 750), (b)
P (X ≥ 1500).

51. Suppose that random variable X is distributed as lognormal with parameters μ = 2
and σ2 = 4 Find the mean and variance of X.
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52. Suppose that random variable X is distributed as normal with parameters μ = 2 and
σ2 = 4. Find the value of x such that (a) P (X ≤ x) = 0.05, (b) P (X ≥ x) = 0.33.

53. The life (in hours) of a domestic dehumidifier is modeled by a Weibull distribution
with parameters α = 300 and β = 0.25 hour. Assuming τ = 0,
(a) What is the mean life of the dehumidifier?
(b) What is the variance of the life of the dehumidifier?

54. Referring to Problem 53:
(a) What is the probability that the dehumidifier fails before 5000 hours?
(b) What is the probability that the dehumidifier lasts between 8000 to 12,000 hours?
(c) What is the probability that the dehumidifier lasts at least 7000 hours?

55. The life (in hours) of a catalytic converter of a passenger car is modeled by a Weibull
distribution with parameters α = 2000 and β = 0.4. (Assume τ = 0).
(a) What is the probability that the catalytic converter needs to be replaced before

14,000 hours?
(b) What is the probability that the catalytic converter lasts between 12,000 to 16,000

hours?
(c) What is the probability that the catalytic converter lasts at least 16,000 hours?

56. The time needed (in hours) for a worker to finish a job is modeled by a lognormal
distribution with parameters μ = 2 and σ2 = 4. Find the following probabilities:
(a) The worker needs at least 50 hours to finish the job.
(b) The worker needs more than 60 hours to finish the job.
(c) The worker needs less than 50 hours to finish the job.

57. Suppose that a random variable X is distributed as an exponential with mean 20.
Find the following probabilities:
(a) P (X > 25)
(b) P (15 < X < 25)
(c) P (X ≥ 20)

58. The time (in units of 500 hours) between the two consecutive breakdowns of a machine
is modeled by an exponential distribution with mean of 1.2.
(a) What is the probability that the second breakdown does not occur for at least

600 hours after the first breakdown? [Note: 600 = (1.2) × 500.]
(b) What is the probability that the second breakdown occurs less than 400 hours

after the first breakdown?

59. Referring to Problem 58:
(a) What is the probability that more than two breakdowns occur in 1000 hours?
(b) What is the probability that at least two breakdowns occur in 1000 hours?
(c) What is the probability that less than two breakdowns occur in 1000 hours?

60. The time between arrivals of cars in a garage is exponentially distributed with a mean
time between arrivals of cars of 30 minutes.
(a) What is the probability that the time between arrivals of two successive cars is

more than 45 minutes?
(b) What is the probability that the time between arrivals of two successive cars is

less than 20 minutes?
(c) What is the probability that two cars arrive within a 40-minute interval?
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61. Suppose that a random variable X is distributed as binomial with n = 225 and θ = 0.2.
Using the normal approximation, find the following probabilities: (a) P (X ≤ 60), (b)
P (X ≥ 57), (c) P (80 ≤ X ≤ 100).

62. The fluid volume of a popular drink in a 12-oz can is normally distributed with mean
12.3 oz and standard deviation 0.2 oz.
(a) What is the probability that a randomly selected can has less than 12 oz of drink?
(b) What is the probability that a randomly selected can has more than 12.5 oz of

drink?

63. A random variable X is distributed uniformly over the interval [0, 20]. Determine the
probabilities: (a) P (X < 5), (b) P (3 < X < 16), (c) P (X > 12).

64. Suppose that X is the length of a rod that is uniformly distributed over the specifica-
tion limits 19 and 20 cm. Find the probabilities: (a) P (19.2 < X < 19.5), (b) P (X <
19.5), (c) P (X > 19.7).

65. Referring to Problem 64:
(a) Find the mean and the variance of the random variable X
(b) What percentage of the rods is within two standard deviations of the mean?

66. Assume that the log of failure times are normally distributed, with parameters μ and
σ2. A sample of 10 parts selected at random has failure times whose logs are

7.77 8.45 7.59 7.03 7.17 6.46 7.46 9.09 7.81 7.47

Use normal probability paper to determine the approximate values of μ and σ2.

67. Suppose that time (in hours) to failure of a machine is modeled by the lognormal with
parameters μ and σ2. The failure time of 12 such machines are as follows:

269 207 214 254 739 580 267 725 154 306 439 215

Estimate the values of μ and σ2.

68. Refer to Problem 67. Determine the probability that the time to failure of a machine
is: (a) less than 200 hours, (b) between 300 and 500 hours, (c) more than 600 hours

69. The following data give time T to failure of a drug in suspension form:

5 7 9 13 24 32 35 38 42 47 49 52

The lifetime of the suspension follows the lognormal distribution with parameters μ
and σ2. Estimate the values of μ and σ2.
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DISTRIBUTION OF
FUNCTIONS OF RANDOM
VARIABLES

The focus of this chapter is on the distributions of functions of
random variables.

Topics Covered

• Joint distributions of two discrete random variables
• Joint distributions of two continuous random variables
• Mean value and variance of functions of two random variables
• Conditional distributions
• Correlation between two random variables
• Joint distributions of several random variables
• Moment-generating functions of two or more random variables

Learning Outcomes

After studying this chapter, the reader will be able to

• Understand the concept of discrete and continuous distributions of functions of two or
more random variables and use them to solve real-world problems.

• Understand the concept of marginal and conditional probability distributions.
• Determine the moment-generating functions of functions of two or more random vari-

ables.
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6.1 INTRODUCTION

In Chapters 4 and 5, we discussed various phenomena by enlisting a (single) random
variable and studying its distribution and characteristics. However, in many situations,
experiments are performed that involve two or more random variables. For example, we
may be interested in the diameter and length of rods, the number of dots on two dice when
rolled simultaneously, say (X,Y ), where 1 ≤ X ≤ 6, 1 ≤ Y ≤ 6, or the composition of a
Monel (70% nickel, 30% copper) alloy, where we may focus on solid contents, say X, and
liquid content Y, which again we would quote as a joint pair (X,Y ).

In this chapter, then, we will study the joint distribution functions of two or more
discrete and continuous random variables.

6.2 DISTRIBUTION FUNCTIONS OF TWO
RANDOM VARIABLES

6.2.1 Case of Two Discrete Random Variables
If, for each element e in a finite sample space S, we make two measurements on e,
say (X(e), Y (e)), and if (xi, yj), i = 1, 2, . . . ,m and j = 1, 2, . . . , n, are possible values
of (X(e), Y (e)), and if we let

pij = p(xi, yj) = P (X(e) = xi, Y (e) = yj) (6.2.1)

then the set of all possible values {(xi, yj)} of (X(e), Y (e)) is called the sample space of
(X(e), Y (e)), while the set of associated probabilities pij is the joint probability function
(p.f.) of the pair of discrete random variables (X,Y ).

Thus, we may think of k = mn points (xi, yj) in the xy-plane in which the probabilities
pij are located and are all positive and sum to 1. If we define pi· and p·j such that

pi. =
n∑

j=1

pij and p.j =
m∑

i=1

pij (6.2.2)

then
pi. = P (X(e) = xi) and p.j = P (Y (e) = yj) (6.2.3)

The possible values xi, i = 1, 2, . . . ,m, of X(e) together with their probabilities pi. consti-
tute the marginal distribution of the random variable X. This gives rise to the probability
function of X, ignoring Y, and is therefore merely the probability function of X. In a simi-
lar manner, the yj , j = 1, 2, . . . , n, of Y (e) together with their probabilities p.j constitute
the marginal distribution of the random variable Y.

Geometrically, if x is the usual horizontal axis and y the vertical axis and if we project
the sum of the probabilities pi1, . . . , pij , . . . , pin located at the points [(xi, y1), . . . , (xi, yj),
. . . , (xi, yn)], vertically onto the x-axis, we obtain the marginal distribution pi. of the ran-
dom variable X. If instead we project sum of these probabilities p1j , . . . , pij , . . . , pmj hori-
zontally onto the y-axis, we obtain the marginal distribution p.j of the random variable Y.

The mean μ1 and variance σ2
1 of X are defined by applying (4.2.1) and (4.2.2) to the

probability distribution pi.. Similarly, the mean μ2 and variance σ2
2 of Y are defined by

applying those formulas to p.j .
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When the probability function pij factors into the product of the two marginal
probability functions, that is, if for all possible (xi, yj) in the sample space of (X,Y ),
we have

pij = pi.p.j (6.2.4)

then X and Y are said to be independent random variables.

Example 6.2.1 (Probability function of two random variables) Roll a pair of fair dice,
of which one die is green and the other is red. Let the random variables X and Y denote
the outcomes on the green and red dies, respectively. Then, the sample space of (X,Y ) is
S = {(1, 1), (1, 2), . . . , (1, 6), . . . , (6, 6)}. Each of the 36 sample points has the probability
1/36. Then, the joint probability function of the random variables X and Y can be written
in tabular form as follows:

Y
X 1 2 3 4 5 6 Total (p·j)

1 1/36 1/36 1/36 1/36 1/36 1/36 1/6

2 1/36
...

...
...

... 1/6

3 1/36 · · · 1/36 · · · 1/36 1/36 1/6

4 1/36
...

...
...

... 1/6

5 1/36 · · · 1/36 · · · 1/36 1/36 1/6

6 1/36 · · · 1/36 · · · 1/36 1/36 1/6

Total (pi·) 1/6 1/6 1/6 1/6 1/6 1/6 1

This table shows the probabilities assigned to each sample point. Using (6.2.2) for the
probabilities, we easily find the marginal distributions pi· and p·j of the random variables
X and Y, respectively, as shown in the table. The probability function in this example can
also be expressed as

p(x, y) =

{
1/36, x = 1, 2, 3, 4, 5, 6 and y = 1, 2, 3, 4, 5, 6
0, otherwise

We give a graphical representation of the p.f. of X and Y in Figure 6.2.1.

Example 6.2.2 (Marginal probability functions) Let the joint probability function of
random variables X and Y be defined as

P (x, y) =
x + y

54
, x = 1, 2, 3, 4; y = 1, 2, 3

Find the marginal probability functions of X and Y and also examine whether X and Y
are independent.



6.2 Distribution Functions of Two Random Variables 231

0.033

0.030

0.027

p
(x

, 
y)

x

y
0.024

1 2 3 4 5 6

6
5

4
3

2
1

Figure 6.2.1 Graphical representation of the p.f. in Example 6.2.1.

Solution: From equation (6.2.2), it follows that the probability of X, say p1(x), is given by

P (X = x) = p1(x) =
3∑

y=1

x + y

54
=

x + 1
54

+
x + 2
54

+
x + 3
54

=
3x + 6

54
, for x = 1, 2, 3, 4

Similarly,

P (Y = y) = p2(y) =
4∑

x=1

x + y

54
=

10 + 4y

54
, for y = 1, 2, 3

For (x, y) belonging to the sample space of (X,Y ), say Sxy = {(x, y)|x = 1, 2, 3, 4; y =
1, 2, 3}, we have that

p(x, y) �= p1(x) × p2(y)

so that the random variables X and Y are not independent.

Example 6.2.3 (Joint probability function and its marginals) In dealing a hand of 13
cards from a deck of ordinary playing cards, let X1 and X2 be random variables denoting
the numbers of spades and of hearts, respectively. Obviously, 0 ≤ X1 ≤ 13, 0 ≤ X2 ≤ 13,
and 0 ≤ X1 + X2 ≤ 13. Then, we see that p(x1, x2), the p.f. of (x1, x2), is given by

p(x1, x2) =

(
13
x1

)(
13
x2

) (
26

13−x1−x2

)
( 52

13

)
where the sample space of (X1,X2) is all pairs of nonnegative integers (x1, x2) for which
0 ≤ x1, x2 ≤ 13 and 0 ≤ x1 + x2 ≤ 13. That is, the sample space {(x1, x2)} consists of the
105 points:

{(0, 0), . . . , (0, 13), . . . , (12, 0), (12, 1), (13, 0)}

Now, it is possible by a direct probability argument to find the marginal distribution
of X1, for the probability of x1 spades in a hand of 13 is clearly given by

P (X1 = x1) = p1(x1) =

(
13
x1

) (
39

13−x1

)
( 52

13

)
where 0 ≤ x1 ≤ 13.



232 6 Distribution of Functions of Random Variables

In a similar manner, it is easy to find p2(x2) and to show that the random variables
X1 and X2 are not independent.

6.2.2 Case of Two Continuous Random Variables
If the sample space S consists of a continuum of elements and if for any point (x1, x2) in
the x1x2-plane we let

F (x1, x2) = P [X1(e) ≤ x1,X2(e) ≤ x2] (6.2.5)

then F (x1, x2) is called the cumulative distribution function (c.d.f.) of the pair of random
variables (X1,X2) (dropping e). If there exists a nonnegative function f(x1, x2) such that

F (x1, x2) =
∫ x1

−∞

∫ x2

−∞
f(t1, t2)dt2dt1 (6.2.6)

then
f(x1, x2) =

∂2F (x1, x2)
∂x1∂x2

and f(x1, x2) is called the joint probability density function (p.d.f.) of the pair of random
variables (X1,X2). The probability that this pair of random variables represents a point
in a region E, that is, the probability that the event E occurs, is given by

P ((X1,X2) ∈ E) =
∫ ∫

E

f(x1, x2)dx2dx1 (6.2.7)

Note that if E = {(X1,X2)|X1 < x1,X2 < x2}, then (6.2.7) equals F (x1, x2). Also, if we let

f1(x1) =
∫ ∞

−∞
f(x1, x2)dx2 (6.2.8)

f2(x2) =
∫ ∞

−∞
f(x1, x2)dx1 (6.2.9)

then f1(x1) and f2(x2) are called the marginal probability density functions of X1 and X2,
respectively. This means that f1(x1) is the p.d.f. of X1 (ignoring X2), and f2(x2) is the
p.d.f. of X2 (ignoring X1).

Geometrically, if we think of f(x1, x2) as a function describing the manner in which
the total probability 1 is continuously “smeared” in the x1x2-plane, then the integral in
(6.2.7) represents the amount of probability contained in the region E. Also, f1(x1) is the
p.d.f. one obtains by projecting the probability density in the x1x2-plane orthogonally onto
the x1-axis, and f2(x2) is similarly obtained by orthogonal projection of the probability
density onto the x2-axis.

If f(x1, x2) factors into the product of the two marginal p.d.f.’s, that is, if

f(x1, x2) = f1(x1)f2(x2) (6.2.10)

for all (x1, x2) in the sample space of (X1,X2), then X1 and X2 are said to be
independent continuous random variables.
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Example 6.2.4 (Marginal probability functions) Let the joint probability density function
of the random variables X1 and X2 be defined as

f(x1, x2) = 2e−(2x1+x2); x1 > 0, x2 > 0

Find the marginal probability density functions of X1 and X2 and examine whether or not
X1 and X2 are independent.

Solution: From equations (6.2.8) and (6.2.9), it follows that for x1 > 0

f1(x1) =
∫ ∞

0
2e−(2x1+x2)dx2 = 2e−2x1

∫ ∞

0
e−x2dx2

= 2e−2x1 [−e−x2 ]∞0 = 2e−2x1 , x1 > 0

while for x2 > 0,

f2(x2) =
∫ ∞

0
2e−(2x1+x2)dx1 = e−x2

∫ ∞

0
2e−2x1dx1

= e−x2

[
2e−2x1

−2

]∞

0
= e−x2 , x2 > 0

Here, we clearly have that f(x1, x2) = f1(x1)f2(x2), which implies that the random vari-
ables X1 and X2 are independent.

Finally, note that the joint distribution function satisfies the properties given below:

1. 0 ≤ F (x1, x2) ≤ 1 for all (x1, x2) belong to the sample space of (X1,X2).
2. F (−∞, x2) = F (x1,−∞) = F (−∞,∞) = F (∞,−∞) = 0, F (∞,∞) = 1.
3. F is nondecreasing.
4. For every pair of (X1,X2) values, say xi1 and xi2 where xi1 < xi2 for i = 1, 2,

the following inequality holds:

F (x12, x22) − F (x12, x21) − F (x11, x22) + F (x11, x21) ≥ 0 (6.2.11)

The reader should verify that the left-hand side of (6.2.11) gives the value of P (x11 <
X1 < x12, x21 < X2 < x22).

6.2.3 The Mean Value and Variance of Functions
of Two Random Variables

Suppose that (X1,X2) is a pair of discrete random variables and g(X1,X2) is a function of
(X1,X2). Then, the mean value or expectation of g(X1,X2), say E(g(X1,X2)), is given by

E(g(X1,X2)) =
∑ ∑

g(x1i, x2j)p(x1i, x2j) (6.2.12)
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where the summation
∑ ∑

is over all pairs (x1i, x2j) in the sample space of (X1,X2), and
for the continuous case we have that

E(g(X1,X2)) =
∫ ∞

−∞

∫ ∞

−∞
g(x1, x2)f(x1, x2)dx1dx2 (6.2.13)

We may now state, and the reader should verify equation (6.2.14) in Theorem 6.2.1
stated below.

Theorem 6.2.1 If X1 and X2 are independent random variables and if g1(X1)
and g2(X2) depend only on X1 and X2, respectively, then

E(g1(X1) g2(X2)) = E(g1(X1)) E(g2(X2)) (6.2.14)

If we choose g(X1,X2) as (X1 − μ1)(X2 − μ2), we obtain the covariance, which is a
measure of the relationship between two random variables X1 and X2, that is,

Cov(X1,X2) = E[(X1 − μ1)(X2 − μ2)] (6.2.15)

In the case where X1 and X2 are independent, we find that

Cov(X1,X2) = E(X1 − μ1)E(X2 − μ2) = 0 (6.2.16)

In many problems, however, we deal with linear functions of two or even more independent
random variables. The following theorem is of particular importance in this connection:

Theorem 6.2.2 Let X1 and X2 be independent random variables such that the
mean and variance of X1 are μ1 and σ2

1, and the mean and variance of X2 are μ2
and σ2

2. Then, if c1 and c2 are constants, c1X1 + c2X2 is a random variable having
mean value c1μ1 + c2μ2 and variance c2

1σ
2
1 + c2

2σ
2
2.

Proof: To prove this theorem, it is sufficient to consider the case of continuous random
variables. (The proof for discrete random variables is obtained by replacing integral signs
by signs of summation.) For the mean value of c1X1 + c2X2, we have, since X1 and X2 are
independent, that

E(c1X1 + c2X2) =
∫ ∞

−∞

∫ ∞

−∞
(c1x1 + c2x2)f1(x1)f2(x2)dx1dx2

= c1

∫ ∞

−∞
x1f1(x1)dx1

∫ ∞

−∞
f2(x2)dx2 + c2

∫ ∞

−∞
x2f2(x2)dx2

∫ ∞

−∞
f1(x1)dx1

= c1E(X1) + c2E(X2)

= c1μ1 + c2μ2
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For the variance of c1X1 + c2X2, we have similarly (omitting some straightforward
details), that

V ar(c1X1 + c2X2) = E[c1(X1 − μ1) + c2(X2 − μ2)]
2

= c2
1E(X1 − μ1)

2 + c2
2E(X2 − μ2)

2 + 2c1c2E[(X1 − μ1)(X2 − μ2)]

= c2
1E(X1 − μ1)

2 + c2
2E(X2 − μ2)

2 + 0

= c2
1σ

2
1 + c2

2σ
2
2

since X1 and X2 are independent, so that E[(X1 − μ1)(X2 − μ2)] = 0, as stated in (6.2.16).
We remark that if X1, X2 are not independent (and the reader should verify), then we
have that

E(c1X1 + c2X2) = c1μ1 + c2μ2

V ar(c1X1 + c2X2) = c2
1σ

2
1 + c2

2σ
2
2 + 2c1c2Cov(X1,X2)

�

In a straightforward manner, it is easy to prove the following theorem, which extends
the results of this section:

Theorem 6.2.3 Let X1,X2, . . . ,Xn be n random variables such that the mean and
variance of Xi are μi and σ2

i respectively, and where the covariance of Xi and Xj

is σij, that is, E[(Xi − μi)(Xj − μj)] = σij , i �= j. If c1, c2, . . . , cn are constants,
then the random variable L = c1X1 + · · · + cnXn has mean value and variance that
are given by

E(L) = c1μ1 + · · · + cnμn (6.2.17)

V ar(L) = c2
1σ

2
1 + · · · + c2

nσ2
n + 2c1c2σ12 + 2c1c3σ13 + · · · + 2cn−1cnσn−1,n (6.2.18)

Further, if X1,X2, . . . ,Xn are mutually independent, then σij = 0, so that the
mean of L is as in (6.2.17). However, the variance of L is

V ar(L) = c2
1σ

2
1 + · · · + c2

nσ2
n (6.2.19)

6.2.4 Conditional Distributions
Suppose that a pair of discrete random variables (X1,X2) has joint p.f. p(x1, x2) and
marginal probability functions p1(x1) and p2(x2), as defined in Section 6.2.1. Suppose
that we assign to one of the random variables, say X1, a value x1 such that p1(x1) �= 0,
and we want to find the probability that the other random variable X2 has a particular
value, say x2. The required probability is a conditional probability that we may denote by
p(X2 = x2|X1 = x1), or, more briefly, by p(x2|x1), and is defined as follows:

p(x2|x1) =
p(x1, x2)
p1(x1)

(6.2.20)

where p1(x1) �= 0.
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Note that p(x2|x1) has all the properties of an ordinary probability function; that is,
as the reader should verify, the sum of p(x2|x1) over all possible values of x2, for fixed x1,
is 1. Thus, p(x2|x1), x2 = x21, . . . , x2k2

, is a p.f. and is called the conditional probability
function of X2, given that X1 = x1.

Note that we can write (6.2.20) as

p(x1, x2) = p1(x1) · p(x2|x1) (6.2.21)

to provide a two-step procedure for finding p(x1, x2) by first determining p1(x1), then
p(x2|x1), and by multiplying the two together.

Example 6.2.5 (Conditional probability function) In Example 6.2.3, suppose that we
want to find the conditional probability function of X2 given X1 = x1, that is, p(x2|x1).

Solution: The probability function of X1 is given by

p1(x1) =

(
13
x1

) (
39

13−x1

)
( 52

13

)
Hence, as is easily verified, p(x2|x1) is given by

p(x2|x1) =

(
13
x2

)(
26

13−x1−x2

)
(

39
13−x1

)
where the sample space of X2, given X1 = x1, is {0, 1, . . . , 13 − x1}. The interpretation of
p(x2|x1) is that if we are given that a hand of 13 cards contains x1 spades, then the value of
p(x2|x1) as given previously is the probability that the hand also contains X2 = x2 hearts.

In the case of a pair of continuous random variables (X1,X2) having probability den-
sity function f(x1, x2) and marginal probability density functions f1(x1) and f2(x2), the
conditional probability density function f(x2|x1) of X2 given X1 = x1 is defined as

f(x2|x1) =
f(x1, x2)
f1(x1)

(6.2.22)

where f1(x1) �= 0, which is the analogue of (6.2.20), now for a pair of continuous random
variables. Note that f(x2|x1) has all the properties of an ordinary probability density
function.

Now from (6.2.22), we have the result that is given below.

f(x1, x2) = f1(x1) f(x2|x1) (6.2.22a)
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We now have the analogue of (6.2.21) for obtaining the probability density function of a
pair of continuous random variables in two steps, as given in (6.2.22a).

Example 6.2.6 (Determination of marginal probability functions) Suppose that we are
dealing with a pair of continuous random variables (X1,X2) whose sample space S is given
by S = {(x1, x2)|0 ≤ x1, x2 ≤ 1; 0 ≤ x1 + x2 ≤ 1}. Suppose further that the probability den-
sity function f(x1, x2) of (X1,X2) is given by

f(x1, x2) =

⎧⎨
⎩

2, if (x1, x2) ∈ S

0, otherwise

Solution: Because the probability density function is constant over the triangle defined
by S in the x1, x2-plane (see Figure 6.2.2), we sometimes say that (X1,X2) is uniformly
distributed over S.

(0, 0)

(1, 0)

(0, 1)
x1 + x2 = 1

f(x1, x2)

2

S

x2

x1

Figure 6.2.2 Graphical representation of the p.d.f. in Example 6.2.6.

The marginal probability density function of X1 for 0 < x1 < 1 is given by

f1(x1) =
∫ ∞

−∞
f(x1, x2)dx2 = 2

∫ 1−x1

0
dx2 = 2(1 − x1)

Hence,

f(x2|x1) =

⎧⎨
⎩

2
2(1−x1)

= 1
(1−x1)

, for 0 < x2 < 1 − x1

0, otherwise

Note that if (X1,X2) is a pair of discrete random variables, then the conditional mean
and variance of X2 given X1 = x1 are defined as given at (6.2.23) and (6.2.24).
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E(X2|X1 = x1) =
∑
x2

x2p(x2|x1) (6.2.23)

V ar(X2|X1 = x1) =
∑
x2

[x2 − E(x2|x1)]
2p(x2|x1) (6.2.24)

where p(x2|x1) is the conditional probability function of the random variable X2 given
X1 = x1. The mean and variance for other functions of X2 given X1 = x1 can be defined
in the same manner.

Similarly, for the case of a pair of continuous random variables, we have the following
results.

E(X2|X1 = x1) =
∫ ∞

−∞
x2f(x2|x1)dx2 (6.2.25)

V ar(X2|X1 = x1) =
∫ ∞

−∞
[x2 − E(x2|x1)]

2f(x2|x1)dx2 (6.2.26)

6.2.5 Correlation between Two Random Variables
The reader will note from (6.2.15) that the covariance between the random variables
X1 and X2 is a quantity measured in [(units of X1) × (units of X2)]. A somewhat more
convenient measure of how X1 and X2 “co-vary,” or are dependent on each other, is the the-
oretical or population correlation coefficient ρ. This dimensionless measure of dependence
is defined by

ρ = Cov(X1,X2)/σ1σ2 (6.2.27)

where σ1 and σ2 are the population standard deviations of X1 and X2, respectively. It can
be shown that −1 ≤ ρ ≤ 1, and hence, we have that −σ1σ2 ≤ Cov(X1,X2) ≤ σ1σ2.

Now, from (6.2.16) and using (6.2.17), we have that if X1 and X2 are independent
random variables, then ρ = 0. The converse need not be true however, as the following
example shows.

Example 6.2.7 (Independence and correlation coefficient) Two random variables X1 and
X2 have joint probability function given by

p(x1, x2) =

{
1/3, if , (x1, x2) = (0, 0), (1, 1), (2, 0)
0, otherwise

It is easy to see that

p1(x1) =

{
1/3, if x1 = 0, 1, 2
0, otherwise
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and that

p2(x2) =

{
2/3, if x2 = 0
1/3, if x2 = 1

Hence, p(0, 0) �= p1(0)p2(0), and so on, and X1 and X2 are not independent. Simple calcu-
lations further show that

μ1 = E(X1) = 1, μ2 = E(X2) = 1/3

σ2
1 = E(X1 − μ1)

2 = 2/3, σ2
2 = E(X2 − μ2)

2 = 2/9

Also, since (X1 − μ1)(X2 − μ2) = (X1 − 1)(X2 − 1/3), we have that

Cov(X1,X2) =
∑ ∑

(x1 − 1)(x2 − 1/3)p(x1, x2)

= 1/3[(0 − 1)(0 − 1/3) + (1 − 1)(1 − 1/3) + (2 − 1)(0 − 1/3)]

= 1/3[1/3 + 0 − 1/3]

= 0

Therefore, the correlation coefficient has value ρ = 0, yet X1 and X2 are not independent.

Example 6.2.8 (Joint probability density function) Let the length of life (in years) of both
an operating system and the hard drive of a computer be denoted by the random variables
X1 and X2, respectively. Suppose that the joint distribution of the random variables of X1
and X2 is given by

f(x1, x2) =

{
1
64x

2
1x2e

−(x1+x2)/2, if x1 > 0, x2 > 0
0, otherwise

The probability density function is graphed in Figure 6.2.3.

(a) Find the marginal distributions of the random variables X1 and X2.
(b) Find the mean and variance of the random variables X1 and X2.
(c) Examine whether the random variables X1 and X2 are independent.
(d) Find Cov(X1,X2).

Solution:
(a) The marginal probability density function of X is given by

f1(x1) =
∫ ∞

0
f(x1, x2)dx2 =

∫ ∞

0

1
64

x2
1x2e

−(x1+x2)/2dx2 =
1
64

x2
1e

−x1/2
∫ ∞

0
x2e

−x2/2dx2

Integrating by parts, we have that

f1(x1) =
1
64

x2
1e

−x1/2
[
x2

e−x2/2

−1/2
|∞0 −

∫ ∞

0
1 × e−x2/2

−1/2
dx2

]

=
1
32

x2
1e

−x1/2
∫ ∞

0
e−x2/2dx2

=
1
16

x2
1e

−x1/2, x1 > 0
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f (x1, x2)

x2

x1

Figure 6.2.3 Graphical representation of the joint p.d.f. in Example 6.2.8.

Similarly, it can be shown (as the reader should verify) that

f2(x2) =
1
4
x2e

−x2/2, x2 > 0

Comparing the marginal distribution of X1 and X2 with the gamma distribution given
in equation (5.9.10), we can see that the random variables X1 and X2 are distributed
as gamma with parameters γ = 3, λ = 1/2, and γ = 2, λ = 1/2, respectively.

(b) Since the random variables X1 and X2 are distributed marginally as gamma, using
equation (5.9.11), we have

μ1 = 6, σ2
1 = 12 and μ2 = 4, σ2

2 = 8

(c) We also have that

f1(x1) × f2(x2) =
1
16

x2
1e

−x1/2 × 1
4
x2

2e
−x2/2 =

1
64

x2
1x2e

−(x1+x2)/2 = f(x1, x2)

so that the random variables X1 and X2 are independent.
(d) Since the random variables X1 and X2 are independent, we have that Cov(X1,X2) = 0.

We now state an important result about the expected value of sum of functions of
random variables X1 and X2, similar to the one for a single variable.

Theorem 6.2.4 Let X1 and X2 be random variables and gi(X1,X2), i =
1, 2, . . . ,m be m functions of X1 and X2. Then,

E

[
m∑

i=1

gi(X1,X2)

]
=

m∑
i=1

E(gi(X1,X2)) (6.2.28)

This result can be proved in exactly the same manner as in single random-variable
(univariate) case.
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Theorem 6.2.5 Let X1 and X2 be random variables with means μ1 and μ2, respec-
tively. Then,

Cov(X1,X2) = E(X1X2) − μ1μ2 (6.2.29)

From equation (6.2.15), we have

Cov(X1,X2) = E[(X1 − μ1)(X2 − μ2)]

= E[X1X2 − X1μ2 − μ1X2 + μ1μ2]

Using Theorem 6.2.4 with g1(X1,X2) = X1X2, g2(X1,X2) = −μ2X1, g3(X1,X2) =
−μ1X2, and g4(X1,X2) = μ1μ2, we find that

Cov(X1,X2) = E(X1X2) − μ2E(X1) − μ1E(X2) + μ1μ2

= E(X1X2) − μ1μ2 − μ1μ2 + μ1μ2

= E(X1X2) − μ1μ2

The reader should now use the result of Theorem 6.2.1 together with equation (6.2.29)
to show the following corollary:

Corollary 6.2.1 If X1 and X2 are two independent random variables, Cov(X1,
X2) = 0.

6.2.6 Bivariate Normal Distribution
Consider a pair of continuous random variables (X1,X2). These random variables (X1,X2)
are said to be distributed as the bivariate normal if their joint p.d.f. f(x1, x2) is given
below.

f(x1, x2) =
1

2πσ1σ2

√
(1 − ρ2)

× exp
(
− 1

2(1 − ρ2)

[
(x1 − μ1)

2

σ2
1

− 2ρ
(x1 − μ1)(x2 − μ2)

σ1σ2
+

(x2 − μ2)
2

σ2
2

])
(6.2.30)

where −∞ ≤ xi ≤ ∞,−∞ ≤ μi ≤ ∞, σ2
i > 0, i = 1, 2, and −1 < ρ < 1.

When plotted in three dimensions, a typical bivariate normal probability density func-
tion takes the form given in Figure 6.2.4. We say that this probability density function
has parameters μ1, μ2, σ1, σ2, and ρ, and it can be shown that μ1, μ2 and σ1, σ2 are means
and standard deviations of the random variables X1 and X2, respectively. Further, ρ is
the correlation coefficient, where −1 < ρ < 1. By integrating f(x1, x2) over −∞ ≤ x1 ≤ ∞
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0

0

2σ1–2σ1

–2σ2

2σ2

Figure 6.2.4 Graphical representation of p.d.f. of bivariate normal.

and −∞ ≤ x2 ≤ ∞, it can be seen that the marginal distributions of random variables X1
and X2 are given by

f1(x1) =
1√

2πσ1
exp

(
− (x1 − μ1)

2

2σ2
1

)
,−∞ ≤ x1 ≤ ∞ (6.2.31)

and
f2(x2) =

1√
2πσ2

exp
(
− (x2 − μ2)

2

2σ2
2

)
,−∞ ≤ x2 ≤ ∞ (6.2.32)

respectively. Furthermore, f(x1, x2) in (6.2.30) may be written as

f(x1, x2) =
1√

2πσ1
exp

(
− (x1 − μ1)

2

2σ2
1

)

× 1√
2π(1 − ρ2)σ2

exp

(
− 1

2(1 − ρ2)

(
x2 − μ2

σ2
− ρ

x1 − μ1

σ1

)2
)

(6.2.33)

for −∞ ≤ x1, x2 ≤ ∞.
From equations (6.2.31) and (6.2.33), it follows that the conditional p.d.f. of the ran-

dom variable X2 given X1 = x1 after some algebraic manipulation is as stated below.

f(x2|x1) =
f(x1, x2)
f1(x1)

=
1√

2π(1 − ρ2)σ2
2

× exp

(
− 1

2σ2
2(1 − ρ2)

(
x2 − μ2 − ρ

σ2

σ1
(x1 − μ1)

)2
)

(6.2.34)

for −∞ ≤ x2 ≤ ∞.

The p.d.f. in (6.2.34) is a normal density function with mean μ2 + ρ(σ2/σ1)(x1 − μ1) and
variance σ2

2(1 − ρ2). In a similar fashion, we can show that the conditional p.d.f. of the
random variable X1 given X2 = x2 is given by
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f(x1|x2) =
f(x1, x2)
f2(x2)

=
1√

2π(1 − ρ2)σ2
1

× exp

(
− 1

2σ2
1(1 − ρ2)

(
x1 − μ1 − ρ

σ1

σ2
(x2 − μ2)

)2
)

(6.2.35)

for −∞ ≤ x1 ≤ ∞,

which is a normal density function with mean μ1 + ρ(σ1/σ2)(x2 − μ2) and variance
σ2

1(1 − ρ2).
From equations (6.2.30) through (6.2.32), it can easily be seen that ρ = 0 implies that

X1 and X2 are independent. Thus, we state this important result as a corollary below.

Corollary 6.2.2 If X1 and X2 are distributed as bivariate normal, then the ran-
dom variables X1 and X2 are independent if and only if ρ = 0. Note that this
result is not true in general.

Example 6.2.9 (Independence and correlation coefficient) Let a random variable X be
distributed as the uniform over an interval (−a, a), and let Y = Xb be another random
variable where b is an even integer. Clearly, the random variables X and Y are not inde-
pendent, but the reader can easily show that the correlation coefficient between X and Y
is ρ = 0.

PRACTICE PROBLEMS FOR SECTION 6.2

1. .(a) X, Y, and Z are independent, Poisson random variables with mean 2, 7, and
9, respectively. Determine the mean and variance of the random variable U =
5X + 3Y + 8Z.

(b) Let (X1, . . . ,X5), (Y1, . . . , Y3), and (Z1, . . . , Z8) be random samples from the
three Poisson populations with mean 2, 7, and 9, respectively. Determine the
mean and variance of the random variable U =

∑5
i=1 Xi +

∑3
j=1 Yj +

∑8
k=1 Zk.

2. In filling soft drinks into 12-oz cans, assume the population of net amounts of drinks
generated by the automatic filling machine, adequately calibrated, has a distribution
with mean of 12.15 oz and standard deviation 0.1 oz. Assume that the population of
aluminum cans used for fillings have a distribution with mean 1.5 oz and standard
deviation of 0.05 oz.
(a) The population of filled cans will have a distribution with what mean and vari-

ance?
(b) If these cans are packed into boxes of 48 cans each and if the population of

empty boxes has mean 30 oz and standard deviation 2 oz, what is the mean and
variance of the population of filled boxes?

3. A sole of a running shoe is built by randomly selecting one layer of material I,
one layer of material II, and two layers of material III. The thicknesses of individual
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layers of material I, II, and III have distributions with means 0.20, 0.30, and 0.15 cm
and standard deviations 0.02, 0.01, and 0.03 cm, respectively. Find the mean and
standard deviation of thicknesses of a sole in this lot.

4. If X1 and X2 have joint distribution f(x1, x2), show that Cov(X1,X2) = E(X1X2) −
E(X1)E(X2). Hence show that if X1 and X2 are independent, then Cov(X1,X2) = 0.

5. Referring to Example 6.2.6, find the marginal distributions of X1 and X2. What are
the mean and variances of X1 and X2? Compute the correlation coefficient between
X1 and X2.

6. Referring to Example 6.2.6, find E(X1|X2 = x2), V ar(X1|X2 = x2), E(X2|X1 = x1),
and V ar(X2|X1 = x1).

7. Referring to Example 6.2.7, find conditional probability functions p(x1|x2)
and p(x2|x1), and evaluate E(X1|X2 = 0), V ar(X1|X2 = 0), E(X1|X2 = 1),
V ar(X1|X2 = 1).

8. The pair of random variables (X1,X2) has joint p.d.f. f(x1, x2) given by f(x1, x2) =
2/π for (x1, x2) lying inside the semicircle bounded by the x1 axis and the curve x2 =√

1 − x2
1; that is, the sample space of (X1,X2) is S = {(x1, x2)|x2

1 + x2
2 ≤ 1, x2 ≥ 0}.

Find the marginals of X1 and X2, the means and variances of X1 and X2, and the
correlation coefficient between X1 and X2. Also determine f(x1|x2) and f(x2|x1),
and evaluate E(X1|X2 = x2), V ar(X1|X2), and E(X2|X1), V ar(X2|X1).

9. During rush hours, an engineer takes X minutes to reach to his/her office. This time
includes (Y) the driving time from home to the parking lot and walking time from
parking lot to the office. Thus, U = X − Y is the time that he/she has taken to find
a parking spot. Suppose that the joint distribution of the random variables X and
Y has joint p.d.f. f(x, y) given by

f(x, y) =

{
e−x, if 0 ≤ y < x < ∞
0, otherwise

Determine the density function of the waiting time U = X − Y .

6.3 EXTENSION TO SEVERAL RANDOM
VARIABLES

The notions of (i) the probability function of a pair of discrete random variables and
(ii) the probability density function of a pair of continuous random variables extend with-
out special difficulties to sets of three or more random variables. Consider then the case of
n discrete random variables (X1, . . . ,Xn). Suppose that the sample space of (X1, . . . ,Xn)
is the set of k possible points

(x11, . . . , xn1), . . . , (x1k, . . . , xnk)

in an n-dimensional space with associated probabilities

p(x11, . . . , xn1), . . . , p(x1k, . . . , xnk)

respectively, which are all positive and whose sum is 1. If all the probability is projected
orthogonally onto the x1-axis, we obtain the marginal probability function of X1, say
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p1(x1). Similarly, we obtain marginal probability functions p2(x2), . . . , pn(xn) of the
remaining random variables X2, . . . ,Xn. We now have the following important result,
given below.

If p(x1, . . . , xn) factors into the product of the marginal probability functions, that
is, if

p(x1, . . . , xn) = p1(x1) · · · pn(xn) (6.3.1)

we say that the random variables X1, . . . ,Xn are mutually independent.

In the case of n continuous random variables, X1, . . . ,Xn, suppose that we have
a probability density function f(x1, . . . , xn) that is nonnegative throughout the entire
n-dimensional space of the variables. The probability that X1, . . . ,Xn falls into any region
or set E (i.e., the probability that event E occurs) is given by

P [(x1, . . . , xn) ∈ E] =
∫

· · ·
∫

E

f(x1, . . . , xn)dx1 · · · dxn

By setting

f1(x1) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
f(x1, . . . , xn)dx2 · · · dxn

with similar definitions for f2(x2), . . . , fn(xn), we obtain the marginal probability density
functions f1(x1), . . . , fn(xn) of X1, . . . ,Xn, respectively.

If f(x1, . . . , xn) factors as

f(x1, . . . , xn) = f1(x1) · · · fn(xn), (6.3.2)

then the random variables X1, . . . ,Xn are said to be mutually independent random
variables.

The extensions of Theorems 6.2.1 and 6.2.2 to the case of n-independent random
variables are straightforward and are left to the reader. The concepts of a conditional p.f.
and of a conditional p.d.f. of Xn given X1, . . . ,Xn−1 are also straightforward and left to
the reader.

6.4 THE MOMENT-GENERATING FUNCTION
REVISITED

Suppose that X1 and X2 are two independent random variables and c1 and c2 are constants.
Let MX1

(t) and MX2
(t) be the moment-generating functions of X1 and X2, respectively.

Then, the moment-generating function of the random variable

U = c1X1 + c2X2 (6.4.1)
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is
MU (t) = E(e(c1X1+c2X2)t)

Using Theorem 6.2.1 of Section 6.2.3, we have, since X1 and X2 are independent, that

MU (t) = E(eX1c1t)E(eX2c2t) = MX1
(c1t)MX2

(c2t) (6.4.2)

Indeed, if we are interested in the linear combination

U =
k∑

i=1

ciXi (6.4.3)

where Xi, i = 1, . . . , k, are independent random variables, we find similarly that

MU (t) =
k∏

i=1

MXi
(cit) (6.4.4)

The moment-generating function has an important property given by the following unique-
ness theorem, which we state without proof

Theorem 6.4.1 If two random variables X and Y have the same
moment-generating function M(t), then their c.d.f.’s are identical.

Example 6.4.1 (Distribution of the sum of n Poisson random variables) Suppose that
a discrete random variable X has the Poisson distribution with a parameter λ, then from
(4.8.4), the moment-generating function of X is

MX(t) = eλ(et−1)

Suppose now that X1, . . . ,Xn are n independent observations on some characteristic
X. This means that each of the Xi’s have the same Poisson distribution, so that X1, . . . ,Xn

is a random sample from the Poisson with parameter λ, and we have that

P (Xi = xi) = p(xi) =
e−λλxi

xi!
(6.4.5)

Note that each Xi has the same mean, variance, and in particular, the same
moment-generating function; that is,

MXi
(t) = eλ(et−1) (6.4.6)

Suppose that we want to find the moment-generating function of

U = X1 + · · · + Xn (6.4.7)

In the language of (6.4.3), each of the ci is 1, and using (6.4.4), we find that

MU (t) =
n∏

i=1

MXi
(t) =

n∏
i=1

eλ(et−1) = enλ(et−1) (6.4.8)
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Thus, it follows from Theorem 6.4.1 and equation (6.4.6) that the random variable U has
the Poisson distribution with “parameter” nλ; that is, we have

p(u) =
e−nλ(nλ)u

u!
(6.4.9)

Example 6.4.2 (MGF of the gamma distribution) Suppose that a random variable V has
a gamma distribution of order m; that is, its probability density function f is given by

f(v) =

{
1

Γ(m)v
m−1e−v, if v > 0, m > 0

0, otherwise
(6.4.10)

Γ(m) is called the gamma function of order m, m > 0, and is defined as

Γ(m) =
∫ ∞

0
tm−1e−tdt, m > 0 (6.4.11)

It can be shown by integrating by parts that

Γ(m) = (m − 1)Γ(m − 1) (6.4.12)

and that for integer m,
Γ(m) = (m − 1)! (6.4.13)

We now determine the moment-generating function of the random variable V, that is,

MV (t) =
1

Γ(m)

∫ ∞

0
vm−1e−v(1−t)dv (6.4.14)

Using the transformation w = v(1 − t), we find that

MV (t) = (1 − t)−m 1
Γ(m)

∫ ∞

0
wm−1e−wdw

= (1 − t)−m 1
Γ(m)

Γ(m)

or
MV (t) = (1 − t)−m (6.4.15)

Now suppose that X1, . . . ,Xm is a random sample from a single exponential popula-
tion with λ = 1; that is, the Xi is m independent observations on a random variable X,
where X has distribution given by

f(x) =

{
e−x, if x > 0
0, otherwise

(6.4.16)

Then, from equation (5.9.8), the moment-generating function of X is given by

MX(t) = (1 − t)−1 (6.4.17)



248 6 Distribution of Functions of Random Variables

Hence, if U = X1 + · · · + Xm, then, because of the independence of the Xi’s,

MU (t) =
m∏

i=1

MXi
(t) =

m∏
i=1

(1 − t)−1 = (1 − t)−m (6.4.18)

That is, from equation (6.4.15), we have

MU (t) = MV (t).

Invoking Theorem 6.4.1, we thus have that the distribution of U is that of a gamma random
variable of order m, so that the form of the probability density function is as in (6.4.10),
that is

f(u) =

{
1

Γ(m)u
m−1e−u, if u > 0, m > 0

0, otherwise
(6.4.19)

Suppose now that X1, . . . ,Xi, . . . ,Xn are independent normal random variables with mean
μi and variance σ2

i , for i = 1, . . . , n, respectively, and suppose that

U =
n∑

i=1

ciXi

Then, using equations (5.5.11) and (6.4.4), we have

MU (t) = exp

{
n∑

i=1

(ciμi)t +
n∑

i=1

(c2
iσ

2
i )t

2

}
(6.4.20)

Suppose now that (X1, . . . ,Xn) is a random sample from a normal population with mean
μ and variance σ2, and suppose that

U =
1
n

(X1 + · · · + Xn) = X̄

Then, again using equations (5.5.11) and (6.4.4), we have

MX̄(t) = exp
{

μt +
1
2

σ2

n
t2

}
(6.4.21)

Now using Theorem 6.4.1, and equations (6.4.20) and (6.4.21), we have two very important
results that we now state in Theorems 6.4.2 and 6.4.3, given below,

Theorem 6.4.2 If X1, . . . ,Xi, . . . ,Xn are independent normal random variables
with E(Xi) = μi and V ar(Xi) = σ2

i , for i = 1, . . . , n, then any linear combination
U = c1X1 + · · · + cnXn of X1, . . . ,Xi, . . . ,Xn is normally distributed with mean
c1μ1 + · · · + cnμn and variance c2

1σ
2
1 + · · · + c2

nσ2
n.

Theorem 6.4.3 If X1, . . . ,Xn is a random sample from a normal population with
mean μ and variance σ2, then X̄ is also normally distributed with mean μ and
variance σ2/n.
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PRACTICE PROBLEMS FOR SECTIONS 6.3 AND 6.4

1. Let X1 and X2 be two independent random variables distributed as standard normal.
Find the moment-generating function of the random variable U = (X1 − X2). Find
the mean and variance of U .

2. Let (X1,X2,X3) be a random sample from a Poisson population with mean λ. Deter-
mine the moment-generating function of the random variable Y = 2X1 + 3X2 + X3
and use it to find the mean and the variance of the random variable Y .

3. Let X1 and X2 be two independent random variables distributed as standard normal.
Find the moment generating function of the random variable V = (2X1 + 3X2). Find
the mean and variance of V .

4. Suppose that X1, . . . ,Xn are independent and identically distributed random vari-
ables with probability function for Xi given by

P (Xi = xi) = p(xi) =
e−λλxi

xi!
, xi = 0, 1, 2, . . . , n

That is, the Xi’s constitute a random sample of n independent observations on X,
where X has the Poisson distribution with parameter λ. Find the moment-generating
function of the random variable Y = X1 + · · · + Xn.

5. Referring to Problem 9 of Section 6.2, find the moment-generating function of the
random variable U = X − Y .

Review Practice Problems

1. Suppose that X1, . . . ,Xn are independent continuous random variables such that
Xi (i = 1, 2, . . . , n) is gamma distributed with parameters γi and λ. Find the
moment-generating function of the random variable Y = X1 + · · · + Xn.

2. Suppose that X1, . . . ,Xn is a random sample from a normal population with mean
μ and variance σ2. Find the moment-generating function of the sample mean X̄ =∑n

i=1 Xi/n.

3. Suppose that X1, . . . ,Xn are independent random variables such that
Xi (i = 1, 2, . . . , n) is distributed with probability function

P (Xi = xi) = p(xi) =
e−λλxi

xi!
, xi = 0, 1, 2, . . . , n.

Find the moment-generating function of the random variable Y = X1 + · · · + Xn.

4. Suppose that X1, . . . ,Xn are independently distributed with N(μi, σ
2
i ), ı = 1, 2, . . . , n.

Find the moment-generating function of the random variable Y = X1 + · · · + Xn.

5. A resistor is composed of two component parts soldered together in series; the total
resistance of the resistor equals the sum of the resistances of the component parts.
The first part is drawn from a production lot having a mean of 200 Ω and standard
deviation of 2 Ω, and the second part is drawn from a lot having a mean of 150 Ω and
standard deviation of 3 Ω. Find the mean and standard deviation of the resistance of
the assembled resistor.
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6. In packaging corn flakes into 8-oz packages, assume that the population of net weights
generated by the automatic filling machine (properly calibrated) has a distribution
with mean of 8.15 oz and standard deviation of 0.08 oz. Assume that the population
of paper boxes to receive the fillings to have a distribution with mean 1.45 oz and
standard deviation of 0.06 oz.
(a) The population of filled boxes will have a distribution with what mean and vari-

ance?
(b) If these boxes are packaged 24 per carton and if the population of empty cartons

has mean 28.00 oz and standard deviation 1.20 oz, what is the mean and variance
of the population of filled cartons?

7. A laminated strip is built up by randomly selecting two layers of material A, three
layers of material B, and four layers of material C. The thicknesses of the individual
layers of material A have mean 0.0100 in., and standard deviation 0.0005 in.; the
respective numbers for material B are 0.0050 and 0.0003 in., and those for C are
0.0025 and 0.0001 in. A large lot of such laminated strips are manufactured. Find the
mean and standard deviation of the thicknesses of the strips in this lot.

8. Mass-produced articles are fitted into cardboard containers, one article to a container.
Twelve of these filled containers are then packed in wooden boxes. Suppose that the
mean and standard deviation of the weights in pounds (lb) of the population of articles
are 20.6 and 0.8 lb respectively, those of the cardboard containers are 1.8 and 0.1 lb
respectively, and those of the wooden boxes are 3.6 and 0.4 lb, respectively.
(a) What are the values of the mean and standard deviation of the population of

weights of filled boxes ready to ship?
(b) Let T be the total weight of 25 filled wooden boxes taken at random. Find the

mean and variance of T.
(c) Suppose that X̄ is the average weight of those 25 boxes. Find the mean and

variance of X̄.

9. A certain type of half-inch rivet is classified as acceptable by a consumer if its diameter
lies between 0.4950 and 0.5050 in. It is known that a mass-production process is
such that 100p1% of the rivets have diameters less than 0.4950 in., 100p2% have
diameters that lie in the “acceptable” region, and 100p3% have diameters greater
than 0.5050 in., where, of course, p3 = 1 − p1 − p2. If a random sample of n rivets
is taken from the process, what is the probability p(x1, x2) that X1 = x1 rivets have
diameters less than 0.4950 in., X2 = x2 have diameters between 0.4950 and 0.5050 in.,
and X3 = x3, x3 = n − x1 − x2 have diameters greater than 0.5050 in.?
(a) Find the marginal distribution function of X2 and explain the result in words.
(b) What are the mean and variance of X2? of X1?
(c) Find the covariance of X1 and X2.

10. Suppose that 420 “true” dice are rolled simultaneously.
(a) If X is a random variable denoting the total number of aces that turn up, find the

values of the mean and standard deviation of X.
(b) If Y is a random variable denoting the total number of dots that turn up, find

the values of the mean and standard deviation of Y.

11. A process randomly generates digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 with equal probabilities.
If T is a random variable representing the sum of n digits taken from the process, find
the mean and the variance of T.
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12. A person plays 10 hands of bridge during the evening; suppose that T represents the
total number of spades he obtains during the evening. Find the mean and variance
of T.

13. A sample of size n is drawn from a lot of 10,000 articles known to contain 100 defec-
tives. Using the Chebyshev’s inequality, determine how large n should be in order for
the probability to exceed 0.96 that the percentage of defectives in the sample will lie
within the interval (0.1, 1.9).

14. Using the Chebyshev’s inequality, determine how many random digits should be gen-
erated in order for the probability to exceed 0.9000 that the mean of the random digits
will lie within the interval (3.5, 5.5).

15. Suppose that an insurance company has among all of its insurance policies, 50,000
policies for $5000 for American men aged 51. The probability of an American male
aged 51 dying within one year is (approximately) 0.01. Using the Chebyshev’s inequal-
ity, decide for what value of k the probability exceeds 0.99 that the total death
claims from the beneficiaries of this group (for the one year) will fall in the interval
($2,500,000 − k, $2,500, 000 + k).

16. If 2500 coins in a sack are poured out on a table, find with the use of the Chebyshev’s
inequality the value of k for which the probability that the number of heads will lie
in the interval (1250 − k, 1250 + k) exceeds 0.96.

17. One cigarette from each of four brands A, B, C, D is partially smoked by a blindfolded
person. As soon as he takes a few puffs on a cigarette, he states the letter of the brand
to which he considers it to belong. (Of course, he can use each letter only once.) Let X
be the random variable denoting the number of cigarettes correctly identified. If the
identification is done at random (i.e., he is equally likely to assign any letter to any
cigarette), write down the probability distribution of X in table form. Find the mean
and variance of X.

18. A point is taken at random from the interval (0, 1), all points being equally likely.
A second point is then taken in the same way. Let X be the coordinate of the point
halfway between these points. X is a continuous chance quantity with a probability
density function having an inverted V graph as shown below:

1
x

0

2
(1/2, 2)

1

Write down the formula for f(x). Find the mean and variance of X. Find the formula
for F (x) and graph F (x).

19. By using the moment-generating function of a random variable X having the binomial
distribution with parameter p, show that the mean and the variance of X are np and
np(1 − p), respectively.
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20. Suppose that X1, . . . ,Xn is a sample from a distribution whose mean is μ, vari-
ance is σ2, and whose moment-generating function exists. Show, using the method of
moment-generating functions, that the mean and variance of the sample sum T are nμ
and nσ2, respectively. Also use the method of moment-generating functions to show
that the mean and variance of the sample mean X̄ are μ and σ2/n, respectively.

21. If (X1,X2) is a pair of random variables such that

p2(x2) =
μx2e−μ

x2!
, x2 = 0, 1, 2, . . .

and
p(x1|x2) =

(
x2

x1

)
px1 (1 − p)x2−x1 , x1 = 0, 1, 2, . . . , x2

show that p1(x1) is a Poisson distribution.

22. Let X1 be a number taken at random on the interval (0, 1), and suppose that X1 = x1
is the observed value of X1. Let X2 be a number taken at random on the interval
(x1, 1). Show that the distribution of X2 has p.d.f.

f2(x2) =

{
− ln(1 − x2), if 0 < x2 ≤ 1
0, otherwise

23. Let F (x, y) be the c.d.f. of random variables (X,Y ). Show that

P (x1 < X < x2, y1 < Y < y2) = F (x2, y2) − F (x2, y1) − F (x1, y2) + F (x1, y1) ≥ 0

24. Suppose that the random variables (X1,X2) are distributed as bivariate normal with
parameters 0, 0, 1, 1, and ρ. Show that the random variables X = X1 + X2 and Y =
X1 − X2 are independent.

25. Suppose that the random variables (X,Y ) are bivariate normal with joint p.d.f.

f(x, y) = c exp

{
−25

18

(
x2 + y2 +

4
5
x − 14

5
y − 8

5
xy +

17
5

)}

(a) Find the parameters of the bivariate normal
(b) Find the value of c
(c) Find the marginal p.d.f.’s of both X and Y .

26. Referring to Problem 25,
(a) Find the conditional p.d.f. of the random variable Y , given X = x.
(b) Find the conditional p.d.f. of the random variable X, given Y = y.
(c) Find the conditional mean and variance of the random variable Y , given X = x.
(d) Find the conditional mean and variance of the random variable X, given Y = y.



Chapter 7

SAMPLING DISTRIBUTIONS

The focus of this chapter is to discuss sampling distributions of
functions of random variables.

Topics Covered

• Basic concepts of sampling from both an infinite and finite population
• Distributions of the sample average and sample proportion
• A fundamental theorem of probability, known as the “Central Limit Theorem”
• Distributions related to the normal distribution, namely chi-square, Student t, and

Snedecor’s F distributions, which are very useful in applied statistics
• Distributions of various order statistics and their applications
• Use of different statistical packages, namely MINITAB, R, and JMP

Learning Outcomes

After studying this chapter, the reader will be able to

• Understand the basic concepts of sampling distributions.
• Understand the Central Limit Theorem and when to apply it.
• Understand the details of important sampling distributions, namely χ2-square,

Student-t, and Snedecor’s F -distributions and use them to make conclusions about
problems that arise in applied statistics.

• Develop the distributions of various order statistics.
• Make use of MINITAB, R, and JMP in areas of applied statistics.

7.1 RANDOM SAMPLING

In this chapter, we study topics that build a foundation for what is called inferential
statistics. In inferential statistics, we use the information contained in a random sample
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Second Edition. Bhisham C. Gupta, Irwin Guttman, and Kalanka P. Jayalath.
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to make predictions about the population from which the sample has been drawn. In
Chapter 2, we had a very brief discussion about various designs of random sampling.
However, we will now discuss the design for simple random sampling (or simply called
random sampling) in detail.

7.1.1 Random Sampling from an Infinite Population
In this section, we discuss the special case that random variables X1, . . . ,Xn are mutually
independent, and all have identical probability functions p(x) (or identical probability
density functions [p.d.f.’s] f(x) in the case X1, . . . ,Xn are continuous random variables).
This set of n random variables (X1, . . . ,Xn) is said to be a random sample from p(x)
(or from f(x)), and X1, . . . ,Xn are called elements of the sample, or observations. Thus,
the sample elements X1, . . . ,Xn have equal means, which we will denote by μ, and equal
variances, which we denote by σ2. Sometimes we say that (X1, . . . ,Xn) is a random sample
from a population having probability function (p.f.) p(x), or p.d.f. f(x), and μ and σ2

are called the population mean and population variance, respectively. We often say that
X1, . . . ,Xn are n independent observations on a random variable X, where E(X) = μ and
V ar(X) = σ2.

Now suppose we consider the sample sum T, defined by

T = X1 + · · · + Xn (7.1.1)

The reader may verify that (see Theorem 6.2.3) the mean and variance of T are
given by

E(T ) = nμ (7.1.2)

and
V ar(T ) = nσ2 (7.1.3)

respectively. Since X1, . . . ,Xn are n independent observations on a random variable X,
the quantity T is also a random variable, and equations (7.1.2) and (7.1.3) give some
important properties of T.

Now, the reader must bear in mind that T is the sum of n independent measurements
Xi, i = 1, . . . , n and not equal to the variable U = nX. While it is true that E(T ) =
E(U) = nμ, the variance of T is nσ2 �= n2σ2 = V ar(U). This occurs because U is found
by observing a single X, and multiplying it by n. Recall that, T, however, is found by
observing n “X’s”, which we are assuming to be independent observations, X1, . . . ,Xn,
and then summing the results, so that we have

T = X1 + · · · + Xn

Continuing, suppose that we still assume that (X1, . . . ,Xn) are n independent observations
on X. We let X̄ be the sample average, defined by

X̄ =
1
n

(X1 + · · · + Xn) (7.1.4)
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and it can be seen that the mean and variance of X̄ are given by [see equations (6.2.17)
and (6.2.19)]

E(X̄) =
1
n

E(T ) = μ (7.1.5)

V ar(X̄) =
1
n2 σ2

T =
σ2

n
(7.1.6)

since σ2
T = nσ2. Equations (7.1.5) and (7.1.6) state particularly important properties of

X̄. The fact that E(X̄) = μ simply means the distribution of X̄ has the same mean as
the population from which the sample has been drawn. The fact that V ar(X̄) is inversely
proportional to n shows that as n increases, the distribution of X̄ becomes more highly
concentrated about its mean μ.

Example 7.1.1 (Mean and variance of sum of n observations) Suppose that (X1, . . . ,Xn)
are observations on weights of n plastic items produced by a molding machine. If the mean
and variance of the weights of an indefinitely large population of items molded by this
particular machine using this kind of plastic are μ and σ2, then the mean and variance of
T = X1 + · · · + Xn, the total weight of the sample of n elements X1, . . . ,Xn, are nμ and
nσ2, respectively.

Example 7.1.2 (Mean and variance of sample mean) Suppose that (X1, . . . ,Xn) are ran-
dom variables representing errors made independently while measuring the length of a bar
n times when its “true” length is known. If it is assumed that (X1, . . . ,Xn) are indepen-
dent random variables, each with mean 0 and variance σ2, then the mean and variance of
the average error X̄ are 0 and σ2/n, respectively.

Now by using Chebyshev’s Inequality (5.3.1), we can make a stronger statement about
the concentration of probability in the distribution of X̄ around its mean μ than by merely
saying that the variance of X̄ is σ2/n and, thus, inversely proportional to n. More precisely,
for any given arbitrarily small number ε > 0, we will consider

P (|X̄ − μ| > ε) (7.1.7)

that is, the probability that X̄ will fall outside the interval

[μ − ε, μ + ε]

We rewrite (7.1.7) as

P (|X̄ − μ| > ε) = P

(
|X̄ − μ| >

(
ε
√

n

σ

)
σ√
n

)
(7.1.7a)

Applying the Chebyshev’s Inequality and noting that ε
√

n/σ in (7.1.7a) plays the role of
k in (5.3.1) and σ/

√
n is the standard deviation of X̄ and plays the role of σ in (5.3.1), so

that applying (5.3.1) we have the following result.
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P (|X̄ − μ| > ε) ≤ σ2

ε2n
(7.1.8)

This states that, for an arbitrarily small positive number ε, the sample size n can be chosen
sufficiently large to make the probability as small as we please so that the average X̄ will
not differ from the population mean μ by more than ε. Statement (7.1.8) is sometimes
called the weak law of large numbers.

7.1.2 Random Sampling from a Finite Population
In Section 7.1.1, we discussed random sampling from an infinite population having the
probability distribution with p.f. p(x) or a p.d.f. f(x). Now suppose that the population
being sampled has only a finite number of objects say O1, O2, . . . , ON , such that the
x-values of these objects are X1,X2, . . . ,XN , respectively. We now define the mean μ and
the variance σ2 of this population as follows.

μ =
1
N

(X1 + X2 + · · · + XN ) (7.1.9)

σ2 =
1
N

N∑
i=1

(Xi − μ)2 (7.1.10)

If we consider a sample X1,X2, . . . ,Xn of size n drawn from the finite population of N
objects, without replacement, there are

(
N
n

)
possible samples that could be drawn, each

of which would have a certain sum T and an average X̄.
If each of these samples is equally likely to be drawn, that is, if the sample is a random

sample, then the mean and variance of all
(

N
n

)
possible sample sums are given by

E(T ) = nμ (7.1.11)

V ar(T ) =
(

N − n

N − 1

)
nσ2 (7.1.12)

The proofs of equations (7.1.11) and (7.1.12) are not given here but are available on
the book website: www.wiley.com/college/gupta/statistics2e. From equations (7.1.11) and
(7.1.12), it follows that

E(X̄) = μ (7.1.13)

V ar(X̄) =
(

N − n

N − 1

)
σ2

n
(7.1.14)

Further by letting N → ∞ it follows from equation (7.1.14) that limN→∞V ar(X̄) = σ2

n .
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Example 7.1.3 (Mean and variance of sum of n random numbers) If N objects are num-
bered 1, 2, . . . , N, respectively, and if a sample of n objects is drawn at random from this
population of N objects, what is the mean and variance of the sum T of numbers drawn in
the sample?

In this example, the X values X1,X2, . . . ,XN of the objects may be taken as
1, 2, . . . , N respectively. Thus, the mean and the variance of the population are given by

μ = (1 + 2 + · · · + N)/N = (N + 1)/2

σ2 =
1
N

(12 + 22 + · · · + N 2 − Nμ2)

=
1
N

[
N(N + 1)(2N + 2)

6
− N

(
N + 1

2

)2
]

that is
μ =

1
2
(N + 1), σ2 =

1
12

(N 2 − 1)

Hence, for a sample of n objects, T is such that

E(T ) =
n

2
(N + 1) and V ar(T ) =

n

12
(N 2 − 1)

PRACTICE PROBLEMS FOR SECTION 7.1

1. Define the appropriate population from which the following samples have been
drawn:
(a) Fifty employees from a manufacturing company are asked if they would like the

company to have some training program for all employees.
(b) A quality control engineer of a semiconductor company randomly selects 10

chips from a batch to examine their quality.
(c) One hundred voters from a large metropolitan area are asked for their opinion

about the location of the proposed airport.
2. The monthly entertainment expenses to the nearest dollar of 10 college students

randomly selected from a university with 10,000 students are as follows:

48 46 33 40 29 38 37 37 40 48

Determine the mean and standard deviation of these data.
3. Refer to Problem 2. Let T denote the total expenses for entertainment of all the

students. Estimate the mean and variance of T.
4. A manufacturing company has developed a new device for the army, obtaining a

defense contract to supply 25,000 pieces of this device to the army. In order to meet
the contractual obligations, the department of human resources wants to estimate
the number of workers that the company would need to hire. This can be accom-
plished by estimating the number of worker hours needed to manufacture 25,000
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devices. The following data give the number of hours spent by randomly selected
workers to manufacture 15 pieces of such a device.

8.90 8.25 6.50 7.25 8.00 7.80 9.90 8.30
9.30 6.95 8.25 7.30 8.55 7.55 7.70

Estimate the total worker hours needed to manufacture 25,000 devices.
5. The following data give the scores on a midterm test of 20 randomly selected stu-

dents.

29 26 40 27 35 39 37 40 37 34
36 28 26 33 37 25 27 33 26 29

Find the mean and standard deviation for these data.
6. Refer to Problem 5. Suppose that the instructor of the class decided to give 10 extra

points to every student. Find the mean and variance of the new data and comment
on your result.

7.2 THE SAMPLING DISTRIBUTION OF THE
SAMPLE MEAN

Often we encounter processes of interest whose mean μ and variance σ2 are not known.
Hence, one of the problems in statistical inference is to estimate them. For example, we
use the sample average X̄ and the sample variance S2 to estimate the population mean μ
and population variance σ2, respectively. However, it is important to note that the values
of the statistics X̄ and S2 vary from sample to sample. So a question that then arises, is
what guarantees are there that X̄ and S2 will give good estimates for μ and σ2? To answer
this question, it is important that we know the probability distributions of these statistics.
The goal of the remainder of this chapter is to study the probability distributions of X̄,
S2, and other related distributions. The probability distributions of various statistics are
called their sampling distributions.

In this section, we consider the sampling distribution of the sample average X̄ when
(i) the sampled population is normal and (ii) the sampled population is nonnormal.

7.2.1 Normal Sampled Population
If the random sample X1,X2, . . . ,Xn is taken from a normal population with mean μ and
variance σ2, then from Theorem 6.4.3, it follows that for n ≥ 1, X̄ is normally distributed
with mean μ and variance σ2/n, or standard deviation σ/

√
n, which is also called the

standard error.

7.2.2 Nonnormal Sampled Population
Now, we discuss the distribution of X̄ when we are sampling from a population that is
nonnormal, either finite or infinite. In this case, the approximate distribution of X̄ is given
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by a very important theorem of probability theory, known as the central limit theorem.
We discuss this theorem next.

7.2.3 The Central Limit Theorem

Theorem 7.2.1 (Central Limit Theorem) If X1,X2, . . . ,Xn are independent
and identically distributed random variables with mean μ and variance σ2 (both

finite), then the limiting form of the distribution of Zn = X̄−μ
σ/

√
n

as n → ∞ is that
of the standard normal, that is, normal with mean 0 and variance 1.

The proof of the Central Limit Theorem is not given here but is available for download
from the book website: www.wiley.com/college/gupta/statistics2e.

Figure 7.2.1 gives the distribution of the exponential population with mean 1 from
which samples of various sizes (n = 5, 10, 20, 230, 50, and 100) have been taken. Figure 7.2.2
gives the normal probability plots (see Section 5.8) of X̄ for the selected sample sizes.

These normal probability plots clearly show that as the sample size increases, the sam-
pling distribution of X̄ approaches the normal distribution, even though the distribution
of the population from which the samples have been taken is highly skewed.

0
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Figure 7.2.1 Exponential probability distribution of X with mean 1.

The normal approximation for the sampling distribution of X̄ is generally considered
acceptable if n ≥ 30. For n < 30, the approximation is accurate only if the distribution
of the population from which the samples are being taken is close to being normally
distributed. If the population is normal, then the sampling distribution of X̄ is exactly
normal, regardless of the sample size; the sample size could even be as small as 2.

Example 7.2.1 (Applying the Central Limit Theorem) Suppose that X1,X2, . . . ,Xn

is a random sample from a Bernoulli population with parameter p, and suppose that
Y = X1 + · · · + Xn. Find the sampling distribution of Y as n → ∞.
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Figure 7.2.2 Normal probability plots of X̄ for selected sample sizes n = 5, 10, 20, 30, 50,
and 100, when sampling from the exponential distribution with mean 1.

Solution: From Chapter 4, it follows that Y is a random variable having the binomial
distribution with mean np and variance np(1 − p). Now, we also have that Y is the sum
of n independent and identically distributed random variables, each having mean p and
variance p(1 − p). Hence, by the central limit theorem, (Y − np)/

√
np(1 − p) is a random

variable whose limiting distribution, as n → ∞, is the standard normal distribution, so
that the random variable Y is, for large n, approximately distributed as normal with mean
np and variance np(1 − p). As we noted in Section 5.7, this normal approximation for the
binomial is quite accurate when n and p are such that both the inequalities np > 5 and
variance n(1 − p) > 5 hold.

Note that if the sampling is done without replacement from a finite population with
mean μ and variance σ2, then the sampling distribution of X̄ is still approximately nor-

mally distributed with mean μ and variance
σ2

n

(
N−n
N−1

)
; the factor N−n

N−1 is called the finite
population correction factor. Further note that this correction factor is ignored if either
the sampling is done with replacement or the sample size relative to the population size
is small (n < 0.05N).

Example 7.2.2 (Applying the central limit theorem) The mean weight of a food entrée
is μ = 190 g with a standard deviation of 14 g. If a random sample of 49 entrées is selected,
then find

(a) The probability that the sample average weight will fall between 186 and 194g.
(b) The probability that the sample average will be greater than 192 g.

Solution: (a) Let X̄ be the sample mean. Since the sample size n = 49 is large, from the
Central Limit Theorem, we know that X̄ is approximately normal with mean μ = 190 g
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and standard deviation σx̄ = σ/
√

n = 14/
√

49 = 2 g. Thus, we have

P (186 ≤ X̄ ≤ 194) = P

(
186 − 190

2
≤ X̄ − 190

2
≤ 194 − 190

2

)

which to good approximation (n = 49 is large) is equal to

P (−2 ≤ Z ≤ 2) = P (Z ≤ 2.0) − P (Z ≤ −2.0) = 0.9772 − 0.0228 = 0.9544

(b) By the same argument as in part (a), we have, approximately, that

P (X̄ ≥ 192) = P

(
X̄ − 190

2
≥ 192 − 190

2

)
= P (Z ≥ 1) = 0.1587

Example 7.2.3 (Example 7.2.2 continued) Repeat Example 7.2.2 when the sample size
is increased from 49 to 64 entrées.

Solution: (a) In this example, X̄ will be approximately normal with mean μ = 190 g and
standard deviation σx̄ = σ/

√
n = 14/

√
64 = 1.75 g.

Thus, we have

P (186 ≤ X̄ ≤ 194) = P

(
186 − 190

1.75
≤ X̄ − 190

1.75
≤ 194 − 190

1.75

)
= P (−2.28 ≤ Z ≤ 2.28) = P (Z ≤ 2.28) − P (Z ≤ −2.28) = 0.9774

(b) In this case, we have

P (X̄ ≥ 192) = P

(
X̄ − 190

1.75
≥ 192 − 190

1.75

)
= P (Z ≥ 1.14) = 0.1271

From Examples 7.2.2 and 7.2.3, we see that as the sample size increases from 49 to 64,
the probability that the sample mean falls within 4 units of the population mean increases,
while the probability that the sample mean falls beyond two units from the population
mean decreases. These examples emphasize that as the sample size increases, the variance
of the sample mean decreases, and therefore, the sample means are more concentrated
about the population mean. This fact makes X̄ a good estimator for the population mean
μ. We will study this phenomenon in more detail in Chapter 8.

Example 7.2.4 (Applying the central limit theorem to approximate probabilities for a
sample mean) A random sample of 36 reinforcement rods is taken from a production
plant that produces these rods with a mean length of μ = 80 cm and a standard deviation
of 0.6 cm. Find the approximate probability that the sample mean of the 36 rods falls
between 79.85 and 80.15 cm.

Solution: Let X̄ be the sample mean. We are then interested in finding the probability
of P (79.85 ≤ X̄ ≤ 80.15).
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Since the sample size is large, by the central limit theorem, we know that X̄ is approx-
imately normally distributed with mean 80 cm and standard deviation σx̄ = σ/

√
n =

0.6/
√

36 = 0.1 cm. Thus we have

P (79.85 ≤ X̄ ≤ 80.15) = P

(
79.85 − 80

0.1
≤ X̄ − 80

0.1
≤ 80.15 − 80

0.1

)

which to good approximation is equal to

P

(
−0.15

0.1
≤ Z ≤ 0.15

0.1

)
= P (−1.5 ≤ Z ≤ 1.5) = P (Z ≤ 1.5) − P (Z ≤ −1.5) = 0.8664

Example 7.2.5 (Hourly wages of workers in a semiconductor industry) Suppose that
the mean hourly wage of all employees in a large semiconductor manufacturing facility is
$50.00 with a standard deviation of $10.00. Let X̄ be the mean hourly wages of certain
employees selected randomly from all the employees of this manufacturing facility. Find
the approximate probability that the mean hourly wages X̄ falls between $48.00 and $52.00
when the number of selected employees is (a) 64, (b) 100.

Solution: (a) Since the sample size of 64 is large, and by the central limit theorem, we
know that X̄ is approximately normally distributed with mean μx̄ = μ = 50, and stan-
dard deviation σx̄ = σ/

√
n = 10/

√
64 = 1.25. We are interested in finding the probability

P (48 ≤ X̄ ≤ 52), which, approximately, is given by

P (48 ≤ X̄ ≤ 52) = P

(
48 − 50

1.25
≤ X̄ − 50

1.25
≤ 52 − 50

1.25

)
= P (−1.6 ≤ Z ≤ 1.6) = P (Z ≤ 1.6) − P (Z ≤ −1.6) = 0.8904

(b) In this case, the sample size is 100, which is also large. By the same argument as used
in part (a), we have

μx̄ = μ = 50 and σx̄ = 10/
√

100 = 1

Thus, the desired probability is given by

P (48 ≤ X̄ ≤ 52) = P

(
48 − 50

1
≤ X̄ − 50

1
≤ 52 − 50

1

)
= P (−2 ≤ Z ≤ 2) = P (Z ≤ 2.0) − P (Z ≤ −2.0) = 0.9544

Example 7.2.6 (Example 7.2.5 continued) Repeat Example 7.2.5 for the company that is
not very large and whose total number of employees is only 500.

Solution: In this case, the sample size is large, but the population is finite. Before applying
the Central Limit Theorem, we must check whether n < (0.05)N . If this relation does not
hold, we must use the finite population correction factor to calculate the standard deviation
of the sample average.
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(a) In this case, we have n/N = 64/500 = 0.128, so that the sample size n = 64 is greater
than 5% of the population. Using the finite population correction factor, we have

μx̄ = μ = 50

and

σx̄ =
σ√
n
×

√
N − n

N − 1
=

10
8

×
√

500 − 64
500 − 1

= 1.25

√
436
499

= 1.168

Therefore, the desired probability is approximately

P (48 ≤ X̄ ≤ 52) = P

(
48 − 50
1.168

≤ X̄ − 50
1.168

≤ 52 − 50
1.168

)
= P (−1.71 ≤ Z ≤ 1.71) = P (Z ≤ 1.71) − P (Z ≤ −1.71) = 0.9128

(b) Again, note that the sample size is greater than 5% of the population size. Thus, using
the finite population correction factor, we have

μx̄ = μ = 50

and

σx̄ =
σ√
n
×

√
N − n

N − 1
=

10
10

×
√

500 − 100
500 − 1

= 0.895

Therefore, the desired probability is approximated by

P (48 ≤ X̄ ≤ 52) = P

(
48 − 50
0.895

≤ X̄ − 50
0.895

≤ 52 − 50
0.895

)
= P (−2.23 ≤ Z ≤ 2.23) = P (Z ≤ 2.23) − P (Z ≤ −2.23) = 0.9742

Note that in this example, both probabilities are slightly greater than those found in
Example 7.2.5. This is due to our using the finite population correction factor by which
the standard deviation of X̄ becomes smaller.

Example 7.2.7 (Sampling distribution of the estimator of the binomial parameter) Let
X be a random variable distributed as binomial with parameters n and p, where n is the
number of trials, and p is the probability of success. Find the sampling distribution of the
sample proportion p̂ when (a) n = 100, p = 0.25 and (b) n = 64, p = 0.5.

Solution: (a) We have np = 100(0.25) = 25 > 5, and n(1 − p) = 100(1 − 0.25) = 75 > 5.
By applying the central limit theorem, we see that p̂ is approximately normally distributed
with mean and variance given by

μp̂ = p = 0.25, and σ2
p̂ =

p(1 − p)
n

=
(0.25)(0.75)

100
= 0.001875

(b) By the same argument as in part (a), we have np = 64(0.5) = 32 > 5 and n(1 − p) =
64(1 − 0.5) = 32 > 5

Again, we see that p̂ is approximately normally distributed with mean and variance
given by

μp̂ = p = 0.5, and σ2
p̂ =

p(1 − p)
n

=
(0.5)(0.5)

64
= 0.0039
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PRACTICE PROBLEMS FOR SECTION 7.2

1. Suppose that random samples of size 36 are repeatedly drawn from a population
with mean 28 and standard deviation 9. Describe the sampling distribution of X̄.

2. Suppose that random samples (without replacement) of size 5 are repeatedly drawn
from a finite population of size N = 50. Suppose that the mean and the standard
deviation of the population are 18 and 5, respectively. Find the mean and the stan-
dard deviation of the sampling distribution of X̄.

3. Suppose that random samples are drawn from an infinite population. How does the
standard error of X̄ change if the sample size is (i) increased from 36 to 64, (ii)
increased from 100 to 400, (iii) increased from 81 to 324, (iv) increased from 256 to
576?

4. The weight of all cars traveling on interstate highway I-84 is normally distributed
with a mean of 3000 lb and standard deviation of 100 lb. Let X̄ be the mean weight
of a random sample of 16 cars traveling on I-84. Calculate the probability that X̄
falls between 2960 and 3040 lb.

5. Suppose that the amount of a weekly grocery bill of all households in a metropolitan
area is distributed with a mean of $140 and a standard deviation of $35. Let X̄ be
the average amount of grocery bill of a random sample of 49 households selected
from this metropolitan area. Find the probability that X̄ will be (a) more than $145,
(b) less than $140, (c) between $132 and $148.

6. Let X be a random variable distributed as binomial B(n, p). State the approxi-
mate sampling distribution of the sample proportion p̂ when (a) n = 40, p = 0.4;
(b) n = 50, p = 0.2; (c) n = 80, p = 0.1.

7. In 1995, the median price of a PC was $1200. Suppose that a random sample of
100 persons who bought their PCs during that year recorded the amount spent (by
each of them) on his/her PC. State the approximate sampling distribution of p̂, the
proportion of persons who spent more than $1200 on a PC. Find the probability
that more than 60% of this group spent more than $1200.

8. The amount of beverage dispensed by a bottling machine is normally distributed
with mean of 12 oz and a standard deviation of 1 oz. A random sample of n bottles
is selected, and a sample average X̄ is calculated. Determine the following probabil-
ities:
(a) P (|X̄ − 12| ≤ 0.25) for sample sizes n = 16, 25, 36, 49, and 64.
(b) Comment on the values of probabilities obtained in part (a).

7.3 SAMPLING FROM A NORMAL
POPULATION

In this section, we consider various sampling distributions that arise when sampling from
a normal population. These distributions are widely used in applied statistics.

7.3.1 The Chi-Square Distribution
We encounter the chi-square distribution, usually denoted as the χ2-distribution, quite
frequently in statistical applications. The χ2-distribution occupies an important place in
applied statistics. The χ2-distribution moreover is related to the normal distribution, as
discussed later in this section. We start with the following definition:



7.3 Sampling from a Normal Population 265

Definition 7.3.1 A random variable W is said to be distributed as a χ2
n random

variable if its p.d.f. is given by

f(w) =

{ 1
2n/2Γ(n/2)w

n/2−1e−w/2, w ≥ 0, n > 0

0, otherwise

We sometimes say that W is a chi-square random variable with n degrees of freedom
and denote this by W ∼ χ2

n, which is read as W is distributed as the chi-square random
variable with n degrees of freedom.

Theorem 7.3.1 The moment-generating function of W, where W ∼ χ2
n, is

given by
MW (t) = Mχ2

n
(t) = (1 − 2t)−n/2

Proof: By definition, the moment-generating function of W is

MW (t) = E(etW ) =
∫ ∞

0
etwf(w)dw

Now f(w) is defined in Definition 7.3.1, so we may write

MW (t) =
∫ ∞

0

1
2n/2Γ(n/2)

wn/2−1e−
w
2 (1−2t)dw

Assume that (1 − 2t) > 0. Then, if we let u = ((1 − 2t)/2)w in the above integral, we have,
after using some elementary algebra that

MW (t) =
2n/2Γ(n/2)
2n/2Γ(n/2)

(1 − 2t)−n/2

that is,

MW (t) = Mχ2
n
(t) = (1 − 2t)−n/2 (7.3.1)

�

Theorem 7.3.2 Let Z1, . . . , Zn be a random sample from a standard normal dis-
tribution N(0, 1). Let a new random variable Y be defined as follows:

Y = Z2
1 + · · · + Z2

n (7.3.2)

Then, the random variable Y is distributed as chi-square with n degrees of freedom
and is written as χ2

n.
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Proof: Since the random variable Zi is distributed as standard normal, the
moment-generating function (m.g.f.) of Z2

i is given by

MZ2
i
(t) = E(etZ2

i ) =
1√
2π

∫ ∞

−∞
etz2

ie−z2
i/2dzi

=
1√
2π

∫ ∞

−∞
e−(1−2t)z2

i/2dzi

= (1 − 2t)−1/2 1√
2π

∫ ∞

−∞
e−u2/2du

where u2 = (1 − 2t)z2
i . We then have

MZ2
i
(t) = (1 − 2t)−1/2

This is the m.g.f. of a χ2
1 random variable (see Theorem 7.3.1), so that Z2

i ∼ χ2
1. Further-

more, since the random variables Z1, . . . , Zn are independent and identically distributed
(see Chapter 6), the m.g.f. of the random variable Y of Theorem 7.3.2 is given by

MY (t) =
n∏

i=1

MZ2
i
(t) = (1 − 2t)−n/2 (7.3.3)

From Theorem 7.3.1, the m.g.f. of the random variable Y is the m.g.f. of χ2
n random

variable, so that Y ∼ χ2
n, which in turn implies that the p.d.f. of Y is

f(y) =

{ 1
2n/2Γ(n/2)y

n/2−1e−y/2, y ≥ 0

0, otherwise
(7.3.4)

�

The chi-square distribution has only one parameter n, the degrees of freedom. The
shape of various p.d.f. of χ2

n for n = 4, 6, 8, and 10 are shown in Figure 7.3.1.
Note that from the definition of the χ2 p.d.f., the random variable χ2 assumes only

nonnegative values. Hence, the entire frequency distribution curve falls to the right of the
origin and it is right-skewed. The mean and variance of the chi-square distribution are,
respectively, equal to the degrees of freedom and twice the degrees of freedom. That is,
for χ2

n we have that the mean and variance are as given below.

μχ2
n

= n (7.3.5)

σχ2
n

= 2n (7.3.6)

We also state the following important fact as a corollary below.

Corollary 7.3.1 Let X1, . . . ,Xn be a random sample from the normal distri-
bution N(μ, σ2), and let X̄ be the sample average. Then, the random variable
(X̄ − μ)2/(σ2/n) is distributed as a chi-square random variable with 1 degrees of
freedom.
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Figure 7.3.1 Graphs of chi-square density functions for different degrees of freedom.

The result stated in corollary (7.3.1) is quite evident because X̄ is distributed as normal
with mean μ and variance σ2/n so that (X̄ − μ)/(σ/

√
n) ∼ Z ; hence [(X̄ − μ)/(σ/

√
n)]2 ∼

Z2 ∼ χ2
1 (see Theorem 7.3.2). Also, we may state other facts related to chi-square variables

below.

Corollary 7.3.2 Let X1, . . . ,Xn be a random sample from the normal distribution
N(μ, σ2), then the random variable

1
σ2

n∑
i=1

(Xi − μ)2 (7.3.7)

is distributed as a chi-square with n degrees of freedom.

Definition 7.3.2 Suppose that X1, . . . ,Xn is a random sample from the normal
distribution N(μ, 1). Then, the random variable Y =

∑n
i=1 X2

i is said to be dis-
tributed as a noncentral χ2

n with parameter δ = nμ2. (δ is called the noncentrality
parameter.)

Theorem 7.3.3 If χ2
n1

and χ2
n2

are independent random variables having
chi-square distributions with n1 and n2 degrees of freedom, respectively, then
χ2

n1
+ χ2

n2
is a random variable having the chi-square distribution with n1 + n2

degrees of freedom.

We have Mχ2
n1

+χ2
n2

(t) = Mχ2
n1

(t) × Mχ2
n2

(t), so Mχ2
n1

+χ2
n2

(t) = (1 − 2t)−n1/2 ×
(1 − 2t)−n2/2 = (1 − 2t)−(n1+n2)/2, which is the moment-generating function of a χ2

n1+n2

random variable. Now invoking Theorem 6.4.1, we have that
∑2

i=1 χ2
ni

∼ χ2
n1+n2

.
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The values of χ2
n,α such that P (χ2

n ≥ χ2
n,α) = α for various values of n and α are given

in Table A.6. Note that χ2
n,α is sometimes called the upper 100 α percent point of the

χ2
n distribution. For example, if the random variable χ2

n is distributed with n = 18, and if
α = 0.05, then from Table A.6, we find that

χ2
18,0.05 = 28.8693

that is,
P (χ2

18 > 28.8693) = 0.05

Note that to find the value of the random variable χ2
n such that the lower tail area is α,

we would use Table A.6 to find the value of χ2
n,1−α for selected values of α and n. We then

would have that P (χ2
n > χ2

n,1−α) = 1 − α , so P (χ2
n ≤ χ2

n,1−α) = α.

Example 7.3.1 (Finding tail probabilities of χ2-distribution) Suppose that we are dealing
with χ2

20 and wish to find the value of a and b such that P (χ2
20 ≥ a) = 0.05 and P (χ2

20 ≤
b) = 0.025.

Solution: We are given the area under the upper tail. We can find the value of a directly
from the Table A.6 with n = 20 and α = 0.05, that is,

a = χ2
20,0.05 = 31.410

For the lower tail, we are given that the area under the lower tail of the p.d.f. of the χ2
20

distribution is 0.025. We have

0.025 = P (χ2
20 ≤ b) = 1 − P (χ2

20 > b)

so that
P (χ2

20 > b) = 0.975

Hence, from Table A.6, we find that

b = χ2
20,0.975 = 9.591

In applications, most often we are interested in finding the distribution of the sample
variance S2 when a random sample is taken from a normal population. However, before
discussing the distribution of S2, we state below another important result in Theorem
7.3.4. The proof of this theorem is, however, beyond the scope of this book.

Theorem 7.3.4 Let X1, . . . ,Xn be a random sample from a normal population
with mean μ and variance σ2. Let the random variables X̄ and S2 be the sample
average and sample variance, respectively. Then, the random variables X̄ and S2

are independent.

We are now able to state the result about the distribution of the sample variance S2.
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Theorem 7.3.5 Let X1, . . . ,Xn be a random sample from a normal population
with mean μ and variance σ2. Consider

S2 =
1

n − 1

n∑
i=1

(Xi − X̄)2 (7.3.8)

the sample variance. Then, the random variable

(n − 1)S2

σ2 =
1
σ2

n∑
i=1

(Xi − X̄)2 (7.3.9)

is distributed as χ2 with (n − 1) degrees of freedom.

Example 7.3.2 (Finding the middle 95% interval for σ2) Suppose that a tea-packaging
machine is calibrated such that the amount of tea it discharges is normally distributed with
mean μ = 16 oz and standard deviation σ = 1.0 oz. Suppose that we randomly select 21
packages and weigh the amount of tea in each package. If the sample variance of these 21
weights is denoted by S2, then it may be of interest to find the values of c1 and c2 such
that P (c1 ≤ S2 ≤ c2) = 0.95, where P (S2 < c1) = P (S2 > c2) = 0.025, so (c1, c2) contains
the middle or central part of the distribution of S2.

The solution to this problem would enable us to calibrate the machine such that the
value of the sample variance would be expected to fall between certain values with a very
high probability.

Solution: From Theorem 7.3.5, we have the following:

(n − 1)S2

σ2 ∼ χ2
20

Now, we wish to find c1 and c2 as previously mentioned so that P (c1 ≤ S2 ≤ c2) = 0.95, or

P

(
n − 1
σ2 c1 ≤

(n − 1)S2

σ2 ≤ n − 1
σ2 c2

)
= 0.95

or

P

(
n − 1
σ2 c1 ≤ χ2

20 ≤
n − 1
σ2 c2

)
= 0.95

since n = 21. But here σ = 1, so we now have (n − 1 = 21 − 1 = 20)

P (20c1 ≤ χ2
20 ≤ 20c2) = 0.95

Then, by assigning probability 0.025 under each tail, or equivalently selecting the middle
0.95 of the χ2

20 distribution, we have from Table A.6 that P (χ2
20 ≤ χ2

20,0.975 = 9.951) = 0.025
and P (χ2

20 ≥ χ2
20,0.025 = 34.170) = 0.025, so that

P (9.591 ≤ χ2
20 ≤ 34.170) = 0.95
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and we have
20c1 = 9.591 and 20c2 = 34.170

or
c1 = 0.4795 and c2 = 1.7085

Thus,
P (0.4795 ≤ S2 ≤ 1.7085) = 0.95

Note that from equation (7.3.9) of Theorem 7.3.5 and using equation (7.3.5), we can
easily prove another important result given below.

E(S2) = σ2 (7.3.10)

Example 7.3.3 (Using MINITAB and R to find chi-square probabilities) Using
MINITAB and R determine the following:

(a) Values of χ2
20,1−α for α = 0.01, 0.025, 0.05.

(b) Values of χ2
20,α for α = 0.01, 0.025, 0.05.

Solution:

MINITAB

(a) Recall that P (χ2
20 ≥ χ2

20,1−α) = 1 − α so that P (χ2
20 ≤ χ2

20,1−α) = 1 − (1 − α) = α. That
is, χ2

20,1−α is the lower 100α% point of the χ2
20 distribution. In order to determine the value

of χ2
20,1−α for α = 0.01, 0.025, 0.05, we proceed as follows (note that MINITAB determines

the areas under the lower tail):

1. Enter the values 0.01, 0.025, 0.05 in column C1.
2. From the Menu bar select Calc > Probability Distribution > Chi-square.
3. In the dialog box that appears, click the circle next to Inverse probability.
4. Complete the boxes next to Degrees of freedom and Input Column, and click

OK.
The values of χ2

20,1−α will appear in the Session window shown below:

Chi-Square with 20 DF
P(X ≤ x) x

0.010

0.025

0.050

8.2604

9.5908

10.8508

(b) We first recall that P (χ2
20 ≥ χ2

20,α) = α, so P (χ2
20 ≤ χ2

20,α) = 1 − α. As previously men-
tioned, MINITAB determines values of χ2

20,α that are such that the area under the lower
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tail of the χ2
20 distribution is 1 − α. Hence, we first enter the values of 1 − α, that is, 0.99,

0.975, and 0.95, and then proceed in the same manner as in part (a). We find for this part
that the values of χ2

20,α are:

Chi-Square with 20 DF
P(X ≤ x) x

0.990

0.975

0.950

37.5662

34.1696

31.4104

USING R

R has a built-in chi-square distribution function ‘qchisq(p, df, ncp = 0, lower.tail =
TRUE)’, where p is the probability, df is the degrees of freedom, ncp is the noncen-
trality parameter, and lower.tail = TRUE gives the quantile corresponding to the left
tail chi-square probability p. So, referring to Example 7.3.3, in part (a) we use lower.tail
= TRUE and in part (b) lower.tail = FALSE as we need lower and upper tail quantiles,
respectively. Run following R code in the R Console window to obtain required probabilities
as shown below.

prob = c(0.01, 0.025, 0.05)

qchisq(prob, df=20, ncp = 0, lower.tail = TRUE)

#R output

[1] 8.260398 9.590777 10.850811

qchisq(prob, df=20, ncp = 0, lower.tail = FALSE)

#R output

[1] 37.56623 34.16961 31.41043

7.3.2 The Student t-Distribution
One of the most important distributions in statistics, called the Student t-distribution,
arises in problems involving small samples from the normal distribution. We have the
following theorem:

Theorem 7.3.6 If X and Y are independent random variables having the nor-
mal distribution N(0, 1) and the chi-square distribution with n degrees of freedom,
respectively, then the random variable

T =
X√
Y/n

(7.3.11)
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has the following probability density function:

f(t) =
Γ((n + 1)/2)√

nπΓ(n/2)

(
1 +

t2

n

)−(n+1)/2

, −∞ ≤ t ≤ ∞ (7.3.12)

The derivation of the probability distribution in equation (7.3.12) is not given here
but is available on the book website: www.wiley.com/college/gupta/statistics2e.

It can be shown that the mean and the variance of T are given by

μ = E(T ) = 0 and σ2 = V ar(T ) =
n

n − 2
(7.3.13)

the variance being finite only if n > 2.

Definition 7.3.3 The distribution having the probability density function (7.3.12)
is called the Student t-distribution with n degrees of freedom. A random variable T
having (7.3.12) as its probability density function is called a Student t-variable with
n degrees of freedom and is often denoted by tn

The p.d.f. of tn is symmetric about zero. Its graph looks something like that of the
p.d.f. of the normal distribution N(0, 1) shown in Figure 7.3.3. Theoretically, both distri-
butions extend between −∞ and ∞, but in practice, for the normal distribution almost
all the probability falls between −3 and 3, whereas for the t-distribution, probabilities
depend on the degrees of freedom. For example, for 15 degrees of freedom, almost all the
distribution falls between −4 and 4. Thus, the t-distribution is slightly flatter than the
normal distribution. However, it can be proved that as n → ∞, the p.d.f. (7.3.12) tends
to the p.d.f. of the N(0, 1) variable as its limit. Values of tn,α for which

P (tn > tn,α) = α

are tabulated in Table A.5 for various values of n and α. Because of the symmetry
around zero, we have that tn,α = −tn,1−α. That is, P (tn > tn,α) = P (tn < −tn,α) = α (see
Figure 7.3.2). Note in Figures 7.3.2 and 7.3.3 that the tail areas of the t-distribution
with the same probabilities are located farther from the origin (mean) than in the nor-
mal distribution, supporting our assertion that t-distribution is flatter than the normal
distribution.

Example 7.3.4 (Using MINITAB and R to determine probabilities of the
t-distribution) Using MINITAB and R, determine the values of t25,1−α such that:

1. P (t25 < t25,1−α) = α for α = 0.01, 0.025, 0.05 (Recall that the t p.d.f. is symmetric
around zero).

2. Values of t25,α for which P (t25 > t25,α) = α for α = 0.01, 0.025, 0.05
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Figure 7.3.2 Probability density function of the t-distribution with n = 15 degrees of
freedom showing 0.025 areas under each tail.
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Figure 7.3.3 Probability density function of the N(0, 1)-distribution showing 0.025
areas under each tail.

MINITAB

(a) In order to determine the values of t25,1−α, we proceed as follows:

1. Enter the values 0.01, 0.025, and 0.05 in column C1.
2. From the Menu bar, select Calc > Probability Distribution > t . . . .
3. In the dialog box that appears, click the circle next to Inverse probability.
4. Complete the boxes next to Degrees of freedom and Input Column and click

OK.

The values of t25,1−α will appear in the Session window, as shown below.
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Student’s t distribution with 25 DF
P(X ≤ x) x

0.010

0.025

0.050

–2.48511

–2.05954

–1.70814

(b) Recall the result that tn,α = −tn,1−α. So for this part the values of t25,α will be the
same as in part (a) but with positive signs.

USING R

R has a built in t-distribution function ‘qt(p, df, ncp, lower.tail = TRUE)’, where p is the
probability, df is the degrees of freedom, ncp is the noncentrality parameter, and lower.tail
= TRUE gives the quantile corresponding to the left tail probability p. So, referring to
Example 7.3.4, in part (a), we use lower.tail = TRUE, and in part (b), lower.tail = FALSE
as we need lower and upper tail quantiles, respectively. Run following R code in R Console
window to obtain required probabilities as shown below.

prob = c(0.01, 0.025, 0.05)
qt(prob, df=25, ncp=0, lower.tail = TRUE)

#R output

[1] -2.485107 -2.059539 -1.708141

qt(prob, df=25, ncp=0, lower.tail = FALSE)

#R output

[1] 2.485107 2.059539 1.708141

As an immediate application of Theorem 7.3.6, we have the following theorem:

Theorem 7.3.7 Let X1, . . . ,Xn be a random sample from a normal population
with mean μ and variance σ2. Let the random variables X̄ and S2 be the sample
average and sample variance. Then, the random variable

T =
X̄ − μ

S/
√

n
(7.3.14)

has the student t-distribution with (n − 1) degrees of freedom.

To establish Theorem 7.3.7, we recall that X̄ is distributed as normal with mean μ

and variance σ2/n, so that
X̄ − μ

σ/
√

n
∼ N(0, 1). From Theorems 7.3.4 and 7.3.5 we have that

(n − 1)S2/σ2 is distributed as chi-square with (n − 1) degrees of freedom, independent of
the sample mean. From Theorem 7.3.6, we know that the random variable T in (7.3.14) is
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distributed as the student t with (n − 1) degrees of freedom. Summarizing, we may write

T =
X̄ − μ

S/
√

n
=

(X̄ − μ)/(σ/
√

n)√
S2/σ2

∼ Z√
χ2

n−1/(n − 1)
∼ tn−1

Now suppose that X̄1 and X̄2 are sample averages of independent samples of size n1
and n2 from the normal population N(μ1, σ

2
1) and N(μ2, σ

2
2), respectively. Then, X̄1 and X̄2

are N(μ1, σ
2
1/n1) and N(μ2, σ

2
2/n2) random variables, respectively, and are independent.

If we consider the linear combination X̄1 − X̄2, from Theorem 6.4.2, we have the result
given below in Theorem 7.3.8.

Theorem 7.3.8 Let X̄1 and X̄2 be sample averages of independent samples of size
n1 and n2 from the normal population N(μ1, σ

2
1) and N(μ2, σ

2
2), respectively. Then

X̄1 − X̄2, has the normal distribution N(μ1 − μ2, σ
2
1/n1 + σ2

2/n2).

We can now state the following important theorem, Theorem 7.3.9, given below.

Theorem 7.3.9 Let X̄1 and X̄2 be sample averages and S2
1 and S2

2 be sample
variances of independent samples of size n1 and n2 from the normal populations
N(μ1, σ

2
1) and N(μ2, σ

2
2), respectively. Then, if σ2

1 = σ2
2 = σ2, the random variable

T =
(X̄1 − X̄2) − (μ1 − μ2)

Sp

√
1/n1 + 1/n2

(7.3.15)

where S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
(pooled variance), has the Student t-distribution

with n1 + n2 − 2 degrees of freedom.

To prove Theorem 7.3.9, we note that if in Theorem 7.3.8 we put σ2
1 = σ2

2 = σ2, then

U =
(X̄1 − X̄2) − (μ1 − μ2)

σ
√

1/n1 + 1/n2

has the normal distribution N(0, 1). Furthermore,

V =
(n1 − 1)S2

1

σ2 +
(n2 − 1)S2

2

σ2

is the sum of two independent random variables having the chi-square distribution with
n1 − 1 and n2 − 1 degrees of freedom, respectively. Thus, V has a chi-square distribution
with (n1 − 1) + (n2 − 1) = n1 + n2 − 2 degrees of freedom. Therefore, by Theorem 7.3.6,

T =
U√

V/(n1 + n2 − 2)
=

(X̄1 − X̄2) − (μ1 − μ2)
Sp

√
1/n1 + 1/n2

has the Student t-distribution with n1 + n2 − 2 degrees of freedom.
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7.3.3 Snedecor’s F -Distribution
Another important distribution in the theory of sampling from the normal distribution
is the F -distribution, which is summarized in Theorem 7.3.10. But we start with the
following definition:

Definition 7.3.4 Let X1 and X2 be two independent random variables having
chi-square distribution with ν1 and ν2 degrees of freedom, respectively. Then, the

random variable F =
X1/ν1

X2/ν2
is said to be distributed as Snedecor’s F-distribution

with ν1 and ν2 degrees of freedom.

Theorem 7.3.10 The probability density function of the Snedecor F-distribution
with ν1 and ν2 degrees of freedom is

h(f) =

⎧⎨
⎩

Γ[(ν1+ν2)/2]
Γ(ν1/2)Γ(ν2/2)

(
ν1
ν2

)ν1/2
f (ν1/2)−1

(
1 + ν1f

ν2

)−(ν1+ν2)/2
, f > 0

0, otherwise
(7.3.16)

The derivation of the probability distribution in (7.3.16) is not included here but
is available on the book website: www.wiley.com/college/gupta/statistics2e. The ran-
dom variable F of the Definition 7.3.4 is sometimes referred to as the variance ratio,
or Snedecor’s F -variable, and is often denoted by Fν1,ν2

, where ν1 and ν2 are known as
numerator and denominator degrees of freedom, respectively. At this point, we may add
that t2ν ∼ F1,ν , as the reader may easily verify.

The mean and variance of the random variable F whose distribution is given by
(7.3.16) are

μ =
ν2

ν2 − 2
provided that ν2 > 2 (7.3.17)

σ2 =
2ν2

2 (ν1 + ν2 − 2)
ν1(ν2 − 2)2(ν2 − 4)

provided that ν2 > 4 (7.3.18)

respectively. Figure 7.3.4 shows the shape of the p.d.f. of the F-distribution for various
values of ν1 and ν2 degrees of freedom. The F random variable is nonnegative, and its dis-
tribution is right-skewed. The shape of the distribution changes as the degrees of freedom
change.

As an immediate application, we have the following theorem:

Theorem 7.3.11 Let X11, . . . ,X1n1
and X21, . . . ,X2n2

be two independent random
samples from two normal populations N(μ1, σ

2
1) and N(μ2, σ

2
2). Let S2

1 and S2
2 be the

sample variances. Then, the random variable F defined as

F =
S2

1/σ2
1

S2
2/σ2

2
(7.3.19)

is distributed as Fν1,ν2
with ν1 = n1 − 1 and ν2 = n2 − 1 degrees of freedom.
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Figure 7.3.4 Probability density functions of Fν1,ν2
for various combinations of the

degrees of freedom ν1 (= 30) and ν2 (= 12, 15, 20, 25).

The proof of this theorem follows directly by using the definition of random vari-
able Fν1,ν2

. Recall from our earlier discussion, that random variables (n1 − 1)S2
1/σ2

1 and
(n1 − 1)S2

2/σ2
2 are independently distributed as chi-square variables χ2

ν1
and χ2

ν2
where

ν1 = n1 − 1 and ν2 = n2 − 1 are the degrees of freedom. Values of Fν1,ν2,α
for which

P (Fν1,ν2
> Fν1,ν2,α

) = α

are given in Table A.7 for various values of ν1, ν2, and α. Note that to find values of
Fν1,ν2,1−α for which P (Fν1,ν2

< Fν1,ν2,1−α) = α, we may proceed by using the easily proved
relation

Fν1,ν2,1−α =
1

Fν2,ν1,α

(7.3.20)

For example, the value of F20,15,0.95 = F20,15,1−0.05 is given by

F20,15,0.95 =
1

F15,20,0.05
= 0.4539

Example 7.3.5 (Using MINITAB and R to find probabilities of F-distribution) Using
MINITAB and R determine the following:

(a) F16,24,1−α for α = 0.01, 0.025, 0.05, where F16,24,1−α is such that P (F16,24 ≤
F16,24,1−α) = α.

(b) F16,24,β for β = 0.01, 0.025, 0.05, where F16,24,β is such that P (F16,24 ≥ F16,24,β) = β.

MINITAB

(a) In order to determine the values of F16,24,1−α, we proceed as follows:

1. Enter the values 0.01, 0.025, and 0.05 in column C1.
2. From the Menu bar, select Calc > Probability Distribution > F . . . .
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3. In the dialog box that appears, click the circle next to Inverse cumulative prob-
ability.

4. Complete the boxes next to Numerator Degrees of freedom, Denominator
Degrees of freedom, and Input Column, and click OK.

The values of F16,24,1−α will appear in the Session window as shown below:

F distribution with 16 DF in numerator and 24 DF in denominator
P(X ≤ x) x

0.010

0.025

0.050

0.314385

0.380928

0.447346

Note that MINITAB determines points that give lower tail areas under the dis-
tribution. Certain desired values under the right or upper tail are determined as fol-
lows: (b) Here, to determine the values of F16,24,β such that P (F16,24 ≥ F16,24,β) = β or
P (F16,24 ≤ F16,24,β) = 1 − β, accordingly we enter the values in column C1 as (1 − 0.01, 1 −
0.025, 1 − 0.05) = (0.99, 0.975, 0.95) and proceed in the same manner as in part (a). We
obtain the probabilities in the Session window as shown below:

F distribution with 16 DF in numerator and 24 DF in denominator
P(X ≤ x) x

0.990

0.975

0.950

2.85185

2.41055

2.08796

Note that the values of F16,24,α are not given in F -tables.

USING R

R has a built in F-distribution function ‘qf(p, df1, df2, ncp, lower.tail = TRUE)’, where p is
the probability, df1 and df2 are numerator and denominator degrees of freedoms, ncp is the
noncentrality parameter, and lower.tail = TRUE gives the quantile corresponding to the
left tail probability p. So, referring to Example 7.3.5, in part (a) we use lower.tail = TRUE
and in part (b) lower.tail = FALSE as we need lower and upper tail quantiles, respectively.
Run following R code in the R Console window to obtain required probabilities as shown
below.

prob = c(0.01, 0.025, 0.05)

#For part (a)

qf(prob, df1=16, df2=24, ncp=0, lower.tail = TRUE)

#R output

[1] 0.3143853 0.3809283 0.4473461

#For part (b)

qf(prob, df1=16, df2=24, ncp=0, lower.tail = FALSE)

#R output

[1] 2.851852 2.410548 2.087963



7.4 Order Statistics 279

PRACTICE PROBLEMS FOR SECTION 7.3

1. If X is a chi-square random variable with 15 degrees of freedom, find the value of x
such that (a) P (X ≥ x) = 0.05, (b) P (X ≥ x) = 0.975, (c) P (X ≤ x) = 0.025, (d)
P (X ≥ x) = 0.95, (e) P (X ≤ x) = 0.05

2. Use Table A.6 to find the following values of upper percent points of various
tm-distributions: (a) t18,0.025, (b) t20,0.05, (c) t15,0.01, (d) t10,0.10, (d) t12,0.005.

3. Use Table A.7 to find the following values of upper percent points of various
F-distributions: (a) F6,8,0.05, (b) F8,10,0.01, (c) F6,10,0.05, (d) F10,11,0.025

4. Use Table A.7 to find the following values: (a) F10,12,0.95, (b) F8,10,0.975, (c) F15,20,0.95,
(d) F20,15,0.99. Hint: Use the formula Fm,n,1−α = 1/Fn,m,α.

5. Use MINITAB, R, or JMP to do the Problems 1, 2, 3, and 4 above.
6. Suppose that the random variable T has the Student t-distribution with 24 degrees

of freedom. Find the value of t such that (a) P (−1.318 < T < t) = 0.80, (b)
P (−1.711 < T < t) = 0.85, (c) P (−2.064 < T < t) = 0.875.

7. Find the value of x such that (a) P (3.247 < χ2
10 < x) = 0.95, (b) P (8.260 < χ2

20 <
x) = 0.965, (c) P (13.120 < χ2

25 < x) = 0.95.

7.4 ORDER STATISTICS

In this section, we shall consider probability distributions of statistics that are obtained if
one orders the n elements of a sample of n independent observations from least to greatest,
and if sampling is done on a continuous random variable X whose p.d.f. is f(x). Suppose
we let X1, . . . ,Xn be a random sample of n independent observations from a population
having continuous p.d.f. f(x). We note that since X is a continuous random variable, the
probability of X assuming a specific value is 0. In fact, by a straightforward conditional
probability argument, we can show that for any two of (X1, . . . ,Xn), the probability of
their having the same value is zero.

Consider then the observations (X1, . . . ,Xn) from a population having a p.d.f.
f(x). Let

X(1) = smallest of (X1, . . . ,Xn),

X(2) = second smallest of (X1, . . . ,Xn),

...

X(k) = kth smallest of (X1, . . . ,Xn),

...

X(n) = largest (X1, . . . ,Xn).

Note that X(1) < X(2) < · · · < X(k) < · · · < X(n). The quantities X(1),X(2), . . . ,X(n)
are random variables and are called the order statistics of the sample. X(1) is called the
smallest element in the sample, X(k) the kth-order statistic; X(m+1) is the sample median
when the sample size is odd, say n = (2m + 1), and X(n) the largest; R = X(n) − X(1) is
called the sample range.
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7.4.1 Distribution of the Largest Element in a Sample
As we have just stated, X(n) is the largest element in the sample X1, . . . ,Xn. If the sample
is drawn from a population having p.d.f. f(x), let F (x) be the cumulative density function
(c.d.f.) of the population defined by

F (x) =
∫ x

−∞
f(u)du = P (X ≤ x) (7.4.1)

Then, the c.d.f. of X(n) is given by

P (X(n) ≤ x) = P (X1 ≤ x, . . . ,Xn ≤ x)

= [F (x)]n (7.4.2)

because the Xi’s are independent and P (Xi ≤ x) = F (x) for i = 1, 2, . . . , n. If we denote
the c.d.f. of the largest value by G(x), we have

G(x) = [F (x)]n (7.4.3)

The above result says that if we take a random sample of n elements from a population
whose p.d.f. is f(x) [or whose c.d.f. is F (x)], then the c.d.f. G(x) of the largest element in
the sample, denoted by X, is given by (7.4.3).

If we denote the p.d.f. of the largest element by gX(n)
(x), we have

gX(n)
(x) =

d

dx
G(x) = n[F (x)]n−1f(x). (7.4.4)

Example 7.4.1 (Distribution of Last Bulb to Fail) Suppose the mortality of a certain
type of mass-produced light bulbs is such that a bulb of this type, taken at random from
production, burns out in time T. Further, suppose that T is distributed as exponential with
parameter λ, so that the p.d.f. of T is given by

f(t) =

{
λe−λt, t > 0

0, t ≤ 0
(7.4.5)

where λ is some positive constant. If n bulbs of this type are taken at random, let their
lives be T1, . . . , Tn. If the order statistics are T(1), . . . , T(n), then T(n) is the life of the last
bulb to burn out. We wish to determine the p.d.f. of T(n).

Solution: To solve this problem, we may think of a population of bulbs whose p.d.f. of
length of life is given by equation (7.4.5), we first determine that the c.d.f. of T is given by

F (t) =
∫ t

−∞
f(t)dt =

∫ t

0
λe−λtdt = 1 − e−λt (7.4.6)
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Applying equation (7.4.4), we therefore have as the p.d.f. of T(n),

gTn
(t) =

{
nλ(1 − e−λt)n−1e−λt, t > 0

0, t ≤ 0
(7.4.7)

In other words, the probability that the last bulb to burn out expires during the time
interval (t, t + dt) is given by g(t)dt, where

g(t)dt = nλ(1 − e−λt)n−1e−λtdt (7.4.8)

7.4.2 Distribution of the Smallest Element
in a Sample

We now wish to find the expression for the c.d.f, of the smallest element X(1) in the sample
X1, . . . ,Xn. That is, we want to determine P (X(1) ≤ x) as a function of x.

Denoting this function by G(x), we have

G(x) = P (X(1) ≤ x)

= 1 − P (X(1) > x) (7.4.9)

But

P (X(1) > x) = P (X1, . . . ,Xn are all > x)

= [1 − F (x)]n (7.4.10)

because the Xi’s are independent and P (Xi > x) = 1 − F (x); i = 1, 2, . . . , n. Therefore,
the c.d.f. G(x) of the smallest element in the sample is given by

G(x) = 1 − [1 − F (x)]n (7.4.11)

The p.d.f., say g(x), of the smallest element in the sample is therefore obtained by taking
the derivative of the right-hand side of (7.4.11) with respect to x. We thus find

g(x) = n[1 − F (x)]n−1f(x)

That is, the p.d.f. of X(1), is given by

gX(1)
(x) = n[1 − F (x)]n−1f(x) (7.4.12)

Example 7.4.2 (Probability Distribution of the Weakest Link of a Chain) Suppose links
of a certain type used for making chains are such that the population of individual links
has breaking strengths X with p.d.f.

f(x) =

{ (m+1)(m+2)
cm+2 xm(c − x), 0 < x < c

0, otherwise
(7.4.13)
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where c and m are certain positive constants. If a chain is made up of n links of this type
taken at random from the population of links, what is the probability distribution of the
breaking strength of the chain?

Solution: Since the breaking strength of a chain is equal to the breaking strength of its
weakest link, the problem reduces to finding the p.d.f. of the smallest element X(1) in a
sample of size n from the p.d.f. f(x) given in (7.4.13).

First, we find the c.d.f. F (x) of breaking strengths of individual links by performing
the following integration:

F (x) =
∫ x

−∞
f(u)du =

(m + 1)(m + 2)
cm+2

∫ x

0
um(c − u)du (7.4.14)

that is,

F (x) = (m + 2)
(x

c

)m+1
− (m + 1)

(x

c

)m+2
(7.4.15)

With the use of equations (7.4.12) and (7.4.13), we obtain the p.d.f. of the breaking
strength X of an n-link chain made from a random sample of n of these links;

g(x) = n
(m + 1)(m + 2)xm

cm+2 ×
[
1 − (m + 2)

(x

c

)m+1
+ (m + 1)

(x

c

)m+2
]n−1

(c − x)

(7.4.16)
for 0 < x < c, and g(x) = 0, otherwise.

7.4.3 Distribution of the Median of a Sample and of
the kth Order Statistic

Suppose we have a sample of 2m + 1 elements X1, . . . ,X2m+1 from a population having
p.d.f. f(x) [and c.d.f. F (x)]. If we form the order statistics X(1), . . . ,X(2m+1) of the sample,
then X(m+1) is called the sample median. We want to determine the probability distribution
function for the median. Let us divide the x-axis into the following three disjoint intervals:

I1 = (−∞, x]

I2 = (x, x + dx] (7.4.17)

I3 = (x + dx,+∞)

Then, the probabilities p1, p2, and p3 that an element X drawn from the population with
p.d.f. f(x) will lie in the intervals I1, I2, and I3 are given, respectively, by

p1 = F (x)

p2 = F (x + dx) − F (x)

p3 = 1 − F (x + dx) (7.4.18)

respectively.
If we take a sample of size 2m + 1 from the population with p.d.f. f(x), the median of

the sample will lie in (x, x + dx) if, and only if, m sample elements fall in I1 = (−∞, x], one
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sample element falls in I2 = (x, x + dx], and m sample elements fall in I3 = (x + dx,+∞).
The probability that all of this occurs is obtained by applying the multinomial probability
distribution discussion in Section 4.7. This gives

(2m + 1)!
(m!)2 (p1)

m(p2)
1(p3)

m (7.4.19)

But substituting the values of p1, p2, and p3 from (7.4.18) into (7.4.19), we obtain

(2m + 1)!
(m!)2 Fm(x)[F (x + dx) − F (x)][1 − F (x + dx)]m (7.4.20)

Now, we may write
F (x + dx) = F (x) + f(x)dx (7.4.21)

Substituting this expression into (7.4.20), we find that (ignoring terms of order (dx)2 and
higher)

P (x < X(m+1) < x + dx) =
(2m + 1)!

(m!)2 Fm(x)[1 − F (x)]mf(x)dx (7.4.22)

The p.d.f. g(x) of the median is the coefficient of dx on the right-hand side of (7.4.22),
and the probability that the sample median X(m+1) falls in interval (x, x + dx) is given by

gX(m+1)
(x)dx =

(2m + 1)!
(m!)2 Fm(x)[1 − F (x)]mf(x)dx. (7.4.23)

We note that the sample space of the median X(m+1) is the same as the sample space
of X, where X has the (population) c.d.f. F (x).

Example 7.4.3 (Probability Distribution of Median) Suppose 2m + 1 points are taken
“‘at random” on the interval (0,1). What is the probability that the median of the 2m + 1
points falls in (x, x + dx)?

In this example, the p.d.f. of a point X taken at random on (0,1) is defined as

f(x) =

{
1, 0 < x < 1,

0, for all other values of x

Then,

F (x) =

⎧⎪⎨
⎪⎩

0, x ≤ 0,

x, 0 < x < 1,

1, x ≥ 1

Therefore, the p.d.f. gX(m+1)
(x) of the median in a sample of 2m + 1 points is given by

gX(m+1)
(x) =

(2m + 1)!
(m!)2 xm[1 − x]m, if 0 < x < 1,
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and zero otherwise. Hence, the probability that the median of the 2m + 1 points falls in
(x, x + dx) is given by

gX(m+1)
(x)dx =

(2m + 1)!
(m!)2 xm[1 − x]mdx

More generally, if we have a sample of n elements, say X1, . . . ,Xn, from a population
having p.d.f. f(x) and if X(k) is the kth-order statistic of the sample (the kth smallest of
X1, . . . ,Xn), then we can show, as in the case of the median, that

P (x < X(k) < x + dx) =
n!

(k − 1)!(n − k)!
F k−1(x)[1 − F (x)]n−kf(x)dx (7.4.24)

Therefore, the p.d.f. of the kth-order statistic of the sample is given by

gX(k)
(x) =

n!
(k − 1)!(n − k)!

F k−1(x)[1 − F (x)]n−kf(x) (7.4.25)

Note that the functional form of the p.d.f. on the right-hand side of (7.4.25) reduces
to that on the right-hand side of (7.4.12) if k=1, and to that on the right of (7.4.4) if
k = n, as one would expect, since in these two cases, the kth-order statistic X(k) becomes
the smallest element X(1) and the largest element X(n), respectively.

Example 7.4.4 (Distribution of the kth order statistic) If n points X1, . . . ,Xn are taken
“at random” on the interval (0, 1) what is the p.d.f. of the kth order statistic X(k)?

Using (7.4.25), the p.d.f. of X(k) is given by:

gX(k)
(x) =

n!
(k − 1)!(n − k)!

xk−1[1 − x]n−k, if 0 < x < 1

since
F (x) =

∫ x

0
1dx = x, if 0 < x < 1

and zero otherwise. Thus,

F (x) =

⎧⎪⎨
⎪⎩

0, if x ≤ 0,

x, if 0 < x < 1
1, if x ≥ 1

7.4.4 Other Uses of Order Statistics
The Range as an Estimate of σ in Normal Samples

Suppose a random variable X has the normal distribution with unknown standard devi-
ation σ. If a sample of n independent observations is taken on X, then R = X(n) − X(1)
may be used as the basis for an estimate of σ. This estimate is not good for large n, but
for small n(n ≤ 10) is deemed to be adequate. The estimate σ̂ is made using the formula

σ̂ = c(n)R (7.4.26)

where c(n) is tabulated in Table 7.4.1.
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Table 7.4.1 Range coefficient for various sample sizes.

n 3 4 5 6 7 8 9 10

c(n) 0.591 0.486 0.43 0.395 0.37 0.351 0.337 0.325

PRACTICE PROBLEMS FOR SECTION 7.4

1. A continuous random variable, say X, has the uniform distribution function on (0, 1)
so that the p.d.f. of X is given by

f(x) =

⎧⎨
⎩

0, x ≤ 0
1, 0 < x ≤ 1
0, x > 1

If X(1),X(2), . . . ,X(n) are the order statistics of n independent observations all having
this distribution function, give the expression for the density g(x) for
(a) The largest of these n observations.
(b) The smallest of these n observations.
(c) The rth smallest of these n observations.

2. If ten points are picked independently and at random on the interval (0, 1):
(a) What is the probability that the point nearest 1 (i.e., the largest of the 10

numbers selected) will lie between 0.9 and 1.0?
(b) The probability is 1/2 that the point nearest 0 will exceed what number?

3. Assume that the cumulative distribution function of breaking strengths (in pounds)
of links used in making a certain type of chain is given by

F (x) =

{
1 − e−λx, x > 0
0, x ≤ 0

where λ is a positive constant. What is the probability that a 100-link chain made
from these links would have a breaking strength exceeding y pounds?

4. Suppose F (x) is the fraction of objects in a very large lot having weights less than
or equal to x pounds. If 10 objects are drawn at random from the lot:
(a) What is the probability that the heaviest of 10 objects chosen at random without

replacement will have a weight less than or equal to u pounds?
(b) What is the probability that the lightest of the objects will have a weight less

than or equal to v pounds?
5. The time, in minutes, taken by a manager of a company to drive from one plant to

another is uniformly distributed over an interval [15, 30]. Let X1,X2, . . . ,Xn denote
her driving times on n randomly selected days, and let X(n) = Max(X1,X2, · · · ,Xn).
Determine
(a) The probability density function of X(n).
(b) The mean of X(n).

Note: Here, f(x) = 1/15 if 15 ≤ x ≤ 30, and 0 otherwise.
6. The lifetime, in years, X1,X2, · · · ,Xn of n randomly selected power steering pumps

manufactured by a subsidiary of a car company is exponentially distributed with
mean 1/λ. Find the probability density function of X(1) = Min(X1,X2, · · · ,Xn),
and find its mean and variance.
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7. In Problem 5, assume that n = 21.
(a) Find the probability density function of the median time taken by the manager

to drive from one plant to another.
(b) Find the expected value of X(21).
(c) Find the expected value of X(11), the median.

8. Consider a system of n identical components operating independently. Suppose the
lifetime, in months, is exponentially distributed with mean 1/λ. These components
are installed in series, so that the system fails as soon as the first component fails.
Find the probability density function of the life of the system, and then, find its
mean and variance.

7.5 USING JMP

This section is not included here but is available for download from the book website:
www.wiley.com/college/gupta/statistics2e.

Review Practice Problems

1. The times taken by all students of a large university to complete a calculus test are
distributed having a mean of 120 minutes and a standard deviation of 10 minutes.
Calculate the approximate probability that the average time taken to complete their
test by a random sample of 36 students will be (a) more than 122 minutes, (b) less
than 115 minutes, (c) between 116 and 123 minutes.

2. Suppose that in a certain country, the ages of women at the time of death are dis-
tributed with mean 70 years and standard deviation 4 years. Find the approximate
probability that the average age of a randomly selected group of 36 women will be (a)
more than 75 years, (b) less than 70 years, (c) between 70 and 80 years.

3. A manufacturer of car batteries finds that 80% of its batteries last more than five years
without any maintenance. Suppose that the manufacturer took a random sample of
500 persons from those who bought those batteries and recorded the lifetimes of their
batteries.
(a) Find the sampling distribution of p̂, the proportion of batteries that lasted more

than five years without any maintenance.
(b) Find the probability that p̂, the sample proportion, is at least 75%.

4. It is believed that the median annual starting salary of a fresh engineering graduate is
$40,000. If we take a random sample of 100 recent engineering graduates and record
their starting salary, then
(a) Find the sampling distribution of p̂, the proportion of fresh engineering graduates

who started with an annual salary of less than $40,000.
(b) Find the approximate probability that at least 60% of the engineering graduates

started with an annual salary of more than $40,000.

5. Suppose that F (x) is the fraction of bricks in a very large lot having crushing strengths
of x psi or less. If 100 such bricks are drawn at random from the lot:
(a) What is the probability that the crushing strengths of all 100 bricks exceed x psi?
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(b) What is the probability that the weakest brick in the sample has a crushing
strength in the interval (x, x + dx)?

6. Suppose that n = 2m + 1 observations are taken at random from a population with
probability density function

f(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x ≤ a

1
b−a , a < x ≤ b

0, x > b

Find the distribution of the median of the observations and find its mean and variance.
What is the probability that the median will exceed a + (b − a)/4?

7. Suppose that the diameter of ball bearings used in heavy equipment are manufactured
in a certain plant and are normally distributed with mean 1.20 cm and a standard
deviation 0.05 cm. What is the probability that the average diameter of a sample of
size 25 will be
(a) Between 1.18 and 1.22 cm?
(b) Between 1.19 and 1.215 cm?

8. A sample of n observations is taken at random from a population with p.d.f.

f(x) =

{
e−x, x ≥ 0
0, x < 0

Find the p.d.f. of the smallest observation. What are its mean and variance? What is
its c.d.f.?

9. If X(1), . . . ,X(n) are the order statistics of a sample of size n from a population having
a continuous c.d.f. F (x) and p.d.f. f(x), show that F (x(n)) has mean n/(n + 1) and
variance n/[(n + 1)2(n + 2)].

10. In Problem 9, show that for 1 ≤ k ≤ n, the mean and variance of F (x(k)) are respec-
tively

k

n + 1
and

k(n − k + 1)
(n + 1)2(n + 2)

11. Suppose that X(1), . . . ,X(n) are the order statistics of a sample from a population
having the rectangular distribution with p.d.f.

f(x) =

⎧⎪⎨
⎪⎩

0, x ≤ 0
1
θ , 0 < x ≤ θ

0, x > θ

where θ is an unknown parameter. Show that for 0 < γ < 1,

P

(
X(n) ≤ θ ≤

X(n)
n
√

1 − γ

)
= γ

(Note: n
√

1 − γ = (1 − γ)1/n).
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12. Find, using MINITAB/R/JMP, the value of x such that
(a) P (5 ≤ χ2

16 ≤ x) = 0.95
(b) P (10 ≤ χ2

20 ≤ x) = 0.90
(c) P (0.5 ≤ F20,24 ≤ x) = 0.90
(d) P (0.4 ≤ F12,15 ≤ x) = 0.85

13. Let X1, . . . ,X16 and Y1, . . . , Y13 be two independent random samples from two normal
populations with equal variances. Show that the p.d.f. of S2

x/S2
y is distributed as

Snedecor’s F15,12.

14. Refer to Problem 13. Using MINITAB, R, or JMP, find the probabilities: (a)
P (S2

x/S2
y > 3.5), (b) P (2.0 < S2

x/S2
y < 3.5).

15. Suppose that the total cholesterol levels of the US male population between 50 and 70
years of age are normally distributed with mean 170 mg/dL and standard deviation
12 mg/dL. Let X1, . . . ,X21 be the cholesterol levels of a random sample of 21 US
males between the ages of 50 and 70 years. What can be said about the p.d.f. of S2.
Find the mean and variance of S2.

16. In Problem 15, using MINITAB, R, or JMP, find the probabilities: (a) P (S2 > 100),
(b) P (S2 > 130), (c) P (S2 > 140).

17. A mechanical system has three components in series, so the system will fail when at
least one of the components fails. The random variables X1,X2, and X3 represent
the lifetime of these components. Suppose that the Xi(i = 1, 2, 3) are independently
and identically distributed as exponential with parameter λ = 0.1. Let the random
variable T denote the lifetime of the system. Find the p.d.f. of T, and then find the
probability P (T > 10).

18. Suppose that in Problem 17, the components are in parallel, so that the system will fail
only when all the components fail. Find the p.d.f. of T, and then find the probability
P (T > 15).

19. Repeat Problems 17 and 18, by supposing that the lifetimes of the three components
are independently and identically distributed as Weibull with α = 2, β = 0.5.

20. Seven engineers in a manufacturing company are working on a project. Let random
variables T1, . . . , T7 denote the time (in hours) needed by the engineers to finish the
project. Suppose that T1, . . . , T7 are independently and identically distributed by the
uniform distribution over an interval [0, 1].
(a) Find the distribution of the sample median T(4) .
(b) Find the probabilities (i) P (T(4) > 0.9), (ii) P (0.6 < T(4) < 0.9), where T(4) is the

fourth-order statistic of (T(1), . . . , T(7)).
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ESTIMATION OF
POPULATION
PARAMETERS

The focus of this chapter is the development of methods for finding
point and interval estimators of population parameters.

Topics Covered

• Point estimators for the population mean and variance
• Interval estimators for the mean of a normal population
• Interval estimators for the difference of means of two normal populations
• Interval estimators for the variance of a normal population
• Interval estimators for the ratio of variances of two normal populations
• Estimation methods: method of moments and the method of maximum likelihood
• Point and interval estimators for the binomial parameter
• Prediction: estimation of a future observation

Learning Outcomes

After studying this chapter, the reader will be able to

• Understand the role of estimation in applied statistics.
• Determine the point and interval estimates for parameters of various discrete and con-

tinuous distributions.
• Understand the concept of a confidence coefficient and interpret confidence intervals.
• Understand the distinction between statistical and practical significance.
• Apply statistical packages MINITAB, R, and JMP to determine confidence intervals of

parameters of various distributions.
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8.1 INTRODUCTION

We often encounter statistical problems of the following type: we have a large lot or
population of objects such that if a measurement was made on each object, we would have a
distribution of these measurements. Since these measurements have not been made, or if it
is not possible to make measurements on all the objects in the population, this distribution
is, of course, unknown. About the best we can hope to do in practice is to estimate
various characteristics (commonly referred to as parameters) of this distribution from the
information contained in measurements made in a random sample of objects from the lot or
population. For instance, if we wish to estimate the mean and variance of the population
distribution, it turns out that we can use the sample average and sample variance as
estimators for these quantities. If we want to estimate the median of the population, we
can use the sample median. Of course, other parameters of the population distribution
such as, standard deviation, or population proportion can be estimated. Problems of this
type are the focus of this chapter.

We consider two kinds of estimators for population parameters, namely point esti-
mators and interval estimators. More specifically, suppose that (X1, . . . ,Xn) is a ran-
dom sample from a population whose distribution has a parameter of interest, say θ. If
θ̂ = ϕ(X1, . . . ,Xn) is a (single-valued) function of X1, . . . ,Xn so that θ̂ is itself a random
variable, we refer to θ as a statistic. Furthermore, if

E(ϕ(X1, . . . ,Xn)) = E(θ̂) = θ (8.1.1)

we say that θ̂ is an unbiased estimator of θ. The statistic θ̂ (read as θ-“hat”) is usu-
ally referred to as a point estimator for the parameter θ. If θ̂l = ϕl(X1, . . . ,Xn) and
θ̂u = ϕu(X1, . . . ,Xn) are two statistics such that

P (θ̂l < θ < θ̂u) = 1 − α (8.1.2)

we say that the random interval (θ̂l, θ̂u) is a 100(1 − α)% confidence interval for the param-
eter θ. The pair of statistics (θ̂l, θ̂u) is sometimes referred to as an interval estimator for
θ. The endpoints (θ̂l and θ̂u) of the confidence interval (θ̂l, θ̂u) are sometimes called the
100(1 − α)% confidence limits of θ, while (θ̂l and θ̂u) are usually referred to as the lower
confidence limit (LCL) and the upper confidence limit (UCL), respectively. The probabil-
ity 1 − α in Equation (8.1.2) is called the confidence coefficient, or while 100(1 − α)%, is
called the confidence level. Also, the difference θ̂u − θ̂l is referred to as the width of the
confidence interval.

8.2 POINT ESTIMATORS FOR THE
POPULATION MEAN AND VARIANCE

As important examples of point estimators, we consider the most commonly used point
estimators for the mean and variance of a population. Suppose that it is a population
in which the variable (or measurement) X is a continuous random variable and has a
probability density function (p.d.f.) f(x). As we have seen in Chapter 5, the population
mean μ and variance σ2 are defined as follows:

μ =
∫ ∞

−∞
xf(x)dx (8.2.1)
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σ2 =
∫ ∞

−∞
(x − μ)2f(x)dx (8.2.2)

For the case of a population in which X is a discrete random variable and has a
probability function (p.f.) p(x), we similarly define μ and σ2 by using the operation of
summation rather than integration. If the population distribution is unknown, then so are
μ and σ2. The basic question is this: How can we estimate μ and σ2 from a random sample
(X1, . . . ,Xn) drawn from the population? There are many ways of devising estimators.
A simple point estimator for μ, and the most widely used, is the sample average X̄. The
sample average X̄ is a random variable that has its own distribution and therefore has its
own mean and variance (see Chapter 7):

E(X̄) = μ (8.2.3)

and
V ar(X̄) = σ2/n (8.2.4)

It should be noted that the statistic X̄ has a unique value for any given sample and
can be represented as a point on a μ axis. If we consider an indefinitely large number of
samples from this population, each of size n, then Equation (8.2.3) essentially states that
if we were to average the X̄’s of these samples, their average would be equal to μ. Then,
we say that X̄ is an unbiased (point) estimator for μ. Furthermore, we note from Equation
(8.2.4) that if we were to determine the variance of all these X̄’s, the result would be σ2/n,
which gives some indication of how all these X̄’s would be distributed around the value
μ. Note particularly that the larger the value of n, the more closely these X̄’s will cluster
around μ. Thus, in a similar manner, the sample variance S2, where

S2 =
∑n

i=1 (Xi − X̄)2

n − 1

can be used as a point estimator for the population variance σ2. The statistic S2 is a random
variable with its own distribution, and the mean of this distribution is σ2. That is,

E(S2) = σ2 (8.2.5)

and hence S2, is an unbiased point estimator for σ2. The derivations of the results in
Equations (8.2.3), (8.2.4), and (8.2.5) have been given in Chapter 7. We summarize the
above results in the following theorem:

Theorem 8.2.1 If X̄ and S2 are determined from a random sample of size n from
a population with unknown mean μ and unknown variance σ2, then X̄ is an unbiased
(point) estimator for μ having variance σ2

X̄
= σ2/n. Furthermore, S2 is an unbiased

(point) estimator for σ2.
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8.2.1 Properties of Point Estimators
There are various properties of a good point estimator that are often met, such as unbi-
asedness, minimum variance, efficient, consistent, and sufficient. The properties that we
discuss here in some detail are:

• Unbiasedness
• Minimum variance

Let f(x, θ) be the p.d.f. of a population of interest with an unknown parameter θ,
and let X1, . . . ,Xn be a random sample from the population of interest. Following our
earlier discussion, let θ̂ = ϕ(X1, . . . ,Xn) be a point estimator of the unknown parameter
θ. Then, we have:

Definition 8.2.1 The point estimator θ̂ = ϕ(X1, . . . ,Xn) is said to be an unbiased
estimator of θ if and only if E(θ̂) = θ. If E(θ̂) �= θ, then θ̂ is biased, and the difference,
Bias(θ̂) = E(θ̂) − θ, is called the bias of θ̂.

From Theorem 8.2.1, we have that X̄ and S2 are unbiased estimators of the population
mean μ and the population variance σ2, respectively. Having said this, there still remains
an important question to be answered: If the mean μ of a population is unknown, and
if we take a random sample from this population and calculate the sample average X̄,
using it as an estimator of μ, how do we know how close our estimator X̄ is to the
true value of μ? The answer to this question depends on the population size and the
sample size.

Let E be the maximum absolute difference between an estimator X̄ and the true value
of μ, and let 0 < α < 1. Then, if the population is either normal with no restriction on the
sample size or a nonnormal infinite population and the sample size is large (n ≥ 30), we
say with probability (1 − α) that

Margin of error : E = zα
2

σ√
n

(8.2.6)

assuming σ to be known. The quantity E is called the margin of error or bound on the error
of estimation. Note that in practice, it is quite common to take α = 0.01, 0.05, or 0.1 since
this gives a reasonably high probability (1 − α) that the maximum error of estimation is
equal to E.

The result in Equation (8.2.6) is still valid if the population is finite, and the sampling
is done with replacement or if the sampling is done without replacement, but the sample
size is less than 5% of the population size (n < 0.05N). If the population is finite and the
sample size relative to the size of the population is greater than 5%, then we use an extra
factor referred to as the finite population correction factor

√
(N − n)/(N − 1), and the

maximum absolute difference between the estimator X̄ and the true value of μ is
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Margin of error : E = zα
2

σ√
n

√
N − n

N − 1
(8.2.7)

where N and n are the population size and the sample size, respectively. If σ is not known
in Equations (8.2.6) and (8.2.7), then in a large sample, it can be replaced with the sample
standard deviation S.

Example 8.2.1 (Margin of error) A manufacturing engineer wants to use the mean of a
random sample of size n = 64 to estimate the mean length of the rods being manufactured.
If it is known that σ = 0.5 cm, then find the margin of error with 95% probability.

Solution: Since the sample size is large and assuming that the total number of rods
manufactured at the given facility is quite large, it follows from Equation (8.2.6) that

E = zα
2

σ√
n

Here, 1 − α = 0.95, α/2 = 0.025, σ = 0.5, z0.025 = 1.96, and n = 64, so we find

E = 1.96 × 0.5√
64

= 0.1225 cm

Note that the nonabsolute value of E is 0.1225 cm.

Another desirable property of an unbiased estimator is whether or not it is the mini-
mum variance estimator. If it is, then it will result in an estimate that is closer to the true
value of the parameter.

Definition 8.2.2 Consider a population having p.d.f. f(x, θ) with an unknown
parameter θ. Let θ̂1, θ̂2, . . . , θ̂n be a class of unbiased estimators of θ. Then, an
estimator θ̂i is said to be an unbiased minimum-variance (UMV) estimator of θ
if the variance of θ̂i is less than or equal to the variance of any other unbiased
estimator.

Definition 8.2.3 The mean-squared error (MSE) of an estimator θ̂ of θ is
defined as

MSE(θ̂) = E(θ̂ − θ)2 (8.2.8)

It is readily seen that we can write Equation (8.2.8) as

MSE(θ̂) = E[θ̂ − E(θ̂) + E(θ̂) − θ]2 = V ar(θ̂) + [Bias(θ̂)]2 (8.2.8a)
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Thus, if θ̂ is an unbiased estimator of θ, then the mean squared error is given by

MSE(θ̂) = V ar(θ̂) (8.2.9)

Sometimes a goal, when choosing an estimator, is to minimize the squared error. If
the estimator is unbiased, then from Equation (8.2.8a), we see that the squared error is
minimized, and the variance of the estimator is a minimum. An estimator with minimum
variance is called the most efficient estimator.

Definition 8.2.4 Suppose that θ̂1 and θ̂2 are two unbiased estimators of a popu-
lation parameter θ. If the variance of θ̂1 is smaller than the variance of θ̂2, we say
that the estimator θ̂1 is a more efficient estimator of θ than θ̂2.

Figure 8.2.1 shows that when θ̂1 is a more efficient estimator of θ than θ̂2, then the
distribution of θ̂1 is more clustered around θ than that of θ̂2. Thus, the probability is
greater that the estimator θ̂1 is closer to θ than θ̂2.

Probability density of θ1̂

Probability density of θ2̂

θ

Figure 8.2.1 Probability distributions of θ̂1 and θ̂2.

For example, let X1, . . . ,Xn be a random sample from an infinite population with
symmetric distribution which has unknown mean μ and standard deviation σ, and let X̄
and Md be the sample average and the sample median, respectively. Then, both X̄ and
Md are unbiased estimators of μ. However, for large samples from populations having sym-
metric continuous distributions, the standard error of the sample median is approximately
1.25 × (σ/

√
n), which is greater than the standard error of the sample average. Hence, for

large samples from populations having symmetric continuous distributions, X̄ is a better
unbiased estimator of μ than the sample median.

Example 8.2.2 (Chemical batch data) In order to evaluate a new catalyst in a chemical
production process, a chemist used it in 30 batches. The final yield of the chemical in each
batch is recorded as follows:

72 74 71 78 84 80 79 75 77 76 74 78 88 78 70 72 84 82 80 75 73 76 78 84 83
85 81 79 76 72
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(a) Find a point estimate of the mean yield of the chemical when the new catalyst is used.
(b) Find the standard error of the point estimator used in part (a).
(c) Find, with 95% probability, the margin of error.

Solution: (a) Since the sample size is large, all the results discussed previously are appli-
cable to this problem. Thus, we have

μ̂ = X̄ = (72 + 74 + 71 + 78 + · · · + 72)/30 = 77.8

(b) To find the standard error of the point estimator used in (a), we first need to determine
the sample standard deviation S, which is given by

S =

√∑n
i=1 (Xi − X̄)2

n − 1

Now, substituting the values of n, Xi’s, and X̄ in the expression above, we have

S = 4.6416

so that the standard error of the point estimator X̄ is estimated as

S√
n

=
4.6416√

30
= 0.8474

(c) Now, we want to find the margin of error with 95% probability, α = 0.05, and the
population standard deviation σ is not known. Thus, substituting the value of zα/2 =
z0.025 = 1.96, S = 4.6416, and n = 30 into Equation (8.2.6), we find that the estimated
margin of error is equal to ±1.96(4.6416/

√
30) = ±1.6609. We can summarize this by

stating that the numerical value of E is 1.6609.

8.2.2 Methods of Finding Point Estimators
In the preceding section, we gave the point estimators of a population mean and popu-
lation variance. In this section, we discuss two commonly used methods for finding point
estimators: the method of moments and the method of maximum likelihood.

Method of Moments

The method of moments proposed by Karl Pearson is the oldest method for finding point
estimators. It involves equating as many sample moments to the corresponding population
moments as the number of unknown parameters and then solving the resulting equations
for the unknown parameters.

Let X1, . . . ,Xn be a random sample. We define the rth population moment and rth
sample moment as follows:

rth population moment: μ′
r = E(Xr)

rth sample moment: m′
r =

1
n

n∑
i=1

Xr
i
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Suppose now that X1,X2, . . . ,Xn is a random sample from a population having probabil-
ity distribution with unknown parameters θ1, θ2, . . . , θk. Then, their moment estimators
θ̂1, θ̂2, . . . , θ̂k are obtained by equating the first k population moments to the corresponding
k sample moments. That is,

μ′
1 = m′

1

μ′
2 = m′

2

... (8.2.10)

μ′
k = m′

k

where μ′
r, r = 1, 2, . . . , k are k functions of the unknown parameters θ1, θ2, . . . , θk. Now

solving Equations (8.2.10) for θ1, θ2, . . . , θk, we obtain the moment estimators θ̂1, θ̂2, . . . , θ̂k

for θ1, θ2, . . . , θk, respectively. The following examples illustrate this method.

Example 8.2.3 (Moment estimators) Consider a random sample X1, . . . ,Xn from a
population having the N(μ, σ2) distribution. Find the moment estimators for μ and σ2.

Solution: We have two unknown parameters μ and σ2. By equating two population
moments with the corresponding two sample moments, we have

μ′
1 = m′

1 =
1
n

n∑
i=1

Xi

μ′
2 = m′

2 =
1
n

n∑
i=1

X2
i

Since in this example, μ and σ2 are the population mean and population variance, we have

E(X) = μ′
1 = μ and E(X2) = μ′

2 = μ2 + σ2

These equations lead to the following two equations:

μ = m′
1 and μ2 + σ2 = m′

2

We solve these two equations for μ and σ2 and obtain

Moment estimators for the population mean and the population variance are given
by μ̂ and σ̂2, where

μ̂ = m′
1 = X̄ (8.2.11)

σ̂2 = m′
2 − μ̂2 =

1
n

n∑
i=1

X2
i − X̄2 =

1
n

n∑
i=1

(Xi − X̄)2 (8.2.11a)

σ̂ =

√√√√ 1
n

n∑
i=1

(Xi − X̄)2 (8.2.11b)
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Note that for μ̂ and σ̂2 in Equations (8.2.11) and (8.2.11a), μ̂ is an unbiased estimator
for μ, whereas σ̂2 is not an unbiased estimator for σ2. This result leads us to conclude
that the point estimators determined by using the method of moments may or may not be
unbiased. Further, note that the moment estimator of σ is biased and given by Equation
(8.2.11b).

Example 8.2.4 (Moment estimator for the mean of the Poisson) Suppose that
X1, . . . ,Xn is a random sample from a population with Poisson probability distribution
with parameter λ. Find the moment estimator of λ.

Solution: We have one unknown parameter λ. By equating one population moment with
the corresponding one sample moment, we have

μ′
1 = m′

1 =
1
n

n∑
i=1

Xi

Since in this example, λ is the population mean, we have

E(X) = μ′
1 = λ

This result leads us to the following:

λ̂ = m′
1 =

1
n

n∑
i=1

Xi = X̄

Method of Maximum Likelihood

We now briefly describe a very widely used method of determining point estimators known
as the method of maximum likelihood estimation. Suppose that X1, . . . ,Xn is a random
sample on a random variable X whose probability function (in the discrete case) is p(x, θ),
or X has a probability density function (in the continuous case), say f(x, θ), which depends
on the population parameter θ. For example, the binomial distribution defined by Equation
(4.6.2) depends on the parameter θ. The Poisson distribution Equation (4.8.1) depends
on the parameter λ. A distribution function may depend, of course, on more than one
parameter; for example, θ may stand for the pair of parameters (μ, σ), which is the case
when X has the normal distribution N(μ, σ2), having the probability density function
defined in Equation (5.5.1).

Since X1, . . . ,Xn is a random sample from f(x, θ), the joint probability density func-
tion (or probability function) of X1, . . . ,Xn is

f(x1, . . . , xn; θ) = f(x1; θ) × · · · × f(xn; θ) =
n∏

i=1

f(xi|θ) (8.2.12)

which is usually denoted by l(θ|x1, . . . , xn). The function l(θ|x1, . . . , xn) is called the
likelihood function of θ for the given sample X1, . . . ,Xn.
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Definition 8.2.5 The maximum likelihood estimator (MLE) θ̂ for θ is the value
of θ (if it exists) which is such that

l(θ̂|x1, . . . , xn) > l(θ′|x1, . . . , xn) (8.2.13)

where θ′ is any other possible value of θ. In other words, the MLE is the value of θ
that maximizes the likelihood function l(θ|x1, . . . , xn).

In applying Definition 8.2.5, it is usually more convenient to work with the natural
logarithm of the likelihood function l(θ|x1, . . . , xn) than with the likelihood function itself.
We denote the natural logarithm of the likelihood function l(θ|x1, . . . , xn) by L(θ). Further,
it can be seen that L(θ) has its maximum at the same value of θ that l(θ|x1, . . . , xn) does.
Thus, the value of θ at which L(θ) is maximized is called the maximum likelihood estimator
(MLE) θ̂ of θ. The MLE of θ is found by solving the following so-called normal equation:

∂L(θ)
∂θ

= 0 (8.2.14)

We illustrate the method of maximum likelihood below with Examples 8.2.5 and 8.2.6.

Example 8.2.5 (Maximum likelihood estimate of the binomial parameter) Find the
maximum likelihood estimate of p, where p is the fraction of defectives of connecting rods
for car engines produced by a mass-production process. We select a random sample of size
n of connecting rods from the production line to observe the number of defectives.

Solution: For a single connecting rod, let X be a random variable with value 1 if the rod
is defective and 0 if the rod is nondefective. The probability function of X, say p(x; p), is
given by

p(x; p) = px(1 − p)1−x; x = 0, 1 (8.2.15)

In general, a random variable X that has p.f. given by Equation (8.2.15) is called
a Bernoulli random variable. For a sample of n rods, the observations on X would be
(X1, . . . ,Xn), and hence

l(p|x1, . . . , xn) = pT (1 − p)n−T

where T =
∑n

i=1 Xi, so that T is the number of defectives in the sample. Therefore,

L = T ln p + (n − T ) ln(1 − p)

Differentiating this with respect to p, we have

∂L

∂p
=

T

p
− n − T

1 − p

Setting this derivative equal to zero, we obtain a normal equation. Solving the normal
equation for p and denoting the solution by p̂, we have that the MLE for p is given by
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Maximum likelihood estimator of the binomial parameter:

p̂ =
T

n
(8.2.16)

In Section 8.7, we show that p̂ is an unbiased estimator of p. Maximum likelihood
estimators do not always have this latter property, as the next example shows.

Example 8.2.6 (Maximum likelihood estimators for the parameters of a normal
distribution) A random sample X1, . . . ,Xn of n independent observations is taken on X,
where X is a random variable having the normal distribution N(μ, σ2). Find the MLEs
for μ and σ2.

Solution: The likelihood function is given by

l(θ|x1, . . . , xn) = l(μ, σ2|x1, . . . , xn)

=
1

(σ
√

2π)n
exp

[
− 1

2σ2

n∑
i=1

(xi − μ)2

]
(8.2.17)

Hence,

L(μ, σ2|x1, . . . , xn) = −n ln
√

2π − n

2
ln σ2 − 1

2σ2

n∑
i=1

(xi − μ)2 (8.2.18)

To find the maximum of this function with respect to μ and σ2, we differentiate
partially with respect to μ and with respect to σ2, obtaining

∂L

∂μ
=

1
σ2

n∑
i=1

(xi − μ)

∂L

∂σ2 = − n

2σ2 +
1

2(σ2)2

n∑
i=1

(xi − μ)2

(8.2.19)

Setting these derivatives equal to zero, we obtain a set of equations called the normal
equations. Solving the normal equations for μ and σ2, we obtain the MLE μ̂ and σ̂2 of μ
and σ2, respectively. These are

Maximum likelihood estimators of the mean and variance of a normal distribution:

μ̂ = X̄

σ̂2 =
1
n

n∑
i=1

(Xi − X̄)2 (8.2.20)
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We now show that μ̂ = X̄ is an unbiased estimator for μ, whereas σ̂2 is not an unbiased
estimator of σ2 . We have

E(X̄) = E

(
1
n

n∑
i=1

Xi

)
=

1
n

(
n∑

i=1

E(Xi)

)
=

1
n

n∑
i=1

μ = μ

that is, X̄ is unbiased for μ. Further

E(σ̂2) = E

(
1
n

n∑
i=1

(Xi − X̄)2

)
=

σ2

n
E

(
n∑

i=1

(Xi − X̄)2

σ2

)
=

σ2

n
E(χ2

n−1) =
n − 1

n
σ2

that is, σ̂2 is not unbiased for σ2.
Using Equation (8.2.20), the reader can easily verify that the MLEs of the parameters

μ and σ2 in the lognormal distribution (see Section 5.9) are given by

Maximum likelihood estimators of the parameters of a lognormal distribution:

μ̂ =
1
n

n∑
i=1

ln Xi

σ̂2 =
1
n

n∑
i=1

(ln Xi − μ̂)2

(8.2.21)

PRACTICE PROBLEMS FOR SECTION 8.2

1. Find a method of moments estimator of the mean of a Bernoulli distribution with
parameter p.

2. The lengths of a random sample of 20 rods produced the following data:

12.2 9.5 13.2 13.9 9.5 9.5 11.9 9.2 11.0 10.4
9.9 12.8 10.5 11.9 12.3 10.0 8.7 6.2 10.0 11.2

Determine the method of moments estimate of μ and σ2, assuming that the rod
lengths are normally distributed with mean μ and variance σ2.

3. Let X1,X2, and X3 be independent random variables with mean μ and variance
σ2. Suppose that μ̂1 and μ̂2 are two estimators of μ, where μ̂1 = 2X1 − 2X2 + X3
and μ̂2 = 2X1 − 3X2 + 2X3.
(a) Show that both estimators are unbiased for μ.
(b) Find the variance of each estimator and comment on which estimator is better.

4. Suppose that S2
1 and S2

2 are sample variances of two samples of n1 and n2
independent observations, respectively, from a population with mean μ and
variance σ2. Determine an unbiased estimator of σ2 as a combination of S2

1 and
S2

2 .
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5. The following data give the pull strength of 20 randomly selected solder joints on a
circuit board. Assume that the pull strengths are normally distributed with mean
μ and variance σ2.

12 11 12 9 8 11 11 11 8 9
10 9 8 11 10 8 9 9 11 10

(a) Determine the maximum likelihood estimate of the population mean of pull
strengths of solder joints.

(b) Determine the maximum likelihood estimate of population variance of pull
strengths of solder joints.

6. Suppose that a random sample of size n is taken from a gamma distribution with
parameters γ and λ. Find the method of moments estimators of γ and λ.

7. If (X1, . . . ,Xn) is a random sample of size n from a population having a Poisson
distribution with unknown parameter λ, find the MLE for λ.

8. Events occur in time in such a way that the time interval between two succes-
sive events is a random variable t having the p.d.f. θe−θt, θ > 0. Suppose that
observations are made of the n successive time intervals for n + 1 events, yielding
(t1, . . . , tn). Assuming these time intervals to be independent, find the MLE for θ.

9. Suppose (X1, . . . ,Xn) is a random sample of n independent observations from a
population having p.d.f.

f(x) =

{
1
θ , 0 ≤ x ≤ θ

0, otherwise

Find the MLE of θ. If θ̂ is the MLE of θ, then show that θ̂ is not unbiased for θ.
10. Referring to Problem 9,

(a) Show that U = (n + 1)θ̂/n is unbiased for θ.
(b) Find the variance of U.
(c) Verify that 2X̄ is unbiased for θ. Find the variance of 2X̄.
(d) Determine the ratio V ar(U)/V ar(2X̄). Which of the unbiased estimators

would you prefer?

8.3 INTERVAL ESTIMATORS FOR THE MEAN μ
OF A NORMAL POPULATION

8.3.1 σ2 Known
A general method to determine a confidence interval for an unknown parameter θ makes
use of the so called pivotal quantity.

Definition 8.3.1 Let X1, . . . ,Xn be a random sample from a population with an
unknown parameter θ. Then, a function ϕ(X1, . . . ,Xn) is called a pivotal quantity
if it possesses the following properties:
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(a) It is a function of sample values and some parameters, including the unknown
parameter θ.

(b) Among all the parameters it contains, θ is the only unknown parameter.
(c) The probability distribution of ϕ(X1, . . . ,Xn) does not depend on the unknown

parameter θ.

For example, let X1, . . . ,Xn be a random sample from a normal population with an
unknown mean μ and known variance σ2. Then, it can easily be verified that the random
variable (X̄ − μ)/(σ/

√
n) is a pivotal quantity for μ. If μ and σ2 are both unknown, then

S2/σ2 is a pivotal quantity for σ2.
Again dealing with the case that σ2 is known and if X1, . . . ,Xn is a random sample

from the normal distribution N(μ, σ2), then from our discussion in chapter 7, it follows
that the pivotal quantity (X̄ − μ)/(σ/

√
n) has the standard normal distribution N(0, 1).

This means that we can write

P

(
−zα/2 ≤

X̄ − μ

σ/
√

n
≤ zα/2

)
= 1 − α (8.3.1)

Solving the set of inequalities inside the parentheses, we can rewrite Equation (8.3.1) as

P

(
X̄ − zα/2

σ√
n
≤ μ ≤ X̄ + zα/2

σ√
n

)
= 1 − α (8.3.2)

Equation (8.3.2) essentially states that the random interval(
X̄ − zα/2

σ√
n

, X̄ + zα/2
σ√
n

)

contains μ with probability (1 − α). If σ is known, then the endpoints of the interval are
known from information available from the sample and from Table A.4. We therefore state
the following:

The interval estimator for the normal population mean with confidence coefficient
(1 − α) when the population standard deviation σ is known is(

X̄ − zα/2
σ√
n

, X̄ + zα/2
σ√
n

)
(8.3.3)

We sometimes say that Equation (8.3.3) is a 100(1 − α)% confidence interval for μ.
The endpoints of the interval (8.3.3) are sometimes referred to as confidence limits, where

X̄ − zα/2
σ√
n

, X̄ + zα/2
σ√
n

are called the lower confidence limit (LCL) and the upper confidence limit (UCL), respec-
tively. Note that the confidence interval in Equation (8.3.3) can also be written as X̄ ± E,
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where E is the margin of error defined in Equation (8.2.6). In words, Equations (8.3.2)
and (8.3.3) state that if we were to observe a sample of n observations over and over
again, and on each occasion, construct the confidence interval (8.3.3), then 100(1 − α)%
of these intervals (see Figure 8.3.1(a)) would contain the unknown population mean μ. This
interpretation of confidence intervals is called the statistical interpretation. Another
interpretation of confidence intervals, called the practical interpretation, is that we
are 100(1 − α)% confident that the confidence interval (8.3.3), obtained by using a single
sample of size n, contains the unknown population mean μ (see Figure 8.3.1b).

μ = 30

*

*

α/2 α/2

1–α

μ X

(a) (b)

X–zα/2(σ/   n) X+zα/2(σ/   n)

Figure 8.3.1 (a) Statistical and (b) practical interpretation of a confidence interval for
the population mean μ.

Figure 8.3.1a shows 50 confidence intervals with confidence coefficient 95%, which we
simulated by taking 50 random samples, each of size 25 from a normal population with
mean 30 and variance 9. Each sample has a different sample mean X̄, resulting in 50
confidence intervals centered at different points. Clearly, 48 of 50 intervals contain the
true value of μ = 30 (starred intervals do not contain μ = 30), which means that 96% or
just over 95% of the intervals, as expected, contain the true value of μ = 30.

Figure 8.3.1b shows the practical interpretation of the confidence interval. That is, we
are 100(1 − α)% confident that the confidence interval obtained by using a single sample
contains the unknown population mean μ. We formally state the above result as follows:

Theorem 8.3.1 If X̄ is the average of a sample of size n from a normal distribu-
tion N(μ, σ2), where σ is known, then

(
X̄ − zα/2

σ√
n
, X̄ + zα/2

σ√
n

)
, or, more briefly,(

X̄ ± zα/2
σ√
n

)
is a 100(1 − α)% confidence interval for μ.

Note that if the population from which the sample is drawn is not quite normal, but
σ2 is known and the sample size is large (n ≥ 30), then

(
X̄ ± zα/2

σ√
n

)
is approximately a

100(1 − α)% confidence interval for μ, since by the central limit theorem (X̄ − μ)/(σ/
√

n)
has, approximately, the standard normal distribution N(0, 1), for large n.

Example 8.3.1 (Confidence interval for the mean using normal data with known variance)
A random sample of size 4 is taken from a population having the N(μ, 0.09) distribution.
The observations were 12.6, 13.4, 12.8, and 13.2. Find a 95% confidence interval for μ.
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Solution: To find a 95% confidence interval for μ, we first note that

1 − α = 0.95, α/2 = 0.025, zα/2 = z0.025 = 1.96, σ =
√

0.09 = 0.3,

σ√
n

=
0.3√

4
= 0.15, X̄ =

52.0
4

= 13.0

Hence, the 95% confidence interval for μ is

(13.00 ± 1.96(0.15)) = (12.71, 13.29)

The practical interpretation: We are 95% confident that the unknown population mean
μ lies in the interval (12.71, 13.29).

8.3.2 σ2 Unknown
We turn now to the case where the sample is from a N(μ, σ2) population where both μ
and σ2 are unknown and where we wish to estimate μ. Now, if X1, . . . ,Xn are n indepen-
dent observations from the N(μ, σ2) population, we know from Theorem 6.4.3 that X̄ is
distributed as N(μ, σ2/n). Thus,

E(X̄) = μ (8.3.4)

That is, X̄ is an unbiased point estimator of μ, whether σ2 is known or not known. Now,
of course, we cannot use Equation (8.3.3) as a confidence interval for μ when σ2 is unknown.
In practice, what we would like to do is to replace the unknown σ2 by S2 in Equation
(8.3.1). However, if we do, we obtain (X̄ − μ)(S/

√
n), a new random variable designated

by T, and called the Student t variable. The distribution of T was first investigated by
W.S. Gosset, writing under the pseudonym (Student, 1908). This early work was later
verified by Fisher (1925). In Chapter 7 (see Theorem 7.3.7), we noted that the pivotal
quantity (X̄ − μ)/(S/

√
n) for μ is distributed as Student t with n − 1 degrees of freedom.

That is, if (X1, . . . ,Xn) is a random sample of n observations from N(μ, σ2) and if

X̄ =
1
n

n∑
i=1

Xi, S2 =
1

n − 1

n∑
i=1

(Xi − X̄)2

then, the random variable
X̄ − μ

S/
√

n
(8.3.5)

is a pivotal quantity and has a Student t-distribution with n − 1 degrees of freedom. As
discussed in Chapter 7, the t-distribution is symmetric around zero so that

P (−tn−1,α/2 ≤ tn−1 ≤ tn−1,α/2) = 1 − α (8.3.6)

where P (tn−1 > tn−1,α/2) = α/2. Using Equation (8.3.6), we may make the following state-
ment:

P

(
−tn−1,α/2 ≤

X̄ − μ

S/
√

n
≤ tn−1,α/2

)
= 1 − α (8.3.7)
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which can be rewritten as

P

(
X̄ − tn−1,α/2

S√
n
≤ μ ≤ X̄ + tn−1,α/2

S√
n

)
= 1 − α (8.3.8)

Thus, if σ is unknown, we can make the following statement:

Theorem 8.3.2 If X̄ and S2 are obtained from a random sample of size n
from a normal distribution N(μ, σ2), where both μ and σ are unknown, then(
X̄ − tn−1,α/2

S√
n
, X̄ + tn−1,α/2

S√
n

)
, or, more briefly,

(
X̄ ± tn−1,α/2

S√
n

)
is a

100(1 − α)% confidence interval for μ.

If the population from which the sample is drawn has an unknown mean and unknown
variance but is not quite normal,

(
X̄ − tn−1,α/2

S√
n
, X̄ + tn−1,α/2

S√
n

)
is an approximate

100(1 − α)% confidence interval. This interval is often good enough for all practical pur-
poses. We sometimes describe this by saying that the distribution of Equation (8.3.5) is
robust, that is, not very sensitive to departures from the assumption that the distribution
of X is normal.

We remind the reader that the use of Student’s t-distribution to find a confidence
interval for the population mean is applicable when the following conditions hold:

1. The population is normal or approximately normal.
2. The sample size is small (n < 30).
3. The population variance is unknown.

Note that some statisticians may prefer to use the t-distribution even if the sample
size is larger than 30 because the t-values for any degrees of freedom are readily available
using common statistical packages, such as MINITAB, R, Excel, or JMP.

Example 8.3.2 (Confidence interval for the mean using normal data with unknown
variance) Four determinations of the percentage of methanol in a certain solution yield
X̄ = 8.34%, S = 0.03%. Assuming (approximate) normality of the population of determi-
nations, find a 95% confidence interval for μ.

Solution: To find a 95% confidence interval for μ, we note that X̄ = 8.34, S/
√

n =
0.03/

√
4 = 0.015, and 1 − α = 0.95, α/2 = 0.025, df = n − 1 = 4 − 1 = 3, t3,0.025 =

3.182.
Hence, a 95% confidence interval for μ is

(8.34 ± 3.182(0.015)) = (8.292, 8.388)

(The value t3,0.025 = 3.182 is found using Table A.5.)

Interpretation: With 95% confidence, the average percentage of methanol in the solution
is between 8.292% and 8.388%.
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8.3.3 Sample Size Is Large
As is well known, the Student t-distribution approaches the N(0, 1) distribution as the
degrees of freedom tend to infinity. Thus, if n is large, we have, to a good approxima-
tion, that

X̄ − μ

S/
√

n
∼ Z (8.3.9)

where Z ∼ N(0, 1). Hence, if n is large, we may replace tn−1,α/2 by zα/2 in the statement of
Theorem 8.3.2 and obtain an approximate 100(1 − α)% confidence interval for μ, namely(

X̄ ± zα/2
S√
n

)
(8.3.10)

As a matter of fact, inspection of Tables A.4 and A.5, the tables of the standard
normal and the t-distribution, respectively, shows that zα and tn,α are in “reasonably
good agreement” for n ≥ 30, and hence, we use Equation (8.3.10) for n > 30. This case
is usually referred to as a large-sample case. Now with the availability of statistical
packages, it is very easy to find the t-value for any degrees of freedom, one may
continue using the t-distribution instead of switching to z even when n > 30.

Example 8.3.3 (Confidence interval for μ when using a large sample) A manufacturing
engineer decided to check the efficiency of a new technician hired by the company. She
records the time taken by the technician to complete 100 randomly selected jobs and found
that in this sample of 100, the average time taken per job was 10 hours with a standard
deviation of two hours. Find a 95% confidence interval for μ, the average time taken by a
technician to complete one job.

Solution: In this example we do not know σ, but we are given that

X̄ = 10, and S = 2

Moreover, the sample size n = 100 is large. Thus, using the confidence interval [μ̂l, μ̂u]
given by Equation (8.3.10), we have

X̄ − zα/2
S√
n

= 10 − 1.96
2√
100

= 9.608,

and
X̄ + zα/2

S√
n

= 10 + 1.96
2√
100

= 10.392

Thus, a 95% confidence interval for the average time μ taken by a technician to complete
one job is (9.608, 10.392) hours. Note the confidence interval obtained here is usually called
a two-sided confidence interval.

Interpretation: We are 95% confident that the average time the newly hired technician
would take to complete the job is between 9.608 and 10.392 hours.

Note that the width of a confidence interval, which is defined as μ̂u − μ̂l, increases or
decreases as the sample size decreases or increases, provided that the confidence coefficient
remains the same.
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Example 8.3.4 (Using MINITAB and R to find confidence interval for μ) Consider the
following data from a population with an unknown mean μ and unknown standard devia-
tion σ:

23 25 20 16 19 35 42 25 28 29 36 26 27 35 41 30

20 24 29 26 37 38 24 26 34 36 38 39 32 33 25 30

Use MINITAB and R to find a 95% confidence interval for the mean μ.

MINITAB

To find a 95% confidence interval for the mean μ using MINITAB, we proceed as follows:

1. Enter the data in column C1. If the summary statistics are given, then skip this
step.

2. Since in this example the population standard deviation is not known, calculate
the sample standard deviation of these data using one of the MINITAB procedures
discussed earlier in Chapter 2. We will find S = 6.82855.

3. From the Menu bar select Stat > Basic Statistics > 1-Sample Z. This prompts a
dialog box One-Sample Z for the Mean to appear on the screen. Then form the
pull down menu select One or more samples, each in a column. Enter C1 in the
box below One or more samples, each in a column, and the value of standard
deviation in a box next to Standard deviation. Note that since the sample size is
greater than 30, we select the command 1-Sample Z instead of 1-Sample t.

4. Check options, which prompts another dialog box to appear. Enter the desired
confidence level in the box next to Confidence level, and under alternative
hypothesis option, select Mean �= hypothesized mean by using the down arrow.
In each dialog box, click OK. The MINITAB output will show up in the Session
window as given below:

Descriptive Statistics
N Mean StDev SE Mean 95% CI for μ

32 29.63 6.83 1.21 (27.26, 31.99)

Note that if we had selected the command 1-Sample t, then the output would be

Descriptive Statistics
N Mean StDev SE Mean 95% CI for μ

32 29.63 6.83 1.21 (27.16, 32.09)

Since the sample size is large, the two confidence intervals are almost the same. However,
note that the confidence interval using the t-distribution is slightly larger, which is always
the case.

USING R

The built in R function ‘z.test()’ in library ‘BSDA’ can be used to obtain the required
z-interval. For the information provided in Example 8.3.4, a 95% confidence interval for
the mean μ can be calculated by running the following in the R Console window.
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install.packages(“BSDA”)
library(BSDA)

#Assign data
x = c(23,25,20,16,19,35,42,25,28,29,36,26,27,35,41,30,20,24,29,26,37,

38,24,26,34,36,38,39,32,33,25,30)
z.test(x, alternative = “two.sided”, mu = 0, sigma.x = sd(x),conf.level = 0.95)

#In case if we wanted to obtain the t-interval, use function
‘t.test()’ in library ‘stats’ t.test(x, alternative = “two.sided”,
mu = 0, sigma.x = sd(x), conf.level = 0.95)

These confidence intervals, of course, are identical (after rounding) to those produced by
MINITAB.

One-Sided Confidence Interval

Note that the confidence interval in Equation (8.3.3) is symmetrical about the mean X̄.
This is because, while selecting the value of z, we divided α into two equal parts such that
one half of α is used up in the lower tail and the other one half is used up in the upper tail.
Technically speaking, we can divide α into two parts as we wish. That is, we may take,
for example, one-third of α under one tail and the remaining two-thirds under the other
tail. But, traditionally, we always divide α into two equal parts unless we have very strong
reasons to do otherwise. Moreover, for a symmetric distribution, dividing α into two equal
parts yields a slightly smaller confidence interval, which is one of the desirable properties
of a confidence interval (the smaller the better). For one-sided confidence interval, we use
all of α under one tail only. Thus, the two one-sided confidence intervals, commonly known
as upper one-sided and lower one-sided confidence intervals, are given by

Upper one-sided and lower one-sided confidence intervals, respectively, for population
mean with confidence coefficient (1 − α) when σ is known:

(−∞, μ̂u) = (−∞, X̄ + zα

σ√
n

) (8.3.11)

(μ̂l, ∞) = (X̄ − zα

σ√
n

, ∞) (8.3.12)

Note that μ̂u and μ̂l are the upper and lower limits of a two-sided confidence interval
with confidence coefficient (1 − 2α). Now, when the sample size is small and the sample
is taken from a normal population with unknown variance, the lower and upper one-sided
confidence intervals, respectively, are as follows:
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Upper one-sided and lower one-sided confidence intervals, respectively, for population
mean with confidence coefficient (1 − α) when σ is unknown, are respectively:(

−∞, X̄ + tn−1,α/2
S√
n

)
(8.3.13)(

X̄ − tn−1,α/2
S√
n

, ∞
)

(8.3.14)

The statistical and practical interpretations for one-sided confidence intervals are the
same as for two-sided confidence intervals.

Example 8.3.5 (Finding one-sided confidence intervals) Reconsider Example 8.3.3. Find
95% lower and upper one-sided confidence intervals for μ.

Solution: In this example, n = 100, a large sample size, so we proceed as follows: 1 − α =
0.95, α = 0.05. Further, we know that n − 1 = 99 and t99;0.05 ≈ Z0.05 = 1.645 Then, from
the results of Equations (8.3.13) and (8.3.14), the upper and lower one-sided confidence
intervals for μ are, respectively, (−∞, μ̂u) and (μ̂l, ∞) where in the present case μ̂l and
μ̂u are

μ̂l = X̄ − zα

S√
n

= 10 − 1.645
2√
100

= 9.671

μ̂u = X̄ + zα

S√
n

= 10 + 1.645
2√
100

= 10.329

Thus, 95% one-sided upper and one-sided lower large sample confidence intervals for the
population mean μ are (−∞, 10.329) and (9.671,∞), respectively.

Interpretation: We are 95% confident that the newly hired technician would take a
maximum average time of 10.329 hours and a minimum average time of 9.671 hours to
complete the job.

MINITAB

To find 95% one-sided confidence intervals for the population mean μ using MINITAB, we
first find a 90% confidence interval using MINITAB. The MINITAB output for the 90%
confidence interval is as follows (for Minitab instructions, see Example 8.3.4):

Descriptive Statistics
N Mean SE Mean 90% CI for μ

100 10.000 0.200 (9.671, 10.329)

Thus, 95% one-sided confidence intervals for the population mean μ are (9.671,∞) and
(−∞, 10.329).
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Alternatively, one can construct the one-sided upper/lower confidence interval by
entering in the options dialog box 95% in the box next to Confidence coefficient and
selecting less than/greater than under the alternative option.

USING R

The built in R function ‘z.test()’ in library ‘BSDA’ can be used to obtain the required
z-interval. For the information provided in Example 8.3.3, a 95% confidence interval for
the mean μ can be calculated by running the following in the R Console window.

install.packages(“BSDA”)
library(BSDA)

#Just like in MINITAB use confidence coefficient = 0.90
zsum.test(mean.x=10, sigma.x = 2, n.x = 100, alternative = “two.sided”,
mu = 0, conf.level = 0.90)

This confidence interval, of course, is identical (after rounding) to that produced by
MINITAB.

Example 8.3.6 (Lower and upper confidence intervals for μ) A random sample of size
25 of a certain kind of light bulb yielded an average lifetime of 1875 hours with a standard
deviation of 100 hours. From past experience, it is known that the lifetime of this kind
of bulb is normally distributed with mean μ and standard deviation σ. Find a 99% confi-
dence interval for the population mean μ. Find 99% lower and upper one-sided confidence
intervals for the population mean μ.

Solution: From the given information, we find that in this particular example, the sample
size is small, the population standard deviation σ is unknown, and the lifetime of the
kind of bulb under study is normally distributed. Thus, in this example, we can use the
Student t-distribution to find confidence intervals for the population mean μ. The summary
statistics are

n = 25, X̄ = 1875, and S = 100, 1 − α = 0.99, α/2 = 0.005

Using the small-sample two-sided confidence interval (μ̂l, μ̂u), we find that

μ̂l = X̄ − tn−1,α/2
S√
n

= 1875 − t24,.005
100√

25
= 1875 − 2.797 × 20 = 1819.06

μ̂u = X̄ + tn−1,α/2
S√
n

= 1875 + t24,.005
100√

25
= 1875 + 2.797 × 20 = 1930.94

Thus, a small-sample two-sided 99% confidence interval for μ is (1819.06, 1930.94). The
lower and upper one-sided 99% confidence limits are

μ̂l = X̄ − tn−1,α/2
S√
n

= 1875 − t24,.01
100√

25
= 1875 − 2.492 × 20 = 1825.16
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μ̂u = X̄ + tn−1,α/2
S√
n

= 1875 + t24,.01
100√

25
= 1875 + 2.492 × 20 = 1924.84

Thus, the 99% lower and upper one-sided small-sample confidence intervals for the popula-
tion mean μ are (1825.16,∞) and (0, 1924.84). Note that in the upper one-sided confidence
interval, the lower limit is zero instead of being −∞, since the lifetime of bulbs cannot be
negative.

PRACTICE PROBLEMS FOR SECTION 8.3

1. The following data give the ages of 36 randomly selected family caregivers of older
parents in the United States:

55 53 47 47 49 43 47 40 48 41 44 51 48 43 50 49 47 42
42 47 47 49 46 46 43 41 45 51 44 48 43 50 53 44 49 53

Assuming normality,
(a) Determine a 95% confidence interval for the mean ages of all US caregivers.
(b) Determine a one-sided lower and one-sided upper 95% confidence interval for

the mean ages of all US caregivers.
2. Suppose that in Problem 1 only 25 of 36 randomly selected family caregivers

responded, so we have the following data:

55 53 47 47 49 43 47 40 48 41 44 51 48
43 50 49 47 42 42 47 47 49 46 46 43

Assuming that these data come from a population that has a normal distribution,
(a) Determine a 99% confidence interval for the mean ages of all US caregivers.
(b) Determine a one-sided lower and one-sided upper 99% confidence interval for

the mean ages of all US caregivers.
3. An insurance company is interested in determining the average postoperative length

of stay (in days) in hospitals for all patients who have bypass surgery. The follow-
ing data give length of stay of 50 randomly selected patients who had bypass
surgery:

6 10 10 9 9 12 7 12 7 8 10 7 8 8 10 12 10
7 7 10 8 8 10 7 6 12 9 7 8 6 6 10 6 7
7 10 8 12 8 10 7 7 10 11 11 8 6 7 8 11

(a) Determine a 90% confidence interval for the mean postoperative length of stay
(in days) in hospitals for all patients who have bypass surgery.

(b) Determine a one-sided lower and one-sided upper 90% confidence interval for
the mean postoperative length of stay (in days) in hospitals for all patients
who have bypass surgery.
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4. A study was undertaken to see if the length of slide pins used in the front disc brake
assembly met with specifications. To this end, measurements of the lengths of 16
slide pins, selected at random, were made. The average value of 16 lengths was
3.15, with a sample standard deviation of 0.2. Assuming that the measurements
are normally distributed, construct a 95% confidence interval for the mean length
of the slide pins.

5. The following data give the drying time (in hours) for 10 randomly selected concrete
slabs:

9.06 9.17 9.11 8.16 9.10 9.98 8.89 9.02 9.32 8.12

Assuming that drying times are normally distributed, determine a 95% confidence
interval for the mean drying time for the slabs.

6. The weights of a random sample of 49 university male first-year students yielded
a mean of 165 pounds and a standard deviation of 6.5 pounds. Determine a 90%
confidence interval for the mean weight of all university male first-year students.

7. It is believed that drinking has some bad effects on the human reproduction system.
To study this, some evaluations of placenta tissue of 16 randomly selected drinking
mothers were made that yielded the following values (recorded to the nearest whole
number):

18 17 22 21 15 21 22 22 14 20 14 16 13 22 20 19

Assuming that these evaluations are normally distributed, determine a 99% confi-
dence interval for the mean value for drinking mothers.

8. A hotel facility management company is interested in determining the average
temperature during July at the location of one of their hotels. The temperatures
of 49 randomly selected days in July during the past five years were as follows:

95 84 87 81 84 89 80 83 82 90 82 87 90 81 83 85 94
92 92 95 95 80 88 87 85 95 80 81 81 93 87 92 94 83
80 81 95 93 82 82 83 85 80 95 84 82 84 81 88

Determine a 99% confidence interval for the mean temperature for month of July
at the place where the hotel is located.

9. Refer to Problem 8. Determine one-sided lower and one-sided upper 95% confidence
intervals for the mean temperature for July where the hotel is located.

10. A sample of 25 bulbs is taken from a large lot of 40-watt bulbs, and the average
of the sample bulb lives is 1410 hours. Assuming normality of bulb lives and that
the standard deviation of bulb lives in the mass-production process involved is 200
hours, find a 95% confidence interval for the mean life of the bulbs in the lot.
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11. A certain type of electronic condenser is manufactured by the ECA company, and
over a large number of years, the lifetimes of the parts are found to be normally
distributed with standard deviation σ = 225 h. A random sample of 30 of these
condensers yielded an average lifetime of 1407.5 hours. Find a 99% confidence
interval for μ, the mean lifetime of ECA condensers. What can you say about the
statement “μ = 1400”?

8.4 INTERVAL ESTIMATORS FOR THE
DIFFERENCE OF MEANS OF TWO
NORMAL POPULATIONS

8.4.1 Variances Are Known
Suppose that X̄1 and S2

1 are the average and variance of a sample of size n1 from the normal
distribution N(μ1, σ

2
1) and that X̄2 and S2

2 are the average and variance of a sample of size
n2 from a normal distribution N(μ2, σ

2
2). Consider the difference of the population means

μ1 and μ2, say δ = μ1 − μ2. The unbiased point estimator of δ is, of course, X̄1 − X̄2, since
E(X̄1 − X̄2) = μ1 − μ2 = δ. Furthermore, from Theorem 7.3.8, we have that X̄1 − X̄2 is
distributed by the N(μ1 − μ2, σ

2
1/n1 + σ2

2/n2) distribution. If σ2
1 and σ2

2 are known, then
we may state that

P

⎛
⎝−zα/2 ≤

(X̄1 − X̄2) − (μ1 − μ2)√
σ2

1
n1

+ σ2
2

n2

≤ zα/2

⎞
⎠ = 1 − α (8.4.1)

or equivalently,

P

(
(X̄1 − X̄2) − zα/2

√
σ2

1

n1
+

σ2
2

n2
≤ μ1 − μ2 ≤ (X̄1 − X̄2) + zα/2

√
σ2

1

n1
+

σ2
2

n2

)
= 1 − α

(8.4.2)
Hence, we have the following:

Theorem 8.4.1 If X̄1 is the sample average of a random sample of size n1 from a
population having distribution N(μ1, σ

2
1), and X̄2 is the sample average of an inde-

pendent random sample of size n2 from N(μ2, σ
2
2), and if σ2

1 and σ2
2 are known, then

(
(X̄1 − X̄2) − zα/2

√
σ2

1

n1
+

σ2
2

n2
, (X̄1 − X̄2) + zα/2

√
σ2

1

n1
+

σ2
2

n2

)
(8.4.2a)

is a 100(1 − α)% confidence interval for μ1 − μ2.
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Note that when the two populations are normal with known variances, then the confi-
dence interval for the difference of the two population means, shown in Equation (8.4.2a)
is valid regardless of the sample sizes.

Example 8.4.1 (Constructing confidence interval for μ1 − μ2 with known variances) A
sample of size 10 from N(μ1, 25) yields a sample average of X̄1 = 19.8, while an indepen-
dent sample of size 12 from N(μ2, 36) yields a sample average of X̄2 = 24. Find a 90%
confidence interval for μ1 − μ2.

Solution: In this example, the two populations are normal with known variances, and
we have

1 − α = 0.90, α/2 = 0.05, zα/2 = 1.645√
σ2

1

n1
+

σ2
2

n2
=

√
25
10

+
36
12

=
√

5.5 = 2.345

Hence, using Equation (8.4.2a), we obtain a 90% confidence interval for μ1 − μ2, which is

((19.8 − 24.0) ± 1.645 × 2.345) = (−9.06, −1.34)

Interpretation: We are 90% confident that the difference between the two population
means (μ1 − μ2) is between −9.06 and −1.34.

A word of caution: the 90% confidence interval for μ2 − μ1 is (1.34, 9.06); that is, the
sign of the confidence limits changes.

8.4.2 Variances Are Unknown
If n1 and n2 are large (both n1 and n2 are strictly greater than 30), and if σ2

1 and σ2
2 are

unknown and we cannot assume σ2
1 = σ2

2, then

Confidence interval for μ1 − μ2 with confidence coefficient (1 − α) when σ2
1 and σ2

2
are unknown and we cannot assume σ2

1 = σ2
2 for large samples:

(
(X̄1 − X̄2) − zα/2

√
S2

1

n1
+

S2
2

n2
, (X̄1 − X̄2) + zα/2

√
S2

1

n1
+

S2
2

n2

)
(8.4.3)

Here, Equation (8.4.3) is an approximate 100(1 − α)% confidence interval for μ1 − μ2.
Further, this statement holds sufficiently well for most practical purposes, even if the two
populations being sampled are fairly nonnormal, by virtue of the central limit theorem,
since n1 and n2 are both large. If we can assume σ2

1 = σ2
2 = σ2, where σ2 is unknown, it is
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usual to combine the two separate estimators S2
1 (based on ν1 = n1 − 1 degrees of freedom)

and S2
2 (based on ν2 = n2 − 1 degrees of freedom) into a single estimator S2

p of the common
variance σ2. Whatever n1 or n2 may be, the pooled estimate S2

p is given by the weighted
average of the individual estimators, the weights being the associated degrees of freedom,
that is,

S2
p =

ν1S
2
1 + ν2S

2
2

ν1 + ν2
(8.4.4)

Note that

E(S2
p) =

1
ν1 + ν2

E(ν1S
2
1 + ν2S

2
2) =

1
ν1 + ν2

E(ν1σ
2
1 + ν2σ

2
2) = σ2

It follows from Theorems 7.3.3 and 7.3.5 that the quantity

(n1 + n2 − 2)
S2

p

σ2 =
(n1 − 1)S2

1 + (n2 − 1)S2
2

σ2 ∼ χ2
n1−1 + χ2

n2−1 (8.4.5)

where the χ2
n1−1 and χ2

n1−1 are independent chi-squared random variables, so that (n1 +
n2 − 2)S2

p/σ2 has a chi-square distribution with n1 + n2 − 2 degrees of freedom. Here,
we recognize that S2

p is an unbiased point estimator of σ2, sometimes called the pooled
estimator of σ2. Furthermore, we know that

(X̄1 − X̄2) − (μ1 − μ2)

σ
√

1
n1

+ 1
n2

(8.4.6)

has the N(0, 1) distribution. Also, the quantities in Equations (8.4.5) and (8.4.6) are
independent. Thus, from Theorem 7.3.9, it follows that

(X̄1 − X̄2) − (μ1 − μ2)

Sp

√
1
n1

+ 1
n2

(8.4.7)

has the Student t-distribution with n1 + n2 − 2 degrees of freedom. Therefore, we can
say that

P

⎛
⎝−tn1+n2−2;α/2 ≤

(X̄1 − X̄2) − (μ1 − μ2)

Sp

√
1
n1

+ 1
n2

≤ tn1+n2−2;α/2

⎞
⎠ = 1 − α (8.4.8)

or, alternatively,

P

(
(X̄1 − X̄2) − tn1+n2−2;α/2Sp

√
1
n1

+
1
n2

≤ μ1 − μ2 ≤ (X̄1 − X̄2)

+ tn1+n2−2;α/2Sp

√
1
n1

+
1
n2

)
= 1 − α (8.4.9)
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We summarize the preceding result as follows:

Theorem 8.4.2 If in Theorem 8.4.1 it is assumed that σ2
1 = σ2

2 = σ2, where σ2 is
unknown, then(

(X̄1 − X̄2) − tn1+n2−2;α/2Sp

√
1
n1

+
1
n2

, (X̄1 − X̄2) + tn1+n2−2;α/2Sp

√
1
n1

+
1
n2

)
(8.4.10)

is a 100(1 − α)% confidence interval for μ1 − μ2.

Example 8.4.2 (Constructing a confidence interval for μ1 − μ2 with unknown but equal
variances) A sample of n1 = 5 light bulbs of type A gives an average length of life of
X̄1 = 1000 hours with a standard deviation of S1 = 28 hours. A sample of n2 = 7 light
bulbs of type B, gives X̄2 = 980 hours, and S2 = 32 hours. We assume that the processes
are normally distributed with variances σ2

1 and σ2
2 that are equal, that is, σ2

1 = σ2
2 = σ2.

Find a 99% confidence interval for μ1 − μ2 = μA − μB.

Solution: In this example, we have two normal populations with equal variances that
are unknown. Sample sizes are small; therefore, we use the Student t-distribution for
determining a 99% confidence interval for μ1 − μ2, Further, we note that

1 − α = 0.99, α/2 = 0.005, n1 + n2 − 2 = 10, t10,0.005 = 3.169

and that
S2

p =
(5 − 1)282 + (7 − 1)322

10
= 928 or Sp = 30.46

Hence, the desired confidence interval for μ1 − μ1 is given by(
(1000 − 980) ± 3.169 × 30.46 ×

√
1
5

+
1
7

)
= (20 ± 56.5) = (−36.5, 76.6)

Interpretation: We are 99% confident that the difference between the two population
means (μA − μB) is between 36.5 and 76.6.

MINITAB

To find a 99% confidence interval for the mean using MINITAB, we proceed as follows:

1. From the Menu bar, select Stat > Basic Statistics > 2-Sample t. This prompts
a dialog box Two-Sample t for the Mean to appear on the screen.

2. Select Summarized data from the pull down menu, and then enter the values of
sample size, sample mean, and sample standard deviation in the respective boxes.

3. Check Options, which will prompt another dialog box to appear. Enter the desired
confidence level in the box next to Confidence level and select Difference �=
hypothesized difference under alternative option. If the variances are equal,



8.4 Interval Estimators for The Difference of Means of Two Normal Populations 317

then check the box next to Assume equal variances. Otherwise, do not check
that box. Click OK on each of the two dialog boxes. The Minitab output will show
up in the Session window as follows:

Descriptive Statistics

Sample N Mean StDev

Sample 1 5 1000.0

Mean
SE

1328.0

Sample 2 7 980.0 1232.0

Estimation for Difference

Difference

20.0 30.5

Pooled

StDev

99% CI for

Difference

(–36.5, 76.5)

Note that this result matches the result obtained manually. Also, if in the second dialog
box we check Difference < hypothesized difference or Difference > hypothesized
difference instead of Difference �= hypothesized difference, we obtain upper and
lower bounds for one-sided confidence intervals, respectively.

USING R

The built in R function ‘tsum.test()’ in library ‘BSDA’ can be used to conduct two-sample
t-test. For the information provided in Example 8.4.2, the test can be conducted by running
the following in the R Console window.

install.packages(“BSDA”)
library(BSDA)
tsum.test(mean.x = 1000, s.x = 28, n.x = 5, mean.y = 980, s.y = 32,
n.y = 7, alternative = “two.sided”, mu = 0, var.equal = TRUE,conf.level = 0.99)

#R output
Standard Two-Sample t-Test
data: Summarized x and y
t = 1.1212, df = 10, p-value = 0.2884
alternative hypothesis: true difference in means is not equal to 0
99 percent confidence interval:
-36.53146 76.53146
sample estimates:
mean of x mean of y
1000, 980

This confidence interval, of course, is identical (after rounding) to that produced manually.
Recall from Section 7.3 that for large degrees of freedom m, tm

∼= z. In the two-sample
problem, if (n1 + n2 − 2) ≥ 60, that is, if n1 + n2 ≥ 62, then an approximate 100(1 − α)%
interval for μ1 − μ2 is obtained by using z instead of t. That is, we would use(

(X̄1 − X̄2) − zα/2Sp

√
1
n1

+
1
n2

, (X̄1 − X̄2) + zα/2Sp

√
1
n1

+
1
n2

)
(8.4.11)

when σ2
1 = σ2

2 = σ2.
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We now discuss a method available for the situation when σ2
1 �= σ2

2. The procedure is
as follows: compute m, the degrees of freedom from Satterthwaite’s approximation for t
given by

m =

(
S2

1
n1

+ S2
2

n2

)2

(S2
1/n1)

2

n1−1 + (S2
2/n2)

2

n2−1

(8.4.12)

An equivalent method to calculate the degrees of freedom is as follows: calculate

c =
S2

1/n1

S2
1/n1 + S2

2/n2

then m is such that
1
m

=
c2

n1 − 1
+

(1 − c)2

n2 − 1

Now it can be shown that an approximate confidence interval for μ1 − μ2 with confidence
coefficient (1 − α) when σ2

1 and σ2
2 are unknown and cannot assume σ2

1 = σ2
2 for small

samples is:

(
(X̄1 − X̄2) − tm,α/2

√
S2

1

n1
+

S2
2

n2
, (X̄1 − X̄2) + tm,α/2

√
S2

1

n1
+

S2
2

n2

)
(8.4.13)

Further, it can be shown that

min(n1 − 1, n2 − 1) ≤ m ≤ n1 + n2 − 2 (8.4.14)

Hence, if n1 and n2 are both strictly greater than 30, we use Equations (8.4.11) and
(8.4.12) and obtain an m that is greater than or equal to 30. This in turn means that
the probability point tm,α/2 used in the interval (8.4.13) is such that tm,α/2 ≈ zα/2, and
(8.4.13) takes the form

(
(X̄1 − X̄2) − zα/2

√
S2

1

n1
+

S2
2

n2
, (X̄1 − X̄2) + zα/2

√
S2

1

n1
+

S2
2

n2

)
(8.4.15)

so that Equation (8.4.15) is an appropriate 100(1 − α)% confidence interval for μ1 − μ2
when n1 > 30, n2 > 30, and σ2

1 �= σ2
2.

Example 8.4.3 (Constructing a confidence interval for μ1 − μ2 with variances unknown
and unequal) Twenty-five batch yields of a plastic produced using a catalyst (method 1)
are to be compared with 25 batch yields of the plastic produced without the catalyst (method
2). The following results were obtained (coded units):

Method 1 : n1 = 25, X̄1 = 6.40, S2
1 = 2.4264

Method 2 : n2 = 25, X̄2 = 6.02, S2
2 = 1.0176
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Assuming normality of batch yields obtained using method i, say N(μi, σ
2
i ), i = 1, 2, find

a 95% confidence interval for (μ1 − μ2). Assume that σ2
1 �= σ2

2.

Solution: Since it is given that σ2
1 �= σ2

2, we proceed to find a 95% confidence interval
for μ1 − μ2 using the interval (8.4.13). For this, we must first determine the value of m,
which we expect from Equation (8.4.14) to lie between 24 and 48 inclusive. From Equation
(8.4.12), we have

m =

( 2.4264
25 + 1.0176

25

)2

( 2.4264
25 )2

24 + ( 1.0176
25 )2

24

= 41.1

We use m = 41. Now we have 1 − α = 0.95, α/2 = 0.025. Thus from Table A.5 we
have t41,.025 ≈ 2.0195. Hence, a 95% confidence interval for μ1 − μ2 is given by

(
(6.40 − 6.02) ± 2.0195 ×

√
2.4264

25
+

1.0176
25

)
= (0.38 ± 0.75) = (−0.37, 1.13)

Interpretation: We are 95% confident that the difference between the two population
means (μ1 − μ2) is between −0.37 and 1.13.

We note that with confidence coefficient 1 − α = 0.95, the confidence interval contains
0. Therefore, the sample evidence supports the statement μ1 − μ2 = 0, that is, μ1 = μ2.
(We return to this point in Chapter 9, where we use the confidence interval as an alternate
method for testing a certain simple hypothesis.)

Example 8.4.4 (Yarn breaking strength test) A sample of 61 strands of type I yarn,
when subjected to breaking-strength tests, yielded a sample average of X̄I = 1400 psi with
a sample standard deviation of SI = 120 psi. A sample of 121 strands of type M yarn
was also subjected to the same breaking strength tests and yielded a sample average of
X̄M = 1250 psi and a sample standard deviation of SM = 80 psi. Find a 95% confidence
interval for μI − μM , assuming normality of breaking strengths of both types of yarn.
Assume that σ2

I �= σ2
M .

Solution: Since we cannot assume that σ2
I = σ2

M , and both sample sizes are large, we
proceed first to find a 95% confidence interval for μI − μM using Equation (8.4.15). In
fact, if we went through the calculations of Equation (8.4.12), the reader should verify
that we would find that m = 87 and t87,α ≈ zα. Hence the 95% confidence interval for
μI − μM is(

(1400 − 1250) ± 1.96 ×
√

1202

61
+

802

121

)
= (150 ± 1.96 ×

√
289) = (116.8, 183.2)

This means that we are 95% confident that the difference between breaking strength of
two types of yarn is between 116.8 and 183.2 psi.

In this example, the confidence interval with confidence coefficient 1 − α = 0.95 does
not contain 0, and both confidence limits are positive. Therefore, the sample evidence
supports the statement μI − μM > 0, that is, μI > μM . We now complete this example
using MINITAB and R.
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MINITAB

To find a 95% confidence interval for μI − μM using MINITAB, we proceed in the same
manner as in Example 8.4.2. The MINITAB output shows up in the Session window as:

Descriptive Statistics

Sample N Mean StDev

Sample 1 61 1400

SE Mean

15120

Sample 2 121 1250.0 7.380.0

Estimation for Difference

Difference

150.0

95% CI for

Difference

(116.2, 183.8)

Note that these confidence limits are slightly different from the limits we found pre-
viously for this example. This difference can be expected since we used z-values, whereas
R and MINITAB use t-values. Further note that if instead of summary statistics we are
given raw data, then in the Two-Sample t for the Mean dialog box, we would select
the option data in one column or data in two columns depending on whether we have
entered the data in one column or two columns.

USING R

As in Example 8.4.2, we can use the built in R function ‘tsum.test()’ in library ‘BSDA’
with specifying ‘var.equal = FALSE’.

install.packages(“BSDA”)
library(BSDA)
tsum.test(mean.x = 1400, s.x = 120, n.x = 61, mean.y = 1250,s.y = 80, n.y = 121,
alternative = “two.sided”, mu = 0, var.equal = FALSE, conf.level = 0.95)

PRACTICE PROBLEMS FOR SECTION 8.4

1. A sample of size 10 from N(μ1, 225) yields an average X̄1 = 170.2, while an inde-
pendent sample of size 12 from N(μ2, 256) yields a sample average X̄2 = 176.7.
Find a 95% confidence interval for μ1 − μ2.

2. Suppose that random samples of size 25 are taken from two large lots of light bulbs,
say lot A and lot B, and the average lives for the two samples are found to be

X̄A = 1580 hours, X̄B = 1425 hours

Assuming that the standard deviation of bulb life in each of the two lots is 200
hours, find 95% confidence limits for μA − μB .

3. A light bulb company tested ten light bulbs that contained filaments of type A and
ten that contained filaments of type B. The following results were obtained for the
length of life in hours of the 20 light bulbs (Steele and Torrie):
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Filament A: 1293 1380 1614 1497 1340 1643 1466 1094 1270 1028
Filament B: 1061 1627 1065 1383 1092 1711 1021 1138 1017 1143

Assuming (approximate) normality and equal variances, find a 95% confidence
interval for the difference between the mean life of bulbs with filament A and
filament B. Does the sample evidence support the assumption that these means
are equal?

4. Before and after tests are to be made on the breaking strengths (oz) of a certain
type of yarn. Specifically, seven determinations of the breaking strength are made
on test pieces of the yarn before a spinning machine is reset and five on test pieces
after the machine is reset, with the following results:

Before: 22.7 25.7 20.7 26.7 21.2 19.2 22.7
After: 23.2 23.7 25.2 23.7 24.7

Assuming that determinations made “after reset” and determinations made “before
reset” are independently distributed as N(μ1, σ

2
1) and N(μ2, σ

2
2), respectively, find

a 95% confidence interval for μ1 − μ2 without assuming equal variances.
5. A new catalyst is to be used in production of a plastic chemical. Twenty batches of

chemical are produced, 10 batches with the new catalyst, 10 without. The results
are as shown below:

Catalyst present: 7.2 7.3 7.4 7.5 7.8 7.2 7.5 8.4 7.2 7.5
Catalyst absent: 7.0 7.2 7.5 7.3 7.1 7.1 7.3 7.0 7.0 7.3

Assuming normality and that variances are not equal, find a 99% confidence interval
for the difference of the means of yields of batches obtained when using the catalyst
and when not using the catalyst. On the basis of this interval, do the data support
the claim that use of the catalyst increases the average batch yield?

6. Reconsider Problem 5 of Section 8.3. Suppose now that the drying time is measured
at two different temperature settings T1 and T2. The data obtained are as follows:

T1: 9.93 9.66 9.11 9.45 9.02 9.98 9.17 9.27 9.63 9.46
T2: 10.26 9.75 9.84 10.42 9.99 9.98 9.89 9.80 10.15 10.37

Assuming that the drying times for both temperature settings are normally dis-
tributed with equal variances, determine a 95% confidence interval for the difference
of means of drying times when settings T1 and T2 are used.
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7. Repeat Problem 6 above, now assuming that the two population variances are not
equal.

8. The following data give the LDL cholesterol (commonly known as bad cholesterol)
levels of two groups I and II of young female adults. Each member of group I
followed a very strict exercise regimen, whereas group II members did not do any
exercise.

Group I: 85 84 76 88 87 89 80 87 71 78
74 80 89 79 87 75 83 84 71 70

Group II: 91 105 98 98 98 107 101 101 94 96
103 109 105 103 95 97 95 91 104 107

Suppose that μ1 and μ2 are the means of the two populations from which young
female adults in groups I and II have been selected. Assuming that the two popu-
lations are normally distributed with equal variance, determine a 99% confidence
interval for μ1 − μ2.

9. Suppose in Problem 8 that the variances of the two populations are known from
past experience to be 16 and 25, respectively. Determine a 99% confidence interval
for μ1 − μ2.

10. Two different brands of an all-purpose joint compound are used in residential con-
struction and their drying times, in hours, are recorded. Sixteen specimens for each
joint compound were selected. Recorded drying times are:

Brand I: 11.19 10.22 10.29 11.11 10.08 10.14 10.60 10.08
11.28 11.98 11.22 11.97 10.47 10.79 11.98 10.03

Brand II: 12.10 13.91 13.32 13.58 12.04 12.00 13.05 13.70
12.84 13.85 13.40 12.48 13.39 13.61 12.37 12.08

Assuming that the drying times of the two brands are normally distributed with
equal variances, determine a 95% confidence interval for μI − μII.

8.5 INTERVAL ESTIMATORS FOR THE
VARIANCE OF A NORMAL POPULATION

We saw in Chapter 7 that if S2 is the variance of a sample of size n from a normal dis-
tribution N(μ, σ2), then (n − 1)S2/σ2 has a chi-square distribution with n − 1 degrees of
freedom. Note that as the degree of freedom changes, the shape of the chi-square distri-
bution changes (see Figure 8.5.1).

We can now state, using the distributional result mentioned previously, that

P

(
χ2

n−1,1−α/2 ≤
(n − 1)S2

σ2 ≤ χ2
n−1,α/2

)
= 1 − α (8.5.1)
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Figure 8.5.1 Chi-square distribution for various degrees of freedom.

or equivalently

P

(
(n − 1)S2

χ2
n−1,α/2

≤ σ2 ≤ (n − 1)S2

χ2
n−1,1−α/2

)
= 1 − α (8.5.2)

This enables us to state the following:

Theorem 8.5.1 If S2 is the sample variance of a random sample of size n from
the normal distribution N(μ, σ2), then a 100(1 − α)% confidence interval for σ2 is
given by (

(n − 1)S2

χ2
n−1,α/2

,
(n − 1)S2

χ2
n−1,1−α/2

)
(8.5.3)

Referring to Equation (8.5.2), it should be noted that the confidence interval for σ
can be obtained simply by taking the square root of the confidence limits of σ2.

A 100(1 − α)% confidence interval for σ is given by(
S

√
(n − 1)
χ2

n−1,α/2
, S

√
(n − 1)

χ2
n−1,1−α/2

)
(8.5.4)
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The confidence interval (8.5.4) contains σ if and only if the confidence interval (8.5.3)
contains σ2.

Now it turns out that the confidence interval for σ2 (or σ) can be quite off the mark, as
contrasted to that for μ, if the population distribution departs significantly from normality.
Note that 100(1 − α)% one-sided lower and upper confidence intervals for σ2 are given by

One-sided lower and upper confidence intervals for σ2 with confident coefficient
(1 − α) (

(n − 1)S2

χ2
n−1,α

,∞
)

and

(
0,

(n − 1)S2

χ2
n−1,1−α

)
(8.5.5)

respectively. A one-sided lower and upper confidence interval for σ are found by taking
the square roots of the corresponding limits in Equation (8.5.5).

Example 8.5.1 (Confidence interval for σ2) Refer to Example 8.3.2, and find a 95%
confidence interval for σ2.

Solution: From Example 8.3.2, we have n − 1 = 3, S2 = 0.0009, 1 − α = 0.95, and
1 − α/2 = 0.975. We then need χ2

3,0.025 = 9.348 and χ2
3,0.975 = 0.216, which can be found

using Appendix A.6. This implies that a 95% confidence interval for σ2 is given by(
3(0.0009)

9.348
,

3(0.0009)
0.216

)
= (0.00029, 0.0125)

Note that a 95% confidence interval for σ is (0.017, 0.112).

Interpretation: We are 95% confident that population variance σ2 falls between 0.00029
and 0.0125, and the population standard deviation σ falls between 0.017 and 0.112.

Example 8.5.2 (Lower and upper confidence intervals for σ2) Referring to Example
8.5.1, find 95% one-sided lower and upper confidence intervals for σ2 and σ.

Solution: As in Example 8.5.1, we have n − 1 = 3, S2 = 0.0009, 1 − α = 0.95, so
χ2

3,0.05 = 7.81 and χ2
3,0.95 = 0.35. Hence, the 95% lower and upper one-sided confidence

intervals [σ̂2
l ,∞] and [0, σ̂2

u] for σ2 are such that

σ̂2
l =

(
3(0.0009

7.81

)
= 0.000346, σ̂2

u =
(

3(0.0009
0.35

)
= 0.0077

respectively. Now, by taking the square root of these confidence interval limits, it can be
seen that the 95% lower and upper one-sided confidence intervals for σ are (0.0186,∞)
and (0, 0.0877), respectively.

Example 8.5.3 (Confidence interval for σ2 and σ) In a certain car-manufacturing com-
pany, the time taken by a worker to finish a paint job on a car is normally distributed
with mean μ and variance σ2. Fifteen randomly selected car paint jobs are assigned to that
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worker, and the time taken by the worker to finish each job is jotted down. These data
yielded a sample standard deviation of S = 2.5 hours. Find a 95% two-sided confidence
interval and one-sided lower and upper confidence intervals for the population variance σ2

and the standard deviation σ.

Solution: From the given information and using the chi-square distribution table, we
have S = 2.5, α = 0.05, n − 1 = 14, χ2

14,0.025 = 26.119, χ2
14,0.975 = 5.629 Hence, a 95%

confidence interval for σ2 is given by(
14(2.5)2

26.119
,
14(2.5)2

5.629

)
= (3.35, 15.54)

A 95% confidence interval for σ is found by taking the square root of the corresponding
limits for σ2 Thus, a 95% confidence interval for σ is (1.83, 3.94).

To find a one-sided confidence interval, note that the value of the χ2 point changes,
since the whole value of α falls under one tail only. For example, we have

σ̂2
l =

(n − 1)S2

χ2
n−1,α

=
(15 − 1)(2.5)2

χ2
14,0.05

=
87.5

23.685
= 3.69

σ̂2
u =

(n − 1)S2

χ2
n−1,1−α

=
(15 − 1)(2.5)2

χ2
14,0.95

=
87.5
6.57

= 13.32

Therefore, one-sided lower and upper 95% confidence intervals for σ2 are (3.69,∞) and
(0, 13.32), respectively. The confidence intervals for the population standard deviation are
found by taking the square root of the corresponding limits. That is, one-sided lower
and upper 95% confidence intervals for the population standard deviation σ are (1.92,∞)
and (0, 3.65), respectively. We now describe how to find these confidence interval using
MINITAB and R.

MINITAB

To find two-sided and one-sided confidence intervals for σ2 using MINITAB, we proceed
as follows. For part (a):

1. From the Menu bar, select Stat > Basic Statistics > 1-Variance. This prompts
a dialog box One-Sample Variance to appear on the screen.

2. Pull down the menu in this dialog box and select sample standard deviation;
then make the appropriate entries in the boxes that follow.

3. Check Options, which prompts another dialog box to appear. Enter the desired
confidence level in the box next to Confidence level and under Alternative
hypothesis, select Standard deviation �= hypothesized standard deviation.
Click OK in each of the two dialog boxes. The MINITAB output shows up in the
Session window as given below.

Descriptive Statistics

N StDev

15

95% CI for

σ using

Chi-Square

(1.83, 3.94)2.50

Variance

6.25

Descriptive Statistics

N StDev

15

95% CI for

σ2 using

Chi-Square

(3.35, 15.55)2.50

Variance

6.25
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4. By repeating Step 2 by selecting sample variance from the pull down menu and
making the appropriate entries in the boxes that follow, the confidence interval for
variance can be obtained.

5. For part (b). To find 95% one-sided confidence intervals, we first find 90% two-sided
confidence intervals for σ and σ2, which turn out to be:

Descriptive Statistics

N StDev

15

90% CI for

σ using

Chi-Square

(1.92, 3.65)2.50

Variance

6.25

Descriptive Statistics

N StDev

15

90% CI for

σ2 using

Chi-Square

(3.69, 13.32)2.50

Variance

6.25

Thus, the lower and upper 95% one-sided confidence intervals for the standard deviation
are (1.92,∞) and (0, 3.65) and for the variance are (3.69, ∞) and (0, 13.32), respectively.

USING R

We can use ‘qchisq(p, df, ncp = 0, lower.tail = TRUE)’ function in R to get the chisquare
quantiles in the confidence interval calculations as follows.

#Assign variables
alpha = 0.05; S = 2.5; n = 15

#To obtain the two-sided confidence interval for σ2

CI = c((n-1)*S∧2/qchisq(1-alpha/2, n-1), (n-1)*S∧2/qchisq(alpha/2,n-1))
CI #R output
[1] 3.350058, 15.545258

#To obtain the two-sided confidence interval for σ

sqrt(CI) #R output
[1] 1.830316, 3.942748

#To obtain the one-sided confidence interval for σ2

Lower.limit = (n-1)*S∧2/qchisq(1-alpha, n-1)
Lower.limit #R output
[1] 3.694354
Upper.limit = (n-1)*S∧2/qchisq(alpha, n-1)
Upper.limit #R output
[1] 13.31683

#To obtain the one-sided confidence interval for σ

sqrt(Lower.limit) #R output
[1] 1.92207
sqrt(Upper.limit) #R output
[1] 3.649224
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As found earlier, the two-sided 95% confidence interval is (1.83, 3.94) for the standard
deviation and (3.35, 15.55) for the variance. Also, the lower and upper 95% confidence
intervals for the standard deviation are, respectively, (1.92, ∞), and (0, 3.65), while for
the variance, these are (3.69, ∞), (0, 13.32).

8.6 INTERVAL ESTIMATOR FOR THE RATIO
OF VARIANCES OF TWO NORMAL
POPULATIONS

Suppose that S2
1 and S2

2 are sample variances of two independent random samples from
normal distributions N(μ1, σ

2
1) and N(μ2, σ

2
2), respectively, where σ2

1 and σ2
2 are unknown,

and we want to find an interval estimator for the ratio σ2
1/σ2

2. We would proceed as follows.
We know from Chapter 7 that if the two samples are independently drawn from the

two normal distributions indicated previously, then the quantities

(n1 − 1)S2
1

σ2
1

,
(n2 − 1)S2

2

σ2
2

(8.6.1)

are independent random variables having chi-square distributions with n1 − 1 and n2 − 1
degrees of freedom, respectively. By the definition of Snedecor’s F -distribution, we see
that the random variable

S2
1/σ2

1

S2
2/σ2

2
(8.6.2)

is distributed by the F -distribution with (n1 − 1, n2 − 1) degrees of freedom.
Thus, we may write

P

(
Fn1−1,n2−1,1−α/2 ≤

S2
1/σ2

1

S2
2/σ2

2
≤ Fn1−1,n2−1,α/2

)
= 1 − α (8.6.3)

or solving the inequalities, we write

P

(
S2

1

S2
2

1
Fn1−1,n2−1,α/2

≤ σ2
1

σ2
2
≤ S2

1

S2
2

1
Fn1−1,n2−1,1−α/2

)
= 1 − α (8.6.4)

This leads us to the following theorem:

Theorem 8.6.1 If S2
1 and S2

2 are variances of independent random samples of
size n1 and n2 from the normal distributions N(μ1, σ

2
1) and N(μ2, σ

2
2), respectively,

where μ1, μ2, σ
2
1, and σ2

2 are unknown, then a 100(1 − α)% confidence interval for
σ2

1/σ2
2 is given by (

S2
1

S2
2

1
Fn1−1,n2−1,α/2

,
S2

1

S2
2

1
Fn1−1,n2−1,1−α/2

)
(8.6.5)
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Note that 100(1 − α)% one-sided lower and upper confidence intervals for the ratio
of two population variances σ2

1/σ2
2 are as given below by Equations (8.6.6a) and (8.6.6b),

respectively.

One-sided 100(1 − α)% lower and upper confidence intervals for the ratio of two
population variances σ2

1/σ2
2: (

S2
1

S2
2

1
Fn1−1,n2−1,α

, ∞
)

(8.6.6a)

(
0,

S2
1

S2
2

1
Fn1−1,n2−1,1−α

)
(8.6.6b)

Furthermore, a 100(1 − α)% confidence interval for the ratio of two population stan-
dard deviations σ1/σ2 is found by taking the square roots of the corresponding limits in
Equations (8.6.5), (8.6.6a), and (8.6.6b). This yields the following:

100(1 − α)% confidence interval for the ratio of the two population standard devia-
tions σ1/σ2: ⎛

⎝S1

S2

1√
Fn1−1,n2−1,α/2

,
S1

S2

1√
Fn1−1,n2−1,1−α/2

⎞
⎠ (8.6.7)

and a 100(1 − α)% one-sided lower and upper one-sided confidence intervals for the ratio
of two population standard deviations σ1/σ2 are given by Equations (8.6.8a) and (8.6.8b),
respectively.

One-sided 100(1 − α)% lower and upper confidence intervals for the ratio of two
population standard deviations σ1/σ2:⎛

⎝S1

S2

1√
Fn1−1,n2−1,α

, ∞

⎞
⎠ (8.6.8a)

⎛
⎝0,

S1

S2

1√
Fn1−1,n2−1,1−α

⎞
⎠ (8.6.8b)

Note that the usual F tables do not provide values of Fm1,m2,1−α for α ≤ 0.10, which
means 1 − α ≥ 0.90. Thus in these cases, to determine the lower percentage points of the
F-distribution, we use the following relation:

Fm1,m2,1−α =
1

Fm2,m1,α

(8.6.9)
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Example 8.6.1 (Confidence intervals for the ratio of two population variances) Two
random samples of sizes 13 and 16 are selected from a group of patients with hypertension.
The patients in the two samples are independently treated with drugs A and B. After a
full course of treatments, these patients are evaluated. The data collected at the time of
evaluation yielded sample standard deviations SA = S1 = 6.5 mmHg and SB = S2 = 7.5
mmHg. Assuming that the two sets of data come from independent normal populations
with variances σ2

1 and σ2
2, respectively, determine a 95% two-sided confidence interval for

σ2
1/σ2

2. Also determine the one-sided confidence intervals for σ2
1/σ2

2 and σ1/σ2.

Solution: From the information given, we have 1 − α = 0.95, n1 − 1 = 12, n2 − 1 = 15,
S1 = 6.5, S2 = 7.5, F12,15,0.025 = 2.9633 and using Equation (8.6.9), 1/F12,15,0.975 =
F15,12,0.025 = 3.1772.

Now using Equation (8.6.5), we obtain a 95% confidence interval for σ2
1/σ2

2 as(
6.52

7.52

1
2.9633

,
6.52

7.52 (3.1772)
)

= (0.25347, 2.386)

and for the ratio of the standard deviations σ1/σ2 the two-sided confidence interval is
found by taking square roots, that is, (0.5034, 1.5446).

Now F12,15,0.05 = 2.4753 and F15,12,0.05 = 2.6169, so the 95% lower and upper one-sided
confidence intervals for σ2

1/σ2
2 and σ1/σ2 are, as the reader should verify, given by

(0.3034,∞), (0, 1.9656) and (0.5508,∞), (0, 1.4020), respectively.

The statistical and practical interpretation of all these confidence intervals is similar as
for confidence intervals for the means. Further, the two-sided confidence intervals contain
1, which means that at the 5% level of significance, we can conclude that two variances are
not significantly different from each other. There is more discussion on this aspect of our
conclusion in Chapter 9 where we study the testing of hypotheses about two variances.
The result above may be obtained by using MINITAB and R as follows:

MINITAB

To find two-sided confidence intervals for σ2
1/σ2

2, using MINITAB we proceed as follows:

1. From the Menu bar, select Stat > Basic Statistics > 2-Variance. This prompts
a dialog box Two-Sample Variance to appear on the screen.

2. Select an appropriate option (Both samples are in one column. Each sample is in its
own column, sample standard deviations or sample variances) from the pull down
menu that appears on the Two-Sample Variance dialog box.

3. Check Options, which prompts another dialog box to appear. Select either vari-
ance or standard deviation ratio from the pull down menu next to Ratio. Enter the
desired confidence level in the box next to Confidence level, set Hypothesized
ratio to 1 and in the next to Alternative hypothesis select Ratio �= hypoth-
esized ratio (Ratio < hypothesized ratio or Ration > hypothesized ratio
for one sided confidence intervals). Click OK in each of the two dialog boxes. The
MINITAB output shows up in the Session window as given below:
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Ratio of Standard Deviations

Estimated

Ratio

95% CI for

Ratio using

F

(0.503, 1.545)0.866667

Ratio of Variances

Estimated

Ratio

95% CI for

Ratio using

F

(0.253, 2.386)0.751111

USING R

We can use ‘qf(p, df1, df2, ncp, lower.tail = TRUE)’ function in R to get the F quantiles
in the confidence interval calculations as follows.

#Assign variables
alpha = 0.05; n1 = 13; n2 = 16; S1 = 6.5; S2 = 7.5

#To obtain the two-sided confidence interval for σ2
1/σ2

2
CI = c((S1∧2/S2∧2)*(1/qf(1-alpha/2,n1-1, n2-1)),(S1∧2/S2∧2)*

(1/qf(alpha/2,n1-1, n2-1)))
CI #R output
[1] 0.2534727, 2.3864311

#To obtain the two-sided confidence interval for σ1/σ2
sqrt(CI) #R output
[1] 0.5034607, 1.5448078

PRACTICE PROBLEMS FOR SECTIONS 8.5 AND 8.6

1. A sample of size 12 from a population assumed to be normal with unknown variance
σ2 yields S2 = 86.2. Determine 95% confidence limits for σ2.

2. Tensile strengths were measured for 15 test pieces of cotton yarn randomly taken
from the production of a given spindle. The value of S for this sample of 15 tensile
strengths is found to be 11.2 lb. Find 95% confidence limits for the standard deviation
σ of the population. It is assumed that the population is approximately normal.

3. A sample of 220 items turned out during a given week by a certain process has an
average weight of 2.57 lb and standard deviation of 0.57 lb. During the next week, a
different lot of raw material was used, and the average weight of 220 items produced
that week was 2.66 lb, and the standard deviation 0.48 lb. Assume normality.
(a) Construct a 95% confidence interval for the ratio of the population variances.

(Hint: You need to interpolate in the Fm,m,0.05 table or use one of the software
packages.)

(b) On the basis of the interval calculated in (a), determine a 95% confidence interval
for the differences of the population mean weights.

4. Two types of tires are tested with the following results:

Type A: n1 = 121, X̄1 = 27, 465 miles, S1 = 2500 miles

Type B: n2 = 121, X̄2 = 29, 527 miles, S2 = 3000 miles

(a) Assuming normality, find a 99% confidence interval for σ2
1/σ2

2.
(b) On the basis of the interval found in (a), find a 99% confidence interval for

μ1 − μ2.
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5. A random sample from a normal population with unknown mean μ and variance σ2

yields the following summary statistics: n = 25, X̄ = 28.6, S = 5.0
(a) Find a 95% confidence interval for σ2 and a 95% confidence interval for σ.
(b) Find 95% one-sided lower and upper confidence limits for σ, and compare these

limits with the limits you found in the two-sided 95% confidence interval for σ.
Comment on why these limits are different.

6. A new catalyst is used in 10 batches of a chemical production process. The final
yield of the chemical in each batch produce the following data:

27 28 25 30 27 26 25 27 30 30

Assuming that chemical yields are normally distributed with mean μ1 and variance
σ2

1, find a 95% confidence interval for the population variance. Find a one-sided 99%
lower and upper one-sided confidence interval for the population variance σ2

1.
7. In Problem 6, the chemical production from the last 15 batches in which the existing

catalyst was used is:

31 33 28 28 30 31 30 32 30 33 35 34 28 32 33

Assuming that these chemical yields are normally distributed with mean μ2 and
variance σ2

2, find a 95% confidence interval for the population variance, say σ2
2. Find

a one-sided 99% lower and upper one-sided confidence interval for the population
variance σ2

2.
8. Using the information and the data provided in Problems 6 and 7, compute a 95%

confidence interval for the ratio σ2
1/σ2

2 of the two variances.

8.7 POINT AND INTERVAL ESTIMATORS FOR
THE PARAMETERS OF BINOMIAL
POPULATIONS

8.7.1 One Binomial Population
Suppose that we are sampling from a Bernoulli population with probability mass function
given by

f(x; p) = px(1 − p)1−x; x = 0, 1 (8.7.1)

We saw in Chapter 4 that the mean μ and variance σ2 of this population are given by

μ = p and σ2 = p(1 − p) (8.7.2)

respectively.
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Now, if X1, . . . ,Xn is a random sample of n independent observations on X, whose
probability function is given by Equation (8.7.1), then

T = X1 + · · · + Xn

has mean and variance nμ and nσ2, respectively. That is,

E(T ) = np and V ar(T ) = np(1 − p) (8.7.3)

Now, if we denote the statistic T/n by p̂, recall that p̂ is the MLE of p, as seen in Example
8.2.5. From Equation (8.7.3), we have

E(p̂) = p and V ar(p̂) = p(1 − p)/n (8.7.4)

which is to say that p̂ is an unbiased point estimator of p with variance p(1 − p)/n.
Now recall from Theorem 5.7.1 that for large n (np > 5 and n(1 − p) > 5) we can

write, to good approximation,
p̂ − p√

p(1 − p)/n
∼ Z (8.7.5)

where Z is distributed as the standard normal variable N(0, 1), so that (p̂ − p)/√
p(1 − p)/n is a pivotal quantity for p. Note that since the sample size n is large, we

may estimate V ar(p̂) by p̂(1 − p̂)/n in the pivotal quantity, so that (n large) we have

P

(
−zα/2 ≤

p̂ − p√
p̂(1 − p̂)/n

≤ zα/2

)
= 1 − α (8.7.6)

Solving these inequalities, we may write that to good approximation (n large) that

P (p̂ − zα/2

√
p̂(1 − p̂)/n ≤ p ≤ p̂ + zα/2

√
p̂(1 − p̂)/n) = 1 − α (8.7.7)

Thus, from Equation (8.7.7), the 100(1 − α)% confidence interval for p follows as:

100(1 − α)% confidence interval for the population proportion p:

(p̂ − zα/2

√
p̂(1 − p̂)/n, p̂ + zα/2

√
p̂(1 − p̂)/n) (8.7.8)

Lower and upper 100(1 − α)% one-sided confidence intervals for p are given below by
Equations (8.7.9a) and (8.7.9b), respectively, for large n:

One-sided 100(1 − α)% lower and upper confidence intervals for the population pro-
portion p:

(p̂ − zα

√
p̂(1 − p̂)/n, 1) (8.7.9a)

(0, p̂ + zα

√
p̂(1 − p̂)/n) (8.7.9b)
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Example 8.7.1 (Large sample confidence interval for binomial parameter p) A random
sample of 400 computer chips is taken from a large lot of chips and 50 of them are found
to be defective. Find a 95% confidence interval for p the proportion of defective chips
contained in the lot.

Solution: From the information given, we have n = 400, T = 50, α = 0.05, α/2 = 0.025,
zα/2 = 1.96, p̂ = T/n = 50/400 = 0.125

Substituting these values in Equation (8.7.8), we have

p̂ − zα/2

√
p̂(1 − p̂)/n = 0.125 − 1.96

√
(0.125)(0.875)

400
= 0.0926

p̂ + zα/2

√
p̂(1 − p̂)/n = 0.125 + 1.96

√
(0.125)(0.875)

400
= 0.1574

That is, a 95% confidence interval for p is (0.0926, 0.1574).

Interpretation: We are 95% confident that the population proportion of defective chips
is between 9.26% and 15.74%.

MINITAB

1. Select Stat > Basic Statistics > 1 Proportion; this prompts a dialog box titled
One-Sample Proportion to appear on the screen.

2. Select Summarized Data from the pull down menu and enter the number of events
(successes) and the number of trials in the appropriate boxes.

3. Check Options, which prompts another dialog box to appear. Enter 0.95, or the
desired Confidence level in the box next to Confidence level and from the Alter-
native hypothesis option select Proportion �= hypothesized proportion, Pro-
portion < hypothesized proportion, or Proportion > hypothesized pro-
portion depending on whether a two-sided, one-sided upper, or one-sided lower
confidence interval is sought, and select the method (Exact or Normal approxima-
tion) from the pull down menu next to Method.

4. Click OK in each of both the dialog boxes. The MINITAB output for Normal
approximation shows up in the Session window as given below.

Descriptive Statistics

N

400

Event

50

Sample p

0.125000

95% CI for p

(0.092590, 0.157410)

Method
p: event proportion

Normal approximation method is used for this analysis.

USING R

The following manual R code can be used to obtain two-sided (normal approximation
based) confidence interval.
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#Assign variables
alpha = 0.05; T = 50; n = 400; phat = T/n

#To obtain the two-sided confidence interval for p

c(phat-qnorm(1-alpha/2)∗sqrt(phat*(1-phat)/n),phat-qnorm(alpha/2)*sqrt(phat*(1-phat)/n))
#R output
[1] 0.09259014, 0.15740986

8.7.2 Two Binomial Populations
Often we are interested in finding a confidence interval for the difference of the two pop-
ulation proportions. For example, we may be interested in estimating the true difference
(p1 − p2) of the failure rate of a product manufactured by two independent companies.
One way to know which company’s product is better is to find a confidence interval for
(p1 − p2) with a desired confidence coefficient.

Let X11,X12, . . . ,X1n1
and X21,X22, . . . ,X2n2

be random samples of sizes n1 and n2
from two independent Bernoulli populations with parameters p1 and p2, respectively. Then,
we know that

p̂1 =
∑n1

i=1 X1i

n1
, p̂2 =

∑n2
j=1 X2j

n2
(8.7.10)

are unbiased estimators of p1 and p2, respectively. Therefore, (p̂1 − p̂2) is an unbiased
estimator of (p1 − p2). Moreover, for large sample size (n1p̂1 > 5, n1(1 − p̂1) > 5) and
(n2p̂2 > 5, n2(1 − p̂2) > 5), we know that p̂1 and p̂2 are approximately normally distributed
with mean p1 and p2 and variance p1(1 − p1)/n1 and p2(1 − p2)/n2, respectively.

Now, from the result of Theorem 7.3.8, it follows that (p̂1 − p̂2) is approximately nor-
mally distributed with mean (p1 − p2) and variance p1(1 − p1)/n1 + p2(1 − p2)/n2. That is,

(p̂1 − p̂2) − (p1 − p2)√
p1(1−p1)

n1
+ p2(1−p2)

n2

(8.7.11)

is approximately distributed as the distribution of a standard normal N(0, 1). Thus, using
the pivotal quantity in Equation (8.7.11), for large n we may write, to a good approxima-
tion,

P

⎛
⎝−zα/2 ≤

(p̂1 − p̂2) − (p1 − p2)√
p1(1−p1)

n1
+ p2(1−p2)

n2

≤ zα/2

⎞
⎠ = 1 − α

or

P

(
−zα/2

√
p1(1 − p1)

n1
+

p2(1 − p2)
n2

≤ (p̂1 − p̂2) − (p1 − p2)

≤ zα/2

√
p1(1 − p1)

n1
+

p2(1 − p2)
n2

)
= 1 − α
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Hence

P

(
(p̂1 − p̂2) − zα/2

√
p1(1 − p1)

n1
+

p2(1 − p2)
n2

≤ (p1 − p2)

≤ (p̂1 − p̂2) + zα/2

√
p1(1 − p1)

n1
+

p2(1 − p2)
n2

)
= 1 − α

Note that the quantity
√

p1(1 − p1)/n1 + p2(1 − p2)/n2 in both the lower and upper
confidence limits is unknown, since p1 and p2 are not known. Also note that this quantity
is the standard error of (p̂1 − p̂2). Thus, we estimate the standard error of (p̂1 − p̂2) by
entering the expression for the standard error of (p̂1 − p̂2), replacing p1 and p2 by p̂1
and p̂2, respectively. Now, a confidence interval for (p1 − p2) can be derived for the large
samples case (with confidence coefficient (1 − α)) and is given below by Equation (8.7.12),
assuming n1 and n2 large.

100(1 − α)% confidence interval for the difference of two population proportions
(p1 − p2). (

(p̂1 − p̂2) − zα/2

√
p̂1(1 − p̂1)

n1
+

p̂2(1 − p̂2)
n2

, (p̂1 − p̂2)

+zα/2

√
p̂1(1 − p̂1)

n1
+

p̂2(1 − p̂2)
n2

)
(8.7.12)

Note: The lower limit cannot be less than −1 and the upper limit cannot be greater
than 1.

Lower and upper one-sided confidence intervals for (p1 − p2) with confidence coefficient
(1 − α) are given below by Equations (8.7.13a) and (8.7.13b), respectively.

One-sided 100(1 − α)% upper and lower confidence intervals for the difference of
two population proportions (p1 − p2) are, respectively

(
−1, (p̂1 − p̂2) + zα

√
p̂1(1 − p̂1)

n1
+

p̂2(1 − p̂2)
n2

)
(8.7.13a)

(
(p̂1 − p̂2) − zα

√
p̂1(1 − p̂1)

n1
+

p̂2(1 − p̂2)
n2

, 1

)
(8.7.13b)

Example 8.7.2 (A large sample confidence interval for the difference of two binomial
parameters (p1 − p2)) Two companies A and B claim that a new type of light bulb has
a lifetime of more than 5000 hours. In a random sample of 400 bulbs manufactured by
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company A, 60 bulbs burned out before the claimed lifetime, and in another random sample
of 500 bulbs manufactured by company B, 100 bulbs burned out before the claimed lifetime.
Find a point estimate and a 95% confidence interval for the true value of the difference
(p1 − p2), where p1 and p2 are the proportion of the bulbs manufactured by company A and
company B, respectively, that burn out before the claimed lifetime of 5000 hours.

Solution: From the information given, we have

p̂1 = 60/400 = 3/20 and p̂2 = 100/500 = 1/5

Thus, the point estimate of (p1 − p2) is

p̂1 − p̂2 = 3/20 − 1/5 = −1/20 = −0.05

Since the sample sizes are large, to find a 95% confidence interval for (p1 − p2), we use
interval (8.7.12). Now substituting the values of p̂1 and p̂2, and using z0.025 = 1.96 since
α = 0.05, α/2 = 0.025, we obtain

LCL =
(

3
20

− 1
5

)
− 1.96

√
3
20 (1 − 3

20 )
400

+
1
5(1 − 1

5 )
500

= −0.05 − 0.04953 = −0.09953

UCL =
(

3
20

− 1
5

)
+ 1.96

√
3
20 (1 − 3

20 )
400

+
1
5(1 − 1

5 )
500

= −0.05 + 0.04953 = −0.00047

Thus, a two-sided 95% confidence interval for (p1 − p2) is (−0.09953,−0.00047).

Since the confidence interval for (p1 − p2) does not contain 0, we can support the state-
ment that the quality of bulbs manufactured by the companies is different, at confidence
level 95%.

Further, as both the confidence limits are negative, we can conclude at the 5% level
of significance that the quality of bulbs manufactured by company B is inferior to those
manufactured by company A.

MINITAB

1. Select Stat > Basic Statistics > 2 Proportions. This prompts a dialog box titled
Two-Sample Proportion to appear on the screen.

2. Select Summarized Data from the pull down menu and enter the number of events
(successes) and the number of trials in the appropriate boxes. (Here “success” means
that a bulb failed before 5000 h.)

3. Check Options, which prompts another dialog box to appear. Enter the desired
confidence level in the box next to Confidence level, enter 0 in the box next
to Hypothesized difference and from the Alternative hypothesis option
select Difference �= hypothesized difference, Difference < hypothesized
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difference, or Difference > hypothesized difference depending on whether a
two-sided, one-sided upper, or one-sided lower confidence interval is sought and
select Use the pooled estimate of the proportion from the pull down menu
next to Test method. Click OK in each of both the dialog boxes. The MINITAB
output shows up in the Session window as given below.

Estimation for Difference

Difference

–0.05

95% CI for

Difference

(–0.099535, –0.000465)

CI based on normal approximation

USING R

The R function ‘prop.test()’ can be used to obtain the required two-sided pooled normal
approximation based confidence interval as shown in the following R code.

Test = prop.test(x = c(60, 100), n = c(400, 500), conf.level = 0.95, correct = FALSE)
#‘x’ and ‘n’ indicate the number of successes (burned out) and the total
number of trials in each sample, respectively, and the option ‘correct = FALSE’
indicates that the continuity correction should not be applied.

Test$conf.int #R output
[1] -0.0995351574, -0.0004648426
attr(,“conf.level”)
[1] 0.95

PRACTICE PROBLEMS FOR SECTION 8.7

1. A random sample of 500 individuals contains 200 that wear eyeglasses. Find a 95%
confidence interval for p, the proportion of people in the population wearing glasses.

2. A new coin is tossed 50 times, and 20 of the tosses show heads and 30 show tails.
Find a 99% confidence interval for the probability of obtaining a head when this
coin is tossed again.

3. A sample of 100 consumers showed 16 favoring Brand X of orange juice. An adver-
tising campaign was then conducted. A sample of 200 consumers surveyed after
the campaign showed 50 favoring Brand X. Find a 95% confidence interval for the
difference in proportions of the population favoring Brand X before and after the
advertising campaign. Comment on your result.

4. An orange juice manufacturing company uses cardboard cans to pack frozen orange
juice. A six sigma black belt quality engineer found that some of the cans supplied
by supplier A do not meet the specifications, as they start leaking at some point. In a
random sample of 400 packed cans, 22 were leaking. Find a 95% confidence interval
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for the fraction of leaking cans. Find one-sided 95% lower and upper confidence
intervals for the fraction of leaking cans.

5. During the past 50 years, more than 10 serious nuclear accidents have occurred
worldwide. Consequently, the US population is divided over building more nuclear
plants. Suppose two US states decide to determine the percentage of their population
that would like to have a nuclear plant in their state. In a random sample of 800
persons from one state, only 40 favored having a nuclear plant; a random sample of
600 persons from another state showed 50 persons favored having a nuclear plant.
Find a 95% confidence interval for the difference between the percentages of persons
who favor a nuclear plant in their state.

6. A random sample of 800 homes from a metropolitan area showed that 300 of them
are heated by natural gas. Determine a 95% confidence interval for the proportion
of homes heated by natural gas.

7. In a manufacturing plant, two machines are used to produce the same mechani-
cal part. A random sample of 225 parts produced by machine 1 showed that 12 of
the parts are nonconforming, whereas a random sample 400 parts produced by the
machine 2 showed that 16 of the parts are nonconforming. Construct a 95% confi-
dence interval for the difference of the proportions of nonconforming parts produced
by the two machines.

8. An instructor is interested in determining the percentage of the students who prefer
multiple choice questions versus open-ended questions in an exam. In a random
sample of 100 students, 40 favored multiple choice questions. Find a 95% confidence
interval for the proportion of students who favor multiple-choice questions in an
exam.

9. In a random sample of 500 voters interviewed across the nation, 200 criticized the
use of personal attacks in an election campaign. Determine a 90% confidence interval
for the proportion of voters who criticize the use of personal attacks in the election
campaign.

8.8 DETERMINATION OF SAMPLE SIZE

In this section, we discuss the determination of the sample size needed to estimate a
parameter θ when the margin of error E is known. Here, θ may be the population mean
μ, or the difference of the two population means μ1 − μ2, or the population proportion p,
or the difference of the two population proportions p1 − p2, and so on.

For example, let X1, . . . ,Xn be a random sample from a population with probabil-
ity distribution f(x, θ) where θ is an unknown parameter. Let θ̂ = ϕ(X1, . . . ,Xn) be an
estimate of θ, where, clearly, one cannot expect θ̂ to be exactly equal to the true value of
θ. The difference between θ̂ and θ is the error of estimation. The maximum value of the
error of estimation is called the margin of error or bound on error of estimation, where the
margin of error of estimation, denoted by E (see Equation (8.2.6)) for a confidence level
probability (1 − α), is given by

E = zα/2σθ̂

Note that E is equal to half the width of the confidence interval for θ with confidence
coefficient (1 − α). Suppose that the size of the margin of error E is predetermined; we
then would like to find the sample size needed to attain this value of the margin of error.
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8.8.1 One Population Mean
Let θ = μ . Then, the margin of error with probability (1 − α) is given by

E = zα/2
σ√
n

where here σ is the known population standard deviation. Squaring both sides of the
equation and doing some algebraic manipulations, we obtain

Sample size for estimating a population mean μ with margin of error E and with
probability (1 − α):

n =
z2
α/2σ

2

E2 (8.8.1)

Example 8.8.1 (Determination of sample size n) A manufacturing engineer wants to
estimate the average number of defective parts produced by a machine during each shift.
An earlier study on a similar machine shows that the number of defective parts produced
by the machine varies from shift to shift with a standard deviation equal to 12. How large a
sample should the engineer take so that, with 95% probability, the estimate of the average
number of defective parts produced by the machine is within three parts of the true value
of μ, the average number of defective parts produced by the machine in each shift?

Solution: From the information given, we have zα/2 = z0.025 = 1.96, σ = 12, E = 3
Thus, the desired sample size is

n =
z2
α/2σ

2

E2 =
(1.96)2(12)2

32 = 61.46

Therefore, the engineer should take a sample of size 62 to achieve his/her goal. In order
to be certain the value of E attained is as described, the value of n should always be
rounded up.

8.8.2 Difference of Two Population Means
When θ = μ1 − μ2 is of interest, consider the case n1 = n2 = n, n to be determined. The
margin of error with probability (1 − α) is given by

E = zα/2

√
σ2

1

n
+

σ2
2

n
= zα/2

√
σ2

1 + σ2
2√

n

Now, by squaring both sides of this equation and doing some algebraic manipulations,
we have the sample size for estimating the difference of two population means μ1 − μ2
with margin of error E:
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Sample size n (n = n1 = n2) for estimating the difference of two population means
μ1 − μ2 with margin of error E and with probability (1 − α):

n =
z2
α/2(σ

2
1 + σ2

2)

E2 (8.8.2)

Here, σ2
1 and σ2

2 are the known variances of populations under consideration.

Example 8.8.2 (Determination of a common sample size n, n1 = n2 = n) Suppose that
an experimenter wishes to estimate the difference between two population means μ1 and
μ2, and suppose that we know σ1 = 2.0 and σ2 = 2.5. How large a sample of common size
should be taken from each population so that, with probability 99%, the estimate for μ1 − μ2
is within 1.2 units of the true value of μ1 − μ2?

Solution: From the information given, we have 1 − α = 0.99, α/2 = 0.005, and

zα/2 = z0.005 = 2.575, σ1 = 2.0, σ2 = 2.5, E = 1.2

Thus, from Equation (8.8.2), the desired common sample size is

n =
(2.575)2(22 + (2.5)2)

(1.2)2 = 47.197 ≈ 48

In practice, it is quite common for the population variance (or variances) not to be
known. In such cases, we replace the population variance by the sample variance. It is
interesting here that we do not know the population variance, but we have to find the
sample variance for which we need to have a sample. To have a sample, we must know the
sample size that we want to find. This can become a vicious circle. To solve this problem,
we take one of two possible approaches:

1. We use some existing data (or data collected from a pilot study) to calculate an
estimate of the sample variance. Then, we use that estimate of the sample variance
in our determination of the sample size n, replacing in Equation (8.8.2) with σ̂.

2. We take a preliminary small sample, say of size n1, to calculate the value of the
sample variance. Then, we use this value of the sample variance to determine the
sample size n. Since we already have a sample size n1, we take another supplemental
sample of size n − n1 and then combine the two samples in order to get a full sample
of size n.

8.8.3 One Population Proportion
Let p be the population proportion. In this case, the margin of error E with probability
(1 − α) is given by

E = zα/2

√
p(1 − p)

n
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Now squaring both sides of the equation and doing some algebraic manipulation, we
obtain

Sample size for estimating population proportion p with margin of error E and with
probability (1 − α):

n =
z2
α/2p(1 − p)

E2 (8.8.3)

where, p is unknown, and we handle this aspect as illustrated in the following example.

Example 8.8.3 (Determination of sample size n) Suppose a random sample of eligible
voters from some district is selected to estimate the proportion p of voters who favor the
incumbent candidate. How large a sample should be taken in order to estimate p with a
margin of error of 3%, and with 95% probability?
Solution: From the information available to us, we have

zα/2 = z0.025 = 1.96, E = 3% = 0.03.

Since we have no prior information about p, in order to make certain that our margin
of error is no more than 3%, we choose to use p = 0.5. This choice maximizes Equation
(8.8.3); that is, it gives us the largest possible sample needed to attain the given margin
of error. This is because p(1 − p) attains its maximum value, 1/4, at p = 0.5. Thus, using
Equation (8.8.3), the sample size is

n =
(1.96)2(0.5)(1 − 0.5)

(0.03)2 = 1067.11 ≈ 1068

so we would use a sample of size 1068.

8.8.4 Difference of Two Population Proportions
Let the difference of two Bernoulli population proportions be p1 − p2. Suppose that the
sample sizes taken from the two populations are equal, that is, n1 = n2 = n. Then the
margin of error E where estimating p1 − p2 is given by

E = zα/2

√
p1(1 − p1)

n
+

p2(1 − p2)
n

Again, taking the square on both sides and doing some algebraic manipulations, we
find that the desired common sample size n needed for a margin of error no greater than
E with probability (1 − α) is as follows:

Sample size for estimating the difference of two population proportions p1 − p2 with
margin of error E for n (n = n1 = n2) and with probability (1 − α):

n =
z2
α/2[p1(1 − p1) + p2(1 − p2)]

E2 (8.8.4)
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Example 8.8.4 (Determination of a common sample size n, n1 = n2 = n) A marketing
specialist in a car manufacturing company wants to estimate the difference between the
proportion of those customers who prefer a domestic car and those who prefer an imported
car. How large a sample should the specialist take from those who prefer domestic cars and
those who prefer imported cars in order to have a margin of error of 2.5% with probability
99%? It is known that in previous visit to the car show room, 60% of the customers
preferred domestic and 40% preferred imported cars.

Solution: From the information available to us, we have p̂1 = 0.6, p̂2 = 0.4, zα/2 =
z0.005 = 2.575, E = 2.5% = 0.025

Substituting these values appropriately in Equation (8.8.4), we obtain

n =
(2.575)2[0.6 × 0.4 + 0.4 × 0.6]

(0.025)2 = 5092.32 ≈ 5093

so we would use sample sizes 5093 from each of the two groups.

PRACTICE PROBLEMS FOR SECTION 8.8

1. A manufacturer of electric bulbs wants to find a 98% confidence interval for the
lifetime of its new family of bulbs. How large a sample should be selected if the
company seeks a confidence interval for μ no more than 20 hours in width? Assume
that previous experience has shown that the standard deviation of the lifetime of
these bulbs is 30 hours.

2. In Problem 1, what should the sample size be if the confidence coefficient is
decreased from 98% to 95%? What should the sample size be if the standard
deviation of the lifetime of these bulbs is actually 50 (instead of 30) hours?

3. Assuming that the sample sizes selected from two populations for estimating the
difference of two population proportions are equal, find the largest possible common
sample size that would be needed in order to be 95% confident that the margin of
error is (a) 0.04, (b) 0.035, (c) 0.03.

4. Determine how large a sample size is required so that we are 90% confident that
the margin of error in estimating a population mean is (a) 20, (b) 35, (c) 45, (d) 65.
Assume that it is known from many earlier studies that the population standard
deviation is 40.

5. Two independent random samples of size n each are selected from two binomial
populations. If we wish to estimate the difference between the two population
proportions p1 and p2 correct to within 0.04 with probability equal to 95%, how
large should n be? Assume that (a) we have no prior information on p1 and p2 and
(b) some historical data indicate that p1 ≈ 0.35 and p2 ≈ 0.47.

6. Two independent random samples, each of size n, are selected from two populations.
If we wish to estimate the difference between the two population means correct to
within 2.5 with probability equal to 95%, how large should n be? Assume that
using some historical data, we found that S2

1 = 37 and S2
2 = 29.

7. A study is being proposed to estimate the proportion of residents in a certain town
who favor the construction of a new high school. How large a sample is needed
to have 98% confidence that the estimate is within 0.03 of the true proportion of
residents favoring the construction of a new high school?
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8. How large a sample is needed in Problem 10 of Section 8.4, if one wants to be 95%
confident that the estimate for the difference between the two means is within 0.5
of the true difference?

9. A gynecologist wishes to estimate the mean age at which women are first diagnosed
with cervical cancer. To this end, she wishes to construct a 98% confidence interval
for this age, which is six years wide. If the population standard deviation is known
to be eight years, how large a sample should be taken?

10. A pediatric researcher is interested in estimating the difference between the head
circumferences of newborn babies in two populations. How large should the samples
be taken if she wants to construct a 95% confidence interval for the difference
between the head circumferences that is 2 cm wide? Assume that the two population
standard deviations are known to be 1.5 and 2.5 cm and that equal-sized samples
are to be taken.

8.9 SOME SUPPLEMENTAL INFORMATION

This section is not included here but is available for download from the book website:
www.wiley.com/college/gupta/statistics2e.

8.10 A CASE STUDY

Case Study1 During the qualification of a new microchip product, the LMV9234, at
National Semiconductor, three nominal prototype lots of 10 wafers each are run through
the manufacturing line using the standard process of record. Each wafer has nine electrical
sites at which over 70 critical electrical parameters for transistors, resistors, diode, and
capacitors are tested at the end of the line. The threshold voltage for the NMOS transistors,
VT , is a critical parameter of interest that is tested at the end of the line.

The product engineer for this new product would like to test if the mean threshold
voltage for the NMOS transistors of the first lot for the LMV9234 is different from that
of the historical threshold voltage for the last 180 days running in the fabrication facility.
For this lot, five electrical sites from each of the 10 wafers were tested (A wafer is a thin
slice of semiconductor material, such as silicon crystal, used in manufacturing of integrated
circuit and other micro-devices; see Figure 8.10.1.) The VT data are summarized in Table
8.10.1. Compute the appropriate test statistic and examine whether the VT is different
from the historical value for the threshold voltage, VT , of 0.609055 volts for the last 180
days. Find a 90%, 95%, and 99% confidence interval for VT . Analyze the results of the case
study. Prepare a short report summarizing your conclusions. The data for this case study
(Case Study 8.10.1) are available on the book website: www.wiley.com/college/gupta/
statistics2e.

8.11 USING JMP

This section is not included here but is available for download from the book website:
www.wiley.com/college/gupta/statistics2e.

1 Source: Major Integrated Circuit Manufacturer.
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Figure 8.10.1 An etched silicon wafer.

Review Practice Problems

1. In estimating the mean of a normal distribution N(μ, σ2) having known standard
deviation σ by using a confidence interval based on a sample of size n, what is the
minimum value of n in order for the 99% confidence interval for μ to be of length not
greater than L?

2. Two machines A and B are packaging 8-oz boxes of corn flakes. From past experience
with the machines, it is assumed that the standard deviations of weights of the filling
from the machines A and B are 0.04 oz and 0.05 oz, respectively. One hundred boxes
filled by each machine are selected at random and the following is found:

Machine A: nA = 100, X̄A = 8.18 oz

Machine B: nB = 100, X̄B = 8.15 oz

Find a 99% confidence interval for μA − μB , the difference of the means of populations
of weights of fillings produced by machines A and B.

3. Four determinations of the pH of a certain solution are 7.90, 7.94, 7.91, and 7.93.
Assuming normality of determinations with mean μ, standard deviation σ, find (a)
99% confidence limits for μ and (b) 95% confidence limits for σ.

4. Ten determinations of percentage of water in a methanol solution yield X̄ = 0.552 and
S = 0.037. If μ is the “true” percentage of water in the methanol solution, assuming
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normality, find (a) a 90% confidence interval for μ and (b) a 95% confidence interval
for σ.

5. A clock manufacturer wants to estimate the variability of the precision of a certain type
of clock being manufactured. To do this, a sample of eight clocks is run for exactly 48
hours. The number of seconds each clock is ahead or behind after the 48 hours, as mea-
sured by a master clock, is recorded, the results being +6,−4,−7,+5,+9,−6,−3,+2.
Assuming the time recorded by clocks of this kind to be normally distributed, find:
(a) A 95% confidence interval for the mean time recorded by this type of clock after

48 hours.
(b) A 95% confidence interval for σ, the standard deviation of the time recorded by

this type of clock after 48 hours.

6. The following data give the yield point (in units of 1000 psi) for a sample of 20 steel
castings from a large lot:

64.5 66.5 67.5 67.5 66.5 65.0 73.0 63.5 68.5 70.0
71.0 68.5 68.0 64.5 69.5 67.0 69.5 62.0 72.0 70.0

Assuming that the yield points of the population of castings to be (approximately)
normally distributed, find:
(a) A 95% confidence interval for μ, the mean yield point of the lot
(b) A 95% confidence interval for σ, the standard deviation of the yield points of

the lot.

7. In firing a random sample of nine rounds from a given lot of ammunition, the tester
finds that the standard deviation of muzzle velocities of the nine rounds is 38 ft/s.
Assuming that muzzle velocities of rounds in this lot are (approximately) normally
distributed, find 95% confidence limits for the standard deviation σ of the muzzle
velocity of the lot.

8. A sample of four tires is taken from a lot of brand-A tires. Another sample of four tires
is taken from a lot of brand-B tires. These tires are tested for amount of wear, for 24,000
miles of driving on an eight-wheel truck, when the tires are rotated every 1000 miles.
The tires are weighed before and after the test. The loss in weight, expressed as the
percentage of initial weight, is used as a measure of wear. For the sample of brand-A
tires, it is found that X̄A = 18.0, SA = 1.3; for brand-B tires, X̄B = 19.4, SB = 1.5.
Assuming (approximately) normal distributions having equal variances for percent
wear of tires of each brand under these test conditions, find a 95% confidence interval
for μA − μB .

9. The following data give the Vickers hardness number of ten shell castings from com-
pany A and of ten castings from company B:

Company A (Hardness): 66.3 64.5 65.0 62.2 61.3 66.5 62.7 67.5 62.7 62.9
Company B (Hardness): 62.2 67.5 60.4 61.5 64.8 60.9 60.2 67.8 65.8 63.8

Find a 90% confidence interval for μA − μB , assuming (approximate) normality and
that σ2

A = σ2
B = σ2.
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10. Resistance measurements (in ohms) are made on a sample of four test pieces of wire
from lot A and five from lot B, with the following results given:

Lot A Resistance (ohms): 0.143 0.142 0.143 0.137
Lot B Resistance (ohms): 0.140 0.142 0.136 0.138 0.14

If μ1 and μ2 are the mean resistances of the wire in lots A and B and assuming that
possible measurements from lot A and possible measurements from lot B have normal
distributions N(μ1, σ

2) and N(μ2, σ
2), respectively, where μ1, μ2 and σ2 are unknown,

find a 95% confidence interval for μ1 − μ2. Use this interval to examine the statement
that μ1 = μ2.

11. Breaking strengths (in psi) are observed on a sample of five test pieces of type-A yarn
and nine test pieces of type-B yarn, with the following results:

Type A (psi): 93 94 75 84 91
Type B (psi): 99 93 99 97 90 96 93 88 89

Assuming normality of breaking strengths for each type of yarn and that the pop-
ulation variances of breaking strengths are equal in the two populations, find 99%
confidence limits for μA − μB , where μA and μB are the population means.

12. Determinations of atomic weights of carbon from two preparations I and II yield the
following results:

Preparation I: 12.0072 12.0064 12.0054 12.0016 12.0077
Preparation II: 11.9583 12.0017 11.9949 12.0061

Assuming (approximate) normality, find a 95% confidence interval for μ1 − μ2, the
difference of the true means of determinations made from preparations I and II. (Note:
We have not assumed equality of variances.)

13. An experiment to determine the viscosity of two different types of gasoline (leaded
versus nonleaded) give the following results:

Leaded: n1 = 25, X̄1 = 35.84, S2
1 = 130.4576

Nonleaded: n2 = 25, X̄2 = 30.60, S2
2 = 53.0604

Assuming normality, find a 95% confidence interval for the difference in viscosities.
(Note: We have not assumed equality of variances.)

14. Two analysts A and B each make 10 determinations of percentage chlorine in a batch
of polymer. The sample variances S2

A and S2
B turn out to be 0.5419 and 0.6065,

respectively. If σ2
A and σ2

B are the variances of the populations of A’s measurements
and of B’s measurements respectively, find 95% confidence limits for σ2

A/σ2
B .

15. For the data of Problem 8, find a 95% confidence interval for σ2
A/σ2

B , the ratio of the
population variances. Comment on the assumption made in Problem 8, that the true
value of the ratio is one.
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16. In Problems 9, 10, and 11, the assumption was made that the ratio of the variances
of the populations being sampled is 1. In each of these problems, find 95% confidence
intervals for the ratio of the variances of the populations being sampled and comment
on the assumption.

17. A large university wishes to estimate the mean expense account of the members of
its staff who attend professional meetings. A random sample of 100 expense accounts
yields a sample average of $515.87 with a sample standard deviation of $14.34. Find
a 95% confidence interval for the mean expense account amount, say μ.

18. A new spinning machine is installed and 64 test pieces of yarn it produces are tested
for breaking strength. The observed data yield a sample average of 4.8 and standard
deviation of 1.2. Find a 99% confidence interval for the true value of the breaking
strength.

19. The heights of 105 male students of university X chosen randomly yield an average of
68.05 inches and a sample standard deviation of 2.79 in. Find a 95% confidence interval
for the mean of the heights of male students attending the (rather large) university X.

20. A sample of 70 employees selected at random from the employees of a large brewery
yields an average disabled time of 41.8 hours during a fiscal year, with a standard
deviation of 6.4 hours. Construct a 99% confidence interval for the mean disabled
time of employees at this firm.

21. Two groups of judges are asked to rate the tastiness of a certain product. The results
are as follows:

Group 1: n1 = 121, X̄1 = 3.6, S2
1 = 1.96

Group 2: n2 = 121, X̄2 = 3.2, S2
2 = 3.24

(a) Find a 95% confidence interval for σ2
1/σ2

2, assuming normality.
(b) On the basis of the interval found in (a), find a 95% confidence interval for μ1 − μ2.

22. A sample of 500 rounds of ammunition supplied by manufacturer A yields an average
muzzle velocity of 2477 ft/s, with a standard deviation of 80 ft/s. A sample of 500
rounds made by another manufacturer, manufacturer B, yields an average muzzle
velocity of 2422 ft/s, with a standard deviation of 120 ft/s. Find a 99% confidence
interval for the differences in muzzle velocity of the bullets supplied by A and B.
(First verify whether or not you can assume σ2

A = σ2
B on the basis of the previously

mentioned sample evidence.)

23. A sample of 100 workers in one large plant took an average time of 23 minutes to
complete a task, with a standard deviation of 4 minutes. In another large, but similar,
plant, a sample of 100 workers took an average time of 25 minutes to complete the
same task, with a standard deviation of 6 minutes.
(a) Construct a 99% confidence interval for the ratio of the population variances,

assuming normality.
(b) On the basis of (a), determine a 99% confidence interval for the difference between

the two population means.

24. A group of 121 students of a large university are retested on entrance to give an
average score of 114 with a standard deviation of 19.6. Another group of 91 students
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who have spent one year at this university are given the same test; they performed
with an average score of 121 and standard deviation of 16.8. Assume normality.
(a) Find a 99% confidence interval for the ratio of the class variances.
(b) Using the results of (a), determine an appropriate 99% confidence interval for the

difference of mean scores of the classes.

25. The effectiveness of two drugs is tested on two groups of randomly selected patients
with the following results (in coded units):

Group 1: n1 = 75, X̄1 = 13.540, S1 = 0.476

Group 2: n2 = 45, X̄2 = 11.691, S2 = 0.519

Assume normality.
(a) Find a 95% confidence interval for σ2

1 = σ2
2.

(b) On the basis of the interval found in (a), find a 95% confidence interval for μ1 − μ2,
the difference of the mean effectiveness of the two drugs.

26. The athletic department of a large school randomly selects two groups of 50 students
each. The first group is chosen from students who voluntarily engage in athletics, the
second group is chosen from students who do not engage in athletics. Their body
weights are measured with the following results:

Group 1: n1 = 50, X̄1 = 158.26 lb, S1 = 7.08 lb

Group 2: n2 = 50, X̄2 = 151.47 lb, S2 = 7.92 lb

Assume normality.
(a) Find a 99% confidence interval for σ2

1 = σ2
2.

(b) Using (a), find a 99% confidence interval for μ1 − μ2. Comment.

27. Nine out of 15 students polled favored the holding of a demonstration on campus
against “the war.” Using technology, find 95% confidence limits for the proportion of
all students favoring this proposal.

28. A random sample of 60 voters selected at random from a large city indicate that 70%
will vote for candidate A in the upcoming mayoral election. Find the 99% confidence
interval for the proportion of voters supporting candidate A.

29. If (X1, . . . ,Xn) is a random sample of size n from N(μ, σ2
0), where σ2

0 is the known
value of the population variance, find the maximum likelihood estimator of μ. Is
the maximum likelihood estimator unbiased for μ? What is the distribution of the
maximum likelihood estimator?

30. If (X1, . . . ,Xn) is a random sample of size n from N(μ0, σ
2), where μ0 is the known

value of the population mean, find the maximum likelihood estimator of σ2. Is the
maximum likelihood estimator unbiased or not for σ2? What is its distribution? What
is its variance?

31. A manufacturing engineer wants to use the mean of a random sample of size 36 to
estimate the average length of the rods being manufactured. If it is known that σ = 1.5
cm, find the margin of error at the 95% confidence level.
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32. A past study indicates that the standard deviation of hourly wages of workers in
an auto industry is $4.00. A random sample of hourly wages of 49 workers yields
an average of $55.00. Find (a) a point estimate of population mean wage, (b) the
standard error of the point estimator calculated in part (a), (c) the margin of error of
the estimate at the 95% confidence level.

33. In a study of diameters of ball bearings manufactured by a newly installed machine,
a random sample of 64 ball bearings is taken, yielding a sample mean of 12 mm and
a sample standard deviation of 0.6 mm. Compute a 99% confidence interval for the
population mean μ.

34. Two types of copper wires used in manufacturing electrical cables are being tested for
their tensile strength. From previous studies, it is known that the tensile strengths
of these wires are distributed with unknown means μ1 and μ2 but known standard
deviations σ1 = 6.0 psi and σ2 = 8.5 psi, respectively. Two random samples, one of
size n1 = 36 of type I wire and another sample of size n2 = 49 of type II wire yield
sample means of 203 psi and 240 psi, respectively.
(a) Determine a 90% confidence interval for the difference μ1 − μ2 of the two popula-

tion means.
(b) Determine a 99% confidence interval for the difference μ1 − μ2 of the two popu-

lation means.

35. A recent study shows that the average annual incomes of cardiologists and gastroen-
terologists based on random samples of 100 and 121 are $295,000 and $305,000, respec-
tively. Furthermore, these samples yield sample standard deviations of $10,600 and
$12,800, respectively. Determine a 98% confidence interval for the difference μ1 − μ2
of the two population means.

36. Two samples of sizes n1 = 16 and n2 = 25 pieces of wool yarn are randomly taken from
the production of two spindles and tested for tensile strength. These tests produce the
following data:

Sample I: 12.28 8.54 11.31 9.06 10.75 10.96 12.12 8.14 10.75
9.55 9.56 11.00 9.10 9.91 10.08 9.54

Sample II: 12.89 11.35 13.15 13.84 10.86 13.45 13.19 11.21 12.07
13.90 11.93 11.87 12.68 12.23 11.69 12.54 11.55 11.19
12.36 12.82 13.12 13.07 11.86 11.65 11.96

Assuming that the two populations are normally distributed with equal variances, find
a 95% confidence interval for the difference μ1 − μ2 of the two population means.

37. At a certain university, the Electrical Engineering faculty decides to teach a course on
robot intelligence using two different methods, one an existing method and the other
a method using new strategies. The faculty randomly selects two sections of students
who are scheduled to take this course. One section is taught using the existing method,
while the other uses the new method. At the end of the semester, both sections are
given the same test. Their test scores produce the following summary statistics:

n1 = 49, X̄1 = 79, S2
1 = 30

n2 = 45, X̄2 = 86, S2
2 = 40
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(a) Find a 95% confidence interval for the difference μ1 − μ2 of the two population
means.

(b) Find a 98% lower confidence interval for the difference μ1 − μ2 of the two pop-
ulation means and then find a 98% upper one-sided confidence interval for the
difference μ1 − μ2 of the two population means.

38. A semiconductor company wants to estimate the fraction p of defective computer
chips it produces. Suppose that a random sample of 900 chips has 18 defective chips.
Find a point estimate of p. Next, find a 95% confidence interval for the proportion
p of defective chips, and also find a one-sided 95% lower confidence interval for the
proportion p of defective chips.

39. A company with two car-repair centers in Orange County, California, is interested in
estimating the percentage of car owners who are very happy with the service they
received at each center. In a random sample of 120 car owners who have their cars
serviced at service center I, 72 are quite happy, while in another sample of 150 car
owners who have their cars serviced at service center II, 110 are quite happy. Find a
95% confidence interval for the difference between the percentages of persons who are
happy with the car service they have received at centers I and II.

40. Referring to Problem 38, how large a sample should be taken in order to be confident
with probability 95% that the margin of error to estimate the fraction p of defective
computer chips is 0.025?

41. Referring to Problem 40, find by how much the sample size increases or decreases
if we are willing to increase the margin of error from 0.025 to 0.05 with the same
probability of 0.95.

42. Suppose in Problem 37 that it had been agreed to take equal sample sizes from the two
populations. What size samples should be selected so that we can be 99% confident
that the margin of error in estimating the difference of two population means is no
more than two points? Use the sample variances given in Problem 37 as estimates of
σ2

1 and σ2
2.

43. Two textile mills are manufacturing a type of utility rope. A consumer group wants
to test the tensile strength of the rope manufactured by these mills. A random sample
of 10 pieces of rope manufactured by mill I results in a sample mean of X̄1 = 850
psi and a sample standard deviation of S1 = 30 psi. A random sample of 15 pieces of
rope manufactured by mill II results in a sample mean of X̄2 = 880 psi and a sample
standard deviation of S2 = 38 psi. Find a one-sided 95% upper confidence limit for
the ratio σ2

1/σ2
2 of the two variances, assuming that the tensile strengths of ropes

manufactured by the two mills are normally distributed with variances σ2
1 and σ2

2,
respectively.

44. Repeat Problem 36, assuming that the two populations are normally distributed with
unequal variances.

45. Referring to Problem 1 of Section 8.7, find a 99% confidence interval for p, the pro-
portion of people in the population wearing glasses.

46. Referring to Problem 2 of Section 8.7, find 90% and 95% confidence intervals for p,
the probability of obtaining a head when this coin is tossed.
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47. Referring to Problem 3 of Section 8.7, find a 99% confidence interval for the difference
in proportions of the population favoring Brand X before and after the advertising
campaign. Comment on your result.

48. Repeat Problem 4 of Section 8.7, using 98% and 99% confidence levels.

49. Referring to Problem 5 of Section 8.7, find a 99% confidence interval for the difference
between the percentages of persons who favor a nuclear plant in their state. Compare
the confidence intervals you obtained here to the one you obtained in Problem 5 of
Section 8.7 and comment on the effect of increasing the confidence level from 95% to
99%.



Chapter 9

HYPOTHESIS TESTING

. . . the null hypothesis is never proved or established, but is possibly disproved,
in the course of experimentation. Every experiment may be said to exist only
to give the facts a chance of disproving the null hypothesis.

R.A. Fisher

The focus of this chapter is a discussion of testing of statistical hypotheses.

Topics Covered

• Basic concepts of testing of statistical hypotheses
• Tests concerning the mean of a normal distribution when variance is known
• Tests concerning the mean of a normal distribution when variance is unknown
• Tests concerning population means when the sample size is large
• Tests concerning the difference of means of two populations with known variances
• Tests concerning the difference of means of two populations with unknown variances
• The paired t-test
• Testing concerning one and two population proportions when the sample size is large
• Tests concerning the variance of a normal distribution
• Tests concerning the ratio of variances of two normal populations
• Sequential tests of hypotheses

Learning Outcomes

After studying this chapter, the reader will be able to

• Construct null and alternative hypotheses.
• Determine an appropriate test statistic and use it to carry out a hypothesis test.
• Understand the concepts of type I and type II errors, and determine the power of a test.
• Understand the concept of the p-value, calculate it, and then use it to make the correct

decision.
• Use appropriate confidence intervals to carry out various tests of hypotheses.

Statistics and Probability with Applications for Engineers and Scientists using MINITAB, R and JMP,
Second Edition. Bhisham C. Gupta, Irwin Guttman, and Kalanka P. Jayalath.
c© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/college/gupta/statistics2e
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9.1 INTRODUCTION

In our discussions in earlier chapters, we noted that one of the aims of statistics is to
make inferences about the unknown parameters of a population, based on the information
contained in a sample that is selected from this population. The goal of making such
inferences may be achieved by estimating the unknown parameters and then by testing
hypotheses about the plausible values of these unknown parameters. In Chapter 8, we
considered the problem of estimating the unknown parameters. Here, we consider certain
aspects of statistical testing of hypotheses.

Testing of hypotheses is a phenomenon that we deal with in everyday life. For example,
a pharmaceutical company may like to test a certain hypothesis about a new drug used
to treat patients with high cholesterol, breast cancer, or coronary artery disease. Amtrak,
a train transportation service company, may like to test whether an existing track can be
used to introduce a new train service for a particular route that covers a certain distance
in a given period of time. A quality engineer in a paper mill may test a hypothesis that
the new machine will produce no more than 10% of paper with defects. A civil engineer
may like to test a hypothesis that a new bridge can withstand a weight of 80 tons. Even
the United States Congress may test a hypothesis that the new economic measures can
reduce the unemployment rate by one full point.

Another type of problem that may arise during hypothesis testing, concerns whether
a sample could reasonably have come from a population having a completely or partially
specified distribution. For instance, if a sample is known to have come from some normal
distribution, is it reasonable that it could have come from one having a given mean μ0?
Or if two independent samples come from normal distributions, is it reasonable that they
could have come from normal distributions with equal means?

To inquire about such hypotheses, we are obliged to collect some data, meaning draw
samples from given populations and test the validity of these hypotheses utilizing the
sample data. We then proceed by making use of sample averages, proportions, variances,
and other statistics determined from the sample or samples. Statistics such as these, when
determined from samples, are random variables having their own probability distributions,
so statements based on their values must be made in terms of probabilities. In this chapter,
we consider some of the more important statistical tests based on sample averages and
sample variances that can help us either establish or contradict, with a certain desired
probability, the validity of such hypotheses. Also, as will be seen, there is a close connection
between statistical testing and statistical estimation.

9.2 BASIC CONCEPTS OF TESTING A
STATISTICAL HYPOTHESIS

9.2.1 Hypothesis Formulation
The first step toward testing a statistical hypothesis is to identify an appropriate proba-
bility model for the population under investigation and to identify the parameter around
which the hypothesis is being formulated. For example, if we identify a normal prob-
ability model as an appropriate model for the population under investigation, then we
may formulate a hypothesis about the mean μ and/or the standard deviation σ. Once
an appropriate probability model is selected and the hypothesis is formulated, then the
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subsequent steps are to collect data and conduct the testing of the hypothesis we had
formulated, leading to deciding whether we support or discredit the hypothesis with a
certain desirable probability.

Generally speaking, a statistical hypothesis consists of a pair of statements about the
unknown parameter. One of these statements describes someone’s belief or the existing
theory, which is called the null hypothesis and denoted by H0. The second statement is
usually an assertion that is made based on some new information. It is called the research
hypothesis or an alternative hypothesis and is denoted by H1.

Then, from the information contained in a sample, we either reject the null hypothesis
H0 in favor of the alternative hypothesis H1 or we do not reject H0.

For example, suppose that we have a population with a probability model f(x, θ),
where θ is an unknown parameter. Then, we can formulate a statistical hypothesis
described as

H0: θ = θ0, H1: θ < θ0 (9.2.1)

where θ0 is known. Thus, under H0, the null hypothesis, it is believed that θ takes a known
value θ0, whereas under H1, the alternative hypothesis, our assertion, based on some new
information, is that θ takes a value less than θ0. Should we have some different information,
then that could lead us to another alternative hypothesis, namely

H ′
1: θ > θ0 or H

′′

1 : θ �= θ0 (9.2.2)

Note that under the null hypothesis H0, we have a specified value θ0 of θ, whereas under
the alternative hypotheses, we do not have any specified value of θ. A hypothesis that
assigns a specified value to an unknown parameter is called a simple hypothesis and one
that does not assign a specified value to the unknown parameter is called a composite
hypothesis. The alternative hypotheses

H1: θ < θ0 and/or H ′
1: θ > θ0 (9.2.3)

are called one-sided or one-tail alternatives, whereas

H
′′

1 : θ �= θ0 (9.2.4)

is called a two-sided or two-tail alternative.
With this terminology, we now describe a general procedure used to test these hypothe-

ses. As we remarked earlier, to test a hypothesis, we use the information contained in a
sample that has been drawn from the population with probability model f(x, θ), where
θ is an unknown parameter. This is done by considering some statistic, called the test
statistic, say θ̂, which may be an estimator of θ. Then using the sample data, we calculate
the value of the test statistic. For certain values of the test statistic, we may favor the
alternative hypothesis H1 and reject the null hypothesis H0, whereas for other values of
the test statistic, the null hypothesis H0 would not be rejected. For example, consider the
following hypotheses:

H0: θ = θ0 versus H1: θ < θ0

It seems reasonable to consider that if the value of the test statistic θ̂ turns out to be “too
small”, then we should favor the alternative hypothesis H1 and reject the null hypothesis
H0. Otherwise, we should not reject H0.

Deciding how small of a value of θ̂ is “too small” can be done by considering the
sample space of θ̂ and dividing it into two regions so that if the value of θ̂ falls in the lower
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(a) H1: θ < θ0
θ0

(b) H1: θ > θ0
θ0

(c) H1: θ ≠ θ0
θ0

Figure 9.2.1 Critical points dividing the sample space of θ̂ in two regions, the rejection
region (shaded) and the acceptance region (nonshaded).

region (the shaded region in Figure 9.2.1a, we reject H0. Otherwise, we do not reject H0.
The region for which we reject H0 is usually called the rejection region or critical region,
and the region for which we do not reject the null hypothesis H0 is called the acceptance
region. The point separating these two regions is called the critical point. Using the same
argument, we can easily see that for testing H0 against the alternatives

H1: θ > θ0 or H1: θ �= θ0

the hypothesis H1: θ > θ0 is favored for large values of θ̂, while the hypothesis H1: θ �= θ0
is favored when θ̂ is either very small or very large. Thus, the rejection regions will fall,
respectively, in the upper region, and in both lower and upper regions, as summarized in
Figure 9.2.1b and c, respectively.

9.2.2 Risk Assessment
We have now developed a procedure for using the information contained in a sample by
means of a statistic, taking a decision about the unknown parameters, and consequently
about the population itself. The next question that we might ask is whether there is any
risk of committing any errors while making such decisions. The answer to this question
is yes. There are two risks. The first occurs when the null hypothesis is true, but based
on the information contained in the sample, we end up rejecting H0. This type of error
is called type I error. The second kind of error occurs when the null hypothesis is false;
that is, the alternative hypothesis is true but still we do not reject the null hypothesis.
This kind of error is called type II error. These errors cannot be eliminated completely,
but they can certainly be minimized by taking large samples. We study this aspect of the
problem later in this chapter.

There are certain probabilities associated with committing the type I and type II
errors that we denote by α and β, respectively. Thus, we may define α and β as follows:

α = P (reject H0|H0 is true) (9.2.5)

β = P (do not reject H0|H0 is false) (9.2.6)
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Table 9.2.1 Type I and type II errors and their probabilities of
occurrence (in parentheses).

H0 is true H0 is false

Reject H0 Type I error (α) Correct decision
Do not reject H0 Correct decision Type II error (β)

At this point, it is useful to summarize in Table 9.2.1 the discussion so far of type I
and type II errors and their probabilities.

Some terminology connected to the table above is as follows:

1. α = P (type I error) = P (reject H0|H0 is true) = level of significance = size of
the test. In quality control, α is commonly known as the producer’s risk.

2. β = P (type II error) = P (do not reject H0|H0 is false). In quality control, β is
commonly known as the consumer’s risk.

3. We note that the complement of β is called the power of the test, that is,
Power = 1 − β = 1 − P (do not reject H0|H0 is false) = P (reject H0|H0 is false)
The power of a test is often denoted by γ, that is, γ = 1 − β.

The value of β depends on the alternative hypothesis, and β is always determined at
a specific value of θ under the alternative hypothesis. For example, if the population is
N(μ, σ2), and if we are considering the null and alternative hypotheses H0: μ = μ0 and
H1: μ < μ0, respectively, then a specific value of the alternative, say μ1, should be such
that μ1 is less than μ0. Similarly, if the alternative hypothesis is H1: μ > μ0 or H1: μ �= μ0,
then μ1 should be such that μ1 > μ0 or μ �= μ0, respectively.

Now in setting up a test of a hypothesis H0, when the alternative is H1, there are some
useful steps to follow. These are as follows:

Step 1. State the null hypothesis and the alternative hypothesis very clearly.
Step 2. Assign an appropriate value to the level of significance, that is, α. It is

very common in practice to assign 0.01, or 0.05, or 0.10 for the value
of α.

Step 3. Determine a suitable test statistic. For the statistical hypotheses that
we are going to discuss in this and other chapters, the pivotal quantity
under H0 (see Chapter 8) for the parameter under investigation is often
used as a test statistic.

Step 4. Determine the probability distribution of the test statistic designated in
Step 3.

Step 5. Locate the rejection region(s) and determine the critical point. The loca-
tion of the rejection region always depends on the alternative hypothesis
while the size of the rejection region depends on the value assigned to
α, the probability of the type I error.
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Step 6. Calculate the value of the test statistic and make the decision. That is,
take a random sample from the population in question and calculate the
value of the test statistic. Then verify whether or not the value of the
test statistic falls in the rejection region. If it falls in the rejection region,
then we reject the null hypothesis H0. Otherwise, we do not reject H0.

The reader may notice that the value of α is prechosen by the experimenter. However,
the value of β often needs to be determined, which sometimes may become cumbersome.
If the probability distribution of the test statistic (pivotal quantity under H0) is normal,
for example, X̄ ∼ N(μ, σ2/n), then the value of β can easily be obtained by using one of
the appropriate formulas given below (σ assumed known); see Section 9.3 for details.

β = P

(
Z >

μ0 − μ1

σ/
√

n
− zα

)
= 1 − Φ

(
μ0 − μ1

σ/
√

n
− zα

)
if H1: μ1 < μ0 (9.2.7)

β = P

(
Z <

μ0 − μ1

σ/
√

n
+ zα

)
= Φ

(
μ0 − μ1

σ/
√

n
+ zα

)
if H1: μ1 > μ0 (9.2.8)

β = P

(
μ0 − μ1

σ/
√

n
− zα/2 < Z <

μ0 − μ1

σ/
√

n
+ zα/2

)

= Φ
(

μ0 − μ1

σ/
√

n
+ zα/2

)
− Φ

(
μ0 − μ1

σ/
√

n
− zα/2

)
if H1: μ1 �= μ0 (9.2.9)

Clearly, when the value of β decreases, the power of the test increases, and therefore, we
have a better test. Thus, at this juncture, one might ask whether there are any circum-
stances under which one can assign some predetermined value to β as well. The answer to
this question is yes, and it can be done by selecting an appropriate sample size that may
turn out to be quite large. For the case σ known, given values of α and β, the sample size
n should be such that

n ≥
(zα + zβ)2σ2

(μ1 − μ0)2 for a one-tail test (9.2.10)

n ≥
(zα/2 + zβ)2σ2

(μ1 − μ0)2 for a two-tail test (9.2.11)

We will turn to a discussion of various concrete situations, after the practice problems for
this section.

PRACTICE PROBLEMS FOR SECTION 9.2

1. A random sample of n = 36 observations from a population with mean μ and variance
σ2, where σ2 = 0.25, produced a sample mean X̄ = 4.2 and a sample standard devi-
ation equal to 0.5. If it is desired to test the hypothesis that the population mean
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μ exceeds 4.0, describe the null hypothesis and alternative hypothesis and carry out
the testing of hypothesis at the 5% level of significance.

2. Referring to Problem 1, suppose that the type I error is 0.05 and the true population
mean is 4.5. Determine the size of β the probability of the type II error.

3. Referring to Problem 2, if the true population mean is 5.0 instead of 4.5, what is your
conjecture about the size of the probability of the type II error (β) of the test; that
is; will it be larger or smaller? Determine the actual value of β and check whether
or not your conjecture was right.

4. In a given hypothesis testing problem, how is the value of the probability of the type
II error (β) affected if the sample size remains the same but the value of the type I
error (α) changes?

5. Determine how large a sample size should be taken if the test for Problem 1 is such
that α = 0.05, β = 0.10, μ0 = 4.0, and μ1 = 4.2.

9.3 TESTS CONCERNING THE MEAN OF A
NORMAL POPULATION HAVING KNOWN
VARIANCE

9.3.1 Case of a One-Tail (Left-Sided) Test
Suppose that X̄ is the average of a sample of size n from a normal distribution N(μ, σ2),
where σ2 is known and μ is unknown. Suppose that we want to learn whether it is reason-
able to think that this sample came from the normal population N(μ0, σ

2) as compared
with the possibility it came from another normal population N(μ1, σ

2), where μ1 < μ0.
We can abbreviate this statement to test this statistical hypothesis (or null hypothesis)
H0 versus the alternative H1, where H0 and H1 are such that

H0: μ = μ0 versus H1: μ < μ0

and where we are making use of a sample of size n that has the sample mean X̄, which is
an estimator of μ.

It is intuitively evident that we would choose H1 if X̄ is sufficiently small, that is,
if X̄ < k, where k is yet to be found, and favor H0 if X̄ ≥ k. The set of values of X̄ for
which we reject H0 (i.e., those for which X̄ < k) is called the critical region for the test.
In making any decision, we could make two kinds of errors (see Table 9.2.1).

However, we always test a hypothesis under the assumption that the null hypothesis
is true, and we must either support this assumption or contradict it. That is, if we support
our assumption, then we do not reject H0. Otherwise, we reject H0. Now by choosing k
so that

P (X̄ < k|μ = μ0) = α (9.3.1)

we can control the type I error so that its probability of occurrence is α. The type II error
has probability β, where for μ = μ1 < μ0,

β = P (X̄ ≥ k|μ = μ1) = 1 − P (X̄ < k|μ = μ1) (9.3.2)

In this case, k has been chosen to satisfy equation (9.3.1).
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Since α is known and k has been chosen so that equation (9.3.1) is satisfied and since
X̄ has the distribution N(μ0, σ

2/n) in equation (9.3.1), it is seen that

P (X̄ < k|μ = μ0) = Φ
[
(k − μ0)

√
n

σ

]
= α (9.3.3)

Recalling equation (9.3.2), we have

β = P (X̄ ≥ k|μ = μ1) = 1 − Φ
(

k − μ1

σ/
√

n

)
(9.3.4)

Thus, for specified values of α, μ0, μ1, σ, and n, from equation (9.3.3) it follows that the
number k satisfies the equation

(k − μ0)
√

n

σ
= z1−α = −zα (9.3.5)

Solving equation (9.3.5), we find

k = μ0 +
σ√
n

z1−α = μ0 −
σ√
n

zα (9.3.6)

and hence the critical region for X̄ is the set of values of X̄ for which X̄ < k, that is,

X̄ < μ0 +
σ√
n

z1−α = μ0 −
σ√
n

zα (9.3.7)

or for which
(X̄ − μ0)

√
n

σ
< z1−α = −zα (9.3.8)

By substituting the value of k from equation (9.3.6) in equation (9.3.4), we find that the
probability of committing a type II error when μ = μ1 < μ0 is

β = P (Do not reject H0|H0 is false)

so that
β = P (X̄ ≥ μ0 −

σ√
n

zα|μ = μ1)

= P (X̄ − μ1 ≥ (μ0 − μ1) −
σ√
n

zα|μ = μ1)

= P

(
X̄ − μ1

σ/
√

n
≥ μ0 − μ1

σ/
√

n
− zα|μ = μ1

)

= P

(
Z ≥ μ0 − μ1

σ/
√

n
− zα

)
(9.3.9)

We note that any observed value of X̄ falling in the critical region in equation (9.3.7) is
said to be significantly smaller than μ0 at the 100α% level of significance.

Now, as noted in equation (9.3.8), the critical region in equation (9.3.7) can also be
expressed as the set of values of X̄ for which

X̄ − μ0

σ/
√

n
< −zα (9.3.10)
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so that the description of the critical region uses

X̄ − μ0

σ/
√

n
(9.3.11)

the pivotal quantity (see Chapter 8) for μ evaluated under H0, that is, evaluated at
μ = μ0. Now under H0: μ = μ0, the test statistic in equation (9.3.11) has the distribu-
tion of the standard normal random variable Z, so that the size of the test, the probability
of committing the type I error of the test H0: μ = μ0 versus H1: μ < μ0 is

P

(
X̄ − μ0

σ/
√

n
< −zα|μ = μ0

)
= P (Z < −zα) = α

as stated previously. The critical region of size α = 0.05 falls under the left tail of the
standard normal distribution (see Figure 9.3.1).

Note that β as given by equation (9.3.9) is a function of μ1, say β(μ1), and the
graph of β(μ1), the probability of type II error plotted against μ1 is called the operating
characteristic (OC) curve of the test of H0 against H1 (see Figure 9.3.2). The function

γ(μ1) = 1 − β(μ1) (9.3.11a)

where μ1 < μ0, is called the power function of the test and gives the probability of rejecting
μ = μ0, given that μ = μ1. The graph of the power function plotted against μ1 is called
the power curve of the test. Note that the ordinate of the power curve at μ0 is α, that is,

γ(μ0) = 1 − β(μ0) = α

Often the experimenter wishes to cite the observed level of significance, often called the
p-value where, for example, in this situation

p-value = P

(
X̄ − μ0

σ/
√

n
<

x̄obs − μ0

σ/
√

n
|μ = μ0

)
= P

(
Z <

x̄obs − μ0

σ/
√

n

)
(9.3.12)

0.4

Distribution plot
Normal, Mean = 0, StDev = 1

0.3

0.2

D
e
n
s
it
y

0.1

0.0

0.05

–1.645 0

x

Figure 9.3.1 The critical region for the left-sided test with α = 0.05.
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H0: μ = μ0

α = Probability of

       type I error
β = Probability of

       type II error

800 μ1 = 900 μ0 = 1000947.36 1100
x

Critical region is x ≤ 947.36

Figure 9.3.2 Graphical description of the constituents of Example 9.3.1.

where x̄obs is the observed value of the sample average X̄. In general, we may define the
p-value as follows:

Definition 9.3.1 The p-value of a test is the smallest value of α for which the
null hypothesis H0 is rejected.

Suppose that the observed value of the test statistic Z is z, where Z = (X̄ − μ0)/
(σ/

√
n). Then the p-value for observing z = (x̄obs − μ0)/(σ/

√
n), is given by (see

equation (9.3.12))

p-value = P (Z ≤ z) if H1: μ < μ0

= P (Z ≥ z) if H1: μ > μ0 (9.3.12a)

= 2P (Z ≥ |z|) if H1: μ �= μ0

The rules for using the p-value defined previously are the following:

1. If p-value < α, we reject H0.
2. If p-value ≥ α, we do not reject H0.

We illustrate with the following example.

Example 9.3.1 (Testing a left-sided hypothesis about μ when σ is known) A sample of
16 lengths of wire from a day’s production on a given machine has an average tensile
strength X̄ = 967.8 psi. Suppose that the population of tensile strengths of wire in the
day’s production is N(μ, (128)2) (it is known from experience that for this type of wire
σ = 128 psi) and that we wish to test the hypothesis

H0: μ = 1000 versus H1: μ < 1000
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In this case, we have from equation (9.3.7) that

k = 1000 − (128/
√

16)zα

If we choose α, the probability of a type I error, to be 0.05, then zα = z0.05 = 1.645, then

k = 1000 − 32(1.645) = 947.36

and the critical region consists of the values of X̄ for which X̄ < 947.36. Since the observed
value of X̄ is 967.8, which does not fall in the critical region (−∞, 947.36), we say that X̄
is not significantly smaller than the value of μ under H0, or that, at the given α = 0.05
level, we do not reject the null hypothesis μ = 1000. We observe here that the p-value is
P (Z < (967.8 − 1000)

√
16/128) = 0.1562, which is greater than α = 0.05, confirming the

above decision that H0 is not rejected.
The probability of the type II error β(μ1) of our test for H0 against any μ1 < 1000 is

the probability of not rejecting H0 (i.e., not rejecting the hypothesis that μ = 1000) when
H1 is true (i.e., when μ has some value μ1 < 1000). Suppose that now μ1 = 900. Then we
use equation (9.3.9), i.e., β(μ1), to obtain the probability of type II error as

β(μ1 = 900) = P

(
Z ≥ μ0 − μ1

σ/
√

n
− zα

)
= P

(
Z ≥ 1000 − 900

128/
√

16
− 1.645

)

= P (Z ≥ 1.48) = 0.0694

and the power of the test at μ1 = 900 is given by (see equation (9.3.11a))

γ(μ1 = 900) = 1 − 0.0694 = 0.9306

Figure 9.3.2 depicts α and β, the value of k, μ0(μ0 = 1000), and μ1(μ1 = 900).

9.3.2 Case of a One-Tail (Right-Sided) Test
Suppose that we want to test, at significance level α, the hypothesis testing problem

H0: μ = μ0 versus H1: μ > μ0

on the basis of the average X̄ of a sample of size n from N(μ, σ2), where σ2 is known. The
reader can verify that in this case, the critical region for X̄ is the set of values of for which
X̄ > k, where k satisfies

P (X̄ > k|μ = μ0) = α (9.3.13)

We easily find that k is such that

k = μ0 +
σ√
n

zα (9.3.13a)

so that we reject H0: μ = μ0 when testing against the alternative H1: μ > μ0 if

X̄ > μ0 +
σ√
n

zα (9.3.14)
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Figure 9.3.3 Critical region for the right-sided test with α = 0.05.

The probability β of a type II error for this test is easily seen to be (see equation (9.2.8))

β = P

(
Z <

μ0 − μ1

σ/
√

n
+ zα

)
(9.3.15)

where μ1 > μ0.
We note that since the critical region consists of values of X̄, which are such that

X̄ > μ0 +
σ√
n

zα (9.3.16)

we often say that we reject H0 at significance level α if

X̄ − μ0

σ/
√

n
> zα (9.3.17)

Again, we use the pivotal quantity evaluated at μ = μ0, namely

X̄ − μ0

σ/
√

n
(9.3.18)

as a test statistic and its critical region of size α falls under the right tail of the standard
normal distribution (see Figure 9.3.3).

9.3.3 Case of a Two-Tail Test
Now suppose that we want to test the hypothesis

H0: μ = μ0 versus H1: μ �= μ0

In this case, it is evident that the critical region of the test will consist of all values of
X̄ for which |X̄ − μ0| > k where, for a given probability α of a type I error, k is chosen
so that

P (|X̄ − μ0| > k|μ = μ0) = α
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That is,

1 − P

(
− k

σ/
√

n
<

X̄ − μ0

σ/
√

n
<

k

σ/
√

n
|μ = μ0

)
= α (9.3.19)

Hence, we must have

1 −
(

Φ
(

k

σ/
√

n

)
− Φ

(
− k

σ/
√

n

))
= α (9.3.20)

where Φ is the cumulative distribution function (c.d.f.) of Z,Z ∼ N(0, 1). But remembering
that Φ(z) + Φ(−z) = 1, we have from equation (9.3.20), after some simplification, that

Φ
(
− k

σ/
√

n

)
=

α

2

Hence, we have

− k

σ/
√

n
= −zα/2 or

k

σ/
√

n
= zα/2

The critical region for X̄ is thus the set of values for X̄ for which∣∣∣∣X̄ − μ0

σ/
√

n

∣∣∣∣ > zα/2 (9.3.21)

If X̄ satisfies equation (9.3.21), we say that X̄ differs from μ0 significantly at the α level
of significance and we reject H0.

The critical region given in equation (9.3.21) with α = 0.05 can be depicted graphi-
cally under the standard normal frequency curve as shown in Figure 9.3.4. The power of
two-sided test for H0 against H1 is illustrated in Example 9.3.2.

The reader should also note that since

P

(∣∣∣∣X̄ − μ0

σ/
√

n

∣∣∣∣ > zα/2|μ = μ0

)
= α

0.4

Distribution plot
Normal, Mean = 0, StDev = 1

0.3

0.2

D
e
n
s
it
y

0.1

0.0

0.025 0.025

1.960–1.960 0

x

Figure 9.3.4 Critical region for the two-sided test with α = 0.05.
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we have
P

(
|X̄ − μ0| <

σ√
n

zα/2|μ = μ0

)
= 1 − α

which can be rewritten as

P

(
X̄ − σ√

n
zα/2 < μ0 < X̄ +

σ√
n

zα/2

)
= 1 − α

This result is equivalent to the statement that [X̄ ± (σ/
√

n)zα/2], the 100(1 − α)%
confidence interval for μ, contains μ0 the value specified by H0: μ = μ0.

We summarize this result as follows:

X̄ being (not being) significantly different from μ0 at the α level of significance is
equivalent to the statement that μ0 does not (does) lie in the 100(1 − α)% confidence
interval for μ.

Example 9.3.2 (Testing a two-sided hypothesis about μ when σ is known) Referring to
Example 9.3.1, suppose that we test the hypothesis

H0: μ = 1000 versus H1: μ �= 1000

at the 5% level of significance.

Solution: We have, for α = 0.05, that zα/2 = z0.025 = 1.96; hence from equation (9.3.21),
the critical region for X̄ is the set of values of X̄ for which

|X̄ − 1000| >
128√

16
× 1.96 ⇒ |X̄ − 1000| > 62.72

Hence, we reject H0 if either X̄ < 1000 − 62.72 = 937.28 or X̄ > 1000 + 62.72 = 1062.72.
Here, the observed value of X̄ = 967.8 does not fall into this critical region. Thus, the

observed value of X̄, 967.8, does not differ significantly from the value μ0 = 1000 (specified
under H0) at the 5% level of significance, and we do not reject H0.

Of course, we can reject H0 or not reject H0, on the basis of the value of the observed
level of significance, namely the p-value for the test. To calculate the p-value, we first recall
that the form of the test of H0: μ = μ0 versus H1: μ �= μ0 at significance level α is that we

reject H0: μ = μ0 if
∣∣∣∣X̄ − μ0

σ/
√

n

∣∣∣∣ > zα/2 = z0.025 = 1.96. Hence, the p-value is given by

p-value = P

(∣∣∣∣X̄ − μ0

σ/
√

n

∣∣∣∣ >

∣∣∣∣ x̄obs − μ0

σ/
√

n

∣∣∣∣
)

= P

(
|Z| >

∣∣∣∣967.8 − 1000
128/

√
16

∣∣∣∣
)

= P (|Z| > 1.01) = 0.3124

Since we have that p-value > 0.05, we do not reject H0.
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Figure 9.3.5 Power curves for the test in Example 9.3.2.

Notice that from the point of view of confidence intervals, we find that the value of
μ, μ = μ0 = 1000 (under H0) is contained in the 95% confidence interval for μ, namely
(967.8 ± 62.72), so we do not reject H0: μ = 1000.

The power of this test (see equation (9.2.9)) with α = 0.05 is easily seen. For μ = μ1 �=
μ0, it is given by

γ(μ1) = P

(∣∣∣∣X̄ − μ0

σ/
√

n

∣∣∣∣ > 1.96|μ = μ1

)
= P (Reject H0|H1 is true)

But under H1: μ = μ1,
X̄ − μ1

σ/
√

n
∼ Z, Z ∼ N(0, 1), so we find

γ(μ1) = P (Z < (μ0 − μ1)/(σ/
√

n) − 1.96) + P (Z > (μ0 − μ1)/(σ/
√

n) + 1.96)

for μ1 �= μ0. We plot γ(μ1) in Figure 9.3.5. This plot also gives the power curve for a
two-sided test of H0: μ = 1000 versus H1: μ �= 1000 when α = 0.01.

From Figure 9.3.5, it is clear that as the value of α increases, the power of the test also
increases, which in turn implies that β the probability of type II error, decreases. Note that
as long as the sample size and other conditions remain the same, α and β move in opposite
directions, so that as α increases β decreases, and as α decreases β increases. However, the
reader should also note that if the sample size increases, then both α and β decrease. It
is also to be noted that sometimes, the question of statistical significance versus practical
significance arises; that is, are our results statistically significant but without practical
implications? We illustrate this point with an example.

Example 9.3.3 (Testing a left-sided hypothesis about μ when σ is known) A random
sample of 36 pieces of copper wire produced in a plant of a wire-manufacturing company
yields the mean tensile strength of X̄ = 975 psi. Suppose that the population of tensile
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strengths of all copper wires produced in that plant is distributed with mean μ and standard
deviation σ = 120 psi. Test at the α = 0.01 level of significance the hypothesis

H0: μ = 980 versus H1: μ < 980

Solution: We solve this problem by taking the stepwise approach:

1. H0: μ = 980 versus H1: μ < 980
2. α = 0.01
3. Use the test statistic

X̄ − μ0

σ/
√

n

4. Since the sample size n = 36 (≥30) is large, then using the central limit theorem, the
test statistic is assumed to be distributed as N(0, 1) to good approximation.

5. Since the test is a left-sided test, use the standard normal distribution tables to
show that the rejection region is as presented in Figure 9.3.1; that is, reject H0 at
significance level α = 0.01 if

Z =
X̄ − μ0

σ/
√

n
< −z0.01 = −2.326

6. The observed value of the test statistic is

Z =
X̄ − μ0

σ/
√

n
=

975 − 980
120/

√
36

= −0.25

which does not fall in the rejection region. Hence, the null hypothesis H0 is not
rejected.

7. The p-value is

P

(
X̄ − μ0

σ/
√

n
< −0.25|μ = μ0 = 980

)
= P (Z < −0.25) = 0.4013

which is greater than α = 0.01.

Thus, the data seem to support the hypothesis that the mean tensile strength of the cop-
per wires manufactured in that plant is 980 psi. In other words, statistically, the observed
value 975 psi is not significantly different from μ0 = 980 psi, and we say that the differ-
ence between the observed value (975 psi) and the desired value (980 psi) is practically
insignificant.

Suppose now that we take a very large sample, say of 10,000 observations, and sup-
pose that the sample average, again, comes out to be X̄ = 975 psi. The value of the test
statistic is

Z =
X̄ − μ0

σ/
√

n
=

975 − 980
120/

√
10,000

= −4.16

and the p-value is P (Z < −4.16) ≈ 0
Hence, we would reject the null hypothesis. In other words, statistically speaking, the

observed value of 975 psi has become significantly different from the hypothesized value,
980 psi. Thus, the statistical significance has departed from the practical significance.
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Example 9.3.4 (Using MINITAB and R) The workers union of a large corporation in
a big metropolitan city demands that each worker should be compensated for travel time
to work since it takes, on the average, at least 75 minutes for each worker to travel to
his/her job. However, the director of human resources believes otherwise and he took a
random sample of 16 workers and found that the average traveling time for these workers
is 68 minutes. Assume that from past experience, the director knows that travel times are
normally distributed (in applications this condition must be verified) with a standard devi-
ation σ = 10 minutes. Do these data provide sufficient evidence to support the directors’s
claim? Use α = 0.05. Find the p-value. Find the size of the probability of the type II error
β if the true travel time is μ = 72 minutes.

MINITAB

Based on the information given to us, the director would like to test the hypothesis

H0: μ = 75 versus H1: μ < 75

To test a hypothesis for the mean at a given significance level using MINITAB, we proceed
as follows:

1. Enter the data in column C1. If the summary statistics are given, as in this example,
then skip this step.

2. If the population standard deviation is not known and the sample data is available,
then using MINITAB calculate the sample standard deviation for the data.

3. Select Stat > Basic Statistics > 1-Sample Z in the pull-down menu. This prompts
a dialog box One-Sample Z for the Mean to appear on the screen. Note that we
use One-Sample Z since the population is normal. If population is not given to
be normal, then to use 1-Sample Z command, the sample size must be larger (at
least 30).

4. Select Summarized data from the pull-down menu in the dialog box and make the
necessary entries as in the left panel shown below. If data are given, then select One
or more samples, each in a column from the pulldown menu, and enter C1 in the
box that appears below the pulldown menu (as in the right panel shown below). Enter
the value of the population standard deviation in a box next to Known standard
deviation.

5. Check the box next to perform hypothesis test and enter value of μ under the
null hypothesis.
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6. Check Options, which prompts another dialog box to appear. Enter the desired
confidence level in the box next to Confidence level and enter the appropriate
alternative hypothesis (not equal to, less than, or greater than). In each dialog box
click OK. The MINITAB output shows up in the session window as given below:

–2.80        0.003

Descriptive Statistics

N       Mean    SE Mean                              for μ

Test

Null hypothesis H0: μ = 75

Alternative hypothesis H1: μ < 75

Z-Value    P-Value

95% Upper Bound

16       68.00            2.50                             72.11

μ: mean of Sample 
Known standard deviation = 10

Since the p-value is 0.003, which is less than the level of significance 0.05, we reject H0 in
favor of the alternative H1, that is, the data do support the directors’s claim.

Interpretation: Based on this statistical testing procedure with significance level of 0.05,
we do have sufficient evidence (p-value = 0.003) to conclude that on average it takes less
than 75 minutes to travel to work place for its workers.

MINITAB is also equipped to find sample size and power of the test as long as we are
given the value of one of them. The probability of the type II error β, at a given value of
μ1, is equal to 1 − power. In this example, we are given the sample size, so we proceed to
find the power of the test, if μ1 = 72, as follows:

1. Select Stat > Basic Statistics > 1-Sample Z (or one of the other options such as
1-Sample t, 2-Sample t, or other appropriate choice). This prompts a dialog box
Power and Sample Size for 1-Sample Z to appear on the screen.

2. In this dialog box, enter the value of Sample size (or power value) if you want to
find the value of power (or sample size) and the Difference, where

Difference = μ1 − μ0 = 72 − 75 = −3

3. Enter the value of Standard Deviation.
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4. Select Options command and make the necessary entries in the new dia-
log box. In each dialog box, click OK. The MINITAB output shows up
in the session window as given below, and it provides the above power
curve.

0.328213

1-Sample Z Test

Testing mean = null (versus < null)

Calculating power for mean = null + difference

α = 0.05 Assumed standard deviation = 10

Results

Sample

Difference Size Power

–3 16

We have γ(72) = 0.3282 so that the type II error β = 1 − 0.3282 = 0.6718.

USING R

Since, in this example, only the summary statistics were provided, we can use the built in
‘zsum.test()’ function in the ‘BSDA’ library in R. To conduct the test in Example 9.3.4,
we may run the following code in the R Console window:

install.packages(“BSDA”)
library(BSDA)
zsum.test(mean.x = 68, sigma.x = 10, n.x = 16, alternative = “less”,

mu = 75, conf.level = 0.95)

#R output
One-sample z-Test
data: Summarized x
z = -2.8, p-value = 0.002555
alternative hypothesis: true mean is less than 75

For these data, we find that the value of the Z test statistic is −2.8, and the calculations
return the corresponding p-value of 0.003. Since the p-value is less than the alpha-level of
0.05, we reject the null hypothesis as we did in MINITAB.

To determine the type II error, first we calculate the power at μ = 72. This can be
done by using the ‘pwr.norm.test()’ function in ‘pwr’ library in R. The following R code
can be used to complete Example 9.3.4. Note that the value of effect size d is calculated
as d = (μ1 − μ0)/σ = (72 − 75)/10 = −0.3.
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install.packages(“pwr”)
library(pwr)
pwr.norm.test(d = -0.3, n = 16, sig.level = 0.05, alternative = “less”)

#R output
Mean power calculation for normal distribution with known variance
d = -0.3
n = 16
sig.level = 0.05
power = 0.3282128
alternative = less

We have γ(72) = 0.3282 so that the type II error β = 1 − 0.3282 = 0.6717872.

PRACTICE PROBLEMS FOR SECTION 9.3

1. An existing process used to manufacture paint yields daily batches that have been
fairly well established to be normally distributed with mean μ = 800 tons, σ = 30
tons. A modification of this process is suggested with the view of increasing pro-
duction. Assume that the daily yields, using the modified process, are distributed
as N(μ, (30)2), and suppose that a sample taken on 100 randomly chosen days of
production using the modified process yields an average of X̄ = 812 tons. Test at the
1% level of significance H0: μ = 800 versus H1: μ > 800. What is the power of the
test at μ = 810? Graph the power function.

2. A machine used for producing “quarter inch rivets is to be checked by taking a
random sample of 10 rivets and measuring their diameters. It is feared that the
wear-off factor of the machine will cause it to produce rivets with diameters less than
1/4 in. Describe the critical region in terms of X̄, the average of the 10 diameters, for a
1% significance test of H0: μ = 0.25 versus H1: μ < 0.25. Assume that the diameters
are distributed as N(μ, (0.0015)2) for a wide range of values of μ. What is the power
of the test at μ = 0.2490? Graph the power curve of the test.

3. Referring to Problem 1, suppose that the sample taken on 100 randomly chosen days
of production using the modified process yields an average of X̄ = 785 tons. Test at
the 1% level of significance: H0: μ = 800 versus H1: μ < 800. What is the power of
the test at μ = 790?

4. Referring to Problem 1, test at the 5% level of significance: H0: μ = 800 versus H1:
μ �= 800. What is the power of the test at μ = 795 and at μ = 805?

5. Refer to Problem 2. Describe the critical region in terms of X̄, the average of the
10 diameters, for a test at level of significance of 1%, of H0: μ = 0.25 versus H1: μ �=
0.25. What is the power of the test at μ = 0.2490?

6. Referring to Problem 2, suppose a new machine was installed recently, and a random
sample of 25 rivets produced yielded an average of the diameters of X̄ = 0.255. Test
at the 5% level of significance:H0: μ = 0.25 versus H1: μ > 0.25. As in Problem 2,
assume that the diameters of rivets produced by the recently installed machine are
distributed as N(μ, (0.0015)2). What is the power of the test at μ = 0.251?
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9.4 TESTS CONCERNING THE MEAN OF A
NORMAL POPULATION HAVING
UNKNOWN VARIANCE

9.4.1 Case of a Left-Tail Test
Suppose that X ∼ N(μ, σ2) but the value of σ2 is unknown and we wish to test the
hypothesis

H0: μ = μ0 versus H1: μ < μ0

on the basis of a sample of size n taken from N(μ, σ2).
In this case, we proceed as follows: Let n, X̄, and S2 be the sample size, sample average,

and sample variance, respectively. For the probability α of the type I error, we choose the
critical region in the (X̄, S)-plane as the set of pairs of values (X̄, S) for which

X̄ − μ0

S/
√

n
< tn−1,1−α = −tn−1,α (9.4.1)

where −tn−1,1−α = tn−1,α is the value of tn−1, the Student t-variable with (n − 1) degrees
of freedom that satisfies

P (tn−1 > tn−1,α) = α (9.4.2)

Thus, for this critical region, we have

P

(
X̄ − μ0

S/
√

n
< −tn−1,α|μ = μ0

)
= α (9.4.3)

with α the desired level of significance. If a sample of size n from N(μ, σ2) has values
of (X̄, S) that satisfy equation (9.4.1), we say that X̄ is significantly smaller than μ0 at
100α% level of significance.

The probability of a type II error of the test above for H0 against alternatives in H1
is given by

β(μ1) = P

(
X̄ − μ0

S/
√

n
> −tn−1,α|μ = μ1

)
(9.4.4)

which may be rewritten as

β(μ1) = P

(
(X̄ − μ1) − (μ0 − μ1)

S/
√

n
> −tn−1,α|μ = μ1

)

= P

(
X̄ − μ1

S/
√

n
>

μ0 − μ1

S/
√

n
− tn−1,α|μ = μ1

)

= P

(
tn−1 >

μ0 − μ1

S/
√

n
− tn−1,α

)
(9.4.5)

The reader should note the striking similarities between equations (9.4.5) and (9.3.9). The
probability in equation (9.4.5) can be evaluated by using one of the statistical packages for
selected values of δ = (μ0 − μ1)/(σ/

√
n). The power of the test, as discussed earlier is given

by γ(μ1) = 1 − β(μ1). Interestingly, it turns out that γ(μ1) depends on the parameter of
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noncentrality for this problem, given by δ = (μ0 − μ1)/(σ/
√

n). The value of δ is known
as soon as we set σ at an assumed value.

Example 9.4.1 (Testing a one-sided hypothesis about μ when σ is unknown) Four deter-
minations of copper in a certain solution yielded an average X̄ = 8.30% with S = 0.03%. If
μ is the mean of the population of such determinations, test, at the 5% level of significance,
the hypothesis

H0: μ = 8.32 versus H1: μ < 8.32

Solution: This is a left-sided test, so, as in previous work, low values of X̄ give evidence
that H1 is true. But in this case, σ is unknown, so that a test statistic is

T =
X̄ − μ0

S/
√

n

Now, because of normality and the fact that n = 4, under H0: T ∼ t3, so the critical region
is

X̄ − μ0

S/
√

n
< t3,0.95 = −t3,0.05 = −2.353

The observed value of the test statistic is

8.30 − 8.32
0.03/

√
4

= −1.333

which is not less than −2.353, and hence, we do not reject the hypothesis H0.

Interpretation: Based on the statistical testing procedure with significance level of 0.05,
we do not have sufficient evidence to conclude that the mean copper determination is less
than 8.32.

9.4.2 Case of a Right-Tail Test
The reader may use the work in Section 9.4.1 to find that for a right-sided test of the
hypothesis

H0: μ = μ0 versus H1: μ > μ0

on the basis of a sample from N(μ, σ2), where σ2 is unknown, the critical region for a
given α consists of the set of pairs of values (X̄, S) for which

X̄ − μ0

S/
√

n
> tn−1,α (9.4.6)

and that the probability β of type II error is

β(μ1) = P

(
tn−1 <

μ0 − μ1

S/
√

n
+ tn−1,α

)
(9.4.7)

This probability can be calculated using one of statistical packages, for selected values
of δ, where δ = (μ0 − μ1)/(σ/

√
n).
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9.4.3 The Two-Tail Case
Now suppose that we want to test the hypothesis

H0: μ = μ0 versus H1: μ �= μ0

on the basis of a sample from N(μ, σ2), where σ2 is unknown, In this case, we choose the
critical region as the set of pairs of values (X̄, S) for which∣∣∣∣X̄ − μ0

S/
√

n

∣∣∣∣ > tn−1,α/2 (9.4.8)

Since
P

(∣∣∣∣X̄ − μ0

S/
√

n

∣∣∣∣ > tn−1,α/2|μ = μ0

)
= α (9.4.9)

we then have the probability of a type I error for the test (equation (9.4.8)) is α. The
probability of the type II error, β, for this test is given by

β(μ1) = P

(
μ0 − μ1

S/
√

n
− tn−1,α/2 < tn−1 <

μ0 − μ1

S/
√

n
+ tn−1,α/2

)
(9.4.10)

If (X̄, S) does (does not) satisfy the inequality in equation (9.4.8), we say that X̄ does
(does not) differ significantly from μ0 at the α level of significance, which is equivalent
to the statement that the 100(1 − α)% confidence interval (X̄ ± tn−1,α/2(S/

√
n)) for

μ does not (does) contain the value μ0 specified as the value of μ under H0.

Example 9.4.2 (Testing a two-tail hypothesis about μ when σ is unknown) In
Example 9.4.1, suppose that we want to test the hypothesis

H0: μ = 8.32 versus H1: μ �= 8.32

at the 5% level of significance.

Noting that n = 4 and that t3,0.025 = 3.182, we find by using equation (9.4.8) that the
critical region is the set of values of X̄ and S for which∣∣∣∣X̄ − 8.32

S/
√

4

∣∣∣∣ > 3.182 (9.4.11)

The observed value of (X̄, S) is (8.30, 0.03), and hence, the left-hand side of equation
(9.4.11) is observed to be ∣∣∣∣8.30 − 8.32

0.03/
√

4

∣∣∣∣ = 1.333

The value 1.333 is less than 3.182, so we do not reject the hypothesis H0.



9.4 Tests Concerning the Mean of a Normal Population Having Unknown Variance 375

Interpretation: Based on the statistical testing procedure with significance level of 0.05,
we do not have sufficient evidence to conclude that the mean copper determination is
different from 8.32.

The p-values for t-tests discussed in this section are again the areas under the left
tail, right tail, or sum of the areas under both the tails of the t-distribution, depending
on whether the test is left-tail, right-tail, or two-tail. Unlike the normal table, the t-table
usually does not contain enough information to calculate the p-value accurately. The statis-
tical packages discussed here are well equipped to evaluate the p-value accurately. We find,
using MINITAB and R, the p-value and type II error for Example 9.4.1 in the following
example, Example 9.4.3.

Example 9.4.3 (Using MINITAB and R) Redo Example 9.4.1 using MINITAB and R.
Find the probability of type II error β at μ1 = 8.31.

MINITAB

In Example 9.4.1, we have X̄ = 8.30% with S = 0.03% and n = 4. Follow the same steps
as given in Example 9.3.4, except, in Step 3, we use Select Stat > Basic Statistics >
1-Sample t. The MINITAB output that appears in the session window is:

–1.33       0.137

T-Value   P-Value

Test

Null hypothesis H0: μ = 8.32

Alternative hypothesis H1: μ < 8.32

Descriptive Statistics

N     Mean       StDev    SE Mean                             for μ 

 4    8.3000     0.0300       0.0150                          8.3353

95% Upper Bond

μ: mean of sample

Since the p-value is 0.137, which is greater than the level of significance 0.05, we do not
reject the null hypothesis.

We now proceed to find the power of the test and the probability of the type II
error β at μ1 = 8.31 that is, we now find β(μ1 = 8.31). Again using the same steps as
given in Example 9.3.4, we obtain the MINITAB output shown here (note that μ1 − μ0 =
8.31 − 8.32 = −0.01.)

0.132426

1-Sample t Test

Testing mean = null (versus < null)

Calculating power for mean = null + difference

α = 0.05 Assumed standard deviation = 0.03

Results

Sample

Difference Size Power

–0.01 4

Since the power is 0.132426, we then have that, β the probability of the type II error at
μ1 = 8.31 is β ≈ 1 − 0.1324 = 0.8676.

USING R

To conduct the one-sample t-test in R, the function ‘tsum.test()’ in R library ‘BSDA’ can
be used. For the information provided in the Example 9.4.3, the t-test can be conducted
by running the following in the R Console window.



376 9 Hypothesis Testing

install.packages(“BSDA”)
library(BSDA)
tsum.test(mean.x = 8.3, s.x = 0.03, n.x = 4, alternative = “less”, mu = 8.32)

#R output
One-sample t-Test
data: Summarized x
t = -1.3333, df = 3, p-value = 0.1373
alternative hypothesis: true mean is less than 8.32

Now, to find the probability of the type II error, first we calculate the power when
μ = 8.31. This can be done by using the ‘pwr.t.test()’ in ‘pwr’ library in R. Note that the
effect size d = (μ1 − μ0)/σ = (8.31 − 8.32)/0.03 = −1/3 should be calculated to input to
the R function. The following R code can be used to complete Example 9.4.3.

pwr.t.test(n = 4, d = -1/3, sig.level = 0.05, type = “one.sample”, alternative = “less”)

#R output
One-sample t test power calculation
n = 4
d = -0.3333333
sig.level = 0.05
power = 0.1324264
alternative = less

Since the power is 0.132426, we then have that the probability of the type II error at
μ = 8.31 is β ≈ 1 − 0.1324 = 0.8676.

PRACTICE PROBLEMS FOR SECTION 9.4

1. Ten determinations of the percentage of water in a certain solution yielded X̄ =
0.453% and S = 0.37%. If μ is the “true” percentage of water in the solution,
assuming normality, test at the 5% level of significance the hypothesis H0: μ =
0.5 versus H1: μ < 0.5.

2. A consumer group complains that the gas tax (in cents per gallon) levied by the
federal, state, and local governments is too high. The following data give the gas tax
(in cents per gallon) in 16 metropolitan areas around the country:

53 42 42 52 58 42 58 38
47 43 59 45 42 49 47 47

Assuming normality, test at the 5% level of significance the hypothesis H0: μ =
50 versus H1: μ > 50.
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3. The following data give the total cholesterol levels of 25 young male adults who are
strict vegetarians:

99 97 110 110 117 91 90 120 113 120 103 115 104
90 95 98 91 93 101 94 112 108 103 120 119

Assuming normality, test at the 1% level of significance the hypothesis H0: μ =
110 versus H1: μ �= 110. Find the p-value.

4. The body temperature of infants rises significantly when they develop a cold. The
following data give the body temperature of 16 infants measured 12 hours after the
symptoms were first detected:

103 102 103 102 104 102 103 103
105 103 106 103 104 102 102 103

Assuming normality, test at the 1% level of significance the hypothesis H0: μ =
103 versus H1: μ �= 103. Find the p-value.

5. The following data give the output voltages of a power supply:

13.76 13.97 13.94 13.81 14.92 13.77 12.64 13.52
13.27 13.83 12.68 14.33 12.81 12.63 12.46 13.98

Assuming normality, test at the 5% level of significance the hypothesis H0: μ =
13.5 versus H1: μ �= 13.5. Find the p-value.

6. The following data give the actual amount of beverage in sixteen “12-oz bottles”:

11.92 12.16 11.67 12.13 11.62 11.44 12.47 11.56
12.24 12.44 11.46 11.50 12.15 12.59 12.02 12.03

Assuming normality, test at the 5% level of significance the hypothesis H0: μ =
12 versus H1: μ �= 12. Find the p-value.

7. A method for determining the percent of impurity in various types of solutions is
known to give determinations having a standard deviation of 0.03. Seven deter-
minations on a certain chemical yield the values 7.18, 7.17, 7.12, 7.13, 7.14, 7.15,
and 7.16. It is important that the chemical does not have more than 7.13% of
impurities. Assuming normality, test at the 5% level of significance the hypothesis
H0: μ = 7.13 versus H1: μ > 7.13. State the critical region explicitly and state your
conclusions.

8. A certain process yields pieces of steel wire with population standard deviation
of their breaking strength equal to 500 psi. A random sample of nine test pieces
of strands from the process yields X̄ = 12, 260. If μ is the mean of the process,
and assuming normality, test at the 5% level of significance the hypothesis H0: μ =
13, 500 versus H1: μ �= 13,500. State your conclusions.
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9.5 LARGE SAMPLE THEORY

In Sections 9.3 and 9.4, we studied tests of hypotheses on a single population mean under
the assumption that the population under investigation is normal. In practice, however,
situations may arise when the population under investigation is not normal. In the previous
sections, we noted that tests of hypotheses on a single population mean are based on the
sample mean X̄. In Chapter 7, we also studied the famous theorem of statistical theory,
the central limit theorem, which states that for sufficiently large sample sizes n (n ≥ 30),
the sample mean X̄ is approximately normally distributed with mean μ and variance σ2/n
regardless of the population distribution, where, of course, μ and σ2 are the population
mean and variance. Thus, if the sample size is sufficiently large, to test hypotheses on a
single population mean, we can use the results obtained in Section 9.3.

We summarize below in Table 9.5.1 the results applicable to test hypotheses on a
single population mean when population is not normal, but the sample size is sufficiently
large:

Table 9.5.1 Population variance known H0: μ = μ0.

Alternative
hypothesis

Test
statistic

Critical
region

H1: μ < μ0
X̄ − μ0

σ/
√

n

X̄ − μ0

σ/
√

n
< −zα

H1: μ > μ0
X̄ − μ0

σ/
√

n

X̄ − μ0

σ/
√

n
> zα

H1: μ �= μ0
X̄ − μ0

σ/
√

n

∣∣∣∣X̄ − μ0

σ/
√

n

∣∣∣∣ > zα/2

Note that if the population standard deviation σ is unknown then the
test statistics and the critical regions remain the same except that σ
is replaced by the sample standard deviation S.

Example 9.5.1 (Testing the quality of tires) A tire manufacturing company claims that
its top-of-the-line tire lasts on average 65,000 miles. A consumer group tested 64 of these
tires to check the claim. The data collected by this group yielded X̄ = 64,000 and standard
deviation S = 4000 miles. Test at the α = 0.05 level of significance the validity of the
company’s claim. Find the p-value of the test.

Solution:

1. H0: μ = 65,000 versus H1: μ < 65,000.
2. α = 0.05.
3. Since in this example, the population standard deviation is unknown, we use

X̄ − μ0

S/
√

n

as a suitable test statistic.
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4. The sample size is 64, which is sufficiently large. Therefore, the test statistic

X̄ − μ0

S/
√

n

is approximately distributed as standard normal if H0 is true.
5. Since the test is left-tail with α = 0.05, the rejection region is

X̄ − μ0

S/
√

n
< −z0.05 = −1.645

6. The value of the test statistic is

Z =
X̄ − μ0

S/
√

n
=

64,000 − 65,000
4000/

√
64

= −2.0

which falls in the rejection region. Thus, we reject the null hypothesis H0 in favor of
H1. The p-value for the test is given by

p-value = P (Z < z) = P (Z < −2.0) = 0.0228

Since the p-value is smaller than α = 0.05, we reject H0.

Interpretation: Based on the statistical testing procedure with significance level of
0.05, we do have sufficient evidence (p-value = 0.023) to conclude that on average the
top-of-the-line tire lasts less 65,000 miles.

PRACTICE PROBLEMS FOR SECTION 9.5

1. A random sample of 50 water canteens of soldiers in a desert region show an average
life of 4.34 years with a standard deviation of 1.93 years. Army experience is such
that canteens are known to have an average life of 4.90 years. Test the hypothesis,
at the 5% level of significance, that “canteen life” in the desert is truly 4.90 years,
against the hypothesis that desert conditions decrease the life of the canteen.

2. Hourly wages of employees in a certain company have become a source of contention.
An impartial arbitrator finds that industry wide hourly wages are approximately
normally distributed with a mean of $11.645 per hour. The arbitrator examines the
earning records of 40 workers selected at random from the company’s payroll list.
He finds that the average is $11.53, with a sample standard deviation of $0.30. Test,
at the 1% level of significance, the assertion (hypothesis) of the company that its
wages conform to industry practices against the assertion (alternative hypothesis)
that wages in this company are lower than that of the industry.

3. An aptitude test has been given over the past many years with a mean performance
of 90. A group of 30 students are preparing for this test and are taught with special
emphasis on remedial reading. The 30 students obtain an average of 94.2 with a
sample standard deviation of 8.5. Has the remedial reading emphasis helped (at the
1% level of significance)?

4. A customer buys most of his wine from a winery in Napa Valley in California.
He wants to check if the bottle-filling machine dispenses the exact amount of wine
indicated on the bottle. He took a random sample of 36 bottles and measured the
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actual amount of wine in them, each bottle containing, according to the label, 25.4
fluid ounces of wine. The data obtained are:

24.77 25.97 24.96 24.53 25.75 25.55 25.83 24.65 24.84 25.26 25.44 25.84
24.46 25.37 24.09 24.93 24.28 24.14 25.16 24.16 24.63 25.11 24.04 25.52
24.68 25.94 25.79 25.42 25.46 25.98 25.87 24.70 24.66 25.12 25.47 25.20

Assuming normality, test at the 5% level of significance the hypothesis H0: μ =
25.4 versus H1: μ �= 25.4. Find the p-value.

5. Suppose in Problem 6 of Section 9.3 that the population standard deviation was
not known. In order to test the hypothesis under consideration, the quality control
engineer decided to take a random sample of 49 rivets and measure their diameters.
The data obtained are as follows:

0.251 0.256 0.249 0.252 0.255 0.251 0.242 0.241 0.252 0.247 0.243 0.251 0.252
0.251 0.240 0.251 0.258 0.247 0.245 0.256 0.252 0.254 0.259 0.253 0.243 0.240
0.250 0.242 0.251 0.246 0.258 0.241 0.246 0.249 0.252 0.253 0.240 0.252 0.255
0.245 0.241 0.244 0.259 0.252 0.246 0.247 0.255 0.257 0.248

Test at the 5% level of significance H0: μ = 0.25 versus H1: μ > 0.25. Find the
p-value.

9.6 TESTS CONCERNING THE DIFFERENCE OF
MEANS OF TWO POPULATIONS HAVING
DISTRIBUTIONS WITH KNOWN
VARIANCES

9.6.1 The Left-Tail Test
Suppose that X̄1 is the average of a random sample of size n1 from a normal population
N(μ1, σ

2
1), and X̄2 is the average of a random sample of size n2 from a normal population

N(μ2, σ
2
2), where σ2

1 and σ2
2 are both known. We know from Theorem 7.3.8 that X̄1 − X̄2

has the normal distribution N(μ1 − μ2, σ
2
1/n1 + σ2

2/n2). However, if the populations are not
normal but if the sample sizes are sufficiently large, then X̄1 − X̄2 to good approximation
is still distributed as N(μ1 − μ2, σ

2
1/n1 + σ2

2/n2). We wish to test the hypothesis:

H0: μ1 − μ2 = δ0 = 0 versus H1: μ1 − μ2 = δ1 < 0

on the basis of X̄1 − X̄2. This is a left-sided test based on the test statistic X̄1 − X̄2.
The procedure for testing this hypothesis is quite similar to that discussed in

Section 9.3. If the probability of a type I error is to be α, it is evident from the results of
Section 9.3 that the critical region for X̄1 − X̄2 is the set of values X̄1 − X̄2 for which

(X̄1 − X̄2) − δ0√
σ2

1/n1 + σ2
2/n2

< −zα (9.6.1)
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Now under H0: δ0 = 0, so that

P

(
X̄1 − X̄2√

σ2
1/n1 + σ2

2/n2

< −zα

)
= α (9.6.2)

That is, the probability of type I error is α. The probability β of a type II error is the
probability of accepting μ1 − μ2 = δ0 = 0 when μ1 − μ2 = δ1 < 0, so that

β = P

(
X̄1 − X̄2√

σ2
1/n1 + σ2

2/n2

> −zα|μ1 − μ2 = δ1

)
(9.6.3)

or

β = P

(
(X̄1 − X̄2) − δ1√
σ2

1/n1 + σ2
2/n2

> −zα − δ1√
σ2

1/n1 + σ2
2/n2

|μ1 − μ2 = δ1

)
(9.6.4)

which can be written as

β = 1 − Φ

(
−zα − δ1√

σ2
1/n1 + σ2

2/n2

)
= Φ

(
zα +

δ1√
σ2

1/n1 + σ2
2/n2

)
(9.6.5)

We note that if δ0 �= 0 then equation (9.6.5) becomes

β = 1 − Φ

(
δ0 − δ1√

σ2
1/n1 + σ2

2/n2

− zα

)
= Φ

(
δ1 − δ0√

σ2
1/n1 + σ2

2/n2

+ zα

)
(9.6.6)

which is the counterpart to β for the left-sided test in the one-population case in
equation (9.3.9).

Returning to the case δ0 = 0, we have that if X̄1 − X̄2 satisfies equation (9.6.1), then
we say that X̄1 − X̄2 is significantly less than zero or X̄1 is significantly smaller than X̄2
at the α level of significance, and/or that H0 is rejected.

9.6.2 The Right-Tail Test
The case of a right-tail test can be treated in a similar manner as the left-tail test. The
probability of the type II error in this case is given by

β = Φ

(
δ0 − δ1√

σ2
1/n1 + σ2

2/n2

+ zα

)
(9.6.7)

We illustrate this case with the following example.

Example 9.6.1 (Testing two population means) Two random samples have been obtained,
one from each of population I and population II. The two populations have unknown means,
but variances are known to be σ2

1 = 23.4 and σ2
2 = 20.6. The two samples yielded the fol-

lowing sample statistics:

n1 = 50, X̄1 = 38.5 and n2 = 45, X̄2 = 35.8

Test at the α = 0.05 level of significance the hypothesis

H0: μ1 − μ2 = δ0 = 0 versus H1: μ1 − μ2 = δ1 > 0
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Solution: To test the above hypothesis, we proceed as follows:

1. H0: μ1 − μ2 = δ0 = 0 versus H1: μ1 − μ2 = δ1 > 0
2. α = 0.05
3. The test statistic for the testing of the null hypothesis H0: μ1 − μ2 = δ0 = 0 is

(X̄1 − X̄2) − δ0√
σ2

1/n1 + σ2
2/n2

=
X̄1 − X̄2√

σ2
1/n1 + σ2

2/n2

4. If the populations are not given to be normal but the sample sizes are sufficiently
large (as in this example), thenby the central limit theorem and Theorem 7.3.8,
we can easily show that the test statistic is approximately distributed as N(0, 1).
However, if the populations are given to be normal, then there is no restriction on
the sample sizes.

5. Since the hypothesis in this example is right-tail, the rejection region is given by

(X̄1 − X̄2) − δ0√
σ2

1/n1 + σ2
2/n2

> zα = 1.645

6. Substituting the values for X̄1, X̄2, σ
2
1 , σ

2
2, and δ0 = μ1 − μ2 = 0 under the null

hypothesis H0: δ0 = 0, in the test statistic, the observed value of the test statistic is

(38.5 − 35.8) − 0√
23.4/50 + 20.6/45

= 2.806.

This value is larger than 1.645, and hence, we reject the null hypothesis of equal means in
favor of the alternative μ1 − μ2 > 0. In other words, based on the given information, we
can conclude that at the α = 0.05 level of significance, the mean of population I is greater
than the mean of population II.

The p-value of the test using Table A.4 is equal to

p-value = P (Z ≥ z) = P (Z ≥ 2.806) = 0.0026

which is less than 0.05, the level of significance. Thus, we reject H0.

Interpretation: Based on the statistical testing procedure with significance level of 0.05,
we do have sufficient evidence (p-value = 0.0026) to conclude that the mean of the first
population is greater than that of the second population.

The probability of type II error β, say at δ1 = μ1 − μ2 = 1, as the reader may verify,
is given by

β = β(1) = Φ

(
δ0 − δ1√

σ2
1/n1 + σ2

2/n2

+ zα

)

= Φ

(
−1√

23.4/50 + 20.6/45
+ 1.645

)

= Φ(0.6057) = 0.7262

Hence, the power of the test at δ1 = 1 is γ(1) = 1 − β(1) = 1 − 0.7262 = 0.2738.
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9.6.3 The Two-Tail Test
In the two-sided case, the hypothesis to be tested is

H0: μ1 − μ2 = δ0 = 0 versus H1: μ1 − μ2 = δ1 �= 0

In this case, the critical region for the test at the α level of significance consists of the set
of values of X̄1 − X̄2 for which ∣∣∣∣∣ X̄1 − X̄2√

σ2
1/n1 + σ2

2/n2

∣∣∣∣∣ > zα/2 (9.6.8)

The probability of type II error β is given by

β(δ1) = Φ

(
δ0 − δ1√

σ2
1/n1 + σ2

2/n2

+ zα/2

)
− Φ

(
δ1 − δ0√

σ2
1/n1 + σ2

2/n2

− zα/2

)
(9.6.9)

The power of the test, that is, the probability of rejecting δ0 = μ1 − μ2 = 0 when δ1 =
μ1 − μ2 �= 0 is given by

γ(δ1) = 1 − β(δ1)

This may be written as

γ(δ1) = 1 −
[
Φ

(
δ0 − δ1√

σ2
1/n1 + σ2

2/n2

+ zα/2

)
− Φ

(
δ1 − δ0√

σ2
1/n1 + σ2

2/n2

− zα/2

)]
(9.6.10)

If X̄1 − X̄2 does (dose not) satisfy equation (9.6.8), we say that X̄1 does (does not) differ
significantly from X̄2 at the α level of significance, which is equivalent to the statement
that μ1 − μ2 = 0 is not (is) contained within the 100(1 − α)% confidence interval
(X̄1 − X̄2) ± zα/2

√
σ2

1/n1 + σ2
2/n2 for μ1 − μ2. We will discuss further the connection

between the testing of hypotheses and the confidence intervals later in this chapter.

Example 9.6.2 (Testing two population means are equal) Suppose two machines, say M1
and M2, are packaging 6-oz cans of talcum powder. It is known from the past behavior of the
machines that the weights of their respective fillings are normal with standard deviations of
0.04 oz and 0.05 oz, respectively. Suppose 100 cans filled by each machine are emptied, the
contents are carefully weighed, and the sample averages are X̄1 = 6.11 oz and X̄2 = 6.14
oz. We wish to test at the α = 0.01 level of significance the hypothesis

H0: μ1 = μ2 versus H1: μ1 �= μ2,

where μ1 and μ2 are means of populations of weights of fillings produced by machines M1
and M2, respectively.

Solution: We conduct the above testing of hypothesis as follows:

1. H0: μ1 = μ2 versus H1: μ1 �= μ2.
2. α = 0.01.
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3. The test statistic for testing the hypothesis H0: μ1 = μ2 or H0: μ1 − μ2 = 0 is

(X̄1 − X̄2) − δ0√
σ2

1/n1 + σ2
2/n2

=
X̄1 − X̄2√

σ2
1/n1 + σ2

2/n2

4. Using the same argument as in Example 9.6.1, the test statistic is distributed as
N(0, 1), under H0: δ0 = 0.

5. Since the hypothesis in this example is two-sided, the rejection region is given by∣∣∣∣∣ X̄1 − X̄2√
σ2

1/n1 + σ2
2/n2

∣∣∣∣∣ > zα/2

6. Substituting the value of X̄1, X̄2, σ
2
1 , σ

2
2, and the value of δ0 = μ1 − μ2, under the null

hypothesis which is zero in the test statistic, the observed value of the test statistic is

6.11 − 6.14√
0.0016/100 + 0.0025/100

= −4.685

which is smaller than −2.575 (very often 2.575 is used as an approximation of Z0.005 =
2.576), and hence, we reject the null hypothesis and accept the alternative hypothesis.
The p-value of the test using the normal table is equal to

p-value = 2P (Z ≥ |z|) = 2P (Z ≥ 4.685) ≈ 0

Since the p-value is less than 0.01, we reject the null hypothesis.

Interpretation: Based on the statistical testing procedure with significance level of 0.01,
we do have sufficient evidence (p − value ≈ 0) to conclude that the average filling weights
of those two machines differ significantly.

Note that the 99% confidence interval for μ1 − μ2 is

(6.11 − 6.14) ± 2.575
√

0.0016/100 + 0.0025/100 = (−0.03 ± 0.016) = (−0.046,−0.014),

and does not contain the value 0.

Example 9.6.3 (Using MINITAB and R) Do Example (equation (9.6.2)) using
MINITAB and R.

n1 = 100, X̄1 = 6.11, σ1 = 0.04

n2 = 100, X̄2 = 6.14, σ2 = 0.05

MINITAB

We follow the same steps as in Example (equation (9.3.4)), except, in Step 3, we use Select
Stat > Basic Statistics > 2-Sample t. Note that MINITAB does not have the option for
a 2-Sample Z test. Thus, if we use 2-Sample t when the populations are normal, variances
are known, and the sample sizes are small, we will get only approximate results. However,
in this example, even though the populations are normal and variances are known, we
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should get quite good results because the sample sizes are large. The MINITAB output
that appears in the session window is:

–4.69     198       0.000

Method

μ1: mean of Sample 1

μ2: mean of Sample 2

Difference: μ1 – μ2

Equal variances are assumed for this analysis.

Descriptive Statistics

Sample          N     Mean       StDev    SE Mean

Sample 1    100    6.1100     0.0400       0.0040

Sample 2    100    6.1400     0.0500       0.0050

Estimation for Difference

Test

Pooled 99% CI for

Difference StDev Difference

–0.03000    0.04528    (–0.04665, –0.01335) 

Null hypothesis H0: μ1 – μ2 = 0

Alternative hypothesis H1: μ1 – μ2 ≠ 0

T-Value  DF   P-Value

Since the p-value is 0.000, which is less than the level of significance 0.01, we reject the
null hypothesis. That is, based on the present data, we can conclude that the packaging
weights of cans of talcum powder by machines M1 and M2 are not the same.

We now proceed to find the power of the test and the type II error β at μ1 − μ2 = 0.01
(say), and for equal sample sizes, one can use σ =

√
σ2

1 + σ2
2 in Power and Sample Size

for a 1-Sample Z procedure in MINITAB, so that here we use σ =
√

0.042 + 0.052 ≈ 0.064,
and the MINITAB output is:

0.155469

1-Sample Z Test

Testing mean = null (versus ≠ null)

Calculating power for mean = null + difference

α = 0.01 Assumed standard deviation = 0.064

Results

Sample

Difference Size Power

0.01 100

P(type II error) = β = 1 − 0.155469 = 0.844531. For unequal sample sizes, one may use
pooled standard deviation for power calculation in MINITAB, but result may differ from
the true answer, and therefore, using the R approach is suggested.

USING R

Unlike in MINITAB, the exact two-sample z-test can be conducted in R. The built in R
function ‘zsum.test()’ in library ‘BSDA’ can be used for this purpose. For the informa-
tion provided in Example 9.6.3, the two-sample z-test can be conducted by running the
following in the R Console window after installing the R library ‘BSDA’.
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install.packages(“BSDA”)
library(BSDA)
zsum.test(mean.x = 6.11, sigma.x =. 04, n.x = 100, mean.y = 6.14, sigma.y = .05,
n.y = 100, alternative = “two.sided”, mu = 0, conf.level = 0.99)

#R output
Two-sample z-Test
data: Summarized x and y
z = -4.6852, p-value = 2.797e-06
alternative hypothesis: true difference in means is not equal to 0
99 percent confidence interval:
-0.04649336 -0.01350664
sample estimates:
mean of x mean of y
6.11 6.14

Since the p-value is less than 0.01, we have ample evidence to reject the null hypothesis
as we did using MINITAB.

To find the power, we use equation (9.6.10), and it can be implemented in R
as follows:

power = 1-pnorm(-.01/sqrt(.04 ˆ 2/100+.05 ˆ 2/100) + abs(qnorm(0.01/2)))
-pnorm(-.01/sqrt(.04 ˆ 2/100+.05 ˆ 2/100) - abs(qnorm(0.01/2)))

power
#R output
[1]0.155252

PRACTICE PROBLEMS FOR SECTION 9.6

1. A method for determining the percentage of iron in mixed fertilizer is available,
and long experience with the method shows that its determinations are normally
distributed with standard deviation of 0.12%. A company producing a certain type
of fertilizer wishes to compare the findings of its laboratory with those of a state
laboratory. The results are: (n1 = n2 = 3)

Company lab 8.84% 8.86% 9.16%
State lab 8.78% 8.96% 8.62%

Test at the 5% level of significance the hypothesis that both laboratories do equiva-
lent analysis, against the hypothesis that the state laboratory has a downward bias
relative to the company laboratory (assume that σ1 = σ2 = 0.12%).

2. It is known from past experience that two machines, A and B, used in producing
a certain type of thread have standard deviations 0.04 and 0.03, respectively. The
settings of the two machines are changed, and the concern is whether they were both
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set alike. To check this, samples of 10 pieces of thread from machine A and 15 pieces
of thread from machine B are taken at random, and it is found that X̄A = 25.34 and
X̄B = 25.42. Test the hypothesis H0: μA = μB versus H1: μA �= μB . at the 5% level
of significance. Graph the power function of the test.

3. Suppose that random samples of 25 are taken from two large lots of bulbs, A and
B, and that X̄A = 1610 hours and X̄B = 1455 hours. Assuming that the standard
deviation of bulb lives is 200 hours, test at the 5% level of significance the hypothesis
H0: μA − μB = 120 versus H1: μA − μB �= 120. Graph the power function. What is
the power if μA − μB = 100?

4. Refer to Problem 8 of Section 8.4. The following data give the LDL cholesterol levels
of two groups I and II of young female adults. Each member of group I follow a very
strict exercise regimen, whereas in group II, no one does any exercise.

Group I 85 84 76 88 87 89 80 87 71 78
74 80 89 79 87 75 83 84 71 70

Group II 91 105 98 98 98 107 101 101 94 96
103 109 105 103 95 97 95 91 104 107

Suppose that μ1 and μ2 are means of two populations from which the young female
adults in group I and group II have been selected. Assume that the two population
are normally distributed with known variances of 35 and 30, respectively. Test at the
5% level of significance the hypothesis H0: μ1 − μ2 = 0 versus H1: μ1 − μ2 �= 0. Find
the p-value.

5. Refer to Problem 10 of Section 8.4. Two different brands of an all-purpose joint
compound are used in residential construction, and their drying time, in hours, are
recorded. Sixteen specimens for each were selected. Recorded drying times are as
shown below.

Brand I 11.19 10.22 10.29 11.11 10.08 10.14 10.60 10.08
11.28 11.98 11.22 11.97 10.47 10.79 11.98 10.03

Brand II 12.10 13.91 13.32 13.58 12.04 12.00 13.05 13.70
12.84 13.85 13.40 12.48 13.39 13.61 12.37 12.08

Assume that the drying times of two brands are normally distributed with known
variances of 0.5. Test at the 5% level of significance the hypothesis H0: μI − μII =
0 versus H1: μI − μII �= 0. Find the p-value.

6. Two random samples from two normal populations, means μ1 and μ2, and with
standard deviations σ1 = 4.5 and σ2 = 6.2, respectively, produced the following data:

Sample I 40 26 37 44 25 35 35 43 39 29 34 43 34 42 29 38
Sample II 51 40 29 47 43 36 47 38 40 26 26 38 37 27 34 35

(a) Test at the 2% level of significance the hypothesis H0: μ1 − μ2 = 0 versus
H1: μ1 − μ2 �= 0.

(b) Find the p-value for the test and make your conclusions using the p-value. Do
you arrive at the same conclusion as in (a)?
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9.7 TESTS CONCERNING THE DIFFERENCE OF
MEANS OF TWO POPULATIONS HAVING
NORMAL DISTRIBUTIONS WITH
UNKNOWN VARIANCES

9.7.1 Two Population Variances are Equal
If the variances of σ2

1 and σ2
2 are unknown but are assumed to be equal, that is, σ2

1 = σ2
2 =

σ2, where σ2 is unknown, we proceed as follows:

The Left-Tail Test

The problem here is to test at the significance level α the hypothesis

H0: μ1 − μ2 = δ0 = 0 versus H1: μ1 − μ2 = δ1 < 0

on the basis of the information in two samples, one from N(μ1, σ
2) and one from N(μ2, σ

2).
We denote the sizes, averages, and variances of the two samples by n1, X̄1, S

2
1 and n2, X̄2, S

2
2 ,

respectively. This is a left-tail test, and it is evident from Section 8.4 on the estima-
tion of μ1 − μ2 that we can define the critical region for this test as the set of values
(X̄1, X̄2, S1, S2), for which

(X̄1 − X̄2) − δ0

Sp

√
1/n1 + 1/n2

< −tn1+n2−2,α (9.7.1)

where under the null hypothesis δ0 = 0, and where

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
(9.7.2)

Note that when the sample sizes are equal, then

S2
p =

S2
1 + S2

2

2

When H0 is true, it is easily seen that the probability of a type I error when using equation
(9.7.1) is α. The probability of a type II error β is given by

β = P

(
tn1+n2−2 >

δ0 − δ1

Sp

√
1/n1 + 1/n2

− tn1+n2−2,α

)
(9.7.3)

with δ0 = 0.
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The Right-Tail Test
We now consider a right-tail test for the hypothesis

H0: μ1 − μ2 = δ0 = 0 versus H1: μ1 − μ2 = δ1 > 0

Clearly, the critical region for this test consists of the set of values of (X̄1, X̄2, S1, S2) for
which

(X̄1 − X̄2) − δ0

Sp

√
1/n1 + 1/n2

> tn1+n2−2,α (9.7.4)

with δ0 = 0. The probability of making a type I error by this test is α. The probability of
type II error β is given by

β = P

(
tn1+n2−2 <

δ0 − δ1

Sp

√
1/n1 + 1/n2

+ tn1+n2−2,α

)
(9.7.5)

with δ0 = 0.

The Two-Tail Test
If we wish to consider a two-tail test for the hypothesis

H0: μ1 − μ2 = δ0 = 0 versus H1: μ1 − μ2 = δ1 �= 0

then the critical region consists of the set of values of (X̄1, X̄2, S1, S2) for which∣∣∣∣∣ (X̄1 − X̄2) − δ0

Sp

√
1/n1 + 1/n2

∣∣∣∣∣ > tn1+n2−2,α/2 (9.7.6)

with δ0 = 0. Again, we note that the probability of type I error is α. Here, β, the probability
of type II error, is given by

β = P

(
δ0 − δ1

Sp

√
1/n1 + 1/n2

− tn1+n2−2,α/2 < tn1+n2−2 <
δ0 − δ1

Sp

√
1/n1 + 1/n2

+ tn1+n2−2,α/2

)
(9.7.7)

We again remind the reader that if σ2
1 = σ2

2 and if the total sample size n1 + n2 is large
(in practice, n1 + n2 ≥ 62), then tn1+n2−2

∼= Z. This means that the critical region, for
example, defined by equation (9.7.6), may be stated for large n1 + n2 as∣∣∣∣∣ (X̄1 − X̄2) − δ0

Sp

√
1/n1 + 1/n2

∣∣∣∣∣ > zα/2 (9.7.8)

A similar remark applies to equations (9.7.1) and (9.7.4), and we may also modify the
expressions defining β, the probability of the type II error accordingly by replacing tn1+n2−2
by Z, the standard normal random variable.

Example 9.7.1 (Testing two population means when common variance is unknown) Two
methods of determining nickel content of steel, say M1 and M2, are tried on a certain kind
of steel. Samples of four (4) determinations are made by each method, with the following
results:

X̄1 = 3.285%, S2
1 = 0.000033

X̄2 = 3.258%, S2
1 = 0.000092
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As usual, we denote by μ1 and μ2 the means and by σ2
1 and σ2

2 the variances of the
populations of determinations made by methods M1 and M2, respectively. We will assume
that σ2

1 = σ2
2 = σ2 and that nickel contents determined by the two methods are normally

distributed. Suppose that we want to test, at the 5% level of significance, the hypothesis

H0: μ1 = μ2 versus H1: μ1 > μ2

Solution: We conduct the above testing of hypothesis as follows:

1. H0: μ1 = μ2 versus H1: μ1 > μ2.
2. α = 0.05.
3. The test statistic is

(X̄1 − X̄2) − δ0

Sp

√
1/n1 + 1/n2

4. Since the two populations are normal, the test statistic is distributed as Student t
with n1 + n2 − 2 degrees of freedom, if H0: μ1 − μ2 = δ0 = 0 is true.

5. This is a one-sided (right-tail) test with n1 + n2 − 2 = 6; hence the critical region is
given by

(X̄1 − X̄2) − δ0

Sp

√
1/n1 + 1/n2

> t6,0.05 = 1.943

6. The value of S2
p is

3(0.000033) + 3(0.000092)
6

= 0.000063

which gives Sp = 0.00794, and here δ0 = 0. Therefore, the observed value of the test
statistic is given by

0.027
0.00794

√
1/4 + 1/4

= 4.809

which is greater than 1.943; hence, we reject the null hypothesis in favor of the
alternative hypothesis that μ1 > μ2.

Interpretation: Based on the statistical testing procedure with significance level of 0.05,
we do have sufficient evidence to conclude that method 1 provides a higher average nickel
content of steel than method 2.

Example 9.7.2 (Summary data on dimension of rotor shafts – using MINITAB and
R) Rotor shafts of the same diameter are being manufactured at two different facilities of
a manufacturing company. A random sample of size n1 = 60 rotor shafts from one facility
produced a mean diameter of 0.536 in. with a standard deviation of 0.007 in. Another
sample of size n2 = 60 from the second facility produced a mean diameter of 0.540 in. with
a standard deviation of 0.01 in. Assume that the two population variances are equal.

(a) Test the null hypothesis H0: μ1 − μ2 = 0 versus H1: μ1 − μ2 �= 0 at the α = 0.05 level
of significance.

(b) Find the p-value for the test in (a).
(c) Find the size of the type II error β and the power of the test if the true value of

μ1 − μ2 = 0.002.
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MINITAB

In this example, we are given the following summary statistics:

n1 = 60, X̄1 = 0.536, S1 = 0.007 and n2 = 60, X̄2 = 0.540, S1 = 0.010

We again follow the same steps as in Example 9.3.4, except, in Step 3 we select Stat >
Basic Statistics > 2-Sample t, and select the option of equal variances. The MINITAB
output that will appear in the session window is as shown below:

–2.54     118       0.012

Method

μ1: mean of Sample 1

μ2: mean of Sample 2

Difference: μ1 – μ2

Equal variances are assumed for this analysis.

Descriptive Statistics

Sample        N       Mean       StDev    SE Mean

Sample 1    60   0.53600    0.00700     0.00090

Sample 2    60     0.5400       0.0100       0.0013

Estimation for Difference

Test

Pooled 95% CI for

Difference StDev Difference

–0.00400    0.00863    (–0.00712, –0.00088) 

Null hypothesis H0: μ1 – μ2 = 0

Alternative hypothesis H1: μ1 – μ2 ≠ 0

T-Value  DF   P-Value

Since the p-value is 0.012, which is less than the level of significance 0.05, we reject the
null hypothesis in favor of the alternative. That is, based on the given data, we conclude
the two means differ significantly.

We now proceed to find the power of the test and the type II error probability, β if
μ1 − μ2 = −0.002, and noting that the pooled standard deviation 0.0086. Again, using
the same steps as given in Example 9.3.4, we get the MINITAB output as shown below:

0.242314

2-Sample t Test

Testing mean 1 = mean 2 (versus ≠)

Calculating power for mean 1 = mean 2 + difference

α = 0.05 Assumed standard deviation = 0.00863

Results

Sample

The sample size is for each group.

Difference Size Power

–0.002 60

Note that the MINITAB determines the power, only when both sample sizes are equal.
For an estimate of σ, the standard deviation, use the value of pooled estimate, which in
this example is 0.00863. The P(type II error) = β = 1 − 0.242314 = 0.757686.

USING R

The built in R function ‘tsum.test()’ in library ‘BSDA’ can be used to conduct two-sample
t-test. For the information provided in Example 9.7.2, the test can be conducted by running
the following in the R Console window.
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install.packages(“BSDA”)
library(BSDA)
tsum.test(mean.x = 0.536, s.x = 0.007, n.x = 60, mean.y = 0.540, s.y = 0.01,
n.y = 60, alternative = “two.sided”, mu = 0, var.equal = TRUE, conf.level = 0.95)

#R output
Standard Two-Sample t-Test
data: Summarized x and y
t = -2.5383, df = 118, p-value = 0.01244
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.0071206309 -0.0008793691
sample estimates:
mean of x mean of y
0.536 0.540

Since the p-value is less than 0.05, we have sufficient evidence to reject the null hypothesis
as we did using MINITAB.

To find the type II error, we first calculate the power when μ1 − μ2 = −0.002.
This can be done by using the ‘pwr.t.test()’ function in R library ‘pwr’. Note that
d = (μ1 − μ2)/Sp = −0.002/0.00863 = −1/4.315, where 0.00863 is the pooled standard
deviation from the previous calculations. The following R code can be used to complete
Example 9.7.2.

pwr.t.test(n = 60, d = -1/4.315, sig.level = 0.05, type = “two.sample”,
alternative = “two.sided”)

#R output
Two-sample t test power calculation
n = 60
d = 0.2317497
sig.level = 0.05
power = 0.2423142
alternative = two.sided
NOTE: n is number in *each* group

The P(type II error) = β = 1 − 0.2423142 = 0.7576858.

9.7.2 Two Population Variances are Unequal
If σ2

1 �= σ2
2, we use the fact that for sufficiently large values of n1 and n2, the test statistic

(X̄1 − X̄2) − (μ1 − μ2)√
S2

1/n1 + S2
2/n2

(9.7.9)

is approximately distributed as N(0, 1). Thus, by testing hypotheses, we can apply all the
results obtained in Section 9.6 by replacing σ1 and σ2 with S1 and S2, respectively.
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If n1 and n2 are small, equation (9.7.9) is approximately distributed as a Student
t-variable with m degrees of freedom determined by Satterthwaite’s approximation given
in equation (8.4.12). Hence, for this case, we can apply all the results obtained so far in
this section by changing the degrees of freedom from n1 + n2 − 2 to m. We illustrate this
with the following example.

Example 9.7.3 (Testing equality of two population means when two population variances
are unknown and unequal) A new weight control company (A) claims that persons who
use their program regularly for a certain period of time lose on average the same amount of
weight as those who use the program of another well-established company (B) for the same
period of time. Two random samples, the person who used company A’s program and the
second person who used company B’s program, yielded the following summary statistics:

n1 = 12, X̄1 = 20, S1 = 5, and n2 = 10, X̄2 = 22, S2 = 3

(The weight lost is measured in pounds). Test at the α = 0.01 level of significance
that the data do not provide sufficient evidence to support the claim of company A. Find
the p-value of the test. We assume that the two populations are normally distributed with
unequal variances.

Solution: We conduct the above testing of hypothesis as follows:

1. H0: μ1 − μ2 = 0 versus H1: μ1 − μ2 �= 0.
2. α = 0.01.
3. The test statistic for this problem is

T =
(X̄1 − X̄2) − (μ1 − μ2)√

S2
1/n1 + S2

2/n2

4. Here, the two populations are normal with unknown variances, and it is assumed
that the variances are not equal. Thus in this case, the test statistic is distributed as
Student’s t with approximately m degrees of freedom, where

m =

(
S2

1

n1
+

S2
2

n2

)2

(S2
1/n1)

2

n1 − 1
+

(S2
2/n2)

2

n2 − 1

=
8.9

0.48457
= 18.37

so we use m = 19.
5. Since the test is a two-tail test and α = 0.01, the rejection regions are given by

|T | > t19,0.005 = 2.861

6. Substituting the values X̄1, X̄2, S1, S2 and setting μ1 − μ2 under the null hypothesis
H0, we find that the observed value of the test statistic t is

T =
(20 − 22) − (0)√

25/12 + 9/10
≈ −1.16

which does not fall in the rejection region. Thus, we do not reject the null hypothe-
sis H0.
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Since the test is a two-tail test, the p-value is given by p-value = 2P (t ≤ −1.16). From
the t-table with 19 degrees of freedom, the reader can verify that

P (T ≤ −1.328) < P (T ≤ 1.16) < P (T ≤ −1.066)

0.10 < P (T ≤ 1.16) < 0.15

2(0.10) < 2P (T ≤ 1.16) < 2(0.15)

0.20 < p-value < 0.30

That is the p-value of the test is somewhere between 20% and 30%. Hence, we do not
reject H0. (The exact p-value can also be found using one of the statistical packages.)

Interpretation: Based on the statistical testing procedure with significance level of 0.01,
we do not have sufficient evidence (0.20 < p-value < 0.30) to conclude that the mean
weight loss of the two programs do differ.

We repeat the above example using MINITAB and R as follows:

MINITAB

We follow the same steps as in Example 9.3.4, except, in Step 3, we select Stat > Basic
Statistics > 2-Sample t and do not select the option of equal variances. The MINITAB
output that will appear in the session window is as follows:

–1.16     18         0.262

Method

μ1: mean of Sample 1

μ2: mean of Sample 2

Difference: μ1 – μ2

Equal variances are not assumed for this analysis.

Descriptive Statistics

Sample        N       Mean       StDev    SE Mean

Sample 1    12       20.00         5.00               1.4

Sample 2    10       22.00         3.00             0.95

Estimation for Difference

Test

99% CI for

Difference Difference

      –2.00       (–6.97, 2.97) 

Null hypothesis H0: μ1 – μ2 = 0

Alternative hypothesis H1: μ1 – μ2 ≠ 0

T-Value    DF     P-Value

Since the p-value 0.262 is greater than the level of significance, which here is 0.01, we
do not reject the null hypothesis in favor of the alternative. Previously, we had only a
range for the p-value, whereas using MINITAB, we have the exact p-value. Furthermore,
since the sample sizes are not equal, we cannot use MINITAB to find the power of the
test and β, the probability of the type II error. However, the R can be used for this
purpose.

USING R

The built in R function ‘tsum.test()’ in library ‘BSDA’ can be used to conduct two-sample
t-test. For the information provided in the example 9.7.3, the test can be conducted by
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running the following in the R Console window after installing the R library ‘BSDA’. Make
sure to use the option ‘var.equal = FALSE’ to get the Satterthwaite/Welch approximation.

tsum.test(mean.x = 20, s.x = 5, n.x = 12, mean.y = 22, s.y = 3, n.y = 10,
alternative = “two.sided”, mu = 0, var.equal = FALSE, conf.level = 0.95)

#R output
Welch Modified Two-Sample t-Test
data: Summarized x and y
t = -1.1579, df = 18.367, p-value = 0.2617
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-5.623586 1.623586
sample estimates:
mean of x mean of y
20 22

To find the type II error when μ1 − μ2 = 1, we can use the following manual R code.
To complete Example 9.7.3, we use the given information.

#We assign numerical values for the pre-defined variables.
alpha = 0.05; df =18; diff = -1; sd1 = 5; n1 = 12; sd2 = 3; n2 = 10
ncp = (diff)/sqrt(sd1 ˆ 2/n1 + sd2 ˆ 2/n2)

#Probability of type II error
pt(qt(1-alpha/2,df),df, ncp)-pt(qt(alpha/2,df),df,ncp)

#R output
[1] 0.9148622

The P(type II error) = β = 0.9148622.

9.7.3 The Paired t-Test
In Sections 9.6 and 9.7, we studied the testing of hypotheses about the difference of two
population means on the basis of two independent random samples, one sample from
each population. Quite often, for various reasons, the experiments are designed in such a
way that the data are collected in pairs, that is, two observations are taken on the same
subject or experimental unit. Consequently, these two observations are not independent.
We encounter these kind of data in various fields such as medicine, psychology, the chemical
industry, and engineering. For example, a manager may want to evaluate the productivity
of her workers before and after a training session; a nurse collects blood samples to test
the serum-cholesterol level of patients before and after a treatment; a psychologist treats
patients with similar mental disorders and takes two observations on each patient, one
before and the other after treatment.

Data collected in this manner are usually known as paired data. Since the data col-
lected have two observations on each subject, there is an implicit dependency between
the two samples, one collected before an action and the other afterward. However, if we
use the techniques of testing hypotheses discussed earlier in Section 9.7.1, where we had
independent samples, then the results may turn out to be inaccurate.
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Since the pairs of data are usually collected before and after a treatment, these data
are sometimes called before and after data. The test method to test a hypothesis about
the two means is called the paired t-test.

We now consider the problem that arises when we perform an experiment on n sub-
jects, producing the n pairs of random variables (Y11, Y12), (Y21, Y22), . . . , (Yn1, Yn2), where
(Yi1, Yi2) is the pair of measurements obtained from the ith subject. It is assumed that
the differences Yi2 − Yi1 = Xi, i = 1, . . . , n, are n independent random variables all hav-
ing identical normal distributions, namely N(μ, σ2). Thus, the n differences (X1, . . . ,Xn)
are essentially a random sample of size n from N(μ, σ2). Let X̄ and S2 be the aver-
age and variance of this sample of X’s. Then, the problem is to test the hypothesis
[μ = E(X) = E(Y1 − Y2)].

H0: μ = μ0 versus H1: μ �= μ0

The critical region for the test consists of the pairs (X̄, S) for which

∣∣∣∣X̄ − μ0

S/
√

n

∣∣∣∣ > tn−1,α/2 (9.7.10)

which is a special case of the two-sided test discussed in Section 9.4, with μ0 = 0.

Example 9.7.4 (Testing equivalence of two methods using paired t-test) Bennett and
Franklin (1954) quote the following example of the use of the t test for a paired comparison
problem. Table 9.7.1 gives the results of experiments on 21 different samples of iron ore
using a standard dichromate titrimetric method and a new spectrophotometric method for
the determination of the iron ore content of the 21 samples of iron ore. We wish to test
μ = 0 (at the 5% level of significance) against μ �= 0, where μ is the mean of the population
of differences. From the data of Table 9.7.1, we find that X̄ = 0.0133, S = 0.0500, and
hence, the test statistic in equation (9.7.10) has the value

(0.0133)/(0.05/
√

21) = 1.22

Using Table A.5, we find t20,.025 = 2.086. Hence, we do not reject the null hypothesis that
μ = 0 and say that the present data show that the two methods do not differ significantly
at the 5% level.

Before proceeding to the next section, we remind the reader that for sufficiently large
degrees of freedom, say m, the Student t-variable with m degrees of freedom is approxi-
mately an N(0, 1) variable; that is for m large, tm

∼= Z. This means that if n is large, the
critical regions of the tests discussed previously can be defined by replacing probability
points of the tn−1 distribution with the corresponding point of the N(0, 1) distribution.
For example, the critical region defined by equation (9.7.10) may be stated for sufficiently
large n, as |(X̄ − μ0)/(S/

√
n)| > zα/2, and so on.

Example 9.7.5 (Using MINITAB and R) Use the data in Example 9.7.4 to test
μ = E(Xi) = E(Yi1 − Yi2) = 0 (at the 5% level of significance) against μ �= 0, where μ is
the mean of the population of differences. Find the p-value, the probability of type II error
β, and the power of the test at μ1 = 0.03.
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Table 9.7.1 Results of treating samples of iron ore with standard
and new methods.

Sample Standard method Yi1 New method Yi2 Xi = Yi2 − Yi1

1 28.22 28.27 +0.05

2 33.95 33.99 +0.04

3 38.25 38.20 −0.05

4 42.52 42.42 −0.10

5 37.62 37.64 +0.02

6 36.84 36.85 +0.01

7 36.12 36.21 +0.09

8 35.11 35.20 +0.09

9 34.45 34.40 −0.05

10 52.83 52.86 +0.03

11 57.90 57.88 −0.02

12 51.52 51.52 0.00

13 49.49 49.52 +0.03

14 52.20 52.19 −0.01

15 54.04 53.99 −0.05

16 56.00 56.04 +0.04

17 57.62 57.65 +0.03

18 34.30 34.39 +0.09

19 41.73 41.78 +0.05

20 44.44 44.44 0.00

21 46.48 46.47 −0.01

MINITAB

To test a hypothesis for the mean μ at a given significance level, we proceed as follows:

1. Enter the data for the standard and new method in columns C1 and C2 of the Data
window, respectively.

2. From the Menu bar, select Stat > Basic Statistics > Paired t. This will prompt
a dialog box Paired t for the Mean to appear on the screen.

3. In the dialog box, select Each sample is in a column and select ‘New method’ as
the Sample 1 and ‘Standard method’ as the Sample 2.

4. Check Options, which prompts another dialog box to appear. Enter the desired
confidence level in the box next to Confidence level, enter zero next to Hypoth-
esized difference, and enter the appropriate alternative hypothesis. In each dialog
box, click OK. MINITAB output shows up in the Session window as:
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  1.22        0.236

Estimation for Paired Difference

Mean       StDev    SE Mean       μ_difference 

Test

Null hypothesis H0: μ_difference = 0

Alternative hypothesis H1: μ_difference ≠ 0

T-Value    P-Value

Descriptive Statistics

Sample                      N       Mean       StDev    SE Mean

New method             21       43.90         9.13             1.99

Standard method      21       43.89         9.14             1.99

95% Cl for

0.0133     0.0500         0.0109   (–0.0094, 0.0361)

μ_difference: mean of (New method - Standard method)

Since the p-value is 0.236, which is greater than the level of significance 0.05, we do not
reject H0; that is the data do not indicate that the new method has shown any significant
improvement or deterioration.

Now, we proceed to find the type II error β and the power of the test at μ1 = 0.03.

1. Select Stat > Power and Sample Size > 1-Sample t, since this is a paired t-test.
This will prompt a dialog box Power and Sample Size for 1-Sample t to appear
on the screen.

2. In this dialog box, enter the value of Sample size (21), the Difference (0.03),and
the value of Standard deviation of paired differences (0.05).

3. Select Options and make the necessary entries in the new dialog box that appears. In
each dialog box, click OK. The Minitab output will show up in the Session window
as given below:

0.743983

Paired t Test

Testing mean paired difference = 0 (versus ≠ 0)

Calculating power for mean paired difference = difference

α = 0.05 Assumed standard deviation of paired differences = 0.05

Results

Sample

Difference Size Power

0.03 21

The type II error β = 1 - 0.743983 = 0.256017.

USING R

The built in R function ‘t.test()’ in library ‘stats’ can be used to conduct paired t-test.
For the information provided in the example 9.7.5, the test can be conducted by running
the following code in the R Console window after installing the ‘stats’ library in R.
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Standard = c(28.22,33.95,38.25,42.52,37.62,36.84,36.12,35.11,34.45,
52.83,57.9,51.52,49.49,52.2, 54.04,56,57.62,34.3,41.73,44.44,46.48)
New = c(28.27,33.99,38.2,42.42,37.64,36.85,36.21,35.2,34.4,52.86,
57.88, 51.52,49.52,52.19,53.99, 56.04,57.65,34.39,41.78,44.44,46.47)

library(stats)
t.test(New, Standard, paired = TRUE)

#R output
Paired t-test
data: New and Standard
t = 1.2212, df = 20, p-value = 0.2362
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.009441562 0.036108229
sample estimates:
mean of the differences
0.01333333

Just as we found using MINITAB, the p-value is 0.236, which is greater than the level of
significance 0.05, so that we do not have sufficient evidence to reject the null hypothesis
that the means are equal.

To find the type II error, first we calculate the power when μ1 = 0.03. This can be
done by using the ‘pwr.t.test()’ function in R library ‘pwr’. Note that d = μ1/std(New −
Standard). The following R code can be used for this purpose.

pwr.t.test(n = 21, d = 0.03/sd(New-Standard), sig.level = 0.05,
type = “paired”, alternative = “two.sided”)

#R output
Paired t test power calculation
n = 21
d = 0.5996004
sig.level = 0.05
power = 0.7434236
alternative = two.sided
NOTE: n is number of *pairs*

The P(type II error) = β = 1-0.7434236 = 0.2565764. This answer is more accurate than
the one we obtain from MINITAB as we did not round the standard deviation estimate.

PRACTICE PROBLEMS FOR SECTION 9.7

1. A machine is used to package “4-oz” boxes of a certain brand of gelatin powder. A
modification is suggested to increase the speed of the operation, but there is some
concern that the modified settings will cause the machine to fill the boxes with less
powder than before. Accordingly, 50 boxes are filled before and after modification
with the following results:

Before : n1 = 50, X̄1 = 4.091
After : n2 = 50, X̄2 = 4.075
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Assuming that the machine yields packages whose weights are N(μ, (0.05)2) for a
wide range of values of μ, test at the 5% level of significance the hypothesis

H0: μ(after) = μ(before) versus H1: μ(after) < μ(before)

Note that the two samples are independent. (Note: In this problem, variances are
known.)

2. Nicotine determinations were made on each of six standard units of tobacco at each
of two laboratories, say A and B, with the results shown below: (g = grams)

A : Nicotine content (g) B : Nicotine content (g)

26, 24, 28, 27, 32, 30 28, 31, 23, 29, 33, 32

Test the hypothesis that the results of two laboratories are not significantly different
at the 5% level of significance. Assume equal variances.

3. An experiment to determine the viscosity of two different brands of car oil, A and
B, gives the results shown below. Test the hypothesis H0: μA − μB = 0 at the 5%
level of significance against the alternatives H1: μA − μB �= 0. Assume normality of
the two populations with equal variances.

A: Viscosity 10.28 10.27 10.30 10.32 10.27 10.27 10.28 10.29
B: Viscosity 10.31 10.31 10.26 10.30 10.27 10.31 10.29 10.26

4. The following data give the productivity scores of 10 workers before and after a
training program:

Before 95 97 105 94 103 97 98 95 100 95
After 105 111 111 106 106 104 105 102 106 102

Do these data provide sufficient evidence at the 5% level of significance that the
training program has an effect? What assumption do you need to make in order to
carry out this test?

5. The following data give the systolic blood pressures of 10 patients before and after
their cardiologist switched them to a new drug therapy program:

Before 150 156 142 162 160 144 145 153 144 164
After 133 128 131 138 131 146 137 140 148 138

Do these data provide sufficient evidence at the 5% level of significance that the new
drug therapy program is effective? What assumption do you need to make in order
to carry out this test? Find the p-value.
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6. Repeat Problem 2, assuming that the variances are not equal.
7. Repeat Problem 3, assuming that the variances are not equal.
8. Hemoglobin determinations were made on two sets of 11 animals that were exposed

to two different environments. Each set had 11 animals. The data obtained is given
below.

Set I 12.8 12.4 12.6 13.5 13.9 12.5 13.4 14.0 12.7 12.2 12.4
Set II 13.9 13.6 14.2 13.1 14.9 15.3 13.8 13.8 14.2 15.7 14.5

Test the hypothesis H0: μ1 − μ2 = 0 at the 5% level of significance against the alter-
natives H1: μ1 �= μ2. Assume normality of the two populations, means μ1 and μ2,
and with equal variances.

9.8 TESTING POPULATION PROPORTIONS

So far in this chapter, we have discussed methods of testing of hypotheses about popula-
tion means. In this section, we discuss techniques of testing hypotheses about population
proportions. In applications, it is quite common that we want to test such hypotheses.
For example, we may be interested in verifying the percentage of the defective product
manufactured by a company, or we may be interested in the percentage of the population
of a country that is infected by HIV, or the proportion of employees of a company who
are not happy with health insurance, or the proportion of students of a class who have
made honors, or the proportion of drivers who are going above the posted speed limit on
a given highway. We now proceed with testing a hypothesis about one population propor-
tion; later in this section, we discuss methods of testing hypotheses about the difference
of two population proportions.

9.8.1 Test Concerning One Population Proportion
Let Y1, Y2, . . . , Yn be a random sample from a dichotomous population or a population of
Bernoulli trials with parameter p. Let X = ΣYi be the total number of elements in the
sample that possess the desired characteristic (success). From Chapter 8, we know that the
sample proportion p̂ = X/n is a point estimator of p. From Chapter 8, we also know that for
large n (np ≥ 5, n(1 − p) ≥ 5) or if p unknown, (np̂ ≥ 5, n(1 − p̂) ≥ 5) the estimator p̂ is
distributed approximately by the normal distribution with mean p and variance p(1 − p)/n.
Using this result, we are now ready to discuss the testing of a hypothesis about the
population proportion p. Under the assumption that the sample size is large, we discuss
the following hypotheses about the population proportion:

H0: p = p0 versus H1: p < p0 (9.8.1a)

H0: p = p0 versus H1: p > p0 (9.8.1b)

H0: p = p0 versus H1: p �= p0 (9.8.1c)

Since the method of testing these hypotheses follows the same techniques that we used
to test hypotheses about the population mean, we illustrate the method with the following
example.
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Example 9.8.1 (Testing a population proportion) A set of environmentalists in the
United States believe that sport utility vehicles (SUVs) consume excessive amount of
gasoline and are thus “big” polluters of our environment. An environmental agency wants
to find what proportion of vehicles on US highways are SUVs. Suppose that a random
sample of 500 vehicles collected from highways in various parts of the country shows that
120 out of 500 vehicles are SUVs. Do these data provide sufficient evidence that 25% of
the total vehicles driven in the US are SUVs? Use α= 0.05 level of significance. Find the
p-value of the test.

Solution: From the given information, we have

n = 500;X =
∑

Yi = 120

where Yi is 1 if the vehicle spotted is an SUV and 0 otherwise, so that X is the total
number of SUVs in the sample. Thus,

p̂ = X/n = 120/500 = 0.24

Now, to test the desired hypothesis, we take the following steps:

1. H0: p = p0 = 0.25 versus H1: p �= 0.25.
2. α = 0.05.
3. We consider the pivotal quantity (see Chapter 8) for p as the test statistic, that is

Z =
p̂ − p0√

p0(1 − p0)/n
(9.8.2)

4. Now if H0 is true, np0 = 500(0.25) = 125 > 5, and n(1 − p0) = 500(1 − 0.25) = 375 >
5, so that according to our criteria, the sample size is deemed large. The test statistic
in equation (9.8.2) is therefore approximately distributed as standard normal N(0, 1).

5. Since the test is a two-tail test and α = 0.05, the rejection regions are given by

|Z| > zα/2 = 1.96

6. Since p0 = 0.25, and p̂ = 0.24, the value of the test statistic is

Z =
0.24 − 0.25√

0.25(1 − 0.25)/500
= −0.516,

which does not fall in the rejection region.
Thus, we do not reject the null hypothesis H0.

Since the test is a two-sided, the p-value is given by

p-value = 2P (Z ≥ |z|) = 2P (Z ≥ 0.516) = 2(0.3030) = 0.6060

which is greater than the 5% level of significance, and we fail to reject the null hypothesis
H0. Thus, using the p-value, we arrive at the same decision.

Interpretation: Based on the statistical testing procedure with significance level of 0.05,
we do not have sufficient evidence (p-value = 0.606) to conclude that the percentage of
SUVs on US highways is different from 25%.
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Example 9.8.2 (Using MINITAB and R) A civil engineer checked 50 concrete slabs for
breaking strength. These concrete slabs were prepared by using a special mix. The engineer
found that only 28 slabs either met or exceeded the desired standard of level of breaking
strength. Does this summary statistic provide sufficient evidence at the 1% level of sig-
nificance that less than 60% of the slabs would meet the desired standard? Find β, the
probability of the type II error at p1 = 0.58.

MINITAB

From the given information, we formulate the hypothesis as

H0: p = 0.60 versus H1: p < 0.60.

To test this hypothesis using MINITAB, we proceed as follows:

1. Select Stat > Basic Statistics > 1 Proportion.This prompts a dialog box titled
One-Sample Proportionto appear on the screen.

2. From the pulldown menu on the dialog box, select Summarized data. Then, enter
Number of events (successes) and Number of trials.

3. Check the Perform hypothesis test and enter the value of the null hypothesis in
the box next to Hypothesized proportion. Then, select Options and make the
necessary entries in the new dialog box that appears. Make sure to select Exact or
Normal approximation from the pulldown Method menu. In each dialog box, click
OK. The Minitab output shows up in the Session window as given below.

p: event proportion

Normal approximation method is used for this analysis.

–0.58        0.282

Test

Null hypothesis H0: p = 0.6

Alternative hypothesis H1: p < 0.6

Z-Value    P-Value

Descriptive Statistics

Method

N       Event       Sample p                           for p

50           28      0.560000                    0.723309

p: event proportion

Exact method is used for this analysis.

0.330

Test

Null hypothesis H0: p = 0.6

Alternative hypothesis H1: p < 0.6

P-Value

Method

99% Upper Bound

Descriptive Statistics

N       Event       Sample p                           for p

50           28      0.560000                    0.722574

99% Upper Bound

Since the p-value is larger than the level of significance 1%, we do not reject H0; that is
the data provide insufficient evidence to conclude that the new mixture is producing less
than 60% of the slabs that meet the standard.

To find the type II error β, we first find the power at p1 = 0.58.

1. Select Stat > Power and Sample Size > 1 Proportion. This prompts a dialog
box Power and Sample Size for 1 Proportion to appear on the screen.
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2. In this dialog box enter the value of Sample sizes, the Comparison proportions,
and the Hypothesized proportion.

3. Select Options and make the necessary entries in the new dialog box that appears.
Then, in each dialog box, click OK. The MINITAB output shows up in the Session
window as given below:

0.0215593

Test for One Proportion

Testing p = 0.6 (versus < 0.6)

α = 0.01

Results

Sample

Comparison p Size Power

0.58 50

Hence, the probability of the type II error is β = 1 − power = 1 − 0.0215593 = 0.9784.

USING R

The built in R functions ‘prop.test()’ and ‘binom.test()’ in library ‘stats’ can be used to
conduct one sample normal approximation and exact binomial tests, respectively. For the
information provided in Example 9.8.2, the test can be conducted by running the following
R code in the Console window after installing the R library ‘stats’.

#Normal approximation
prop.test(28, 50, p = .6, alternative = “less”, conf.level = 0.99, correct = FALSE)
#Note: This test outputs the squared value of the test statistic,
i.e., X-squared = Z2 in equation (9.8.2).

#R output
1-sample proportions test without continuity correction
data: 28 out of 50, null probability 0.6, X-squared = 0.33333,
df = 1, p-value = 0.2819, alternative hypothesis: true p is less than 0.6
99 percent confidence interval:
0.0000000 0.7093798
sample estimates:
p
0.56

#Exact Binomial test
binom.test(28, 50, p = 0.6, alternative = “less”, conf.level = 0.99)

#R output
Exact binomial test
data: 28 and 50
number of successes = 28, number of trials = 50, p-value = 0.3299
alternative hypothesis: true probability of success is less than 0.6
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99 percent confidence interval:
0.0000000 0.7225742
sample estimates:
probability of success
0.56

Just as we found using MINITAB, the p-values are 0.282 (normal approximation) and 0.330
(exact test), which are greater than the alpha-level of 0.01, so we do not have sufficient
evidence to reject the null hypothesis.

To find the type II error, first we calculate the power when p = 0.58. This can be done by
using the ‘pwr.p.test()’ function in R library ‘pwr’. Note that the effect size h has to be
calculated and inputted in the power calculation, which can be done by using the ‘ES.h()’
function. The following R code can be used to complete Example 9.8.2.

h = ES.h(0.58, .6)
pwr.p.test(h = h, n = 50, sig.level = 0.01, power = NULL, alternative = “less”)

#R output
proportion power calculation for binomial distribution (arcsine transformation)
h = -0.04066727
n = 50
sig.level = 0.01
power = 0.02073565
alternative = less

The P(type II error) =β = 1-0.02073565 = 0.97926435. This answer is slightly different
from the one we obtain from MINITAB.

9.8.2 Test Concerning the Difference Between Two
Population Proportions

Consider two binomial populations with parameters n1, p1 and n2, p2, respectively, where
n1 and n2 are large. Then, we are usually interested in testing hypotheses such as

H0: p1 = p2 versus H1: p1 < p2 (9.8.3a)

H0: p1 = p2 versus H1: p1 > p2 (9.8.3b)

H0: p1 = p2 versus H1: p1 �= p2 (9.8.3c)
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The above hypotheses can equivalently be written as

H0: p1 − p2 = 0 versus H1: p1 − p2 < 0 (9.8.4a)

H0: p1 − p2 = 0 versus H1: p1 − p2 > 0 (9.8.4b)

H0: p1 − p2 = 0 versus H1: p1 − p2 �= 0 (9.8.4c)

We illustrate the method of testing these hypotheses with the following example:

Example 9.8.3 (Testing equivalence of two population proportions) A computer-
assembly company gets all its chips from two suppliers. The company knows from
experience in the past both suppliers have supplied a certain proportion of defective chips.
The company wants to test alternative hypotheses: (a) supplier I supplies a smaller
proportions of defective chips, (b) supplier I supplies a higher proportions of defective
chips, or (c) the suppliers do not supply the same proportions of defective chips. To
achieve this goal, the company took two random samples, one from the chips supplied by
supplier I and the other from those supplied by supplier II. It was found that in the first
sample of 500 chips, 12 were defective, and in the second sample of 600 chips, 20 were
defective. Test each of the three hypotheses at the α = 0.05 level of significance. Find the
p-value for each test.

Solution: From the given data, we have

n1 = 500, X1 = 12, p̂1 = X1/n1 = 12/500 = 0.024

n2 = 600, X2 = 20, p̂2 = X2/n2 = 20/600 = 0.033

where X1 and X2 are the number of defective chips in samples I and II, respectively.
To test the desired hypotheses, we proceed as follows:

1. (a) H0: p1 − p2 = 0 versus H1: p1 − p2 < 0
(b) H0: p1 − p2 = 0 versus H1: p1 − p2 > 0
(c) H0: p1 − p2 = 0 versus H1: p1 − p2 �= 0

2. α = 0.05.
3. We consider the pivotal quantity for p1 − p2 as the test statistic, that is

Z =
(p̂1 − p̂2) − (p1 − p2)√

p1(1 − p1)/n1 + p2(1 − p2)/n2

(9.8.5)

with p1 − p2 = 0 under the null hypothesis.
4. Since n1p̂1 = 500(0.024) = 12 > 5 and n1(1 − p̂1) = 500(1 − 0.024) = 488 > 5, we

have reassurance in asserting that the sample size n1 is large. Similarly, we can
verify that the sample size n2 can also be considered large. Thus, we assume that
the test statistic in equation (9.8.5) is approximately distributed by the standard
normal N(0, 1).

5. Since the test statistic is approximately normally distributed, the rejection regions for
testing hypotheses (a), (b), and (c) at the α = 0.05 level of significance are given by

(a) Z < −zα (b) Z > zα (c) |Z| > zα/2



9.8 Testing Population Proportions 407

6. Since under the null hypothesis p1 − p2 = 0, we substitute the observed values of
p̂1, p̂2 and p1 − p2 = 0 in the numerator of equation (9.8.5) and the values of p1
and p2 in the denominator. However, here p1 and p2 are unknown, but under the
null hypothesis, p1 = p2 = p (say), we can estimate p by pooling the two samples,
that is

p̂ = (X1 + X2)/(n1 + n2) (9.8.6)

We then replace p1 and p2 in the denominator with p̂. In this example, we have

p̂ = (12 + 20)/(500 + 600) = 0.029

Thus, the value of the test statistic computed under the null hypothesis is
given by

z =
(0.024 − 0.0333) − 0√

0.029(0.971)/500 + (0.029)(0.971)/600
= −0.92

Clearly, in all cases, the value of the test statistic does not fall in the rejection
region. Thus, in either of the cases (a), (b), or (c), we do not reject the null hypothe-
sis at the α = 0.05 level of significance. In other words, the data imply, at the α = 0.05
level of significance, that both the suppliers supply the same proportion of defective
chips.

As a final remark, it is quite interesting to note that whether we test the hypothesis
(a) or (b) or (c), all the steps including the value of the test statistic are exactly the same
except for the rejection regions. However, the p-value of these tests will be different for
different hypotheses. The p-value for each hypothesis is given by

(a) p-value = P (Z ≤ −0.92) ≈ 0.1788
(b) p-value = P (Z ≥ −0.92) ≈ 0.82120
(c) p-value = 2P (Z ≥ | − 0.92|) ≈ 2(0.1788) = 0.3576

Example 9.8.4 (Using MINITAB and R) Do Example 9.8.3 for case (c)-two-sided
test-using MINITAB and R.

MINITAB

1. Select Stat > Basic Statistics > 2 Proportions. This prompts a dialog box
Two-Sample Proportion to appear on the screen.

2. Select Summarized data from the pulldown menu. Enter number of events (12 and
20) and number of Trials (500 and 600) for Sample 1 and Sample 2, accordingly.

3. Select Options and make the necessary entries in the new dialog box that
appears.

4. Select Use the pooled estimate of the proportion for Test method. Note that we
check this option since we always test a hypothesis, by assuming the null hypothesis
is true, which under the null hypothesis is that the two proportions are equal. Click
OK on dialog boxes. The MINITAB output shows up in the session window as given
below:
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Normal approximation         –0.92         0.359

Fisher’s exact                                        0.375

Method

p1: proportion where Sample 1 = Event

p2: proportion where Sample 2 = Event

Difference: p1 – p2

Descriptive Statistics

Sample            N       Event       Sample p

Sample 1      500            12       0.024000

Sample 2      600            20       0.033333

Estimation for Difference

Test

95% CI for

DifferenceDifference

–0.0093333     (–0.028987, 0.010320)

Null hypothesis H0: p1 – p2 = 0

Alternative hypothesis H1: p1 – p2 ≠ 0

Method                             Z-Value     P-Value

The pooled estimate of the proportion (0.0290909) is used for the tests.

Cl based on normal approximation

Since the p-value is larger than the level of significance 5%, we do not reject H0. Thus, at
the α= 0.05 level of significance, there is no significant difference between the proportion
of defective chips that both the suppliers supply.

USING R

The built in R function ‘prop.test()’ in library ‘stats’ can be used to conduct a two-sample
proportion (normal approximation) test. For the information provided in Example 9.8.3,
the test can be conducted by running the following code in the R Console window after
installing the R library ‘stats’.

prop.test(x = c(12, 20), n = c(500, 600), alternative = c(“two.sided”),
conf.level = 0.95, correct = FALSE)

#R output
2-sample test for equality of proportions without continuity correction
data: c(12, 20) out of c(500, 600)
X-squared = 0.84114, df = 1, p-value = 0.3591
alternative hypothesis: two.sided
95 percent confidence interval:
-0.02898696, 0.01032030
sample estimates:
prop 1 prop 2
0.02400000 0.03333333
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Just as we found using MINITAB, the p-value is 0.359, and it is greater than the α = 0.05
level of significance.

PRACTICE PROBLEMS FOR SECTION 9.8

1. Recall that for large n, the binomial distribution can be approximated by the normal
distribution; that is for large n we may write, to good approximation,

Z ∼= np̂ − np√
np(1 − p)

or Z ∼= p̂ − p√
p(1 − p)/n

∼ N(0, 1)

where p̂ is the observed sample proportion. What then, for n large, would be the
approximate test of level α for testing (a) p = p0 versus p = p1 > p0? (b) p = p0
versus p �= p0?

2. A well-known politician claims he has 55% of the vote with him on a certain issue. A
private poll of 1000 voters yields a sample proportion p̂ = 0.51. Could the well-known
politician be right? State your level of significance.

3. During January, an electronics company produced 1350 printed circuits of which 146
were found to be defective. The following March, it produced 1300 circuits of which
113 were found to be defective. Assuming randomness, has the production process
improved from January to March? Use α = 0.01.

4. A dry-cleaning shop claims that a new spot remover will remove more than 70% of
the spots to which it is applied. To check the claim, the spot remover is applied to
16 randomly selected spots. If only 12 of 16 spots are removed, test the following
hypotheses: (a) p = 0.70 versus p < 0.70, (b) p = 0.70 versus p �= 0.70. Use the level
of significance α = 0.05.

5. A heating oil company claims that one-fifth of the homes in a large city are heated
by oil. Do we have reason to doubt this claim if, in a random sample 1000 homes
in this city, it is found that 136 homes are heated by oil? Use a 0.01 level of
significance.

6. An urban community wishes to show that the incidence of breast cancer is higher
than in a nearby rural area. If it is found that 20 of 200 adult women in the urban
community have breast cancer and 10 out of 150 adult women in the rural community
have breast cancer, could we conclude at the 0.05 level of significance that breast
cancer is more prevalent in the urban community?

7. A computer-assembly company gets all its chips from two suppliers. The company
knows from experience that in the past both suppliers have supplied a certain pro-
portions of defective chips. The company wants to test alternative hypotheses: (a)
supplier I supplies smaller proportion of defective chips, (b) supplier I supplies higher
proportions of defective chips, or (c) the suppliers do not supply the same proportion
of defective chips. To achieve this goal, the company took two random samples, one
from chips supplied by supplier I and the other from the ones supplied by supplier
II. It was found that in the first sample of 500 chips, 20 were defective, and in the
second sample of 600 chips, 30 were defective. For each of the above hypotheses, use
α = 0.01 as the level of significance. Find the p-value for each test.
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9.9 TESTS CONCERNING THE VARIANCE OF A
NORMAL POPULATION

Suppose that we have a random sample of size n from a normal distribution N(μ, σ2) and
that we wish to make a left-tail test of the hypothesis

H0: σ2 = σ2
0 versus H1: σ2 < σ2

0

on the basis of the sample variance. Recalling from Theorem 7.3.5 that if σ2 = σ2
0, then

(n − 1)S2/σ2
0 is a chi-square random variable with n−1 degrees of freedom. We can use

this fact as a test statistic. The critical region for the test is the set values of S2 for which

(n − 1)S2

σ2
0

< χ2
n−1, 1−α (9.9.1)

The probability of a type I error of this test is α.
In testing the hypothesis

H0: σ2 = σ2
0 versus H1: σ2 > σ2

0

we have a right-tail test in which the critical region consists of the set of values of S2 for
which

(n − 1)S2

σ2
0

> χ2
n−1, α (9.9.2)

As is easily seen, the probability of type I error of this test is α.
In testing the hypothesis

H0: σ2 = σ2
0 versus H1: σ2 �= σ2

0

we have a two-tail test in which the critical region consists of the set of values of S2 for
which

(n − 1)S2

σ2
0

< χ2
n−1, 1−α/2 or

(n − 1)S2

σ2
0

> χ2
n−1, α/2 (9.9.3)

The probability of a type I error for this test is again α.

Example 9.9.1 (Testing a population variance) A sample of size 11 from a population
that is normally distributed gives S2 = 154.6. Test at the 5% level of significance the hypoth-
esis

H0: σ2 = 140 versus H1: σ2 > 140

This is a right-sided test. We note that n = 11 and α = 0.05, so that we need χ2
10,.05 =

18.307. Hence, from equation (9.9.2), the critical region is given by the values of S2 for
which

(10 × S2)/140 > 18.307 (9.9.4)

But the observed value of (10 × S2)/140 = 11.043, which does not fall in the critical region
(equation (9.9.4)), since 11.043 is not larger than 18.307. Therefore, based on the given
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data, we do not reject the null hypothesis H0 that σ2 = 140. The p-value is given by

p-value = P

(
(n − 1)S2

σ2 >
10 × 154.6

140
|σ2 = σ2

0

)

so that the p-value is

p-value = P (χ2
10 > 11.043)

Using the chi-square table with 10 degrees of freedom, we can easily verify that

p-value = P (χ2
10 > 11.043) > P (χ2

10 > 15.9871) = 0.10 > 0.05

That is, as the p-value is greater than the significance level, so that we do not reject H0.

Interpretation: Based on the statistical testing procedure with significance level of 0.05,
we do not have sufficient evidence (p-value > 0.10) to conclude that the population variance
of the underlying distribution is higher than 140.

The power function of the tests described previously can be found in a straightforward
manner. Consider the power of the test having critical region defined by equation (9.9.2).

The power is the probability of rejecting the hypothesis H0 that σ2 = σ2
0 when σ2 =

σ2
1 > σ2

0 and is given by

γ(σ2
1) = P

(
(n − 1)S2

σ2
0

> χ2
n−1,α|σ2 = σ2

1 > σ2
0

)
= P

(
(n − 1)S2

σ2
1

>
σ2

0

σ2
1

χ2
n−1,α|σ2 = σ2

1

)

But when sampling from N(μ, σ2
1), we have seen that (n − 1)S2/σ2

1 is a χ2
n−1 variable.

Hence, the power is

γ(σ2
1) = P

(
χ2

n−1 >
σ2

0

σ2
1

χ2
n−1,α

)
(9.9.5)

Thus, for instance, the power of the test in Example 9.9.1 at σ2
1 = 145 is given by

γ(145) = P

(
χ2

10 >
140
145

× 18.307
)

= P (χ2
10 > 17.6757) > 0.05

The probability of the type II error, β, at σ2 = σ2
1 is 1 − γ(σ2

1). Thus, the probability of
type II error β(145) in Example 9.9.1 is less than 0.95.

Example 9.9.2 (Workers productivity data using MINITAB and R) A production man-
ager of a manufacturing company claims that over the last 10 years, worker productivity
in the company did not vary more than 2%. To verify the manager’s claim, the CEO of
the company collected the information on worker’s yearly productivity over the last 10-year
period, as follows:

103 99 109 96 94 106 94 95 99 108

The manager wishes to test, at the 5% level of significance, the hypothesis

H0: σ = σ0 = 2 versus H1: σ = σ1 > 2
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MINITAB

1. Enter the data in column C1 of the Worksheet.
2. Select Stat > Basic Statistics > 1 Variance. This prompts a dialog box One-

Sample Variance to appear on the screen.
3. From the pulldown menu, select One or more samples, each in a column, then

make the appropriate entry in the box that follows.
4. Check the box next to Perform hypothesis test and enter the value of standard

deviation (or variance) in the box next to Hypothesized standard deviation
(or variance). Then, select Options and make the necessary entries in the new
dialog box that appears. The MINITAB output shows up in the session window
given below:

Bonett                    —     —          0.000

Chi-Square       76.03      9           0.000

Method

σ: standard deviation of C1

The Bonett method is valid for any continuous distribution.

The chi-square method is valid only for the normal distribution.

Descriptive Statistics

N      StDev        Variance                     

10        5.81               33.8            4.49                   4.24

Test

Null hypothesis H0: σ = 2

Alternative hypothesis H1: σ > 2

95% Lower

Bound for

σ using

Bonett

95% Lower

Bound for σ
using

Chi-Square

Method         Statistic     DF      P-Value

Test

Note that the MINITAB delivers two results one using chi-square method and the other
using (Bonett) an adjusted method. The chi-square method is for the normal distribution.
The Bonett method is for any continuous distribution.

Since the p-value is less than the level of significance 5%, we reject the null hypothesis
and conclude that the data do not support the manager’s claim.

USING R

The built in R function ‘sigma.test()’ in library ‘TeachingDemos’ can be used to conduct
chi-squared tests about population variances. Now for the information provided in Example
9.9.2, the test can be conducted by running the following code in the R Console window
after installing the R library ‘TeachingDemos’.

install.packages(“TeachingDemos”)
library(TeachingDemos)
x = c(103,99,109,96,94,106,94,95,99,108)
sigma.test(x, sigma = 2, alternative = “greater”, conf.level = 0.95)
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#R output
One sample Chi-squared test for variance
data: x
X-squared = 76.025, df = 9, p-value = 9.913e-13
alternative hypothesis: true variance is greater than 4
95 percent confidence interval:
17.9739 Inf
sample estimates:
var of x
33.78889

As in the MINITAB test, this p-value is well below the alpha-level, we have ample evidence
to reject the null hypothesis.

PRACTICE PROBLEMS FOR SECTION 9.9

1. A producer claims that the diameters of pins he manufactures have a standard devi-
ation of 0.05 inch. A sample of nine pins has a sample standard deviation of 0.07
inch. Is this sample value significantly larger than the claimed value of σ at the 5%
level of significance?

2. Referring to the data of Problem 1 in Section 9.4, test at the 5% level of significance
the hypothesis σ = 0.4% against the alternatives σ < 0.4%.

3. Five determinations of percent of nickel in a prepared batch of ore produced the
following results:

3.25 3.27 3.24 3.26 3.24

Test, at the 5% level of significance, the hypothesis σ = 0.01 against the alternatives
σ > 0.01.

4. Nine determinations were made by a technician of the melting point of manganese
with the following results:

1268 1271 1259 1266 1257 1263 1272 1260 1256

Test, at the 5% level of significance, the hypothesis σ2 = 40 against the alternatives
σ2 < 40.

5. The following is the data of five independent replications of a chemical experiment:

7.27 7.24 7.21 7.28 7.23

Test at the 5% level of significance the hypothesis σ2 = 0.9 against the alternatives
that σ2 �= 0.9.

6. The standard deviation S of muzzle velocities of a random sample of nine rounds of
ammunition was found to be 93.2 ft/s. If the “standard” value of σ for the muzzle
velocity of this type of ammunition is 70 ft/s, is the value of S significantly large at
the 5% level of significance?
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9.10 TESTS CONCERNING THE RATIO OF
VARIANCES OF TWO NORMAL
POPULATIONS

Suppose that we have two independent random samples of sizes n1 and n2 from two
populations having the normal distributions N(μ1, σ

2
1) and N(μ2, σ

2
2), respectively, and

that we wish to test the hypothesis H0 at significance level α:

H0: σ2
1/σ2

2 = 1 versus H1: σ2
1/σ2

2 = λ < 1

on the basis of independent samples of sizes n1, n2 and sample variances S2
1 , S2

2 . From
Theorem 7.3.11, we know that (S2

1/σ2
1)/(S2

2/σ2
2) is a Snedecor F-ratio with (n1 − 1, n2 − 1)

degrees of freedom. Hence, the critical region for this left-sided test consists of the pairs
of values of (S2

1 , S2
2) for which

S2
1/S2

2 < Fn1−1,n2−1, 1−α (9.10.1)

If (S2
1 , S2

2) satisfies equation (9.10.1), we say that S2
1 is significantly smaller than S2

2 at
the α level of significance, and we reject the null hypothesis H0: σ2

1/σ2
2 = 1 in favor of the

alternative H1: σ2
1/σ2

2 = λ < 1.
The critical region of the test for the hypothesis

H0: σ2
1/σ2

2 = 1 versus H1: σ2
1/σ2

2 = λ > 1

consists of the set of values of (S2
1 , S

2
2) for which

S2
1/S2

2 > Fn1−1,n2−1, α (9.10.2)

This is a right-sided test. If (S2
1 , S

2
2) satisfies equation (9.10.2), we say that S2

1 is signif-
icantly larger than S2

2 at the α level of significance, and we reject the null hypothesis
H0: σ2

1/σ2
2 = 1 in favor of the alternative H1: σ2

1/σ2
2 = λ > 1.

The critical region of the two-sided test for the hypothesis

H0: σ2
1/σ2

2 = 1 versus H1: σ2
1/σ2

2 = λ �= 1

consists of the set of values of (S2
1 , S

2
2) for which

S2
1/S2

2 < Fn1−1,n2−1, 1−α/2 or S2
1/S2

2 > Fn1−1,n2−1, α/2 (9.10.3)

If (S2
1 , S

2
2) satisfies equation (9.10.3), we say that S2

1 is significantly different from S2
2

at the α level of significance, and we reject the null hypothesis H0: σ2
1/σ2

2 = 1 in favor of
the alternative H1: σ2

1/σ2
2 = λ �= 1.

The probability of making a type I error for each of the three tests discussed previously
is α.

The power function of the left-tail, the right-tail, and two-tail tests previously
described are seen to be, respectively,

γ(λ) = P

(
Fn1−1,n2−1 <

1
λ

Fn1−1,n2−1,1−α

)
, λ < 1 (9.10.4)
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γ(λ) = P

(
Fn1−1,n2−1 >

1
λ

Fn1−1,n2−1,α

)
, λ > 1 (9.10.5)

γ(λ) = P

(
Fn1−1,n2−1 <

1
λ

Fn1−1,n2−1,1−α/2

)

+ P

(
Fn1−1,n2−1 >

1
λ

Fn1−1,n2−1,α/2

)
, λ �= 1 (9.10.6)

where λ = σ2
1/σ2

2.

Example 9.10.1 (Testing the equality of two population variances) Five pieces of mate-
rial were subjected to treatment T1, and six pieces of a similar material were subjected to
a different treatment, say T2. Measurements made after T1 and T2 are applied gave the
following results for the sample variances: S2

1 = 0.00045 and S2
2 = 0.00039. Test at the 5%

level the hypothesis
H0: σ2

1 = σ2
2 versus H1: σ2

1 > σ2
2

With respect to λ = σ2
1/σ2

2, this is a right-sided test, where we note that α = 0.05, n1 = 5,
and n2 = 6. Hence, we make use of F4,5,.05 = 5.199. Consulting equation (9.10.2), we have
as the critical region of this test, the set of values of (S2

1 , S
2
2) for which

S2
1/S2

2 > 5.199.

But the observed value of S2
1/S2

2 in this example is 0.00045/0.00039 = 1.154, which is not
greater than 5.199. Hence, we do not reject the hypothesis H0: σ2

1 = σ2
2.

Interpretation: Based on the statistical testing procedure with significance level of 0.05,
we do not have sufficient evidence to conclude that the variability due to treatment T1 is
higher than that of treatment T2.

Example 9.10.2 (Using MINITAB and R) The CEO of the company in Example 9.9.2
now decides to compare his company’s (say company 1) productivity with that of another
company (say company 2). The productivity of the companies over the same period for the
workers yielded the sample observations:

Productivity 1: 103 99 109 96 94 106 94 95 99 108

Productivity 2: 95 94 105 98 105 95 104 100 105 101

Test at the 1% level of significance the hypothesis

H0: σ2
1 = σ2

2 versus H1: σ2
1 �= σ2

2

MINITAB

1. Enter the data in columns C1 and C2 of the Worksheet.
2. From the Menu bar, select Stat > Basic Statistics > 2-Variance.This prompts a

dialog box Two-Sample Variance to appear on the screen.
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3. From the pulldown menu, select an appropriate option (for this example select each
sample is in its own column) then make the appropriate entries in the boxes that
follow.

4. Check Options, which prompts another dialog box to appear. Enter the desired con-
fidence level in the box next to Confidence level and in the next to Alternative
hypothesis select not equal. Make sure to check Use test and confidence inter-
vals based on normal distribution otherwise it will output modified (robust) test
results such as Bonett and Levene’s. Click OK in each of the two dialog boxes. The
MINITAB output shows up in the Session window as given below.

F                    1.67         9         9        0.454

Method

σ1: standard deviation of Productivity 1

σ2: standard deviation of Productivity 2

Ratio: σ1/σ2 

F method was used. This method is accurate for normal data only.

Descriptive Statistics

Variable               N      StDev      Variance        99% Cl for σ 

Productivity 1      10      5.813         33.789    (3.590, 13.239)

Productivity 2      10      4.492         20.178    (2.775, 10.231)

Test

Null hypothesis H0: σ1/σ2 = 1

Alternative hypothesis H1: σ1/σ2 ≠ 1

Significance level α = 0.01

Method    Statistic    DF1    DF2     P-Value

Test
Ratio of Standard Deviations

Estimated

Ratio

1.29405 (0.506, 3.310)

99% Cl for

Ratio using

F

Since the p-value is 0.454, which is greater than the level of significance 0.01, we do not
reject the null hypothesis.

USING R

The built in R function ‘var.test()’ in library ‘TeachingDemos’ can be used to conduct an
F-test for population variances. For the information provided in Example 9.10.2, the test
can be conducted by running the following code in the R Console window after installing
the R library ‘TeachingDemos’.

x = c(103,99,109,96,94,106,94,95,99,108)
y = c(95,94,105,98,105,95,104,100,105,101)
var.test(x, y, ratio = 1, alternative = “two.sided”, conf.level = 0.99)

#R output
F test to compare two variances
data: x and y
F = 1.6746, num df = 9, denom df = 9, p-value = 0.4543
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alternative hypothesis: true ratio of variances is not equal to 1
99 percent confidence interval:
0.2560062 10.9534436
sample estimates:
ratio of variances
1.674559

As in the MINITAB test, this p-value is higher than the alpha-level, and we fail to reject
the null hypothesis of equal variabilities.

PRACTICE PROBLEMS FOR SECTION 9.10

1. Resistance measurements were made on test pieces selected from two large lots L1
and L2, with the following results shown.

L1(Ω) 0.14 0.138 0.143 0.142 0.144 0.137
L2(Ω) 0.135 0.14 0.142 0.136 0.138 0.14

If μ1 and μ2 are the means, and σ2
1 and σ2

2 are the variances of resistance measure-
ments in L1 and L2, respectively, and assuming normality:
(a) Test the hypothesis H0: σ2

1/σ2
2 = 1 versus H1: σ2

1/σ2
2 �= 1 at the 1% level of sig-

nificance.
(b) Using (a), test the hypothesis H0: μ1 − μ2 = 0 versus H1: μ1 − μ2 �= 0 at the 5%

level of significance.
2. Referring to the data of Problem 1, test at the 5% level of significance the null

hypothesis H0: σ2
1/σ2

2 = 1 versus H1: σ2
1/σ2

2 < 1.
3. Referring to Problem 8 of Section 8.4, test at the 5% level of significance the null

hypothesis H0: σ2
1/σ2

2 = 1 versus H1: σ2
1/σ2

2 �= 1.
4. Referring to Problem 10 of Section 8.4, test at the 5% level of significance the hypoth-

esis H0: σ2
1/σ2

2 = 1 versus H1: σ2
1/σ2

2 �= 1.
5. Two random samples from two normal populations with unknown standard devia-

tions produced the following data:

Population 1 20 18 15 24 23 20 25 14 16 14
16 24 22 16 20 15 22 16 20 20

Population 2 32 33 24 32 34 25 34 32 20 26
29 21 22 37 27 30 24 22 22 30

Test, at the 5% level of significance, the null hypothesis H0: σ2
1/σ2

2 = 1 versus H1:
σ2

1/σ2
2 �= 1.

6. A manager in a manufacturing company wants to find if the workers’ performance
varies more in one shift than the other. She takes two random samples of 20 workers,
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one sample each from each shift. Then, she observes the number of nonconforming
parts produced during an eight-hour shift. The data obtained is given below:

Shift 1 10 8 9 8 9 10 12 11 9 10
11 11 11 9 11 12 10 12 10 10

Shift 2 8 7 14 7 12 13 6 12 11 12
8 7 6 7 8 13 6 14 8 12

Test, at the 5% level of significance, the null hypothesis H0: σ2
1/σ2

2 = 1 versus H1:
σ2

1/σ2
2 < 1. What assumption must you make in order to carry out this test?

9.11 TESTING OF STATISTICAL HYPOTHESES
USING CONFIDENCE INTERVALS

In Chapter 8, we studied certain techniques for constructing confidence intervals for pop-
ulation parameters, such as one population mean, difference of two population means, one
population proportion, difference of two population proportions, one population variance,
and the ratio of two population variances. Thus far, in this chapter, we have studied some
techniques of testing hypotheses about these parameters. From our earlier discussion in
this chapter and Chapter 8, the two techniques seen quite independent of each other, but
the situation is in fact quite to the contrary: the two techniques are quite closely knitted
together, in the sense that all the testing of hypotheses we have done so far in this chapter
could have been done by using appropriate confidence intervals. We illustrate the concept
of using confidence intervals by redoing some of the earlier examples in this chapter.

Example 9.11.1 (Testing a hypothesis using a confidence interval) Recall that in Example
9.3.1, we considered a sample of 16 lengths of wire from a day’s production of wire on
a given machine, and the sample average was X̄ = 967.8 psi. The population of tensile
strengths of wire in the day’s production is N(μ, σ2), and it is known from production
experience that for this type of wire, σ = 128 psi. We wish to test the hypothesis

H0: μ = μ0 = 1000 versus H1: μ = μ1 �= 1000

Solution: Recall from Example 9.3.1 that the test statistic used for testing this hypothesis
is (X̄ − μ0)/(σ/

√
n). It is clear that at the α significance level, we do not reject the null

hypothesis H0 if the value of the test statistic under the null hypothesis H0: μ = μ0 is such
that

−zα/2 <
X̄ − μ0

σ/
√

n
< zα/2 (9.11.1)

or
−

zα/2σ√
n

< X̄ − μ0 <
zα/2σ√

n

or
X̄ −

zα/2σ√
n

< μ0 < X̄ +
zα/2σ√

n
(9.11.2)

From equation (9.11.2), it follows that we do not reject the null hypothesis H0 if the value
μ0 of μ under the null hypothesis falls in the interval (X̄ − zα/2σ/

√
n, X̄ + zα/2σ/

√
n).
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This is equivalent to saying that we do not reject the null hypothesis H0 if the confidence
interval (X̄ − zα/2σ/

√
n, X̄ + zα/2σ/

√
n) for μ with confidence coefficient 1 − α contains

the value μ0 of μ specified by the null hypothesis. Now, using the information contained
in the sample summary, we obtain the confidence interval for μ with confidence coefficient
1 − α = 0.95 as(

X̄ − zα/2
σ√
n
, X̄ + zα/2

σ√
n

)
=

(
967.8 − 128√

16
(1.96), 967.8 + 128√

16
(1.96)

)
= (905.08, 1030.52)

Interpretation: With 95% confidence, the average tensile strength of that wire type is
in between 905.08 and 1030.52 psi.

This interval clearly contains 1000, which is the value of μ under the null hypoth-
esis. Thus, we do not reject the null hypothesis H0, which is what we concluded in
Example 9.3.2.

We now consider an example of a one-tail test.

Example 9.11.2 (Example 9.4.1 using a confidence interval) Referring to Example 9.4.1,
we have that four determinations of copper in a certain solution yielded an average X̄ =
8.30% with S = 0.03%. If μ is the mean of the population of such determinations, we want
to test, at the α = 0.05 level of significance, the hypothesis

H0: μ = μ0 = 8.32 versus H1: μ = μ1 < 8.32

using a one-sided confidence interval with 95% confidence coefficient.

Solution: Recall from Example 9.4.1 that the test statistic used to test this hypothesis
is (X̄ − μ0)/(S/

√
n). Thus, it is clear that we do not reject the null hypothesis H0 if the

test statistic under the null hypothesis H0: μ = μ0 is such that

X̄ − μ0

S/
√

n
> −tn−1,0.05 (9.11.3)

or
X̄ − μ0 > −tn−1,0.05

S√
n

or
μ0 < X̄ + tn−1,0.05

S√
n

In other words, we do not reject the null hypothesis H0 if the upper one-sided confidence
interval

(−∞, X̄ + tn−1,0.05S/
√

n) (9.11.4)

with confidence coefficient 95%, contains the value μ0 of μ under the null hypothesis.
Now, using the information contained in the sample and the interval equation (9.11.4),

we have that the upper one-sided confidence interval for μ with confidence coefficient 95%
(n = 4, α = .05, t3,0.05 = 2.353) as

(−∞, X̄ + tn−1,0.05S/
√

n) = (−∞, 8.30 + 2.353(0.03)/
√

4)
= (−∞, 8.335)
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Table 9.11.1 Confidence intervals with confidence coefficient 1 − α for testing various
hypotheses.

Large sample sizes

H0: μ = μ0 versus H1: μ < μ0 (−∞, X̄ + zασ/
√

n) if σ is known

H0: μ = μ0 versus H1: μ < μ0 (−∞, X̄ + zαS/
√

n) if σ is unknown

H0: μ = μ0 versus H1: μ > μ0 (X̄ − zασ/
√

n,∞) if σ is known

H0: μ = μ0 versus H1: μ > μ0 (X̄ − zαS/
√

n,∞) if σ is unknown

H0: μ = μ0 versus H1: μ �= μ0 (X̄ − zα/2σ/
√

n, X̄ + zα/2σ/
√

n) if σ is known

H0: μ = μ0 versus H1: μ �= μ0 (X̄ − zα/2S/
√

n, X̄ + zα/2S/
√

n) if σ is
unknown

H0: μ1 − μ2 = 0 versus H1: μ1 − μ2 < 0 (−∞, X̄1 − X̄2 + zα

√
σ2

1/n1 + σ2
2/n2) if σ1, σ2

are known

H0: μ1 − μ2 = 0 versus H1: μ1 − μ2 < 0 (−∞, X̄1 − X̄2 + zα

√
S2

1/n1 + S2
2/n2) if σ1, σ2

are unknown

H0: μ1 − μ2 = 0 versus H1: μ1 − μ2 > 0 (X̄1 − X̄2 − zα

√
σ2

1/n1 + σ2
2/n2,∞) if σ1, σ2

are known

H0: μ1 − μ2 = 0 versus H1: μ1 − μ2 > 0 (X̄1 − X̄2 − zα

√
S2

1/n1 + S2
2/n2,∞) if σ1, σ2

are unknown

H0: μ1 − μ2 = 0 versus H1: μ1 − μ2 �= 0 (X̄1 − X̄2 ± zα/2

√
σ2

1/n1 + σ2
2/n2) if σ1, σ2 are

known

H0: μ1 − μ2 = 0 versus H1: μ1 − μ2 �= 0 (X̄1 − X̄2 ± zα/2

√
S2

1/n1 + S2
2/n2) if σ1, σ2 are

unknown

Normal populations with small sample sizes

H0: μ = μ0 versus H1: μ < μ0 (−∞, X̄ + zασ/
√

n) if σ is known

H0: μ = μ0 versus H1: μ < μ0 (−∞, X̄ + tn−1,αS/
√

n) if σ is unknown

H0: μ = μ0 versus H1: μ > μ0 (X̄ − zασ/
√

n,∞) if σ is known

H0: μ = μ0 versus H1: μ > μ0 (X̄ − tn−1,αS/
√

n,∞) if σ is unknown

H0: μ = μ0 versus H1: μ �= μ0 (X̄ − zα/2σ/
√

n, X̄ + zα/2σ/
√

n) if σ is known

H0: μ = μ0 versus H1: μ �= μ0 (X̄ − tn−1,α/2S/
√

n, X̄ + tn−1,α/2S/
√

n) if σ is
unknown

H0: μ1 − μ2 = 0 versus H1: μ1 − μ2 < 0 (−∞, X̄1 − X̄2 + zα

√
σ2

1/n1 + σ2
2/n2) if σ1, σ2

are known

(continued overleaf )
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Table 9.11.1 (continued)

H0: μ1 − μ2 = 0 versus H1: μ1 − μ2 < 0 (−∞, X̄1 − X̄2 + tn1+n2−2,αSp

√
1/n1 + 1/n2),

if σ1, σ2 are unknown and σ1 = σ2, where

S2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2

H0: μ1 − μ2 = 0 versus H1: μ1 − μ2 < 0 (−∞, X̄1 − X̄2 + tm,α

√
S2

1/n1 + S2
2/n2) [for

value of m see Section 9.7.2] if σ1, σ2 are
unknown and σ1 �= σ2

H0: μ1 − μ2 = 0 versus H1: μ1 − μ2 > 0 (X̄1 − X̄2 − zα

√
σ2

1/n1 + σ2
2/n2,∞) if σ1, σ2

are known

H0: μ1 − μ2 = 0 versus H1: μ1 − μ2 > 0 (X̄1 − X̄2 − tn1+n2−2,αSp

√
1/n1 + 1/n2,∞) if

σ1, σ2 are unknown and σ1 = σ2

H0: μ1 − μ2 = 0 versus H1: μ1 − μ2 > 0 (X̄1 − X̄2 − tm,α

√
S2

1/n1 + S2
2/n2,∞) [for

value of m see Section 9.7.2] if σ1, σ2 are
unknown and σ1 �= σ2

H0: μ1 − μ2 = 0 versus H1: μ1 − μ2 �= 0 (X̄1 − X̄2 ± zα/2

√
σ2

1/n1 + σ2
2/n2) if σ1, σ2 are

known

H0: μ1 − μ2 = 0 versus H1: μ1 − μ2 �= 0 (X̄1 − X̄2 ± tn1+n2−2,α/2Sp

√
1/n1 + 1/n2) if

σ1, σ2 are unknown and σ1 = σ2

H0: μ1 − μ2 = 0 versus H1: μ1 − μ2 �= 0 (X̄1 − X̄2 ± tm,α/2

√
S2

1/n1 + S2
2/n2) if σ1, σ2

are unknown and σ1 �= σ2

Binomial parameters; large sample sizes

H0: p = p0 versus H1: p < p0 (0, p̂ + zα

√
p̂(1 − p̂)/n)

H0: p = p0 versus H1: p > p0 (p̂ − zα

√
p̂(1 − p̂)/n, 1)

H0: p = p0 versus H1: p �= p0 (p̂ − zα/2

√
p̂(1 − p̂)/n, p̂ + zα/2

√
p̂(1 − p̂)/n)

H0: p1 − p2 = 0 versus H1: p1 − p2 < 0 (−1, (p̂1 − p̂2) +
zα

√
p̂(1 − p̂)(1/n1 + 1/n2)), where p̂ =

(n1p̂1 + n2p̂2)/(n1 + n2)

H0: p1 − p2 = 0 versus H1: p1 − p2 > 0 ((p̂1 − p̂2) − zα

√
p̂(1 − p̂)(1/n1 + 1/n2), 1)

H0: p1 − p2 = 0 versus H1: p1 − p2 �= 0 ((p̂1 − p̂2) ± zα/2

√
p̂(1 − p̂)(1/n1 + 1/n2))

Note: Lower limit cannot be less than −1 and
upper limit cannot be greater than 1.

(continued overleaf )
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Table 9.11.1 (continued)

Normal populations but no restriction on sample sizes

H0: σ2 = σ2
0 versus H1: σ2 < σ2

0

(
0,

(n − 1)S2

χ2
(n−1), 1−α

)

H0: σ2 = σ2
0 versus H1: σ2 > σ2

0

(
(n − 1)S2

χ2
(n−1), α

,∞
)

H0: σ2 = σ2
0 versus H1: σ2 �= σ2

0

(
(n − 1)S2

χ2
(n−1), α/2

,
(n − 1)S2

χ2
(n−1), 1−α/2

)

H0:
σ2

1

σ2
2

= 1 versus H1:
σ2

1

σ2
2

< 1
(

0, Fn2−1,n1−1, α

S2
1

S2
2

)

H0:
σ2

1

σ2
2

= 1 versus H1:
σ2

1

σ2
2

> 1
(

Fn2−1,n1−1, 1−α

S2
1

S2
2
,∞

)

H0:
σ2

1

σ2
2

= 1 versus H1:
σ2

1

σ2
2
�= 1

(
1

Fn1−1,n2−1, α/2

S2
1

S2
2
, Fn2−1,n1−1, α/2

S2
1

S2
2

)

Interpretation: With 95% confidence, the average copper determination of that solution
yields is at most 8.335%.

The confidence interval (−∞, 8.335) clearly contains the value 8.32, which is the value
of μ under the null hypothesis. Thus, we do not reject the null hypothesis H0, which is
what we concluded in Example 9.4.1.

Having discussed these two examples, we now state the general rule and the confidence
intervals to be used for testing various hypotheses discussed thus far in this chapter, see
Table 9.11.1.

The General Rule is: if the value of the parameter under the null hypothesis is
contained in the corresponding confidence interval with confidence coefficient 1 − α,
then do not reject the null hypothesis H0 at the α level of significance. Otherwise,
reject the null hypothesis H0.

9.12 SEQUENTIAL TESTS OF HYPOTHESES

9.12.1 A One-Tail Sequential Testing Procedure
All tests considered in Sections 9.2–9.11 are based on samples of predetermined, fixed
sample sizes n. In this section, we consider a procedure for testing the hypothesis

H0: population sampled has p.d.f. (or p.f.) f0(x) versus

H1: population sampled has p.d.f. (or p.f.) f1(x)

where the sample size is not fixed in advance.



9.12 Sequential Tests of Hypotheses 423

Such a procedure, called a sequential test, works as follows. We take a sequence of
independent observations X1,X2, . . . , one at a time and make one of possibly three deci-
sions after taking each observation. For the mth observation, m = 1, 2, . . . , the three
possible decisions are as follows:

1. If
A <

f1(x1) · · · f1(xm)
f0(x1) · · · f0(xm)

< B (9.12.1)

we draw an (m + 1)st observation.
2. If

f1(x1) · · · f1(xm)
f0(x1) · · · f0(xm)

≤ A (9.12.2)

we stop sampling and decide not to reject H0.
3. If

f1(x1) · · · f1(xm)
f0(x1) · · · f0(xm)

≥ B (9.12.3)

we stop sampling and reject H0 in favor of H1.

The values of A and B are chosen so as to make the probability of type I and type II
errors equal to α and β, respectively. Exact values of A and B are difficult to obtain.
However, for the small values of α and β, ordinarily used in practice, we can use the
well-known and fairly accurate approximations

A ≈ β

1 − α
and B ≈ 1 − β

α
(9.12.4)

Suppose that in Example 9.11.1 we have a normal population with mean μ and standard
deviation σ = 128 and wish to test a hypothesis

H0: μ = μ0 versus H1: μ = μ1 > μ0

with α = 0.01 and β = 0.01. The latter condition implies that the power of the test is to
be 0.99; that is if the alternative hypothesis H1 is true, we can reject H0 with probability
0.99. Since the population is normal with mean μ and standard deviation σ, we have

f0(x) =
1

σ
√

2π
exp

[
−1

2

(
x − μ0

σ

)2
]

, f1(x) =
1

σ
√

2π
exp

[
−1

2

(
x − μ1

σ

)2
]

On observing X1, we find that

f1(x1)
f0(x1)

= exp

[
1
2

(
x1 − μ0

σ

)2

− 1
2

(
x1 − μ1

σ

)2
]

= exp
[(

μ1 − μ0

σ2

)
x1 +

μ2
0 − μ2

1

2σ2

]

and if we observe X1, . . . ,Xm, we find that

f1(x1) × · · · × f1(xm)
f1(x0) × · · · × f0(xm)

= exp

[
μ1 − μ0

σ2

m∑
i=1

xi +
m(μ2

0 − μ2
1)

2σ2

]
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Referring to equation (9.12.1) and equation (9.12.4) and the last expression above, we see
that sampling continues as long as

β

1 − α
< exp

[
μ1 − μ0

σ2

m∑
i=1

xi +
m(μ2

0 − μ2
1)

2σ2

]
<

1 − β

α

Taking natural logarithms, the above statement is equivalent to the following: sampling
continues as long as

ln
β

1 − α
<

μ1 − μ0

σ2

m∑
i=1

xi +
μ2

0 − μ2
1

2σ2 m < ln
1 − β

α

where m is the number of observations already taken. Rearranging the terms in the last
statement, we obtain that sampling continues as long as(

σ2

μ1 − μ0

)
ln

β

1 − α
+

(
μ1 + μ0

2

)
m <

m∑
i=1

xi <

(
σ2

μ1 − μ0

)
ln

1 − β

α
+

(
μ1 + μ0

2

)
m

(9.12.5)
These inequalities may be displayed in a graph with

∑m
i=1 xi = Tm as ordinate and m as

abscissa (see Figure 9.12.1). The lines having equations

Tm =
σ2

μ1 − μ0
ln

1 − β

α
+

μ1 + μ0

2
m (9.12.6)

and
Tm =

σ2

μ1 − μ0
ln

β

1 − α
+

μ1 + μ0

2
m (9.12.7)

are plotted, and as the observations are taken, Tm is plotted against m. Values for ln(1 −
β)/α and lnβ/(1 − α) for conventional values of α and β are displayed in Table 9.12.1.

Note that for this type of sequential sampling scheme, it is known that the expected
sample size is usually appreciably less than the sample size required for testing H0 versus
H1 with a sample of fixed size n that has the same α and β.

Table 9.12.1 Values of ln(1 − β)/α (upper entry in cell) and
ln β/(1 − α), for various values of α and β.

α β 0.005 0.010 0.025 0.050 0.100

0.005 5.292 4.599 3.724 2.990 2.297
−5.292 −5.288 −5.272 −5.247 −5.193

0.010 5.288 4.595 3.679 2.986 2.293
−4.599 −4.595 −4.580 −4.554 −4.500

0.025 5.272 4.580 3.664 2.970 2.277
−3.724 −3.679 −3.664 −3.638 −3.583

0.050 5.247 4.554 3.638 2.944 2.251
−2.990 −2.986 −2.970 −2.944 −2.890

0.100 5.193 4.500 3.583 2.890 2.197
−2.297 −2.293 −2.277 −2.251 −2.197
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Example 9.12.1 (Sequential testing of a population mean) Suppose that in Example
9.11.1 we want to test

H0: μ = μ0 = 1000 versus H1: μ = μ1 = 1080

with σ = 128, α = 0.01, and β = 0.01.

Then the two lines (equations (9.12.6) and (9.12.7)) have equations

Tm = 1040 m + 941.1 and Tm = 1040 m − 941.1

As long as the sequence of sample points (m, Tm),m = 1, 2, . . . , falls inside the band
formed by these two lines, sampling is continued (see Figure 9.12.1). As soon as a point
falls in the upper left region, the decision is made to stop sampling and reject H0 in favor
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Figure 9.12.1 Decision regions for the sequential test of Example 9.12.1 showing a
typical sampling path.
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of H1. As soon as a point falls in the lower right region, the decision is made to stop
sampling, but not to reject H0.

From Figure 9.12.1, it is clear that when m = 6, the value of Tm rises above the
decision band. We are thus led to stop sampling and to reject the null hypothesis.

We can similarly define a sequential test if the random variable on which we make our
sequence of independent observations is discrete, that is, if we use probability functions
(p.f.s) p0(x) and p1(x) rather than probability density functions (p.d.f.s) f0(x) and f1(x).

Example 9.12.2 (Sequential testing of a population proportion) A certain process yields
mass-produced items that are 100p% defective, p unknown. The manufacturer would like
to conduct a sequential test of the hypothesis

H0: p = p0 versus H1: p = p1 > p0

at significance level α and power 1 − β at p = p1; that is, the desired value of the probability
of type II error is to be β at p = p1.

Solution: Let X be a random variable having value 1 when an item drawn from the
process is defective and value 0 when the item is nondefective. The probability function
of X is given by

p(x) = px(1 − p)1−x, x = 0, 1

If we draw m items, and if the values of X obtained are X1, . . . ,Xm, then

p(x1) · · · p(xm) = pT
m(1 − p)m−T

m

where Tm =
∑m

i=1 Xi and is the total number of defectives among the m items drawn.
Now let

p1(x) = px
1 (1 − p1)

1−x

and
p0(x) = px

0 (1 − p0)
1−x

Referring to equations (9.12.1) and (9.12.4), we see that sampling continues as long as

β

1 − α
<

p1(x1) × · · · × p1(xm)
p0(x1) × · · · × p0(xm)

<
1 − β

α

that is, as long as
β

1 − α
<

p
T

m
1 (1 − p1)

m−Tm

p
T

m
0 (1 − p0)m−T

m

<
1 − β

α
(9.12.8)

for m = 1, 2, . . . .
Taking natural logarithms, we have that equation (9.12.8) is equivalent to:

ln
β

1 − α
< Tm ln

p1

p0
+ (m − Tm) ln

1 − p1

1 − p0
< ln

1 − β

α

If we plot the lines in the plane (m,Tm) given by

Tm ln
p1

p0
+ (m − Tm) ln

1 − p1

1 − p0
= ln

β

1 − α
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and
Tm ln

p1

p0
+ (m − Tm) ln

1 − p1

1 − p0
< ln

1 − β

α

then as long as the sequence of sample points (m,Tm), m = 1, 2, . . . , stays inside the band
formed by these two lines, we continue sampling. As soon as a point rises above the upper
line, we reject H0 in favor of H1, or as soon as a point falls in the region below the lower
line, we decide not to reject H0.

9.12.2 A Two-Tail Sequential Testing Procedure
The one-sided sequential test can be easily adapted to the problem where we want to
test the hypothesis H0: μ = μ0 against the two-sided alterative H1: μ = μ0 + δ, where δ =
±δ0, say, with probabilities of type I and type II errors α and β, respectively. As in the
fixed-sample-size test, it is customary to spread the α risk equally across both alternative
hypotheses. The testing scheme then becomes two one-sided schemes with risks α/2 and β,
for the problems H0: μ = μ0 versus H1: μ = μ0 + δ0 and H0: μ = μ0 versus H1: μ = μ0 − δ0,
which we would like to combine. Now, if we let Y = X − μ0, the two-sided sequential plot
can be displayed in a single graph as illustrated in Figure 9.12.2. Employing equation
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Figure 9.12.2 Graph of the two-sided sequential test of hypothesis for H0: μ = μ0 =
500; H1: μ = μ0 ± δ, δ = 50, σ = 50, α = 0.05, β = 0.10.
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(9.12.5), we write the equations for the upper and lower pairs of boundary lines as

(
σ2

δ

)
ln

β

1 − α/2
+

δ

2
m <

∑
yi <

(
σ2

δ

)
ln

1 − β

α/2
+

δ

2
m

where δ is the quantity specified in H1 and yi = xi − [(μ0 + μ1)/2].

Example 9.12.3 (A two-sided sequential testing procedure) Suppose that μ0 = 500,
σ = 50, δ = ±50, α = 0.05, and β = 0.10. Then, we obtain for the upper pair of
boundary lines in Figure 9.12.2 (here Tm = Σyi)

Tm = 50(3.583) + 25m = 179.2 + 25m
Tm = 50(−2.277) + 25m = −113.9 + 25m

and for the lower pair of boundary lines

Tm = −179.2 − 25m
Tm = 113.9 − 25m

As illustrated in Figure 9.12.2, so long as the cumulative sum Σ(Xi − μ0) stays within
the region interior to the two pairs of parallel control lines, another observation is taken.
If the cumulative sum falls outside the boundaries of the outer lines, the hypothesis
H0: μ = μ0 is rejected. The hypothesis H0 is not rejected if the cumulative sum crosses into
the region defined by the intersection of the boundaries that form the V-shaped region on
the right in the figure.

PRACTICE PROBLEMS FOR SECTIONS 9.11 AND 9.12

1. A new and unusual plastic is to be produced by a pilot plant project using a standard
extrusion method. Because of past experience with yield using a standard extrusion
method, the yields, say X, are assumed to be normally distributed as N(μ, (20)2),
X measured in tons. The CEO hopes that E(X) = μ = 650 tons. To test this, a
sample of 50 days’ production yields X̄ = 630 tons.
(a) Find a 95% confidence interval for μ.
(b) Use (a) to test the hypothesis H0: μ = 650 against H1: μ �= 650 at the 5% level

of significance.
2. Two plants are to produce certain fluorescent bulbs using new equipment. Because

of the similarity to the other processes making fluorescent bulbs of different types,
it is known that over wide ranges of μ1 and μ2, the distributions of the life of light
bulbs from plants I and II are, respectively, N(μ1, (200)2) and N(μ2, (200)2). The
quality control division at each of the two plants took data, and the results for the
two random samples produced the following summary statistics:

Plant I : X̄1 = 1410 hours, n1 = 25

Plant II : X̄2 = 1260 hours, n2 = 20
(a) Find a 99% confidence interval for δ = μ1 − μ2.
(b) Use the result in (a) to test the hypothesis H0: δ = 0 against H1: δ �= 0 at the

1% level of significance.
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3. A tire manufacturer has decided to bring out a new line of snow tires, equipped
with studs that are inserted at the molding stage. The decision is made to test the
amount of wear per 25,000 miles of use, and a standard test is planned. The weights
before and after a tire is tested are recorded, and X, the loss in weight expressed
as a percentage of initial weight for the tires, is then calculated. It is assumed that
X ∼ N(μ, σ2). Four such tires, chosen at random and tested, yielded the following
results:

n = 4, X̄ = 19.4, S2 = 2.25

(a) Find a 95% confidence interval for μ.
(b) Use (a) to test the hypothesis H0: μ = 18 against H1: μ �= 18 at the 5% level

of significance.
4. Referring to Problem 3 previously mentioned, find a 99% confidence interval for

σ2 = Var(X) and use it to test H0: σ2 = 2 versus H1: σ2 �= 2.
5. Determinations of the percentage of chlorine in a batch of polymer are to be made

by two analysts, 1 and 2, to see whether they do consistent work in this envi-
ronment. Based on their experience working in this laboratory, it is assumed that
determinations of these analysts are distributed as N(μi, σ

2), that is, σ2
1 = σ2

2 = σ2.
Ten determinations are made by each analyst, and the results are

Analyst 1 : X̄1 = 12.21, S2
1 = 0.5419, n1 = 10

Analyst 2 : X̄2 = 11.83, S2
2 = 0.6065, n2 = 10

(a) Find a 95% confidence interval for μ1 − μ2.
(b) Use the result in (a) to test the hypothesis H0: μ1 − μ2 = 0 against H1: μ1 −

μ2 �= 0 at the 5% level of significance.
6. (a) In Problem 5 above find a 95% confidence interval for σ2

1/σ2
2 (i.e., do not assume

that σ2
1 = σ2

2 in this problem).
(b) Use part (a) to test the assumption in Problem 5 of equal variances at the 5%

level of significance, that is test H0: σ2
1 = σ2

2 versus H1: σ2
1 �= σ2

2 .

7. A recently purchased rare coin is to be used to determine whether the new owner
of the coin or his assistant will buy coffee at the morning office break. They agreed
to keep records of the first 45 days’ tosses to help decide whether the coin is fair.
Indeed, the results are (X is the number of tosses that turn up heads):

n = 45, X = 27

(a) If p is the true probability that this new coin will show heads, establish a 95%
confidence interval for p. (Hint: n is large.)

(b) Use (a) to test the problem H0: p = 0.5 versus H1: p �= 0.5
8. Generate sequentially random samples of size 5 from a binomial popula-

tion with n = 50 and p = 0.5. Conduct a sequential test of the hypothesis
H0: p = 0.5 versus H1: p = p1 > 0.50 at significance level α = 0.05 and power
1 − β = 0.90 at p = 0.52; that is the desired value of the probability of type II
error is to be β = 0.10 at p = 0.52. (Hint: A random sample can be generated using
any one of the statistical packages discussed in this book. For example, MINITAB
can generate a random sample from a given distribution as follows: select Calc >
Random data > Distribution, and then select in the dialog box, the sample
size and appropriate parameters of the distribution, and click OK.)
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9. Generate sequentially random samples from a normal population with mean μ = 12
and standard deviation σ = 2 to conduct a sequential test of the hypothesis H0: μ =
20 versus H1: μ = μ1 > 20 at significance level α = 0.05 and power 1 − β = 0.95
at μ = 21; that is, the desired value of the probability of type II error is to be
β = 0.05 at μ = 21.

10. Generate sequentially random samples from an exponential distribution f(x) =
λe−λx with λ = 10 to conduct a sequential test of the hypothesis H0: λ =
10 versus H1: λ > 10 at significance level α = 0.01 and power 1 − β = 0.95 at
λ = 12; that is the desired value of the probability of type II error is to be β = 0.05
at λ = 12.

9.13 CASE STUDIES

Case Study 1 (Data source: a major integrated chip manufacturer) During the qual-
ification of the product presented in the case study of Chapter 8, product LMV9234,
the second lot was processed 30 days after the first lot. The polyresistor is a parame-
ter for this product that is critical for the supply current and other parameters for this
microchip. To produce a polyresistor, a polysilicon layer is provided with a boron implant.
The first lot was processed on tool A and the second on tool B. Case Study 9.13.1 data on
the book website provides polyresistor values. Determine 90%, 95%, and 99% confidence
intervals for the difference of means of the polyresistor values for these lots. Further, the
product engineer would like to compare (using 90%, 95%, and 99% confidence intervals)
the means of the polyresistor values for these lots. Analyze the results of the case study.
Prepare a short report summarizing your conclusions. The data for this case study are,
as previously mentioned, available on the book website: www.wiley.com/college/gupta/
statistics2e.

Case Study 2 (Data source: a major integrated chip manufacturer) As part of the final
release for the LMV9234, ESD (electrostatic discharge), tests of the quality of this product
were performed on 60 of the final packaged units. The ESD tests are stress tests that
are performed for the human body model (HBM), machine model (MM), and charge
device model (CDM). The LMV9234 is a 20-PIN microchip in an SOIC package (see
Figure 9.13.1). Thirty units from one randomly selected wafer from lots 1 and 2 were built
in the SOIC final package form and tested for HBM, CDM, and MM. The data for the
units that passed for the HBM are listed on the book website, in Case Study 9.13.2 files.
Passing units are designated by 1 and failing units by 0. Find 99% and 95% confidence

Figure 9.13.1 SOIC package.
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intervals for the difference between the proportion of passing units between lots 1 and 2.
Use these confidence intervals to test the hypothesis at the 1% and 5% level of significance
that the proportions of passing units between lots 1 and 2 are the same. The data for this
case study is available on the book website: www.wiley.com/college/gupta/statistics2e.

9.14 USING JMP

This section is not included in this book but is available for download from the book
website: www.wiley.com/college/gupta/statistics2e.

Review Practice Problems

1. Suppose that a certain type of 40-W bulbs is standardized so that its mean life is 1500
hours and the standard deviation is 200 hours. A random sample of 36 of these bulbs
from lot L having mean μ was tested and found to have an average life of 1380 hours.
(a) Test at the 1% significance level the hypothesis H0: μ = 1500 versus H1: μ =

μ1 < 1500.
(b) What is the power of the test at μ = 1400?
(c) Graph the power function.

2. Suppose that in Problem 2 of Section 9.3, we need to perform a test of H0: μ = 0.25
against H1: μ = 0.2490 with size α = 0.01 and power at μ = 0.2490 of 0.99, that is,
β = 0.01. What sample size is necessary to achieve this?

3. Generalize the result in Problem 2. That is, suppose that the sampling is from
N(μ, σ2

0), where σ2
0 is the known value of the variance of the population. Suppose

that we need to test H0: μ = μ0 against H1: μ = μ1, where μ1 < μ0, so that the level
of the test is α and γ(μ1) = 1 − β. Show that the sample size n used to achieve this
is such that

√
n =

(zα + zβ)σ0

(μ0 − μ1)
.

4. Machines producing a particular brand of yarn are given periodic checks to help insure
stable quality. A certain machine has been set in such a way that it is expected
that strands of the yarn will have breaking strength of μ = 19.5 oz, with a standard
deviation of σ = 1.80 oz. (It has been found from experience that σ remains steady at
1.80 over a wide range of values of μ). A sample of 12 pieces of yarn selected randomly
yields an average of breaking strengths of 18.46 oz. Assuming normality, test at the
5% level of significance the hypothesis H0: μ = 19.50 versus H1: μ �= 19.50.

5. A liquor company is concerned about the filling of its bottles with “too little” or “too
much” liquid. A filling machine set to fill “40-oz” bottles is checked by selecting at
random 10 bottles and measuring their contents. Assuming that the machine fills the
bottles with quantities distributed as N(μ, 1.44) for a wide range of values of μ, state
the critical region for a 1% test of significance of H0: μ = 40 versus H1: μ �= 40.
Graph the power function.

6. A diamond-cutting machine has been set to turn out diamonds of “0.5-karat” weight.
Assume from past experience that the machine produces diamonds of weight that
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has the N(μ, 0.0036) distribution. It is important to a jewelry supply house that the
weight not be too low (dissatisfied customers) or too high (economic considerations).
Accordingly, the machine is checked every so often. A recent sample of six diamonds
yielded weights of 0.48, 0.59, 0.54, 0.50, 0.55, and 0.56 karats. Test at the 5% level of
significance the hypothesis H0: μ = 0.5 versus H1: μ �= 0.5

7. A company is engaged in the stewed-fruit canning business. One of its brands is a
medium-sized tin of cooked prunes that is advertised as containing 20 oz of prunes.
The company must be sure that it packs prunes into the tins so that the mean weight
is not “too much” under or over 20 oz (stiff fines would be imposed in the former
case). A random sample of 14 cans yields an average of X̄ = 20.82 oz, with a standard
deviation of 2.20 oz. Assuming that the weights of tins of prunes are distributed as
N(μ, σ2), test at the 5% level the hypothesis H0: μ = 20 versus H1: μ �= 20

8. Five determinations of the percentage of nickel in a prepared batch of ore produced
the following results:

3.25, 3.27, 3.24, 3.26, 3.24

If μ is the “true percentage of nickel in the batch”, test the hypothesis H0: μ =
3.25 against the alternatives H1: μ �= 3.25 at the 1% level of significance (assume
normality).

9. Nine determinations were made by a technician of the melting point of manganese with
the following results: 1268, 1271, 1259, 1266, 1257, 1263, 1272, 1260, 1256 in (degrees
centigrade). Test at the 5% level of significance the hypothesis that the results are
consistent with the published value of 1260◦C for the true melting point of manganese
(assume normality).

10. Suppose that a plot of land is surveyed by five student surveyors who find the following
areas for the plot (in acres): 7.27, 7.24, 7.21, 7.28, 7.23. On the basis of this information,
test the hypothesis that the true area of the plot is 7.23 acres or not at the 5% level
of significance (assume normality).

11. A manufacturer claims that the diameters of rivets it produces have a standard devi-
ation of σ = 0.05 inch. A sample of 16 rivets has a sample standard deviation of S
= 0.07 in. Test at the 5% level of significance the hypothesis (assume normality):
H0: σ = 0.05 versus H1: σ > 0.05

12. The standard deviation S of muzzle velocities of a random sample of 16 rounds of
ammunition was found to be 85 ft/s. If the “standard” value of σ for the muzzle
velocity of this type of ammunition is 78 ft/s, test at the 5% level of significance the
hypothesis H0: σ = 78 versus H1: σ > 78 (assume normality).

13. Certain measurements were made on test pieces selected from two batches B1 and B2,
with the following results shown:

Lot B1 0.240 0.238 0.243 0.242 0.244 0.237
Lot B2 0.185 0.190 0.192 0.186 0.188 0.190

If μ1 and μ2 are the means and σ2
1 and σ2

2 are the variances of the measurements in
batches B1 and B2, respectively, and assuming normality:
(a) Test the hypothesis H0: σ2

1/σ2
2 = 1 versus H1: σ2

1/σ2
2 �= 1 at the 5% level of signif-

icance.
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(b) Using (a), test the hypothesis H0: μ1 − μ2 = 0 versus H1: μ1 − μ2 �= 0 at the 5%
level of significance.

14. Two methods were used in a study of the latent heat of fusing of ice. Both method
A (an electrical method) and method B (a method of mixtures) were conducted with
the specimens cooled to −0.72 ◦C. The data below represent the change in total heat
from −0.72 ◦C, in calories per gram of mass:

Method A Method B

79.98 79.97 80.02 79.97
80.04 80.05 79.94 80.03
80.02 80.03 79.98 79.95
80.04 80.02 79.97 79.97
80.03 80.00
80.04 80.02
80.03

Assuming normality of the population of determinations for each method as well as
equal variances, test at the 5% level of significance the hypothesis that the change in
total heat measured by method A is the same as that of method B.

15. Two methods for preparing fish, A and B, are compared according to a specific scor-
ing scheme. The claim has been made that μA > μB . The composite scores of two
samples are:

Method A Method B

4.05 4.18 3.31 2.35
5.04 4.35 3.39 2.59
3.45 3.88 2.24 4.48
3.57 3.02 3.93 3.93
4.23 4.56 3.37 3.43
4.23 4.37 3.21 3.13.

(a) Assuming normality of the scores generated by A and B, test at the 1% level of
significance the hypothesis σ2

A = σ2
B .

(b) Using the result in (a), test the hypothesis H0: μA = μB versus H1: μA > μB.

16. Elongation measurements are made on 10 pieces of steel, five of which were treated
with method A (aluminum plus calcium) and the remaining five with method
B (aluminum only). It is conjectured that the addition of calcium will improve
elongations by at least 1%. The results of the measurements are (in percent):

Method A Method B
34 28
27 29
30 25
26 23
33 30.

Assuming normality:
(a) Test the hypothesis σ2

A = σ2
B at the 5% level of significance.
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(b) Using the result in (a), test the hypothesis H0: μA − μB = 1% versus H1:
μA − μB > 1%

17. A comparison of yields of marigolds from control plots and treated plots is carried
out. Samples from eight control plots and eight treated plots yield the following data:

Treated (A) : nA = 8, x̄A = 128.4, s2
A = 117.1

Nottreated (B) : nB = 8, x̄B = 96.5, s2
B = 227.7

Assuming normality:
(a) Test at the 1% level of significance σ2

A = σ2
B.

(b) Using the result in (a), test the hypothesis H0: μA − μB = 0 versus H1: μA −
μB > 0.

18. Viewing times of members of households in two different types of communities are
sampled, with the following results:

Community 1 : n1 = 40, X̄1 = 19.2 hours/week, S2
1 = 6.4

Community 2 : n2 = 50, X̄2 = 15.9 hours/week, S2
2 = 3.2

(a) Assuming normality, test the hypothesis σ2
1 = σ2

2 at the 1% level of significance.
(b) Using the result in (a), test the hypothesis H0: μ1 = μ2 versus H1: μ1 > μ2.

19. It has been suspected for some time that the morning shift is more efficient than the
afternoon shift. Random observations yield the following data:

Morning shift : n1 = 5, X̄1 = 22.9, S2
1 = 6.75

Afternoon shift : n2 = 7, X̄2 = 21.5, S2
2 = 7.25

Assuming normality:
(a) Test the hypothesis σ2

1 = σ2
2 at the 1% level of significance.

(b) Using (a), test the hypothesis H0: μ1 = μ2 versus H1: μ1 > μ2.

20. A sample of 220 items turned out (during a given week by a certain process) to have
average weight of 2.46 lb and standard deviation of 0.57 lb. During the next week, a
different lot of raw material was used, and the average weight of a sample of 205 items
turned out that week to be 2.55 lb and the standard deviation was 0.48 lb. Assuming
normality and equality of variances, would you conclude from these results that the
mean weight of the product had increased significantly at the 5% level of significance
during the second week?

21. Orange juice cans are filled using two methods. Two random samples one from each
method produced the following results:

Method 1 : n1 = 40, X̄1 = 21.78, S2
1 = 3.11

Method 2 : n2 = 40, X̄2 = 20.71, S2
2 = 2.40

(a) Assuming normality, test at the 5% level of significance H0: σ2
1 = σ2

2 versus H1:
σ2

1 �= σ2
2.

(b) Test, using the result of (a), the hypothesis H0: μ1 = μ2, versus H1: μ1 > μ2.

22. The systolic blood pressure of a group of 70 patients yielded X̄1 = 145 and S1 = 14.
A second group of 70 patients, after being given a certain drug, yielded X̄2 = 140 and
S2 = 9.
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(a) Assuming normality, test at the 5% level of significance H0: σ2
1 = σ2

2 versus H1:
σ2

1 �= σ2
2.

(b) Using the result of (a), test at the 5% level of significance the hypothesis H0: μ1 =
μ2 versus H1: μ1 > μ2.

23. Two randomly selected groups of 70 trainees each are taught a new assembly line
operation by two different methods, with the following results when the groups are
tested:

Group 1 : n1 = 70, X̄1 = 268.8, S1 = 20.2

Group 2 : n2 = 70, X̄2 = 255.4, S2 = 26.8

(a) Assuming normality, test the hypothesis σ1 = σ2 versus σ2 > σ1. Use α = 0.01.
(b) Using the result of (a), test at the 5% level of significance the hypothesis H0: μ1 =

μ2 versus H1: μ1 > μ2.

24. The following data give the results for iron content of ore using two methods A (dichro-
mate) or B (thioglycolate) on 10 different samples of ore.

Sample number Percent iron by method A Percent iron by method B

1 28.22 28.27
2 33.95 33.99
3 38.25 38.20
4 42.52 42.42
5 37.62 37.64
6 37.84 37.85
7 36.12 36.21
8 35.11 35.20
9 34.45 34.40

10 52.83 52.86

Assuming normality, use the method of paired comparisons to test whether these two
methods yield significantly different percentages of iron at the 5% level of significance.

25. Analysts I and II each make a determination of the melting point in degrees centigrade
of hydroquinine on each of eight specimens of hydroquinine with the results shown
below:

Specimen number Analyst I (◦C) Analyst II (◦C)

1 174.0 173.0
2 173.5 173.0
3 173.0 172.0
4 173.5 173.0
5 171.5 171.0
6 172.5 172.0
7 173.5 171.0
8 173.5 172.0



436 9 Hypothesis Testing

Using the method of paired comparison, do the methods of determinations differ
significantly at the 5% level of significance? (Assume normality.)

26. Over a long period of time, 10 patients selected at random are given two treatments
for a specific form of arthritis. The results (in coded units) are given below:

Patients Treatment 1 Treatment 2

1 47 52
2 38 35
3 50 52
4 33 35
5 47 46
6 23 27
7 40 45
8 42 41
9 15 17
10 36 41

Is there a difference in efficacy of the two treatments? Use α = 0.05 and assume
normality.

27. Two different methods of storing chicken are contrasted by applying technique 1 (a
freezing technique) to one-half of a chicken and technique 2 (a wrapping technique)
to the other half of the same chicken. Both halves are stored for three weeks, and a
certain “tenderness of the meat” test is then applied. This is done for 200 chickens,
and using the notation of paired comparison, it was found that X̄d = −2.430 with
Sd = 0.925. Test the hypothesis, at the 5% level of significance, that μd = −1 versus
μd �= −1, where μd = E(Y2) − E(Y1).

28. The dependability of analysts is occasionally measured by the variability of their
work. Two analysts A and B each make 10 determinations of percent of iron content
in a batch of prepared ore from a certain deposit. The sample variances obtained are
S2

A = 0.4322 and S2
B = 0.5006. Are the analysts equally dependable? Test at the 5%

level of significance and assume normality.

29. In Problem 2 of Section 9.7, it was assumed that σ2
A = σ2

B. Test this assumption at
the 1% level of significance.

30. In Problem 14, is the assumption that σ2
A = σ2

B warranted on the basis of the data?
Use the significance level of 0.05.

31. In Problem 20, is the assumption of equality of variances valid? Use the significance
level 0.01.

32. Using the data of Problem 24, test at the 1% level of significance the hypothesis
σ2

A = σ2
B.

33. Using the data of Problem 25, test at the 1% level of significance the hypothesis
σ2

I = σ2
II .
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34. If X is a random variable with probability function

f(x) =
e−λλx

x!
, x = 0, 1, 2, . . .

describe with α = 0.05, β = 0.01, how to test sequentially the hypothesis H0: λ =
λ0 = 1.5 versus H1: λ = λ1 = 2.0.

35. If X is a random variable with probability function

p(x) =
(n

x

)
px(1 − p)n−x, x = 0, 1, . . . , n,

describe, with α = 0.10, β = 0.05, how to test sequentially the hypothesis H0: p = 0.10
versus H1: p = 0.20.

36. If a random variable X has probability density function f(x) given by

f(x) =
1√

2πσ2
e−(1/2σ2)(x−μ0)

2

where μ0 is the known value of the population mean, describe with α = 0.10, β = 0.05,
how sequentially to test the hypothesis H0: σ2 = σ2

0 versus H1: σ2 = σ2
1 > σ2

0.

37. An advising committee at a university is interested in finding the mean time spent by
all the university students in watching sports on television. The time spent in watching
sports on television by a random sample of 49 students produced a sample mean X̄
of 7.5 hours and a standard deviation S of 1.4 hours. Assuming normality test, the
hypothesis H0: μ = 7.0 against H1: μ > 7.0 at the 1% level of significance.

38. The mean and the standard deviation of daily intake of vitamin D for a random sample
of 36 girls between the ages 16 and 20 years is 450 and 50 mg, respectively. Assuming
normality, test the following at the 5% level of significance:
(a) H0: μ = 500 against H1: μ < 500
(b) H0: μ = 500 against H1: μ �= 500

39. In Problem 38, find the p-value for the hypotheses in (a) and (b).

40. The lifetime (in hours) of AAA batteries used in TI-83 series calculators is assumed
to be normally distributed. A random sample of 100 such batteries produced a sample
mean of 58.7 hours and a sample standard deviation of 2.5 hours. Test at the 1% level
of significance the hypotheses:
(a) H0: μ = 60 versus H1: μ < 60
(b) H0: μ = 60 versus H1: μ �= 60
Find the p-values in (a) and (b).

41. A rod used in auto engines is required to have a diameter of 18 millimeters (mm).
A random sample of 64 rods produced a sample mean of 18.2 mm and a standard
deviation of 1.2 mm. Assuming normality, test the hypothesis H0: μ = 18 versus H1:
μ �= 18 at the 5% level of significance. Find the p-value. Find the power of the test if
the true mean of the manufactured rods is 18.5 mm and σ = 1.2 mm.

42. The piston rings of certain diameter in mm for automobile engines are being manu-
factured at two plants. Two random samples of piston rings, one sample from each
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plant, are taken, and the diameters of the rings are measured. These data produce the
following sample statistics:

n1 = 50, X̄1 = 73.54, S1 = 0.2; n2 = 50, X̄2 = 74.29, S2 = 0.15

Assuming normality:
(a) Test at 5% level of significance test the hypothesis Ho : μ1 − μ2 = 0 versus H1:

μ1 − μ2 �= 0.
(b) Find the observed level of significance (p-value).
(c) Using the p-value found in (b), decide whether or not the null hypothesis should

be rejected.

43. A chemical manufacturing company is interested in increasing the yield of a certain
chemical. To achieve this goal, a chemical engineer decides to use the catalyst at two
different temperatures, 300 and 350 ◦C. Two samples, each of size n = 49, are produced
at each of these temperatures, and the output of the chemical is measured in grams.
These data produce the following statistics:

X̄1 = 68.8, S1 = 5.1; X̄2 = 81.5, S2 = 7.4

Assuming normality:
(a) Test at the 5% level of significance hypothesis H0: μ1 − μ2 = 0 versus H1: μ1 −

μ2 < 0.
(b) Find β the probability of the type II error, and the power of the test if the true

difference is 5 grams and σ1 = 5.1, σ2 = 7.4.

44. A manager of a large bank wants to compare the loan amounts of two of her loan
officers. The loans issued by the two sales managers during the past three months
furnished the following summary statistics:

n1 = 55, X̄1 = $68,750, S1 = $4,930; n2 = 60, X̄2 = $74,350, S2 = $5,400

Assuming normality:
(a) Do these data provide sufficient evidence to indicate that the two loan officers

issue loans of equal value? Use α = 0.05.
(b) Do these data provide sufficient evidence to indicate that the loans by officer one

are less than those of the other officer? Use α = 0.01.

45. A random sample of 64 cigarettes of a particular brand yielded mean tar content per
cigarette of 15.5 milligrams (mg) and a standard deviation of 1.4 mg.
Assuming normality:
(a) Test a hypothesis H0: μ = 15 versus H1: μ > 15 at the 0.01 level of significance.
(b) Find β the probability of the type II error, and the power of the test if the true

value of the mean tar content per cigarette is 16 mg.

46. Observations of a random sample from a normal population with unknown mean μ
and unknown standard deviation σ are

25 20 23 28 26 21 30 29 23 29
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(a) Test at the 1% level of significance H0: μ = 25 versus H1: μ �= 25.
(b) Find the p-value for the test in (a).

47. A health insurance company wants to find the average amounts of benefits it pays for
a typically insured family of four (a couple with two children). The company selected
a random sample of 16 such families and found that it paid on average $4858 with a
standard deviation of $575. Assuming normality, test at the 5% level of significance
the hypothesis H0: μ = 5000 versus H1: μ < 5000.Find the p-value for this test.

48. In a study of pregnancy-induced hypertension, two randomly selected groups of women
with this diagnosis were selected. One group was treated for a certain period with an
aspirin-based medicine and the other group was given a placebo. After the period
of treatment, their arterial blood pressures in millimeters of mercury (mmHg) were
checked. The study produced the following test statistics:

n1 = 12, X̄1 = 110 mmHg, S1 = 9 mmHg;

n2 = 14, X̄2 = 115 mmHg, S2 = 10 mmHg

Assuming that the two populations are normally distributed with equal variances, test
at the 1% level of significance the hypothesis Ho : μ1 − μ2 = 0 versus H1: μ1 − μ2 �=
0. Find the p-value for the test.

49. Repeat Problem 48, assuming that the population variances are not equal.

50. Two random samples from two normal populations with standard deviations σ1 = 4.5
and σ2 = 6.2, respectively, produced the following data:

Sample from population I 20 30 31 28 34 35 32 26 24 38 25 40
Sample from population II 34 36 49 52 41 44 30 33 47 49 39

(a) Test at the 2% level of significance the hypothesis Ho : μ1 − μ2 = 0 versus H1:
μ1 − μ2 �= 0.

(b) Find the p-value for the test and make your conclusions using the p-value. Do you
arrive at the same conclusion as in (a)?

51. A medical school professor claims that medical students study (including the time in
class) on average at least 16 hours a day. To verify the professor’s claim, a random
sample of 19 students was taken, and each student was asked about the number of
hours he or she spends studying each day. This inquiry resulted in the following data:

15 23 18 16 17 15 16 14 17 18 17 15 14 16 15 17 13 15 14

(a) Formulate an appropriate hypothesis to test the professor’s claim.
(b) Test the hypothesis you formulated in (a), using α = 0.05. Assume normality.
(c) Find the p-value for the test.

52. The following are the numbers of defective parts produced in a shift by 10 workers
before and after going through a very rigorous training program (assuming normality):

Worker 1 2 3 4 5 6 7 8 9 10
Before 15 12 16 14 18 12 13 17 10 16
After 8 5 10 5 14 4 6 6 3 12
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(a) Do these data provide sufficient evidence to indicate that the training program
was effective? Use α = 0.05.

(b) Find the p-value for the test.

53. The following data shows the weight gain (in pounds) in one week for a sample of 10
pigs before and after they were given a type of hormone:

Pig number 1 2 3 4 5 6 7 8 9 10
Before 10 8 9 11 7 8 6 12 8 9
After 15 13 12 10 11 9 11 15 12 16

Assuming normality:

(a) Formulate a hypothesis to test the effectiveness of hormones in inducing
weight gain.

(b) Test the hypothesis in (a) at the 1% level of significance.

54. An owner of two stores wants to evaluate the customer service at his/her stores. In
order to do this, the owner took a random sample of 400 customers from store I and of
500 customers from store II. He asked the customers to rate the service at the store as
excellent or not excellent and found that 250 of the 400 and 380 of the 500 customers
rated the service as excellent.

(a) Test at the 5% level of significance that the proportions of customers at the two
stores who think that the service is excellent is the same in both stores against the
proportion of customers who think that service is excellent in store I, but lower
than that in store II.

(b) Test at the 2% level of significance that the proportions of customers who thinks
the service is excellent at the two stores are the same.

55. A patron of a casino doubts that the dice used in the casino are balanced. During a
visit, she rolled a die 100 times and got an even number only 30 times.

(a) Formulate the hypothesis you would use to test whether the die is fair.
(b) At what observed level of significance would this null hypothesis be rejected?

56. A manufacturer of brass bolts has two plants. A random sample of 300 bolts from plant
I showed that 21 of them were defective. Another random sample of 425 bolts from
plant II showed that 24 of them were defective. Testing at the 5% level of significance,
can you conclude that the proportions of defective bolts at the two plants are the
same? Find the p-value for the test.

57. A six-sigma black belt quality control engineer found that in a random sample of 140
printed circuit boards, 18 are defective due to the result of certain nonconformity
tests. At the 5% level of significance, test that the percentage of defective printed
circuit boards is 10% against the alternative that it is greater than 10%. Find the
p-value for the test.

58. A random sample of 18 observations from a normal population produced a sample
mean of 37.4 and a sample variance of 15.6. Do the data provide sufficient evidence
to indicate that σ2 < 20? Use the 5% level of significance.
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59. A machine is calibrated to fill bottles with 16 oz of orange juice. A random sample
of 12 bottles was selected, and the actual amount of orange juice in each bottle was
measured. The data are as follows:

15.0 15.9 15.4 16.1 15.2 15.8 16.4 15.7 15.8 16.3 16.5 16.2

Assuming normality, test at the 1% level of significance the hypothesis H0 : σ2 = 0.2
versus H1 : σ2 �= 0.2.

60. An endocrinologist measured the serum levels of lipid peroxides (LP) among sub-
jects with type I diabetes and also among normal subjects. These data produced the
following summary statistics.

Diabetic subjects : n1 = 25, X̄1 = 2.55, S2
1 = 1.475

Normal subjects : n2 = 36, X̄2 = 2.25, S2
2 = 0.878

Test at the 5% level of significance the hypothesis H0: σ2
1 = σ2

2 versus H0: σ2
1 �= σ2

2.
Assume that the LP levels in two groups are normally distributed with variances σ2

1
and σ2

2, respectively.

61. In Problem 44, test at the 5% level of significance the hypothesis H0: σ2
1 = σ2

2 against
H1: σ2

1 < σ2
2

62. Pull-strength tests were applied on soldered lead in an electronic apparatus for each
of two independent random samples of 12. The lead soldering in the two samples
were done using two different techniques. The test results indicate the force required
in pounds to break the bond. The data obtained from these two experiments are as
follows:

Apparatus 1 2 3 4 5 6 7 8 9 10 11 12
Sample I 21.5 20.6 18.7 22.3 24.1 20.6 19.8 18.7 24.2 22.3 19.5 20.6
Sample II 24.6 23.5 22.5 23.5 22.7 21.5 20.5 23.6 22.5 23.5 21.7 19.9

Assuming that the pull-strengths are normally distributed with variances σ2
1 and σ2

2,
respectively, test at the 5% level of significance the hypothesis H0: σ2

1 = σ2
2 versus

H1: σ2
1 �= σ2

2.

63. The monthly returns in percentage of dollars of two investment portfolios were
recorded for one year. The results obtained are

Portfolio I 2.1 1.2 −1.5 1.9 0.7 2.5 3.0 −2.2 1.8 0.5 2.0 1.5
Portfolio II 2.9 3.5 −2.8 1.0 −3.0 2.6 −3.5 4.5 1.5 2.3 −1.0 0.8

Assume that the monthly returns of two portfolios are normally distributed with
variances σ2

1 and σ2
2, respectively, and test at the 5% level of significance the hypothesis

H0: σ2
1 = σ2

2 versus H0: σ2
1 �= σ2

2.

64. Referring to Problem 1 of Section 8.7, test at the 5% level of significance the hypothesis
H0: p = 0.45 versus H1: p < 0.45.

65. Use the confidence interval you obtained in Problem 1 of Section 8.7 to test, at the
5% level of significance, the hypothesis H0: p = 0.45 versus H1: p �= 0.45.
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66. Referring to Problem 2 of Section 8.7, test at the 5% level of significance the hypothesis
that the coin is unbiased, that is, H0: p = 0.5 versus H1: p �= 0.5.

67. Referring to Problem 3 of Section 8.7, test at the 5% level of significance the hypoth-
esis that the proportions of the population favoring brand X before and after the
advertising campaign are the same, that is, H0: p1 − p2 = 0 versus H1: p1 − p2 �= 0.

68. Use the 99% confidence interval you obtained in Problem 47 of the Review Practice
Problems in Chapter 8 to test at the 1% level of significance the hypothesis H0:
p1 − p2 = 0 versus H1: p1 − p2 �= 0.

69. Referring to Problem 5 of Section 8.7, test at the 5% level of significance the hypothesis
that the percentages of persons who favor a nuclear plant in the two states are the
same, that is, H0: p1 − p2 = 0 versus H1: p1 − p2 �= 0.

70. Referring to Problem 5 of Section 8.7, determine a 98% confidence interval for the
difference between the percentages of persons who favor a nuclear plant in their state
and then use it to test at the 2% level of significance the hypothesis H0: p1 − p2 =
0 versus H1: p1 − p2 �= 0.
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ELEMENTS OF RELIABILITY
THEORY

The focus of this chapter is a discussion of the basic concepts of
reliability theory.
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• Reliability and hazard rate functions
• Derivation of an appropriate form for the life distribution using the hazard rate function
• Estimation and testing of hypotheses for parameters of different life distributions
• Probability plots and plots of the life distribution and hazard rate functions using

MINITAB, R, and JMP for censored and uncensored data

Learning Outcomes

After studying this chapter, the reader will be able to

• Determine the reliability and hazard rate functions for different life probability models.
• Fit different models such as exponential, normal, lognormal, and Weibull to a censored

or uncensored data set.
• Determine estimates of parameters of different life probability models.
• Perform testing of hypotheses concerning various parameters of life probability models.
• Use various statistical packages to construct survival plots using censored and uncen-

sored data.
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Second Edition. Bhisham C. Gupta, Irwin Guttman, and Kalanka P. Jayalath.
c© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/college/gupta/statistics2e
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10.1 THE RELIABILITY FUNCTION

Let T represent the random variable which is the time to failure of an item and let f(t)
be its probability density function (p.d.f.), where T ≥ 0. Then, we define the reliability
function R(t) at time t as

R(t) = P (T ≥ t) =
∫ ∞

t

f(x)dx = 1 − F (t) (10.1.1)

It follows from equation (10.1.1) that R(0) = 1 and R(∞) = 0. Note that the reliability
function R(t) is a nonincreasing function; that is the chances of survival diminish as the
component becomes older. Here, F (t) is the cumulative distribution function (c.d.f.) of
the random variable T, the time to failure. For example, suppose the time to failure T
is characterized by the exponential distribution; that is the process under investigation
follows a Poisson process. Then, the reliability R(t), for t > 0 is given by

R(t) =
∫ ∞

t

λe−λxdx = e−λt (10.1.1a)

where 1/λ is the mean of the exponential distribution. Figure 10.1.1 shows graphs of a
typical density function, distribution function, and reliability function.

0 T

f(t)

(a)
0 T

F(t)

(b)

1

t

F(t) = P(T ≤ t)

0 T

R(t)

(c)

Figure 10.1.1 Plots of a typical (a) density function, (b) distribution function, and (c)
reliability function.

10.1.1 The Hazard Rate Function
To assist in discriminating among distributions for time to failure, the concept of the
hazard rate function or failure rate function, h(t), plays an important role. We now define
the hazard or failure rate function, denoted by h(t), as the conditional probability that a
system will fail almost instantaneously after time t, given that it has survived up to time
t, that is

h(t) = lim
P (t ≤ T ≤ t + δt|T ≥ t)

δt
as δt → 0 (10.1.2)
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Now
P (t ≤ T ≤ t + δt|T ≥ t) =

P (t ≤ T ≤ t + δt)
P (T ≥ t)

=
F (t + δt) − F (t)

1 − F (t)

and it follows that the hazard function may also be defined in terms of the density function
and the reliability function as

h(t) =
f(t)

1 − F (t)
=

f(t)
R(t)

(10.1.3)

Note that the hazard rate may be increasing if aging has a deleterious effect, decreasing
if aging is beneficial, constant, or even nonmonotone. For example, the Weibull distribu-
tion (defined in equation (10.1.9)) has an increasing, decreasing, or constant hazard rate
depending on whether the shape parameter is greater than one, less than one, or equal
to one (i.e., aging has no effect on survival). The normal distribution has an increasing
hazard rate while, for example, the Pareto distribution has a decreasing hazard rate. These
examples show that the hazard rate characterizes the aging process of the component.

The hazard rate is often called the instantaneous failure rate, and the force of mortality
by actuaries. To explain, consider a young person and an old person, each with identical
value for f(t) at this very moment; that is both individuals have the same probability of
dying in the next instant. The force of mortality h(t) is greater for the older person since
his or her R(t) = 1 − F (t) is much less than that of the younger person.

Example 10.1.1 (Determining hazard function) Suppose that the time to failure of light
bulbs is distributed by the N(μ, σ2) distribution with μ = 1600 hours and σ = 400 hours.
Thus, the reliability and the hazard rate at t = 1700 hours are

R(t = 1700) = 1 − Φ
(

1700 − 1600
400

)
= 1 − 0.5987 = 0.4013

Here, from equation (10.1.3), the hazard at t = 1700 is

h(t = 1700) =
f(1700)
R(1700)

where f(t) is the ordinate of the p.d.f. of the N(1600, 4002) distribution, that is

f(1700) = (2π × 4002)−1/2 exp

[
−1

2

(
1700 − 1600

400

)2
]

= 9.6648 × 10−4

The instantaneous failure rate at t = 1700 is

h(t) =
9.6648 × 10−4

0.4013
= 24.08 × 10−4

Note that as stated earlier, the hazard rate function can be increasing, decreasing, or
constant. When the hazard rate is constant, the distribution describing time to failure is the
exponential distribution. When the hazard rate is increasing or decreasing, this behavior
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implies that the aging/antiaging factor is being taken into account, and the distribution
describing time to failure is the Weibull distribution, gamma, or some other distribution.
For example, a hazard rate function for an aging system that is not well maintained
may increase or decrease after it is reconditioned and remain constant if it is updated or
maintained frequently. In human populations, the hazard rate function is defined as the
proportion of individuals alive at age t years who will die in the age interval (t, t + δt).
The failure rate curve for humans is almost bathtub-shaped, initially decreasing, then
almost flat, and finally increasing. Figure 10.1.2 shows four kinds of hazard rate functions,
h1(t), h2(t), h3(t), and h4(t), that are respectively increasing, decreasing, constant, and
bathtub-shaped.

0

1

2

3

4

5 10

h1(t)

h4(t)

h3(t)

h2(t)

Figure 10.1.2 Graphs of four different hazard rate functions.

Example 10.1.2 (Microprocessor failure rate) The time T to failure of a microproces-
sor is exponentially distributed with mean time to failure μ = 1/λ = 2000 hours. It is
important that the microprocessors work successfully over the first 200 hours of use. Find
the reliability at T = t, where t = 200.

Solution: Using equation (10.1.1a), we find that the reliability at t = 200 as

R(t = 200) = e−200(1/2000) = 0.9048

Thus, 90.48% of the microprocessors will operate over the intended 200-hour period.
(In biometry, the reliability function R(t) is often termed the survival function at

time t.) Further, in this example, using equation (10.1.3), the instantaneous failure rate
at t = 200 is

h(200) =
f(200)
R(200)

=
(1/2000)e−200/2000

e−200/2000

that is
h(200) = λ = 1/2000

There are many devices for which a constant hazard rate is appropriate. Consider a
very large sample of items all placed in operation at time t = 0. Substandard items will
quickly fail, and as other weaker items are eliminated, it is common to see the hazard rate
fall rapidly until it reaches a near-constant value.
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If the random variable T, the time to failure of a system, is distributed as gamma,
then from equation (5.9.10), we have

f(t|γ, λ) =
λγ

Γ(γ)
tγ−1e−λt, t ≥ 0; γ > 0, λ > 0 (10.1.4)

Thus, the c.d.f. F (t) is given by

F (t) =
λγ

Γ(γ)

∫ t

0
xγ−1e−λxdx (10.1.5)

Let y = λx; we have

F (t) =
1

Γ(γ)

∫ λt

0
yγ−1e−ydy (10.1.6)

which is an incomplete gamma function, denoted by I(γ, λt). Thus, the reliability function
R(t) is given by

R(t) = 1 − F (t) = 1 − I(γ, λt) (10.1.7)

The values of the reliability function R(t) can easily be determined by one of the statistical
software packages used in this book. Using equations (10.1.2) and (10.1.7), the hazard rate
function is given by

h(t) =
f(t)

1 − I(γ, λt)
(10.1.8)

Example 10.1.3 (Microprocessor failure rate) The time T (in hours) to failure of a
microprocessor is modeled by a gamma distribution with parameters γ = 3 and λ = 0.1,
so that the shape parameter is 3 and the scale parameter is 10. Using MINITAB and R,
find the reliability and hazard rate function at T = t, where t = 100 (see Figure 10.1.3 for
the shape of h(t) when γ = 3, and λ = 1.0 and 0.5 and for γ = 1 and λ = 1.0 and 0.5).

MINITAB

Using Minitab (see Chapter 5), we have

Probability Density Function

Gamma with shape = 3 and scale = 10

f(x)x

100 0.0002270

Cumulative Distribution Function

Gamma with shape = 3 and scale = 10

P(X ≤ x)x

100 0.997231
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Figure 10.1.3 Graphs of the hazard function for the gamma distribution at various
values of γ and λ.

Thus, the reliability at 100 is given by

R(100) = 1 − F (100) = 0.002769

The hazard rate function at t = 100 is given by h(100) = f(100)/R(100) = 0.000227/
0.002769 = 0.0819.

USING R

R has a built-in gamma density function ‘dgamma(x, shape, rate, scale = 1/rate)’ and a
gamma c.d.f. ‘pgamma(q, shape, rate, scale = 1/rate)’, where both ‘x’ and ‘q’ represent
the quantile, and ‘shape’ and ‘scale’ are the shape and scale parameters of the gamma dis-
tribution, respectively. Alternatively, one can specify the rate parameter, which is equal to
1/scale. Referring to Example 10.1.3, first we should find density and distribution function
values at t = 100 and use those results to evaluate the reliability and hazard rate functions.

f.100 = dgamma(x = 100, shape = 3, scale = 10)
F.100 = pgamma(q = 100, shape = 3, scale = 10)

f.100
[1] 0.0002269996
F.100
[1] 0.9972306
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#The reliability at t = 100
R.100 = 1−F.100
R.100 #R output
[1] 0.002769396

#The hazard rate function at t = 100
h.100 = f.100/R.100
h.100 #R output
[1] 0.08196721

It is important to note here that the hazard rate function of the gamma distribution
is increasing if γ > 1, decreasing if γ < 1, and constant if γ = 1 (see Figure 10.1.3).

Consider now the case where the random variable T is distributed as Weibull so that
from equations (5.9.18) and (5.9.19), we have

f(t|α, β, τ) =

{
β
α

(
t−τ
α

)β−1
e−[(t−τ)/α]β , for t > τ

0, otherwise
(10.1.9)

where α > 0, β > 0, τ ≥ 0, are the parameters of the distribution. Here, α is called as the
scale parameter, β the shape parameter, and τ the location or threshold parameter.

The c.d.f. of the Weibull distribution is given by

F (t) =

{
P (T ≤ t) = 1 − e−[(t−τ)/α]β , for t > τ

0, for t < τ
(10.1.10)

We use equation (10.1.10) to obtain the reliability and hazard rate functions:

R(t) = 1 − P (T ≤ t) = 1 − (1 − e−[(t−τ)/α]β ) = e−[(t−τ)/α]β (10.1.11)

h(t) =
β

α

(
t − τ

α

)β−1

(10.1.12)

respectively. From equation (10.1.12), it can be seen that the hazard rate function of the
Weibull distribution is increasing if β > 1, decreasing if β < 1, and constant if β = 1. Thus,
the shape parameter determines the monotonicity of the hazard rate function.

Example 10.1.4 (Using MINITAB and R) Suppose that the lifetime T is modeled by the
Weibull distribution whose threshold parameter is τ = 0, shape parameter β = 0.5, and
the scale parameter α = 40. Find the reliability and hazard rate function at T = t, where
t = 100.
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MINITAB

Using Minitab (see Chapter 5), we have

Probability Density Function

Weibull with shape = 0.5 and scale = 40

f(x)x

100 0.0016265

Cumulative Distribution Function

Weibull with shape = 0.5 and scale = 40

P(X ≤ x)x

100 0.794259

The reliability at 100 is given by R(100) = 1 − F (100) = 1 − 0.794259 = 0.205741
Further, the hazard rate function at t = 100 is given by

h(100) = f(100)/R(100) = 0.0016265/0.205741 = 0.0079

USING R

R has a built in Weibull density function ‘dweibull(x, shape, scale)’ and a Weibull c.d.f.
‘pweibull(q, shape, scale)’, where both ‘x’ and ‘q’ represent the quantile and ‘shape’ and
‘scale’ are the shape and scale parameters of the Weibull distribution, respectively. Refer-
ring to information provided in Example 10.1.4, we proceed as follows.

f.100 = dweibull(x = 100, shape = 0.5, scale = 40)
F.100 = pweibull(q = 100, shape = 0.5, scale = 40)

#The reliability at t = 100
R.100 = 1−F.100
R.100 #R output
[1] 0.2057407

#The hazard rate function at t = 100
h.100 = f.100/R.100
h.100 #R output
[1] 0.007905694

The lognormal is another distribution that is used to study reliability problems in
engineering, medicine, and other fields. Recall that if the random variable T is distributed
as lognormal with parameters μ and σ (i.e., lnT is distributed as normal with mean μ and
standard deviation σ), then its p.d.f. is given by

f(t) =

⎧⎨
⎩

1
σt

√
2π

e−
(lnt−μ)2

2σ2 , t > 0

0, elsewhere
(10.1.13)

From the definition of lognormal, it can easily be seen that the reliability function

R(t) = P (T ≥ t) = 1 − P (T ≤ t)
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Figure 10.1.4 Hazard rate function for a lognormal distribution with parameters μ = 3
and σ = 1.

for the lognormal,
R(t) = 1 − P (ln T ≤ ln t) = 1 − P (Y ≤ ln t) (10.1.14)

where Y is normally distributed with mean μ and variance σ2.
The hazard rate function for the lognormal distribution is neither strictly increasing

nor strictly decreasing, but first increases and then decreases. For example, the hazard
rate function for a lognormal distribution with parameters μ = 3 and σ = 1 is as shown in
Figure 10.1.4.

Example 10.1.5 (Hazard rate for breast cancer patients) Suppose that the lifetime in
months of breast cancer patients after a mastectomy, followed by radiation and chemother-
apy, is modeled by the lognormal distribution with parameters μ = 3 and σ = 1. Find the
reliability and the hazard rate function for these patients at five years (60 months).

Solution: Using equation (10.1.13), we find that (μ = 3, σ = 1)

f(60) = 0.0036535, F (60) = 0.863098

Now from equation (10.1.14), we have that

R(60) = 1 − F (60) = 1 − 0.863098 = 0.136902

and hence,
h(60) = f(60)/R(60) = 0.0036535/0.136902 = 0.0267

To obtain this result using MINITAB and R, we proceed as follows:

MINITAB

Using Minitab (see Chapter 5), we have
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Probability Density Function

Lognormal with location = 3 and scale = 1

f(x)x

60 0.0036535

Cumulative Distribution Function

Lognormal with location = 3 and scale = 1

P(X ≤ x)x

60 0.863098

The reliability at 60 is given by

R(60) = 1 − F (60) = 1 − 0.863098 = 0.136902

Further, the hazard rate function at t = 60 months is given by

h(60) = f(60)/R(60) = 0.0036535/0.136902 = 0.0267

USING R

R has a built in lognormal density ‘dlnorm(x, meanlog, sdlog)’ and a lognormal cumu-
lative distribution function ‘plnorm(q, meanlog, sdlog)’, where both ‘x’ and ‘q’ represent
the quantile, and ‘meanlog’ and ‘sdlog’ are the mean and the standard deviation of the
lognormal distribution, respectively.

f.60 = dlnorm(x = 60, meanlog = 3, sdlog=1)
F.60 = plnorm(q = 60, meanlog = 3, sdlog=1)

#The reliability at t = 100
R.60 = 1−F.60
R.60 #R output
[1] 0.1369019

#The hazard rate function at t = 100
h.60 = f.60/R.60
h.60 #R output
[1] 0.02668676

The above results imply that only about 13.69% of the patients survive five years. The
hazard rate function is given by (here Y is normally distributed with μ = 3 and σ = 1)

h(60) = f(60)/R(60) = 0.0036535/0.1369 = 0.0267

That is the instantaneous death rate at t = 60 months is approximately 0.0267.
For another example, we consider a chain of n links, each link having strength X,

where X is a random variable with exponential p.d.f. f(x) = λe−λx. Clearly, the strength
of the chain depends on the strength of its weakest link, and we are led to consider the
distribution of the smallest chain strength in a sample of n links. In other words, the
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chain will break as soon as the weakest link breaks, or the time to failure for the chain
is the same as for the weakest link. This situation also arises when several components
in a system are placed in series so that the system fails as soon as the first component
fails. The general expression for the c.d.f. G of the smallest strength in a sample of n (see
equation (7.4.11)) is given by (please note that equation (7.4.11) is available on the book
website: www.wiley.com/college/gupta/statistics2e)

G(x) = 1 − [1 − F (x)]n (10.1.15)

where F (x) is the c.d.f. of the exponential. Since here

F (x) = 1 − e−λx

we obtain
G(x) = 1 − e−nλx (10.1.16)

Differentiating this c.d.f. gives the p.d.f. for the smallest order statistic in a sample of n
items from an exponential distribution, and we obtain

g(x) = nλe−nλx (10.1.17)

It can easily be verified that the reliability and hazard rate functions at T = t are given by

R(t) = 1 − G(t) = e−nλt (10.1.18)

h(t) = g(t)/R(t) = nλ (10.1.19)

10.1.2 Employing the Hazard Function
The choice of an appropriate life distribution usually depends on what the engineering
expert selects for the hazard rate of the items, h(t). Knowing the approximate form of
the hazard rate function, one can derive an appropriate form for the life distribution. To
elucidate this fact, first recall that the hazard rate function h is defined as

h(u) =
f(u)

1 − F (u)
where

d

du
F (u) = f(u) (10.1.20)

We then have
h(u)du =

f(u)du

1 − F (u)
=

dF (u)
1 − F (u)

(10.1.21)

so that ∫ t

0
h(u)du =

∫ t

0

1
1 − F (u)

dF (u) = − ln[1 − F (u)]
∣∣∣∣
t

0
(10.1.22)

or
−

∫ t

0
h(u)du = ln

1 − F (t)
1 − F (0)

= ln[1 − F (t)] = ln[R(t)] (10.1.23)
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since F (0) = 0. Furthermore, solving equation (10.1.23) for R(t) we have,

R(t) = exp
[
−

∫ t

0
h(u)du

]
(10.1.24)

Now, from equation (10.1.20), we have f(t) = h(t)[1 − F (t)] = h(t)R(t), so we can write,
using equation (10.1.24), that

f(t) = h(t) × exp
(
−

∫ t

0
h(u)du

)
(10.1.25)

or
f(t) = h(t) × exp(−H(t)) (10.1.26)

where H(t) is the cumulative hazard rate function given by H(t) =
∫ t

0 h(u)du.
We note that when h(t) = constant = λ, then f(t) = λe−λt, the exponential distri-

bution. Further, if h(t) is a simple power function of t, say h(t) = ηtη−1, then f(t) =
ηtη−1 exp(−tη), which is the Weibull distribution with β = η, α = 1, and τ = 0. If h(t) = et,
then f(t) = et exp[−(et − 1)], a distribution first used by Gumbel (1958).

PRACTICE PROBLEMS FOR SECTION 10.1

1. Suppose that the lifetime in years of fuel pumps used in an aircraft gas turbine
engine is modeled by the Weibull distribution, with threshold parameter 0, shape
parameter β = 1.0, and scale parameter α = 30. Find the reliability and the hazard
rate function for these pumps at 10 years.

2. Suppose that the lifetime, in months, of heart patients after quadruple bypass
surgery is modeled by the gamma distribution with shape parameter 3.5 and scale
parameter 20. Find the reliability and the hazard rate function for these patients at
six years (72 months).

3. The time T to failure of a computer hard drive is exponentially distributed with
mean time to failure μ = 1/λ = 5000 hours. Find the reliability and the hazard rate
function for these hard drives at 3000 hours.

4. In Problem 2, suppose that the lifetime in months of heart patients after quadruple
bypass surgery is modeled by the lognormal distribution with μ = 4 and σ = 1.
Find the reliability and the hazard rate function for these patients at six years (72
months).

5. Suppose that the hazard function of the transmission of a luxury car is given by

h(t) =
αβtβ−1

1 + αtβ
, α > 0, β > 0, t ≥ 0

Find the density, reliability, and cumulative hazard function of the life of the trans-
mission.

6. Suppose that in Problem 5, α = 1 and β = 0.5. Find the reliability and the hazard
rate at time T = t, where t = 10.



10.2 Estimation: Exponential Distribution 457

10.2 ESTIMATION: EXPONENTIAL
DISTRIBUTION

The exponential distribution f(t) = λe−λt and its resultant constant hazard rate λ are very
frequently employed in reliability engineering. We turn now to the problem of estimating
λ, the hazard rate, from data gathered from a life test.

Suppose that a random sample of n items representative of standard production items
are placed in usage and stressed in a fashion representative of the stresses encountered
by the items when in common use. For example, n light bulbs may be turned on, and
the time to failure of each bulb is noted. Often, instead of waiting until all n items have
failed, the test is ended at the time of the kth failure, k ≤ n, where k is chosen in advance.
This method of testing is called type II censoring (type I censoring is discussed following
Example 10.2.1). The times of the k failures are naturally ordered as we see them, and
denoting the time to failure of the jth item, 1 ≤ j ≤ k, by t(j), we have

t(1) ≤ t(2) ≤ · · · ≤ t(k) (10.2.1)

Note that the only information we have about the other (n − k) times to failure is that
they exceed t(k). Now, using the methods of Chapter 7, it is easy to deduce that the joint
density function of the first k-order statistics in a random sample of n, that is, t(1), . . . , t(k),
is given by

n!
(1!)k(n − k)!

f(t(1)) · · · f(t(k))[1 − F (t(k))]
n−k (10.2.2)

where F (x) is the c.d.f. corresponding to f(x). In fact, given n, k, and the values of t(j), 1 ≤
j ≤ k, equation (10.2.2) is the likelihood function (see Chapter 8) based on an experiment
in which there is type II censoring as soon as the kth item fails. If we now substitute
f(t) = λ exp(−λt) and F (t) = 1 − exp(−λt) in the joint p.d.f. given by equation (10.2.2)
and invoke the principle of maximum likelihood, the maximum likelihood estimator (MLE)
λ̂ of λ is found to be

λ̂ =
k

Tk

, Tk =
k∑

i=1

t(i) + (n − k)t(k) (10.2.3)

Here, Tk is an estimate of the total of the failure times of all n items, based on the
available k times. Now, remembering that the mean of the exponential distribution used
here is μ = 1/λ, we find that the MLE of the mean of the time between failures is

μ̂ =
Tk

k
(10.2.4)

To obtain a confidence interval for μ, it has been shown (see Halperin, 1952, or Mann et al.,
1974) that the quantity 2Tk/μ is a random variable distributed as a chi-square variable
with v = 2k degrees of freedom. We then have that

P

(
χ2

2k,1−a/2 ≤
2Tk

μ
≤ χ2

2k,α/2

)
= 1 − α (10.2.5)

Since Tk = kμ̂ from equation (10.2.4), we easily find that
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[
2kμ̂

χ2
2k,α/2

, 2kμ̂
χ2

2k,1−a/2

]
(10.2.6)

is a 100(1 − α)% confidence interval for μ. The corresponding 100(1 − α)% confidence
limits for the hazard rate (λ) are obtained by simply substituting λ = 1/μ and λ̂ = 1/μ̂
to give the lower and upper limits λL and λU as⎧⎨

⎩
λL = λ̂

2kχ2
2k,1−α/2

λU = λ̂
2kχ2

2k,α/2

(10.2.7)

Now for the exponential distribution, the reliability is given by R(t) = exp(−λt), so the
MLE of the reliability function R̂(t) is given by

R̂(t) = exp(−λ̂t) (10.2.8)

Then, we use equation (10.2.7) and write the 100(1 − α)% confidence interval for the
reliability at any time t as

[exp(−λU t), exp(−λLt)] (10.2.9)

where λL and λU are the lower and upper limits of λ given by equation (10.2.7).
Occasionally, one will read in the reliability literature that μ, the mean time between

failures (MTBF), is estimated “with 100(1 − α)% confidence.” What is computed in these
cases is the lower bound of the one-sided confidence interval for the parameter μ, that is
the single quantity

2kμ̂/χ2
2k,α (10.2.10)

Clearly, merely by altering α, alternative values for the confidence estimate are possible,
and we note that the higher the confidence coefficient (1 − α), the smaller the proffered
value for the MTBF.

Example 10.2.1 (Confidence interval for mean time between failures) A random sample
of 10 light bulbs is placed on life test, and the test concluded after the fourth failure. The
recorded times to failure are 836, 974, 1108, and 1236 hours. Given that the time to failure
of the bulbs is appropriately represented by an exponential distribution, the mean time to
failure is estimated to be (see equations (10.2.3) and (10.2.4))

μ̂ =
[836 + 974 + 1108 + 1236]

4
+

6(1236)
4

= 2892.5 hours

The estimated hazard rate is:

λ̂ = (2892.5)−1 = 3.4572 × 10−4 failures per hour

Further, from equation (10.2.6), 95% confidence limits for the MTBF μ are(
2(4)(2892.5)

17.5346
,
2(4)(2892.5)

2.1797

)
= (1319.67, 10616.14)

The 95% confidence limits for the hazard rate λ are

(9.42 × 10−5, 75.78 × 10−5)
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From equation (10.2.10), the mean time to failure with 95% confidence is given by
2(4)(2892.5)/15.5073 = 1492.2 hours; that is the MTBF at 95% confidence is 1492.2 hours
(this is the lower bound of a one-sided confidence interval with confidence coefficient
95%). Observe now that the estimated mean time to failure with 99% confidence is less
than 1492.2, and the 99% confidence estimate is 2(4)(2892.5)/20.0902 = 1151.81 hours.

From these data, the estimated reliability of the bulbs at t = 2000 hours is R̂ = e−t/μ̂ =
e−2000/2892.5 = 0.50.

That is, it is estimated that 50% of the bulbs will remain workable at 2000 hours.
The estimated reliability at t = 2000 hours, at 95% confidence is given by exp(−t/μ̂) =
exp(−2000/1492.2) = 0.26. Thus, the reliability engineer is 95% confident that 26% of the
bulbs will be operating satisfactorily at 2000 hours.

The maximum likelihood estimate of the time at which the reliability attains the value
R = 0.75, found solving R(t) = e−λt = e−t/μ for t, say t̂, given by

t̂ = μ̂ ln
(

1
R

)
= (2892.5) ln

(
1

0.75

)
= 832.1 hours

The corresponding estimate of the time, for R = 0.75 at 99% confidence, is

t̂ = (1151.8) ln
(

1
0.75

)
= 331.4 hours

An alternative life testing scheme, termed type I censoring, is to stop the test of the
sample of n items at some fixed time t0 decided on in advance. In these circumstances,
the estimate of the time to failure is

μ̂ =
1
k

(
k∑

i=1

t(i) + (n − k)t0

)
=

T0

k
, k > 0 (10.2.11)

where t(1), . . . , t(k) are the observed failure times that are less than t0. Approximate 100(1 −
α)% confidence limits for μ are obtained using equation (10.2.5).

Example 10.2.2 (Example 10.2.1 continued) Referring to Example 10.2.1, suppose that
it had been decided to complete the life test after 1250 hours and that only the four failures
recorded in Example 10.2.1 had occurred in that time, all n − k = 6 others having lifetime
greater than 1250 hours. (this sometimes called “right censoring”).

Then,

μ̂ =
[836 + 974 + 1108 + 1236]

4
+

6(1250)
4

= 2913.5 hours

The approximate confidence limits for the MTBF μ are 1329.3 and 10693.2. (These are
found using equation (10.2.6) with μ̂ as above.)

In addition to the exponential distribution, the Weibull and lognormal distributions are
frequently used in reliability theory. In Example 10.2.3, we employ all three distributions.
Then, in Section 10.4, we resume discussion of the use of the Weibull distribution.

Example 10.2.3 (Using MINITAB and R) Referring to the data in Example 10.2.2 and
using MINITAB and R, apply the exponential, Weibull, and lognormal models to the data.

MINITAB

To fit exponential, Weibull, and lognormal distributions we proceed as follows:
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1. Enter the data in column C1 and create a censoring column C2 by entering 1 for
uncensored observations and 0 for censoring observations. (If an observation in sur-
vival data does not possess a characteristic of interest then it is called a censored
observation. For example, a machine is still functioning or a patient is still alive at
the end of the study period.)

2. From the Menu bar, select Stat > Reliability/Survival > Distribution Anal-
ysis (Right Censoring) > Parametric Distribution Analysis.

3. A dialog box Parametric Distribution Analysis-Right Censoring appears. In
this dialog box, enter the data column under variables. Then, select the Censor
option and enter the censoring column in the box under Use censoring columns
and click OK. Now select other options, for example, Estimate . . . , and select
either estimation method; least-squares or the maximum likelihood method. Then,
under Graphs . . . select any desired plots such as Probability plot, Survival plot,
Cumulative Failure plot, Display confidence intervals on above plots, Hazard plot
and then click OK.

4. Finally, select one of the Assumed Distributions by clicking on the pull-down
arrow.

5. Click OK. The final results appear in the Session window as shown below.

1. Exponential Model

Characteristics of DistributionParameter Estimates

Goodness-of-Fit

Mean(MTTF)

Estimate

2913.50 1456.75 1093.49 7762.752913.50 1456.75 1093.49 7762.75

2913.50 1456.75 1093.49 7762.75

2019.48 1009.74 757.949 5380.73

838.162 419.081 314.577 2233.20

4038.97 2019.48 1515.90 10761.5

3200.81 1600.40 1201.32 8528.26

Lower Upper

Standard

Error

95.0% Normal CI

Lower Upper

95.0% Normal CI

Standard Deviation

Parameter

Mean

Estimate

Standard

Error

Median

First Quartile(Q1)

Third Quartile(Q3)

Interquartile Range(IQR)

Log-Likelihood = –35.908

Anderson-Darling

(Adjusted)

43.280
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StDev 2913.50

Median 2019.48

IQR 3200.81

Failure 4
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Note that the probability plots are used to assess whether a particular distribution fits the
data. In general, the closer the points fall to the fitted line, the better the fit. The points
are plotted using median rank (called Bernard’s approximation), that is [(i − 0.3/n +
0.4), t(i)], i = 1, 2, 3, 4.

2. Weibull Model

Characteristics of DistributionParameter Estimates

Goodness-of-Fit

Mean(MTTF)

Estimate

1298.70 123.310 1078.17 1564.335.74677 2.68328 2.30134 14.3505

261.844 124.482 103.128 664.827

1316.55 123.195 1095.94 1581.57

1129.75 106.816 938.643 1359.76

1485.32 186.744 1160.92 1900.37

355.575 179.305 132.342 955.355

Lower Upper

Standard

Error

95.0% Normal CI

Lower Upper

95.0% Normal CI

Standard Deviation

Parameter

Shape
1403.25 151.747 1135.24 1734.54Scale

Estimate

Standard

Error

Median

First Quartile(Q1)

Third Quartile(Q3)

Interquartile Range(IQR)

Log-Likelihood = –31.907

Anderson-Darling

(Adjusted)

43.109
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Table of Statistics

Shape 5.74677

Scale 1403.25

Mean 1298.70

StDev 261.844

Median 1316.55

IQR 355.575

Failure

Censor 6

4

AD* 43.109

Lifetime
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3. Lognormal Model

Characteristics of DistributionParameter Estimates

Goodness-of-Fit

Mean(MTTF)

Estimate

1385.01 192.728 1054.40 1819.287.19713 0.120285 6.96138 7.43289

380.217 199.776 135.765 1064.82

1335.59 160.652 1055.09 1690.68

1113.56 109.874 917.758 1351.15

1601.89 277.184 1141.16 2248.65

488.330 237.579 188.188 1267.17

Lower Upper

Standard

Error

95.0% Normal CI

Lower Upper

95.0% Normal CI

Standard Deviation

Parameter

Location
0.269552 0.108645 0.122338 0.593918Scale

Estimate

Standard

Error

Median

First Quartile(Q1)

Third Quartile(Q3)

Interquartile Range(IQR)

Log-Likelihood = –31.744

Anderson-Darling

(Adjusted)

43.111
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Loc 7.19713

Scale 0.269552

Mean 1385.01

StDev 380.217

Median 1335.59

IQR 488.330

Failure

Censor 6

4

AD* 43.111

Lifetime
1000 10000

USING R

To fit survival models in R, we may use ‘survreg()’ function in library ‘survival’. However,
it is required to change the data to a survival R object using the ‘Surv()’ function so
that we can apply it in the ‘survreg()’ function as shown in the following R code. Note
that the ‘survreg()’ function transforms the time variable to natural log (ln) scale and fit
Accelerated Failure Time (AFT) models.

#Load survival package
library(survival)
#Failure times including six right censored observations
Time = c(836,974,1108,1236,1250,1250,1250,1250,1250,1250)
#Identify whether the observation is right censored (=0) or not (=1)
Status = c(1,1,1,1,0,0,0,0,0,0)
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#Fit data with an Exponential distribution
model1 = survreg(Surv(Time,Status)∼1, dist = “exponential”)
summary(model1)

#R summary output

Value Std. Error z p

(Intercept) 7.98 0.50 15.9 < 2e-16

Exponential distribution

Loglik(model)= -35.9, Loglik(intercept only)= -35.9

#Fitted mean can be obtained via 1/exp(-Intercept of the model)
mean = 1/exp(-model1$icoef)

#Fit data with a Weibull distribution
model2 = survreg(Surv(Time,Status)∼1, dist = “weibull”)
summary(model2)

#R summary output

Value Std. Error z p

(Intercept) 7.247 0.108 67.01 < 2e-16
Log(scale) −1.749 0.467 −3.75 0.00018

Weibull distribution

Loglik(model)= -31.9, Loglik(intercept only)= -31.9

#Fitted Shape can be obtained via 1/Scale
Shape = 1/model2$scale

#Fitted Scale can be obtained via 1/exp(-Intercept of the model)
Scale = 1/exp(-model2$icoef[1])

#Fit data with a Lognormal distribution
model3= survreg(Surv(Time,Status)∼1, dist = “lognormal”)
summary(model3)

#R summary output

Value Std. Error z p

(Intercept) 7.197 0.120 59.83 < 2e-16
Log(scale) −1.311 0.403 −3.25 0.0011
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Log Normal distribution

Loglik(model)= -31.7, Loglik(intercept only)= -31.7

#Fitted Location can be obtained via intercept of the model
Location = model3$icoef[1]

#Fitted Scale can be obtained via 1/exp(-Log(scale) of the model)
Scale = 1/exp(-model3$icoef[2])

To see which model fits the given data better, we use as criterion the Anderson–Darling
statistic (see Anderson and Darling, 1952) in MINITAB and log-likelihood ratio test
statistic (see Lee and Wang, 2003, p. 233) in R. Comparing the values of both the
Anderson–Darling statistic and the log-likelihood ratio test, we find that Weibull fits neg-
ligibly better than lognormal and exponential while the lognormal fits better than the
exponential.

Note that the smallest value of the Anderson–Darling statistic is an indication that
the corresponding model gives rise to the best fit of the data among the three possible
models. Similarly, the smallest absolute value of the log-likelihood ratio test conveys the
same information. Thus, in this case, even using the log-likelihood ratio test, we can
conclude that both Weibull and lognormal distributions are preferred to the exponential
distribution.

PRACTICE PROBLEMS FOR SECTION 10.2

1. A random sample of 12 mechanical parts of a system is placed on life test, and the
test is concluded after the sixth failure. The recorded times to failure are 964, 1002,
1067, 1099, 1168, and 1260 hours. Assuming that the time to failure of the parts
is appropriately represented by an exponential distribution, determine the MLE
estimate of the mean time to failure.

2. Referring to Problem 1, estimate the hazard rate and find a 95% confidence interval
for the hazard rate.

3. Referring to Problem 1, construct 95% confidence interval for the mean time to
failure. Also find a 95% confidence interval for the reliability of the part at t = 1180
hours.

4. A random sample of 10 automobile voltage regulators is placed on life test, and it
is decided to complete the life test after 78 months. The recorded times to failure
are 58, 62, 68, 74, and 77 months. Assuming that the time to failure of the voltage
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regulators is appropriately represented by an exponential distribution, estimate the
mean time to failure.

5. Referring to Problem 4, estimate the hazard rate and find a 99% confidence interval
for the hazard rate.

6. Referring to Problem 4, find a 99% confidence interval for the mean time to failure.
Also find a 99% confidence interval for the reliability of the part at t = 70 months.

10.3 HYPOTHESIS TESTING: EXPONENTIAL
DISTRIBUTION

If we wish to test a hypothesis about μ, then we know that the mean time between failure
of items has an exponential life distribution, so that one technique is to use the data from
a life test of n items and construct a 100(1 − α)% confidence interval for μ (one-sided or
two-sided). If the hypothesized value μ0 lies outside the interval, the hypothesis may be
rejected with a type I error having probability equal to α. This approach, however, is not
useful when one must plan an experimental trial to test, with appropriate α and β risks,
the hypothesis:

H0 : μ = μ0 against H1 : μ = μ1 < μ0

Interestingly, this problem may be stated in terms of R(t0), the reliability of the items
at some fixed point in time t0 called the “mission time.” For example, a typical scenario
declares that items are acceptable if their reliability is 0.90 at t0 = 1000 hours, but the
item should be rejected if their reliability is 0.75 at t0 = 1000 hours. Then, we may state
the hypothesis corresponding to H0 above as

H0 : R0(t0) = R0(1000) = 0.9 versus H1 : R1(t0) = R1(1000) = 0.75

where we note that R1(t0) < R0(t0).
But we are dealing with the case that lifetimes of the items are exponentially dis-

tributed, so R(t) = e−t/μ. Hence, the corresponding values for μ are μ0 = −t0/ ln[R(t0] =
−1000/ ln(0.9) = 9491 and μ1 = −1000/ ln(0.75) = 3476. For convenience, we use μ0 =
9500 and μ1 = 3500 hours. We are then in the situation that we wish to test

H0 : μ = μ0 = 9500 versus H1 : μ = μ1 = 3500

with the probability of type I error = α and the probability of type II error = β.
As discussed in Section 9.12, there is a sequential test of this hypothesis. To conduct

such a test, we place n items on test and record the time to failure t of each item. Let Tm

equal the total accumulated time after m items fail; that is
∑m

i=1 ti. Given that the failure
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times ti are independent events from an exponential distribution f(t) = μ−1 exp(−t/μ),
the sequential test may be stated as follows:

Continue sampling as long as Tm is such that

A ≈ β

1 − α
≤ W =

(μ1)
−me−T

m
/μ1

(μ0)−me−T
m

/μ0
≤ 1 − β

α
≈ B (10.3.1a)

But if W < A for some m, stop sampling and do not reject

H0 : μ = μ0 (10.3.1b)

Finally, if W >B for some m, stop sampling and reject

H0 : μ = μ0 in favor of H1 : μ = μ1 (10.3.1c)

We remind the reader that μ1 < μ0.
This comes about naturally when we see that W is the ratio of the likelihood of μ1 to

the likelihood of μ0 based on the observed lifetimes. If W is “too large,” for example, then
the likelihood of μ0 dominates the likelihood of μ1, an indication that we should reject
H0 : μ = μ0 in favor of H1 : μ = μ1, and so on, “too large” and “too small” are defined,
respectively, by W > B = (1 − β)/α and W < A = β/(1 − α), which gives the above test
procedure the property of the probability of type I error = α and the probability of type
II error = β (power of the test = 1 − β). We note that A < B for α < 0.5 and β < 0.5 (the
usual case).

Now after some algebra, we can restate equations (10.3.1a)–(10.3.1c) as:
Continue sampling as long as Tm lies between the lines

a0 + bm and a1 + bm

where

a0 =
μ1μ0

μ1 − μ0
ln(B), a1 =

μ1μ0

μ1 − μ0
ln(A), b =

μ1μ0

μ1 − μ0
ln

(
μ1

μ0

)
(10.3.1d)

with μ1 < μ0.
But if Tm < a0 + bm, then reject H0 : μ = μ0 in favor of H1 : μ = μ1, but if Tm >

a1 + bm, then do not reject H0 : μ = μ0. We illustrate this with the following example.

Example 10.3.1 (Sequential test of hypothesis) Suppose for the situation in this section
that we are dealing with the case μ0 = 9500, μ1 = 3500, α = 0.05 and β = 0.10.

Solution: Referring to equations (10.3.1a)–(10.3.1d), we find that

a0 = −16,017, a1 = 12,476, b = 5534

Thus, when plotting Tm versus m, as long as Tm falls between the two parallel lines
aj + bm, j = 0, 1, that is if Tm is such that

−16,017 + 5534m ≤ Tm ≤ 12,476 + 5534m
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then sampling continues, but if Tm fall below −16,017 + 5534m, we reject H0 in favor of
H1 : μ = μ1 = 3500, while if Tm falls above 12,476 + 5534m, we do not reject H0: μ0 =
9500.

In setting up this sequential decision plan, we assume that n, the number of items
on test, is very large, or that as each item fails, it is immediately replaced on test by a
new item. When the items are not replaced on failure, the same equations hold as above,
except that at any time t we have

Tm =
m∑

i=1

t(i) + (n − m)(t − tm) (10.3.2)

The sequential test plan above assumes that the individual times to failure will be
known. More commonly, n items are placed on a life test, and at some designated time tp,
the number of failed items x is recorded. Based on this evidence, a decision to accept or
reject H0 is taken.

10.4 ESTIMATION: WEIBULL DISTRIBUTION

We have noted that when the hazard function h(t) = f(t)/[1 − F (t)] is a constant λ, the
distribution of time to survival is exponential. However, for many manufactured items
h(t) may either rise or fall over an extended period of time. If we employ a simple power
function h(t) = βtβ−1, then for β > 0, the hazard function will rise, but for β < 0, the
hazard will decline as time increases. And since

f(t) = h(t) exp
[
−

∫ t

0
h(x)dx

]
(10.4.1)

the corresponding distribution of time to failure is the standard Weibull distribution

f(t|β) = βtβ−1e−tβ

which is a member of the class of distributions given by

f(t|α, β, τ) =

{
β
α

(
t−τ
α

)β−1
e−[(t−τ)/α]β , for t > τ

0, otherwise
(10.4.2)

where α > 0, β > 0, and τ ≥ 0.
We say that β is the shape parameter, α the scale parameter, and τ the threshold

parameter.
If instead we take y = [(t − τ)/α]β , the Weibull variable is transformed to an exponen-

tial variable whose p.d.f. is f(y)dy = λe−λy dy. The reliability function for the Weibull is
R(t) = e−[(t−τ)/α]β . Setting the threshold parameter at τ = 0, and taking logarithms twice
give ln ln[1/R(t)] = β ln t − β ln α, which we rearrange to read

ln t = lnα + (1/β)[ln ln(1/R(t))]

This is the equation of a straight line in the variables (ln ln(1/R(t)), ln t) whose intercept
is ln(α) and whose slope is 1/β.
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Suppose now that n items are placed on life test and that the observed failure times
of the first k are recorded, t(1), t(2), . . . , t(k). As earlier, when order statistics were used to
provide probability plots (see Chapter 5), an estimate of the proportion of working items
available up to time t(i) is given by F̂ (t(i)) = (i − 1/2)/n. The estimated reliability at
time t(i) is then R̂(t(i)) = 1 − F̂ (t(i)). Other schemes for estimating F̂ (t(i)) are in common
use, for example, setting F (t(i)) = i/(n + 1), the so-called mean rank, or setting F (t(i)) =
(i − 0.3)/(n + 0.4), called the median rank. Thus, if the values of ln t(i) are plotted along
the ordinate axis versus ln ln(1/R̂) along the abscissa, a series of points lying reasonably
well along a straight line is obtained when the times to failure are Weibull distributed.

However, if the axes are reversed, the slope estimates β directly, which we now denote
by β̂. Since E(T ) = μ = α × Γ(1 + 1/β), the estimator of α is obtained using β̂ and the
average t̄ to give α̂ = t̄/Γ(1 + 1/β̂). The reader is referred to Mann et al. (1974), Lawless
(2003), and Lee and Wang (2003) for further methods of estimation and tests of significance
for the Weibull distribution.

Example 10.4.1 (Microchips) A sample of n = 20 microchips are placed on life test, and
the following k = 10 times to failure recorded:

i t(i) F̂ (t) = (i − 0.5)/20 R̂(t) = 1 − F̂ (t) ln ln(1/R̂(t)) ln t(j)

1 8.4 0.025 0.975 3.6762 2.1282
2 17.0 0.075 0.925 −2.5515 2.8332
3 19.1 0.125 0.875 −2.0134 2.9497
4 25.0 0.175 0.825 −1.6483 3.2189
5 29.2 0.225 0.775 −1.3669 3.3742
6 36.2 0.275 0.725 −1.1345 3.5891
7 43.8 0.325 0.675 −0.9338 3.7796
8 44.7 0.375 0.625 −0.7550 3.8000
9 65.4 0.425 0.575 −0.5917 4.1805
10 69.4 0.475 0.525 −0.4395 4.2399

Given that the Weibull distribution is appropriate to these data, a simple plot of the
points (ln ln(1/R(t)), ln t) on ordinary graph paper should provide a reasonably straight
line, as in Figure 10.4.1. The fitted Weibull distribution is

f(t) =
1.45
39.49

(
t

39.49

)0.45

exp

(
−

(
t

39.49

)1.45
)

Example 10.4.2 (Microchips) Use the data of Example 10.4.1 and assume that the exper-
imenter decided to terminate the test as soon as the 10th microchip failed, so that the time
to failure for the rest of the chips is 69.4+ (right-censored data points). Using MINITAB,
fit the Weibull model estimating the parameters by the maximum likelihood method and
the least-squares method (discussed in detail in Chapter 15).

MINITAB

Solution: Using the same steps as described in Example 10.2.3, we have
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Figure 10.4.1 Graphical estimation of Weibull parameters.

Maximum Likelihood Method

Characteristics of DistributionParameter Estimates

Goodness-of-Fit

Mean(MTTF)

Estimate

81.0299 21.8602 47.7540 137.4931.41807 0.410116 0.804496 2.49960

57.9508 27.5762 22.8040 147.268

68.7912 15.5147 44.2139 107.030

37.0010 9.85492 21.9535 62.3626

112.154 31.7971 64.3409 195.498

75.1529 30.1175 34.2631 164.841

Lower Upper

Standard

Error

95.0% Normal CI

Lower Upper

95.0% Normal CI

Standard Deviation

Parameter

Shape
89.0800 22.0897 54.7902 144.830Scale

Estimate

Standard

Error

Median

First Quartile(Q1)

Third Quartile(Q3)

Interquartile Range(IQR)

Log-Likelihood = –55.918

Anderson-Darling

(Adjusted)

70.717

Least-Squares Method

Characteristics of DistributionParameter Estimates

Goodness-of-Fit

Mean(MTTF)

Estimate

76.13161.42424

54.2287

64.7468

34.9193

105.337

70.4177

Standard Deviation

Parameter

Shape
83.7490Scale

Estimate

Median

First Quartile(Q1)

Third Quartile(Q3)

Interquartile Range(IQR)

Log-Likelihood = –55.956

Anderson-Darling

(Adjusted)

70.737

Correlation

Coefficient

0.986
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Observe that the value of the Anderson–Darling statistics is slightly smaller when we
use ML estimates (see Figures 10.4.2 and 10.4.3).

If we use only the uncensored data to fit the Weibull model, then the resulting esti-
mates, as shown below, are significantly different.
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Figure 10.4.2 Maximum Likelihood estimates and 95% CI for lifetime using the Weibull
model.
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Figure 10.4.3 Least-squares estimates and 95% CI for lifetime using the Weibull model.
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Maximum Likelihood Method (uncensored data)

Characteristics of DistributionParameter Estimates

Goodness-of-Fit

Mean(MTTF)

Estimate

35.9223 6.01826 25.8677 49.88511.97146 0.494600 1.20570 3.22357

19.0220 4.55203 11.9004 30.4054

33.6476 6.36917 23.2183 48.7617

21.5394 5.73325 12.7840 36.2913

47.8243 7.69366 34.8909 65.5518

26.2849 5.80279 17.0526 40.5155

Lower Upper

Standard

Error

95.0% Normal CI

Lower Upper

95.0% Normal CI

Standard Deviation

Parameter

Shape
40.5223 6.85661 29.0848 56.4576Scale

Estimate

Standard

Error

Median

First Quartile(Q1)

Third Quartile(Q3)

Interquartile Range(IQR)

Log-Likelihood = –43.073

Anderson-Darling

(Adjusted)

1.405

Least-Squares Method (uncensored data)

Characteristics of DistributionParameter Estimates

Goodness-of-Fit

Mean(MTTF)

Estimate

36.54311.72084

21.8823

33.1263

19.8719

49.5570

29.6851

Standard Deviation

Parameter

Shape
40.9893Scale

Estimate

Median

First Quartile(Q1)

Third Quartile(Q3)

Interquartile Range(IQR)

Log-Likelihood = –43.234

Anderson-Darling

(Adjusted)

1.318

Correlation

Coefficient

0.993

Estimation of Mean and Variance When the Time to Failure is Lognormal and
the Data is Uncensored.

Suppose that the time to failure is lognormal with parameters μ and σ2. Assume
that a random sample of n parts is placed on a life test and the times to failure are
ti, i = 1, 2, . . . , n. Then, it can be easily seen (see Chapter 8) that the MLEs of μ and σ2

are given by

μ̂ =
1
n

n∑
i=1

ln ti and σ̂2 =
1
n

⎛
⎝ n∑

i=1

(ln ti)
2 − 1

n

(
n∑

i=1

ln ti

)2
⎞
⎠ (10.4.3)

An unbiased estimator of σ2 is given by S2 = (n/(n − 1))σ̂2 (see Chapter 8). Further
it can be seen that 100(1 − α)% confidence intervals for μ and σ2 are given by

[μ̂ − t(n−1), α/2(S/
√

(n − 1)), μ̂ + t(n−1), α/2(S/
√

(n − 1))] (10.4.4)

and [
nσ̂2

χ2
(n−1), α/2

,
nσ̂2

χ2
(n−1), 1−α/2

]
(10.4.5)

respectively. Recall that the mean and variance of the lognormal distribution are given by

Mean = eμ+σ2/2, Variance = e2μ+σ2
(eσ2 − 1) (10.4.6)

Now, the estimates of the mean and variance of the time to failure can simply be found
by replacing μ and σ2 in equation (10.4.6) by their estimators in equation (10.4.3).
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PRACTICE PROBLEMS FOR SECTIONS 10.3 AND 10.4

1. The time to failure (in months) of a component in a supercomputer is appropriately
represented by an exponential distribution. Develop a sequential test for testing
a hypothesis H0: μ = μ0 = 120 versus H1: μ = μ1 = 72,using (a) α = 0.05, β = 0.05;
(b) α = 0.05, β = 0.10.

2. Referring to Problem 1, develop a sequential test for testing a hypothesis
H0: R(100) = 0.95 versus H1: R(100) = 0.80, using (a) α = 0.05, β = 0.10; (b)
α = 0.10, β = 0.10.

3. Suppose that a random sample of 15 hard drives is placed on life test and that the
test was concluded after the seventh failure. The recorded times to failure are 3056,
3245, 3375, 3450, 3524, 3875, and 4380 hours. Estimate the mean time between
failures.

4. Refer to Problem 3. (a) Estimate the hazard rate. (b) Find a 99% confidence interval
for the mean time between failures. (c) Find a 99% confidence interval for the hazard
rate. (d) Estimate the mean time to failure with 95% confidence.

5. In Problem 3, suppose that it was decided to complete the life test at time 4500
hours, so that the seven failures recorded in Problem 3 occurred within that time.
(a) Estimate the mean time between failures. (b) Estimate the reliability at t = 8000
hours. (c) Estimate the hazard rate. (d) Find a 95% confidence interval for the mean
time between failures. (e) Find a 95% confidence interval for the hazard rate. (f)
Estimate the mean time to failure with 95% confidence.

6. Suppose that the time to failure in Problem 3 is modeled by the Weibull distribution.
Using MINITAB, find the least-squares and MLE estimates of the mean and the
standard deviation for both censored data and uncensored data.

7. Suppose that the time to failure in Problem 3 is modeled by the lognormal distribu-
tion. Using MINITAB, find the least-squares and MLE estimates of the mean and
the standard deviation for both censored data and uncensored data.

8. Refer to Problems 3, 6, and 7, to construct probability plots (for censored data) using
MINITAB for the Weibull, lognormal, and exponential distributions, and then use
the Anderson–Darling criterion to decide which distribution is the best fit to these
data.

9. Suppose that the time to failure of a part in an airbus gas turbine is lognormal
with parameters μ and σ2. A random sample of 10 parts is placed on life test, and
the recorded times to failure are 46, 49, 54, 58, 60, 64, 66, 69, 72, and 78 months.
Determine the MLE of μ and σ2, and then find estimates of the mean and variance
of time to failure of the part under investigation.

10.5 CASE STUDIES

Case Study 1 (Failure rates in electrical cable insulation)1 Stone and Lawless (1979)
point out that engineering experience suggests that failure voltages for two types of cable
are adequately presented by Weibull models with a common shape parameter. The data
in Table 10.5.1 give the failure voltage (in kilovolts per millimeter) for 20 specimens of
two types of cable (data used with permission).

1 Source: Lawless (2003) (Data used with permission).
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Table 10.5.1 Failure voltage (kV/mm) for two types of cable.

Type I cable 32 35.4 36.2 39.8 41.2 43.3 45.5 46 46.2 46.4
46.5 46.8 47.3 47.3 47.6 49.2 50.4 50.9 52.4 56.3

Type II cable 39.4 45.3 49.2 49.4 51.3 52 53.2 53.2 54.9 55.5
57.1 57.2 57.5 59.2 61 62.4 63.8 64.3 67.3 67.7

(a) Using MINITAB, R, or JMP, fit Weibull models and examine if the least-squares and
maximum likelihood estimates of the shape parameter are similar.

(b) The scale parameter α of the Weibull model has the interpretation that it is the
quantile at which 63.2% of the units fail. Now determine the 63rd percentile for each
data set and examine if it matches with the corresponding estimates of the scale
parameter that you determined in (a).

(c) Use the estimates of the shape parameter in (a) to conclude whether the hazard rate
function is increasing, decreasing, or constant.

(d) Determine the reliability of each cable at 55 kV/mm.
(e) Determine 95% confidence intervals for the scale and the shape parameters.

Case Study 2 (Failure rate in microcircuits)2 Failures occur in microcircuits because
of the movements of atoms in the conductors in the circuit, a phenomenon referred to
as electromigration. The data in Table 10.5.2 give the failure time (in hours) from an
accelerated life test of 59 conductors.

Use one of the statistical packages discussed in this book to fit the data in Table 10.5.2
to the exponential, lognormal, and Weibull models and estimate the corresponding param-
eters. Determine which model fits better to these data and then find the hazard rate
function.

Case Study 3 (Survival time of male mice)3 The data in Table 10.5.3 give the survival
times (in weeks) of 208 male mice exposed to a 240-R dose of gamma radiation. Fit the data
in Table 10.5.3 to the lognormal and the Weibull models and estimate the corresponding
parameters. Determine which model fits these data better and then find the hazard rate
function.

Table 10.5.2 Failure time (in hours) in an accelerated life test of conductors.

6.545 9.289 7.543 6.956 6.492 5.459 8.120 4.706
8.687 2.997 8.591 6.129 11.038 5.381 6.958 4.288
6.522 4.137 7.459 7.495 6.573 6.538 5.589 6.087
5.807 6.725 8.532 9.663 6.369 7.124 8.336 9.218
7.945 6.869 6.352 4.700 6.948 9.254 5.009 7.489
7.398 6.033 10.092 7.496 4.531 7.974 8.799 7.683
7.224 7.365 6.923 5.640 5.434 7.937 6.515 6.476
6.071 10.491 5.923

2 Source: Data Table 10.5.2 from Nelson and Doganaksoy (1995) and Lawless (2003).
3 Source: Data Table 10.5.3 from Furth, Upton, and Kimball (1959), Kimball (1960), and Lawless (2003).
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Table 10.5.3 Survival times (in weeks) of male mice.

40 48 50 54 56 59 62 63 67 67 69 70
71 73 73 76 77 80 81 81 82 83 84 86
86 87 88 88 88 88 88 89 90 90 91 93
94 95 96 97 97 98 99 99 100 100 100 100

101 101 101 102 102 103 103 103 103 103 104 104
104 105 105 106 106 106 107 108 109 109 110 110
110 111 111 111 112 113 113 114 114 115 116 116
117 118 118 118 119 119 120 120 120 121 121 123
123 124 124 124 125 125 126 126 126 126 126 127
127 127 127 128 128 128 128 129 129 129 129 129
129 130 130 130 130 131 131 132 133 133 133 134
134 134 134 135 135 135 136 136 136 136 137 137
137 138 139 139 140 140 141 141 141 141 141 142
144 144 144 144 144 145 145 146 146 146 146 147
147 147 147 148 148 148 148 149 150 151 151 151
151 152 152 153 155 156 157 158 158 160 161 162
162 163 163 164 165 165 166 168 169 171 171 172
172 174 177 177

10.6 USING JMP

This section is not included in the book but is available for download from the book
website: www.wiley.com/college/gupta/statistics2e.

Review Practice Problems

1. To meet contract specifications, the reliability of a certain type of electrical relay must
be at least 0.90 at 1000 days of service. Given that the distribution of time to failure
is exponential, what is the MTBF of the relays? What is the hazard rate?

2. The life distribution of certain items is N(μ, σ2) with μ = 65 and σ2 = 100. Determine
the force of mortality (or hazard rate) of an item at times μ ± σ, μ, μ ± 2σ.

3. Referring to the situation discussed in Section 10.3, determine the maximum likelihood
estimate of λ, under the assumption of exponential times, that is f(t) = λ exp(−λt),
where μ = 1/λ.

4. Given the hazard function h(t) = βt, (a) determine the appropriate p.d.f. for f(t) and
its reliability function R(t); (b) determine f(t) and R(t) when h(t) = β0 + β1t.

5. A sample of n = 12 radio receivers is placed on a life test. The times to failure, reported
after the receivers are on test for 3000 hours, are 1854, 2110, 2270, and 2695. Given
that the hazard rate for these items is a constant, estimate their reliability at t = 4000.
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6. In Problem 5 above, suppose that the test was stopped at the time of the fourth
failure. Estimate, with 95% confidence, the reliability at time t = 4000 hours.

7. A sample of n = 12 light bulbs are left on test until the fifth bulb has failed. The
recorded times to failure in hours are 1284, 1352, 1397, 1473, and 1530.
(a) Construct the 95% confidence limits for the mean time between failure (MTBF),

and then estimate the MTBF with 95% confidence.
(b) What is the estimated reliability at t = 2000 hours? What is the estimated relia-

bility at t = 2000 with 95% confidence?
(c) At what time t will R(t) = 0.5?

8. Determine the hazard function for the gamma distribution

f(t|β, λ) = (λβ/Γ(β))tβ−1e−λt

9. Develop a sequential sampling plan to test the hypothesis H0: μ0 = 3000 and H1: μ1 =
2500 with α and β risks 0.05 and 0.10, respectively, when the measured response
time to failure of the test items are normally distributed with mean μ and standard
deviation 225 (a) when items are replaced on failure; (b) when items are not replaced
on failure.

10. Consider the following times to failure in hundreds of hours of ten systems placed in
service under same conditions. The experimenter decided to terminate the experiment
after 2900 hours:

15 17 20 21 23 26 28 29+ 29+ 29+

Fit an exponential model to these data. Prepare the probability, reliability (survival),
and hazard plots (note that 29+ means that the item had life greater than 2900 hours).

11. Use the data in Problem 10 to fit Weibull and lognormal models. Construct for both
models the probability, reliability (survival), and hazard plots.

12. The following data give the survival times in months of 20 patients after their brain
tumors were removed:

10 17 77 27 14 17 17 17 3 2 20 9 18 7 15 7 24 56 30 16

Fit the lognormal model to this data using MINITAB or JMP, and then construct the
probability, survival, and hazard plots.

13. Refer to Problem 12. Use MINITAB or JMP to find a 95% confidence interval for
the mean.

14. Refer to Problem 12. Suppose that the recording was terminated after the death of
the 13th patient at time t = 17. Use MINITAB or JMP to fit Weibull and lognormal
models. Construct the probability, reliability (survival), and hazard plots for both
models.



Chapter 11

ON DATA MINING

The focus of this chapter is to introduce basic concepts and tools in
Data Mining.

Topics Covered

• What is data mining and big data?
• Data reduction and visualization
• Data preparation
• Classification
• Classification and regression trees

Learning Outcomes

After studying this chapter, the reader will be able to

• Understand the need for data mining.
• Learn data reduction techniques.
• Use data visualization and data preparation methods.
• Classify data using appropriate tools.
• Construct both classification and regression trees.
• Use the R software to perform classification and regression tree analyses.

11.1 INTRODUCTION

Previously, we studied a variety of probability and statistics topics starting from the very
basic level suitable for those with no previous knowledge up to an advanced level of various
techniques of statistics. Specifically, in Chapter 2, we learnt to divide data into different

Statistics and Probability with Applications for Engineers and Scientists using MINITAB, R and JMP,
Second Edition. Bhisham C. Gupta, Irwin Guttman, and Kalanka P. Jayalath.
c© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
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classes or classify data into various classes, derive various descriptive statistics such as
mean, variance, standard deviation, and others. We also learned to identify outliers that
may be present in a set of data. Afterward, we focused on various distributions, in partic-
ular, the normal distribution, where we learnt how to standardize random variables. This
led to a discussion on estimation and testing of hypothesis and some basics concepts in
reliability theory. In Chapters 15 and 16, we will discuss regression analysis and logistic
regression, where we will learn how to fit prediction models using one or more independent
variables.

We dedicate this chapter to the rather popular and very useful area in statistics
and computer sciences called “data mining.” All the concepts or techniques mentioned
previously become, one way or the other, the basis of various techniques used in the study
of data mining. Therefore, throughout this chapter, we may recall some of the topics from
the previous chapters. In summary, this chapter presents a general overview of data mining
with the intent of motivating readers to explore the topics in data mining further, and
gain expertise in this very important area.

11.2 WHAT IS DATA MINING?

Data mining is a methodology of extracting information from “big data sets or large data
sets” and includes gaining knowledge using various techniques of statistics and machine
learning. Machine learning is a subfield of artificial intelligence based on the concept that
systems can learn from data, finding hidden patterns in big data sets and arrive at deci-
sions with least human input. Data mining may also be described as discovering patterns
and knowledge from various databases by using various techniques of data analysis and
analytics, which involves database, data management, data preprocessing, or data reduc-
tion. Data reduction involves data complexity considerations, data representations of the
data mining model, and inference considerations. Finally, it involves the postprocessing of
discovered patterns and visualization with online updating.

As mentioned earlier, knowledge discovery in large data sets is achieved in various
stages. That is data mining involves data selection, data preprocessing or data reduction,
transformation, interpretation, and evaluation. The goal of data mining may be described
as prediction, i.e., developing data mining prediction models, classification, clustering (see
Chapter 12), and possible finding of some other functions.

We remark that the data reduction process in big data is an essential and integral part
of data mining. We will discuss some of the steps that occur in the process of data reduction
later in this chapter. The knowledge gained from a big data set may be used for many
applications such as follows: (i) retaining customers, (ii) DNA studies, (iii) market analysis,
(iv) space exploration, (v) tracking fraudulent activities, and (vi) corporate analysis and
risk management.

11.2.1 Big Data
The modern advancement in computer technology, remote sensing and wireless sensors
networks have made the collection of data sets very simple and cheap. Moreover, the growth
and digitalization of global information storage capacity has increased and is increasing at
a phenomenal rate. These two aspects have almost made the collection of very large and
complex data a routine task in many areas of application.
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Big data sets are very large and complex, so that traditional data-processing software
cannot handle and analyze them. Some of the challenges include capturing data, data
storage, and data analysis. There are also various conceptual problems associated with big
data, which include volume of the generated and stored data, variety (type and nature of
data), velocity at which the data is generated, how much redundancy or noise is present
in the data, and how much value or knowledge is present in the data. More recently, the
term “big data” is used when we use predictive analytics and other advanced analytic
methods to extract value from the data. As previously mentioned, with the advancement
in computer technology, remote sensing, and wireless sensors networks, data size has grown
very rapidly. On the other hand, Internet of Things (IoT) has enormous amount of data.
Based on an International Data Corporation (IDC) report prediction, the global data
volume will grow from 33 ZB (44 × 270) in 2018 to 175 ZB by 2025 (Reinsel et al., 2018).
Again, based on an IDC forecast, worldwide revenues for big data and business data
analytics (BDA) solutions will reach $260 billion in 2022 with a compound annual growth
rate (CAGR) of 11.9% over the 2017–2022 forecast period.

The desktop computers and software packages to visualize data often have difficulty
handling big data. The work may require “massively parallel software” running on tens,
hundreds, or even more servers. What counts as “big data” varies depending on the capa-
bilities of the users and their tools, and expanding capabilities make big data a moving
target. For some organizations, facing hundreds of gigabytes of data for the first time may
trigger a need to reconsider data management options. For others, it may take tens or
hundreds of terabytes before data size becomes a significant consideration.

When dealing with many variables, sometimes we are faced with the problem of “mul-
ticollinearity,”, that is some of the independent variables are related with each other. The
consequences of multicollinearity in multiple linear regression will be discussed in Chapter
16. However, Multicollinearity occurs in big data, where we have hundreds or sometimes
even thousands of variable (features), and it is very common that some of the features may
be related to each other. This is just one problem, and it may be associated with another
broader issue known as the curse of dimensionality, where the data volume increases expo-
nentially, and data become sparse as the dimensionality of data increases. However, since
the big data is so complex, it may have many such problems. Therefore, before analyzing
big data, it is very important to eliminate, or at least minimize the number of attributes
with the data set. This process of eliminating attributes from a data set is referred to
as data reduction. It is important to note that using data reduction techniques on the
preprocessed or prepared data for data mining, is questionable, in the sense that using
data reduction techniques on preprocessed data makes it more complex, and this takes
more computing time, so that there is little or nothing to gain. We would recommend to
an analyst that he/she maintains the right flavor between simplicity versus accuracy in
the data mining process. The following section offers a brief discussion on data reduction.

11.3 DATA REDUCTION

The data mining techniques are used for extracting patterns and values from a big data
set. The data reduction is important to improve the quality of the data. The good quality
data obtained using data mining techniques will not only allow us to determine whether
the desired problem is solvable or not but also it will lead us to obtain useful and valuable
models while lessening the deleterious effects of curse of dimensionality. As such, data
reduction is an integral part of data mining.
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In the process of data reduction and preparing the data for data mining, it is important
to know exactly what we gain and/or lose with these actions. Kantardzic (2011) notes three
important points which should be kept in mind while reducing the data.

1. Computing time: As a result of data reduction, we expect that the data is simpli-
fied which would lead to a reduction in the time taken for data mining. In many
situations, we may not be able to spend too much time on the data preprocessing
phases, including a reduction of data dimensions; although, the more time we spend
in preparation of the data, the better the outcome would be, i.e., we would have
more valuable data mining models.

2. Predictive/descriptive accuracy: This is the dominant measure for data-mining mod-
els since it measures how well the data are summarized and generalized into the
model. We generally would expect that by using only relevant features, a data-mining
algorithm can learn not only faster but also with higher accuracy. Irrelevant data
may mislead a learning process and the final model, while redundant data may
complicate the task of learning and cause unexpected data-mining results.

3. Representation of the data mining model: The simplicity of representation of the data
mining model, usually obtained with data reduction, often implies that a model can
be better understood. Furthermore, the simplicity of the induced model and other
results depends on its representation. Therefore, if the simplicity of representation
improves, a small decrease in accuracy may be acceptable. However, the need for
a balanced view between accuracy and simplicity is necessary, and dimensionality
reduction is one of the mechanisms for obtaining this balance.

It would be ideal if we could achieve all three, that is reduced computer time, improved
accuracy, and simplified representation at the same time, using dimensionality reduction.
However, very often it happens that we gain something but lose other features. Thus, it
is very important that we attain some balance in such a way that we do not lose much
in what is more important to our application. Further, it is well known that no single
data-reduction technique is well suited for all applications. To decide which data-reduction
technique should be used depends on how much knowledge we have about the available
data, such as, for example, feature correlation, noise data, outliers, relevant data, and so
on. Here, we briefly discuss some of data reduction methods.

1. Dimensionality reduction:
The big data are usually multidimensional and very complex. For instance, consider
a regular customer database where we have a very large number of raw attributes
such as in store purchases, demographic information, online purchases, social media
sites visited, traveling information, nature of the use of mobile devices, nature of
the responses to different surveys, number of vehicles owned, etc. This would result
possibly hundreds perhaps thousands of raw attributes per customer. This would
be the case where the big data set comes from chain stores with millions of cus-
tomers. Working with such a huge data base, say specifically when model building
is challenging due to both the computational aspect and interpretability of results,
makes itself a case for reduction. Now in data reduction, one of the goals is reducing
the dimensionality of the big data. One possible basic approach to reduce dimen-
sion is discarding some of the features (variables) of the big data. For instance, in
multiple linear regression analysis, the dimensionality reduction is accomplished by
detecting and removing irrelevant attributes that are not required for data analysis,
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i.e., removing variables from the data without losing any pertinent information (see
Chapter 16). A simple method is to determine pairwise correlations to detect vari-
ables or sets of variables, which may produce similar information. This way, some of
the variables that provide similar information can be removed. On the other hand,
if the number of features is too large, then the available data may sometimes be
insufficient for data mining. In such cases, we may have to get rid of whole lot of
features to obtain any valuable model.

However, dimensionality reduction can be achieved by encoding or transform-
ing data into a more “compressed” representation while retaining almost all the
information of the original data. Principal component analysis (PCA) and wavelet
transformation (WT) methods are commonly used for this purpose. These methods
cannot retain 100% of the original information while reducing dimension. As such,
these are called as lossy dimensionality reduction methods. For instance, using the
PCA method, one can represent ordinal data using a few mutually orthogonal (new)
set of variables which are linear combinations of the original features. The weights
or coefficients of the linear combinations are calculated using eigenvector analysis
on the correlation matrix of the original data. On the other hand, WT transforms
an original feature vector into a different vector where one can perform further data
reduction on this new vector. A detailed theoretical explanation is beyond the scope
of this book.

2. Data aggregation:
Aggregation is a commonly used statistical technique in descriptive statistics where
we summarize the data so that it reduces the data volume while retaining the infor-
mation needed for further analysis. For example, in the aforementioned customer
data base scenario, we can aggregate monthly customer data over seasons or quarters
and store in a relatively smaller volume. This can further be enhanced if we sum-
marize data by customers’ counties or geographical regions. Sometimes we refer to
this method as data cube aggregation as we summarize multivariate (three or higher
dimensional) data in cubes.

3. Attribute selection:
To predict a dependent variable, we may consider several independent variables,
where only a few of them may be important, and the remaining independent vari-
ables may not be useful in predicting the dependent variable. Similarly, in practice,
data mining problems are characterized by high-dimension data, where not all fea-
tures are important, that is many of the features may be irrelevant and thus may be
merely noise-producing attributes. This makes the data mining procedure less effec-
tive or may not provide very valuable and powerful models. The presence of irrelevant
features in a large data set also effects adversely the important points mentioned
previously, that is Computing Time, Predictive/Descriptive accuracy, and Represen-
tation of the Data Mining Model. Therefore, elimination of irrelevant features is an
important part of the data reduction process. As we will notice in Chapter 16, quite
often in regression analysis, we are seeking best sets of independent variables, using
certain criteria such as R-Sq(adj), Mellows Cp, PRESS statistic, and R-Sq(pred).
Similarly, in data-mining procedures, we like to determine important attributes by
eliminating some of the irrelevant features, which results in less data, and conse-
quently, the data-mining algorithm can learn faster, provides higher accuracy, and
yields simple results which are easier to understand and apply. There are a few com-
mon methods applied for reducing the number of attributes. For instance, Stepwise
forward and/or backward selection procedures in regression analysis help us to find
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the most appropriate set of attributes from a set of attributes. The decision tree
approach which we discuss in Section 11.7 is also a technique that one can use to
eliminate nuisance attributes.

The other data reduction method includes Numerosity reduction, where we reduce
the data volume by using some alternative data representations, which includes
regression models (e.g., logistic regression models), some graphical methods (e.g.,
histograms, box-plots), and clustering methods (see Chapter 12). We can also use
Discretization techniques where we replace continuous variables with a range of
numerical values with interval-based labeled variable. For detailed discussions of
these methods, readers are referred to Kantardzic (2011) and Han et al. (2011).

11.4 DATA VISUALIZATION

Another tool for preprocessing the data is what is called “data visualization.” In earlier
chapters, we studied several concepts of simplifying the data, such as data classification,
graphical displays, numerical summaries, data tabulations, and other techniques. All these
techniques form a major but not exhaustive part of the data visualization process. The
data visualization techniques’ such as a bubble chart, parallel coordinate plots, tree maps,
GIS (Geographic Information System) charts, Data Dashboards, Key Performance Indi-
cator, and others play a vital role in the data mining process. Some of these visualization
techniques will be discussed here, but for further information, the readers may refer to
Camm et al. (2014), Kantardzic (2011), and some other references given at the end of
this book.

The aforementioned techniques and some others help us to visualize the data in a very
simple format, so that we can easily see some of the characteristics of the data, such as
range of the data, rate of frequency of different observations or any trends present in the
data, and so on. This allows us to eliminate any outliers or any redundancy which may be
present in the data. The visualization of the data allows the managers to see in summarized
form the company’s operation and communicate with the data-mining analysts about
what results they are seeking. Then, the analysts may apply the appropriate data-mining
techniques and get the results in simple form so that they can be interpreted easily and
that the valuable information can be extracted from them.

In data visualization, the primary goal of data presentation, whether it is in a tabular
form or in graphical form, should be such that the tables and charts should be free of
unnecessary labels or grid lines etc. In the following example, we are given the number
of laptop computers manufactured by a high-tech company per day during the month of
June of a given year.

Example 11.4.1 (Data visualization) The following data give the number of laptop com-
puters manufactures by a high-tech company during the month of June (30-day period) in
a given year

445, 460, 428, 464, 479, 438, 428, 441, 448, 420, 434, 453, 419, 430, 456

468, 476, 449, 426, 478, 410, 456, 440, 428, 455, 463, 437, 446, 421, 483

Exhibit these data in various formats and explain which format might be more infor-
mative through data visualization.
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Solution: We write the above data in a couple of different formats, say, tabular and
graphical formats, and note which format would be more informative with minimum efforts
when we use the data visualization technique. Tufte (2001) in his book “The Visual Display
of Quantitative Information” describes that one of the novel ideas to evaluate the data
visualization technique is data-ink ratio. The data-ink ratio measures the proportion of
how Tufte describes “data-ink” namely, as the total amount of ink used to present a set
of data in a tabular or graphical format.

Compare to Table 11.4.1 and Figure 11.4.1a, clearly Table 11.4.2 and Figure 11.4.1b
improves the visibility of important information in the data due to the visualization tech-
nique used. In general, as we can see in the above examples, graphs provide information
faster, clearer, and easier for the readers to grasp the information contained in the given

Table 11.4.1 Table format of the data with grid-lines (low data-ink ratio).

No. of computers No. of computers No. of computers
Day manufactured Day manufactured Day manufactured
1 445 11 434 21 410
2 460 12 453 22 456
3 428 13 419 23 440
4 464 14 430 24 428
5 479 15 456 25 455
6 438 16 468 26 463
7 428 17 476 27 437
8 441 18 449 28 446
9 448 19 426 29 421

10 420 20 478 30 483

Data represent the number of laptop computers manufactured by a high-tech company
over 30-day period.

Table 11.4.2 Table format of the data without grid-lines (high data-ink ratio).

No. of computers No. of computers No. of computers
Day manufactured Day manufactured Day manufactured

1 445 11 434 21 410
2 460 12 453 22 456
3 428 13 419 23 440
4 464 14 430 24 428
5 479 15 456 25 455
6 438 16 468 26 463
7 428 17 476 27 437
8 441 18 449 28 446
9 448 19 426 29 421

10 420 20 478 30 483

Data represent the number of laptop computers manufactured by a high-tech company
over 30-day period.
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Figure 11.4.1 (a) Graphical format of the above data with projected lines (low data-ink
ratio). (b) Graphical format of the above data without projected lines (high data-ink ratio).

data set. For lack of space, we will not discuss the data visualization technique any further.
However, the reader may find many various kinds of tables and graphs discussed in this
book are very helpful in data visualization.

Example 11.4.2 (Iris Flower Data by Fisher (1936) and Anderson (1935)) Use the pop-
ular Iris flower data set to exhibit various visualisation techniques using R software.
Table 11.4.3 shows the first few observations of the data set, but the complete data set
is available on the website: www.wiley.com/ college/ gupta/ statistics2e. The “Species” is
a categorical variable with three classes (Setosa, Versicolor, and Virginica) and “Sepal
Length,” “Sepal Width,” “Petal.Length,” and “Petal Width” describe numerical measure-
ments of the flowers as shown in Figure 11.4.2.
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Table 11.4.3 Iris flower data (only the first few observations are shown here).

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

4.3 3.0 1.1 0.1 Setosa
4.4 2.9 1.4 0.2 Setosa
4.4 3.0 1.3 0.2 Setosa
4.5 2.3 1.3 0.3 Setosa
4.6 3.4 1.4 0.3 Setosa
4.6 3.2 1.4 0.2 Setosa
4.7 3.2 1.3 0.2 Setosa
4.7 3.2 1.6 0.2 Setosa
4.8 3.4 1.6 0.2 Setosa
4.8 3.0 1.4 0.1 Setosa
4.8 3.4 1.9 0.2 Setosa
4.8 3.1 1.6 0.2 Setosa
4.8 3.0 1.4 0.3 Setosa
4.9 3.1 1.5 0.2 Setosa
4.9 2.4 3.3 1.0 Versicolor
4.9 2.5 4.5 1.7 Virginica

Figure 11.4.2 Iris versicolor.

USING R

First, we use some built in R functions to visualize numerical summaries of these Iris data
as follows. The syntax “iris[7:10,]” is used to visualize Observations 7–10 in the Iris
data frame. The “summary()” and “quantile()” functions provide the summary statistics
and five number summary, respectively. The corresponding outputs are shown just after
the following R code.
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#Load iris data from R ‘datasets’ library
attach(iris)

#Visualise Observations 7–10
iris[7:10,]

#R output

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

7 4.60 3.40 1.40 0.30 setosa
8 5.00 3.40 1.50 0.20 setosa
9 4.40 2.90 1.40 0.20 setosa

10 4.90 3.10 1.50 0.10 setosa

#Summary of attributes

summary(iris)

#R summary output

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 Min.: 4.300 Min.: 2.000 Min.: 1.000 Min.: 0.100 setosa: 50
2 1st Qu.: 5.100 1st Qu.: 2.800 1st Qu.: 1.600 1st Qu.: 0.300 versicolor: 50
3 Median: 5.800 Median: 3.000 Median: 4.350 Median: 1.300 virginica: 50
4 Mean: 5.843 Mean: 3.057 Mean: 3.758 Mean: 1.199
5 3rd Qu.: 6.400 3rd Qu.: 3.300 3rd Qu.: 5.100 3rd Qu.: 1.800
6 Max.: 7.900 Max.: 4.400 Max.: 6.900 Max.: 2.500

#Quantiles of the first variable in the data frame

quantile(iris[,1])

#R summary output

0% 25% 50% 75% 100%

4.3 5.1 5.8 6.4 7.9

The following R code can be used to obtain basic graphical displays such as histogram,
boxplot, and scatter plots. As shown in Figure 11.4.3d, the scatter plot with groups helps
us not only to understand the trend between sepal width versus sepal length but also
allows to see different trends for each flower type with some clustering structures.
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Figure 11.4.3 Various graphical visualizations for Iris data.

par(mfrow=c(2,2))
#Histogram of Sepal Length
hist(iris[,1], main=“Histogram of Sepal Length”, xlab =“Sepal Length”, lwd=2, col=5)

#Boxplot of Sepal Length
boxplot(iris[,1], main=“Boxplot of Sepal Length”, xlab =“Sepal Length”, lwd=2, col = 6)

#Bivariate scatter plot of Sepal Length vs Sepal Width
plot(iris[,1], iris[,2], main=“Scater plot”, xlab =“Sepal Length”,
ylab =“Sepal Width”, cex=2, lwd=2, col=3, pch=20, ylim=c(2,5))
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#Bivariate scatter plot of Sepal Length vs Sepal Width with flower types
plot(iris[,1], iris[,2], main=“Scater plot with groups”, xlab =“Sepal Length”,
ylab =“Sepal Width”, lwd=2, col=as.numeric(iris[,5]), pch=as.numeric(iris[,5]),
ylim=c(2,5))
legend(“top”, c(“setosa”, “versicolor”, “virginica”), col=c(1,2,3),
pch=c(1,2,3),horiz = TRUE)

Finally, we exhibit two advanced data visualization tools in R. The R function “scatter-
plot3d()” yields a very useful graphical display that permits visualization of three variables
at a time. As shown in Figure 11.4.4, this 3D graph helps us to visualize the nature of
the association of all three variables side by side. Further, one can add a regression or a
response surface to these data to visualize the 3D trend.
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Figure 11.4.4 3D scatter plot for Iris variables “Sepal width”, “Sepal length”, and
“Petal length.”

The function “ggplot()” is another highly useful R tool for data visualization. There
are lot of variations and additional graphing available for this particular function. Here,
we only exhibit one of the primary uses of this tool. As shown in Figure 11.4.5, we plot
side-by-side boxplots that convey information about the distributions of “Petal Length” of
all three flower types in our example. Figure 11.4.6 shows an aesthetic scatter plot where
we can visualize more than two variables in a 2D plane. Aesthetic is a visual property of
the objects which characterizes a property of a variable by using the size, the shape, or the
color of the points on the graph. In Figure 11.4.6, we visualize attributes “Sepal Width,”
“Sepal Length,” “Petal Length,” and “Species Type.”



488 11 On Data Mining

6

2

Setosa Versicolor Virginica

Setosa

Versicolor

Virginica

Type

Type

4

P
e
ta

l_
le

n
g
th

Figure 11.4.5 Side-by-side boxplots for attribute petal length for three flower types in
Iris data.

USING R

The following R code can be used to obtain 3D scatter plot, side-by-side boxplots, and
aesthetic scatter plot. It is required to install both “scatterplot3d” and “ggplot2” libraries
to run the R code.

#3D scatter plot
library(scatterplot3d)
scatterplot3d(iris[,2], iris[,1], iris[,3], main =“3D scatter plot”,
xlab =“Sepal Width”, ylab =“Sepal Length”, zlab = “Petal Length”, highlight.3d=TRUE,
lwd=2, col.axis=“blue”, col.grid=“lightblue”, pch=20)

#Rename variables for plotting purpose
Type = iris[,5]
Petal Length = iris[,3]
library(ggplot2)
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Figure 11.4.6 Aesthetic scatter plot for attributes “Sepal Width,” “Sepal Length,”
“Petal Length,” and “Species Type” in Iris data. The numerical values (1–6) shown in
the legend indicate that the “Petal Lengths” are proportional to the corresponding bubble
sizes.

#Side-by-side boxplots
ggplot(iris, aes(x=Type, y=Petal Length, fill=Type))+ geom boxplot()

#Aesthetic scatter plot
p = ggplot(data=iris) + geom point(mapping = aes(x = iris[,1],
y = iris[,2], color = Type, size = Petal Length))
p + xlab(“Sepal Length”) + ylab(“Sepal Width”)

We also recommend readers to use another popular data visualization R package
“rggobi.” The “rggobi” package provides a command-line interface to “GGobi,” an inter-
active and dynamic graphics package for data analysis, which provides a more robust and
user friendly interface (see Wickham et al., 2008).
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11.5 DATA PREPARATION

In the above sections, we gave some discussion about certain aspects of big data, including
data reduction and data visualization, which constitute an important part of data prepa-
ration for data mining. In this section, we discuss some other aspects of data preparation
for data mining.

11.5.1 Missing Data
In practice, even though in data mining applications we have very large data at our
disposal, yet it is very rare that we have complete data sets. For example, in the study
of DNA, some of the observations may be missing because during the study period,
some patients may have died, some may have moved out of the area, some may have
voluntarily withdrawn from the study, or some may have been diagnosed with some
disease, such as cancer, HIV, or due to some other reasons. In data mining techniques,
some of the techniques may provide satisfactory results by discarding observations with
missing values, while other techniques may need to have complete data sets. Furthermore,
as we have a very large data set, discarding some observations with missing values
may still leave a significantly large data set for analysis. Thus, the data with discarded
observations may still give valuable data mining models. Now, the second option is to
replace the missing values with their estimated values (see Chapter 17). A third option
is to use some data-mining algorithms, such as, for example, classification decision trees
and continuous variable decision trees. It is generally assumed that decision trees are
not seriously affected by missing data as they have their own way to handle the missing
values. For example, if the predictor is categorical and has some missing values, then the
tree algorithm will just consider missing values as another class. For numerical predictor
with missing values, for instance, R “rpart” package uses a “surrogate” approach to
estimate the missing datum using the other independent variables (see Section 11.7.1.2
for more details about “rpart” package). Data-mining analysts also use some of the
following options to replace the missing observation values.

1. Replace all missing observation values with a single global constant, which is usually
application dependent.

2. Replace a missing observation value with its feature mean.
3. Replace a missing observation value with its feature mean for the given class.

Note that if the missing values are replaced with a constant value or a feature mean
without much justification, then they may introduce some noise in the data, which makes
the data biased and thus gives us bad results.

Further note that sometimes discarding large number of observations with missing
values may workout well, especially if the features or variables to be discarded are highly
correlated with other variables, which have most of their observations with known values.
This step would not only minimize the loss of any information but also sometimes give
better information. For instance, we will notice in model building in Chapter 16 that if we
discard some of the highly correlated variables, better models could be obtained.



11.5 Data Preparation 491

11.5.2 Outlier Detection and Remedial Measures
In Chapter 2, we studied various plots and tables to summarize the data set. In particular,
we studied boxplot (see Section 2.2.8), which helps us detect the mild outliers, and the
extreme outliers via interquartile range (IQR) based (1.5 IQR and 3 IQR) rules. In general,
we tend to discard all the extreme outliers unless we determine that some outlier(s) has
appeared erroneously. The presence of genuine outliers in the data set can produce very
lopsided results. For instance, consider the following example.

Example 11.5.1 (Outlier detection) The following data give the salaries (in thousands
of dollars) of 10 randomly selected employees from a large company.

18, 12, 11, 15, 19, 16, 29, 23, 17, 100

The company has several hundred thousand employees. We are interested in finding the
average salary of an employee in that company.

Solution: Suppose we find the sample mean to determine the average salary. So that,
we have

X̄ =
1
10

(18 + 12 + 11 + 15 + 19 + 16 + 29 + 23 + 17 + 100) = 26.0

This shows that the average salary of an employee in that company $260,000. This clearly
is not a valid result and this is because of the observation 100, which may be the salary
of the CEO of the company. The observation 100 is not there erroneously, but as it shows
in the boxplot in Figure 11.5.1, it is a genuine extreme outlier. Now, we find the sample
mean without this outlier, which is given by

X̄ =
1
9
(18 + 12 + 11 + 15 + 19 + 16 + 29 + 23 + 17) = 17.78

Thus, the average salary without the outlier turns out to be 17.78, that is the average
salary of an employee in the company is $177,800. This clearly seems to be a valid result.
We see here that how the extreme outlier(s) in the data can adversely affect the final
results. Therefore, an appropriate solution for extreme outliers is that they should always
be discarded.

However, as it shows in the following calculations, the sample quartiles (Q1, median,
and Q3) seem to be very resistant to the extreme outlier. Therefore, we can report the
median salaries 17.50 (with the outlier) or 17.00 (without the outlier) as the average salary.

C1              9       0     17.78            1.85       5.54            11.00     13.50        17.00    21.00            29.00

Statistics (With the outlier)

Statistics (Without the outlier)

Variable      N     N*    Mean     SE Mean   StDev     Minimum         Q1     Median      Q3      Maximum

Variable      N     N*    Mean     SE Mean   StDev     Minimum         Q1     Median       Q3      Maximum

C1              10      0     26.00            8.39    26.52          11.00     14.25        17.50    24.50          100.00
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Figure 11.5.1 Boxplot of salary data. Note that the “∗” represents an outlier
observation.

Next, we consider the problem of how to deal with the mild outliers. The mild outliers
are generally not discarded without further investigation. That is, a full investigation
should be launched to determine whether these observations are due to some human errors
incurred perhaps when transferring the data from one source to another source, or due
to some malfunctioning of a machine, or due to any other such reason. If we detect some
errors, then they either should be fixed, and replaced with correct observations, or mild
outliers should be discarded.

There are some remedies existing for the cases where one simply cannot discard out-
liers. For instance, we can lessen the effect of the outliers by putting lower weights on
the outliers. In estimation problems, one can use more robust statistics such as median
absolute deviation (MAD), Huber, and Bisquare loss functions instead of the squared error
loss function (see Huber, 2011; Jayalath and Gunst, 2017).

11.6 CLASSIFICATION

Data classification plays an important role in data mining process when building models.
For example, a marketing management team may be interested in analyzing customers with
big profile, median or low profile. For example, customers with a large profile may spend
$300.00 or more per trip. Customers with a median profile may spend $100.00–300.00 per
trip. Finally, customers with a low profile may spend less than $100.00 per trip. Another
example of classification is where a bank loan officer would like to identify applicants as
no, low, medium, or high credit risk. In the first example, we are classifying the data
into three groups while in the second example into four groups. A classification approach
starts with a data set in which class labels or class assignments are known. That is,
the classification methods can be used to classify any future data into groups/categories
and help build valuable models. For example, in the aforementioned example of loan
applicants, a classification model that predicts the credit risk can be built based on the
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data which have been collected on past applicants over a significant period of time. In
addition to the usual credit rating, the loan officer may like to examine other attributes
(or predictor variables, see Chapter 16) such as education, employment history, home
ownership, savings, or investments. Note that in this example, attributes are the predictor
variables, credit rating is the target or outcome, and the data on each customer constitutes
an observation vector. If the target is categorical, then we use classification algorithms
to analyze the data, but if the target is a continuous variable, then we use regression
algorithms or regression models. Next, we briefly discuss, with the help of an example,
performance measures of classification algorithms or classification models. For regression
models, the readers are referred to the discussions of Chapters 15 and 16.

11.6.1 Evaluating a Classification Model
In any model building process, we expect some errors will occur. In other words, we
cannot expect that prediction will give us a 100% correct value of any outcome. Similarly,
a classification model is also bound to give some erroneous results. Classification errors are
usually displayed in a matrix called the confusion matrix. A confusion matrix illustrates
clearly which classifications are correct and which are incorrect. Tables 11.6.1 and 11.6.2
show the confusion matrices for two-class and three-class classification models.

Suppose we are dealing with a two-class classification (true and false, symbolically
represented by 1 and 0, respectively)

Table 11.6.1 Confusion matrix
for two-class classification model.

Predicted class
True class 0 1

0 (0,0) (0,1)
1 (1,0) (1,1)

where the entries (0, 0), (0, 1), (1, 0), and (1, 1) are interpreted as follows:

(0, 0) means a False-Class is predicted as False-Class (F+)
(0, 1) means a False-Class is predicted as True-Class (F−)
(1, 0) means a True Class is predicted as False-Class (T−)
(1, 1) means a True-Class is predicted as True-Class (T+)

Now, we consider a confusion matrix when we are classifying a data set into three
classes (below-average, average, and above-average symbolically represented by 0, 1, and
2, respectively).

Table 11.6.2 Confusion matrix for
three-class classification model.

Predicted class
True class 0 1 2

0 (0,0) (0,1) (0,2)
1 (1,0) (1,1) (1,2)
2 (2,0) (2,1) (2,2)
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Where the entries (0, 0), (0, 1), (0, 2), . . . , (2, 2) are interpreted as follows:

(0, 0) means an below-average class is predicted as below-average class
(0, 1) means an below-average class is predicted as average class
(0, 2) means an below-average class is predicted as above-average class
(1, 0) means an average class is predicted as below-average class

...

(2, 2) means an above-average class is predicted as above-average

A confusion matrix can be extended for any number of classes. A general rule is that
all the diagonal entries in a confusion matrix represent the true-classification, and all off
diagonal entries in a confusion matrix represent the false-classification. Below we consider
a two-class classification study.

Pancreas is one of the major glands in the human body. It secretes many digestive
juices, including insulin, which help the cells in the body use glucose, which is their main
fuel. Every year more than fifty thousand Americans are diagnosed with pancreatic cancer.
In the following example, we consider a study on pancreatic cancer.

Example 11.6.1 (Pancreatic Cancer Data) In a major cancer center, 850 suspicious
pancreatic cancer patients are tested using radiology diagnostic tests. The data in table
given below provides the test results as whether patients have pancreatic cancer or patients
do not have pancreatic cancer and symbolically they are represented by 1 and 0, respectively.

Table 11.6.3 without row totals and column totals represents the confusion matrix of
a two-class classification model. As mentioned previously, the diagonal entries in the con-
fusion matrix represent the true-classification, and all off diagonal entries in the confusion
matrix represent the false-classification. In a m-class classification model, the number of
false-classifications is equal to number of entries in the confusion matrix minus the number
of entries on its diagonal, m2 − m. The evaluation measures of the classification model are
determined using the confusion matrix.

Table 11.6.3 Confusion matrix for
two-class classification model.

Predicted class
True class 0 1 Total

0 194 32 226
1 46 578 624

Total 240 610 850

The overall error rate in the classification model are defined as the percentage of
misclassified observations (sum of all off diagonal entries in the confusion matrix). So that
in the present example, the overall error rate in the classification model is

Overall error rate =
32 + 46

578 + 32 + 46 + 194
=

78
850

= 9.176%
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Therefore, the overall error rate of the classification model in this example is 9.176 %.
The accuracy rate for the classification model is defined as (100 − overall error rate)%, so
that in this example, the accuracy rate for the classification model is 90.824%. In addition
to the overall error rate, we would like to see the error rate for each class as well. For
instance, in the above example, misclassification rate or error rate in class 1 and in class
0, also called as False Negative and False Positive, respectively are given by

Class 0 error rate =
32

32 + 194
=

32
226

= 14.159%

Class 1 error rate =
46

578 + 46
=

46
624

= 7.372%

Other measures that are used to determine the performance of the classification model are
called specificity and sensitivity, and they are defined as follows.

The specificity of a classification model is its ability to correctly predict Class 0 (neg-
ative) observations. Thus, the specificity in the present example is

Specificity =
194
226

= 1 − class 0 error rate = 1 − 0.14159 = 85.841%

The sensitivity of a classification model is its ability to correctly predict class 1 (positive)
observations. Thus, the sensitivity in the present example is

Sensitivity =
578
624

= 1 − class 1 error rate = 1 − 0.07372 = 92.628%

We note that a confusion matrix shows the final classification of all the observations
based on a classification algorithm. However, the classification algorithms usually predict
the likelihood of the observations belonging to the existing classes. Then, given a certain
cutoff value, it splits observations into its classes. As such, the cutoff value plays a vital
role in classifying observations into classes. The default cutoff value in many algorithms is
0.5. The following example illustrates the role of cutoff values.

Example 11.6.2 (Challenger O-ring Data) We will illustrate the use of cutoff values
in a simple classification algorithm, logistic regression, which we will discuss in detail in
Chapter 16. We will use the data on launch temperature and O-ring failure for the 24 space
shuttle launches prior to the Challenger disaster of January 1986 (see Dalal et al., 1989;
Draper, 1995). There are six O-rings used on the rocket motor assembly to seal field joints.
Table 11.6.4 presents the launch temperatures and whether at least one O-ring failure (=1)
occurred or not (=0) in that launch and the estimated probability of failure in each trial.

Using the methods explained in Chapter 16, we estimate the fitted logistic regression
model

θ̂ =
1

1 + exp(−(10.8753 − 0.1713 ∗ Temperature))

that provides the predictive probability (θ̂) of failure in each trial for a given temperature.
Then, we use this predictive model to estimate the probability of failing at least one O-ring
for given temperatures, and the results are summarized in Table 11.6.4. The predictive
probability curve along with the O-ring failure data are shown in Figure 11.6.1.

To demonstrate the role of cutoff value in classification, we will pick three different
cutoff values 0.70, 0.50, and 0.20 to classify O-ring failure data. For the first case, the
observations classify as class 1 if the predictive probability θ̂ > 0.70 and Class 0 otherwise.
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Table 11.6.4 Challenger O-ring failure data.

Temperature Predicted Temperature Predicted
(◦F) Status probability θ̂ (◦F) Status probability θ̂

53 1 0.86 70 1 0.25
56 1 0.78 70 1 0.25
57 1 0.75 72 0 0.19
63 0 0.52 73 0 0.16
66 0 0.39 75 0 0.12
67 0 0.35 75 1 0.12
67 0 0.35 76 0 0.10
67 0 0.35 76 0 0.10
68 0 0.32 78 0 0.08
69 0 0.28 79 0 0.07
70 0 0.25 80 0 0.06
70 1 0.25 81 0 0.05
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Figure 11.6.1 O-ring failure challenger data with its logistic regression based predictive
probability curve.

The top panel of Table 11.6.5 shows the complete classification for this case, and it provides
a higher class 1 classification error (0.57) and zero class 0 classification error. However,
when we decrease the cutoff value, there are less and less class 1 misclassifications, but
eventually, class 0 misclassification rate increases. This behaviour can clearly be seen in
Figure 11.6.2 for a range of cutoff values we selected from 0 through 1.
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Table 11.6.5 Confusion matrix for challenger data
for different cutoff values.

Cutoff value = 0.70

Predicted class
True class 0 1 Error proportion

0 17 0 0/17 = 0.00
1 4 3 4/7 = 0.57

Overall 21 3 4/24= 0.17

Cutoff value = 0.50

Predicted class
True class 0 1 Error proportion

0 16 1 1/17 = 0.06
1 4 3 4/7 = 0.57

Overall 20 4 5/24= 0.21
Cutoff value = 0.20

Predicted class
True class 0 1 Error proportion

0 9 8 8/17 = 0.47
1 1 6 1/7 = 0.14

Overall 10 14 9/24= 0.38
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Figure 11.6.2 Classification error probability for various cutoff values.
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In practice, it is important to evaluate how critical both class 1 and class 0 errors
are for a given application, and one should evaluate the trade-off between errors. In this
application, it is very critical to classify 1’s as 0’s than 0’s as 1’s. It would be wise in
this application to allow the minimizing of a class 1 error, while allowing a manageable
maximum class 0 error. For instance, the selection of the cutoff value of 0.25 provides
0.14 and 0.47 for class 1 and class 0 error probabilities, respectively, and this particular
selection is indicated by a vertical line in Figure 11.6.2.

The receiver operating characteristic (ROC) curve is an alternative graphical display
that can be used to investigate the quality of the classifier in a classification problem. In a
ROC curve, we plot the “Sensitivity” against the “1-Specificity” for each cutoff value. For
instance, when the cutoff value is zero, the class 0 and class 1 error probabilities are 1 and
0, respectively, and therefore, both the values of 1-specificity and sensitivity become 1. On
the other hand, when the cutoff value is 1, both the values of 1-specificity and sensitivity
become zero. A straight line simply passes through these two extreme ends may represent a
random classifier (see the diagonal dashed line in Figure 11.6.3) where most classifiers fall
above this line within the upper triangular area of the graph. The ROC curve of a perfect
classifier should go straight up the Y -axis and then move to the right parallel to the X-axis
mimicking a right triangular shape. Area under the ROC curve (AUC) score is usually
considered a better measure of a classification model. In fact, AUC can be used to compare
classification models in the cases where we have few models to compare. Note that the
AUC score ranges from 0.5 (random classifiers) through 1 (perfect classifier). Figure 11.6.3
shows the ROC curve for the data and the model discussed in Example 11.6.2. We note
that the logistic regression classifier we adapted in Example 11.6.2 performs better than
a random classifier as its AUC is somewhat higher than 0.5.

In the following section, we exhibit classification data into different exhaustive regions
in the presence of many predictors to classify or predict outcomes. Of course, in these
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Figure 11.6.3 Receiver operating characteristic (ROC) curve for Example 11.6.2.
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methods, we should repeatedly use the cutoff values to partition variables to build what
we call the Tree structures.

11.7 DECISION TREES

A decision tree is a flowchart-like tree structure, where at each internal node we perform
a test on an attribute using the aforementioned criteria, such as cutoff values. As a result,
each branch of the tree structure represents an outcome of the test, and each branch
continues to split until it terminates producing a class labeled outcome. In other words, a
decision tree is a machine learning technique that recursively partitions data into smaller
subsets such that data within each subset are more homogeneous or less impure, and
data between subsets are heterogeneous. Impurity is a measure of heterogeneity of the
outcome classes of the response variable, and as such, a good decision tree would produce
information on less impurity. Figure 11.7.1 shows a decision tree structure which helps us
define the basic terminologies in decision trees.

Children of node A Leaf nodes

Parent of nodes

A, B, and C

Root

node

Node

A

Node

B

Node

C

Node

G

Node

F

Node

E

Node

D

Figure 11.7.1 A decision tree structure.

The basic terminologies in decision trees.

• Parent of a node Q is the immediate predecessor node.
• Children of a node Q are the immediate successors of Q, i.e., Q is the parent node.
• Root node is the top node of the tree; the only node without parents.
• Leaf nodes are nodes which do not have children.
• A K-ary tree is a tree where each node (except for leaf nodes) has K children.

When K = 2, it is a binary tree.
• Depth of a tree is the maximal length of a path from the root node to a leaf node.
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The decision trees can be used for classification. For instance, assume that we train a
decision tree using a given set of data, and now, all the decision rules (or tests) in each
node are readily available. If we have a new item to classify (say X), it is now a matter
of fact how we follow all the decision rules to reach the terminal node, where we have a
class label for which a new observation should belong. The decision tree technique can be
applied to predict outcomes, and to identify the important predictors, such as in regression
methods discussed in Chapters 15 and 16.

Unlike many of the statistical techniques which are discussed throughout this book,
the decision trees require no distributional assumptions. It can also efficiently handle big
data and produce meaningful results. The classification accuracy is generally higher and
comparable with other statistical methods, such as logistic regression in the case where the
output variable is binary. Applications of decision trees are quite common in engineering,
medicine, agriculture, and finance. Iterative Dichotomiser (ID3) is one of the first decision
tree algorithms developed by Quinlan (1986) and later he expanded his ID3 work to develop
the C4.5 algorithm. In Breiman et al. (1984), a set of statisticians, published a monograph
named “CART: Classification and Regression Trees” that provides comprehensive details
of binary tree structures, algorithms, and its theories. Therefore, both ID3 and CART
algorithms consider as the building blocks of its field.

11.7.1 Classification and Regression Trees (CART)
CART is primarily a binary splitting tree which provides an appealing tree-like graphical
display that enables a straightforward interpretation of data. Importantly, CART can
handle both quantitative and qualitative responses and predictors. In the construction of
trees, the trees are grown to the maximum possible size and is then got rid of unnecessary
splits by pruning sequentially. The pruning depends on a cost-complexity measure. Usually,
the algorithm produces a set of pruned trees and finally selects the final tree based on its
predictive ability.

Overly large trees would cause over fitting and producing unreliable results. There
are two possible methods that can be used to avoid too large trees. The first, called an
Early stopping technique, is one method that can avoid growing large trees, and results in
smaller trees which saves computational time. In this method, a stopping criteria may be
the number of observations in a node that undercuts the minimum number of observations.
If the criterion is fulfilled, the current node will not be split any further. The second
method is the aforementioned pruning technique. In pruning, we grow a large tree and cut
afterward. The full tree is grown, and each split is examined to see if it brings a reliable
improvement. There are two different ways we can examine splits. One method is called
the top-down approach, that is starting from the first split made, and proceed to bottom
layers, or the second method, called the bottom-up approach, that is starting at the splits
above the leaf nodes and moving to the top layers. The bottom-up method is somewhat
more common, as the top-down method could lead to discard a whole sub-tree due to a
bad split in a top layer, though it may be that there is a lot of good splits in the subsequent
layers.

Classification Trees
Let us consider a classification problem where the response variable Y is categorical with
J categories or classes, and a set of predictor variables X1,X2, . . . ,Xp. We would like to
predict the outcome of Y for a new observation Xh = xh

1 , xh
2 , . . . , xh

p . Now, the objective
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is to split the predictor space of X into J disjoint sets, S1, S2, . . . , SJ , such that we can
predict the value of Y to be i if Xh ∈ Si, for i = 1, 2, . . . , J . As a result, the classification
tree will be build based on rectangular sets Si produced by recursive partitioning of the
data set by one X predictor variable at a time.

For example, let us consider a response variable with five classes and two predictor
variables X1 and X2. Let us assume the first partition occurs at the value X1 = α1 such
that observations with X1 values less than or equal to α1 are assigned to the left branch
of the tree, and the observations with X1 values greater than α1 are assigned to the right
branch of the tree at the root node. That is at X1 = α1, the gain in impurity measure
ΔI at that node should be maximized. Next, the observations with X1 ≤ α1 and X2 ≤ β1
are assigned to the first leaf node S1. In a similar fashion, observations with X1 ≤ α1
and X2 > β1 are assigned to the second leaf node S2. The recursive partitioning shown in
the branches in Figure 11.7.2b follow a similar logic. Figure 11.7.2a shows the complete
partition of the X-space into S1, S2, S3, S4, and S5.

X2

X1

X1 ≤ α1

X2 ≤ β2

X1 ≤ α2

X1 > α1

X2 > β2

X1 > α2

X2 ≤ β1

X2 > β1

S2

S3

S4 S5

S1

S1 S2 S3 S4 S5

β2

β1

α2α1

(a) (b)

Figure 11.7.2 (a) Recursive partition of the X-space. (b) Corresponding binary tree
structure for the partition space in (a).

In classification trees, given a set of observations, the impurity simply measures the
proportion of those observations belong to the same class. There are several measures to
quantify the impurity, namely, Gini index, entropy/information, and classification error.

The definitions of Gini and entropy measures are given below.

Definition 11.7.1 Suppose the response variable Y has J classes and let pi be the
probability that the observations belong to the ith class of Y , where i ∈ {1, 2, . . . , J}.
Then, the Gini impurity measure at the node Q, Gini(Q), is defined as

Gini(Q) = 1 −
J∑

i=1

p2
i (11.7.1)

The Entropy measure, I(Q) is defined as

I(Q) = −
J∑

i=1

pilog2pi (11.7.2)
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The Gini index based measure for quality of a split due to splitting a parent node into
k different nodes is

Ginisplit =
k∑

j=1

|nj |
|n| Gini(Qj) (11.7.3)

where nj is the number of observations that belong to node Qj after the suggested split
and n is the total number of observations in the parent node prior to the suggested split.
CART finds the best splitting criteria which minimizes the Ginisplit. In a similar fashion,
we can define the gain in entropy information which is commonly discussed in data mining
texts (see Kantardzic, 2011).

Example 11.7.1 To understand the impurity calculation, we consider the data set in
Table 11.7.1 with three predictors A,B,C, and response Y. As it can be seen in the data,
the variables A, B, and Y are class variables, and the variable C is continuous.

Table 11.7.1 Sample data set with four variables.

A B C Y A B C Y

1 1 0.2 T 0 2 1.1 F
1 1 0.2 T 0 2 1.0 F
1 2 0.2 T 0 2 1.3 F
1 1 0.2 T 0 2 1.2 F
1 1 0.1 T 0 3 1.5 F
1 1 0.2 T 0 3 1.5 F
1 1 0.1 T 0 3 1.4 F
1 1 0.3 T 0 3 1.5 F
1 2 1.3 F 0 3 1.4 F
0 2 1.1 F 0 3 1.4 T

Table 11.7.2 shows the cross tabulated variables A, B, and C versus the response Y.
For example, variable A has 11 “class 0” observations which give rise to 10 “F” responses
and 1 “T” response, and it has 9 “class 1” observations which give rise to 1 “F” responses
and 8 “T” responses. Based on the Gini index equation in (11.7.1), we calculate the
Gini indices for both the classes of this variable. For variable A, Gini index for class 0
is Gini(A0) = 1 −

∑2
i=1 p2

i = 1 − (10/11)2 − (1/11)2 = 0.165 and for class 1 is Gini(A1) =
1 −

∑2
i=1 p2

i = 1 − (1/9)2 − (8/9)2 = 0.198.
Without loss of generality, the process is repeated for variable B with three classes (“1,”

“2,” and “3”). However, the continues variable C needs to be dichotomized to obtain pos-
sible splits, and we decided 0.3 as the cutoff value to split variable C into two classes based
on the obvious data separation that occurs at C = 0.3 as shown in Figure 11.7.3. Then,
we calculate the Gini indices for both the resulting classes as reported in Table 11.7.2.

The quality of the suggested splits is measured using the Ginisplit index in Equation
(11.7.3). The resulting indices due to possible splitting of variables A, B, and C are as
follows:

For variable A: GiniA = (11/20)0.165 + (9/20)0.198 = 0.180
For variable B: GiniB = (7/20)0 + (7/20)0.245 + (6/20)0.278 = 0.169
For variable C: GiniC = (12/20)0.153 + (8/20)0 = 0.092.
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Table 11.7.2 Gini index computation for variables in Table 11.7.1.

For variable A

True Y class
A F T Gini index

0 10 1 1 − (10/11)2 − (1/11)2 = 0.165
1 1 8 1 − (1/9)2 − (8/9)2 = 0.198

For variable B

True Y class
B F T Gini index

1 0 7 1 − (0/7)2 − (7/7)2 = 0.000
2 6 1 1 − (6/7)2 − (1/7)2 = 0.245
3 5 1 1 − (5/6)2 − (1/6)2 = 0.278

For variable C

True Y class
C F T Gini index

> 0.3 11 1 1 − (11/12)2 − (1/12)2 = 0.153
≤ 0.3 0 8 1 − (0/8)2 − (8/8)2 = 0.000
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Figure 11.7.3 Graph of variable C versus Y for data in Table 11.7.1.
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It is clear from the above calculation that the splitting rule of variable C produces the
minimum Ginisplit value (GiniC = 0.092). Therefore, the tree must split the root node
into two branches based on the variable C such that the observations with C values less
than or equal to 0.3 (there are 8 observations) lead to left branch, and the rest of the
observations lead to the right branch as shown in the Figure 11.7.4.

≤0.3

n = 8

Y = (0, 8)

n = 12

Y = (11, 1)

>0.3

Root
node C

Figure 11.7.4 Initial tree branches based on Gini index.

Example 11.7.2 (Iris Flower Data) We reconsider the Iris flower data we discussed in
Example 11.4.2. First, we use these Iris data to build (or train) a classification tree using
80% of its data and validate the fitted tree using the rest of 20% of data. As mentioned
earlier, Table 11.4.3 shows the first few observations of the data set, and the complete data
set is available on the website: www.wiley.com/ college/ gupta/ statistics2e for download.
We use the first 116 observations to train the model. The “Species” is the response vari-
able with three classes (Setosa, Versicolor, and Virginica) and Sepal Length, Sepal Width,
Petal.Length, and Petal Width are the predictors.

We will handle this data using a computationally powerful “party” package in the R
software. The package can handle various types of data including missing, censored, and
multivariate data. The “ctree()” procedure in the “party” library is a nonparametric class
of tree technique which uses the conditional inference procedures. As this chapter covers
only the basic tree concepts, we discarded its advanced theories, and the reader should
refer to Hothorn et al. (2006, 2015) for more information. However, due to its usefulness
and popularity, we applied the “ctree()” procedure in our example. The R-code for all the
outputs is given at the end of this subsection.

The resulting classification tree for Iris data via “ctree” procedure is shown in
Figure 11.7.5. “Petal length” is the primary variable that splits the root node that clas-
sifies the first leaf node with 42 Setosa when “Petal.Length ≤1.9.” When “Petal.Length
>1.9,” the tree produces a child node (node 3) that splits into two branches based on the
variable “Petal.Width,” either ≤1.7 or >1.7. Subsequently, if “Petal.Width ≤1.7,” the
tree produces node 4 that splits into two branches to produce two leaf nodes depending
on “Petal.Length” is ≤4.7 or >4.7. Finally, when “Petal.Length >1.9” and “Petal.width
>1.7,” the tree produces the leaf node 7. Further explanations of the quantities given in
the R output can be obtained from the “ctree˙control()” function in R.
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Figure 11.7.5 Classification tree structure for the Iris data. The vector y arranged in
(Setosa, Versicolor, Virginica) order.

It is clear from the tree that some nodes such as node 2, node 5, and node 7 provide
very strong classifications criterion, but node 6 tends to misclassify between Versicolor and
Virginica. In summary, the tree seems to classify flowers well in general, but it would be
interesting to see the misclassification rate for this test data set. Table 11.7.3 shows the
confusion matrix of training data. It shows that only five observations being misclassified (4
Virginicas as Versicolors and 1 Versicolor as a Virginica) out of 116 observations. Therefore,
the resulting overall error is

Overall error rate =
5

116
= 0.0431

Now, using the test data set (observations 117–150 associated with Table 11.4.3) to
evaluate the accuracy of the fitted tree, and as shown in the confusion matrix (Table
11.7.4), that tree misclassifies one Virginica (observation # 146 of the data set) flower as
a versicolor leading to an overall classification error of

Overall error rate =
1
34

= 0.0294.
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Table 11.7.3 Confusion matrix for
original training data in Example 11.7.2.

Predicted class
True class Setosa Versicolor Virginica

Setosa 42 0 0
versicolor 0 37 1
Virginica 0 4 32

Table 11.7.4 Confusion matrix for randomly selected 34 Iris
flowers (observations 117–150 associated with Table 11.4.3).

Predicted class
True class Setosa Versicolor Virginica

Setosa 8 0 0
versicolor 0 12 0
Virginica 0 1 13

USING R

The built in R function “ctree()” in “party” library can be used to construct classification
trees in R. The Iris data explained in Example 11.7.2 is freely available for public use in
R. Therefore, one can use the following R code to split data into training and testing data.
However, this particular data set is included in Table 11.4.3 (see website: www.wiley.com/
college/gupta/statistics2e) so that one can import data directly from a local directory.

install.packages(“party”)
library(party)

#Split data into training and testing data
set.seed(12345)
ind = sample(2, nrow(iris), replace=TRUE, prob=c(0.8, 0.2))
trainData = iris[ind==1,]
testData = iris[ind==2,]

The following R code can be used to obtain the classification tree and to obtain the
confusion matrices.
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#Fitting a classification tree with an appropriate “model”
model = Species ∼ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width
train.tree = ctree(model, data=trainData)

print(train.tree)
plot(train.tree, type=“simple”)

# Check the prediction for training data
table(trainData$Species, predict(train.tree))

# Predict on test data
testPred = predict(train.tree, newdata = testData)
table(testData$Species, testPred)

Regression Trees

In the cases where the outcome variable is at least ordinal, a regression tree approach can
be used to successively partition observations into subgroups similar to the classification
tree approach. In this method, a regression model is fitted to each node to obtain the
predicted value at that node. As a result, we obtain a piecewise constant model and
that can be used to estimate the outcome of a new observation based on its underline
partition. However, the way we measure the impurity is different from the classification
tree approach. In the classification tree approach, we defined the impurity of a partition
based on those observations that belong to the same class. In regression trees, we use the
variance reduction technique that minimizes the total variability results in a split. In other
words, we sequentially identify the splitting rules that provide the smallest within-group
variances of the outcome variable due to the partitions.

Example 11.7.3 (Stage C Prostate Cancer Data) This example is related to a data
set about 146 Stage C prostate cancer patients reported in Nativ et al. (1988). The
response variable of interest is “time to progression,” and the predictor variables are given
below.

• pgstat: status at last follow-up (1=progressed, 0=censored)
• age: age at diagnosis
• eet: early endocrine therapy (1=no, 2=yes)
• ploidy: diploid/tetraploid/aneuploid DNA pattern
• g2: % of cells in G2 phase
• grade: tumor grade (1–4)
• gleason: Gleason grade (3–10)
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In this example, we exhibit the use of a regression tree approach in estimating “time
to progression” in Stage C prostate cancer patients. We use 132 randomly selected obser-
vations to train our regression tree and later we will use the rest of the 14 observations
to exhibit the accuracy of the fitted model. The first 15 observations of this data set is
shown in Table 11.7.5. The complete data set is available on the website: www.wiley.com/
college/ gupta/ statistics2e.

Table 11.7.5 Stage C prostate cancer data (only the first few observations
are shown here).

pgtime pgstat age eet g2 grade gleason ploidy

6.1 0 64 2 10.26 2 4 diploid
9.4 0 62 1 NA 3 8 aneuploid
5.2 1 59 2 9.99 3 7 diploid
3.2 1 62 2 3.57 2 4 diploid
4.8 0 69 1 6.14 3 7 diploid
5.8 0 75 2 13.69 2 NA tetraploid
7.3 0 71 2 NA 3 7 aneuploid
3.7 1 73 2 11.77 3 6 diploid
15.9 0 64 2 27.27 3 7 tetraploid
2.9 1 58 2 14.82 4 8 tetraploid
1.5 1 70 2 10.22 3 8 diploid
14.5 0 67 2 15.66 2 6 tetraploid
4.2 1 66 2 17.79 3 7 tetraploid
1.7 1 74 2 11.11 3 8 diploid
5.0 0 70 2 11.44 2 5 diploid

As shown in the regression tree in Figure 11.7.6, the variable “gleason” is the primary
variable that made the initial split. That is, the left branch is formed at the root node for
the observations with Gleason grade greater than or equal to 6, and the right branch is
formed at root node for the observations with Gleason grade less than 6. Then, the first
children nodes split based on the variables “g2” (first left child node) and “age” (first right
child node). In similar fashion, we recursively partition the variable space to obtain a tree
of depth 7.

After training the regression tree as shown in Figure 11.7.6, we use our test data set
with 14 observations to test the prediction ability of the fitted model. If the predictions
are accurate, we expect a linear association between the original and predicted values of
the response variable “time to progression.” However, for our example, the trend is not
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Figure 11.7.6 Regression tree structure for the first 132 observations selected from the
Stage C prostate cancer data in Table 11.7.5.

that linear (see Figure 11.7.7) and that indicates the predictive ability of the estimated
regression tree is not sufficient. However, the predictive ability of this model can further
be developed by techniques such as bagging, boosting, and random forest.

USING R

The built in R function “rpart()” in “rpart” library can be used to construct regression
trees in R. Also, the additional R library “rpart.plot” is also required to obtain a plot
of better quality regression tree in R. The Stage C Prostate Cancer Data explained in
Example 11.7.3 is freely available for public use in R. Therefore, one can use the following
R code to spilt the data into training and testing data sets. However, this particular data
set is included in Table 11.7.5 so that one can import data directly from a local directory.
Note that this data set has missing values, and “rpart” function uses a surrogate approach
to estimate the missing values (see Therneau and Atkinson, 1997).
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Figure 11.7.7 Observed and predicted “time to progression” values for the test data
(the last 14 observations selected from the Stage C prostate Cancer data in Table 11.7.5).

install.packages(‘rpart’); install.packages(‘rpart.plot’)
library(rpart); library(rpart.plot)

#Split data into training and testing data
set.seed(123)
ind = sample(2, nrow(stagec), replace=TRUE, prob=c(0.9, 0.1))
trainData = stagec[ind==1,]
testData = stagec[ind==2,]

The following R code can be used to obtain the regression tree and required predictions.

#Fitting a regression tree with an appropriate ‘model’
model = pgtime ∼ age + eet + g2 + grade + gleason + ploidy
reg.tree = rpart(model, data = trainData)

#Plot the regression tree
par(xpd=TRUE)
prp(reg.tree, faclen = 0, cex = 1, box.col = ‘green’)

#Predictions of test data plot against true responses
stagec.pred = predict(reg.tree, newdata=testData)
xlim = range(testData$pgtime)
plot(stagec.pred ∼ pgtime, data=testData, xlab=‘Observed’, ylab=‘Predicted’,
ylim=xlim, xlim=xlim, col=4, cex=1.5, pch=20)
lines(c(1,13), c(1,13), col=2, lwd=2)
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11.7.2 Further Reading
As we mentioned earlier in this chapter, due to some space limitations, our goal in this
chapter is just to introduce some basic concepts in data mining and discuss classifica-
tion and regression trees procedures. However, we recommend the reader to read some of
the references on this topic. The classic book on classification and regression trees is by
Breiman et al. (1984), and chapter 1 on trees in Ripley (1996). Some other references are
Reid (1982), Mitchell (1997), Han et al. (2011), and Kantardzic (2011).

11.8 CASE STUDIES

Case Study 1 (Heart Disease)1 Data set contains 14 selected attributes from 303 heart
patients from the Cleveland database. Naturally, this data contain both quantitative and
qualitative attributes, but for the analysis purpose, the qualitative attributes have been
coded using numerical scales. The attribute “target” indicates the angiographic disease
status (0 = absence, 1 = presence), and the main purpose of this case study is to build a
classification tree that can be used to predict the “target.” Attributes information are as
follows:

1. age
2. sex (0 = female, 1 = male)
3. cp = chest pain type (4 values)
4. trestbps = resting blood pressure
5. chol = serum cholestoral in mg/dl
6. fbs = fasting blood sugar >120 mg/dl
7. restecg = resting electrocardiographic results (values 0, 1, 2)
8. thalach = maximum heart rate achieved
9. exang = exercise induced angina

10. oldpeak = ST depression induced by exercise relative to rest
11. slope = the slope of the peak exercise ST segment
12. ca = number of major vessels (0–3) colored by fluoroscopy
13. thal (3 = normal; 6 = fixed defect; 7 = reversible defect)

The data reported for this Case Study are available under case study 11.8.1 on the
book website: www.wiley.com/college/gupta/statistics2e.

(a) Randomly split this data set into training and testing sets using 70:30 ratio.
(b) Construct a classification tree using all 13 attributes to predict the “target.”
(c) Identify the significant attributes in predicting the variable “target.”
(d) Discuss the quality of the fitted model in part (b) using its confusion matrix.
(e) Repeat parts (b)–(d) by varying the data ratio to 60:40 in training and testing data

sets in part (a).
(f) Explain any interesting finding from part (e).

1 Source: Hungarian Institute of Cardiology. Budapest: Andras Janosi, M.D., University Hospital, Zurich,
Switzerland: William Steinbrunn, M.D., University Hospital, Basel, Switzerland: Matthias Pfisterer, M.D., V.A.
Medical Center, Long Beach and Cleveland Clinic Foundation: Robert Detrano, M.D., Ph.D. Data available at
https://www.kaggle.com/ronitf/heart-disease-uci and more information can be found at https://archive.ics.uci
.edu/ml/datasets/Heart+Disease.
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Case Study 2 (King County House Data)2 This study focuses on building a regression
tree to predict house prices in King county, Washington. Data show the house pricing
in 2014–2015 time period and include 21 unique attributes. An analyst is interested in
building a regression tree to predict house prices (“price”) using the following 16 attributes
shown in data sets Case Study 11.8.2a and Case Study 11.8.2b on the book website: www
.wiley.com/college/gupta/statistics2e.

1. bedrooms = number of bedrooms
2. bathrooms = number of bedrooms
3. sqft.living = total area of the living area
4. sqft.lot = total area of the lot
5. floors = number of floors
6. waterfront = adjacent to a water front (0 = no, 1 = yes)
7. view = nature of the view (ranging 0–4)
8. condition = nature of the condition (ranging 1–5)
9. grade = grade of the house (ranging 1–13)

10. sqft.above = total living area above the basement
11. sqft.basement = total area of the basement
12. yr.built = year built
13. yr.renovated = year renovated
14. zipcode = zip code
15. lat = latitude
16. long = longitude

Change the variable “yr.renovated” to a dichotomous variable that reflects whether
that house is renovated or not after building and “sqft.basement” to a dichotomous variable
that reflects whether there is a basement or not in that house.

(a) Construct a regression tree using all 16 attributes to predict the “price.”
(b) Identify the significant attributes in predicting the variable “price.”
(c) Use the fitted regression tree in part(a) to predict house prices shown in data set Case

Study 11.8.2b.
(d) Evaluate the quality of the predictions obtained in part (c) using a suitable method.

11.9 USING JMP

This section is not included in the book but is available for download from the book
website: www.wiley.com/college/gupta/statistics2e.

Review Practice Problems

1. What is data mining and what is big data?

2. What are the three key points one should consider in the process of data reduction
and preparing for data mining? Explain.

2 Source: https://www.kaggle.com/andres111mejia/multivariate-regression/log
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3. What are the two main ways one can visualize data? Explain.

4. Consider a part of the famous “Titanic” data set3 listed in “Review Problem 4”
(see website: www.wiley.com/college/gupta/statistics2e). It includes the following
variables:
Passenger ID: Identification number for data analysis purpose.
Survival: 0 = No, 1 = Yes.
Pclass: Ticket class, 1 = 1st, 2 = 2nd, 3 = 3rd.
Sex: Male or female.
Age: Age in years.
SibSp: # of siblings and spouses aboard the Titanic.
Parch: # of parents and children aboard the Titanic.
Fare: Passenger fare.
Embarked: Port of Embarkation, C = Cherbourg, Q = Queenstown, S = Southampton.
(a) List basic summary statistics for each variable.
(b) Use appropriate tools to graph each variable.

5. Address the precautions one can take to deal with the missing values exist in the data
given in Review Problem 4.

6. Conduct a thorough outlier analysis for the appropriate variables given in data in
Review Problem 4.

7. Consider the data given in Review Problem 4.
(a) Obtain a 2D scatter plot of variables “Fare” versus “Age” and identify the nature

of survival considering “Survival” as the third variable.
(b) Obtain a 3D scatter by plotting variables “Age,” “Fare,” and “Survival” against

each other.
(c) Comment on your findings in parts (a) and (b).

8. Consider the data given in Review Problem 4.
(a) Obtain a side-by-side boxplots for “Fare” for “Pclass” and comment on your

graphs.
(b) Obtain an aesthetic scatter plot for “Age,” “Fare,” “Sex,” and “Survival” and

comment on your graph.

9. Consider the data given in Review Problem 4.
(a) Obtain a contingency table to investigate the relationship between “Sex” and

“Survival.” Comment on the relationship(s).
(b) Obtain a contingency table to investigate the relationship between “Pclass” and

“Survival.” Comment on the relationship(s). (Hint: you may perform the appro-
priate conditional probability calculations.)

10. Consider the data given in Review Problem 4.
(a) Obtain a contingency table to investigate the relationship between “SibSp” and

“Survival.” Comment on the relationship(s).
(b) Obtain a contingency table to investigate the relationship between “Parch” and

“Survival.” Comment on the relationship(s).
(c) Obtain a contingency table to investigate the relationship between “Embarked”

and “Survival.” Comment on the relationship(s). (Hint: you may perform the
appropriate conditional probability calculations.)

3 Source: https://www.kaggle.com/c/titanic/data.
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11. Use the following data set to obtain the confusion matrix and report both class 0 and
class 1 misclassification rates.

Age Status Predicted

38 0 0
43 1 1
43 1 1
39 0 1
43 1 1
36 0 0
31 0 0
39 0 1
39 1 1
39 1 1
43 1 1
42 1 1
35 0 0
44 1 1
49 0 0

12. Consider the data given in Review Problem 11.
(a) Use the logistic regression concepts discussed in Section 11.6 (see Section 16.8

for more details) to predict the outcome (i.e., “Status”) using the variable
“Age.”

(b) Use a cutoff value of 0.5 to obtain the confusion matrix for your predictions in
part (a), and report both class 0 and class 1 classification errors.

13. Investigate the relationship between cutoff values (0–1) and misclassification error
rates for the predicted probabilities using the logistic model used in Review Prob-
lem 12.
(a) Plot both class 0 and class 1 classification errors against the range of cutoff values

(from 0 through 1).
(b) What would be a reasonable cutoff value that minimizes both class 0 and class 1

classification errors.

14. Consider the data given in Review Problem 4.
(a) Use the logistic regression concepts discussed in Section 11.6 (see Section 16.8 for

more details) to predict the outcome (i.e., “Survival”) using the variables “Parch,”
“Fare,” “Embarked.” Please disregard the observations with missing values.
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(b) Use a cutoff value of 0.5 to obtain the confusion matrix for your predictions in
part (a) and report both class 0 and class 1 classification errors.

15. The data listed in “Review Problem 15” (see website: www.wiley.com/college/gupta/
statistics2e) contain data from 252 people reported in “Generalized body composition
prediction equation for men using simple measurement techniques” by Penrose et al.
(1985). The variables listed in the original data include: “Percent of body fat index
(BFI),” “Age (years),” “Weight (lbs),” “Height (inches),” “Neck circumference (cm),”
“Chest circumference (cm),” “Abdomen circumference (cm),” “Hip circumference
(cm),” “Thigh circumference (cm),” “Knee circumference (cm),” “Ankle circumfer-
ence (cm),” “Biceps (extended) circumference (cm),” “Forearm circumference (cm),”
and “Wrist circumference (cm).” For learning propose, we dichotomize the percent of
body fat index into a new variable name “Index.”
(a) Construct a classification tree using all the variables except “Percent of body fat

index” to predict the “Index.”
(b) Discuss the quality of the fitted model in part (a) using the confusion matrix.
(c) Construct a regression tree using all the variables except “Index” to predict “Per-

cent of body fat index.”
(d) Evaluate the quality of the prediction using a suitable method.

16. Split the data in Review Problem 15 into training and testing sets, using a 80:20 ratio.
That is, use observations 1–202 as training data to build a classification tree using
all the variables except “Percent of body fat index” to predict the “Index,” and use
observations 203–252 as testing data to validate your classification tree. Report the
overall classification error.

17. Split the data in Review Problem 15 into training and testing sets, using a 80:20
ratio. That is, use observations 1–202 as training data to build a regression tree using
all the variables except “Index” to predict the “Percent of body fat index,” and use
observations 203–252 as testing data to validate your regression tree. Report your
regression tree for training data.
(a) Plot predicted values of “Percent of body fat index” versus true “Percent of body

fat index” in testing data. Describe the trend.
(b) Report the correlation coefficient between the predicted values of “Percent of body

fat index” versus true “Percent of body fat index,” and explain the predictability
of your model.

18. A professor in a certain college is interested in predicting final class grades of his
students using some data prior to the exam. He recorded the following data that
include students quiz grades (Q1–Q5), homework grades (H1–H7), mid-term exam
scores (T1 & T2), final exam score (Final), and final letter grade (Grade).
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Q1 Q2 Q3 Q4 Q5 H1 H2 H3 H4 H5 T1 T2 Final Grade

10.0 6.0 10.0 10.0 10.0 9.6 10.0 10.0 10.0 10.0 88 91 95 A

10.0 10.0 10.0 10.0 10.0 9.8 9.0 8.9 9.9 9.6 102 100 100 A

10.0 8.0 7.0 7.0 7.0 9.4 10.0 10.0 9.7 9.3 40 47 71 D

10.0 10.0 10.0 10.0 10.0 9.9 9.7 9.4 9.8 9.8 46 93 90 B

10.0 10.0 10.0 10.0 10.0 9.7 9.7 9.7 10.0 9.5 77 97 77 B

7.0 10.0 10.0 10.0 0.0 0.0 7.8 7.9 9.5 4.0 60 90 87 C

10.0 10.0 10.0 7.0 10.0 9.5 9.8 10.0 9.4 10.0 83 73 86 B

10.0 10.0 10.0 0.0 10.0 0.0 7.7 8.9 0.0 0.0 103 70 95 B

10.0 7.0 7.0 10.0 10.0 8.6 9.0 8.4 9.3 8.5 81 74 82 B

10.0 10.0 6.0 10.0 0.0 8.4 9.0 10.0 9.8 10.0 67 76 60 C

7.0 6.0 7.0 10.0 10.0 9.6 9.8 9.9 9.8 10.0 62 65 55 C

10.0 5.0 10.0 0.0 5.0 9.4 9.3 10.0 9.2 10.0 48 47 52 F

10.0 9.0 7.0 10.0 10.0 5.6 8.7 0.0 0.0 0.0 75 70 85 C

10.0 10.0 10.0 0.0 10.0 8.1 10.0 7.5 0.0 0.0 99 87 54 C

10.0 6.0 10.0 10.0 10.0 8.0 13.5 14.0 13.0 11.5 100 77 89 A

10.0 6.0 10.0 7.0 0.0 8.0 14.0 16.0 13.8 11.0 79 60 72 C

10.0 10.0 10.0 4.0 10.0 8.5 13.5 12.0 8.0 0.0 115 88 82 B

10.0 0.0 10.0 7.0 10.0 4.0 7.0 15.0 0.0 5.0 94 42 52 D

0.0 10.0 10.0 10.0 10.0 0.0 0.0 0.0 0.0 0.0 100 38 49 D

7.0 6.0 10.0 7.0 0.0 5.0 8.0 0.0 2.5 0.0 72 0 0 F

7.0 4.0 10.0 7.0 0.0 7.0 13.0 11.0 14.0 0.0 48 27 54 F

7.0 5.0 10.0 7.0 8.0 4.0 14.0 16.0 13.0 0.0 87 46 70 D

10.0 10.0 10.0 10.0 10.0 1.0 14.0 15.0 14.0 12.0 115 95 98 A

10.0 10.0 10.0 0.0 10.0 1.0 7.0 0.0 10.0 0.0 87 48 82 C

10.0 9.0 4.0 9.0 8.0 4.0 9.3 9.8 0.0 0.0 92 74 100 A

10.0 10.0 8.0 10.0 0.0 10.0 10.0 0.0 9.5 0.0 72 73 63 C

10.0 0.0 6.0 0.0 4.0 0.0 9.8 9.0 0.0 0.0 78 40 74 D

10.0 10.0 8.0 0.0 0.0 10.0 9.8 10.0 10.0 10.0 85 72 48 D

7.0 10.0 8.0 9.0 7.0 9.0 10.0 10.0 10.0 10.0 84 70 75 B

7.0 8.0 10.0 10.0 10.0 10.0 10.0 0.0 8.5 0.0 81 50 61 C

10.0 4.0 6.0 8.0 7.0 10.0 10.0 10.0 10.0 10.0 66 74 75 C

10.0 10.0 6.0 0.0 7.0 8.0 8.0 9.3 9.0 9.0 88 35 77 C

7.0 10.0 6.0 10.0 7.0 6.0 0.0 0.0 6.0 0.0 77 49 77 C

10.0 10.0 10.0 9.0 10.0 9.5 8.0 0.0 8.0 4.8 86 80 90 B

10.0 4.0 8.0 0.0 0.0 10.0 10.0 10.0 10.0 2.0 81 74 77 B

10.0 10.0 6.0 10.0 7.0 10.0 10.0 10.0 10.0 10.0 92 68 82 B

10.0 10.0 8.0 10.0 10.0 10.0 9.5 9.5 10.0 9.0 72 72 90 B

0.0 0.0 8.0 10.0 7.0 0.0 6.0 8.5 0.0 3.5 89 57 89 C

10.0 10.0 8.0 0.0 0.0 10.0 10.0 10.0 10.0 9.3 98 69 87 B

7.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 86 85 93 A

10.0 10.0 8.0 0.0 7.0 10.0 9.8 10.0 10.0 0.0 83 66 75 B
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Q1 Q2 Q3 Q4 Q5 H1 H2 H3 H4 H5 T1 T2 Final Grade

10.0 10.0 8.0 0.0 10.0 10.0 10.0 10.0 0.0 6.5 92 75 98 B

10.0 10.0 10.0 10.0 7.0 9.0 9.5 10.0 0.0 10.0 87 65 77 C

10.0 10.0 8.0 10.0 10.0 10.0 10.0 10.0 9.8 9.5 100 99 97 A

10.0 10.0 8.0 0.0 10.0 9.0 10.0 9.0 10.0 7.0 75 54 79 B

10.0 10.0 6.0 10.0 8.0 6.5 10.0 10.0 10.0 7.5 80 86 95 A

(a) Construct a classification tree using the students quiz grades (Q1–Q5), homework
grades (H1–H5), mid-term exam scores (T1 & T2) to predict the students final
letter grade (Grade).

(b) Discuss the quality of the fitted model in part (a) using the confusion matrix.
(c) Construct a regression tree using the students quiz grades (Q1–Q5), homework

grades (H1–H5), and mid-term exam scores (T1 & T2) to predict the students
final exam score (Final).

(d) Evaluate the quality of the prediction of model in part (c) using a suitable method.

19. Use the following testing data to predict outcomes of the classification tree derived in
Review Problem 18. Discuss the accuracy of the fitted model, using an appropriate
measure.

Q1 Q2 Q3 Q4 Q5 H1 H2 H3 H4 H5 T1 T2 Final Grade

10.0 10.0 10.0 8.0 8.0 10.0 12.0 9.5 10.0 9.5 75 69 76 C
10.0 9.0 10.0 10.0 4.0 9.0 12.0 0.0 0.0 0.0 86 60 59 C
10.0 10.0 10.0 10.0 8.0 10.0 12.0 9.5 8.5 9.5 86 73 85 B
7.0 9.0 8.0 10.0 10.0 10.0 7.0 0.0 8.5 8.0 58 50 83 C

10.0 0.0 0.0 0.0 8.0 0.0 10.5 0.0 0.0 0.0 86 30 59 D
7.0 10.0 7.0 10.0 8.0 0.0 6.5 5.5 0.0 0.0 72 87 100 B
7.0 10.0 10.0 10.0 8.0 10.0 12.0 10.0 10.0 10.0 98 87 93 A
0.0 9.0 8.0 9.0 0.0 9.5 12.0 7.5 6.5 10.0 60 46 74 C

10.0 9.0 4.0 6.0 0.0 6.0 0.0 10.0 10.0 9.5 62 45 47 D
10.0 10.0 4.0 10.0 6.0 7.5 8.0 5.0 7.0 0.0 80 75 84 C
10.0 10.0 8.0 10.0 8.0 10.0 12.0 10.0 10.0 10.0 90 55 82 B
10.0 9.0 9.0 10.0 6.0 9.0 11.0 0.0 0.0 7.5 74 40 54 D

20. Use the testing data in Review Problem 18 to predict outcomes of the regression tree
in Review Problem 19. Discuss the accuracy of the fitted model using an appropriate
measure.



Chapter 12

CLUSTER ANALYSIS

The focus of this chapter is the discussion of basic clustering tech-
niques.

Topics Covered

• Basic concepts of clustering
• Similarity measures
• Hierarchical clustering methods
• Ward’s hierarchical clustering method
• Nonhierarchical clustering methods
• K-means method
• Density based clustering methods
• Model based clustering methods

Learning Outcomes

After studying this chapter, the reader will be able to

• Discuss the various types of similarity measures and clustering techniques.
• Distinguish between hierarchical, non-hierarchical and other types of clustering tech-

niques.
• Perform cluster analysis for various types of data.
• Compare various clustering techniques.
• Summarize and interpret the cluster results.
• Use software packages MINITAB, R, and JMP to perform cluster analysis.

12.1 INTRODUCTION

Grouping objects into one or more groups so that the objects within each assigned group
are more homogeneous than otherwise is called clustering. Cluster analysis helps discover

Statistics and Probability with Applications for Engineers and Scientists using MINITAB, R and JMP,
Second Edition. Bhisham C. Gupta, Irwin Guttman, and Kalanka P. Jayalath.
c© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/college/gupta/statistics2e
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“natural” groupings of objects on the basis of similarities between the objects. Unlike
classification methods, groups and the number of groups are unknown prior to clustering
of data. Cluster analysis is an exploratory technique with no assumptions of group struc-
ture or number of groups and is often quite helpful to investigate the complex nature of
data structures. Analysts could interpret and validate cluster analysis results based on
their understanding of the data. Clustering can be achieved by various algorithms that
differ in their notion of what constitutes a cluster and how to efficiently find them. Three
major types of clustering algorithms are available in the literature, namely, hierarchi-
cal, nonhierarchical, and model-based methods. Applications can be found in a variety of
areas such as data mining, pattern recognition, sports, medicine, and bioinformatics (see
Johnson and Wichern, 2007; Abonyi and Feil, 2007; Han et al., 2011 for more details).

The following questions in respective disciplines can be answered using appropriate
cluster analysis techniques.

Marketing: What type of customers should be targeted for a new product? To answer
this question a market analyst may conduct a cluster analysis of customer demographics,
income, shopping styles, dining patterns, attitudes, and marital status. This would result
in establishing groups of customers that have similar needs and behaviors.

Bioinformatics: What type of disease will a new patient be diagnosed with in
the future? To answer this question, a researcher may need to collect information about
patient’s organs, genes, and proteins along with their basic demographics. Then the cluster
analysis can be used to group people with similar symptoms, which may reflect some com-
mon genes, proteins, and/or demographic patterns. Characteristics of these homogeneous
groups of people can possibly be used to estimate the likelihood of a new patient being
categorized into one or more groups.

Sports: An aim may be to select the best set of players in various team sports. An ana-
lyst can collect players’ career data and cluster them with similar statistics. Then it would
be possible to correlate teams’ winning percentages, with proportions of clustered groups
in each team. These relations would shed light on player selection criteria in future games.

We will discuss how one can conduct such cluster analysis for various types of data,
using some of the major clustering methods in the subsequent sections. In the next section,
we will introduce basic mathematical tools and conceptual background needed to proceed
with cluster analysis.

12.2 SIMILARITY MEASURES

The objects which appear to be close together, naturally exhibit similar properties than
the objects that appear farther apart. Therefore, it is important to measure the closeness
of objects when clustering. The distance between two objects may be used to measure their
closeness, and statistical measures such as correlation may be used to determine closeness
of variables. In general, similarity measures are employed to measure closeness of objects
or variables with respect to certain criteria:

The Euclidean distance between two one-dimensional objects located at x and y is
written as

Dx,y = |x − y| (12.2.1)

The Euclidian distance between two two-dimensional objects located as x = (x1, x2)
and y = (y1, y2) is defined as given below:

Dx,y =
√

(x1 − y1)2 + (x2 − y2)2 (12.2.2)
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The general form of the Euclidean distance for two p-dimensional objects located at
x = (x1, x2, . . . , xp) and y = (y1, y2, . . . , yp) is

Dx,y =
√

(x1 − y1)2 + (x2 − y2)2 + · · · + (xp − yp)2 (12.2.3)

Euclidean distance is a special case of a more general measure known as Minkowski
distance. For two p-dimensional objects located at x and y, the Minkowski distance is

Dx,y =

[
p∑

i=1

|xi − yi|w
]1/w

(12.2.4)

The Minkowski distance becomes the city-block distance (or Manhattan distance) when
w = 1, and becomes the two-dimensional Euclidean distance when w = 2.

The cosine correlation coefficient is another useful similarity measure. To define the
cosine correlation coefficient we first consider the Euclidean dot product formula between
two objects located at x and y. That is,

x.y=|x||y| cos(θ) (12.2.5)

where θ is the angle between the two vectors x and y and |x| =
√∑p

i=1 x2
i , |y| =

√∑p
i=1 y2

i

are the lengths of the vectors x and y, respectively. Then we have from (12.2.5) cos(θ),
the cosine correlation coefficient, which may be written as

cos(θ)=
x.y
|x||y| =

∑p
i=1 xiyi√∑p

i=1 x2
i

√∑p
i=1 y2

i

(12.2.6)

This similarity measure ranges from −1 to 1 indicating perfect opposites to perfect simi-
larity, and a value near zero indicates total dissimilarity. If we use the standardized vectors
in (12.2.6), it would provide a measure equivalent to the Pearson correlation coefficient.

Given a set of objects, we can summarize all the pairwise distances in a distance
matrix. Also, we can visualize a distance matrix using many different methods to identify
vital distances between objects. Now we exhibit one graphical display using the network
graphing method in the following example.

Example 12.2.1 (Crime data) Consider a set of crime data reported1 in six different US
states that includes attributes “Murder rate,” “Assault rate,” “Rape rate,” and “Urban
population.” Table 12.2.1 shows crime rates per 100,000 residents and the variable, “Urban
Pop” represents the percent of the population living in urban areas in the given state.

Table 12.2.1 Reported crime data.

State Murder rate Assault rate Rape rate Urban pop

A 15.4 335 31.9 80
B 13.0 337 16.1 45
C 9.0 276 40.6 91
D 11.3 300 27.8 67
E 8.1 294 31.0 80
F 11.4 285 32.1 70

1 McNeil (1977)
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First we calculate the Euclidean distance DA,B between states A and B for all four crime
characteristics. From (12.2.3),

DA,B =
√

(15.4 − 13.0)2 + (335 − 337)2 + (31.9 − 16.1)2 + (80 − 45)2 = 38.53

Then the city-block distance (with w = 1 in (12.2.4)) between states A and B are

DA,B = |15.4 − 13.0| + |335 − 337| + |31.9 − 16.1| + |80 − 45| = 55.2

Then, we use (12.2.6) to calculate the cosine correlation coefficient between states A and
B as follow:,

cos(θ)=
∑p

i=1 xiyi√∑p
i=1 x2

i

√∑p
i=1 y2

i

=
15.4 × 13.0 + 335 × 337 + 31.9 × 16.1 + 80 × 45√

15.42 + 3352 + 31.92 + 802
√

132 + 3372+16.12 + 452
= 0.994

The resulting cosine correlation coefficient estimate (= 0.994) indicates a higher similar-
ity between states A and B. However, both the distance measures do not provide such
information directly, though those distances can be used for comparison purpose as we
illustrate below.

We use the R software to calculate all the pairwise Euclidean distances and to obtain
a network graph to compare the resulting distances.

USING R

We may use the built-in R function ‘dist()’ to find all pairwise Euclidean distances and
plot resulting distances in a network graph using ‘qgraph()’. The following R code can be
used to obtain both the distance matrix and the network graph.

library(qgraph)
#Data preparation
Murder = c(15.4,13,9,11.3,8.1,11.4)
Assault = c(335,337,276,300,294,285)
Rape = c(31.9,16.1,40.6,27.8,31,32.1)
Urban = c(80,45,91,67,80,70)
crime = cbind(Murder, Assault, Rape, Urban)
row.names(crime) = c(“A”,“B”,“C”,“D”,“E”,“F”)

#To get the distance matrix
distance = dist(crime, method = “euclidean”)
distance

#To get the network graph
Inv.dist = 1/distance #input reciprocal distances
qgraph(Inv.dist, layout=“spring”, vsize=5)

Table 12.2.2 shows the resulting Euclidean distance matrix between states with regards
to the reported crime rates. The resulting network graph is shown in Figure 12.2.1. The
length between any two vertices on the graph indicates the distance between those two
objects and the width and the color intensity of the edges indicate closeness of the objects.
That is, thickens and the color intensity are inversely proportional to the actual distance
between true objects. For the data in Example 12.2.1, the states ‘E’ and ‘F’ provides
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Table 12.2.2 Euclidean distances between six US states.

A B C D E

B 38.5
C 61.0 80.3
D 37.8 44.6 36.3
E 41.7 57.6 23.2 15.0
F 51.1 59.9 24.5 15.9 13.9

E

C

F

D

A

B

Figure 12.2.1 Network graph for distance matrix in Table 12.2.2.

the minimum pairwise distance among all the states, while ‘E and D’ and ‘F and D’
have the next minimum distances, respectively. All this information is again apparent in
Figure 12.2.1, and therefore, one can visualize which states tend to clump together with
regards to crime distances.

The distance calculation becomes challenging when the data are nonnumeric. In real
life, the data can be a combination of many forms, and their attributes may represent dif-
ferent characteristics. For instance, a data vector can represent both quantitative and qual-
itative attributes. For example, consider a set of patient data consisting of five-dimensional
characteristics such as gender, age, blood type, systolic blood pressure, and glucose level.
Attributes such as age, systolic blood, pressure, and glucose level are quantitative, but
gender and blood type are qualitative in nature. The following example is used to exhibit
the distance and other related calculations for such data.

Example 12.2.2 (A clinical trials study) Consider the following measurements taken
from two male and two female patients in a clinical trials study.
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Table 12.2.3 A clinical trials study data.

Patient Gender Age Blood type Systolic blood Glucose level
ID (yr) pressure (mm Hg) (mg/dl)

001 F 57 A 125 101
002 M 60 B 130 112
003 M 65 A 120 98
004 F 58 B 128 107

We cannot perform vector calculations on row vectors of the data in Table 12.2.3 due to
the qualitative nature of some attributes namely gender and blood type. Therefore, it is
required to change the structure of these data to a common numerical structure. Thus, we
dichotomize each variable into a binary variable as follows:

Let XGen =
{

1 if M
0 if F , XAge =

{
1 if Age ≥ 60
0 if Age < 60 , XBT =

{
1 if Blood type is A
0 Otherwise ,

XBP =
{

1 if Blood pressure ≥ 125
0 if Blood pressure < 125 , XGL =

{
1 if Glucose level ≥ 100
0 if Glucose level < 100

The resulting data after above coding can be summarized as follows in Table 12.2.4.

Table 12.2.4 Dichotomous attributes of the clinical trials study data.

Patient ID XGen XAge XBT XBP XGL

001 0 0 1 1 1
002 1 1 0 1 1
003 1 1 1 0 0
004 0 0 0 1 1

Now the similarity between items can be calculated after constructing a 2 × 2 contin-
gency table for each pair of items. Let a = number of 1–1 pairs, b = number of 1–0 pairs,
c = number of 0–1 pairs, and d = number of 0–0 pairs. Then, the entries of the contingency
table are calculated so that the resulting contingency Table 12.2.5 for the patients 001 and
002, is as given below:

Table 12.2.5 The contingency table for patients
001 and 002 based on data from Table 12.2.4.

Patient 002
1 0

Patient 1 a = 2 b = 1
001 0 c = 2 d = 0

For patients 001 and 002, there are only two matching pairs (a + d = 2) among the five
considered characteristics. That provides 2/5 = 0.40 matching rate, which can be used for
measuring similarity between them. However, we will now define a few additional similarity
coefficients for clustering items and further discuss this example.
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12.2.1 Common Similarity Coefficients

1. The simple matching coefficient (SMC) which equally weights both 1–1 and 0–0
matches

SMC =
a + d

a + b + c + d

2. The Russel and Rao coefficient (RRC) which excludes 0–0 matches from the
numerator

RRC =
a

a + b + c + d

3. The Jaccard coefficient (JC) which completely excludes 0–0 matches

JC =
a

a + b + c

4. The Match-Mismatch coefficient (MMC) which completely excludes 0–0
matches

MMC =
a

b + c

The Jaccard coefficient for patients 001 and 002 becomes equal to
a

a + b + c
=

2
2 + 1 + 2

= 0.40. That indicates 40% Jaccard coefficient-based matching rate between
patients 001 and 002. In a similar fashion, we calculate the Jaccard coefficients for all
pairs of patients and summarize them in Table 12.2.6

Table 12.2.6 The Jaccard coefficients for the pairs of
patients in Table 12.2.4.

Patient
001 002 003

002 0.40
Patient 003 0.20 0.40

004 0.67 0.50 0.00

The calculated Jaccard coefficients indicate that patients 001 and 004 are more homoge-
neous, and the patients 003 and 004 are more heterogeneous compared to the rest.

We can also calculate the Euclidean distance between items using dichotomous coded
variables. The squared Euclidean distance

∑p
i=1 (xi − yi)

2 measures the number of mis-
matches. For instance, the number of mismatches for patients 001 and 002 shown in
Table 12.2.4 is

∑5
i=1 (xi − yi)

2 = (0 − 1)2 + (0 − 1)2 + (1 − 0)2 + (1 − 1)2 + (1 − 1)2 = 3.
Note that this distance measure ignores 1–1 and 0–0 matches and assumes those two cases
are equally unimportant.
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In some applications, we may have to group the variables, not the objects. In such
cases, we calculate Pearson and Spearmen correlation coefficients depending on the data
type. For bivariate or dichotomous variables, strength of association can be calculated
using the Pearson product moment correlation r, where r

r =
ad − bc√

(a + b)(a + c)(c + d)(b + d)
(12.2.7)

where a = number of 1− 1 pairs, b = number of 1− 0 pairs, c = number of 0− 1 pairs, and
d = number of 0− 0 pairs.

We will illustrate the use of the Pearson product moment correlation calculation and
interpretation in Example 12.2.3.

Example 12.2.3 (Clinical trials study data in Example 12.2.2) Reconsider the dichoto-
mous clinical trials study data set in Table 12.2.4, and calculate the strength of association
between variables gender and age, using the Pearson product moment correlation formula,
given in (12.2.7).

Solution: The corresponding contingency table for gender and age pairing is summarized
in Table 12.2.7

Table 12.2.7 Contingency table for
variables age and gender in clinical trial
study data in Table 12.2.4.

XAge

1 0

XGen 1 a = 2 b = 0
0 c = 0 d = 2

From 12.2.7, the Pearson product moment correlation between variables age and gender is

r =
ad − cb√

(a + b)(a + c)(c + d)(b + d)
=

4√
2 × 2 × 2 × 2

= 1

The result r = 1 indicates a perfect similarity. One can interpret this as a higher
dependency between two variables and may combine them to form a cluster due to evident
similarity. However, it is clear that having only four observations is not conclusive, and
the example we consider here is mainly to explain and illustrate the various concepts.

12.3 HIERARCHICAL CLUSTERING METHODS

Even with a moderate amount of data, finding possible clusters without specifying the
number of clusters is challenging. In such situations, we have to look for every single
possibility of grouping objects into clusters, while determining the efficient number of
clusters. Hierarchical clustering procedures are usually helpful in such situations, as they
use sequential iterative approaches to build clusters. Hierarchical clustering algorithms are
categorized into two main branches, agglomerative algorithms and divisive algorithms.
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The agglomerative hierarchical approaches begin by assuming all the objects are
distinct clusters at the initial stage. Then, subsequently, objects are merged into the most
appropriate initial clusters, based on a predefined similarity measure. The process contin-
ues until all the objects group together to form a one final cluster. Similarity of objects
within the clusters at the bottom of the hierarchy would be higher as these are the initial
clusters, but similarity naturally decreases as we move up in the hierarchy. The divisive
hierarchical approach works completely the opposite way, as it begins with one single clus-
ter of all the objects, and subsequently splits it into two most dissimilar clusters. The
process continues until each object falls into its own cluster such that no further divisions
are possible. However, the agglomerative approach is known to be more applicable than the
divisive approach and therefore, we will discuss that aforementioned approach in detail.

The Linkage methods are particularly useful in agglomerative approaches. The major
types of linkage methods used in hierarchical clustering procedures include single linkage,
complete linkage, and average linkage methods. Single linkage uses the minimum distance
between objects in distinct clusters, while complete linkage uses the maximum distance.
The average linkage uses the average distance between two distinct clusters. In all the three
methods, the minimum intra-class distance criteria should be used to merge clusters, as
explained in the following algorithm.

Suppose we have N objects to cluster at the initial step, and that we select a certain
linkage method with distance measure Di,j between ith and jth objects.

Step 1 Calculate all pairwise distances Di,j and tabulate.
Step 2 Search the table in Step 1 for min(Di,j) for i �= j and merge objects (or

clusters) that have minimum distance.
Step 3 Delete the corresponding row and the column for the objects (or clusters)

previously merged (say A and B) and include the newly formed cluster
AB and calculate the distance DAB,k for all k’s.

Step 4 Repeat the process until no further merges are possible.

The inal clustering steps, including at what stage they merge may be displayed in a tree-like
graphical display called a Dendrogram.

12.3.1 Single Linkage
Let us consider two clusters A and B. Then the distance between these two clusters may
be defined as

DA,B = min {Dx,y|x ∈ A, y ∈ B} (12.3.1)

As stated in Equation (12.3.1), DA,B measures the minimum distance or nearest neighbor
distance between two clusters A and B, as shown below in Figure 12.3.1. Then in the
single linkage procedure, the two clusters with the minimum nearest neighbor distance are
merged.

Example 12.3.1 (Crime data in Example 12.2.1) Let us consider the crime data shown
in Table 12.2.1 of Example 12.2.1. The Table 12.3.1 shows the calculated Euclidean crime
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A

B

Figure 12.3.1 Single linkage distance between two clusters A and B.

distances between A, B, C, D, and E. Since the distances are symmetric around the
diagonal, only the lower triangular distances are displayed.

Table 12.3.1 Euclidean distances between six US states.

A B C D E

B 38.5
C 61.0 80.3
D 37.8 44.6 36.3
E 41.7 57.6 23.2 15.0
F 51.1 59.9 24.5 15.9 13.9

The distance between states E and F is the smallest among all the pairwise distances
reported in Table 12.3.1. Therefore, we merge those two states to form the initial cluster
EF. Then, we calculate the distances between newly formed cluster EF and the rest of the
states as follows:

DEF,A = min (DE,A, DF,A) = min (41.7, 51.1) = 41.7

DEF,B = min (DE,B , DF,B) = min (57.6, 59.9) = 57.6

DEF,C = min (DE,C , DF,C) = min (23.2, 24.5) = 23.2

DEF,D = min (DE,D, DF,D) = min (15.0, 15.9) = 15.0

The resulting updated distances are summarized as follows in Table 12.3.2.
Table 12.3.2 Updated Euclidean distances after
merging E and F.

A B C D

B 38.5
C 61.0 80.3
D 37.8 44.6 36.3
EF 41.7 57.6 23.2 15.0

The distance Table 12.3.2 provides the updated distances and shows that the smallest
distance is now between the cluster EF and state D so that we merge them together to
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form the second cluster DEF. The Table 12.3.3 gives updated Euclidean distances based
on the following distance calculations:

DDEF,A = min (DEF,A,DD,A) = min (41.7, 37.8) = 37.8

DDEF,B = min (DEF,B ,DD,B) = min (57.6, 44.6) = 44.6

DDEF,C = min (DEF,C ,DD,C) = min (23.2, 36.3) = 23.2

Table 12.3.3 Updated Euclidean
distances after merging EF and D.

A B C

B 38.5
C 61.0 80.3

DEF 37.8 44.6 23.2

It is now clear from the Table 12.3.3 that the state C qualifies to merge with cluster DEF
as their intra-cluster distance (23.2) is the lowest among all. Therefore, in the next stage,
we merge state C with cluster DEF to form the third cluster CDEF. Then, we update the
distance table based on the following distance calculations as summarized in Table 12.3.4.

DCDEF,A = min (DDEF,A,DC,A) = min (37.8, 61.0) = 37.8

DCDEF,B = min (DDEF,B ,DC,B) = min (44.6, 80.3) = 44.6

Table 12.3.4 Updated Euclidean
distances after merging DEF and C.

A B

B 38.5
CDEF 37.8 44.6

Based on the reported distances in Table 12.3.4, we merge state A with the cluster CDEF to
form the next cluster ACDEF. At the final stage, this cluster should merge with the object
B at the associated distance DACDEF,B = 38.5 to provide the final cluster BACDEF .

Figure 12.3.2 shows the single linkage-based Dendrogram for the US arrests data for
the six states we considered in Example 12.3.1. For instance, if we desire to finalize clusters
at distance 20 (see dashed line in Figure 12.3.2), then the algorithm produces four distinct
clusters (EFD), (C), (A), and (B). However, if one decides to finalize clusters at distance
30 (see dotted line in Figure 12.3.2), then the algorithm produces three distinct clusters
(EFDC), (A), and (B). In this manner, the subjective knowledge may help one to decide
at what distance level clusters should be finalized.

Example 12.3.2 (Crime data in Example 12.2.1) Let us consider the crime data shown
in Table 12.2.1 of Example 12.2.1. Obtain the Euclidean distance matrix for all six states,
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Figure 12.3.2 Dendrogram for US arrests data for six states based on the single linkage.
The dashed and dotted lines are manually inserted.

use the single linkage method to cluster A, B, C, D, and E and obtain the dendrogram
using both R and MINITAB.

Solution

USING R

The R function ‘hclust()’ can be used to conduct the required cluster analysis as shown in
the following R code. The linkage method needs to be specified in this function to obtain
the required cluster type.

#Data preparation
Murder = c(15.4,13,9,11.3,8.1,11.4)
Assault = c(335,337,276,300,294,285)
Rape = c(31.9,16.1,40.6,27.8,31,32.1)
Urban = c(80,45,91,67,80,70)
crime = cbind(Murder, Assault, Rape, Urban)
row.names(crime) = c(“A”,“B”,“C”,“D”,“E”,“F”)

#Calculate the distance, the following will produce a distance matrix similar to
Table 12.3.1
distance = dist(crime, method = “euclidean”)
distance

#Hierarchical clusters with single linkage option (method option can change as needed)
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single.hc = hclust(distance, method = “single”)

#Obtain dendrogram object for better plots
den.obj = as.dendrogram(single.hc)

#Define node parameters
nodes = list(lab.cex = 1, pch = c(NA, 19), cex = 2, col = “blue”)
plot(den.obj, xlab = “States”, ylab = “Distance”, nodePar = nodes)
abline(h=20, lty=2, col=“red”)
abline(h=30, lty=3, col=“blue”)

The R function ‘dist()’ provides the distance table that is identical to Table 12.3.1. The
R function ‘hclust()’ provides the required hierarchical clusters, which may be converted to
a dendrogram object using the R function ‘as.dendrogram()’. After adding extra graphing
arguments via ‘nodePar’ as shown in the above R code, we obtain the dendrogram in
Figure 12.3.2.

MINITAB

1. Enter the data in column C1-C5 of the Worksheet and name them State, Murder,
Assault, Rape,and Urban, respectively.

2. From the Menu bar, select Stat > Multivariate > Cluster Observations . . .
3. In the new dialog box that appears, enter C2-C5 in the box under Variables or

distance matrix:, select Single from the menu next to Linkage Method:, then
select Euclidean from the menu next to Distance measure:. Enter 1 in the box next
to Number of clusters: and then click the check box next to Show dendrogram.

4. Click on the Customize . . . option and enter C1 in the box next to Case labels:
select Distance for Label Y axis with in the new dialog box that appears. Click
OK twice.

Dendrogram

Single linkage, Euclidean distance
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Figure 12.3.3 MINITAB dendrogram plot for US crime data for six states based on the
single linkage method.
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The MINITAB dendrogram in Figure 12.3.3 provides exactly the same information as
obtained by using R (see Figure 12.3.2). However, there is no straightforward way to
calculate the initial distance table in MINITAB.

12.3.2 Complete Linkage
Let us consider two clusters A and B. Then, the distance between these two clusters may
be defined as

DA,B = max {Dx,y|x ∈ A, y ∈ B} (12.3.2)

As defined in Equation (12.3.2), DA,B measures the maximum or the farthest neighbor
distance between two clusters A and B. Figure 12.3.4 shows the complete linkage distance
between two clusters A and B. Then in the complete linkage procedure, we merge the two
clusters with the minimum farthest neighbor distance comparing all the farthest neighbor
distances.

A

B

Figure 12.3.4 Complete linkage distance between two clusters A and B.

Example 12.3.3 (Crime data in Example 12.2.1) We consider the crime data in Example
12.2.1 and the previously calculated Euclidean crime distances between A, B, C, D, E and
F shown in Table 12.3.5. Use this data to cluster states using the complete linkage method.

Table 12.3.5 Euclidean distances between six US states.

A B C D E

B 38.5
C 61.0 80.3
D 37.8 44.6 36.3
E 41.7 57.6 23.2 15.0
F 51.1 59.9 24.5 15.9 13.9

States E and F provide the smallest distance, so that these two are merged to form
the initial cluster EF as we did in the single linkage method. Then the distances between
the newly formed cluster EF and the rest of the states are as follows.

DEF,A = max (DE,A, DF,A) = max (41.7, 51.1) = 51.1

DEF,B = max (DE,B , DF,B) = max (57.6, 59.9) = 59.9

DEF,C = max (DE,C , DF,C) = max (23.2, 24.5) = 24.5

DEF,D = max (DE,D, DF,D) = max (15.0, 15.9) = 15.9
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The following Table 12.3.6 shows the updated distances after merging states E and F, and
using the above four results.

Table 12.3.6 Updated Euclidean distances after
merging states E and F.

A B C D

B 38.5
C 61.0 80.3
D 37.8 44.6 36.3
EF 51.1 59.9 24.5 15.9

It is clear from the above Table 12.3.6 that the cluster EF and state D provides
the minimum distance. Therefore, we merge them to form the second cluster DEF and
accordingly, we update the distances after completing the following distance calculations
as shown in Table 12.3.7.

DDEF,A = max (DEF,A, DD,A) = max (51.1, 37.8) = 51.1

DDEF,B = max (DEF,B , DD,B) = max (59.9, 44.6) = 59.9

DDEF,C = max (DEF,C , DD,C) = max (24.5, 36.3) = 36.3

Table 12.3.7 Updated Euclidean distances
after merging cluster EF and state D.

A B C

B 38.5
C 61.0 80.3

DEF 51.1 59.9 36.3

Then we merge the state C with DEF in the next stage as they provide the minimum
intracluster distance to form the third cluster CDEF. Then, we update the distances after
completing the following distance calculations as shown in Table 12.3.8.

DCDEF,A = max (DDEF,A, DC,A) = max (51.1, 61.0) = 61.0

DCDEF,B = max (DDEF,B , DC,B) = max (59.9, 80.3) = 80.3

Table 12.3.8 Updated Euclidean distances
after merging cluster DEF and state C.

A B

B 38.5

CDEF 61.0 80.3
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In the next stage, object A merges with object B as they provide the minimum intr-
acluster distance to form the next cluster AB. At the final stage, this cluster AB should
merge with the cluster CDEF at the following distance

DCDEF,AB = max (DCDEF,A, DCDEF,B) = max (61.0, 80.3) = 80.3

Figure 12.3.5 shows the complete linkage-based dendrogram for the US arrests data for
the six states considered.
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Figure 12.3.5 Dendrogram for the US arrests data for six states based on the complete
linkage. The dashed and dotted lines are manually inserted.

For instance, if we desire to finalize clusters at distance 20 (see dashed line in
Figure 12.3.5), then the algorithm produces four distinct clusters (EFD), (C), (A),
and (B). However, if one decides to finalize clusters at distance 40 (see dotted line in
Figure 12.3.5), then the algorithm produces two distinct clusters (EFDC) and (AB).
So that one may have to experiment with few different distance values before finalizing
the final clusters. Indeed, as explained earlier, the subjective knowledge may help one to
decide at what distance level clusters should be finalized.

A

B

Figure 12.3.6 Average linkage distance between two clusters A and B.
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12.3.3 Average Linkage
The average linkage procedure calculates the intracluster distance by averaging all indi-
vidual intraobject distances between clusters. Then the two clusters with the minimum
average distance are merged. For two different clusters as shown in Figure 12.3.6, we
calculate the intracluster distance as follows

DA,B =
1

nAnB

∑
x∈A

∑
y∈B

Dx,y (12.3.3)

where nA, nB are the number of objects in cluster A and B, respectively.

Example 12.3.4 (Face clusters) In this example, we consider a two-dimensional data set
that mimics a face-like structure shown in Figure 12.3.7a. There are six apparent clusters
in this data set. Both R and MINITAB are used to obtain single, complete, and average
linkage method based clusters.

Note: We can either generate the data using the ‘library(fpc)’ and R-code: face =
rFace(400, p = 2, nrep.top = 1, smile.coef = .9, dMoNo = 2, dNoEy = 0) or download
Example 12.3.4 data from the website: www.wiley.com/college/gupta/statistics2e .

Solution: We will first use R software to obtain the required clusters.

USING R

The R function ‘hclust()’ in R can be used to conduct the required cluster analysis as
shown in the following R-code. The linkage method needs to be specified in this function
to obtain the required cluster type. Note that we can directly generate Face data set as
required using the ‘rFace()’ function as shown below.

library(stats)
library(fpc)

#Generate the ‘Face’ data set as follows or alternatively place your Example 12.3.4
data in a local folder and import.
set.seed(123)
face = rFace(400, p = 2, nrep.top = 1, smile.coef = .9, dMoNo = 2, dNoEy = 0)
memb1 = as.integer(attr(face,“grouping”))
data = cbind(face[,1], face[,2], memb1)
op = par(mfcol = c(2, 2))

#Plot original Face data
par(las =1)
plot(data, col = as.integer(memb1), pch = as.integer(memb1), xlab=“(a)”,
ylab=“”, main = “True Groups”)
#Plot compete linkage results
hc = hclust(dist(data), method = “complete”)
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memb3 = cutree(hc, k = 6)
plot(data, col = memb3, pch = as.integer(memb3), xlab = “(c)”,
ylab = “”, main = “Complete Linkage”)

#Plot single linkage results
hc = hclust(dist(data), method = “single”)
memb2 = cutree(hc, k = 6)
plot(data, col = memb2, pch = as.integer(memb2), xlab = “(b)”,
ylab = “”, main = “Single Linkage”)

#Plot average linkage results
hc = hclust(dist(data), method = “average”)
memb4 = cutree(hc, k = 6)
plot(data, col = memb4, pch = as.integer(memb4), xlab = “(d)”,
ylab = “”, main = “Average Linkage”)
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Figure 12.3.7 A generated face structure with six different clusters and their estimates
by using single, complete, and average linkage methods. Different symbols (colors) repre-
sent different clusters.
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This specific face structure (see Figure 12.3.7a) includes chains, elliptical and
triangular-shaped clusters as well as outliers. It seems that this is a relatively difficult
data set to cluster. Nevertheless, we expect at least to differentiate major objects of the
face structure, such as the two eyes, nose, and chin into different clusters. Figure 12.3.7b
shows that the single linkage method accurately clusters eyes, but fails to differentiate the
nose, mouth, and chin, and forms a large single clump. One possible reason is the presence
of the chain-like chin. However, the complete linkage method accurately identifies the
mouth and nose but combines the lower part of the chin with the mouth, and the upper
part of the chin with the nose (see Figure 12.3.7c). Hence, it makes sense to split the long
chin into a few separate clusters, since the data on the two extreme ends tend to separate
from the middle part. Also, the complete linkage method tends to produce clusters with
somewhat similar dimensions. We cannot see much improvement on the average linkage
results, since this method fails to distinguish the two eyes accurately.

The single linkage method tends to generate “long chains” and “clumps” like clusters
and handles well nonelliptical shapes, but is sensitive to outliers and noise and may not
produce meaningful results in the presence of complex structures. The complete linkage
method tends to produce more balanced clusters and may not be affected by outliers as
much as the single linkage method does. However, it splits the large clusters into small
clusters, while nearby small clusters tend to merge with large clusters. The average linkage
results (see Figure 12.3.7d) tend to compromise between the single and complete linkage
outcomes. In addition, it is less susceptible to noise and outliers.

MINITAB

1. Enter the data in column C1 and C2 of the Worksheet and name them X and Y,
respectively.

2. From the Menu bar, select Stat > Multivariate > Cluster Observations . . .
3. In the new dialog box appears, enter C1 and C2 in the box under Variables or dis-

tance matrix:, select any linkage method from the menu next to Linkage Method:
and select Euclidean from the menu next to Distance measure:. Enter 6 in the box
next to Number of clusters:.

4. Click Storage . . . option and enter C3 in the box next to Cluster membership
column: a new dialog box that appears.

5. Click OK twice. A complete output will appear in the session window. However, to
plot clusters, we proceed as follows:

6. From the Menu bar select Graph > Scatterplot . . . . This prompts a dialog box
to appear on the screen. In this dialog box, select Scatterplots With Groups and
click OK. In the new dialog box that now appears, under the X and Y variables,
enter C1 and C2, respectively. Use the desired options and click OK. A scatter plot
with clustered groups will appear.

12.3.4 Ward’s Hierarchical Clustering
Ward’s method is another hierarchical clustering procedure that begins with considering
every object as a distinct cluster. Objects merge with minimum merging cost defines in
(12.3.4). Let us consider merging two objects A and B to form a new cluster AB that
results in a cluster center AB, where AB represents the central location of objects A and
B. Then, the resulting merging cost due to clustering is defined as

CostA,B = D2
A, AB

+ D2
B, AB

(12.3.4)
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where D2
A, AB

and D2
B, AB

denote the squared Euclidean distances from the objects A and
B to the center AB of objects A and B, respectively. It quantifies the within cluster sum
of squared deviation.

At the initial step in the Ward’s method, we merge object A with a distinct object B
as long as it provides the minimum merging cost among all possible such pairwise merging
costs. Prior to the initial step, the total cost is zero, and the cost grows as we merge the
objects and clusters. However, the Ward’s method keeps the growth of merging cost as
minimum as possible.

Example 12.3.5 (Face clusters) Apply Ward’s clustering method for the data in Example
12.3.4 and discuss its results.

Solution: We will illustrate Ward’s clustering method using R as shown below.

USING R

As in the previous Example 12.3.4, the ‘hclust()’ function in R is used to conduct the
required cluster analysis.

#Continued from the previous R code in Example 12.3.4
op = par(mfcol = c(1, 2))
par(las =1)

#Original cluster data
plot(data, col = as.integer(memb1), pch = as.integer(memb1),
xlab=“(a)”, ylab=“”, main = “True Groups”)

#Ward's clusters
hc = hclust(dist(data), method = “ward.D2”)
memb5 = cutree(hc, k = 6)
plot(data, col = memb5, pch = as.integer(memb5), xlab = “(b)”,
ylab = “”, main = “Ward's Method”)
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Figure 12.3.8 (a) A generated face structure with six different clusters (b) Ward’s
method that establishes estimated clusters. Different symbols (colors) represent different
clusters.
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Now Figure 12.3.8 shows that there is a substantial improvement in the Ward’s
clustering process compared to the earlier linkage results in Figure 12.3.7. The Ward’s
method clearly identifies both the eyes, nose, and mouth, but parts of the chin are
misclassified and clustered with the mouth and nose. Also, three outliers are grouped into
one cluster accurately. However, it is important to note that though the Ward’s method
tend to produce better results in many situations, but some linkage methods may outper-
form the Ward’s method in some other situations. Therefore, we cannot make any general
statement about the performances of these methods.

12.4 NONHIERARCHICAL CLUSTERING
METHODS

12.4.1 K-Means Method
The K-means method is one of the popular nonhierarchical clustering procedures. It
requires a user to define the value of K the number of desired clusters. The procedure
begins with assigning K initial centroids. In general, the centroid can either be mean or
median distance between a set of objects. In K-means method, we consider the mean as the
centroid. In this method, once the centroids are identified, each object is assigned to the
nearest centroid. As a result, the locations of the centroids of the subsequent clusters should
be updated after each assignment. Major steps of the procedure are summarized as follows:

Step 1 Assign K initial centroids. This can be done by either splitting objects into
K arbitrary clusters and calculating their centroids or randomly assigning
K centroids.

Step 2 Assign objects to their nearest centroids one at a time. In each assignment,
the centroid should be updated, and the updated centroids should be used
in the proceeding step.

Step 3 Repeat object allocation until the centroids are stable where no further
assignment is possible.

In order to assign the objects to clusters, a predefined measure of distance should be
used. Then the nearest distance is defined with respect to that distance measure. Euclidean
distance is a popular choice in the K-means procedure, but the appropriate similarity mea-
sure should be used, as discussed in Section 12.2. In the cases where a more robust centroid
measure is needed, we may use the median. However, adapting median centroid along with
the city-block distance that utilizes the absolute-error criterion in the above algorithm is
called the K-medoids method (see Review problems 12.12 and 12.13 for details).

Example 12.4.1 Consider a two-dimensional data set that consists of seven objects
labeled A − G as shown in Table 12.4.1. We suppose that these seven objects belong to two
distinct clusters (K = 2). Use the K-means method to cluster these seven objects.
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Table 12.4.1 A two-dimensional data set.

Labels A B C D E F G

X 1 2 3 0 2 4 3
Y 1 3 4 1 5 4 2

Solution: Since there are no information available about possible centroids, we split the
data into two arbitrary clusters such that objects ADG and BCEF belong to two initial
clusters. Then, we can calculate the centroids (means) of the clusters as follows:

(XADG, Y ADG) =
(

1 + 0 + 3
3

,
1 + 1 + 2

3

)
= (1.33, 1.33)

and
(XBCEF , Y BCEF ) =

(
2 + 3 + 2 + 4

4
,

3 + 4 + 5 + 4
4

)
= (2.75, 4.00)

These resulting centroids are labeled by symbol (*) in Figure 12.4.1a. Then, we calculate
the Euclidean distance from object A to its current and the opposite cluster centroids.

DA,ADG =
√

(1 − 1.33)2 + (1 − 1.33)2 = 0.47

DA,BCEF =
√

(1 − 2.75)2 + (1 − 4)2 = 3.47

With respect to the above centroids, object A should belong to the current cluster, as
the distance DA,ADG is much smaller than DA,BCEF . However, we still calculate the
distances under the assumption that we move object A to the opposite cluster BCEF.
Thus, we calculate the new cluster centroids of DG and ABCEF due to this hypothetical
assignment.

Thus, we have new clusters DG and ABCEF , and their centroids are

(XDG, Y DG) =
(

0 + 3
2

,
1 + 2

2

)
= (1.5, 1.5)

and

(XABCEF , Y ABCEF ) =
(

1 + 2 + 3 + 2 + 4
5

,
1 + 3 + 4 + 5 + 4

5

)
= (2.4, 3.4)

These centroids (*) are shown in Figure 12.4.1b. Resulting distances from object A to new
centroids (1.5, 1.5) and (2.4, 3.4) are

DA,DG =
√

(1 − 1.5)2 + (1 − 1.5)2 = 0.71

DA,ABCEF =
√

(1 − 2.4)2 + (1 − 3.4)2 = 2.78
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Figure 12.4.1 R output plot of seven two-dimensional objects. The cluster centroids of
each cluster is represented by a “*.” Final two clusters are shown in (d) using symbols ‘◦’
and ‘Δ’.

It is clear from this calculation that the object A should not be moved from its initial
cluster ADG to BCEF , as it is closer to its initial cluster center with distance DA,ADG =
0.47(< DA,DG = 0.71 < DA,ABCEF = 2.78 < DA,BCEF = 3.47).

Now let us consider the object G and its distances with respect to the initial cluster
centroids (1.33, 1.33) and (2.75, 4.00), since we fail to move object A.

DG,ADG =
√

(3 − 1.33)2 + (2 − 1.33)2 = 1.80

DG,BCEF =
√

(3 − 2.75)2 + (2 − 4)2 = 2.02

To recalculate the distances under the assumption that we move object G to opposite
cluster BCEF, let us first update new centroids.

(XAD, Y AD) =
(

1 + 0
2

,
1 + 1

2

)
= (0.50, 1.00)

and

(XBCEFG, Y BCEFG) =
(

2 + 3 + 2 + 4 + 3
5

,
3 + 4 + 5 + 4 + 2

5

)
= (2.80, 3.60)
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These new centroids (*) are plotted in Figure 12.4.1c. The distances with respect to the
new centroids are

DG,AD =
√

(3 − 0.50)2 + (2 − 1.00)2 = 2.69

DG,BCEFG =
√

(3 − 2.80)2 + (2 − 3.60)2 = 1.61

Since the distance from object G to the centroid (XBCEFG, Y BCEFG) = (2.80, 3.60) is
closer than rest of the distances, we should retain object G in its new cluster BCEFG.

We continue to reassign the objects to opposite clusters until no further allocation
is possible. In other words, the cluster centroids must be stable at the final stage of
the K-means algorithm. However, due to growing number of possible object realloca-
tions, we use one of the software discussed in this text to perform the algorithm. In this
example, fortunately, cluster centroids are stable after the above reassignment. So that the
K-means method produces two distinct clusters AD and BCEFG that are shown on the
Figure 12.4.1d and identified via symbols “◦” and “Δ,” respectively. The basic summary
statistics of both the final clusters are tabulated in Table 12.4.2 and further summary
statistics can be calculated using both R and MINITAB software as shown below.

Table 12.4.2 Summary statistics of K-means clusters in Example 12.4.1.

Cluster Members Centroid Within cluster SS

Cluster 1 A,D (0.50, 1.00) (1 − .5)2 + (1 − 1)2 + (0 − .5)2 + (1 − 1)2 = 0.5
Cluster 2 B,C,E, (2.80, 3.60) (2 − 2.8)2 + (3 − 3.6)2 + (3 − 2.8)2 + (4 − 3.6)2

F,G + (2 − 2.8)2 + (5 − 3.6)2 + (4 − 2.8)2 + (4 − 3.6)2

+ (3 − 2.8)2 + (2 − 3.6)2 = 8.0

USING R

To conduct the K-means clustering algorithm in R, we can use the ‘kmeans()’ function as
shown below in the R code.

#Prepare data
X = c(1,2,3,0,2,4,3)
Y = c(1,3,4,1,5,4,2)
data = cbind(X, Y)
row.names(data) = c(“A”,“B”,“C”,“D”,“E”,“F”,“G”)

#To obtain K-means clusters
K.means = kmeans(data, 2)
K.means

# R output
K-means clustering with 2 clusters of sizes 5, 2
Cluster means:
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X Y

1 2.8 3.6
2 0.5 1.0

Clustering vector:

A B C D E F G

2 1 1 2 1 1 1

Within cluster sum of squares by cluster:
[1] 8.0 0.5
(between_SS / total_SS = 66.9 %)

The above R output provides the similar information that we have obtained in manual
calculations summarized in Table 12.4.2. Note that the cluster centroids are simply named
as the cluster means in the above R output. The following R code can be used to visualize
the resulting K-means clusters shown in Figure 12.4.1d.

#To plot above K-means clusters
plot(Y∼X, col = (K.means$cluster+2), pch=c(1,2,2,1,2,2,2), cex=1.5, xlab = “X”, ylab =
“Y”, sub = “(d)”, data=data)
text(Y∼X, labels = row.names(data), pos = c(4,4,4,4,4,3,4))

#To plot the center
points(K.means$centers, col=2, pch = 8, lwd=2)

The results we obtain from the R ‘kmeans()’ function are similar to that we obtained
earlier in manual calculations. Now, we will exhibit MINITAB K-means procedure.

MINITAB

1. Enter the data in columns C1, C2, and C3 of the Worksheet and name them as
Labels, X, and Y, respectively.

2. From the Menu bar, select Stat > Multivariate > Cluster K-Means . . .
3. In the new dialog box appears, enter C2 and C3 in the box under Variables:, enter

2 in the box next to Number of clusters:.
4. Click Storage . . . option and enter C4 in the box next to Cluster member-

ship column: and C5 C6 in the box below Distance between observations and
cluster centroids: in the new dialog box that appears.
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5. Click OK twice. The following results will appear in the session window:

K-means Cluster Analysis: X, Y

Method
Cluster Centroids

Distances Between Cluster Centroids

Final Partition

Number of clusters

Standardized variables

2

No

Number of

observations

Within

cluster

sum of

squares

Average

distance

from

centroid

Maximum

distance

from

centroid

Cluster1

Cluster2

Cluster1

Cluster2

0.0000

3.4713

3.4713

0.0000

2

5

0.500

8.000

0.500

1.187

0.500

1.612

Variable Cluster1

Cluster1 Cluster2

Cluster2

Grand

centroid

X

Y

0.5000

1.0000

2.8000

3.6000

2.1429

2.8571

6. To plot the clusters, we proceed as follows:
7. From the Menu bar select Graph > Scatterplot . . . . This prompts a dialog box to

appear on the screen. In this dialog box, select Scatterplots With Groups and click
OK. In the new dialog box that appears, under the X and Y variables, enter C2 and
C3, respectively. Enter C4 in the box below Categorical variables for grouping
(0-3): and click the Labels . . . option, and in the new dialog box that appears
select Data Labels, and select the Use labels from column: and enter C1. Click
OK twice. A scatter plot with clustered groups will appear.

As we expected, the above MINITAB output (see results obtained in Step 5) provides
two distinct clusters with the cluster centroids located at (0.50, 1.00) and (2.80, 3.60).
Also, it provides some additional summary statistics such as within cluster sum of squares,
average distance from centroids, and distance between cluster centroids. It is clear from the
above MINITAB output that its results are similar to what we observed in both manual
(see Table 12.4.2) and the above R calculations. Also, the MINITAB cluster output plot
of 7 two-dimensional objects shown in Figure 12.4.2 is similar to what we observed in R
cluster output plot shown in Figure 12.4.1d.
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Figure 12.4.2 MINITAB cluster output plot of seven two-dimensional objects.
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12.5 DENSITY-BASED CLUSTERING

In this section, we discuss the density-based clustering algorithm DBSCAN which stands
for density-based spatial clustering of applications with noise. It uses local densities of
the spatial region to form clusters. It tends to separate high-density regions from the
low-density regions while connecting similar high-density regions into clusters based
on their proximities. It defines a cluster as a maximal (or largest possible) set of
density-connected points. This method provides clusters of arbitrary shapes, which is
resistant to outliers.

Before we explain the DBSCAN algorithm, it is important to define its parameters
and some related quantities.

ε-neighborhood: The neighborhood within a radius ε of an object of interest.

N ε(p): A collection of set of objects within ε-neighborhood of an object p

Nε(p) = {q |d(p, q) ≤ ε}

m : Minimum number of objects that are within an ε-neighborhood of an object.

Core object: An object is called a core object if |Nε(p)| ≥ m, where |Nε(p)| indicates
the number of objects in Nε(p). In other words, the core objects contain at least the
predefined minimum number of objects (m) in its ε-neighborhood.

Border object: An object is called a border object if |Nε(p)| < m (i.e. it contains
less than m objects) but it is within the ε-neighborhood of a core object.

Noise object: An object is called a noise object if it is neither core nor border
object.

Directly density-reachable: If an object q belongs to the ε-neighborhood of a core
object p (i.e. q ∈ Nε(p)), then the object q is directly density-reachable from object p.

Density-reachable: An object p is density-reachable from object q with respect to
ε and m if there is a chain of objects p1, . . . , pn,where p1 = q, and pn = p such that
pi+1 is directly density-reachable from pi.

Density-connected: An object p is density-connected to object q with respect to ε
and m, if there is an object r such that both p and q are density-reachable from r
with respect to ε and m.

Density-reachability is a result of a sequence of directly density-reachable objects.
Neither density-reachability nor direct density-reachability is a symmetric property
since no point can be reachable from a noncore point though a noncore point may be
reachable from a core point. However, the density-reachability among core objects shows
symmetry. By the definition, the density-connectivity is symmetric since if object p is
density-connected to object q, then object q is also density-connected to object p.

Example 12.5.1 (Prototype DBSCAN example) This example includes a set of two
dimensional objects shown in Figure 12.5.1. We use these set of objects to exhibit basic
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Figure 12.5.1 DBSCAN process for two-dimensional objects.

terminologies in the DBSCAN algorithm including density-reachability and density con-
nectivity. Let ε = 1 unit and m = 4.

Figure 12.5.1 shows a set of two dimensional objects along with few circular neighbour-
hoods of radius 1 (ε = 1) for few selected objects. As shown in Figure 12.5.1, the object
u is a low-density point as Nε(u) = 1, and it is a noise object as it does not belong to a
neighborhood of any core object. Objects p, q, r, and s are core objects as each contains at
least four neighborhood objects. Object t belongs to the neighborhood of the core object
s, but its neighborhood has only two objects and therefore, it is a border object.

Object t is directly density-reachable from object s but object s is not directly
density-reachable from object t because the object t is not a core object. Object s is
indirectly density-reachable from object p and object p is indirectly density-reachable
from object s. Objects p, r, and t are all density connected. Therefore, the objects p, q, r,
s, and t belong to the same cluster.

DBSCAN algorithm can be summarized as follows:

1. Select an arbitrary point p.
2. Search p’s ε-neighborhood and if Nε(p) ≥ m, then a new cluster is formed with

p as a core object, otherwise p is a border or a noise object.
3. If p is a core object, then collect all density-reachable objects from p to extend

the current cluster.
4. If p is a border object, then it has no density-reachable objects, and therefore

a previously nonvisited new object is selected.
5. The process terminates when no further objects in the database can be added

to any cluster.

A cluster that is produced by a DBSCAN algorithm is the largest possible set of
density-connected objects with respect to density-reachability. Therefore, objects in two
separate clusters are not density reachable, but if they are then those two clusters should
merge into a single cluster, though they have different local densities. Any object that
does not belong to a cluster is considered a noise object.
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DBSCAN method has several advantages. Its algorithm does not require prespecify-
ing the number of clusters. In general, it produces arbitrarily shaped clusters, which are
self-contained. The algorithm identifies noisy objects and therefore it is resistant to out-
liers. There are, however, a few disadvantages of this algorithm. Confusion may occur when
selecting border objects, since such objects could be density-reachable from two separate
clusters, depending on the order of the objects processed. Highly ranging local densities
may cause issues due to difficulty of choosing DBSCAN parameters in such situations.
As in many of the distance-based algorithms, the quality of DBSCAN results is also get
affected by the choice of the distance metric.

Example 12.5.2 We reconsider the face clustering discussed in Example 12.3.4 and
apply the DBSCAN algorithm using R and MINITAB.

USING R

The function ‘dbscan()’ in R can be used to execute the DBSCAN algorithm as shown in
the following R code by setting ε = 0.5 and m = 5.

library(dbscan)
#Import face data as explained in Example 12.3.4 data

#Make the data matrix with required scaling
data = cbind(face[,1], face[,2]/2.5)

#Run ‘dbscan()’ function and plot the results
dbs = dbscan(data, eps = .5, minPts = 5)
plot(data, col = dbs$cluster + 1L, pch = as.integer(dbs$cluster), xlab =“ ”,
ylab =“ ”, main = “ ”)

Figure 12.5.2 shows the results of the DBSCAN algorithm with parameters
ε = 0.5 and m = 5. The results are comparatively better as it accurately identifies two
eyes, nose, and mouth as four distinct clusters. The user-defined outliers are identified
as noisy objects, and a few more bordering observations are classified as outliers near
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Figure 12.5.2 DBSCAN-based clustering results for face clustering data.
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the nose and chin. The long chin breaks into five different groups due to low densities at
both the ends of the chin. It is evident that this method fails to cluster long chain-like
structures accurately in the presence of low-density bordering and noisy points. However,
it is better at distinguishing neighboring large clumps.

MINITAB

DBSCAN option is not available in MINITAB.

12.6 MODEL-BASED CLUSTERING

One disadvantage of linkage-based, Ward’s, K-means, and DBSCAN clustering methods
is that they are mostly heuristic and do not follow any statistical model. Hence, we can-
not explain how the data were generated. The model-based clustering method assumes
data were generated from a certain statistical model, and it uses a mixture of probability
distributions to recover the original model from which data were possibly generated. The
model we estimate from the data defines clusters and assignment of objects to clusters.
Refer to Banfield and Raftery (1993) and Melnykov and Maitra (2010) for more details.

Assume we observe n multivariate observations X = [x1 ,x2 , . . . ,xn]
′, where each

xi has p components. Then the data matrix can be written in the following form.

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x′
1

x′
2
...
x′
i
...

x′
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 x12 · · · x1k · · · x1p

x21 x22 · · · x2k · · · x2p
...

... · · ·
... · · ·

...
xi1 xi2 · · · xik · · · xip
...

... · · ·
... · · ·

...
xn1 xn2 · · · xnk · · · xnp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

n×p

We consider each multivariate observation as a separate object with p measurements.
We consider the ith object xi and assume that the probability of this object belonging
to the kth cluster is πk, with πk ≥ 0 for all k = 1, 2, . . . ,K and

∑K
k=1 πk = 1, where K

is the number of distinct clusters. Thus, we can model xi via a mixture model with
K components. That is, the resulting joint distribution of the xi ’s can be written as a
mixture of K distributions by assuming each cluster generates data from its own component
distribution fk, where k = 1, 2, . . . ,K.

f(xi )=
K∑

k=1

πk fk(xi ), k = 1, 2, . . . ,K (12.6.1)

Observations are more often heterogeneous in nature, and therefore using mixture
models seem to be more attractive. In general, the component distribution may or may
not have the same form. However, multivariate normal distributions are often used as the
common mixture components such that fk(xi ) is the density function of Np(μk ,Σk ). A
mixture distribution for normal mixtures can be written as

f(xi) =
K∑

k=1

πk

1
(2π)p/2|Σk|1/2 e−(x

i
−μ

k
)′Σ−1

k
(x

i
−μ

k
) (12.6.2)
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This assumes that observations from the kth cluster are centered at the mean vector
μk , but that the orientation and size of the cluster depends on the variance-covariance
matrix Σk. Now, due to the bell shape nature of the normal distribution and elliptical
nature of normal contours, this mixture model tends to produce ellipsoidal clusters.

Component estimation of the above mixture distribution in (12.6.2) is complex, though
there are many methods available in the literature. We will discuss the most commonly
used maximum likelihood approach. The resulting multivariate normal likelihood function
for n objects is

L(Θ;X ) =
n∏

i=1

f(xi) =
n∏

i=1

K∑
k=1

πk

1
(2π)p/2|Σk|1/2 e−(x

i
−μ

k
)′Σ−1

k
(x

i
−μ

k
) (12.6.3)

where Θ=(π1, . . . , πK ; μ1 , . . . , μK ; Σ1 , . . . , ΣK ) are the parameters which we esti-
mate in clustering.

The standard maximum likelihood estimation (MLE) method is used to find the esti-
mator Θ̂ of the parameter vector Θ, where Θ̂ = Argmax L(Θ,X ). We note that the
complexity of parameter estimation depends on the nature of the Σk.

The Expectation-Maximization (EM) algorithm is commonly applied in many software
packages to estimate the MLE of Θ. In the cases where the number of clusters is unknown,
the Akaike information criterion (AIC) and Bayesian information criterion (BIC) (see
Akaike, 1973; Schwarz, 1978) are used to compare models with different number of distinct
clusters, while imposing some penalty for number of the model parameters.

After estimating the model parameters of the mixture distribution, we can estimate
the probability of cluster membership of objects. The probability πik of the ith object xi

belongs to the kth cluster given by the Bayes rule is

πik =
π̂ifk(xi |θ̂k)∑K
i=1 π̂ifk(xi |θ̂k)

(12.6.4)

We evaluate this membership probability of a given object xi for all the clusters and assign
it to the highest probable cluster.

Due to the mathematical challenges of executing model-based clustering procedures, it
is required to use software for this purpose. Table 12.6.1 shows commonly used covariance
structures available in the ‘mclust’ package in R. We will illustrate the R procedure for
estimating the appropriate models for a given set of covariance structures.

Table 12.6.1 Covariance structures for model-based clustering.

Covariance structure Interpretation

Σk =λI , λ is a scalar (EII) All the clusters are spherical with same volume

Σk =λk I , λk are scalars (VII) All the clusters are spherical with different volumes

Σk =Σ, for all k (EEE) All the clusters have same shape, orientation, and
volume

Σk =Σk is unique (VVV) Each cluster has different shape orientation, and
volume

Σk = λkΣ (VEE) All the clusters have same shape, orientation, and
different volume
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Example 12.6.1 (Stiffness measurements) In this example, we consider three stiffness
measurements (X1,X2,X3) measured from 75 different boards. Observations for the first 13
boards are shown in Table 12.6.2, and the complete data set is available on the website: www
.wiley.com/ college/ gupta/ statistics2e. Apply the model-based clustering algorithm, with
covariance structures that are shown in Table 12.6.1, and discuss their appropriateness.

Table 12.6.2 Stiffness measurements for first 13 boards.

Board No. 1 2 3 4 5 6 7 8 9 10 11 12 13

X1 1084 1059 1017 956 992 907 1152 1009 1215 863 1035 1057 999
X2 977 1118 973 1053 823 951 1141 892 1029 979 964 870 913
X3 958 845 994 1027 1174 974 1210 1086 939 1064 936 897 1071

USING R

The function ‘Mclust()’ in R can be used to execute the model-based clustering algorithm
that is shown in the following R code. In the ‘Mclust()’ function, we can select the model
covariance structure using the ‘modelNames’ option. The ‘Mclust()’ function outputs many
important summary statistics. For example, we can easily extract the BIC values for model
selection purpose as shown below in the R code.

#Install mclust library
install.packages(“mclust”)
library(mclust)

#Import data: make sure to place your data in a local folder and import.
data = read.table(“C:/Users/.../Table 12.6.2.txt”, header=TRUE)[,-1]

#Spherical clusters, equal volume
mod1 = Mclust(data, modelNames =“EII”); plot(mod1, what = “classification”)
summary(mod1)

#Spherical clusters, unequal volume
mod2 = Mclust(data, modelNames =“VII”); plot(mod2, what = “classification”)

#Ellipsoidal, equal volume, shape, and orientation
mod3 = Mclust(data, modelNames =“EEE”); plot(mod3, what = “classification”)

#Ellipsoidal, varying volume, shape, and orientation
mod4 = Mclust(data, modelNames =“VVV”); plot(mod4, what = “classification”)

#Ellipsoidal, equal shape and same orientation but varying volume
mod5 = Mclust(data, modelNames =“VEE”); plot(mod5, what = “classification”)

#Obtain BIC values
model = Mclust(data) ; model$BIC
plot(model$BIC[,1], main = “ ”, xlab = “Number of Clusters”, ylab = “BIC”,
type = “b”, lwd = 2, pch = 2, col = 1, ylim = c(-2760, -2655))
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points(model$BIC[,2], type = “b”, lwd = 2, pch = 3, col = 2)
points(model$BIC[,7], type = “b”, lwd = 2, pch = 4, col = 3)
points(model$BIC[,14], type = “b”, lwd = 2, pch = 5, col = 4)
points(model$BIC[,9], type = “b”, lwd = 2, pch = 6, col = 5)
legend(“topright”, c(“EII”, “VII”, “EEE”, “VVV”, “VEE”), pch= c(2,3,4,5,6),
col=c(1:5), lwd =2)

Five different covariance structures listed in Table 12.6.1 are used to fit the
model-based clusters for this data set. The estimated BIC values against the number of
clusters in each selected covariance structure (or model) are plotted in Figure 12.6.1.
The BIC method favors the “VEE” covariance structure that assumes Σk =λkΣ with
only two clusters, as it provides the smallest absolute BIC value. It provides ellipsoidal,
equal shape and orientation but different volumed clusters. Two-dimensional projections
of those “VEE” clusters are shown in Figure 12.6.2a. The “EEE” covariance structure
(Σk =Σ) with only two clusters provides the second highest BIC value. As expected,
this method provided clusters with ellipsoidal, equal volume, shape, and orientation (see
Figure 12.6.2b). The “VII” covariance structure (Σk =λk I ) favors three clusters.

It is clear from the Figure 12.6.2 that the variable X2 plays a vital role in differentiating
these clusters as X2 = 1000 may be considered as an approximate boundary for the two
clusters we estimated. The plot of X1 versus X3 seems to cloud the clustering structure
as these variables provide almost no information about the estimated two clusters. A 3D
scatter plot (see Section 11.4) may further validate this finding.
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Figure 12.6.1 BIC values for all five covariance structures in Table 12.6.1 for the data
of Example 12.6.1.
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Figure 12.6.2 Estimated clusters based on the covariance structures (a) “VEE” and
(b) “EEE” in Table 12.6.1, for the data of Example 12.6.1 in Table 12.6.2.
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MINITAB

Model-Based clustering option is not available in MINITAB.

12.7 A CASE STUDY

Case Study (Seeds Data)2 This study focuses on clustering kernels belonging to three
different varieties of wheat: Kama, Rosa and Canadian. Researches randomly selected 70
kernels from each variety for the experiment. A nondestructive and considerably cheaper
soft X-ray imaging technique that produces high-quality visualization was used to detect
the internal kernel structure of wheats. The images were recorded on 13 × 18 cm X-ray
KODAK plates. Studies were conducted using combine harvested wheat grain originating
from experimental fields, explored at the Institute of Agrophysics of the Polish Academy
of Sciences in Lublin. The attribute ‘target’ indicates the wheat variety (0 =Kama,
1 =Rosa, 2 =Canadian). The data set contains following seven continuous attributes
consisting of geometric parameters of wheat kernels. An analyst is interested in clustering
these measured attributes that may uniquely characterize wheat variety.

1. A =area
2. P =perimeter
3. C =compactness = 4 ∗ π ∗ A/P 2

4. LK = length of kernel
5. WK =width of kernel
6. A.Coef = asymmetry coefficient
7. LKG = length of kernel groove

The data reported for this case study are available under case study 12.7.1 on the
book website: www.wiley.com/college/gupta/statistics2e.

(a) Use linkage-based clustering methods to cluster these data.
(b) Use Wards’ and K-means clustering methods to cluster these data.
(c) Use density-based clustering methods to cluster these data.
(d) Use model-based clustering methods to cluster these data.
(e) Compare your results from parts (a)–(d) with that of attribute ‘target’.

2 Source: Charytanowicz et al. (2010). Data available at https://www.kaggle.com/dongeorge/seed-from-uci
and more information can be found at https://archive.ics.uci.edu/ml/datasets/seeds.
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12.8 USING JMP

This section is not included in the book but is available for download from the book
website: www.wiley.com/college/gupta/statistics2e.

Review Practice Problems

1. Consider the following data set and calculate (a), (b), and (c) below:

Items X Y Z W

A 13.2 236 58 21.2
B 10.0 263 48 44.5
C 8.1 294 80 31.0
D 8.8 190 50 19.5
E 9.0 276 91 40.6
F 7.9 204 78 38.7
G 3.3 110 77 11.1
H 5.9 238 72 15.8

(a) Euclidean distance between items A and B?
(b) The city-block distance between items A and B?
(c) The cosine correlation coefficient between items A and B?

2. For the data in Review Problem 1,
(a) Compute the Euclidean distance matrix for all the items.
(b) Graph the distance matrix using an appropriate graphing tool.
(c) Describe the main features of the distance matrix.

3. For the data in Review Problem 1,
(a) Compute the city-block distance matrix for all the items.
(b) Graph the distance matrix using an appropriate graphing tool.
(c) Does the city-block distance matrix convey the same information as of the

Euclidean distance matrix?

4. Consider the following data set and calculate (a), (b), and (c) below:

A 1 0 1 1 0
B 1 1 0 1 0
C 0 0 1 1 1
D 0 1 0 1 0
E 1 0 1 0 1

(a) What are the SMCs for all the objects?
(b) What are the Jaccard coefficients for all the objects?
(c) Compare your results in part (a) and part (b).
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5. Consider the following patient data set. As in Example 12.2.2, introduce appropriate
binary variables and calculate the Match-Mismatch coefficient for all the patients.
Explain your results.

Patient ID Gender Age (yr) Blood
type

Blood pressure
(mm Hg)

Glucose
level (mg/dl)

P011 F 37 A 120 111
P012 F 61 B 133 122
P013 M 55 A 124 99
P014 M 53 B 112 108
P015 F 58 B 120 109

6. Consider the dichotomous coded variables in Review Problem 5.
(a) Obtain the city-block distances between all the patients.
(b) Graph the distance matrix using an appropriate graphing tool.
(c) How do you compare your results with results from Review Problem 5?

7. Consider the following GPA data set for 10 selected freshman from a certain university.
The data consist of students from high school and current college GPA values.

ID High school GPA Current college GPA

S1 3.0 3.2
S2 4.0 3.9
S3 2.8 3.1
S4 3.1 3.2
S5 3.7 3.1
S6 3.8 2.9
S7 3.6 3.0
S8 2.9 3.5
S9 3.1 3.9
S10 3.2 3.8

(a) Calculate the Euclidean distance between all the students with regards to the GPA
values.

(b) Based on part (a), which students seem to be statistically closer and distant than
the rest of the students?

8. Refer to the data in Review Problem 7.
(a) Use the single linkage method to cluster students based on their high school and

college GPA values. Report your dendrogram.
(b) Using part (a), identify the resulting clusters at distance = 0.4.
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9. Refer to the data in Review Problem 7.
(a) Use the complete linkage method to cluster students based on their high school

and college GPA values. Report your dendrogram.
(b) Using part (a), identify the resulting clusters at distance = 0.5.

10. Refer to the data in Review Problem 7.
(a) Use the average linkage method to cluster students based on their high school and

college GPA values. Report your dendrogram.
(b) Using part (a), identify the resulting clusters at distance = 0.5.

11. Refer to the data in Review Problem 7.
(a) Use the K-means method to cluster students into four distinct clusters. Report

your resulting clusters and their centroids.
(b) Identify the common features of the resulting clusters in part (a).

12. The K-medoids algorithm can also perform effective clustering. That is, in the
K-means algorithm, we replace mean centroid with median centroid and perform rest
of the calculations accordingly. Illustrate the strength and weakness of the K-means
in comparison with the K-medoids algorithm (see Section 12.4.1).

13. Refer to the data in Review Problem 7 and the K-mediods discussion in Review Prob-
lem 12.
(a) Use the K-mediods method to cluster students into four distinct clusters using the

city-block distance. Report your cluster results. (Hint: you may use ‘kmed’ library
in R for this purpose).

(b) Compare your results in (a) with that of the K-means results.

14. Refer to the data in Review Problem 7. Use the Density-Based method to cluster
students into distinct clusters (Hint: use eps = 0.3 and minPts = 2 in your DBSCAN
algorithm).

15. Consider the following data set.

Object A B C D E F G H I J

X 0 1 2 2 4 5 6 6 6 5
Y 1 0 0 6 8 6 2 1 1 8

(a) Use the K-means algorithm to split the above 10 objects into three distinct clusters
by considering objects A, B, and C as their initial cluster centroids.

(b) Using part (a), plot the resulting clusters after each iteration along with their
centroids.

16. Consider the dichotomous coded variables in Review Problem 5.
(a) Use the single, complete, and the average linkage methods to construct the den-

drograms.
(b) Compare your results in part (a).
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17. The following data contains US arrest data published in McNeil (1977). The table
shows arrests per 100,000 residents for “assault,” “murder,” and “rape” in each of the
50 US states in 1973. The variable “UP” indicates the percent of the urban population
living in urban areas.

State Murder Assault UP Rape State Murder Assualt UP Rape

Alabama 13.2 236 58 21.2 Montana 6.0 109 53 16.4
Alaska 10.0 263 48 44.5 Nebraska 4.3 102 62 16.5
Arizona 8.1 294 80 31.0 Nevada 12.2 252 81 46.0
Arkansas 8.8 190 50 19.5 New Hampshire 2.1 57 56 9.5
California 9.0 276 91 40.6 New Jersey 7.4 159 89 18.8
Colorado 7.9 204 78 38.7 New Mexico 11.4 285 70 32.1
Connecticut 3.3 110 77 11.1 New York 11.1 254 86 26.1
Delaware 5.9 238 72 15.8 North Carolina 13.0 337 45 16.1
Florida 15.4 335 80 31.9 North Dakota 0.8 45 44 7.3
Georgia 17.4 211 60 25.8 Ohio 7.3 120 75 21.4
Hawaii 5.3 46 83 20.2 Oklahoma 6.6 151 68 20.0
Idaho 2.6 120 54 14.2 Oregon 4.9 159 67 29.3
Illinois 10.4 249 83 24.0 Pennsylvania 6.3 106 72 14.9
Indiana 7.2 113 65 21.0 Rhode Island 3.4 174 87 8.3
Iowa 2.2 56 57 11.3 South Carolina 14.4 279 48 22.5
Kansas 6.0 115 66 18.0 South Dakota 3.8 86 45 12.8
Kentucky 9.7 109 52 16.3 Tennessee 13.2 188 59 26.9
Louisiana 15.4 249 66 22.2 Texas 12.7 201 80 25.5
Maine 2.1 83 51 7.8 Utah 3.2 120 80 22.9
Maryland 11.3 300 67 27.8 Vermont 2.2 48 32 11.2
Massachusetts 4.4 149 85 16.3 Virginia 8.5 156 63 20.7
Michigan 12.1 255 74 35.1 Washington 4.0 145 73 26.2
Minnesota 2.7 72 66 14.9 West Virginia 5.7 81 39 9.3
Mississippi 16.1 259 44 17.1 Wisconsin 2.6 53 66 10.8
Missouri 9.0 178 70 28.2 Wyoming 6.8 161 60 15.6

(a) Use this data to cluster US states using the single, complete, and the average
linkage methods.

(b) Use this data to cluster US states using the Ward’s method.

18. Refer to the data in Review Problem 17. Use the K-means method to cluster US states
into six distinct clusters.

19. Refer to the data in Review Problem 17. Use the Density-Based method to cluster US
states (Hint: use eps = 20 and minPts = 3 in your DBSCAN algorithm).
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20. Refer to the data in Review Problem 17.
(a) Use the BIC option in ‘mclust’ package in R to select the appropriate number of

model-based clusters and the covariance structure for this data. Note that by the
default ‘Mclust()’ function produces 14 different models.

(b) Explain basic features of the structure you selected in part (a).
(c) Plot resulting clusters against the crime types and explain any interesting trends

you see in those clusters.

21. Refer to the data in “Review Problem 21” on the website: www.wiley.com/college/
gupta/statistics2e.
(a) Using the covariance structures listed in Table 12.6.1 select the appropriate number

of clusters for this data.
(b) Based on the BIC values which covariance structure seems reasonable for this

data?



Chapter 13

ANALYSIS OF CATEGORICAL
DATA

The focus of this chapter is on the development of chi-square
goodness-of-fit tests used as nonparametric procedures.

Topics Covered

• Chi-square goodness of fit tests to determine if the sample data come from some specified
probability model.

• The chi-square test of a hypothesis that the two factors cross-classifying a sample (count
or frequency) data are independent.

• Use of 2× 2 and r× s contingency tables to test a hypothesis that the populations under
investigation are homogeneous with respect to certain criteria.

Learning Outcomes

After studying this chapter, the reader will be able to

• Use the chi-square goodness of fit test to evaluate certain distributional assumptions.
• Test whether or not two classifications of a population are independent.
• Use contingency tables to test whether populations are homogeneous with respect to

some characteristics of interest.

13.1 INTRODUCTION

Often data collected by an investigator through experimentation, observation, or a sam-
ple survey are classified into various categories, and frequency counts of observations in

Statistics and Probability with Applications for Engineers and Scientists using MINITAB, R and JMP,
Second Edition. Bhisham C. Gupta, Irwin Guttman, and Kalanka P. Jayalath.
c© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/college/gupta/statistics2e
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each category are recorded. For example, a manager of a manufacturing company may
be interested in finding the number of variously sized rods available in stock or the
number of defective parts produced during different work shifts. A sociologist may be
interested in finding the number of persons of different religious faiths, different political
party affiliations, different races, or different income groups within a large metropolitan
area. Sometimes quantitative data can also be classified into different categories so that
the observed data are also categorical data. For example, a person may be classified as
overweight, normal weight, or underweight, or a person’s number of years of schooling may
be classified as under 10 years, 10–12 years, 12–16 years, or over 16 years. In this chapter,
we discuss the chi-square tests used to analyze categorical data.

13.2 THE CHI-SQUARE GOODNESS-OF-FIT
TEST

Goodness-of-fit tests arise when testing certain hypotheses on the basis of a sample that
consists of n independent observations from a given population. The measurement scale of
these observations is at least of a nominal type (see Chapter 2). For example, the observa-
tions may be classified into k categories, so that each observation belongs to one and only
one category and no observation is left out. Then, the data can be presented in the form of
a table (see Table 13.2.1) consisting of k cells in which each cell corresponds to one of the
k categories. The number of observations in each cell is called the observed cell frequency.
This scenario can also be looked upon as an experiment consisting of n independent trials
such that each trial has k possible outcomes and each observation represents an outcome
of a trial.

Table 13.2.1 Results of n observations classified into k categories.

Outcomes (categories) A1 A2 . . . Ak

Observed frequency f1 f2 . . . fk
Theoretical frequency (nθ1) (nθ2) . . . (nθk)

Suppose that we want to compare the observed cell frequencies with their expected
(or theoretical) frequencies. In general, we let A1, A2, . . . , Ak be k mutually exclusive and
exhaustive outcomes or categories, and let the probabilities of these outcomes (i.e. the
probabilities of an observation belonging to categories Ai, i = 1, 2, . . . , k) be θ1, θ2, . . ., θk,
respectively, where θ1, θ2, . . ., θk are all positive and θ1 + · · · + θk = 1.

Suppose that n independent trials of the experiment are made, and let f1, f2, . . . , fk

be the number of trials that result in outcomes A1, A2, . . . , Ak, respectively. The numbers
nθ1, nθ2, . . . , nθk in parentheses are the expected number of trials that result in outcomes
A1, A2, . . . , Ak, respectively. Then f1, f2, . . . , fk are random variables with the multinomial
distribution (see Section 4.9)

n!
f1!f2! . . . !fk!

θf1
1 θf2

2 · · · θfk

k (13.2.1)

where
∑k

i=1 fi = n. The expectation of fi is E(fi) = nθi, i = 1, 2, . . . , k.
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If we want to test the null hypothesis H0 that our sample of size n comes from a
multinomial population with probabilities P (Ai) = θi, i = 1, 2, . . . , k, where θ1, θ2, . . ., θk

are known, we use the chi-square test statistic, denoted by χ2 and defined as

χ2 =
k∑

i=1

(fi − nθi)
2

nθi

(13.2.2)

If the observed values of fi are all exactly equal to nθi, we have a “perfect fit” and χ2 = 0.
Thus, large values of χ2 will tend to discredit the null hypothesis, and smaller values of χ2

will tend to confirm the hypothesis that the observed frequencies fi are not significantly
different from the expected frequencies nθi, i = 1, 2, . . . , k.

For moderately large values of n, the distribution of the test statistic given in (13.2.2) is
approximately the chi-square distribution having k − 1 degrees of freedom. The degrees of
freedom used are k − 1, not k. This is because the observed frequencies fi, 1 = 1, 2, . . . , k,
must obey one constraint (or condition), namely

∑k
i=1 fi = n the sample size. Thus, the

multinomial model (13.2.1) is a probability function of k − 1 variables, say f1, . . . , fk−1,

with fk given by fk = n −
∑k−1

i=1 fi. In practice, we usually require that the expected fre-
quency nθi ≥ 5 for each i. (The reader should be aware that there is no one opinion about
the minimum number of expected frequencies. For example the minimum expected fre-
quency in each cell proposed by Cochran, (1952), is 1.) If there is difficulty in meeting this
criterion of minimum expected frequencies, we may combine two or more of the outcomes,
say Ai1

, . . . , Air
, with the smallest probabilities, say θi1

, . . . , θir
, into a single outcome until

the condition n(θi1
+ · · · + θir

) ≥ 5 is met. We illustrate this procedure in Examples 13.2.1
and 13.2.2.

If we test the hypothesis at the α level of significance, the observed value of χ2 is
considered to be significant at this level if χ2 > χ2

k−1; α; that is if we have that χ2 >
χ2

k−1;α, we reject the hypothesis that the observations come from a distribution for which
P (Ai) = θi, i=1, 2, . . . , k. Alternatively, we may use the p-value, P (χ2

k−1 > obs χ2), and
if the p-value is less than or equal to α, we reject the hypothesis.

If the θ1, θ2, . . ., θk are unknown but expressible in terms of c parameters that have
to be estimated from f1, . . . , fk, then the resulting χ2 statistic has approximately the
chi-square distribution with (k − c − 1) degrees of freedom. Of course, in this case, the
observed value of χ2 is considered to be significant if it exceeds χ2

k−c−1; α.

Example 13.2.1 (Icosahedral die) An icosahedral die has two sides marked 1, two sides
marked 2, . . . , and two sides marked 0, which will be designated as 10, so an icosahedral
die has 20 faces with each digit on two faces. Test whether the die is behaving as a “true”
or “fair” die on the basis of the 200 throws whose outcomes are tabulated in Table 13.2.2.

Solution: If the die is true, then the probability of obtaining any of the numbers 1–10
in a single toss is 2/20 = 1/10, and we would then expect that each number turns up
200× 1/10 = 20 times in 200 throws. The question we ask, then, is whether the set of
observed fi is compatible with the null hypothesis that the die is true, that is whether θi

= 1/10 for each i. We note that nθi ≥ 5 for each i and apply the χ2 test. In this example,



13.2 The Chi-Square Goodness-of-Fit Test 561

Table 13.2.2 Results and analysis of 200 throws of an icosahedral die.

xi fi nθi (fi − nθi)
2 (fi − nθi)

2

nθi

1 17 20 9 0.45
2 19 20 1 0.05
3 26 20 36 1.80
4 18 20 4 0.20
5 16 20 16 0.80
6 23 20 9 0.45
7 21 20 1 0.05
8 24 20 16 0.80
9 20 20 0 0.00

10 16 20 16 0.80

200 200 5.40

k = 10 and, from Table 13.2.2, we obtain

10∑
i=1

(fi − nθi)
2

nθi

= 5.40

Consulting Table A.4 and choosing α = 0.05, we find that χ2
9;.05 = 16.92. Since the observed

value of χ2 is 5.40, which is less than 16.92, we do not reject the hypothesis that the die
is true, accepting θi = 1/10 for each i = 1, . . . , 10; to put it another way, we can say that
the results of the 200 throws do not contradict the hypothesis of a true die at the 5% level
of significance.

Example 13.2.2 (Alpha particles emitted from uranium) It is believed that when a
certain type of uranium is placed in a radioactive counter for a given interval of time, the
number X of α-particles emitted during the interval behaves like a random variable having
the Poisson distribution, that is,

P (X = x) = p(x) =
e−λλx

x!
, x = 0, 1, 2, . . . (13.2.3)

where λ is an unknown parameter.
In an experiment, the number of emissions from a piece of uranium is determined for

each of 100 time intervals of equal length, with the results shown in Table 13.2.3. We want
to test a hypothesis that the data behave as a sample from a population having the Poisson
distribution.

Solution: Since λ is unknown, it must be estimated. With the use of the method of
maximum likelihood, it is found that the “best” estimator for λ is the sample average X̄
(see Section 8.2). From Table 13.2.3, we find X̄ = 4.2 (the average number of emissions
per time interval). Hence, if X has a Poisson distribution, we estimate p(x) as follows:

p(x) = (e−4.2(4.2)x)/x!
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Table 13.2.3 Results of α emission counting experiment on uranium.

α-Particles Observed time Expected time
emitted, xi intervals, fi intervals xifi

0 1 1.5 0
1 5 6.3 5
2 16 13.2 32
3 17 18.5 51
4 26 19.4 104
5 11 16.3 55
6 9 11.4 54
7 9 6.9 63
8 2 3.6 16
9 1 1.7 9

10 2 0.7 20
11 1 0.4 11

100 99.9 420

Table 13.2.4 Results of Table 13.2.3 after grouping some categories.

Observed time Number (estimated)
intervals, fi expected, nθi (fi − nθi)

2 (fi − nθi)
2

nθi

6 7.8 3.24 0.415
16 13.2 7.84 0.594
17 18.5 2.25 0.122
26 19.4 43.56 2.245
11 16.3 28.09 1.723
9 11.4 5.76 0.505
9 6.9 4.41 0.639
6 6.4 0.16 0.025

6.268

We estimate that np(x) = 100(e−4.2(4.2)x/x!) time intervals will emit X α-particles, where
x = 0, 1, 2, . . . , as shown in column 3 of Table 13.2.3. Note that several of the expected
frequencies are less than 5. We proceed by grouping the adjacent classes until the estimated
“expected frequencies” are greater than or equal to 5. For example, we group the first with
the second, group the last four, and apply the χ2 test to the resulting data, as seen in
Table 13.2.4.

As shown in Table 13.2.4, the chi-square test is applied to k = 8 classes. Furthermore,
the expected frequencies are calculated by using estimates of nθ1, nθ2, . . ., nθ8, where each
θi is computed from the Poisson distribution (13.2.3) after estimating the single parameter
λ. Hence, the number of degrees of freedom involved in applying the chi-square test is
(8 − 1 − 1) = 6 because k = 8, c = 1. In fact, there are two constraints on the fi, that
is,

∑
fi = n and

∑
fixi/n = λ̂, accounting for the loss of c + 1 = 1 + 1 = 2 degrees of

freedom, so that 8− 2 = 6 is used for the degrees of freedom.
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The upper 5% significance point of χ2
6 is 12.59 and the observed χ2

6 = 6.268. Therefore,
we do not reject the hypothesis that the data behave as a sample coming from a Poisson
distribution, and estimating the mean of the distribution as 4.2.

We illustrate the use of MINITAB with the following example.

Example 13.2.3 (Patients admitted in a hospital) The following data show the number
of patients admitted in a hospital during intervals of one-hour over a period of five days
(5 × 24 = 120 one-hour intervals).

Number of patients: 0 1 2 3 4 5 6 7 or more
Frequency: 6 20 25 24 20 10 5 10

Test at the 5% level of significance that the data come from the Poisson distribution.

Solution:

MINITAB

1. Enter the data in columns C1 (number of patients) and C2 (frequency).
2. From the Menu bar select Stat > Basic Statistics > Goodness-of-fit Test for

Poisson.
3. Enter C1 in the box next to Variables and C2 in the box next to Frequency

variable.
4. Select any desired options: Graph and Results, and click OK. The following

MINITAB output appears in the Session window.

Observed and Expected Counts for Number of patients 
Number of

patients

Poisson

Probability

Observed

Count

Expected

Count

Contribution

to Chi-Square

0 0.045049   6   5.4059  0.06529

1 0.139653 20 16.7583  0.62707

2 0.216461 25 25.9754  0.03662

3 0223677 24 26.8412  0.30075

4 0.173350 20 20.8019  0.03092

5 0.107477 10 12.8972  0.65082

6 0.055530   5   6.6636  0.41531

> =7 0.038804 10   4.6565  6.13184

1 (12.50%) of the expected counts are less than 5.

Chi-Square Test
Null hypothesis

Alternative hypothesis

DF

6 8.25862 0.220

Chi-Square P-Value

H0: Data follow a poisson distribution

H1: Data do not follow a poisson distribution
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Since the p-value is 0.22, (see the above MINITAB output) which is greater than the
0.05 the level of significance, we do not reject the null hypothesis. (Note: The p-value here
is P (χ2

6 > 8.25862) = 0.220.)

USING R

The following manual R code can be used to conduct the chi-squared goodness of fit test
for Poisson data.

#Assign data
x = c(0, 1, 2, 3, 4, 5, 6 , 7)
f = c(6, 20, 25, 24, 20, 10, 5, 10)

#Estimate λ̂

lambda = sum(f*x)/sum(f)

#Calculate expected counts
expected = sum(f)*dpois(x[1:7],lambda)
expected[8] = sum(f)*(1-ppois(x[7],lambda))

#chi.squared contributions
chi.squared = (f - expected)2/expected

#Observed and Expected counts and contribution to chi-square
goodness.of.fit = cbind(x, f, expected)
colnames(goodness.of.fit) = c(‘No. of Patients’, ‘Frequency’, ‘Expected’, ‘chi.squared’)
goodness.of.fit # This will produce a table as in above MINITAB Step 4.

#Test statistic and p-value
chi.squared.statistic = sum(chi.squared)
chi.squared.statistic #R output
[1] 8.258618

p. value = pchisq(chi.squared.statistic, length(f)-2, lower.tail = F)
p. value #R output
[1] 0.219762

Example 13.2.4 (Diastolic blood pressures) The diastolic blood pressure of a random
sample of 100 male adults between the age of 30 and 35 years is measured. The data
are presented in the form of a frequency distribution table in Table 13.2.5. We want to
verify that these data come from a normal population with mean μ and variance σ2. Use
α = 0.01.

Solution: Here we test the hypothesis:

H0: The sample comes from a normal population
H1: The sample does not come from a normal population

We apply the chi-square test (13.2.2) to examine the hypothesis that the frequencies in
Table 13.2.5 behave as if they come from a normal distribution.

Since the mean μ and variance σ are unknown, they must be estimated. Using the
results of Section 2.7 for the mean and the variance of grouped data, we have

X̄ = 83.10, S = 5.698



13.2 The Chi-Square Goodness-of-Fit Test 565

Table 13.2.5 Frequency distribution of diastolic blood pressures of 100 males.

Observed Expected
Class Class z-values frequencies (fi) Probabilities (θi) frequencies n θi

(−∞− 70) <−2.30 0 0.0107 1.07
[70 − 75) −2.30,−1.42 10 0.0671 6.71
[75 − 80) −1.42,−0.54 15 0.2168 21.68
[80 − 85) −0.54, 0.33 40 0.3347 33.47
[85 − 90) 0.33, 1.21 25 0.2576 25.76
[90 − 95) 1.21, 2.09 8 0.0948 9.48
[95 − 100) 2.09, 2.97 2 0.0172 1.72
[100 −∞) > 2.97 0 0.0011 0.11

Total 100 1.00 100

which we use as estimates of population mean μ and standard deviation σ,
respectively.

Next, we test the hypothesis H0, which says that the sample comes from a normal
population. We approximate the normal distribution by the distribution N(X̄, S2). In
this example n is large (n = 100), so we use the N(83.10, (5.698)2) distribution. We
then calculate z = (Class boundary − 83.10)/5.698 for the class z-values. For example (see
columns 1 and 2 of Table 13.2.5), a class boundary 80 has z-value (80 − 83.10)/5.698 =
−0.54.

Hence, to estimate the probability θi of an observation falling in a class, we proceed
by letting X be distributed as N(83.10, (5.698)2). For example θ̂3 = P(X falls in the class
[75-80)), is given by

P (75 ≤ X < 80) = P

(
75 − 83.10

5.698
≤ Z ≤ 80 − 83.10

5.698

)
= P (−1.42 ≤ Z ≤ −0.54)

or θ̂3 = Φ(−0.54) − Φ(−1.42) = 0.2946 − 0.0778 = 0.2168. Thus we estimate the expected
frequency of the third class to be approximately nθ̂3 = 100(0.2168) = 21.68.

We note that we have imposed three constraints on the sample data:∑
fi = n, and estimating the population mean and standard deviation by

∑
fiXi/

n = X̄,
√∑

fi(Xi − X̄)2/(n − 1) = S, respectively, so we lose three degrees of freedom,
ultimately accounting for the degrees of freedom used in Table 13.2.6. Columns 4 and 5
of Table 13.2.5 were obtained under the null hypothesis of normality. Since several of the
expected frequencies in Table 13.2.5 are less than 5, we proceed by grouping the classes
until all the “expected frequencies” are greater than or equal to 5. This grouping gives
rise to the frequency table in Table 13.2.6.

In the present table, Table 13.2.6, k = 5 and c = 2 since both μ and σ are estimated,
and hence, as previously observed, the number of degrees of freedom is 5 − 2 − 1 = 2.
The observed value of χ2 is 4.1398, which is less than the upper 5% point χ2

2,.05 = 5.991.
Therefore, at the 5% level of significance, we do not reject the hypothesis that the sample,
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Table 13.2.6 Results after grouping in Table 13.2.5.

Observed
frequency fi

Expected
frequency nθi

(fi − nθi)
2

nθi

10 7.78 0.6335
15 21.68 2.0582
40 33.47 1.2740
25 25.76 0.0224
10 11.31 0.1517

Total 4.1398

which produced the frequencies in column 3 of Table 13.2.5, behaves as frequencies coming
from a normal distribution.

PRACTICE PROBLEMS FOR SECTION 13.2

1. The table below gives the month of birth of a sample of 756 artists. Test, at the 5%
level of significance, the null hypothesis that there is no seasonal variation in the
months of the year in which artists are born.

Birth month Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec Total
Frequency 68 78 67 60 61 51 50 60 67 61 73 60 756

2. An engineering society is interested in finding if males and females have the same
interest in graduate work in engineering. The society surveyed 100 graduate pro-
grams in engineering each of which had admitted seven PhD students. The data
below give the distribution of males and females among those students who were
admitted to the 100 engineering programs. Test at the 5% level of significance the
hypothesis that the males and females have the same interest in graduate work in
engineering.

Number of males 7 6 5 4 3 2 1 0
Number of females 0 1 2 3 4 5 6 7
Number of programs 24 20 16 12 10 8 8 2

3. The Occupational Safety and Health Administration revealed the data below on
safety violations per week by a manufacturing company over a period of 80 weeks.
Fit a Poisson distribution to these data and test the null hypothesis at the 1% level
of significance that the data behave like a sample from a Poisson population.

Number of violations 0 1 2 3 4 5
Number of weeks 25 15 8 14 7 11
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4. Fit a normal distribution to the data of Problem 22 in Review Practice Problems
of Chapter 2 and test the null hypothesis at 5% level of significance that the data
behave like a sample from a normal population. The data of Problem 22 is repro-
duced below. Find the observed level of significance.

Age [35-40) [40-45) [45-50) [50-55) [55-60) [60-65)
Frequency 60 75 68 72 90 55

5. It is believed that when a certain type of uranium is placed in a radioactive counter
for a given interval of time, the number X of gamma particles emitted during the
interval behaves as a random variable having the Poisson distribution. In an exper-
iment, the number of emissions from a piece of uranium was obtained for each
of 50 intervals of equal length with the results shown below. Use the chi-square
goodness-of-fit test to test the null hypothesis at the 5% level of significance that
the data behave like a sample from a Poisson population.

Number of gamma particles 0 1 2 3 4 5 6
Observed time intervals 2 3 10 12 14 5 4

6. In 100 throws of a single die, the data obtained are shown below. Test at the 5%
level of significance the null hypothesis that the die is a fair die.

Number of points 1 2 3 4 5 6
Number of throws 10 25 20 16 19 10

7. It is believed that the number of cars passing through a toll booth in a given interval
of time is a random variable having Poisson distribution with unknown parameter λ.
In an experiment, the number of cars passing through the toll booth is determined
for each of 100 time intervals of equal length, with the results shown below. Test the
hypothesis that the data behave like a sample from a population having the Poisson
distribution. Use α = 0.05.

Number of cars 0 1 2 3 4 5 6 7 8 9 10
Frequency 5 7 8 10 12 10 8 11 14 10 5

8. The following data give the grades in a required engineering course for a given
semester. Test at the 5% level of significance that the data follow a multinomial
distribution, where θ1 = 0.22, θ2 = 0.28, θ3 = 0.30, θ4 = 0.08, θ5 = 0.07, θ6 = 0.05.
Use α = 0.05.

Grade A B C D F Incomplete
Frequency 20 30 25 10 12 3
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9. The following data give the scores made by a basketball player in 40 consecu-
tive games. Test at the 1% level of significance that these data follow a normal
distribution.

34 36 34 34 36 30 31 35 31 36 34 35 36 25 36 25 30 33 27 36
31 26 24 25 33 36 33 34 35 26 25 33 29 27 33 31 33 24 35 25

10. The data below give the number of flights arriving late at a regional airport during
the last 10 weeks. Test the hypothesis, at the 5% level of significance, that the
number of flights arriving late is the same for each of the past 10 weeks.

Week 1 2 3 4 5 6 7 8 9 10
Frequency 12 8 14 16 8 7 12 12 16 15

13.3 CONTINGENCY TABLES

13.3.1 The 2 × 2 Case with Known Parameters
Suppose that the outcome of each trial in an experiment can be classified into one and
only one of the four mutually exclusive and exhaustive classes A ∩ B, A ∩ B̄, Ā ∩ B, Ā ∩
B̄ with probabilities θ1τ1, θ1τ2, θ2τ1, θ2τ2, respectively, where θ1, θ2, τ1, τ2 are all posi-
tive, θ1 + θ2 = 1, and τ1 + τ2 = 1. This means that factors A and B are independent and
that P (A) = θ1, P (Ā) = θ2, P (B) = τ1, P (B̄) = τ2. These four classes, A ∩ B, A ∩ B̄, Ā ∩
B, Ā ∩ B̄, and their probabilities under independence of A and B can be arranged as
shown in Table 13.3.1.

Table 13.3.1 Classes and their probabilities in a 2× 2
contingency table in which rows and columns are
independent.

B B̄

A θ1τ1 θ1τ2 θ1

Ā θ2τ1 θ2τ2 θ2

τ1 τ2 1

Now suppose that n independent trials are performed and that f11 trials result in class
A ∩ B, f12 in A ∩ B̄, f21 in Ā ∩ B, and f22 in Ā ∩ B̄ so that f11 + f12 + f21 + f22 = n. The
experimental results can be arranged as shown in Table 13.3.2, where the marginal totals
f1·, f2·, f·1, f·2 are defined as follows:

f1· = f11 + f12, f2· = f21 + f22, f·1 = f11 + f21, f·2 = f12 + f22

Note that f1· + f2· = n, f·1 + f·2 = n.
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Table 13.3.2 Classes and their frequencies in n
independent trials of a 2× 2 experiment.

B B̄

A f11 f12 f1·
Ā f21 f22 f2·

f·1 f·2 n

Under the assumption of independence of the A and B factors, the frequencies
f11, f12, f21, f22 are random variables having the multinomial distribution

n!
f11!f12!f21!f22!

(θ1τ1)
f11 (θ1τ2)

f12 (θ2τ1)
f21 (θ2τ2)

f22 (13.3.1)

where 0 ≤ fij ≤ n and
∑2

i=1
∑2

j=1 fij = n.
It is easy to see that under the assumption of the independence of factors A and B, any

one of the fij has the binomial distribution of size n and parameter θiτj . It then follows
that E(fij) = nθiτj , or n times the entries of Table 13.3.1.

If we know the values of θ1, θ2, τ1, τ2, we can test the assumption of independence of
the A and B factors using the test statistic given below in (13.3.2). We note that k = 4
(the four categories are A ∩ B, A ∩ B̄, Ā ∩ B, and Ā ∩ B̄), and that there is one constraint
on the fij ’s, namely

∑
i

∑
jfij = n.

Further, in the discussion above, the experiment factors A and B may be looked upon
as two criteria cross-classifying the observations in a sample so that each observation in
the sample pertains to one and only one category of each criterion. For example, the
two criteria may be income (A) and gender (B), which may be defined as A ≤ 50,000,
Ā > 50,000 with B a male and B̄ a female. Thus, we want to test the following hypothesis:

H0 : The two criteria of cross-classifications are independent H1 : The two criteria of
cross-classifications are not independent

When the null hypothesis is true, we have the following result:

Theorem 13.3.1 If f11, f12, f21, f22 are the observed frequencies shown in Table
13.3.2, then for large n, the quantity

χ2 =
2∑

i=1

2∑
j=1

(fij − nθiτj)
2

nθiτj

(13.3.2)

has, approximately, the chi-square distribution with three degrees of freedom.

Hence, if the observed value of χ2 determined by (13.3.2) exceeds χ2
3,α, we would

reject the hypothesis that the A and B classifications are independent at the 100α% level
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Table 13.3.3 Data on two strains of Drosophila (n = 600).

B(2/3) B̄(1/3)

A(3/4) (300) (150)
313 135

Ā(1/4) (100) (50)
93 59

of significance, and the sample evidence, then, would support the assertion that there is
a significant degree of dependence between the A and B classifications at the 100α% level
of significance.

Example 13.3.1 (Cross breeding) A cross-breeding experiment with two strains of
Drosophila is conducted to determine whether or not eye color, say A, and wing type,
say B, are independent characteristics. It is known that the probability of progeny of
the strains of Drosophila having dull-colored eyes A is 3/4, while the probability of
progeny of these two strains having type B wing is 2/3. Six hundred progeny (n = 600)
are selected at random, and each are classified as to their eye color and wing type. The
resulting frequencies fij are given in Table 13.3.3. The expected number for each of the
four categories, that is, E(fij), under the assumption of independence, are the entries
in Table 13.3.3 in parentheses. Does the sample evidence support the assumption of
independence at the 5% level?

Solution: The observed value of

χ2
3 =

2∑
i=1

2∑
j=1

(fij − nθiτj)
2

nθiτj

with n = 600; θ1 = 3/4, θ2 = 1/4, τ1 = 2/3, τ2 = 1/3, is given by

χ2
3 =

(313 − 300)2

300
+

(135 − 150)2

150
+

(93 − 100)2

100
+

(59 − 50)2

50
= 0.56333 + 1.50000 + 0.49000 + 1.62000
= 4.17333

The observed value of χ2 is 4.17333, which is less than the upper 5% point χ2
3;0.05 = 7.8147.

Therefore, at the 5% level of significance, we do not reject the hypothesis of independence
of the factors of eye color and type of wing.

13.3.2 The 2 × 2 Case with Unknown Parameters
Consider, again, the experimental situation of Section 13.3.1 but with θ1, θ2, τ1, τ2 not
known. These values must be estimated from the experimental results summarized in
Table 13.3.2. Again, it is easy to see that any one of the so-called marginal totals f1· or f2·
or f·1 or f·2 have the binomial distribution. For example f1· is the number of items in the
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sample that has the attribute A, so f1· has expectation nθ1 and θ̂1 = f1·/n is an unbiased
point estimator of θ1.

Summarizing, we have that

θ̂1 = estimator for θ1 = f1·/n, f1· = f11 + f12

θ̂2 = estimator for θ2 = f2·/n, f2· = f21 + f22
τ̂1 = estimator for τ1 = f·1/n, f·1 = f11 + f21
τ̂2 = estimator for τ2 = f·2/n, f·2 = f12 + f22

(13.3.3)

where 0 ≤ θ̂1 ≤ 1, 0 ≤ τ̂1 ≤ 1, and θ̂2 = 1 − θ̂1, τ̂2 = 1 − τ̂1. Further, under the assumption
of independence of A and B, E(fij) = nθiτj , and we can estimate E(fij) by nθ̂iτ̂j =
(fi· × f·j)/ n. Now we have to replace θ1, θ2, τ1, τ2 in (13.3.2) by their estimators given
in (13.3.3), since θ1, θ2, τ1, τ2 are unknown. This then results in the statistic

χ2 =
2∑

i=1

2∑
j=1

[
(fij − fi·f·j/n)2

fi·f·j/n

]
(13.3.4)

Algebraically, for this case of a 2× 2 contingency table, (13.3.4) can also be computed by

χ2 =
n(f11f22 − f21f12)

2

f1·f2·f·1f·2
(13.3.5)

For large n, χ2 has approximately the chi-square distribution with 4 − 2 − 1 = 1 degree of
freedom. This is because the number of unknown parameters, c, to be estimated is two
(one θ and one τ), and not four; that is, because once we have θ̂1 and τ̂1 we immediately
have θ̂2 = 1 − θ̂1 and τ̂2 = 1 − τ̂1. Thus there are three constraints on sample fij ’s, namely∑

i

∑
jfij = n, θ̂1 = f1·/n =

∑2
j=1 f1j/n, and τ̂1 = f·1/n =

∑2
i=1 fi1/n, accounting for the

loss of three degrees of freedom; that is, the degrees of freedom for this case are 4 - 3 = 1.
For this 2 × 2 case, the quantity χ2, given by either (13.3.4) or (13.3.5), can then be

used for testing the hypothesis that the A and B classifications are independent. That is,
the sample frequencies displayed in Table 13.3.2 can be regarded as having probability
distribution (13.3.1), where the probabilities of the four classes, A ∩ B, A ∩ B̄, Ā ∩ B, and
Ā ∩ B̄, are as shown in Table 13.3.1 and θ1, θ2, τ1, τ2 are unknown. As the θ̂i, and τ̂j are
random variables, the statistic as now given by (13.3.4) or (13.3.5) has, for large n, the
χ2

1 distribution. Thus, if the observed value of χ2, determined from (13.3.4) or (13.3.5)
exceeds χ2

1,α, we reject the hypothesis that the A and B classifications are independent at
the 100α% level of significance and conclude that there is a significant degree of dependence
between the A and B classifications at that same level of significance.

Example 13.3.2 (Nylon bar’s brittleness and heat treatment) In an experiment on bars
of nylon, 800 randomly chosen bars were found to be such that 360 of them had been
subjected to a 60◦C heat treatment and 440 to a 90◦C heat treatment. Each of the bars
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Table 13.3.4 Effect of heat treatment on the brittleness of
nylon bars.

Brittle B Nonbrittle B̄

60◦ (132) (228)
A 77 283 360

90◦ (162) (278)
Ā 217 223 440

294 506 800

was then further classified as brittle or nonbrittle, with results shown in Table 13.3.4. The
problem is to test the hypothesis that brittleness is independent of heat treatment.

Solution: The observed frequencies, f11, f12, f21, f22, for this experiment are the num-
bers 77, 283, 217, and 223, respectively. The estimate of E(f11), for example is nθ̂1τ̂1 =
n(f1·/n)(f·1/n) = f1· f·1/n. Thus, as shown in parentheses in Table 13.3.4, the expected
frequencies of f11, f12, f21, f22 are estimated to be 132, 228, 162, and 278, respectively.
The observed value of χ2 from these observations is

χ2 =
(77 − 132)2

132
+

(283 − 228)2

228
+

(217 − 162)2

162
+

(223 − 278)2

278
= 65.7

We could, of course, use the alternative formula (13.3.5) to find

χ2 = 800[(77)(223) − (217)(283)]2/[(360)(440)(294)(506)] = 65.7

The value of χ2
1,.05, the critical value of chi-square with one degree of freedom at the 5%

level of significance, is 3.84, which is less than the observed value 65.7. Therefore, at the
5% significance level, there is ample evidence to reject the null hypothesis of independence
between heat treatment and brittleness, as suggested by the inspection of the data.

13.3.3 The r × s Contingency Table
The results in Sections 13.3.1 and 13.3.2 extend in a straightforward manner to the case
of testing r× s contingency tables for independence. We have rs mutually exclusive and
exhaustive classes, Ai ∩ Bj , i =1, . . . , r, j= 1, . . . , s. We assume that the A and B
classifications are independent, so the probabilities of events Ai ∩ Bj are equal to θiτj ,
where θi = P (Ai) and τj = P (Bj) are all positive with θ1 + · · · + θr = 1, and τ1 + · · · +
τs = 1. It is important to keep in mind that given any (r− 1) θi, the remaining θ is
determined. For example, if we know the values of (θ1, . . . , θr−1), then θr = 1 − (θ1 + · · · +
θr−1). The situation is similar when dealing with τj . If n independent trials are performed,
let fij be the number of outcomes in class Ai

⋂
Bj , where

∑s
j=1

∑r
i=1 fij = n. Then the

fij are random variables having the multinomial distribution

n!
f11!f12! . . . !frs!

(θ1τ1)
f11 (θ1τ2)

f12 . . . (θrτs)
frs (13.3.6)
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We then have the following:

Theorem 13.3.2 If the θi and τ j are known and if n is large, the quantity

χ2 =
s∑

j=1

r∑
i=1

[
(fij − nθiτj)

2

nθiτj

]
(13.3.7)

has approximately a chi-square distribution with rs −1 degrees of freedom.

However, if the θi and τj are unknown and are replaced by the estimators fi·/n and
f·j/n, respectively, where fi· = fi1 + · · · + fis and f·j = f1j + · · · + frj , then we have

For large n,

χ2 =
s∑

j=1

r∑
i=1

[
(fij − fi·f·j/n)2

fi·f·j/n

]
(13.3.8)

has approximately a chi-square distribution with rs − [(r − 1) + (s − 1)] − 1 = (r −
1)(s − 1) degrees of freedom. The result above holds since the number of constants
in χ2 to be estimated, as given by (13.3.7), are c = (r − 1) + (s − 1), for (r − 1) θi’s
and (s − 1) τj ’s.

Example 13.3.3 (Effects of drug on learning ability) A clinical psychologist wants to
evaluate the effects of four different drugs (D1,D2,D3,D4) on the ability (high, average,
low) to learn some unfamiliar material on a particular topic. One hundred subjects were
selected randomly and classified according to the drug taken during the past six months and
their ability to learn the unfamiliar material given to them. The data collected are shown
in Table 13.3.5. The numbers in parentheses are the expected cell frequencies.

Test, at the 5% level of significance, the null hypothesis that the types of drugs and
learning ability are independent.

Table 13.3.5 Results of an experiment on effect of certain drugs on one’s learning
ability.

Days

Ability D1 D2 D3 D4 Total

High (5.04) (5.04) (6.09) (4.83) 21
5 6 6 4

Average (11.52) (11.52) (13.92) (11.04) 48
7 11 14 16

Low (7.44) (7.44) (8.99) (7.13) 31
12 7 9 3

Total 24 24 29 23 100
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Solution: Using (13.3.8), the observed value of χ2 is given by

χ2 =
(5 − 5.04)2

5.04
+

(6 − 5.04)2

5.04
+ · · · + (3 − 7.13)2

7.13
= 9.429

In this example, the degrees of freedom for χ2 are (r − 1)(s − 1) = (3− 1)(4− 1) = 6. The
value of χ2

6;.05, the critical value of the chi-square with six degrees of freedom at the 5%
level of significance, is 12.5916. Since this value is greater than the observed value of the
χ2-statistic, 9.429, we do not reject the null hypothesis of independence between the types
of drug involved and learning ability.

Example 13.3.4 An educator wants to learn whether astudent’s academic achievement
depends upon his/her field (sciences or arts) of interest. A random sample of 180 students
was selected and classified according to their grades in certain science courses and arts
courses. The results obtained are summarized in Table 13.3.6. Test at the 5% level of
significance the hypothesis that student grades are independent of their interest.

Solution:

MINITAB

1. Enter the data in a MINITAB worksheet as shown below

↓ C1-T C2-T C3

Rows Colums Frequency

1 A A 8

2 B A 42

3 C A 15

4 D or F A 5

5 A B 8

6 B B 6

7 C B 28

8 D or F B 14

9 A C 6

10 B C 9

11 C C 8

12 D or F C 7

13 A D or F 4

14 B D or F 7

15 C D or F 7

16 D or F D or F 6

2. Select Stat > Tables > Cross Tabulation and Chi-Square.
3. In the dialog box, select raw data (categorical variables) from the pull down

menu and type C1, C2, and C3 in boxes next to Rows, Columns, and Frequencies.
Select any other desired options available in this dialog box. For example in this
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Table 13.3.6 Data on students taking science and arts courses.

Science course

Grades A B C D or F Total
A 8 8 6 4 26

Arts course B 42 6 9 7 64
C 15 28 8 7 58

D or F 5 14 7 6 32

Total 70 56 30 24 180

problem, we select chi-square and check appropriate items in the new dialog box.
Then click OK. The MINITAB output that appears in the Session window is shown
below.

Tabulated Statistics: Rows, Columns

Rows: Rows Columns: Columns Chi-Square Test
Chi-Square

3 cell(s) with expected counts less than 5.

DF P-Value

Using frequencies in frequency

A

A 8 8 6 4 26

Pearson

Likelihood Ratio 41.123

38.886 9 0.000

0.0009

42 6 9 7 64

15 28 8 7 58

5 14 7 6 32

70 56 30 24 180

B

B

C

C

D or F All

All

D or F

Since the p-value is 0.00, which is less than the level of significance 0.05, we reject the
null hypothesis that student grades are independent of their field of interest.

USING R

The following manual R code can be used to conduct the chi-squared goodness of fit for a
4 × 4 contingency table.

#Assign data
Rows = c(‘A’, ‘B’, ‘C’, ‘D or F’, ‘A’, ‘B’, ‘C’, ‘D or F’, ‘A’, ‘B’, ‘C’, ‘D or F’,

‘A’, ‘B’, ‘C’, ‘D or F’)
Columns = c(‘A’, ‘A’, ‘A’, ‘A’, ‘B’, ‘B’, ‘B’, ‘B’, ‘C’, ‘C’, ‘C’, ‘C’, ‘D or F’,

‘D or F’, ‘D or F’, ‘D or F’)
Frequency = c(8,42,15,5,8,6,28,14,6,9,8,7,4,7,7,6)

#Make a data.frame
Table = data.frame(Rows, Columns, Frequency)

#Create a 2×2 table similar to Table 13.3.6
Tab.data = xtabs(Frequency ∼ Rows+Columns, data=Table)

#chi-squared test for independence
chisq.test(Tab.data) #R output

Pearson's Chi-squared test
data: Tab.data
X-squared = 38.886, df = 9, p-value = 1.208e-05
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PRACTICE PROBLEMS FOR SECTION 13.3

1. A random sample of 106 engineers was asked their starting salaries, and whether
they graduated from a public or a private school. The results are given below:

School $40,000–$49,999 $50,000–$59,999 $60,000–$69,999 Over $70,000 Total

Public 12 18 8 6 44
Private 8 24 14 16 62
Total 20 42 22 22 106

Test at the 5% level of significance the null hypothesis that the starting salaries of
engineers are independent of the type of school.

2. Recently, a new strain of virus that causes influenza was detected. A new vaccine to
counter this strain was developed and tested using two selected groups. One group
was inoculated with the new vaccine, while the other group did not receive any
vaccination. The results showing how many people became sick and did not become
sick from the two groups are given below:

Vaccinated Not vaccinated Total

Got sick 45 95 140
Did not get sick 125 65 190
Total 170 160 330

Test at the 1% level of significance that the two factors “vaccination” and “sickness”
are independent.

3. A social worker was interested in finding the effect of education among women on
their married life. The data given below are the levels of their education and the
number of years they remained married to their first husband. Test at the 5% level
of significance the null hypothesis that the factors “education” and “marriage” are
independent.

<10 10–< 20 20–<30 ≥30 Total

High school 37 31 20 12 100
Undergraduate degree 25 40 15 20 100
Graduate degree 20 25 35 20 100
Professional degree 10 8 30 52 100
Total 92 104 100 104 400

4. A medical team conducted an experiment to observe if hypertension is dependent
on drinking habits. The data below give information on 250 individuals. Test the
hypothesis at the 5% level of significance that having or not having hypertension is
independent of drinking habits.

Hypertension Nondrinkers Moderate drinkers Heavy drinkers

Yes 20 44 42
No 80 36 28
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5. A social worker conducted an experiment to study if the level of education among
immigrants to the United States is dependent on the region of migration. The fol-
lowing data give the level of education of 815 immigrants. Test the hypothesis at the
1% level of significance that the level of education among immigrants is independent
of their region of migration.

Level of Asian European Middle Eastern African
education countries countries ountries countries

Highly educated 90 80 40 30
Well educated 120 120 50 35
Not well educated 70 50 60 70

6. The following data give the income level for 400 married couples and the number of
children that they have. Test the hypothesis at the 5% level of significance that the
number of children is independent of the level of income.

Number of children 0–2 3 4 5 or more

Less than $75K 32 30 16 10
$75K-$150K 38 44 10 8
Over $150K 130 66 9 7

13.4 CHI-SQUARE TEST FOR HOMOGENEITY

In Section 13.2, we discussed the testing of the goodness-of-fit hypothesis. That is, if a
given sample is classified into k categories, then we verify that the sample comes from some
theoretical population, which may or may not be completely specified. In particular, we
discussed the hypothesis of fitting a multinomial model to the given data. In Section 13.3,
we extended this to the r × s contingency table case (k = rs), that is when one random
sample of size n is taken from one population and each element of the sample is classified
with respect to two criteria of interest. In this section, we discuss a problem that may
be considered as an extension of the problem discussed in Section 13.3. That is, for the
problem of this section, random samples from s populations are taken and elements of
each sample are classified into r categories of interest.

Suppose that we have s populations, and we wish to test a hypothesis that the s popu-
lations are homogeneous with respect to some characteristic of interest. By “homogeneous”
we mean that each of the s populations has the same distribution with respect to some
characteristic of interest. To formalize this, suppose we have s populations, say B1, . . . , Bs,
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and that for each population we are interested in the proportions of the population that
belongs to one of the levels A1, . . . , Ar of the characteristic of interest, A. That is, for each
Bj we are interested in

P (Ai|Bj), i = 1, . . . , r

Then, the s populations B1, . . . , Bs are homogeneous if

P (Ai|Bj) = P (Ai), i = 1, . . . , r (13.4.1)

for each j = 1, . . . , s.

Equation (13.4.1) implies that the s populations behave in the same fashion with
respect to the characteristic of interest A. We now notice that (13.4.1) says that A and B
are independent. To test independence of A and B (i.e., the B populations are homogeneous
with respect to the characteristic of interest A), we take random samples from each of the
populations Bj , j = 1, . . . , s. We next classify the members of the samples from Bj as to
which of the levels Ai of A they belong, i = 1, . . . , r, obtaining an r× s table of fij ’s, say,
where fij is the number of members of the jth sample obtained from the population Bj that
are classified as belonging to level Ai. This is similar in format to the r× s contingency
table. It is not surprising, then, that the test for independence of A and B is equivalent
to testing the homogeneity of populations B1, . . . , Bs. Hence, we may use the chi-square
goodness-of-fit statistic of Section 13.3, namely

χ2 =
s∑

j=1

r∑
i=1

[
(fij − fi·f·j/n)2

fi·f·j/n

]
(13.4.2)

We illustrate this procedure with the following example.

Example 13.4.1 (Comparing economic conditions in New England states) Suppose we
have obtained six random samples, one from each of the New England states Connecti-
cut (CT), Maine (ME), Massachusetts (MA), New Hampshire (NH), Rhode Island (RI),
and Vermont (VT). Suppose that each sample is separately classified into four mutually
exclusive categories according to income level and that the data obtained is as given in
Table 13.4.1 (numbers in parentheses are expected frequencies). Test at the 5% level of
significance that all the six states are economically homogeneous.
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Table 13.4.1 Data on income levels in states of New England.

CT ME MA NH RI VT Total

Under $30K (10.62) (6.56) (13.38) (6.03) (5.64) (5.77)
6 10 8 6 6 12 48

$30K-under $50K (21.91) (13.52) (27.59) (12.44) (11.63) (11.90)
20 18 22 11 12 16 99

$50K-under $100K (29.88) (18.44) (37.62) (16.97) (15.86) (16.23)
35 17 42 18 13 10 135

Over $100K (18.59) (11.47) (23.41) (10.56) (9.87) (10.10)
20 5 30 11 12 6 84

Total 81 50 102 46 43 44 366

Solution: We wish to test at the 5% level of significance, the hypothesis

H0: The six New England states are homogeneous with respect to income level
H1: The six New England states are not homogeneous with respect to income level

Now the discussion in this section has shown this problem to be equivalent to testing
the following hypothesis:

H0: The factors “income level” and “state” are independent
H1: The factors “income level” and “state” are not independent

Hence, we use the goodness-of-fit statistic defined by

χ2 =
6∑

j=1

4∑
i=1

[
(fij − fi·f·j/n)2

fi·f·j/n

]
(13.4.3)

Here n = 366 and the fij are given in Table 13.4.1. Hence, we would reject at the 5%
level of significance the null hypothesis that the six New England states are homogeneous
with respect to income level if the observed χ2 is such that

χ2 > χ2
15;0.05 = 24.996

since (r − 1)(s − 1) = (4 − 1)(6 − 1) = 15.
The observed value of χ2 statistic is, for the data of this example,

χ2 =
(6 − 10.62)2

10.62
+ · · · + (6 − 10.10)2

10.10
= 29.31832 > 24.996

so we reject the null hypothesis of homogeneity of the six New England states with respect
to income level.
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PRACTICE PROBLEMS FOR SECTION 13.4

1. An outpatient clinic at a city hospital conducted an experiment to treat a
viral infection using three drugs: Acetaminophen, Motrin, and Ibuprofen. Each
drug was administered on 80 patients. The results are shown below. Test at
the 1% level of significance the null hypothesis that the three drugs are equally
effective.

Level of relief Acetaminophen Ibuprofen Motrin

Little or no relief 18 22 12
Some relief 26 18 30
Complete relief 36 40 38
Total 80 80 80

2. A company operates five machines in three shifts daily. The five machines are made
by five different manufacturers, and the maintenance manager of the company keeps
a log of breakdowns over the past three months. The results are shown below. Test
at the 5% level of significance the null hypothesis that the five machines are equally
prone to breakdowns.

Shift Machine 1 Machine 2 Machine 3 Machine 4 Machine 5 Total

Morning 8 9 6 10 11 44
Evening 9 12 14 12 15 62
Night 7 8 13 10 16 54
Total 24 29 33 32 42 160

3. Three hundred CEOs from five different industries were asked whether the higher
interest rates will affect their hiring during the next two fiscal years. The results
obtained are shown below. Test at the 10% level of significance the null hypothesis
that all five industries are equally affected by a higher interest rate.

Food Manufacturing Pharmaceutical Insurance General Total

Yes 15 35 25 15 8 98
No 35 25 45 45 52 202
Total 50 60 70 60 60 300

4. An insurance company wished to study the areas of interest of medical graduates
from medical schools, osteopathic medicine schools, and foreign medical schools in
different specialties. The following data give information about 200 recent medi-
cal graduates. Test at the 5% level of significance the hypothesis that the three
groups of medical students are homogeneous with respect to interest in different
specialties.
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Specialties
Family
med

Internal
med Cardiology Radiology

Other
specialties

Medical school 5 10 15 18 10
Osteopathic school 25 12 10 12 6
Foreign med. school 35 24 7 5 6

5. The following data give information about income level and the marital status of 400
attendees of a concert organized by United Way for the benefit of Iraq War veterans.
Test the hypothesis at the 5% level of significance that the three populations are
homogeneous with respect to the marital status.

Income Level Marital Status

Single Married Separated Divorced

Less than $100K 22 20 16 7
$100K-$250K 43 44 12 11
Over $250K 130 66 20 9

6. The following data give the results of a study that was conducted to evaluate the
effect of social status on the level of education. Test at the 5% level of significance if
these data provide sufficient evidence that the three classes are homogeneous with
respect to level of education.

Social status Education level

MD/DO Law PhD MS/MBA Undergraduate High school

Upper class 20 15 10 25 12 8
Middle class 18 25 8 20 14 12
Lower middle class 8 10 8 18 24 32

13.5 COMMENTS ON THE DISTRIBUTION OF
THE LACK-OF-FIT STATISTICS

In the previous sections of this chapter, we have used some distribution results with-
out full justification. We now proceed to discuss this aspect within the scope of this
book.

We begin with a binomial random variable X, which is the number of trials in a
sample of n independent trials that have the characteristic A. We know, by observing X,
that Y = n − X is the number of trials in this sample that has the characteristic Ā.

Suppose that the probability, P (A), of obtaining A in a single trial is θ so that

P (A) = θ, P (Ā) = 1 − θ (13.5.1)
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Recall that E(X) = nθ and Var(X) = nθ(1 − θ). Then, using the Central Limit Theorem,
the distribution of X when n is large can be approximated by the normal distribution with

X − nθ√
nθ(1 − θ)

∼ Z (13.5.2)

where Z is a N(0, 1) random variable.
From Chapter 7, we know that the square (Z2 in this case) of an N(0, 1) random

variable is distributed as a χ2
1 variable. Hence we may rewrite (13.5.2) in the form

(X − nθ)2

nθ(1 − θ)
∼ χ2

1 for large n (13.5.3)

Upon using the facts 1/θ + 1/(1 − θ) = 1/θ(1 − θ) and Y = n − X, with X − nθ =
−[Y − n(1 − θ)], it is easily verified that the left-hand side of (13.5.3) may take the form

(X − nθ)2

nθ
+

[Y − n(1 − θ)]2

n(1 − θ)
(13.5.4)

Now let
X = f1, Y = f2, A = A1, Ā = A2, θ1 = P (A) = P (A1)

and θ2 = P (Ā) = P (A2). Of course, fi is the number of trials in the sample of n trials that
result in Ai for i = 1 and 2. Since each fi has the binomial distribution, we know that

E(fi) = nθi (13.5.5)

We can put (13.5.3) and (13.5.4) together to obtain, for large n,

2∑
i=1

(fi − nθi)
2

nθi

∼= χ2
1 (13.5.6)

Note that k = 2, but since f1 + f2 = n, we then have f2 = n − f1, so that and if f1 is
observed, we automatically know f2. Hence, the degrees of freedom for the approximate
chi-square distribution is 1.

In the case of k characteristics A1, A2, . . . , Ak, the respective frequencies, f1, f2, . . . , fk,
have a multinomial distribution. We note that

k∑
i=1

fi = n or fk = n − (f1 + · · · + fk−1) (13.5.7)

Indeed, the probability function of f1, . . . , fk−1 is

p(f1, . . . , fk−1) =
n!∏k−1

i=1 fi!
[
n −

∑k−1
i=1 fi

]
!
θ1

f1 . . . θk−1
fk−1

(
1 −

k−1∑
i=1

θi

)(n−
k−1∑
i=1

f
i

)

(13.5.8)

for 0 ≤ fi ≤ n and 0 ≤
∑k−1

i=1 fi ≤ n.
Thus, just as in the case of k = 2 (k − 1 = 1), where we are dealing with a binomial

random variable, it can be proved that the distribution (13.5.8) is well approximated for
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large n by a certain (k − 1)-dimensional normal distribution (see Chapter 6 for a discussion
of the two-dimensional normal distribution, called the bivariate normal). It can be proved
that, for large n, we have

k∑
i=1

(fi − nθi)
2

nθi

∼ χ2
k−1 (13.5.9)

where fk = n −
k−1∑
i=1

fi, θk = 1 −
k−1∑
i=1

θi.

This result, for k = 2, was presented at the beginning of this section.
Now, when nθi = E(fi), i = 1, . . . , k, are unknown and we make c estimates,

c < k−1 based on the sample to furnish a set of estimates of the nθi’s, we are placing c
further restrictions on the fi’s (e.g. see Section 13.3.2 or 13.3.3). These restrictions cause
the loss of c additional degrees of freedom, in addition to the loss of the one degree of
freedom imposed by the restriction

∑k
i=1 fi = n.

13.6 CASE STUDIES

Case Study 1 (Data on vitamin D and PTH levels during pregnancy)
In this study the authors—James E. Haddow, Glen E. Palomaki, Geralyn Lambert-
Messerlian, Louis M. Neveux, Jacob A. Canick, David M. Grenache, and Jun Lu—examine
the relationship between 25(OH)D and the parathyroid hormone (PTH) concentration in
first-trimester pregnant women from New England and their overall vitamin D levels in
comparison to earlier reports.

The authors retrieved residual sera stored at −20◦C after routine first-trimester Down
syndrome screenings in 2008 of 432 African American and 587 Caucasian women, dis-
tributed evenly over 12 months. Samples were tested for 25(OH)D and PTH. The collected
data (Table 13.6.1 Case Study 13.1) is available on the book website: www.wiley.com/
college/gupta/statistics2e. These data provide the vitamin D and PTH levels during preg-
nancy. (Legend: Race: 1-black, 2-Caucasian; Season: 1-spring, 2-summer, 3-fall, 4-winter;
Cigarettes-number smoked per day) (Source: Data used with permission).

Select a random sample of size 100 from the data in Table 13.6.1.

(a) Construct a contingency table for race and PTH (pmol/L) concentration levels. Use
four categories of PTH concentration: category 1 (0-under 9), category 2 (9-under
12.5), category 3 (12.5-under 16), category 4 (16 or more). Test at the 5% level of
significance the hypothesis that race and PTH (pmol/L) concentration levels are inde-
pendent.

Table 13.6.1 Data comparing outcomes of matches 1 and 2 with those of matches 4
and 5.

Matches 1 and 2 Matches 4 and 5 Total

Home wins 120 33 153
Away wins 68 21 89

Total 188 54 242
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(b) Construct a contingency table for race and vitamin D (nmol/L) levels. Use three
categories of vitamin D (nmol/L) levels: category 1 (0-under 35), category 2 (35-under
70), category 3 (70 or more). Test at the 1% level of significance the hypothesis that
race and vitamin D (nmol/L) levels are independent.

(c) Construct a contingency table for seasons and vitamin D (nmol/L) levels. Use three
categories of vitamin D (nmol/L) levels: category 1 (0-under 35), category 2 (35-under
70), category 3 (70 or more). Test at the 1% level of significance the hypothesis that
seasons and vitamin D (nmol/L) levels are independent.

(d) Construct a contingency table for race and weight in lb. Use three categories of
weight: category 1 (0-under 135), category 2 (135-under 160), and category 3 (160
or more). Test at the 1% level of significance the hypothesis that race and weights are
independent.

Case Study 2 (Home advantage in sport competitions1)
The Davis Cup is the annual tennis tournament for men’s international teams. The Inter-
national Tennis Federation runs cup tournaments during which teams of players compete
in a knockout format. The world’s 16 best national teams are selected and compete for
the Davis Cup. The rounds consist of two singles matches, followed by a double match
and, if necessary, two more singles matches. The country team that wins three matches is
the winner. Tables 13.6.1 and 13.6.2 show the scores for matches from 1900 to 2006. Each
match was recorded as a home or away win. Two separate data group were collected: data
comparing outcomes of matches 1 and 2 with those of matches 4 and 5; data comparing
outcomes of matches 1 and 2 with that of match 5 (Source: Data are used with permis-
sion). Use the Chi-square test to analyze the data in Tables 13.6.1 and 13.6.2, and state
your conclusions about home advantage or disadvantage in the Davis Cup tournaments.

Table 13.6.2 Data comparing outcomes of matches 1 and 2 with that of match 5.

Matches 1 and 2 Match 5 Total

Home wins 120 8 128
Away wins 68 13 81

Total 188 21 209

Case Study 3 (Data on vitamin D and PTH levels, continued) Select a random sample
of size 150 from the data (Table 13.6.1) available on the book website: www.wiley.com/
college/gupta/statistics2e.

Develop various contingency tables to test the two populations: African-American
women and Caucasian women are homogeneous with respect to some other variables.
Explain how this case study differs from case study 1.

13.7 USING JMP

This section is not included in the book but is available for download from the book
website: www.wiley.com/college/gupta/statistics2e.

1 Source: Gayton et al. (2009).
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Review Practice Problems

1. Suppose that a coin is tossed 1000 times with the result that 462 heads and 538 tails
are obtained. Are these results consistent with the hypothesis that the coin is true at
the 5% level of significance? (Use the chi-square test.)

2. Five thumbtacks of a certain type were thrown 200 times and the number of tacks
of the five falling point up in each throw was counted. The experimental results are
shown below.

Tacks falling point up, X Frequency

0 5
1 27
2 41
3 67
4 43
5 17

Total 200

(a) Estimate the probability θ that a tack falls point up.
(b) Test the null hypothesis that the distribution of X, the number of tacks falling

point up, has the binomial distribution
( 5

x

)
θx(1 − θ)5−x, x = x = 0, 1, . . . , 5, using

the estimate of θ found in (a). State α and the observed level of significance.

3. Using the method of Example 13.2.4, fit a normal distribution to the data of Prob-
lem 14 of Review Practice Problems in Chapter 2 and test the null hypothesis at the
5% level of significance that the data behave as a sample from a normal population.
Find the observed level of significance.

4. Houses with and without air conditioners on nine different streets in a certain city are
shown below (from Brownlee, 1957). Test (at the 5% level) the null hypothesis that
having an air conditioner is independent of street locations of the houses.

Street With A/C Without A/C

1 5 18
2 8 35
3 18 25
4 3 38
5 17 24
6 11 31
7 25 17
8 19 20
9 18 18

5. A small roulette wheel was spun 380 times and yielded frequencies shown below for
the 38 roulette numbers (taken in pairs). Test the hypothesis that the wheel is true,
using the chi-square test at the 1% level of significance.
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Spins Frequency Spins Frequency Spins Frequency
0–00 24 13–14 29 25–26 21
1–2 16 15–16 21 27–28 14
3–4 19 17–18 17 29–30 25
5–6 19 19–20 25 31–32 23
7–8 25 21–22 18 33–34 16
9–10 10 23–24 20 35–36 16
11–12 22
Total 380

6. Pieces of vulcanite were examined according to porosity and dimensional defects, and
the results are shown below (data from Hald, 1952). Test the hypothesis that the two
criteria of classification are independent. Specify α.

Porous Nonporous

With defective dimensions 142 331
Without defective dimensions 1233 5099

7. In field tests of mine fuses, 216 of each of the two types of fuses A and B, chosen at
random from large lots, were buried, and then simulated tanks ran over them. The
number of “hits” and “not hits” was recorded for each type of fuse, with the results
shown below (from Ordnance Corps Pamphlet ORD P 20 = 111). Are the proportions
of hits for the two types of fuses significantly different at the 5% level of significance?

Fuse type Hit Not Hit Total

A 181 35 216
B 160 56 216

Total 341 91 432

8. The lateral deflection and range in yards obtained in firing 75 rockets are shown below
(from Crow et al. (1955)]). Test at the 5% level of significance the hypothesis that
lateral deflection and range are independent.

Lateral deflection (yards)

Range(yards) −250 to −51 −50 to +49 50 to 199 Total
0–1199 5 9 7 21
1200–1799 7 3 9 19
1800–2699 8 21 6 35

Total 20 33 22 75
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9. A study was performed on the effect of time of work on quality of work in a certain
plant. It was the practice in the plant for a crew to change shifts once a month. A
study of three months of operations by one crew that remained intact for the entire
period showed the numbers of defective and nondefective items produced. The data
are given below (from Duncan, 1958). Do you conclude from these data that the time
of work significantly affects the quality of the works? Use the 0.05 level of significance.
Justify your answer.

Shift Defective Nondefective

1 (8:00–4:00) 52 921
2 (4:00–12:00) 61 902
3 (12:00–8:00) 73 851

10. The number of contaminated tablets were counted for 720 samples with each sample
consisting of 100 tablets. The results are shown below. Fit a Poisson distribution to
this data and test for goodness of fit. Specify α.

Contaminated tablets (Xi) in a sample 0 1 2 3 4 5 6 7 8 9 10
Observed sample frequency (fi) 116 194 184 115 63 24 12 6 3 2 1

11. A certain strain of guinea pig is such that 75% of its progeny are born with white eyes
and 75% of its progeny are born with webbed feet. A sample of 160 piglets from newly
born litters is classified as shown below. Test whether the modes of classification are
independent. Use α = 0.05.

Webbed feet Non-webbed feet

White eyes 94 33
Colored eyes 28 5

12. The data given below show the classification of 357 persons by race who visit a physi-
cian’s office a certain number of times over a period of one year. The results are
shown below. Test, at the 5% level of significance, the hypothesis that the four races
are homogeneous with respect to the number of visits to a physician’s office. Find the
observed level of significance.

Number of visits White African American Hispanic Asian

0–1 50 34 38 40
2–4 28 35 42 30
5 or more 12 18 16 14
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13. A random sample of bulbs is taken from lots manufactured in the United States,
Canada, and Mexico. Then, from each sample, the defectives and nondefective bulbs
are separated. The results are shown below. Test at the 1% level of significance the
hypothesis that the quality of bulbs in all three lots is the same. Find the observed
level of significance.

United States Canada Mexico

Nondefective 320 280 295
Defective 15 14 17

14. The direct investment by US companies in millions of dollars in five different countries
(A, B, C, D, and E) during 1995, 2000, and 2005 are as shown below. Do these data
provide sufficient evidence to indicate that the US investments over time in these
countries differ significantly? Use α = 0.05. Find the observed level of significance.

1995 2000 2005

A 551 1110 1143
B 288 637 648
C 598 1888 1924
D 387 763 417
E 519 737 942

15. The following data set gives the scores of 50 students of an engineering exam. The
results are shown below. Test at the 1% level of significance that these data follow a
normal distribution.

79 81 82 74 86 92 95 87 70 78
79 88 89 85 87 92 96 91 83 83
77 76 84 87 88 91 90 92 94 96
94 91 90 77 81 76 78 83 85 87
80 87 86 85 84 86 88 86 87 85

16. The data below give the frequency distribution of ages for 100 students selected ran-
domly from a large university. Test at the 5% level of significance that the data in
the table follow a multinomial distribution, with θ1 = 0.35, θ2 = 0.25, θ3 = 0.15, θ4 =
0.10, θ5 = 0.10, θ6 = 0.05.

Class 1 2 3 4 5 6
Class enrollment 18–23 24–29 30–35 36–41 42–47 48 & over
Frequency 36 30 12 8 6 8
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17. The data given below provide the frequency distribution of daily traffic violation
tickets issued by the city police over a period of eight weeks. Test at the 5% level of
significance the hypothesis that the number of traffic tickets is the same for each of
the past eight weeks.

Week 1 2 3 4 5 6 7 8
Violation tickets 19 25 21 24 15 28 20 15

18. The data below provide the number of customers entering in a bank during morning
hours (9 am–12 noon) on each day of a given week. Do these data provide sufficient
evidence that the number of customers entering in the bank is not the same on the
different working days of the week? Use α = 0.05.

Weekday Monday Tuesday Wednesday Thursday Friday Saturday

Customers 60 72 90 75 95 92

19. The data below gives the time (in minutes) elapsed between the admission of patients
to a certain hospital. Can we conclude, at the 5% level of significance, that these data
follow an exponential distribution?

15 18 78 5 16 58 78 60 40 60
55 49 28 30 39 18 10 12 17 21
24 23 27 14 11 8 28 36 69 53
59 72 66 49 46 42 37 36 47 45
50 59 55 64 67 23 25 17 15 18

20. An experiment of tossing a certain coin four times is repeated 100 times and the
number of heads appearing in each experiment is recorded and shown below. Test at
the 5% level of significance the hypothesis that the coin used is unbiased.

Number of heads 0 1 2 3 4
Frequency 8 18 35 25 14

21. A computer assembling company buys all its memory cards from three manufac-
turers M1,M2,M3. The quality control manager of the company decided to learn
more about the quality of the memory cards purchased from the three manufac-
turers, and thus took a random sample of 500 cards from the shipments received
from each manufacturer and classified them according to whether the card is defec-
tive or non-defective. The results are shown below. Test, at the 5% level of signif-
icance, the hypothesis that the quality of the memory cards is independent of the
manufacturer.
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M 1 M 2 M 3

Defective 32 52 28
Nondefective 468 448 472

22. To determine whether there is any relationship between the school attended to earn
an engineering degree and success at a job, a sample of 300 engineers who earned their
degree from different schools S1, S2, S3 is randomly selected, and then each engineer
is classified according to his/her success (high, average, low) and the school from
where they earned their degree. The data are shown below. Test, at the 1% level
of significance, the hypothesis that the success at a job is independent of the school
where one earns his/her degree.

S 1 S 2 S 3

High 25 39 23
Average 42 67 32
Low 21 33 18

23. A pharmaceutical company wants to study the form of a drug that is possibly more
effective. Three different forms, namely tablet, suspension, and injection were pre-
scribed randomly to 190 patients. After using that drug for four weeks, its effectiveness
is observed and the data obtained are shown below. Test, at the 1% level of signifi-
cance, the hypothesis that the effectiveness of the drug is independent of the form of
the drug.

Effectiveness Tablet Suspension Injection

High 20 23 28
Average 32 20 22
Low 18 15 12

24. A random sample of 500 teenagers is selected and classified according to age and the
number of accidents he/she has had over a given period of time. The data are shown
below. Test, at the 1% level of significance, the hypothesis that the age and number
of accidents are independent.

Accidents

Age 0 1 2 3 or more
16 50 20 10 5
17 84 49 20 7
18 40 48 32 10
19 48 62 10 5



Chapter 14

NONPARAMETRIC TESTS

The focus of this chapter is the development of some commonly used
nonparametric procedures.

Topics Covered

• The one-sample and two-sample sign test
• The Mann–Whitney (Wilcoxon) W test for two samples
• Run tests: runs above and below the median and the Wald–Wolfowitz run test
• Spearman rank correlation

Learning Outcomes

After studying this chapter, the reader will be able to

• Use a nonparametric method for testing hypotheses about a location parameter when
the sample is drawn from one population.

• Use a nonparametric method for testing hypotheses about location parameters when
samples are drawn from two populations.

• Perform a nonparametric test of whether or not the sample at hand is a random sample.
• Investigate whether or not there is some association between two variables.

14.1 INTRODUCTION

In Chapter 9, we discussed various statistical tests based on the assumption that the
samples involved are drawn from normal populations. There are many situations where
we know little about the shape of the population distribution from which the samples are
drawn, and in such cases the assumption of normality may be hazardous. There is a class
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of statistical tests that are valid for samples from continuous population distributions of
any shape. These are called nonparametric tests, and they are based on order statistics.
In this chapter, we consider several of the simplest and most widely used of these tests.
Throughout this chapter, we assume that the random variable of interest is a continuous
random variable and the scale of measurement is at least ordinal.

14.2 THE SIGN TEST

14.2.1 One-Sample Test
Let X1, . . . ,Xn be a random sample from a continuous distribution with an unknown
median M and that we are interested in testing a hypothesis that the median takes some
specified value. That is, the null and alternative hypotheses are

H0: M = m0 versus H1: M < m0 (14.2.1a)

H0: M = m0 versus H1: M > m0 (14.2.1b)

H0: M = m0 versus H1: M �= m0 (14.2.1c)

As in Chapter 9, the hypotheses (14.2.1a) and (14.2.1b) lead to one-tail tests and Equation
(14.2.1c) leads to two-tail tests. The probability of the type I error, or the level of signifi-
cance, is denoted by α, which takes some assigned value. In practice, α is usually assigned
the values 0.1, 0.05, or 0.01. Recalling the definition of a population median, then under
H0 the null hypothesis, each Xi, i = 1, . . . , n, has the same probability 1/2 of being greater
than or less than m0. In other words, Xi − m0 has the same probability of being either
positive (+) or negative (−). (This is why the test procedures of this section are called
sign tests.) To test any one of the hypotheses, we define

Yi =

{
1, if Xi − m0 > 0
0, if Xi − m0 < 0

for i = 1, . . . , n. If any Xi − m0 = 0, then we discard the corresponding observation and
adjust the sample size n by reducing it by the number of observations discarded. Then,
for the sample size n used, the test statistic is

R =
n∑

i=1
Yi (14.2.2)

and the observed value of the test statistic, say r, is the number of 1’s among the Yi. We
note that under H0 of Equation (14.2.1a), Yi is Bernoulli, with pi = P (Yi = 1) = p = 1/2
so under H0, R =

∑n
i=1 Yi is distributed as binomial with sample size n and p = 1/2, so

that

P (R = r|H0) =
(n

r

)(
1
2

)n
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Based on this result, the decision rules for the problem of Equations (14.2.1a) and
(14.2.1c), with level of significance α are as follows:

(a) The hypotheses (14.2.1a) defines a left-sided hypothesis testing problem. Hence, reject
H0 in favor of H1 if the observed value of R in Equation (14.2.2) is too small so that
the probability of getting r or fewer 1s in a random sample of size n is less than or
equal to α. In other words, reject H0 if the p-value is less than or equal to α.

(b) The hypotheses (14.2.1b) defines a right-sided hypothesis testing problem. Hence, we
reject H0 in favor of H1 if the observed value of R in Equation (14.2.2) is too large so
that the probability of getting r or more 1s in a random sample of size n is less than
or equal to α. In other words, reject H0 if the p-value is less than or equal to α.

(c) The hypotheses (14.2.1c) defines a two-sided test so that we reject H0 in favor of H1 if
the observed value of R, say r, is either significantly low or significantly high at the α
level of significance. To formalize this, let r′ = min(r, n − r), where r is the observed
value of R. Obviously r′ ≤ n/2. Then, we reject H0 if

P (r′ < R < n − r′) < 1 − α

so that the p-value would then be (H0 versus H1 in Equation (14.2.1c))

p-value = 1 − P
(
r′ < R < n − r′|R ∼ B

(
n, 1

2

))
= P (R ≤ r′|H0) + P (R ≥ n − r′|H0) = 2P (R ≤ r′|H0)

(14.2.3)

Now R ∼ B(n, 1/2) under H0, and the probability function of the B(n,1/2) distribution is
symmetric, that is,

P

(
x

∣∣∣∣n,
1
2

)
= P

(
n − x

∣∣∣∣n,
1
2

)

Hence, reject H0 if the p-value (14.2.3) is less than or equal to α, or if

1
2
(p-value) = P (R ≤ r′|H0) =

r′∑
r=0

(n

r

) (
1
2

)n

≤ α

2
(14.2.4)

We illustrate this method with the following example:

Example 14.2.1 (Job completion time) A manager of a manufacturing company is
interested in finding the median time taken by company technicians to complete a job.
The manager takes a sample of 10 technicians and observes the time (in minutes) taken
to complete the job, as follows:

42 40 46 44 43 48 41 42 42 44

Test at the 5% level of significance that the median time taken by the company tech-
nician to complete a job is 45 minutes.

Solution: In this example, we wish to test the hypothesis

H0: M = 45 versus H1: M �= 45
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To test this hypothesis, we subtract 45 (the value under the null hypothesis) from each
observation and assign the values 1 or 0 based on whether or not the difference is greater
than 0 or less than 0. For the sample above, we start by recording yi values, namely

0, 0, 1, 0, 0, 1, 0, 0, 0, 0

so that the observed value r of the test statistic is 2, the number of 1s.
Here n = 10, so that r′ = min(r, n − r) = min(2, 8) = 2. Now using binomial tables,

we have
p-value = 2 × P (R ≤ 2|n = 10, p = 0.5) = 2 × 0.055 = 0.11

so that the p-value for this test is 0.11 > α = 0.05. We do not reject the null hypothesis.
Recall that, for large sample size n, we could use the normal approximation to the binomial
(see Chapter 6).

We could, of course, have used MINITAB, R, or JMP. We illustrate this with the
following example using MINITAB and R:

Example 14.2.2 (Student’s test scores data) A chemistry professor from a large univer-
sity wants to study the final paper scores obtained by the students in a general chemistry
class. The following data gives the scores of 12 randomly selected students from that class:

86 86 76 83 83 81 76 87 90 89 76 79

Test at the 5% level of significance the professor’s hypothesis that the median score for
the sampled population is 87.

MINITAB

To test the hypothesis

H0: M = 87 versus H1: M �= 87

using MINITAB, we proceed as follows:

1. Enter the data in column C1.
2. Select Stat > Nonparametrics > 1-Sample Sign.
3. In the dialog box enter C1 in the box below Variables, and select Test median and

enter 87, the specified value of the median under the null hypothesis. Then, select
the appropriate Alternative hypothesis and click OK. The output that appears in
the Session window is

Sign Test for Median: C1

Method

Descriptive Statistics

Testη: median of C1

Sample SampleN

C1 C1

Null hypothesis H0: η = 87

Alternative hypothesis H1: η ≠ 87

9 1 2 0.06512 83

Median Number < 87 Number = 87 Number > 87 P-Value
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Since the p-value is 0.065, which is greater than 0.05, we do not reject the null hypothesis
that the median score for the sampled population is 87. We remark that MINITAB takes
note of the fact that one observation with value equal to M0 = 87 and automatically deletes
it from consideration. For example, checking by hand, we find that

p-value = 2 ×
2∑

r=0

(
11
r

)(
1
2

)11

= 2 × {0.000488 + 0.005371 + 0.026855} = 0.0654

as stated in the MINITAB output above.

USING R

The built-in function ‘SIGN.test()’ in R library(“BSDA”) can be used to conduct the
required sign-test. The following R code can be used to obtain the test results for the data
in Example 14.2.2.

x = c(86,86,76,83,83,81,76,87,90,89,76,79)
SIGN.test(x, md = 87, alternative = “two.sided”)

#R output
One-sample Sign-Test
data: x
s = 2, p-value = 0.06543
alternative hypothesis: true median is not equal to 87
95 percent confidence interval:
76.31909 86.89364
sample estimates:
median of x
83

As in the MINITAB procedure, the p-value is greater than 0.05. Therefore, we conclude
that the median for the test scores, at an alpha level of 0.05, is not significantly different
from 87.

14.2.2 The Wilcoxon Signed-Rank Test
Occasionally, we have a random sample that has been sampled from a population known
to be symmetric about the unknown median, and the scale of measurement is at least
interval. In such cases, the simple sign test discussed in Section 14.2.1 is not very desirable
because it does not use all the information available in the sample. A more powerful test is
the Wilcoxon signed-rank test. Since the sampled population is assumed to be symmetric,
any conclusions made about the median are also valid for the mean.

The Wilcoxon signed-rank test proceeds by taking the differences between the mea-
surements in the sample and a hypothesized location parameter, ranking the absolute
magnitude of these differences, and then separating the ranks assigned to positive and
negative differences. Any measurements that yield zero differences are discarded, and the
sample size is adjusted by the number of measurements discarded.

Let X1, . . . ,Xn be a random sample from a population, symmetrically distributed,
with an unknown median M. Then, we are interested in testing a hypothesis that the
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median takes some specified value. That is, the null and alternative hypotheses are, as in
Section 14.2.1, namely:

H0: M = m0 versus H1: M < m0 (14.2.5a)

H0: M = m0 versus H1: M > m0 (14.2.5b)

H0: M = m0 versus H1: M �= m0 (14.2.5c)

To obtain the observed value of the test statistic, we take the following steps:

1. Find the differences between the measurements and the hypothesized median, that
is, for each observation obtain

di = Xi − m0

and record the absolute value, |di|, i = 1, 2, . . . , n.
2. Rank the absolute value of all nonzero differences |di| starting from the smallest to

largest. If two or more |di| are equal, then assign each one of them the average of the
assigned ranks. This procedure is commonly called “breaking the ties.” For example
for two |di| that are equal (i.e. they are tied and have ranks 7, 8) assign each the
rank (7 + 8)/2 = 7.5.

3. Now find the sums of the ranks assigned to positive and negative differences sepa-
rately, and denote them by T+ and T−, respectively.

4. We reject the null hypothesis in favor of the alternative whenever: for Equation
(14.2.5a), T+ is sufficiently small; for Equation (14.2.5b), T− is sufficiently small;
and for Equation (14.2.5c), Min(T+, T−) is sufficiently small. The critical values of
the Wilcoxon signed-rank test are given in Table A.10.

We illustrate the Wilcoxon signed-rank test with the following example:

Example 14.2.3 (Bond strength of materials) An article in Annual Reviews of Material
Research 2001 (p. 291) presents bond strengths for various energetic materials (explosives,
propellants, and pyrotechnics). The bond strengths M for 15 such materials are shown
below:

323 312 300 284 283 261 207 183 180 179 174 167 167 157 120

(M= 220 is an industrial standard). Test at the 5% level of significance that the median
bond strength has value 220.

Solution: The hypothesis that we would like to test is

H0: M = 220 versus H1: M �= 220

The calculations for obtaining the observed value of the test statistic are shown in
Table 14.2.1.
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Table 14.2.1 Calculations for obtaining the value of the test statistic.

Obs. di |di| Rank of |di|
Ranks after
breaking ties T+ T−

323 103 103 15 15.0 15.0
312 92 92 13 13.0 13.0
300 80 80 12 12.0 12.0
284 64 64 11 11.0 11.0
283 63 63 9 9.5 9.5
261 41 41 4 4.5 4.5
207 −13 13 1 1.0 1.0
183 −37 37 2 2.0 2.0
180 −40 40 3 3.0 3.0
179 −41 41 5 4.5 4.5
174 −46 46 6 6.0 6.0
167 −53 53 7 7.5 7.5
167 −53 53 8 7.5 7.5
157 −63 63 10 9.5 9.5
120 −100 100 14 14 14

Total 65.0 55.0

In this example, the test is two-sided, the observed test statistic is Min(T+, T−) =
Min(65, 55) = 55. For the sample size 15, the value from Table A.10 indicates that we
reject H0 at significance level α = 0.05 if the test statistic is less than or equal to 25.
In this example, the test statistics has the value 55 > 25, so we do not reject the null
hypothesis. Based on these data, we may conclude that the median bond strength of
various energetic materials is not different from 220.

Using MINITAB, the above test can be carried out as follows:

MINITAB

To test the hypothesis

H0: M = 220 versus H1: M �= 220

using MINITAB, we proceed as follows:

1. Enter the data in column C1.
2. Select Stat > Nonparametrics > 1-Sample Wilcoxon . . . .
3. In the dialogue box enter C1 in the box below Variables, and select Test median

and enter 220, the specified value of the median under the null hypothesis. Then,
select the appropriate Alternative hypothesis and click OK. The output that
appears in the Session window is
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Wilcoxon Signed Rank Test: C1

Method

Descriptive Statistics

Testη: median of C1

Sample
Sample

N for Wilcoxon
N

C1
C1

Null hypothesis H0: η = 220

Alternative hypothesis H1: η ≠ 220

15 65.00 0.798
15 223.5

Median
Test Statistic P-Value

Since the p-value is 0.798, which is greater than 0.05, we do not reject the null hypoth-
esis that the median bond strength is 220.

USING R

The built-in function ‘wilcox.test()’ in R library(‘stats’) can be used to conduct the
sign-test. The following R code can be used to obtain the required results for the data in
Example 14.2.3.

x = c(323,312,300,284,283,261,207,183,180,179,174,167,167,157,120)
wilcox.test(x, alternative = “two.sided”, mu=220)

#R output
Wilcoxon signed rank test with continuity correction
data: x
V = 65, p-value = 0.7982
alternative hypothesis: true location is not equal to 220

As in the MINITAB procedure, the p-value is greater than 0.05. Therefore, the previous
conclusion stays the same.

14.2.3 Two-Sample Test
There are experimental situations, where we may think of taking n independent pairs
of sample values, say (X1, X

′
1), (X2, X

′
2), . . . , (Xn, X

′
n), from two populations having

continuous cumulative distribution functions (c.d.f.’s) F1(x) and F2(x), where Xi has c.d.f.
F1 and X

′
i has c.d.f. F2. We can assume that each pair of values has measurements either

on the same subject or subjects that have been matched with respect to certain criteria.
Now consider a new variable U, where U is the difference of a pair of measurements so
that Ui = Xi − X

′
i. Then, on the basis of the sample of n differences U1, . . . , Un, we want

to test the hypotheses
H0: F1 = F2 versus H1: F1 > F2 (14.2.6a)

H0: F1 = F2 versus H1: F1 < F2 (14.2.6b)

H0: F1 = F2 versus H1: F1 �= F2 (14.2.6c)
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Now letting

Yi =

{
1, if Ui > 0
0, if Ui < 0

We discard any pair that has Ui = 0, i = 1, . . . , n, and then adjust the sample size n by
reducing n by the number of discarded differences. For example if the starting sample size
is 20, and three zero-differences are discarded, then the adjusted sample size is 17. Then,
the test statistic is, for n, the adjusted sample size,

R =
n∑

i=1

Yi

Now suppose that Mu, the median of the population represented by U = X − X ′. If
H0: Mu = 0, is true, the medians of the two populations are the same, and we have

P (Yi = 1) = P (Xi > X ′
i) = 1/2

since under H0 the probability of the events Xi > X
′
i and Xi < X

′
i are equal. Furthermore,

since the successive pairs are independent, under H0, R is a random variable that has the
binomial distribution B(R = r|n, 1/2), that is,

P (R = r) = b(r) =
(n

r

)(
1
2

)r

(14.2.7)

for r = 0, 1, . . . , n. We say that the observed value r of R, is significantly large at the
100α% level of significance if r ≥ rLα, where rLα is the smallest integer for which

P (R ≥ rLα) ≤ α (14.2.8)

when H0 is true. Hence, for a right-sided test, we would reject H0 when using a one-side
(right-sided) test at α level of significance if the observed r ≥ rLα. Similarly, r is said to
be significantly small at α level of significance if R ≤ rSα, where rSα is the largest integer
for which

P (R ≤ rSα) ≤ α (14.2.9)

when H0 is true. Thus, using a left-sided test of level α, we would reject H0 if the observed
r ≤ rSα. Now let r′ = Min(r, n − r). We say that r′ differs significantly from its expected
value n/2 if r′ does not fall in the interval [rα/2, n − rα/2], where rα/2 < n/2 is the largest
integer for which

P (R < rα/2) = P (R > n − rα/2) ≤ α/2

P (rα/2 ≤ R ≤ n − rα/2) > 1 − α
(14.2.10)

when H0 is true. Hence, using a two-sided test, we would reject H0 at the α level of
significance if the observed r′ is such that r′ ≤ rα/2, or r′ ≥ (n − rα/2). Table 14.2.2 gives
values of rLα, rSα, rα/2 for n up to 30 and for both α = 0.01 and 0.05.

If n is larger than 30, we can approximate rLα, rSα, rα/2 by using the normal approx-
imation (see Chapter 5) to the binomial, that is, approximately, for large n,

P (R ≤ r0) = Φ
(

r0 + 1
2 − n

2
1
2
√

n

)
(14.2.11)
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Table 14.2.2 Critical values of rLα, rSα, rα/2 when using the sign test.

rLα rSα rα/2

n
α

0.01 0.05 0.01 0.05 0.01 0.05

5 5 0
6 6 0 1
7 7 7 0 0 1 1
8 8 7 0 1 1 1
9 9 8 0 1 1 2

10 10 9 0 1 1 2
11 10 9 1 2 1 2
12 11 10 1 2 2 3
13 12 10 1 3 2 3
14 12 11 2 3 2 3
15 13 12 2 3 3 4
16 14 12 2 4 3 4
17 14 13 3 4 3 5
18 15 13 3 5 4 5
19 15 14 4 5 4 5
20 16 15 4 5 4 6
21 17 15 4 6 5 6
22 17 16 5 6 5 6
23 18 16 5 7 5 7
24 19 17 5 7 6 7
25 19 18 6 7 6 8
26 20 18 6 8 7 8
27 20 19 7 8 7 8
28 21 19 7 9 7 9
29 22 20 7 9 8 9
30 22 20 8 10 8 10

where Φ(zα) is the c.d.f. of the standard normal variable. Thus, if Φ(zα) = 1 − α, then we
have

rLα ≈ n + 1
2

+
1
2
√

n zα (14.2.12)

rSα ≈ n − 1
2

− 1
2
√

n zα (14.2.13)

rα/2 ≈
n + 1

2
− 1

2
√

n zα/2 (14.2.14)
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Example 14.2.4 (Hemoglobin levels) Table 14.2.3 (from Kenney and Keeping, 1956, vol.
1, p. 186) shows the hemoglobin (grams/100mL of blood) in 12 anemic rats before and after
four weeks of added iron in the diet (0.5 milligram per day). Test, at the 1% and 5% level
of significance, the hypothesis that the distribution of hemoglobin in anemic rats before
and after the treatment is the same. We assume here that the interval of four weeks is
sufficient to ensure that X (after) and X ′ (before) are independent.

Table 14.2.3 Hemoglobin in rats before and after change in diet.

Rat number Xi
′
(Before) Xi (After) Ui = Xi − X

′
i Yi

1 3.4 4.9 1.5 1
2 3.0 2.3 −0.7 0
3 3.0 3.1 0.1 1
4 3.4 2.1 −1.3 0
5 3.7 2.6 −1.1 0
6 4.0 3.8 −0.2 0
7 2.9 5.8 2.9 1
8 2.9 7.9 5.0 1
9 3.1 3.6 0.5 1

10 2.8 4.1 1.3 1
11 2.8 3.8 1.0 1
12 2.4 3.3 0.9 1∑

Yi = 8

Solution: Note that we observe R =
∑12

i=1 Yi to be r =
∑12

i=1 Yi = 8, and consult-
ing Table 14.2.2, we have under H0 that P (R ≥ 10) ≤ 0.05, P (R ≥ 11) ≤ 0.01 and
P (R ≤ 2) ≤ 0.05, P (R ≤ 1) ≤ 0.01. Furthermore, we have under H0 that P (2 ≤ R ≤
10) > 0.99 and P (3 ≤ R ≤ 9) > 0.95. Thus, no matter whether we consider a one- or a
two-sided test, we do not have significance at either the 1% or 5% levels.

If we had assumed normality in this example and used the paired t-test (see Chapter
9), then similarly we would have found that the value of the test statistic is t11 = 1.61,
which is not significant at either the 1% or 5% level.

Example 14.2.5 (Iron ore) Thirty-six samples of ore were tested for their iron content
by method A and method B. The data are shown in Table 14.2.4. Test the hypothesis that
method A is equivalent to method B at the 5% level of significance.

Solution: Suppose that X and X ′ are the iron contents determined by methods A and
B, and take Ui = Xi − X

′
i, i = 1, . . . , 36. Further, let Yi = 1 or 0 according to whether

Ui > 0 or < 0, respectively, and let R =
∑36

i=1 Yi; then a two-sided acceptance region for
a test of the hypothesis that method A is equivalent to method B at the 5% level of
significance is

[r0.025, n − r0.025]
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Table 14.2.4 Data and calculations for obtaining the value
of the test statistic.

Xi X
′
i Ui Yi Xi X

′
i Ui Yi Xi X

′
i Ui Yi

52 55 −3 0 52 51 1 1 54 50 4 1
55 54 1 1 55 55 0 53 54 −1 0
56 51 5 1 53 53 0 52 50 2 1
55 52 3 1 56 54 2 1 56 51 5 1
55 52 3 1 54 55 −1 0 55 50 5 1
52 50 2 1 52 51 1 1 56 55 1 1
56 54 2 1 52 51 1 1 56 50 6 1
55 53 2 1 53 55 −2 0 53 51 2 1
51 55 −4 0 53 53 0 55 54 1 1
54 54 0 56 52 4 1 51 55 −4 0
51 50 1 1 53 55 −2 0 52 53 −1 0
52 51 1 1 55 50 5 1 52 53 −1 0

But from Table 14.2.4, we find that the adjusted sample size is 32, because four pairs
(X,X ′) have equal measurements and hence are discarded. Thus, r0.025 is given by

r0.025 ≈
n + 1

2
− 1

2
√

n z0.025

≈ 33
2

− 1
2

√
32(1.96) = 10.95611

We use r 0.025 = 11 and we have that (n − r0.025) = (32−11) = 21. Hence, we should not
reject the null hypothesis if 11 ≤ r ≤ 21. In this example, we reject the null hypothesis
because the value of r is 23, which does not fall in the defined acceptance region.

PRACTICE PROBLEMS FOR SECTION 14.2

1. Two tests are used to determine the hardness of a metal used in SUV bumpers.
Ten samples of the metal under investigation are used for these tests. The hardness
indexes under a certain scale produced by the two tests are shown below. Use the
two-sample sign test to see whether the two tests produce equivalent results. Use
α = 0.05.

Sample Test I Test II

1 44 42
2 49 40
3 38 40
4 37 48
5 45 49
6 35 38



14.2 The Sign Test 603

Sample Test I Test II

7 42 36
8 43 35
9 43 41

10 48 36

2. The following data give the heights in centimeters (cm) of 12 basketball players who
were accepted with scholarships during the past 20 years. Use a one-sample sign
test to test whether we can conclude that the median height of all the basketball
players who were accepted with scholarships during that period is equal to 200 cm
versus the hypothesis that the median height is greater than 200 cm. Use α = 0.05.
Determine the p-value for the test.

210 199 199 191 195 192 192 206 205 198 210 202

3. The following data give the placement test scores of a random sample of 20 can-
didates who have applied for undergraduate admission at a public university. Use
the one-sample sign test to test that the median score in the placement test of all
the applicants is greater than the required score of 115 points. Use α = 0.05.

111 102 101 125 102 101 120 115 125 115
116 119 112 113 109 124 101 108 119 103

4. The following data give the cholesterol levels before and after the administration
of a cholesterol-lowering drug in 10 randomly selected patients. Can we conclude
at the 5% level of significance that the drug is ineffective?

Before: 183 174 145 140 177 153 175 173 140 152
After: 150 125 120 117 139 158 116 155 132 122

5. Reconsider the data in Problem 3 above. Use the Wilcoxon signed-rank test to test
the hypothesis that the median score in the placement test of all the applicants is
greater than the required score of 115 points. Use α = 0.05.

6. Reconsider the data in Problem 2 above. Use the Wilcoxon signed-rank test to test
whether we can conclude that the median height of all the basketball players who
were accepted with scholarships during that period is equal to 200 cm versus the
hypothesis that the median height is greater than 200 cm. Use α = 0.05. Determine
the p-value for the test.

7. The following data give the total cholesterol level (HDL + LDL + 20% of triglyc-
erides) of 20 Americans between the ages of 30 and 40 years. Use the sign test to
test the hypothesis at the 5% level of significance that the median cholesterol of
American males in that age group is 150 mg/dL.
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164 180 151 131 130 154 140 137 141 145

176 145 173 141 173 166 141 130 133 144

8. Repeat Problem 7 using the Wilcoxon signed-rank test.
9. The following data give “measured forced vital capacity” in eight asthma patients

before and after a treatment. Use the Wilcoxon signed-rank test to test at the 5%
level of significance that the treatment is effective.

Before: 3878 4011 3685 3384 4091 3451 3898 3098

After: 4249 3569 4262 3839 4177 4063 4304 3539

10. The following data give the time in minutes for 10 technicians to complete a project
before and after an intensive training program. Use the Wilcoxon signed-rank test
to test at the 1% level of significance that the training program is effective.

Before: 66 52 52 62 65 55 56 56 64 55

After: 47 48 60 43 52 40 58 54 49 52

14.3 MANN–WHITNEY (WILCOXON) W TEST
FOR TWO SAMPLES

If two samples are not paired as in Section 14.2 and, in fact, if the samples are not
necessarily of the same size, we may proceed as follows. Suppose that (X1, . . . ,Xm) and
(X

′
1, . . . ,X

′
n) are independent samples from populations having continuous c.d.f.s F1(x)

and F2(x), respectively. We pool the two samples into a single sample of m + n observations
and let the order statistics of this sample be Y(1), Y(2), . . . , Y(m+n).

Consider the ranks (subscripts) of all Y’s that represent the elements of (X1, . . . ,Xm).
Let the sum of these ranks be T, and let W be a random variable defined in terms of T as

W = mn +
m(m + 1)

2
− T (14.3.1)

Actually W is the number of the mn possible pairs (Xi,X
′
j) for which Xi < X

′
j . W is

called the Mann–Whitney statistic and T is called the Wilcoxon statistic. The test using
T as test statistic is called the Wilcoxon rank-sum test.

It can be shown by rather complicated analysis (that we omit) that, if the hypothesis
H0: F1(x) ≡ F2(x) is true; that is if both samples come from populations having identical
c.d.f.s, then
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E(W ) =
mn

2
(14.3.2)

V ar(W ) =
mn(m + n + 1)

12
(14.3.3)

It can be shown that as m and n both approach infinity, the random variable U, where

U =
W − mn/2√

mn(m + n + 1)/12
(14.3.4)

has, as its limiting distribution, the normal distribution N(0, 1). In practice, it has been
found to be a good approximation that for m and n both greater than 8, Equation (14.3.4)
is approximately distributed as N(0, 1).

Example 14.3.1 (Plutonium readings) Two chemists, A and B, make 14 and 16 deter-
minations of plutonium, respectively, with the results shown in Table 14.3.1. Numbers in
parentheses are the rank of the observation in the combined sample. The problem is to deter-
mine whether the two chemists are doing equivalent work, or are obtaining significantly
different results.

Table 14.3.1 Data for Example 14.3.1.

Chemist-A Chemist-B
X Ranks X ′ Ranks

263.36 (13) 286.53 (28)
254.68 (10) 254.54 (9)
248.64 (3) 284.55 (26)
272.68 (19) 253.75 (7)
261.10 (12) 283.85 (24)
287.33 (30) 252.01 (5)
268.41 (16) 245.26 (2)
287.26 (29) 275.08 (20)
276.32 (21) 286.30 (27)
243.64 (1) 272.52 (18)
256.42 (11) 282.90 (23)
282.65 (22) 266.08 (14)
250.97 (4) 267.53 (15)
284.27 (25) 252.05 (6)

253.82 (8)
269.81 (17)
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Solution: Here m= 14, n= 16, and we want to test H0: FA = FB versus H1: FA �= FB.
By combining the two samples into one sample and ordering the observations, we find that
T, the sum of the ranks of the X observations in the combined sample, is 216, that is,
T = 13 + 10 + · · · + 4 + 25 = 216. Hence Equation (14.3.1) has the observed value

W = mn +
m(m + 1)

2
− T = 224 + 105 − 216 = 113

We have from Equations (14.3.2) and (14.3.3) that if H0 is true, then E(W ) = 112 and
V ar(W ) = [(14)(16)(31)]/12 = 578.67, so that the standard deviation of W is 24.06. Hence,
the observed value of Equation (14.3.4) becomes

(113 − 112)/24.06 = 1/24.06 = 0.042 < z0.025 = 1.96

and for this two-sided test, the test statistic is not significant at the 5% level. Hence, we do
not reject the null hypothesis that FA = FB ; that is the chemists are doing equivalent work.

The problems in this section can be done by using one of the statistical packages
discussed in this book.

MINITAB

1. Enter the data from two samples in columns C1 and C2, respectively.
2. From the Bar menu select Stat > Nonparametric > Mann-Whitney.
3. Enter C1 and C2 in the boxes next to First sample and Second Sample, respec-

tively, and select the confidence level, that is, 1 − α. Then select the appropriate
Alternative hypothesis (in this problem not equal) and click OK.

The output that appears in the Session window is given below. Note that the “W -value”
(= 216.00) given in this MINITAB output indicates the sum of the ranks of the first (or X)
sample in our data set and not the Mann-Whitney statistic.

Method Estimation for Difference 

Descriptive Statistics Test

η1: median of C1

η2: median of C2

Difference: η1 – η2 

Sample N

C1

216.00

–0.265 95.17%(–12.85, 10.24)

Null hypothesis

Difference

CI for

Difference

Achieved

Confidence

H0: η1 – η2 = 0

Alternative hypothesis H1: η1 – η2 ≠ 0

0.983

14 265.885

C2 16 268.670

Median

W-Value P-Value

Since the p-value is greater than 0.05, we do not reject the null hypothesis that
FA = FB the chemists are doing equivalent work.

USING R

Similar to Example 14.2.3, the built-in function ‘wilcox.test()’ in R library “stats” can be
used to conduct the Mann-Whitney test. The following R code can be used to obtain the
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required results for the data in Example 14.3.1. Note that in order to get the same value
for the Mann-Whitney test statistic defined in Equation (14.3.1), we have to switch the
order of the sample arguments in ‘wilcox.test()’ function as shown below.

x = c(263.36,254.68,248.64,272.68,261.1,287.33,268.41,287.26,
276.32,243.64,256.42,282.65,250.97,284.27)
y = c(286.53,254.54,284.55,253.75,283.85,252.01,245.26,275.08,
286.3,272.52,282.9,266.08,267.53,252.05,253.82,269.81)

wilcox.test(y, x, alternative = “two.sided”)

#R output
Wilcoxon rank sum test
data: y and x
W = 113, p-value = 0.9837
alternative hypothesis: true location shift is not equal to 0

As in the MINITAB procedure, the p-value is greater than 0.05. Therefore, the previous
conclusion stays the same.

PRACTICE PROBLEMS FOR SECTION 14.3

1. A computer manufacturing company purchases memory chips from two different
suppliers. The following data give the thickness of the coated film (coded data) on
eight randomly selected chips received from two suppliers. Can we conclude at the
5% level of significance that thickness of coated films on chips shipped by the two
suppliers is the same, using the Mann-Whitney test?

Supplier I: 29 30 26 33 33 26 23 20
Supplier II: 26 18 15 15 21 30 24 30

2. A coordinator of an engineering program was interested in testing the effectiveness
of onsite and online courses. Twenty-three students were selected to participate in
this research project. Ten of them were assigned to attend the onsite class and the
remaining 13 were assigned to attend the online class. At the end of a seven-week
session, all the students were given the same test. The data below give the scores
of all the students who participated in this project. Based on these data, can we
conclude at the 5% level of significance that the two methods of teaching are equally
effective using the Mann-Whitney test?

Onsite: 96 84 85 100 86 80 83 93 100 83
Online: 88 83 81 76 85 94 79 95 79 85 90 90 96

3. The following data give the time (in eight-hour shifts) taken to complete a project
by 10 technicians randomly selected from each of the two plants of a company. Based
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on these data, can we conclude at the 5% level of significance that the standards of
hiring technicians at the two plants are different using the Mann-Whitney test?

Plant I: 27 25 27 26 20 28 25 20 23 22

Plant II: 21 25 21 20 19 22 20 21 24 18

4. A medical doctor wished to test the effect of a cholesterol-lowering drug when it is
prescribed to children in one of two forms, tablet or suspension. The following data
give the reduction in cholesterol levels (in mg/dL) after a full four weeks of treatment.
Can we conclude at the 5% level of significance that both forms of the drug have
the same effect in lowering the cholesterol level using the Mann-Whitney test?

Tablet: 37 38 33 38 39 34 40 31

Suspension: 43 43 35 47 45 45 46 39 45 46

5. The following data give drying times (in hours) of two brands of oil-based paint.
Use the Mann-Whitney test to test the hypothesis at the 5% level of significance
that both paint brands dry in the same number of hours.

Brand 1: 8.5 9.0 8.1 10.0 9.3 9.0 8.0 9.2

Brand 2: 10.3 8.5 8.9 10.2 9.8 8.5 8.9 9.3

6. The following data give the total yields of a chemical produced by using the same
catalyst at two different temperatures. Use the Mann-Whitney test to test the
hypothesis at the 5% level of significance that the two temperatures result in the
same yield.

Temperature 1: 61 60 78 65 68 64

Temperature 2: 67 76 72 73 82 79 71 81

14.4 RUNS TEST

14.4.1 Runs above and below the Median
Suppose that we take a sample of 2n elements (X1,X2, . . . ,X2n) from a continuous c.d.f.
F (x), and consider the problem of examining the fluctuations in the sequence of the 2n
drawings for evidence of nonrandomness. One simple way of doing this is as follows: graph
the Xi against i, i = 1, . . . , 2n, as shown in Figure 14.4.1.

If the order statistics of the sample are (X(1),X(2), . . . ,X(2n)), and since the probability
that two or more of the X’s are equal in the sample is equal to zero, there will be a gap
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1
a a b a a b a b a ab

2 3 4 5 6 7 8 9 10 2n

x

x (n+1)

x (n)

Order

Figure 14.4.1 Chart for determining runs above and below the median.

between X(n) and X(n+1). To complete the plotting, draw a horizontal line half-way between
X(n) and X(n+1), as in Figure 14.4.1.

There will be n points above the line and n below. For each Xi above the line, write
a, and for each point below the line, write b, as in Figure 14.4.1, so that there are n, a
symbols and n, b symbols. The total number of distinct possible arrangements of a’s and
b’s is

( 2n
n

)
. If the sample is a random sample from any continuous c.d.f. F (x), then these( 2n

n

)
different possible arrangements have equal probabilities. For any given arrangement,

there are clusters of one or more a’s separated by clusters of one or more b’s.
The total number of clusters of a’s and b’s, say U, is called the number of runs above

or below the median line. Note that if there had been an odd number of elements in the
sample, say 2n + 1, we could have drawn the horizontal line through the order statistic
X(n+1), that is, the median of the sample (X1, . . . ,X2n+1). We would then have n points
above the median and n below. If the measurements in the sequence X1, . . . ,X2n, which
is the order in which the measurements were drawn, exhibit wide swings or jumps from
one general level to another, then the sequence tends to make U significantly small. If the
measurements tend to alternate too much, U tends to be significantly large. In either case,
U is a reasonable indicator of nonrandomness.

It can be shown that the probability function p(u) of U, assuming that (X1, . . . ,X2n)
is a random sample from a continuous c.d.f., is given by

p(u) = 2

(
n−1
u
2 −1

)2

( 2n
n

) if u = 2, 4, . . . , 2n (14.4.1)

p(u) = 2

(
n−1
u
2 −

1
2

)(
n−1
u
2 −

3
2

)
( 2n

n

) if u = 1, 3, . . . , 2n − 1 (14.4.1a)

The mean and variance of U are given by
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μu = n + 1 (14.4.2)

σ2
u =

n(n − 1)
2n − 1

(14.4.3)

(For proofs of results in Equations (14.4.1), (14.4.1a), (14.4.2), and (14.4.3), see Wilks
(1962).) It is known that for large n (> 10), U has approximately a normal distribution
with the mean and variance given in Equations (14.4.2) and (14.4.3). As mentioned pre-
viously, we will suspect nonrandomness if U is either too small or too large. For n ≥ 10,
we then reject randomness if |U − μu| ≥ σuzα/2, at significance level α.

Example 14.4.1 (Dimension of rheostat knobs) The data in Table 14.4.1 give sample
measurements on a certain dimension of rheostat knobs. Examine the sequence of mea-
surements in Table 14.4.1 for evidence of nonrandomness with respect to runs.

Solution: Determining the order statistics of the observations, we find that

X(12) = 0.1412 in. and X(13) = 0.1414 in.

We take, then, as the central line for a test of randomness X = (X(12) + X(13))/2 = 0.1413
in. Writing a if an observation has value > 0.1413 and b if it is < 0.1412, we obtain the
sequence

b a a b a b b a b a a a b a b a b a b b a b a b

Here the number of runs (clusters) U is observed to be U= 19 with n= 12, E(U) = 13,
σ2

u = (12)(11)/23 = 5.74, so σu ≈ 2.4.

Table 14.4.1 Data on rheostats.

Observation Rank order Observation Rank order
number Observed of magnitude number Observed of magnitude

1 0.1367 2 13 0.1394 1
2 0.1414 13 14 0.1422 19
3 0.1415 15 15 0.1412 12
4 0.1406 7 16 0.1417 17
5 0.1416 16 17 0.1402 5
6 0.1404 6 18 0.1425 20
7 0.1400 4 19 0.1407 8
8 0.1418 18 20 0.1408 9
9 0.1410 11 21 0.1430 22

10 0.1432 23 22 0.1398 3
11 0.1448 24 23 0.1415 14
12 0.1428 21 24 0.1409 10
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A two-tailed test for the hypothesis of randomness at the 1% level of significance
for this example is given by the following rule: reject the hypothesis if |U − 13| ≥
(2.4)(2.575) = 6.18; otherwise, do not reject the hypothesis. In this case, it is observed
that |U − 13| = |19 − 13| = 6, so we do not reject the hypothesis and conclude that the
sequence is random, that is, does not exhibit significant nonrandomness.

The general procedure for testing whether an observed value of U is significantly large
or small or differs significantly from its mean value of (n + 1) one way or the other
(two-tailed test) is similar to that used in the sign test except, of course, that we use the
probability function of U instead of R of Equation (14.2.2). In most practical situations,
nonrandomness tends to reveal itself in significantly small values of U.

14.4.2 The Wald–Wolfowitz Run Test
The ideas of Section 14.4.1 extend to the case in which we have two samples, say X1, . . .Xn1

and X
′
1, . . . ,X

′
n2

, from two populations having continuous c.d.f.’s F1(x) and F2(x), respec-
tively. Suppose now that we intend to test

H0: F1(x) ≡ F2(x) for all x
versus

H1: F1(x) �= F2(x) for at least one x

The procedure is as follows: We combine the two samples into one pooled sample and then
order these observations. For example, we might obtain a sequence such as

X(1),X(2),X
′

(1),X
′

(2),X(3),X
′

(3),X
′

(4), . . .

where X(i)(i = 1, 2, . . . , n1) is the ith-order statistic of the X-sample and X
′

(j)(j =
1, 2, . . . , n2) is the jth-order statistic of the X ′-sample.

We now replace each observation by a 0 or 1, according to whether we encounter an
X or an X ′. The sequence above, for example would be

0011011 . . .

A cluster of one or more zeros, or similarly, a cluster of one or more ones, is called a run.
Now there are

(
n1+n2

n1

)
possible distinguishable arrangements or permutations of the

n1 0’s and n2 1’s. Under the null hypothesis that F1(x) ≡ F2(x), these arrangements are
equally likely. For each permutation, there will be a total number U of runs, and we can
use this to test the hypothesis H0 that F1(x) ≡ F2(x).

The probability function of U is given by

p(u) = 2

(
n1−1
u
2 −1

) (
n2−1
u
2 −1

)
(

n1+n2
n1

) if u is even

p(u) =

(
n1−1

1
2 (u−1)

)(
n2−1

1
2 (u−3)

)
+

(
n1−1

1
2 (u−3)

) (
n2−1

1
2 (u−1)

)
(

n1+n2
n1

) if u is odd

(14.4.4)



612 14 Nonparametric Tests

Under H0 it can be shown that mean and variance of U are as follows:

μu = E(U) =
2n1n2

n1 + n2
+ 1 (14.4.5)

σ2
u = V ar(U) =

2n1n2(2n1n2 − n1 − n2)
(n1 + n2)2(n1 + n2 − 1)

(14.4.6)

Furthermore, if n1 and n2 are large, U has approximately a normal distribution with mean
and variance given in Equations (14.4.5) and (14.4.6), respectively. The approximation
of the distribution of U by the normal is usually adequate for practical purposes when
both n1 and n2 exceed 10. The reader should note that the results (14.4.4), (14.4.5), and
(14.4.6) reduce to Equations (14.4.1), (14.4.2), and (14.4.3), respectively, if n1 = n2 = n.

Example 14.4.2 (Testing two samples using a run test) The following two samples of
measurements were obtained from sampling two populations, I and II. The problem is to
test, using the theory of runs, the hypothesis that the two samples are from populations
having identical c.d.f.s.

Population I (X): 25 30 28 34 24 25 13 32 24 30 31 35
Population II (X ′): 44 34 22 8 47 31 40 30 32 35 18 21 35 29 22

Solution: Here n1 = 12, n2 = 15, so μu = 14.3 and σ2
u = 6.32, and the standard deviation

of U is σu = 2.51. The combined sample when ordered gives rise to the sequence

8x′ , 13x, 18x′ , 21x′ , 22x′ , 22x′ , 24x, 24x, 25x, 25x, 28x, 29x′ , 30x, 30x,

30x′ , 31x, 31x′ , 32x, 32x′ , 34x, 34x′ , 35x, 35x′ , 35x, 40x′ , 44x′ , 47x′ ,

where the x and x′ subscripts denote measurements from the samples of X and X ′, respec-
tively. We denote an X observation by 0 and an X ′ observation by 1. Note that in the data
we have encountered repeated elements within and across samples for the values 30, 31,
32, 34, and 35. In fact 30x, 30x, and 30x′ occur at positions 13, 14, and 15 in the combined
ordered sample above, and so on. One widely used procedure to break the ties is illustrated
by the following example. Toss a coin. If the toss results in a head, we replace 30x by a
zero, 30x′ by a one; if tails occurs, we replace 30x by a one and 30x′ by a zero. In this
example, performing this randomization procedure might lead to the following sequence:

1 0 1 1 1 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1

which gives U= 17 runs. Now we reject the null hypothesis using the normal approxi-
mation at the 1% level of significance if |U − μu| ≥ σuzα/2, which for this example with
α = 0.01, is.

Reject H0: F1 = F2 if
|U − 14.3| ≥ 2.51(2.575) ≈ 6.5
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and do not reject otherwise. But the observed value of U is 17, so

|U − 14.3| = |17 − 14.3| = 2.7 < 6.5

Hence we do not reject the hypothesis that the two samples come from populations having
identical c.d.f.’s.

PRACTICE PROBLEMS FOR SECTION 14.4

1. The following sequence shows the wins (W ) and losses (L) of a baseball team for 40
consecutive games in a given season (there are usually 162 games in a season). Use
the runs test to test a hypothesis that the sequence of wins and losses is random.
Use α = 0.05.

W W W L L W L L L W W W W L LW W W L L W L L L W W W L L W L W

W W L L W L L W

2. Use the Wald–Wolfowitz run test for data in Problem 2 of Section 14.3. Can we con-
clude, based on these data, that the two types of courses have different distributions?
Use α = 0.05.

3. A quality control engineer of a manufacturing company classifies a manufactured
part as conforming (C) or nonconforming (N) depending on whether or not it meets
the specifications. The company received a new machine and the engineer inspects
45 consecutive parts produced by the new machine for their conformity. The parts
produced turned out to be as shown below. Use the runs test to test that the sequence
of conforming and nonconforming is random. Use α = 0.01.

C C C N C C C N N C C C C C N C C C C C C C N N C C C N C C

N C C C C N C C C C C C N N C

4. The following data give the number of school years spent by some American adults
of ages between 30 and 40 years who were randomly selected from two different
socioeconomic groups. Using the Wald–Wolfowitz run test, can we conclude based on
the data below that the two populations have different distributions? Use α = 0.05.

Group I: 14 14 13 12 13 9 8 15 10 8 12 13
Group II: 16 14 14 16 17 22 16 15 22 22 12 18 17 21 20

5. The following data give the gender of the first 25 students who were admitted to a
medical school. Use the runs test to test that the sequence of males and females is
random. Use α = 0.01.

M M F F F M F F M M M F F M F M M F F F M M F M M

6. The following data give the departures from the desired specified tensile strength
for 24 pieces of copper wires. Find whether we can conclude that the pattern of
departure above and below the specified value is the result of a nonrandom process
(read the data in row 1 first and then proceed to row 2). Use α = 0.05.
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23 −24 30 28 −30 2 56 −30 −49 −23 33 42
34 20 −41 26 −16 −18 37 24 −44 −29 28 −30

7. The following data give the number of interviews for a particular residency
received by some medical students from two different medical schools. Using
the Wald–Wolfowitz run test, can we conclude, from these data, that the two
populations have different distributions? Use α = 0.05 (note that nA = 11, nB = 12).

School A: 9 8 9 10 9 9 9 9 8 10 10
School B: 8 9 7 7 9 9 7 9 7 9 8 9

8. A dietician wants to investigate the effect of a dieting program on males and females.
The following data give the weight loss (in lbs) of a group of males and females after
they were on that program for six weeks. Using the Wald–Wolfowitz run test, can
we conclude from these data that the two populations have different distributions?
Use α = 0.05.

Females: 18 24 18 22 20 21 25 18 22 20 20
Males: 19 15 10 16 10 14 15 13 15 10 11 20

14.5 SPEARMAN RANK CORRELATION

Let (X1,X
′
1), (X2,X

′
2), . . . , (Xn,X

′
n) be a random sample from a continuous bivariate

population, that is, each pair of observations (Xi,X
′
i), i = 1, 2, . . . , n, represents a pair

of measurements on the same subject and the scale of measurement is at least ordi-
nal. Let X(1),X(2), . . . ,X(n) and X

′

(1),X
′

(2), . . . ,X
′

(n) be the order statistics of the X and
X ′ measurements, respectively. We now rank X and X ′ measurements of the sample
(X1,X

′
1), (X2,X

′
2), . . . , (Xn,X

′
n) so that if Xi = X(1), then R(Xi) = 1, and if Xi = X(n),

then R(Xi) = n, and so on. Similarly, if X
′
i = X

′

(1), then R(X
′
i) = 1, and if X

′
i = X

′

(n), then
R(X

′
1) = n. If some X and/or X ′ measurements are repeated, then they are assigned ranks

equal to the average of their ranks. For example, if an X measurement that is 8 (say) is
repeated three times and the actual ranks within the set of Xi measurements are 5, 6, and 7,
then each measurement 8 is assigned a rank of 6, determined from (5 + 6 + 7)/3 = 6. This
process of reassigning the ranks is usually known as a process of breaking a tie. Having done
that, we may now want to test at the α level of significance one of the following hypotheses.

H0: X and X ′ are not correlated,
versus

(a) H1: X and X ′ are positively or negatively correlated
(b) H1: X and X ′ are positively correlated
(c) H1: X and X ′ are negatively correlated

Hypothesis (a) is two-sided, whereas hypotheses (b) and (c) are one-sided. The test
statistic for testing H0 against any of the hypotheses (a), (b), or (c) is known as the
Spearman rank correlation and given by
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rs = 1 − 6
n∑

i=1

d2
i

n(n2 − 1)
, di = R(Xi) − R(X

′

i), i = 1, 2, . . . , n (14.5.1)

Note that rs satisfies the inequality −1 ≤ rs ≤ 1. Furthermore, the reader can easily verify
that

rs = 1 if R(Xi) = R(X
′

i) (14.5.2)

rs = −1 if R(Xi) = R(X
′

n+1−i) (14.5.3)

for i = 1, 2, . . . , n. We say that the ranking of X and X ′ are in perfect agreement when
rs = 1 and in perfect disagreement when rs = −1. In other words, when rs = 1, there is
direct perfect association, and when rs = −1, there is perfect disagreement between X
and X ′. This means generally that large values of |rs| tend to support the alternative
hypotheses. The critical values of rs are given in Table A.16. If the absolute observed
value of rs is greater than the tabled value, we reject the null hypothesis. Otherwise, we
do not reject the null hypothesis. We illustrate this test with the following example.

Example 14.5.1 (Job applicants’ interview scores) A large engineering company received
10 applications from well-qualified engineers for the position of senior engineer. These
applicants are interviewed by two senior managers who independently awarded them inter-
view scores. The scores are shown in Table 14.5.1. Do the data provide sufficient evidence
at the 5% level of significance of an association between the scores awarded by the two
interviewers?

Solution: In this example, the hypothesis that we wish to test is

H0: X and X ′ are independent
versus

H1: X and X ′ are positively or negatively correlated

Table 14.5.1 Interview scores and their ranks.

Xi X
′
i R(Xi) R(X

′
i) di d2

i

87 82 2.0 3.0 −1.0 1.00
90 83 5.0 4.5 0.5 0.25
95 84 9.5 7.0 2.5 6.25
94 91 8.0 10.0 −2.0 4.00
85 80 1.0 1.5 −0.5 0.25
92 83 6.5 4.5 2.0 4.00
92 90 6.5 9.0 −2.5 6.25
89 80 4.0 1.5 2.5 6.25
95 84 9.5 7.0 2.5 6.25
88 84 3.0 7.0 −4.0 16.00∑

d2
i = 20.5
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We have n= 10 and
∑10

i=1 d2
i = 1 + 0.25 + · · · + 16 = 50.5. Hence, the test statistic, using

Equation (14.5.1), is observed to be

rs = 1 − 6(50.5)
10(100 − 1)

= 0.693

Table A.16 indicates that for n= 10, for the two-sided test at the 5% level of significance,
the critical value of the test statistics rs is 0.6364, which is smaller than the observed
value of rs. Hence, we reject the null hypothesis at significance level 0.05 that the scores
awarded by two interviewers are independent.

For large n (> 30), we can use a Z statistic that is distributed approximately as the
standard normal N(0, 1), where Z is defined as

Z = rs

√
n − 1 (14.5.4)

We will discuss other nonparametric methods, namely, the Kruskal–Wallis test for one-way
ANOVA and the Friedman test for two-way ANOVA, in Chapter 17.

PRACTICE PROBLEMS FOR SECTION 14.5

1. The following data give the scxores in the final exams on differential equations and
quantum mechanics that were received by 10 students randomly selected from a
freshmen engineering class. Do these data provide sufficient evidence to indicate an
association between the two scores? Use α = 0.05.

DE: 87 92 93 94 97 86 98 95 88 96
QM: 82 91 81 88 83 86 82 88 91 81

2. Ten female candidates are ranked in a beauty competition by two judges. These
ranks are shown below. Do these data provide sufficient evidence to indicate an
association between the two ranks? Use α = 0.05.

Judge I: 4 7 9 5 10 2 8 3 1 6
Judge II: 2 10 3 6 5 1 7 8 9 4

3. The following data show heights in centimeters (cm) and average scores per game of
12 randomly selected basketball players. Do these data provide sufficient evidence
to indicate an association between the heights and the average scores per game? Use
α = 0.10.

Heights: 201 199 194 188 198 201 202 197 192 195 205 198
Scores: 16 22 25 22 21 23 23 22 19 23 17 15
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4. In a study of the relationship between age and LDL (mg/dL), data were obtained
on 10 subjects between 40 and 70 years. The following data give the ages and LDL
for each of the 10 subjects. The experimenter wants to know if we can conclude at
the 5% level of significance that age and LDL are positively correlated.

Age: 58 66 47 52 53 51 54 58 52 56
LDL: 131 162 144 145 130 115 118 151 122 157

5. The following data give the IQ level and the scores obtained in a standardized test
for 12 candidates. Determine the Spearman rank correlation and test at the 5% level
of significance that there is a positive correlation between the IQ level and the test
scores.

IQ: 92 117 100 90 130 108 121 130 105 123 129 114
Test: 79 88 79 86 86 84 77 95 82 95 84 95

6. A manager of a manufacturing company wished to study the years of service and
productivity of a group of technicians. The following data give the years of service
and the productivity for 10 technicians. Determine the Spearman rank correlation
and test at the 5% level of significance that there is a correlation between the years
of service and productivity.

Years of service: 11 13 19 12 13 12 16 18 16 15
Productivity: 113 119 107 117 114 109 115 120 117 118

7. The following data give systolic blood pressure readings taken by a doctor and
her nurse on the last 10 patients who visited the doctor’s office. Determine the
Spearman rank correlation and test at the 5% level of significance that there is a
positive correlation between the systolic blood pressure taken by the doctor and her
nurse.

Doctor: 122 130 115 130 124 125 130 129 126 124
Nurse: 135 130 140 135 128 137 130 125 123 136

8. The following data give the white blood cell counts and the duration of follow-up
(in months) after the operations of some cancer patients. Determine the Spearman
rank correlation and test at the 5% level of significance that there is a negative
correlation between the white blood cell counts and the duration of follow-up.

Duration of follow-up: 15 11 12 19 18 19 13 15
White blood cell count: 2773 3207 3535 3512 2792 3143 3302 3153
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14.6 USING JMP

This section is not included in the book but is available for download from the book
website: www.wiley.com/college/gupta/statistics2e.

Review Practice Problems

1. Fifteen diabetic patients are given 1000 mg of Metformin (500 mg twice a day) and two
weeks later their serum sugar levels were as shown below. Do the data give sufficient
evidence to indicate that the patients on Metformin have median serum sugar level of
140 mg/dL? Use the Sign test at the 5% level of significance.

134 149 141 143 126 130 147 134
134 144 128 149 135 126 149

2. A consumer group rated 12 manufactured products imported from a single source on
a scale of 1–10. The data are shown below. Do the data provide sufficient evidence to
indicate that the median score is greater than 5? Use the sign test at the 1% level of
significance.

2 9 6 7 8 5 10 2 8 5 3 4

3. The following data show measurements of the corrosion effects of various soils for
coated and uncoated steel pipe (from Hoel, 1954). Use the sign test to test the hypoth-
esis that the particular coating used has no effect on corrosion. Use α = 0.05.

Uncoated, x : 42 37 61 74 55 57 44 55 37 70
52 55 60 48 52 44 56 44 38 47

Coated, x′: 39 43 43 52 52 59 40 45 47 62
40 27 50 33 56 36 54 32 39 40

4. Use the sign test for Problem 24 in Review Practice Problems in Chapter 9.

5. Two samples of 30 observations each from populations A and B are such that when
the Mann-Whitney W test for two samples is used, the sum of the ranks in the pooled
sample of the X ′ measurements (from population B) is found to be 1085. Hence, the
Mann–Whitney test statistic has value W=nm+(m(m+1))/2− T= 280. Is the value
of W significantly small at the 1% level?

6. Use the Wald–Wolfowitz run test for the data of Problem 9 of Review Practice Prob-
lems in Chapter 8 to test the null hypothesis that the samples come from populations
having identical continuous c.d.f.s F1(x) and F2(x). Use α = 0.05.
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7. Twenty-four samples of four insecticide dispensers were taken periodically during a
production period. The average charge weights (in grams) of the 24 samples are shown
below. Use the median test on the sample means to test for randomness. Use α = 0.05.

Sample no. X̄ Sample no. X̄

1 471.5 13 457.5
2 462.2 14 431.0
3 458.5 15 454.2
4 476.5 16 474.5
5 461.8 17 475.8
6 462.8 18 455.8
7 464.0 19 497.8
8 461.0 20 448.5
9 450.2 21 453.0

10 479.0 22 469.8
11 452.8 23 474.0
12 467.2 24 461.0

8. The total thicknesses X of the four pads of 36 half-ring (H-R) mounts for aircraft
engines, taken periodically from the production line, were found to be as shown below.
Determine whether the total number of runs above and below the median of this
sequence of values of X is significantly different from its expected value at the 5%
level of significance, under the hypothesis that X is under statistical control.

H-R# X H-R# X H-R # X

1 1.5936 13 1.5900 25 1.5920
2 1.5906 14 1.5925 26 1.5918
3 1.5982 15 1.5924 27 1.5908
4 1.5901 16 1.5901 28 1.5913
5 1.5869 17 1.5902 29 1.5922
6 1.5898 18 1.5904 30 1.5915
7 1.5930 19 1.5910 31 1.5927
8 1.5894 20 1.5926 32 1.5913
9 1.5885 21 1.5890 33 1.5911
10 1.5905 22 1.5895 34 1.5903
11 1.5904 23 1.5936 35 1.5916
12 1.5902 24 1.5933 36 1.5939

9. A sequence of 100 measurements on a process, supposedly under statistical control,
was analyzed for runs above and below the median. The total number of runs above
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and below the median was observed to be 39. Is this a significantly low value at the
5% level of significance? Show your calculations.

10. During a 45-day production period in a cement plant, test cubes were taken each
day, and the compressive strengths (in kg/cm2) of the test cubes were determined
with the following results (data from Hald, 1952). Test the hypothesis of randomness
at the 5% level of significance in this sequence by using the run test of above and
below the median.

440 433 475 418 462 433 438 469 465 500 524 491 479 442 463 423
447 452 498 497 473 485 488 440 442 451 423 452 475 526 490 511
492 509 472 428 456 417 452 468 475 502 507 477 445

11. The 58 observations shown below were obtained by Millikan (1930) for the charge on
an electron in 10−10 esu (CGS) units. By using runs above and below the median, test
the hypothesis that the variation in this sequence is behaving randomly. Specify the
value of α that you are using.

4.781 4.771 4.768 4.788 4.790
4.795 4.789 4.801 4.783 4.747
4.769 4.772 4.785 4.740 4.769
4.792 4.789 4.783 4.775 4.806
4.779 4.764 4.808 4.761 4.779
4.775 4.774 4.771 4.792 4.785
4.772 4.778 4.809 4.758 4.790
4.791 4.791 4.790 4.764 4.777
4.782 4.777 4.779 4.810 4.749
4.769 4.765 4.788 4.799 4.781
4.764 4.785 4.772 4.779
4.776 4.805 4.791 4.797

12. Two analysts took repeated readings on the hardness of city water. The data are
shown below. Determine whether one analyst has a tendency to read the instruments
differently from the other, using the Mann–Whitney Wilcoxon test (data from Bowker
and Lieberman, 1959). Use α = 0.05.

Analyst A: 0.46 0.62 0.37 0.4 0.44 0.58 0.48 0.53
Analyst B: 0.82 0.61 0.89 0.51 0.33 0.48 0.23 0.25 0.67 0.88

13. In a trial of two types of rain gauges, 65 of type A and 65 of type B were distributed at
random over a certain region. In a given period, 14 storms occurred, and the average
amounts of rain found in the two types of gauges were as shown below (from Brownlee,
1960). Test the hypothesis that the two types of gauges are giving similar results, using
the sign test. Use α = 0.05.
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Storm: 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Type A: 1.38 9.69 0.39 1.42 0.54 5.94 0.59 2.63 2.44 0.56 0.69 0.71 0.95 0.5
Type B: 1.42 10.37 0.39 1.46 0.55 6.15 0.61 2.69 2.68 0.53 0.72 0.72 0.93 0.53

14. The following data show the weight (in lb) and systolic blood pressure of 10 randomly
selected male adults. Do the data provide sufficient evidence to indicate that there is
a positive association between weight and systolic blood pressure? Use α = 0.05.

Weight (lb): 198 160 192 198 167 176 150 151 168 169
Systolic BP: 135 145 138 145 136 153 133 139 137 157

15. A random sample of 12 students was selected from the freshman class at a liberal arts
college. For each student, final scores in a first course in both calculus and physics
are recorded and appear as given below. Do these data provide sufficient evidence to
indicate that there is an association between calculus and physics scores? Use α = 0.01.

Calculus: 95 96 94 94 87 88 89 90 95 93 92 93
Physics: 91 91 95 90 82 95 85 84 83 87 87 92



Chapter 15

SIMPLE LINEAR
REGRESSION ANALYSIS

The focus of this chapter is the development of some procedures
employed in simple linear regression analysis.

Topics Covered

• Basic concepts of regression analysis
• Fitting a straightline by least squares
• Unbiased estimation of error variance σ2

• Tests and confidence intervals for the regression coefficients β0, β1 of the simple linear
regression model

• Determination of confidence intervals for E(Y |X)
• Determination of a prediction interval for a future observation Y
• Inference about the correlation coefficient ρ
• Residual analysis

Learning Outcomes

After studying this chapter, the reader will be able to

• Fit a simple linear regression model to a given set of data and perform a residual analysis
to check the validity of the model under consideration.

• Estimate the regression coefficients using the method of least squares and carry out
hypothesis testing to test whether the first-order regression model is an appropriate fit
to the given data.

• Estimate the expected response, predict future observation values, and find their confi-
dence intervals using the given confidence coefficients.
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• Make inferences about the correlation coefficient between the response variable and the
predictor variables.

• Use statistical packages MINITAB,R, and JMP to perform regression analysis.

15.1 INTRODUCTION

In this chapter, and the next, we deal with aspects of mathematical model building for the
purpose of either describing a natural phenomenon based on some observable variables or
predicting the value of a variable with the help of the observed values of one or several
other variables. The reader may be familiar with the hypothesis (Boyle’s law for gases)
stating that (pressure) × (volume) = constant under a given temperature. This hypothesis
is formulated after taking several observations on pressure and volume and noting that
Boyle’s law holds. Thus, a natural phenomenon is described by the following mathematical
equation, called the mathematical model:

P × V = C|T

where P, V, T denote the pressure, volume, and temperature, respectively, and C is a
constant; the notation C|T is read as “constant for a given temperature.” Such a model is
true until further evidence becomes available to prove that it is not true. In such cases, a
new hypothesis must be formulated and further research is required to find a true model
that then becomes the new law.

In this and the next chapter, we are not trying to create models that become laws to
describe natural phenomena; rather, we are setting up models to help clearly describe a
natural phenomenon or process and to predict a variable by observing other variables. In
the model P × V = C|T given above, only two variables, P and V, are involved for a given
temperature T.

Quite often, however, we are confronted with statistical problems where we must deal
with three, four, or more variables. For example, consider the problem of estimating the
weight of a male from his height. Suppose that n males are selected and their heights, X
(feet), and weights, Y (pounds), are observed. Further, suppose that these observations
indicate a relationship of the form Y = 10 + 25X. If this is the true relationship, then
any other person’s height and weight should satisfy the same model equation, Y = 10 +
25X. For example, if a person’s height is 6 ft, then following the model, his weight should
be 160 lb.

Suppose, however, that his actual weight is 180 lb, or a 20 lb difference between the
predicted and the observed value. If a second person is weighed and measured and if his
height and weight are checked with the model, then perhaps the difference between the
predicted and observed values of the weight may differ from 20 lb. The reason for this
difference between the predicted and observed values, as well as the deviations between
the differences, may be attributable to numerous factors. For example, our sample of n
persons may not be a representative sample of the population for which we want to create
a prediction model. This discrepancy can be corrected by a proper random sampling
procedure. Yet we may find differences between the predicted and observed values, as well
as the deviations between the differences.

Many other factors may contribute to the weights, such as the amount of food con-
sumed, genetic factors, amount of daily exercise, and climate or environmental factors. Sup-
pose that all the recognizable factors that may have some effect on the weight are isolated
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and expressed as X1,X2, . . . ,Xk. If these are the only factors, and if there exists a function
f(X1,X2, . . . ,Xk) giving the weight Y, the problem simplifies to one of determining f
based on a properly selected random sample of measurements on X1,X2, . . . ,Xk and Y.

Suppose, by some technique, the form of f is constructed. Then the measurements
X1,X2, . . . ,Xk should predict the weight Y as f(X1,X2, . . . ,Xk). Often this predicted
value may not again agree with the observed weight. This means that either the construc-
tion of the model f(X1,X2, . . . ,Xk) is not properly done or there is a number of other
unknown factors that contribute to a person’s weight. The sum total contribution from
all unknown factors is called the “random part” in the model; it is usually denoted by ε.
Thus the model becomes

Y = f(X1,X2, . . . ,Xk) + ε (15.1.1)

where f and ε are unknown, and X1,X2, . . . ,Xk and Y are observable. The two basic
problems are (i) defining f and (ii) constructing f. In statistical terminology, the model in
(15.1.1) is the regression model with f the regression function, the variable Y the response
or dependent variable, and the variables X1,X2, . . . ,Xk the predictor or independent vari-
ables. In this chapter, we consider a simple aspect of constructing the regression model
using the statistical packages, MINITAB, R, and JMP, when there is only one predictor
variable involved.

15.2 FITTING THE SIMPLE LINEAR
REGRESSION MODEL

15.2.1 Simple Linear Regression Model
Consider the regression model (15.1.1) when there is only one independent variable and
the regression function is linear. Thus the model can be written as

Yi = β0 + β1Xi + εi, i = 1, 2, . . . , n (15.2.1)

From this model, we have

1. Yi is the value of the response variable in the ith trial, or experiment.
2. β0 and β1 are the unknown parameters, usually referred to as regression coefficients.

Here β0 is the y intercept (value of Y when X = 0) and β1 is the slope of the line;
that is, the rate of change in Y as X changes.

3. Xi is the value of the predictor (or independent) variable selected in the ith trial,
at which we observe Yi.

4. The εi’s are random variables, and E(εi) = 0, V ar(εi) = σ2, with εi, εj (for all
i, j; i �= j), i, j = 1, 2, . . . , n uncorrelated so that, E(εiεj) = 0.

Note that Yi is a value of an observable random variable, Xi is a nonrandom preselected
value of X used to generate Yi, and εi is an unobservable random variable. Also β0 and
β1, the so-called regression parameters, are unknown, so that estimates of β0 and β1 are
desired. The model (15.2.1) is called the simple linear regression model because it is linear
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in regard to the parameters β0 and β1. Furthermore, since the model is also linear in the
predictor variable X, this regression model is called a first-order linear model. Now, in
view of condition 4 on the random variable εi, the model (15.2.1) may alternatively be
expressed as

E(Yi|Xi) = β0 + β1Xi, i = 1, 2, . . . , n (15.2.2)

and, in general, we often refer to the model (15.2.2) as

E(Y ) = β0 + β1X (15.2.3)

Letting E(Y |X) = η, the model (15.2.3) may be written as

η = β0 + β1X (15.2.3a)

This model relates the mean of the dependent variable Y linearly to the independent
variable X. Now, to achieve the goal of constructing the regression model, we need to
estimate the unknown parameters, β0 and β1. The process of estimating these parameters
and evaluating them based on the information contained in a random sample of n ordered
pairs (xi, yi), i = 1, . . . , n, of observations is called regression analysis.

Before we start estimating the unknown parameters β0 and β1 of the regression model
(15.2.1), we must evaluate whether, for the given set of observations (xi, yi), the model is
viable. One way to evaluate whether the model is viable is to draw a scatter plot for the
given set of observations (xi, yi), and “eyeball” a straightline through the data points to
see if a first-order model gives a reasonable fit. There may be no apparent relationship,
indicating the model is not viable, or there may be an apparent relationship, indicating
that the model is viable.

Example 15.2.1 (Gas volume versus temperatures) A gas can be kept at a constant
pressure by placing it in a cylinder with a free moving piston. The volume of gas in such a
cylinder increases with temperature. An experiment can be performed in which the volume
of the gas in the cylinder is measured at various preselected settings of temperature. A
record and plot of such data appear in Figure 15.2.1.

Temperature ◦C: X 0 20 40 60 80 100

Volume cm3: Y 50.0 53.7 57.3 61.0 64.8 68.3

It is obvious that the plotted points fall along a straightline. Students of engineer-
ing will recognize this relationship as Charles’s law. In this example, the simple linear
regression model is clearly appropriate. However, in problems where the plotted points do
not fall nearly along a straight line, the problem of analysis becomes more complicated.
The difficulty of drawing a line through a scattering of points, (Xi, Yi), i = 1, . . . , n, in
Figure 15.2.1, is that repeating this experiment on the same set of points will likely result
in quite different results due to the randomness of the Yi’s. What is clearly needed is
some objective way to fit a straight line to observed data, or to estimate the unknown



626 15 Simple Linear Regression Analysis

70

Scatter plot for data in example 15.2.1

65

60Y

x

55

50

0 20 40 80 10060

Figure 15.2.1 Experimental verification of Charles’s law.

parameters β0 and β1. The most widely used method for estimating the parameters β0
and β1, is the method of least squares, which we discuss in Section 15.2.2.

So far we have not considered any particular form of the probability distribution of
the random error ε. It should also be noted that regardless of any form of the probability
distribution of the random error ε, the least-squares method results in point estimators
of β0 and β1 that are unbiased and have minimum variance among all unbiased linear
estimators. This result is known as the Gauss–Markov theorem. However, any further
inference on β0 and β1, such as determining confidence intervals and/or testing hypotheses,
assumes that the random errors εi’s are normally distributed as N(0, σ2). Under this
assumption that εi’s are normally distributed, the model (15.2.1) is written as

Yi = β0 + β1Xi + εi, i = 1, 2, . . . , n (15.2.4)

where we assume that:

1. Yi is the value of the response variable in the ith trial, and Yi’s are independent
random variables.

2. β0 and β1 are the unknown parameters, where β0 is the y-intercept (value of Y when
X is zero) and β1 is the slope of the line, that is, the rate of change in Y as X
changes. The parameters β0 and β1 are often called the regression coefficients.

3. Xi is the value of the predictor variable in the ith trial.
4. εi’s are independent N(0, σ2) random variables.

Note that under the assumption that εi’s are normally distributed, the condition that
the εi’s are uncorrelated in (15.2.1) turns into the assumption of independence, since two
uncorrelated normal random variables are independent (Chapter 5). The model (15.2.4)
when assumptions 1–4 hold is also sometimes called the normal error regression model.

Furthermore, using model (15.2.4) and some of the characteristics of the normal dis-
tribution, we can easily rewrite (15.2.4) as

Yi ∼ N(β0 + β1Xi, σ
2), Y ′

i s independent (15.2.5)
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Figure 15.2.2 Distributions of Y at X having values x and x′ have exactly the same
form, but differing in location.

Note that V ar(Yi) has the same value σ2 for all Yi. In other words, for different Xi, the
probability distributions of Yi are the same except for the location parameter. Figure 15.2.2
illustrates this concept.

15.2.2 Fitting a Straight Line by Least Squares
Suppose that the true relation between a response Y (e.g., hardness of steel) and a con-
trolled variable X (e.g., X is the amount of carbon molecules inserted into the crystal
structure of steel as it cools) is linear so that it can be modeled by the straightline model
in (15.2.1). Let us agree to select several different values of X before the experiment,
say (X1,X2, . . . , Xn) = (x1, x2, . . . , xn), and record the observation yi of Yi at each of
the values of X (some values of X may be repeated). The choice of (X1,X2, . . . ,Xn) =
(x1, x2, . . . , xn) is referred to as the design of the experiment. We assume that E(Y |X) = η
and that the variance σ2 of Y is independent of the values of X.

Now the n pairs of measurements (xi, yi), i = 1, . . . , n, may be plotted as points in the
(x, y)-plane, thus producing a scatter diagram (see Figure 15.2.3). We want to estimate
β0, β1, σ2, and we will use the information contained in the n sample points to estimate
these parameters.

To find good (in some sense) estimators of the regression parameters β0 and β1, we
use the method of least squares. The least-squares method produces the smallest possible
sum of squared errors, the squared deviations of the observed Yi from the estimate of
their true means E(Yi) = β0 + β1Xi. In other words, the least-squares method proceeds
by minimizing, over choices of β0 and β1, the quantity

Q(β0, β1) =
n∑

i=1

(Yi − β0 − β1Xi)
2 (15.2.6)

From (15.2.4) and (15.2.5) we have that the probability density of Y, given X = x, is

f(y|x) =
1

σ
√

2π
exp

(
− 1

2σ2 (y − β0 − β1x)2
)

(15.2.7)
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Figure 15.2.3 Scatter plot of n pairs of measurements (xi, yi), i = 1, . . . , n, on hardness
of certain steels.

Further, from our earlier discussion in this section, we have assumed that the random
variables Y1, Y2, . . . , Yn are statistically independent so that the likelihood function is
the joint probability density function based on the sample n pairs (x1, y1), (x2, y2), . . . ,
(xn, yn) and is given by∏n

i=1 f(yi|xi) =
∏n

i=1
1√

2πσ2 exp
(
− 1

2σ2 (yi − β0 − β1xi)
2
)

=
{(

1√
2πσ2

)n

exp
(
− 1

2σ2

∑n
i=1 (yi − β0 − β1xi)

2
)} (15.2.8)

As discussed in Chapter 8, a widely used method for estimating parameters is to use
those values that maximize the likelihood function. If we apply this method of maximum
likelihood to finding estimators of β0, β1, and σ2, we must maximize the quantity within
the brackets{ } in (15.2.8). Note that maximizing the quantity within the brackets { }
with respect to β0 and β1 involves the problem of minimizing with respect to β0 and β1
the sum of squares function Q of (15.2.6), namely

Q(β0, β1) =
n∑

i=1

(yi − β0 − β1xi)
2 (15.2.9)

located in the exponential part of (15.2.8). This is because of the presence of the minus
sign in the exponential part of (15.2.8). Hence, under the assumption of normality of the
errors εi (see condition 4 of (15.2.4)), we find that the maximum likelihood estimators and
the least-squares estimators of β0 and β1 are one and the same.

Note that we could have used the principle of least squares to find estimators without
invoking the condition of normality. Interestingly, it can be proved that under the assump-
tions 1–3 of (15.2.4), minimum-variance, unbiased estimators of parameters that are linear
combinations of independent random variables are provided by the method of least squares.
As mentioned earlier, this is a theorem due to the famous mathematician Karl Gauss.
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Further, it should be noted that in dealing with the mathematical models (15.2.3a)
and (15.2.4), the variable X is assumed controlled, or measured, without error, and all the
random variability is attributed to the observation Y at each fixed value of X. In practice,
controlling or measuring X exactly is often impossible. However, it is assumed that the
values of X are known much more precisely than those of the response, Y, and indeed the
analysis proceeds by assuming the independent variable, X, can be fixed without error.

To find estimators of β0 and β1, that is, the values of (β0, β1) that minimize Q(β0, β1)
in (15.2.9), say b0 and b1, we proceed by taking the partial derivatives with respect to β0
and β1 and setting these derivatives equal to zero. We then have

∂Q(β0, β1)
∂β0

∣∣∣∣
b0,b1

= 0,
∂Q(β0, β1)

∂β1

∣∣∣∣
b0,b1

= 0 (15.2.10)

This in turn produces the two equations

−2
n∑

i=1
(Yi − b0 − b1Xi) = 0

−2
n∑

i=1
Xi(Yi − b0 − b1Xi) = 0

(15.2.11)

Dividing each of these equations by −2 and performing the summations, remembering
that

∑n
i=1 Yi = nȲ and

∑n
i=1 Xi = nX̄, we obtain two equations in b0 and b1 given by

n(b0) + nX̄(b1) = nȲ and nX̄(b0) +
∑

X2
i (b1) =

∑
XiYi (15.2.12)

Equation (15.2.12) are usually called the normal equations for estimating β0 and β1. They
are said to be in standard form in that b0 and b1 are mentioned only on the left-hand sides
of Equation (15.2.12).

Thus, by solving the two Equations in (15.2.12) with respect to (b0, b1), we obtain
the solution applicable to (X1, Y1), . . . , (Xn, Yn), namely to a set of (X1, . . . ,Xn) to be
chosen at which we will observe (Y1, . . . , Yn), respectively. Solving Equation (15.2.12) for
b0 and b1, we obtain

b0 = Ȳ − b1X̄,where

b1 =
∑n

i=1 Xi Yi−nX̄Ȳ∑n
i=1 X2

i−nX̄2 =
∑n

i=1(Xi−X̄)(Yi−Ȳ )∑n
i=1 (Xi−X̄)2 = SXY

SXX

(15.2.13)

Here SXY is called the corrected sums of cross products, and SXX and SY Y are called the
corrected sum of squares. The reader should verify that

SXX =
∑

X2
i − nX̄2, SXY =

∑
XiYi − nX̄ Ȳ (15.2.14)

and
SY Y =

∑
Y 2

i − nȲ 2 (15.2.15)

Given the estimators b0 and b1, the fitted model is

Ŷ = b0 + b1X = (Ȳ − b1X̄) + b1X = Ȳ + b1(X − X̄) (15.2.16)

The estimation procedure above is often called regressing Y upon X. Equation (15.2.16) is
often called the fitted regression line or regression equation. We illustrate this method in
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Example 15.2.2 below. But, at this point, we note that as long as the determinant of the
coefficients in Equation (15.2.12), is not zero, that is, as long as the determinant∣∣∣∣∣∣

n nX̄

nX̄
n∑

i=1
X2

i

∣∣∣∣∣∣ = n

(
n∑

i=1

X2
i − nX̄2

)
�= 0

Equation (15.2.12) have a unique solution with respect to (b0, b1). Now the determinant
has the value n

(∑n
i=1 X2

i − nX̄2
)
, that is, n

∑
(Xi − X̄)2, which will not be zero unless

all Xi are equal. As stated at the outset, equality of all Xi is ruled out.

Example 15.2.2 (Steel hardness versus carbon content) One of the factors that deter-
mines the hardness of steel is the carbon content. The carbon molecules insert themselves
in the crystal structure of steel as it cools. Molecules of carbon and steel are much harder
to break than steel alone. The data below give the hardness of steel in units of 1000 psi and
the percentage of carbon contents:

Steel hardness: Y 76 79 78 86 77 80 86 79 75 82
Carbon content: X 0.21 0.23 0.24 0.31 0.23 0.28 0.33 0.24 0.22 0.26

(a) Construct a scatter plot for these data and draw a straight-line to examine if the simple
linear regression model seems to be an adequate model for these data.

(b) Find the fitted regression line for these data.

Solution: (a) The MINITAB printout of the scatter plot for this example is shown in
Figure 15.2.4. The scatter plot in Figure 15.2.4 clearly indicates that a simple linear
regression model seems to be an adequate model for the given data.

(b) We now proceed to find the regression line for these data.

From the data we have n = 10 and

X̄ = 1
10

n∑
i=1

Xi = 2.55
10 = 0.2550, Ȳ = 1

10

n∑
i=1

Yi = 798
10 = 79.80

SXX =
∑

X2
i − nX̄2 = 0.6645 − 10(0.2550)2 = 0.01425

SXY =
∑

XiYi − nX̄Ȳ = 204.78 − 10(0.2550) × (79.80) = 1.29

From (15.2.13) we have

b1 =
SXY

SXX

=
1.29

0.01425
= 90.526, b0 = Ȳ − b1X̄ = 79.8 − (90.526)(0.255) = 56.716

Thus the fitted regression line is
Ŷ = 56.716 + 90.526X

Note that in the example Ŷ given in (15.2.16) is an estimator of the regression line
E(Y |X) = β0 + β1X, and also gives a point estimator of an observation Y, taken at X.
If the model E(Y |X) = β0 + β1X is written in the equivalent alternative form E(Y |X) =
δ + β1X

′, where X ′ = (X − X̄) and δ = β0 + β1X̄, the normal equations for d and b1, the
estimators of δ and β1 are given by

(n)d + (0)b1 =
n∑

i=1

Yi and (0)d +
(∑

X
′2
)

b1 =
n∑

i=1

X
′

i Yi (15.2.17)



15.2 Fitting the Simple Linear Regression Model 631

87.5

Scatter plot for data in example 15.2.2

85.0

82.5

80.0

77.5

75.0

0.20 0.22 0.24 0.26 0.28
x

Y

0.30 0.32 0.34

Figure 15.2.4 Scatter plot for the data in Example 15.2.2.

Solution of these normal equations results in

d =
∑

Yi

n
= Ȳ , b1 =

∑n
i=1 X ′

iYi∑n
i=1 X ′

i
2 =

∑
(Xi − X̄)Yi∑

X ′
i
2 =

∑
(Xi − X̄) (Yi − Ȳ )∑

(Xi − X̄)2 =
SXY

SXX

(15.2.18)

since
n∑

i=1
X

′
i =

n∑
i=1

(Xi − X̄) = 0, so that
n∑

i=1
(Xi − X̄)Ȳ = 0.

The fitted line then becomes Ŷ = Ȳ + b1X
′
, and the exchange of X

′
for X − X̄

effectively shifts the origin to the average of the Xi’s. The intercept of the straight-line
in the new coordinate system is then simply the average Ȳ . The estimate of β0 in the
original model can be retrieved. On finding (d, b1) = (Ȳ , b1) from (15.2.18), we could find
an estimate of β0 by simply evaluating Ȳ − b1X̄, which from (15.2.13) is the estimate
b0. Indeed, as we will see, E(b0) = E(Ȳ − b1X̄) = β0 and E(b1) = β1; that is, b0 and b1
are unbiased estimators of β0 and β, respectively. Rewriting the original model in this
modified form simplifies computations. The quantity X ′ = (X − X̄) is sometimes called
the orthogonal polynomial of degree one.

Graphically, we can represent all possible values of X and the corresponding values of
Ŷ , that is, all possible pairs (X, Ŷ ), as a straight-line in the (x, y)-plane whose equation
is given by (15.2.16). As mentioned before, this line is called the regression line of Y on
X with intercept b0 and slope b1. From (15.2.16) we see that the regression line passes
through the point (X̄, Ȳ ), the center of gravity of the scatter diagram of the n pairs
(X1, Y1), . . . , (Xn, Yn).

15.2.3 Sampling Distribution of the Estimators
of Regression Coefficients

We assume in this section that (15.2.4) holds so that Y1, Y2, . . . , Yn are independent random
variables having normal distributions N(β0 + β1X1, σ

2), N(β0 + β1X2, σ
2), . . . , N(β0 +

β1Xn, σ2) where X1, . . . ,Xn are constants (not random variables). We then have, using
(15.2.13), that the statistic b1 is a linear function of the observations Y1, . . . , Yn with
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coefficients
X1 − X̄∑
(Xi − X̄)2 , . . . ,

Xn − X̄∑
(Xi − X̄)2 (15.2.19)

That is, b1 is a statistic of the form c1Y1 + c2Y2 + · · · + cnYn, where the coefficients ci are
n constants given by ci = (Xi − X̄)/

[∑
(Xi − X̄)2

]
= (Xi − X̄)/SXX . Thus, we have the

important result that b1 is a random variable having a normal distribution, that is,

(b1|X1, . . . ,Xn) ∼ N

(
β1;

σ2∑n
i=1 (Xi − X̄)2

)
or (b1|X1, . . . ,Xn) ∼ N

(
β1;

σ2

SXX

)

(15.2.20)
To verify that the expected value of b1 is β1, we first note that

n∑
i=1

ci = 0,
n∑

i=1

ciXi = 1

This result holds since
n∑

i=1

ci =
n∑

i=1

(Xi − X̄)
SXX

=
1

SXX

n∑
i=1

(Xi − X̄) = 0

and
n∑

i=1

ciXi =
1

SXX

n∑
i=1

(Xi − X̄)Xi =
1

SXX

n∑
i=1

(Xi − X̄)2 =
SXX

SXX

= 1

Hence, we have that

E(b1) = E(c1Y1 + · · · + cn Yn) = c1E(Y1) + · · · + cnE(Yn)

= c1(β0 + β1X1) + · · · + cn(β0 + β1Xn)

= β0(c1 + · · · + cn) + β1(c1X1 + · · · + cnXn) = β1

(15.2.21)

Then, to see that the variance of b1 is σ2/
∑

(Xi − X̄)2, we have

V (b1) = σ2
b1

= c2
1σ

2
Y1

+ · · · + c2
nσ2

Yn
= (c2

1 + · · · + c2
n)σ2

Now
n∑

i=1

c2
i =

n∑
i=1

(
(Xi − X̄)

SXX

)2

=
1

(SXX)2

n∑
i=1

(Xi − X̄)2 =
SXX

(SXX)2 =
1

SXX

Hence we can state that

E(b1) = β1 and V (b1) = 1
SXX

σ2 (15.2.22)

Further, we have

E(Ȳ ) =
1
n

n∑
i=1

E(Yi) =
1
n

n∑
i=1

(β0 + β1Xi) = β0 + β1X̄
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Also from (15.2.13) we have b0 = Ȳ − b1X̄ so that

E(b0) = E(Ȳ − b1X̄) = E(Ȳ ) − E(b1X̄) = E(Ȳ ) − X̄E(b1) = β0 + β1X̄ − X̄β1 = β0
(15.2.23)

so that b0 is an unbiased estimator of β0. Now from (15.2.13), it follows that the statistic
b0, a linear function of the observations Y1, . . . , Yn with coefficients(

1
n
− (X1 − X̄)X̄∑

(Xi − X̄)2

)
, · · · ,

(
1
n
− (Xn − X̄)X̄∑

(Xi − X̄)2

)
(15.2.23a)

But because Y1, . . . , Yn are independent and normally distributed, we can easily show, by
using the same argument for determining the sampling distribution of b1, that

V (b0) = σ2
b0

=
(

1
n + X̄2

SXX

)
σ2 (15.2.24)

Hence,

(b0|X1, . . . ,Xn) ∼ N

(
β0;

(
1
n

+
X̄2

SXX

)
σ2

)
(15.2.25)

Now lastly, from the earlier results of this section, we have that

E(Ŷ ) = E(b0 + b1X) = E(b0) + E(b1)X = β0 + β1X

We can then write that
Ŷ = Ȳ + b1(X − X̄)

as an unbiased estimator of η = E(Y |X) = β0 + β1X.

Using the result (not proved here) that the covariance between Ȳ and b1 is zero, we have

V (Ŷ ) = V (Ȳ ) + (X − X̄)2V (b1) =
(

1
n + (X−X̄)2

SXX

)
σ2 (15.2.26)

PRACTICE PROBLEMS FOR SECTION 15.2

1. A team of physicians claims that a person’s excessive weight adversely affects
his/her plasma glucose level. The data they obtained on 10 “overweight” persons
are given below:

Weight (lb), X: 181 180 189 188 229 192 223 231 212 225
Plasma glucose (mg/dL), Y: 206 162 181 199 214 146 210 165 177 183

(a) Construct a scatter plot for these data. Does the scatter plot indicate that a
least-squares line would provide a good fit?

(b) Fit a regression line to these data for predicting the plasma glucose level.
(c) Using (b), record the least-squares estimates of the regression coefficients.
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2. A chemist is interested in investigating the relationship between the reaction time
and the yield of a chemical. He conducted 11 experiments with varying reaction
time and measured the yield of the chemical. The data obtained are given below:

Reaction time, X: 33 43 43 32 30 43 30 38 40 40 32
Chemical yield, Y: 84 78 84 79 75 75 89 86 87 88 85

(a) Construct a scatter plot for these data. Does the scatter plot indicate that a
straight-line would provide a good fit?

(b) Fit a regression line to these data for predicting the chemical yield.
(c) Using (b), record the least-squares estimates of the regression coefficients.

3. A chemical engineer wants to investigate the relationship between the cooking time
of paper pulp and the shear strength of the paper. She arranges to collect data for
12 batches of pulp that are cooked at the same temperature but for different periods
of time. The data (coded) obtained is given below:

Cooking time, X: 14 11 10 13 12 13 12 10 14 15 12 13
Shear strength, Y: 125 70 97 86 111 121 89 130 99 95 125 102

(a) Construct a scatter plot for these data. Does the scatter plot indicate that a
straight-line would provide a good fit?

(b) Fit a regression line to these data for predicting the shearing strength of the
paper.

(c) Using (b), record the least-squares estimates of the regression coefficients.
4. Recent studies show that high sound level (in decibels) makes humans prone to

hypertension and heart attacks. For example, normal conversation level is 60 dB,
for textile looms it is 105 dB, and for pneumatic chippers it is 115 dB. The following
coded data give the noise level and the hypertension for people who work in noisy
places:

Noise level, X: 28 33 21 35 29 26 22 30 34 27 31 34 29
Hypertension, Y: 73 68 69 88 80 74 74 69 89 68 76 87 73

(a) Construct a scatter plot for these data. Does the scatter plot indicate that a
straight-line would provide a good fit?

(b) Fit a regression line to these data for predicting the hypertension level of a
person.

(c) Using (b), record the least-squares estimates of the regression coefficients.
5. The following data give the highest daytime temperature ◦F and amount of rain-

fall (in inches) on 10 randomly selected summer days at a tourist place in the
northeastern United States:

Temperature, X: 91 90 96 94 87 90 93 81 94 91
Rain, Y: 0.8 0.4 0.5 0.7 0.3 0.4 0.6 0.1 0.4 0.7
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(a) Construct a scatter plot for these data. Does the scatter plot indicate a
straight-line would provide a good fit?

(b) Fit a regression line to these data for predicting the amount of rainfall.
(c) Using (b), record the least-squares estimates of the regression coefficient.

6. In the paper manufacturing process, too much moisture left in the paper causes
streaks that renders the paper unusable. Streaks can be avoided, for example, by
slowing down the machine, over drying the paper, calibrating the dryer head, and
so on. The following coded data give the amount of moisture in the paper and the
number of streaks per 100 linear feet:

Moisture, X: 8 11 14 9 10 13 12 7
Number of streaks, Y: 5 14 22 16 17 8 19 10

(a) Construct a scatter plot for these data. Does the scatter plot indicate that a
straight-line would provide a good fit?

(b) Fit a regression line to these data for predicting the number of streaks.
(c) Using (b), record the least-squares estimates of the regression coefficients.

7. The following data give the final scores for 12 randomly selected students in courses
on probability and operations research (OR):

Probability, X: 91 77 82 78 73 88 96 75 92 95 78 82
OR, Y: 86 75 86 76 75 89 87 91 83 90 84 94

(a) Construct a scatter plot for these data. Does the scatter plot indicate that a
straight-line would provide a good fit?

(b) Fit a regression line to these data for predicting the scores in the OR course.
(c) Using (b), record the least-squares estimates of the regression coefficients.

8. In agriculture, it is important for obtaining a higher yield of certain crops that,
at the time of planting, a proper distance be kept between plants. An agronomist
conducted an experiment to investigate this for cotton crops. He divided a piece of
land into small squares and sowed cotton seeds in each square. The following data
give the distance X (in inches) between cotton plants and the yield Y (in pounds
per square inch):

Yield, Y: 73 88 75 88 101 116 94 72
Distance, X: 12 15 13 14 18 19 15 12

(a) Construct a scatter plot for these data. Does the scatter plot indicate that a
straight-line would provide a good fit?

(b) Fit a regression line to these data for predicting the yield of cotton.
(c) Using (b), record the least-squares estimates of the regression coefficients.

9. Copper wire is the most widely used conductor since it has high conductivity and
good mechanical properties. A wide range of cable applications require high ten-
sile strength for copper wires. Mixing beryllium with copper increases the tensile
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strength of copper wires. The following (coded) data give the percentage of beryl-
lium mixed with copper (X) and tensile strength of copper wire (Y):

Tensile strength, Y: 50 64 67 59 74 63 56 61 69
Beryllium, X: 5 7 8 6 9 6 5 7 8

(a) Construct a scatter plot for these data. Does the scatter plot indicate that a
straight-line would provide a good fit?

(b) Fit a regression line to these data for predicting the tensile strength of cop-
per wire.

(c) Using (b), record the least-squares estimates of the regression coefficients.
10. The purity (%) of oxygen produced by a fractional distillation process is believed

to be related to percentage of hydrocarbons (%) in the main condenser of the pro-
cessing unit. The data obtained on 20 samples are given below (from Introduction
to Linear Regression Analysis by Montgomery et al. (2006), used with permission):

Purity, Y: 86.91 89.85 90.28 86.34 92.58 87.33 86.29 91.86 95.61 89.86
Hydrocarbon, X: 1.02 1.11 1.43 1.11 1.01 0.95 1.11 0.87 1.43 1.02

Purity, Y: 96.73 99.42 98.66 96.07 93.65 87.31 95.00 96.85 85.20 90.56
Hydrocarbon, X: 1.46 1.55 1.55 1.55 1.40 1.15 1.01 0.99 0.95 0.98

(a) Construct a scatter plot for these data. Does the scatter plot indicate that a
straight line would provide a good fit?

(b) Fit a regression line to these data for predicting the purity of oxygen.
(c) Using (b), record the least-squares estimates of the regression coefficients.

11. The weight (X) and total cholesterol level (Y) of 20 randomly selected females in
the age group 30 and 40 are given below. Assume that the simple linear regression
model is appropriate for these data.

Weight, X: 135 140 128 143 150 155 147 146 137 144
Cholesterol, Y: 154 152 149 140 165 169 154 152 139 133

Weight, X: 126 134 143 149 146 141 138 152 151 145
Cholesterol, Y: 132 136 139 150 154 149 160 166 164 158

(a) Construct a scatter diagram for these data.
(b) Fit a simple linear regression model to these data.
(c) Using (b), record the least-squares estimates of the regression coefficients.

12. A study was made on the effect of temperature (X) on the yield (Y ) of a chemical
process. The following data (coded) were collected (from Draper and Smith, 1981,
used with permission):

X: −5 −4 −3 −2 −1 0 1 2 3 4 5
Y: 1 5 4 7 10 8 9 13 14 13 18
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(a) Construct a scatter diagram for these data.
(b) Fit a simple linear regression model to these data considering X an independent

variable and Y a response variable. Assume that the simple linear regression
model is appropriate for these data.

(c) Using (b) record the least-squares estimates of the regression coefficients.

15.3 UNBIASED ESTIMATOR OF σ2

In Section 15.2, we developed the sampling distributions of the statistics b0 and b1 that
depend on unknown σ2. We now turn to the problem of finding an unbiased estimator
for σ2. We denote the value on the regression line corresponding to Xi as Ŷi, that is,
Ŷi = b0 + b1Xi = Ȳ + b1(Xi − X̄). Suppose that we now take the differences, often called
residuals, between the observed value of Y at Xi (i.e., Yi) and the fitted value of Y at Xi

(i.e., Ŷi) for i = 1, 2, 3, . . . , n. Denoting these differences by ei = Yi − Ŷi, we may square
and then sum the ei, denoting the result by SSE, the sum of squares of errors. We have

SSE =
∑

(Yi − Ŷi)
2 =

∑
(Yi − b0 − b1Xi)

2 (15.3.1)

The quantity ei = Yi − Ŷi is often called the residual of Yi, and the sum of squares in
(15.3.1) is often called the residual sum of squares or error sum of squares. Since b0 and
b1 are the least-squares estimators of β0 and β1, SSE is thus the minimum of Q(β0, β1),
where Q(β0, β1) is given in (15.2.9). Now, taking the expected value of SSE, we have

E(SSE) = E
(∑

(Yi − Ŷi)
2
)

= E
(∑

(Yi − b0 − b1Xi)
2
)

= E
(∑

[(Yi − Ȳ ) − b1(Xi − X̄)]2
)

= E
(∑

(Yi − Ȳ )2 + b2
1

∑
(Xi − X̄)2 − 2b1

∑
(Xi − X̄)(Yi − Ȳ )

)

Recalling from (15.2.13) that
n∑

i=1
(Xi − X̄)(Yi − Ȳ ) = b1

n∑
i=1

(Xi − X̄)2 we have

E(SSE) = E
(∑

(Y 2
i − nȲ 2) − b2

1

∑
(Xi − X̄)2

)
=

∑
E(Y 2

i ) − nE(Ȳ 2) −
∑

(Xi − X̄)2E(b2
1)

Now, recalling that E(W 2) = Var(W ) + [E(W )]2, we can rewrite the expression above as

E(SSE) =
∑

[σ2 + (β0 + β1Xi)
2] − n

(
σ2

n
+ (β0 + β1X̄)2

)

−
∑

(Xi − X̄)2
(

σ2∑
(Xi − X̄)2 + β2

1

)

= (n − 2)σ2 +
{∑

(β0 + β1Xi)
2 − n(β0 + β1X̄)2 − β2

1

∑
(Xi − X̄)2

}
(15.3.2)
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It is easily shown that the quantity in the braces { } in (15.3.2) is zero. Thus, we have the
result

E(SSE) = (n − 2)σ2 (15.3.3)

We emphasize again that (15.3.3) is based only on the assumptions 1–3 of (15.2.4). From
(15.3.3) we have that an unbiased estimator of variance is given by

σ̂2 = SSE/(n − 2) (15.3.4)

which we usually denote by S2 or MSE. We call MSE the error mean square or residual
mean square. The factor (n − 2) in the denominator is sometimes referred to as the degrees
of freedom associated with the error sum of squares SSE.

Note that SSE =
∑n

i=1 e2
i and that

n∑
i=1

ei =
n∑

i=1

(Yi − Ŷ ) =
n∑

i=1

(Yi − (Ȳ + b1(Xi − X̄))) =
n∑

i=1

(Yi − Ȳ ) + b1

n∑
i=1

(Xi − X̄) = 0

(15.3.5)

Example 15.3.1 (Steel hardness versus carbon content) Refer to Example 15.2.2 where
we are given the data on hardness of steel and the carbon content. Recall that the carbon
molecules insert themselves in the structure of steel as it cools. Find an unbiased estimate
of σ2.

Solution: The regression line, as found in Example 15.2.2, is

Ŷ = 56.716 + 90.526X

and using the fitted values Ŷi at Xi, the corresponding residuals are tabulated in
Table 15.3.1.

From the residuals in Table 15.3.1, we obtain the value of SSE =
∑

(Yi − Ŷi)
2 as

SSE = 14.80

Since the degrees of freedom associated with SSE are 10 − 2 = 8, we obtain an unbiased
estimate of σ2 equal to

S2 = 14.80/8 = 1.85

and an estimate of σ is S = 1.36 = 1000(1.36) = 1360 psi (the units of Yi were in 1000 psi).

Table 15.3.1 Fitted values and the corresponding residuals for the data in
Example 15.2.2.

Carbon contents, X 0.21 0.23 0.24 0.31 0.23 0.28 0.33 0.24 0.22 0.26
Steel hardness, Y 76 79 78 86 77 80 86 79 75 82
Fitted values, Ŷ 75.73 77.54 78.44 84.78 77.54 82.06 86.59 78.44 76.63 80.25
Residuals, Y − Ŷ 0.27 1.46 −0.44 1.22 −0.54 −2.06 −0.59 0.56 −1.63 1.75
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Now using (15.3.4) the unbiased estimators of σ2
b0

and σ2
b1

are given by

σ̂2
b0

=
(

1
n

+
X̄2

SXX

)
S2 (15.3.6)

and
σ̂2

b1
=

S2

SXX

(15.3.7)

respectively.
An alternative form of SSE that is simpler for computational purposes is

SSE = SY Y − b1SXY (15.3.8)

where SY Y =
∑

Y 2
i − nȲ 2 =

∑
(Yi − Ȳ )2, and is sometimes referred to as the corrected

total sum of squares. Also, SXY =
∑

(Xi − X̄)(Yi − Ȳ ) =
∑

XiYi − nX̄ Ȳ .

15.4 FURTHER INFERENCES CONCERNING
REGRESSION COEFFICIENTS (β0, β1),
E(Y ), AND Y

15.4.1 Confidence Interval for β1 with Confidence
Coefficient (1 − α)

Since, from (15.2.20), we know that the probability distribution of the statistic b1 under
the normality of the Yi’s is such that

b1 ∼ N(β1, σ
2/SXX)

Hence, by standardizing the random variable b1, we find that

b1 − β1

σ/
√

SXX

∼ N(0, 1) (15.4.1)

Now, replacing σ in (15.4.1) by its estimator S, we obtain (see Chapter 7)

b1 − β1

S/
√

SXX

∼ tn−2 (15.4.2)

This follows from the fact that under the assumptions 1–4 of (15.2.4), (n − 2)S2/σ2 has
the χ2

n−2 distribution. Using Equation (15.4.2), we can make the following probability
statement:

P

(
−tn−2;α/2 ≤

b1 − β1

S/
√

SXX

≤ tn−2;α/2

)
= 1 − α (15.4.3)
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After some algebraic manipulation, we find that

P
(
b1 − tn−2;α/2

S√
SXX

≤ β1 ≤ b1 + tn−2;α/2
S√

SXX

)
= 1 − α (15.4.4)

or (
b1 ± tn−2;α/2

S√
SXX

)
(15.4.4a)

is a confidence interval for β1 with confidence coefficient (1 − α).

Example 15.4.1 (Steel hardness versus carbon content) Consider the data on hardness of
steel in Example 15.2.2. Find a 95% confidence interval for β1 by manual calculations (we
discuss this using a statistical software package later in this chapter). Assume normality
of the independent Yi, where Yi is observed at Xi, i = 1, 2, . . . , n.

Solution: From Examples 15.2.2 and 15.3.1, we have

b1 = 90.526, SXX = 0.01425, and S = 1.36 = σ̂

Since n = 10, α = 0.05, from Table A.5 we have tn−2;α/2 = t8;.025 = 2.306. We then have,
from (15.4.4a), that the 95% confidence interval for β1 is(

90.526 ± 2.306
1.36√
.01425

)
= (64.254, 116.798)

15.4.2 Confidence Interval for β0 with Confidence
Coefficient (1 − α)

Now, from (15.2.25), we know that under the normality of the Yi’s the probability distri-
bution of the statistic b0 is such that

b0 ∼ N

(
β0,

(
1
n

+
X̄2

SXX

)
σ2

)
(15.4.5)

Hence, by standardizing the random variable b0, we have

b0 − β0

σ

√(
1
n + X̄2

SXX

) ∼ N(0, 1) (15.4.6)

Then, replacing σ in (15.4.6) by its estimator S, we find that

b0 − β0

S

√(
1
n + X̄2

SXX

) ∼ tn−2 (15.4.7)



15.4 Further Inferences Concerning Regression Coefficients (β0, β1), E(Y ), and Y 641

From Equation (15.4.7), we have that

P

⎛
⎜⎜⎝−tn−2;α/2 ≤

(b0 − β0)

S

√(
1
n + X̄2

SXX

) ≤ tn−2;α/2

⎞
⎟⎟⎠ = 1 − α (15.4.8)

From (15.4.8) we find that

P

(
b0 − tn−2;α/2S

√(
1
n + X̄2

SXX

)
≤ β0 ≤ b0 + tn−2;α/2S

√(
1
n + X̄2

SXX

))
= 1 − α

(15.4.9)

Hence the 100(1 − α)% confidence interval for β0 is

b0 ± tn−2;α/2S

√(
1
n

+
X̄2

SXX

)
(15.4.9a)

Example 15.4.2 (Steel hardness versus carbon content, revisited) Consider the data on
hardness of steel in Example 15.2.2. Find a 95% confidence interval for β0.

Solution: From Examples 15.2.2 and 15.3.1, we have

b0 = 56.716, SXX = 0.01425, X̄ = 0.2550 and S = 1.36

Since n = 10, α = 0.05, and from Table A.5, we have tn−2;α/2 = t8;0.025 = 2.306. We then
have that the 95% confidence interval for β0, from (15.4.9a), is given by

(
56.716 ± 2.306(1.36)

√(
1
10

+
(0.2550)2

0.01425

))
= (49.944, 63.488)

This confidence interval for β0 is virtually identical to that obtained by using MINITAB
and R (see Example 15.4.3).

Here we caution the reader that the confidence interval should not be interpreted that
at X = 0 (i.e., without any carbon) the hardness of steel will vary between 49.944 and
63.488 psi. This is because the value X = 0 does not fall within the experimental region
for values of X used to find the estimated regression line Ŷ = b0 + b1X. (More discussion
on this issue is given just before Section 15.4.4.)
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15.4.3 Confidence Interval for E(Y |X)
with Confidence Coefficient (1 − α)

From (15.2.16) we have that for any value of X, the corresponding fitted line of Ŷ is

Ŷ = Ȳ + b1(X − X̄) = b0 + b1X (15.4.9b)

Using our earlier discussion and (15.2.20), it can easily be verified that under the normality
assumption Ŷ is a random variable having the normal distribution

Ŷ ∼ N

(
E(Y |X),

[
1
n

+
(X − X̄)2

SXX

]
σ2

)
(15.4.10)

with E(Ŷ ) = E(Y |X) = β0 + β1X.
By standardizing the random variable Ŷ , we obtain

Ŷ − E(Y |X)

σ

√(
1
n + (X−X̄)2

SXX

) ∼ N(0, 1) (15.4.11)

Now, replacing σ in (15.4.11) by its estimator S, we find that

Ŷ − E(Y |X)

S

√(
1
n + (X−X̄)2

SXX

) ∼ tn−2 (15.4.12)

From Equation (15.4.12) we have

P

(
Ŷ − tn−2;α/2S

√(
1
n + (X−X̄)2

SXX

)
≤ E(Y |X) ≤ Ŷ + tn−2;α/2S

√(
1
n + (X−X̄)2

SXX

))
= 1 − α

(15.4.13)

Thus 100(1 − α)% confidence interval for E(Y |X) = β0 + β1X is given by

Ŷ ± tn−2;α/2S

√(
1
n + (X−X̄)2

SXX

)
(15.4.14)
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Example 15.4.3 (Steel hardness versus carbon content data) Consider the data on hard-
ness of steel in Example 15.2.2. Find a 95% confidence interval for E(Y |X = 0.25) by
manual calculations and by using a statistical package.

Solution: From Examples 15.4.1 and 15.4.2, we have

b0 = 56.716, b1 = 90.526, SXX = 0.01425, X̄ = 0.2550, S = 1.36

and the regression line at X is such that

Ŷ = 56.716 + 90.526X

We note that this regression line is valid for values of X that lie in the experimental region,
i.e., 0.21 ≤ X ≤ 0.33. Indeed, outside this interval, E(Y |X) could be quadratic in X, or
exponential, etc. We further note that X = 0.25 lies in [0.21, 0.33]. Hence, Ŷ at X = 0.25
is equal to

Ŷ = 56.716 + 90.526(0.25) = 79.3475

that is, the point estimate of E(Y |X = 0.25) is 79.3475. Now n = 10, α = 0.05, and
from Table A.5 we have tn−2;α/2 = t8;0.025 = 2.306. Hence the 95% confidence interval for
E(Y |X = 0.25), from (15.4.14), is given by

(
79.3475 ± (2.306)(1.36)

√(
1
10

+
(0.25 − 0.2550)2

0.01425

))
= (78.3471, 80.3479)

We now do Examples 15.4.1–15.4.3 by using MINITAB and R.

MINITAB

1. In a MINITAB worksheet, enter the data from Example 15.2.2 in columns C1 and
C2.

2. From the Menu bar select Stat > Regression > Regression > Fit Regression
Model.

3. In the dialog box that appears type C1 and C2 in the boxes below Responses
andContinuous predictors (or Categorical predictors), respectively.

4. Select Options and in the resulting dialog box enter the desired confidence level
(e.g. 95.0) in the box next to Confidence level for all intervals and select whether
you want one-sided or two-sided confidence interval and click OK.

5. Select Results and check any storage options (e.g., Method, Analysis of Vari-
ance, etc.) and select ‘Expanded tables’ option to display your results. Click
OK, then again click OK. The MINITAB output will appear as shown below.

6. It includes a 95% CI for β0 and β1 virtually identical, except for rounding errors,
to those obtained via manual calculations. Note that the confidence limits and the
prediction limits appear in the Session window. The other portions of MINITAB
output are discussed in later sections.
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X                    90.5            11.4     (64.2, 116.8)              7.94        0.000      1.00 

Regression Analysis: Y versus X

Analysis of Variance

Total                     9     131.600              100.00%

Source              DF      Seq SS   Contribution          Adj SS      Adj MS      F-Value     P-Value

Regression          1     116.779               88.74%     116.779      116.779         63.03         0.000

X                        1    116.779                88.74%     116.779      116.779        63.03         0.000 

Error                     8      14.821                11.26%       14.821         1.853

Lack-of-Fit         6       12.321                 9.36%       12.321         2.054          1.64         0.425

Pure Error          2        2.500                  1.90%         2.500         1.250

1.36111       88.74%        87.33%      22.2148           83.12% 

Model Summary

S           R-sq     R-sq(adj)       PRESS      R-sq(pred) 

Coefficients 

Y     =    56.72  + 90.5 X

Regression Equation

Term             Coef    SE Coef           95% CI          T-Value      P-Value       VIF

Constant      56.72           2.94     (49.94, 63.49)         19.30        0.000

To obtain confidence and prediction interval for E(Y |0.25) take the following step.
7. From the Menu bar select Stat > Regression > Regression > Predict. Then

enter the individual values or enter columns of values of X you wish to make pre-
dictions. For this example, type 0.25 on the list appears in the dialog box. Select
Options and in the resulting dialog box enter the desired Confidence level (e.g.,
95.0) and select whether you want one-sided or two-sided interval from Type of
interval box then click OK, then again click OK.

79.3474 0.434181 (78.3461, 80.3486) (76.0528, 82.6419)

Settings Prediction
Variable Setting Fit SE Fit 95% CI 95% PI

X 0.25

Thus, we estimate with 95% confidence that the value of E(Y |X = 0.25) is between 78.346
and 80.349.

USING R

The simple linear regression model which we discussed belongs to a class of models known
as linear models. The built in ‘lm()’ function in R can be used to fit a wide range of such
linear models. To complete the Example 15.2.2, we can use the following R code.
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Y = c(76,79,78,86,77,80,86,79,75,82)
X = c(0.21,0.23,0.24,0.31,0.23,0.28,0.33,0.24,0.22,0.26)

#Scatter plot
plot(X,Y, main = “Scatter Plot for Data in Example 15.2.2”)

#Fitting LSR model
model = lm(Y∼X)

#Summary output
model

#ANOVA output
anova(model)

#confidence intervals for regression coefficients
confint(model)

#predictions and confidence intervals for a new observation

newdata = data.frame(X = 0.25)

predict(model, newdata, interval=“confidence”)
predict(model, newdata, interval=“prediction”)

Thus, using the manual, MINITAB, or R results, we estimate with 95% confidence
that the hardness of steel for each additional increase of 1% carbon content will increase
by an amount somewhere between 642.54 and 1167.98 psi, (As noted, the units of Y are
1000 psi). Note that the values of the predictor variable X varied between 0.21 and 0.33,
which is called the experimental range. Our estimate is best when the value of X is within
the experimental range.

For prediction purposes, it is strongly recommended not to use a value of the predictor
variable outside the experimental range (extrapolation) because, among many reasons, we
do not know whether our model is valid outside of this range. For example, the relationship
between the carbon content and the hardness of steel region may not be linear outside the
experimental range.

15.4.4 Prediction Interval for a Future Observation Y
with Confidence Coefficient (1 − α)

Suppose that we are working with the regression model E(Y |X) = β0 + β1X, and we find
the (least-squares) regression line to be

Ŷ = b0 + b1X

based on the data, (X1, Y1), . . . , (Xn, Yn), where the independent Yi’s are such that Yi ∼
N(β0 + β1Xi, σ

2). Having found the regression line, we may be interested in predicting the
value of a future observation, Y, to be generated at X, independent of (Xi, Yi), i = 1, . . . , n,
where we assume that Y ∼ N(β0 + β1X,σ2). Of course, E(Y |X) = β0 + β1X = E(Ŷ |X),
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so Ŷ = b0 + b1X is a point estimate of the future observation Y. To find a prediction
interval for Y, we consider first the random variable Y − Ŷ . We have that

E(Y − Ŷ ) = E(Y ) − E(Ŷ ) = 0 (15.4.15)

and
V ar(Y − Ŷ ) = V ar(Y |X) + V ar(Ŷ |X)

= σ2 +
(

σ2

n + (X−X̄)2σ2

S
XX

)
or

V ar(Y − Ŷ ) = σ2
(

1 +
1
n

+
(X − X̄)2

SXX

)
(15.4.16)

Since we are assuming normality for (Y1, Y2, . . . , Yn), we easily find that

Y − Ŷ ∼ N

(
0, σ2

(
1 +

1
n

+
(X − X̄)2

SXX

))
(15.4.17)

Hence, by standardizing the random variable (Y − Ŷ ), we find that

Y − Ŷ

σ

√(
1 + 1

n + (X−X̄)2

SXX

) ∼ N(0, 1) (15.4.18)

Now, replacing σ in (15.4.18) by its estimator S, we have

Y − Ŷ

S

√(
1 + 1

n + (X−X̄)2

SXX

) ∼ tn−2 (15.4.19)

From Equation (15.4.19), we have

P

⎛
⎜⎜⎝−tn−2;α/2 ≤

Y − Ŷ

S

√(
1 + 1

n + (X−X̄)2

SXX

) ≤ tn−2;α/2

⎞
⎟⎟⎠ = 1 − α (15.4.20)

so that we can write

P

(
Ŷ − tn−2;α/2S

√(
1 + 1

n + (X−X̄)2

S
XX

)
≤ Y ≤ Ŷ + tn−2;α/2S

√(
1 + 1

n + (X−X̄)2

S
XX

))
= 1 − α

(15.4.21)
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That is, the prediction interval for Y to be observed at X having confidence coefficient
(1 − α) is given by

(
Ŷ − tn−2;α/2S

√
1 +

1
n

+
(X − X̄)2

SXX

, Ŷ + tn−2;α/2S

√
1 +

1
n

+
(X − X̄)2

SXX

)
(15.4.22)

Example 15.4.4 (Steel hardness versus carbon content, revisited) Consider the data on
hardness of steel in Example 15.2.2. Find a 95% prediction interval for Y at X = 0.25.

Solution: From Example 15.4.2, we have

SXX = 0.01425, X̄ = 0.2550, S = 1.36, n = 10, 1 − α = 0.95, α/2 = 0.025

and from Example 15.4.3, we have that for X = 0.25, Ŷ = 79.3475.

Since n = 10, α = 0.05, from Table A.5 we have tn−2;α/2 = t8;0.025 = 2.306. The 95% pre-
diction interval for Y , from (15.4.22), is given by(

79.3475 ± (2.306)(1.36)

√(
1 +

1
10

+
(0.25 − 0.2550)2

0.01425

))
= (76.0556, 82.6394)

which is the 95% prediction interval for Y, to be generated at X = 0.25.
This prediction interval for Y is virtually identical to that obtained in Example 15.4.3

using MINITAB. Note that as expected, the prediction interval for Y with the same con-
fidence coefficient is much wider than the confidence interval for E(Y |X = 0.25).

Note: The MINITAB output also gives the value of R2 called the coefficient of determina-
tion, which is a measure of how much the predictor variable X explains the linearity of the
regression model. On the one hand, if all the observed values fall on the fitted line, then
R2 = 1; that is, the predictor variable X appearing in the model E(Y |X) = β0 + β1X
fully explains the response variable Y. On the other hand, if b1 = 0, that is, the fit-
ted line is a horizontal line Ŷ = b0, then the predictor variable X does not provide any
information about the response variable Y, so that in this case R2 = 0. In practice, it is
known that

0 ≤ R2 ≤ 1 (15.4.23)

The estimate of the coefficient of determination is given by R2 = 1 − SSE/SST , where
SST =

∑n
i=1 (Yi − Ȳ )2. The value of R2 should be used cautiously and in conjunction with

the p-value for the test H0 : β1 = 0 versus H0 : β1 �= 0. Some general rules for using R2

along with the p-value are
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Figure 15.4.1 MINITAB printout of 95% confidence and prediction bands of regression
line for the data in Example 15.2.2.

1. A high value of R2, coupled with a very small p-value for Ho : β1 = 0, (say) less than
5%, may indicate a strong linear relationship between the response variable and the
predictor variable, provided that the residual plots indicate no abnormality.

2. A high value of R2 and a large p-value for the test H0 : β1 = 0 versus H0 : β1 �= 0
may indicate a strong curvilinear relationship between the response variable and the
predictor variable (see Example 15.7.1).

3. A low value of R2 and a large p-value do not necessarily preclude the existence
of a relationship between the response variable and the predictor variable. Rather,
this may simply mean there is a strong curvilinear relationship between them (see
Example 15.7.1).

The graph in Figure 15.4.1 shows the confidence and prediction band of regression
line for the data in Example 15.2.2. The graph for the confidence band is derived from the
fact that a confidence interval for E(Y |X) = β0 + β1X is as stated in (15.4.14). If we are
interested in several values of E(Y |X) for different X’s, then we determine the following
lower and upper 100(1 − α)% confidence limits (see Equation (15.4.14)) for each value of X:

(
b0 + b1X − tn−2;α/2 S

√
1
n

+
(X − X̄)2

SXX

)
and

(
b0 + b1X + tn−2;α/2 S

√
1
n

+
(X − X̄)2

SXX

)
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We plot them against X, for several values of X, and arrive at the 100(1 − α)% confi-
dence band for E(Y |X) (see Figure 15.4.1). Similarly the prediction band in Figure 15.4.1
is based on (15.4.22). The graph of these bands may be constructed using MINITAB
as follows:

Stat > Regression > Fitted line plot . . . > Options > Display confidence
and prediction intervals. Then choose an appropriate confidence level and click
OK.

USING R

The following R code preceding the above model specification in Example 15.4.3 can be
used to obtain both confidence and prediction intervals.

Y = c(76,79,78,86,77,80,86,79,75,82)
X = c(0.21,0.23,0.24,0.31,0.23,0.28,0.33,0.24,0.22,0.26)

#Fit LSR model
model = lm(Y∼X)

#Construct CI and PI
ci.L = predict(model,data.frame(X=sort(X)), level=.95,interval=“confidence”)[,2]
ci.U = predict(model,data.frame(X=sort(X)), level=.95,interval=“confidence”)[,3]
pi.L = predict(model,data.frame(X=sort(X)), level=.95,interval=“prediction”)[,2]
pi.U = predict(model,data.frame(X=sort(X)), level=.95,interval=“prediction”)[,3]

plot(X,Y,main=“Confidence and Prediction Intervals”, col=4, pch=20, cex =2)
abline(model, lwd=2)

lines(sort(X),ci.L,lty=2, lwd=2, col=“blue”); lines(sort(X),ci.U,lty=2,lwd=2, col=“blue”)
lines(sort(X),pi.L,lty=3, lwd=2, col=“red”); lines(sort(X),pi.U,lty=3, lwd=2, col=“red”)
legend(“topleft”,c(“Fit”,“CI”,“PI”), col=c(1,4,2), lty=c(1,2,3), lwd=c(2,2,2))

Figure 15.4.2 shows the 95% confidence and prediction bands of the fitted regression
line Ŷ = 56.72 + 90.53X using R for the data in Example 15.2.2. This figure conveys the
same information provided in MINITAB Figure 15.4.1.

PRACTICE PROBLEMS FOR SECTIONS 15.3 AND 15.4

In the following problems reference is made to the problems in Section 15.2.

1. Refer to Problem 12.
(a) What is the estimate of σ2?
(b) Find 95% confidence intervals for β0 and β1.
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Figure 15.4.2 R output of 95% confidence and prediction bands of regression line for
the data in Example 15.2.2.

(c) Find a 95% confidence interval for E(Y |X = 3.5).
(d) Find a 95% prediction interval for Y when X = 3.5.
(e) Compare the prediction interval obtained in part (d) to the confidence interval

for E(Y |X = 3.5) obtained in part (c) and comment.
2. Refer to Problem 10.

(a) What is the estimate of σ2?
(b) Find 95% confidence intervals for β0 and β1.
(c) Find a 95% confidence interval for the true mean of % purity when X = 1.50,

that is, E(Y |X = 1.50).
(d) Find a 95% prediction interval for purity Y when X = 1.50.

3. Refer to Problem 11.
(a) What is the estimate of σ2?
(b) Find 95% confidence intervals for β0 and β1.
(c) Find a 95% confidence interval for E(Y |X = 144.5).
(d) Find a 95% prediction interval for Y when X = 144.5.
(e) Compare the prediction interval for Y obtained in part (d) to the confidence

interval for E(Y |X = 144.5) obtained in part (c) and comment.
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4. Refer to Problem 1.

(a) What is the estimate of σ2?
(b) Find 95% confidence intervals for β0 and β1.
(c) Find a 95% confidence interval for the true mean of plasma glucose when

X = 200.
(d) Find a 95% prediction interval for plasma glucose Y when X = 200.

5. Refer to Problem 2.

(a) What is the estimate of σ2?
(b) Find 95% confidence intervals for β0 and β1.
(c) Find a 95% confidence interval for the true mean of the chemical yield when

X = 35.
(d) Find a 95% prediction interval for the chemical yield Y when X = 35.

6. Refer to Problem 3.

(a) What is the estimate of σ2?
(b) Find 99% confidence intervals for β0 and β1.
(c) Find a 95% confidence interval for the true mean of shear strength when

X = 11.5.
(d) Find a 95% prediction interval for the shear strength Y when X = 11.5.

7. Refer to Problem 4.

(a) What is the estimate of σ2?
(b) Find 99% confidence intervals for β0 and β1.
(c) Find a 95% confidence interval for the true mean of hypertension when

X = 32.
(d) Find a 95% prediction interval for the hypertension Y when X = 32.

8. Refer to Problem 5.

(a) What is the estimate of σ2?
(b) Find 99% confidence intervals for β0 and β1.
(c) Find a 95% confidence interval for the true mean of rainfall when X = 86.
(d) Find a 95% prediction interval for the rainfall Y when X = 86.

9. Refer to Problem 6.

(a) What is the estimate of σ2?
(b) Find 99% confidence intervals for β0 and β1.
(c) Find a 95% confidence interval for the true mean of the number of streaks

when X = 9.5.
(d) Find a 95% prediction interval for the number of streaks Y when X = 9.5.

10. Refer to Problem 7.

(a) What is the estimate of σ2?
(b) Find 99% confidence intervals for β0 and β1.
(c) Find a 95% confidence interval for the true mean of the OR score when

X = 85.
(d) Find a 95% prediction interval for the OR score Y when X = 85.
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11. Refer to Problem 8.
(a) What is the estimate of σ2?
(b) Find 95% confidence intervals for β0 and β1.
(c) Find a 95% confidence interval for the true mean of the yield when X = 16.
(d) Find a 95% prediction interval for the yield Y when X = 16.

12. Refer to Problem 9.
(a) What is the estimate of σ2?
(b) Find 95% confidence intervals for β0 and β1.
(c) Find a 95% confidence interval for the true mean of the tensile strength when

X = 6.5.
(d) Find a 95% prediction interval for the tensile strength Y when X = 6.5.

15.5 TESTS OF HYPOTHESES FOR β0 AND β1

So far in this chapter, we have discussed estimation problems for the regression
coefficients, β0 and β1. We now focus on developing hypothesis tests concerning these
regression parameters, β0 and β1. We again assume normality of the independent Yi’s
(see Equation (15.2.4)).

15.5.1 Test of Hypotheses for β1

To test hypotheses concerning regression parameters, we use the following procedure dis-
cussed in Chapter 9.

1. Null and alternative hypotheses: H0 : β1 = β10 versus H1 : β1 �= β10
2. P(Type I error) = α
3. Test statistic: tb1

= (b1 − β10)/(S/
√

SXX)
4. Distribution of the test statistic under H0 : (b1 − β10)/(S/

√
SXX) ∼ tn−2

5. Rejection or critical region: |tb1
| ≥ tn−2;α/2

6. If the observed value of the test statistic tb1
falls in the critical region, reject the null

hypothesis H0 in favor of the alternative hypothesis H1. Otherwise, do not reject
H0. Alternatively find the p-value. If the p-value is less than or equal to α, then
reject the null hypothesis H0 in favor of the alternative hypothesis H1; if, however,
the p-value is greater than α, then do not reject H0.

15.5.2 Test of Hypotheses for β0

1. Null and alternative hypotheses: H0 : β0 = β00 against H1 : β0 �= β00
2. Type I error: α
3. Test statistic

tb0
=

b0 − β00

S

√(
1
n + X̄2

S
XX

)
4. Distribution of the test statistic under H0

b0 − β00

S

√(
1
n + X̄2

S
XX

) ∼ tn−2



15.5 Tests of Hypotheses for β0 and β1 653

5. Rejection or critical region: |tb0
| ≥ tn−2;α/2

6. If the observed value of the test statistic tb0
falls in the critical region, then reject

the null hypothesis, H0, in favor of the alternative hypothesis, H1. Otherwise, do
not reject H0. Alternatively, find the p-value. If the p-value is less than or equal to
α, then reject the null hypothesis, H0, in favor of the alternative hypothesis, H1. If,
however, the p-value is greater than α, then do not reject H0.

Example 15.5.1 (Steel hardness versus carbon content) Refer to the data on hardness
of steel in Example 15.2.2. We want to test the hypothesis that the y-intercept is (say) 50
and also wish to test whether the slope is significantly different from 0. Thus, we test the
following hypotheses at the 5% level of significance: (a) H0 : β1 = 0 versus H1 : β1 �= 0, (b)
H0 : β0 = 50 versus H1 : β0 �= 50.

Solution: (a) n = 10, n − 2 = 8; α = 0 : 05;α/2 = 0.025.

1. Hypothesis: H0 : β1 = 0 versus H1 : β1 �= 0
2. P(Type I error) = α = 0.05
3. Test statistic:

tb1
=

b1 − 0
S/

√
SXX

4. Distribution of the test statistic under H0:

b1 − 0
S/

√
SXX

∼ t8

5. Critical region: |tb1
| > t8;0.025 = 2.306

6. From Examples 15.2.2 and 15.3.1, we have b 1 = 90.526, S = 1.36, and SXX =
0.01425.

Hence, the value of the test statistic under H0 is

tb1
=

90.526
1.36/

√
0.01425

= 7.946

which falls in the critical region. Thus, we reject the null hypothesis and conclude at the
5% level of significance that β1 is significantly different from 0. Also, from the MINITAB/R
outputs given earlier in Example 15.4.3, we see that the p-value is approximately 0, which
leads us to the same conclusion. From the same MINITAB/R outputs we have R2 =
88.74%. After combining the p-value 0 with the high value of R2, it seems reasonable to
conclude that there is a strong linear relationship between the response variable and the
predictor variable.

For part (b):

1. Hypothesis: H0 : β0 = 50 against H1 : β0 �= 50
2. P(Type I error) = α = 0.05
3. Test statistic:

tb0
=

b0 − 50

S

√(
1
n + X̄2

S
XX

)
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4. Distribution of the test statistic:⎛
⎜⎜⎝ b0 − 50

S

√(
1
n + X̄2

SXX

)
⎞
⎟⎟⎠ ∼ t8

5. Critical region: |tb0
| ≥ t8;0.025 = 2.306.

6. From Examples 15.2.2 and 15.3.1, we have n = 10, b1 = 90.526, S = 1.36, and

E(Y |X) = β0 + β1X with b0 = Ȳ − b1X̄ = 56.716.

Hence, the value of the test statistic is

tb0
=

56.716 − 50

1.36
√(

1
10 + (0.2550)2

0.01425

) =
6.716
2.9368

= 2.2868

which does not fall in the critical region; therefore, we do not reject the null hypothesis,
and we can conclude that at the 5% level of significance, β0 is not significantly different
from 50. Note that in this case, the value of the test statistic we found using MINITAB
and R is entirely different from what we found above. This is because the test statistic in
the output of MINITAB is based on the null hypothesis (H0 : β0 = 0).

In order to test a different hypothesis, using MINITAB or R, we do not have a built-in
procedure, but we can proceed as follows. Suppose that we need to find a confidence
interval for the predicted value at X = 0 and to check if the value β0 = 50, under the null
hypothesis, falls in the confidence interval. If it does fall in the confidence interval, then
we do not reject the null hypothesis. Otherwise, we reject it. In the present example, from
the R output, the 95% confidence interval is (49.938, 63.494), which contains the value
specified by the null hypothesis, β0 = 50. Also, the confidence interval obtained by using
MINITAB contains the value β0 = 50. Therefore, we do not reject the null hypothesis at
significance level 0.05.

Example 15.5.2 (Percentage of waste solids removed from a filtration system) A study
was instituted to determine the percent of waste solids removed from a filtration system as
a function of the flow rate of the effluent being fed into the system. It was decided to use
flow rates X of 2, 4, . . . , 14 gal/min and to observe Y, the percent of waste solid removed,
when each of these flow rates was used. The study yielded the data in Table 15.5.1.

Using MINITAB or R do the following:
(a) Construct a scatter plot for the data in Table 15.5.1.
(b) Fit the regression line and test hypotheses β1 = 0 versus β1 �= 0, and β0 = 0

versus β0 �= 0.

Table 15.5.1 Flow rate and percent of waste
solid removed.

Y 24.3 19.7 17.8 14.0 12.3 7.2 5.5
X 2 4 6 8 10 12 14
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Figure 15.5.1 Scatter plot for the data in Table 15.5.1.

(c) Construct a graph showing confidence and prediction bands for the fitted regression
line.

Solution: MINITAB

Using the same steps as given in Examples 2.9.1 and 15.4.3, we have

(a) Plot of the data in Table 15.5.1 and the fitted regression line as shown in Figure 15.5.1.
(b) The regression equation takes the form Ŷ = b0 + b1X = 26.814 − 1.5518X (see

Figure 15.5.1)

The summary of the regression analysis (From the Menu bar select Stat > Regression
> Regression > Fit Regression Model . . . ).

Regression Analysis: Y versus X 

Analysis of Variance Coefficients

Regression Equation

Model Summary

Source       DF    Adj SS  Adj MS F-Value P-Value

Regression

X

Error

Total 6 273.280

1 269.700

1 269.700

269.700

269.700 0.000

0.000376.71

376.71

5 3.580 0.716

S      R-sq    R-sq(adj)   R-sq(pred)

0.846126   98.69%        98.43%            97.37%

Y = 26 814 – 1 5518 X

Term           Coef  SE Coef  T-Value  P-Value  VIF

Constant      26.814      0.715       37.50       0.000

X                –1.5518    0.0800     –19.41       0.000    1.00

Since the p-values for testing both β0 and β1 are approximately 0, we reject the null
hypotheses that β0 = 0 and that β1 = 0. Moreover, because the value of R2 is very high, in
conjunction with the p-value ≈ 0, we can conclude that there is a strong linear relationship
between percentage of waste solid removed and the flow rate.
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Figure 15.5.2 MINITAB printout of the confidence and prediction bands of regression
line for the data in Table 15.5.1.

(c) Figure 15.5.2 shows the 95% confidence and prediction bands of the fitted regression
line (Ŷ = b0 + b1X = 26.814 − 1.5518X) in Part (b).

USING R

Following the steps outlined for Examples 15.4.3 and 15.4.4, we get results virtually iden-
tical to the ones obtained using MINITAB. Use the following R code.

Y = c(24.3,19.7,17.8,14.0,12.3,7.2,5.5)
X = c(2,4,6,8,10,12,14)

#Fit LSR model
model = lm(Y ∼ X)
summary(model)

#Scatter plot
plot(X,Y, col=4, pch=20, cex =2,main = “Scatter Plot for Data in Table 15.5.1”)
abline(model, lwd=2)

#Calculate and plot CI and PI
ci.L = predict(model,data.frame(X=sort(X)), level=.95,interval=“confidence”)[,2]
ci.U = predict(model,data.frame(X=sort(X)), level=.95,interval=“confidence”)[,3]
pi.L = predict(model,data.frame(X=sort(X)), level=.95,interval=“prediction”)[,2]
pi.U = predict(model,data.frame(X=sort(X)), level=.95,interval=“prediction”)[,3]

plot(X,Y,main=“Confidence and Prediction Intervals”, col=4, pch=20, cex =2)

abline(model, lwd=2)
lines(sort(X),ci.L,lty=2, lwd=2, col=“blue”); lines(sort(X),ci.U,lty=2,lwd=2, col=“blue”)
lines(sort(X),pi.L,lty=3, lwd=2, col=“red”); lines(sort(X),pi.U,lty=3, lwd=2, col=“red”)
legend(“topright”,c(“Fit”,“CI”,“PI”), col=c(1,4,2), lty=c(1,2,3), lwd=c(2,2,2))
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We now give a summary in Table 15.5.2 of the formulas derived so far in this chapter.
These formulas come in handy for the many computations in a regression analysis for the
model E(Y |X) = β0 + β1X.

Example 15.5.3 (Percentage of waste solids removed from a filtration system) Using the
formulas for confidence intervals presented in Table 15.5.2 for the data in Example 15.5.2,
find 95% confidence intervals for β0, β1, E(Y |X), and Y at X = 4.

Solution: Using the data in Example 15.5.2 and the formulas given in Table 15.5.2, we
have

X̄ = 8.0, Ȳ = 14.4, SXX = 112, SY Y = 273.28, SXY = −173.8, n = 7,

b1 = −1.55, b0 = 26.81

Substituting the values in appropriate formulas in Table 15.5.2, we have, for 1 − α = 0.95,
that, as the reader may verify, 95% confidence intervals are

For β1 :

(
−1.55 ± 2.571

√
1

112
(0.72)

)
= (−1.55 ± 0.21) = (−1.76,−1.34)

For β0 :

(
26.81 ± 2.571

√[
1
7

+
(8.0)2

112

]
(0.72)

)
= (26.81 ± 1.84) = (24.97, 28.65)

Table 15.5.2 Certain formulas useful for computations in regression analysis.

X̄ =
∑n

i=1 Xi

n
, Ȳ =

∑n
i=1 Yi

n

SXX =
n∑

i=1
X2

i − (
∑n

i=1 Xi)
2

n
, SY Y =

n∑
i=1

Y 2
i − (

∑n
i=1 Yi)

2

n

SXY =
n∑

i=1
XiYi −

(
∑n

i=1 Xi) (
∑n

i=1 Yi)
n

b1 = SXY /SXX , b0 = Ȳ − b1X̄

SSE = SY Y − b1, SXY = SY Y − [(SXY )2/SXX ]

σ̂2 = S2 = MSE = SSE/(n − 2)

Confidence intervals with confidence coefficient (1 − α)

For β1 :

(
b1 ± tn−2;α/2

S√
SXX

)

For β0 :

(
b0 ± tn−2;α/2S

√
1
n

+
X̄2

SXX

)

For E(Y |X) :

(
Ŷ ± tn−2;α/2S

√
1
n

+
(X − X̄)2

SXX

)

For (Y |X) :

(
Ŷ ± tn−2;α/2S

√
1 +

1
n

+
(X − X̄)2

SXX

)
, Ŷ = b0 + b1X
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For E(Y |X = 4) :

(
20.61 ± 2.571

√[
1
7

+
(4 − 8.0)2

112

]
(0.72)

)
= (20.61 ± 1.16)

= (19.45, 21.77)

For (Y |X = 4) :

(
20.61 ± 2.571

√[
1 +

1
7

+
(4 − 8.0)2

112

]
(0.72)

)
= (20.61 ± 2.47)

= (18.14, 23.08)

PRACTICE PROBLEMS FOR SECTION 15.5

In the following problems, reference is made to the problems in Section 15.2. Whenever
possible, to perform the testing of hypotheses in the following problems, use the confidence
intervals obtained in the practice problems for Sections 15.3 and 15.4 by selecting the
appropriate size of the level of significance. In each problem state the level of significance
you use. Further, in each problem, state your conclusions when you reject or do not reject
either of the hypotheses.

1. Refer to Problem 1. Test the following hypotheses using α = 0.05:

H0 : β1 = 0 versus H1 : β1 �= 0 and H0 : β0 = 0 versus H1 : β0 �= 0

2. Refer to Problem 2. Test the following hypotheses using α = 0.05:

H0 : β1 = 0 versus H1 : β1 �= 0 and H0 : β0 = 0 versus H1 : β0 �= 0

3. Refer to Problem 3. Test the following hypotheses using α = 0.01:

H0 : β1 = 0 versus H1 : β1 �= 0 and H0 : β0 = 0 versus H1 : β0 �= 0

4. Refer to Problem 4. Test the following hypotheses using α = 0.01:

H0 : β1 = 0 versus H1 : β1 �= 0 and H0 : β0 = 0 versus H1 : β0 �= 0

5. Refer to Problem 5. Test the following hypotheses using α = 0.01:

H0 : β1 = 0 versus H1 : β1 �= 0 and H0 : β0 = 0 versus H1 : β0 �= 0

6. Refer to Problem 6. Test the following hypotheses using α = 0.01:

H0 : β1 = 0 versus H1 : β1 �= 0 and H0 : β0 = 0 versus H1 : β0 �= 0

7. Refer to Problem 7. Test the following hypotheses using α = 0.01:

H0 : β1 = 0 versus H1 : β1 �= 0 and H0 : β0 = 0 versus H1 : β0 �= 0

8. Refer to Problem 8. Test the following hypotheses using α = 0.05:

H0 : β1 = 0 versus H1 : β1 �= 0 and H0 : β0 = 0 versus H1 : β0 �= 0
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9. Refer to Problem 9. Test the following hypotheses using α = 0.05:

H0 : β1 = 0 versus H1 : β1 �= 0 and H0 : β0 = 0 versus H1 : β0 �= 0

10. Refer to Problem 10. Test the following hypotheses using α = 0.05:

H0 : β1 = 0 versus H1 : β1 �= 0 and H0 : β0 = 0 versus H1 : β0 �= 0

11. Refer to Problem 11. Test the following hypotheses using α = 0.05:

H0 : β1 = 0 versus H1 : β1 �= 0 and H0 : β0 = 0 versus H1 : β0 �= 0

12. Refer to Problem 12. Test the following hypotheses using α = 0.05:

H0 : β1 = 0 versus H1 : β1 �= 0 and H0 : β0 = 0 versus H1 : β0 �= 0

15.6 ANALYSIS OF VARIANCE APPROACH TO
SIMPLE LINEAR REGRESSION ANALYSIS

The analysis of variance approach to simple regression analysis is just another technique
for the various problems we discussed in this chapter. Before we present this technique in
more detail, we need to define certain terms commonly used in an analysis of variance.

Uncorrected or crude total sum of squares:
∑n

i=1 Y 2
i

Corrected total sum of Squares: SSTotal = SY Y =
∑n

i=1 (Yi − Ȳ )2 =
∑n

i=1 Y 2
i − nȲ 2

Correction factor: nȲ 2

Sum of squares due to regression: SSR =
∑n

i=1 (Ŷi − Ȳ )2

Error or residual sum of squares: SSE =
∑n

i=1 (Yi − Ŷi)
2 = SY Y − b1SXY

In the analysis of variance technique, we partition the corrected total sum squares into
two sum of squares, that is sum of squares due to regression and residual sum of squares
as follows.

From (15.2.16), we have that

Ŷi − Ȳ = b1(Xi − X̄) (15.6.1)

Squaring both sides of (15.6.1) yields, as the reader can verify,

SSR =
n∑

i=1

(Ŷi − Ȳ )2 = b2
1

n∑
i=1

(Xi − X̄)2 = b1SXY (15.6.2)
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Now from (15.3.8), we have

SSE =
n∑

i=1

(Yi − Ŷi)
2 = SY Y − b1SXY (15.6.3)

From (15.6.2) and (15.6.3) we then have

SY Y = SSTotal = SSE + SSR (15.6.4)

In Chapter 17, we will show that under the assumption that εi’s are independent
N(0, σ2) random variables, SSE and SSR are independent with probability distributions
given by

SSE ∼ σ2χ2
n−2 (15.6.5)

SSR ∼ σ2χ2
1(λ) (15.6.6)

Here λ denotes the parameter of noncentrality and is given by

λ = β2
1SXX (15.6.7)

while χ2
m(λ) denotes a random variable that is distributed as a noncentral chi-square

random variable, with m degrees of freedom and with noncentrality parameter λ.
The results shown in (15.6.2) through (15.6.7) are often summarized in a table, called

an analysis of variance table, or simply an ANOVA table, as in Table 15.6.1. An Analysis of
Variance Table or ANOVA Table may be described briefly as a table giving the breakdown
of the total sum of squares and corresponding degrees of freedom into various components
of sums of squares and their related degrees of freedom.

Note: If β1 = 0, then from (15.6.7) λ = 0, so that E(MSR) = E(MSE) = σ2.

Table 15.6.1 Analysis of variance for a fitted straight line.

Source of Degrees of Expected mean
Variation Sum of squares Freedom Mean square F -Ratio square

Regression SSR =
∑n

i=1 (Ŷi − Ȳ )2 1 MSR =
SSR

1
MSR

MSE
σ2 + λ

Residual SSE =
∑n

i=1 (Yi − Ŷi)
2 n− 2 MSE =

SSE

n − 2
σ2

Total SSTotal =
∑n

i=1 (Yi − Ȳ )2 n− 1
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Example 15.6.1 (Percentage of waste solids data) Refer to the data on percentage of
waste solid removed given in Table 15.5.1 and used in Example 15.5.2. Construct an anal-
ysis of variance table and test the hypothesis

H0 : β1 = 0 versus H1 : β1 �= 0

Solution: From the data in Table 15.5.1, we obtain

n = 7, X̄ = 8.0, Ȳ = 14.4, SXX = 112, SY Y = 273.28, SXY = −173.8,
n − 2 = 5

b1 = SXY /SXX = −173.8/112 = −1.5518

SSR = b1SXY = (−1.5518) × (−173.8) = 269.70

SSTotal = SY Y = 273.28

SSE = SSTotal − SSR = 293.28 − 269.70 = 3.58

Thus the analysis of variance table for the data in Table 15.5.1 is as shown in Table 15.6.2.
The analysis of variance table is used to test the hypothesis H0 : β1 = 0 against the

two-sided alternative H1 : β1 �= 0 by computing F, the ratio of the mean square due to
regression to the residual mean square, and comparing this value to the tabular value
F1,n−2;α of Snedecor’s F1,n−2 -distribution. If the computed ratio is greater than the upper
100α% point of the Snedecor’s F1,n−2 -distribution, then we reject the null hypothesis.
Otherwise, we do not reject the null hypothesis. In this example, the ratio of the mean
square due to regression to the residual mean square is 269.7/0.716 = 376.68, which is
greater than the value of F1,5;0.05 = 6.61. Thus, we reject the null hypothesis H0 : β1 = 0
at the 5% level of significance.

Note that when using MINITAB, the output automatically gives the ANOVA table.
The MINITAB output for the data in Table 15.5.1 produces the following ANOVA table
(DF = degrees of freedom):

Analysis of Variance 

Source           DF            SS           MS             F          P

Total 6 273.280

Regression 1 269.700 269.700 0.000376.71

Error 5 3.580 0.716

Furthermore, the value of R2 can be found using the ANOVA table as follows:

R2 =
SSR

SSTotal

=
269.70
273.28

= 0.9869

which matches the value found in Example 15.5.2.

Table 15.6.2 Analysis of variance table for the data in Table 15.5.1.

Source of Degrees of
variation Sum of squares freedom Mean square F -Ratio

Regression 269.70 1 269.70 F = 376.68
Residual 3.58 5 0.716
Total 273.28 6
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Example 15.6.2 (Shell production in an ammunition plant) Consider the following
ammunition plant data comparing ambient temperature and shell production. Using
MINITAB and R, construct an analysis of variance table and test the hypothesis

H0 : β1 = 0 versus H1 : β1 �= 0

Temperature, X 80 68 78 79 87 74 86 92 77 84
Number of shells, Y 411 29 92 425 618 343 604 752 192 573

Solution:

MINITAB

1. In a MINITAB worksheet, enter the data above in columns C1 and C2.
2. From the main toolbar, select Stat > Regression > Regression > Fit Regression

Model.
3. In the dialog box that appears type C1 (Temperature) and C2 (Number of shells) in

the boxes next to Response and Predictors, respectively. Then click OK. Portions
of the MINITAB output appear as follows:

Regression Analysis: Number of shells versus Temperature

Analysis of Variance Coefficients

Regression Equation

Model Summary

Source       DF    Adj SS  Adj MS  F-Value  P-Value

Regression

Temperature

Error

Total 9 522585

1 427200

1 427200

427200

427200 0.000

0.00035.83

35.83

8 95385 11923

S      R-sq    R-sq(adj)   R-sq(pred)

109.193     81.75%        79.47%           75.40%

Number of shells = –2114 + 31.28 Temperature

Fits and Diagnostics for Unusal Observations

Number

          of

    shellsObs Fit Resid Std Resid

Term           Coef  SE Coef  T-Value  P-Value  VIF

Constant       –2114           422       –5.01        0.001

Temperature  31.28           5.23        5.99        0.000    1.00

3 92.0 325.7 –233.7 –2.27 R

USING R

From the data above, we use temperature as the predictor and the number of shells as the
response. Use the following R code to get the subsequent ANOVA output.

Y = c(411,29,92,425,618,343,604,752,192,573)
X = c(80,68,78,79,87,74,86,92,77,84)

#Fitting LSR model
model = lm(Y∼ X)

#ANOVA and Summary outputs
anova(model)
summary(model)
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From both the MINITAB and R output, we find a relatively large F -value with very
small p-value (≈ 0.000). Thus, we have ample evidence at the 0.05 or any other level of
significance to reject the null hypothesis that β1 = 0.

Notes:

1. The rationale for using the ratio of the mean square due to regression to the residual
mean square to test the hypothesis, H0 : β1 = 0 against the two-sided alternative
H1 : β1 �= 0, is as follows. Remember, under the null hypothesis, λ = β2

1SXX = 0.
Hence, from the expected mean square column in Table 15.6.1, it follows that when
λ = 0, both MSR = SSR/1 and MSE = SSE/(n − 2) are unbiased estimators of σ2.
This implies that the observed values of MSR and MSE should not differ significantly
under H 0. Furthermore, from Equations (15.6.5) and (15.6.6), we have that the
ratio of MSR to MSE under H 0 is distributed as a Snedecor’s F-distribution, so
the observed values of MSR and MSE do not differ significantly at the α level of
significance if the observed ratio of MSR to MSE is less than the tabular value
of F1,n−2;α. In other words, we do not reject the null hypothesis H0 : β1 = 0 if the
observed ratio of MSR to MSE is less than F1,n−2;α.

2. Recall from Examples 15.6.1 and 15.5.2 that on the basis of two-sided t test, the
data give evidence to support the hypothesis H1 : β1 �= 0. In fact, the observed t5 =
−19.41. Recall from Section 7.3 that t2df ∼ F1,df , so the observed F = (−19.4091)2 =
376.74, which agrees with the entry for the F -ratio in Table 15.6.2, except for some
rounding error.

PRACTICE PROBLEMS FOR SECTION 15.6

In the following problems, reference is made to the problems in Section 15.2.

1. Construct the ANOVA table for the data in Problem 12 and use results in this
table to evaluate the fitted model in Problem 12. Use α = 0.05.

2. Refer to Problem 10.
(a) Construct the ANOVA table for the data in Problem 10.
(b) Use the ANOVA table in part (a) to evaluate the fitted model in Problem 10.

Use α = 0.01.
(c) Calculate the coefficient of determination R2.

3. Refer to Problem 11.
(a) Construct the ANOVA table for the data in Problem 11.
(b) Use the ANOVA table in (a) to evaluate the fitted model in Problem 11. Use

α = 0.01.
(c) Determine the observed level of significance (p-value) in (b).
(d) Calculate the coefficient of determination R2. Give the practical interpretation

of the value of R2 and of the p-value determined in (c).
4. The following data give the methyl mercury intake X and whole blood mercury

Y in 12 subjects exposed to methyl mercury by eating contaminated fish. Assume
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that the simple linear regression is a suitable model to describe the following data
(from Daniel, 2006, used with permission).

X 180 200 230 410 600 550 275 580 105 250 460 650
Y 90 120 125 290 310 290 170 375 70 105 205 480

(a) Construct ANOVA table for these data.
(b) Test the hypothesis H0 : β1 = 0 versus H1 : β1 �= 0. Use α = 0.01.
(c) Determine the observed level of significance (p-value) in (b).
(d) Determine the coefficient of determination R2. Give the practical interpretation

of the value of R2 and the p-value determined in (c).
5. Refer to Problem 1.

(a) Construct the ANOVA table for the data in Problem 1.
(b) Use the ANOVA table in part (a) to evaluate the fitted model in Problem 1.

Use α = 0.05.
(c) Determine the observed level of significance (p-value) in (b).
(d) Calculate the coefficient of determination R2. Give the practical interpretation

of the value of R2 and the p-value determined in (c).
6. Refer to Problem 2.

(a) Construct the ANOVA table for the data in Problem 2.
(b) Use the ANOVA table in (a) to evaluate the fitted model in Problem 2. Use

α = 0.05.
(c) Determine the observed level of significance (p-value) in (b).
(d) Calculate the coefficient of determination R2. Give the practical interpretation

of the value of R2 and of the p-value determined in (c).
7. Refer to Problem 3.

(a) Construct the ANOVA table for the data in Problem 3.
(b) Use the ANOVA table in part (a) to evaluate the fitted model in Problem 3.

Use α = 0.05.
(c) Determine the observed level of significance (p-value) in (b).
(d) Calculate the coefficient of determination R2. Give the practical interpretation

of the value of R2 and of the p-value determined in (c).
8. Refer to Problem 7.

(a) Construct the ANOVA table for the data in Problem 7.
(b) Use the ANOVA table in (a) to evaluate the fitted model in Problem 7. Use

α = 0.01.
(c) Determine the observed level of significance (p-value) in (b).
(d) Calculate the coefficient of determination R2. Give the practical interpretation

of the value of R2 and of the p-value determined in (c).
9. Refer to Problem 8.

(a) Construct the ANOVA table for the data in Problem 8.
(b) Use the ANOVA table in part (a) to evaluate the fitted model in Problem 8.

Use α = 0.01.
(c) Determine the observed level of significance (p-value) in (b).
(d) Calculate the coefficient of determination R2. Give the practical interpretation

of the value of R2 and of the p-value determined in (c).
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10. Refer to Problem 9.
(a) Construct the ANOVA table for the data in Problem 9.
(b) Use the ANOVA table in (a) to evaluate the fitted model in Problem 9. Use

α = 0.01.
(c) Determine the observed level of significance (p-value) in (b).
(d) Calculate the coefficient of determination R2. Give the practical interpretation

of the value of R2 and of the p-value determined in (c).

15.7 RESIDUAL ANALYSIS

So far in this chapter, we have discussed the problems of estimation and hypothesis testing
for the regression parameters in the simple linear regression model (15.2.4) without paying
much attention to the validity of our assumptions about the model. If any of the assump-
tions about the model are violated, that is, if the assumptions of independence (random
errors), normality of εi (random errors), or constant variance are violated, then any con-
clusions we make about the data conforming to the model (15.2.4) may be invalid. In this
section, we check the assumptions of the model by studying the observed residuals using
some graphical techniques. This study of observed residuals is usually called a residual
analysis. The residual analysis, in addition, gives us information about other departures
from the model, such as the presence of outliers in the data, the omission of some important
independent variables, and/or quadratic terms of the independent variables.

We present several graphs of residuals for the data in Example 15.2.2 that give some
insight about the validity of the assumptions in model (15.2.4) or any other departures
from the simple linear regression model. These graphs include a run chart, box plot, normal
probability plot, plot of residuals versus predictor variable, or plot of residuals versus fitted
values (Table 15.3.1 gives Yi’s and corresponding residuals Yi − Ŷi).

The various plots in Figure 15.7.1 show that the model (15.2.4) is quite appropriate
for the data on hardness of steel. An interpretation of plots (a) to (e) in Figure 15.7.1 is
as follows:

1. Since all the points almost fall on a straight-line, the residuals are normally dis-
tributed.

2. Since all the points are randomly scattered and fall within a rectangular band, the
variance seems fairly constant.

3. The plot of residuals versus the observation order does not present any patterns,
which could violate the assumption that the εi’s are independent.

4. The box plot shows no outliers, which implies that there are no unusual observations.
Plot (e) provides the same information as plot (b).

Some other typical plots that may arise in residual analysis and that indicate depar-
tures from the linear regression model (15.2.4), are shown in Figure 15.7.2.

The scatter plot of residuals versus the predictor variable in Figure 15.7.2a has a curved
pattern: for some smaller and larger predictor values the residuals are negative, while for
intermediate values, the residuals are positive. This indicates that a linear regression model
is not appropriate and that, likely, a quadratic term of the predictor variable should be
included in the model.
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Figure 15.7.1 MINITAB plots of the residuals for the data in Example 15.5.2 on hard-
ness of steel.

The scatter plot of residuals versus the predictor variable in Figure 15.7.2b shows that
the dispersion of residuals is increasing as the value of the predictor variable increases. This
indicates that the assumption of constant variance is not valid. In order to validate this
assumption, we would need to use some data transformation on the response or predictor
variable that may help stabilize the variance.

The normality plot of residuals in Figure 15.7.2d shows that the normality condition of
the model (15.2.4) is also violated. Note that MINITAB also provides the p-value for testing
the null hypothesis H0 : Residuals are normally distributed versus H1 : Residual are not
normally distributed. In Figure 15.7.2d, we note that the p-value is 0.012 (not shown in the
diagram), so we can reject the null hypothesis at any level of significance greater than the
p-value 0.012. Further, we note that one of the residuals is quite a bit off the straight-line,
which indicates that the observation corresponding to this residual is an unusual one.
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Figure 15.7.2 Some other typical plots in residual analysis, showing departure from the
simple linear regression model (15.2.4).

This assertion is also confirmed by the box plot in Figure 15.7.2c (Figures 15.7.2c
and 15.7.2d represent the same set of residuals). The plots in Figure 15.7.2 leads to the
conclusion that various assumptions of the simple linear regression model are violated.
Certain remedies are available to validate some of these assumptions. These remedies
include some transformation of variables; as mentioned above, some discussion of this
topic is presented in Section 15.8.

Example 15.7.1 (Amount of phosphate versus soybean yield) An experiment is con-
ducted to determine the amount of phosphate needed per acre to optimize the yield of
a soybean crop when it is known how much potassium and lime is needed. The data in
Table 15.7.1 provide the necessary information. Use one of the software packages to fit an
appropriate model to these data.

Table 15.7.1 Data on soybean crop experiment.

Yield Y bushels 32 28 31 34 31 33 34 33 33 31 33 32 29 30 30
Phosphate X lb 26 20 24 32 22 28 34 30 36 42 40 38 48 44 46

Solution:

MINITAB

When fitting a linear regression model, it is generally recommended to first plot the data
in a scatter plot to visualize the trend presence in the data before fitting a model. For
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the data in this example, the following scatter plot in Figure 15.7.3 is obtained. It is clear
from the scatter plot that a simple linear regression model is not adequate for the data
available in this study. However, to understand the danger of fitting a straight-line through
this data we will proceed with fitting the simple linear regression model.

From the Menu bar select Stat > Regression > Regression; then enter yields in the box
next to Response and phosphate in the box next to Predictors. Then select Results
(select Fits and diagnostics: For all observations), Graphs, and options one by one, and
check the entries corresponding to the results you desire to have. Then click OK. The
following result appears in the session window. Note: the number of classes in histogram
can be changed by double clicking on histogram bars and selecting Number of intervals to
be 5 in the Binning option in the Edit Bars menu.

  1  32.000  31.757    0.243     0.14

  2  28.000 31.875  –3.875   –2.39

  3  31.000  31.796  –0.796   –0.47

  4  34.000  31.639    2.361      1.31

  5  31.000  31.836  –0.836  –0.50

  6  33.000  31.718    1.282     0.72

  7  34.000  31.600   2.400     1.33

  8  33.000 31.679     1.321     0.74

  9  33.000  31.561     1.439     0.80

10 31.000  31.443  –0.443   –0.25

11  33.000  31.482     1.518     0.86

12  32.000  31.521    0.479    0.27

13 29.000 31.325  –2.325    –1.43

14  30.000  31.404   –1.404   –0.82

15  30.000  31.364  –1.364  –0.82 

Regression Analysis: Yield versus Phosphate

Fits and Diagnostics for All ObservationsAnalysis of Variance

Model Summary

Coefficients

Regression Equation

Source           DF     Adj SS   Adj MS   F-Value   P-Value

Regression      1      0.4321    0.4321       0.12       0.730

Phosphate      1     0.4321    0.4321        0.12      0.730

Error              13    45.1679    3.4745

Total               14    45.6000

S      R-sq   R-sq(adj)   R-sq(pred)

1.86399    0.95%       0.00%          0.00%

Term                 Coef   SE Coef  T-Value    P-Value    VIF

Constant         32.27         1.95       16.51      0.000

Phosphate   –0.0196    0.0557      –0.35       0.730   1.00

Yield    =    32.27 – 0.0196 Phosphate

Obs      Yield          Fit     Resid   Std Resid

R
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Figure 15.7.3 MINITAB scatter plot for the data in Example 15.7.1.
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Figure 15.7.4 MINITAB residual plots for the data in Example 15.7.1.

In the above results, we note that the R-square value is only 0.95% and that indicates a
lack of fit. However, the R-square quantity can produce meaningless results in the presence
of nonlinear data and one should not solely make inferences depending on this quantity.
Moreover, the p-value for the test of hypothesis β1 = 0 is 0.73. This implies that there
is no significant linear relationship between the yield and phosphate. This inference seem
reasonable since the data show no considerable deviation from the normality as shown in
the normal probability plot and histogram and the observations seem independent as the
plot of residuals versus observation orders does not show any unusual pattern that would
violate the assumption that the εi’s are independent. The residuals show no extreme
observation present in the data apart from the second observation being comparatively
smaller than the rest. However, the plot of residual versus fitted values clearly suggests
that the model is missing possibly a quadratic term of the independent variable.

USING R

The following R-code can be used to obtain the necessary similar outputs in R.

Y = c(32,28,31,34,31,33,34,33,33,31,33,32,29,30,30)
X = c(26,20,24,32,22,28,34,30,36,42,40,38,48,44,46)

#Fitting LSR model
model = lm(Y∼X)

#ANOVA and Summary outputs
anova(model)
summary(model)
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residuals =cbind(X,Y, round(cbind(model$fitted, model$res,rstandard(model)),2))
colnames(residuals) = c(“Phosphate”, “Yield”, “Fits”, “Residuals”, “StdRes.”)
residuals #This will produce residuals

#Residual plots
par(mfrow=c(2,2))
boxplot(model$res, ylab=“Residual”, main=“Boxplot of Residuals”, col=5)
qqnorm(model$res,pch=20, cex=2); qqline(model$res, col=2)
plot(model$fitted,model$res, xlab=“Fitted Value”, ylab=“Residual”,

main =“Versus Fits”, col=4, pch=20, cex =2)
plot(c(1:length(X)),model$res, xlab=“Observation Order”, ylab=“Residual”,

type=“b”, main =“Versus Order”, pch=20, cex =2, col =4)
abline(h=0, lty =2)

From the MINITAB and R outputs above, we have ample evidence to suggest that the
inclusion in the model of quadratic trend may have provided a better fit to the data.
We can then disregard the linear regression analysis as unsuitable and proceed to fit a
second-order regression model (see Chapter 16).

MINITAB

To fit a second-order regression model for the data in Example 15.7.1 using MINITAB we
proceed as follows.

From the Menu bar select Stat > Regression > Fitted line plot and then check the
Quadratic option and other options to have the new residual plots. Then click OK. The
following results appear in the Session window.

Linear         1    0.4321   0.12  0.730

Polynomial Regression Analysis: Yield versus Phosphate

Model Summary

The regression equation is

Yield = 5.728 +  1.649 Phosphate - 0.02454 Phosphate2

0.671282    88.14%      86.17%

S      R-sq  R-sq(adj)

Analysis of Variance Sequential Analysis of Variance
Source       DF         SS         MS       F        P Source      DF          SS       F         P

Regression      2    40.1926   20.0963   44.60    0.000

Error              12      5.4074      0.4506

Total              14    45.6000

Quadratic   1   39.7604 88.24  0.000

Additionally MINITAB produces Figures 15.7.5 and 15.7.6. All these outputs produced
by the least-squares procedure that fits the model η = E(Y |X) = β0 + β1X + β2X

2 to the
data (see also Chapter 16).

From this analysis, we observe that the value of R-square at 88.1% is quite high.
Moreover, the p-value for testing the coefficient of the quadratic term is zero. This means we
reject the null hypothesis, H0 : β2 = 0 in favor of the alternative hypothesis H1 : β2 �= 0. In
the ANOVA table the p-value for the regression is zero, which suggests that the quadratic
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model (Yield = 5.728 + 1.649 Phosphate − 0.02454 Phosphate2) explains the relationship
between the phosphate and the yield of soybean quite well.

Figure 15.7.6 shows the fitted regression model including its 95% confidence and pre-
diction intervals. It is clear that the model is fitted to the data quite well and the residual
plots in Figure 15.7.5 show no abnormalities about the quadratic model.
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USING R

Use the following R-code to conduct the polynomial regression model for this example.
Note here that to include the quadratic term, we use the index function ‘I’ in
lm(Y∼ X+I(X∧2)).

#Polynomial regression model

model = lm(Y∼ X+I(X ˆ 2))

summary(model) # This will produce a summary table

anova(model) # This will produce an ANOVA table

residuals = cbind(Y,X,model$res/sqrt(1.864), model$res,model$fitted)

colnames(residuals) = c(“Yield”, “Phosphate”,“StdRes.”, “Residuals”, “Fits”)

residuals #This will produce residuals

#Residual plots
par(mfrow=c(2,2))

boxplot(model$res, ylab=“Residual”, main=“Boxplot of Residuals”, col=5)

qqnorm(model$res, pch=20, cex=2); qqline(model$res, col=2)

plot(model$fitted, model$res, xlab=“Fitted Value”, ylab=“Residual”,
main =“Versus Fits”, col=4, pch=20, cex =2)

plot(c(1:length(X)), model$res, xlab=“Observation Order”, ylab=“Residual”,

type=“b”, main =“Versus Order”, pch=20, cex =2, col =4)

abline(h=0, lty =2)

The results that would appear are virtually identical to the results obtained using
MINITAB. That is, based on the data, the quadratic model explains the relationship
between phosphate and yield better than the first-order model.

PRACTICE PROBLEMS FOR SECTION 15.7

In the following problems reference is made to the problems for Section 15.2.

1. Refer to Problem 1.
(a) Construct a normal probability plot of the residuals obtained from the

least-squares fit. Does this plot indicate that the normality assumption is
valid?

(b) Plot the residuals versus fitted values, and order of the observations, and inter-
pret these plots.
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2. Refer to Problem 2.
(a) Construct a normal probability plot of the residuals obtained from the

least-squares fit. Does this plot indicate that the normality assumption is
valid?

(b) Plot the residuals versus fitted values, and order of the observations, and inter-
pret these plots.

3. Refer to Problem 3.
(a) Construct a normal probability plot of the residuals obtained from the least-

squares fit. Does this plot indicate that the normality assumption is valid?
(b) Plot the residuals versus fitted values, and order of the observations, and inter-

pret these plots.
4. Refer to Problem 4.

(a) Construct a normal probability plot of the residuals obtained from the least-
squares fit. Does this plot indicate that the normality assumption is valid?

(b) Plot the residuals versus fitted values, and order of the observations, and inter-
pret these plots.

5. Refer to Problem 5.
(a) Construct a normal probability plot of the residuals obtained from the least-

squares fit. Does this plot indicate that the normality assumption is valid?
(b) Plot the residuals versus fitted values, and order of the observations, and inter-

pret these plots.
6. Refer to Problem 6.

(a) Construct a normal probability plot of the residuals obtained from the least-
squares fit. Does this plot indicate that the normality assumption is valid?

(b) Plot the residuals versus fitted values, and order of the observations, and inter-
pret these plots.

7. Refer to Problem 7.
(a) Construct a normal probability plot of the residuals obtained from the least-

squares fit. Does this plot indicate that the normality assumption is valid?
(b) Plot the residuals versus fitted values, and order of the observations, and inter-

pret these plots.
8. Refer to Problem 8.

(a) Construct a normal probability plot of the residuals obtained from the least-
squares fit. Does this plot indicate that the normality assumption is valid?

(b) Plot the residuals versus fitted values, and order of the observations, and inter-
pret these plots.

9. Refer to Problem 9.
(a) Construct a normal probability plot of the residuals obtained from the least-

squares fit. Does this plot indicate that the normality assumption is valid?
(b) Plot the residuals versus fitted values, and order of the observations, and inter-

pret these plots.
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10. Refer to Problem 10.
(a) Construct a normal probability plot of the residuals obtained from the least-

squares fit. Does this plot indicate that the normality assumption is valid?
(b) Plot the residuals versus fitted values, and order of the observations, and inter-

pret these plots.
11. Refer to Problem 11.

(a) Construct a normal probability plot of the residuals obtained from the least-
squares fit. Does this plot indicate that the normality assumption is valid?

(b) Plot the residuals versus fitted values, and order of the observations, and inter-
pret these plots.

12. Refer to Problem 12.
(a) Construct a normal probability plot of the residuals obtained from the least-

squares fit. Does this plot indicate that the normality assumption is valid?
(b) Plot the residuals versus fitted values, and order of the observations, and inter-

pret these plots.

15.8 TRANSFORMATIONS

To begin our discussion in this section, a definition is in order.

Definition 15.8.1 Suppose that a random variable, Y, a response variable that
is thought to be dependent on k independent (predictor) variables, X1,X2, . . . ,Xk,
so that E(Y ) = f(X1,X2, . . . ,Xk). We then say that the model

E(Y ) =
k∑

i=0

βiXi (15.8.1)

is a linear model, where X0 = 1. The quantities β0, β1, . . . , βk are parameters, usually
unknown, and we note that they enter into the model linearly. A model containing
quadratic or higher order terms of these parameters, regardless of the degree of the
predictor variables, is called nonlinear.

Some examples of linear and nonlinear models are

E(Y ) = β0 + β1X First-order linear model
E(Y ) = β0 + β1X + β2X

2 Quadratic or second-order linear model
E(Y ) = β0 + β1X + β2X

2 + · · · + βkXk kth-Order linear model
E(Y ) = (β0 + β1X)−1 Nonlinear model
E(Y ) = αXβ Nonlinear model
E(Y ) = αeβX Nonlinear model
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So far most of our discussion has centered on the linear regression model given in
(15.2.4), which contains one response and one predictor variable, and these are related
linearly. That model also assumes that εi, i = 1, 2, . . . , n, are independently normally
distributed with mean 0 and constant variance σ2. In practice, however, we rarely meet all
of these conditions, or we may meet these conditions yet still find the model inadequate.
For instance, in Example 15.7.1, the model (15.2.4) is not adequate since the residual anal-
ysis indicates that the model may need an additional quadratic term. Indeed, after adding
a quadratic term, we found previously, that the quadratic model was quite adequate. So
that the new model is quadratic, but linear in parameters and satisfies all other assump-
tions. In many other instances, however, either our model is linear and the assumptions
of the model (15.2.4) are not met, or, our model is not linear, nor are the assumptions of
the model (15.2.4) met. One remedy for dealing with these problems is by making some
transformations on the response variable, the predictor variable, or both.

Normality and stabilization of variance often go hand in hand. To stabilize the vari-
ance, transformations, such as the log, square root, or reciprocal of the response variables,
are usually used. If the normality, common variance, and independence assumptions are
fairly satisfactory, then, for linearization, transformations of the predictor variable such as
X2, log X,

√
X or X−1 may work quite well. However, several transformations should be

tried on the response variable, predictor variable, or both, and the residual analysis done to
find which transformation works best. Sometimes one transformation may need to be used
on the response variable and another on the predictor variable. Other transformations, for
example, to linearize the nonlinear models mentioned above that may work well, are

Model Transformation

E(Y ) = (β0 + β1X)−1 Reciprocal transformation on response variable
E(Y ) = αXβ Log transformation on both the response and

predictor variable
E(Y ) = αeβx Natural log transformation on the response

variable

Sometimes such transformations may also address other problems such as normaliza-
tion and stabilization of variance. Sometimes many transformations are tried in order to
find the one that works for linearization, normalization, and stabilization of the variance.
Box and Cox (1964) provided a family of power transformations and a procedure, using
the maximum likelihood method under the normality assumption, to determine an appro-
priate transformation. The essence of their procedure is as follows. In model (15.2.4), we
would consider the response variable to be Y λ and rewrite (15.2.4) as

Y λ
i = β0 + β1Xi + εi (15.8.2)

Now, using the method of maximum likelihood, we would determine the estimates β̂0, β̂1,
and λ̂ for β0, β1, and λ, respectively, and then use the transformation Y λ̂ on the response
variable.
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Table 15.8.1 Data for the experiment in Example.

Catalyst 1.91 1.88 2.16 1.83 1.88 1.67 2.21 1.86
Yield 382.84 355.36 564.14 325.83 361.86 256.02 592.70 349.52
ln(yield) 5.95 5.87 6.34 5.79 5.89 5.55 6.38 5.86

Catalyst 1.67 2.33 1.62 1.95 1.70 1.67 1.90
Yield 247.42 727.58 235.15 385.05 265.60 247.72 375.45
ln(yield) 5.51 6.59 5.46 5.95 5.58 5.51 5.93

Example 15.8.1 (Chemical yield versus amount of catalyst) It is believed that the yield
of a chemical depends on the amount of catalyst used. An experiment using 15 randomly
selected amounts of catalyst is run to produce the data recorded in Table 15.8.1. We include
the natural log of the yield for reasons to be discussed later in the solution. Fit an appro-
priate regression model to the data in Table 15.8.1.

Solution: We first start with the simplest regression model (15.2.4) using catalyst as the
predictor variable and yield as the response variable. MINITAB produces the following
output for the regression analysis.

Yield     =    –880.2  +  668.4 Catalyst

Regression Analysis: Yield versus Catalyst 

Analysis of Variance
Source               DF      Adj SS     Adj MS      F-Value     P-Value

Regression          1     281930      281930       498.74         0.000

Catalyst             1     281930      281930       498.74         0.000

Error                  13          7349           565

Lack-of-Fit       10          7280           728         31.76         0.008

Pure Error         3              69              23

Total                   14     289279

Model Summary
S         R-sq     R-sq(adj)      R-sq(pred)

23.7758     97.46%         97.26%           95.59% 

Coefficients
Term               Coef     SE Coef     T-Value      P-Value        VIF

Constant      –880.2           56.7      –15.53         0.000

Catalyst         668.4           29.9         22.33         0.000     1.00

Regression Equation

From the MINITAB output, we note that the value of the coefficient of determination
R2 is very high (97.46%) and the p-values for both hypotheses, H0 : β0 = 0 versus H1 :
β0 �= 0 and H0 : β1 = 0 versus H1 : β1 �= 0, are zero. Hence, we reject the null hypotheses
in favor of the alternative hypotheses. In other words, both β0 and β1 are significantly
different from zero, and the temptation is to conclude that the simple linear model is
an adequate fit. However, if we examine the results more closely, suspicions about our
conclusions arise. First, we note that the standard errors of both β̂0 and β̂1 are quite
high, as is S, the estimate of σ. Furthermore, the plot of residual versus fitted value in
Figure 15.8.1 presents some anomalies, whereas normal probability, histogram, and residual
versus the ordered observations plots are satisfactory, that is the conditions of normality
and independence are valid. Thus, despite the high value of R2 and very low p-values, our
conclusion of linearity does not seem satisfactory.
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A careful investigation of the fitted regression line in the Figure 15.8.2a indicates that
a slight exponential type growth in yield with respect to the catalyst. This indicates that
the natural log transformation on the response variable may produce a better fit. One can
experiment with various alternative transformations on the response variable to obtain
even better results. However, the resulting fitted model seen in Figure 15.8.2, indicates
that the suggested transformation adequately linearizes the relationship between the
variables. Here, we present the MINITAB output of the regression analysis of ln(Yield)
versus catalyst.
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Figure 15.8.1 MINITAB residual plots: regression analysis of yield versus catalyst.
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Figure 15.8.3 MINITAB residual plots for the regression analysis of ln(yield) versus
catalyst.

Obs     Ln(yield)              Fit           Resid        Std Resid

Regression Analysis: Ln(yield) versus Catalyst 

Analysis of Variance 

Model Summary

Coeffiecients

Regression Equation

Fits and Diagnostics for All Observations

Source               DF       Adj SS      Adj MS      F-Value      P-Value

Regression           1     1.63106     1.63106      4534.21         0.000

 Catalyst              1     1.63106     1.63106      4534.21         0.000

Error                   13     0.00468    0.00036

Lack-of-Fit        10     0.00376    0.00038            1.23         0.484

Pure Error          3     0.00092    0.00031

Total                    14     1.63573

  0.0189663      9.71%        99.69%          99.64% 

S         R-sq     R-sq(adj)      R-sq(pred)

Ln(yield)      =     2.8505  + 1.6076   Catalyst

Term                Coef     SE Coef     T-Value      P-Value       VIF

Constant      2.8505        0.0452       63.04         0.000

Catalyst        1.6076        0.0239        67.34         0.000       1.00 

  1  5.94762   5.92108    0.02654    1.45

  2  5.87313   5.87285    0.00028    0.02

  3  6.33530   6.32299    0.01232    0.72

  4 5.78638   5.79247  –0.00609             –0.33

  5  5.89126   5.87285    0.01841   1.00

  6  5.54526   5.53524    0.01001    0.57

  7  6.38469   6.40337  –0.01868  –1.13

  8 5.85656  5.84069   0.01587    0.87

  9  5.51109  5.53524 –0.02416  –1.37

10  6.58972   6.59628 –0.00656  –0.44

11  5.46022   5.45486  0.00536     0.31

12  5.95337   5.98538  –0.03201   –1.75

13 5.58199   5.58347 –0.00148 –0.08

14  5.51230   5.53524 –0.02294   –1.30

15  5.92813   5.90500    0.02313    1.26 
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Figure 15.8.4 R residual plots for the regression analysis of ln(Yield) versus catalyst.

The standard errors of both β̂0 and β̂1 are very small, and so is S, the estimate of σ.
Also the value of R2 (99.7%) is very high and the p-values for both hypotheses, H0 : β1 =
0 versus H1 : β0 �= 0 and H0 : β1 = 0 versus H1 : β1 �= 0 are zero. Moreover, the residual
plots in Figure 15.8.3 do not present any particular anomalies. Thus, the ln transformation
on the response variable gives a better fit.

Solution USING R

To perform a regression analysis on ln(Yield), we can use the following R-code. Note:
lm(log(Yield) ∼ Catalyst) is directly used to regress ln(Yield) against the catalyst. We
find that this output is identical to that obtained in MINITAB, and we may then draw
the same conclusions as well.

Catalyst = c(1.91,1.88,2.16,1.83,1.88,1.67,2.21,1.86,1.67,2.33,1.62,1.95,1.70,
1.67,1.90)

Yield = c(382.84,355.36,564.14,325.83,361.86,256.02,592.70,349.52,247.42,727.58,
235.15,385.05,265.60,247.72,375.45)

#Fitting LSR model with ln(Yield)
model = lm(log(Yield) ∼ Catalyst)
summary(model) # This will produce a summary table
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anova(model) # This will produce an ANOVA table

residuals = cbind(Catalyst, log(Yield), round(cbind(model$fitted, model$res, rstan-
dard(model)),4))
colnames(residuals) = c(“Catalyst”, “log(Yield)”, “Fits”, “Residuals”, “StdRes.”)

#Residual plots
par(mfrow=c(2,2))
boxplot(model$res, ylab=“Residual”, main=“Boxplot of Residuals”, col=5)
qqnorm(model$res,pch=20, cex=2); qqline(model$res, col=2)
plot(model$fitted,model$res, xlab=“Fitted Value”, ylab=“Residual”,

main =“Versus Fits”, col=4, pch=20, cex =2)
plot(c(1:length(Catalyst)),model$res, xlab=“Observation Order”, ylab=“Residual”,

type=“b”,main =“Versus Order”, pch=20, cex =2, col =4)
abline(h=0, lty =2)

The residual plots for the regression analysis of ln(Yield) versus catalyst using R
are shown in Figure 15.8.4. These graphs convey the same information provide by the
MINITAB residual plots shown in Figure 15.8.3. Both MINITAB and R plots do not
present any particular anomalies. Thus, the previous conclusion that the ln transformation
on the response variable gives a better fit is further validated.

PRACTICE PROBLEMS FOR SECTION 15.8

In the following problems, reference is made to the problems in Section 15.2

1. Refer to Problem 4.
(a) Fit a simple linear regression model using log Y as the response variable.
(b) Using (a), record the least-squares estimates of the regression coefficients.
(c) Test for significance of the regression coefficient. That is, test the hypotheses

H0 : βi = 0 versus H1 : βi �= 0 for i = 0 and i = 1. Use α = 0.05.
2. Refer to Problem 10.

(a) Fit a simple linear regression model using
√

Y as the response variable.
(b) Using (a), record the least-squares estimates of the regression coefficients.
(c) Test for significance of the regression coefficients. That is, test the hypotheses

H0 : βi = 0 versus H1 : βi �= 0 for i = 0 and i = 1. Use α = 0.05.
3. Refer to Problem 4.

(a) Fit a simple linear regression model using log Y and log X as the response
variable and the predictor variable, respectively.

(b) Using (a), record the least-squares estimates of the regression coefficients.
(c) Test for significance of the regression coefficients. That is, test the hypotheses

H0 : βi = 0 versus H1 : βi �= 0 for i = 0 and i = 1. Use α = 0.05.
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15.9 INFERENCE ABOUT ρ

Quite often we wish to find confidence intervals and make tests of hypotheses concerning
the parameter ρ, the population correlation coefficient. Suppose that (Xi, Yi), i = 1, . . . , n,
are n independent observations on the bivariate random variable (X,Y ), where (X,Y ) has
the bivariate normal distribution. The sampling distribution of the sample correlation
coefficient r, where r is defined by

r =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1 (xi − x̄)2

∑n
i=1 (yi − ȳ)2

,−1 ≤ r ≤ 1

which can be written as

r =
SXY√

SXXSY Y

(15.9.1)

is quite complicated for general values of the population correlation coefficient ρ,−1 ≤ ρ ≤
1. We emphasize that both components of each observation are random, and their joint
distribution is bivariate normal. This is unlike the previous cases discussed in this chapter
where Xi are assumed to be fixed constants chosen before the Yi are observed at Xi.

Now, for the case when ρ = 0, it is known that the distribution of r is such that the
quantity

r
√

n−2√
1−r2 (15.9.2)

has the Student t-distribution with (n − 2) degrees of freedom. Hence, for example, to test
the hypothesis

H0 : ρ = 0 versus H1 : ρ �= 0

at the α level of significance, we use (15.9.2) as our test statistic and reject H0 in favor of
H1 if the observed value of

|r|
√

n − 2√
1 − r2

> tn−2;α/2 (15.9.3)

Example 15.9.1 (Carbon contents in ball clay) Bennett and Franklin (1954) discuss the
analysis for carbon content of 36 specimens of ball clay by two different methods. Let X
= carbon determined by combustion and Y = carbon determined by “rational analysis,”
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where both X and Y are measured in percent. It turns out that the values of (Xi, Yi),
i = 1, . . . , 36 for the 36 specimens gave the following results:

n = 36,
∑

Xi = 69.25,
∑

Yi = 102.71,
∑

X2
i = 354.0245,

∑
Y 2

i = 826.6842,∑
XiYi = 510.8425

From these we find that

SXX =
∑

(Xi − X̄)2 = 220.8144, SY Y =
∑

(Yi − Ȳ )2 = 533.6469

and
SXY =

∑
(Xi − X̄)(Yi − Ȳ ) =

∑
Xi Yi − (

∑
Xi) (

∑
Yi) /n

= 510.8425 − (69.25)(102.71)/36
= 510.8425 − 197.5741 = 313.2684

Hence
r =

313.2684√
(220.8144)(533.6469)

= 0.91259

Thus, the observed value of the test statistic in (15.9.2) is

0.91259√
1 − (0.91259)2

√
34 = 13.014

a highly significant result at either the 5% or 1% level of significance, and so we reject the
null hypothesis H0 : ρ = 0.

Thus, it is highly unlikely that the population correlation coefficient, ρ, could be zero,
so we may wish to instead find a confidence interval for ρ. Now, it can be shown that
for large n, if (X1, Y1), . . . , (Xn, Yn) can be regarded as a random sample from a bivariate
normal distribution having correlation coefficient ρ, then the quantity(

1
2

)
loge

1 + r

1 − r
= tanh−1r (15.9.4)

is approximately normally distributed with mean

τ =
(

1
2

)
loge

1 + ρ

1 − ρ
= tanh−1ρ (15.9.5)

and variance 1/(n − 3). By using (15.9.4) and (15.9.5), we see that an approximate 100 α%
confidence interval for

τ =
(

1
2

)
loge

1 + ρ

1 − ρ

is given by

((
1
2

)
loge

1 + r

1 − r
± zα/2

1√
n − 3

)
(15.9.6)
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Consulting normal tables, we have that for the Example 15.9.1, with 1 − α = 0.95,
and substituting the values r = 0.9126, n = 36, the confidence interval for (

1
2
)loge[(1 +

ρ)/(1 − ρ)] is (
1.543 ± 1.96

1√
33

)
= (1.202, 1.884) (15.9.7)

Now since τ = (
1
2
)loge((1 + ρ)/(1 − ρ)) is increasing function in ρ, using (15.9.7) it can

easily be shown that a 95% confidence interval for ρ is (0.83, 0.95), as follows. Since τ is
increasing function in ρ we have that

P

(
τl ≤

(
1
2

)
loge

1 + ρ

1 − ρ
≤ τu

)
= P

(
e2τl − 1
e2τ

l + 1
≤ ρ ≤ e2τu − 1

e2τu + 1

)

= P

(
e2(1.202) − 1
e2(1.202) + 1

≤ ρ ≤ e2(1.884) − 1
e2(1.884) + 1

)

or
P (0.83 ≤ ρ ≤ 0.95) = 0.95

that is, (0.83, 0.95) is a 95% confidence interval for ρ.

PRACTICE PROBLEMS FOR SECTION 15.9

In the following problems, reference is made to the problems for Section 15.2.

1. Refer to Problem 1. Test at the 5% level of significance the hypothesis H0 : ρ =
0 versus H1 : ρ �= 0.

2. Refer to Problem 3. Test at the 5% level of significance the hypothesis H0 : ρ =
0 versus H1 : ρ �= 0.

3. Refer to Problem 4. Test at the 5% level of significance the hypothesis H0 : ρ =
0 versus H1 : ρ �= 0.

4. Refer to Problem 7. Test at the 5% level of significance the hypothesis H0 : ρ =
0 versus H1 : ρ �= 0.

5. Refer to Problem 10. Test at the 5% level of significance the hypothesis H0 : ρ =
0 versus H1 : ρ �= 0.

6. Refer to Problem 11. Test at the 5% level of significance the hypothesis H0 : ρ =
0 versus H1 : ρ �= 0.

15.10 A CASE STUDY

Case Study (Load cell calibration)1 The data collected in this calibration experiment con-
sisted of a known load applied to a load cell and the corresponding deflection of the cell
from its nominal position. Forty measurements were made over a range of loads from
150,000 to 3,000,000 units. The data were collected in two sets in order of increasing load.
The systematic run order makes it difficult to determine whether there was any drift in
the load cell or measuring equipment over time. Assuming there is no drift, however, the

1 Source: NIST and SEMATECH (2003).
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experiment should provide a good description of the relationship between the load applied
to the cell and its response. The resulting data are given below

Deflection Load Deflection Load
0.11019 150,000 0.11052 150,000
0.21956 300,000 0.22018 300,000
0.32949 450,000 0.32939 450,000
0.43899 600,000 0.43886 600,000
0.54803 750,000 0.54798 750,000
0.65694 900,000 0.65739 900,000
0.76562 1,050,000 0.76596 1,050,000
0.87487 1,200,000 0.87474 1,200,000
0.98292 1,350,000 0.98300 1,350,000
1.09146 1,500,000 1.0915 1,500,000
1.20001 1,650,000 1.20004 1,650,000
1.30822 1,800,000 1.30818 1,800,000
1.41599 1,950,000 1.41613 1,950,000
1.52399 2,100,000 1.52408 2,100,000
1.63194 2,250,000 1.63159 2,250,000
1.73947 2,400,000 1.73965 2,400,000
1.84646 2,550,000 1.84696 2,550,000
1.95392 2,700,000 1.95445 2,700,000
2.06128 2,850,000 2.06177 2,850,000
2.16844 3,000,000 2.16829 3,000,000

(a) In this problem, indicate which variable is independent and which is dependent.
(b) Fit a first-order linear regression model to the load and deflection data.
(c) Perform the residual analysis and check the adequacy of the model.
(d) If in (b) the model is not adequate, then fit a second-order linear regression model to

the load and deflection data.
(e) Perform the residual analysis and again check the adequacy of the model.
(f) If in part (d) the model is adequate, then use it for predicting future observations.

Develop a 95% confidence interval for the individual and the average value of the
dependent variable.

15.11 USING JMP

This section is not included in the book but is available for download from the book
website: www.wiley.com/college/gupta/statistics2e.

Review Practice Problems

1. Suppose that it has been assumed on prior theoretical grounds that E(Y |X) = η =
β1X. To gain knowledge of β1, it is decided to experiment by setting the independent



Review Practice Problems 685

variable X to each of the values x1, . . . , xn and to observe the resulting Y’s, say
Y1, . . . , Yn. Determine by the method of least squares an estimate b1 of β1 and hence an
estimator of this regression line of Y on X (which passes through the origin). Find the
expectation and variance of b1, assuming that the Yi are independent, with expectation
β1xi and variance σ2. If the Yi are, in addition, normally distributed, state how you
would determine confidence intervals for β1 and the true response η0 when X = x0.

2. It is decided to measure the resistance of sheets of a certain metal at temperatures
X of 100, 200, 300, 400, and 500 K. The resistances Y are found to be 4.7, 7.4, 12.4,
16.5, and 19.8, respectively. If the regression of Y on X is assumed to be linear, state
the normal equations for the parameters in the linear model, and solve.

3. An experiment is planned in which three observations will be taken at each of four
temperatures, 30◦, 50◦, 70◦, and 90◦. When the experiment is actually done, the
results obtained are those given below. Find, assuming η = E(Y |X) = β0 + β1X, the
least-squares estimates of β0 and β1, and hence the least-squares estimate of η. Con-
struct 95% confidence intervals for β0, β1, and η0 = β0 + β1x0.

X (temperature) 30 30 30 50 50 50 70 70 70 90 90 90
Y (response) 40 45 31 34 28 35 21 29 25 16 21 23

4. A chemical engineer wants to fit a straight-line to the data found observing the
tensile strength, Y, of 10 test pieces of plastic that have undergone baking (at a
uniform temperature) for X minutes, where 10 values of X were preselected. The data
(in coded units) is given below. Repeat the instructions of Problem 3 for this set
of data.

X 23 35 45 65 75 95 105 125 155 185
Y 2 9.8 9.2 26.2 17.1 24.8 43 55.3 38.4 63.3

5. An investigation of the (assumed) linear relationship between the load X on a spring
and the subsequent length of the spring Y has been carried out with the results given
below. Repeat the instructions of Problem 3 for this set of data.

X 5 10 15 20 25 30
Y 7.25 8.12 8.95 9.90 10.9 11.8

6. A study was made on the effect of pressure X on the yield Y of paint made by a
certain chemical process. The results (in coded units) are given below. Repeat the
instructions of Problem 3. In the notation of Problem 3 above, let X0 take the values
−5, −3, −1, 1, 3, and 5 and draw the confidence band for the estimated regression
equation.

X −5 −4 −3 −2 −1 0 1 2 3 4 5
Y 6.5 10.3 9.7 12.1 15.7 13.7 14.2 18.0 19.7 18.8 23.4
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7. The relationship (assumed linear) between the yield of bourbon Y and aging time X
was studied by observing yields Yi from batches that have been allowed to age Xi = 2i
years, i = 1, 2, . . . , 6. The results are given below. Repeat the instructions of Problem
6 for this set of data, but use X0 = 2, 4, 6, 8, 10, and 12 for computing the confidence
band for the estimated regression equation.

X 2 4 6 8 10 12
Y 3.0 3.4 4.0 4.5 4.4 5.0

8. The moisture X of the wet mix of a product is considered to have an effect on the
density Y of the finished product. The moisture of the mix was controlled and the
finished product densities were as shown below. Repeat the instructions of Problem 6
for this set of data, choosing convenient values of X0 for drawing the confidence band.

X 5 6 7 8 9 10 11 12 13 14 15 16 17
Y 7.6 9.5 9.3 10.3 11.1 12.1 13.3 12.7 13.0 13.8 14.6 14.8 14.7

9. The effect of temperature (X in Kelvin) on the color (Y, coded units) of a product
was investigated and the results obtained are given below. Construct an analysis of
variance table for these data and then use it to test the hypothesis H0 : β1 = 0. If the
test rejects H0, then fit these data to the model E(Y |X) = β0 + β1X. What is the
estimate of E(Y |X) when X = 145 ? Find a 95% confidence interval for E(Y |145).

X 100 110 120 140 150 170 180 200 230 260
Y 3.5 7.4 7.1 15.6 11.1 14.9 23.5 27.1 22.1 32.9

10. Specimens of blood from 10 different animals were analyzed for blood count, say,
Y (in units of 100) and packed cell volume count X (in mm3) with results as given
below. Assuming normality, test the hypothesis that the true correlation coefficient ρ
between blood count and volume count is zero. If the test is rejected, use the method
of Section 15.19 to find a 95% confidence interval for ρ.

Animal # X Y

1 45 6.5
2 42 6.3
3 56 9.5
4 48 7.5
5 42 7.0
6 35 5.9
7 58 9.5
8 40 6.2
9 39 6.6

10 50 8.7

11. Repeat the instructions of Problem 10 for the data given below. The data set
was obtained by measuring the tensile strength (Y) in 1000 psi and the Brinell
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hardness (X) of each of 15 specimens of cold-drawn copper (data from Bowker and
Lieberman, 1959).

Specimen # X Y

1 104.2 39.8
2 106.1 40.4
3 105.6 39.9
4 106.3 40.8
5 101.7 33.7
6 104.4 39.5
7 102.0 33.0
8 103.8 37.0
9 104.0 37.6
10 101.5 33.2
11 101.9 33.9
12 100.6 29.9
13 104.9 39.5
14 106.2 40.6
15 103.1 35.1

12. Repeat the instructions of Problem 10 for the data given below. These data (Bullis
and Alderton) were obtained by examining the alpha resin content of six different
specimens of hops by taking colorimeter readings X and by direct determination of
the concentration (Y, in mg per 100 ml).

Specimen # X Y
1 8 0.12
2 50 0.71
3 81 1.09
4 102 1.38
5 140 1.95
6 181 2.05

13. Test pieces of boiler plate undergo tests at various times during a production process.
The measurements made are X, the force applied in tons per square inch at the time
of removal from the process, and the resulting elongation Y of the test piece. For the
results given below on 10 test pieces, repeat the instructions of Problem 10.

Test piece # X Y

1 1.33 27
2 2.68 50
3 3.57 67
4 4.46 83
5 5.35 101
6 6.24 117
7 7.14 134
8 8.93 154
9 9.82 188

10 10.70 206
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14. Experiments have shown that when a clean tungsten surface is heated by laser irradi-
ation using a focused ruby laser, the rate of evaporation of tungsten from the surface
is similar to that obtained by more conventional surface-heating methods. The follow-
ing experimental data relates the observed temperature change as a function of laser
amplitude. Fit a first-order polynomial to these data.

Laser pulse amplitude 0.7 0.9 1.1 1.2 1.5 1.7 1.9 2.0 2.1
Surface temperature (◦C) 630 740 700 745 1120 1205 1510 1530 1520

15. In an investigation of pure copper bars of a small diameter, the following shear stress
and shear strain data were collected.

Shear strain (%) 8.8 9.3 10.4 11.2 12.3 13.0 13.8 14.4 15.8 16.7 17.3
Shear stress (1000 psi) 11.8 11.9 11.4 11.6 12.3 12.7 13.3 13.7 13.8 14.4 14.5

(a) Fit a straight-line to the shear strain data as the independent variable and the
shear stress data as the response variable.

(b) Refit the line with the roles of shear strain and shear stress reversed.
(c) Why do the two fitted models disagree?

16. In a study of internal combustion engines, the data given were observed with Y (in
units of BTU/lb), the net work provided by a cylinder, as a function of the fuel fraction
X, where 0 < X ≤ 1.

Fuel fraction 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.0
Net work 120 165 204 238 296 373 410 462 520 580 600
BTU/lbs of air 403 455 518

420 464 525
408

Fit a straight-line to the data and test the hypothesis that the true slope is zero. Use
the 5% significance level.

17. Sulfur dioxide can be removed from flue gases at low temperatures (approximately
600◦F) through the use of a dry absorbent, alkalized alumina. The absorbent, when
spent, is later regenerated in a separate process with elemental sulfur produced as a
by-product. One series of experiments yielded the data below, relating the removal
of sulfur dioxide as a function of the height of the absorber tower, under fixed oper-
ating conditions (the sulfur dioxide removed is a response or dependent variable and
absorbent height is an independent or predictor variable):

Height of absorber (ft) 4.5 8.0 12.0 16.0 20.0 24.0 26.0
Removal of SO2 (%) 7.2 21.2 28.3 33.0 42.0 54.0 63.8
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(a) Fit a linear regression model to these data.
(b) What is the best estimate of the amount of sulfur dioxide to be removed in a

tower 30 ft high?
(c) What is the estimate of the required height of the absorbent tower that is needed

to remove 95% of the SO2?

18. Estimate the acceleration, say τ , of a body disturbed from rest by a constant applied
force. The approximate model is V = τt, where V is the velocity at time t.

t (s) 1 2 3 4 5 6 7 8
Velocity V (ft/s) 34.2 57.6 94.3 121.0 146.4 175.2 212.8 247

19. In Problem 18, find a 95% confidence interval for the slope parameter τ .

20. In Problem 13, find a 99% confidence interval for the observation Y and its expected
value E(Y |X = x), at x = 5.50 and x = 8.20.

21. In Problem 20, discuss whether it is reasonable to find a confidence interval for the
observation Y or its expected value E(Y |X) when X = 11.

22. In Problem 17, construct the ANOVA table and perform the F-test to learn whether
the assumption that a linear regression model is the true model; do this at the 5%
level of significance. State your conclusion.

23. In Problem 16, perform the residual analysis. Do you find any abnormalities? If you
do find any abnormalities, then suggest some remedies so that a suitable model can
be fitted.

24. The manager of a manufacturing company believes that experience is the most valu-
able variable in determining a worker’s productivity. She collects data on productivity
of 10 workers with known number of years of experience. The data collected are given
below:

Experience, X 15 15 13 20 13 20 11 5 15 11
Productivity %, Y 116 128 116 130 106 120 124 111 129 105

(a) Fit a linear regression model to these data.
(b) Determine the coefficient of determination R2.
(c) Determine the estimate of the error variance.
(d) Find a 95% confidence interval for the regression parameter β1 and use this con-

fidence interval to test the hypothesis H0 : β1 = 0 versus H1 : β1 �= 0. What is the
level of significance for the test?

25. Refer to Problem 24, find the correlation coefficient between the X and Y variables.
Perform a test, using the 5% level of significance, of the hypothesis H0 : ρ = 0 versus
H1 : ρ > 0.
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26. In Problem 24, use the log transformation on both the X and Y variables and fit
the least-square line to the transformed data. Perform the residual analysis in this
problem and in Problem 24 and compare the two fits. Give your conclusion about
which fit is the better one. State the model that is being fitted in this problem.

27. A new cholesterol-lowering drug is being tested on eight randomly chosen patients.
Since the appropriate dose of the drug is yet unknown, the chosen doses are varied
and the resulting level of cholesterol changes in each patient are as given below:

Dose (mg), X 190 175 100 125 140 190 200 175
Cholesterol (mg/dL), Y 45 35 15 16 28 41 45 34

(a) Construct a scatter plot for these data and suggest an appropriate model that
would provide a good fit to these data.

(b) Fit the suggested model and check if the suggested model is a good fit.
(c) Perform residual analysis and then indicate which, if any, of the assumptions of

the model are being violated.

28. Refer to Problem 27. Assuming that a linear regression model is appropriate.
(a) Find a 95% prediction interval for Y when X = 150 mg.
(b) Find a 95% confidence interval for E(Y |X) when X = 150 mg.
(c) Compare the confidence interval in (b) with the prediction interval in (a) and

indicate which one is larger.

29. Consider the following data set.

X 6 8 11 15 17 20 25 30 33 40
Y 20 23 32 38 40 44 39 32 26 24

(a) Fit these data to the following models:

Yi = β0 + β1Xi + εi, i = 1, . . . , 10
Yi = τ0 + τ1Xi + τ2X

2
i + εi, i = 1, . . . , 10

(b) Perform residual analysis for both fits and conclude which is a better one.

30. In Problem 29, after concluding which model is the “better fit,” find a 99% prediction
interval for Y and a 99% confidence interval for E(Y |X) at X = 22 and 35, using the
model with the better fit.

31. The following data are 28 observations Y on the yield of a certain by-product when
certain temperatures X ◦C are used in a chemical process:

X 22 30 28 30 48 29 50 39 47 39 30 15 42 31
Y 72 91 69 81 71 85 79 77 81 75 73 62 70 65
X 28 10 3 12 19 33 27 4 27 36 46 12 17 8
Y 62 57 58 62 68 71 60 60 80 79 72 65 55 63
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(a) Fit the model E(Y |X) = β0 + β1X. Examine the residuals and comment on the
linearity in X.

(b) Find a 95% confidence interval for β0, and a 95% confidence interval for β1.
(c) Find a 95% prediction interval for future observations at X = 26, 34, and 43.

32. The following data give 12 results of measuring the thickness Y of the silver film
deposited when an amount X of a certain acid mix is used in a process. The values of
X were preselected, and the corresponding values of Y are listed below in the order
obtained:

X 4 6 2 5 7 6 3 8 5 3 1 5
Y 197 272 100 228 327 279 148 377 238 142 66 239

(a) Fit the model E(Y |X) = β0 + β1X to these data and do a residual analysis.
(b) Does the residual analysis in (a) support the assumption that the model is linear,

that is, E(Y |X) = β0 + β1X?
(c) If the answer in (b) is yes, carry out instructions in (b) of Problem 31.

33. Refer to Problem 3, Section 15.2.
(a) Determine the correlation coefficient between X and Y for the data in Problem 3.
(b) Test the hypothesis H0 : ρ = 0 versus H1 : ρ > 0. Use α = 0.05 Find the observed

level of significance (p-value). Give the practical interpretation of the p-value.

34. Refer to Problem 3, Section 15.2. Test the hypothesis H0 : ρ = 0 versus H1 : ρ < 0.
Use α = 0.01. Find the observed level of significance (p-value). Give the practical
interpretation of the p-value.

35. Thirteen specimens of 90/10 Cu–Ni alloys, each with a specific iron content, were
tested in a corrosion-wheel setup. The wheel was rotated in seawater at 30 ft/s for 60
days. The corrosion was measured in weight loss in milligrams/square decimeter/day,
MDD. The data collected are given below (from Draper and Smith, 1981, used with
permission):

X (Fe) 0.01 0.48 0.71 0.95 1.19 0.01 0.48
Y (loss in MDD) 127.6 124.0 110.8 103.9 101.5 130.1 122.0
X (Fe) 1.44 0.71 1.96 0.01 1.44 1.96
Y (loss in MDD) 92.3 113.1 83.7 128.0 91.4 86.2

(a) Fit a simple linear regression model to these data.
(b) Construct an ANOVA table for these data.
(c) Use the ANOVA you constructed in (b) to test the hypothesis (use α = 0.05)

H0 : Fitted model is not appropriate versus H1 : Fitted model is appropriate

36. Refer to Problem 35.
(a) Estimate σ2 and the standard error of β̂0 and β̂1.
(b) Find 95% confidence intervals for β0 and β1.
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(c) Determine the sample correlation coefficient between X and Y.
(d) Test the hypothesis H0 : ρ = 0 versus H1 : ρ �= 0. Use α = 0.05. Find the p-value.

37. Refer to Problem 35.
(a) Fit a simple regression model using log Y as the dependent variable.
(b) Estimate the value of Y at X = 1.50, using the model fitted in (a) and the model

fitted in Problem 35. Compare the two results and comment on them.

38. Refer to Problem 35.
(a) Determine all the residuals in Problem 35 and test if the normality assumption is

satisfied.
(b) Plot the residuals versus values of Ŷ . Comment on the assumption of constant

variance of the Yi.
(c) Construct an appropriate graph to check the assumption of independence of the

residuals.



Chapter 16

MULTIPLE LINEAR
REGRESSION ANALYSIS

The focus of this chapter is the development of procedures to fit
multiple linear regression models.

Topics Covered

• Multiple linear regression models
• Estimation of regression coefficients
• Estimation of regression coefficients using matrix notation
• Properties of the least-squares estimators
• Analysis of variance approach to regression analysis
• Discussion of inferences about the regression parameters
• Multiple linear regression models that use qualitative or categorical predictor variables
• Standardized regression coefficients, and multicollinearity and its consequences
• Building regression type prediction models
• Residual analysis
• Certain criteria for model selection
• Basic concepts of logistic regression

Learning Outcomes

After studying this chapter, the reader will be able to

• Use the least-squares method to estimate the regression coefficients in a multiple regres-
sion model and carry out hypothesis testing to determine which regression coefficients
are significant.
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• Fit multiple linear regression models to a given set of data when using two or more
predictor variables and perform residual analysis to check the validity of the models
under consideration.

• Fit multiple linear regression models to a given set of data involving qualitative or
categorical predictor variables.

• Determine the presence and possible elimination of multicollinearity.
• Use various criteria, such as the coefficient of multiple determination, adjusted coeffi-

cient of multiple determination, Mallows’ Cp statistic, or PRESS statistics, to check the
adequacy of the fitted model.

• Fit a logistic regression model when the response variable is a binary variable.
• Use Statistical packages MINITAB, R, and JMP to perform multiple regression analysis.

16.1 INTRODUCTION

In Chapter 15, we studied the simple linear regression model, which has one independent
(predictor) variable. In practice, however, we deal more often with scenarios that have
more than one independent variable. In other words, we use more than one predictor vari-
able to explain the variation in the dependent variable Y. As a result we are usually in a
better position to predict the dependent variable more accurately. For example, we may be
interested in predicting the profit-sharing bonus for an employee in a given physical year.
Clearly, many independent variables should be included, such as the company’s revenues
and profit for that physical year, employee’s length of service at that company, his/her
overall seniority, and productivity. As another illustration, suppose that we want to predict
a person’s total cholesterol level. Then, we may have to take into consideration indepen-
dent variables such as weight, diet, age, health condition, and family history. Clearly, in
both examples, if we have knowledge about all the independent variables, then we will
certainly increase our ability to more accurately predict the profit-sharing bonus or the
total cholesterol level.

In this chapter, we discuss regression models involving two or more independent
variables, including models containing power terms such as Xi,X

2
i ,X3

i , . . . , interaction
terms such as XiXj ,XiX

2
j , . . . , and models that have some qualitative independent vari-

ables. Regression models containing quadratic terms such as X2
i ,X2

j ,XiXj , . . . , are called
second-order multiple linear regression models. Such a model is called linear because it
is a linear function of the regression coefficients. Finally, to select better-fitted regression
models, we discuss residual analysis, detection of outliers, and testing of hypotheses for
individual or group of regression coefficients, as well as other criteria such as the multiple
coefficient of determination, R2, adjusted R2, multicollinearity, Mallows’ Cp statistic, and
the Prediction Error Sum of Squares (PRESS) statistic.

16.2 MULTIPLE LINEAR REGRESSION MODELS

We now consider the scenario in which the dependent variable Y can be explained only
by two, and sometimes more independent variables. To introduce this type of scenario, we
consider the following example.
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Table 16.2.1 Students’ placement scores and their cumulative GPAs.

X1 84 87 92 84 94 88 86 89 95 85 80 91 85 81 87 85 80 82 85 90
X2 86 85 88 82 93 87 88 90 92 87 84 90 88 83 83 85 82 83 80 86
Y 3.17 3.13 3.5 3.1 3.7 3.2 3.2 3.53 3.75 3.37 3.2 3.56 3.3 3.05 3.33 3.26 3.0 2.9 3.1 3.39

Example 16.2.1 (Placement test scores) At a large university, a group of the faculty
strongly believes that the success of students is closely related to their scores on the place-
ment tests in mathematics and English, where the success of a student is measured by
his/her cumulative GPA. The regression model that might explain the faculty’s belief is

Y = β0 + β1X1 + β2X2 + ε (16.2.1)

where Y represents the cumulative GPA and X1 and X2 represents the scores on the
placement tests in mathematics and English, respectively. In order to examine whether or
not the scores on the placement tests determines the success of the students, the university
authorities selected a random sample of 20 students and recorded their cumulative GPA
and the placement scores as in Table 16.2.1.

MINITAB
To analyze these data using MINITAB, we proceed as follows:

1. Enter the values Y,X1, and X2 in columns C1, C2, and C3, respectively, and use
Y,X1, and X2 as the headings of these columns.

2. From the Menu bar select Stat > Regression > Regression > Fit Regression
Model. In the dialog box that appears, type Y in the box next to Responses, and
type X1 X2 box next to Continuous predictors. Select any other desired options
available in this dialog box and make necessary entries and click OK. The MINITAB
output that appears in the Session window is shown below:

Regression Analysis: Y versus X1, X2

Analysis of Variance Coefficients

Regression Equation

Model Summary

Source Term Coef  SE Coef T-Value P-Value VIF

Constant –1.661 0.533 –3.12 0.006

X1 0.02834 0.00805 3.52 0.003 2.61

X2

Y  =  –1.661 + 0.02834 X1 + 0.02900 X2

0.02900 0.00999 2.90 0.010 2.61

DF Adj SS Adj MS F-Value P-Value

Regression

X1

X2

Error

Total

2

1

1

17

19

0.85301

0.10973

0.07461

0.15041

1.00342

0.426506

0.109734

0.074612

0.008847

48.21

12.40

8.43

0.000

0.003

0.010

S R-sq R-sq(adj) R-sq(pred)

0.0940611 85.01% 83.25% 80.22%
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Figure 16.2.1 Response function surface plot (a plane) for the fitted regression model
Ŷ = −1.66 + 0.0283X1 + 0.0290X2.

Surface plot of Y vs X2, X1
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Figure 16.2.2 Response surface plot for the fitted regression model Ŷ = 8.136 −
0.059X1 − 0.115X2 + 0.008X2

1 + 0.008X2
2 − 0.015X1X2.

Note that the response surface in Figure 16.2.1 is a plane. This response function
surface plot is obtained selecting the Stat > Regression > Regression > Surface Plot.
When the dialog box appears, select variable Y as the Response. Then enter variable X1
as the X axis and variable X2 as the Y axis.

Now, if the model proposed contains interaction and quadratic terms, then the fitted
response function surface is as shown in Figure 16.2.2. The model containing the interaction
and quadratic terms is fitted using MINITAB by taking the same steps as given above,
except that clicking on the Model button from the Regression window, allows for adding
the necessary terms (X1 ∗ X1,X2 ∗ X2,X1 ∗ X2) when the new window appears. Then
the following MINITAB output appears in the Session window.
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Regression Analysis: Y versus X1, X2

Analysis of Variance Coefficients

Regression Equation

Model Summary

Source Term Coef  SE Coef T-Value P-Value VIF

Constant 8.1 12.1 0.67 0.513

X1 –0.059 0.218 –0.27 0.789 2227.04

X2

Y  =  8.1 – 0.059X1 – 0.115X2 + 0.00789X1*X1 + 0.00836X2*X2 – 0.01488X1*X2

–0.115 0.337 –0.34 0.738 3479.50

X1*X1 0.00789 0.00354 2.23 0.043 17943.36

X2*X2 0.00836 0.00422 1.98 0.067 16293.52

X1*X2 –0.01488 0.00714 –2.08 0.056 53235.66

DF Adj SS Adj MS F-Value P-Value

Regression

X1

X2

Error

Total

5

1

1

14

19

0.89724

0.00057

0.00088

0.10618

1.00342

0.179449

0.000566

0.000883

0.007584

23.66

0.07

0.12

0.000

0.789

0.738

X1*X1 1 0.03766 0.037661 4.97 0.043

X2*X2 1 0.02980 0.029801 3.93 0.067

X1*X2 1 0.03294 0.032942 4.34 0.056

S R-sq R-sq(adj) R-sq(pred)

0.0870858 89.42% 85.64% 77.46%

Solution: USING R
To perform the required regression analysis on Y, we can use the following R-code. To
include higher-order terms X1 ∗ X1,X2 ∗ X2,X1 ∗ X2 in the regression model, we should
add I(X12) + I(X22) + I(X1 ∗ X2) to the model as shown in model2 below.

Y = c(3.17,3.13,3.5,3.1,3.7,3.2,3.2,3.53,3.75,3.37,3.2,3.56,3.3,
3.05,3.33,3.26,3,2.9,3.1,3.39)
X1 = c(84,87,92,84,94,88,86,89,95,85,80,91,85,81,87,85,80,82,85,90)
X2 = c(86,85,88,82,93,87,88,90,92,87,84,90,88,83,83,85,82,83,80,86)

#Fitting MLR model using predictors X1 and X2
model1 = lm(Y ∼ X1 + X2)
model1
anova(model1)
summary(model1)

#Fitting MLR model by adding both quadratic and interaction terms.
model2 = lm(Y ∼ X1 + X2 +I(X1 ˆ 2) + I(X2 ˆ 2) + I(X1*X2))
model2
anova(model2)
summary(model2)

The results would be similar to those obtained using MINITAB.
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We note that the analysis of Example 16.2.1 is carried out under the assumption that the
random errors εi are independent N(0, σ2) random variables. Using this assumption in the
ensuing sections, we discuss multiple regression models in more detail, including residual
analysis and certain diagnostic tests, and illustrating them with data from Example 16.2.1.

We begin by considering a general regression model with k predictor variables, which
may be stated as follows. A response variable Y is affected by the k predictor variables
(X1,X2, . . . ,Xk) linearly, so that

Y = β0 + β1X1 + β2X2 + · · · + βkXk + ε (16.2.2)

where X1,X2, . . . ,Xk are k independent variables, β0, β1, . . . , βk are the regression coef-
ficients and ε is a random error incurred when observing Y at (X1,X2, . . . ,Xk). Further,
we assume that E(ε) = 0, V (ε) = σ2, so that

E(Y ) = β0 + β1X1 + β2X2 + · · · + βkXk (16.2.2a)

Model (16.2.2) is called linear because it is a linear function in the regression
parameters.

Recall that in Chapter 15 the simple linear regression model (15.2.1) represents a
straight-line. Here, the multiple linear regression model (16.2.2) represents a hyperplane
in the (k + 1)-dimensional space of (X1,X2, . . . ,Xk, Y ). The regression coefficient βj ,
represents the expected rate of change in Y as Xj changes when the remaining variables
X1, . . . ,Xj−1,Xj+1, . . . ,Xk are kept fixed; that is, as Xj changes by one unit, the depen-
dent variable Y is expected to change by βj units. Since βj represents the expected change
in the dependent variable Y as Xj changes by one unit when all other independent variables
remain unchanged, the regression coefficients βj ’s are also referred to as partial regression
coefficients.

To analyze model (16.2.2), we assume that n observations are made on Y, say
Y1, . . . , Yi, . . . , Yn, where

Yi = β0 + β1Xi1 + β2Xi2 + · · · + βkXik + εi, i = 1, 2, . . . , n, n > k + 1 (16.2.3)

In model (16.2.3) we assume the following:

1. Yi is the value of the response or the dependent variable in the ith trial
(i = 1, 2, . . . , n).

2. β0, β1, β2, . . . , βk are the unknown parameters, where β0 is the intercept of the hyper-
plane and β1, β2, . . . , βk are the partial regression coefficients.

3. Xij (j = 1, 2, . . . , k) is the value of the predictor variable Xj in the ith trial.
4. εi is a random variable with E(εi) = 0,Var(εi) = σ2 and εi and εj (for all i, j; i �= j),

i, j = 1, 2, . . . , n, are uncorrelated.

Furthermore, note that Yi is a value of an observable random variable, the independent
variables Xj are assigned at desired values; and εi is an unobservable random variable.
Also β0, β1, β2, . . . , βk are unknown parameters, that we want to estimate. The selection
of the values of Xij is called the design of the experiment.
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As noted in Chapter 15, even when there is one independent variable, we encounter
situations that fall into the same category as the multiple linear regression model. For
example, if we fit a second-order regression model for one independent variable, that is,

Y = β0 + β1X1 + β2X
2
1 + ε

it can be written as
Y = β0 + β1X1 + β2X2 + ε

by letting X2 = X2
1 . In other words, any polynomial linear regression model (a second-order

or higher-order linear regression model is called a polynomial linear regression model) can
always be treated as a multiple linear regression model.

16.3 ESTIMATION OF REGRESSION
COEFFICIENTS

The least-squares method used in Chapter 15 to fit a simple linear regression model is now
extended to fit the multiple linear regression model (16.2.3). The least-squares method
proceeds by minimizing the sum of squared deviations of the observed Yi (i = 1, 2, . . . , n)
from true means E(Yi) = β0 + β1Xi1 + β2Xi2 + · · · + βkXik, that is, by minimizing

Q(β0, β1, β2, . . . , βk) =
n∑

i=1

(Yi − β0 − β1Xi1 − β2Xi2 − · · · − βkXik)2 (16.3.1)

over choices of (β0, β1, β2, . . . , βk). The minimization of Q in (16.3.1) is achieved by tak-
ing the partial derivatives of Q with respect to β0, β1, β2, . . . , βk and equating them
to zero. When equating to zero, we denote the solution of the resulting equations by
β̂ = (β̂0, β̂1, β̂2, . . . , β̂k). Hence, we have the (k + 1) equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Q

∂β0
= −2

n∑
i=1

(Yi − β̂0 − β̂1Xi1 − β̂2Xi2 − · · · − β̂kXik) = 0

∂Q

∂β1
= −2

n∑
i=1

(YiXi1 − β̂0Xi1 − β̂1X
2
i1 − β̂2Xi2Xi1 − · · · − β̂kXikXi1) = 0

∂Q

∂β2
= −2

n∑
i=1

(YiXi2 − β̂0Xi2 − β̂1Xi1Xi2 − β̂2X
2
i2 − · · · − β̂kXikXi2) = 0

...
...

...
...

∂Q

∂βk

= −2
n∑

i=1

(YiXik − β̂0Xik − β̂1Xi1Xik − β̂2Xi2Xik − · · · − β̂kX2
ik) = 0

(16.3.2)
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We have denoted the solutions to the (k + 1) Equations (16.3.2) by β̂i’s, which are
called the least-squares estimators of the regression coefficients βi’s. We can also put
Equations (16.3.2) into standard form, referred to as normal equations, as follows: expres-
sions in the β̂i’s (i = 0, 1, 2, . . . , k) appear on the left-hand sides and expressions in Yi’s
appear on the right-hand sides of the equations. We then obtain the normal equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nβ̂0 + β̂1

n∑
i=1

Xi1 + β̂2

n∑
i=1

Xi2 + · · · + β̂k

n∑
i=1

Xik =
n∑

i=1

Yi

n∑
i=1

β̂0Xi1 + β̂1

n∑
i=1

X2
i1 + β̂2

n∑
i=1

Xi2Xi1 + · · · + β̂k

n∑
i=1

XikXi1 =
n∑

i=1

YiXi1

n∑
i=1

β̂0Xi2 + β̂1

n∑
i=1

Xi1Xi2 + β̂2

n∑
i=1

X2
i2 + · · · + β̂k

n∑
i=1

XikXi2 =
n∑

i=1

YiXi2

...
...

...
...

...
...

n∑
i=1

β̂0Xik + β̂1

n∑
i=1

Xi1Xik + β̂2

n∑
i=1

Xi2Xik + · · · + β̂k

n∑
i=1

X2
ik =

n∑
i=1

YiXik

(16.3.3)

Now, solving the system of (k + 1) Equations (16.3.3) for the k + 1 unknowns
β̂0, β̂1, β̂2, . . . , β̂k, we obtain the least-squares estimators for β0, β1, β2, . . . , βk. We
illustrate the process of obtaining least-squares estimators with the following example.

Example 16.3.1 (Placement test scores) Refer to Example 16.2.1. Find the least-squares
estimates for β0, β1, and β2.

Solution: Using the data of Table 16.2.1, we have the following (n = 20, k + 1 = 3):

20∑
i=1

Yi = 65.74,

20∑
i=1

Xi1 = 1730,

20∑
i=1

Xi2 = 1722,

20∑
i=1

X2
i1 = 150,002,

20∑
i=1

X2
i2 = 148,496,

20∑
i=1

Xi1Xi2 = 149,179,
20∑

i=1

YiXi1 = 5703.18,
20∑

i=1

YiXi2 = 5673.34

Using the first three equations of (16.3.3) obtains the least-squares normal equations for
model (16.2.1):

20β̂0 + 1730β̂1 + 1722β̂2 = 65.74
1730β̂0 + 150,002β̂1 + 149,179β̂2 = 5703.18
1722β̂0 + 149,179β̂1 + 148,496β̂2 = 5673.34

Solving these equations for β̂0, β̂1, and β̂2, we have β̂0 = −1.6609, β̂1 = 0.02834,
β̂2 = 0.02899. These estimates of regression coefficients clearly match the results obtained
by using MINITAB in Example 16.2.1. Note that most of the calculations can be done by
using one of the statistical packages discussed in this book.
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16.3.1 Estimation of Regression Coefficients Using
Matrix Notation

The estimation process for estimating regression coefficients in model (16.2.2) is much
simpler to describe using matrix notation. For example, in terms of matrices, model (16.2.2)
can be expressed as

Y = Xβ + ε (16.3.4)

where

Y
[n×1]

=

⎡
⎢⎢⎢⎣

Y1
Y2
...

Yn

⎤
⎥⎥⎥⎦ , X

[n×(k+1)]
=

⎡
⎢⎢⎢⎣

1 X11 X12 · · ·X1k

1 X21 X22 · · ·X2k
...

...
...

...
1 Xn1 Xn2 · · ·Xnk

⎤
⎥⎥⎥⎦ , β

[(k+1)×1]
=

⎡
⎢⎢⎢⎣

β0
β1
...

βk

⎤
⎥⎥⎥⎦ , ε

[n×1]
=

⎡
⎢⎢⎢⎣

ε1
ε2
...

εn

⎤
⎥⎥⎥⎦

We say that β(k+1)×1 is a vector of regression coefficients, and its least-squares estimator
β̂ minimizes the residual sum of squares Q, where

Q = (Y − Xβ)′(Y − Xβ) (16.3.5)

Thus the least-squares estimator, β̂, which is a (k + 1) × 1 vector, satisfies the normal
equations written in matrix notation as

∂

∂β
(Y − Xβ)′(Y − Xβ) = 0 (16.3.6)

Using the partial differentiation indicated in (16.3.6), we obtain the solution β̂, a
[(k + 1) × 1] vector, which is such that

−2X ′Y + 2(X ′X)β̂ = 0 (16.3.7)

Thus, the standard form of the least-squares normal equations for model (16.3.4) is given
by

(X ′X)β̂ = X ′Y (16.3.8)

Now, assuming that X is a full rank matrix, the solution vector β̂ is given by

β̂ = (X ′X)−1X ′Y (16.3.9)

that is, the least-squares estimator of β is β̂ as given by (16.3.9).
We illustrate the estimation of regression coefficients using matrix notation with the

following example.

Example 16.3.2 (Placement test scores) Refer to Example 16.2.1. Find the least square
estimates for the regression coefficients of model (16.2.1) of Example 16.2.1 using matrix
notation.
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Solution: In Example 16.2.1 we used model (16.2.1) with n = 20, k + 1 = 3, or k = 2.
The model used to fit the data in Example 16.2.1 can also be written in matrix notation
as

Y = Xβ + ε

where

Y
[20×1]

=

⎡
⎢⎢⎢⎢⎢⎣

Y1

Y2
...

Y20

⎤
⎥⎥⎥⎥⎥⎦ , X

[20×3]
=

⎡
⎢⎢⎢⎣

1 X11 X12
1 X21 X22
...

...
...

1 X20,1 X20,2

⎤
⎥⎥⎥⎦ , β

[3×1]
=

⎡
⎣ β0

β1
β2

⎤
⎦ , ε

[20×1]
=

⎡
⎢⎢⎢⎣

ε1
ε2
...

ε20

⎤
⎥⎥⎥⎦

Substituting the values of the dependent variables Yi and the predictor variables Xij , we
have

X ′X =

⎡
⎢⎣ 1 1 · · · 1 1

84 87 · · · 85 90
86 85 · · · 80 86

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1 84 86
1 87 85
· · · · · · · · ·
1 85 80
1 90 86

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎣ 20 1730 1722

1730 150,002 149,179
1722 149,179 148,496

⎤
⎥⎦

so that

(X ′X)−1 =

⎡
⎢⎣ 32.0788 −0.018692 −0.353217
−0.018692 0.0073177 −0.0071346
−0.353217 −0.0071346 0.0112701

⎤
⎥⎦

Further,

X ′Y =

⎡
⎢⎣ 1 1 · · · 1 1

84 87 · · · 85 90
86 85 · · · 80 86

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

3.17
3.13

...
3.10
3.39

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎣ 65.74

5703.18
5673.34

⎤
⎥⎦

Thus, from Equation (16.3.9), we have that the estimates of β0, β1, and β2 are such that

⎡
⎢⎣ β̂0

β̂1

β̂2

⎤
⎥⎦ =

⎡
⎢⎣ 32.0788 −0.018692 −0.353217
−0.018692 0.0073177 −0.0071346
−0.353217 −0.0071346 0.0112701

⎤
⎥⎦
⎡
⎢⎣ 65.74

5703.18
5673.34

⎤
⎥⎦ =

⎡
⎢⎣ −1.66092

0.02834
0.02899

⎤
⎥⎦

Hence, the fitted least square regression model is

Ŷ = −1.66092 + 0.02834X1 + 0.02899X2
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16.3.2 Properties of the Least-Squares Estimators
In this section, we study some properties of the estimator β̂ under the conditions made
for the regression model (16.2.3). Recall that model (16.2.3) assumed that εi is a random
variable with E(εi) = 0, V ar(εi) = σ2, and that the εi’s are uncorrelated, that is, for all
i �= j, Cov(εi, εj) = 0. We remark here that if the εi are independent, then the εi are
uncorrelated, but the converse is not true; that is, if the εi are uncorrelated, it does not
follow that they are independent. However, if we assume that εi are uncorrelated and
have the N(0, σ2) distribution, then they are independent. Under the assumptions above
(without normality) we state that

E(Y ) = Xβ, V ar(Y ) = V ar(ε) = σ2In

where In is the identity matrix.
Now we show that:

1. β̂ is an unbiased estimator of β, that is,

E(β̂) = E((X ′X)−1X ′Y ) = (X ′X)−1X ′E(Y ) = (X ′X)−1X ′Xβ = β (16.3.10)

2. The variance–covariance matrix of β̂ is given by

V ar(β̂) = (X ′X)−1σ2 (16.3.11)

To see this result we use the well-known theorem that says, if B is a matrix of constants
and W is a random variable vector with variance–covariance matrix Vw then the random
variable U = BW has variance–covariance matrix given by

V (U) = BVW B′

Now β̂ = BY, where B = (X ′X)−1X ′ and V ar(Y ) = σ2In. Hence, for In denoting the
n × n identity matrix, we have

V ar(β̂) = (X ′X)−1X ′(σ2In)((X ′X)−1X ′)′

= σ2(X ′X)−1X ′X(X ′X)−1

= σ2(X ′X)−1X ′X(X ′X)−1

= σ2(X ′X)−1 (16.3.11a)

We could denote the matrix (X ′X)−1 in Equation (16.3.11) by A, say; then it would be
easily seen that for each i = 0, 1, 2, . . . , k,

V ar(β̂i) = aiiσ
2 (16.3.12)

and
Cov(β̂i, β̂j) = aijσ

2 forall i �= j (16.3.13)
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where aij is the (i + 1, j + 1)th element of the matrix A. As we noted in Chapter 15,
to test hypotheses about the regression parameters and to find confidence intervals, we
must first assume normality so that the εi are independently and identically distributed as
N(0, σ2). Under normality, it can be easily shown that the estimator β̂ is also a maximum
likelihood estimator (MLE) of β. Finally, using an important theorem of statistics called
the Gauss–Markov Theorem, we note that the least square estimator β̂ is a linear unbiased
estimator that attains minimum variance in the class of all linear unbiased estimators.

16.3.3 The Analysis of Variance Table
In the multiple linear regression case it can be shown, as in case of simple linear regression,
that

n∑
i=1

(Yi − Y )2 =
n∑

i=1

(Yi − Ŷi)
2 +

n∑
i=1

(Ŷi − Y )2 (16.3.14)

That is,

Total sum of squares = Error sum of squares + Regression sum of squares

or
SSTotal = SSE + SSR (16.3.14a)

from which we have
SSR = SSTotal − SSE (16.3.14b)

In matrix notation, the sum of squares at the left side of Equation (16.3.14) can be rewrit-
ten as

SSTotal = Y ′Y − 1
n

Y ′JY = Y ′
(

I − 1
n

J

)
Y (16.3.15)

where I is an (n × n) identity matrix and J is an (n × n) matrix of 1’s. Also the error sum
of squares can be rewritten as

SSE = Y ′Y − β̂′X ′Y (16.3.16)

Now, substituting the value of β̂ from (16.3.9), we obtain from (16.3.16) that

SSE = Y ′Y − ((X ′X)−1X ′Y )′X ′Y

= Y ′Y − Y ′X(X ′X)−1X ′Y

= Y ′(I − X(X ′X)−1X ′)Y (16.3.16a)

Finally, using (16.3.15) and (16.3.16), we can show that the regression sum of squares is
expressible as

SSR = β̂′X ′Y − 1
n

Y ′JY (16.3.17)
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Table 16.3.1 ANOVA table for the fitted regression model (16.2.2).

Source of
variation Sum of squares

Degree of
freedom Mean squares F-ratio

Regression SSR =
n∑

i=1

(Ŷi − Y )2 k MSR =
SSR

k

MSR

MSE

Residual SSE =
n∑

i=1

(Yi − Ŷi)
2 n − (k + 1) MSE =

SSE

n − (k + 1)

Total SSTotal =
n∑

i=1

(Yi − Y )2 n − 1

Table 16.3.2 ANOVA table in matrix notation for the fitted regression model (16.2.2).

Source of
variation Sum of squares

Degrees of
freedom Mean squares F-ratio

Regression SSR = Y ′
(

X(X ′X)−1X ′ − 1
n

J

)
Y k MSR =

SSR

k

MSR

MSE

Residual SSE = Y ′(1 − X(X ′X)−1X ′)Y n − (k + 1) MSE =
SSE

n − (k + 1)

Total SST = Y ′
(

1 − 1
n

J

)
Y n − 1

An alternative form for SSR may be found using (16.3.9) and (16.3.17), that is,

SSR = Y ′
(

X(X ′X)−1X ′ − 1
n

J

)
Y (16.3.17a)

The foregoing results may be summarized in ANOVA tables as shown in Tables 16.3.1
and 16.3.2 given below.

Suppose now that Yis are independent and normally distributed. Then, we use the
test statistic F = MSR/MSE to test the hypothesis

H0 : β1 = β2 = · · · = βk = 0 versus H1 : not all βi (i = 1, 2, . . . , k) are zero

We note that under H0 and normality of the εi it can be shown that MSR and SSE are
independent random variables, with MSR ∼ σ2χ2

k/k and MSE ∼ σ2χ2
n−k−1/(n − k − 1).

It follows that under H0, F = MSR/MSE ∼ Fk,n−k−1. Hence, if the observed value of the
test statistic F = MSR/MSE > Fk,n−(k+1);α, then, the null hypothesis is rejected at the
α level of significance. Otherwise, we do not reject the null hypothesis. Further note that

σ̂2 = S2 = MSE = SSE/[n − (k + 1)] (16.3.18)

is an unbiased estimator of the error variance σ2.
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Now Equations (16.3.14) and (16.3.14a) show that the total variation, that is, the sum
of squares SSTotal, is divided into two parts: the sum of squares due to regression SSR
and the error sum of squares (often called the residual sum of squares) SSE. For a better
fit of a model, we want the sum of squares due to regression to be as large as possible. To
evaluate the fit of the model, a measure that is very frequently used is the coefficient of
determination, defined (see Chapter 15) as

R2 =
SSR

SSTotal

= 1 − SSE

SSTotal

(16.3.19)

We remark that R2 is such that 0 ≤ R2 ≤ 1. The value of R2 continues to increase as
more and more predictor variables are included in the model, so it attains its maximum
when all the k independent variables are in the model. In other words, R2 does not attain
an optimal value for any particular subset of predictor variables. Hence it does not help us
to identify which subset of predictor variables will produce a better model. An alternative
measure that is preferred over R2 is the adjusted coefficient of determination, usually
denoted by R2

a, defined as

R2
a = 1 − n − 1

n − (k + 1)

(
SSE

SSTotal

)
(16.3.20)

Note that in R2
a an adjustment has been made for the number of predictor variables

included in the model. As can easily be seen from (16.3.14b), R2
a will increase only if

SSE decreases. This usually occurs when we include predictor variables that are useful in
predicting the dependent variable. If a predictor variable does not contribute to predicting
the dependent variable in the model, then, unlike R2, the value of R2

a decreases. This is
because if a predictor variable is not very useful, the decrease in SSE is not enough to
offset the decrease in the denominator degrees of freedom, n − (k + 1).

16.3.4 More Inferences about Regression Coefficients
In this section, we discuss the testing of various hypotheses and confidence intervals for
regression parameters. Throughout this section, we assume that the error terms in model
(16.2.3) are independently and identically distributed as N(0, σ2).

Test and Confidence Interval for an Individual Regression
Parameter βi, i = 0, 1, 2, . . . , k

Using Equations (16.3.10) and (16.3.12) and assuming that the random errors are normally
distributed with mean of 0 and variance σ2, it can easily be shown that

β̂i ∼ N(βi, aiiσ
2)
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so that
β̂i − βi

σ
√

aii

∼ N(0, 1)

It can also be shown that β̂is are independent of SSE under the assumptions of this section,
so that

β̂i − βi

σ̂
√

aii

∼ tn−(k+1), i = 1, 2, . . . , k

Here, aii is the (i + 1)st diagonal element of (X ′X)−1, i = 0, 1, . . . , k, and σ̂ =
√

MSE.
Hence, as can easily be seen, the confidence interval for βi with confidence coefficient

(1 − α) is given by (
β̂i ± tn−(k+1); α

2
σ̂
√

aii

)
(16.3.21)

A test involving βi may be carried out as follows. Consider:

1. H0 : βi = 0 versus H1 : βi �= 0.
2. Suppose the probability of type I error is set at α.

3. Test statistic t =
β̂i − 0
σ̂
√

aii

∼ tn−(k+1), under H0.

4. Reject the null hypothesis H0 if |t| ≥ tn−(k+1);α/2. Otherwise, do not reject the null
hypothesis H0.

Note that this test can also be carried out using the F test by using F = t2. Under
H0, F is distributed as F1,n−(k−1). Thus we would reject H0 if

F =
β̂2

i

MSE × (aii)
> F1,n−k−1;α

Tests and Confidence Intervals for Subsets of r(r ≤ k)
Regression Coefficients

Simultaneous confidence intervals for r parameters using the Bonferroni method are given
by

β̂i ± tn−(k+1);α/2rσ̂
√

aii (16.3.22)

Note here the use of the α/2r point of the tn−(k+1) distribution. Tests for subsets of r
regression parameters are carried out as follows:

Consider the multiple linear regression model

Yi = β0 + β1Xi1 + β2Xi2 + · · · + βkXik + εi, i = 1, 2, . . . , n (16.3.23)

where the labeling is such that the effect of r (2 ≤ r ≤ k) predictor variables
Xk−(r−1), . . . ,Xk−1,Xk as measured by the r regression coefficients βk−(r−1), . . . , βk−1, βk,
is of interest. Here, as usual, we assume that the εi’s are independent and identically
distributed as N(0, σ2). Suppose that we wish to test the null hypothesis that

H0 : βk−(r−1) = βk−(r−2) = · · · = βk = 0 versus H1 : Not all βk−(r−1), . . . , βk are zero
(16.3.24)
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Note that under the null hypothesis, model (16.3.23) reduces to

Yi = β0 + β1Xi1 + β2Xi2 + · · · + βk−rXi,k−r + εi, i = 1, 2, . . . , n (16.3.25)

We call model (16.3.23) the full model and model (16.3.25) the reduced model. Further, we
denote the sum of squares due to regression for the full and the reduced model by SSR1
and SSR2, respectively, and the error sum of squares by SSE1 and SSE2, respectively.
Then the test statistic for testing the hypothesis (16.3.24) is

F =
(SSR1 − SSR2)/r

SSE1/[n − (k + 1)]
(16.3.26)

Now an alternative statistic that can be used for testing the hypothesis (16.3.24) is

F ∗ =
(SSE2 − SSE1)/r

SSE1/[n − (k + 1)]
(16.3.27)

where both statistics F and F ∗ are distributed as Fr,n−(k+1). This is not surprising, since
the statistics in (16.3.26) and (16.3.27) are algebraically equivalent because

SSTotal = SSR1 + SSE1 = SSR2 + SSE2 (16.3.28)

We reject the null hypothesis H0 at significance level α if F ≥ Fr,n−(k+1);α. Otherwise, we
do not reject the null hypothesis H0.

Example 16.3.3 (Placement test scores) Refer to Example 16.2.1, using the data in
Table 16.2.1.

(a) Find 95% confidence intervals for β1 and β2.
(b) Test the hypothesis H0 : β2 = 0 versus H1 : β2 �= 0. Use α = 0.05.

Solution: (a) In this example we have n = 20, k = 2, and r = 1. From the MINITAB
printout in Example 16.2.1, we have

σ̂2 = MSE = 0.00885

and from Example 16.3.2, using data in Table 16.2.1, we have

β̂1 = 0.02834, β̂2 = 0.02899

Since n − (k + 1) = 20 − 3 = 17, we use the critical value t17;0.025 = 2.110. Further, the X1
and X2 columns lead to the matrix X ′X whose inverse is

(X ′X)−1 =

⎡
⎣ 32.0788 −0.018692 −0.353217
−0.018692 0.0073177 −0.0071346
−0.353217 −0.0071346 0.0112701

⎤
⎦

From this inverse matrix we obtain

a11 = 0.0073177, a22 = 0.0112701
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Now using the result in Equation (16.3.21), we find the 95% confidence interval for

β1 : (β̂1 ± t17;0.025σ̂
√

a11) = (0.02834 ± 2.110 ×
√

0.00885 ×
√

0.0073177)
= (0.02834 ± 0.01698) = (0.01136, 0.04532)

β2 : (β̂2 ± t17;0.025σ̂
√

a22) = (0.02899 ± 2.110 ×
√

0.00885 ×
√

0.0112701)
= (0.02899 ± 0.02107) = (0.00792, 0.05006)

(b) For a test of hypothesis involving β2 we proceed as follows:

1. H0 : β2 = 0 versus H1 : β2 �= 0.
2. P(Type I error) = α = 0.05.
3. Observed value of the test statistic T = (β̂2 − β2)/(σ̂√a22) under H0 is

t =
0.02899 − 0

0.09407 × 0.10616
= 2.903

which is greater than the critical value t17;0.025 = 2.110.
Hence, we reject the null hypothesis H0. From the MINITAB printout in Example

16.2.1, the p-value for testing the hypothesis H0 : β2 = 0 versus H1 : β2 �= 0, is 0.010,
which leads to the same conclusion that we reject the null hypothesis at significance level
α = 0.05.

Tests for Subsets of r (r ≤ k) Regression Parameters Using
Matrix Notation
Here, we rewrite model (16.3.4) as

Y = X1η1 + X2η2 + ε (16.3.29)

where

Yn×1 =

⎡
⎢⎢⎢⎣

Y1
Y2
...
Yn

⎤
⎥⎥⎥⎦ , X1(n×(k−r+1)) =

⎡
⎢⎢⎢⎢⎣

1 X11 X12 · · · X1,k−r

1 X21 X22 · · · X2,k−r
...

...
...

...

1 Xn1 Xn2 · · · Xn,k−r

⎤
⎥⎥⎥⎥⎦ , η1((k−r+1)×1) =

⎡
⎢⎢⎢⎢⎢⎣

β0

β1

...

βk−r

⎤
⎥⎥⎥⎥⎥⎦ ,

X2(n×r) =

⎡
⎢⎢⎢⎢⎢⎣

X1,k−(r−1) X1,k−(r−2) · · · X1k

X2,k−(r−1) X2,k−(r−2) · · · X2k

...
...

...
...

Xn,k−(r−1) Xn,k−(r−2) · · · Xnk

⎤
⎥⎥⎥⎥⎥⎦ , η2(r×1) =

⎡
⎢⎢⎢⎢⎢⎣

βk−(r−1)

βk−(r−2)

...

βk

⎤
⎥⎥⎥⎥⎥⎦ , εn×1 =

⎡
⎢⎢⎢⎢⎢⎣

ε1

ε2

...

εn

⎤
⎥⎥⎥⎥⎥⎦

Expressing X and β in model (16.3.4) in terms of X1,X2 and η1, η2, respectively, we have

E(Y ) = Xβ

where

X = [X1
... X2 ] and β =

⎡
⎣ η1
· · ·
η2

⎤
⎦
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Now we test the hypothesis

H0 : η2 = 0 versus H1 : η2 �= 0 (16.3.30)

From (16.3.17) it follows that

SSR1 = β̂′X ′Y − 1
nY ′JY

= ((X ′X)−1X ′Y )′X ′Y − 1
nY ′JY

= Y ′X(X ′X)−1X ′Y − 1
nY ′JY

Similarly it can be shown that

SSR2 = Y ′X1(X
′
1X1)

−1X ′
1Y − 1

n
Y ′JY

From (16.3.16a) we have

SSE1 = Y ′Y − Y ′X(X ′X)−1X ′Y

From (16.3.26) the test statistic for testing the hypothesis (16.3.30) is thus given by

F =
(SSR1 − SSR2)/r

SSE1/[n − (k + 1)]

=
(Y ′X(X ′X)−1X ′Y − Y ′X1(X

′
1X1)

−1X ′
1Y )/r

SSE1/[n − (k + 1)]

=
(Y ′[X(X ′X)−1X ′ − X1(X

′
1X1)

−1X ′
1]Y )/r

SSE1/[n − (k + 1)]

Under H0, F is distributed as Fr,n−(k+1), so we reject the null hypothesis H0 if
F ≥ Fr,n−(k+1);α. Otherwise, we do not reject the null hypothesis H0. Another notation
that is commonly used to denote SSR1 − SSR2 is

SSR1 − SSR2 = R(βk−(r−1), βk−(r−2), . . . , βk|β0, β1, . . . , βk−r) (16.3.31)

Here R represents the increase in the regression sum of squares when the predictor variables
Xk−(r−1), Xk−(r−2), . . . , Xk are added to a model involving X1, . . . ,Xk−r and the con-
stant term. In general, the regression sum of squares due to X1, . . . ,Xk can be partitioned
as

R(β1, . . . , βk|β0) = R(β1|β0) + R(β2|β0, β1) + · · · + R(βk|β0, β1, β2, . . . , βk−1) (16.3.32)

where the terms on the right-hand side represent the increase in regression sum of
squares when the predictor variable Xi (i = 1, 2, . . . , k) is added to the model involving
X1, . . . ,Xi−1 and the constant term.

For example, the regression sum of squares in (16.3.31) can be partitioned as

R(βk−(r−1), βk−(r−2), . . . , βk|β0, β1, . . . , βk−r)
= R(βk−(r−1)|β0, β1, . . . , βk−r) + R(βk−(r−2)|β0, β1, . . . , βk−r, βk−(r−1))

+ · · · + R(βk|β0, β1, . . . , βk−r, . . . , βk−1).
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Confidence Interval for an Expected Response at X0
with Confidence Coefficient (1 − α)
Now we suppose that we are interested in E(Y |X0), where the [1 × (k + 1)] vector
X0 = (1,X10, . . . ,Xk0) contains assigned values of (1,X1, . . . ,Xk). From our earlier
discussion it can easily be shown that the standard error of Ŷ0 = X0β̂ at the given
X-vector X0, is estimated by

σ̂ŷ0
= σ̂

√
X0(X ′X)−1X ′

0 (16.3.33)

Also Ŷ0 is distributed as a normal variable, assuming that εi are normally distributed.
This implies that

Ŷ0 − E(Y |X0)
σ̂
√

X0(X ′X)−1X ′
0

(16.3.34)

is distributed as a t-distribution with n − (k + 1) degrees of freedom. Hence, from
Equation (16.3.34) it follows immediately that a confidence interval for the expected
response E(Y |X0) at X0 with confidence coefficient (1 − α) is given by

(Ŷ0 ± tn−(k+1);α/2σ̂
√

X0(X ′X)−1X ′
0) (16.3.35)

Prediction Interval for a Future Response at X0
with Confidence Coefficient (1 − α)
Proceeding in the same manner as in Chapter 15, it can be shown that a prediction interval
for a future response at X0 with confidence coefficient (1 − α) is given by

(Ŷ0 ± tn−(k+1);α/2σ̂
√

1 + X0(X ′X)−1X ′
0) (16.3.36)

Example 16.3.4 (Placement test scores) Refer to Example 16.2.1. Using the data in
Table 16.2.1, find a 95% confidence interval for E(Y |X1 = 83,X2 = 89) and a 95% pre-
diction interval for (Y |X1 = 83,X2 = 89).

Solution: In order to find a confidence interval for E(Y |X1 = 83,X2 = 89) and predic-
tion interval for (Y |X1 = 83,X2 = 89), we first need to find the estimated response Ŷ0 at
X1 = 83,X2 = 89. From Example 16.3.1 we have

Ŷ = −1.66092 + 0.02834X1 + 0.02899X2

Now, substituting the values of X1 = 83 and X2 = 89, we have for X0 = (1, X1, X2) =
(1, 83, 89) the estimated value of Y at X0 is

Ŷ0 = 3.27141

In Example 16.2.1, from the ANOVA table, we have σ̂2 = MSE = 0.00885. The degrees
of freedom associated with the t-distribution in Equations (16.3.34) and (16.3.35) is
n − (k + 1) = 20 − (2 + 1) = 17. Thus, from Equation (16.3.35), we obtain a 95%
confidence interval for E(Y |X1 = 83,X2 = 89) as

(3.27141 ± 2.110
√

0.00885 ×
√

0.378849)
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which, after some arithmetic, reduces to

(3.14923, 3.39359)

Similarly, using the result given by Equation (16.3.36), we obtain a 95% prediction interval
for (Y |X1 = 83,X2 = 89) as

(3.27141 ± 2.110
√

0.00885 ×
√

1 + 0.378849)

Again, with some simplification, we obtain the prediction interval as

(3.03833, 3.50449)

Note: The confidence intervals above can be found using MINITAB. In order to do so,
follow the steps described in Example 15.4.3.

PRACTICE PROBLEMS FOR SECTION 16.3

1. Set up a first-order multiple linear regression model in three predictor variables.
2. (a) Set up a second-order interaction multiple linear regression model in three

predictor variables.
(b) Set up a second-order complete multiple linear regression model in three pre-

dictor variables.
(c) Set up the models in (a) and (b) using matrix notation.

3. In Problem 1, determine the normal equations and find the least square estimators
for the regression coefficients β0, β1, β2, and β3.

4. A study was made of the relationship among skein strength (Y, in lb) of #225
cotton yarn, mean fiber length (X1, in 0.01 in.) and fiber tensile strength (X2, in
1000 psi). Twenty combinations of X1 and X2 values were used and Y observed at
each of these combinations. The observations yield the following results (data from
Duncan, 1958):

20∑
i=1

Yi = 1908,
20∑

i=1
Xi1 = 1540,

20∑
i=1

Xi2 = 1502,
20∑

i=1
X2

i1 = 119,797,

20∑
i=1

X2
i2 = 113,104,

20∑
i=1

Xi1Xi2 = 115, 678.9,
20∑

i=1
Xi1Yi = 148, 248.6,

20∑
i=1

Xi2Yi = 143,626,
20∑

i=1
Y 2

i = 184,766

Using the results above, show that the least-squares normal equations for the regres-
sion model

Yi = β0 + β1Xi1 + β2Xi2 + εi, i = 1, 2, . . . , 20

are given by
⎛
⎝ 20 1540 1502

1540 119,797 115, 678.9
1502 115, 678.9 113,104

⎞
⎠×

⎛
⎝ β̂0

β̂1

β̂2

⎞
⎠ =

⎛
⎝ 1908.0

148, 248.6
143, 626.0

⎞
⎠
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5. (a) Use the least square normal equations in Problem 4 to estimate the regression
coefficients β0, β1, β2 for the regression plane E(Y |X1,X2) = β0 + β1X1 + β2X2.

(b) Use the result obtained in (a) to estimate the value of Y if a piece of yarn is
such that X1 = 75 and X2 = 70.

6. In Problem 4 find:
(a) An estimate of the variance σ2. (Hint: σ̂2 = MSE = SSE/(n − 3).)
(b) A 95% confidence interval for E(Y |X1 = 75,X2 = 70), assuming that ε′is are

normally distributed with mean zero and variance σ2.
7. The pull strength of a wire bond is an important characteristic. The table below

gives information on pull strength Y, die height X1, post height X2, loop height
X3, wire length X4, bond width on the die X5, and bond width on the post X6
(from Myers and Montgomery, 1995, used with permission).

Y X1 X2 X3 X4 X5 X6

8.0 5.2 19.6 29.6 94.9 2.1 2.3
8.3 5.2 19.8 32.4 89.7 2.1 1.8
8.5 5.8 19.6 31.0 96.2 2.0 2.0
8.8 6.4 19.4 32.4 95.6 2.2 2.1
9.0 5.8 18.6 28.6 86.5 2.0 1.8
9.3 5.2 18.8 30.6 84.5 2.1 2.1
9.3 5.6 20.4 32.4 88.8 2.2 1.9
9.5 6.0 19.0 32.6 85.7 2.1 1.9
9.8 5.2 20.8 32.2 93.6 2.3 2.1
10.0 5.8 19.9 31.8 86.0 2.1 1.8
10.3 6.4 18.0 32.6 87.1 2.0 1.6
10.5 6.0 20.6 33.4 93.1 2.1 2.1
10.8 6.2 20.2 31.8 83.4 2.2 2.1
11.0 6.2 20.2 32.4 94.5 2.1 1.9
11.3 6.2 19.2 31.4 83.4 1.9 1.8
11.5 5.6 17.0 33.2 85.2 2.1 2.1
11.8 6.0 19.8 35.4 84.1 2.0 1.8
12.3 5.8 18.8 34.0 86.9 2.1 1.8
12.5 5.6 18.6 34.2 83.0 1.9 2.0

(a) Fit a multiple linear regression model using X2, X3, X4, and X5, as the pre-
dictor variables.

(b) Test for significance of regression using analysis of variance with α = 0.05.
What are your conclusions?

(c) Use the model from (a) to find a 95% prediction interval for the pull strength
when X2 = 20, X3 = 30, X4 = 90, and X5 = 2.0.

8. Fit a multiple linear regression model Y = β0 + β1X1 + β2X2 + · · · + β6X6 + ε, to
the data in Problem 7.

9. Refer to Problem 8.
(a) For the model in Problem 8, and assuming normality of the Y’s, test the

hypothesis H0 : β4 = β5 = β6 = 0 versus H1 : Not all parameters β4, β5, β6 are
zero. Use α = 0.05.

(b) Find the p-value for the test in part (a).
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10. Refer to Problem 7 part (c). Find a 95% confidence interval for E(Y ) and a 95%
prediction interval for Y at X2 = 20, X3 = 30, X4 = 90, and X5 = 2.0, assuming
normality of the Y’s.

11. Runs were made at various conditions of saturation X1 and transisomers X2. The
response SCI, denoted by Y, is given below for the corresponding conditions of X1
and X2.
(a) Fit the regression model E(Y ) = β0 + β1X1 + β2X2 to the data below.
(b) Test the hypothesis H0 : β1 = β2 = 0 versus H1 : Not both β1, β2 are zero. Use

α = 0.05.

X1 0.04 0.04 0.04 0.04 0.20 0.20 0.20 0.20 0.38 0.38 0.38 0.38
X2 100 110 120 130 100 110 120 130 110 110 120 130
Y 67.1 64.0 44.3 45.1 69.8 58.5 46.3 44.1 74.5 60.7 49.1 47.7

16.4 MULTIPLE LINEAR REGRESSION MODEL
USING QUANTITATIVE AND
QUALITATIVE PREDICTOR VARIABLES

So far we have only considered the case of quantitative predictor variables. In practice,
however, it is quite common to have quantitative and qualitative predictor variables. In this
section, we discuss cases where we have one or more qualitative predictor variables along
with some quantitative variables. For instance, the board of directors of a big corporation
wishes to develop a model to determine the salaries of their upper-level management. To
achieve their goal, they consider similar companies and collect data on certain variables,
which include the dependent variable Y (salaries) and predictor variables X1 (quarterly
revenues), X2 (quarterly profit), X3 (number of employees directly or indirectly under that
manager), X4 (number of years with the company), and some qualitative variables such
as gender of the manager and highest degree earned (MS, MBA, or PhD).

16.4.1 Single Qualitative Variable with Two
Categories

Suppose that we are interested in fitting a regression model in which, besides having a
quantitative variable, we have one qualitative variable with two categories C1 and C2. In
order to use one or more qualitative predictor variables in a regression model, we need
to introduce variables called dummy variables that do not assume values on a continuous
scale. Rather, such variables are assigned the value of 0 and 1. In other words, the values 0
and 1 merely represent the absence and presence of a particular category, respectively. We
first illustrate the use of a dummy variable in a model that contains only one quantitative
predictor variable and one qualitative variable.

For this situation the regression model may be written as

Yi = β0 + β1Xi1 + β2Xi2 + εi (16.4.1)
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where Xi2 is the dummy variable defined as follows:

Xi2 =

{
0, if category C1 is present (and category C2 is absent)
1, if category C2 is present (and category C1 is absent)

We then have that the matrix X defined in Section 16.3.1 for model (16.4.1) is given by

Xn×3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 X11 0
1 X21 0
...

...
...

1 Xn11
0

...
...

...
1 . . . 1
...

...
...

1 Xn1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Here n1 observations are taken with C1 present and C2 absent and n2 = n − n1 observa-
tions are taken with C2 present and C1 absent, and Xi1 is the ith value of the predictor
variable used to generate Yi, i = 1, 2, . . . , n (n = n1 + n2). Hence, model (16.4.1) when
the qualitative variable is of category C1 becomes

Yi = β0 + β1Xi1 + εi (16.4.2)

Now if the qualitative variable is of category C2, the model is

Yi = β0 + β1Xi1 + β2 + εi

which we rewrite as
Yi = (β0 + β2) + β1Xi1 + εi (16.4.3)

Note that the only difference between models (16.4.2) and (16.4.3) is in the intercept
term; that is, the change in the category of the qualitative variable results in a change in
the dependent variable Y by a constant β2. Graphically, the two models are represented
by the two parallel lines in Figure 16.4.1.

E(Yi)

E(Yi) = β0 + β1Xi1

E(Yi) = (β0 + β2) + β1Xi1

Xi1

C2 category present →

← C1 category present
(β0 + β2)

β0

Figure 16.4.1 Graphical representation of models (16.4.2) and (16.4.3).
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16.4.2 Single Qualitative Variable with Three or
More Categories

We now consider a regression model with one quantitative predictor variable and one
qualitative variable with three categories, say C1, C2, and C3. In this case, the regression
model is given by

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + εi (16.4.4)

where the predictor variables Xi2,Xi3 are the dummy variables and are assigned the values
0 and 1 as follows:

Assigned values
Xi2 Xi3

C1 1 0
Category present C2 0 1

C3 0 0

Hence, the models (16.4.4) for the presence of categories C1, C2, and C3 (only one at a
time) are given by

Only C1 present
Yi = (β0 + β2) + β1Xi1 + εi (16.4.5)

Only C2 present
Yi = (β0 + β3) + β1Xi1 + εi (16.4.6)

Only C3 present
Yi = β0 + β1Xi1 + εi (16.4.7)

respectively. The models (16.4.5)–(16.4.7) will result in the X matrix shown below for
the case of nj observations on Y taken with (only) category Cj present, j = 1, 2, 3, with
n1 + n2 + n3 = n:

Xn×4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 X11 1 0
1 X21 1 0
...

...
...

...
1 Xn11

1 0
· · · · · · · · · · · ·
1 X(n1+1)1 0 1
...

...
...

...

1
... 0 1

1 X(n1+n2)1
0 1

· · · · · · · · · · · ·
1 X(n1+n2+1)1 0 0

1
... 0 0

...
...

...
...

1 Xn1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Graphically, the models (16.4.5)–(16.4.7) can be represented by three parallel lines
with intercepts β0 + β2, β0 + β3, and β0, respectively. Note that the assertion of parallel
lines is true only if the models are additive or there is no interaction between the quantita-
tive and qualitative predictor variables. For example, suppose that the true situation calls
for an interaction term between Xi1 and Xi2 but no interaction term between Xi1 and
Xi3, so that model (16.4.4) is not adequate. We have then that the true model would be

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + β4Xi1Xi2 + εi (16.4.8)

Hence, the model for category C1 is given by

Yi = (β0 + β2) + (β1 + β4)Xi1 + εi (16.4.9)

which obviously has a different slope than from that of the models for categories C2 and C3.

Example 16.4.1 (Corporate management salaries) Consider the data in Table 16.4.1,
generated from a study of salaries (Y in hundreds of thousands of dollars) of upper-level
corporate management. In this study, we have four quantitative predictor variables: X1
(quarterly revenues in billions of dollars), X2 (quarterly profit in hundred million dollars),
X3 (number of employees in thousands, directly or indirectly under that manager), X4
(number of years with the company) and two different types of qualitative predictor vari-
ables, gender and highest degree. We then assign X5 to denote gender and X6, X7 to be
used in concert for highest degree, as follows:

Xi5

Gender categories C1 (Male) 1
C2 (Female) 0

Xi6 Xi7

D1 (MS) 1 0
Highest degree categories D2 (MBA) 0 1

D3 (PhD) 0 0

We remark that the two qualitative factors on hand have different numbers of
categories—the rule for the number of independent variables needed in the model to
explain each qualitative factor is

Number of independent variables = Number of categories − 1

This explains why we need one variable (X5) to describe gender and two variables (X6, X7)
to describe the highest degree. Using this, we then have the data as given in Table 16.4.1.

Using the data in Table 16.4.1, we want to fit the multiple linear regression model

E(Yi)=β0 + β1Xi1 + β2Xi2 + β3Xi3 + β4Xi4 + β5Xi5 + β6Xi6 + β7Xi7 + εi, i=1, 2, . . . , n

Solution: The model that we use to analyze the data in Table 16.4.1 is

Y = Xβ + ε (16.4.10)
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Table 16.4.1 Salary data for upper-level management.

Y X1 X2 X3 X4 X5 X6 X7

4.54 8.33 3.85 4.91 19 1 0 1
4.08 6.06 4.07 3.16 25 1 0 1
5.10 7.97 3.89 3.99 18 1 0 1
4.49 5.27 4.45 4.91 18 1 0 1
5.71 5.08 3.28 4.88 20 1 0 1
5.38 8.08 4.29 4.76 23 1 0 1
4.06 8.55 4.86 4.72 23 1 0 1
5.59 7.90 3.11 3.68 23 1 0 1
5.73 8.20 4.31 4.75 22 1 0 1
4.33 6.76 4.14 5.00 23 1 0 1
4.49 7.44 3.05 3.06 18 1 0 1
4.76 9.64 3.55 4.30 24 1 0 1
5.23 5.62 4.06 4.45 20 1 0 0
4.82 5.25 4.89 3.61 19 0 0 0
5.82 5.24 4.38 3.15 22 0 0 0
5.65 8.36 3.97 4.47 20 0 0 0
4.61 9.64 4.67 4.71 20 0 1 0
5.11 6.44 3.79 3.73 16 0 1 0
4.44 6.92 3.67 3.49 24 0 1 0
4.17 9.90 3.36 4.12 25 0 1 0

where

Y20×1 =

⎡
⎢⎢⎢⎣

Y1
Y2
...

Y20

⎤
⎥⎥⎥⎦ , X20×8 =

⎡
⎢⎢⎢⎣

1 X11 X12 · · ·X17
1 X21 X22 · · ·X27
...

...
...

...
1 X20,1 X20,2 · · ·X20,7

⎤
⎥⎥⎥⎦ ,

β8×1 =

⎡
⎢⎢⎢⎣

β0
β1
...

β7

⎤
⎥⎥⎥⎦ , ε20×1 =

⎡
⎢⎢⎢⎣

ε1
ε2
...

ε20

⎤
⎥⎥⎥⎦

Using Equation (16.4.10) and recalling Equation (16.3.8) that

(X ′X)β̂ = X ′Y

we find for the data in Table 16.4.1, the least-square normal equations for model (16.4.10)
given by
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

20.00 146.65 79.64 83.85 422.00 13.00 4.00 12.00
146.65 1122.03 581.60 619.57 3119.09 94.90 32.90 89.28
79.64 581.60 322.67 335.76 1678.73 50.91 15.49 46.85
83.85 619.57 335.76 359.82 1767.48 56.57 16.05 52.12
422.00 3119.09 1678.73 1767.48 9036.00 276.00 85.00 256.0
13.00 94.90 50.91 56.57 276.00 13.00 0.00 12.00
4.00 32.90 15.49 16.05 85.00 0.00 4.00 0.00
12.00 89.28 46.85 52.12 256.00 12.00 0.00 12.00

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎡
⎢⎢⎢⎣

β̂0

β̂1
...

β̂7

⎤
⎥⎥⎥⎦

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

98.11
715.54
389.97
411.57
2063.47
63.49
18.33
58.26

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Solving these normal equations, we obtain the solution β̂ given by

⎡
⎢⎢⎢⎣

β̂0

β̂1
...

β̂7

⎤
⎥⎥⎥⎦ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

20.00 146.65 79.64 83.85 422.00 13.00 4.00 12.00
146.65 1122.03 581.60 619.57 3119.10 94.90 32.90 89.28
79.64 581.60 322.67 335.76 1678.73 50.91 15.49 46.85
83.85 619.57 335.76 359.82 1767.48 56.57 16.05 52.12
422.0 3119.09 1678.73 1767.48 9036.00 276.00 85.0 256.0
13.00 94.90 50.91 56.57 276.00 13.00 0.00 12.00
4.00 32.90 15.49 16.05 85.00 0.00 4.00 0.00
12.00 89.28 46.85 52.12 256.00 12.00 0.00 12.00

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

98.11
715.54
389.97
411.57
2063.47
63.49
18.33
58.26

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(

7.25385 −0.03320 −0.47342 0.27406 −0.02714 −0.59201 −1.08798 −0.32294
)′

Using the solution above, we see that the β̂is are such that the fitted regression model is

Ŷ = 7.25385 − 0.03320X1 − 0.47342X2 + 0.27406X3 − 0.02714X4 − 0.59201X5

− 1.08798X6 − 0.32294X7
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This regression model can be used to estimate and/or predict the salary of an upper-level
manager for given values of the predictor variables. The reader should keep in mind that
the values of the predictor variables for which we want to predict the salary of a manager
should fall within the range of the predictor variables used to fit this model. Suppose
that we want to estimate or predict an observation generated at the “place” that the first
observation is generated. We proceed, using

Ŷ1 = 7.25385 − 0.03320X1 − 0.47342X2 + 0.27406X3 − 0.02714X4 − 0.59201X5

− 1.08798X6 − 0.32294X7

along with the information in row one of Table 16.4.1, so that the estimate of Y1 is given
by

Ŷ1 = 7.25385 − 0.03320(8.33) − 0.47342(3.85) + 0.27406(4.91) − 0.02714(19)

−0.59201(1) − 1.08798(0) − 0.32294(1) = 5.06965 ≈ 5.07

From Table 16.4.1 the observed value of Y1 is 4.54. Thus, the error (residual) corresponding
to the first observation is e1 = Y1 − Ŷ1 = 4.54 − 5.07 = −0.53.

Table 16.4.2 gives all 20 fitted values, their standard errors, and the corresponding
residuals.

Table 16.4.2 Observations, fitted values, standard error and residuals for Example
16.4.1.

Observations Yi Ŷi SE (Ŷi) Residual

1 4.540 5.070 0.263 −0.530
2 4.080 4.398 0.404 −0.318
3 5.100 4.838 0.303 0.262
4 4.490 4.914 0.348 −0.424
5 5.710 5.412 0.447 0.298
6 5.380 4.720 0.228 0.660
7 4.060 4.424 0.339 −0.364
8 5.590 4.989 0.293 0.601
9 5.730 4.731 0.219 0.999
10 4.330 4.901 0.288 −0.571
11 4.490 4.998 0.424 −0.508
12 4.760 4.865 0.299 −0.105
13 5.230 5.230 0.592 −0.000
14 4.820 5.238 0.387 −0.418
15 5.820 5.273 0.388 0.547
16 5.650 5.779 0.453 −0.129
17 4.610 4.383 0.407 0.227
18 5.110 4.746 0.420 0.364
19 4.440 4.504 0.378 −0.064
20 4.170 4.697 0.402 −0.527
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We can proceed to find the confidence interval for E(Y |X = X0) = X0β, where X0 is
a [1 × (k + 1)] vector of given values of predictor variables:

X0 = (1,X01, . . . ,X0k) (16.4.11)

so that X0 is a row vector of order (1 × (k + 1)). Note that β is a column vector of unknown
regression coefficients and is of order ((k + 1) × 1). We have that Ŷ0 = X0β̂ is unbiased for
E(Y |X = X0) = X0β. In order to find the confidence interval for E(Y |X0), we first need
to find V ar(Ŷ |X0), which is given by

V ar(Ŷ |X0) = σ2(X0(X
′X)−1X ′

0) (16.4.12)

Then, the confidence interval for E(Y |X0) is given by

(Ŷ (X0) ± tn−(k+1);α/2σ̂
√

X0(X ′X)−1X ′
0) (16.4.13)

where σ̂ =
√

MSE and Ŷ (X0) = X0β
′. Note that the quantity σ̂

√
X0(X ′X)−1X ′

0 in
Equation (16.4.13) is an estimate of the standard error of (Ŷ |X0). As mentioned earlier, the
standard errors of (Ŷ |X0), as we let X0 take on values of (1,X01, . . . ,X07), i = 1, 2, . . . , 20,
of Table 16.4.1, are given in Table 16.4.2. Thus, in Example 16.4.1, a 95% confidence
interval for E(Y |X0), when X0 = (1,X01, . . . ,X07) = (1, 8.33, 3.85, 4.91, 19, 1, 0, 1), which
is used to generate Y1 (see Table 16.4.1), is given by

Ŷ (X0) ± tn−(k+1);α/2σ̂
√

X0(X ′X)−1X ′
0 = 5.070 ± t12;0.025(0.263)

= 5.070 ± 2.179(0.263)
= (4.497, 5.643)

Following the results obtained in Chapter 15, the prediction interval for a “new” observa-
tion at a given value of X0 is given by

Ŷ (X0) ± tn−(k+1);α/2σ̂
√

1 + X0(X ′X)−1X ′
0 (16.4.14)

In general, if we choose X0 to be any row of the X-matrix used to generate Yi (above X0
was the first row of the X-matrix), then using the notation of the HAT matrix (defined
below in (16.4.15), the confidence intervals in (16.4.13) and (16.4.14) can be written as

Ŷ (X0) ± tn−(k+1);α/2σ̂
√

hii (16.4.14a)

Ŷ (X0) ± tn−(k+1);α/2σ̂
√

1 + hii (16.4.14b)

respectively, where hii is the ith diagonal element of the hat matrix H, which is defined
as

H = X(X ′X)−1X ′ (16.4.15)

Using the HAT matrix, the predicted values Ŷ in terms of the observed values Y can be
written as

Ŷ = Xβ̂ = X(X ′X)−1X ′Y = HY (16.4.16)

We remark that the residuals can be written in terms of the HAT matrix as

e = Y − Ŷ = Y − HY = (I − H)Y (16.4.17)
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where e is vector of residuals. Note that the matrices H and (I − H) are idempotent (matrix
B is called idempotent if and only if B2 = B). From Equation (16.4.17) and the fact that
I − H is idempotent, we can easily see that the variance–covariance matrix of the residuals
e can be written as

Cov(e) = σ2(I − H) (16.4.18)

We then have that
V ar(ei) = σ2(1 − hii) (16.4.19)

where hij (i, j = 1, 2, . . . , n) is the ijth entry of the HAT matrix H.
Note: Using MINITAB, the regression model in Example 16.4.1 can be fitted without

creating any dummy variables. That is, enter the data in columns C1–C7 and name them
Y, X1, X2, . . . , X5, and X6. The entries in column C6 are M and F for gender and
in columns C7 the highest degrees. From the Menu bar select Stat > Regression >
Regression > Fit Regression Model. In the dialog box that appears, enter Y in the
box for Response: X1, X2, X3, and X4 in the box below Continuous predictors:, and
X5, X6, and X7 in the box below Categorical Predictors:. Select other desired options
from Graphs, Options, Storage, Results, and make the necessary entries, and click OK.
Then the MINITAB output will appear in the Session window. We further illustrate the
use of MINITAB with the following example.

Example 16.4.2 (Home prices) During the 2008–2009 recession, home prices declined
significantly throughout the United States. Many locations, however, were affected more
seriously than others. The Orlando area in Florida was one location hit especially hard.
Table 16.4.3 provides the listed prices for 28 randomly selected homes and associated pre-
dictor variables. Using MINITAB and R, fit a first-order multiple regression model with
all the terms to these data. We let

Y : Listed price rounded in thousands of dollars

Table 16.4.3 Listed selling prices of 28 randomly selected homes.

Y X1 X2 X3 X4 Y X1 X2 X3 X4

160 19 3 2 2 190 22 4 2 2
136 17 3 2 2 209 24 4 2 2
189 22 4 2 2 200 20 4 2 2
116 12 2 1 1 150 18 3 2 2
136 19 4 2 1 118 12 2 1 2
255 24 5 3 3 135 17 3 2 2
209 18 4 2 3 230 22 4 3 3
135 15 2 2 1 155 18 3 2 2
265 28 4 3 3 118 12 2 1 2
115 12 2 1 1 159 17 3 2 2
114 18 2 2 2 199 21 3 2 2
219 21 4 3 2 200 23 4 2 2
299 26 5 3 3 260 24 5 3 3
200 21 4 2 2 210 21 4 2 2
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X1 : Living area rounded in hundreds of square feet
X2 : Number of bedrooms
X3 : Number of bathrooms
X4 : Garage size (number of cars)

MINITAB

To fit a regression model using MINITAB, we proceed as follows:

1. Enter the data in columns C1–C5. (C1 is a column of the 28 observations, etc.)
2. Select Stat > Regression > Regression > Fit Regression Model. A dialog box

“General Regression” appears. In this dialog box, enter Y in the box for Response
and X1, X2, X3, and X4 in the box below Continuous predictors:. Select other
desired options from Graphs, Options, Storage, Results, and make the necessary
entries; then click OK. Then the MINITAB output appears in the Session window
as shown here.

Analysis of Variance

Regression Equation

Fits and Diagnostics for Unusual Observations

Model Summary

Source

Y  =  –26.0 + 4.06X1 + 19.96X2 + 6.6X3 + 22.50X4

Coefficients

Term Coef  SE Coef T-Value P-Value VIF

Constant –26.0 17.3 –1.51 0.146

Obs

5

Y Fit Resid Std Resid

136.00 166.70 –30.70 –2.10 R

X1 4.06 1.96 2.08 0.049 5.51

X2 19.96 7.59 2.63 0.015 4.22

X3 6.6 11.6 0.57 0.577 3.93

X4 22.50 8.41 2.68 0.014 2.06

DF Adj SS Adj MS F-Value P-Value

Regression

X1

X2

Lack-of-Fit

Pure Error

4

1

1

64554.3

1463.2

2345.8

16138.6

1463.2

2345.8

47.62

4.32

6.92

0.000

0.049

0.015

X3 1 108.8 108.8 0.32 0.577

X4 1 2425.2 2425.2 7.16 0.014

Error 23 7794.7 338.9

15 7350.0 490.0 8.82 0.002

8 444.7 55.6
Total 27 72349.0

S R-sq R-sq(adj) R-sq(pred)

18.4092 89.23% 87.35% 82.15%

This printout gives the fitted model, and various t-tests showing that X1, X2, and X4
are influential predictor variables. The values of R2 and R2

adj are reasonably high, which
indicates that the overall model is good. However, as mentioned in Chapter 15, before
making any final conclusion, we must check the adequacy of the model. The MINITAB
graphs in Figure 16.4.2 show no abnormalities; that is, the assumptions of independence,
normality, and constant variance are fairly satisfactory.

The analysis of variance table shows the overall fit is quite good since the p-value is
zero. It also shows that lack of fit is significant. This means the present model is good, but
not adequate; that is, we need to include either another factor or some other terms such as
interaction terms. Note that the data contain 13 observations that are not replicated and
15 replicated observations (replicated in groups of 3, 2, 2, 2, 2, 2, 2). These are taken at
(X1,X2,X3,X4) = (17, 3, 2, 2), (22, 4, 2, 2), (17, 3, 2, 2), (12, 2, 1, 2), (24, 5, 3, 3), (18, 3, 2, 2),
(21, 4, 2, 2). The pure error degrees of freedom come from the replicated observations
((3 − 1) + (2 − 1) + (2 − 1) + (2 − 1) + (2 − 1) + (2 − 1) + (2 − 1) = 8); that is, each
replicated observation provides information about the pure error with number of
replications minus one degrees of freedom so that in this case we have 8 degrees of
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Figure 16.4.2 MINITAB printout of residual plots for data in Table 16.4.2.

freedom for the pure error. (See the analysis of variance table above.) Further note that
the overall model is tested by using the regression mean sum of squares and the total
residual mean sum of squares (the total residual sum of squares is the sum of squares due
to lack of fit and pure error). The lack of fit is tested by using the lack-of-fit mean sum of
square and the pure error mean sum of squares. In this example, the overall model and
lack of fit are significant, since p-values are 0.000 and 0.002, respectively.

The MINITAB printout above provides the fit and the residual for the only extreme
observation presence in the data based on the standardized residual calculation. For this
observation, the listed value seems unusually lower compare to predicted value. The low
listed price may be due to various reasons, such as the overall condition of the property
may not be good, or the owner listed it low for a fast sale.

Solution: USING R To perform the required regression analysis on Y, we can use the
following R-code.

Y = c(160,136,189,116,136,255,209,135,265,115,114,219,299,200,190,
209,200,150,118,135,230,155,118,159,199,200,260,210)
X1 = c(19,17,22,12,19,24,18,15,28,12,18,21,26,21,22,24,20,18,12,
17,22,18,12,17,21,23,24,21)
X2 = c(3,3,4,2,4,5,4,2,4,2,2,4,5,4,4,4,4,3,2,3,4,3,2,3,3,4,5,4)
X3 = c(2,2,2,1,2,3,2,2,3,1,2,3,3,2,2,2,2,2,1,2,3,2,1,2,2,2,3,2)
X4 = c(2,2,2,1,1,3,3,1,3,1,2,2,3,2,2,2,2,2,2,2,3,2,2,2,2,2,3,2)
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#Fitting MLR model using predictors X1, X2, X3, and X4
model = lm(Y ∼ X1 + X2 + X3 + X4)
model
anova(model)
summary(model)

The results (not shown here) are similar to those obtained using MINITAB.

PRACTICE PROBLEMS FOR SECTION 16.4

1. A company has two water testing labs, Lab A and Lab B. Lab A is fully equipped
with modern facilities, whereas Lab B does not have all those facilities. The fol-
lowing data give the number of water samples X1 arriving per day in each of the
two labs and the total of technician hours Y taken by the technicians to ana-
lyze all the samples arriving in that lab. The CEO of the company wants to
fit a regression model to evaluate whether there is a benefit in upgrading Lab
B to have the same facilities as Lab A. Fit an appropriate model to the data
given below.

Y 78 86 80 92 60 78 72 80 82 98
X1 (Water) 28 27 30 24 36 28 35 30 32 30
X2 (Lab) A B A B A B A B A B

2. Refer to Problem 1 above. Suggest to the CEO how she can use this model to
achieve the company’s goal.

3. An educator is interested in studying the difference between public and private
four-year institutions that award a chemical engineering degree. The educator
selected eight public institutions and eight private institutions. The following data
give the number of graduates (Y) hired during campus interviews, the number of
students X1 in the graduating class with a chemical engineering degree, and the
type of institution X2. Note that we have set X2 = 1 for each public institution
and X2 = 0 for each private institution. Fit an appropriate linear regression model
to these data.

Y 25 32 34 30 35 26 26 33 21 23 26 28 23 28 25 21
X1 57 56 42 59 51 42 43 59 73 53 79 59 61 69 68 69
X2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

4. Refer to Problem 3 above. Develop the ANOVA table for the model you considered
in Problem 3, and use an appropriate F-test to evaluate whether or not the model
you fitted is appropriate. Use α = 0.05.



726 16 Multiple Linear Regression Analysis

5. Refer to Table 16.4.3 in Example 16.4.2. As an addendum to the data of
Table 16.4.3, incorporate an additional qualitative predictor variable to be called
“house siding” having four categories, namely Wood, Vinyl, Stucco, and Brick.
Specifically, the first seven homes used wood siding, next seven used vinyl, the
next seven used stucco, and the last seven homes used brick siding. Re-analyze
the data in Table 16.4.3 taking into consideration the new information.

6. Refer to Problem 5 above. Determine a 95% confidence interval for E(Y |X0) and
a prediction interval for Y when X0 = (25, 4, 3, 2, Brick).

7. Refer to Problem 5 above. Develop the ANOVA table for the model considered in
Problem 5, and use an appropriate F-test to evaluate whether or not the model
fitted is appropriate. Use α = 0.01.

8. Refer to Problem 3 above. Determine a 95% confidence interval for E(Y |X0) and
a prediction interval for Y when X0 = (50, 1) and X0 = (50, 0).

16.5 STANDARDIZED REGRESSION
COEFFICIENTS

In a multiple linear regression model, it is difficult to compare the change in the response
variable Y, if one predictor variable changes and the other predictor variables are held
constant, because of the difference in the units of the predictor variables. For example,
consider a fitted regression model

Ŷ = 40 + 500X1 + 0.7X2

where X1 is measured in kilograms and X2 is measured in grams. Obviously, the rate of
change in the response variable is 500 units as X1 changes one unit (i.e., 1 kg) while X2 is
held constant, whereas the rate of change in the response variable is only 0.7 units as X2
changes 1 unit (i.e., 1 g), while X1 is held constant. Here, we may be tempted to conclude
that the predictor variable X1 is much more important than X2. After observation, we
realize that in fact X2 is more important than X1 simply because if X2 changes by the same
amount, that is, 1 kg, while X1 is held constant, then the response variable will change by
700 units. It is therefore more meaningful to use a transformation on the response and the
predictor variables so that the regression coefficients are dimensionless. These regression
coefficients are usually referred to as standardized regression coefficients. This is achieved
by using the transformation

Uij =
Xij − X̄j

Sj

, i = 1, 2, . . . , n; j = 1, 2, . . . , k (16.5.1)

where

X̄j =
1
n

n∑
i=1

Xij , S2
j =

n∑
i=1

(Xij − X̄j)
2, S2

y =
n∑

i=1

(Yi − Y )2 (16.5.2)
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and S2
j is the corrected sum of squares for predictor Xj . It can easily be seen that with

these transformations, the regression model (16.2.2) takes the form (see also (16.2.3))

Yi = γ0 + γ1Ui1 + γ2Ui2 + · · · + γkUik + εi, i = 1, 2, . . . , n (16.5.3)

where

γ0 = β0 +
k∑

j=1

βjX̄j , γj = Sjβj , j = 1, 2, . . . , k (16.5.3a)

We remark that as is easily seen,

n∑
i=1

Uij = 0,

n∑
i=1

U 2
ij = 1, j = 1, 2, . . . , k (16.5.3b)

In matrix form, model (16.5.3) may be rewritten as

Y = Uγ + ε (16.5.3c)

where the [(k + 1) × 1] vector γ is such that γ′ = (γ0, γ1, . . . , λk), and where the matrix U
(n × (k + 1)) is given by

U =

⎛
⎜⎜⎜⎜⎜⎝

1 U11 U12 · · · U1k

1 U21 U22 · · · U2k

1 U31 U32 · · · U3k
...

...
...

...
1 Un1 Un2 · · · Unk

⎞
⎟⎟⎟⎟⎟⎠ (16.5.3d)

Now, using the properties of the Uijs stated in (16.5.3b), we find that the (k + 1) ×
(k + 1) matrix U ′U takes the form

U ′U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

n 0 0 0 · · · 0
0 1 r12 r13 · · · r1k

0 r12 1 r23 · · · r2k

0 r13 r23 1 · · · r3k
...

...
...

...
0 r1k r2k r3k · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(16.5.3e)

where rwv =
∑n

i=1 UiwUiv. It can be shown that −1 ≤ rst ≤ 1, for s �= t. We call model
(16.5.3), or its equivalent (16.5.3c), the standardized multiple linear regression model. The
least-squares estimates of the regression coefficients γ = (γ0, γ1, . . . , γk)′ are given by

γ̂ = (U ′U)−1U ′Y (16.5.4)

The lower matrix R(k×k) of the matrix U ′U is called the sample correlation matrix of the
predictor variables Xj . The regression coefficients γ̂ are called the standardized regression
coefficients. Note here that even though predictor variables are not random variables, rij

does provide information about the linear dependency between the predictor variables Xi

and Xj .
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16.5.1 Multicollinearity
So far, in our discussion on linear regression in Chapter 15 and in this chapter, various
interests have been in (i) determining which predictor variables are valuable in predicting
the behavior of the dependent variable, or which are not valuable in predicting the depen-
dent variable and therefore should be dropped from the regression model, and (ii) looking
for more predictor variables or additional terms that should be included in the model to
improve significantly the predictability of the dependent variable. In the first case, we
usually look at the p-values, while in the latter case, we look at the value of the adjusted
coefficient of determination. However, another important aspect of a regression problem
that we have not discussed is the effect of including a predictor variable in the presence of
another predictor variable when the two variables are highly correlated. Including highly
correlated predictor variables in a regression model is called multicollinearity.

Earlier, we noted that in dealing with the model

Y = Xβ + ε

the least-squares estimate of β is given by

β̂ = (X ′X)−1X ′Y

Obviously, these estimates are well defined if we assume that X is a full rank matrix (or,
equivalently, X ′X is nonsingular). However, sometimes situations may arise in which X ′X
is singular or nearly singular. If the vectors of the predictor variables Xi and Xj for i �= j
are orthogonal, then X ′X is nonsingular. However, if the vectors of predictor variables
are exactly linearly dependent, then X ′X is singular. If observation vectors on predictor
variables are nearly linearly dependent, then the matrix X ′X is nearly singular. If exact
or near-linear dependence exists among the predictor variables, then we say that there is
multicollinearity in the model. The reader may adopt the following procedure to detect
and eliminate multicollinearity.

Calculate the simple correlation matrix between the predictor variables. That is, com-
pute the matrix R, where

R(k×k) = (rst) (16.5.5)

and where

rst =
∑n

i=1(Xis − X̄s)(Xit − X̄t)√∑n
i=1 (Xis − X̄s)2

∑n
i=1 (Xit − X̄t)2

(16.5.6)

is the simple correlation between Xr and Xs. If rst is large (i.e., r2
st is near 1), then there

is a serious chance that there is multicollinearity in the model. One method of eliminating
the multicollinearity is to drop one of the predictor variables, either Xi or Xj , from the
model. Note that if X ′X still continues to be singular or nearly singular after dropping Xi

or Xj , then this implies that some other predictor variables remaining in the new model
are highly correlated. In such a case, repeat the above procedure and drop one of the
remaining predictor variables. One can continue to repeat the above procedure until the
multicollinearity disappears from the model.
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16.5.2 Consequences of Multicollinearity

1. If some predictor variables are correlated, then the estimates of the regression coef-
ficients for different samples may vary significantly. As a result the experimenter’s
ability to estimate the regression coefficients and interpret the data properly may
be severely impaired. The usual interpretation of a regression coefficient, as the rate
of change in the expected value of the dependent variable when a given predictor
variable is increased by one unit, while all other predictor variables are held constant,
may no longer be valid.

2. Due to collinearity among the predictor variables, variances among regression coef-
ficients may be inflated. This inflation in turn causes the same types of problems as
described in item 1. To illustrate, we consider two sets of two predictor variables,
one with uncorrelated variables and the other with highly correlated predictor vari-
ables. We want to see how, in each case, the variances of regression coefficients are
affected, assuming that we fit a standardized multiple linear regression model with
two predictor variables.

The two data sets on predictor variables are

Data set 1: X1 and X2 are uncorrelated

X1 7 5 5 7 5 7 7 5 7 5 5 7
X2 7 5 5 5 7 7 5 7 5 7 5 7

In this case, the correlation matrix R and its inverse are given by

R =
(

1 0
0 1

)
, R−1 =

(
1 0
0 1

)

Hence, the variances of standardized regression coefficients are given by (16.5.3e)–(16.5.4)

V ar(γ̂1)
σ2 =

V ar(γ̂2)
σ2 = 1

Data set 2: X1 and X2 are highly correlated

X1 5.0 4.0 6.0 7.0 7.2 6.5 8.2 6.8 5.8 5.4 5.7 5.8
X2 5.3 4.2 5.8 6.5 6.8 7.1 7.8 6.5 6.2 5.1 5.5 5.9

In this case, the correlation matrix R and its inverse are given by

R =
(

1 0.948
0.948 1

)
, R−1 =

(
9.87 −9.36
−9.36 9.87

)

Here the variances of standardized regression coefficients are then given by

V ar(γ̂1)
σ2 =

V ar(γ̂2)
σ2 = 9.87
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Obviously, in this case, variances of regression coefficients are inflated when there is mul-
ticollinearity. The diagonal elements in the R−1 matrix are called the variance inflation
factors, usually denoted by VIFs. A VIF is a good measure of multicollinearity.

For further discussion on multicollinearity, the reader is referred to Kutner et al.
(2004), Montgomery et al. (2006), and Myers (1990).

16.6 BUILDING REGRESSION TYPE
PREDICTION MODELS

Once the influential predictor variables, X1,X2, . . . ,Xk, are identified, if the response
or dependent variable is denoted by Y, then the problem is to find the function
f(X1,X2, . . . ,Xk) that is the best predictor for Y at the given values of X1,X2, . . . ,Xk.
If the general form of f is known, then there is only the problem of fitting f to the data.
This problem, in this chapter, has already been discussed for f a linear function in the
regression parameters. We now consider the problem when f is unknown.

16.6.1 First Variable to Enter into the Model
Here, we want to find which of the possible predictor variables, X1,X2, . . . ,Xk, should
be considered first. We can approach this problem in two ways. The first approach is to
construct a model using all predictor variables X1,X2, . . . ,Xk, that are likely to affect
the dependent variable Y. Then, we eliminate the predictor variables that do not make
any significant contribution to predicting the dependent variable, Y. This procedure is
called the backward eliminating procedure. The second approach is to consider the predic-
tor variables X1,X2, . . . ,Xk one by one. This procedure is called the stepwise regression
procedure, sometimes the forward selection procedure. In this procedure, we first take the
variable likely to be the most important or significant. Then we take the next one and con-
struct a model including the variables already selected. Each time we test the significance
of the effect of each new variable added into the model, with the variables that are already
in the model. We proceed until a suitable model is constructed. Here “suitable” implies
that we continue until the procedure is stopped according to some stopping criterion. We
now consider this procedure.

This stepwise regression procedure proceeds by our computing the linear cor-
relation between the values of Y and the corresponding values of Xt. We let
(Y1,X1t), (Y2,X2t), . . . , (Yn,Xnt) be the points formed using the observations Yi and
the corresponding values Xit of the tth predictor variable. Then, the linear correlation
between Y and Xt, denoted by ryt, is given by

ryt =
∑n

i=1(Yi − Y )(Xit − X̄t)[∑n
i=1 (Yi − Y )2

∑n
i=1 (Xit − X̄t)2

]1/2 (16.6.1)

We calculate ryt for t = 1, 2, . . . , k and select the Xt for which |ryt| is the largest. If rym

is the largest in absolute value, then Xm is the first predictor variable to be considered.
We now rename the predictor as X1, say, and find the first-order linear regression model
Ŷ = f(X1); that is, we fit Y to X1, obtaining

Ŷ = β̂0 + β̂1X1 (16.6.2)
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We check the significance of the coefficient of β1 using the t statistic given by

t =
β̂1

σ̂β̂1

, σ̂β̂1
=
√

MSE × a11 (16.6.3)

Also, we compute the coefficient of determination R2. After considering X1, the next step
is to find the next variable to enter into the regression function. One way of doing this is to
observe the residuals. The residuals, after removing the effect of X1 from Y, are given by

Uiy = Yi − Ŷi = Yi − (β̂0 + β̂1Xi1) (16.6.4)

Now, consider all other predictor variables X2, . . . ,Xk. We wish to remove the effect
of X1 from all these variables. For example, with X2 playing the role of the dependent
variable, fit X2 linearly to X1 using the points (Xi1,Xi2), i = 1, 2, . . . , n. This results
in the fitted model, say X̂i2 = ĉ + d̂Xi1. We now compute the residuals in each case

Ui2 = Xi2 − X̂i2 = Xi2 − (ĉ + d̂Xi1), i = 1, 2, . . . , n (16.6.5)

We repeat the process with X3, . . . ,Xk so that residuals Ui2, Ui3, . . . , Uik are now
available. We next find the (k − 1) linear correlations between Uiy of (16.6.4) and Uit,
t = 2, 3, . . . , k. These correlations are called the partial correlations because the effect of
X1 has been removed, or more accurately, they are the partial correlations between Y and
Xt, t = 2, . . . , k. We then select that Xi for which the partial correlation is a maximum
in absolute value. It is to be the second variable we enter into the model, and we let it be
denoted by X2. Now we fit a regression of Y on X1 and X2. We denote this fitted regression
equation by

Ŷ = β̂0 + β̂1X1 + β̂2X2 (16.6.5a)

Again, we compute the coefficient of determination R2. We would then see that the R2 value
is improved, perhaps substantially by including the additional variable X2. We continue
in this way, adding one predictor variable at a time.

Each time the R2 value will increase, but the increase at some stage will be insignifi-
cantly small. It is at this point that we stop the process. Each time we add a new variable,
we test the significance of all the regression coefficients, including those that have already
been tested. For example, after fitting the model (16.6.5a), we test the significance of the
coefficients β1 and β2, which are individually tested by using the t-statistics defined in a
similar fashion to (16.6.3).

The reader may wonder why one should again test for the significance of β1 of model
(16.6.5a) since the coefficient β1 of model (16.6.2) has, in our overall procedure, been tested
for significance. But apart from the fact that we are using generic notation, notice that
the role of β̂1 in model (16.6.2) is very different than the role of β̂1 in model (16.6.5a),
which is in the presence of β̂2. Indeed, the normal equations for (16.6.5a) show that the
solution for β̂1 involves Xi2 while, of course, the solution for β̂1 of normal equations for
(16.6.2) does not. Thus, the β1’s are different, and it is important to test the significance
of regression coefficients at each stage of testing.

We continue the process after considering X1 and X2, by calculating the partial cor-
relation between Y and X3, . . . ,Xk after removing the effect of X1 and X2. At this stage,
we should also look at X1X2 because there is a possibility that X1X2 should be present
in the regression model. Hence, we consider the partial correlation between Y and X1X2
after removing the effect of X1 and X2 from X1X2. Among all these variables (i.e., among
variables X3, . . . ,Xk,Xk+1 = X1X2), the one with maximum partial correlation may be
taken as the next variable to enter in the model. Again, we compute the t statistics with
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the new variables that have been included and calculate R2. Then, we test the significance
of each regression coefficient. If any coefficient is found insignificant at any stage, we drop
the corresponding variable from the model. So at each stage, we drop all the variables
previously dropped and then consider the remaining variables, together with the various
products of the variables present in our built-up model, and look for the next variable
to add to the regression model. This process is continued until there is no significant
improvement in R2. The resulting model is a prediction model for Y.

Example 16.6.1 (Home prices data) Refer to the data in Example 16.4.2 (see
Table 16.4.3). Fit a multiple linear regression model using the method of stepwise
regression (forward selection) in MINITAB and R.

Solution:
MINITAB

To fit a regression model using stepwise regression in MINITAB, we proceed as follows:

1. Enter the data in columns C1–C5.
2. Select Stat > Regression > Regression > Fit Regression Model. A dialog box

“Regression” appears. In this dialog box enter Y in the box for Response and X1,
X2, X3, and X4 in box for Continuous predictors. Then select Stepwise from this
dialog box. A new dialog box appears. In this new dialog box, select from the pull
down menu Method: Forward selection from this new box. Also, enter the desired
value of alpha (α) value in the box next to Alpha to enter: and from the pull down
menu Display the table of model selection details select Include details for
each step. MINITAB uses the alpha value as the criterion for adding a variable
to the model. All the variables with p-value less than the alpha value are added to
the model. Click OK in each dialog box. Then the MINITAB output appears in the
Session window as shown here.

Regression Analysis: Y versus X1, X2, X3, X4

Forward Selection of Terms

Candidate terms: X1, X2, X3, X4

Coef

–28.4 –36.4 –27.8

CoefP P Coef P

----Step 1---- ----Step 2---- ----Step 3----

Model Summary

Coefficients

Regression Equation

Constant

10.82 0.000 0.000 0.011

S

Term Coef SE Coef T-Value P-Value VIF

Constant –27.8 16.7 –1.67 0.109

X1 4.60 1.68 2.74 0.011 4.20

X2 20.45 7.43 2.75 0.011 4.17

X4

Y = –27.8 + 4.60X1 + 20.45X2 + 24.09X4

24.09 7.81 3.08 0.005 1.83

R-sq R-sq(adj) R-sq(pred)

18.1469 89.08% 87.71% 83.52%

8.15 –4.60X1

24.1229 20.3960 18.1469S

79.09% 85.63% 89.08%R-sq

78.28% 84.48% 87.71%R-sq(adj)

75.92% 82.48% 83.52%R-sq(pred)

20.64 8.69 3.32Mallowsʹ Cp

α to enter = 0.2

0.002 0.00528.87 24.09X4

0.01120.45X2



16.6 Building Regression Type Prediction Models 733

This forward selection procedure that uses the stepwise regression method takes three
steps to fit the model. The first step determines a constant term and the first variable,
which in this case is X1. In the second and the third steps it adds X4 and X2, respectively,
to the model. The final fitted model is

Ŷ = −27.8 + 4.60X1 + 20.45X2 + 24.09X4

Notice that in this fitted model, the predictor variable X3 is absent. This could be because
its observed level of significance is high or its contribution to the value of R2 is negligible,
or both.

Notes:

1. In each step, the values of the constant term and the other regression coefficients
determined previously change.

2. The value “Alpha-to-Enter” is kept fairly high so that no predictor variable is thrown
out prematurely.

3. The output includes values of various statistics that are useful in model selection
(see Example 16.7.1).

USING R

To obtain the stepwise regression model, we use ‘stepAIC()’ function in R MASS package.
It chooses the best model by Akaike Information Criteria (AIC) (see Akaike, 1973). The
additional option ‘direction’ can be used to specify the selection criteria. That is, option
= “both” applies both forward and backward selection, option = “backward” applies
backward selection, and option = “forward” applies forward selection. Finally, it returns
the best selected model.

library(MASS)
Y = c(160,136,189,116,136,255,209,135,265,115,114,219,299,200,190,
209,200,150,118,135,230,155,118,159,199,200,260,210)
X1 = c(19,17,22,12,19,24,18,15,28,12,18,21,26,21,22,24,20,18,12,17,
22,18,12,17,21,23,24,21)
X2 = c(3,3,4,2,4,5,4,2,4,2,2,4,5,4,4,4,4,3,2,3,4,3,2,3,3,4,5,4)
X3 = c(2,2,2,1,2,3,2,2,3,1,2,3,3,2,2,2,2,2,1,2,3,2,1,2,2,2,3,2)
X4 = c(2,2,2,1,1,3,3,1,3,1,2,2,3,2,2,2,2,2,2,2,3,2,2,2,2,2,3,2)

#Fitting MLR model using predictors X1, X2, X3, and X4
model = lm(Y ∼ X1 + X2 + X3 + X4)
step.model = stepAIC(model, direction = “both”)
summary(step.model)

#R summary output

Estimate Std. Error t value Pr(>|t|)

(Intercept) −27.8426 16.7115 −1.67 0.1087
X1 4.6037 1.6820 2.74 0.0115
X2 20.4535 7.4286 2.75 0.0111
X4 24.0901 7.8140 3.08 0.0051
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Note that the summary results are identical to those obtained by using MINITAB.

16.7 RESIDUAL ANALYSIS AND CERTAIN
CRITERIA FOR MODEL SELECTION

16.7.1 Residual Analysis
Consider the multiple linear regression model

Y = Xβ + ε (16.7.1)

If the covariance matrix is of the form Cov(ε) = D, where D is a diagonal matrix whose
diagonal elements are not equal, we say that there is heteroskedasticity in the model in
the sense that the variances of εis are not all equal, but the εi’s are uncorrelated. That
is, the assumption of equal variances is violated. In the case of multiple linear regression,
as in simple linear regression, plotting the residuals Yi − Ŷi against the fitted values Ŷi is
usually helpful to check whether heteroskedasticity is present. If all the scattered points
fall within a horizontal band, as shown in Figure 16.7.1, then this indicates the absence
of heteroskedasticity: in other words, the assumption of equality of variances of the εi’s is
satisfied.

If, however, the plot of residuals versus fitted values forms a pattern, such as a parabola
or a funnel shape, then heteroskedasticity is present and consequently our assumption of
equal variances is violated. The residual plots for the salary data in Example 16.4.1 are as
shown in Figure 16.7.2a–d.

Note that these plots show no significant abnormalities about the model except the
data seems to be skewed to the right.

0

*
* *

* * *
* *

*

*

*
* * *

* * * *

Yi – Yi
ˆ

Yi
ˆ

Figure 16.7.1 Desirable residual plot.
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Figure 16.7.2 Residual plots: (a) residuals versus fitted values, (b) residuals versus
observation order, (c) normal probability plot of residuals, and (d) histogram of residuals.

16.7.2 Certain Criteria for Model Selection
Suppose that we want to build a multiple linear regression using k possible predictor vari-
ables. Then we have 2k possible selections of subsets of k predictor variables. For example,
if the predictor variables under consideration are {X1,X2,X3}, then 23 = 8 possible subsets
are

{φ}, {X1}, {X2}, {X3}, {X1,X2}, {X1,X3}, {X2,X3}, and {X1,X2,X3}

There are various criteria for selecting a subset regression model, but we will discuss only
four of them, namely R2, R2

adj , Cp, and PRESS.

Coefficient of Multiple Determination—R2

The R2 coefficient of multiple determination is the most commonly used criterion for a
good model. The coefficient of multiple determination is defined as
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R2 =
∑n

i=1 (Ŷi − Y )2∑n
i=1 (Yi − Y )2

=
SSR

SSTotal

(16.7.2)

Alternatively, R2 can also be defined as

R2 = 1 −
∑n

i=1 (Yi − Ŷi)
2∑n

i=1 (Yi − Y )2
= 1 − SSE

SSTotal

(16.7.3)

From (16.7.2) we can see that R2 measures the proportion of variation in the response
explained by regression, that is, by the presence of the k predictor variables X1, . . . ,Xk.
Note further that

0 ≤ R2 ≤ 1 (16.7.4)

and from (16.7.3) it follows that R2 = 1 implies that SSE = 0, in which case all the
(observed) errors are zero; that is, R2 = 1, if and only if there is a perfect fit. The value of
R2 always increases as an additional predictor variable is included in the model. Obviously,
R2 is largest when all the predictor variables under consideration are included in the model.
In practice, the addition of any new predictor variable in the model is not considered useful
when such an addition increases the value of R2 by an insignificantly small amount.

Adjusted Coefficient of Multiple Determination—R2
adj

As noted above, one of the drawbacks of R2 is that its value always increases when any
new predictor variable is included in the model. Hence, an alternative criterion that is
commonly used is the adjusted coefficient of multiple determination, which is defined as

R2
adj = 1 − n − 1

n − r − 1
SSE

SSTotal

= 1 − (n − 1)
MSE

SSTotal

(16.7.5)

where r is the number of parameters (not including β0) in the model; that is, the number
of predictor variables in the model. From (16.7.5), we easily see that R2

adj decreases if and
only if MSE increases, since (n − 1)/SSTotal is fixed. Further, if, with the addition of more
factors Xi into the model, we find that SSE does not decrease significantly, then MSE will
increase since as a small decrease in SSE may not offset the loss due to the corresponding
error degrees of freedom (n − r − 1). Hence, R2

adj will consequently decrease.

Mallows’ Cp Statistic

This criterion is related to the total expected mean squared error of the n-fitted values for
each subset regression model. The mean square error of Ŷi at a given value Xi of X using
any specific subset regression model is given by

E(Ŷi − E(Yi))
2 (16.7.6)

where E(Yi) is the true mean response at X = (Xi1,Xi2, . . . ,Xip) and p is the number of
predictor variables in the model. Now, (16.7.6) can be written as

E(Ŷi − E(Yi))
2 = E(Ŷi − E(Ŷi) + E(Ŷi) − E(Yi))

2

= E(Ŷi − E(Ŷi))
2 + (E(Ŷi) − E(Yi))

2

= V ar(Ŷi) + (E(Ŷi) − E(Yi))
2 (16.7.7)
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where E(Ŷi) − E(Yi) is the bias at the data point X = (Xi1,Xi2, . . . ,Xip) and p is the
number of predictor variables in the model. From (16.7.7), we see that the total mean
squared error for all the n-fitted values is given by

n∑
i=1

E(Ŷi − E(Yi))
2 =

n∑
i=1

V ar(Ŷi) +
n∑

i=1

[E(Ŷi) − E(Yi)]
2 (16.7.8)

We now define the standardized total mean squared error as

Γp = 1
σ2

n∑
i=1

E(Ŷi − E(Yi))
2

= 1
σ2

(
n∑

i=1

V ar(Ŷi) +
n∑

i=1

[E(Ŷi) − E(Yi)]
2

) (16.7.9)

It can be shown that
n∑

i=1

V ar(Ŷi) = pσ2 (16.7.10)

and that the expected value of the residual sum of squares for a model with p parameters
(including β0), that is, the number of predictor variables entered in the model + 1 for β0,
is given by

E(SSEp) = (n − p)σ2 +
n∑

i=1

[E(Ŷi) − E(Yi)]
2 (16.7.10a)

Now, substituting for
∑n

i=1 V ar(Ŷi) and
∑n

i=1 [E(Ŷi) − E(Yi)]
2 from Equations (16.7.10)

and (16.7.10a) in Equation (16.7.9), we obtain

Γp =
E(SSEp)

σ2 − (n − 2p) (16.7.11)

Next, replacing E(SSEp) with the observed SSEp and σ2 with its estimator σ̂2, we obtain
an estimator of Γp denoted by Cp:

Cp =
SSEp

σ̂2 − (n − 2p) (16.7.12)

If the model with p parameters does not have any lack of fit, then it can be shown
that

Γp = p (16.7.13)

because E(SSEp) = (n − p)σ2. Hence, models with no bias will produce a value of Cp that
is expected to have value p, approximately. Thus, using Cp as a criterion for selecting an
adequate model, we seek the value of Cp that is fairly close to p and the smallest among
values of Cp as p varies. (Recall that p is the number of terms in the model, including the
constant term.) Generally, we can say that a small value of Cp indicates that the model
has a small total mean squared error, and that when Cp is also close to p, the bias of the
regression model due to sampling error is also small. Models with Cp significantly greater
than p are said to have large bias.
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PRESS Statistic

An individual PRESS is defined as

e2
i(i) = (Yi − Ŷi(i))

2 (16.7.14)

where Ŷi(i) is the predicted value of the ith observation obtained by deleting the ith
observed response from the sample data points and estimating the fit of the model based
on the remaining (n − 1) observations. The PRESS statistic identifies observations that
have strong influence on the future prediction and is defined as

PRESS =
n∑

i=1

(Yi − Ŷi(i))
2 =

n∑
i=1

(
ei

1 − hii

)2

(16.7.15)

where hii is the ith diagonal element of the HAT matrix

H = X(X ′X)−1X ′ (16.7.16)

and ei = yi − ŷi. (For more details on the PRESS statistic, see Montgomery et al., 2006.)
A model with a small value of PRESS is considered to be a good fit to the data.

The PRESS statistic can be used to obtain another statistic, denoted by R2
pred, which

measures the capability of the model to predict future observations and is defined as

R2
pred = 1 − PRESS

SSTotal

(16.7.17)

We illustrate the foregoing measures in the following example.

Example 16.7.1 Refer to Example 16.6.1.

Step 1 2 3

R-Sq 79.09 85.63 89.08
R-Sq(adj) 78.28 84.48 87.71
Mallows Cp 20.60 8.70 3.30
PRESS 17,418.30 12,674.40 11,923.20
R-Sq(pred) 75.92 82.48 83.52

Note that when using MINITAB, the stepwise regression method automatically dis-
plays R2, R2

adj , and Mallows’ Cp statistics as long as we select Include details for each
step from the Stepwise window. However, to get the PRESS value, select Results from
the Regression dialog box, a new dialog box appears. In this dialog box, select from
the pull down menu Display of Results: select Expanded tables. Using the criteria
discussed earlier in this section, the model obtained after Step 3 is the best among the
three models obtained after Step 1, Step 2, and Step 3.

For further discussion of multiple linear regression, the reader is referred to Draper
and Smith (1981), Freund and Wilson (1998), Kutner et al. (2004), Montgomery et al.
(2006), and Myers (1990).
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PRACTICE PROBLEMS FOR SECTIONS 16.6 AND 16.7

1. The quality of pinot noir wine is believed to be related to clarity (X1), aroma (X2),
body (X3), flavor (X4), oakiness (X5), and region (a qualitative variable with three
levels). The data for 38 wines is given below (data from MINITAB data files).

X1 X2 X3 X4 X5 X6 X7 Y X1 X2 X3 X4 X5 X6 X7 Y

1.0 3.3 2.8 3.1 4.1 0 1 9.8 0.9 3.4 5.0 3.4 3.4 1 0 7.9
1.0 4.4 4.9 3.5 3.9 0 1 12.6 0.9 6.4 5.4 6.6 4.8 0 0 15.1
1.0 3.9 5.3 4.8 4.7 0 1 11.9 1.0 5.5 5.3 5.3 3.8 0 0 13.5
1.0 3.9 2.6 3.1 3.6 0 1 11.1 0.7 4.7 4.1 5.0 3.7 1 0 10.8
1.0 5.6 5.1 5.5 5.1 0 1 13.3 0.7 4.1 4.0 4.1 4.0 1 0 9.5
1.0 4.6 4.7 5.0 4.1 0 1 12.8 1.0 6.0 5.4 5.7 4.7 0 0 12.7
1.0 4.8 4.8 4.8 3.3 0 1 12.8 1.0 4.3 4.6 4.7 4.9 1 0 11.6
1.0 5.3 4.5 4.3 5.2 0 1 12.0 1.0 3.9 4.0 5.1 5.1 0 1 11.7
1.0 4.3 4.3 3.9 2.9 0 0 13.6 1.0 5.1 4.9 5.0 5.1 1 0 11.9
1.0 4.3 3.9 4.7 3.9 0 1 13.9 1.0 3.9 4.4 5.0 4.4 1 0 10.8
1.0 5.1 4.3 4.5 3.6 0 0 14.4 1.0 4.5 3.7 2.9 3.9 1 0 8.5
0.5 3.3 5.4 4.3 3.6 1 0 12.3 1.0 5.2 4.3 5.0 6.0 1 0 10.7
0.8 5.9 5.7 7.0 4.1 0 0 16.1 0.8 4.2 3.8 3.0 4.7 0 1 9.1
0.7 7.7 6.6 6.7 3.7 0 0 16.1 1.0 3.3 3.5 4.3 4.5 0 1 12.1
1.0 7.1 4.4 5.8 4.1 0 0 15.5 1.0 6.8 5.0 6.0 5.2 0 0 14.9
0.9 5.5 5.6 5.6 4.4 0 0 15.5 0.8 5.0 5.7 5.5 4.8 0 1 13.5
1.0 6.3 5.4 4.8 4.6 0 0 13.8 0.8 3.5 4.7 4.2 3.3 0 1 12.2
1.0 5.0 5.5 5.5 4.1 0 0 13.8 0.8 4.3 5.5 3.5 5.8 0 1 10.3
1.0 4.6 4.1 4.3 3.1 0 1 11.3 0.8 5.2 4.8 5.7 3.5 0 1 13.2

Region 1 is denoted by assigning (X6,X7) = (1, 0), region 2 by (X6,X7) = (0, 1),
and region 3 by (X6,X7) = (0, 0).
(a) Apply the stepwise regression method to fit the following model to these data:

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + β7X7 + ε

Use α = 0.15 to enter predictor variables and α = 0.15 to remove them.
(b) Use the PRESS or R2

pred criterion to find a suitable regression model.
2. Refer to Problem 1. Use Mallows’ Cp criterion to see if the model chosen is the

same model chosen in Problem 1.
3. Refer to Problem 1. When applying the stepwise method, always include the pre-

dictor variables X1, X2. Compute the Mallows’ Cp, PRESS, and R2
pred statistics.

Find a suitable regression model using Mallows’ Cp criterion and the PRESS or
R2

pred criterion. Compare the models chosen here and in Problems 1 and 2, and
comment.
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4. (a) Fit the following model to the data in Problem 1:

Y = β0 + β1X1 + β2X3 + β3X4 + β4X3X4 + β5X5 + β6X6 + β7X7 + ε

(b) Determine by using the PRESS or R2
pred criterion if this new model is a bet-

ter fit.
5. Refer to the data on the observed mole fraction solubility in Problem 19 of Review

Practice Problems.
(a) Fit the following model using the stepwise regression method

Y = β0 + β1X1 + β2X2 + β3X3 + β11X
2
1 + β22X

2
2 + β33X

2
3 + ε

(b) Compute Mallows’ Cp statistic and comment on its value.
6. Refer to Problem 7 of Section 16.3:

(a) Apply the stepwise regression method to fit the following model to the data in
Problem 7 of Section 16.3.

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + ε

Use α = 0.15 to enter predictor variables and α = 0.15 for possible removal.
(b) Use the PRESS or R2

pred criterion to evaluate the regression model.
7. (a) Fit the following model using the stepwise regression method to the data in

Problem 7 of Section 16.3:

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + β7X1X5

+ β8X5X6 + ε

(b) Determine using the PRESS or R2
pred criterion whether this new model yields

a better fit than the fit to the model of Problem 6 above.
8. Apply the stepwise regression method to fit the following model to the data in

Problem 7 of Section 16.3:

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + β7X
2
3 + β8X

2
4

+ β9X3X4 + ε

Use α = 0.15 to enter predictor variables and α = 0.15 to remove, and use the
PRESS or R2

pred criterion to evaluate the regression model.

16.8 LOGISTIC REGRESSION

Logistic regression is commonly used when the response variable (i.e., the dependent vari-
able) is a binary variable. For example, the response of interest may center on whether a
manufacturing company gets or does not get a contract, or a patient responds to a treat-
ment or does not respond, or a smoker develops lung cancer or does not develop lung cancer.
If a response is of the foregoing nature, then the response variable is a binary variable that
takes the values 1 and 0 according to whether it has or does not have a certain character-
istic. Here the response variable Y can be considered as a Bernoulli variable, and we let

P (Y = 1) = θ, P (Y = 0) = 1 − θ (16.8.1)
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so that
E(Y ) = θ (16.8.2)

A simple logistic regression model that is used frequently is defined by

θ = E(Y ) =
exp(β0 + β1X)

1 + exp(β0 + β1X)
(16.8.3)

where X is a predictor variable and Y is the response or dependent variable. In Chapter 15,
we learned that in the simple linear model, the expected value of the dependent variable
Y can take any value on the real line; however, in the logistic regression model, the
expected value of Y takes a value between 0 and 1. Hence, when Y is a binary (Bernoulli)
variable, it cannot be modeled with the usual simple linear regression model. Nevertheless,
the logistic regression model in (16.8.3) can be expressed in a simple form by using a
transformation called the logit transformation defined by

η = ln
(

θ

1 − θ

)
(16.8.4)

so that
η = β0 + β1X (16.8.5)

which is a linear function of the predictor variable X. The expression θ/(1 − θ) in (16.8.4)
is called the odds ratio. Note from (16.8.5) that the logit mean response η can take any
value on the real line as the predictor variable X takes values between −∞ and ∞.

Note further that if we have more than one predictor variables, then the logistic
regression model may be stated as

θ = E(Y ) =
exp(β0 + β1X1 + · · · + βkXk)

1 + exp(β0 + β1X1 + · · · + βkXk)
(16.8.6)

and by using the logit transformation defined in (16.8.4), we obtain

η = β0 + β1X1 + · · · + βkXk (16.8.7)

We saw above that the response variable Y is a Bernoulli variable. Hence, the joint prob-
ability function of observations Y1, Y2, . . . , Yn that are independent is given by

h(y1, . . . , yn) =
n∏

i=1

θy
i(1 − θ)1−y

i (16.8.8)

Taking the logarithm with base e of both sides, we obtain

ln h(y1, . . . , yn) =
n∑

i=1

yi ln
(

θ

1 − θ

)
+

n∑
i=1

ln(1 − θ) (16.8.9)

Now, using Equations (16.8.3) through (16.8.5), we can express Equation (16.8.9) as

ln h(y1, . . . , yn) =
n∑

i=1

yi(β0 + β1Xi) −
n∑

i=1

ln(1 + exp(β0 + β1Xi)), (16.8.10)

which is the log-likelihood function of the unknown parameters β0 and β1. Thus, the (MLE)
estimators b0 and b1 of β0 and β1, respectively, are obtained by maximizing the likelihood
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function in (16.8.10). Hence, we obtain, for a given value of X, the MLE θ̂ of θ as

θ̂ =
exp(b0 + b1X)

1 + exp(b0 + b1X)
= θ̂(X) (16.8.11)

and the MLE of η = ln[θ/(1 − θ)], for given X, as

η̂ = ln

(
θ̂

1 − θ̂

)
with θ̂ = θ̂(X) (16.8.12)

given in (16.8.11).
In logistic regression, however, we do not have the same restrictive assumptions as in

simple linear regression model for a number of reasons:

1. The relationship between the dependent and the predictor variables does not have
to be linear.

2. The normality assumption for the dependent variable is not necessary.
3. The dependent variable does not have to be homoscedastic; that is, the assumption

of homogeneity of variance does not need to hold.
4. The equations for determining b0 and b1 are obtained in the usual way, that is, by

differentiating the log likelihood (16.8.10) with respect to β0 and β1 and setting
the derivatives equal to zero, obtaining two equations whose solution is denoted
by (b0, b1). However, the equations are nonlinear in (b0, b1), so (b0, b1) cannot be
expressed in neat closed form. Indeed, the solutions require the use of iterative numer-
ical analysis, but fortunately, MINITAB and other statistical packages carry this out
automatically. See Example 16.8.1 below, where this is illustrated. Similar remarks
hold for the case (16.8.6).

5. In logistic regression, interest centers on the estimation of the log-odds that the
dependent variable Y takes the value 1, when the dependent variable corresponds to
the characteristic of interest. For example, if we are interested in whether an exposed
person gets a disease, we estimate the log-odds that a person who has been exposed
will get the disease.

Example 16.8.1 (Obstructive coronary artery disease-related data) Eighteen subjects
(eight women and 10 men) with a history of high cholesterol levels are tested for obstructive
coronary artery disease (OCAD). The results of the test, represented by a binary variable
Y (Y = 1 when a person has OCAD and Y = 0 when a person does not have OCAD) and
the predictor variables X1 (age), X2 (total cholesterol level), and X3 (categorical predictor
variable, 1 for women and 0 for men) are shown in Table 16.8.1. Analyze these data using
logistic regression.

Solution:
MINITAB

Enter the data in the MINITAB worksheet. Then from the Menu bar select Stat >
Regression > Binary Logistic Regression > Fit Binary Logistic Regression
Model. Under Response/frequency format response enter Y in the box next to
Response:, the continuous predictor variables in the box below Continuous predic-
tors:, and the categorical predictor variable in the box below Categorical predictors:.
From Graphs, Options, Results, and Storage select the desired entries and click OK. The
MINITAB printout is shown here.
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Table 16.8.1 Results of the OCAD test.

Y X1 X2 X3 Y X1 X2 X3

0 69 247 1 0 67 212 1
1 77 238 0 1 68 249 0
1 73 229 0 0 74 234 0
0 74 241 0 1 74 233 1
1 79 245 1 1 78 133 0
0 66 231 0 0 73 218 0
0 62 236 1 0 69 219 1
1 80 235 0 1 78 216 1
0 62 234 0 0 65 210 1

Binary Logistic Regression: Y versus X1, X2, X3

Method

Response Information

Deviance Table

Link function

Categorical predictor coding

Rows used

Variable

Source DF Adj Dev Adj Mean Chi-Square P-Value

Regression 3 10.7655 3.5885 10.77 0.013

Error 14 13.9651 0.9975

Total 17 24.7306

X1 1 10.2607 10.2607 10.26 0.001

X2 1 0.0289 0.0289 0.03 0.865

X3 1 0.0236 0.0236 0.02 0.878

Value Count

Y 1 8

0 10

Total 18

(Event)

Logit

(1, 0)

18

Odds Ratios for Continuous Predictors

Odds Ratios for Categorical Predictors

Regression Equation

Odds Ratio 95% CI

X1 1.5338 (1.0354, 2.2720)

X2 1.0048 (0.9525, 1.0599)

Level A Level B Odds Ratio 95% CI

X3
1

P(1)  =  exp(Yʹ )/(1 + exp(Yʹ ))

0   Yʹ   =  –32.34 + 0.4277 X1 + 0.004769 X2

1   Yʹ   =  –32.12 + 0.4277 X1 + 0.004769 X2

X3

0 1.2510 (0.0708, 22.1101)

Odds ratio for level A relative to level B

Model Summary

Coefficients

Deviance

R-Sq

Deviance

R-Sq(adj) AIC

21.9731.40%43.53%

Term Coef SE Coef VIF

Constant –32.3 17.4

X1 0.428 0.200 1.17

X2 0.0048 0.0272 1.09

1 0.22 1.47 1.09

X3

Goodness-of-Fit Tests

Fits and Diagnostics for Unusual Observations

Test DF Chi-Square P-Value

Deviance 14 13.97 0.452

Pearson 14 14.73 0.397

Hosmer-Lemeshow 8 8.49 0.387

Obs

11 1.000 0.112 2.092 2.35 R

14 1.000 0.839 0.592 1.57 X

Fit Resid
Observed

Probability

Std

Resid

R Large residual
X Unusual X
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Interpretation of the MINITAB Output From the logistic regression table we see
that X2 and X3 are not significant, but the overall model is good since the p-value is small
(0.013). Thus we use

η̂ = −32.3432 + 0.4277X1 + 0.0048X2 + 0.2239X3

That is,

η̂(X1,X2,X3) = −32.3432 + 0.4277X1 + 0.0048X2 + 0.2239X3
η̂(X1 + 1,X2,X3) = −32.3432 + 0.4277(X1 + 1) + 0.0048X2 + 0.2239X3

By taking the difference of the last two expressions, we obtain

η̂(X1 + 1,X2,X3) − η̂(X1,X2,X3) = 0.4277

From (16.8.4) we know that η̂ is the estimate of log-odds, at (X1,X2,X3), which
implies that

log(odds(X1 + 1,X2,X3)) − log(odds(X1,X2,X3))
= log((odds(X1 + 1,X2,X3))/(odds(X1,X2,X3))) = 0.4277

that is,
odds(X1 + 1,X2,X3)/odds(X1,X2,X3) = e0.4277 = 1.534

This can be interpreted as the estimated increase in probability of a person getting OCAD
with a one-year increase in age, is 53%. In general, we can interpret this as saying that the
estimated increase in probability of success with one unit increase in predictor variable X1
is (eβ̂

i − 1)100%.

USING R

To fit logistic regression models in R, we can use the ‘glm()’ function. To perform the
required analysis, we can run the following R-code.

Y = c(0,1,1,0,1,0,0,1,0,0,1,0,1,1,0,0,1,0)
X1 = c(69,77,73,74,79,66,62,80,62,67,68,74,74,78,73,69,78,65)
X2 = c(247,238,229,241,245,231,236,235,234,212,249,234,233,133,218,219,216,210)
X3 = c(1,0,0,0,1,0,1,0,0,1,0,0,1,0,0,1,1,1)
model = glm(Y ∼ X1 + X2 + X3, family = binomial)
anova(model, test =“Chisq”)
summary(model)

confint(model); # 95% CI for the coefficients
exp(coef(model)); # exponentiated coefficients
exp(confint(model)); # 95% CI for exponentiated coefficients
predict(model, type =“response”); # predicted probability of success
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PRACTICE PROBLEMS FOR SECTION 16.8

1. The following data give MCAT scores X of 10 applicants who apply for admission
to medical school. The result of each applicant is either accepted (Y = 1) or not
accepted (Y = 0). Fit a logistic regression model and interpret your results.

Applicant 1 2 3 4 5 6 7 8 9 10

X 28 32 29 33 27 31 30 34 32 29
Y 0 1 0 1 0 0 0 1 0 1

2. A travel agency conducted a study to investigate the relationship between
middle-class families’ household income in thousands of dollars X and traveling
at least 500 miles for vacation. Ten middle-class families were randomly selected
and their family income and status (Y = 1 implies traveled and Y = 0 implies not
traveled) of traveling at least 500 miles for their vacation were determined. The
data obtained are given below. Fit a logistic regression model and interpret your
results.

Family 1 2 3 4 5 6 7 8 9 10

X 83.0 82.3 72.8 78.0 82.3 71.8 87.3 82.3 86.1 70.0
Y 1 1 0 1 1 0 1 0 1 0

3. A manager of a manufacturing company conducted a study to investigate the
relationship between the years X of service of an engineer and his/her performance
(Y = 1 indicating satisfactory and Y = 0 not satisfactory). The following data give
the results for 15 randomly selected engineers who work for that company. Fit a
logistic regression model and interpret your results.

Engineer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

X 8 18 19 14 15 9 11 15 15 17 17 14 15 13 20
Y 1 0 1 0 1 0 1 0 1 1 1 0 0 0 1

16.9 CASE STUDIES

Case Study 1: (Seal strength in surgical sponges)1 A paper package for gauze surgical
sponges is created by feeding two rolls of paper into a machine to form the top and bottom
1 Source: Based on data provided by Dr. Mary McShane, Southern Polytechnic State University, GA.
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of the package. The top roll comes pretreated with adhesive applied in a chevron pattern.
The seal is created when a heated platen is applied to the package for a certain length of
time. Seal strength, measured in pounds per inch, is the primary response of interest.

An engineer wants to predict seal strength, given the machine settings of platen tem-
perature, application pressure, and dwell time. In addition other factors may affect the
strength of the seal. For example, she suspects that the relative humidity in the plant
affects the adhesion. Two vendors are used to supply the paper-packaging material, and
there may be a difference between their products. One hundred observations taken from
production records from the previous five months are shown below. The data for this case
study are available on the book website: www.wiley.com/college/gupta/statistics2e.

The data involves Platen temperature (◦F) X1, Application pressure (psi) X2, Dwell
time (s) X3, Relative humidity (%) X4, Vendor X5, and Seal strength (psi) Y.

(a) Fit a multiple linear regression model to the data.
(b) Test for significance of regression using the analysis of variance, with α = 0.05. What

conclusions can you draw?

Case Study 2: (Semiconductor study)2 An engineer at a semiconductor company wants
to model the relationship between the device gain or hFE (Y) and the three parameters
(independent variables): emitter-RS (X1), base-RS (X2), and emitter-to-base-RS (X3). The
data are shown below:

X1 emitter-RS X2 base-RS X3 B-E-RS Y hFE-1M-5 V

14.620 226.00 7.000 128.40
15.630 220.00 3.375 52.62
14.620 217.40 6.375 113.90
15.000 220.00 6.000 98.01
14.500 226.50 7.625 139.90

X1 emitter-RS X2 base-RS X3 B-E-RS Y hFE-1M-5 V

15.250 224.10 6.000 102.60
16.120 220.50 3.375 48.14
15.130 223.50 6.125 109.60
15.500 217.60 5.000 82.68
15.130 228.50 6.625 112.60
15.500 230.20 5.750 97.52
16.120 226.50 3.750 59.06
15.130 226.60 6.125 111.80
15.630 225.60 5.375 89.09
15.380 234.00 8.875 171.90
15.500 230.00 4.000 66.80
14.250 224.30 8.000 157.10
14.500 240.50 10.870 208.40
14.620 223.70 7.375 133.40

2 Source: Myers and Montgomery (1995), used with permission.
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(a) Fit a multiple linear regression model to the data.
(b) Predict the value of hFE to be taken at X 1 = 14.5, X 2 = 220, and X 3 = 5.0.
(c) Test for the significance of regression using analysis of variance with α = 0.05. What

conclusions can you draw?

Case Study 3: (Electric consumption by a chemical plant)3 The electric power Y con-
sumed each month by a chemical plant is thought to be related to the average ambient
temperature X1, the number of days in the month the plant was operating X2, the average
product purity X3, and the tons of product produced X4. The past year’s historical data
are available and are presented in the following table:

Y X1 X2 X3 X4

240 25 24 91 100
236 31 21 90 95
290 45 24 88 110
274 60 25 87 88
301 65 25 91 94
316 72 26 94 99
300 80 25 87 97
296 84 25 86 96
267 75 24 88 110
276 60 25 91 105
288 50 25 90 100
261 38 23 89 98

(a) Fit a multiple linear regression model to the data.
(b) Predict the power consumption for a month in which X1 = 75◦F, X2 = 24 days,

X3 = 90%, and X4 = 98 tons.

Case Study 4: (Pipeline data collection)4 The Alaska pipeline data consists of in-field
ultrasonic measurements of the depths of defects in the Alaska pipeline. The depth of the
defects were then remeasured in the laboratory. These measurements were performed in six
different batches. The data were analyzed to calibrate the bias of the field measurements
relative to the laboratory measurements. These data were provided by Harry Berger, at
the time a scientist in the Office of the Director of the Institute of Materials Research
(now the Materials Science and Engineering Laboratory) of NIST. These data were used
in a study conducted for the Materials Transportation Bureau of the US Department of
Transportation. The variables observed are field defect size, lab defect size, and batch.
The data for this case study are available on the book website: www.wiley.com/college/
gupta/statistics2e.

Do the complete analysis of the data above. In the analysis, use the field measurement
as the response variable, the laboratory measurement as the predictor variable, and batches
as the qualitative predictor variable.

3 Source: Myers and Montgomery (1995), used with permission.
4 Source: Based on data from NIST and SEMATECH (2003)).



748 16 Multiple Linear Regression Analysis

16.10 USING JMP

This section is available for download from the book website: www.wiley.com/college/
gupta/statistics2e.

Review Practice Problems

1. Consider the multiple linear regression model in four predictor variables, that is,

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + β4Xi4 + εi, i = 1, 2, . . . , 10

Use matrix notation to describe this model. Define the least-squares normal equations
for this model. Assuming that X is a full-rank matrix, find the least-squares estimators
for β.

2. In Problem 1, what are the dimensions of the HAT matrix H = X(X ′X)−1X ′?

3. In Problem 2, let H = X(X ′X)−1X ′ be the HAT matrix for the general regression
model

Yi = β0 + β1Xi1 + β2Xi2 + · · · + βkXik + εi, i = 1, 2, . . . , n

Show that the HAT matrix H is idempotent. If I is an identity matrix, then show
that (I − H) is also an idempotent matrix.

4. In Problem 4 of Section 16.3, find a 95% prediction interval for Y when X1 = 75,
X2 = 70, assuming that εi’s are normally distributed with mean zero and variance σ2.

5. Use the data in Problem 7 of Section 16.3 to
(a) Fit a multiple linear regression model using X1, X3, X4, and X6 as the predictor

variables;
(b) Estimate the variance σ2.

6. Find the inverse matrix (X ′X)−1 for the model in Problem 5.

7. Use the results of Problems 5(b) and 6, to find the variance and covariance matrix of
the estimators β̂3 and β̂4 in the model

E(Y ) = β0 + β1X1 + β3X3 + β4X4 + β6X6

8. Refer to Problem 5 above. Assuming normality of the Y’s,
(a) Use a t-statistic to test each of the hypotheses at the 5% level of significance:

H0 : βi = 0 versus H1 : βi �= 0, i = 1, 3, 4, 6

(b) Find a 95% confidence interval for each of the βi, i = 1, 3, 4, 6.

9. For the model in Problem 5, construct the ANOVA table and then use this ANOVA
table to determine the value of R2 and R2

adj .
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10. Repeat Problem 6 above for the model in Problem 7(a) of Section 16.3.

11. Refer to Problem 7 of Section 16.3. Assuming normality of the Y’s,
(a) Use the relevant t-statistic to test each of the hypotheses H0 : βi = 0 versus H1 :

βi �= 0, i = 2, 3, 4, 5. Use α = 0.05.
(b) Find a 95% confidence interval for each of the βi, i = 2, 3, 4, 5.

12. Refer to Problem 1 of Practice Problems for Sections 16.6 and 16.7.
(a) Fit the model Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + ε to the data of

this problem.
(b) Use the t-statistic to test each of the hypotheses H0 : βi = 0 versus H1 : βi �=

0, i = 1, 2, 3, 4, 5. Use α = 0.05.
(c) Find the p-value for each hypothesis in (b).

13. Refer to Problem 8 of Section 16.3. For the model in Problem 8, construct the ANOVA
table and then use this ANOVA table to determine the value of R2 and R2

adj .

14. Refer to Problem 7 of Section 16.3.
(a) Using MINITAB, find a best subset of predictor variables to fit the desired model.
(b) Fit a model to these data using the stepwise technique and compare the results

in (a) and (b) and see if your claim in (a) is valid.

15. Refer to Problem 7 of Section 16.3. Discuss whether or not one should use the
model developed in Problem 7 to find a 95% confidence interval for E(Y ) and/or
a 95% prediction interval for the pull strength Y at X1 = 8.0, X3 = 38, X4 = 80, and
X6 = 3.2. Justify your answer.

16. Referring to Problem 11 of Section 16.3, find a 95% confidence interval for E(Y ) and
a 95% prediction interval for Y when X1 = 0.25 and X2 = 125, assuming normality of
the Y’s.

17. A variable Y was observed at 12 different combinations of values of controlled variables
X1 and X2, with the results shown below. If the relation between Y and (X1, X2) may
be assumed to be linear in the region covered by the choice of the 12 pairs (X1, X2),
fit the regression model E(Y ) = β0 + β1X1 + β2X2 to these data.

X1 −2 −3 1 4 3 −2 −3 −1 −4 5 0 2
X2 0.5 −0.5 −0.5 1.5 −2.5 −4.5 2.5 −3.5 0.5 1.5 1.5 3.5
Y 15 11 17 18 23 11 17 13 14 32 21 24

18. Refer to Problem 17. Set up the ANOVA table for the model in this problem. Use this
ANOVA table to test the significance of the regression model E(Y ) = β0 + β1X1 +
β2X2 at the 5% level of significance. Calculate the value of R2 and R2

adj .

19. An article in the Journal of Pharmaceuticals Sciences (vol. 80, 1991, 971–977) presents
the following data on the observed mole fraction solubility of a solution at a constant
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temperature, when the process is ran at certain values of dispersion, dipolar, and
hydrogen bonding (Hansen partial solubility parameters):

Observations Y X 1 X 2 X 3 Observations Y X 1 X 2 X 3

1 0.22200 7.3 0.0 0.0 14 0.10100 7.3 2.5 6.8

2 0.39500 8.7 0.0 0.3 15 0.23200 8.5 2.0 6.6

3 0.42200 8.8 0.7 1.0 16 0.30600 9.5 2.5 5.0

4 0.43700 8.1 4.0 0.2 17 0.09230 7.4 2.8 7.8

5 0.42800 9.0 0.5 1.0 18 0.11600 7.8 2.8 7.7

6 0.46700 8.7 1.5 2.8 19 0.07640 7.7 3.0 8.0

7 0.44400 9.3 2.1 1.0 20 0.43900 10.3 1.7 4.2

8 0.37800 7.6 5.1 3.4 21 0.09440 7.8 3.3 8.5

9 0.49400 10.0 0.0 0.3 22 0.11700 7.1 3.9 6.6

10 0.45600 8.4 3.7 4.1 23 0.07260 7.7 4.3 9.5

11 0.45200 9.3 3.6 2.0 24 0.04120 7.4 6.0 10.9

12 0.11200 7.7 2.8 7.1 25 0.25100 7.3 2.0 5.2

13 0.43200 9.8 4.2 2.0 26 0.00002 7.6 7.8 20.7

Here Y is the negative logarithm of the mole fraction solubility, X1 is the dispersion
(Hansen partial solubility), X2 is the dipolar partial solubility, and X3 is the hydrogen
bonding partial solubility.
(a) Fit the complete second-order regression model

Y = β0 + β1X1 + β2X2 + β3X3 + β12X1X2 + β13X1X3 + β23X2X3 + β11X
2
1

+ β22X
2
2 + β33X

2
3 + ε

(b) Test for significance of regression, using α = 0.05.
(c) Plot the residuals and comment on model adequacy.
(d) Test the hypothesis that the contribution of the second-order terms is zero, using

α = 0.05.

20. Consider the data in Problem 19.
(a) Use the stepwise regression method to fit the model

Y = β0 + β1X1 + β2X2 + β3X3 + ε

(b) Compute the Mallows’ Cp, PRESS and R2
pred statistics.



Review Practice Problems 751

21. Refer to Problem 19. Fit the model

Y = β0 + β1X1 + β2X2 + β3X3 + β12X1X2 + β13X1X3 + β23X2X3 + ε

and compute the Mallows’ Cp, PRESS and R2
pred statistics. Compare these statistics

with those computed in Problem 20 (b).

22. Refer to Problem 20. Calculate the hat matrix H and check that it is idempotent.

23. Use the hat matrix H obtained in Problem 22 to compute the residual error vector ε
and the Cov(ε) matrix. (Hint: See Equations (16.4.17) and (16.4.18.)

24. Refer to the data in Table 16.4.3 of Example 16.4.2.
(a) Fit the second-order regression model

Y = β0 + β1X1 + β2X2 + β3X3 + β12X1X2 + β13X1X3 + β23X2X3 + ε

(b) Test for significance of regression model using the analysis of variance table with
α = 0.05. What are your conclusions?

25. Thirteen combinations of values of X1, the amount of tricalcium aluminate (in percent)
used in a mix of cement, and X2, the amount of tricalcium (in percent) used in the
mix, are used to study the effect on the heat involved, Y (in calories), during the
hardening of the mix. The observations yield the following results (data from Hald,
1952):

13∑
i=1

Yi = 1240.5,

13∑
i=1

Xi1 = 97,

13∑
i=1

Xi2 = 626

13∑
i=1

X2
i1 = 1139,

13∑
i=1

X2
i2 = 33,050,

13∑
i=1

Xi1Xi2 = 4922

13∑
i=1

Xi1Yi = 10,032,
13∑

i=1

Xi2Yi = 62, 027.8,
13∑

i=1

Y 2
i = 121,088

(a) Assuming the usual linear relationship, find the least-squares estimators of the
coefficients of the regression model Y = β0 + β1X1 + β2X2 + ε.

(b) Determine 95% confidence intervals for E(Y ) and Y when X1 = 7,X2 = 50.

26. In Problem 25, estimate the variance covariance matrix of β̂, the estimate of the
parameter vector β.

27. Heat treating is often used to carbonize metal parts, such as gears. The thickness of
the carburized layer is considered an important feature of the gear and contributes to
the overall reliability of the part. Because of the critical nature of this feature, two
different lab tests are performed on each furnace load. One test is run on a sample
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pin that accompanies each load. The other test is a destructive test where an actual
part is cross-sectioned. This test involves running a carbon analysis on the surface of
both the gear pitch (top of the gear tooth) and the gear root (between the gear teeth).
The following data are the results of the pitch carbon analysis test catch for 32 parts
(Source: Data from Myers and Montgomery (1995); used with permission.).

X1 X2 X3 X4 X5 Y X1 X2 X3 X4 X5 Y

1650 0.58 1.10 0.25 0.90 0.013 1650 2.20 1.10 1.10 0.80 0.024
1650 0.66 1.10 0.33 0.90 0.016 1650 2.20 1.10 1.10 0.80 0.025
1650 0.66 1.10 0.33 0.90 0.015 1650 2.20 1.15 1.10 0.80 0.024
1650 0.66 1.10 0.33 0.95 0.016 1650 2.20 1.10 1.10 0.90 0.025
1600 0.66 1.15 0.33 1.00 0.015 1650 2.20 1.10 1.10 0.90 0.027
1600 0.66 1.15 0.33 1.00 0.016 1650 2.20 1.10 1.50 0.90 0.026
1650 1.00 1.10 0.50 0.80 0.014 1650 3.00 1.15 1.50 0.80 0.029
1650 1.17 1.10 0.58 0.80 0.021 1650 3.00 1.10 1.50 0.70 0.030
1650 1.17 1.10 0.58 0.80 0.018 1650 3.00 1.10 1.50 0.75 0.028
1650 1.17 1.10 0.58 0.80 0.019 1650 3.00 1.15 1.66 0.85 0.032
1650 1.17 1.10 0.58 0.90 0.021 1650 3.33 1.10 1.50 0.80 0.033
1650 1.17 1.10 0.58 0.90 0.019 1700 4.00 1.10 1.50 0.70 0.039
1650 1.17 1.15 0.58 0.90 0.021 1650 4.00 1.10 1.50 0.70 0.040
1650 1.20 1.15 1.10 0.80 0.025 1650 4.00 1.15 1.50 0.85 0.035
1650 2.00 1.15 1.00 0.80 0.025 1700 12.50 1.00 1.50 0.70 0.056
1650 2.00 1.10 1.10 0.80 0.026 1700 18.50 1.00 1.50 0.70 0.068

Here the variables involved are Y: pitch; X1: furnace temperature; X2: duration of
the carburizing cycle; X3: carbon concentration; X4: duration of the diffuse cycle; X5:
carbon concentration of the diffuse cycle.
(a) Fit the linear regression model

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + ε

(b) Use an ANOVA table to test the significance of the regression model at the 5%
level of significance.

28. Refer to data on heat treatment in Problem 27. Consider the model

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + ε

(a) Find 95% confidence intervals for each of the regression coefficients.
(b) Find a 95% confidence interval on mean pitch Y when

X1 = 1675, X2 = 2.25, X3 = 1.12, X4 = 1.20, X5 = 0.85

(c) Find a 95% prediction interval on pitch Y when

X1 = 1675, X2 = 2.25, X3 = 1.12, X4 = 1.20, X5 = 0.85



Review Practice Problems 753

29. Refer to data on heat treatment in Problem 27.
(a) Fit the linear regression model

Y = β0 + β12X1X2 + β23X2X3 + ε

(b) Compute R2
pred and comment on its value.

30. Refer to Problem 29.
(a) Find 95% confidence intervals for each of the regression coefficients in the model

in Problem 29(a).
(b) Use a t-statistic to test the hypotheses H0 : β12 = 0 versus H1 : β12 �= 0.

31. Refer to the data in Review Problem 19.
(a) Fit to these data a complete second-order regression model using Stepwise regres-

sion method.
(b) Estimate the variance of Ŷ when X1 = 8.5,X2 = 1, and X3 = 6.
(c) Find the standard errors for each of the estimates of the regression coefficients in

the model in part (a).
(d) Find a 95% confidence interval for each of the regression coefficients.

32. Refer to Problem 29.
(a) Find a 95% confidence interval for the mean pitch Y when X1 = 1670, X2 = 2.20,

X3 = 1.15.
(b) Find a 95% prediction interval for pitch Y when X1 = 1670, X2 = 2.20, X3 = 1.15.

33. Fifteen women are screened for breast cancer. The response variable is a binary vari-
able Y (Y = 1 if a woman has breast cancer and Y = 0 if the woman does not have
breast cancer) and the predictor variables X1 (age), X2 (age at first pregnancy), and
X3, a categorical predictor variable (1 if the woman has a family history of breast can-
cer and 0 if she does not have any family history). Results are given below. Using one
of the statistical packages, fit a logistic regression model to these data and interpret
your results:

Y X1 X2 X3

0 71 37 0
1 56 45 1
0 54 39 0
0 53 41 1
1 58 41 0
1 66 41 1
0 80 38 0
0 59 44 1
1 72 43 1
0 59 39 0
0 59 42 1
1 56 43 0
0 56 35 1
0 58 35 0
1 71 45 0



754 16 Multiple Linear Regression Analysis

34. A study was performed to investigate the relationship between family income and
ownership of a luxury car. Sixteen households were randomly selected and their family
income X1 (in units of 1000 dollars) and information about luxury car ownership
(Y = 1 if family owns at least one luxury car; otherwise, Y = 0 were recorded). The
data are shown below:

Y X1 Y X1

1 227 1 225
1 166 0 164
0 108 0 133
0 139 1 156
1 233 1 229
0 129 0 117
0 103 0 118
0 213 1 165

(a) Fit a logistic regression model to these data.
(b) Is the model you fitted in part (a) significant?
(c) Interpret the regression coefficient β1 in terms of log odds ratio.
(d) Determine the estimated probability that a person with family income of $177,000

owns a luxury car.

35. An engineering society believes that the important factors that companies take into
consideration in new hiring for senior positions are number of years of experience, X1,
and the number of publications/patents, X2. The society selected 15 candidates who
were interviewed recently and found to be or not to be hired. The data collected are
given below, with Y the response variable (Y = 1 if the candidate was hired and 0
otherwise):

Y 1 1 0 1 0 0 1 1 1 0 0 1 1 1 0

X1 12 15 9 9 10 7 16 15 8 6 10 16 14 20 12
X2 39 38 26 20 30 22 10 37 38 16 22 36 28 34 35

(a) Fit a logistic regression model η = log(odds) = β0 + β1X1 + β2X2 to these data.
(b) Test each of the hypotheses H0 : βi = 0 versus H1 : βi �= 0, i = 1, 2, at the

5% level of significance.

36. Refer to Problem 35.
(a) Determine the estimated probability that a person with 15 years’ experience who

has 30 papers/patents will be hired.
(b) Find a 95% confidence interval for each of the βi, i = 1, 2.
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37. A medical research team initiated a study to investigate the relationship between the
stress level (Y) among university students and four other variables measured at the
time of the study, namely X1 age of the student, X2 number of credit hours the student
is taking, X3 number of extracurricular activities the student is participating in, and
a qualitative variable, X4 gender. Note that gender is coded so that X4 = 0 if the
student is a male and 1 if the student is a female. The following data were collected
on a simple random sample of 15 university students:

Y 133 55 95 38 128 124 68 106 131 41 80 94 116 67 41

X1 22 25 21 19 28 22 20 23 21 30 31 27 23 21 22
X2 16 12 12 15 16 16 14 14 16 12 14 14 16 12 12
X3 3 2 0 2 4 3 1 3 2 0 1 2 2 1 1
X4 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0

(a) Fit a regression model E(Y |X) = β0 + β1X1 + β2X2 + β3X3 + β4X4.
(b) Test, using the ANOVA table, the significance of regression at the 5% level of

significance.
(c) Find a 95% confidence interval for mean stress level Y, and 95% prediction interval

for stress level Y at X0 = (x1, x2, x3, x4) = (24, 14, 3, 1).

38. Refer to Problem 37. Consider the linear model using predictor variables X1,X2, and
X4. That is,

Y = β0 + β1X1 + β2X2 + β4X4 + ε

(a) Fit the above regression model to the data in Problem 37.
(b) Construct an ANOVA table, and use it to test the hypothesis H0 : β1 = β2 =

β4 = 0. Use α = 0.05.
(c) Find a 95% confidence interval for each of the regression coefficients in the model

for this problem.

39. Refer to Problem 38.
(a) Find a 95% confidence interval for E(Y |X0) at X0 = (24, 14, 1).
(b) Find a 95% prediction interval for Y at X0 = (24, 14, 1). Compare your result with

the one you obtained in (a), and comment on these intervals.

40. Refer to data on stress level in Problem 37.
(a) Fit the linear regression model

Y = β0 + β1X1 + β3X3 + β4X4 + ε

(b) Compute R2
pred for the models in Problems 37, 38, and (a) of this question and

decide, based on the value of R2
pred, which model fits the best.
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41. Refer to Example 16.4.2. Re-analyze the data in Table 16.4.3 by using the stepwise
regression technique. Use α = 0.15, for the value of alpha (α) to enter a predictor
variable. Compare the fitted model with the model in Example 16.4.2 and comment.

42. In Problem 41, it was found that the predictor variable X3 is not important. Hence,
reanalyze the data obtained by deleting the column corresponding to predictor variable
X3 from Table 16.4.3. Develop the ANOVA table for the new model and use an
appropriate F-test to evaluate whether or not the fitted model is appropriate. Use
α = 0.01. Do you get the same model as in Problem 41?



Chapter 17

ANALYSIS OF VARIANCE

The focus of this chapter is the development of various experimental
designs involving one or more factors having fixed effects, random
effects, or mixed effects.

Topics Covered

• Design model and estimable functions
• One-way experimental layouts
• Multiple comparisons
• Determination of sample size
• Kruskal–Wallis test for one-way layouts (nonparametric method)
• Randomized complete block (RCB) design
• Friedman Fr-test for RCB designs
• Experiments with one missing observation in an experiment that used a RCB

design
• Experiments with several missing observations in an experiment that used a RCB

design
• Two-way experimental designs
• Two-way experimental layouts with one observation per cell
• Two-way experimental layouts with r (>1) observations per cell
• Blocking in two-way experimental designs
• Extending two-way experimental designs to n-way experimental designs
• Latin square designs
• Random effects model
• Mixed effects model
• Nested (hierarchical) design

Statistics and Probability with Applications for Engineers and Scientists using MINITAB, R and JMP,
Second Edition. Bhisham C. Gupta, Irwin Guttman, and Kalanka P. Jayalath.
c© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
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Learning Outcomes

After studying this chapter, the reader will be able to

• Design and conduct various kinds of experiments in engineering, or other scientific fields,
that involve one or more factors.

• Eliminate effects of one or more nuisance factors using appropriate experimental designs.
• Analyze data coming out of experiments with fixed, random, or mixed effects.
• Perform residual analysis to check the adequacy of the models under consideration.
• Use nonparametric techniques in certain kinds of designs when normality conditions are

not valid.
• Summarize and interpret the results of these experiments.
• Estimate missing observations in certain kinds of designs, and to subsequently analyze

the data as balanced data.
• Use statistical packages MINITAB, R, and JMP to analyze the data obtained by con-

ducting these experiments.

17.1 INTRODUCTION

In many experiments, the main objective is to determine the effects of various factors
on some response variable Y of basic or primary interest. For instance, in the study of
abrasion resistance of a certain type of rubber, it may be important to determine the
effect of chlorinating agents on such resistance. Or in the study of the strength of synthetic
yarn, it may be important to determine the effects of viscosity of the molten form, rate of
extrusion, and other factors on the strength Y of the yarn. In experiments such as these,
it is important to design them carefully in terms of numbers of trials as well as choices of
levels of the various factors involved.

Designed experiments, analyzed in accordance with certain principles discussed in
this chapter, often make it possible to arrive at clearer and more trustworthy inferences
about effects of the various factors. The principles of experimental design and methods of
statistical analysis of experimental results considered in this chapter are commonly referred
to as analysis of variance methods. This is a vast subject, and here we discuss only several
of the commonly used experimental designs and their statistical analyses. The reader
interested in pursuing this subject further should consult (Bennett and Franklin, 1954;
Box et al., 1978; Cochran and Cox, 1957; Daniel, 1976; Dean and Voss, 1999; Hinkelmann
and Kempthorne, 2005; Montgomery, 2009a,b), among the many other books devoted to
the subject.

17.2 THE DESIGN MODELS

17.2.1 Estimable Parameters
Consider the following general linear model:

yi = μ + xi1β1 + xi2β2 + · · · + ximβm + εi, i = 1, 2, . . . , n (17.2.1)
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As we saw in Chapter 16, the model (17.2.1) in matrix notation can be written as

Y = Xβ + ε (17.2.2)

with

Y =

⎡
⎢⎣

y1
...

yn

⎤
⎥⎦ , X =

⎡
⎢⎢⎢⎣

1 x11 · · · x1m

1 x21 · · · x2m
...

...
...

1 xn1 · · · xnm

⎤
⎥⎥⎥⎦ , β =

⎡
⎢⎢⎢⎣

μ
β1
...

βm

⎤
⎥⎥⎥⎦ , ε =

⎡
⎢⎣

ε1
...

εn

⎤
⎥⎦

where β is a vector of unknown parameters to be estimated and ε is a vector of random
errors with all ε′is uncorrelated and having mean zero and common variance σ2. The
[n × (k + 1)] matrix X contains, in the case of a regression model, preassigned values of
the independent variables, and Y is a vector of observations on the dependent variable,
sometimes called the vector of responses. In this section, we consider a special case of
(17.2.1), where the matrix X, determined by the structure of the experimental design,
consists of zeros and ones (see Example 17.2.1).

Example 17.2.1 (Fertilizers versus yield Y of a certain variety of wheat) Suppose that
we want to study the effect of two different fertilizers applied at a fixed level on the yield
Y of a certain variety of wheat. This experiment is conducted by growing the given variety
of wheat in a number of plots and applying fertilizer I in some plots selected randomly
and fertilizer II in the remaining plots. (These plots are assumed to be homogeneous with
respect to all other characteristic variations and all other known factors.) The response in
this experiment is the yield of wheat from each plot.

For the experiment above, we consider the following design model:

Yij = μ + βj + εij , i = 1, 2, . . . , nj , j = 1, 2 (17.2.3)

where Yij is the observed yield of wheat in the ith plot when the jth fertilizer is used.
Here, βj is the effect due to using the jth fertilizer and εij is the random error due to all
uncontrolled and unknown factors. Now, if we suppose that each of the two fertilizers is
applied only to two plots, then the model (17.2.3) can be more explicitly written as

yij = μ + βj + εij , i = 1, 2; j = 1, 2 (17.2.4)

which, in matrix notation, can be rewritten as

Y = Xβ + ε (17.2.5)

where

Y =

⎡
⎢⎢⎣

y11
y21
y12
y22

⎤
⎥⎥⎦ , X =

⎡
⎢⎢⎣

1 1 0
1 1 0
1 0 1
1 0 1

⎤
⎥⎥⎦ , β =

⎡
⎣ μ

β1
β2

⎤
⎦ , ε =

⎡
⎢⎢⎣

ε11
ε21
ε12
ε22

⎤
⎥⎥⎦

Here, the vector Y is the vector of observations or responses (yields) when the two
fertilizers are used, β is the vector of unknown parameters, ε is the error vector, and
X is the design matrix. We may note here that the design matrix X is a 4 × 3 matrix
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with 0s and 1s and is of rank 2, since the sum of the last two columns is equal to the
first column. We are interested in estimating β by using one of the standard techniques,
namely the method of least squares. As discussed in Chapter 16, this method calls for the
minimization of the error sum of squares ε′ε = (Y − Xβ)′(Y − Xβ). This leads us to the
following least-squares normal equations:

X ′Xβ̂ = X ′Y (17.2.6)

where β̂ denotes the least-squares estimator of β.
As mentioned earlier, X is not of full rank, which means that the (3×3) matrix X ′X

is not of full rank, so that (X ′X)−1 does not exist, and hence, the solution of (17.2.6) is
not unique. However, by using a generalized inverse G of X ′X, we can find a solution for
β. We do not include any discussion of the generalized inverse of a matrix because it is
beyond the scope of this book, but proceed as follows.

When the design matrix is not of full rank, it is not possible to determine unique
estimates of all parameters separately unless we impose some side conditions on the model
(to be studied later). However, we can estimate certain linear combinations of parameters.
For instance, in the example above, we can find unique estimates of E(Yi1) = μ + β1 and
E(Yi2) = μ + β2. This is achieved by using the technique of reparameterization, which
transforms a design matrix of less than full rank to the design matrix of full rank. Then we
can use the theory of general linear models for the full rank case, as we did in Chapter 16.
For example, in (17.2.4) we consider μ + βj = μj , j = 1, 2, so we can rewrite (17.2.4) as

yij = μj + εij , i = 1, 2, j = 1, 2 (17.2.7)

In model (17.2.7), the vector γ of parameters and the design matrix X are

γ =
[

μ1
μ2

]
, X =

⎡
⎢⎢⎣

1 0
1 0
0 1
0 1

⎤
⎥⎥⎦

The design matrix X is now of full rank, which means that we can find a unique solu-
tion of the system X ′Xγ̂ = X ′Y . In other words, we can determine the unique estimates
of μ1 and μ2.
Suppose that, the observation vector is

Y =

⎡
⎢⎢⎣

14
10
12
16

⎤
⎥⎥⎦

Then (the reader should verify) we can easily see that μ̂1 = 12, and μ̂2 = 14.

17.2.2 Estimable Functions
The discussion on estimable functions is not included in this book, but is available for down-
load from the book website: www.wiley.com/college/gupta/statistics2e. After consulting
this website, the reader should attempt the following practice problems.
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PRACTICE PROBLEMS FOR SECTION 17.2

1. Consider the design model Y = Xβ + ε, where X is of the order n × m (m ≤ n)
and rank (X) = r < m. Show that Xβ is a set of estimable functions.

2. Refer to Problem 1. Show that the set Xβ contains r linearly independent estimable
functions.

3. Suppose that an agronomist wants to study the effect of two fertilizers (each applied
using a fixed amount) on the yield of a certain variety of corn. He makes two
observations using each fertilizer, and writes the model for this experiment as

Yij = μ + βj + εij , i = 1, 2, j = 1, 2

Show that c1β1 + c2β2, where c1 + c2 = 0, is a linearly estimable function.
4. Refer to Problem 3 above. Show that β1 + β2 is not an estimable function.
5. Refer to Problem 3 above. Is it possible to find in this problem four linearly inde-

pendent estimable functions?
6. Consider the model Yij = μ + αi + βj + εij , i = 1, 2, 3, j = 1, 2, where ε ∼ N(0,

σ2I), ε = (ε11 ε21 ε31 ε12 ε22 ε32 )′. Suppose the model above is written in matrix
notation, Y = Xβ + ε.
(a) Find the rank of the matrix X.
(b) Find two linearly independent estimable functions.

17.3 ONE-WAY EXPERIMENTAL LAYOUTS

17.3.1 The Model and Its Analysis
In Sections 9.6 and 9.7, we discussed the problem of testing hypotheses about the difference
of two normal populations on the basis of samples from both these populations. We saw
that if the two population variances are unknown but could be assumed equal, the statistic
used for making the test is a Student t-statistic that involves the two sample averages and
the two sample variances.

Now suppose that we have an experiment involving samples from three or more popu-
lations. The question of how to test a hypothesis concerning the means of these populations
from which the samples are assumed to have been drawn is considered in this section.

As we noted in Section 17.2.1, each experiment gives rise to some technical terms such
as response, factors, and levels. For example, suppose that we are interested in comparing
the yields per plot of different varieties of corn. Then, the yield per plot is the response,
the variety of corn is the factor, and different varieties of corn are the levels of this factor.
Here, plots are the experimental units.

Now suppose that A1, A2, . . . , Aa are different levels of a factor A, and we want to
study the effects of A1, A2, . . . , Aa on some response variable Y of primary interest. We
set up an experiment in which n1 observations are made on Y when level A1 is present, n2
observations are made on Y when level A2 is present, and so on. The levels of A are often
referred to as the “treatments,” there being a treatments in this experimental design. Such
designs are also called completely randomized designs when the treatments are allocated
to the experimental units in a completely random fashion. Further, the experimental units
are assumed to be homogeneous with respect to all known factors.

Alternatively, we could consider the following simple model for such an experiment.
Suppose that (y11, y21, . . . , yn11) is a random sample of size n1 from a population having the
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normal distribution N(μ + δ1, σ
2), (y12, y22, . . . , yn22) is a random sample of size n2 from

a population having the normal distribution N(μ + δ2, σ
2), . . . , (y1a, y2a, . . . , ynaa) is a

random sample of size na from a population having the normal distribution N(μ + δa, σ2).
Here, we carry out the experiment in a manner that the samples are all independent and
(μ, δ1, . . . , δa, σ2) are unknown parameters with δ1, . . . , δa satisfying the condition

n1δ1 + n2δ2 + · · · + naδa = 0 (17.3.1)

The parameters δ1, δ2, . . . , δa are referred to as the effects of treatments A1, A2, . . . , Aa,
respectively.

The parameter μ is sometimes called the overall (population) mean, and σ2 is the
common variance of Yij , i = 1, . . . , nj , j = 1, . . . , a. The samples may be arranged as shown
in Table 17.3.1, and we now write the model as

Yij = μ + δj + εij , i = 1, . . . , nj , j = 1, . . . , a (17.3.2)

where
a∑

j=1

njδj = 0 (17.3.3)

Table 17.3.1 One-way experiment layout factor A-levels.

Levels A1 A2 · · · Aj · · · Aa

y11 y12 · · · y1j · · · y1a

y21 y22 · · · y2j · · · y2a
...

...
...

...
...

...
yn11 yn22 · · · ynjj · · · ynaa

Total
∑n1

i=1 yi1 = T1
∑n2

i=1 yi2 = T2 · · ·
∑nj

i=1 yij = Tj · · ·
∑na

i=1 yia = Ta G =
∑a

j=1 Tj

The restriction or side-condition on the δj in (17.3.3) enters quite naturally and ensures
that the parameters (μ, δ1, . . . , δa) are uniquely defined (see Section 17.2). In the model
(17.3.2), it is not necessary that the sample sizes be equal, but in practice, we always
prefer that all the sample sizes be equal. If all sample sizes are equal, then data are called
balanced; otherwise, the data are called unbalanced. The data obtained from a one-way
experiment are recorded as shown in Table 17.3.1.

In model (17.3.2), Yij are observable random variables and εij are unobservable ran-
dom variables that are assumed to be independently and identically distributed as N(0, σ2).
Hence, Yij is normally distributed with mean μ + δj and variance σ2. Indeed (17.3.2)
implies that Yij , apart from the normally distributed random error εij , is made up of
an overall constant (mean) μ plus the effect δj of the treatment Aj used to generate
Yij , i = 1, . . . , nj

Now let y·j be the average of the jth sample and y·· be the average of all the samples
pooled together. That is,

y·j =
1
nj

nj∑
i=1

yij =
Tj

nj

(17.3.4)
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y·· = N−1
∑∑

yij =
G

N
, G =

∑∑
yij (17.3.5)

where
∑∑

stands for
∑a

j=1
∑nj

i=1, with the total sample size N given by

N =
a∑

j=1

nj (17.3.6)

The reader can easily verify that the least square estimates of the overall mean μ and
the treatment effects δj (j = 1, 2, . . . , a) are given by

μ̂ = y·· (17.3.7)

δ̂j = y·j − y·· (17.3.8)

Under the normality assumption, these estimates are also maximum likelihood esti-
mates. With or without the normality assumption, from (17.3.2) and (17.3.3), it can be
seen that E(δ̂j) = δj .

Further, it can be seen that the total variation SStotal of all observations in the pooled
sample can be written in two ways. First,

SStotal =
∑∑

(yij − y··)
2 =
∑∑

y2
ij − Ny2

·· =
∑∑

y2
ij −

G2

N
(17.3.9)

Indeed, SStotal is often called the corrected sum of squares, with the implication that
we have subtracted the correction term or correction factor Ny2

·· from the sum of squares
of all the observations.

However, we also can write SStotal as follows:

SStotal =
∑∑

(yij − y··)
2 =
∑∑

[(yij − y·j) + (y·j − y··)]
2

=
∑∑

(yij − y·j)
2 +
∑∑

(y·j − y··)
2 (17.3.10)

since the sum of the cross products vanishes, that is,

∑∑
(yij − y·j)(y·j − y··) = 0 (17.3.11)

In the second line of (17.3.10), we define

SSE =
∑∑

(yij − y·j)
2 (17.3.12)

SSA =
∑∑

(y·j − y··)
2 =

a∑
j=1

nj(y·j − y··)
2 (17.3.13)

Thus we have
SStotal = SSE + SSA (17.3.14)

which means that we have broken down the total variation SStotal into two parts: SSA,
which reflects the variation between samples, or the variation due to the various levels of
A, and is usually referred to as the between samples sum of squares (or simply between sum
of squares or treatment sum of squares), and SSE , which reflects variation within samples
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and is usually called the within-samples sum of squares (or simply within sum of squares
or error sum of squares).

To look at the breakdown differently, we remind ourselves that we consider the Yij to
be generated according to the model (17.3.2). This means that

y·j = μ + δj + ε·j (17.3.15)

y·· = μ + ε·· (17.3.16)

Using (17.3.15) and (17.3.16), we can write SSA and SSE as

SSE =
∑∑

(εij − ε·j)
2 (17.3.17)

SSA =
a∑

j=1

nj(δj + ε·j − ε··)
2 (17.3.18)

Note that SSE depends only on the random variables εij , which are N(0, σ2) variables,
and SSA depends on the parameters δ1, . . . , δa as well as on the εij . The reader may in
fact verify that

E(SSE) = σ2
a∑

j=1

(nj − 1) = σ2(N − a) (17.3.19)

and

E(SSA) = σ2(a − 1) +
a∑

j=1

njδ
2
j (17.3.20)

Note that the expectation of SSE does not depend on δ1, . . . , δa.
Now, if δj = 0, j = 1, . . . , a, then, since the εijs are normally distributed, the two

quantities
SSE

σ2 ,
SSA

σ2 (17.3.21)

are independent random variables having chi-square distribution with N − a and a − 1
degrees of freedom, respectively. It follows from Definition 17.3.4 that the ratio

SSA/(a − 1)σ2

SSE/(N − a)σ2 =
SSA/(a − 1)
SSE/(N − a)

=
MSA

MSE

(17.3.22)

is distributed as Snedecor’s F-distribution (noncentral) with (a − 1, N − a) degrees of
freedom, and noncentral parameter

∑a
j=1 njδ

2
j/(a − 1).

To test the null hypothesis of zero effects due to treatments A1, . . . , Aa of the A factor,
that is,

H0 : δ1 = · · · = δa = 0 versus H1 : δ1, . . . , δa are not all 0 (17.3.23)

then this test may be performed by using the ratio in (17.3.22), which under H0 is dis-
tributed as the central Fa−1,N−a random variable. More precisely, we reject H0 at the α
level of significance if the observed value of (17.3.22) is such that

MSA

MSE

> Fa−1,N−a; α (17.3.24)
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Otherwise, we do not reject H0.
If we reject H0, which means that we reject the hypothesis that the effects δ1, . . . , δa

due to A1, . . . , Aa are all zero, we estimate the effects δ1, . . . , δa from (17.3.7) and (17.3.8)
we have

μ̂ = y··, δ̂j = y·j − y··, i = 1, 2, . . . , a, (17.3.25)

and μ̂ = y·· and δ̂j = y·j − y·· are unbiased estimators for μ and δj , respectively. Further-
more, note that

n1δ̂1 + · · · + naδ̂a = 0

Of course, whether or not H0 of (17.3.23) is true, from (17.3.19) we see that S2 =
SSE/(N − a) = MSE is an unbiased estimator for σ2. We could collect all of the con-
stituents of our analysis shown so far into what is called an analysis of variance table, or
simply the ANOVA table, as given below in Table 17.3.2. Note that under H0, E(MSA) =
σ2. This means that if H0 is true, we can expect a “low value” of MSA/MSE , that is, a
value around 1, which further justifies the procedure outlined in (17.3.24).

Table 17.3.2 ANOVA table for a one-way experimental layout.

Source of
variation

Sum of
squares

Degrees of
freedom Mean square

Expected mean
square

F -ratio
test

Between samples SSA a − 1 MSA =
SSA

a − 1
σ2 +

1
a − 1

a∑
j=1

njδ
2
j

MSA

MSE

Within samples SSE N − a MSE =
SSE

N − a
σ2

Total SStotal N − 1

Estimators for δ1, . . . , δa if H0 is rejected are as given by (17.3.25), that is,

δ̂j = y·j − y··, j = 1, 2, . . . , a

Estimator for σ2 is
S2 =

SSE

N − a
= MSE

Estimator for μ is
μ̂ = y··

A convenient computational scheme for finding the relevant sums of squares in
Table 17.3.2 proceeds as follows: Denote by Tj and SSj the total and sum of squares,
respectively, of the observations on the jth treatment, that is,

Tj =
nj∑
i=1

yij and SSj =
nj∑
i=1

y2
ij (17.3.26)

Using the notation of Table (17.3.1), denote the grand total by

G =
a∑

j=1

Tj
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Then write the sum of squares entries in Table 17.3.2 as

SSA =
a∑

j=1

T 2
j

nj

− G2

N
, SSE = SStotal − SSA, SStotal =

a∑
j=1

SSj −
G2

N
(17.3.27)

where Tj and SSj are defined in (17.3.26).

Example 17.3.1 (Thermometers) Four thermometers labeled 1, 2, 3, and 4 were used to
make determinations Y of the melting point of hydroquinine in degrees centigrade, with
the results as shown in Table 17.3.3. The experiment was carried out in random order.

We want to test at the 5% level of significance the hypothesis that there is no significant
variation in the means of the melting points as determined by the four thermometers. (The
factor in this experiment is “thermometer,” the levels are the four different thermometers,
and their effects are δ1, δ2, δ3,, and δ4, respectively.)

Note that if we code the observations by merely subtracting a constant from each
observation, then the sums of squares of deviations are not affected. Hence, we analyze
values of the variable Y − 170. This gives the values of y − 170 and (y − 170)2, respectively,
as shown in Tables 17.3.4 and 17.3.5.
Now, by using (17.3.27), we find that

SStotal = (4.0)2 + (3.0)2 + · · · + (1.0)2 − (28.5)2

11
= 84.75 − 73.8409 = 10.9091

SSA =
∑4

j=1

T 2
j

nj

− G2

N

=
(13.5)2

4
+

(5)2

2
+

(5.5)2

3
+

(4.5)2

2
− (28.5)2

11
= 78.2708 − 73.8409 = 4.4299

and
SSE = SStotal − SSA = 10.9091 − 4.4299 = 6.4792

The analysis of variance table for the data of Table 17.3.3, appears in Table 17.3.6.
The upper 5% point of F3,7 is F3,7;0.05 = 4.347. The observed value of the F -statistic
is 1.595, which is smaller than 4.347, so we do not reject the null hypothesis and
conclude that there are no significant differences (at the 5% level) between the
thermometers.

Table 17.3.3 Melting point of hydroquinine.

1 2 3 4

174.0 173.0 171.5 173.5
173.0 172.0 171.0 171.0
173.5 173.0
173.0
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Table 17.3.4 Coded data for Example 17.3.1 (yij − 170).

1 2 3 4

4.0 3.0 1.5 3.5
3.0 2.0 1.0 1.0
3.5 3.0
3.0

Total 13.5 5.0 5.5 4.5 28.5

Table 17.3.5 (yij − 170)2 squared coded observations.

1 2 3 4

16.00 9.00 2.25 12.25
9.00 4.00 1.00 1.00

12.25 9.00
9.00

Total 46.25 13.00 12.25 13.25 84.75

Table 17.3.6 ANOVA table for the data in Table 17.3.3.

Source of variation Sum of squares
Degrees of
freedom Mean square F -test

Between thermometers 4.4299 a − 1 = 3 1.4766
1.4766
0.9256

= 1.595

Within samples 6.4792 N − a = 7 0.9256

Total SStotal = 10.9091 N − 1 = 10

17.3.2 Confidence Intervals for Treatment Means
From the model (17.3.2), we see that the expectation of the jth treatment mean is given
by

μj = μ + δj , j = 1, 2, . . . , a (17.3.28)

From Equations (17.3.7) and (17.3.8), it follows that a point estimator of μj is given
by

μ̂j = μ̂ + δ̂j = y·· + y·j − y·· = y·j (17.3.29)

Assuming that εij are normally distributed, it can be easily shown that the y·j ’s are
independently and normally distributed as N(μj , σ2/nj). For balanced data (n1 = · · · =
na = n), this distribution becomes N(μj , σ2/n). Since σ2 is usually unknown, we use
MSE as an estimator of σ2 and the Student t-distribution to show that a 100 (1 − α)%
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confidence interval for μj is given by

(
y·j ± tN−a; α/2

√
MSE

nj

)
(17.3.30)

For the balanced data, a 100 (1 − α)% confidence interval is given by (N = na, nj = n)

(
y·j ± tN−a; α/2

√
MSE

n

)
(17.3.31)

A 100(1 − α)% confidence interval for the difference of two treatment means μi − μj is
given by (

(y·i − y·j) ± tN−a; α/2

√
MSE

(
1
ni

+
1
nj

))
(17.3.32)

and for the balanced data, a 100 (1 − α)% confidence interval is given by
(

(y·i − y·j) ± tN−a; α/2

√
MSE

(
2
n

))
(17.3.33)

Example 17.3.2 (Example 17.3.1, revisited) Refer to the thermometers data in Example
17.3.1. Find point estimates for the treatment effects and find a 95% confidence interval
for mean of treatment 1. Find a 95% confidence interval for the difference of treatment 1
and treatment 4.

Solution: We first remind the reader that the coded data in Table 17.3.4 was found by
subtracting 170 from each of the observations in Table 17.3.3. Hence to find, for example,
y·1, we use Table 17.3.4 with the coding to arrive at y·1 = 13.5/4 + 170 = 3.375 + 170 =
173.375, and so on.

Now from Equation (17.3.25), we obtain

δ̂1 = y·1 − y·· = 173.375 − 172.59 = 0.785
δ̂2 = y·2 − y·· = 172.50 − 172.59 = −0.09
δ̂3 = y·3 − y·· = 171.833 − 172.59 = −0.757
δ̂4 = y·4 − y·· = 172.25 − 172.59 = −0.34

Using (17.3.30), a 95% confidence interval for μ1, the mean of treatment 1 based on
n1 observations, is given by (t7; 0.025 = 2.365)

173.375 ± 2.365
√

0.9256/4 = 173.375 ± 1.138

Thus, a 95% confidence interval for the mean of treatment 1 is

(172.237, 174.513)
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Now, using the result in (17.3.32), we obtain a 95% confidence interval for the difference
of treatment 1 and treatment 4 as

(173.375 − 172.25) ± 2.365

√
0.9256

(
1
4

+
1
2

)
= 1.125 ± 1.97 = (−0.845, 3.095)

We can also analyze data of a one-way layout experiment using MINITAB, R, or JMP.

Example 17.3.3 (Onion rings) Five different types of oil (olive, soybean, corn, peanut,
and sunflower) are often used for frying onion rings. It is not known whether the amount
of oil absorbed by the onion rings depends on the type of oil. For five types of oil, certain
batches of equal size (6) of onion rings are prepared. The experiment was carried out in
random order. The data in Table 17.3.7 show the amount of oil (in grams) absorbed per
batch. We want to test a hypothesis at the 5% level of significance that the absorption of
oil in frying onion rings is same for all five types of oil.

MINITAB

The experimental design model we use for this experiment is

Yij = μ + δj + εij , i = 1, 2, . . . , 6, j = 1, 2, . . . , 5

To analyze the data in Table 17.3.7, using MINITAB, we proceed as follows:

1. Enter the data for all five samples or treatments (oils) in column C1.
2. In column C2, enter the sample identifiers, say 1 for olive oil, 2 for soybean, and so

on. We name the two columns obs. and oil type, respectively.
3. From bar menu select Stat > ANOVA > One-way . . . .
4. In the dialog box that appears, select Response data are in one column for all

factors and type in obs. in the box next to Response and oil type in the box next
to Factor.

Table 17.3.7 Coded data (y − 100) in grams of oil absorbed per
batch.

Batch
Oil

Olive Soybean Corn Peanut Sunflower

1 47 22 29 23 42
2 33 19 24 37 31
3 41 25 25 24 47
4 30 31 20 29 39
5 52 23 31 36 30
6 37 30 39 31 33

Totals 240 150 168 180 222
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5. Click Options, then for Confidence level, select 95.0, since we want to test the
hypothesis at the 5% level of significance.

6. Use the graph options to select Four in one and click OK. Again click OK.
7. The output appears in the Session window as shown here.

One-way ANOVA: obs. versus oil type

Method Model Summary

Means

Factor Information

Analysis of Variance

Null hypothesis

Alternative hypothesis

Significane level

All means are equal

Not all means are equal

α = 0.05

Equal variances were assumed for the analysis.

Factor

Source DF Adj SS Adj MS F-Value P-Value

oil type 4 948.0 237.00 5.47 0.003

Error 25 1084.0 43.36

Total 29 2032.0

oil type 1, 2, 3, 4, 55

Levels Values

S R-sq R-sq(adj) R-sq(pred)

6.58483 46.65% 38.12% 23.18%

oil

type N Mean StDev 95% CI

61 40.00 8.39 (34.46, 45.54)

62 25.00 4.69 (19.46, 30.54)

63 28.00 6.63 (22.46, 33.54)

64 30.00 5.87 (24.46, 35.54)

65 37.00 6.78 (31.46, 42.54)

Pooled StDev = 6.58483

Tukey 95% simultaneous confidence intervals, for example can be obtained by selecting
Stat > ANOVA > One-way . . . > Comparisons . . .> Error rate for comparison
> Tukey, family error rate and entering the value of significance level (see Section 17.3.3).
All pairwise comparisons among levels of oil type are

Tukey Pairwise Comparisons

Grouping Information Using the Tukey Method and 95% Confidence
oil

type N Mean Grouping

1 6 40.00 A

5 6 37.00 A B

4 6 30.00 A B C

3 6 28.00 B C

2 6 25.00 C

Means that do not share a letter are significantly different.
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4 – 2

3 – 2
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3 – 1

2 – 1

Tukey Simultaneous 95% CIs
Differences of Means for obs.

If an interval does not contain zero, the corresponding means are significantly different.

Since the p-value in the ANOVA table is 0.003, smaller than 0.05, we reject the null
hypothesis that the absorption of oil in frying onion rings is the same for all five types of oil.
And since we have rejected the hypothesis that the absorption of oil in frying onion rings is
the same for all five oil types, we would like to find the estimates and confidence intervals
for the treatment means μ1, . . . , μ5, where μj = μ + δj (i = 1, . . . , 5). These estimates
and confidence intervals are given after the ANOVA table. Note that the pooled standard
deviation is S = 6.585. The Tukey’s simultaneous confidence intervals for all pairs given
in the printout above will be studied in more depth in the next section.

USING R

Solution: The R function ‘aov()’ can be used to fit the required ANOVA model as shown
in the following R-code. Also, the R function ‘TukeyHSD()’ can be used to conduct Tukey’s
multiple comparison tests.

obs = c(47,33,41,30,52,37,22,19,25,31,23,30,29,24,25,20,31,39,23,37,24,29,36,31,42,
31,47,39,30,33)
oil.type = c(1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5)

#Fitting ANOVA model. Make sure to change variable ‘oil.type’ to a ‘Factor’ as
follows:
model = aov(obs ∼ factor(oil.type))

#ANOVA output
anova(model)
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#Diagnostic plots
par(mfrow=c(2,2))
plot(model)

#Tukey's test
TukeyHSD(model)

The R output (not shown here) is identical to that obtained from the MINITAB
procedure. Based on this output, and as concluded earlier from the MINITAB output, we
have ample evidence to reject the hypothesis that all five oil means are equal.

We now turn to verifying the Model Adequacy:

1. The graph of residuals [(yij − y·j), i = 1, . . . , nj ; j = 1, . . . , a] versus order shows that
the assumption that residuals are independent is reasonable (see Figure 17.3.1).

2. In the normal probability plot in Figure 17.3.1, almost all the residuals fall on a
straight-line fairly well, which implies that the assumption of normality is valid.
(Here fits are μ̂ + δ̂j = y·· + y·j − y·· = y·j , j = 1, . . . , 5.)

3. The graph of residuals versus fits illustrates the assumption that equal variances
show no abnormalities.

We conclude that the model we used is fairly adequate.
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Figure 17.3.1 MINITAB residual analysis graphs.
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17.3.3 Multiple Comparisons
In many industrial and scientific experiments, the hypothesis that there are no treatment
differences is of little interest to the experimenter. The experimenter usually is interested
in investigating which of the effects δ1, δ2, . . . , δa have greatest influence on the response
variable if the hypothesis that all effects are the same is rejected. As examples, an engineer
needs to find the combination of metals that will produce wires with higher tensile strength,
a physician may want to find which drug is more effective in treating a disease, or a chemist
may want to find the amount of catalyst that gives the optimal yield of a chemical. The
latter goal is usually achieved by testing hypotheses about various linear combinations of
parameters of interest. In particular, the experimenter usually has an interest in hypotheses
about contrasts among treatment effects.

Definition 17.3.1 A linear combination of the parameters μ1, μ2, . . . , μa of the
form

∑a
i=1 ciμi, where the constants ci are such that

∑a
i=1 ci = 0, is called a contrast.

For example, μ1 − μ2, μ1 − 2μ2 + μ3, μ1 − μ2 − μ3 + μ4 are contrasts. Contrasts of the
form μi − μj are called simple contrasts and are commonly used to compare two treatment
effects.

From Theorem 17.2.2 given on the website, it follows that all contrasts
∑a

j=1 cjδj in
one-way layout experiments are estimable since

η =
a∑

j=1

cjμj =
a∑

j=1

cj(μ + δj) =
a∑

j=1

cjδj (17.3.34)

and (see after (17.3.8)) the δj are estimable.

Definition 17.3.2 Two contrasts η1 =
∑a

i=1 biμi, η2 =
∑a

i=1 ciμi are said to be
orthogonal contrasts if

∑a
i=1 bici = 0.

For one-way ANOVA with a levels of a factor A, and under normality and indepen-
dence of the yijs, orthogonal contrasts are independent in the sense that (a − 1) orthogonal
contrasts divide the treatment sum of squares SSA into (a − 1) independent components,
each having one degree of freedom. That is, any conclusion made about one orthogonal
contrast has no bearing on the conclusion made about any other orthogonal contrast.

Using Equation (17.3.34), we can easily see that the least-squares estimate of a contrast
of the form η =

∑a
j=1 cjμj is given by

η̂ =
a∑

j=1

cjμ̂j =
a∑

j=1

cjy·j
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This contrast is normally distributed with its estimated standard error

σ̂η̂ =

√√√√σ̂2
a∑

j=1

c2
j/nj =

√√√√MSE

a∑
i=1

c2
j/nj

Thus, we test a hypothesis (or find a confidence interval) about such a contrast at the
α level of significance by employing a simple t-test. However, it is important to know that
we cannot perform hypothesis testing at the α level of significance about several contrasts,
say r, simultaneously by using a t-test at α level of significance for each test. That is, in
order for the conclusions about the whole family of r hypotheses (or confidence intervals)
to hold simultaneously, the significance value, or probability of type I error, should be equal
to 1 − (1 − α)r. For example, if r = 2 and α = 0.05, then the probability of type I error for
the conclusion about the two hypotheses to hold simultaneously is 1 − (0.95)2 = 0.0975.

Many methods are available in the literature to deal with simultaneous confidence
intervals or testing simultaneously a set of r hypotheses. The more commonly used methods
are due to Scheffe (1953), Tukey (1953), and Bonferroni (1936), which we discuss here.
We note that the Dunnett (1964) method is usually used for the treatment versus control
contrasts δi − δ1(i = 2, . . . , a), where treatment 1 is the control treatment. Scheffe and
Tukey methods are commonly called the S-method and T-method, respectively. For more
details, the reader can refer to Scheffe (1953, 1959) and Tukey (1953). The following
definitions are useful in our discussion of the Scheffe and Tukey methods.

Definition 17.3.3 Let {Ψ1, . . . , Ψt} be a set of linearly independent estimable
functions, and let Ω be the set of all possible linear combinations

∑
jcjψj , where cjs

are known constants. Then, the set Ω is called the t-dimensional space of estimable
functions.

For example, in the model (17.3.2), we have {ψj}, ψj = δ1 − δj , i = 2, . . . , a as a set
of linearly independent estimable functions. The set Ω of all possible linear combinations
of ψjs forms an (a − 1)-dimensional space of estimable functions. Then, since ψj ’s are
contrasts, every Ψ ∈ Ω is also a contrast.

Definition 17.3.4 Let ψ be an estimable function. Then, the estimate ψ̂ is not
significantly different from zero if the confidence interval (17.3.35), given below in
Theorem 17.3.1, contains the point ψ = 0. Otherwise, ψ̂ is significantly different
from zero.
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Definition 17.3.5 Let {Y1, . . . , Yn} be a random sample of size n from a popu-
lation N(μ, σ2) and let R be the sample range with R = maxiYi − miniYi. Let S2

be the mean-square estimator of σ2 with m degrees of freedom. From Chapter 7,
we know that S2/σ2 is distributed as χ2

m, that is, as a Chi-square variable with
m degrees of freedom (in (17.3.2), m = N − a). Then R/

√
S2/m is called the Stu-

dentized range random variable, and its distribution is called the Studentized range
distribution.

Table A.13 provides the values of qa,m; α the upper α percentage points of the Studen-
tized range distribution q, where a is the number treatments being compared and m is the
number of degrees of freedom for mean square error MSE (mean-square estimator of σ2).

The S-Method

Theorem 17.3.1 (Scheffe, 1953) Under the model (17.3.2), the simultaneous prob-
ability for all ψ ∈ Ω to obey the inequality

ψ̂ − θσ̂ψ̂ ≤ ψ ≤ ψ̂ + θσ̂ψ̂ (17.3.35)

is (1 − α) where θ is such that

θ2 = tFt,N−a; α (17.3.36)

In (17.3.36), t = a − 1 if Ω is only the space of all contrasts. However, if we consider
the larger space of all estimable functions, that is, the space generated by μ1, . . . , μa where
μj = μ + δj (j = 1, . . . , a), then t = a. Moreover, we can easily see that if ψ =

∑
jcjδj is

a contrast, then

ψ̂ =
∑

j

cj(y·j − y··) =
∑

j

cjy·j , since
∑

j

cj = 0

Furthermore, we have for this case that

σ2
ψ̂ = σ2

∑
j

(
c2
j

nj

)
, σ̂2

ψ̂ = MSE

∑(
c2
j

nj

)
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where nj is the sample size of the jth sample (jth treatment). Note that for multiple
comparisons in a one-way layout experiment, we use (17.3.36) in the confidence interval
derived from (17.3.35) with t = a − 1.

Suppose now, referring to model (17.3.2), that the hypothesis H0 : {δ1 = δ2 = · · · =
δa} is rejected at the α level of significance and we want to investigate which δs are
different from each other. We consider all possible a(a − 1)/2 simple contrasts {ψi}, that
is, the difference of all the possible pairs of effects and obtain for each effect the interval
(ψ̂ ± θσ̂ψ̂)—see (17.3.35). We can then determine those ψs that are significantly different
from zero at the α level, that is, which treatment effects are different from each other, by
noting which interval does not contain 0.

The T-Method
Tukey’s method, or the T-method, uses the distribution of the Studentized range statistic
that we discussed earlier. The T-method is used, under certain restrictions, to study simul-
taneous confidence intervals about the contrasts among the parameters {δ1, δ2, . . . , δa}.
The confidence intervals in the T-method are determined in terms of the unbiased esti-
mates {δ̂1, δ̂2, . . . , δ̂a}, and the upper α point of the Studentized range distribution under
the condition that the δ̂js have equal variances. In the one-way layout, this condition of
equal variances is met only if the sample sizes are equal. If the sample sizes are not equal,
then the confidence coefficient for Tukey’s multiple comparison method is known to be
greater than 1 − α. Consequently the significance level is less than α. We state Tukey’s
result in the following theorem:

Theorem 17.3.2 The probability that all possible contrasts ψ =
∑a

j=1 cjδj simul-
taneously satisfy the inequalities

ψ̂ − Ts

⎛
⎝1

2

a∑
j=1

|cj |

⎞
⎠ ≤ ψ ≤ ψ̂ + Ts

⎛
⎝1

2

a∑
j=1

|cj |

⎞
⎠ (17.3.37)

is 1 − α where ψ̂ =
∑a

j=1 cj δ̂j , T = kqa,N−a;α′ , with k as a known constant (see below
(17.3.39) and (17.3.40)), and

∑
cj = 0.

For the simple contrasts ψ = δi − δj , i �= j, the inequalities (17.3.37) become

ψ̂ − Ts ≤ ψ ≤ ψ̂ + Ts (17.3.38)

since
1
2

∑
|cj | = 1 for simple contrasts.

Suppose now, referring to model (17.3.2), that nj = n for all j. Then the inequality
(17.3.38) for any contrast ψ =

∑a
j=1 cjδj becomes

ψ̂ − T
√

MSE

⎛
⎝1

2

a∑
j=1

|cj |

⎞
⎠ ≤ ψ ≤ ψ̂ + T

√
MSE

⎛
⎝1

2

a∑
j=1

|cj |

⎞
⎠ (17.3.39)

where MSE is the mean square error and T = qa,N−a;α/
√

n.
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If the sample sizes are unequal, then inequality (17.3.39) holds with probability
≥ 1 − α, where

T =
qa,N−a; α√

2

√
1
ni

+
1
nj

, i �= j. (17.3.40)

The method with unequal sample sizes is sometimes called the Tukey–Kramer method.
Note: The T-method for simple contrasts δi − δj , i �= j, gives shorter intervals than the
S-method. However, for general contrasts the situation is usually reversed.

The Bonferroni Method
The Bonferroni multiple comparison method is also quite popular with practitioners. We
discuss that method briefly here. The Bonferroni method is quite similar to the ordinary
t-test studied in Chapter 9, except that in the Bonferroni method we replace α with α/m,
where m is the number of paired differences, contrasts, or linear combinations of model
parameters we are studying. For example, if in a certain experiment, we are comparing
five treatments and if we are interested in all pairwise comparisons, then m is the number
of possible pairs, m =

( 5
2

)
= 10.

Theorem 17.3.3 The probability that any set of m paired differences, contrasts,
or linear combinations of model parameters ψi (i = 1, 2, . . . , m) simultaneously
satisfy the inequalities

ψ̂i − tN−a; α/2m

√
MSE

√
1
ni

+
1
nj

< ψi < ψ̂i + tN−a; α/2m

√
MSE

√
1
ni

+
1
nj

(17.3.41)
is at least (1 - α).

The Bonferroni simultaneous confidence intervals for all pairs of treatment effects are
usually wider than the Scheffe and Tukey confidence intervals.

Example 17.3.4 (Example 17.3.3 revisited) Refer to the onion ring data in Example
17.3.3. We now illustrate the S-method, T-method, and Bonferroni method using these
data. For convenience, we reproduce these data in Table 17.3.8.

Solution: We now use the data in Table 17.3.8 to determine 95% simultaneous confidence
intervals for all pairs of treatment effects using the Scheffe method, the Tukey method,
and the Bonferroni method. For determining simultaneous confidence intervals for all pairs
of treatment effects, we can use coded data.

Scheffe Method
From (17.3.35) and (17.3.36), simultaneous confidence intervals for all pairs of treatment
effects δi − δj , i �= j, are given by

ψ̂ ± θσ̂ψ̂

where θ is such that
θ2 = tFt,N−a; α
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Table 17.3.8 Coded data (y − 100) in grams of oil absorbed per
batch.

Batch
Oil

Olive Soybean Corn Peanut Sunflower

1 47 22 29 23 42
2 33 19 24 37 31
3 41 25 25 24 47
4 30 31 20 29 39
5 52 23 31 36 30
6 37 30 39 31 33

Totals 240 150 168 180 222

We know that δi − δj , i �= j are contrasts, t = a −1 = 4, the F upper tail α = 0.05
percentage point of the F4,25-distribution is F4,25;0.05 = 2.76, (N − a = 30 − 5 = 25), and
from the ANOVA table in Example 17.3.3, MSE = 43.4. Thus, using the Scheffe method,
we have

θ2 = tFt,N−a; α = 4(2.76) = 11.04

σ̂2ψ̂ = MSE

∑
j

(
c2
j

nj

)
= 43.4

(
1
6

)
((1)2 + (−1)2) = 14.47

so that

θσ̂ψ̂ =
√

11.04 ×
√

14.47 = 12.64.

For example, the confidence interval for the contrast δ1 − δ2 is given by

(ψ̂ ± θσ̂ψ̂) = (15 ± 12.64) = (2.36, 27.64)∗

since ψ̂ = δ̂1 − δ̂2 = 40 − 25 = 15.
Similarly, the confidence intervals for all other contrasts δi − δj , i �= j are

(−0.64, 24.64) for δ1 − δ3
(−2.64, 22.64) for δ1 − δ4
(−9.64, 15.64) for δ1 − δ5
(−15.64, 9.64) for δ2 − δ3
(−17.64, 7.64) for δ2 − δ4
(−24.64, 0.64) for δ2 − δ5
(−14.64, 10.64) for δ3 − δ4
(−21.64, 3.64) for δ3 − δ5
(−19.64, 5.64) for δ4 − δ5
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The starred confidence intervals are those that do not contain the zero point. Thus, the
only confidence interval that does not contain 0 is the contrast δ1 − δ2. Using the Scheffe
method, we conclude that the only treatment effects that are significantly different from
each other at the 5% level of significance are treatments 1 and 2. In our discussion, the
confidence intervals with such significant differences are highlighted by ()∗ symbol

Tukey Method
As noted earlier, for the simple contrasts ψ = δi − δj , i �= j, the Tukey inequalities are
given by

ψ̂ − Ts ≤ ψ ≤ ψ̂ + Ts

with T = qa,N−a;α/
√

n if sample sizes are equal (ni = nj = n), or

1√
2
qa,N−a; α

√
1
ni

+
1
nj

, i �= j

if sample sizes are unequal. In the present example, sample sizes are equal with ni = nj =
6, a = 5, N − a = 25, α = 0.05, S2 = MSE = 43.4 and from Table A.13, q5,25;0.05 ≈ 4.15.
Then, the confidence interval for the contrast δ1 − δ2 is given by(

15 ± 1√
6
(4.15)

√
43.4

)
= (15 ± 11.16) = (3.84, 26.16)∗

Similarly, the confidence intervals for all other contrasts δi − δj , i �= j, are

(0.84, 23.16)* for δ1 − δ3
(−1.16, 21.16) for δ1 − δ4
(−8.16, 14.16) for δ1 − δ5
(−14.16, 8.16) for δ2 − δ3
(−16.16, 6.16) for δ2 − δ4
(−23.16,−0.84)* for δ2 − δ5
(−13.16, 9.16) for δ3 − δ4
(−20.16, 2.16) for δ3 − δ5
(−18.16, 4.16) for δ4 − δ5

Tukey’s confidence intervals for all contrasts δi − δj , i �= j are narrower than Scheffe’s
confidence intervals. Moreover, in Tukey’s confidence intervals, δ1 is significantly different
from δ2 and δ3; also, δ2 and δ5 are significantly different from each other. These confidence
intervals match those obtained using MINITAB in Example 17.3.3.

Bonferroni Method
We saw earlier that for the simple contrasts ψj = δ1 − δj , j = 2, 3, . . . , a, the Bonferroni
inequalities are given by

ψ̂j − tN−a;α/2m

√
MSE

√(
1
n1

+
1
nj

)
< ψj < ψ̂j + tN−a;α/2m

√
MSE

√(
1
n1

+
1
nj

)
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In the present example, sample sizes are equal, we have five treatments, and the
number of paired contrasts is m =

( 5
2

)
= 10. Thus, for example, the confidence interval

for the contrast δ1 − δ2 is given by

(
15 ± t25; 0.0025

√
43.4

√(
1
6

+
1
6

))
= (15 ± 11.71) = (3.29, 26.71)∗

Similarly, the confidence intervals for all other contrasts δi − δj , i �= j are

(0.29, 23.71)* for δ1 − δ3
(−1.71, 21.71) for δ1 − δ4
(−8.71, 14.71) for δ1 − δ5
(−14.71, 8.71) for δ2 − δ3
(−16.71, 6.71) for δ2 − δ4
(−23.71,−0.29)* for δ2 − δ5
(−13.71, 9.71) for δ3 − δ4
(−20.71, 2.71) for δ3 − δ5
(−18.71, 4.71) for δ4 − δ5

Note that Bonferroni’s confidence intervals for all contrasts δi − δj , i �= j are narrower
than Scheffe’s confidence intervals but wider than Tukey’s confidence intervals. More-
over, using Bonferroni’s confidence intervals, we arrive at the same conclusion as by using
Tukey’s confidence intervals, that is, that δ1 is significantly different from δ2 and δ3, and
δ2 and δ5 are significantly different from each other.

17.3.4 Determination of Sample Size
In order to run any experiment, the experimenter must ascertain how many times to
replicate each treatment. Here, we discuss a technique usually called the confidence interval
estimation technique and assume that all treatments are replicated the same number of
times; that is, the sample sizes are equal. For some other techniques, we refer the reader
to Montgomery (2009).

The confidence interval estimation technique assumes that the experimenter has some
experience dictating how wide he/she wants these confidence intervals to be. For instance,
in the onion ring example, suppose that the experimenter would like the (1 − α) confidence
interval to be ±10 g accurate for each pair of treatments. In this example, nj = n = 6, j =
1, 2, . . . , a; a = 5. From our earlier discussion in this chapter, we know that the accuracy
of the confidence interval is given by

±tN−a;α/2

√
2MSE

n
(17.3.42)

where from some earlier experience we know that
√

MSE = S is approximately 7 units.
Suppose now that α = 0.05. Using (17.3.42), we can determine the accuracy of the
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confidence interval for different values of n. Then, the desirable sample size is the one
that produces accuracy of less than or equal to ±10 g. In this example, we obtain n = 5
approximately, since N − a = a(n − 1) = 5(n − 1), and if Q(n) denotes the accuracy of
the confidence interval, then

Q(n) = t5(n−1);0.025

√
2MSE

n
= 7t5(n−1);0.025

√
2
n

Thus, Q(5) = 7(2.086) ×
√

0.4 = 9.235 ≤ 10 and n = 5 is the largest value of n for
which Q(n) ≤ 10.

17.3.5 The Kruskal–Wallis Test for One-Way Layouts
(Nonparametric Method)

In practice, sometimes the normality assumption in the model (17.3.2) does not hold.
In such situations, we need to analyze our data by an alternative procedure, that is, a
distribution-free or nonparametric procedure. One such procedure has been developed by
Kruskal and Wallis (1952). This test is used to test the hypothesis

H0 : δ1 = δ2 = · · · = δa versus H1 : At least one δ is different

The Kruskal–Wallis test uses the following procedure:

1. Write all the observations yij in the ascending order and rank them from 1 to N ,
N =

∑a
j=1 nj , assigning the rank 1 to the smallest observation and the rank N to

the largest observation. If some observations have the same value, then they have
tied ranks. To break these ties, we assign the average rank to each tied observation.

2. Replace each observation yij by its rank, say rij .
3. Then the Kruskal–Wallis test statistic is given by

H =
1
S2

⎛
⎝ a∑

j=1

T 2
·j

nj

− N(N + 1)2

4

⎞
⎠ (17.3.43)

where nj is the number of observations in the jth treatment and T·j =
∑nj

i=1 rij is
the sum of the ranks of the observations in the jth treatment. Also N =

∑a
j=1 nj ,

and S2 is the variance of the ranks and is given by

S2 = 1
N−1

(
a∑

j=1

n
j∑

i=1
r2
ij −

N(N+1)2

4

)
= 1

N−1

(
N∑

t=1
t2 − N(N+1)2

4

)

= 1
N−1

(
N(N+1)(2N+1)

6 − N(N+1)2

4

)
= N(N+1)

12

(17.3.44)

If there are no ties or the number of ties is limited, then it can be seen that the test
statistic is given by

H =
12

N(N + 1)

a∑
j=1

T 2
·j

nj

− 3(N + 1) (17.3.45)
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4. The test statistic H is approximately distributed as χ2
a−1. Thus the null hypothesis

is rejected at α level of significance whenever

H > χ2
a−1; α (17.3.46)

Example 17.3.5 (Onion rings, revisited) The onion ring data and their corresponding
ranks in parentheses are shown in Table 17.3.9.

Table 17.3.9 Coded data (y − 100) in grams of oil absorbed per batch and
their ranks (in parentheses).

Batch
Oil

Olive Soybean Corn Peanut Sunflower

1 47 (28.5) 22 (3) 29 (10.5) 23 (4.5) 42 (27)
2 33 (19.5) 19 (1) 24 (6.5) 37 (22.5) 31 (16.5)
3 41 (26) 25 (8.5) 25 (8.5) 24 (6.5) 47 (28.5)
4 30 (13) 31 (16.5) 20 (2) 29 (10.5) 39 (24.5)
5 52 (30) 23 (4.5) 31 (16.5) 36 (21) 30 (13)
6 37 (22.5) 30 (13) 39 (24.5) 31 (16.5) 33 (19.5)

Rank totals 139.5 46.5 68.5 81.5 129

We now use the test statistic defined by (17.3.43) and (17.3.44). Thus we have

S2 =
30(31)

12
= 77.5 ⇒ H =

1
77.5

(8266.33 − 7207.5) = 13.66

Since the observed H = 13.66, which is greater than χ2
4;0.05 = 9.49, we reject the null

hypothesis and conclude the treatment effects are not equal. Clearly, this conclusion is the
same as reached in Example 17.3.3.

Example 17.3.6 (Using MINITAB and R and applying the Kruskal–Wallis test.) Ana-
lyze the onion ring data in Example 17.3.3, using the Kruskal–Wallis test.

MINITAB

1. Enter the data in column C1.
2. Enter the treatment identifiers in column C2. We name these columns obs. and oil

type, respectively.
3. Select Stat > Nonparametrics > Kruskal–Wallis . . . .
4. In the dialog box that appears, type obs. in the box next to Response and enter oil

type in the box next to Factor. Then click OK. The MINITAB output appears in
the session window as shown below.
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Kruskal-Wallis Test: obs. versus oil type

Descriptive Statistics Test
oil type N Median Mean Rank Z-Value

1 6 39 23.3 2.41

2 6 24 7.8 –2.41

3 6 27 11.4 –1.27

4 6 30 13.6 –0.60

5 6 36 21.5

Overall 30 15.5

1.87

Null hypothesis H0: All medians are equal

Alternative hypothesis H1: At least one median is different

Method H-Value P-ValueDF

4 13.66 0.008

4 13.73 0.008

Not adjusted for ties

Adjusted for ties

Since the p-value is 0.008, which is smaller than α = 0.05, we reject the null hypothesis
that all treatments have the same effect.

USING R

Solution: The R function ‘kruskal.test()’ can be used to conduct the required
Kruskal–Wallis test as shown in the following R-code.

obs = c(47,33,41,30,52,37,22,19,25,31,23,30,29,24,25,20,31,39,23,37,24,29,36,31,42,
31,47,39,30,33)
oil.type = c(1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5)

#Kruskal-Wallis test
kruskal.test(obs ∼ oil.type)

#R output
Kruskal-Wallis rank sum test
data: obs by oil.type
Kruskal-Wallis chi-squared = 13.73, df = 4, p-value = 0.00821

PRACTICE PROBLEMS FOR SECTION 17.3

1. Determinations were made of the production of a chemical using four catalytic
methods I, II, III, and IV, with the results shown below:

Catalytic method I II III IV

45.4 50.7 48.7 52.7
47.6 49.6 47.6 54.1

Yield 46.3 48.8 45.7 53.2
44.5 46.9 51.5

50.9

Test the hypothesis H0, that the effects due to the catalytic methods are the same.
Use α = 0.05.
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2. Refer to Problem 1. (a) Estimate all the effects. (b) Use the S-method for a multiple
pairwise comparisons test on effects of all catalytic methods.

3. Three varieties of wheat were tested for productivity by employing a completely
randomized experiment. The experiment is replicated four times, the yields are
coded, and the coded values (yield − 100) are as presented below.
(a) Construct the ANOVA table and test the null hypothesis that the varieties are

equally productive at the 5% level of significance.
(b) If the hypothesis H0 is rejected, estimate the mean effects of the three varieties:

Variety I II III

43.7 47.6 43.3
Yield 39.6 45.9 42.9

41.0 43.0 42.0
42.3 44.5 41.7

4. An experiment is carried out to compare five brands of gasoline. The following data
give five observations on octane numbers of each of five gasolines:

Gasoline brands 1 2 3 4 5

77 71 73 75 77
72 73 67 72 73

Octane 79 73 71 72 72
79 77 69 69 76
76 67 70 73 70

(a) Construct ANOVA table for these data.
(b) Use the Tukey method to perform pairwise multiple comparisons test for all

five gasolines. Use α = 0.05
5. Five different types of training (T1, T2, T3, T4, T5) were given to 23 technicians. The

allocation of training to technicians was random. Their performance on a specific
project was evaluated. Scores in coded data are given below:

T1 T2 T3 T4 T5

8 6 10 6 10
7 10 9 8 9
5 8 9 7 5
6 9 7 7

9 10 8
7

(a) Construct an ANOVA table for these data.
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(b) Use the Tukey method to perform a pairwise multiple comparisons test among
the five training techniques. Use α = 0.10.

6. Refer to the data in Problem 4. Use the Kruskal–Wallis test statistic to test a
hypothesis that there is no significant difference of octane numbers in the five
gasolines. Use α = 0.05.

7. Refer to Problem 1 above. Use the Bonferroni method to perform a pairwise mul-
tiple comparisons test on effects of the four catalytic methods. Use α = 0.05.

8. Refer to Problem 1 above. Use the Kruskal–Wallis test statistic to test the hypoth-
esis that there is no significant difference between the catalytic methods. Use
α = 0.05.

9. Refer to Problem 3 above. Use the Tukey test to perform a pairwise multiple
comparisons test for all three varieties. Use α = 0.01.

10. Refer to Problem 3 above. Use the Kruskal–Wallis test statistic to test a hypothesis
that there is no significant difference between the varieties. Use α = 0.01.

11. Refer to Problem 3 above. Use the S-method to perform a pairwise multiple com-
parisons test for all three varieties and draw your conclusions. Do you get the same
conclusions as in Problems 9 and 10 above? Use α = 0.01.

12. Refer to Problem 5 above. Use the Kruskal–Wallis test statistic to test a hypothesis
that there is no significant difference in training techniques. Use α = 0.01.

13. Refer to Problem 5 above. Use the Bonferroni method to perform a pairwise mul-
tiple comparisons test for all training techniques and draw your conclusions. Do
you get the same conclusions as in Problems 5 and 12 above? Use α = 0.05.

17.4 RANDOMIZED COMPLETE BLOCK (RCB)
DESIGNS

In the distribution of one-way layout experiments in Section 17.3, we assumed that all
the experimental units are homogeneous with respect to all known sources of variations.
In such experiments, treatments are randomly assigned to the experimental units. Hence,
these designs are also called completely randomized designs.

In practice, however, it may be difficult to find a large number of experimental units
that are completely homogeneous with respect to all known sources of variations. For
example, in an experiment where interest lies in comparing the effects of various doses of
a drug, we may need a large number of patients who are being treated with that drug. In
such an experiment, it may not be possible to have a large number of patients who have
the same condition with respect to all factors, namely the advance of the disease, family
history, weight, age, and sex.

In these situations, when all the experimental units are not homogeneous, we adopt a
technique called blocking. That is, we divide the experimental units into various groups, say
“b” groups of equal size, say a, such that within each subgroup the experimental units are
as homogeneous as possible with respect to all known sources of variations. Then, within
each subgroup, the a treatments are randomly assigned to the a experimental units. Such
experiments are called randomized complete block (RCB) designs. They are complete in
the sense that within each subgroup we have a complete replication of all the treatments,
applied randomly.

These designs have widespread applications in many industrial and other experiments,
for example, testing tensile strength of wires produced using different machines, testing
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different methods of production using various operators, testing different brands of tires
for different passenger cars, testing different teaching methods, or testing a certain number
of drugs on a group of animals. In these examples, the different blocks consist of machines,
operators, cars, students, and animals, respectively.

The model for a RCB design where the number of treatments is a and the number of
blocks b is given by

yij = μ + αi + βj + εij , i = 1, 2, . . . , a; j = 1, 2, . . . , b (17.4.1)

where yij is an observation generated using the ith treatment in the jth block, μ is the
general mean, αi is the effect of the ith treatment, βj is the effect of the jth block, and εij

is a random error. We assume that the εij are independently and identically distributed
as N(0, σ2). Furthermore, we assume that the αi and βj are such that they satisfy the side
conditions

a∑
i=1

αi = 0,

b∑
j=1

βj = 0 (17.4.2)

and that μ, αi, i = 1, 2, . . . , a, βj , j = 1, 2, . . . , b are unknown constants.
The hypotheses of principal interest in this model are

1. H0 : α1 = α2 = · · · = αa = 0 versus H1 : not all αi = 0
2. H0 : β1 = β2 = · · · = βb = 0 versus H1 : not all βj = 0

Note that the two null hypotheses H0 indicate that all treatment effects are equal
and all block effects are equal. The data obtained from a RCB experiment are laid out
in Table 17.4.1, where Ti· =

∑b
j=1 yij , T·j =

∑a
i=1 yij , G =

∑a
i=1
∑b

j=1 yij =
∑a

i=1 Ti· =∑b
j=1 T·j = y··, and y·j = T·j/a is the average of the observations in the jth block,

yi· = Ti·/b is the average of the observations generated by the use of the ith treatment,
and y·· = G/ab is the grand average of all the observations.

The error sum of squares under the model (17.4.1) is given by

Q =
∑

i

∑
j

(yij − μ − αi − βj)
2 (17.4.3)

The least-squares estimates of μ, αi, i = 1, 2, . . . , a, βj , j = 1, 2, . . . , b are obtained by
minimizing Q in (17.4.3), subject to the conditions (17.4.2). This is accomplished by

Table 17.4.1 Randomized complete block design layout.

Treatments
Blocks

B1 B2 B3 · · · Bj · · · Bb Totals

A1 y11 y12 y13 · · · y1j · · · y1b T1·
A2 y21 y22 y23 · · · y2j · · · y2b T2·
...

...
...

...
...

...
...

...
...

Aa ya1 ya2 ya3 · · · yaj · · · yab Ta·

Totals T·1 T·2 T·3 · · · T·j · · · T·b G
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equating to zero the partial derivatives of Q with respect to μ, αi, βj , and solving these
equations subject to the constraints (17.4.2). Denoting the solutions by (μ̂, α̂i, β̂j), we
obtain ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a∑
i=1

b∑
j=1

(yij − μ̂ − α̂i − β̂j) = 0

b∑
j=1

(yij − μ̂ − α̂i − β̂j) = 0, i = 1, 2, . . . , a

a∑
i=1

(yij − μ̂ − α̂i − β̂j) = 0, j = 1, 2, . . . , b

a∑
i=1

α̂i = 0,
b∑

i=1
β̂j = 0

(17.4.4)

Solving the system of Equations (17.4.4), we find that

μ̂ = y··, α̂i = yi· − y··, β̂j = y·j − y·· (17.4.5)

where y·· =
∑∑

yij/N, N = ab, yi· =
∑b

j=1 yij/b, and y·j =
∑a

i=1 yij/a.
The total variation sum of squares is

SStot =
a∑

i=1

b∑
j=1

(yij − y··)
2

We can split the total sum of squares into various components, that is, sum of squares
due to error, treatments, and blocks. So we write

SStot =
a∑

i=1

b∑
j=1

(yij − y··)
2 =

∑a
i=1
∑b

j=1 ((yij − yi· − y·j − y··) + (yi· − y··) + (y·j − y··))
2

=
∑a

i=1
∑b

j=1 (yij − yi· − y·j + y··)
2 + b

∑a
i=1 (yi· − y··)

2

+ a
∑b

j=1 (y·j − y··)
2

(17.4.6)
since all cross-product terms vanish. We now use the notation

SStreat = b

a∑
i=1

(yi· − y··)
2 (17.4.7)

SSbl = a

b∑
j=1

(y·j − y··)
2 (17.4.8)

SSE =
a∑

i=1

b∑
j=1

(yij − yi· − y·j + y··)
2 (17.4.9)

It can be shown that under normality, SSE , SStreat, and SSbl are independently dis-
tributed as σ2χ2

(a−1)(b−1), σ2χ2
(a−1)(λ1) and σ2χ2

(b−1)(λ2), respectively, where λ1 and λ2 are
the parameters of noncentrality and are given by λ1 = b

∑
iα

2
i/σ2 and λ2 = a

∑
jβ

2
j/σ2.

Note, however, that under the null hypotheses, the corresponding noncentrality param-
eters are zero; that is, SStreat and SSbl are distributed as central Chi-squares whereas SSE ,
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regardless of any hypothesis, is always distributed as a central chi-square. Thus, under the
null hypothesis, we have

SStreat/(a − 1)
SSE/(a − 1)(b − 1)

=
MStreat

MSE

∼ F(a−1),(a−1)(b−1) (17.4.10)

and
SSbl/(b − 1)

SSE/(a − 1)(b − 1)
=

MSbl

MSE

∼ F(b−1),(a−1)(b−1) (17.4.11)

Hence, we reject the hypothesis that all the treatments have the same effect, that is,
all αi = 0 at the α level of significance if

MStreat

MSE

≥ F(a−1),(a−1)(b−1);α (17.4.12)

Similarly, we reject the hypothesis that all blocks have the same effect, that is, all
βj = 0 at the α level of significance if

MSbl

MSE

≥ F(b−1),(a−1)(b−1);α (17.4.13)

where MStreat = SStreat/(a − 1),MSbl = SSbl/(b − 1), and MSE = SSE/[(a − 1)(b −
1)]. We summarize these results in Table 17.4.2.

From Table 17.4.2, it is obvious that an unbiased estimator of σ2 is given by

σ̂2 = MSE =
1

(a − 1)(b − l)

∑∑
(Yij − Y i· − Y ·j + Y ··)

2 (17.4.14)

no matter whether αi = 0, i = 1, 2, . . . , a, and/or βj = 0, j = 1, 2, . . . , b, is true or false.
The calculations of the sums of squares for the analysis of variance above can be obtained
more conveniently as follows:

SStreat =
∑

i

T 2
i·
b

− G2

ab
(17.4.15)

Table 17.4.2 ANOVA table for an RCB-design.

Source of
variation

DF Sum of squares (SS) MS E(MS) F -ratio

Treatments a − 1 SStreat = b
a∑

i=1
(yi· − y··)

2 MStreat σ
2 +

b
∑

α2
i

α − 1
MStreat

MSE

Blocks b − 1 SSbl = a
b∑

j=1
(y·j − y··)

2 MSbl σ2 +
a
∑

β2
j

b − 1
MSbl

MSE

Error (a − 1)(b − 1)SSE =
a∑

i=1

b∑
j=1

(yij − yi· − y·j + y··)
2 MSE σ2

Total ab − 1
∑∑

(yij − y··)
2
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SSbl =
∑

j

T 2
·j
a

− G2

ab
(17.4.16)

SStot =
∑

i

∑
j

y2
ij −

G2

ab
(17.4.17)

SSE = SStot − SSbl − SStreat =
∑

i

∑
j

y2
ij −

∑
i

T 2
i·
b

−
∑

j

T 2
·j
a

+
G2

ab
(17.4.18)

We need to point out that SSE is a typical “error” sum of squares, for each term is
the square of the residual of yij after model (17.4.1) has been fitted. Indeed, the fit of the
model is

ŷij = μ̂ + α̂i + β̂j = y·· + (yi· − y··) + (y·j − y··) = yi· + y·j − y··

so that the residual of yij is

eij = yij − ŷij = yij − ŷi· − ŷ·j + ŷ··

Examining (17.4.9), we see that

SSE =
a∑

i=1

b∑
j=1

e2
ij

Example 17.4.1 (Blood pressure) Suppose that 24 patients who have high blood pressure
are being treated with six different medications. Since it was not possible to find a large
group of patients having similar risk factors such as, age, race, weight, family history,
gender, and comorbidities, the design selected to test these medications was a RCB design.
All the patients were divided into four blocks, each block containing six patients, with
patients having similar risk factors included in the same block. Then, within each block,
the six medications were randomly administered to the six patients. After the patients were
treated for two months, their blood pressures were checked. Table 17.4.3 shows by how
much the patient’s systolic blood pressure reading decreased. We assume that the various
assumptions of the RCB design model were valid for these clinical trials.

Table 17.4.3 Data on 24 patients being treated for high blood pressure.

Blocks 1 2 3 4 Totals

1 32 36 29 33 130
2 18 28 21 30 97

Treatments (medicines) 3 22 23 28 24 97
4 19 32 37 26 114
5 24 24 25 21 94
6 27 20 30 26 103

Totals 142 163 170 160 635
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Table 17.4.4 ANOVA table for the data in Table 17.4.3.

Source DF SS MS F -ratio

Treatments (medicines) 5 238.71 47.74 2.28
Blocks 3 71.13 23.71 1.13
Error 15 314.12 20.94

Total 23 623.96

Using Equations (17.4.15)–(17.4.18) for calculating various sums of squares for the
data in Table 17.4.3, we have

SStreat =
(130)2 + (97)2 + · · · + (103)2

4
− (635)2

24
= 17, 039.75 − 16, 801.04 = 238.71

SSb =
(142)2 + (163)2 + (170)2 + (160)2

6
− (635)2

24
= 16, 872.17 − 16, 801.04 = 71.13

SStot = (32)2 + · · · + (26)2 − (635)2

24
= 17,425 − 16, 801.04 = 623.96

SSE = SStot − SStreat − SSbl = 623.96 − 238.71 − 71.13 = 314.12

We summarize the results above in Table 17.4.4 (DF = degrees of freedom).
To test the hypothesis that effects due to different medicines are the same, we find

that the observed F = MStreat/MSE is

F =
47.74
20.94

= 2.28 < F5,15;0.05 = 2.9013

We can conclude that the effects of the medications are not significantly different.
(Similarly, the reader should verify that the block effects are not significantly different.)

Notes:
1. In an RCB-design, blocks are introduced in order to eliminate the effects of one nui-

sance variable. For instance, in Example 17.4.1, the difference between the patients
is a nuisance variable.

2. In an RCB-design, the experimental units within each block are homogeneous, but
between blocks, they are heterogeneous.

3. If, in an RCB-design, any of the hypotheses of equal effects is rejected, then we can
use the S-method, the T-method, or the Bonferroni method to find simultaneous
confidence intervals for all pairs of treatment effect or of block effects. All calcu-
lations are done in a similar manner as for completely randomized designs, except
that the MSE factor is the one given in Table 17.4.2 with (a − 1)(b − 1) degrees of
freedom.

4. In an RCB-design, it is usually the case that the hypotheses of treatment effects
are of prime interest.

Example 17.4.2 (Gasoline octane levels) The quality of gasoline is usually determined
by its octane number. An experimenter determines the octane numbers of five gasolines
using four different methods. Since “Methods” is a nuisance variable, the experimenter
decided to use an RCB-design. The experiment in each block was carried out in random
order. The data obtained are shown in Table 17.4.5. Analyze these data using MINITAB
and R.
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Table 17.4.5 Octane data for five gasolines.

Blocks (methods) 1 2 3 4 Totals

1 92 90 96 93 371
2 88 87 84 80 339

Treatments (gasolines) 3 89 87 85 84 345
4 90 89 82 86 347
5 87 88 80 81 336

Totals 446 441 427 424 1738

MINITAB

1. Enter the data in column C1.
2. Enter the block (Methods) identifiers (1, 2, 3, 4) in column C2.
3. Enter the treatments (Gasolines) identifiers (1, 2, 3, 4, 5) in column C3. We name

these columns as Obs., Methods, and Gas, respectively.
4. Select Stat > Anova > General Linear Model > Fit General Linear Model:.
5. In the dialog box that appears type in Obs. in the box below Response, Methods

and Gas in the box below Factors. Then click OK. The MINITAB output appears
in the Session window as shown below:

Factor Information Analysis of Variance

Factor

Methods Fixed 1, 2, 3, 44

Gas Fixed 1, 2, 3, 4, 55

Type Levels Values Source

Methods 3 68.20 22.733 2.94 0.076

Gas 4 190.80 47.700 6.17 0.006

Error 12 92.80 7.733

Total 19 351.80

DF Adj SS Adj MS F-Value P-Value

Since the p-value for gas is 0.006, we reject the null hypothesis that all gasolines
have equal effects at 5% level of significance. However, the hypothesis that blocks have
no effect is not rejected because the p-value is greater than 5%. To conduct the multiple
comparisons, select Stat > Anova > General Linear Model > Comparisons:. Then
select the comparison Method (e.g., Tukey) and Choose terms for comparisons (e.g.,
Gas) from the new window appears. Also, if needed we can select additional Options,
Graphs, etc. The MINITAB output appears in the Session window as shown below:

Tukey Simultaneous Tests for Differences of Means Grouping Information Using the
Tukey Method and 95% ConfidenceDifference

of Gas

Levels

Difference

of Means

SE of

Difference

Simultaneous

95% CI T-Value Gas N Mean Grouping

–4.07 0.0111.97 (–14.27, –1.73)–8.002 – 1

–3.31 0.0411.97 (–12.77, –0.23)–6.503 – 1

–3.05 0.0631.97 (–12.27, 0.27)–6.004 – 1

–4.45 0.0061.97 (–15.02, –2.48)–8.755 – 1

0.76 0.9371.97 (–4.77, 7.77)1.503 – 2

1.02 0.8431.97 (–4.27, 8.27)2.004 – 2

–0.38 0.9951.97 (–7.02, 5.52)–0.755 – 2

0.25 0.9991.97 (–5.77, 6.77)0.504 – 3

–1.14 0.7811.97 (–8.52, 4.02)–2.255 – 3

–1.40 0.6401.97 (–9.02, 3.52)–2.755 – 4

Adjusted

P-Value

Individual confidence level = 99.22%

Means that do not share a letter are significantly different.

1 4 A92.75

4 4 A B86.75

3 4 B86.25

2 4 B84.75

5 4 B84.00
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Using these comparisons, we can easily see which means are different if the null hypothesis
of equal means is rejected. For example, examining confidence intervals and grouping
information in the above table, the mean of gasoline 1 is different from that of all other
gasolines except gasoline 4, since only the confidence interval for Gas 4–Gas 1 does contain
the zero and the other confidence intervals (Gas 2–Gas 1, Gas 3–Gas 1, and Gas 5–Gas 1)
does not contain the zero.

USING R
Solution: The R function ‘aov()’ can be used to fit the required RCB design as shown in
the following R-code.

Obs = c(92,88,89,90,87,90,87,87,89,88,96,84,85,82,80,93,80,84,86,81)
Gas = c(1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,1,2,3,4,5)
Method = c(1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4)

#Fitting CRBD. Make sure to change variable ‘Gas’ and ‘Method’ to ‘Factor’ vari-
ables as given below:
model = aov(Obs ∼ factor(Gas)+ factor(Method))
anova(model)

#Diagnostic plots
par(mfrow=c(2,2))
plot(model)

#Tukey Honestly Significant Differences
TukeyHSD(model)

The R output appears similar to that obtained via the MINITAB procedure. Based on
this output, as we concluded earlier from the MINITAB output, we have ample evidence
to reject the hypothesis that all gasoline types have equal effects. And based on a p-value
analysis, we have a lack of evidence to reject the claim that the blocks have no significant
effect.

17.4.1 The Friedman Fr-Test for Randomized
Complete Block Design (Nonparametric
Method)

The nonparametric test proposed by Friedman is an alternative to the parametric test when
the normality assumption in model (17.4.1) is not met. The Friedman test is quite similar
to the Kruskal–Wallis H test used for one-way experimental designs. In the Kruskal–Wallis
H test, the entire N observations are ranked from 1 to N, assigning rank 1 to the smallest
observation and rank N to the largest observation. In the Friedman test, observations in
each block are ranked separately, assigning rank 1 to the smallest observation and rank a
to the largest observation, where a is the number of treatments in each of the b blocks.

Suppose that R1, R2, . . . , Ra are the rank sums of treatments. Then the Friedman test
statistic is defined as

Fr =
12

ba(a + 1)

a∑
i=1

(
Ri −

b(a + 1)
2

)2

(17.4.19)
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The computational formula for the Friedman test statistic is given by

Fr =
12

ba(a + 1)

a∑
i=1

R2
i − 3b(a + 1) (17.4.20)

The test statistic Fr is approximately distributed as χ2 with (a − 1) degrees of freedom.
The hypothesis of equal treatment effects is rejected at the α level of significance if

Fr > χ2
(a−1);α (17.4.21)

Otherwise, the hypothesis is not rejected.

Example 17.4.3 (Example 17.4.2 revisited) Analyze the gasoline data in Table 17.4.5
using the Friedman test with MINITAB and R.

MINITAB

1. Enter the data in column C1.
2. Enter the block identifiers (1, 2, 3, 4) in column C2.
3. Enter the treatment identifiers (1, 2, 3, 4, 5) in column C3. We name these columns

as Obs., Methods, and Gas, respectively.
4. Select Stat > Nonparametrics > Friedman . . . .
5. In the resulting dialog box, type Obs. in the box next to Response, Gas in the

box next to Treatment, and Methods in the box next to Blocks. Then click OK.
The MINITAB output appears in the Session window as follows:

Friedman Test: Obs vs Gas, Methods

Method

Descriptive Statistics

Treatment = Gas

Block = Methods

Gas

1 4 92.65 20.0

2 4 85.05 7.5

3 4 86.45 11.5

4 4 87.55 14.0

5 4 84.55

Overall 20 87.25

7.0

N Median Sum of Ranks

Test

Null hypothesis H0: All treatment effects are zero

Alternative hypothesis H1: Not all treatment effects are zero

Method Chi-Square P-ValueDF

4 11.35 0.023

4 11.49 0.022

Not adjusted for ties

Adjusted for ties

MINITAB, when using the Friedman test, tests only the treatment means. Our con-
clusion does not change even though the p-value is somewhat higher.

USING R

Solution: The R function ‘friedman.test(a ∼ b|c)’ can be used to conduct the required
Friedman test as shown in the following R-code. Note that in the formula: a ∼ b|c; a, b;
and c are the response data, treatments, and blocks, respectively.
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Obs = c(92,88,89,90,87,90,87,87,89,88,96,84,85,82,80,93,80,84,86,81)
Gas = c(1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,1,2,3,4,5)
Method = c(1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4)

#Conduct the Friedman test
friedman.test(Obs ∼ Gas|Method)

#R output
Friedman rank sum test
data: Obs and Gas and Method
Friedman chi-squared = 11.494, df = 4, p-value = 0.02154

17.4.2 Experiments with One Missing Observation
in an RCB-Design Experiment

Consider an RCB-design experiment with a treatments and b blocks, and suppose that one
observation is missing. Denote the missing observation by x, and suppose that the missing
observation corresponds to the ith treatment of the jth block. Then, let T̃i·, T̃·j and T̃
be, respectively, the ith treatment sum, the jth block sum, and sum of all nonmissing
observations, we then have that

T̃i· + x = Ti·, T̃·j + x = T·j , T̃ + x = G

In other words, T̃i· is the sum of all the (b −1) nonmissing observations generated
using the ith treatment, T̃·j is the sum of all the (a −1) nonmissing observations of the jth
block, and T̃ is the sum of all the nonmissing (ab −1) observations. Referring to Equation
(17.4.18), we can verify that the terms containing x in SSE have a value, say δ, where

δ = x2 − 1
b
(T̃i· + x)2 − 1

a
(T̃·j + x)2 +

1
ab

(T̃ + x)2 (17.4.22)

Now minimizing SSE means that we are involved in minimizing δ. Thus, differentiating
δ partially with respect to x and equating to zero, we find (calling x̂ the solution to
∂δ/∂x = 0) that

x̂ − 1
b
(T̃i· + x̂) − 1

a
(T̃·j + x̂) +

1
ab

(T̃ + x̂) = 0

After solving the above, we give the estimated value that replaces the missing obser-
vation as

x̂ =
aT̃i· + bT̃·j − T̃

(a − 1)(b − 1)
(17.4.23)

Note that when one observation is missing, the error sum of squares degrees of freedom
is reduced by 1; that is, it is equal to (a −1)(b −1) −1 = ab − a − b.
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17.4.3 Experiments with Several Missing
Observations in an RCB-Design Experiment

Again, we consider an RCB-design experiment, where a treatments are applied in b blocks,
but with various observations missing. Let x, y, z, . . . , denote the missing observations. Let
T̃x denote the total of the observations present in the row that contains x, T̃yz denote the
total of the row that contains y and z if y and z are missing in the same row, etc. Further,
let T̃ ′

x, T̃ ′
y, . . . , denote the totals of the columns that contain x, y, and so on. Then (see

(17.4.22)), the terms containing the missing observations x, y, z, . . . , in the error sum of
squares are

δ = x2 + y2 + z2 + · · · − 1
a
{(T̃ ′

x + x)2 + (T̃ ′
x + y)2 + · · · }

− 1
b
{(T̃x + x)2 + (T̃yz + y + z)2 + · · · } +

1
ab

(T̃ + x + y + z + · · · )2

where T̃ is the grand total of all observations that are present. To minimize δ, we differen-
tiate it partially with respect to x, y, z, . . . , and equate each one of them to zero. This gives
a set of least square normal equations containing x, y, z, . . . . Then, the estimated values
of x, y, z, . . . , say x̂, ŷ, ẑ, are obtained by solving the normal equations. We illustrate this
method with Example 17.4.4 below.

Note that if r observations are missing, then the error sum of squares degrees of
freedom is reduced by r, that is, (a −1)(b −1) − r is now the degrees of freedom for
“error.”

Example 17.4.4 (Comparison of machines) A manufacturing engineer designed an exper-
iment to compare three new machines M1,M2, and M3 with the existing machine M so that
an RCB-design could be used. He used five blocks (shifts) and the characteristic measured
was the total number of parts produced during a predetermined period. However, unfortu-
nately, during that production period there were four power outages, so it was not possible
to determine the parts produced during those periods. The parts produced during the rest
of the periods are as shown in Table 17.4.6.

Here, x1, x2, x3, and x4 denote the parts that would have been produced if not for
the power outage. To find estimates of x1, x2, x3, and x4, we proceed, as in Section 17.4.2,
where we dealt with the case of only one missing observation. We minimize SSE and

Table 17.4.6 Coded values of parts produced (parts −400).

Blocks

1 2 3 4 5 Totals

M 19 21 17 23 15 95
Machines M1 22 23 x2 21 19 85 + x2

M2 x1 24 26 23 18 91 + x1

M3 28 25 x3 x4 20 73 + x3 + x4

Totals 69 + x1 93 43 + x2 + x3 67 + x4 72 344 + x1 + x2 + x3 + x4
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note that the contributions to SSE of the terms containing xi have sum δ, where (see
(17.4.15)–(17.4.18) and Table 17.4.6) δ is given by

δ =
4∑

i=1

x2
i −

1
5
[(85 + x2)

2 + (91 + x1)
2 + (73 + x3 + x4)

2]

− 1
4 [(69 + x1)

2 + (43 + x2 + x3)
2 + (67 + x4)

2] + 1
20 (344 + x1 + x2 + x3 + x4)

2

Taking the partial derivatives ∂δ/∂xi, i = 1, 2, 3, 4, equating to zero and denoting the
solutions of the resulting equations by x̂1, x̂2, x̂3, and x̂4, we are led to the equations (after
some minor algebra) ⎧⎪⎪⎨

⎪⎪⎩
12x̂1 + x̂2 + x̂3 + x̂4 = 365
x̂1 + 12x̂2 − 4x̂3 + x̂4 = 211
x̂1 − 4x̂2 + 12x̂3 − 3x̂4 = 163
x̂1 + x̂2 − 3x̂3 + 12x̂4 = 283

(17.4.24)

We can solve the above equations for X̂ = (x̂1, x̂2, x̂3, x̂4)
′ using matrix notation. Thus, we

have

AX̂ = C, A =

⎡
⎢⎢⎣

12 1 1 1
1 12 −4 1
1 −4 12 −3
1 1 −3 13

⎤
⎥⎥⎦ , C = [365, 211, 163, 283]′

We find that

X̂ = A−1C =

⎡
⎢⎢⎣

0.0861244 −0.0107656 0.013158 −0.0095694
−0.0107656 0.0950957 0.032895 0.0011962
−0.0131579 0.0328947 0.101316 0.0236842
−0.0095694 0.0011962 0.023684 0.0899522

⎤
⎥⎥⎦ [365, 211, 163, 283]′

=

⎡
⎢⎢⎣

24.3110
21.8361
25.3553
26.0766

⎤
⎥⎥⎦

We note that the degrees of freedom for the error, that is, for SSE with X̂ = (x̂1, x̂2, x̂3, x̂4)
′,

is now
(a − 1)(b − 1) − 4 = (4 − 1)(5 − 1) − 4 = 8

These data can be analyzed by the ordinary method of analysis of variance for
RCB-designs, when x̂1, x̂2, x̂3, x̂4 are used for x1, x2, x3, x4. We note again that the
degrees of freedom for the error sum of squares are reduced by one degree of freedom for
each missing observation, as shown above.

PRACTICE PROBLEMS FOR SECTION 17.4

1. Four different types of coatings (A,B,C,D) on memory chips are studied in three
different plants (P1, P2, P3). As the coatings effect might differ from plant to plant,



17.4 Randomized Complete Block (RCB) Designs 797

all different coatings are studied in all the three plants. The order of testing of the
four types in each plant is completely random. The data collected are

Coating type

A B C D

P1 5.2 4.8 5.6 4.6
P2 4.8 5.0 4.7 5.3
P3 4.9 5.4 4.3 5.8

(a) Analyze these data as a RCB design and state your conclusions. Use α = 0.05.
(b) Analyze these data using Friedman’s nonparametric test. Use α = 0.05.

2. Suppose that in Problem 1, the reading on coating B in plant P2 was not completed.
Estimate the missing reading, reanalyze the data, and compare your result with that
in Problem 1. Use α = 0.05.

3. A quality engineer in a paper mill decides to test the effect of five chem-
icals (C1, C2, C3, C4, C5) on coated paper produced by four machines
(M1, M2, M3, M4). Since there might be variability of coated paper from machine
to machine, the engineer chooses to use a RCB design, using the machines
as blocks. She applies all five chemicals on paper taken from each of the four
machines. Chemicals are applied in a random order. The data readings are tensile
strengths:

M1 M2 M3 M4

C1 70 68 62 71
C2 62 77 70 69
C3 64 67 61 66
C4 74 75 69 73
C5 70 64 63 67

Analyze these data and state your conclusions. Use α = 0.10.. Prepare residual plots
and examine if the model violates any assumptions.

4. Suppose that two data points (C3, M2) and (C5, M3) in Problem 3 are missing.
Estimate the missing observations and analyze the data. Use α = 0.10.

5. Analyze the data in Problem 3 using Friedman’s nonparametric test. Use
α = 0.10.

6. Analyze the data you obtained after estimating the missing observation in Problem
2 using Friedman’s nonparametric test. Use α = 0.05. Compare your result with that
in Problem 2.

7. Analyze the data you obtained after estimating the missing observations in Problem
4, using Friedman’s nonparametric test. Use α = 0.10.. Compare your conclusion
with that in Problem 4.
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17.5 TWO-WAY EXPERIMENTAL LAYOUTS

In Sections 17.3 and 17.4, we discussed one-way experimental designs and completely
randomized designs. In such experimental designs, we are interested in studying the effects
of one set of treatments on a response variable of interest where treatments are just the
levels of the factor under investigation. In Section 17.4, we focused on RCB designs in
which we have one factor of prime interest, while the other factor is referred to blocks.
In RCB designs, the blocks are used to eliminate the effects of a nuisance variable, and it
may be that our only interest in studying block effects is to find out whether the creation
of blocks was justified. In this section, we consider two-way experimental layouts also called
two-way factorial experimental designs. Such designs come about because the experimenter
wishes to study the effects on a response y of two factors, say A and B, and typically, use
is made of a (a > 1) levels of A and b (b > 1) levels of B which are completely crossed;
that is, all ab pairs of treatments AiBj are used to generate observations yij on Y (here
Ai, i = 1, . . . , a denotes the a levels of A, and Bj , j = 1, . . . , b denotes the b levels of B).
For example, a chemist wants to investigate the effects of a production process on the
yield of a chemical and suspects that the two important factors affecting the yield are the
amount of a catalyst used and the reaction time.

To investigate the effect of catalyst and reaction time on the production process, the
chemist would run an experiment that varies the catalyst amount, varies the reaction
time, and then observe the yield produced by these various combinations of catalyst and
reaction times. We refer to the catalyst as a factor, say A, with its levels being the different
amounts of catalyst used, and refer to the reaction time as factor B, with its levels being
the different reaction times used in the experiment. We note that in experiments with
two or more factors, the treatments are the combinations of all levels of various factors
involved.

The two factors are said to be completely crossed if each level of one factor occurs with
each level of the other factor. Further, if all the treatment combinations are replicated an
equal number of times, then the data obtained are said to be balanced. In the present
discussion, we consider experiments with balanced data only.

In a factorial experiment with balanced data, the effect of the ith level Ai of a factor
A is defined as the difference between the average response when factor A is applied at
the ith level, and the overall average of all responses generated by using factor A at all
levels. These effects are usually referred to as the main effects.

It is important to recognize that sometimes the effect of the level of a factor depends
on the level of another factor being applied. In other words, the effect of the level of a factor
is not the same at all levels of the other factor. In such cases, we say that an interaction
between the factors exists. This aspect of interaction can easily be explained graphically
with the help of a simple example.

Consider an experiment with two factors, each at two levels, one at a low and the
other at high setting. Suppose that we run two experiments so that the observed responses
(hypothetical) are as shown in Table 17.5.1. Then, we define the interaction as follows.
Effects of factor B when factor A is at low and high levels in experiment I are 58−36
= 22 and 70−48 = 22, respectively. The interaction between factors A and B, denoted
by AB, is the average of the difference between these two effects, which in this case is
(22 − 22)/2 = 0. Hence, in experiment I, there is no interaction between factors A and B.
When there is no interaction between two factors, the two lines shown in Figure 17.5.1a
are parallel. Similarly in experiment II we can see that interaction between factors A and
B is AB = ((64−30) − (60−40))/2 = 7. That is, there is an interaction between factors
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Table 17.5.1 Responses of two experiments with two
factors A and B.

(a) Experiment I (b) Experiment II

A B Responses A B Responses

Low Low 36 Low Low 40
Low High 58 Low High 60
High Low 48 High Low 30
High High 70 High High 64

B-low

A-low

B-high

A-high

Responses

(b)

30

40

50

60

70

80

B-low

A-low

B-high

A-high

30

40

50

60

70

80

Responses

(a)

Figure 17.5.1 Plots of responses in (a) experiment I (b) experiment II.

A and B. When there is an interaction between two factors, then the two lines shown in
Figure 17.5.1b, intersect. The case of interaction between two factors having three or more
levels is discussed later.

The models for two-way experimental layouts with interactions and with no interac-
tions are given in (17.5.1) and (17.5.2), respectively; with interaction, the model is

Yijk = μ + αi + βj + γij + εijk, i = 1, 2, . . . , a; j = 1, 2, . . . , b; k = 1, 2, . . . , r (17.5.1)

with side conditions

a∑
i=1

αi = 0,
b∑

j=1

βj = 0,
a∑

i=1

γij =
b∑

j=1

γij = 0 (17.5.1a)

where a and b are the number of levels of factors A and B, respectively, r is the number
of replications of each treatment (i, j), and γij is the interaction effect when factor A is
applied at the ith level and factor B is applied at the jth level. Further the εijk are assumed
to be independently distributed N(0, σ2). If γij = 0 for all (i, j), then the model with no
interaction between A and B is

yijk = μ + αi + βj + εijk, i = 1, 2, . . . , a ; j = 1, 2, . . . , b ; k = 1, 2, . . . , r (17.5.2)

with side conditions
a∑

i=1

αi = 0,
b∑

j=1

βj = 0 (17.5.2a)
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Table 17.5.2 Observations from a two-way experimental layout with one
observation per cell.

Factor A
Factor B

B1 B2 B3 · · · Bb Totals Means

A1 y11 y12 y13 · · · y1b T1· y1·
A2 y21 y22 y23 · · · y2b T2· y2·
...

...
...

... · · ·
...

...
...

Aa ya1 ya2 ya3 · · · yab Ta· ya·

Totals T·1 T·2 T·3 · · · T·b T·· = G

Means y·1 y·2 y·3 · · · y·b y··

where a and b are again the number of levels of factors A and B, respectively, and r
is the number of replications. Further the error terms are assumed to be independently
distributed as N(0, σ2). The model (17.5.2) is usually referred to as an additive model (see
also after Table 17.5.2 below).

17.5.1 Two-Way Experimental Layouts with One
Observation per Cell

Suppose we have two factors, A and B, at a and b levels, respectively, where factor A
represents a varieties of wheat and B represents the nitrogen used at b different levels.
Further, we suppose that each variety of wheat occurs exactly once with each level of
nitrogen. Then, we have a completely crossed experiment with balanced data having ab
observations. Each observation is specified by the levels of the two factors. The observations
are usually presented in tabular form as in Table 17.5.2.

In a two-way experimental layout with one observation per cell, the model employed is
given in (17.5.2), and since r = 1, we replace subscripts ijk on y and ε with ij. It is impor-
tant to note that we are assuming that interactions play no role and are zero or negligible.
If we do not assume interactions to be negligible, then there are no degrees of freedom
available for the error sum of squares, so the error variance cannot be estimated. If the
experimenter believes that there may be significant interactions, then the ab experiments
must be replicated. However, if the experimenter can pinpoint which interactions are sig-
nificant and which are not, then he or she can assume the nonsignificant interactions to be
zero and use the corresponding degrees of freedom to estimate the error variance. Further,
it is important to note that since the model used for two-way experimental layouts with one
observation per cell is exactly the same as that used for RCB-designs, the data analysis for
a two-way experimental layout with one observation per cell is carried out exactly in the
same manner as for RCB-designs. However, there are two important differences between
the RCB-designs and the two-way experimental layout with one observation per cell:

1. In an RCB-design, there is one factor of prime interest, while the other factor
(blocks) just represents a nuisance variable. In a two-way experimental design with
one observation per cell, both factors are of prime interest.

2. In an RCB-design, randomization is done within each block separately, whereas
in a two-way experimental design with one observation per cell, randomization is
done for the whole experiment.
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17.5.2 Two-Way Experimental Layouts with r > 1
Observations per Cell

In a two-way experimental layout with r observations per cell, the model employed is that
given in (17.5.1).

To restate, the model is

Yijk = μ + αi + βj + γij + εijk, i = 1, 2, . . . , a; j = 1, 2, . . . , b; k = 1, 2, . . . , r (17.5.3)

with side conditions

a∑
i=1

αi = 0,

b∑
j=1

βj = 0,

a∑
i=1

γij =
b∑

j=1

γij = 0 (17.5.3a)

where a and b are the number of levels of factors A and B, respectively, r is the number of
replications of all the ab treatments, and αi, βj , and γij are unknown parameters. Further,
the εijk are assumed to be independently distributed as N(0, σ2). The observations from
a two-way experimental layout are displayed in Table 17.5.3.

Table 17.5.3 Observations from a two-way experimental layout with r > 1
observations per cell.

Factor A
Factor B

B1 B2 · · · Bb Row totals Row means

A1

y111

T11·
...

y11·
y11r

y121

T12·
...

y12·
y12r

· · ·

y1b1

T1b·
...

y1b·
y1br

T1·· y1··

A2

y211

T21·
...

y21·
y21r

y221

T22·
...

y22·
y22r

· · ·

y2b1

T2b·
...

y2b·
y2br

T2·· y2··

...
...

... · · ·
...

...
...

Aa

ya11

Ta1·
...

ya1·
ya1r

ya21

T12·
...

ya2·
ya2r

· · ·

yab1

Tab·
...

yab·
yabr

Ta·· ya··

Column totals T·1· T·2· · · · T·b· G = T···

Column means y·1· y·2· · · · y·b· y···
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Tij· is the sum of all observations in the ijth cell and yij· is the average of all the
observations in the ijth cell; Ti·· is the sum of all observations in the ith row and yi·· is
the average of all the observations in the ith row; T·j· is the sum of all observations in the
jth column and y·j· is the average of all the observations in the jth column; and y··· is the
grand average of all the observations with T··· (or G) denoting the (grand) sum of all the
observations, so that

⎧⎪⎪⎨
⎪⎪⎩

yij· = 1
r

∑r
k=1 yijk or yij· = 1

rTij· (cell averages)
yi·· = 1

br

∑b
j=1

∑r
k=1 yijk or yi·· = 1

br Ti·· (row averages)
y·j· = 1

ar

∑a
i=1
∑r

k=1 yijk or y·j· = 1
ar T·j· (column averages)

y··· = 1
abr

∑a
i=1
∑b

j=1
∑r

k=1 yijk or y··· = 1
abr T··· (grand averages)

(17.5.4)

The error sum of squares under the model (17.5.3) is given by

Q =
a∑

i=1

b∑
j=1

r∑
k=1

(yijk − μ − αi − βj − γij)
2 (17.5.5)

The least-squares estimates of μ, αi, βj , and γij are obtained by minimizing the error sum
of squares (17.5.5) under the model (17.5.3), subject to the conditions in (17.5.3a).

The least-squares normal equations, as in the one-way experimental layout,
are obtained by equating to zero the partial derivatives of Q =

∑a
i=1
∑b

j=1
∑r

k=1
(Yijk − μ − αi − βj − γij)

2 with respect to μ, αi, βj , and γij . Clearly, by solving
these normal equations subject to the conditions in (17.5.3a), we obtain the solutions
μ̂, α̂i, β̂j , γ̂ij given by

μ̂ = y···, α̂i = yi·· − y···, β̂j = y·j· − y···, and γ̂ij = yij· − yi·· − y·j· + y··· (17.5.5a)

Substituting (17.5.5a) in (17.5.5), we have that Q has minimum value, say SSE , given by

Min Q = SSE =
a∑

i=1

b∑
j=1

r∑
k=1

(yijk − yij·)
2 (17.5.6)

Further, under the assumption that the βj are independent and distributed as N(0, σ2),
it can be shown that SSE is distributed as σ2χ2

ab(r−1) so that

σ̂2 = S2 =
Min Q

ab(r − 1)
=

SSE

ab(r − 1)
= MSE (17.5.7)

is an unbiased estimate of σ2.
The total variation sum of squares and its various components are given by

SStotal =
a∑

i=1

b∑
j=1

r∑
k=1

(yijk − y···)
2 =

a∑
i=1

b∑
j=1

r∑
k=1

y2
ijk − G2

N
, N = abr (17.5.8)

SSA = br
a∑

i=1

(yi·· − y···)
2 = br

a∑
i=1

y2
i·· −

G2

N
=

a∑
i=1

T 2
i··

br
− G2

N
(17.5.9)



17.5 Two-Way Experimental Layouts 803

Similarly

SSB = ar

b∑
j=1

(y·j· − y···)
2 =
∑

j

T 2
·j·

ar
− G2

abr
(17.5.10)

Also from (17.5.6) we can show that

SSE =
∑

i

∑
j

∑
k

y2
ijk −

∑
i

∑
j

T 2
ij·
r

(17.5.11)

Finally, we let SSAB = r
∑∑

γ̂2
ij the interaction sum of squares, so that

SSAB = r
a∑

i=1

b∑
j=1

(yij· − yi·· − y·j· + y···)
2 (17.5.11a)

The total sum of squares of deviations yijk from the grand mean y··· is

SStotal =
a∑

i=1

b∑
j=1

r∑
k=1

(yijk − y···)
2

=
∑ ∑ ∑

[(yijk − yij·) + (yij· − yi·· − y·j· − y···) + (yi·· − y···) + (y·j· − y···)]
2

=
∑∑∑

(yijk − yij·)
2 +
∑∑∑

(yij· − yi· − y·j· + y···)
2

+
∑∑∑

(yi·· − y···)
2 +
∑ ∑ ∑

(y·j· − y···)
2

Because the cross products sum to zero. Thus, we have

SStotal = SSE + SSAB + SSA + SSB (17.5.12)

Thus, we have
SSAB = SStotal − SSA − SSB − SSE (17.5.13)

Sometimes SSAB may also be obtained using the following expression:

SSAB =
a∑

i=1

b∑
j=1

T 2
ij·
r

− G2

N
− SSA − SSB (17.5.13a)

Note that SSA, SSB, and SSAB can also be obtained as:

SSA =
∑

i

α̂iTi··, SSB =
∑

j

β̂jT·j·, SSAB =
∑

i

∑
j

γ̂ijTij· (17.5.13b)

where α̂i, β̂j , and γ̂ij are the least-square estimates of αi, βj , and γij , respectively, given
in (17.5.5a).

Next, it can easily be shown that under normality SSE , SSA, SSB, and SSAB are
independently distributed as σ2χ2

ab(r−1), σ2χ2
(a−1)(λ1), σ2χ2

(b−1)(λ2), and σ2χ2
(a−1)(b−1)(λ3),

respectively, where λ1, λ2, and λ3 are the noncentrality parameters given by
λ1 =

(
br
∑

iα
2
i/σ2

)
, λ2 =

(
ar
∑

jβ
2
j/σ2

)
, and λ3 =

(
r
∑

i

∑
jγ

2
ij/σ2

)
. Note, however, that
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under the null hypotheses to be discussed here, the noncentrality parameters are zero, so
SSA, SSB and SSAB are distributed as central Chi-squares, whereas SSE , regardless of
any hypothesis, is always distributed as a central Chi-square. Thus, we have

if αi = 0, all i, then
SSA/(a − 1)

SSE/ab(r − 1)
=

MSA

MSE

∼ F(a−1),ab(r−1) (17.5.14)

if βi = 0, all j, then
SSB/(b − 1)

SSE/ab(r − 1)
=

MSB

MSE

∼ F(b−1),ab(r−1) (17.5.15)

and

if αij = 0, all i, j, then
SSAB/(a − 1)(b − 1)

SSE/ab(r − 1)
=

MSAB

MSE

∼ F(a−1)(b−1),ab(r−1) (17.5.16)

In a two-way experimental design, the hypotheses of prime interest are as follows:

1. H0 : α1 = α2 = · · · = αa = 0 versus H1 : not all αi = 0
2. H0 : β1 = β2 = · · · = βb = 0 versus H1 : not all βi = 0
3. H0 : γ11 = γ12 = · · · = γab = 0 versus H1 : not all γij = 0

Hence, we reject the hypothesis that all main effects αi = 0 at the α level of significance if

MSA

MSE

≥ F(a−1),ab(r−1);α (17.5.17)

Similarly, we reject the hypothesis that all main effects βj = 0 at the α level of significance
if

MSB

MSE

≥ F(b−1),ab(r−1);α (17.5.18)

Last, we reject the hypothesis that all interactions γij = 0 at the α level of significance if

MSAB

MSE

≥ F(a−1)(b−1),ab(r−1);α

These results are summarized in the ANOVA Table 17.5.4.
The two-way experimental design, yijk = μ + αi + βj + γij + εijk, when the interac-

tions are negligible, reduces to yijk = μ + αi + βj + εijk. The reduced model is usually
referred to as an additive model.

Usually, the test of H0 : γij = 0 for all i, j is performed first. If the hypothesis that
interactions are zero is rejected, then the main effects for each factor are tested at each
level of the factor. For example, if interaction is indicated, the main effects of factor, say,
A should be tested at each level of factor B. In other words, to test the main effects of
factor A, we proceed as if we have one-way experimental layouts. If H0 : γij = 0 for all
i, j is not rejected, then we proceed to test the effects of two factors using (17.5.17) and
(17.5.18).

Example 17.5.1 (Operators and machines manufacturing ball-bearings) Four operators
work in turn on four machines to produce ball bearings. The data in Table 17.5.5 gives the
percentage of defective ball-bearings produced by each operator using the different machines
on two consecutive days. In each replication, all 16 treatments were run in random order.



17.5 Two-Way Experimental Layouts 805

Table 17.5.4 ANOVA table for a two-way experimental design (r observations per
cell).

Source DF SS MS E(MS) F -ratio

A a − 1 SSA MSA =
SSA

(a − 1)
σ2 +

br

a − 1

a∑

i=1

α2
i

MSA

MSE

B b − 1 SSB MSB =
SSB

(b − 1)
σ2 +

ar

b − 1

b∑

j=1

β2
j

MSB

MSE

AB (a − 1)(b − 1) SSAB MSE =
SSAB

(a − 1)(b − 1)
σ2 +

r

(a − 1)(b − 1)

∑

i

∑

j

γ2
ij

MSAB

MSE

Error ab(r − 1) SSE MSE =
SSE

ab(r − 1)
σ2

Total abr − 1 SStotal

Table 17.5.5 Percentage (after coding each value by subtracting 10) of defective
ball-bearings.

Operators M1 M2 M3 M4 Row totals Row means

O1
4 (5)
6

2 (3)
4

0 (2)
4

2 (2)
2 T1·· = 24 y1·· = 3

O2
3 (4)
5

5 (4)
3

2 (2)
2

0 (2)
4 T2·· = 24 y2·· = 3

O3
2 (3)
4

1 (3)
5

2 (4)
6

1 (2)
3 T3·· = 24 y3·· = 3

O4
6 (7)
8

4 (5)
6

4 (4)
4

3 (4)
5 T4·· = 40 y4·· = 5

Column
totals

T·1· = 38 T·2· = 30 T·3· = 24 T·4· = 20 G = T··· = 112

Column
means

y·1· = 4 · 75 y·2· = 3 · 75 y·3· = 3 y·4· = 2.5 y··· = 3.5

The numbers in parentheses are the cell means.
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Analyze the data on defective ball-bearings in Table 17.5.5. (The numbers in parentheses
are the cell means.)

Solution: Using (17.5.8)–(17.5.12), we have (A = operators, B = machines)

SSA = (24)2+(24)2+(24)2+(40)2

(4)(2) − (112)2

(4)(4)(2) = 24

SSB = (38)2+(30)2+(24)2+(20)2

(8) − (112)2

(32) = 23
SSE = (42 + 62 + · · · + 32 + 52) − 1

2 (102 + · · · + 82) = 50
SStot = (42 + · · · + 32 + 52) − (112)2

(32) = 110
SSAB = SStot − SSA − SSB − SSE = 13

The ANOVA table is as shown in Table 17.5.6.
Since the F-ratio for the interaction is less than 1 and F9,16;0.05 = 2.54, the interactions

are not significant. We now consider tests concerning main effects. The mean squares due to
A as well as B can now be tested against the error mean square. Moreover, F3,16;0.05 = 3.24,
which is greater than the observed value of F-ratio for A as well as for B. Therefore, the
main effects due to operators and due to machines are not significant.

Table 17.5.6 ANOVA table for the data in Table 17.5.6.

Source DF SS MS F -ratio

A 3 24 8.00 2.56
B 3 23 7.67 2.45
AB 9 13 1.44 0.46
Error 16 50 3.125

Total 31 110

Based on the statistical procedure with significance level 0.05 we can conclude that
neither operators nor machines have any significant effect on the percentage of defective
ball-bearings produced.

Example 17.5.2 Analyze the defective ball-bearings data in Example 17.5.1 using
MINITAB and R.

MINITAB

1. Enter the data in column C1.
2. Enter identifiers (1, 2, 3, 4) of treatments of factor A (Operators), in column C2.
3. Enter identifiers (1, 2, 3, 4) of treatments of factor B (Machines), in column C3.
4. We name these columns Obs., Operators, and Machines respectively.
5. Select Stat > Anova > General Linear Model > Fit General Linear Model:.
6. In the dialog box that appears type in Obs. in the box below Response, Operators

and Machines in the box below Factors. Click on Model and in the dialog box
that appears, add Interactions through order: 2 by highlighting both the factors
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Operators and Machines. Then, click OK. The MINITAB output appears in the
Session window as shown below:

General Linear Model: Obs versus Operators, Machines

Method

Factor Information Analysis of Variance

Model Summary

Factor coding  (–1, 0, +1)

Factor

S R-sq R-sq(adj) R-sq(pred)

1.76777 54.55% 11.93% 0.00%

Type Levels Values Source

Operators 3 24.00 8.000 2.56 0.091

Machines

Error

Total

3 23.00 7.667 2.45 0.101

Operators*Machines 9 13.00 1.444

16 50.00

31 110.00

3.125

0.46 0.879

DF Adj SS Adj MS F-Value P-Value

Operators Fixed 4 1, 2, 3, 4

Machines Fixed 4 1, 2, 3, 4

To conduct the multiple comparisons, select Stat > Anova > General Linear
Model > Comparisons:. Then select the comparison Method (e.g., Tukey) and Choose
terms for comparisons (e.g., Operators) from the new window appears. Bellow is
the Tukey multiple comparison MINITAB outputs for both the factors Operators and
Machines.

–3

4 – 3

4 – 2

3 – 2

4 – 1

3 – 1

2 – 1

–2 –1 0 1 2 3 4 5

O
p
e
ra

to
rs

Tukey Simultaneous 95% CIs

Differences of Means for Obs

–5 –4 –3 –2 –1 0 1 2

4 – 3

4 – 2

3 – 2

4 – 1

3 – 1

2 – 1

M
a
c
h
in

e
s

Tukey Simultaneous 95% CIs

Differences of Means for Obs

As shown in the above Tukey multiple comparison MINITAB outputs, none of operator
nor machine produces significantly different amount of defective ball-bearings since all the
intervals contain zero indicating corresponding means are insignificant.

USING R

Solution: The R function ‘aov()’ can be used to fit the required Two-Way experimental
layout as shown in the following R-code.

Obs = c(4,6,3,5,2,4,6,8,2,4,5,3,1,5,4,6,0,4,2,2,2,6,4,4,2,2,0,4,1,3,3,5)
Operators = c(1,1,2,2,3,3,4,4,1,1,2,2,3,3,4,4,1,1,2,2,3,3,4,4,1,1,2,2,3,3,4,4)
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Machines = c(1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4)

#Fitting ANOVA model
model = aov(Obs ∼ factor(Operators)*factor(Machines))
anova(model)

#Diagnostic plots
par(mfrow=c(2,2))
plot(model)

#Tukey Honestly Significant Differences
TukeyHSD(model)

Note that interpretation of MINITAB and R is exactly the same as given in Example 17.5.1.

Example 17.5.3 (Hydroquinine and thermometers) Duncan (1958) quotes the following
example. Three analysts, A1, A2,, and A3, each makes two determinations of the melting
point of hydroquinine (in degrees centigrade) with each of four different thermometers
B1, B2, B3, and B4. Each reading minus 172◦C is given in Table 17.5.7. In each replication,
all 12 treatments were run in random order (the entries in parentheses are the cell means
yij). In this example, a = 3, b = 4, and r = 2.

Solution: Using (17.5.8)–(17.5.12), we obtain

SSA = 92+12+8.52

8 − (18.5)2

24 = 19.281 − 14.260 = 5.021
SSB = 82+62+12+3.52

6 − (18.5)2

24 = 18.875 − 14.260 = 4.615
SSE = 22 + 1.52 + · · · + 0.52 + 12 − 3.52+2.52+···+1.52

2 = 29.250 − 26.625 = 2.625
SStotal = 22 + · · · + 0.52 + 12 − 18.52

24 = 29.250 − 14.260 = 14.990

Table 17.5.7 Data on hydroquinine and thermometers.

Thermometers

Analyst B1 B2 B3 B4 Ti··

A1
2.0
1.5(1.75)

1.0
1.5(1.25)

−0.5
0.5 (0.00)

1.5
1.5(1.50) 9.0

A2
1.0
1.0(1.00)

0.0
1.0(0.50)

−1.0
0.0 (−0.50)

−1.0
0.0 (−0.50) 1.0

A3
1.5
1.0(1.25)

1.0
1.5(1.25)

1.0
1.0(1.00)

0.5
1.0(0.75) 8.5

T·j· 8.0 6.0 1.0 3.5 18.5
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Table 17.5.8 ANOVA table for the data in Table 17.5.7.

Source DF SS MS F -ratio

A 2 5.021 2.51 11.40
B 3 4.615 1.54 7.000
AB 6 2.729 0.45 2.045
Error 12 2.625 0.22

Total 23 14.990

Hence,

SSAB = 14.990 − (5.021 + 4.615 + 2.625) = 14.990 − 12.261 = 2.729

The numerical results for the ANOVA table for this example are shown in Table 17.5.8.
We first test the hypothesis of zero interaction effects between analysts and ther-

mometers, using the ratio of the mean squares for interaction and error. We find that the
observed value of this F-ratio is

0.45
0.22

= 2.045

Since F6,12;0.05 = 2.996 ∼= 3.00, we can conclude that the interaction effects are not signifi-
cantly different from zero, and we may now consider tests concerning main effects.

To test the hypothesis that effects due to analysts are zero, we use the ratio of the
mean squares for the analysts and the mean square for error and find that

2.51
0.22

= 11.41

Since F2,12;0.05 = 3.885, we reject this hypothesis to conclude that the main effects due
to analysts are significantly different. To test the hypothesis of zero main effects due
to thermometers, we find that the observed value of the ratio of the mean square for
thermometers to the mean square for error is

1.54
0.22

= 7.0

Since F3,12;0.05 = 3.490, we reject the hypothesis that the main effects due to thermometers
are zero, and thus conclude that there are significant main effects due to thermometers.
Since we have rejected the hypotheses of equal main effects, we should estimate effects
and find confidence intervals for them. For example, we have

α̂1 = Y 1·· − Y ··· = 1.125 − 0.771 = 0.354, β̂1 = Y ·1· − Y ··· = 1.333 − 0.771 = 0.562

Similarly we have

α̂2 = −0.646, α̂3 = 0.2915, β̂2 = 0.229, β̂3 = −0.604, β̂4 = −0.188
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Now using MSE as an estimator of σ2, along with using the Student t-distribution, we
can show that 100(1 − α)% confidence intervals for αi and βj are given by

(
α̂i ± tab(r−1);α/2

√
(a − 1)MSE

abr

)
(17.5.19)

(
β̂j ± tab(r−1);α/2

√
(b − 1)MSE

abr

)
(17.5.20)

It is left to the reader to compute the confidence intervals for the main effects of
Example 17.5.3. Sometimes, when we do not reject the null hypothesis of interactions
being zero, we may want to test a hypothesis about contrasts of the main effects. For
example, suppose that B1 and B2 are mercury-bulb thermometers, while B3 and B4 are
wet-bulb thermometers. Are the mercury bulbs doing the same job as the wet bulbs? To
investigate this, suppose that we let η = [(β1 + β2) − (β3 + β4)]. That is, we choose to test
a hypothesis at, say, the 0.05 level of significance

H0 : η = β1 + β2 − β3 − β4 = 0 versus H1 : η = β1 + β2 − β3 − β4 �= 0

We have that the unbiased estimator of η = [(β1 + β2) − (β3 + β4)] is

η̂ = [(β̂1 + β̂2) − (β̂3 + β̂4)] = [((Y ·1· − Y ···) + (Y ·2· − Y ···)) − ((Y ·3· − Y ···) + (Y ·4· − Y ···))]

= Y ·1· + Y ·2· − Y ·3· − Y ·4·

But observations in the jth column are independent of observations in the j′ th column
for all (j, j′), j �= j′, so that

V ar(η̂) =
4∑

j=1

V (Y ·j·) =
4∑

j=1

σ2

ar
=

4
6
σ2 =

2
3
σ2

Hence, the estimate of V ar(η̂) is (2/3)σ̂2 = (2/3)MSE = (2/3)(0.22) = 0.146, and the 95%
confidence interval for η is then given by

(η̂ ± t12;0.025

√
0.146) = (1.583 ± 2.179

√
0.146) = (1.583 ± 0.833) = (0.750, 2.416)

Since the confidence interval for η does not contain 0, we reject H0 and conclude that
there is a significant difference between mercury-bulb and wet-bulb thermometers at the
5% level of significance.

17.5.3 Blocking in Two-Way Experimental Layouts
This section is available for download from the book website: www.wiley.com/college/
gupta/statistics2e.
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17.5.4 Extending Two-Way Experimental Designs
to n-Way Experimental Layouts

This section is available for download from the book website: www.wiley.com/college/
gupta/statistics2e.

PRACTICE PROBLEMS FOR SECTION 17.5

1. A manufacturing engineer uses four different raw materials (R1, R2, R3, R4) and
three different temperatures (T1, T2, T3) to produce copper wires used in electric
cables. The engineer wishes to study the effect of different raw materials and three
different temperatures on the tensile strength of the wire. She replicates the whole
experiment twice and obtains the data given below. Give the mathematical model
for the study in this problem and prepare the ANOVA table.

R1 R2 R3 R4

T1 79 72 69 73
76 73 78 80

T2 68 74 77 71
72 78 72 69

T3 75 82 76 82
71 79 70 79

2. Refer to the data in Problem 1. Analyze these data using α = 0.05. Is there a
significant interaction effect? State the hypothesis that leads to a test that the
effects of raw materials are the same at the 5% level of significance and perform
the test. Give your conclusions.

3. In Problem 1, test the hypothesis that the effects of temperature are the same at
the 5% level of significance. If any of the hypotheses in this problem and in Prob-
lem 2 are rejected, then estimate the corresponding effects and find 95% confidence
intervals for these effects.

4. Suppose that the effects of the raw materials Rj in Problem 1 are denoted by
βj , j = 1, 2, 3, 4. Consider the following orthogonal contrasts on the data in that
problem:

ξ1 = β1 − β2, ξ2 = β1 + β2 − 2β3, ξ3 = β1 + β2 + β3 − 3β4

Use the mean square error term of the ANOVA table in Problem 1 to separately
test the hypotheses ξi = 0, i = 1, 2, 3, each at the 5% level of significance.

5. Refer to Problem 1. Suppose that a manufacturing engineer conducted an experi-
ment on copper wire in two different plants so that the experiment was replicated
using the two plants. Since there might be some variability from plant to plant,
she regarded each plant as a block. Write down the data in Problem 1 in two
blocks and then reanalyze these data. Regard the upper figure in the (Ti, Rj) cell
as an observation belonging to plant I (replication 1) and the lower figure as an
observation belonging to plant II (replication 2). Use α = 0.05.

6. An experiment was performed to study the effect of plate temperature and fila-
ment lighting on transconductance of a certain type of tube. Two levels of plate



812 17 Analysis of Variance

temperature (550 and 600 ◦F) and four levels of filament lighting current L1, L2, L3,
and L4 were used; three replicates were made for each combination of plate temper-
ature and filament current. The transconductance measurements are given below
(from Bowker and Lieberman, 1959). Give an appropriate mathematical model
for this study and perform a complete analysis of variance of these data. Find
the p-value for the F -statistics you used for testing each of the usual hypothe-
ses. (To compute the exact p-value, you will need to use one of the statistical
packages.)

Filament lighting current

Plate temperature L1 L2 L3 L4

T1 (550◦F) 3774 4710 4176 4540
4364 4180 4140 4530
4374 4514 4398 3964

T2 (600◦F) 4216 3828 4122 4484
4524 4170 4280 4332
4136 4180 4226 4390

7. Suppose that the three replications of the experiment in Problem 6 were carried out
on three different days. Since there might be some variability from day to day, the
experimenter regarded each day as a block. Write down the data in Problem 6 in
three blocks and then reanalyze these data. Regard the upper figure in the (Ti, Lj)
cell as an observation belonging to day I (replication 1), the middle figure as to
day II (replication 2), and the lower figure as belonging to day III (replication 3).

8. An experiment was run to determine the effect of three types of oil, a, b, c on the
wear of four kinds of piston rings, A, B, C, D. The measure of wear was taken as
the logarithm of loss in piston-ring weight (in grams times 100) in a 12-hours test
run. The results of the experiment are shown below:

Oil type

Piston ring type a b c

A 1.782 1.568 1.570
B 1.306 1.223 1.240
C 1.149 1.029 1.068
D 1.025 1.919 1.982

Prepare the ANOVA table for these data and perform the usual testing of hypothe-
ses. Using the S-method and T-method, find 95% confidence intervals for the
contrast β1 − 2β2 + β3, where β1, β2, and β3 are the effects of oil types. Compare
the size of the confidence intervals obtained using the S-method and the T-method.

9. Measurement of “filling time” in minutes for specimens of cloths A, B, and C taken
from machines 1, 2, . . . , 9 in a certain plant gave the results shown below (actual
measurement −78.00).
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Machine

Cloth 1 2 3 4 5 6 7 8 9

A 18.76 20.69 19.77 19.85 22.28 20.39 24.31 22.90 19.28
21.18 23.20 23.94 18.92 20.45 21.80 26.29 25.42 22.04

B 21.18 16.85 20.75 18.72 18.97 19.52 20.08 21.27 15.67
19.10 20.16 21.49 16.14 20.31 21.27 19.36 17.82 18.84

C 21.74 22.68 21.90 20.28 19.89 21.12 23.02 27.48 18.70
18.99 23.59 18.61 18.71 18.36 18.59 18.85 22.95 23.39

(a) Prepare the ANOVA table for this set of data.
(b) Test the hypothesis that all interactions are zero. Use α = 0.05.

(c) If the hypothesis in (b) is not rejected, then test the hypotheses that machine
effects and cloth effects are zero. Find the p-value for the F -statistics you used
for testing each of these hypotheses.

10. The quality control department of a fabric-finishing plant is studying the effect of
several factors on the dyeing of cotton synthetic cloth used in men’s shirts. Three
operators, three cycle times, and two temperatures were selected, and three small
specimens of cloth were dyed under each set of conditions. The finished cloth was
compared to a standard and a numerical score was assigned. The results are given
in the table below. Analyze the data and state your conclusions. Comment on the
model’s adequacy (data from Montgomery, 2009a,b, used with permission).

Operators at 300◦C Operators at 350◦C

Cycle time 1 2 3 1 2 3

23 27 31 24 38 34
40 24 28 32 23 36 36

25 26 29 28 35 39

36 34 33 37 34 34
50 35 38 34 39 38 36

36 39 35 35 36 31

28 35 26 26 36 28
60 24 35 27 29 37 26

27 34 25 35 34 24

17.6 LATIN SQUARE DESIGNS

In Section 17.4, we discussed RCB designs where a division was made on all the exper-
imental units into different blocks, such that the experimental units were homogeneous,
but there could be heterogeneity between blocks. By doing so, we were able to eliminate



814 17 Analysis of Variance

the effects of one nuisance variable. However, quite often there is a need to eliminate the
effects of two nuisance variables. For example, in a manufacturing process the difference
between machines and operators may be considered as two nuisance variables, and in agri-
cultural experiments we may have unwanted effects due to the fertility of the plots that
usually run in two directions; in pharmaceutical experiments, patients are being treated
with certain drugs of different doses in different hospitals, so the difference between the
patients and the hospitals are two nuisance variables.

In each case, we want to eliminate the effects of the two nuisance variables. A fairly
simple experimental design for such a situation is the Latin square design. A Latin square
design consists of RCBs in two directions, since each row and each column is a RCB. In a
Latin square design, two nuisance variables or factors, say A and B, should be identified
as blocking variables, or, sources of unwanted variability that cannot be excluded from the
experimental environment. The factor C denotes the studied variable whose influence on
the response is of primary concern to the experimenter. We say that a r × r Latin square
design is an arrangement of r Latin letters in a r × r square array such that each Latin
letter occurs once in each row and once in each column. For example, a 4 × 4 Latin square
is shown here:

A B C D

B C D A

C D A B

D A B C

A Latin square is called a standard Latin square if the letters in the first row and the
first column are in alphabetical order. For example, the only possible 4 × 4 standard Latin
squares are

A B C D A B C D A B C D A B C D

B C D A B A D C B D A C B A D C

C D A B C D A B C A D B C D B A

D A B C D C B A D C B A D C A B

The total number of 4 × 4 Latin squares is 576. These Latin squares can be obtained
from the standard Latin squares by first permuting all (entire) four columns in 4! ways and
then, in each of these, permuting the last three rows in 3! ways, so that one standard Latin
square yields 4! × 3! = 144 different Latin squares. Thus, four standard Latin squares yield
a total of 4 × 144 = 576 different Latin squares.

An advantage of a r × r Latin square design is that it allows us to study three factors
(each factor at r levels) using only r2 treatments. That is, this design uses only (1/r) of
the treatments that would be needed to run an experiment using a completely crossed
three-way experimental design. However, the disadvantages of Latin square designs are (i)
the model for a Latin square design is additive—that is, all interactions are assumed to
be zero—and (ii) the Latin square puts a restriction on each factor such that each must
have r levels. This sometimes can cause problems. For example, we may not have enough
resources or raw materials, say, to run the experiment at all levels of a certain factor.

Let yijk be the observed value corresponding to the ith level of factor A, jth level of
factor B, and kth level of factor C. Since the kth level of factor C may or may not be
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present in the ij cell, the treatment (i, j, k) is present only in one cell. Thus, the model for
a Latin square design is given by

yijk = μ + αi + βj + γk + εijk, (i, j, k) ∈ Ω (17.6.1)

where Ω is a set of r2 values assumed by (i, j, k). This is illustrated in the 3 × 3 Latin
square below. The side conditions for model (17.6.1) are∑

i

αi =
∑

j

βj =
∑

k

γk = 0 (17.6.1a)

and we also assume that εijk are independent N(0, σ2).
Under the model (17.6.1) and (17.6.1a) the estimates of μ, αi, βj , and γk are obtained

by minimizing the error sum of squares Q given by

Q =
∑

(i,j,k)∈Ω

(yijk − μ − αi − βj − γk)2 (17.6.2)

subject to conditions (17.6.1a). On equating to zero the partial derivatives of Q with
respect to μ, αi, βj , and γk, we obtain the least-square normal equations. By solving these
normal equations, we obtain the estimators of μ, αi, βj , and γk. That is,

μ̂ = y···, α̂i = yi·· − y···, β̂j = y·j· − y···, and γ̂k = y··k − y··· (17.6.3)

where

y··· =
1
r2

∑
(i,j,k)∈Ω

yijk; yi·· =
1
r

∑
j

∑
k

yijk, (i, j, k) ∈ Ω; y·j· =
1
r

∑
j

∑
k

yijk, (i, j, k) ∈ Ω

and
y··k =

1
r

∑
i

∑
j

yijk, (i, j, k) ∈ Ω

We illustrate some of these operations with the help of a 3 × 3 Latin square. Suppose that
we assign the levels of factor A and B to the rows and columns, and the levels of C to the
induced cells, so that the 3 × 3 Latin square design would appear as

B1 B2 B3

A1 C1 C2 C3

A2 C2 C3 C1

A3 C3 C1 C2

The 32 = 9 treatments used in this design are (reading across rows)

{A1B1C1, A1B2C2, A1B3C3, A2B1C2, A2B2C3, A2B3C1, A3B1C3, A3B2C1, A3B3C2}

so the observations obtained are

{y111, y122, y133, y212, y223, y231, y313, y321, y332}



816 17 Analysis of Variance

The index set Ω of nine values (3 × 3 = 9) assumed by (i, j, k) is

Ω = {(1, 1, 1), (1, 2, 2), (1, 3, 3), (2, 1, 2), (2, 2, 3), (2, 3, 1), (3, 1, 3), (3, 2, 1), (3, 3, 2)}

For example, we have for the sum of all observations generated by A1 that

T1·· = y111 + y122 + y133, y1·· =
1
3
(y111 + y122 + y133) =

1
3
T1··

Let
∑ ∑ ∑

denote
∑∑∑

(i,j,k)∈Ω, where Ω is the set of r2 values indexing the treat-
ments used.

We also define various totals as follows:

Ti·· = Total of ith row; yi·· = Ti··/r, mean of the ith row
T·j· = Total of jth column; y·j· = T·j·/r, mean of the jth column
T··k = Total of cells containing the treatment Ck; y··k = T··k/r, mean of the
treatment Ck observations
T··· = Total of all r2 observation values; y··· = T···/r2 = G/r2, mean of all r2

observations.

Then for the r × r Latin square, the total variation sum of squares and the variation
sum of squares due to rows, columns, and treatments are given by

SStotal =
∑ ∑ ∑

(yijk − y···)
2 =
∑ ∑ ∑

y2
ijk − T 2

···
r2 , (i, j, k) ∈ Ω (17.6.4)

SSA =
r∑

i=1

(yi·· − y···)
2 =

1
r

r∑
i=1

T 2
i·· −

T 2
. . .

r2 (17.6.5)

SSB =
r∑

j=1

(y·j· − y···)
2 =

1
r

r∑
j=1

T 2
·j· −

T 2
. . .

r2 (17.6.6)

SSC =
r∑

k=1

(y··k − y···)
2 =

1
r

r∑
k=1

T 2
··k − T 2

···
r2 (17.6.7)

From Equation (17.6.2) we can easily see that MinQ is given by

SSE = MinQ =
∑∑∑

(yijk − yi·· − y·j· − y··k + 2y···)
2 = SStotal − SSA − SSB − SSC

(17.6.8)
Further, under the normality assumption, SSE and each of SSA, SSB , and SSC are inde-
pendently distributed as σ2χ2

(r−1)(r−2), σ2χ2
r−1, respectively, when the hypotheses stated

below in (17.6.10)–(17.6.12) hold. The preceding results are summarized in Table 17.6.1.
The estimator of the error variance σ2 is given by

σ̂2 = S2 = MSE = SSE/(r − 1)(r − 2) (17.6.9)

Usually, the hypothesis of prime interest is (see (17.6.1))

H0 : γ1 = γ2 = · · · = γr = 0 versus H1 : not all γ are zero (17.6.10)

Other possible hypotheses of interest are

H0 : α1 = α2 = · · · = αr = 0 versus H1 : not all α are zero (17.6.11)
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Table 17.6.1 ANOVA table for an r × r Latin square design.

Source of
variation

Sum of
squares

Degrees
of freedom

Mean square F -ratio tests

Due to factor A SSA r − 1 MSA = SSA/(r − 1) SSA/MSE

Due to factor B SSB r − 1 MSB = SSB/(r − 1) SSB/MSE

Due to factor C SSC r − 1 MSC = SSC/(r − 1) SSC/MSE

Error SSE (r − 1)(r − 2) MSE = SSE/(r − 1)(r − 2)

Total SStotal r2 − 1

and
H0 : β1 = β2 = · · · = βr = 0 versus H1 : not all β are zero (17.6.12)

If any of the hypotheses in (17.6.10)–(17.6.12) are rejected, the estimators of the corre-
sponding parameters are (as given in (17.6.3)) computed.

Example 17.6.1 (Radioactive counting rate) A radioactive counting rate experiment was
performed on four specimens of radium C1, C2, C3, and C4. The four different specimens
were subjected to a counter with four shielding methods B1, B2, B3, and B4 in various
orders A1, A2, A3, and A4, so that the entire experiment was conducted according to
a Latin square design. The Latin square design adopted and the observations obtained,
together with certain calculations, are shown in Table 17.6.2. The variable of most interest
is the radium specimen. All 16 treatments were run in random order.

Solution: Using Equations (17.6.4)–(17.6.8), we find that various sums of squares are
given by

SSA = (113.04)2

4 + (112.71)2

4 + (113.75)2

4 + (113.22)2

4 − (452.72)2

16 = 0.14
SSB = (112.73)2

4 + (114.16)2

4 + (113.14)2

4 + (112.69)2

4 − (452.72)2

16 = 0.35
SSC = (106.45)2

4 + (111.33)2

4 + (117.81)2

4 + (117.13)2

4 − (452.72)2

16 = 21.44
SStotal = 12, 831.6948 − (452.72)2

16 = 21.98
SSE = 21.98 − (0.14 + 0.35 + 21.44) = 0.05

We summarize the numerical results in the ANOVA Table 17.6.3. The calculation of SS is
aided by computations appearing in the latter part of Table 17.6.2.

Note that the 5% and 1% significance points of F3,6 are 4.757 and 9.780, respectively.
Hence, order effects are barely significant at the 5% level and not significant at the 1%
level, but the shielding method effects and specimen effects are both highly significant.
It is left to the reader to compute the estimates of the various parameters in the model
including the error variance.

PRACTICE PROBLEMS FOR SECTION 17.6

1. A chemist is interested in studying the effects of four catalysts (C1, C2, C3, C4),
four temperatures (T1, T2, T3, T4), and four allowed reaction times (R1, R2, R3, R4)
on the production of a chemical. Since each experiment is very expensive and
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Table 17.6.2 Radioactive counting rate data.

Shielding method

Order B1 B2 B3 B4 Row totals

A1 (C1) (C3) (C2) (C4)
26.46 29.61 27.82 29.15 T1·· = 113.04

A2 (C2) (C4) (C1) (C3)
27.58 29.52 26.48 29.13 T2·· = 112.71

A3 (C3) (C1) (C4) (C2)
29.54 27.00 29.31 27.90 T3·· = 113.75

A4 (C4) (C2) (C3) (C1)
29.15 28.03 29.53 26.51 T4·· = 113.22

Totals T·1· = 112 · 73 T·2· = 114.16 T·3· = 113.14 T·4· = 112.69 T··· = 452.72

Specimen or treatment totals are summarized as follows

C1 C2 C3 C4

26.46 27.58 29.54 29.15
27.00 28.03 29.61 29.52
26.48 27.82 29.53 29.31
26.51 27.90 29.13 29.15

Totals T··1 = 106.45 T··2 = 111.33 T··3 = 117.81 T··4 = 117.13

Table 17.6.3 ANOVA for the data in Example 17.6.1.

Source DF SS MS F -ratio

Orders 3 0.14 0.047 5.66
Shielding methods 3 0.35 0.117 14.096
Specimens 3 21.44 7.147 861.08
Error 6 0.05 0.0083

Total 15 21.98

time-consuming, the chemist decides to run the experiment as a Latin square, so
the whole experiment is completed using a small number of experiments. The data
collected are given below. Prepare the ANOVA table for these data.

T1 T2 T3 T4

C1 R1(11) R2(19) R3(17) R4(17)
C2 R4(11) R1(13) R2(12) R3(19)
C3 R3(11) R4(11) R1(14) R2(19)
C4 R2(14) R3(18) R4(13) R1(15)
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2. Give the mathematical model you used in Problem 1. State the usual hypothe-
ses clearly in terms of the model parameter, perform the tests, and state your
conclusions. Use α = 0.05.

3. A quality control engineer in a paper company wishes to investigate the effects
of three different machines, three operators, and three amounts of bleach (used in
the pulp) on the tearing strength of paper produced by the company. To carry
out this experiment, the engineer decided to use a Latin square design. The data
obtained from this experiment are given below; the numbers in parentheses are the
levels of bleach. Prepare the ANOVA table for these data and test all appropriate
hypotheses. Use α = 0.05.

Operators
O1 O2 O3

M1 14(1) 16(2) 15(3)
Machines M2 18(2) 20(3) 17(1)

M3 16(3) 19(1) 20(2)

4. Measurements on the length in centimeters of a part from five vendors
(A,B,C,D,E) are made by five different technicians (I, II, III, IV, V ) who use
five different instruments (1, 2, 3, 4, 5). The experiment is run as a Latin square
so that all three factors are appropriately controlled. The data collected is given
below.

I II III IV V

1 A B C D E
15.1 15.8 15.2 16.1 15.8

2 B C D E A
16.2 15.8 16.3 15.1 16.0

3 C D E A B
15.6 15.8 15.9 15.3 15.5

4 D E A B C
15.9 16.0 15.5 16.2 15.4

5 E A B C D
15.6 15.5 15.7 15.6 15.8

(a) Prepare the ANOVA table for these data and perform separate tests of hypothe-
ses for equal vendor effects, technician effects, and instrument effects. Use
α = 0.05.

(b) If any of the hypotheses in (a) is rejected, then estimate the corresponding
effects.
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17.7 RANDOM-EFFECTS AND MIXED-EFFECTS
MODELS

17.7.1 Random-Effects Model
So far in this chapter, we have studied design models where the parameters αi’s,
βj ’s, . . . , were all unknown constants. In this section, we consider the case where these
parameters are random variables. Such a model is known as a random-effects model.
We consider here only the case of the two-way experimental design, but this model can
easily be extended for higher-order experimental designs. We consider the following
model:

yijk = μ + αi + βj + γij + εijk, i = 1, 2, . . . , a; j = 1, 2, . . . , b; k = 1, 2, . . . , r (17.7.1)

where we assume that αi, βj , γij , and εijk are independently normally distributed
with mean zero and variances σ2

α, σ2
β , σ2

γ , and σ2
ε, respectively. The variance of Yijk

is thus
σ2

y = σ2
α + σ2

β + σ2
γ + σ2

ε (17.7.2)

The quantities σ2
α, σ2

β , σ2
γ , and σ2

ε are usually known as variance components. The underly-
ing assumptions about μ and the random errors εijk are the same in both the fixed-effects
and random-effects models. The random-effects model (17.7.1) differs from the correspond-
ing fixed-effects model (17.5.1) in the following way. The treatments in model (17.5.1) are
fixed and any conclusions made about the effects of such treatments are applicable only
for the selected treatments, whereas in a random-effects model, treatments are randomly
selected from a large population of treatments. Moreover, in the random-effects model, any
conclusions made about the selected treatments are extended to the rest of the treatments
in that population.

For example, suppose that the effects of both machines and operators on a production
process in a manufacturing company are of interest. Suppose that we select a random
sample of operators from the large population of operators and a random sample of
machines from large set of machines available in the company. Then, any conclusions
made about selected operators and machines will be extended to all operators and all
the machines in the company. Since in a random-effects model the means of all treat-
ments effects are assumed to be zero, any mean effect due to treatments is incorporated in
the general mean μ. In the fixed-effects model, the mean of the Yijk varies, whereas in a
random-effects model, the mean of all the Yijk’s is equal to μ. Further, in the random-effects
model, the parameters of interest are the variance components σ2

α, σ2
β , and σ2

γ . Thus, for
example, σ2

α = 0 implies that the effects due to treatments of a factor are the same. In the
fixed-effects model, all hypotheses about treatment effects are tested against SSE , but as
we will see, in the random-effects model, testing varies; that is, not all hypotheses about
treatment effects are tested against SSE . Let

α =
1
a

∑
i

αi, β =
1
b

∑
j

βj , γi· =
1
b

∑
j

γij , γ·j =
1
a

∑
j

γij
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Then from (17.7.1) we have, using the usual notation, that

E(SSA) = brE

(∑
i

(yi·· − y···)
2
)

= brE

(∑
i

(μ + αi + β· + γi· + εi·· − μ − α· − β· − γ·· − ε···)
2
)

= brE

(∑
i

(αi − α·)
2 +
∑
i

(γi· − γ··)
2 +
∑
i

(εi·· − ε···)
2
) (17.7.3)

since the expected value of cross-product terms vanishes. Further, by applying the nor-
mality assumptions, we can easily verify that

∑
i

(αi − α·)
2 ∼ σ2

αχ2
a−1,

∑
i

(γi· − γ··)
2 ∼

σ2
γ

b
χ2

a−1, and
∑

i

(εi·· − ε···)
2 ∼ σ2

ε

br
χ2

a−1

(17.7.4)
Combining the results in (17.7.3) and (17.7.4), we have

E(SSA) = br

{
[(a − 1)σ2

α + (a − 1)
σ2

γ

b
+

(a − 1)
br

σ2
ε

}
= (a − 1){σ2

ε + brσ2
α + rσ2

γ}

(17.7.5)
Similarly, we can show that

E(SSB) = (b − 1){σ2
ε + arσ2

β + rσ2
γ}

E(SSAB) = (a − 1)(b − 1){σ2
ε + rσ2

γ}

These results are summarized in Table 17.7.1.

Table 17.7.1 ANOVA for a two-way experimental design with random effects.

Source DF SS MS E(MS)

A (a − 1) br
∑

(yi·· − y)2 MSA = SSA/(a − 1) σ2
ε + brσ2

α + rσ2
γ

B (b − 1) ar
∑

(y·j· − y)2 MSB = SSB/(b − 1) σ2
ε + arσ2

β + rσ2
γ

AB (a − 1)(b − 1) By subtraction MSAB = SSAB/(a − 1)(b − 1) σ2
ε + rσ2

γ

Error ab(r − 1)
∑∑∑

(yijk − yij·)
2 MSE = SSE/ab(r − 1) σ2

ε

Total abr − 1
∑

y2
ijk − abry2

···

The hypotheses of general interest are

H0 : σγ = 0 versus H1 : σγ > 0 (17.7.6)

H0 : σα = 0 versus H1 : σα > 0 (17.7.6a)

H0 : σβ = 0 versus H1 : σβ > 0 (17.7.6b)
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Note that under the null hypothesis H0 of (17.7.6),

MSAB

MSE

∼ F(a−1)(b−1),ab(r−1)

Thus, we reject the null hypothesis H0 of (17.7.6) at the α level of significance if

MSAB

MSE

> F(a−1)(b−1),ab(r−1);α

If H0 of (17.7.6) is rejected, then all the interactions γij are not the same, and the statistics
used for testing (17.7.6a) and (17.7.6b) are, respectively, MSA/MSAB and MSB/MSAB

(see the E(MS) column of Table 17.7.1). If (17.7.6) is not rejected, then the statistics used
for testing (17.7.6a) and (17.7.6b) are, respectively, MSA/MSE and MSB/MSE .

Often, an experimenter is most interested in estimating the various variance com-
ponents and determining the percentage of variation of the total variation contributed
by each. We can easily see from the ANOVA table (Table 17.7.1) that the estimators of
various components are given by

σ̂2
ε = MSE (17.7.7)

σ̂2
γ = Max

{
0,

MSAB − MSE

r

}
(17.7.7a)

σ̂2
β = Max

{
0,

MSB − MSAB

ar

}
(17.7.7b)

σ̂2
α = Max

{
0,

MSA − MSAB

br

}
(17.7.7c)

17.7.2 Mixed-Effects Model
We now consider the case when some of the parameters in a model are fixed unknown
constants and the rest are random variables. Such a model is called a mixed-effects model.
We consider an experiment with two factors, say A and B, and assume that A has fixed
treatment effects, while B is a random sample of b treatments from a large set of treatments.
The model used for this type of experiment is

yijk = μ + αi + βj + γij + εijk, i = 1, 2, . . . , a; j = 1, 2, . . . , b; k = 1, 2, . . . , r
(17.7.8)

where αi are unknown constants satisfying the side condition
∑

αi = 0, and the βj , γij (for
fixed j) and εijk are independently and normally distributed with mean zero and variances
σ2

β , σ2
γ , and σ2

ε, respectively. Moreover, we assume that the γij satisfy the side condition∑
iγij = 0, for given j.

Various sums of squares in the model (17.7.8) are again defined in the same manner
as in the fixed-effects model, but there is a difference in the E(MS) column. For example,
we have

E(SSA) = brE(
∑

i

(yi·· − y···)
2)

= brE(
∑

i

(μ + αi + β· + γi· + εi·· − μ − 0 − β· − 0 − ε···)
2)
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Since from above we have
∑

iαi = 0 and
∑

iγij = 0 for given j.

β· =
1
b

∑
j

βj , γi· =
1
b

∑
j

γij , εi·· =
1
br

∑
j

∑
k

εijk, and ε··· =
1

abr

∑
i

∑
j

∑
k

εijk

Because the expected value of cross-product terms is zero, we have

E(SSA) = brE

(∑
i

α2
i +
∑

i

γ2
i· +
∑

i

(εi·· − ε···)
2

)
(17.7.9)

We use the side conditions to obtain

∑
i

γ2
i· ∼

σ2
γ

b
χ2

a−1,
∑

i

(εi·· − εi···)
2 ∼ σ2

ε

br
χ2

a−1 (17.7.10)

Thus, we have

E(MSA) = E(SSA/(a − 1)) = σ2
ε + rσ2

γ +
br

a − 1

∑
α2

i (17.7.11)

Similarly, we can show that

E(MSB) = σ2
ε + arσ2

β , E(MSAB) = σ2
ε + rσ2

γ , E(MSE) = σ2
ε

These results are summarized in Table 17.7.2.
The hypotheses of general interest are

H0 : σγ = 0 versus H1 : σγ > 0 (17.7.12)

H0 : all αi = 0 versus H1 : all αi �= 0 (17.7.12a)

H0 : σβ = 0 versus H1 : σβ > 0 (17.7.12b)

Table 17.7.2 ANOVA table for a two-way experimental design with mixed effects

Source DF SS MS E(MS)

A (a − 1) br
∑

(yi·· − y···)
2 MSA =

SSA

a − 1
σ2

ε + rσ2
γ +

br

a − 1

∑
α2

i

B (b − 1) ar
∑

(y·j· − y···)
2 MSB =

SSB

b − 1
σ2

ε + arσ2
β

AB (a − 1)(b − 1) By subtraction MSAB =
SSAB

(a − 1)(b − 1)
σ2

ε + rσ2
γ

Error ab(r − 1)
∑∑∑

(yijk − yij·)
2 MSE =

SSE

ab(r − 1)
σ2

ε

Total abr − 1
∑

y2
ijk − abry2

···



824 17 Analysis of Variance

Under the hypothesis H0 in (17.7.12), the variance ratio MSAB/MSE is distributed as
F(a−1)(b−1), ab(r−1). Thus, the hypothesis σγ = 0 is rejected at the α level of significance if
the ratio MSAB/MSE > F(a−1)(b−1),ab(r−1);α. Testing of the hypotheses in (17.7.12a) and
(17.7.12b) depends on whether or not H0 in (17.7.12) is rejected. Thus, if H0 : σγ = 0 is not
rejected, the hypotheses in (17.7.12a) and (17.7.12b) are tested using either the statistics
MSA/MSAB and MSB/MSE or the statistics MSA/MSE and MSB/MSE . However, if
the hypothesis H0 : σγ = 0 in (17.7.12) is rejected, then the hypotheses H0 in (17.7.12a)
and (17.7.12b) are tested using statistics MSA/MSAB and MSB/MSE , respectively. The
mixed-effects model can easily be extended when involved with a n-way experimental
design.

17.7.3 Nested (Hierarchical) Designs
In the previous sections, we have considered experiments where every level of each factor
occurs with every level of other factor; that is, the factors were completely crossed. We
now consider experiments with two factors, say A and B, when a few levels of B occur
with the first level of A, a few other levels of B with the second level of A, and so on.
Such an experimental design is called a nested or hierarchical design, and we say that the
factor B is nested in A. As an example, consider an experiment where a different doses
of a drug are administered to a set of s patients in such a way that one dose level is
administered to a set of s1 patients, another dose level to a set of s2 different patients,
and so on, with

∑a
i=1 si = s. In this experiment, we say that the patients are nested in the

drug. In another example, we might consider the case of an industrial experiment where
a machines are being tested by s operators in such a way that s1 operators work with one
machine, another s2 operators work with the second machine, and so on, with

∑a
i=1 si = s.

In this experiment the operators are nested in the machines.
Let yijk denote the kth observation that is generated when the jth level of factor B

is used within the ith level of A. Then, the model used for such an experiment is the
following:

yijk = μ + αi + βj(i) + εk(ij), i = 1, 2, . . . , a; j(i) = 1, 2, . . . , b; k = 1, 2, . . . , r
(17.7.13)

where αi is the effect of the ith level of A, βj(i) is the effect of the jth level of B when it is
used within the ith level of A, and εk(ij) is the random error. Note that the model (17.7.13)
does not contain any interaction term. This is because the factors are not completely
crossed, so there are not a × s × r observations in a nested design experiment (see Example
17.7.1). The subscript j(i) simply means that the jth level of B occurs within the ith level
of A (j = 1, 2, . . . , si) and that k(ij) denotes the error on the kth observation generated
using the ith level of A and jth level of B, so that the kth replication is nested within
the treatment combination of the ith level of A and the jth level of B. Generally, we
assume that αi is a fixed effect and βj(i) is a random effect. Further, it is assumed that∑

αi = 0 and that βj(i) and εk(ij) are independently and normally distributed with mean
zero and variance σ2

β and σ2
ε, respectively. Also, for the sake of simplicity, we assume that

s1 = s2 = · · · = sa = b.
The various sums of squares for a nested design are defined as follows:

SStotal =
a∑

i=1

b∑
j=1

r∑
k=1

y2
ijk − T 2

···
abr

(17.7.14)
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SSA = br
a∑

i=1

(yi·· − y···)
2 =

a∑
i=1

T 2
i··

br
− T 2

···
abr

(17.7.14a)

SSB(A) = r

a∑
i=1

b∑
j=1

(yij· − yi··)
2 =

a∑
i=1

b∑
j=1

T 2
ij·
r

− 1
br

a∑
i=1

T 2
i·· (17.7.14b)

SSE =
a∑

i=1

b∑
j=1

r∑
k=1

(yijk − yij·)
2 =

a∑
i=1

b∑
j=1

r∑
k=1

y2
ijk −

a∑
i=1

b∑
j=1

T 2
ij·
r

(17.7.14c)

The expected values of various sums of squares are

E(SSA) = brE

(∑
(yi·· − y···)

2
)

= brE

(∑
(μ + αi + β·(i) + ε·(i·) − μ − 0 − β·(·) − ε·(··))

2
)

since
∑

αi = 0

= brE

[(∑
α2

i

)
+
∑

(β·(i) − β·(·))
2 +
∑

(ε·(i·) − ε·(··))
2
]

where

β·(i) =
1
r

∑
j

βj(i), β·(·) =
1
ar

∑
i

∑
j

βj(i), ε·(i·) =
1
br

∑
k

∑
j

εk(ij),

ε·(··) =
1

abr

∑
i

∑
j

∑
k

εk(ij)

since the expected value of all the cross-product terms vanish.
Under the normality conditions, we have

∑
i

(β·(i) − β·(·))
2 ∼

σ2
β

b
χ2

a−1,
∑

(ε·(i·) − ε·(i·) − ε·(··))
2 ∼ σ2

ε

br
χ2

a−1

Thus
E(MSA) = σ2

ε + rσ2
β +

br

a − 1

∑
α2

i (17.7.15)

Similarly we can show that
E(MSB(A)) = σ2

ε + rσ2
β (17.7.16)

E(MSE) = σ2
ε (17.7.17)

We summarize these results in Table 17.7.3.
Under the normality assumption, the testing of the hypothesis that all αi = 0 is carried

out by using the F-statistic MSA/MSB(A). To test the hypothesis σβ = 0, we use the test
statistic MSB(A)/MSE .

As we can see from the discussion above, it is important to obtain the E(MS) column.
Usually, the evaluation of E(MS) term is somewhat complicated; for a general method, see
Hicks (1982). If in our discussion the levels of factor A were also randomly selected from a
large set of possible levels (i.e., αi being random effects) then the ANOVA table for such
an experimental design would take the form of Table 17.7.4.
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Table 17.7.3 ANOVA table for a nested two-factor experimental design with mixed
effects

Source DF SS MS E(MS)

A (a − 1) SSA = br
∑a

i=1 (yi·· − y···)
2 MSA =

SSA

a − 1
σ2

ε + rσ2
β +

br

a − 1

∑

i

α2
i

B(A) a(b − 1) SSB(A) = r
∑a

i=1

∑b
j=1 (yij· − yi··)

2 MSB(A) =
SSB(A)

a(b − 1)
σ2

ε + rσ2
β

Error ab(r − 1) SSE =
∑

i

∑
j

∑
k(yijk − yij·)

2 MSE =
SSE

ab(r − 1)
σ2

ε

Total abr − 1
∑∑∑

(yijk − y···)
2

Table 17.7.4 ANOVA table for a nested two-factor experimental design with random
effects

Source DF SS MS E(MS)

A (a − 1) SSA = br
∑a

i=1 (yi·· − y···)
2 MSA =

SSA

a − 1
σ2

ε + rσ2
β + brσ2

α

B(A) a(b − 1) SSB(A) = r
∑a

i=1

∑b
j=1 (yij· − yi··)

2 MSB(A) =
SSB(A)

a(b − 1)
σ2

ε + rσ2
β

Error ab(r − 1) SSE =
∑

i

∑
j

∑
k(yijk − yij·)

2 MSE =
SSE

ab(r − 1)
σ2

ε

Total abr − 1
∑∑∑

(yijk − y···)
2

Referring to Table 17.7.4, under the normality assumption, testing the hypotheses that
all σα = 0 and σβ = 0 is done using the F-statistics MSA/MSB(A), and MSB(A)/MSE ,
respectively. We emphasize that appropriate statistics for testing hypotheses about the
effects of factors A and B depend on whether the factors A and B are fixed or random
as determined by the E(MS) column. We summarize in Table 17.7.5 the results of E(MS)
columns when factors A and B are fixed or random.

Example 17.7.1 (Data on an operation when operators are nested in machines) A quality
control engineer at a major manufacturing company wants to study the effects of machines
and operators on a certain part. The company uses a large number of machines and oper-
ators to produce that part. Since it is not possible to study effects of each operator on each
machine, the engineer decided to use a nested experimental design. The engineer randomly
selects four machines and on each machine assigns three randomly selected operators (i.e.,
different groups of three operators on each machine). The three operator were assigned to
each machine in a random order. The experimenter takes three samples of parts produced
by each operator. The observed data in Table 17.7.6 give the percentage of defective parts
produced.

From Table 17.7.6 we have T··· = 157.2. In this example, operators B are nested in
machines A so that the number of observations is 3 × 4 × 3 = 36, and not 144 = 12 × 4 × 3
(12 operators, 4 machines, 3 replications).
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Table 17.7.5 E(MS) columns for a nested two-factor experimental design

E(MS) A Fixed, B Fixed A Fixed, B Random A Random, B Random

E(MSA) σ2
ε +

br

a − 1

∑
i

α2
i σ2

ε + rσ2
β +

br

a − 1

∑
i

α2
i σ2

ε + rσ2
β + brσ2

α

E(MSB(A)) σ2
ε +

r

a(b − 1)

∑
j

∑
i

β2
j(i) σ2

ε + rσ2
β σ2

ε + rσ2
β

E(MSE) σ2
ε σ2

ε σ2
ε

Table 17.7.6 Percentage of defective parts produced

M1 M2 M3 M4

O1(1) O2(1) O3(1) O4(2) O5(2) O6(2) O7(3) O8(3) O9(3) O10(2) O11(4) O12(4)

4.6 4.7 4.2 4.1 4.0 3.9 4.8 4.5 4.1 4.2 4.1 4.9
4.2 4.5 3.9 4.3 4.5 4.3 4.5 4.0 3.9 3.9 5.0 4.8
4.0 4.1 4.2 4.6 4.2 4.1 4.2 4.9 4.2 4.6 5.2 5.0

Tij· 12.8 13.3 12.3 13.0 12.7 12.3 13.5 13.4 12.2 12.7 14.3 14.7

Ti·· 38.4 38.0 39.1 41.7

Now the various sums of squares for the data in Table 17.7.6 are

SSA =
∑T 2

i··
br

− T 2
···

abr
= 687.36 − 686.44 = 0.92

SSB(A) =
∑T 2

ij·
r

−
∑T 2

i··
br

= 688.70 − 687.36 = 1.34

SSE =
∑

y2
ijk −

∑T 2
ij·
r

= 691.06 − 688.70 = 2.36

SStot =
∑

y2
ijk − T 2

···
abr

= 691.06 − 686.44 = 4.62

These results are summarized in Table 17.7.7.
The required α = 0.05 points are F3,8;0.05 = 4.07 and F8,24;0.05 = 2.36,, which are greater

than the corresponding observed values of the F -ratios. From this analysis, we can say
that based on these data, we do not reject the null hypothesis of no variation among

Table 17.7.7 ANOVA table for the data in Table 17.7.6

Source DF SS MS E(MS) F -ratio

A 3 0.92 0.307 σ2
ε + 3σ2

β + 9σ2
α 1.83

B(A) 8 1.34 0.168 σ2
ε + 3σ2

β 1.70
Error 24 2.36 0.099 σ2

ε

Total 35 4.62
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machines and no operator variation within machines. The estimates of different variance
components are

σ̂2
ε = MSE = 0.099, σ̂2

β =
MS

B(A)−MS
E

r = 0.168−0.099
3 = 0.023

σ̂2
α =

MS
A
−MS

B(A)

br = 0.307−0.168
9 = 0.015

We have that the sum of estimates σ2
ε, σ

2
β , and σ2

α is

Total = 0.099 + 0.023 + 0.015 = 0.137

Thus, the contributions of various variance components are as follows:

Machines = 0.015/0.137 = 11.31%, Operators = 0.023/0.137 = 17.05%,

Error = 0.099/0.137 = 71.64%

The same experimental designs can easily be extended to more than two factors when
each factor is nested within the preceding one. Experiments where each factor is nested
within the preceding one are called completely nested or fully nested experiments. These
experimental designs are beyond the scope of this book. The interested reader is referred
to Dean and Voss (1999), Montgomery (2009a,b), and other references cited at the end of
this book.

Example 17.7.2 Analyze the data in Table 17.7.6 using MINITAB and R.

MINITAB

1. Enter the data in exactly the same manner as in the two-way experimental design.
However, the identifier column corresponding to the factor that is nested must
be preceded by the factor that is nesting that factor. For instance, in the present
example Operators are nested in Machines so that we must enter Machines in C2
and Operators in C3.

2. Then from the Menu bar select Stat > Anova > General Linear Model > Fit
General Linear Model:.

3. A dialog box appears in which you type Obs in the box below Responses and
Machines and Operators in the box below Factors. Click Random/Nest . . . then
under the Nesting: option type Machines in the box next Operators as Operators
nested within the Machines and change the Factor type: to Random for both the
factors. Then click OK. A part of the MINITAB output appears in the Session
window as shown below:

Analysis of Variance

Expected Mean Squares, using Adjusted SS

Error Terms for Tests, using Adjusted SS

Variance Components, using Adjusted SS

Source

Source

Source Variance % of Total % of TotalStDev

Machines 0.0154835 11.31% 33.63%0.124433

Operators(Machines) 0.0233333 17.05% 41.29%0.152753

Error 0.0980556 71.64% 84.64%0.313138

Total 0.136872 0.369963

Error DF Error MS

Synthesis

of Error MS

Source Expected Mean Square for Each Term

Machines 3 0.9222 0.30741

Error 24 2.3533

Total 35 4.6200

0.09806

1.83 0.220

Operators(Machines) 8 1.3444 0.16806 1.71 0.146

DF Adj SS Adj MS F-Value P-Value

1 Machines (3) + 3.0000 (2) + 9.0000 (1)

2 Operators(Machines) (3) + 3.0000 (2)

3 Error (3)

1 Machines 8.00 0.1681 (2)

2 Operators(Machines) 24.00 0.0981 (3)
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Clearly, all these results match those in Table 17.7.7. Note that the “Variance Com-
ponent” entries are estimates of σ2

α, σ2
β , and σ2

ε, respectively. In the “Expected Mean
Squares” portion, σ2

α, σ2
β , and σ2

ε are denoted by (1), (2), and (3), respectively.

USING R

Solution: The R functions ‘lmer()’ in library ‘lme4’ and ‘aov()’ can be used to run a
nested design as shown in the following R-code. The function ‘lmer()’ provides the vari-
ance components and the function ‘aov()’ provides the basic information to construct
the ANOVA table and hypothesis tests. You may have to install the R package ‘lme4’
(install.packages(‘lme4’)).

Obs=c(4.6,4.2,4,4.7,4.5,4.1,4.2,3.9,4.2,4.1,4.3,4.6,4,4.5,4.2,3.9,4.3,4.1,4.8,
4.5, 4.2,4.5,4,4.9,4.1,3.9,4.2,4.2,3.9,4.6,4.1,5,5.2,4.9,4.8,5)
Machi = c(1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4)
Oper = c(1,1,1,2,2,2,3,3,3,1,1,1,2,2,2,3,3,3,1,1,1,2,2,2,3,3,3,1,1,1,2,2,2,3,3,3)
Operators= factor(Oper)
Machines= factor(Machi)

#Fitting the nested design with random factors ‘Machines and Operators’ where ‘Opera-
tors’ are nested within ‘Machines’
library(lme4)
model1 = aov(Obs ∼ Error(Machines+Machines/Operators))
# Error() indicates random factors summary(model1)

#To obtain the variance components, note that Operators are nested
within Machines
model = lmer(Obs ∼ (1|Machines)+ (1|Machines:Operators))
# (1|·) indicates random factors
summary(model)

PRACTICE PROBLEMS FOR SECTION 17.7

1. Consider a two-factor (A and B) experiment where factor A is run at four levels
and factor B at five levels. The treatments are allocated in a completely random
manner and each treatment is replicated three times. Suppose that the levels of
factor B are random and of factor A are fixed. Determine the EMS column and
give appropriate test statistics for testing the usual hypotheses.
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2. Suppose that the proposed experiment in Problem 1 is conducted and the data
collected are as given below. Analyze these data and state your conclusions. Use
α = 0.05.

A1 A2 A3 A4

B1 19 20 12 12 15 17 19 20 16 13 20 17
B2 20 16 15 13 20 17 20 20 13 16 20 20
B3 12 14 14 20 16 14 17 12 20 20 14 13
B4 13 20 17 16 15 12 12 16 20 13 20 17
B5 16 13 12 16 14 19 17 12 20 18 16 14

3. To increase the whiteness of paper, certain fluorescent whitening agents (FWAs)
selected randomly are used. A quality engineer decided to use three types (1, 2, 3)
of FWA, applying each one to four different rolls of paper. This experiment was
run using a nested design and the observed data collected was the whiteness index.
Note here that both factors FWA and rolls are random. The data are given below.
Analyze these data. Use α = 0.05.

FWA 1 2 3

Rolls 1 2 3 4 1 2 3 4 1 2 3 4

82 68 81 85 66 84 82 80 69 66 73 67
71 69 76 74 78 72 79 81 75 76 70 69
77 70 85 75 84 70 85 84 79 82 72 79

4. An engineer examines the final finish of ball bearings manufactured on four
machines. She plans an experiment using a nested design where each machine
is run by three different operators. Two ball bearings from each operator are
collected and tested for final finish. She selected four machines randomly and then
12 operators randomly, so that different operators were used on each machine. The
data collected are given below. Analyze these data and state your conclusions.
Use α = 0.05.

Machines 1 2 3 4

Operators 1 2 3 1 2 3 1 2 3 1 2 3

83 78 85 81 86 88 89 82 83 83 89 93
72 75 79 76 72 81 78 87 95 84 91 97

5. A medical team tests the effect of the generic drug metformin (used for lowering
plasma glucose) marketed by three manufacturers. The team planned an experi-
ment using a nested design in which the drug produced by each manufacturer is
distributed to four different clinics; that is, a total of 12 clinics were randomly
selected for this experiment. Further, two diabetic patients were randomly selected
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from a group of patients treated by each clinic and their glycohemoglobin AIC mea-
sured (normal range is 4.5–5.7). The results are given below. Assume that patients
have similar conditions for all known factors. Analyze these data and state your
conclusions. Use α = 0.05.

Manufacturer 1 2 3

Clinic 1 2 3 4 1 2 3 4 1 2 3 4

6.7 6.5 6.1 6.9 6.4 6.6 5.9 6.3 7.2 6.8 6.4 5.9
6.6 7.0 6.8 7.2 6.0 7.1 6.9 6.2 6.5 7.2 6.3 6.2

6. The chair of a large engineering department wants to evaluate the teaching of his
instructors. He randomly selects four instructors and asks them to teach a general
course, which is a course on thermodynamics. Then, he takes a random sample of
three students from each class and records the scores of the tests that the instructors
gave during the semester. The scores recorded are shown below.

I1 I2 I3 I4

S1(1) S2(1) S3(1) S1(2) S2(2) S3(2) S1(3) S2(3) S3(3) S1(4) S2(4) S3(4)

87 98 86 76 85 96 89 83 77 79 95 75
77 95 81 91 94 84 78 75 80 98 89 75
90 86 89 90 81 82 96 98 82 98 81 95
98 88 81 92 95 88 98 98 75 87 87 89

(a) Prepare the ANOVA table for these data.
(b) Test the hypothesis of no variation among instructors. Use α = 0.01.
(c) Determine what proportion of the total variation is due to instructors and what

proportion is due to students.
7. Reanalyze the data of Problem 6, assuming that the department had only four

instructors who could teach the course on thermodynamics.

17.8 A CASE STUDY

Machine Screw Case Study1 (Background and data) A certain production process has
three automatic screw machines that produce various parts. The shop has enough capital
to replace one of the machines. The quality control department has been asked to conduct
a study and recommend which machine should be replaced. It was decided to monitor one
of the most commonly produced parts (an 1/8 in. diameter pin) on each of the machines
and see which machine is the least stable. The data are collected over a three-day run
for the particular part of interest. A suspected time-of-day effect must be accounted for:
sometimes the machines do not perform as well in the morning, when they are started up,

1 Source: NIST/SEMATECH Engineering Statistics Handbook, http://www.itl.nist.gov/div898/handbook, June
2003.
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as later in the day. To account for this, data were collected both in the morning and in the
afternoon. The data collected in Table (17.8.1) are available on the book website: www
.wiley.com/college/gupta/statistics2e (Legend: Machine (1–3), Day (1–3), Time (AM: 1,
PM: 2), Sample (1–10), Diameter (inch)).

Treat these data as a result of a three-factor experiment, that is, Machine, Day, and
Time as factors, having 3, 3, and 2 levels, respectively.

(a) Construct the ANOVA table for the data in Table 17.8.1.
(b) Write down all the hypotheses of interest and test them using α = 0.05.
(c) If any of the hypotheses in (b) is rejected, estimate the corresponding effects.

17.9 USING JMP

This section is not included here but is available for download from the book website:
www.wiley.com/college/gupta/statistics2e.

Review Practice Problems

Assume in Problems 1–7 that one-way experimental designs are appropriate and their
underlying assumptions are met
1. Four feeds are fed to pigs for a certain period of time, and at the end of this period,

the pigs’ weight gains in pounds are recorded as given below. Construct the ANOVA
table and test the hypothesis of equal feed means at the 1% level of significance. If
the null hypothesis is rejected, then use the Tukey method to detect which feed effects
are significantly different.

Feeds 1 2 3 4

57 61 41 112
51 92 75 107

Observations 63 97 79 152
34 81 81 85
49 67 86 137

2. Five machines were used to manufacture ball bearings of the same size. The following
data give the percentage of defective ball bearings produced by each machine on four
consecutive days, where it is assumed that days have no significant effects.

Machines 1 2 3 4 5

1 17 11 15 13 17
Days 2 15 17 12 15 13

3 13 19 14 16 15
4 18 21 17 18 14
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(a) Construct an ANOVA table and test the null hypothesis H0 at the 1% level of
significance that there is no differences among machines.

(b) If the null hypothesis H0 in (a) is rejected, estimate the machine effects and
use the Bonferroni method to determine which machines are different. Use
α = 0.05.

(c) Reanalyze these data, if the days have possibly significant effects.

3. In Problem 2, if the machine effects are significant, then use the S-method and
the T-method to find 95% confidence intervals for the contrasts β1 − 2β2 + β3 −
β4 + β5, and β1 −

1
4
(β2 + β3 + β4 + β5), where β1, . . . , β5 are the effects of the

machines.

4. Sixteen determinations of the ratio of iodine to silver in four different silver prepara-
tions were made, with the results.

Preparation A Preparation B Preparation C Preparation D

1.17642 1.17644 1.17643 1.17645
1.17643 1.17644 1.17642 1.17645
1.17644 1.17645 1.17644 1.17645
1.17644 1.17645 1.17646 1.17646

(a) Construct the ANOVA table for these data.
(b) Test the null hypothesis H0 that effects due to the different preparations are not

significantly different. If H0 is rejected, estimate the four preparation effects. Use
α = 0.05.

5. Determinations were made of the yield of a chemical using three catalytic methods I,
II, and III, with the results shown below (from Fraser, 1958):

Method I Method II Method III

47.2 50.1 49.1
49.8 49.3 53.2
48.5 51.5 51.2
48.7 50.9 52.8

52.3

(a) Test the null hypothesis H0 that effects due to the different catalytic methods are
all zero.

(b) If in part (a) H0 is rejected, estimate the effects. Find the p-value for the
F-statistics.

6. The following data show measurements made by Heyl of the gravitational constant G
for balls of gold, platinum, and glass:
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Gold Platinum Glass

6.683 6.661 6.678
6.681 6.661 6.671
6.676 6.667 6.675
6.678 6.667 6.672
6.679 6.664 6.674
6.672

Test the hypothesis that gold, platinum, and glass all have the same gravitational
constant. If they do not have the same gravitational constant, estimate the effects due
to the three materials. Find the p-value for the F-statistic.

7. Among the classrooms in the public schools of a given city, there are 12 different
lighting techniques. Each of these techniques is supposed to provide the same level of
illumination. To determine whether the illumination is uniform, the data shown below
were compiled using four of the techniques. The classrooms are known to be homoge-
neous, and hence, can be discounted as a possible source of variability. Observations
are in foot-candles (= 12.57 lm) on the desk surface.

Lighting techniques

1 2 3 4

31 31 34 37
38 34 35 34
38 27 39 27
33 27 35 32
31 29 30 26

(a) Construct the ANOVA table and test the hypothesis of zero lighting-technique
effects. If there are significant effects, estimate them. Find the p-value for the
F-statistic.

(b) If the hypothesis of zero lighting-technique effects in (a) is rejected, then
use Tukey’s test to perform pairwise multiple comparisons test on treatment
effects.

Assume in Problems 8–16 that RCB experimental designs are appropriate designs and
their underlying assumptions are met. If the blocking factor is not indicated in the
problem, then state which factor is the blocking factor.

8. An engineer wishes to test the tread wear of four brands of passenger cars tires. She
conducts this experiment using five cars by randomly assigning one tire of each brand
on one of the wheels of each car. Because there may be variability from one car to
another, a RCB design is an appropriate design for the experiment, with cars as blocks,
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and different tire brands as the treatments. After driving 10.000 miles, the amount of
tread wear is measured (in mm) and recorded as shown below.

Cars 1 2 3 4 5

1 2.44 2.06 2.33 2.53 2.21
Tire brand 2 2.18 2.97 2.46 2.17 2.72

3 2.45 2.54 2.36 2.56 2.73
4 2.78 2.81 2.86 2.47 2.46

Construct the ANOVA table and analyze these data. State your conclusions. Use
α = 0.05.

9. In Problem 8, use a t-test to compare the mean tread wear for the tires of brand 1
and 4. Use α = 0.05.

10. In Problem 8, use the Bonferroni method to perform a pairwise multiple com-
parisons test on treatments (tire brand) effects, and state your conclusions. Use
α = 0.05.

11. An educator believes that the learning process among low-functioning children
is greatly enhanced by the teaching method used. However, she thinks that the
effect of different teaching methods may vary from one age group to another, so
she would like to eliminate any effect of age variation. Keeping this in mind, she
conducted an experiment using five different teaching methods for four different
age groups, using all teaching methods in each age group of children. All children
were tested after six months of teaching and their final scores were recorded as
shown below.

Teaching method 1 2 3 4 5

1 88 66 87 84 65
Age groups 2 84 70 63 71 69

3 81 68 73 72 74
4 70 67 83 87 78

Do these data provide sufficient evidence for a significant difference in mean scores
among teaching methods? Use α = 0.05.

12. To provide information on whether coatings on iron pipes are of any use, 10 pieces of
pipe are each marked off in equal segments, one to receive coating A, one to receive
coating B, and the third left uncoated. For each pipe, the segment to receive A,
for example, is decided upon by a suitable randomization scheme. The pipes then are
chosen by selecting 1 specimen from each of 10 manufacturers. Once treated, the pipes
are buried in soil for a year, removed, and the depths of the corrosion pits measured.
The deepest pits so found are given below:



836 17 Analysis of Variance

Coating A B Untreated

1 51 73 81
2 41 43 52
3 43 47 55
4 41 53 63

Specimen 5 47 58 65
6 32 47 50
7 24 53 62
8 43 38 48
9 53 61 58

10 52 56 59

What type of experiment is this? Construct an ANOVA table, perform tests of signif-
icance, and comment. Use α = 0.05.

13. An experiment on flies is designed to have seven blocks of three plots each. The
treatments are sprays containing 4, 8, and 16 units of an active ingredient designed to
kill adult flies as they emerge from the breeding medium. The blocks comprise seven
sources of the medium. Numbers of adult flies found in cases set over the plots are
shown below:

Block T1 T2 T3

1 445 414 247
2 113 127 147
3 122 206 138
4 227 78 148
5 132 172 356
6 31 45 29
7 177 103 63

Test the hypothesis of no treatment effects and the hypothesis of no block effects. Use
α = 0.05.

14. In the tread-wear experiment of Problem 8, the driver of car 4 drove for a long distance
with tires of brand 3 at a very low air pressure. Consequently, in the following data,
the observation marked a is missing. Estimate the missing observation and reanalyze
the data, using α = 0.05.

Cars 1 2 3 4 5

1 2.44 2.06 2.33 2.53 2.21
Tire brand 2 2.18 2.97 2.46 2.17 2.72

3 2.45 2.54 2.36 a 2.73
4 2.78 2.81 2.86 2.47 2.46
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15. A home-care provider wished to study the effects of different diseases on the length
of home visits by her staff. She believed that the ages of the caregiver staff may also
influence the length of a home visit, so the effect of age of the caregiver staff was
eliminated by using an appropriate design. The data collected in this experiment are
shown below:

Disease Cancer Stroke TB Hip fracture

Under 30 38 39 47 44
Age group [30–40) 44 47 45 51

[40–50) 51 48 43 49
50 or over 55 57 63 67

Prepare an ANOVA table for these data and test the hypothesis H0: no disease effect.
Use α = 0.01. If the null hypothesis is rejected, then use the Tukey test to perform
pairwise multiple comparisons.

16. Refer to Problem 15. Suppose that during the study period three patients died, so
observations on these patients were not available.

Disease Cancer Stroke TB Hip Fracture

Under 30 38 39 47 44
Age group [30–40) a 47 45 51

[40–50) 51 48 b c
50 or over 55 57 63 67

Estimate the three missing observations and then reanalyze these data. Use α = 0.01.
If the null hypothesis is rejected, then use the Bonferroni method to perform a “pair-
wise multiple comparisons test.”
Assume in Problems 17–19 that two-way experimental designs are appropriate
and that their underlying assumptions are met. In addition, because of scarce
resources, only one observation per cell is taken, and interactions are assumed to
be zero.

17. Total solids (in %) were determined in each of six batches of wet brewer’s yeast
a, b, c, d, e, f by each of three analysts A,B,C, and the results obtained are given
below:

Analyst
Batch

a b c d e f

A 20.1 14.7 13.0 17.8 16.0 14.9
B 20.0 14.9 13.0 17.7 16.2 15.1
C 20.2 14.8 13.1 17.9 16.1 15.0
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(a) Prepare an ANOVA table of these data.
(b) Test the null hypothesis H0: effects due to analysts are all zero. If H0 is rejected,

estimate the effects due to the three analysts. Find the p-value for the F-statistics.
(c) Test the null hypothesis H

′
0: effects due to batches are all zero. If H

′
0 is rejected,

estimate the effects. Use α = 0.05.
(d) Assuming that batches a, b, and c are from supplier 1, and batches d, e, and f are

from supplier 2, construct a contrast that can be used to test whether suppliers
differ, and perform the test.

(e) Comment on the experiment.

18. During the manufacture of sheets of building material, the permeability was deter-
mined for a sheet from each of machines A, B, and C on each of nine days, with the
results shown below (Hald, 1952). Perform an analysis of the data, similar to that
requested in Problem 17(a), (b), (c).

Day 1 2 3 4 5 6 7 8 9

A 1.404 1.447 1.914 1.887 1.772 1.665 1.918 1.845 1.540
Machine B 1.306 1.241 1.506 1.673 1.227 1.404 1.229 1.583 1.636

C 1.932 1.426 1.382 1.721 1.320 1.633 1.328 1.689 1.703

Use the Bonferroni method for multiple comparisons among the three machines. Use
α = 0.05.

19. An experiment is conducted to test five different metals for corrosion resistance in a
chemical plant environment. A secured site in the factory is chosen and a plate made
from each metal is exposed for a predetermined period. At the end of that period,
plates are randomly evaluated for corrosion by four analysts who measure the level of
corrosion on each plate. The data obtained are shown below:

Metals 1 2 3 4 5

A 12.4 14.4 16.9 18.8 17.7
Analyst B 13.0 12.4 15.0 16.7 15.2

C 13.3 14.6 13.8 17.1 16.6
D 14.4 12.8 13.5 18.5 17.4

(a) Prepare the ANOVA table for these data. Test the hypotheses that all metal effects
are zero. Also test the hypothesis that all analyst effects are zero. Use α = 0.05.
for both tests.

(b) If any of the hypotheses in (a) are rejected, then estimate the corresponding
effects.

Assume in Problems 20–23 that two-way experimental designs are appropriate designs
and their underlying assumptions are met. Note that each treatment is replicated r
times, r > 1
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20. An experimenter is interested in the effects of electric shock (SH) and so-called accom-
panying white noise (WN) on the human galvanic skin response (sweating). Four levels
of SH (0.25, 0.50, 0.75, and 1.00 mA) and two levels of WN (40 and 80 db) were selected
and the following (coded) data obtained:

WN
SH

0.25 0.50 0.75 1.00

40 db 3, 7, 5, 11, 9, 12, 6, 11,
9, 13, 14, 12,

4, 1 8, 3 11, 5 7, 4

80 db 5, 10, 6, 12, 11, 18, 7, 15,
10, 15, 15, 14,
6, 3 9, 5 13, 9 9. 7

(a) Prepare the ANOVA table for this set of data.
(b) Test the hypothesis that all interactions are zero. Use α = 0.05.
(c) If the hypothesis in part (a) is not rejected, then test the hypotheses that SH

effects and WN effects are zero. Find the p-value for the F-statistics you used for
testing each of these hypotheses.

21. Shown below are the survival times of groups of four animals randomly allocated to
three poisons and four treatments:

Treatments A B C D

I 0.31 0.82 0.43 0.45
0.45 1.10 0.45 0.71
0.46 0.88 0.63 0.66
0.43 0.72 0.76 0.62

II 0.36 0.92 0.44 0.56
Poisons 0.29 0.61 0.35 1.02

0.20 0.49 0.31 0.71
0.23 1.24 0.40 0.38

III 0.22 0.30 0.23 0.30
0.21 0.37 0.25 0.36
0.18 0.38 0.24 0.31
0.23 0.29 0.22 0.33

(a) Prepare the ANOVA table for the data of this experiment.
(b) Test the hypothesis that all interactions are zero. Use α = 0.05.
(c) If the hypothesis in (b) is not rejected, then separately test the hypotheses that

poison effects and treatment effects are zero. Use α = 0.05.
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22. Suppose the experimenter reported the data in Problem 21 by quoting the reciprocal
of the observed values, obtaining the set given below.

Treatments A B C D

I 3.226 1.220 2.326 2.222
2.222 0.909 2.222 1.408
2.174 1.136 1.587 1.515
2.326 1.389 1.316 1.613

II 2.778 1.087 2.273 1.786
Poisons 3.448 1.639 2.857 0.980

5.000 2.040 3.226 1.408
4.348 0.806 2.500 2.632

III 4.545 3.333 4.348 3.333
4.762 2.703 4.000 2.778
5.556 2.632 4.167 3.226
4.348 3.448 4.545 3.030

Using this set of data, repeat the analysis and compare conclusions here with the
results of Problem 21.

23. In a chemical production process, the quantity of an unwanted by-product was mea-
sured for four different catalysts (C1, C2, C3, C4) applied at three different temper-
atures (T1, T2, T3). Measurements are expressed in percentages and the data are as
shown below:

Catalyst C1 C2 C3 C4

T1 0.87 0.84 0.71 0.58
0.79 0.81 0.68 0.64

Temperature T2 0.57 0.82 0.59 0.56
0.42 0.97 0.63 0.65

T3 0.79 0.67 0.77 0.45
0.76 0.73 0.71 0.59

(a) Construct a complete analysis of variance table
(b) Are the interactions zero?
(c) If the answer in (b) is yes, test the hypothesis that all catalysts effects are zero.

Use α = 0.05.
(d) Repeat (c) for temperatures at the 10% level of significance.
Assume in Problems 24–26 that two-way experimental designs are appropriate and
their underlying assumptions are met. Note that each treatment is replicated r times
(r >1) and that due to nuisance variables, it was necessary to use blocking. Also
assume that block effects do not interact with main effects.
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24. To test the effect of different size range of materials and extrusion pressure on wear, an
experiment was conducted using two pressures (25 and 30 lb psi) and six sizes coded
A,B,C,D,E, and F . Due to the time it takes to test wear, a (2 × 6) factorial was
run on each of three days with the results as shown below. Perform an analysis of
variance on these data. If the test for “no interactions” is not rejected, it may be of
interest to note that the six different materials differed only in being produced using
two different methods of production: specifically, A,B, and C were produced using
process I and D, E, and F using process II. Is there a difference between I and II?
Assume that days have no significant effects.

Day 1 Size

Pressures A B C D E F

25 11.3 12.2 12.9 12.1 16.9 14.3
30 21.1 21.1 21.7 24.4 23.6 23.5

Day 2 Size

Pressures A B C D E F

25 11.9 10.4 12.4 13.9 14.9 15.0
30 21.3 21.4 22.0 24.1 25.5 22.1

Day 3 Size

Pressures A B C D E F

25 10.0 9.9 11.3 13.3 12.4 13.8
30 18.8 19.5 21.6 23.8 23.3 20.5

25. A (3 × 3) factorial experiment, carried out in a randomized block with two blocks
(replications) yielded the observations given below. (The blocks correspond to different
furnaces.) Calculate an appropriate analysis of variance and make the required tests
of hypotheses.

Block 1 Block 2

A1 A2 A3 A1 A2 A3

B1 19.86 26.37 29.72 B1 20.88 24.38 29.64
B2 15.35 22.82 27.12 B2 15.86 20.98 24.27
B3 4.01 10.34 15.64 B3 4.48 9.38 14.03

26. An experiment was designed to study the effect of varying concentrations of broth
on yields of four different strains of microorganisms. Blocking was used because there
are four primary sources of experimental material. The observations are shown (data
from Brownlee, 1960) below:
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Strains Concentrations

1 2 3

Source I A 40 69 70
B 52 71 91
C 78 100 110
D 59 76 108

Source II A 47 76 91
B 64 72 99
C 73 122 143
D 77 106 127

Source III A 55 79 102
B 61 83 94
C 71 106 106
D 78 103 127

Source IV A 44 77 85
B 69 75 116
C 87 106 131
D 76 107 125

(a) Construct a complete analysis of variance table.
(b) Separately test the hypotheses that all concentration and strain effects are zero.

Use α = 0.05.
(c) Test the hypothesis that block effects are the same at the 10% level of significance.
Assume in Problems 27–30 that Latin square designs are appropriate designs and their
underlying assumptions are met.

27. In a study of gasoline consumption by city buses, four vehicles, A,B,C,D were tested.
In the first run of the day over a specified course, a particular assignment of drivers
a, b, c, d was used. In the next run, the drivers were reassigned to the vehicles, and so
on, for all four runs, as shown in the Latin square design given below (the variable
measured was (miles −10) per gallon):

Vehicle

Run no. A B C D

1 9.44 (a) 9.83 (b) 9.02 (c) 9.68 (d)
2 9.61 (b) 9.22 (d) 9.39 (a) 8.76 (c)
3 9.06 (d) 9.02 (c) 9.88 (b) 8.88 (a)
4 8.71 (c) 9.02 (a) 9.23 (d) 9.73 (b)

(a) Construct the ANOVA table from this data set.
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(b) Test (at the 5% significance level) the null hypothesis that effects due to drivers
are zero. If the hypothesis that effects of drivers are zero is rejected, estimate the
four driver effects.

(c) Perform an analysis on vehicle effects similar to that in (b) for driver effects.

28. An experiment was conducted to study preconditioning of leather to determine its
rate of abrasion. A large square piece of leather was cut into 36 smaller squares that
were subjected to a uniform abrasion test at six humidity levels A,B,C,D,E, F in
a Latin square arrangement. The rows and columns of the Latin square correspond
to the two dimensions of the original large square of leather. The loss of leather due
to abrasion was measured in grams. The results are shown below (from Bennett and
Franklin, 1954):

1 2 3 4 5 6

a (C) 7.38 (D) 5.39 (F) 5.03 (B) 5.50 (E) 5.01 (A) 6.79
b (B) 7.15 (A) 8.16 (E) 4.96 (D) 5.78 (C) 6.24 (F) 5.06
c (D) 6.75 (F) 5.64 (C) 6.34 (E) 5.31 (A) 7.81 (B) 8.05
d (A) 8.05 (C) 6.45 (B) 6.31 (F) 5.46 (D) 6.05 (E) 5.51
e (F) 5.65 (E) 5.44 (A) 7.27 (C) 6.54 (B) 7.03 (D) 5.96
f (E) 6.00 (B) 6.55 (D) 5.93 (A) 8.02 (F) 5.80 (C) 6.61

(a) Construct the ANOVA table for these data.
(b) Test (at the 5% significance level) the null hypothesis H0 that effects due to

humidity are zero. If H0 is rejected, estimate the effects due to the six humidity
levels.

29. In a 6 × 6 Latin square experimental design, the sums of squares corresponding to the
various sources of variation are shown below. Fill out the missing columns and test
the null hypothesis that (i) row effects, (ii) column effects, and (iii) treatment effects
are all zero. Use α = 0.01.

Source
Sums of
squares

Degrees of
freedom Mean square Test

Between rows 58.1
Between columns 78.6
Between treatments 81.3
Error 14.2
Total 232.2

30. An agronomist wished to study the effects of five fertilizers (A,B,C,D,E) on the
soybean crop. From past experience it is known that the fertility of land varies in two
directions, so to control the effects of land fertility a 5 × 5 Latin square design is used.
At the end of the harvest season the soybean yield is recorded and presented as coded
data (yield − 50 lb) that are given below:



844 17 Analysis of Variance

1 2 3 4 5

1 (A) 12 (B) 18 (C) 11 (D) 18 (E) 21
2 (B) 15 (C) 15 (D) 17 (E) 21 (A) 24
3 (C) 13 (D) 16 (E) 19 (A) 20 (B) 18
4 (D) 12 (E) 11 (A) 15 (B) 16 (C) 20
5 (E) 16 (A) 12 (B) 18 (C) 15 (D) 23

Test the null hypotheses that row effects, column effects, and treatment effects are all
zero. Use α = 0.10.
Assume in Problems 31–36 that nested experimental designs with fixed effects, mixed
effects, and random effects are appropriate and their underlying assumptions are met.

31. An engineer wishes to study the tearing strength of a coated paper produced at a paper
mill (tear strength is a measure of the force, applied perpendicularly to the plane of
the paper, that is required to tear one or more sheets of paper clamped between
two sets of jaws through a specified distance after the tear has been started, using
a standard tearing tester). She takes four samples from each of the three machines
used to manufacture coated paper and determines the tearing strength by taking
three readings on each sample. The data obtained are shown below (M = machines,
S = samples). Analyze these data and state your conclusions. Give the p-value for
the F-test you used. (Here effects of machines are assumed fixed, but effects due to
samples are random, etc.). Use α = 0.01.

M1 M2 M3

S1(1) S2(1) S3(1) S4(1) S1(2) S2(2) S3(2) S4(2) S1(3) S2(3) S3(3) S4(3)

28 29 30 27 19 22 24 20 30 29 33 32
22 25 32 30 21 20 22 25 33 32 35 33
29 31 28 29 22 23 21 23 35 28 34 31

32. Reanalyze the data in Problem 31, now supposing that the machines also represent a
random sample selected from a large set of machines. Use α = 0.01.

33. A rocket propellant manufacturer wishes to study the burning rate of a propellant
from three production processes. Four batches of propellant are randomly selected
from the output of each process, and three observations on burning rate are taken.
The data obtained is shown below (from Montgomery, 2009a,b, used with permission).
Analyze these data and state your conclusions. Use α = 0.01 (P = production process,
R = batch of propellant).

Production P1 P2 P3

Propellant R1(1) R2(1) R3(1) R4(1) R1(2) R2(2) R3(2) R4(2) R1(3) R2(3) R3(3) R4(3)

25 19 15 15 19 23 18 35 14 35 38 25
30 28 17 16 17 24 21 27 15 21 54 29
26 20 14 13 14 21 17 25 20 24 50 33
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34. An experimenter wished to study a hereditary problem among cats. She had
four sires of different breeds for the study, but she had the opportunity to select
random samples of dams. She then designed an experiment that was a nested
design. This design called for the mating of each sire with three dams (four batches
of three dams each, where dams are randomly selected). Then, the tail length
of three kittens from each dam is measured at the age of eight weeks. The data
obtained are shown below:

Sires S1 S2 S3 S4

Dreams D1(1) D2(1) D3(1) D1(2) D2(2) D3(2) D1(3) D2(3) D3(3) D1(4) D2(4) D3(4)

4.9 4.7 4.4 4.2 4.0 4.8 4.8 4.5 4.1 5.2 5.1 5.9
4.3 4.2 4.8 4.3 4.1 4.3 4.9 4.6 4.9 5.0 5.2 5.8
4.0 4.4 4.7 4.6 4.2 4.1 4.7 4.9 4.8 4.9 5.6 5.0

(a) Prepare the ANOVA table for these data.
(b) Test the hypothesis that the different breeds of sires have no effect on tail length.

Use α = 0.01.
(c) Test the hypothesis that dams within sires have the same effect on tail length.

Use α = 0.05.

35. The following data provides the plasma epinephrine obtained in 12 mice (3 random
samples of 4 mice each) during 3 types of anesthesia (A1, A2, A3) randomly selected
from various types of anesthesia. Since only a small quantity of each type of anesthesia
was available, an experiment was designed as a nested design to carry out the enquiry.
Two observations are taken on each mouse:

A1 A2 A3

M1(1) M2(1) M3(1) M4(1) M1(2) M2(2) M3(2) M4(2) M1(3) M2(3) M3(3) M4(3)

0.54 0.89 0.52 0.45 0.92 0.43 0.87 0.72 0.78 0.65 0.48 0.74
0.79 0.47 0.73 0.99 0.50 0.76 0.77 0.55 0.66 0.69 0.89 0.46

(a) Prepare the ANOVA table for these data.
(b) Test the hypothesis that the different types of anesthesia have the same effect.

Use α = 0.05.
(c) Test the hypothesis that mice within an anesthesia have the same plasma

epinephrine. Use α = 0.05.

36. Suppose that for the analysis in Problem 35, the factors anesthesia and mice are fixed.
Reanalyze the data and draw your conclusions. Use α = 0.05.

37. The following data shows measurements of resting heart rates of males for four age
groups:
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Heart rate samples

18–24 25–29 30–34 35–40

47 60 55 49
45 58 43 43
53 62 42 43
63 63 50 49
62 67 60 55
68 64 45 43
51 62 44 51
48 55 60 50
61 61 50 43
40 49 53 53

Test the hypothesis that the four age groups all have the same mean heart rate. If
the hypothesis of equality is rejected, estimate the effects due to the groups. Find the
p-value for the F-statistic. Assume that a one-way experimental design is appropriate
and the underlying assumptions are met. Use α = 0.05.

38. Analyze the data in Problem 2 using the Kruskal–Wallis nonparametric test. Use
α = 0.05.

39. Analyze the data in Problem 4 using the Kruskal–Wallis nonparametric test. Use
α = 0.05.

40. Analyze the data in Problem 5 using the Kruskal–Wallis nonparametric test. Use
α = 0.05.

41. Analyze the data in Problem 8 using the Friedman nonparametric test. Use α = 0.05.

42. Analyze the data in Problem 13 using the Friedman nonparametric test. Use α = 0.05.

43. Analyze the data in Problem 15 using the Friedman nonparametric test. Use α = 0.05.



Chapter 18

THE 2k FACTORIAL DESIGNS

The focus of this chapter is the development of special experimental
designs involving factors having two levels each.

Topics Covered

• The factorial designs
• The 2k factorial designs
• Unreplicated 2k factorial designs
• Blocking the 2k factorial designs
• Confounding in the 2k factorial designs
• Yates’ algorithm for the 2k factorial designs
• The 2k fractional factorial designs
• One-half replication of a 2k factorial design
• One-quarter replication of a 2k factorial design

Learning Outcomes

After studying this chapter, the reader will be able to

• Design and conduct special kinds of experiments in engineering or other scientific fields
involving two or more factors, when the factors are available at two levels.

• Create blocking appropriately to avoid any kind of confounding.
• Create blocking using appropriate interactions when experiments are designed using

only one-half or one-quarter replication of a 2k design.
• Analyze data coming out of experiments employing some special techniques.
• Perform residual analysis to check the adequacy of the models under consideration.
• Summarize and interpret the results of these experiments.
• Use statistical packages MINITAB, R, and JMP to analyze the data in these

experiments.

Statistics and Probability with Applications for Engineers and Scientists using MINITAB, R and JMP,
Second Edition. Bhisham C. Gupta, Irwin Guttman, and Kalanka P. Jayalath.
c© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/college/gupta/statistics2e
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18.1 INTRODUCTION

We continue our discussion of factorial designs that began in Chapter 17. In this chapter,
we consider an important class of factorial designs in which each of the k factors has only
two levels. Since these designs have exactly 2k treatments, they are usually referred to as
2k factorial designs. These designs find widespread applications in industrial environments,
such as the pharmaceutical, biomedical, and chemical industries. The 2k factorial designs
are used extensively to study another important class of designs called response surface
designs. We discuss those designs in Chapter 19.

18.2 THE FACTORIAL DESIGNS

As we noted in Chapter 17, a factorial design is a design constructed by taking all combi-
nations of l1 levels of factor A1 with the l2 levels of factor A2, with the l3 levels of factor
A3, . . . , and, finally, with the lk levels of factor Ak. The complete factorial design then
contains a total of t = l1 × l2 × l3 × · · · × lk “treatments” with rj observations per treat-
ment, j= 1, 2, . . . , t. (Usually but not necessarily, a fixed number of replicate observations,
say r, is taken on each treatment, providing a total of N = r × l1 × l2 × l3 × · · · × lk exper-
iments.) If rj = r for all j, then we say that we have replicated the experiment r number
of times and the data obtained in this manner are called balanced data. Ideally, the entire
program of experiments is run in a random sequence.

As an example, suppose an experimenter wants to study the effects of temperature
at three levels, two types of catalyst, and four pump speeds upon the yield of a par-
ticular hydrocarbon in a fluid bed reactor. The factorial design needed here would then
consist of 3× 2× 4 = 24 treatments. To provide a measure of experimental error, each
treatment might be performed twice to give a total of N= 2 × 2× 3× 4 = 48 experiments.
The experiments are then run in random order.

A primary concern of the experimenter rests in comparisons between the various treat-
ment means. In this example, he or she may wish to compare the mean performance of the
two catalysts or to determine whether there is a meaningful linear or quadratic trend asso-
ciating process yield with the various temperature levels at the various pumping speeds.
To estimate these and other effects, we can use certain statistics called contrasts, which
we have defined in Chapter 17, and now discuss them in the present context.

Consider a collection of n observations Yu, u= 1, 2, . . . , n. A contrast of the Yu is a
linear combination of the observations of the form

∑n
u=1 duYu, subject to the constraint

that
∑n

u=1 du = 0. Similarly, we may define contrasts between t treatment averages Ȳj or
treatment totals Tj , j= 1, 2, . . . , t, each based on r observations by

t∑
j=1

cj Ȳj or
t∑

j=1

cjTj , where
t∑

j=1

cj = 0 (18.2.1)

Further, two contrasts
∑n

u=1 duYu and
∑n

u=1 d
′
uYu are orthogonal if

∑n
u=1 dud

′
u = 0.

Given the constraints on the constants du, it is possible to construct a set of
m = (n − 1) orthogonal contrasts. Now, given a set of n − 1 orthogonal contrasts,
Lv =

∑n
u=1 duvYu, v = 1, 2, . . . , n − 1 it can be shown that the corrected sum of squares
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in an analysis of variance table is given by

SStotal =
n∑

u=1

(Yu − Ȳ )2 =
n−1∑
v=1

(
L2

v∑
d2

uv

)
, (18.2.2)

So that, interestingly, the (n − 1) degrees of freedom associated with the corrected sum of
squares in an analysis of variance table can be partitioned into (n − 1) separate additive
components, where each single degree of freedom component (L2

v/
∑

ud2
uv) is associated

with a single orthogonal contrast Lv. Further, under the assumption that the errors in
observation are independent N(0, σ2) random variables, the statistic

Tm =
∑

duYu − E(
∑

duY )√
(
∑

d2
u) S2

∼ tm (18.2.3)

may be used to test hypotheses concerning the expected value of a contrast. Here, as
previously, tm denotes the Student t variable with m degrees of freedom and S2 is the usual
unbiased estimator of σ2 based on m degrees of freedom. If we wish to test the hypothesis
that E (

∑
duYu) = 0, at significance level α, we would thus reject the hypothesis if the

observed value of Tm is such that

|obs Tm| =

∣∣∣∣∣
∑

duYu√
(
∑

d2
u)S2

∣∣∣∣∣ > tm;α/2 (18.2.4)

and do not reject the hypothesis otherwise. Now, since t2m ∼ F1,m, we see that this test
is equivalent to computing the ratio of the contrast mean square to the residual mean
square in an analysis of variance table, and referring this ratio to F1,m; α. The limits of
the 100(1 − α)% confidence interval estimate for E (

∑
duYu) are given by

∑
duYu ± tm; α/2

√(∑
d2

u

)
S2 (18.2.5)

where m is the number of degrees of freedom associated with S2.
Often, in a designed experiment, each of the t treatment averages Ȳj is based on

the same number of observations r. Here, again, individual degree of freedom treatment
contrasts

∑t
j=1 cj Ȳj can be constructed. Also, for treatment averages based on the same

number of r observations, two treatment contrasts,
∑t

j=1 cj Ȳj and
∑t

j=1 c
′
j Ȳj are orthog-

onal if
∑t

j=1 c
′
jcj = 0 and for any set of t treatment averages we may construct (t − 1)

orthogonal treatment average contrasts. Further, the treatment sum of squares SSA [see
Chapter 17] can be partitioned into (t − 1) individual degree of freedom components asso-
ciated with each orthogonal contrast. Each contrast sum of squares is given by

(
∑

cj Ȳj)
2

r
∑

c2
j

(18.2.6)

Also, and importantly, if Yj ’s are independent normal variables, then two orthogonal con-
trasts of the Yj ’s are also independent normal random variables.

PRACTICE PROBLEMS FOR SECTION 18.2

1. Explain in your own words: What is a factorial design?
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2. Suppose that (Y1, Y2, Y3, Y4) is random sample from a normal population. Write a
contrast L in terms of (Y1, Y2, Y3, Y4).

3. Refer to Problem 2. Give a set of orthogonal contrasts. What is the maximum
number of orthogonal contrasts of (Y1, Y2, Y3, Y4) that may be constructed?

4. How would you test that the expected value of an orthogonal contrast L =
∑

iciYi

is zero?
5. Refer to Problem 4. Outline the procedure for the testing of hypothesis at the 5%

level of significance for the problem

H0 : E(L) = 0 versus H1 : E(L) �= 0

where L = Y1 + Y2 − Y3 − Y4, given that y1 = 11, y2 = 9, y3 = 17, y4 = 13.
6. What is a 5 × 43 × 32 × 2 factorial experiment? How many factors you are studying

in this experiment? How many treatments are there in this experiment?
7. Describe in your own field of application an experiment having four factors, with

each factor at two levels.

18.3 The 2k Factorial Designs

To illustrate the preceding discussion, consider a 2k factorial design consisting of the
N= 2k treatments formed from all possible combinations of the two levels of all the k
factors. The two levels of any factor are usually called the lower level and the upper level
of that factor under the control of the experimenter. For example, if one of the factors is
temperature, then the two levels might be the lower and upper temperatures 100◦C and
120◦C. Or if the factor is qualitative, the two levels might be catalyst A and catalyst B or,
as another example, the presence of catalyst A and the absence of catalyst A. These designs
are frequently called two-level factorials without regard to the qualitative or quantitative
nature of the controlled factors.

For k= 3 factors, the eight treatments in a 23 factorial design are those displayed
using three equivalent notations, as in Table 18.3.1. In the first notation, the three factors
are labeled A, B, and C, and the two levels of each factor are indicated by the presence
or absence of the associated lowercase letter. The symbol 1 represents that treatment in
which all the factors appear at their “lower” level. In the second notation, the factors are
identified as 1, 2, and 3 and their two levels by 0 and 1, respectively. Finally, in the third
notation, the factors are identified as x1, x2, and x3, or A1, A2, and A3, and their levels
by plus and minus signs. The plus and minus notation provides a convenient geometric
representation of the design, the eight settings (±1, ±1, ±1) defining the vertices of a cube
in the three space (x1, x2, x3) of the factors, the center of the cube located at the origin of
the x1, x2, x3 coordinate system. The plus and minus indicate the upper and lower level,
respectively. The design is illustrated in Figure 18.3.1b.

In all three cases, the array of treatments, called the treatment matrix (a submatrix of
the design matrix), has been written down in standard order, or “Yates’s order,” in honor
of one of the early proponents of these designs. The experimental program is, of course,
run in random order. The treatment matrices for the 22 and the 24 factorials are displayed
in Table 18.3.2. These designs, when viewed geometrically, are the 22 vertices of a square
and the 24 vertices of the tesseract, or cube, in four space as illustrated in Figure 18.3.1a,c,
respectively. The extension for k > 4 should be obvious.
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Table 18.3.1 23 Factorial design in Yates’s order in
three notations.

Experiment Notation 1 Notation 2 Notation 3
number A B C 1 2 3 x1 x2 x3

1 1 0 0 0 − − −
2 a 1 0 0 + − −
3 b 0 1 0 − + −
4 ab 1 1 0 + + −
5 c 0 0 1 − − +
6 ac 1 0 1 + − +
7 bc 0 1 1 − + +
8 abc 1 1 1 + + +

x2

x1

(a) (b) (c)

Figure 18.3.1 Geometric display of the 22, 23, and 24 factorial designs. (a) The 22

factorial, (b) the 23 factorial, (c) the 24 factorial (although one cannot “see” the tesseract,
its projection to fewer dimensions can be visualized).

Each experiment is called a run, and Table 18.3.1 gives the “recipe” for the conditions
of the run. For example, run 6, which generates y6, say, is conducted by using the upper
level of factor A, the lower level of factor B, and the upper level of factor C.

For the 2k factorial experimental layout, the postulated model is

Y (t1 · · · tk) = μ + A1z1 + A2z2 + · · · + Akzk + A1A2z1z2 + · · · + Ak−1Akzk−1zk

+ · · · + A1A2 · · ·Akz1z2 · · · zk + ε (18.3.1)

where Y (t1 · · · tk) is the observation taken using the treatment combination (t1 · · · tk),
A1, A2, . . . , Ak are the main effects, AiAj are the effects of the two-factor interactions,
and so on; zi = 1 or −1 denotes the use of the ith factor at the upper or lower level,
respectively, and ε is the random error. Note from 18.3.1 that the 2k factorial design
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Table 18.3.2 Treatment matrices for the 22 and 24

factorial designs in Yates’s order.

A1 A2 A1 A2 A3 A4

− − − − − −
22 + − + − − −
Factorial − + − + − −

+ + + + − −
− − + −
+ − + −

24 − + + −
Factorial + + + −

− − − +
+ − − +
− + − +
+ + − +
− − + +
+ − + +
− + + +
+ + + +

model consists of

k Main effects
k(k − 1)/2 Two-factor interaction effects
k(k − 1)(k − 2)/3 · 2 Three-factor interaction effects
...

...
k(k − 1)(k − 2) · · · (k − h + 1)/h! h-Factor interaction effects

(18.3.2)

and a single k-factor interaction effect, for a total of 2k − 1 factorial effects. These are
easily seen to be mutually orthogonal contrasts, and they may be estimated by setting out
the plus and minus signs for each factorial effect.

Let us consider the case of the 23 factorial. Consulting Table 18.3.3, we see that the
last column of the table simply tabulates the total of the observations taken at each of
the eight treatments identified by the (±,±,±) signs in the first three columns. Now, for
example, the main effect of factor A2 may be estimated by using the arrangement of the
(±) in the column headed {A2} and the column of treatment totals, as follows:

Â2 =
1

r23−1 [−T1 − T2 + T3 + T4 − T5 − T6 + T7 + T8] (18.3.3)

The factor 1/23−1, or in general, 1/2k−1, is the reciprocal of the number of plus or minus
signs in a column, while the factor r in the denominator of this expression represents the
common number of observations that make up each treatment total. Hence, 18.3.3 equals
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Table 18.3.3 Design matrix for the 23 factorial design (r observations per treatment).

Treatment (row) A1 A2 A3 A1A2 A1A3 A2A3 A1A2A3 Treatment totals

1 − − − + + + − T1

2 + − − − − + + T2

3 − + − − + − + T3

4 + + − + − − − T4

5 − − + + − − + T5

6 + − + − + − − T6

7 − + + − − + − T7

8 + + + + + + + T8

Ȳ+ − Ȳ− for factor A2, where Ȳ+ is average of all the r2k−1 observations recorded when
factor A2 was at its upper level, and Ȳ− corresponds to average of the r2k−1 observations
taken at the lower level of factor A2.

In general, the first k columns of signs in a contrast coefficient table, called the design
matrix (Table 18.3.3), are identical to those given in the treatment matrix for the 2k

factorial design, and these columns may be used as bases for estimates of the k main
effects. The remaining columns of signs are used to estimate “interaction” effects and are
generated from the row-wise product of the signs in the first k columns.

For example, to obtain the entry in row three of the column labeled A1A2, we have
that the entry in the column A1 and row three is −, the entry in the column A2 and
row three is +, and hence the entry for row three in column A1A2 is (−)(+) = (−). The
generalization of this table to the 2k factorial designs is straightforward. The estimate
of the AiAj · · ·Ak interaction effect is proportional to the sum of the products of the
corresponding {i, j, . . . , k} elements and treatment totals

∑
l(ij · · · k)Tl and is given by

Estimate of the AiAj · · ·Ak interaction effect =
1

r2k−1

⎛
⎝ 2k∑

l=1

{ij · · · k}Tl

⎞
⎠ (18.3.4)

where {ij · · · k} stands for the 2k elements of plus and minus signs associated with the
AiAj · · ·Ak interaction effect. Thus, in the example above, the estimate of the A1A2 inter-
action effect would be (see the A1A2 column of Table 18.3.3)

( ̂A1A2) = Estimate of A1A2 =
1

r(4)
[+T1 − T2 − T3 + T4 + T5 − T6 − T7 + T8] (18.3.4a)

The associated single degree of freedom component of the treatment sum of squares
is, from (18.2.6) and (18.3.4),

SS{AiAj · · ·Ak} =
(
∑

(ij · · · k)Tl)
2

r2k
= r2k−2[Estimate of effect]2 (18.3.5)

The reader may check easily that the (2k − 1) estimates are mutually orthogonal contrasts,
and that each contrast is the difference between two averages, say Ȳ+ and Ȳ−, of r2k−1
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observations each. (Recall the example of Â2 in 18.3.3). Thus, the variance for each estimate
of the effects is

V ar(Ȳ+ − Ȳ−) = V ar[Estimate of effect] =
(

1
r2k−1 +

1
r2k−1

)
σ2 =

1
r2k−2 σ2 (18.3.6)

We will denote an estimate of the variance in (18.3.6) by V̂ , that is,

V̂ =
1

r2k−2 S2 (18.3.6a)

where S 2 is the estimate of σ2 obtained by dividing the appropriate error sum of squares
by its associated degrees of freedom, say m. Here, S2 is independent of the treatment
effects.

A test of a hypothesis about the expected value of an effect is provided by using the
fact that the following is distributed as Student’s t:

Tm =
[Estimate of effect] − E[Estimate of effect]√

V̂
∼ tm (18.3.7)

An interval estimate for any effect is given by

[Estimate of effect] ± tm; α/2 ×
√

V̂ (18.3.8)

Example 18.3.1 (Preparing a colored fabric) An experimenter wishes to determine the
effects of a new dyestuff and alternative methods for preparing fabric upon fabric color-
fastness. The 22 factorial design given in Table 18.3.4 was employed in which the upper
and lower levels of factor X1 correspond to the new dyestuff and standard dyestuff, respec-
tively, and the upper and lower levels of the factor X2 represent the alternative and standard
methods for preparing the fabric, respectively. The measured response Y (here modified and
coded for convenience) was the loss in reflectance of dyed fabric after 20 hours of exposure
to a carbon-arc lamp, in keeping with standards in AATCC Method 16A-1864 (American
Association of Textile Chemists and Colorists). To provide estimates of treatment effects
with sufficient precision, it was decided to replicate the experimental program five times.

Table 18.3.4 Data for 22 factorial in five replicates.

Design
Responses yij

(loss of reflectance)
Studied factors variables blocking variable: days Treatment

Type of Preparation Totals Averages

Treatment dyestuff method A1 A2 (i) (ii) (iii) (iv) (v) Ti. Ȳi·
1 Old Standard − − 23 21 23 21 22 110 22.0

2 New Standard + − 30 28 31 28 23 140 28.0

3 Old Alternative − + 12 8 5 9 6 40 8.0

4 New Alternative + + 23 19 17 14 17 90 18.0

Day totals T·j 88 76 76 72 68 T·· = 380

Day averages Ȳ·j 22.0 19.0 19.0 18.0 17.0 Ȳ·· = 19
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It was also felt that day-to-day variability might inflate the variance of the observations.
So to protect the treatment comparisons against this unwanted source of variability, the 22

factorial program was randomly run once on each of the five days. The 22 factorial design
and recorded responses are given in Table 18.3.4; note that k = 2 , r = 5 .

Solution: First, we analyze these data using the technique of a randomized complete
block design explored in Chapter 17. A test of the hypothesis that there are no treatment
effects is carried out by first postulating the model (see Section 17.4)

Yij = μ + αi + βj + εij (18.3.9)

where the Yij are recorded observed reflectance measurements, i=1, . . . , 4, j=1, . . . , 5,
and where the αi are here defined to be the treatment effects, βj the effects due to days
(the blocks), and the εij are random errors distributed independently as N(0, σ2). We
then use the analysis of variance (see Table 17.4.2) to estimate σ2, the variance of the
observations, and finally to test the hypothesis that the treatment effects αi are all equal
to zero. We have (r= 5, k= 2, r2k = 20)

SStotal =
∑∑

y2
ij −

T 2
··

r2k

= 232 + 302 + · · · + 172 − (380)2

20
= 8396 − 7220 = 1176

SStreat =
1
r

∑
T 2

i· −
T 2
··

r2k

=
1
5
(1102 + 1402 + 402 + 902) − (380)2

20
= 8280 − 7220 = 1060

SSdays =
1
2k

∑
T 2
·j −

T 2
··

r2k

=
1
4
(882 + 762 + · · · + 682) − (380)2

20
= 7276 − 7220 = 56

These results are summarized in the ANOVA Table 18.3.5. Note that SSE is found
by subtraction, that is, SSE = SSTotal − (SStreat + SSdays).

Table 18.3.5 ANOVA table for the data in Table 18.3.4.

Source DF SS MS E(MS) F-ratio

Treatments 3 1060 353.3 σ2 + (5/3)
∑

α2
i 70.66

Days 4 56 14.0 σ2 +
∑

β2
j 2.8

Error 12 60 5.0 σ2

Total 19 1176

To test the hypothesis that the treatment effects αi are all zero, we note that under this
hypothesis, both the treatment mean square and the error mean square are independent
estimates of σ2, and hence their ratio is distributed as an F-distribution with (3, 12)
degrees of freedom. The observed ratio is then F= 353.3/5.0 = 70.66, and from Table A.7,
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this is found to be a rare event since the Prob{F3,12 ≥ 7.2258} = 0.005 (here, as elsewhere
in this chapter, the significance level of a test is 0.05). Hence, the hypothesis of all αi = 0
is rejected. We now turn to making additional inferences about the αis.

Employing the results of Equations (18.3.4) and (18.3.5), we can separate the three
degrees of freedom for treatments into individual orthogonal one-degree-of-freedom con-
trasts associated with (i) the main effect of factor A1 (changing dyestuff), (ii) the main
effect of factor A2 (changing fabric preparation), and (iii) a measure of the dyestuff-
preparation interaction effect A1A2. To facilitate the computation of these contrasts (see
(18.3.4)) or, equivalently, the estimation of these effects, the contrast coefficients and
treatment totals are displayed in Table 18.3.6. The estimate of the variance of an effect is
V̂ = [1/(5)(1)]S2 = [1/(5)(1)](5.0) = 1.0 (see Equation (18.3.6a) and the analysis of vari-
ance Table 18.3.5).

Table 18.3.6 Contrast coefficients for
factorial effects.

Contrast coefficients

{A1} {A2} {A1A2}
Treatment
totals T

− − + 110
+ − − 140
− + − 40
+ + + 90

The estimated effects are

{A1 dyestuff effect} =
1

5(22−1)
[−110 + 140 − 40 + 90] = 8.0

{A2 preparation effect} =
1

5(22−1)
[−110 − 140 + 40 − 90] = −12.0

{A1A2 interaction effect} =
1

5(22−1)
[+110 − 140 − 40 + 90] = 2.0

The associated single-degree-of-freedom portions of the treatment sum of squares are given
by (see Equation 18.3.5)

Sum of squares due to A1 (dyestuff) = 5(8.0)2 = 320

Sum of squares due to A2 (preparations) = 5(−12.0)2 = 720

Sum of squares due to A1A2 (interaction) = 5(2.0)2 = 20

These results are summarized in Table 18.3.7. It is interesting to note that these sums
of squares total to 1060; that is, we have successfully partitioned the treatment sum of
squares of Table 18.3.5.

A test of the hypothesis that the effect of changing dyestuff is zero, that the main
effect of A1 is zero, is provided by the ratio of the dyestuff and error mean squares (see
Table 18.3.5). Thus the relevant observed F is F = MS(A1)/MSE , which under H0: main
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Table 18.3.7 Partitioning the treatment sum of squares into individual degree of
freedom of components.

Source Sum of squares Degrees of freedom Mean squares

A1 (dyestuff) effect 320 1 320
A2 (preparation) effect 720 1 720
A1 A2 (interaction) effect 20 1 20

Total treatment sum of squares 1060 3

effect of A1 is zero is such that F ∼ F1,12. But the observed F is

F (A1) =
320
5

= 64.0,

and this is a rare event since 64.0 is much greater than 4.74, where Prob{F1,12 ≥ 4.74} =
0.05. Thus, we reject the hypothesis that the main effect of A1 is zero. An equivalent test
is provided by using the t-statistic (see Equations (18.3.6)–(18.3.7)),

(obs. T ) =
8.0 − 0√

5.0/5(22−2)
= 8.0

We note, once again, that F = (obs T )2. Similarly, the hypothesis that there is no effect due
to factor A2 (preparation) must be rejected since the observed F (A2) = 720/5.0 = 114.0.
However, there is no strong evidence that an interaction effect between the type of dyestuff
and the method of preparation exists, since the corresponding test of the null hypothesis
“interaction effect= 0” uses the observed F (A1A2) = 20/5 = 4.0, and Prob{F 1,12 > 4} >
0.05. The 95% confidence interval for each individual effect is (see 18.3.8 and note that
t12, .025 = 2.179)

Estimate of effect ± 2.179

√
5.0

5(22−2)
= Estimate of effect ± 2.179

since the estimate of the variance of an effect is given by (see 18.3.6a)

V̂ =
1

5(22−2)
σ̂2 =

1
5
S2 =

1
5
× 5 = 1

In summation, on the basis of the evidence provided by the 22 factorial, the effect
of changing to the new dyestuff will be an increase in the reflectance and hence, the
colorfastness of the dyed fabric, by 8.0 ± 2.2 units, whereas changing to the new method
for preparing the fabric prior to dyeing has a deleterious effect of −12.0 ± 2.2 units.
Changing to the new dyestuff and continuing with the standard mode of preparation of
fabric is thus strongly suggested by these data.

The analysis of these data need not end with the investigation of the effects of the treat-
ments. The experimenter could also test the hypothesis that the day-to-day effects βj were
zero. Investigating the variation in color fastness due to days is not the primary objective of
the experimenter, but the design and associated analysis of variance table provide a ready
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opportunity to perform this test of hypothesis. The corresponding F-ratio is observed to be
F = 14.0/5.0 = 2.8. Now under “H0 : days have no effect,” F ∼ F4,12, so F = 2.8 is not a
rare event at the 5% level of significance since Prob{F 4,12 ≥ 3.26}= 0.05. However, it may
be considered a “rare” event at the 10% level since Prob{F 4,12 ≥ 2.48}= 0.10. A variety
of interpretations are now open to the experimenter. He could decide, on the basis of the
test at the 5% level of significance, that no day effects existed and that blocking the exper-
iment by days was an unnecessary nuisance. He might then pool the sums of squares and
degrees of freedom for days and error and produce (see Table 18.3.5) the pooled estimate
of variance S 2 = (60 + 56)/(12 + 4) = 116/16 = 7.25 with 16 degrees of freedom. We note
that the hypothesis that the treatment effects are zero is still rejected for the new observed
F= 353.3/7.25 = 48.73, an extraordinarily rare event since Prob{F 3,16 ≥ 6.30}= 0.005. Or
the experimenter might decide, on the basis of a 10% significance test, that blocking to
eliminate day-to-day effects had been worthwhile since real day-to-day effects were detected
and use would be only made of the mean square error S 2 = 5.0 in the analysis. Alterna-
tively, he or she might still pool the day-to-day error contributions to see whether the
treatment effects are detectably nonzero in the presence of this additional acknowledged
source of variation due to days. The fact that they are, in this example, enhancing the
experimenter’s ability to make statements about the treatments across future days.1

The reader might have noticed that there seems to be a trend across days, the daily
average diminishing gradually over time. Since days are equally spaced in time, one can eas-
ily construct orthogonal single degree of freedom contrasts and associated sum of squares
reflecting the day-to-day variability that could be assigned to a linear or quadratic trend
across days. The necessary sets of constant coefficients for the linear and quadratic trends
are displayed in Table 18.3.8. The sum of squares and degrees of freedom for days may now
be partitioned as illustrated in Table 18.3.9. The successive daily averages are averages of
the four observations taken on that particular day.

Table 18.3.8 Coefficients of linear and quadratic effect contrasts.

Successive daily
averages Contrast Contrast SS

22.0 19.0 19.0 18.0 17.0
∑

ciȳi· = r(
∑

ciȳi·)
2/

∑
c2
i

Linear effects contrast −2 −1 0 1 2 −11 4(−11)2/10 = 48.40
Quadratic effects contrast 2 −1 −2 −1 2 3 4(3)2/14 = 2.57

Table 18.3.9 Partitioning block sum of squares.

SS Degrees of freedom Mean square

Linear day effect 48.40 1 48.40 F1,12 = 9.68
Quadratic day effect 2.57 1 2.57 F1,12< 1
Other effects (by subtraction) 5.03 2 2.51 F2,12< 1
Total sum of squares for days 56.00 4 14.0

1 The experimenter here assumes that there is no day-by-day treatment interaction. If, before running the exper-
iments, he had thought such interactions likely, the design would have to be modified to permit their estimation.
This could be accomplished by repeating the treatments within each day (see Chapter 17).
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From Table 18.3.9, we note that the other effects and quadratic effects are insignificant.
Now, we conduct the test of hypothesis that no linear trend exists (i.e. the linear contrasts
among the true treatment means equals zero against the alternative that the linear contrast
is not zero), given by the ratio of the linear effect mean square divided by the error mean
square, S 2 = 5.0, as found in Table 18.3.5. Thus, the relevant F-statistic is observed to
be 48.40/5.0 = 9.68. Since Prob{F 1,12 ≥ 4.74}= 0.05, this observed value of 9.68 is a rare
event, and we can reject the hypothesis that no linear trend exists, or, do not reject the
hypothesis that a linear trend exists. We note that this apparent linear trend accounts for
almost all the variation between days. In this instance, one assignable cause was the wear
on the electrodes in the carbon-arc lamp used in the instrument for measuring reflectance.
For linear, quadratic, and higher-order effects contrasts coefficients, the reader is referred
to Hicks (1982).

The ease and richness of this analysis are due, in very large part, to the experimental
design.

PRACTICE PROBLEMS FOR SECTION 18.3

1. Write treatment matrices in all three notations for the 24 factorials in Yates order.
2. Write a design model for a 24 factorial design.
3. Refer to Problem 2. How many two-factor interactions, three-actor interactions, and

four-factor interactions are there in the model?
4. Refer to Problem 2. Suppose that the whole experiment is replicated three times.

Give estimates of the main effects in terms of treatment totals.
5. Write the design matrix for a 23 factorial design.
6. Refer to Problem 5. Suppose that the whole experiment is replicated four times.

Give an estimate of the three-factor interaction in terms of treatment totals.
7. Estimate the standard error of the estimates of various main effects and interactions

in Problem 6.
8. Determine a 95% confidence interval for the three-factor interaction in Problem 6.
9. Determine a 99% confidence interval for the main effects in Problem 6.

18.4 Unreplicated 2k Factorial Designs

For moderate values of k, k ≥ 4, the total number of treatments specified by a 2k factorial
design quickly becomes large and experimenters often become unwilling to repeat, or
replicate, the experimental program. When replication is ruled out, no estimate of σ2 is
available, or none exists that can be constructed from replicated observations.

However, an estimate of σ2 can be constructed whenever the number of variables or
factors k is large. To explain, when working with k factors, it is unlikely that all the
(2k − 1) factorial effects will in fact be large. Under the assumption that the response
being investigated changes smoothly over the range of the factors being varied, it becomes
unlikely that high-order interaction effects exist.

When they exist, the magnitude of such effects is usually relatively small compared
to the main effects or the lower-order interactions. In circumstances where these assump-
tions seem reasonable, the [(2k − 1) − k − k(k − 1)/2] degrees of freedom available for the
estimation of the three-factor and higher-order interaction effects are now used to provide
an estimate of the variance.

In other cases it could become clear, after experiments have been performed, that h
(h < k) of the factors have only very small or no effect on the response when compared
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to the effects of the remaining (k − h) factors. When this occurs, the experimenter
often declares the h factors (over the range studied) to have zero effects or to have
effects whose magnitudes cannot be distinguished from the contribution of the random
errors. The program used then becomes a 2k−h factorial replicated 2h times, providing
[(2h − 1) × 2k−h] degrees of freedom for estimating σ2.

In general, the full 2k factorial designs can be viewed as “equal opportunity” designs,
since they permit the orthogonal estimation of all (2k − 1) factorial effects, each estimated
with minimum variance σ2/2k−2. Often, the experimenter is anxious to determine which
subset of these (2k − 1) candidate effects have the largest influence on the response. We
say that the experimenter wishes to screen the many effects to discover the important
ones. When the factorial design is not replicated, this search becomes difficult since the
experimenter will have to determine which of the estimated effects are due to the experi-
mental error and which are reflections of real, large effects. To help identify the real effects,
the estimates of the effects may be plotted on normal probability paper. Since linear com-
binations of random variables are statistics tending to have a normal distribution, those
estimates that have values that are primarily due to the errors of observation should look
like events from a normal distribution.

Following Section 5.8, the (2k − 1) estimates of the factorial effects are first
ordered, say, as e(1), . . . , e(2k−1) and these ordered values e(i) are plotted against
Pi = (i − 0.5)/(2k − 1), i = 1, 2, . . . , 2k − 1, on normal probability paper. If the effects
have true value zero, then the ordered estimated effects e(i) will, when plotted against
Pi, tend to fall along a straight line, confirming the hypothesis that these estimates are
due solely to errors. However, the estimates of largest magnitude will, if they reflect real
effects, lie off the straight-line. Having distinguished these large estimates from estimates
that may be assumed to be manifestations of error only, the experimenter may use some
or all of the degrees of freedom associated with the “error-like” effects and construct
an estimate of σ2. We illustrate this method for constructing an estimate of σ2 from an
unreplicated factorial experiment in the following example.

Example 18.4.1 (Chemical yields) An experimenter is interested in studying the effects
of k = 4 factors on the yield of a chemical where the four factors are temperature, speed of
agitation, catalyst concentration, and pressure. The experiments comprising a 24 factorial
design were performed in a random sequence. The lower and upper levels of these factors
are as shown in Table 18.4.1.

Table 18.4.1 Lower and upper levels of various factors.

Factors Lower level Upper level

Temperature (◦C) A 30.0 32.0
Speed (1000 rpm) B 1.0 1.2
Catalyst (mol) C 0.6 1.0
Pressure (100 psi) D 7.0 10.0

The yield of the chemical process yi, i = 1, 2, . . . , 16, and the experimental design in two
alternative notations are given in Table 18.4.2. The table of contrast coefficients required
for estimating the 15 factorial effects is displayed in Table 18.4.3.
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Table 18.4.2 Yield of the chemical and design matrix in two notations.

Equivalent design levels
Alternate designation Observations

Run Number A B C D A B C D yi

1 − − − − 1 62
2 + − − − a 88
3 − + − − b 63
4 + + − − ab 83
5 − − + − c 88
6 + − + − ac 80
7 − + + − bc 99
8 + + + − abc 92
9 − − − + d 65

10 + − − + ad 123
11 − + − + bd 65
12 + + − + abd 121
13 − − + + cd 97
14 + − + + acd 105
15 − + + + bcd 92
16 + + + + abcd 117

Table 18.4.3 Design matrix and responses.

Two-factor
Interactions

Three-factor
Interactions

Four-factor
Interactions Responses

A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD y

− − − − + + + + + + − − − − + 62
+ − − − − − − + + + + + + − − 88
− + − − − + + − − + + + − + − 63
+ + − − + − − − − + − − + + + 83
− − + − + − + − + − + − + + − 88
+ − + − − + − − + − − + − + + 80
− + + − − − + + − − − + + − + 99
+ + + − + + − + − − + − − − − 92
− − − + + + − + − − − + + + − 65
+ − − + − − + + − − + − − + + 123
− + − + − + − − + − + − + − + 65
+ + − + + − + − + − − + − − − 121
− − + + + − − − − + + + − − + 97
+ − + + − + + − − + − − + − − 105
− + + + − − − + + + − − − + − 92
+ + + + + + + + + + + + + + + 117
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Table 18.4.4 Estimated factorial effects using Table 18.4.3.

Main effects
Two-factor
interactions

Three-factor
interactions

Four-factor
interactions

A 22.25 AB 1.25 ABC 3.25 ABCD 1.50
B 3.00 AC −17.75 ABD 2.50
C 12.50 AD 14.50 ACD 2.50
D 16.25 BC 4.50 BCD −2.25

BD −1.75
CD −3.25

Order i Effect Estimate (i − 0.5)/15

15 1 22.25 0.9677
14 4 16.25 0.9000
13 14 14.50 0.8333
12 3 12.50 0.7667
11 23 4.50 0.7000
10 123 3.25 0.6333
9 2 3.00 0.5667
8 124 2.50 0.5000
7 134 2.50 0.4333
6 1234 1.50 0.3667
5 12 1.25 0.3000
4 24 −1.75 0.2333
3 234 −2.25 0.1667
2 34 −3.25 0.1000
1 13 −17.75 0.0333

Using (18.3.4), we can easily obtain the estimated factorial effects, which are displayed
in Table 18.4.4. An alternative and more rapid estimation technique for this example is
provided by Yates’s algorithm discussed in Section 18.5.2.

Now let us consider the problem of obtaining an estimate of σ2. As a preliminary for
determining an estimate of σ2, the ordered effects (see Table 18.4.4) are plotted on normal
paper, shown in Figure 18.4.1. On viewing this plot (and remembering that extreme points
should have little weight in orientating the fitted line on normal probability paper), we
note that the smallest estimates (those near zero) lie reasonably along a straight line while
the largest estimates are far off the line. This suggests strongly that these large estimates
are not acting in a matter compatible with the suggestion that they are due to random
errors.

One immediate interpretation of the data open to the experimenter is that factor
B (speed of agitation) has no influence on the response since none of the large effects
involve B. Under this assumption, we drop B, and the program becomes a replicated 23

factorial in variables A, C, and D with r= 2. We then may find an estimate of σ2, from the
corresponding analysis of variance table based on this simplifying assumption, as given in
Table 18.4.6.
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Figure 18.4.1 Ordered effects for the 24 factorial design of Table 18.4.4, plotted on
normal probability paper.

The sum of squares contribution of the main effect of temperature (A) is calculate to
be 1980.25 (r= 2 and k= 3), and see (18.3.5). This value of SSA is arrived at as follows.
Before dropping B, we consider the estimate of A using Table 18.4.3, as given by

Â = (−62 + 88 − 63 + 83 − · · · − 92 + 117)/8 = 22.25,

and using the “Response” column of Table 18.4.5, we see that we can write Â as

Â = (−(62 + 63) + (88 + 83) − · · · + (105 + 117))/8 = 22.25

which is the recipe for the estimate of A dictated if using the design of Table 18.4.5
with r= 2 replicates. Hence, SSA found from Table 18.4.5 has the same value as
that obtained previously when working from Table 18.4.3, namely r2k−2(Â)2 =
4Â2, since now we have r = 2, k = 3 (note that here k = 3 because B is dropped).

Similarly, we can obtain all other sum of squares shown in Table 18.4.6. Using the
estimate S2 = 29.00 (see Table 18.4.6), based on eight degrees of freedom, the three main
effects (temperature A, catalyst concentration C, and pressure D) are clearly significant,
as are the temperature–catalyst and temperature–pressure interactions, since Prob{F 1,8 ≥
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Table 18.4.5 The 23 design and observations if dropping B from the design of
Table 18.4.3.

A C D AC AD CD ACD Responses Responses totals

− − − + + + − 62, 63 125
+ − − − − + + 88, 83 171
− + − − + − + 88, 99 187
+ + − + − − − 80, 92 172
− − + + − − + 65, 65 130
+ − + − + − − 123, 121 244
− + + − − + − 97, 92 189
+ + + + + + + 105, 117 222

Table 18.4.6 Analysis of variance assuming all effects
containing B are zero.

Source SS d.f. MS F-Ratio

A 1980.25 1 1980.25 F= 68.3
C 625.00 1 625.00 F= 21.6
D 1056.25 1 1056.25 F= 36.4
AC 1260.25 1 1260.25 F= 43.5
AD 841.00 1 841.00 F= 29.0
CD 42.25 1 42.25 F= 1.5
ACD 25.00 1 25.00 F= 0.9
Residual 232.00 8 29.00 =s2

Total 6062 15

5.32}= 0.05. The 95% confidence limits for the effects are (see Equation 18.3.8)

{Estimate of effect} ± t8; .025

√((
1
8

+
1
8

)
S2

)
= {Estimate of effect} ± 2.306

√
29.0
4

= {Estimate of effect} ± 6.21 (18.4.1)

An alternative procedure for obtaining an estimate of σ2 is to assume that the effects
of the four three-factor interactions and the single four-factor interaction are insignificant
and to pool together the sums of squares associated with these high-order interactions.
Consulting Table 18.4.4, we see that the sum of squares for these effects is

2(24−2)[(3.25)2 + (2.50)2 + (2.50)2 + (−2.25)2 + (1.50)2] = 121.5 (18.4.2)

Thus an estimate of σ2 based on five degrees of freedom is S2 = 121.5/5 = 24.3. Inferences
concerning which effects were important would not be materially changed had the exper-
imenter arrived at the estimate of σ2 in this fashion. In this example, as in the previous
example of the replicated 22 factorial design (see Section 18.3), analyses can vary slightly.
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PRACTICE PROBLEMS FOR SECTION 18.4

1. A study to determine whether modest changes in four critical dimensions in an auto-
mobile carburetor would change the horsepower produced by a standard six-cylinder
engine employed a 24 factorial design listed below. When this design’s runs were
carried out, the observed independent responses y are as listed below.

Treatment

A B C D
Response

y

− − − − 14.8
+ − − − 24.8
− + − − 12.3
+ + − − 20.1
− − + − 13.8
+ − + − 22.3
− + + − 12.0
+ + + − 20.0
− − − + 16.3
+ − − + 23.7
− + − + 13.5
+ + − + 19.4
− − + + 11.3
+ − + + 23.6
− + + + 11.2
+ + + + 21.8

(a) Which dimension is the most critical in influencing the response?
(b) Assume σ2 = 4 and data follow a normal distribution, make a 95% confidence

interval statement for the effect of the most important dimension.
(c) Construct a normal probability plot of the estimated effects and interpret your

result.
(d) By pooling the sum of squares corresponding to nonsignificant effects, obtain an

estimate of σ2. What then is a 95% confidence interval for the effects in part (a)?
2. A chemist conducts an experiment on chemical yield using four factors, each at

two levels. The experiment was completely randomized and the factors used were
temperature A, reaction time B, catalyst C, and concentration % D. The whole
experiment was replicated twice. The results obtained are given below.

A B C D Treatments y A B C D Treatments y

−1 −1 −1 −1 1 57 61 −1 −1 −1 1 d 49 54
1 −1 −1 −1 a 49 55 1 −1 −1 1 ad 53 62

−1 1 −1 −1 b 57 52 −1 1 −1 1 bd 64 59
1 1 −1 −1 ab 46 56 1 1 −1 1 abd 61 55

−1 −1 1 −1 c 50 59 −1 −1 1 1 cd 58 62
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A B C D Treatments y A B C D Treatments y

1 −1 1 −1 ac 50 53 1 −1 1 1 acd 53 59
−1 1 1 −1 bc 49 51 −1 1 1 1 bcd 57 64

1 1 1 −1 abc 52 58 1 1 1 1 abcd 60 63

(a) Analyze these data using α = 0.01.
(b) Construct a normal probability plot of the residuals and interpret your result.
(c) Plot the residuals versus predicted yield. Interpret this plot.

3. Refer to Problem 2.
(a) Find the standard error of the estimates of the factor effects.
(b) Determine 95% confidence intervals for the factor effects.
(c) Use the confidence intervals in part (b) to determine which effects are significant,

and check if your conclusions agree with those in Problem 2.
4. Following are the results from a pilot study of process development.

A B C D y

−1 −1 −1 −1 68
1 −1 −1 −1 62

−1 1 −1 −1 76
1 1 −1 −1 81

−1 −1 1 −1 77
1 −1 1 −1 66

−1 1 1 −1 79
1 1 1 −1 83

−1 −1 −1 1 64
1 −1 −1 1 73

−1 1 −1 1 75
1 1 −1 1 85

−1 −1 1 1 81
1 −1 1 1 80

−1 1 1 1 89
1 1 1 1 92

(a) Prepare a partial ANOVA table for these data. How can you complete this
ANOVA without adding any new treatments to the above pilot study?

(b) Construct a normal probability plot of the estimated effects and determine which
effects are significant.

(c) Construct a normal probability plot of the residuals and check the normality
assumption.

(d) Plot the residuals versus predicted yield. Interpret this plot.
5. Refer to Problem 4.

(a) Pooling the sum of squares corresponding to nonsignificant effects obtained in
4(b), estimate the error variance σ2.

(b) Find the standard error of the estimates of the main effects that are significant.
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(c) Determine 99% confidence intervals for the main effects that were found to be
significant in part (b).

6. Refer to the data in Problem 4 and use the relevant information from Problems 4
and 5 to prepare the revised ANOVA table. Draw your conclusions and then check
if they match your conclusions in Problem 5.

18.5 Blocking in the 2k Factorial
Design

It is never possible to conduct experiments in an environment where all sources of vari-
ability are eliminated. However, it is often possible to control some sources of variability,
thereby establishing environments within which the experimental variability is decreased.
In Chapter 17, we studied randomized complete block designs and Latin square designs to
reduce experimental variability due to some nuisance variables. This was accomplished by
partitioning the design into subsets or blocks of experiments within which the experimental
environment is held as constant as possible. In this section, we discuss a similar concept
for 2k factorial designs.

18.5.1 Confounding in the 2k Factorial Design
Whenever the number of factors k becomes large, the number of treatments in a complete
replication of a 2k factorial design becomes so very large that it is usually not possible
to run a full replication of the factorial design in one block. For example, we may not
have enough raw material from one production batch to run the whole experiment, and
there may be significant variation among raw materials from different batches so that it
would justify performing the complete experiment in smaller blocks. This makes some
interaction effects inseparable from the block effects because we cannot determine which
is which. When this happens, we say that the interaction effects are confounded with the
block effects.

To describe blocking arrangements when using a 2k factorial, we use notation derived
from the runs of a 2k factorial. To illustrate, consider again a full 23 experiment given
below in standard order.

Run order A B C Notation for runs Observations

1 − − − 1 y1
2 + − − a y2
3 − + − b y3
4 + + − ab y4
5 − − + c y5
6 + − + ac y6
7 − + + bc y7
8 + + + abc y8

For example, we will denote run 4 by ab. This notation may be looked at as follows: ab
mentions factors A and B but not C, so that the run uses A at its high level (+), B at its
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high level (+), and C at its low level (−). The notation for the other runs of the 23 design
follows in similar manner. Finally, we will sometimes use the notation ‘− a’ which simply
reverses all signs in the run a. So, for the 23 case, we would use −a for the run (−+ +).

Now, to illustrate blocking, consider a 23 factorial experiment performed in two blocks,
where the different treatments are assigned to the different blocks as shown below. The
experiment is run in a random order.

Block I Block II

1 a
ab b
ac c
bc abc

In this arrangement we can easily see that the contrast between the two blocks is equal to
the three-factor interaction effect ABC. That is, the estimate of the three-factor interaction
effect is

(̂ABC) =
1
4
(−y1 + y2 + y3 − y4 + y5 − y6 − y7 + y8)

which can be written as

(̂ABC) =
1
4
(y2 + y3 + y5 + y8) −

1
4
(y1 + y4 + y6 + y7),

and this is clearly a contrast between the two blocks. We then say that the three-factor
interaction effect ABC and the block effects are completely confounded. Also it can eas-
ily be checked that all main effects and all the two factor interaction effect contrasts are
orthogonal to the block effect contrasts, so none of the main effects and the two-factor
interactions are affected by the block effects, whereas the three-factor interaction is com-
pletely confounded with the block effects.

Note that here we have lost complete information on the three-factor interaction,
but the information on other effects is retained and available as usual. It is important to
remember that when there are k factors to be analyzed in a 2k factorial with r replications,
the estimated variance of main effects or interaction effects is given by

σ̂2

r2k−2 =
S2

r2k−2 (18.5.1)

It is also important to note that the blocks should be created in such a way that only
higher-order interactions are confounded. The block with treatment (1) is usually referred
to as the principal block. The interaction (or interactions in case a replicate is divided
into 2h, h ≥ 1, blocks) that divides the full replicate into blocks is called the generator
(or generators). For instance, in the example above, the interaction ABC is a generator.
Finally, we may remark here that if the blocks are not constructed appropriately, then
more interactions may be confounded with the block effects than desired.

Now to further illustrate the concept of confounding, we consider an example of a 23

factorial design in which the three-factor interaction is completely confounded with the
block effects.

Example 18.5.1 (A special alloy manufacturing experiment) A special alloy is prepared
to make various parts of jet turbine aircraft engines. In order to avoid cracking in the
finished parts, which can cause irreversible engine failure, an experiment using three
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factors is planned. The three factors considered important are (A) pouring temperature,
(B) amount of grain refining, and (C) final product treatment. The experiment is
performed with two replicates of a 23 factorial experiment design. Further, due to some
variation, each replication is divided into two blocks. Then, the final product is tested
under unusual stress, and the length of crack in hundredth mm is recorded. The experiment
was carried out using the runs in random order. The plan of the experiment and the data
obtained are shown in Table 18.5.1. Under this plan the three-factor interaction effect is
completely confounded with the block effects.

Table 18.5.1 The plan of the experiment and the data obtained.

Replication I Replication II

Block I Block II Block III Block IV

1 14.16 a 13.78 1 13.76 a 12.89
ab 10.08 b 12.14 ab 11.30 b 11.93
ac 9.29 c 11.97 ac 9.37 c 12.47
bc 8.05 abc 9.70 bc 7.80 abc 9.39

Total 41.58 47.59 42.23 46.68

Our plan is to do the following:

1. Estimate the main effects and two factor interaction effects.
2. Prepare an ANOVA table for these data and verify if any of the main effects or

two-factor interaction effects are significant at the 5% level of significance.
3. Examine if it was necessary to divide each replication into two blocks each.

Solution: To prepare the ANOVA table and estimate the factorial effects, we can use
either the table of contrast coefficients for the 23 factorial or Yates’s algorithm (to be
discussed in Section 18.5.2). For now, in this example, we analyze the data using con-
trast coefficients (see Table 18.3.3). (Later, we will analyze another set of data using
Yates’s method.) We first find the response total for each treatment combination. That
is, (1) = 27.92, (a) = 26.67, (b) = 24.07, (ab) = 21.38, (c) = 24.44, (ac) = 18.66, (bc) = 15.85,
and (abc) = 19.09.

First, the estimates of main effects and interaction effects are

Â = (−27.92 + 26.67 − 24.07 + 21.38 − 24.44 + 18.66 − 15.85 + 19.09)/8 = −0.81

B̂ = (−27.92 − 26.67 + 24.07 + 21.38 − 24.44 − 18.66 + 15.85 + 19.09)/8 = −2.16

Ĉ = (−27.92 − 26.67 − 24.07 − 21.38 + 24.44 + 18.66 + 15.85 + 19.09)/8 = −2.75

ÂB = (27.92 − 26.67 − 24.07 + 21.38 + 24.44 − 18.66 − 15.85 + 19.09)/8 = 0.95

ÂC = (27.92 − 26.67 + 24.07 − 21.38 − 24.44 + 18.66 − 15.85 + 19.09)/8 = 0.175

B̂C = (27.92 + 26 : 67 − 24.07 − 21.38 − 24.44 − 18.66 + 15.85 + 19.09)/8 = 0.12



870 18 The 2k Factorial Designs

Second, from 18.2.5 we have (r= 2, k= 3)

Sum of squares due to A = 2(2)(−0.81)2 = 2.6244

Sum of squares due to B = 2(2)(−2.16)2 = 18.6624

...
...

...

Sum of squares due to BC = 2(2)(0.12)2 = 0.0576

Sum of squares due to blocks = [(41.58)2 + · · · + (46.68)2]/4 − (178.08)2/16 = 6.99

The ANOVA for the data in Table 18.5.1 is as given in Table 18.5.2.

Table 18.5.2 ANOVA table for the data in Table 18.5.2.

Source d.f. SS MS F-ratio p-value

Blocks 3 6.99 2.33 10.33 0.008
Main effects 3 51.54 17.18 79.91 0.0000
2 Factor interaction 3 3.80 1.267 5.89 0.0321
Residual error 6 1.29 0.215

Total 15 63.62

Some further analysis

Term Effect Regression coefficient SE coefficient t-value p-value

A −0.81 −0.405 0.1157 −3.49 0.013
B −2.16 −1.08 0.1157 −9.34 0.000
C −2.75 −1.37 0.1157 −11.88 0.000
AB 0.95 0.475 0.1157 4.09 0.006
AC 0.175 0.088 0.1157 0.76 0.475
BC 0.13 0.065 0.1159 0.54 0.612

Note that the estimates of the regression coefficients are one-half of the effects because
“regression coefficients” measure change when an associated variable is increased by one
unit, whereas an “effect” measure change in the response when that variable is increased
from −1 to 1 (i.e., change is 2 units). Further, V̂ (coeff) = V̂ ((1/2) effect) ⇒ SE(coeff) =
SE((1/2) effect), and so on.

Now from the p-values listed in the second half of Table 18.5.2, we see that all main
effects and the two-factor interaction AB are highly significant.

Third, from Table 18.5.2, we note the p-value corresponding to the blocks is 0.008,
which is less than 0.05. Thus, we reject the null hypothesis of no block effects at significance
level 0.05. That is, we conclude that the blocking in this experiment was necessary.

Example 18.5.2 (Using MINITAB and R) This example is concerned with a replicated
23 factorial in four blocks of four treatments each. A study was performed to determine
the effects of texturing on the breaking strength of an artificial fiber. The process variables
selected for study were X1 (spindle speed), X2 (temperature of plates), and X3 (amount of
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twist). A 23 factorial design in r = 2 replicates was chosen. Since only four experiments
could be run during a single day, each 23 factorial design was partitioned into two blocks
of four runs each, and the program completed on four separate days. The experiments were
randomly run within each day. The 23 design was partitioned as illustrated in Table 18.5.3;
that is, the contrast of the three-factor interaction effect was used to block the design. The
results are also displayed in Table 18.5.3 (blocks represent different days). We wish to
analyze this set of data using MINITAB and R.

Table 18.5.3 Two replications (each replication in two blocks) of a
23 experiment.

Block I Block II Block III Block IV

1 18.8 a 19.8 1 17.7 a 18.4
ab 18.0 b 11.8 ab 15.0 b 12.8
ac 19.0 c 22.7 ac 19.8 c 23.8
bc 20.6 abc 13.6 bc 19.5 abc 14.8

Total 76.4 67.9 72.0 69.8

MINITAB

To analyze the data of a 2k factorial design using MINITAB, we first need to generate the
design that will confound the minimum number of interactions. We proceed as follows:

1. From the Menu bar select Stat > DOE > Factorial > Create Factorial
Design . . . .

2. In the dialog box that appears select 2-level factorial (default generators).
Next, select appropriate number of factors and click Designs.

3. Since we are using complete replications, select full factorial design, enter zero for
Number of center points per block, select 2 (i.e., the number of replications)
for Number of replicates for corner points, and enter 4 for Number of blocks
(i.e., the total number of blocks in the whole experiment), and click OK.

4. In the dialog box to “Create Factorial Design,” select options, uncheck Random-
ized runs (if it is checked), and click OK. Then, select factors to select the code
of low and high level and the name of the factors (by default low and high level in
MINITAB as −1 and 1, respectively, which you may leave alone since they do not
affect the analysis, (note that in this case the regression coefficients are equal to half
the estimates of the effects, since effects represent the change as the level changes 2
units from −1 to 1, whereas regression coefficients are the rate of change per unit),
and click OK. Again click OK. The design generated by MINITAB appears in the
Worksheet window. The order of the treatments will be exactly the same as in
Table 18.5.3.

5. Enter the data in the next available column and again, from the Menu bar select
Stat > DOE > Factorial > Analyze Factorial Design . . . . Another dialog
box “Analyze Factorial Design” appears where you may select any options that you
would like to see in your analysis output. For example, under Terms . . . , select in the
right box those main effects and interactions that you would like to estimate. Then
click OK. The final analysis output appears in the session window as shown here.
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Analysis of Variance

Model Summary

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value

Model 9 171.001 96.63% 171.001 19.0001 19.12 0.001

Blocks 3 10.027 5.67% 10.027 3.3423 3.36 0.096

Linear 3 106.122 59.97% 106.122 35.3740 35.59 0.000

A 1 5.406 3.05% 5.406 5.4056 5.44 0.058

B 1 71.826 40.59% 71.826 71.8256 72.26 0.000

C 1 28.891 16.33% 28.891 28.8906 29.07 0.002

2-Way Interactions 3 54.852 31.00% 54.852 18.2840 18.40 0.002

A*B 1 0.456 0.26% 0.456 0.4556 0.46 0.524

A*C 1 54.391 30.74% 54.391 54.3906 54.72 0.000

B*C 1 0.006 0.00% 0.006 0.0056 0.01 0.942

Error 6 5.964 3.37% 5.964 0.9940

Total 15 176.964 100.00%

S R-sq R-sq(adj) PRESS R-sq(pred)

0.996975 96.63% 91.57% 42.4089 76.04%

Coded Coefficients

Term Effect Coef SE Coef 95% CI T-Value P-Value VIF

Constant

Blocks

17.881 0.249 71.74 0.000(17.271, 18.491)

1 1.219 0.432 2.82 0.030 1.50(0.162, 2.275)

2 –0.906 0.432 –2.10 0.081 1.50(–1.963, 0.150)

3 0.119 0.432 0.28 0.792 1.50(–0.938, 1.175)

A –1.163 –0.581 0.249 –2.33 0.058 1.00(–1.191, 0.029)

B –4.238 –2.119 0.249 –8.50 0.000 1.00(–2.729, –1.509)

C 2.688 1.344 0.249 5.39 0.002 1.00(0.734, 1.954)

A*B 0.337 0.169 0.249 0.68 0.524 1.00(–0.441, 0.779)

A*C –3.687 –1.844 0.249 –7.40 0.000 1.00(–2.454, –1.234)

B*C 0.038 0.019 0.249 0.08 0.942 1.00(–0.591, 0.629)

The residual analysis graph in Figure 18.5.1 does not indicate any unusual violation
of the model assumptions. The estimated effects and their p-values obtained by employing
the t-test indicates that the main effects B and C are highly significant. The main effect
A is not significant at the 5% level of significance, but it is significant at 10% level of
significance. The only interaction that is highly significant is AC. R-Sq and R-Sq (adj) are
quite high and, combined with p-values, indicate the fitted model is quite adequate. R-Sq
(pred.) shows that the prediction capability of the model is 76%.

Further, from the ANOVA table, we see that the estimate of the experimental error
variance is S2 = 0.9940 with six degrees of freedom. The 95% confidence limits for the
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Figure 18.5.1 MINITAB printout of the residual plots for the data in Table 18.5.3.

factorial effects (see Equation 18.3.8) are given by

{Estimate of effect} ± 2.447

√(
0.9940
2(4)

)
= {Estimate of effect} ± 0.86

Solution:

USING R
The R functions ‘conf.design()’ and ‘aov()’ can be used to generate and run the analysis
of a 2k factorial design as shown in the following R-code.

install.packages(“conf.design”); library(“conf.design”)
Response = c(18.8,18.0,19.0,20.6,19.8,11.8,22.7,13.6,17.7,15.0,19.8,
19.5,18.4,12.8,23.8,14.8)

#Generate 23 design with 4 blocks. ‘G’ indicates the aliasing structure, Blocks =
A*B*C (see Section 18.6) and ‘p’ indicates the number of levels in each factor
Design1 = conf.design(G = c(1,1,1), p = 2, block.name = “Blocks”,
treatment.names = c(“A”,“B”,“C”))

#Replicate above design to get Block III and Block IV
Design2 = conf.design(G = rbind(c(1,1,1), c(1,1,1)), p = 2,
block.name = “Blocks”, treatment.names = c(“A”,“B”,“C”))
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#Final design with Response data
Design = rbind(Design1,Design2)
Data = cbind(Response,Design)

#Fitting the model
model = aov(Response ∼ Blocks+A*B*C, data=Data)
model
anova(model)

#R output: Analysis of Variance Table

Df Sum Sq Mean Sq F value Pr(>F)

Blocks 3 10.03 3.34 3.36 0.0962
A 1 5.41 5.41 5.44 0.0585
B 1 71.83 71.83 72.26 0.0001
C 1 28.89 28.89 29.07 0.0017
A:B 1 0.46 0.46 0.46 0.5236
A:C 1 54.39 54.39 54.72 0.0003
B:C 1 0.01 0.01 0.01 0.9425
Residuals 6 5.96 0.99

The above R output conveys the same information we observed in MINITAB (ANOVA)
results and therefore the conclusions stay the same.

We now take a very brief look at designs where we would conduct a 2k factorial
experimental design in 2k−1 blocks of two runs each. The 2k−1 blocks, for example,
might represent 2k−1 different operators or 2k−1 different batches of raw material. In
this case, there will be (2k−1 − 1) degrees of freedom assignable to the blocks, leaving
2k−1 = [(2k − 1) − (2k−1 − 1)] degrees of freedom for estimating factorial effects. These
designs are of considerable interest. The 23 and 24 factorial designs, partitioned into blocks
of two treatments each, are displayed in Table 18.5.4. These designs are structured so
that the main effects estimates are not affected at all (i.e. not confounded) by differences
between the blocks. These designs are sometimes termed main effect clear designs. The
reader will note that the pairs of treatments comprising the blocks are “complementary”
or “fold-over” pairs. The second row in any block has elements that are (−1)× (elements
in the first row of the block). Thus, differences between treatments within a block are
unaffected by the block means. The 2k−1 differences determined from within the 2k−1

blocks supply all the necessary information for estimating the k main effects, clear
of block effects. For more details of these of designs, the reader is referred to Box
et al. (1978).
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Table 18.5.4 Runs of the 23 and 24 factorial design in
blocks of two treatments each.

X1 X2 X3 X4

Block (i) − − − −
X1 X2 X3 + + + +

Block (i) − − − (ii) + − − −
+ + + − + + +

(ii) + − − (iii) − + − −
− + + + − + +

(iii) − + − (iv) + + − −
+ − + − − + +

(iv) + + − (v) − − + −
− − + + + +

(vi) + − + −
− + − +

(vii) − + + −
+ − − +

(viii) + + + −
− − − +

18.5.2 Yates’s Algorithm for the 2k Factorial Designs
Yates’s algorithm is a method that speeds up the computations required in a 2k factorial
or fractional factorial design, particularly when one is interested in estimating all or most
of the effects. If, however, one is interested in estimating only a few effects and k is large,
then it may be easier to use the table of contrast coefficients (see Table 18.3.3). To employ
the algorithm, it is essential that the 2k factorial design be written down in standard order
with the first column of the design array A1 consisting of alternating minus and plus signs,
the second column A2 with alternating pairs of minus and plus signs, the third column
A3 with alternating groups of four minus and plus signs, and so on until the kth column
Ak contains 2k−1 minus signs followed by the same number of plus signs. A minus sign
is the first element in each column. The 24 factorial in standard or Yates’s order is shown
in Table 18.4.2. The observation yi recorded for each of the i=1, 2, . . . , 2k treatments
(or in the case of more than one replicates the total Ti of the observations for each
treatment) is recorded in a column following the design matrix. The observations are now
grouped into separate pairs and by a series, first of additions of observations in pairs and
then of subtractions (always subtracting the first entry from the second) of observations in
pairs. Thus, a first column of data is constructed with the 2k entries. This new column is in
turn used to construct a second column in the same manner, and the procedure is repeated
until a total of k new columns have been formed. Specifically, one proceeds as follows:

1. The pairs of entries are algebraically summed, the sum of each successive pair pro-
viding successively the first 2k−1 entries in the new column.
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2. The pairs of entries are successively algebraically summed after changing the sign
of the first entry in each of the pairs. These new successive sums provide the final
2k−1 entries in the new column.

3. The top entry in the kth column will be the total of all the observations. Dividing
by the total number of observations N= r 2k, where r is the common number of
replicates of the 2k treatments, allows for the calculation of the grand average Ȳ .

4. The estimated effects are given by the remaining 2k − 1 entries in the final column
of the algorithm divided by N/2 = r2k−1.

5. The estimated effects are identified by noting the “plus signs” in the treatment
identification on the same line in the design matrix.

6. The individual degree of freedom sum of squares for each of the 2k − 1 estimated
effect is given by squaring the entries in the last column and dividing by N = r2k.
Note that the first element, squared and divided by N, is the correction factor.

To check the computations, let W =
∑

T 2 be the sum of squares of the treatment
totals. Then, the sum of squares of the entries in the kth column should be equal to
r2kW .

PRACTICE PROBLEMS FOR SECTION 18.5

1. Refer to Problem 2 of Section 18.4. (a) Construct a design with two blocks of eight
observations each using the interaction ABCD as a design generator. (b) Analyze
the data in the principal block with two replications.

2. Refer to Problem 1 above and Problem 2 of Section 18.4. Suppose that the two halves
of the first replication were run in two separate labs. Analyze the data assuming that
the labs are considered as blocks. (Hint: interaction ABCD is confounded with the
block effects)

3. Consider a 25 factorial design. Construct a design with four blocks of eight observa-
tions each with ABCD and BCE confounded, and state which of the other interac-
tions are confounded with blocks.

4. Suppose that an experiment is run with five factors A, B, C, D, and E, where each
factor is at two levels, and that the resulting data are as shown below:

(1) =13 a= 17 b= 23 ab= 34 c= 29 ac= 21 bc= 32 abc= 36
d= 25 ad= 32 bd= 39 abd= 29 cd= 31 acd= 44 bcd= 37 abcd= 28
e= 33 ae= 38 be= 29 abe= 22 ce= 35 ace= 27 bce= 43 abce= 29

de= 42 ade= 44 bde= 41 abde= 47 cde= 35 acde= 46 bcde= 49 abcde= 53

Suppose that this experiment was run in four blocks with ABCD and BCE con-
founded. Analyze these data using α = 0.05 (see Problem 3).

5. Use the data of Problem 1 of Section 18.4. Suppose that the experiment was run in
two blocks of eight observations each, with ABC confounded with blocks. State the
design and analyze the data of this experiment.

6. Construct a 26 design in four blocks in such a way that two three-factor and one
four-factor interactions are confounded with blocks.

7. Analyze the data in Problem 1 of Section 18.4 using Yates’s method.
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18.6 The 2k Fractional Factorial Designs

As we stated earlier, whenever the number of factors k becomes large, the number of
treatments required by the 2k factorial designs becomes burdensomely large. For example, a
complete replicate of the 27 design requires 128 treatment runs. When completed, the data
from a 2k design provides, in addition to estimates of the k main effects and the k(k − 1)/2
two-factor interactions, estimates of all the three-factor and higher-order effects. However,
it is often the case that the three-factor and higher-order effects can be assumed a priori
to be zero, or at least to be small relative to the lower-order effects. When this is true,
only a fraction of the 2k design need be employed. Here our discussion will be restricted
to the one-half and one-quarter replicate designs, or the so-called 2k−1 and 2k−2 fractional
factorial designs, respectively. Discussion of the general 2k−h fractional factorial design,
called the 1/2h fraction of the 2k factorial design, is beyond the scope of this book, but we
refer the interested reader to Box and Hunter (1961), Box et al. (1978), and Montgomery
(2009a,b).

18.6.1 One-half Replicate of a 2k Factorial Design
The 2k−1 fractional factorial designs may be constructed by first partitioning the 2k facto-
rial into two blocks of 2k−1 runs each, using the highest order interaction contrast as the
generator. Each block is then a 2k−1 design. For example, to construct the 24−1 design,
one begins (as demonstrated in Table 18.6.1) by writing down the full 24 factorial design
in standard order and then partitioning the design into two blocks of eight runs each. In
this case the (ABCD) four-factor interaction contrast vector is used as the generator, also
commonly called a defining contrast. The 24−1 design, design 1 in Table 18.6.1, consists of
the eight runs of the 24 factorial that contain a plus sign in the four-factor interaction
contrast vector ABCD, while design 2 consists of the eight runs possessing a minus sign
in this vector. Since we are using the ABCD column in this way, the generators of these
fractional factorials are +ABCD and − ABCD, respectively.

With only 2k−1 treatments in either design 1 or design 2, it is obviously impossible to
estimate all the (2k − 1) individual effects in the factorial model. However, 2k−1 orthog-
onal contrasts can be calculated, and it is important to identify the confounded factorial
effects estimated by these statistics. The confounding pattern, or alias structure, is best
explained by an example. In Table 18.6.2, we see the 24−1 fractional factorial design with
generator+ABCD along with a set of corresponding observations. The design has been
listed in standard Yates’s order with respect to variables A, B, and C. The design was run
in random order.

To determine some estimates, we first note (see Table 18.6.2) that k= 4 and that we are
using a one-half replication of the 24 design, so that any effect estimator is a combination
of (1/2) × 24 = 8 observations, which can be expressed as Ȳ+ − Ȳ−, as discussed previously,
where Ȳ+ and Ȳ− are means of four observations with factor A at higher and lower levels,
respectively. For example, we can express Â = Ȳ+ − Ȳ− as

Â =
1
4
({A} × y) =

1
4
(−9.4 + 16.7 − · · · − 4.1 + 11.3) = 4.70

Here {A} represents the contrast coefficients associated with the main effect of the fac-
tor A, and the data are as in the y-column of Table 18.6.2. To estimate the BCD effect,
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Table 18.6.1 The full 24 factorial design and two 24−1 designs
obtained by the generators +ABCD and −ABCD.

24 Factorial 24−1(Design 1) 24−1 (Design 2)

A B C D ABCD A B C D A B C D

− − − − + − − − − + − − −
+ − − − − + + − − − + − −
− + − − − + − + − − − + −
+ + − − + − + + − + + + −
− − + − − + − − + − − − +
+ − + − + − + − + + + − +
− + + − + − − + + + − + +
+ + + − − + + + + − + + +
− − − + − Generator: +ABCD Generator:− ABCD
+ − − + + defining defining
− + − + + relation I+ 1234 relation I−1234
+ + − + −
− − + + +
+ − + + −
− + + + −
+ + + + +

Table 18.6.2 A 24−1 fractional factorial design.

Design Observations Some factorial effect contrast coefficients
A B C D y A BCD AB CD

− − − − 9.4 − − + +
+ − − + 16.7 + + − −
− + − + 12.6 − − − −
+ + − − 15.4 + + + +
− − + + 5.2 − − + +
+ − + − 6.7 + + − −
− + + − 4.1 − − − −
+ + + + 11.3 + + + +

we find that the contrast coefficients BCD are identical to those already used to esti-
mate the A effect, and we denote this by A=BCD. Hence, we say that the A and BCD
effects are confounded. In fact, it can be shown that E[

1
4
(
∑

{A} × y)] = A + BCD. Sim-
ilarly, the contrast coefficients for the AB interaction effect are identical to those for the
CD interaction effect, so AB and CD interaction effects are confounded. In this example,
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the four main effects are indeed each confounded with a single three-factor interaction,
and that the six two-factor interactions are confounded in pairs.

A convenient method for determining the confounding pattern for 2k−1 fractional fac-
torials, and hence, the expected value of the 2k−1 − 1 orthogonal factorial contrasts, is
provided by the design’s defining relation. In the example above, the design generator is
+ABCD or the “word” +ABCD. The defining relation for the designs is then the “sen-
tence” I+ABCD, where the symbol I is called the identity (i.e. the coefficients of I are
all pluses) and the sentence consists of two words. In general, for the 2k−h fractional fac-
torials, there will be h generators and the defining relation will be a sentence containing
2h words. Multiplying the sentence of defining relation by, say A, gives I×A+A2BCD.

We now adopt the rule that any symbol that appears to an even power converts
to the identity I because, if we square the contrast coefficients of any effect, we
always get all plus signs. Thus, dropping the identity I, we have I×A+A2BCD=
A+BCD. Similarly multiplying the defining relation by AB gives AB+CD. The
confounded effects are usually called the aliases, so A, BCD are aliases and AB, CD
are aliases. Thus, in this example, we have a set of eight groups of aliases: {I,ABCD;
A,BCD;B,ACD;C,ABD;D,ABC;AB,CD;AC,BD;AD,BC}. If the generator of the
design had been – ABCD, then the defining relation would be I − ABCD. For the full
2k factorial designs, the defining relation is simply I.

The two one-half replicates of a 24 design generated by the defining relation I+ABCD
and I − ABCD are the two designs

{1, ab, ac, ad, bc, bd, cd, abcd} and {−a,−b,−c,−d,−abc,−abd,−acd,−bcd}

where the first one-half replicate containing the treatment (1) is usually called the principal
block (see Table 18.6.1).

The analysis of a 2k−h fractional factorial is accomplished by initially considering
the data as having been provided by a 2p full factorial design, where p = k − h is some
convenient subset of the k factors. The (2p − 1) factorial effects are then estimated using
Yates’s algorithm or a table of contrast coefficients. Using only the p factors, we then
label each factorial effect with its naive name or word (by ignoring h letters from the word
representing an effect). The expected value of each estimate is determined by multiplying
the defining relations of the design, respectively, by its naive word and restoring the ignored
letters. The assumption is usually made that three-factor and higher-order effects may be
ignored. This assumption simplifies the confounding pattern, also known as alias structure.

We illustrate this alias structure by considering a simple example of the 1/2 replicate
of a 24 design, namely the design that uses the following runs:

1, ab, ac, ad, bc, bd, cd, abcd

Now, the näıve words are obtained by ignoring the letter (d), say, then writing the halved
replicate after some rearrangements as

1, a(d), b(d), c(d), ab, ac, bc, abc(d)

where the ignored letter is written in parentheses. This clearly represents a full replicate
in factors A, B, and C. Then, after calculating the effects and their sums of squares in the
same manner as for a 23 factorial experiment, the ignored letter is reintroduced by using
the alias structure. We further illustrate this concept with a numerical example.
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Table 18.6.3 Estimates of effects of the 24−1 fractional factorial design.

Effect Sum of
Treatments Observations (1) (2) (3) estimates (3)/4 squares (3)2/8 Aliases

1 9.4 26.1 54.1 81.4 10.175 I+ABCD
a(d) 16.7 28.0 27.3 18.8 4.7 44.18 A+BCD
b(d) 12.6 11.9 10.1 5.4 1.35 3.645 B+ACD
ab 15.4 15.4 8.7 1.2 0.3 0.18 AB+CD
c(d) 5.2 7.3 1.9 −26.8 −6.7 89.78 C+ABD
ac 6.7 2.8 3.5 −1.4 −0.35 0.245 AC+BD
bc 4.1 1.5 −4.5 1.6 0.4 0.32 BC+AD
abc(d) 11.3 7.2 5.7 10.2 2.55 13.005 ABC+D

Example 18.6.1 (Analyzing a half replication of a 24 design using Yates’s algorithm) We
analyze the data in Table 18.6.2 of the replicate of a 24 design.

Solution: From Table 18.6.2, we have the following data:

1 ab ac ad bc bd cd abcd
9.4 15.4 6.7 16.7 4.1 12.6 5.2 11.3

Now ignoring the letter d and applying Yates’s algorithm for 23 factorial design, we
obtain Table 18.6.3.

Note that the first entry only has divisor 8, since the first entry in column 3 is not a
contrast, but the sum of all eight observations. Now assuming that three-factor interactions
are negligible, the estimates of all main effects are given by (see the aliases in Table 18.6.3)

Â = 4.7, B̂ = 1.35, Ĉ = −6.7, D̂ = 2.55

If we now assume that all two-factor interactions are negligible, then we can perform
the testing of hypothesis about the main effects by using as the error sum of squares
(with three degrees of freedom) the total of the sum of squares of all the two-factor
interactions, which is (0.18 + 0.245 + 0.32) = 0.745. Thus the error mean square is 0.248.
The mean square errors associated with main effects A, B, C, and D, each with one degree
of freedom, are 44.18, 3.645, 89.78, and 13.005, respectively. Hence, using the appropriate
F-statistic, which under the null hypothesis that an effect is zero has the F1,3-distribution,
we can easily show that all main effects are highly significant.

Finally, from Table 18.6.3 of the half replicate of a 24 design, we note that from the
last entry in the Aliases column that D and ABC are aliases. Thus, we can construct the
one-half replicate of a 24 design simply by writing a full 23 design for factors A, B, and C
and then adding the column of signs associated with the ABC interaction and labeling it
as factor D. In general, we can construct the one-half replicate of a 2k design by writing a
full design for 2k−1, then adding the column of signs for the A1A2 · · ·Ak−1 interaction and
labeling it as factor Ak.

Example 18.6.2 (Analyzing a half replication of a 25 design using Yates’s algorithm) A
development laboratory is attempting to improve the performance of a packaging machine.
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Five components, say A, B, C, D, E (each a small metal arm of unique shape), have been
redesigned, and the objective of the experiments is to determine whether changing one or
more of the components will have a salutary effect on the response, the crease retention
of the packaging paper. A half replicate of the 25 factorial design was employed, using
the generator –ABCDE. The 16 runs were performed in a random sequence. The data,
arrayed for our convenience in Yates’s order, on variables A, B, C, and D are displayed in
Table 18.6.4. (The minus and plus signs are used to denote the standard component and
redesigned component of the metal arms.)

Fifteen orthogonal factorial contrasts can now be estimated from the 16 observations.
This is quickly accomplished using Yates’s algorithm on four of the five factors, as illus-
trated for factors A, B, C, and D in Table 18.6.4. The initial or naive identification for
the contrasts is also listed. The expected value for each estimate is determined from the
design-defining relation I − ABCDE. Assuming now that three-factor and higher-order
interaction effects are zero, we obtain orthogonal estimates of the k= 5 main effects and of
each of the 5(4)/2 = 10 two-factor interaction effects. Now, when using the defining rela-
tion, care must be taken in affixing the proper sign to the estimated effects. For example,
the estimated main effect of E is 0.0725 and the estimated AE interaction effect is −0.0425.
The reader can check that the contrasts estimating these effects are

E effect: (−4.01 + 3.09 + 3.23 +· · ·+ 4.47 + 4.44− 5.26) / 8 = 0.0725
AE effect: (4.01 + 3.09− 3.23−· · ·+ 4.47− 4.44− 5.26) / 8 =−0.0425

As another check, we note that from the Aliases column of Table 18.6.4 that

(̂BCD − ÂE) = 0.0425 and ̂ABCD − Ê = −0.0725

But third and higher-order interactions are assumed to be zero, so the above can be
written as

−ÂE = 0.0425, and −Ê = −0.0725, or ÂE = −0.0425, Ê = 0.0725

For a check on arithmetic, recall from the discussion of Yates’s algorithm, as applied
to this set of data, that

16
16∑

i=1

y2
i = Sums of squares of entries in column 4 (of the Yates algorithm section)

(18.6.1)
(see the observations and the entries in column (4) of the Yates’s algorithm part of
Table 18.6.4). Now the left-hand side 18.6.1 is

LHS = 16 × {4.012 + 3.092 + · · · + 4.442 + 5.262} = 16 × {269.0512} = 4304.8129

The right-hand side of 18.6.1 is

RHS = (64.56)2 + 02 + (−1.02)2 + · · · + (.34)2 + (−.58)2 = 4304.8192

that is, LHS = RHS, so that the check 18.6.1 holds.
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Table 18.6.4 25−1 fractional factorial design generator − ABCDE with defining
relation I=−ABCDE.

Yates’s algorithm

A B C D E y (1) (2) (3) (4) Naive estimates Aliases

− − − − − 4.01 7.10 13.88 31.33 64.56 ȳ = 4.0350
+ − − − + 3.09 6.78 17.45 33.23 Zero Â = Zero A–BCDE
− + − − + 3.23 9.10 13.81 −0.25 −1.02 B̂ = −0.1275 B–ACDE
+ + − − − 3.55 8.35 19.42 0.25 6.26 ÂB = 0.7825 AB–CDE
− − + − + 4.93 6.87 −0.60 −1.07 9.18 Ĉ = 1.1475 C–ABDE
+ − + − − 4.17 6.94 0.35 0.05 0.78 ÂC = 0.0975 AC–BDE
− + + − − 3.62 9.72 0.21 3.11 −0.52 B̂C = −0.0650 BC–ADE
+ + + − + 4.73 9.70 0.04 3.15 0.68 ̂ABC = 0.0850 ABC–DE
− − − + + 3.77 −0.92 −0.32 3.57 1.90 D̂ = 0.2375 D–ABCE
+ − − + − 3.10 0.32 −0.75 5.61 0.50 ÂD = 0.0625 AD–BCE
− + − + − 3.03 −0.76 0.07 0.95 1.12 B̂D = 0.1400 BD–ACE
+ + − + + 3.91 1.11 −0.02 −0.17 0.04 ̂ABD = 0.0050 ABD–CE
− − + + − 5.25 −0.67 1.24 −0.43 2.04 ĈD = 0.2550 CD–ABE
+ − + + + 4.47 0.88 1.87 −0.09 −1.12 ̂ACD = −0.1400 ACD–BE
− + + + + 4.44 −0.78 1.55 0.63 0.34 ̂BCD = 0.0425 BCD–AE
+ + + + − 5.26 0.82 1.60 0.05 −0.58 ̂ABCD = −0.0725 ABCD–E

To perform a test of normal plot of estimates, we order the naive estimates shown in
Table 18.6.5.

The normal plot of the estimates of the effects in Figure 18.6.1 suggests that only the
C and AB effects (labeled as 3 and 12, etc.) are significant. We assume now that only
factors 1, 2, and 3 have effects on the response, so that the 25−1 fractional factorial design
becomes a replicated 23 design in these variables.

Note the usefulness of the fractional factorial designs for screening. Before the exper-
iment, k= 5 candidate variables were thought possibly to have a large effect. The experi-
mental strategy located a particular subset of three variables. There were then

( 5
3

)
= 10

possible subsets of three. The 25−1 design became a 23 factorial, replicated, in any selected
subset of three variables. Likewise, if four of the original variables had been found to have
important effects, the 25−1 design would have become a 24 factorial. There are, of course,
five such possibilities. If two of the variables had proved significant, the design would have
collapsed into one of the

( 5
2

)
= 10 possible 22 factorials, replicated four times, and so on.

Finally, where only one variable is important, each of the five main effects would become
separately estimable.

18.6.2 One-quarter Replicate of a 2k Factorial Design
For relatively large number of factors, smaller fractions of the 2k design are quite desirable.

In this section, we consider a one-quarter replicate of a 2k design, which calls for 2k−2

treatment combinations and is usually known as a 2k−2 fractional factorial design.
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Table 18.6.5 Estimates and their ranks.

Identification of effects Estimates Rank order i (i − 0.5)/15

C–ABDE 1.1475 15 0.9667
AB–CDE 0.7825 14 0.9000
CD–ABE 0.2550 13 0.8333
D–ABCE 0.2375 12 0.7667
BD–ACE 0.1400 11 0.7000
AC–BDE 0.0975 10 0.6333
ABC–DE 0.0850 9 0.5667
AD–BCE 0.0625 8 0.5000
BCD–AE 0.0425 7 0.4333
ABD–CE 0.0050 6 0.3667
A–BCDE Zero 5 0.3000
BC–ACE −0.0650 4 0.2333
ABCD–E −0.0725 3 0.1667
B–ACDE −0.1275 2 0.1000
ACD–BE −0.1400 1 0.0333

–0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0
Effects

3 – 1245

12 – 345

Figure 18.6.1 Normal probability plot of ordered estimates of effects (Table 18.6.4).
A= 1, B= 2, C= 3, D= 4, and E= 5.
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The 2k−2 fractional factorial design is constructed by first writing down the 2k−2

design for factors A1A2, . . . , and Ak−2, then adding two columns of signs associated with
two alias and labeling them as factors Ak−1 and Ak. The two generators, ±G1 and ±G2,
required for constructing a one-quarter replicate of a 2k design should be chosen carefully
so that the important effects are not confounded with each other, that is, that they are not
in the same alias group. This may occur because the defining relation words also contain
the generalized interaction G1 × G2 that may be an important effect. We illustrate the
construction and analysis of a 2k−2 fractional factorial design with an example of a 25−2

fractional factorial design.
As previously mentioned, the construction of a 25−2 fractional factorial design is

dependent on the selection of two design generators in such a way that the generators
and their generalized interaction are of least interest to the experimenter (usually
higher-order interactions). If we consider ABCD and ABCDE to be two design
generators for a 25−2 design, then the sentence for the complete defining relation is
I+ABCD+ABCDE+ABCD*ABCDE, that is, I+ABCD+ABCDE+E. This
means that we are losing complete information not only for interaction effects ABCD
and ABCDE but also for the main effect E. Thus, selecting ABCD and ABCDE
as the two design generators would not be a good choice. Hence, in this case, selecting
two generators of three-factor interactions, say ABE and CDE, having only one letter
E in common may be a better choice because the generalized interaction of the words
ABE and CDE is ABE×CDE=ABCD, a four-factor interaction. Also, in this case,
the defining relation is I+ABE+CDE+ABCD, and the alias structure for this 25−2

fractional factorial design is as in Table 18.6.6.

Table 18.6.6 Alias structure for the 25−2 fractional factorial
design (generators ABE and CDE).

A+BE+ACDE+BCD AD+BDE+ACE+BC
B+AE+BCDE+ACD AC+BCE+ADE+BD
C+ABCE+DE+ABD I+ABE+CDE+ABCD
D+ABDE+CE+ABC
E+AB+CD+ABCDE

Now, to construct a 25−2 fractional factorial design, we first write down a full 23

factorial design for factors A, B, and C. Then, the two factors D and E are added with
their associated two columns namely as D=ABC and E=AB. The result is the 25−2 design
in Table 18.6.7 for the factors A, B, C, D, and E.

We illustrate the analysis of variance of a 25−2 fractional factorial design with a numer-
ical example.

Example 18.6.3 (Analyzing a one-quarter replication of a 25 design using Yates’s
algorithm) Using generators ABE and CDE, a 25−2 fractional factorial experimental
design yielded the data shown in Table 18.6.8. Assuming that the necessary interaction
effects are negligible, we want to estimate all the main effects and use a normal probability
plot to verify if any of the effects is significant. All eight runs were carried out in random
order.

Solution: We can ignore the letters D and E and apply Yates’s algorithm for the 23

factorial design to obtain Table 18.6.9. Now the normal probability (see Section 5.8) plot



18.6 The 2k Fractional Factorial Designs 885

Table 18.6.7 The 25−2 fractional factorial design with design generators ABE and
CDE.

A B C D=ABC E=AB Using other notation

− − − − + e
+ − − + − ad
− + − + − bd
+ + − − + abe
− − + + + cde
+ − + − − ac
− + + − − bc
+ + + + + abcde

Table 18.6.8 Results of an experiment using a 25−2 fractional factorial design to
improve the performance of a packaging machine.

e ad bd abe cde ac bc abcde
3.84 3.20 3.15 3.75 3.95 4.12 3.72 4.69

Table 18.6.9 ANOVA table of the 25−2 fractional factorial design.

Treat-
ments

Obser-
vations (1) (2) (3)

Effects
[(3)/4]

SS
[(3)2/8] Aliases

(e) 3.84 7.04 13.94 30.42 3.8025* I+ABE+CDE+ABCD
a(d) 3.20 6.90 16.48 1.10 0.275 0.15125 A+BE+ACDE+BCD
b(d) 3.15 8.07 −0.04 0.20 0.05 0.00500 B+AE+BCDE+ACD
ab(e) 3.75 8.41 1.14 2.04 0.51 0.52020 AB+E+ABCDE+CD
c(d)(e) 3.95 −0.64 −0.14 2.54 0.635 0.80645 C+ABCE+DE+ABD
ac 4.12 0.60 0.34 1.18 0.295 0.17405 AC+BCE+ADE+BD
bc 3.72 0.17 1.24 0.48 0.12 0.02880 BC+ACE+ADE+AD
abc(d)(e) 4.69 0.97 0.80 −0.44 −0.11 0.02420 ABC+CE+ABDE+D

*This entry is equal to (3)/8.

in Figure 18.6.2 shows that the estimates of all effects (Table 18.6.9) fall on a straight-line.
This implies that none of the effects are significantly different from zero.

PRACTICE PROBLEMS FOR SECTION 18.6

1. Refer to the experiment in Problem 1 of Section 18.4. Suppose that due to some
lab constraints, only eight runs could be done. Construct an appropriate design and
carry out the statistical analysis, using the data from Problem 1 of Section 18.4.
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Figure 18.6.2 MINITAB printout of the normal probability plot of estimates of effects
(Table 18.6.9).

2. Refer to Problem 2 of Section 18.4. Suppose that we are interested in running only a
one-half fraction of the 24 design, that is, a design with 24−1 treatments (in the four
factors A, B, C, D) with two replicates, so that N = 2 × 24−1 = 16. Use the data
in Problem 2 of Section 18.4 to form an appropriate Y column of the 24−1 design,
and analyze this one-half fraction replicated twice. Construct the normal probability
plot of the effects and determine which effects are significant.

3. Suppose that in Problem 4 of Section 18.4 we find that factor D is unimportant.
Construct a 23 full factorial design using the remaining three factors and then rein-
troduce the factor D. This gives a 1/2 replication of the 24 design. Analyze the
data as a 1/2 replication of the 24 design using the appropriate observations from
Problem 4 of Section 18.4 as the new data.

4. Construct a 25−1 design using the five-factor interaction as the generator
(I=ABCDE). Consider the appropriate observations from Problem 4 in
Section 18.5 as the data for the 25−1 design. Analyze the data showing that effects
are confounded with each other.

5. Construct the normal probability plot of the effects in Problem 4 and determine
which effects are significant. Now pool the sums of squares corresponding to the
nonsignificant effects and use the pooled sum of squares to estimate the error vari-
ance σ2. Use this estimate of the error variance to conduct the testing of the usual
hypotheses for the remainder of the effects at the 5% significance level. Compare the
conclusions you obtained using normal probability paper and the ANOVA table.

6. Construct a 25−2 fractional factorial design by selecting two independent generators
so that no two-factor interaction is their generalized interaction. Consider the appro-
priate observations from Problem 4 of Section 18.5 as the data for the 25−2 design.
Analyze the data, giving the complete alias structure for this design. Construct the
normal probability plot of the effects and determine which effects are significant.
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7. Refer to Problem 6. Assume that the two-factor and higher-order interactions are
equal to zero, and pool the corresponding sums of squares to estimate the error
variance σ2. Use this estimate of the error variance to conduct the usual testing of
hypotheses for the main effects at the 5% significance level, and compare the results
to the conclusions made in Problem 6, using a normal probability plot of the effects.

8. In a study to determine the compressive strength of cylinders of concrete, five
variables—type of sand, type of cement, amount of water, time to mix, and time
in mold—were simultaneously studied using a 25−1 fractional factorial design, with
generator −ABCDE. The (coded) responses displayed below are in the random
sequence in which the experiments were performed. (a) Construct the normal prob-
ability plot of the effects to determine the effects having the greatest influence on
the compressive strength. (b) Pool the sums of squares corresponding to the non-
significant effects to determine an estimate of the variance σ2. (c) Determine 95%
intervals for the effects that are found to be significant.

A B C D E y

− + + − − 10.2
+ − − + − 17.5
− − + + − 13.0
− + + + + 17.3
− − − − − 13.4
− − + − + 20.2
+ − + − − 18.1
+ + − + + 15.7
+ + + + − 15.1
− + − + − 10.6
+ − + + + 19.1
− + − − + 16.9
+ + − − − 14.8
− − − + + 19.5
+ + + − + 15.7
+ − − − + 19.2

9. Refer to Problem 8. Construct a 23 full factorial design using factors A, B, and
E, that is, ignoring factors C and D, so that the 25−1 fractional factorial design
becomes a 23 replicated design. Then, analyze the data in Problem 8, regarding
the data as arising from a 23 replicated design, and compare the results to those in
Problem 8.

18.7 CASE STUDIES

Case Study 1 (Data on a potato crop from an experiment carried out at Wimblington,
UK)2.

2 Source: Yates, 1958. Used with permission.
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Table 18.7.1 Potato crop data.

Replication I Replication II Replication III Replication IV

Block I Block II Block I Block II Block I Block II Block I Block II

1(101) n(106) 1(106) n(89) 1(87) n(128) 1(131) n(103)
nk(291) k(265) nk(306) k(272) nk(334) k(279) nk(272) k(302)
nd(373) d(312) nd(338) d(324) nd(324) d(323) nd(361) d(324)
kd(398) nkd(450) kd(407) nkd(449) kd(423) nkd(471) kd(445) nkd(437)

1163 1133 1157 1134 1168 1201 1209 1166

This experiment was carried out to study the effects of three fertilizers—nitrogen
(n), potash (k), and dung (d)—on potato crops. The response variable is the yield (lbs)
of potatoes per plot (1/60 acre). The experiment is replicated four times. The eight
treatment combinations consisted of using

Sulphate of ammonia (n) Sulphate of potash (k) Dung (d){
None

0.45 cwt N per acre

}
×

{
None

1.12 cwt K2O per acre

}
×

{
None

8 tons per acre

}

where 1 cwt = 100 lbs. The original experiment was carried out in blocks of eight plots
each, but we present the data in blocks consisting of four plots each. The data are given
in Table 18.7.1 and the last row shows the block totals.

(a) Write down, in words, an explanation of the proposed design for the agronomist.
(b) Write down the mathematical model you would need to analyze these data.
(c) Do the complete analysis, including the testing of all the usual hypotheses.
(d) Interpret the results you obtained in part (c).

Case Study 2 (Eddy current probe sensitivity study3) The data prepared for this case
study are a subset from a study conducted by Capobianco, Splett, and Iyer.

The goal of the project was to develop a nondestructive portable device for detecting
cracks and fractures in metals. A primary application would be the detection of defects
in airplane wings. The internal mechanism of the detector would be used for sensing
crack-induced changes in the detector’s electromagnetic field, which would in turn result
in changes in the impedance level of the detector. This change of impedance is termed
sensitivity, and it is a subgoal of this experiment to maximize such sensitivity as the
detector is moved from an unflawed region to a flawed region on the metal.

There were three detector wiring component factors under consideration:

1. X1 = number of wire turns
2. X2 = wire winding distance
3. X3 = wire gauge

3 Source: NIST and SEMATECH (2003)
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Since the maximum number of runs that could be afforded in time and cost was n= 10,
a 23 full factorial experiment (involving n= 8 runs) was chosen. With an eye to the usual
monotonicity assumption for two-level factorial designs, the selected settings for the three
factors were as follows:

1. X1 = number of wire turns: 90 coded to −1; 180 coded to +1.
2. X2 = wire winding distance: 0.38 coded to −1; 1.14 coded to +1.
3. X3 = wire guage: 40 coded to −1; 48 coded to +1.

The experiment was executed in completely random order, and the data obtained are
given in Table 18.7.2.

(a) Write down the mathematical model you would need to analyze this set of data.
(b) Do the complete analysis, including the testing of all the hypotheses of interest and a

residual analysis. Interpret the results.
(c) Estimate the effects of interest.

Table 18.7.2 Eddy current probe sensitivity data.

Y Probe X1 Number of X2 Winding X3 Wire
impedance turns distance gauge Run

1.70 −1 −1 −1 2
4.57 +1 −1 −1 8
0.55 −1 +1 −1 3
3.39 +1 +1 −1 6
1.51 −1 −1 +1 7
4.59 +1 −1 +1 1
0.67 −1 +1 +1 4
4.29 +1 +1 +1 5

18.8 USING JMP

This section is not included in the book, but is available for download from the book
website: www.wiley.com/college/gupta/statistics2e.

Review Practice Problems

1. Penicillin production requires a fermentation step that must be done in batches. One
difficulty in the producing of successive batches is that the nutrient and corn steep
liquor vary. A study was begun to determine whether changes in temperature and pH
might increase the penicillin yields for a new set of fermenters. A 22 factorial design
was employed and a new batch of corn steep liquor was used for each set of four runs.
Use α = 0.05. The results shown below were obtained:
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Design Penicillin yields

(pH) (Temperature) (Corn steep liquor batches)

A1 A2 1 2 3 4 5

−1 −1 40 35 28 27 33
1 −1 95 80 94 76 83

−1 1 66 50 48 45 61
1 1 124 98 105 96 100

(a) Write out a suitable analysis of variance model.
(b) Test the hypothesis that there are no treatment differences.
(c) Test the hypothesis that there are no differences between the corn steep liquor

batches.
(d) Determine the pH and temperature effects.
(e) Separate individual degree of freedom sums of squares for these effects in the

analysis of variance table.
(f) Estimate σ2 and make a 95% interval statement for the pH× temperature inter-

action effect.

2. In the study of the flooding capacity of a pulse column, a 23 factorial design was
employed in which two pulse amplitudes, two frequencies of pulsation, and two levels
of flow ratio were varied. The whole experiment was replicated twice. The results
obtained are given below.
(a) Estimate the factorial effects.
(b) Estimate the variance of estimates of factorial effects.
(c) Make a 95% interval statement for each of the various effects.
(d) Could any of the variables—amplitude, frequency, or flow ratio—be considered to

be unimportant in affecting the response over the experimental region?
(e) Consider the case that second column of observations were randomly run by a

different operator. Reestimate the variance and determine whether there is a sta-
tistically significant operator-to-operator difference.

Amplitude Frequency Flow ratio Capacity

−1 −1 −1 179 184
1 −1 −1 330 338

−1 1 −1 280 297
1 1 −1 300 312

−1 −1 1 185 187
1 −1 1 288 304

−1 1 1 251 271
1 1 1 193 198

3. To determine the best production characteristics for a new method of manufacturing
adiponitile (ADN), considerable development work was required on the purification
system. The following replicated 23 factorial design was performed to study the effects
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of A1: ADN feed rate; A2: solvent-to-feed ratio; and A3: temperature, on the response
variable ADN purity. Each replicate represented one week’s work. The trials were
performed randomly within each week for a total of three weeks. The result obtained
are given in the table below:

Response y in Replicates
A1 A2 A3 1 2 3

− − − 2.58 2.66 2.74
+ − − 3.04 2.96 3.26
− + − 2.81 2.63 3.07
+ + − 3.12 3.17 3.28
− − + 2.45 2.49 2.65
+ − + 2.65 2.62 2.81
− + + 2.45 2.54 2.67
+ + + 2.74 2.72 3.00

(a) Using Yates’s algorithm, estimate the factorial effects.
(b) Construct an appropriate analysis of variance table.
(c) Suppose that each of the three replicates represents a block. Comment on the

hypothesis that there are no statistically significant differences between the blocks.
(d) Test the hypothesis that the contrast of block 3 versus blocks 1 and 2 equals zero.
(e) Make a 95% interval statement for the effect of “ADN feed rate,” that is, for the

A1 effect.

4. In the manufacture of chemical products by electrolysis, the product yields depend on
A1: current density; A2: cathode configuration; and A3: the flow rate of the catholyte.
The following 23 factorial design, blocked into groups of four experiments to eliminate
day-to-day effects, was run to study the effects of these variables on the process yields
y. The data obtained are shown below:

Block 1 Block 2 Block 3 Block 4

A1 A2 A3 y A1 A2 A3 y A1 A2 A3 y A1 A2 A3 y

− − − 14.6 − − + 19.3 − − + 21.3 − − − 21.7
+ − + 17.4 + − − 16.4 + − − 19.5 + − + 22.5
− + + 17.4 − + − 15.2 − + − 17.6 − + + 24.0
+ + − 10.2 + + + 16.0 + + + 18.3 + + − 16.5

(a) Using Yates’s algorithm, estimate the effects of the controlled variables.
(b) Using an analysis of variance table, estimate σ2.
(c) Is there a statistically significant linear time trend between the four blocks?

Specify α.

5. Micro miniature integrated circuits are manufactured, in part, by depositing thin
films of dielectric material in predesigned patterns. Prior to mounting the film, the
substrate must be prepared. In a study to determine the best operating condition
for its preparation, four variables were studied. The experiment was blocked into two
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blocks of eight runs each, each block corresponding to a day. The design and the
response (thickness of deposited SiO film in 1000 A) are shown below. Note that each
replication represents a principal block generated by the same defining contrast.
(a) Estimate the effects and determine, using normal probability paper, the statisti-

cally significant effects.
(b) Construct the analysis of variance table and estimate σ2.
(c) Test the hypothesis that there is no difference between the block means. Specify α.

Variables (−) (+)

A1, substrate temperature,◦C 250 300
A2, vacuum in chamber 1, mm of Hg 1× 10−5 1.5× 10−5

A3, vacuum in chamber 2, mm of Hg 1× 10−5 1.5× 10−5

A4, pattern type Type A Type B

Block I Block II

A B C D y A B C D y

− − − − 3.43 − − − − 3.62
+ − − + 4.04 + − − + 4.17
− + − + 3.57 − + − + 3.48
+ + − − 3.86 + + − − 4.18
− − + + 4.09 − − + + 3.27
+ − + − 3.27 + − + − 4.35
− + + − 3.15 − + + − 4.09
+ + + + 4.20 + + + + 3.52

6. Refer to Problem 5. Reanalyze only the data provided by Block I of the previous
problem. What is the generator of this fractional factorial design?

7. Construct a 26−1 fractional factorial design using the six-factor interaction as the
design generator. Write down the complete alias structure.

8. Construct a 26−2 fractional factorial design by using two four-factor interactions as
the design generators such that their generalized interaction is another four-factor
interaction. What is the complete defining relation? Write down the complete alias
structure.

9. In Problem 5, instead of two blocks, treat the data as two replications of a 24−1 frac-
tional factorial design. Estimate the permissible main effects and interaction effects.
Assuming all three-factor and higher-order interactions to be zero, conduct a test of
hypothesis for each main effects to be zero. Is it possible to conduct the testing of a
hypothesis for some of the two-factor interaction effects? If not possible, explain why
not. Use α = 0.05.

10. In Problem 9, construct the normal probability plot, and determine which effects
appear to be significant. Compare the results obtained in Problem 9. Perform residual
analysis to verify that the model is adequate.
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11. An engineer from the chemical industry studied effects of four factors on the yield of a
chemical. The four factors are A (amount of catalyst), B (temperature), C (pressure),
and D (reaction time). Each factor is at two levels. The run order and the yields are
as shown below:

Run order A B C D Yield (lb) Run order A B C D Yield (lb)

7 − − − − 15 4 − − − + 20
9 + − − − 18 10 + − − + 27

16 − + − − 23 11 − + − + 21
12 + + − − 17 2 + + − + 17
3 − − + − 16 5 − − + + 22
8 + − + − 25 15 + − + + 29
1 − + + − 19 13 − + + + 18
6 + + + − 24 14 + + + + 26

(a) Estimate the effects and determine, using normal probability paper, the statisti-
cally significant effects.

(b) Construct the ANOVA table for these data. In this problem is it possible to
estimate the error variance σ2?

12. Two breeds of rabbits (R1, R2) are fed two types of diet (D1, D2) supplemented with
two levels of proteins (P1, P2) using two methods (M1, M2), liquid and solid. The
weight gain in grams by each rabbit at the end of each period was recorded and the
data obtained is shown below. The experiment was carried out in a random order,
and each experiment was replicated twice.

R1 R2

D1 D2 D1 D2

P1 P2 P1 P2 P1 P2 P1 P2

M1 367 483 407 411 449 423 393 409
417 397 402 393 429 419 379 401

M2 349 369 437 371 305 353 381 379
473 359 362 413 389 429 399 411

(a) Analyze these data and determine which effects are significant at the 5% level of
significance.

(b) Perform the residual analysis and examine if the model used is adequate.

13. Refer to Problem 12. Analyze the data of Problem 12 as a 24 experiment by using
only the first replication, which is recorded on the top line of each cell. Construct
the normal probability plot of the effects, and check which main effects or interaction
effects seem to be significant.
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14. In Problem 13, estimate the error variance using the sum of squares corresponding to
the effects that seemed to be insignificant. Then conduct testing of hypotheses for the
remainder of the effects. Use α = 0.05.

15. An agronomist planned an experiment to study the effects of some fertilizers on the
pea crop. The fertilizers included four factors, each at two levels: M (manure), N
(nitrogen), P (phosphorus), and K (potassium). The experiment was conducted in
random order and replicated twice. The yield (lb) of peas per plot in each replication
is as shown below.

Treat. 1 m n mn p mp np mnp k mk nk mnk pk mpk npk mnpk

Rep. I 75 69 55 59 73 85 49 63 55 67 72 84 76 69 65 63
Rep. II 68 63 64 73 66 78 57 69 68 72 69 78 70 66 59 57

Analyze these data and determine which effects are significant at the 5% level of
significance. Estimate the error variance σ2.

16. In Problem 15, using variables that are found significant as independent variables,
write down the regression model for yield of peas. Can you use this regression model
to predict the future yield?

17. In Problem 15, while planning the experiment, the agronomist had used two depths
to sow the seeds and two widths between the plants. At the end of the experiment,
she felt that the depth of seeds and the width between the plants had some significant
effect on the yield, but due to lack of resources and time, the agronomist decided not
to conduct another experiment.
(a) Using the data in Problem 15, consider the data as resulting from a 26−2 frac-

tional factorial experiment that employed two four-factor interactions as design
generators, and reanalyze the data.

(b) Write down the complete defining relation, and then use it to give the complete
alias structure.

18. A 24−1 experiment was conducted using the four-factor interaction ABCD as the design
generator. The data obtained from this experiment were as shown below:

1 ab ac ad bc bd cd abcd
19 25 29 20 28 31 33 37

(a) Estimate the various effects and then prepare a normal probability plot of these
effects.

(b) Find the error mean sum of squares by collapsing the sum of squares corresponding
to the effects that you find in part (a) are not insignificant. Use this error mean
sum of squares to test the usual null hypothesis for each main effect. Use α = 0.05.

19. Assume that in Problem 12, the experimenter was only able to run a 24−1 design, with
one replication, because only four rabbits of each breed were available. Give a plan for
this experiment which is such that we can estimate all the main effects clearly, under
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the assumptions that the three-factor interactions are zero. What other assumption
is needed to test whether these effects are significant at the 5% level of significance?

20. Give a design that would split a 26 design into 23 blocks each of 23 units using the
defining contrasts ABCD, CDEF , ACDE.

21. In Problem 20, use the defining contrasts ABC, DEF , ABCD. Comment on the
choice of this set of defining contrasts.

22. In an experiment for studying the production of a chemical, four factors, A, B, C and
D were used, each at two levels. The experiment was completely randomized, and the
following data was obtained.

(1) = 20.5, a = 24.6, b = 19.8, c = 21.4, d = 23.2, ab = 21.7, ac = 20.5, ad = 23.7,
bc = 21.9, bd = 25.4, cd = 22.5, abc = 22.5, abd = 23.4, acd = 25.4, bcd = 21.5,
abcd = 24.7.

Select eight observations carefully from these data in such a way, that if assuming
three-factor interactions are zero, one can estimate all the main effects. Is it possible
to estimate all the main effects by selecting only four observations and assuming
two-factor and three-factor interactions are zero?

23. The product yields of an unwanted by-product were measured (in percentages) for two
different catalysts C1, C2 each at two different pressures P1, P2. The experiment was
carried out by two different analysts A1, A2 at two different labs L1, L2. The whole
experiment was replicated twice. The results obtained are shown below. Estimate the
main effects and the interactions. Determine which factors have significant effects (if
any) on the yield of the unwanted by-product. Since the experiment is replicated twice,
check if any of the interactions are also significant at the 5% level of significance.

C1 C2

P1 P2 P1 P2

A1 A2 A1 A2 A1 A2 A1 A2

L1 37 27 49 29 57 61 53 43
43 47 53 26 62 51 39 43

L2 57 42 63 59 38 51 61 54
63 49 54 41 46 59 64 57

24. In a finishing process for metal plates, the smoothness of the surface is very impor-
tant. The factors responsible for the smoothness are solution temperature T, solution
concentration C, size of the plate S, and, finally, the tension of the metal M. In order
to study the effects of these factors on smoothness, an experiment was conducted
using the four factors, each at two levels. The observations presented below are the
scores, which represent the percentage of the desired smoothness. The experiment was
completely randomized.
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T1 T2

C1 C2 C1 C2

S1 S2 S1 S2 S1 S2 S1 S2

M1 79 81 83 76 75 83 87 82
M2 57 42 63 59 38 51 61 54

(a) Estimate all the main effects and interactions.
(b) Making the necessary assumptions, test at the 1% level of significance if any of

the main effects or two-factor interactions is significantly different from zero.



Chapter 19

RESPONSE SURFACES

The focus of this chapter is the development of first-order and
second-order (central composite) designs employed for fitting
response surfaces.

Topics Covered

• First-order designs
• Second-order designs
• Central composite designs (CCDs)
• Some other first-order and second-order designs
• Determination of the optimum or near optimum point
• The method of steepest ascent
• Analysis of a fitted second-order response surface

Learning Outcomes

After studying this chapter, the reader will be able to

• Select appropriate designs to fit first-order and second-order models.
• Use the least-squares method to fit a desired model.
• Use analysis of variance techniques to verify the adequacy of the fitted models.
• Analyze the fitted response surface to determine the nature of the response surface.
• Use certain techniques to determine the optimum (or near-optimum) point of the

response surface.
• Use statistical packages MINITAB, R, and JMP to analyze response surface.

19.1 INTRODUCTION

Response surface methodology (RSM) allows an experimenter to explore an unknown
functional relationship between a response variable Y and k controlled or independent

Statistics and Probability with Applications for Engineers and Scientists using MINITAB, R and JMP,
Second Edition. Bhisham C. Gupta, Irwin Guttman, and Kalanka P. Jayalath.
c© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/college/gupta/statistics2e
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variables, say ξ1, ξ2, . . . , ξk. The method was introduced by Box and Wilson (1951).
The main goals of RSM are to use a sequence of planned experiments to seek an opti-
mal response and to assess a functional relationship in the neighborhood of the optimal
response. In this chapter, we study various commonly used response surface designs and
their analysis.

19.1.1 Basic Concepts of Response Surface
Methodology

Suppose an unknown functional relationship relating the response Y (an overall yield or
percentage of an unwanted by-product of a chemical process, for example) with the levels
of k controlled variables ξ1, ξ2, . . . , ξk (temperature, pressure, amount of catalyst, reaction
time, for example) is

Y = f(ξ1, ξ2, . . . , ξk) + ε (19.1.1)

where ε represents the random experimental error due to some unknown or uncontrollable
variables. As usual, it is assumed that ε is normally distributed with mean zero and
variance σ2. Thus, taking the expected value of Y in (19.1.1), we obtain

E(Y ) = η = f(ξ1, ξ2, . . . , ξk) (19.1.2)

over an experimental region defined by acceptable ranges of the k controlled variables
ξ1, ξ2, . . . , ξk.

In this chapter, we have two goals: (i) find a polynomial model that can adequately
estimate the functional relationship given by (19.1.2) in the experimental region of the
controlled variables, and (ii) determine an optimal point, that is, the point in the exper-
imental region (defined by the ξi’s) at which f(ξ1, ξ2, . . . , ξk) is optimal. For example,
interest may lie in finding where the yield is maximized or the percentage of waste or
unwanted byproduct is minimized.

If the function is continuous over a region, which is relatively small, then it may be
usefully approximated by a first-order Taylor series about ξ0 = (ξ10, ξ20, . . . , ξk0), a selected
point within the region. The Taylor series takes the form

η = f(ξ10, ξ20, . . . , ξk0) + (ξ1 − ξ10)
∂f

∂ξ1
+ (ξ2 − ξ20)

∂f

∂ξ2
+ · · · + (ξk − ξk0)

∂f

∂ξk

(19.1.3)

where each of the derivatives is evaluated at the point ξ0, where ξ0 = (ξ10, ξ20, . . . , ξk0).
Then to good approximation, the model (19.1.3) may be rewritten as

η = γ0 + γ1ξ1 + γ2ξ2 + · · · + γkξk = γ0 +
k∑

i=1

γiξi (19.1.4)

where
γ0 = f(ξ10, ξ20, . . . , ξk0) − ξ10

∂f

∂ξ1
− ξ20

∂f

∂ξ2
− · · · − ξk0

∂f

∂ξk

(19.1.5)

with
γi =

∂f

∂ξi

, i = 1, 2, . . . , k (19.1.6)
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Each of the derivatives (19.1.6) is evaluated at the point ξ0. The coefficients γi are usually
called the first-order coefficients. The model in (19.1.3) may be viewed as a first-order
approximating polynomial. If this first-order model should prove inappropriate to represent
the response function, a second-order Taylor series is often employed. The second-order
polynomial approximation is

η = γ0 +
k∑

i=1

γiξi +
k∑

i=1

γiiξ
2
i +

∑
i,j=1

∑
i<j

γijξiξj (19.1.7)

where γii is the quadratic coefficient of the quadratic term ξ2
i , and γij is the cross product or

two-factor interaction coefficient between variables ξi and ξj . Together, the k quadratic and
k(k − 1)/2 cross-product coefficients determine the second-order portion of the polynomial

model. Note that γij =
∂2f

∂ξi∂ξj

, where these derivatives are evaluated at the point ξ0.

In discussing both the experimental designs and the analysis of the data, one can code
u, where u indexes the settings of the variable ξi, say ξiu, u = 1, . . . , n, by standardized
variables xiu defined by

xiu =
ξiu − ξi0

ci

(19.1.8)

Here ξi0 is the midpoint of the experimental region with respect to ξi and its settings
ξiu, u = 1, . . . , n, and where ci is some convenient scale factor chosen so that xiu are
convenient numbers, easy to work with. For instance the variables ξi with two settings are
easily coded to xi1 = 1, xi2 = −1. As an example, if the two settings (i.e. u =1, 2) of a
variable ξiu are 12 and 20, then the standardized variable xiu could be defined as

xiu =
ξiu − 16

4

Here xi1 = −1, and xi2 = 1, since ci is chosen to be 4.
The first-order model may now be written as

η = β0 + β1x1 + β2x2 + · · · + βkxk = β0 +
k∑

i=1

βixi (19.1.9)

and the second-order model

η = β0 +
k∑

i=1

βixi +
k∑

i=1

βiix
2
i +

∑
i,j=1

∑
i<j

βijxixj (19.1.10)

where β0 is a constant, βi are the k first-order coefficients, βii are the k quadratic coeffi-
cients, and βij are the k(k − 1)/2 cross-product or interaction coefficients for the models
written in terms of the xi. Figure 19.1.1a,b show in three dimensions the response sur-
face plots of the first-order and second-order response surfaces in (X1,X2, Ŷ ) space, and
Figure 19.1.2a,b show the contour plots of the first-order and second-order response sur-
faces (see Example 16.2.1).

If the experimental region is small, then a first-order model is often useful for arriving
at the point of an optimal response. Also, a second-order model usually is quite ade-
quate in illustrating the functional relationship between the response and the controlled
variables. For example, from the contour plots (where contours are defined by setting
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Figure 19.1.1 (a) The surface plot for the fitted model Ŷ = −1.66 + 0.0283X1 +
0.0290X2. (b) The surface plot for the fitted regression model Ŷ = −7.679 + 0.635X1 −
0.447X2 + 0.005X2

1 + 0.011X2
2 − 0.016X1X2.

ŷ = 3.00, 3.15, 3.30, 3.45, and 3.60) of the first-order model given in Figure 19.1.2a, which
consists of parallel lines, we find the direction, usually called the steepest ascent or steep-
est descent (to be discussed later), that allows us to maximize the yield or minimize
the percentage of waste or unwanted byproduct. That is, we will be led to the point
where the response is optimized. The contour plots (where contours are defined by setting
ŷ = 3.00, 3.50, 4.00, and 4.50) of the second-order model given in Figure 19.1.2b, called a
rising ridge, indicates the direction where the response can be optimized.

Figure 19.1.3 shows some other contour plots of the second-order model that are
commonly encountered in RSM.

The contours in Figure 19.1.3 indicate the following: (a) a point of maximum response
exists in the experimental region; (b) the response increases or decreases as we move away
from the center of the experimental region, where the increase or decrease in response
depends upon the direction in which we move; (c) there is more than one optimal point,
and these occur anywhere on a line located in the experimental region; (d) the optimal
point is far removed from the experimental region (in this case, to find the [optimal] point
that maximizes the response, further exploration is necessary); (e) the optimal point is,
again, far removed from the experimental region (in this case, to find the [optimal] point
that minimizes the response, further exploration is necessary); and (f) a point of minimum
response exists in the experimental region.

Suppose now that the experimenter at the early exploratory stage of an experiment
feels that in order to adequately describe the functional relationship given by (19.1.2),
he/she needs to fit a second-order polynomial instead of a first-order polynomial in the
variables x1, x2, . . . , xk. Then from (19.1.9) to (19.1.10), we note that the number of param-
eters β0, β1, β2, . . . that he/she would need to estimate increases rapidly as we move from
a first-order to a second-order polynomial. Since fitting a polynomial requires the number
of observations to be at least as large as the number of unknown parameters, the number
of necessary experiments to be carried out also increases very rapidly, particularly if the
experimenter obtains only one observation from each experiment. Thus, the experimenter
should be very careful in deciding on the order of the polynomial that he/she would like
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Figure 19.1.2 (a) The contour plot for the fitted model Ŷ = −1.66 + 0.0283X1 +
0.0290X2, by setting ŷ = 3.00, 3.15, 3.30, 3.45, and 3.60. (b) The contour plot (rising ridge)
for the fitted regression model Ŷ = −7.679 + 0.635X1 − 0.447X2 + 0.005X2

1 + 0.011X2
2 −

0.016X1X2, by setting ŷ = 3.00, 3.50, 4.00, 4.50.

to fit. Note that if the experimental region is narrow and f has a quite small curvature,
then often a first-degree polynomial is considered, since the possibility of fitting such poly-
nomials adequately is quite high. The use of first-degree polynomials is usually strongly
recommended when we are at the exploratory stage of a completely new experimental
situation. It often yields important information that helps in deciding future action, using
a relatively small number of experiments. Indeed, it may happen that the real situation is
well explained by a first-degree polynomial, so starting with a second-degree polynomial
will require more resources unnecessarily.

In this chapter, we consider the problem of fitting polynomials of first-order as well
as second-order. Since the fitting of a polynomial can be considered as a special case of
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Figure 19.1.3 Illustrative contour plots provided by fitted second-order models: (a)
mound, (b) saddle point, (c) stationary ridge, (d) rising ridge, (e) falling ridge, and (f)
basin.
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multiple linear regression, we strongly recommend that the reader review Chapter 17 on
multiple linear regression. Box (1952) called designs used to fit first-order and second-order
polynomials first-order and second-order designs.

19.2 FIRST-ORDER DESIGNS

Suppose now, based upon some prior information, it is felt that the response surface within
the experimental region can be adequately approximated by a hyperplane, so that fit of a
polynomial of the first-degree is to be made. That is, the model to be fitted is

Y = β0 +
k∑

j=1

βjXj + ε (19.2.1)

Using the data obtained by observing the response Yi at (Xi1, . . . ,Xik), i = 1, . . . , n,
that is

Yi = β0 + β1Xi1 + β2Xi2 + · · · + βkXik + εi, i = 1, 2, . . . , n (19.2.1a)

where Yi’s are the responses, β0, β1, β2, . . . , and βk are the unknown parameters, β0 is the
intercept of this hyperplane, and β1, β2, . . . , and βk are the partial regression coefficients.
Xij (j = 1, 2, . . . , k) is the ith value of the controlled variable Xj in the ith experiment,
and εi’s are random errors with E(εi) = 0, V ar(εi) = σ2. We may express (19.2.1a) in
matrix notation as

Y = Xγ + ε (19.2.2)

where

Y (n × 1) =

⎡
⎢⎢⎢⎢⎣

Y1

Y2
...
Yn

⎤
⎥⎥⎥⎥⎦ ,X [n × (k + 1)] =

⎡
⎢⎢⎢⎢⎣

1 X11 X12 · · ·X1k

1 X21 X22 · · ·X2k

...
...

...
...

1 Xn1 Xn2 · · · Xnk

⎤
⎥⎥⎥⎥⎦ ,

γ[(k + 1) × 1] =

⎡
⎢⎢⎢⎢⎣

β0

β1
...
βk

⎤
⎥⎥⎥⎥⎦ , ε(n × 1) =

⎡
⎢⎢⎢⎢⎣

ε1

ε2
...
εn

⎤
⎥⎥⎥⎥⎦

Now we would like to select a design for fitting the model (19.2.2) that is best in
some sense. In general, we consider the use of a design T if it allows us to estimate all
the regression coefficients βis with smallest variance. It is known that if the variables in
the matrix X are functionally independent, then the requirement of smallest variance is
satisfied if we chose the design T such that the matrix X ′X is diagonal. Thus, a class of
designs that is suitable for determining the regression coefficients in the polynomial (19.2.1)
is the class of orthogonal designs. A class of orthogonal designs that is of particular great
interest is the class of factorial and fractional factorial designs with each factor at two
levels. Moreover, if we consider a factorial design with each factor at two levels, then
each x-variable in (19.2.1) takes only two values, which reduces the required number of
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treatments to carry out the whole experiment by a great deal. Also, as discussed before,
it allows us to easily code the two levels of each factor as −1 and 1. Furthermore, this
way the center of the design, the point representing the mid value between the high and
low levels of the factors, is the origin. This property will be seen to be very useful when
estimating the various regression coefficients.

Before considering some numerical examples on first-order designs, we would like to
discuss some of the consequences in case the true situation is not fully described by the
polynomial (19.2.1). Suppose, then, that the model (19.2.1) is not adequate, and we need
to include some second-order terms. Then the new model leads to

Y = Xγ + X1γ1 + ε (19.2.3)

where, for p1 = k(k + 1)/2, γ1 = (β11, β22, . . . , β12, . . . )′ is a [p1 × 1] vector of unknown
parameters that are the coefficients of the second-degree terms x2

1, x
2
2, . . . , x2

k,
x1x2, . . . , xk−1xk. Thus, if we fit model (19.2.1), then γ̂, the least-squares the estimator
of γ, is such that

E(γ̂) = (X ′X)−1X ′E(Y ) (19.2.4)

Now, if (19.2.3) is the true model, then from Equation (19.2.4) we find

E(γ̂) = (X ′X)−1X ′(Xγ + X1γ1)

= (X ′X)−1(X ′X)γ + (X ′X)−1X ′X1γ1 (19.2.5)

= γ + Bγ1

where γ̂ = (β̂0, β̂1, . . . , β̂k) is the least-squares estimate of γ = (β0, β1, . . . , βk) obtained
when fitting (19.2.1). From this result it is obvious that γ̂ is no longer an unbiased estimator
of γ. In other words, each estimator β̂0, β̂1, . . . , β̂k is a biased estimator of β0, β1, . . . , βk,
respectively, where the bias is some linear combination of the terms of γ1. The exact
combination is determined by the matrix B = (X ′X)−1X ′X1 which is also sometimes
known as the alias matrix. The term alias, in fact, is the same as used in the discussion of
confounding in Chapter 18.

Example 19.2.1 (Determining the bias) Suppose that k = 3, and we consider the design
T as the 1/2 replication of a 23 factorial experiment defined by the contrast I = ABC.
That is,

T =

⎡
⎢⎢⎢⎣

1 1 1
1 −1 −1

−1 1 −1
−1 −1 1

⎤
⎥⎥⎥⎦

where the upper and lower levels of each factor are coded to 1 and −1, respectively. We
now show that the estimates of β̂0, β̂1, β̂2, and β̂3 are biased if the true model consists of
interaction terms as well.

Solution: In other words, we assume that the linear model is fitted, that is, we fit

Y = β0x0 + β1x1 + β2x2 + β3x3 + ε (19.2.6)
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but the true model is

Y = β0x0 + β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3 + β23x2x3 + ε (19.2.7)

Thus, we have recalling that we are using the design T defined above, that

γ =

⎡
⎢⎢⎢⎣

β0

β1

β2

β3

⎤
⎥⎥⎥⎦ ,X =

⎡
⎢⎢⎢⎣

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎤
⎥⎥⎥⎦ ,X1 =

⎡
⎢⎢⎢⎣

1 1 1
−1 −1 1
−1 1 −1

1 −1 −1

⎤
⎥⎥⎥⎦ , with γ1 =

⎡
⎢⎣

β12

β13

β23

⎤
⎥⎦

On using (19.2.5), the above means that

E(γ̂) = γ + (X ′X)−1X ′X1γ1

= γ +

⎡
⎢⎢⎢⎣

⎡
⎢⎢⎢⎣

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎦
−1

×

⎡
⎢⎢⎢⎣

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

1 1 1
−1 −1 1
−1 1 −1

1 −1 −1

⎤
⎥⎥⎥⎦

⎡
⎢⎣

β12

β13

β23

⎤
⎥⎦

= γ +
1
4

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0 0 0
0 0 4
0 4 0
4 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎣

β12

β13

β23

⎤
⎥⎦ = γ +

⎡
⎢⎢⎢⎣

0 0 0
0 0 1
0 1 0
1 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎣

β12

β13

β23

⎤
⎥⎦ = γ +

⎡
⎢⎢⎢⎣

0
β23

β13

β12

⎤
⎥⎥⎥⎦

We now have that

E(β̂0) = β0, E(β̂1) = β1 + β23, E(β̂2) = β2 + β13, E(β̂3) = β3 + β12

If we now refer back to our discussion in Chapter 18, then we note that in a one-half
replication of 23 factorial with ABC = I, the alias groups are A,BC;B,AC;C,AB. Thus,
the concept of biasedness here is the same as that of aliased groups arising in the discussion
of the confounding in Chapter 18. Further, we may remark here that if we consider the
further use of the design T , I = −ABC, a 23−1 experiment, then the complete 23 experi-
ment enables the estimates β̂0, β̂1, β̂2, and β̂3 to be be bias-free. We illustrate this with the
following example.

Example 19.2.2 (Determining the bias) Consider the use of a complete 23 factorial
experiment when fitting (19.2.6), but where the true model is actually

Y = β0x0 + β1x1 + β2x2 + β3x3 + β11x
2
1 + β22x

2
2 + β33x

2
3 + β12x1x2 + β13x1x3

+ β23x2x3 + ε (19.2.8)
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Here, we have

γ =

⎡
⎢⎢⎣

β0
β1
β2
β3

⎤
⎥⎥⎦ ,X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 −1
1 1 −1 −1
1 −1 1 −1
1 1 1 −1
1 −1 −1 1
1 1 −1 1
1 −1 1 1
1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,X1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1
1 1 1 −1 −1 1
1 1 1 −1 1 −1
1 1 1 1 −1 −1
1 1 1 1 −1 −1
1 1 1 −1 1 −1
1 1 1 −1 −1 1
1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, γ1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

β11

β22

β33

β12

β13

β23

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Solution: Now, on using (19.2.5), we can easily verify that

E(γ̂) = γ +

⎡
⎢⎢⎢⎣

1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

β11

β22

β33

β12

β13

β23

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

This implies that ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E(β̂0) = β0 + β11 + β22 + β33

E(β̂1) = β1

E(β̂2) = β2

E(β̂3) = β3

(19.2.9)

Thus, from our discussion in Examples 19.2.1 and 19.2.2, we observe that if we fit a
first-order model when, in fact, the true model also contains the second-order terms, then
we have the problem of biasedness. Further, it is usually true that in the exploratory
stage, the experimenter does not have complete information about the real situation. It is,
therefore, very important that when approximating the response surface by a first-order
polynomial, we must construct the design in such a way that we can test the adequacy of
the model. This is usually done by adding to a 2k factorial or fractional factorial design,
a few extra points, say nc, at the center. By doing so, as one can see by writing down
the normal equations, the values of the estimated regression coefficients β̂1, β̂2, . . . , β̂k are
not changed, except that β̂0 becomes the average of all the n + nc observations. The sum
of squares of deviations of the nc responses, generated at the nc central points from the
mean of these nc observations, provides (nc − 1) degrees of freedom for the estimation of
the experimental error and one degree of freedom for estimation of the sum of coefficients
of the pure quadratic terms (see (19.2.9)). The adequacy of the model is tested against
the aforementioned mean square. Thus, the observations taken at the center point allow
us to test the interaction terms and the pure quadratic terms. Note, however, that in the
absence of the interactions, it is usually highly unlikely that the pure quadratic terms will
be present in the model. For further illustration, we consider the following example.

Example 19.2.3 (A chemical production) For a chemical production process, a chemist
studied the effects of three factors, A catalyst (%), B reaction time, and C temperature, on
the yield of the chemical, using a 23 factorial design. Table 19.2.1 shows the final results
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Table 19.2.1 Plan of a 23 factorial design.

x1 x2 x3 Yields (y)

−1 −1 −1 20
1 −1 −1 17

−1 1 −1 18
1 1 −1 22

−1 −1 1 20
1 −1 1 19

−1 1 1 23
1 1 1 21

(–1,–1,1)

(1,–1,1)

(–1,–1,–1)

(1,–1,–1) (1,1,–1)

(–1,1,–1)

(–1,1,1)

(1,1,1)

Figure 19.2.1 The 23 factorial runs pictured at the vertices of the unit cube in (−1 ≤
xi ≤ 1), i = 1, 2, 3.

of the experiment. All eight treatments were run in random order. The coded values of the
levels are +1 and −1, which are represented by the vertices of a cube with its center at the
origin (0, 0, 0), as pictured in Figure 19.2.1.

Suppose we want to fit a first-order model, that is

Y = β0x0 + β1x1 + β2x2 + β3x3 + ε (19.2.10)

Solution: Using the techniques of Chapter 18, we can see easily that the estimates of the
regression coefficients (remember that regression coefficients are equal to one-half of the
main effects and interaction) are

β̂0 =
(y1 + y2 + · · · + y8)

8
= 20

β̂1 =
(−y1 + y2 − y3 + y4 − y5 + y6 − y7 + y8)

8
= −0.25

β̂2 =
(−y1 − y2 + y3 + y4 − y5 − y6 + y7 + y8)

8
= 1

β̂3 =
(−y1 − y2 − y3 − y4 + y5 + y6 + y7 + y8)

8
= 0.75 (19.2.11)
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Table 19.2.2 ANOVA table for the data in Table 19.2.1.

Source DF SS MS

A(x1) 1 0.5a 0.5
B(x2) 1 8.0 8.0
C(x3) 1 4.5 4.5
Residual 4 15 (by subtraction) 3.75

Total 7 28
a The sum of squares due to various effects may be obtained by
using the expression SS = 2k−2 × r × (estimate of effect)2, where r is
the number of replications. For example, SSA = 23−2 × 1 × (Â)2 =
2(Â)2 = 2(2β̂1)

2 = 2(−0.5)2 = 0.5, since effects are equal to two times
the regression coefficients and in this example r = 1.

Note that β̂1, β̂2, and β̂3 are the estimates of the slopes of the plane (19.2.10) in the
directions of x1, x2, and x3, respectively. In other words, they represent the estimated
change in y per unit change in x1, x2, and x3, respectively.

For testing the adequacy of the linear model, the error variance can be estimated by
taking just two observations at the center of the design, i.e., (0, 0, 0). The two observations
generated at the center (0, 0, 0) are 20 and 21. As mentioned earlier, β̂0 is the mean of all
the 10 observations, that is,

β̂0 =
20 + 17 + 18 + · · · + 21 + 20 + 22

10
= 20.2

Thus, the new fitted model becomes (see (19.2.11))

Ŷ = 20.2 − 0.25x1 + x2 + 0.75x3

An estimate of error variance (i.e. of σ2) may be obtained from the two center points.

We have that the mean of the center point is Ȳ ∗ =
20 + 22

2
= 21, so that the sum of

squares of deviations for these two observations is∑
(Yi

∗ − Ȳ ∗)2 = (20 − 21)2 + (22 − 21)2 = 2

When this sum of squares is divided by its degrees of freedom, which is 2−1 = 1, we call this
result the mean square for pure error, which in this example is 2/1 = 2 (see Table 19.2.3).

Note that we have let Y ∗
i denote the ith observation at the center and Ȳ ∗ denote the

mean of the observations generated at the center of the design. The analysis of variance
for the combined data is shown in Table 19.2.3. Note that in the following table residual
degrees of freedom and the sum of squares are broken into two parts (i) lack-of-fit (ii) pure
error.

If Ȳ is the average of the observations of the noncentral points and Ȳ ∗ the average
of the observations at the center, the comparison (Ȳ − Ȳ ∗) gives an additional degree of
freedom for measuring lack of fit. This is indicated by (19.2.9) and the fact that β̂0 = Ȳ ,
so that

E(Ȳ ) = β0 + β11 + β22 + β33



19.2 First-Order Designs 909

Table 19.2.3 ANOVA table of the 23 factorial design with two points
at the center.

Source DF SS MS F

A(x1) 1 0.5 0.50 0.25
B(x2) 1 8.0 8.00 4.00
C(x3) 1 4.5 4.50 2.50
Residual 6 18.6 3.10

Lack-of-fit 5 16.6 (by subtraction) 3.32 1.66
Pure Error 1 2.0 2

Total 9 31.6

Combining this with the fact that

E(Ȳ ∗
i ) = β0 +

3∑
i=1

βi(0) +
3∑

i=1

βii(0) + β12(0) + β13(0) + β23(0) = β0

we have that E(Ȳ ∗) = β0, and hence

E(Ȳ − Ȳ ∗) = β11 + β22 + β33

Now the sum of squares corresponding to this single degree of freedom is given by

SSpure quadratic =
n × nc

n + nc

(Ȳ − Ȳ ∗)2 =
8 × 2
8 + 2

(−1)2 = 1.6

where n = 8 and nc = 2 are the number of points in the factorial part and the number of
center points, respectively. Thus, the sum of squares due to lack of fit for the combined
data can be obtained by subtraction, as illustrated in Table 19.2.3.

Now, from Table 19.2.3, the F-ratio for testing lack of fit is 1.66, which is insignificant
at the 5% level of significance. This suggests the adequacy of the linear model. Here we
can also verify whether or not there is any pure quadratic effect. We know that

F =
MSpure quadraric

σ̂2 =
(SSpure quadratic)/1

σ̂2 =
1.6
2

= 0.8 < 1

Since the observed F-value is less than 1, there is no indication that the pure quadratic
effect (curvature) should be in the model.

We may remark here that to fit a linear model, one could use a one-half or even a
smaller fraction of a complete replication. Nevertheless, we point out that in the above
example, we could not use even a one-half replication because in that case it would not be
possible to obtain any degrees of freedom for a lack of fit term. If the number of factors is
greater than 3, then it is possible to use a one-half or smaller replication of a 2k design,
depending upon the number of factors, and, by adding nc center points, we can also test
the adequacy of the model.
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Table 19.2.4 Certain designs for k = 2, 3 useful for fitting first-order models.
k = 2 k = 3 k = 3

x1 x2 x3

−1 −1 1

1 −1 −1

−1 1 −1

1 1 1

0 0 0

· · ·
· · ·
· · ·
0 0

x1

−1

1

−1

1

0

·
·
·
0

x2

−1

−1

1

1

0

·
·
·
0 0

Square (or 22 factorial) Tetrahedron
with center points (or simplex, or 23−1 factorial)

with center points

x1

−1

1

−1

1

−1

1

−1

1

0

·
·
·
0

x2

−1

−1

1

1

−1

−1

1

1

0

·
·
·
0

x3

−1

−1

−1

−1

1

1

1

1

0

·
·
·
0

Cube (or 23 factorial)
with center points

Certain designs useful for fitting first-order models for k = 2 and 3 are given in
Table 19.2.4.

Note that all these designs contain some part of the design that could be replicated,
and that an important check on the adequacy of the model is available whenever portions of
the experimental design are replicated. In such cases, an estimate of σ2 can be constructed
in the usual manner at each replicated point, and when these estimates are pooled, they
give an estimate of σ2, say S 2, based on ν degrees of freedom (this was done in Example
19.2.3, where the center point was replicated, nc = 2). It is possible then to partition the
residual sum of squares into two portions, one portion due to intrinsic variability alone, or
pure error, represented by S 2 and based on ν degrees of freedom, and a remainder portion
representing the failure of the fitted responses to estimate the true response, or “lack of
fit,” based upon N − k − 1 − ν degrees of freedom. We explore this point further in the
following example.

Example 19.2.4 (Using MINITAB and R) Do Example 19.2.3 after adding two center
points 20 and 22 using both MINITAB and R.

MINITAB

1. Enter the factorial points (±1’s) and center points (0’s) in columns C1–C3.
2. Create another column, say C4, by using 1 for factorial point and 0 for center point.
3. Enter the responses in column C5.
4. From the bar menu select Stat > DOE > Response Surface > Define Custom

Response Surface Design.
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5. In the dialog box enter C1, C2, and C3 under Continuous Factors. Select Low/High,
verify that in the new dialog box the Low column and High column has −1 and 1,
respectively, and then click OK.

6. Select Designs option, and in the new dialog box, check Specify by column under
“Point type column” and in the box next to it enter C4. Then click OK. Again,
click OK. This completes the process of creating a custom design.

7. From the bar menu select Stat > DOE > Response Surface > Analyze
Response Surface Design. Then enter C5 under the box Responses: appears
in the new window and click Terms and select Linear from the pull down menu
appears. Click OK twice. The MINITAB output appears in the Session Window
as shown below.

Analysis of Variance

Model Summary

Code Coefficients

Regression Equation in Uncoded Units

Fits and Diagnostics for Unusual Observations

Source Term

Obs Y Fit Resid Std Resid

3 18.000 20.700 –2.700 –2.12 R

Coef SE Coef T-Value P-Value VIF

A –0.250 0.622 –0.40 0.702 1.00

B 1.000 0.622 1.61 0.159 1.00

C 0.750 0.622 1.20 0.274 1.00

Constant 20.200 0.557 36.28 0.000

DF Adj SS Adj MS F-Value P-Value

Model 3 13.0000 4.3333 1.40 0.332

Linear 3 13.0000 4.3333 1.40 0.332

A 1 0.5000 0.5000 0.16 0.702

B 1 8.0000 8.0000 2.58 0.159

C 1 4.5000 4.5000 1.45 0.274

Lack-of-Fit 5 16.6000 3.3200 1.66 0.527

Pure Error 1 2.0000 2.0000

Error 6 18.6000

Total 9 31.6000

3.1000

S R-sq R-sq(adj) R-sq(pred)

1.76068 41.14% 11.71% 0.00%

Y  =  20.200 – 0.250 A + 1.000 B + 0.750 C

R Large residual

These results clearly match those obtained manually in Example 19.2.3.

USING R

Solution To perform the required response surface modeling in R, we can use the ‘rsm()’
function in the R ‘library(rsm)’ as shown in the following R-code. Note: here we fit a
first-order model in (19.2.10) and the command ‘FO(x1, x2, x3)’ in rsm should be used.

library(rsm)
# Make a data.frame
x1 = c(-1,1,-1,1,-1,1,-1,1,0,0)
x2 = c(-1,-1,1,1,-1,-1,1,1,0,0)
x3 = c(-1,-1,-1,-1,1,1,1,1,0,0)
y = c(20,17,18,22,20,19,23,21,20,22)
data = data.frame(x1, x2, x3, y)

# Run the suggested first-order model
mod.rsm = rsm(y ∼ FO(x1, x2, x3), data = data)
summary(mod.rsm)
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#R summary output

Estimate Std. Error t value Pr (> |t| )

(Intercept) 20.2000 0.5568 36.28 0.0000
x1 -0.2500 0.6225 -0.40 0.7019
x2 1.0000 0.6225 1.61 0.1593
x3 0.7500 0.6225 1.20 0.2736

Multiple R-squared: 0.4114, Adjusted R-squared: 0.1171

F-statistic: 1.398 on 3 and 6 DF, p-value: 0.3318

Analysis of Variance Table

Df Sum Sq Mean Sq F value Pr(>F)

FO(x1, x2, x3) 3 13.0 4.3333 1.3978 0.3318
Residuals 6 18.6 3.1000
Lack of fit 5 16.6 3.3200 1.6600 0.5272
Pure error 1 2.0 2.0000

Direction of steepest ascent (at radius 1):

x1 x2 x3

-0.1961161 0.7844645 0.5883484

Corresponding increment in original units:

x1 x2 x3

-0.1961161 0.7844645 0.5883484

We find that this output provides similar results to that obtained in MINITAB, and
we may then draw the same conclusions as well.

Example 19.2.5 (Effects of time and temperature in an experiment producing an
unwanted byproduct) In a pilot plant an experimenter was interested in determining
how the time and temperature conditions of a clave affected the buildup of an unwanted
byproduct in a chemical process. Theoretical explanations were available, but for the
purposes at hand, it was simpler merely to explore the region of interest in time and tem-
perature by a series of experiments and to fit an approximating first-order mathematical
model. To provide a measure of experimental error, the 22 factorial portion of the design
was repeated and the center point replicated four times. The entire sequence of 12 runs
was performed in random order. The settings of the variables time and temperature, the
associated treatment matrix in the standardized variables X1 and X2, and the recorded
responses are displayed in Table 19.2.5. The factorial points are the corners of a square.
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x2

x1

(2.2, 2.5)

(4.0, 4.3)(2.5, 2.7)

(1, 1)

(0.7, 0.3)
(–1, 1)

(–1, –1) (1, –1)

(0, 0)

(2.5, 3.0, 2.3, 2.4)

Figure 19.2.2 The 22 factorial design with center points in Example 19.2.5, with the
observations obtained at points (runs) of this design (see Table 19.2.5).

Table 19.2.5 Treatment matrix with responses.

Time (min) Temperature (◦C) X1 X2 Response Y

30 240 −1 −1 2.5
40 240 1 −1 4.0
30 250 −1 1 0.7
40 250 1 1 2.2
35 245 0 0 2.5
35 245 0 0 2.3
30 240 −1 −1 2.7
40 240 1 −1 4.3
30 250 −1 1 0.3
40 250 1 1 2.5
35 245 0 0 3.0
35 245 0 0 2.4

Solution: The first-order model is η = β0 + β1x1 + β2x2, and the observations y are taken
to be independent N(η, σ2). The design employed is a 22 factorial with center points,
replicated (see Figure 19.2.2). For this design, we have (using old and some new notation)
that

[1] =
∑

xi1 = 0, [2] =
∑

xi2 = 0, [11] =
∑

x2
i1 = 8,

[22] =
∑

x2
i2 = 8, [12] =

∑
xiuxiv = 0

Thus, we can easily see that the estimates of the regression coefficients are given by

β̂0 =
∑

Yi

N
=

29.4
12

= 2.45, β̂1 =
∑

xi1Yi∑
x2

i1
=

6.8
8

= 0.850, β̂2 =
∑

xi2Yi∑
x2

i2
=

−7.8
8

= −0.975
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Table 19.2.6 ANOVA table for the data in Table 19.2.5.

Source SS DF MS F-ratio

X1 5.7800 1 5.7800 88.92
X2 7.6050 1 7.6050 117.00
Residual 0.5850 9 0.0650 = s2

Lack-of-fit 0.1050 2 0.0525 0.765 < 1
Pure error 0.4800 7 0.0686

Total 13.97 11

Table 19.2.7 Four factorial points and paired observations (see Table 19.2.5).

Treatments (−1, −1) (−1, 1) (1, −1) (1, 1) (0, 0)

2.5 0.7 4.0 2.2 2.5, 3.0
2.7 0.3 4.3 2.5 2.3, 2.4

di −0.2 0.4 −0.3 −0.3 ȳc = 2.55

so that the fitted model is

ŷ = 2.450 + 0.850x1 − 0.975x2 (19.2.12)

The associated ANOVA table is displayed in Table 19.2.6.
To obtain the entry for the pure error sum of squares SSE, first we construct

Table 19.2.7 from Table 19.2.5. For the four factorial treatments with the paired
observations, using the well-known identity that

∑2
i=1 (ui − ū)2 = (u1 − u2)

2/2, we have
for their sum of squares totals

∑4
i=1 d2

i/2, where di is the difference of the ith pair,
i = 1, 2, 3, 4 (see Tables 19.2.7 and 19.2.5). For the center point with four observations,
we compute

∑4
i=1 (Yi − Ȳc)

2, where the mean Ȳc of the center points is

Ȳc =
2.5 + 2.3 + 3.0 + 2.4

4
= 2.55

is the average of observations at the center point. Thus, the total pure error sum of
squares is

[(2.5 − 2.7)2/2 + (0.7 − 0.3)2/2 + · · · + (2.2 − 2.5)2/2]

+ [(2.5 − 2.55)2 + · · · + (2.4 − 2.55)2] = 0.48

Note that each replicated point contributes to the pure error sum of squares. The
degrees of freedom for pure error are equal to the sum of the degrees of freedom at each
of the design points, which, of course, is the sum of the replications minus one at each of
these points. Thus, we have degrees of freedom for pure error = (2 − 1) + (2 − 1) + (2 −
1) + (2 − 1) + (4 − 1) = 7.
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Using the information in Table 19.2.6, a test of the hypothesis that the model is
adequate to represent the unknown response function is given by the ratio of mean squares
due to lack of fit and pure error, i.e., F = 0.0525/0.0686 = 0.765, which is not statistically
significant. Thus, the model appears to be adequate. This means that we can use the
residual mean square (see Table 19.2.6) to provide the estimate of the variance σ2, which
is s2 = 0.0650 with ν = 9 degrees of freedom. The test of the hypothesis that β1 = 0 and
that β2 = 0 both produce very large observed F1,9 values, so that the two hypotheses are
rejected. The individual 95% confidence interval limits are, respectively,

β̂1 ± t9; 0.025

√
S2/[11] = 0.850 ± 2.26

√
0.0650/8 = (0.850 ± 0.206) = (0.644, 1.056)

β̂2 ± t9; 0.025

√
S2/[22] = −0.975 ± 2.26

√
0.0650/8 = (−0.975 ± 0.206) = (−1.81,−0.769)

The fitted equation may now be employed to map the unknown response function over the
experimental region. For example, the contour for the predicted response ŷ = 3.0 is given
by (substituting in (19.2.12)) all the points (x1, x2) on the line 3.000 = 2.450 + 0.850x1 −
0.975x2, the equation of a straight line in the coordinate system of x1 and x2. The contours
for ŷ = 1, 2, 3, and 4 are plotted in Figure 19.2.3 in the (X1,X2) coordinate system, where
x1 = (X1 − 35)/5, x2 = (X2 − 245)/5 (see Table 19.2.5). These are the contours of a plane
surface. Progress to a lower response (the response y is an unwanted byproduct) can be
quickly explored by performing experiments along the path of steepest descent, that is,
along a path perpendicular to the contour lines originating at the center of the exper-
imental region. In Figure 19.2.3, we show a path of steepest descent originating at the
center of the experimental region, which in the (X1,X2) coordinate system is (X1,X2) =
(35, 245).

30 35 40

2

3

4

1

Path of steepest

descent

250

245

240

T
e
m

p
e
ra

tu
re

 (
°C

)

Time (min)

Figure 19.2.3 Contours of planar response.
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PRACTICE PROBLEM FOR SECTION 19.2

1. Consider the following design plan and the data obtained using this design plan:

Run x1 x2 x3 Responses

1 −1 −1 −1 40.9
2 1 −1 −1 48.3
3 −1 1 −1 52.4
4 1 1 −1 53.7
5 −1 −1 1 55.3
6 1 −1 1 53.0
7 −1 1 1 53.4
8 1 1 1 47.0
9 0 0 0 48.9
10 0 0 0 51.7
11 0 0 0 49.7
12 0 0 0 55.0

(a) Fit a first-order model Y = β0 + β1x1 + β2x2 + β3x3 + ε to the above data.
(b) Find the pure error and lack of fit mean square.
(c) Prepare an ANOVA table for these data and test the adequacy of the first-order

model.
2. Consider a design plan obtained by using a one-half replication (I + ABCD) of a

24 design augmented with four center points. Suppose a fit to a first-order model
Y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ε, using the above design plan, is made.
(a) Find the total degrees of freedom.
(b) Find the ‘pure error’ and ‘lack of fit’ degrees of freedom.
(c) Discuss whether you can test the adequacy of the first-order model. Give the

test statistic for testing the fit of the first-order model Y = β0 + β1x1 + β2x2 +
β3x3 + β4x4 + ε.

3. Suppose an engineer used the design plan given in Problem 2 in a process develop-
ment study and obtained the following data.

A B C D Response

−1 −1 −1 −1 21
1 −1 −1 1 23

−1 1 −1 1 24
1 1 −1 −1 27

−1 −1 1 1 22
1 −1 1 −1 25

−1 1 1 −1 27
1 1 1 1 30
0 0 0 0 29
0 0 0 0 22
0 0 0 0 24
0 0 0 0 29
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(a) Fit a first-order model Y = β0 + β1x1 + β2x2 + β3x3 + βx4 + ε to the above
data.

(b) Find the ‘pure error’ and ‘lack of fit’ mean square.
(c) Prepare an ANOVA table for these data and test the adequacy of the first-order

model.
4. Refer to Problem 3. Suppose because of lack of raw materials the engineer could not

run the last two experiments, so the data obtained are as shown below. Repeat all
the instructions of Problem 3, compare your results with those obtained earlier, and
comment.

A B C D Response

−1 −1 −1 −1 21
1 −1 −1 1 23

−1 1 −1 1 24
1 1 −1 −1 27

−1 −1 1 1 22
1 −1 1 −1 25

−1 1 1 −1 27
1 1 1 1 30
0 0 0 0 29
0 0 0 0 22

5. Refer to Problem 3. Consider only the factorial points in that design and do the
following:
(a) Fit a first-order model Y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ε to the corre-

sponding data (i.e., the first eight lines of the table in Problem 3).
(b) Determine the alias structure for the design if the model in (a) is fitted but the

true model is the second-order model Y = β0 + Σβixi + ΣΣβijxixj .
(c) Estimate the regression coefficients and calculate the corresponding mean

squares due to the βi’s, assuming that we are fitting the model in (a).
(d) Using the model of (a) for the factorial points, construct the ANOVA table and

determine which main effects are significant. Use α = 0.05.

6. Analyze the data of Example 19.2.5 using technology.

19.3 SECOND-ORDER DESIGNS

The general form of a second-degree polynomial in k variables is

y = β0 +
∑

i

βixi +
∑

βiix
2
i +

∑∑
i<j

βijxixj (19.3.1)

In order to fit this polynomial, a total of
k2 + 3k + 2

2
regression coefficients are to

be estimated. Further, to estimate the quadratic coefficients, each variable xi must have
at least three different levels. The designs suitable for satisfying this requirement are
obviously 3k factorial designs. For a small value of k, say k = 2, 3, such a design seems
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quite adequate. However, as k increases, the number of needed experimental points
increases very rapidly. For example, when k = 4, in order to estimate just 15 regression
coefficients, we need 81 experimental points to run a 34 factorial design.

Box and Wilson (1951) developed, as an alternative to the 3k factorial designs, a class
of designs called the composite designs. A special class of these designs is called the central
composite design, which we study next.

19.3.1 Central Composite Designs (CCDs)
The CCDs are obtained by adding the following (2k+nc) points to a 2k factorial or to
a 2k−h fractional factorial: 2k points are axial points and nc points are center points.
The number of center points to be chosen usually depends upon the desired degrees of
freedom for the error mean square, or, the establishment of certain properties desired for
the design. In general, this number is not very large. Thus, a typical portion of the design
that is added to a 2k factorial or fractional factorial design, as shown below, contains 2k
axial points and nc center points, illustrated below.⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 · · · xk

−α 0 · · · 0
α 0 · · · 0
0 −α · · · 0
0 α · · · 0
...

... · · ·
...

0 0 · · · −α

0 0 · · · α

0 0 · · · 0
...

... · · ·
...

0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Thus, if we use a complete replication of a 2k factorial design, the total number of
points in this CCD design is (2k + 2k + nc). For k = 2, 3, 4, we have 8 + nc, 14 + nc, and
24 + nc points, respectively, whereas using 3k factorials would lead to CCDs for k = 2, 3,
4 consisting of 9, 27, and 81 points, respectively. Thus, for k as small as 4 in 3k factorials,
we have to perform almost three times the number of experiments as in the CCDs. The
value of α (where |α| > 1) depends on certain properties desired for the design and on the
number of factors involved. For two independent variables x1, x2 the CCD, when viewed
geometrically, has the 22 vertices of a square, k = 2 points on each axis, nc points at the
center (origin), as illustrated in Figure 19.3.1.

Note that experimental runs at the axial points are identical to the center points
except for one factor. In other words, the factors are varying not simultaneously but one
at a time. As a result the observations at these points provide no information on the
interaction term but allow for estimation of the pure quadratic terms. The center points
provide (nc − 1) degrees of freedom for the pure error mean square and allow the testing
of various hypotheses. They also provide one degree of freedom for estimating the sum of
the pure quadratic terms.

As mentioned above, the value of α to be chosen depends on certain properties desired
for the design and on the number of factors involved. One of the desirable properties of a
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(1, 1)

(0, 0)

(–1, 1)

(–1, –1) (1, –1)

(0, α)

(0, –α)

(–α, 0) (α, 0)
nc points

Figure 19.3.1 Geometry of a CCD that uses a 22 replication with nc center points.

CCD is rotatability, a concept introduced by Box and Hunter (1957). A rotatable design
allows ŷ at points x = (x1, . . . , xk), say ŷ(x), to be such that V ar(ŷ(x)) is the same at
all points that are at the same distance from the center of the design. In other words, the
precision of the predicted response is the same at all points on a sphere in k dimensions.
A CCD that possesses the property of rotatability depends upon the value of α and
the number of experimental runs in the factorial portion of the CCD (see Myers and
Montgomery 1995). If the number of experimental runs in the factorial portion is F, the
value of α needed to make the design rotatable is given by

α = 4
√

F (19.3.2)

Table 19.3.1 provides some typical values of α as a function of the number of experi-
mental runs in the factorial portion of the CCDs (see Myers and Montgomery 1995).

Table 19.3.1 Values of α to establish a rotatable central composite design.

Design 22 23 24 25 25−1 26 26−1 27 27−1

F 4 8 16 32 16 64 32 128 64

α 1.414 1.682 2.000 2.378 2.000 2.828 2.378 3.364 2.828

The major advantage of the CCDs is that they can be performed in different stages.
The first-order design, which corresponds to a 2k factorial or a fractional factorial plus
some center points, is run in a first stage. This design is used to fit a first-degree polynomial
and to look for any indication of curvature. If the experimenter finds the lack of fit term
in the analysis is significant, then in the second stage, experiments are run at the 2k axial
points. The second stage experiments allow the estimation of the regression coefficients
of second-degree terms. Thus, combining the results of the experiments performed in two
stages, we can fit a second-degree polynomial and test for lack of fit.

If an experiment that uses a CCD requires blocking, then a CCD allows much flexibility
in establishing such a design. In fact, under certain conditions, the experiment can be
carried out in orthogonal blocks.
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Definition 19.3.1 Blocks or factors are called orthogonal if (i)
∑n

j

i=1 xiuxiw = 0,
where u 	= w = 0, 1, · · · , k, and where xiu and xiw are the ith entries of the uth and
wth factors, with xi0 = 1, for all i. Further, nj is the number of treatments in the jth
block, j = 1, ...,m, where m is the number of blocks and k is the number of factors in
each block. (ii) Orthogonality also requires that

∑n
j

i=1 x2
iu/

∑k
w=1

∑N
i=1 x2

iw = nj/N ,
where N = total number of entries of each factor in all the blocks.

For a detailed discussion on orthogonal blocking in CCD designs, see Myers and Mont-
gomery (1995), Khuri and Cornell (1996), and Box and Draper (1987).

Example 19.3.1 (Experiment for achieving high concentration of a chemical) Two chem-
icals, A and B, are combined and as the reaction takes place, a new chemical C forms.
The concentration of C depends upon the concentrations of A and B and the temperature
maintained at which the reaction takes place. The aim of the experiment is to get the high-
est concentration of C. The three factors varied are the temperature T , the concentration
of A, and the concentration of B. The first set of experiments is performed by taking two
levels of each factor as shown below

Factors levels

t (temperature,◦C) 130, 150
a (% of A) 25, 30
b (% of B) 35, 40

Solution: Let the variables t, a, and b, when expressed in standard units of factorial
design, be denoted by x1, x2, and x3, respectively. Then the relation between the variables
x1, x2, and x3 and the natural variables t, a, and b are taken as follows:

x1 =
t − 140

10
, x2 =

a − 27.5
2.5

, x3 =
b − 37.5

2.5

Thus, the levels of each factor, when expressed in standard units, are (−1, 1). The trials
were carried out randomly. The yields are shown in Table 19.4.2.

Table 19.3.2 Percentage of concentration of C.

Treatment x1 x2 x3 % C

1 −1 −1 −1 18.2
2 1 −1 −1 22.8
3 −1 1 −1 22.8
4 1 1 −1 23.0
5 −1 −1 1 22.7
6 1 −1 1 23.2
7 −1 1 1 24.2
8 1 1 1 20.8
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Suppose now the experimenter fits the model

Y = β0 + β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3 + β23x2x3 + ε (19.3.3)

but the true model is

Y = β0 + β1x1 + β2x2 + β3x3 + β11x
2
1 + β22x

2
2 + β33x

2
3 + β12x1x2 + β13x1x3 + β23x2x3 + ε

(19.3.4)
The experimenter is, of course, fitting model (19.3.3) to the data in Table 19.3.2. The
MINITAB printout shows that the fit to the data set in Table 19.3.2 of the model (19.3.3)
is adequate (R-Sq(adj) = 99.11%). Now if (19.3.4) is the true model, it turns out that
β̂1, β̂2, β̂3 are unbiased for β1, β2, β3 respectively, but that β̂0 is a biased estimator in
that

E(β̂0) = β0 + β11 + β22 + β33 (19.3.4a)

In fact, for the data set in Table 19.3.2, we find that the estimates of the linear regression
coefficients and the two way interaction coefficients are, respectively.

β̂0 = 22.21, β̂1 = 0.238, β̂2 = 0.488, β̂3 = 0.512, β̂12 = −1.037, β̂13 = −0.962, and
β̂23 = −0.712

To run the model specify in (19.3.3), we proceed in MINITAB as in Example 19.2.4, but
in Step 7, we proceed as: From the bar menu select Stat > DOE > Response Surface
> Analyze Response Surface Design. Then enter C5 under the box Responses: this
appears in the new window and click Terms and select Linear + interactions when the
pull down menu appears. Click OK twice. The MINITAB output appears in the Session
Window as shown below.

Factorial regression: Y versus X1, X2, X3
Model summary

Coded Coefficients

Analysis of variance

Regression equation in uncoded units

Source DF Adj SS

24.5375

Adj MS

4.08958

F-Value

130.87

P-Value

0.067Model 6

4.4538 1.48458 47.51 0.106Linear 3

0.4513 0.45125 14.44 0.164X1 1

1.9013 1.90125 60.84 0.081X2 1

2.1012 2.10125 67.24 0.077X3 1

20.0837 6.69458 214.23 0.0502-Way Interactions 3

8.6113 8.61125 275.56 0.038X1*X2 1

7.4112 7.41125 237.16 0.041X1*X3 1

4.0612 4.06125 129.96 0.056X2*X3 1

0.0313 0.03125Error 1

24.5687Total 7

Y  =  22.2125 + 0.2375 X1 + 0.4875 X2 + 0.5125 X3 – 1.0375 X1*X2 – 0.9625 X1*X3 – 0.7125 X2*X3

S

Term Effect Coef  SE Coef T-Value P-Value VIF

X2*X3 –1.4250 –0.7125 0.0625 –11.40 0.056 1.00

X1*X3 –1.9250 –0.9625 0.0625 –15.40 0.041 1.00

X1*X2 –2.0750 –1.0375 0.0625 –16.60 0.038 1.00

X3 1.0250 0.5125 0.0625 8.20 0.077 1.00

X2 0.9750 0.4875 0.0625 7.80 0.081 1.00

X1 0.4750 0.2375 0.0625 3.80 0.164 1.00

Constant 22.2125 0.0625 355.40 0.002

R-sq R-sq(adj) R-sq(pred)

0.176777 99.87% 99.11% 91.86%

We note that two of the two-factor interaction coefficients are significant at the 5%
level, while the third two-factor interaction is significant at the 5.6% level, i.e. barely miss-
ing the 5% level. This indicates that the true response surface may have some curvature.
Note that if the interactions are not significant, then it is still possible that the quadratic
terms will be present in the fitted model. We now remark that it is always better to add
some center points to the 23 design, as this gives us some degrees of freedom for the pure
error along with one degree of freedom for the sum of the coefficients of the pure quadratic
terms. This may then be utilized to help decide whether there is any curvature in the data.
The significance of the interaction and quadratic terms usually indicates that we are near
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Table 19.3.3 Ten extra points and their observed percentage of
concentration of C.

Treatment x1 x2 x3 % C

9 0 0 0 23.6
10 0 0 0 24.9
11 0 0 0 22.6
12 0 0 0 23.9
13 0 0 −1.682 22.7
14 0 0 1.682 23.0
15 −1.682 0 0 24.7
16 1.682 0 0 25.0
17 0 −1.682 0 22.5
18 0 1.682 0 24.0

the optimum point. Thus, in this case, it is worth fitting the second-degree polynomial so
that we now consider a new set of 10 points (6 axial points and 4 center points). Combining
these points with the previous eight points, we have a second-order CCD. The values of
α (= 81/4) are selected so that the CCD is rotatable or near-rotatable.

The MINITAB output appears in the Session Window for the model after adding
above 10 points as shown below (Note: The MINITAB step by step procedure is discussed
subsequently).

Response Surface Regression: Y versus Blocks, A, B, C

Analysis of Variance Model Summary

Coded Coefficients

Regression Equation in Uncoded Units

Source DF Adj SS Adj MS F-Value P-Value

B*B 1 0.3333 0.3333 0.69 0.434

Total 17 42.6800

Pure Error 3 2.6900 0.8967

Error 7 3.3936 0.4848

Lack-of-Fit 4 0.7036 0.1759 0.20

Y  =  23.034 + 0.176 A + 0.470 B + 0.337 C + 0.389 A*A – 0.177 B*B – 0.318 C*C – 1.038 A*B

         – 0.963 A*C – 0.713 B*C

0.925

B*C 1 4.0612 4.0612 8.38 0.023

A*C 1 7.4113 7.4113 15.29 0.006

A*B 1 8.6112 8.6112 17.76 0.004

2-Way Interaction 3 20.0838 6.6946 13.81 0.003

C*C 1 1.0800 1.0800 2.23 0.179

A*A 1 1.6133 1.6133 3.33 0.111

Square 3 4.5040 1.5013 3.10 0.099

C 1 1.5525 1.5525 3.20 0.117

B 1 3.0205 3.0205 6.23 0.041

A 1 0.4234 0.4234 0.87 0.381

Linear 3 4.9964 1.6655 3.44 0.081

Blocks 1 6.5376 6.5376 13.48 0.008

Model 10 39.2864 3.9286 8.10 0.006

S

Term Coef  SE Coef T-Value P-Value

Constant 23.034 0.408 56.44 0.000

VIF

R-sq R-sq(adj) R-sq(pred)

0.696280 92.05% 80.69% 68.80%

Blocks

1 –0.716 0.195 –3.67 0.008 1.39

B*C –0.713 0.246 –2.89 0.023 1.00

A*C –0.963 0.246 –3.91 0.006 1.00

A*B –1.038 0.246 –4.21 0.004 1.00

C*C –0.318 0.213 –1.49 0.179 1.28

B*B –0.177 0.213 –0.83 0.434 1.28

A*A 0.389 0.213 1.82 0.111 1.28

C 0.337 0.188 1.79 0.117 1.00

B 0.470 0.188 2.50 0.041 1.00

A 0.176 0.188 0.93 0.381 1.00

The above analysis shows that a complete second-degree polynomial (interaction terms
xixj and pure quadratic terms are in this model) is a very good fit. Indeed, the observed
no-lack-of-fit test statistic is 0.20, and obviously not significant. This indicates we may
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be near to the optimal point. But before doing further experiments, we first analyze the
fitted response surface (we do this later in Section 19.4). The fitted response surface in
this example, based on the design and observations found in Tables 19.3.2 and 19.3.3 is
given by

Ŷ = 23.0343 + 0.1761x1 + 0.4703x2 + 0.3372x3 + 0.3889x2
1 − 0.1768x2

2 − 0.3182x2
3

− 1.0375x1x2 − 0.9525x1x3 − 0.7125x2x3 (19.3.5)

Figures 19.3.2 and 19.3.3 show the contour plots in the (x1, x2) coordinate system and
response surface plots for the fitted response surface model (19.3.5). The response surface
indicates that the stationary point is a saddle point. These figures give in the box at top
right, the value of the third factor as the other two factors vary. Note that the contour
plots can be used to develop the operating conditions (if they exist within the experi-
mental region) on the design variables under which the optimum value of the response
variable can be achieved. It is not a good idea to define any operating conditions outside
the experimental region, since the fitted model is not reliable for conditions outside that
region.

We now show all the steps needed to fit a response surface using MINITAB and R.
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Figure 19.3.2 Contour plots for the fitted response surface model (19.3.5).
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Figure 19.3.3 Response surface plots for the fitted response surface model (19.3.5).
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MINITAB

If the experimenter has performed the experiment in two stages (see Example 19.4.1), then
we proceed as follows:

1. From the bar menu select Stat > DOE > Factorial > Create Factorial
Design . . . .

2. Check 2-level factorial (default generators), select the number of factors, and click
on Designs . . . option.

3. Select full replication, then select (i) number of center points per block (0), (ii)
number of replicates for corner points (1), and (iii) number of blocks (1), and then
click OK twice.

4. From the Menu bar select Stat > DOE > Modify Design . . .
5. SelectAdd axial points and then click Specify.In the new dialog box, select the

value of alpha (e.g., 1.681793) and the number of center points and then click OK.
The desired second-order design will appear in the Worksheet.

6. Enter the data in the next empty column of the Worksheet and proceed as follows
to analyze the data.

7. From the bar menu, select Stat > DOE > Response Surface > Analyze
Response Surface Design . . . . In the new dialog box “Analyze Response
Surface Design,” enter the column of responses under Response: and select
Terms . . . and select Full quadratic from the pull down menu. If there is any
particular quadratic term(s), you do not want to include in the model, click on that
term twice (this moves these terms to the box under available terms). Then click
OK twice. The complete analysis of the data appears in the session window (see
Example 19.3.1).

8. For contour plots and surface plots, select from the bar menu Stat > DOE >
Response Surface > Contour plot or Surface plots. Then in the “Contour”
or “Surface Plots” dialog box that appears select the appropriate choices for the
graphical displays you desired.

If the experiment was performed in one stage, then we can still create the design as above
or we can take the following steps:

1. From the bar menu select Stat > DOE > Response Surface > Create Response
Surface Design.

2. Check Central composite and select the number of factors and click on
Designs . . . option.

3. Select either of the available designs and check Number of Center points and value
of alpha by default, or select custom and enter, in the box next to the Cube block,
the number of center points. Then follow steps 6–8.

4. From the Menu bar select Stat > DOE > Modify Design . . . .

USING R

Solution To perform the required response surface modeling in R, we can use the
‘rsm()’ function in the R ‘library(rsm)’ as shown in the following R-code. Both ‘FO’
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and ‘TWI’ terms are included as both first-order and two-way interaction terms are
required. Additional functions ‘contour()’ and ‘persp()’ are used to get required contour
and surface plots.

library(rsm)
#Full factorial model
x1 = c(-1,1,-1,1,-1,1,-1,1)
x2 = c(-1,-1,1,1,-1,-1,1,1)
x3 = c(-1,-1,-1,-1,1,1,1,1)
y = c(18.2,22.8,22.8,23,22.7,23.2,24.2,20.8)
data = data.frame(x1, x2, x3, y)

mod.rsm = rsm(y ∼ FO(x1, x2, x3) + TWI(x1, x2, x3), data = data)
summary(mod.rsm)

#Full factorial with center and axial points
x12 = c(-1,1,-1,1,-1,1,-1,1,0,0,0,0,0,0,-1.682,1.682,0,0)
x22 = c(-1,-1,1,1,-1,-1,1,1,0,0,0,0,0,0,0,0,-1.682,1.682)
x32 = c(-1,-1,-1,-1,1,1,1,1,0,0,0,0,-1.682,1.682,0,0,0,0)
Blocks = c(-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1)
y2 = c(18.2,22.8,22.8,23,22.7,23.2,24.2,20.8,23.6,24.9,22.6,23.9,
22.7,23,24.7,25,22.5,24)
data2 = data.frame(x12, x22, x32, Blocks, y2)

mod.rsm = rsm(y2 ∼ Blocks + SO(x12, x22, x32) + TWI(x12, x22, x32), data = data2)
summary(mod.rsm)

par(mfrow = c(2, 3))
contour(mod.rsm, ∼ x12 + x22 + x32, at=c(Blocks=-1, x12=0, x22=0, x32=0), image =
TRUE)
persp(mod.rsm, ∼ x12 + x22 + x32, zlab=“y,” at=c(Blocks=-1, x12=0, x22=0, x32=0), col
= “green,” theta = 135, phi = 20)

We find that this output provides similar results to that obtained in MINITAB, and
we may then draw the same conclusions as well.

Example 19.3.2 (Experiment for achieving high yield of a chemical) In an attempt to
increase production, a chemical engineer studied three factors, A, B (temperature), and
C (pH). For the first stage, it was proposed to use each factor at two levels and to add
four center points. However, after the analysis of these data, further investigation was
proposed. Thus, eight extra points (six axial and two center points) were added in such a
way that the design used was a central composite rotatable design. Table 19.3.4 gives the
complete plan and the data on the yield. Fit a second-degree polynomial to the data in
Table 19.3.4.



926 19 Response Surfaces

Table 19.3.4 Data obtained using a central composite rotatable design.

−1 −1 −1 18.5
1 −1 −1 22.0

−1 1 −1 19.0
1 1 −1 21.0

−1 −1 1 19.0
1 −1 1 21.0

−1 1 1 20.0
1 1 1 22.0
0 0 0 21.7
0 0 0 20.2
0 0 0 20.5
0 0 0 21.6
0 0 0 19.8
0 0 0 21.5

−1.682 0 0 19.0
1.682 0 0 22.2
0 −1.682 0 21.5
0 1.682 0 22.0
0 0 −1.682 18.0
0 0 1.682 20.0

To run this design in MINITAB, we proceed as follows: From the bar menu select
Stat > DOE > Response Surface > Create Response Surface Design. Then select
Central composite option from the new window appears. Then select the appropriate
number of continuous factors and click on Display Available Designs . . . and select
central composite full design with 3 unblocked factors which results in 20 test runs
from the table that appears in the new window. Click OK and check other options if
needed. Click OK. The desired CCD will appear in the Worksheet. Enter the data in
the next empty column of the Worksheet and proceed as follows to analyze the data. For
analysis, we follow the MINITAB steps 7–8 in Example 19.3.1. The following MINITAB
output and contour plots in Figure 19.3.4 and surface plots in Figure 19.3.5 will be
appeared.

Central Composite Design

Design Summary Point Types

Cube points: 8

Center points in cube: 6

Center points in axial: 0

Axial points: 6

Factors: Replicates:3 1

Base runs: Total runs:20 20

Base blocks: Total blocks:1 1

Two-level factorial: Full factorial

α = 1.68179
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Response Surface Regression: Y versus A, B, C

Analysis of Variance Model Summary

Coded Coefficients

Regression Equation in Uncoded Units

Source DF Adj SS Adj MS F-Value P-Value

Y  =  20.887 + 1.090 A + 0.171 B + 0.356 C – 0.124 A*A + 0.283 B*B – 0.689 C*C – 0.188 A*B

         – 0.187 A*C + 0.312 B*C

0.002

0.001

0.000

0.363

0.076

0.010

0.496

0.137

0.003

0.426

0.443

0.443

0.213

0.884

7.17

13.88

36.79

0.91

3.93

6.62

0.50

2.62

15.53

1.02

0.64

0.64

1.77

0.32

3.1611

6.1166

16.2165

0.4012

1.7321

2.9186

0.2203

1.1537

6.8479

0.4479

0.2812

0.2812

0.7812

0.4408

0.2119

0.6697

28.4495

18.3498

16.2165

0.4012

1.7321

8.7559

0.2203

1.1537

6.8479

1.3437

0.2812

0.2812

0.7812

4.4080

1.0597

3.3483

32.8575

9

3

1

1

1

3

1

1

1

3

1

1

1

10

5

5

19

Model

Linear

A

B

C

Square

A*A

B*B

C*C

2-Way Interaction

A*B

A*C

B*C

Error

Lack-of-Fit

Pure Error

Total

S

Term Coef  SE Coef T-Value P-Value

0.000

0.000

0.363

0.076

0.496

0.137

0.003

0.443

0.443

0.213

77.14

6.07

0.95

1.98

–0.71

1.62

–3.94

–0.80

–0.80

1.33

0.271

0.180

0.180

0.180

0.175

0.175

0.175

0.235

0.235

0.235

20.887

1.090

0.171

0.356

–0.124

0.283

–0.689

–0.188

–0.187

0.312

Constant

A

B

C

A*A

B*B

C*C

A*B

A*C

B*C

R-sq R-sq(adj) R-sq(pred)

0.663931 86.58% 74.51% 59.50%
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Figure 19.3.4 Contour plots for the fitted response surface of Example 19.3.2.
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Figure 19.3.5 Response surface plots for the fitted response surface of Example 19.3.2.
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Note that the box on the top right of these figures gives the value of the third factor
as the other two factors vary.

19.3.2 Some Other First-Order and Second-Order
Designs

Some other second-order designs are useful in applications. We give a few of them in
Figures 19.3.6 and 19.3.7.

x2

x2

x1

x1

k = 2 variables

The 32 factorial

(a)

(c) The octagon design

(b)
x1 x2 x1 x2
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Figure 19.3.6 Some second-order designs.

Example 19.3.3 (Data on crystal study) In a study to determine the optimum conditions
for the growth of large ZnS crystals of great purity, two factors were varied: the tempera-
ture of the melt and the rate of withdrawal of the crucible in which the crystal was grown.
The experimenters began their investigation by employing a replicated simplex design (geo-
metrically, a simplex design for k = 2, are the vertices of an equilateral triangle) with
repeated center points. The factor settings, settings of the experimental design variables,
and a recorded response (here coded) are displayed in Table 19.3.5. All treatments were
run in random order.
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The central composite design

x1 x2 x3
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Figure 19.3.7 Central composite design with orthogonal blocking.

Table 19.3.5 The settings of the experimental design variables and recorded
responses.

Factor settings
Temperature (◦C) Rate Design variables Response y Computations

(in./d) x1 x2

1920 1.00 1.00 0 7.2 6.9 N = 10,Σy = 101.5
1890 1.05 −0.50 0.866 9.3 9.6 Σy2 = 1065.73
1890 0.95 −0.50 −0.866 10.4 9.8 Σx1y = −5.4500
1900 1.00 0 0 12.3 11.7 Σx2y = −1.1258
1900 1.00 0 0 12.2 12.1 [11] = [22] = 3.0

To illustrate some of the above computations, we have the following: There are two
observations per treatment, so we have∑

x1y = (1)(7.2) + (1)(6.9) + (−0.5)(9.3) + (−0.5)(9.6) + (−0.5)(10.4) + (−0.5)(9.8)

+ 0(12.3) + 0(11.7) + 0(12.2) + 0(12.1) = −5.45

[11] =
∑

x2
i = 12 + 12 + (−0.5)2 + (−0.5)2 + (−0.5)2 + (−0.5)2 + 02 + 02 + 02 + 02

= 3.00

Solution: The object of the above experimental program was to see if a plane would
be an acceptable approximation to the response function and if a path of steepest ascent
(see Section 19.4) determined in the space of the factors would lead to a region of higher
responses. The data in Table 19.3.5 are plotted in Figure 19.3.8 and it is obvious that a
plane is inadequate to represent the response function. The observed response at the center
of the experimental region appears to be larger than the average response at the external
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Figure 19.3.8 Simplex design for fitting a first-order model.

design points, an indication that the response surface has a curvature. The hypothesis that
the surface is nonplanar can be verified by fitting the first-order model and then testing to
see whether it is adequate to represent the data. Fitting the model η = β0 + β1x1 + β2x2
to these data gives

β̂0 =
∑

y

N
=

101.5
10

= 10.15, β̂1 =
∑

xi1y∑
x2

i1
=

−5.45
3.0

= −1.8167,

β̂2 =
∑

xi2y∑
x2

i2
=

−1.1258
3.0

= −0.3753

so that the fitted model is
ŷ = 10.15 − 1.82x1 − 0.38x2

The corresponding analysis of variance is displayed in Table 19.3.6.

Table 19.3.6 ANOVA table for first-order design.

Source DF SS MS F-ratio

Linear 2 10.3235 5.1617
Residual 7 25.1815

Lack of fit 1 24.7040 24.7040 310.35
Pure error 6 0.4775 0.0796 =S2

Total 9 35.5050

Now under the H0 : no lack of fit, the ratio of the lack of fit mean square to the error
mean square is distributed as a F1,6 random variable, and in any case, it is obvious that
the observed ratio F = 24.7040/0.0796 = 310.35 is highly unusual.
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An alternative, and for this design, the exactly equivalent test of the hypothesis that
no curvature exists, is provided by comparing the observations at the center of the design
against those of the periphery or exterior points by constructing a relevant contrast.

Now recall from Chapter 18 that a contrast is a linear combination of obser-
vations, with the constants in the linear combination summing to zero. Denote the
observations taken at (0, 0), (1, 0), (−0.5, 0.866), (−0.5, −0.866) by y0j (j = 1, 2, 3, 4);
y1j (j = 1, 2); y2j (j = 1, 2); y3j (j = 1, 2), respectively. To compare the observations
taken at (0, 0), the center of the design, with those taken at the exterior points, namely
at (1, 0), (−0.5, 0.866), (−0.5, −0.866), we use the contrast

3(y01 + y02 + y03 + y04) − 2(y11 + y12) − 2(y21 + y22) − 2(y31 + y32)

(Note that the constants in this contrast sum to zero.) Alternatively, we may write this as

3(4)ȳ0 − 2(2)ȳ1 − 2(2)ȳ2 − 2(2)ȳ3

which is of the form
∑3

j=0 cjdj ȳj , with dj the number of observations at each treatment.
That is,

c0 = 3, c1 = −2, c2 = −2, c3 = −2

d0 = 4, d1 = 2, d2 = 2, d3 = 2

and we note again that
∑3

j=0 cjdj = 0. Inserting the actual observations from Table 19.3.5
or the information below, we find that

∑3
j=0 cjdj ȳj = 38.50.

The corresponding single degree of freedom sum of squares is (see Section 18.1)(∑
cj(dj ȳj)

)2(∑
djc

2
j

) =
(38.50)2

4(9) + 2(4) + 2(4) + 2(4)
=

(38.50)2

60
= 24.7042

which, except for the rounding errors, equals the lack of fit sum of squares in Table 19.3.6.
The hypothesis that the contrast effect is zero, that is, that no curvature exists, is thus
rejected with the observed lack of fit F = 24.7042/0.0796 = 310, obviously significantly
large.

After reviewing these data, the experimenters decided to form a hexagon design
by adding a second replicated simplex design with four center points as illustrated in
Figure 19.3.9. The factor settings, level of the design variables, and observed responses are
displayed in Table 19.3.7.

The proposed second-order model is

η = β0 + β1x1 + β2x2 + β11x
2
1 + β22x

2
2 + β12x1x2

The corresponding normal equations are (see Section 19.5)

20β̂0 + 6.0β̂11 + 6.0β̂22 = 200.8000

6.0β̂1 = −3.5000

6.0β̂2 = −10.5652

6.0β̂0 + 4.5β̂11 + 1.5β̂22 = 48.1000

6.0β̂0 + 1.5β̂11 + 4.5β̂22 = 55.5000

1.5β̂12 = −4.1568 (19.3.6)
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Figure 19.3.9 Hexagon Design in two blocks for fitting a second-order model.

Table 19.3.7 The factor setting, levels of the design variables, and observed
responses.

Factor settings
Temperature (◦C) Rate Design variables Response y

(in./d) x1 x2

1920 1.00 1.00 0 7.2 6.9
1890 1.05 −0.50 0.866 9.3 9.6
1890 0.95 −0.50 −0.866 10.4 9.8
1900 1.00 0 0 12.3 11.7
1900 1.00 0 0 12.2 12.1
1880 1.00 −1.00 0 7.7 7.8
1910 1.05 0.50 0.866 6.2 5.8
1910 0.95 0.50 −0.866 11.3 11.6
1900 1.00 0 0 11.8 12.4
1900 1.00 0 0 12.7 12.0

The estimates β̂1,β̂2, and β̂12 are obtained directly:

β̂1 =
−3.5000

6
= −0.5833, β̂2 =

−10.5652
6

= −1.7609, β̂12 =
−4.1568

1.5
= −2.7712

(19.3.7)
Solving the remaining three equations, we obtain

β̂0 = 12.1500, β̂11 = −4.7500, β̂22 = −2.2833
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Table 19.3.8 ANOVA table for second-order design.

Source DF SS MS F-ratio

First-order coefficient 2 20.6456 10.3228
Second-order coefficient 3 80.0091 26.6697 208
Residual 14 1.7883 0.1277

Lack of fit 1 0.6483 0.6483 7.40
Pure error 13 1.1400 0.0876

Total 19 102.4480

Hence, the fitted model is

ŷ = 12.15 − 0.58x1 − 1.76x2 − 4.75x2
1 − 2.28x2

2 − 2.77x1x2 (19.3.8)

Some helpful computations for preparing the ANOVA table are

n = 20,
∑

y = 200.8,
∑

y2 = 2118.48,
∑

x1y = −3.5,
∑

x2y = −10.5652,∑
x2

1y = 48.1,
∑

x2
2y = 55.5,

∑
x1x2y = −4.1568

Using some of the expressions in Table 19.5.1 and the above computational results, we
obtain the ANOVA table shown in Table 19.3.8.

Note that from the above ANOVA table, we have that S2, the pure error estimate of
σ2, is based on 13 degrees of freedom and is equal to

S2 = 0.0876

The ratio of the lack of fit mean square to the pure error mean square is nearly twice the
critical value of F1,13; 0.05 = 4.67, so that the fitted second-order model is declared adequate
to represent the unknown function. This is because in practice, the lack of fit for F is two
or three times the critical value before the model is declared inadequate to represent the
data. Here, then, the decision is made to continue with the second-order polynomial model
after recognizing that this fitted model may not be the best model proposed, but, may be
useful for empirical approximation.

Using the residual sum of squares and its degrees of freedom, the new estimate of
the variance is S 2 = 1.7883/14 = 0.1277 with 14 degrees of freedom (see Table 19.3.8).
A test of the hypothesis that contributions of all second-order terms are zero is provided
by using the test statistic F = MS(second order)/MS(residual) which is observed to be
26.6697/0.1277 = 208. Since Prob{F3,14 ≥ 3.34} = 0.05, the hypothesis is rejected.

The fitted second-order model can now be used to determine the approximate contours
of the response function. For example, the setting ŷ = 10 into (19.3.8) gives the contour
in the (x1, x2) coordinate system

10 = 12.15 − 0.58x1 − 1.76x2 − 4.75x2
1 − 2.28x2

2 − 2.77x1x2

which is the equation of an ellipse. This contour and other contours for the estimated
response are shown in Figure 19.3.10.
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Figure 19.3.10 Contours of crystal purity as a function of temperature and rate of
growth.

PRACTICE PROBLEM FOR SECTION 19.3

1. A chemical engineer wants to determine the optimal conditions of a chemical pro-
cess. To achieve her goal, she wants to fit a second-order model to her data given
below. The response Y is yield, and the design variables x1 and x2 are temper-
ature and concentration (%), respectively. The whole experiment was carried out
over a two months period. The first six experiments were performed during the
first month, and the remaining six experiments were performed during the second
month. Note that if in this experiment months are treated as blocks, then the blocks
shown below are orthogonal blocks, i.e., block effects have no impact on the model
coefficients.

x1 x2 Yield (Y)

−1 −1 36
1 −1 28

−1 1 26
1 1 38
0 0 33
0 0 35

−1.414 0 27
1.414 0 37
0 −1.414 31
0 1.414 34
0 0 29
0 0 32
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(a) Fit a complete second-order model to these data.
(b) Construct an ANOVA table for these data. Estimate the error variance σ2.
(c) Use the ANOVA table constructed in (b) to examine the significance of the

second-order terms. Use α = 0.05.

2. A pharmaceutical company wants to improve the effectiveness of plasma
glucose-lowering drug used by Type-II diabetic patients by determining the proper
mixture of the ingredients. The active and other ingredients used in this drug are
hydrochloride, providone, and magnesium stearate. The company carried out the
experiment given below. The response variable y indicates how much a tablet of
500 mg brings down the plasma glucose level (mg/DL) after the first week of use.

x1 −1 1 −1 1 −1 1 −1 1 −1.682 1.682 0 0 0 0
x2 −1 −1 1 1 −1 −1 1 1 0 0 −1.682 1.682 0 0
x3 −1 −1 −1 −1 1 1 1 1 0 0 0 0 −1.682 1.682
y 33 26 50 30 29 47 24 37 37 45 48 35 42 48

x1 0 0 0 0 0 0
x2 0 0 0 0 0 0
x3 0 0 0 0 0 0
y 41 45 33 37 27 47

(a) Fit a second-order model to these data.
(b) Construct an ANOVA table for these data. Estimate the error variance σ2.
(c) Use the ANOVA table constructed in (b) to examine the significance of the

second-order terms. Use α = .05.

3. Refer to Problem 2. Consider a design that consists of the eight factorial points
listed in Problem 2 and four center points. For the center points, use the last four
data points on the list of Problem 2.
(a) Fit a first-order model Y = β0 + β1x1 + β2x2 + β3x3 + ε to the above data.
(b) Find the pure error and lack of fit mean square.
(c) Prepare an ANOVA table for these data and test the adequacy of the first-order

model.
4. An industrial engineer used a hexagon design to examine a process development

study. The hexagon design and some simulated data are given below.

1 0 16
−1 0 15

0.5 0.866 18
−0.5 0.866 16

0 0 22
−0.5 −0.866 25

0.5 −0.866 22
0 0 23
0 0 15
0 0 25
0 0 13
0 0 21
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(a) Fit the complete second-order model η = β0 + β1x1 + β2x2 + β11x
2
1 + β22x

2
2 +

β12x1x2 to these data.
(b) Construct an ANOVA table for these data. Estimate the error variance σ2.
(c) Use the ANOVA table constructed in (b) to examine the significance of the

first-order and second-order terms. Use α = 0.05.

5. Consider the design given below, which is nearly rotatable and has three orthogonal
blocks. The following data were simulated by a design engineer.

Blocks 1 2

X1 −1 1 1 −1 0 0 1 −1 −1 1 0 0
X2 −1 1 −1 1 0 0 −1 1 −1 1 0 0
X3 −1 −1 1 1 0 0 −1 −1 1 1 0 0
Y 29 39 27 21 35 33 36 18 31 21 23 32

Blocks 3

X1 −1.732 1.732 0 0 0 0 0 0 0
X2 0 0 −1.732 1.732 0 0 0 0 0
X3 0 0 0 0 −1.732 1.732 0 0 0
Y 25 23 19 25 27 28 30 33 37

(a) Fit a complete second-order model to these data, that is η = β0 + β1x1 + β2x2 +
β3x3 + β11x

2
1 + β22x

2
2 + β33x

2
3 + β12x1x2 + β13x1x3 + β23x2x3

(b) Construct an ANOVA table for these data. Estimate the error variance σ2.
(c) Use the ANOVA table constructed in (b) to examine the significance of the

first-order and second-order terms. Use α = 0.05.

19.4 DETERMINATION OF OPTIMUM OR
NEAR-OPTIMUM POINT

In practice, determination of levels of various factors always has some limitations, whether
financial limitations, time limitations, or availability of the experimental material. This
does have consequences that in practice the experimenter is dealing with a limited
experimental region. A usual goal of experimentation is to find the minimum number of
experimental points (x1, x2, . . . , xk) within the experimental region at which the response
Y is maximized (or minimized if Y measures, say, an unwanted byproduct). It is also
important to explore the neighborhood of the optimum point. It sometimes happens
one cannot always maintain the optimum point but may be able to maintain points on
some neighborhood without having any significant effect on the response. Sometimes it
can also happen that a slight shift away from the optimum point improves the overall
product, while at the optimum point itself we may have optimality with respect only to
a particular characteristic.

An exact method for finding the optimum point, especially when the experimental
error is large, is to explore the whole region. But in practice, this is usually not possible.
In the chemical industry, for instance, the problem of finding an optimum point is quite
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common, but it is almost impossible to explore the whole region since generating observa-
tions is usually quite expensive and time-consuming. Sometimes, in such investigations, we
have some previous knowledge, such as the experimental error is usually small, and that
experiments will be conducted sequentially. Further, due to small experimental error, small
changes can be detected accurately and the experimenter can explore a small sub region
adequately with only a few experiments. Since the experiments are planned sequentially,
a technique can be developed that allows the use of the results obtained in one sub region
to move to another sub region where the response can be larger or smaller, depending on
whether we are seeking a maximum or minimum optimal point. This way, by successive
applications of such a procedure, a stationary point, or at least a near-stationary point of
optimum response, can usually be reached.

Friedman and Savage (1947) gave a sequential one-factor-at-a-time procedure when
various factors are involved, usually known in the statistical literature as the single-factor
method. It consists of first finding an optimum response by varying the levels of the first
factor while keeping the levels of other factors at their initial values, say x2, x3, . . . , xk.
Suppose now that the response was maximized when the first factor was at level x0

1, say.
Then, in the next experiment, the level of the first factor is fixed at x0

1, the levels of the
second factor are varied at various levels, and the remaining factors are kept fixed at their
initial values. Now the optimum level of the second factor, say x0

2, is found. This method
is repeated with all other factors until we obtain an optimum point (x0

1, . . . , x0
k).

Box and Wilson (1951) proposed a method of locating the optimum and exploring
the response surface in which many factors are varied at the same time. In their work,
they proposed the use of the path of steepest ascent to get to a near-stationary region if
the experimenter starts at a point far removed from it. When the experimenter comes
near such a region, they described the use of certain composite designs that allows for the
estimation of all the coefficients of the quadratic polynomial. We have already discussed
these designs in our earlier part of this chapter. We now study methods to determine the
optimum or near-optimum points.

19.4.1 The Method of Steepest Ascent
The method of steepest ascent is popular with experimenters and researchers. After it
was proposed by Box and Wilson (1951), the method was further developed by Box,
his collaborators, and others; some of these references are listed at the end of this
book.

The steepest ascent method is a procedure in which the experimenter proceeds sequen-
tially along the path of steepest ascent, that is, the path of maximum increase in response,
or the path of steepest descent, that is, the path of maximum decrease in response. This
method works more efficiently when the experimental error is small, and the lack of fit of
a first-order model is not significant.

This method entails the starting of the experiment with a small design, for example,
a 2k or a fractional factorial design with some center points. At the end of this experiment
two steps are taken: (i) a first-degree polynomial to approximate the response surface
f(x1, x2, . . . , xk) is fitted to the observed data; (ii) the linear approximation is tested to
verify whether it fits the data adequately. Because we wish to test the adequacy of the
first-order model, it is important to note that the experiment should be designed in such
a way as to provide some degrees of freedom to measure the lack of fit and to estimate
the experimental error or the pure error. The estimate of the experimental error is usually
obtained either by replicating the runs or simply by adding some points at the center of
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the design. Further, if the fitted first-order model

ŷ = β̂0x0 + β̂1x1 + · · · + β̂kxk (19.4.1)

is adequate, then the center of the experimental region is moved to a new point that is
chosen along a path toward where the maximum expected increase or decrease takes place.
This path is called the path of steepest ascent or steepest descent, depending upon whether
the desired response is a maximum or a minimum. This process is continued until there is
no significant change in the response. At that point another experiment is performed to
fit a first-order model. The lack-of-fit statistic for the first-order fit usually indicates that
we have arrived in the vicinity of the optimum point.

The path along which we move is determined by

∂f

∂xi

= β̂i i = 1, . . . , k (19.4.1a)

so that the change in xi along the path of steepest ascent is proportional to β̂i. Note that if
after the first set of experiments we find either that the first-order model is inadequate or
that it is barely adequate with quite small regression coefficients, then we are in or near the
stationary region. In this case, we do not proceed to calculate the path of steepest ascent,
but rather add more points to the earlier design that will allow estimating the quadratic
effects. We illustrate the use of method of determining the path of steepest ascent with
the following example.

Example 19.4.1 (Experiment for maximizing the yield of a chemical) A chemical engi-
neer exposed a chemical A of certain percentage of concentration C to a certain temperature
T for a certain time t observing the amount produced of another valuable chemical B. The
experimenter was interested in finding the suitable concentration C, temperature T , and
time t so that the yield of B is maximized. To achieve this aim, she performed an exper-
iment using a design consisting of a 23 factorial and three points at the center, where
the 23 factorial design has eight treatment combinations at the following factor levels,
C = concentration of A (%), t = times (hours), T = temperature (◦C).

C t T

25 4 250
30 6 300

The center points obtained by the various factor levels are generated at C = 27.5,
t = 5, and T = 275.

Now, taking the center at the origin (0, 0, 0) of a new coordinate system, say x1, x2, x3,
and scaling the levels in the units of a factorial design, we find the eight combinations are
(±1,±1,±1), with the relation between variables x1, x2, x3, and the natural variables
defined by

x1 =
C − 27.5

2.5
, x2 =

t − 5
1

, x3 =
T − 275

25
(19.4.2)

The data obtained by the first set of experiments are shown in Table 19.4.1. From this
table, we have

N = 11,
∑

x2
1 =

∑
x2

2 =
∑

x2
3 = 8,

∑
x1y = 5.4,

∑
x2y = 16.2,

∑
x3y = 14.6,∑

y = 220
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Table 19.4.1 Data on a 23 factorial plus three center points.

x1 x2 x3 Yield (g)

−1 −1 −1 15.3
1 −1 −1 17.5

−1 1 −1 18.9
1 1 −1 19.5

−1 −1 1 18.4
1 −1 1 19.2

−1 1 1 23.2
1 1 1 25.0
0 0 0 21.5
0 0 0 20.5
0 0 0 21.0

Hence, the estimates of the βi’s are

β̂0 =
220
11

= 20.0, β̂1 =
∑

x1y∑
x2

1
=

5.4
8

= 0.675, β̂2 =
∑

x2y∑
x2

2
=

16.2
8

= 2.025,

β̂3 =
∑

x3y∑
x2

3
=

14.6
8

= 1.825

Thus, the fitted first-order model is

Ŷ = 20 + 0.675x1 + 2.025x2 + 1.825x3 (19.4.3)

Further, using the techniques discussed earlier in this chapter, we can easily verify that the
ANOVA table fitting the first-order model based on the data in Table 19.4.1 is as shown
in Table 19.4.2.

Table 19.4.2 ANOVA table for the data in Table 19.4.1.

Source SS DF MS F-ratio

β1 3.645 1
β2 32.805 1
β3 26.645 1

Lack of fit 8.145 5 1.629 6.516
Pure error 0.500 2 0.25

Total 71.740 10

The F-ratio for testing “no-lack of fit” is 6.516, which is less than the upper 5% point
of the F5,2 distribution ((F5,2; 0.05 ≥ 19.296) = 0.05), so that the fit of the first-degree
polynomial is deemed quite adequate. Also, the regression coefficients β̂1, β̂2, and β̂3 are
not very small. Thus, our next step is to determine the path of steepest ascent. From the
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fitted equation, we have that the changes in the xi’s, i = 1, 2, and 3 (in the units of the
design) along the path of steepest ascent are proportional to

β̂1 = 0.675, β̂2 = 2.025, β̂3 = 1.825

respectively. Thus, in the original units, the changes along the path in the original variables
(see (19.4.2)) are proportional to

C = 0.675 × 2.5 = 1.6875; t = 2.025 × 1 = 2.025; T = 1.825 × 25 = 45.625.

Now we select one of the variables, say concentration, as the standard variable and
then calculate the changes in the other variables that would correspond to a 1% change in
concentration. Thus, the changes in C, t and T are 1, 1.2 = 2.025/1.6875, and 27.037 =
45.625/1.6875, respectively.

Now, to obtain the path of steepest ascent, we start with the center point, which was
at the origin. From above, we have that for each 1% increase of the concentration, the time
is increased by 1.2 hours and the temperature is increased by 27.037 ◦C. Table 19.4.3 gives
the various points on the path of steepest ascent. The predicted values of ŷ at these points
as calculated from the fitted first-order model and are given in Table 19.4.4. Note that to
calculate the predicted values, all the levels must be first converted into design units.

Table 19.4.3 Points on the steepest ascent.

C t T

Initial point (center point) 27.5 5 275
1 28.5 6.2 302.037
2 29.5 7.4 329.074
3 30.5 8.6 356.111
4 31.5 9.8 383.148

The predicted responses ŷ at these points are given in Table 19.4.4.

Table 19.4.4 Predicted responses at the points along the path
of steepest ascent (coded units).

x1 x2 x3 Ŷ

Initial point 0 0 0 20
1 0.40 1.20 1.0815 24.6740
2 0.80 2.40 2.1630 29.3480
3 1.20 3.60 3.2445 34.0220
4 1.60 4.80 4.3260 38.6960

Then, the next step is to conduct a single experiment at the point expressed in exper-
imental units of (x1, x2, x3) as (0.40, 1.2, 1.0815). If the actual observed response for this
point when generated is close to the predicted response, a further ascent is made along the
same path. This procedure is continued until the actual yield differs substantially from the
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predicted yield; that is, we continue until there is a significant increase in the response.
At this point, a new 2k factorial experiment is conducted with its center at the last point
of the path. If a first-order model can be fitted adequately, then again, we determine the
direction of the new path of steepest ascent and repeat the above process (again, note
that if the fitted model is barely adequate and the regression coefficients of the new fit-
ted model are quite small, we usually do not need to determine the new path of steepest
ascent; rather, we explore that region by conducting additional experiments). Finally, a
situation is reached in which the 2k factorial gives one of the following situations:

1. The first-order model seems to fit adequately, but all the regression coefficients (the
β̂i’s) are very small. This means a plateau is reached. At this point, the curvature
of the surface should be considered by conducting additional experiments.

2. The lack of fit test shows that the first-order model is not adequate. This implies
that the curvature of the surface should be considered and additional experiments
should be conducted.

3. The first-order model seems to fit adequately and all the regression coefficients β̂i’s
are not very small; then a new steepest ascent path should be determined and the
whole process should be repeated.

To explore the curvature, a second-order CCD is performed. The response surface is
then explored by transferring the response surface to its canonical form. We study the
canonical form next in Section 19.4.2.

19.4.2 Analysis of a Fitted Second-Order Response
Surface

Earlier in this chapter, we saw that if the fitted response function is a second-degree
polynomial in two variables, then the fitted response surface may be represented by a
mound, basin, saddle, stationary ridge, rising ridge, or falling ridge (the contours of these
surfaces are plotted in Figure 19.1.3). In this section, we study how to determine the
nature of a stationary point and the nature of the response surface. This determination
is done by reducing the fitted second-degree polynomial to its standard form, called the
canonical form.

The fitted second-degree polynomial is reduced to its canonical form by first shifting
the origin to the stationary point (x0) and then using an orthogonal transformation. This,
of course, is possible for a polynomial in any number of variables, and we illustrate the
procedure by considering a two-variable case.

The general form of a second-degree polynomial in two variables “representing a fitted
surface” is

Ŷ = β̂0 + β̂1x1 + β̂2x2 + β̂11x
2
1 + β̂22x

2
2 + β̂12x1x2 (19.4.4)

where β̂0, β̂1, . . . , β̂12 are the least-squares estimators of the corresponding coefficients in
the second-degree polynomial model that is fitted, which is given by

Y = β0 + β1x1 + β2x2 + β11x
2
1 + β22x

2
2 + β12x1x2 + ε (19.4.5)

If we shift the origin of the x-coordinates to the stationary point (x0
1, x

0
2), that is, we let

x1 = u1 + x0
1, x2 = u2 + x0

2
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Here u1, u2 are the new variables, and the polynomial (19.4.4) reduces to

Ŷ = ŷ0 + β̂11u
2
1 + β̂22u

2
2 + β̂12u1u2 (19.4.6)

since (
∂Ŷ

∂x1

)
x=x0

=

(
∂Ŷ

∂x2

)
x=x0

= 0

and ŷ0 is the value of the estimated response at the stationary point (x0
1, x

0
2). In matrix

notation (19.4.6) may be written as

Ŷ = ŷ0 + U ′BU (19.4.7)

where

U =
[

u1
u2

]
, B =

[
β̂11

1
2 β̂12

1
2 β̂21 β̂22

]

We note that B defined above is a real symmetric matrix. As is well known, there
exists an orthogonal matrix, say P, that diagonalizes B, that is

PBP ′ = D =
[

λ1 0
0 λ2

]

where (λ1, λ2) are the eigenvalues of the matrix B. Hence, since P is orthogonal we can
easily see that

B = P ′DP

We then have that
U ′BU = U ′(P ′DP )U = (PU)′D(PU) (19.4.8)

Now if we transform U orthogonally, say from U to V, where V = PU, we then have that
(19.4.7) may be written as (see (19.4.8))

Ŷ − ŷ0 = V ′DV = (v1, v2)
′
[

λ1 0
0 λ2

] [
v1

v2

]
= λ1v

2
1 + λ2v

2
2 (19.4.9)

This is the canonical form of the polynomial (19.4.4).
The expression in (19.4.9) may now be interpreted as follows: clearly, the right side

of (19.4.9) expresses the change in the estimated response as we move away from the
stationary point (v1, v2) = (0,0) with value Ŷ = ŷ0 to some other point (v1, v2) with value
ŷ(v1, v2). Moreover, (19.4.9) contains only the squared terms in the variables v1 and v2,
and any change in ŷ is completely determined by the λ’s. Thus, we have the following:

(i) If both λ1 and λ2 are negative, then any move away from the stationary point results
in a decrease of Ŷ , which implies that the stationary point (x0

1, x
0
2) is a point of

maximum response and the response surface is a mound.
(ii) If both λ1 and λ2 are positive, then any move away from the stationary point results

in an increase of Ŷ , which implies that the stationary point (x0
1, x

0
2) is a point of

minimum response and the response surface is a basin.



19.4 Determination of Optimum or Near-Optimum Point 943

(iii) If one λ is positive and the other is negative, then the stationary point is a saddle
point and the response surface is a saddle. With the saddle point, the stationary point
is neither a minimum nor a maximum point, and we refer to it as a minmax point. We
may get an increase or decrease in Ŷ as we move away from the stationary point,
depending upon the direction of our move. Further, if one of the λ’s is either zero
or nearly zero, then we have a surface that is a stationary ridge or a near-stationary
ridge, in which case we do not have a single maximum or minimum response. For
example, if the stationary point is a maximum, but one of the λ’s is very small, then
the stationary point is not the unique maximum point and, in fact, all points along a
certain straight-line are maximums. Also, if the stationary point is not in the vicinity
of the experimental region, but it is far removed from it, then we have a situation
of rising ridge or falling ridge, depending upon whether the response increases or
decreases as we move away from the stationary point.

The case for more than two variables can be studied in the same way. Thus, for
example,

(i) if all the λ’s are negative, then the stationary point is a maximum point.
(ii) if all the λ’s are positive, then the stationary point is a minimum point.
(iii) if λ’s differ in sign, then the stationary point is a saddle point.
(iv) if one or more λ’s are either zero or very small, then we have a stationary ridge.

As a further illustration, we consider the following example with three variables
(x1, x2, x3).

Example 19.4.2 (Determining the type of response surface) Consider the data obtained
by using a rotatable CCD with three factors A, B, and C. The design plan and the simulated
data obtained are presented in Table 19.4.5. The experiment was carried out in random
order.

Solution: Again, note that the above design is rotatable, but not orthogonal (see Defini-
tion 19.3.1). Thus, using the technique discussed in Section 19.5, we find (N = 20)

β̂0 = 23.85, β̂1 = 0.78, β̂2 = 0.03, β̂3 = 0.76, β̂11 = −1.72,

β̂22 = −2.53, β̂33 = −0.80, β̂12 = −1.63, β̂13 = 1.00, β̂23 = 0.25

Thus, the second-order fitted model is

Ŷ = 23.85 + 0.78x1 + 0.03x2 + 0.76x3 − 1.72x2
1 − 2.53x2

2 − 0.80x2
3 − 1.63x1x2

+ x1x3 + 0.25x2x3

The ANOVA table for the data in Table 19.4.5 is shown in Table 19.4.6.
From the above analysis, we see that the fit of the second-order model is quite ade-

quate. We now determine the nature of the stationary point and the fitted response
surface.
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Table 19.4.5 Design plan and the data obtained
using this plan.

x1 x2 x3 Y

−1 −1 −1 18.5
1 −1 −1 23.0

−1 1 −1 21.0
1 1 −1 16.5

−1 −1 1 19.0
1 −1 1 25.0

−1 1 1 20.0
1 1 1 22.0
0 0 0 23.4
0 0 0 26.2
0 0 0 24.5
0 0 0 20.6
0 0 0 25.3
0 0 0 24.0

−1.682 0 0 15.6
1.682 0 0 17.2
0 −1.682 0 12.2
0 1.682 0 16.0
0 0 −1.682 18.0
0 0 1.682 20.0

Table 19.4.6 ANOVA table for the data in Table 19.4.5.

Source DF SS MS F-ratio

First-order terms 3 16.24 5.41 1.45
Second-order terms 6 156.14 26.02 6.96
Lack of fit 5 82.96 16.59 4.44
Pure error 5 18.70 3.74
Total 19 274.04

We first find the stationary point (x0
1, x

0
2, x

0
3). It is well known that the stationary point

is the solution of the set of equations

∂Ŷ

∂x1
= 0,

∂Ŷ

∂x2
= 0,

∂Ŷ

∂x3
= 0

The three equations are

0.78 − 3.44x0
1 − 1.63x0

2 + x0
3 = 0

0.03 − 5.06x0
2 − 1.63x0

1 + 0.25x0
3 = 0

0.76 − 1.60x0
3 + x0

1 + 0.25x0
2 = 0
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In matrix notation, this set of equations can be written as⎡
⎢⎣
−3.44 −1.63 1.00
−1.63 −5.06 0.25

1.00 0.25 −1.60

⎤
⎥⎦

⎡
⎢⎣

x0
1

x0
2

x0
3

⎤
⎥⎦ =

⎡
⎢⎣
−0.78
−0.03
−0.76

⎤
⎥⎦

or ⎡
⎢⎣

x0
1

x0
2

x0
3

⎤
⎥⎦ =

⎡
⎢⎣
−3.44 −1.63 1.00
−1.63 −5.06 0.25

1.00 0.25 −1.60

⎤
⎥⎦
−1 ⎡

⎢⎣
−0.78
−0.03
−0.76

⎤
⎥⎦

or ⎡
⎢⎣

x0
1

x0
2

x0
3

⎤
⎥⎦ =

⎡
⎢⎣

−0.419741 0.123203 − 0.243087
0.123203 −0.235329 0.040232

−0.243087 0.040232 − 0.770643

⎤
⎥⎦ ×

⎡
⎢⎣
−0.78
−0.03
−0.76

⎤
⎥⎦ =

⎡
⎢⎣

0.508448
−0.119615

0.774090

⎤
⎥⎦

Thus, the stationary point is (0.51, −0.12, 0.77).
The value of the estimated response Ŷ at the stationary point is

ŷ0 = 24.341

Thus, if we now shift our origins to the stationary point, that is

x1 = u1 + 0.51, x2 = u2 − 0.12, x3 = u3 + 0.77

where (u1, u2, u3) are the new coordinates. The fitted polynomial can then be written as

Ŷ = 24.341 − 1.72u2
1 − 2.53u2

2 − 0.80u2
3 − 1.63u1u2 + u1u3 + 0.25u2u3

This in turn can be reduced to its canonical form by determining the eigenvalues of the
matrix

B =

⎡
⎢⎣
−1.720 −0.815 0.500
−0.815 −2.530 0.125

0.500 0.125 −0.800

⎤
⎥⎦

The eigenvalues of this matrix are found to be −3.09,−1.40,−0.55.
Thus, the canonical form of the second-order fitted model or the response function is

Ŷ − 24.341 = −3.09u2
1 − 1.40u2

2 − 0.55u2
3

Since all the eigenvalues are negative, the stationary point is a maximum point and the
response surface is a mound.

MINITAB

Note that we can find the eigenvalues of the matrix B using MINITAB as follows:

1. Enter the matrix data in the worksheet as columns.
2. Select Data > Copy > Columns to Matrix.
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3. In the dialog box, enter the columns in the box under Copy from columns, and the
name of the matrix, say, M1 in the box under in current worksheet, in matrix
and click OK.

4. Select Calc > Matrices > Eigen Analysis. In the dialog box Eigen Analysis
enter the name of the matrix in the box next to Analyze matrix:, enter the column
where you would like to store the eigen values in the box next to Column of
eigenvalues: and click OK. The eigenvalues will appear in the desired column of
the worksheet.

USING R

Solution The ‘eigen()’ function in R can be used to obtain both eigenvalues and eigen-
vectors of the matrix M1 as follows.

M1 = matrix(c(-1.720, -0.815, 0.500, -0.815, -2.530, 0.125, 0.500, 0.125, -0.800),
3, 3, byrow = ‘TRUE’)
eigen(M1)

PRACTICE PROBLEMS FOR SECTION 19.4

1. Refer to Problem 1 of Section 19.3. Determine the canonical form of the fitted
second-order model. Find whether the stationary point is a maximum, a minimum,
a saddle point, or a stationary ridge.

2. Refer to Problem 3 Section 19.3. Find five points on the path of steepest ascent in
terms of the coded variables.

3. Refer to Problem 2 of Section 19.3. Determine the canonical form of the fitted
second-order model. Find whether the stationary point is a maximum, a minimum,
a saddle point, or a stationary ridge.

4. Refer to Problem 5 of Section 19.3. Determine the canonical form of the fitted
second-order model. Find whether the stationary point is a maximum, a minimum,
a saddle point, or a stationary ridge.

5. Refer to Problem 5 of Section 19.3. Construct a design to fit a first-order model
using the factorial points and center points given in blocks 1 and 2 of Problem 5 of
Section 19.3. Then use the corresponding data points to do the following:
(a) Fit a first-order model Y = β0 + β1x1 + β2x2 + β3x3 + ε to the above data.
(b) Find four points on the steepest ascent in terms of the coded variables.

19.5 ANOVA TABLE FOR A SECOND-ORDER
MODEL

In order to fit the second-order model in k variables, we first note that there are 1 + k +
k + k(k − 1)/2 = [(k + 1) × (k + 2)]/2 unknown coefficients in the model

η = β0 +
k∑

i=1

βixi +
k∑

i=1

βiix
2
i +

∑ k∑
i<j

βijxixj (19.5.1)
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for a total of
(

k+2
2

)
coefficients to be estimated. Further, in order to estimate quadratic

coefficients, a minimum of three levels of each of the variables ξi must be used. This
would seem to suggest that the 3k factorial designs would be useful for securing data for
second-order model fitting. However, many other appropriate designs exist, many of them
with valuable properties we have discussed in this chapter, requiring fewer experimental
points.

For k = 2 the second-order model is η = β0 + β1x1 + β2x2 + β11x
2
1 + β22x

2
2 + β12x1x2.

The normal equations associated with this model are

Nβ̂0 + [1]β̂1 + [2]β̂2 + [11]β̂11 + [22]β̂22 + [12]β̂12 =
∑

yi

[1]β̂0 + [11]β̂1 + [12]β̂2 + [111]β̂11 + [122]β̂22 + [112]β̂12 =
∑

xi1yi

[2]β̂0 + [12]β̂1 + [22]β̂2 + [112]β̂11 + [222]β̂22 + [122]β̂12 =
∑

xi2yi

[11]β̂0 + [111]β̂1 + [112]β̂2 + [1111]β̂11 + [1122]β̂22 + [1112]β̂12 =
∑

x2
i1yi

[22]β̂0 + [122]β̂1 + [222]β̂2 + [1122]β̂11 + [2222]β̂22 + [1222]β̂12 =
∑

x2
i2yi

[12]β̂0 + [112]β̂1 + [122]β̂2 + [1112]β̂11 + [1222]β̂22 + [1122]β̂12 =
∑

xi1xi2yi (19.5.2)

where
∑n

i=1 xiu = [u],
∑n

i=1 x2
iu = [uu],

∑n
i=1 xiuxiw = [uw],

∑n
i=1 x2

iuxiw = [uuw],∑n
i=1 x2

iux2
iw = [uuww],

∑n
i=1 x4

iu = [uuuu], etc. Here n denotes the common number of
entries used for factors xu and xw.

The generalization of these normal equations for k > 2 should be obvious. A character-
istic of the symmetrical designs considered in this chapter is that the mixed second sums
[uw], all the odd sums [u], [uuu], [uuw] and all fourth-order sums of the form [uuuw] are
zero, leading to a simplification of the normal equations. For these designs, we have directly
β̂u =

∑
xiuyi/[uu], and β̂uw =

∑
xiuxiwyi/[uuww], u 	= w 	= 0. The k second-order coef-

ficients β̂uu, along with β̂0 are readily obtained by ordinary algebra.
The ANOVA for this case appears in Table 19.5.1.
From Table 19.5.1, we have that S2

e = SSE/ν. Of course, if “no lack of fit” is not
rejected, then we use MSE = SS(Resid)/

[
N −

(
k+2

2

)]
to estimate σ2, etc. Whenever

replicated runs can be used to provide a pure error sum of squares with v degrees of
freedom, the residual sum of squares SS may be partitioned into two parts:

Residual SS = pure error SS + lack-of-fit SS

The lack-of-fit and error mean squares provides a measure of the adequacy of the fitted
model, which for k = 2, is

Ŷ = β̂0 + β̂1x1 + β̂2x2 + β̂11x
2
1 + β̂22x

2
2 + β̂12x1x2 (19.5.3)

If the model is accepted as adequate to represent the unknown response function,
(19.5.3) can be used to provide an approximate map of the response over the experimental
region. The contours of the fitted surface are obtained by setting Ŷ equal to selected
specific values of the response and plotting the resulting second-degree equations in the
coordinate system of x1 and x2. The contours will be concentric ellipses, or hyperbolas, or
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Table 19.5.1 Analysis of variance table for a second-order model in k variables
η = β0 +

∑k
u=1 βuxu +

∑k
u=1 βuux2

u +
∑

u

∑
w:1≤u<w≤kβuwxuxw.

Source SS Formulas DF

Total corrected SST
∑

y2 − (
∑

y)2/N = SStotal N − 1

First-order
coefficients

SS(β̂u)
∑k

u=1 β̂u(
∑n

i=1 xiuyi) k

Second-order
coefficients

SS(β̂uu)
∑k

u=1 β̂uu(
∑n

i=1 x2
iuyi) k

Two-factor
interaction
coefficients

SS(β̂uw)
∑ ∑k

1≤u<w≤k β̂uw (
∑n

i=1 xiuxiwyi) k(k − 1)/2

Residual SS SS(Res.) SStotal − SS(β̂u) − SS(β̂uu) − SS(β̂uw) N −
(

k+2
2

)
Lack of fit SS SSL SS(Res.) − SSE N −

(
k+2

2

)
− ν

Pure error SS SSE SSE ν

even straight-lines, as illustrated in Figure 19.1.3. For further investigation of RSM the
reader is referred to Box and Draper (1987), Montgomery (2009), Myers and Montgomery
(2002), and Khuri and Cornell (1996).

19.6 CASE STUDIES

Case Study 1 Using the data in Chapter 18 of Case Study 2 of Section 18.6, do the
following:

(a) Fit a first-order model η = β0 + β1x1 + β2x2 + β3x3.
(b) Test the adequacy of the fitted model in (a) using α = 0.05.
(c) Find five points on the path of steepest ascent.

Case Study 2: (Rayon Whiteness in Fabric Study)1

Rayon whiteness is an important factor for scientists dealing with fabric. Whiteness is
affected by pulp quality and other factors such as temperature, ◦C (x1); cascade acid
concentration, % (x2); water temperature, ◦C (x3); sulfide concentration, % (x4); amount
of chlorine bleach, lb/min (x5). An experiment using these factors is planned to study this
problem. To perform this experiment, a rotatable CCD consisting of a one-half fraction of

1 Source: Myers and Montgomery (1995), used with permission.
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a 25 design, 10 axial points and five center points is used. The responses “whiteness” and
all the treatments are given in Table 19.6.1.

Table 19.6.1 Treatment matrix with responses.

25−1 replication Axial and center points

x1 x2 x3 x4 x5 Response x1 x2 x3 x4 x5 Response

−1 −1 −1 −1 −1 71.5 −2 0 0 0 0 80.2

1 1 −1 −1 −1 76.0 2 0 0 0 0 84.1

1 −1 1 −1 −1 79.9 0 −2 0 0 0 77.2

1 −1 −1 1 −1 83.5 0 2 0 0 0 85.1

1 −1 −1 −1 1 89.5 0 0 −2 0 0 71.5

−1 1 1 −1 −1 84.2 0 0 2 0 0 84.4

−1 1 −1 1 −1 85.3 0 0 0 −2 0 77.5

−1 1 −1 −1 1 94.5 0 0 0 2 0 79.2

−1 −1 1 1 −1 89.4 0 0 0 0 −2 71.0

−1 −1 1 −1 1 97.5 0 0 0 0 2 90.2

−1 −1 −1 1 1 103.2 0 0 0 0 0 72.1

1 1 1 1 −1 108.7 0 0 0 0 0 72.0

1 1 1 −1 1 115.2 0 0 0 0 0 72.4

1 1 −1 1 1 111.5 0 0 0 0 0 71.7

1 −1 1 1 1 102.3 0 0 0 0 0 72.8

−1 1 1 1 1 108.1

The coding of the design variables is as given below. x1 =
temp − 45

10
; x2 =

casdconc − 0.5
0.2

; x3 =
watertemp − 85

3
; x4 =

sulfconc − 0.25
0.05

; x5 =
chbl − 0.4

0.1

(a) Fit a second-order model to the response data in Table 19.6.1.
(b) Determine the canonical form of the model fitted in (a). Give the type of the response

surface.
(c) What operating conditions should be used if it is important to minimize the

whiteness?
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19.7 USING JMP

This section is not included here but is available for download from the book website:
www.wiley.com/college/gupta/statistics2e.

Review Practice Problems

1. In Problem 1 of Section 19.2, let levels in actual units for the three factors be as given
below

X1 X2 X3

122 24 6
132 28 8
142 32 10

Find five points on the path of steepest ascent and then determine the corresponding
predicted responses. Note: Standardized variables (x1, x2, x3) are obtained from x1 =
(X1 − 132)/10, x2 = (X2 − 28)/4, x3 = (X3 − 8)/2.

2. Penicillin production requires a fermentation step that must be done in batches. A
difficulty in the production of successive batches is the nutrient, corn steep liquor,
which varies. A study was begun to determine whether changes in temperature and
pH might increase the penicillin yields for a new set of fermenters. A 22 factorial
design was employed, and a new batch of corn steep liquor employed for each set of
four runs. The results are displayed below.

Design Penicillin yields
(pH) (Temperature) Corn steep liquor batches

x1 x2 1 2 3 4 5

−1 −1 40 35 28 27 33
1 −1 95 80 94 76 83

−1 1 66 50 48 45 61
1 1 124 98 105 96 100

(a) Fit a first-order model to the response function.
(b) Assuming the postulated first-order model is appropriate, plot the contours of the

best fitting plane.
(c) Plot the path of steepest ascent.

3. In a study of the breaking strength of concrete cylinders, it was decided to map
breaking strength as a function of x1: hours in mold, and x2: age at test. The octagon
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design was used (with all these design points on a circle) plus four runs at (0, 0). The
runs of this design produced the observations shown in the table below.

Run number x1 x2 y

1 −
√

2 0 77
2 0 0 95
3 0 0 94
4 −1 −1 84
5 1 1 95
6 0 0 93
7 0 −

√
2 76

8 −1 1 79
9 0 0 96
10 0

√
2 88

11 1 −1 78
12

√
2 0 84

(a) Plot the design points and at each point record the corresponding observations.
(b) Determine whether a first-order model appears adequate to represent the response

function. Use α = 0.05.
(c) Now fit a second-order model to the data.
(d) Determine the nature of the stationary point and the nature of the fitted response

function.

4. Suppose an experiment using a hexagonal design with center points yields the obser-
vations as shown below.
(a) Plot the design coordinates and at each point records the corresponding observa-

tions.
(b) Fit a first-order model.
(c) Does the model adequately represent the data? Use α = 0.05.
(d) Are both variables x1 and x2 necessary to explain the data?
(e) Sketch the fitted response function.

Run number x1 x2 y

1 0 0 4.2
2 −0.500 0.866 3.7
3 0 0 4.4
4 0.500 −0.866 4.8
5 1 0 7.4
6 0 0 3.9
7 −0.500 −0.866 1.8
8 −1 0 1.1
9 0.500 0.866 6.8

10 0 0 4.2
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5. The experimental design and data are shown below,
(a) Plot the design and at each point record the corresponding observations.
(b) Consider only the first eight runs and analyze this portion of the data as a repli-

cated 22 factorial design. Does a first-order model adequately represent these data?
Use α = 0.05.

(c) Using all the data, fit a second-order model.

Run number x1 x2 y

1 −1 −1 45.9
2 −1 −1 53.3
3 −1 1 57.5
4 −1 1 58.8
5 1 −1 60.6
6 1 −1 58.0
7 1 1 58.6
8 1 1 52.6
9 0 0 56.9
10 2 0 55.4
11 −2 0 46.9
12 0 2 57.5
13 0 −2 55.0
14 0 0 58.9
15 0 0 50.3

6. A 32 factorial design was employed in a study to determine the best freezing conditions
for orange juice, the response measured being the percent natural vitamin B remaining
after eight weeks. The two variables are x1: depth of freeze in ◦C, and x2: rate of freeze.
The recorded responses are given below.

x1 x2 y

0 0 81.5
1 1 75.8
0 1 80.2
0 −1 79.2

−1 1 76.0
1 1 74.3
0 0 81.3
1 −1 80.1
1 0 79.1

−1 −1 70.2
−1 0 75.2
−1 −1 71.7
−1 1 76.2

1 −1 81.0
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(a) Plot the design and at each point, record the corresponding observations.
(b) Fit a second-order model.
(c) Determine whether the model adequately represents the data. State α.

7. Consider the design T, the principal block in a one-half fraction of a 23 factorial
structure defined by the sentence I = −ABC.

T =

⎡
⎢⎢⎢⎢⎣

−1 −1 −1

−1 1 1

1 −1 1

1 1 −1

⎤
⎥⎥⎥⎥⎦

Suppose now we fit the model with x0 = 1, namely

η = β0x0 + β1x1 + β2x2 + β3x3,

but the true model is

η = β0x0 + β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3 + β23x2x3

(a) Show that β̂1, β̂2, and β̂3 are biased estimators of β1, β2, and β3, respectively.
(b) In part (a), find the bias for each estimator.

8. In Problem 7, consider now the complete replication of a 23 factorial design to fit the
model

η = β0x0 + β1x1 + β2x2 + β3x3 + β11x
2
1 + β22x

2
2 + β33x

2
3 + β12x1x2

+ β13x1x3 + β23x2x3

(a) Show that β̂1, β̂2, . . . , β̂23, are unbiased estimators of β1, β2, . . . , β23, respectively.
(b) Show that β̂0 is a biased estimator of β0. Find the bias in β̂0.
(c) Explain how you can test the curvature by just adding some center points to the

complete 23 factorial design. (Curvature is measured by γ = β11 + β22 + β33, so
that we wish to test H0 : γ = 0 versus H1 : γ 	= 0.)

9. An experiment is performed to study the effects of three variables (A, B, and C) on
the life of a cutting tool by employing a CCD. The variables are A, cutting tool speed
(ft/min); B, the feed rate (in./rev); and C, the depth of cut (inches). (This study is
fully reported in Wu (1964).) The settings of the three controlled variables A, B, and
C, the equivalent settings of the design variables x1, x2, and x3, and the observed
response y (ln(tool life measured in minutes)) are listed in the table below. It was
decided to fit a second-order model to the response function. The design employed
was a CCD consisting of a 23 factorial with the center point replicated four times,
plus a twice-replicated star design.



954 19 Response Surfaces

A B C Design Tool life

Speed: fpm Feed: ipm Depth: in. x1 x2 x3 y = ln(min)

330 0.01 0.04 −1 −1 −1 5.08
700 0.01 0.04 1 −1 −1 3.61
330 0.02 0.04 −1 1 −1 5.11
700 0.02 0.04 1 1 −1 3.30
330 0.01 0.10 −1 −1 1 5.15
700 0.01 0.10 1 −1 1 3.56
330 0.02 0.10 −1 1 1 4.79
700 0.02 0.10 1 1 1 2.89
515 0.015 0.07 0 0 0 4.19
515 0.015 0.07 0 0 0 4.42
515 0.015 0.07 0 0 0 4.26
515 0.015 0.07 0 0 0 4.41
145 0.015 0.07 −2 0 0 5.48
885 0.015 0.07 2 0 0 2.64
515 0.005 0.07 0 −2 0 4.70
515 0.025 0.07 0 2 0 3.99
515 0.015 0.01 0 0 −2 4.60
515 0.015 0.13 0 0 2 4.25
145 0.015 0.07 −2 0 0 5.41
885 0.015 0.07 2 0 0 2.71
515 0.005 0.07 0 −2 0 4.53
515 0.025 0.07 0 2 0 3.74
515 0.015 0.01 0 0 −2 4.66
515 0.015 0.13 0 0 2 4.17

(a) Use the first 12 data points given above to fit a first-order model.
(b) Estimate the error variance σ2 with three degrees of freedom. Explain which data

points provide these degrees of freedom.

10. Refer to Problem 9 and do the following:
(a) Use the entire data set of Problem 9 to fit a second-order model.
(b) Estimate the error variance σ2 with nine degrees of freedom. Explain which data

points contribute to these nine degrees of freedom.
(c) Use the estimate of the error variance σ2 with nine degrees freedom in (b) to test

the adequacy of the model you fitted in (a).

11. Divide the Residual sum of squares with 13 (= 23 − 10) degrees of freedom in Problem
10 above into two parts: (i) lack of fit with four degrees of freedom (ii) pure error sum
of squares with nine degrees of freedom. Use these sums of squares to test the lack
of fit.
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12. For the fitted second-order model in Problem 10, find the nature of the stationary
point and of the fitted response surface.

13. Consider a first-order design consisting of (i) 24 = 16 factorial points of a complete
replication of a 24 factorial design and (ii) nc center points. Let Ȳ , Ȳc be the average
responses at the factorial points and center points, respectively. Suppose the true
response surface is a quadratic polynomial that includes the x2

i terms and the xixj

terms. Under this assumption show that the difference of the two averages (Ȳ − Ȳc)
estimates the sum of the pure quadratic coefficients β11 + β22 + β33 + β44. Further,
show that the sum of squares due to these coefficients with one degree of freedom is
given by

n nc

n + nc

(Ȳ − Ȳc)
2, here n = 24 = 16. How do you use this sum of squares to

test a hypothesis that the response surface has some curvature?

14. Suppose that a fitted second-order response surface model is the following:

Ŷ = 15.4+0.5x1 − 1.2x2 +0.85x3 +2.6x1x2 − 1.8x1x3 +2.1x2x3 +3.2x2
1 +1.4x2

2 +2.7x2
3

Reduce this fitted model to its canonical form and then describe the nature of the
fitted response surface.

15. Consider the following first-order fitted model.

Ŷ = 50 + 2.2x1 − 1.2x2 + 2.1x3

Find the path of steepest ascent. The variables are coded using the standard design
units, i.e., −1 and 1.

16. In Problem 15, find the value of Ŷ in design units at the sixth point on the path of
the steepest ascent.

17. Throughout this chapter, we noticed that in almost all experiments discussed, there
are some replicated points. Explain why it is useful to replicate some points. What
particular information do we gain from such replicates?

18. An experiment involving two factors was designed to be a rotatable CCD. The actual
design plan and the results obtained are

Run x1 x2 Yield

1 −1.000 −1.000 23.0
2 1.000 −1.000 24.5
3 −1.000 1.000 19.7
4 1.000 1.000 18.5
5 0.000 0.000 20.6
6 0.000 0.000 22.5
7 −1.414 0.000 17.5
8 1.414 0.000 23.6
9 0.000 −1.414 24.0

10 0.000 1.414 22.4
11 0.000 0.000 22.6
12 0.000 0.000 21.4
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(a) Fit a second-order model to these data.
(b) Test the adequacy of the fitted model.
(c) Reduce the fitted model in (a) to its canonical form and describe the nature of

the fitted response surface.

19. As a preliminary test to determine the adequacy of the fit of a first-order model,
three independent variables were employed at two levels each, forming a 23 factorial
design. To these 8 points 2 center points were added, giving a total of 10 observations.
The actual design plan and results obtained are displayed below. The experiment was
conducted in random order.

Run x1 x2 x3 Yield

1 −1 −1 −1 40
2 1 −1 −1 66
3 −1 1 −1 47
4 1 1 −1 80
5 −1 −1 1 62
6 1 −1 1 60
7 −1 1 1 58
8 1 1 1 64
9 0 0 0 68
10 0 0 0 66

(a) Fit a first-order model to these data.
(b) Construct the ANOVA table for these data and conduct a test for lack of fit.
(c) Test the significance of the regression coefficients.

20. Add the following eight data points to the data in Problem 19.

Run x1 x2 x3 Yield

1 0 0 0 64
2 0 0 0 59.4
3 −1.682 0 0 67.1
4 1.682 0 0 62.2
5 0 −1.682 0 66.3
6 0 1.682 0 60.5
7 0 0 −1.682 67.3
8 0 0 1.682 63.9

(a) Fit a second-order model to the combined data.
(b) Test the adequacy of the fitted model.
(c) Reduce the fitted model in (a) to its canonical form and describe the nature of

the stationary point of the fitted response surface.
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21. An experimenter uses a one-half fractional 24 factorial design with defining relation
I = ABCD to fit the first-order model

η = β0x0 + β1x1 + β2x2 + β3x3 + β4x4

(a) Construct the X matrix for the proposed model.
(b) Should the design in this problem be considered orthogonal? (A design is called

orthogonal if X ′X is a diagonal matrix.)
(c) Examine, in the present case, whether the design is variance optimal. Note that

the variances of regression coefficients are minimized (i.e., the design is variance
optimal) if X ′X = N × Ik, where Ik is an identity matrix of order k × k, and N is
the number of runs (observations) in the experiment while k = p + 1, p = number
of coefficients (not including (β0) in the assumed model).

22. Suppose we add four center points to the one-half fractional 24 factorial design with
defining relation I = ABCD in Problem 21, and suppose the model we wish to fit is
the same as in Problem 21.
(a) Construct the X matrix for the proposed model.
(b) Is the design considered in this problem orthogonal?
(c) Is the design variance optimal?

23. Suppose in Problem 22, instead of adding four center points, we just replicate the
one-half fractional 24 factorial designs.
(a) Construct the X matrix for the proposed model.
(b) Is the design considered in this problem orthogonal?
(c) Is the design variance optimal?
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The focus of this chapter is a discussion of phase I control charts
for variables, attributes, and learning about process capability.
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• Some valuable tools for achieving quality such as the Pareto chart, cause-and-effect
diagram, and defect concentration diagram

• Shewhart X̄ and R control chart
• Shewhart X̄ and R control chart when process mean μ and process standard deviation

σ are known
• Shewhart X̄ and S control chart
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Learning Outcomes

After studying this chapter, the reader will be able to

• Understand the difference between variables and attributes.
• Design phase I variable control charts and attribute control charts.
• Set up X̄ and R control charts and use them in different scenarios.
• Set up X̄ and R control charts when process mean μ and process standard deviation σ

are known.
• Apply Western Electric rules to interpret different patterns on X̄ and R control charts.
• Set up X̄ and S control charts and use them in different scenarios.
• Interpret different patterns on X̄ and S control charts.
• Set up control charts and use them for individual values.
• Set up p control charts for the fraction nonconforming and use them in different

scenarios.
• Set up np control charts for the number of nonconforming units and use them in different

scenarios.
• Set up c control charts for the number of nonconformities and use them in different

scenarios.
• Set up u control charts for the number of nonconformities per unit and use them in

different scenarios.
• Understand the concept of rational subgroups for variable and attribute control charts.
• Estimate the process capability.
• Use statistical packages MINITAB, R, and JMP to set up various control charts in

phase I.
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• Two-sided CUSUM control charts using numerical procedures
• The fast initial response (FIR) CUSUM control chart
• Combined Shewhart–CUSUM control charts
• CUSUM control chart for controlling process variability
• Moving average (MA) control charts
• Exponentially weighted moving average (EWMA) control charts

Learning Outcomes

After studying this chapter, the reader will be able to

• Understand the difference between phase I and phase II control charts.
• Set up one-sided and two-sided CUSUM control charts.
• Set up one-sided and two-sided tabular CUSUM control charts.
• Understand the advantages of CUSUM control charts over X̄ and R control charts.
• Set up moving average (MA) control charts.
• Set up EWMA control charts.
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11 Quantiles of the Mann-Whitney Test Statistic.
12 Lower and Upper critical values of r in the runs test.
13 Percentage Points of the Studentized Range for 2 through 20 treatments.
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STATISTICAL TABLES

Table A.1 Summary of common probability distributions.

Distribution Probability Function MGF Mean Variance

Discrete
uniform

p(x) = 1
N

N+1
2

N2−1
12

x = 1, 2, . . . , N

Hyper-
geometric

h(x) =

(
N1
x

)(
N−N1
n−x

)
(

N
n

) nN1
N

(
N−n
N−1

)(nN1
N

)
(
1 − N1

N

)
Max[0, n − (N − N1)]≤ x ≤
Min(n, N1)

Bernoulli p(x) = px(1 − p)1−x pet + (1 − p) p p(1 − p)

x = 0, 1; 0 ≤ p ≤ 1

Binomial b(x) =
(n

x

)
px(1 − p)1−x [pet + (1 − p)]n np np(1 − p)

x = 0, 1, . . . , n; 0 ≤ p ≤ 1

Poisson p(x) = e−λλx

x! eλ(et−1) λ λ

x = 0, 1, 2, . . .

Negative
binomial

p(x) =
(

x−1
k−1

)
pk(1 − p)x−k

(
pet

(1−(1−p)et)

)k
k
p

k(1−p)
p2

x = k, k + 1, . . . ; 0 ≤ p ≤ 1

Geometric p(x) = p(1 − p)x−1 pet

(1−(1−p)et)
1
p

(1−p)
p2

x = 1, 2, . . . ; 0 ≤ p ≤ 1
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Table A.1 (Continued)

Distribution Probability Function MGF Mean Variance

Uniform f(x) = 1
b−a a ≤ x ≤ b etb−eta

t(b−a)
a+b

2
(b−a)2

12

Normal f(x) = 1
σ
√

2π
e
− 1

2σ2 (x − μ)2
eμt+(σ2t2)/2 μ σ2

−∞ < x < ∞,

−∞ < μ < ∞, σ > 0

Lognormal f(x) = 1
σx

√
2π

e
− 1

2σ2 (lnx − μ)2
eμ+σ2/2 e2μ+2σ2 − e2μ+σ2

x > 0

Exponential f(x) = λe−λx
(
1 − t

λ

)−1 1
λ

1
λ2

x > 0, λ > 0

Gamma f(x) = λν

Γ(ν) x
ν−1e−λx

(
1 − t

λ

)−ν ν
λ

ν
λ2

x > 0, λ > 0, ν > 0

Weibull f(x) = β
α

(
x−τ

α

)β−1
e−[ x−τ

α ]β αtΓ
(
1 + t

β

)
αΓ
(
1 + 1

β

)
α2Γ
(
1 + 2

β

)
−

α > 0, β > 0, τ > 0
(
Γ
(
1 + 1

β

))2

Chi-square 1
2n/2Γ(n/2)

wn/2−1e−w/2 (1 − 2t)−n/2 n 2n

w ≥ 0, n > 0

Student-t f(t) = Γ((n+1)/2)√
nπΓ(n/2)

(
1 + t2

n

)− (n+1)
2 0 n

n−2

−∞ < t < ∞
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Table A.4  Standard normal distribution table.

The entries in this table give the

cumulative area under the standard

normal curve to the left of z , P(Z ≤ z).

0

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010

2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048

2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183

1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559

1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379

0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776

0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247

0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641

z
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z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
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Table A.5  The t distribution table.

The entries in this table give the critical values

of t for the specified number of degrees

of freedom and areas in the righ tail. 

ta

Area in the right tail under the t distribution curve

df 0.10 0.05 0.025 0.01 0.005 0.001

1 3.078 6.314 12.706 31.821 63.657 318.309
2 1.886 2.920 4.303 6.965 9.925 22.327
3 1.638 2.353 3.182 4.541 5.841 10.215
4 1.533 2.132 2.776 3.747 4.604 7.173
5 1.476 2.015 2.571 3.365 4.032 5.893

6 1.440 1.943 2.447 3.143 3.707 5.208
7 1.415 1.895 2.365 2.998 3.499 4.785
8 1.397 1.860 2.306 2.896 3.355 4.501
9 1.383 1.833 2.262 2.821 3.250 4.297

10 1.372 1.812 2.228 2.764 3.169 4.144

11 1.363 1.796 2.201 2.718 3.106 4.025
12 1.356 1.782 2.179 2.681 3.055 3.930
13 1.350 1.771 2.160 2.650 3.012 3.852
14 1.345 1.761 2.145 2.624 2.977 3.787
15 1.341 1.753 2.131 2.602 2.947 3.733

16 1.337 1.746 2.120 2.583 2.921 3.686
17 1.333 1.740 2.110 2.567 2.898 3.646
18 1.330 1.734 2.101 2.552 2.878 3.610
19 1.328 1.729 2.093 2.539 2.861 3.579
20 1.325 1.725 2.086 2.528 2.845 3.552

21 1.323 1.721 2.080 2.518 2.831 3.527
22 1.321 1.717 2.074 2.508 2.819 3.505
23 1.319 1.714 2.069 2.500 2.807 3.485
24 1.318 1.711 2.064 2.492 2.797 3.467
25 1.316 1.708 2.060 2.485 2.787 3.450

26 1.315 1.706 2.056 2.479 2.779 3.435
27 1.314 1.703 2.052 2.473 2.771 3.421
28 1.313 1.701 2.048 2.467 2.763 3.408
29 1.311 1.699 2.045 2.462 2.756 3.396
30 1.310 1.697 2.042 2.457 2.750 3.385

31 1.309 1.696 2.040 2.453 2.744 3.375
32 1.309 1.694 2.037 2.449 2.738 3.365
33 1.308 1.692 2.035 2.445 2.733 3.356
34 1.307 1.691 2.032 2.441 2.728 3.348
35 1.306 1.690 2.030 2.438 2.724 3.340
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36 1.306 1.688 2.028 2.434 2.719 3.333
37 1.305 1.687 2.026 2.431 2.715 3.326
38 1.304 1.686 2.024 2.429 2.712 3.319
39 1.304 1.685 2.023 2.426 2.708 3.313
40 1.303 1.684 2.021 2.423 2.704 3.307
41 1.303 1.683 2.020 2.421 2.701 3.301
42 1.302 1.682 2.018 2.418 2.698 3.296
43 1.302 1.681 2.017 2.416 2.695 3.291
44 1.301 1.680 2.015 2.414 2.692 3.286
45 1.301 1.679 2.014 2.412 2.690 3.281

46 1.300 1.679 2.013 2.410 2.687 3.277
47 1.300 1.678 2.012 2.408 2.685 3.273
48 1.299 1.677 2.011 2.407 2.682 3.269
49 1.299 1.677 2.010 2.405 2.680 3.265
50 1.299 1.676 2.009 2.403 2.678 3.261

51 1.298 1.675 2.008 2.402 2.676 3.258
52 1.298 1.675 2.007 2.400 2.674 3.255
53 1.298 1.674 2.006 2.399 2.672 3.251
54 1.297 1.674 2.005 2.397 2.670 3.248
55 1.297 1.673 2.004 2.396 2.668 3.245

56 1.297 1.673 2.003 2.395 2.667 3.242
57 1.297 1.672 2.002 2.394 2.665 3.239
58 1.296 1.672 2.002 2.392 2.663 3.237
59 1.296 1.671 2.001 2.391 2.662 3.234
60 1.296 1.671 2.000 2.390 2.660 3.232

61 1.296 1.670 2.000 2.389 2.659 3.229
62 1.295 1.670 1.999 2.388 2.657 3.227
63 1.295 1.669 1.998 2.387 2.656 3.225
64 1.295 1.669 1.998 2.386 2.655 3.223
65 1.295 1.669 1.997 2.385 2.654 3.220

66 1.295 1.668 1.997 2.384 2.652 3.218
67 1.294 1.668 1.996 2.383 2.651 3.216
68 1.294 1.668 1.995 2.382 2.650 3.214
69 1.294 1.667 1.995 2.382 2.649 3.213
70 1.294 1.667 1.994 2.381 2.648 3.211

71 1.294 1.667 1.994 2.380 2.647 3.209
72 1.293 1.666 1.993 2.379 2.646 3.207
73 1.293 1.666 1.993 2.379 2.645 3.206
74 1.293 1.666 1.993 2.378 2.644 3.204
75 1.293 1.665 1.992 2.377 2.643 3.202

∞ 1.282 1.645 1.960 2.326 2.576 3.090
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Table A.6  Chi-square distribution table.

The entries in this table give the critical values of χ 2 for the specified

number of degrees of freedom and areas in the right tail.

0 χ 2
a

Area in the right tail under the chi-square distribution curve

df 0.995 0.990 0.975 0.950 0.900 0.100 0.050 0.025 0.010 0.005

1 0.000 0.000 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879
2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 10.597
3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838
4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860
5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086 16.750

6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548
7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278
8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955
9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 23.589

10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188

11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725 26.757
12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300
13 3.565 4.107 5.009 5.892 7.042 19.812 22.362 24.736 27.688 29.819
14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319
15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801

16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267
17 5.697 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 35.718
18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 37.156
19 6.844 7.633 8.907 10.117 11.651 27.204 30.144 32.852 36.191 38.382
20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997

21 8.034 8.897 10.283 11.591 13.240 29.615 32.671 35.479 38.932 41.401
22 8.643 9.542 10.982 12.338 14.041 30.813 33.924 36.781 40.289 42.796
23 9.260 10.196 11.689 13.091 14.848 32.007 35.172 38.076 41.638 44.181
24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.559
25 10.520 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44.314 46.928

26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290
27 11.808 12.879 14.573 16.151 18.114 36.741 40.113 43.195 46.963 49.645
28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.993
29 13.121 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588 52.336
30 13.787 14.953 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672

40 20.707 22.164 24.433 26.509 29.051 51.805 55.758 59.342 63.691 66.766
50 27.991 29.707 32.357 34.764 37.689 63.167 67.505 71.420 76.154 79.490
60 35.534 37.485 40.482 43.188 46.459 74.397 79.082 83.298 88.379 91.952
70 43.275 45.442 48.758 51.739 55.329 85.527 90.531 95.023 100.425 104.215
80 51.172 53.540 57.153 60.391 64.278 96.578 101.879 106.629 112.329 116.321

90 59.196 61.754 65.647 69.126 73.291 107.565 113.145 118.136 124.116 128.299
100 67.328 70.065 74.222 77.929 82.358 118.498 124.342 129.561 135.807 140.169



B

ANSWERS TO SELECTED
PROBLEMS

CHAPTER 2

Sections 2.1 and 2.2
3. (a) All the students of the graduation class. (b) All the students in the professor’s class.
(c) GPA. 5. (a) Ratio (b) Ratio (c) Ratio (d) Nominal (e) Ratio (f) Ordinal (g) Ratio (h)
Ratio (i) Interval (j) Ratio (k) Ratio (l) Ratio (m) Ordinal (n) Nominal.

Section 2.3
1. (b) (1, 2, 3, 4, 5) ∼ (24%, 24%, 16%, 22%, 14%) (c) 48%. 3. (b) (1, 2, 3, 4, 5) ∼ (30.56%,
22.22%, 13.89%, 8.33%, 25%) (c) 44.45%.

Section 2.4
3. The line graph does not show any particular pattern. There are some dips and peaks
which are occurring randomly. 5. The stem-and-leaf diagram with increment 5 is more
informative. 9. (b) 13 days. 11. Ninety percent of the parts have life span between 20
and 48 months. Only one out of 30 parts has a life span more than 50 months. Two out
of 30 parts have life spans less than 20 months. 15. (b) Median consumption of electric-
ity in kilowatt-hours is 248.5 kWh, maximum consumption is 310 kWh, and minimum
consumption is 206 kWh.

Section 2.5
1. (a) X̄ = 120.02, Med = 120.10, mode = 120.1 (b) 1.84 (c) approximately symmetric. 3.
(a) X̄ = 22.356, Med = 23.00 (b) 4.73 (c) 100%. 5. (a) X̄ = 108.47, Med = 107.50, mode =
100 (b) Range = 20, S2 = 50.10, S = 7.08, CV = 6.53. 7. 3.75238. 9. (51,100–60,100),
(46,600–64,600). 11. (a) X̄ = 22.650, S = 1.461 (b) (21.189, 24.111), (19.728, 25.572),
(18.267, 27.033) (c) 100%, 100%, Chebyshev’s inequality is valid.

Statistics and Probability with Applications for Engineers and Scientists using MINITAB, R and JMP,
Second Edition. Bhisham C. Gupta, Irwin Guttman, and Kalanka P. Jayalath.
c© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/college/gupta/statistics2e
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970 B Answers to Selected Problems

Section 2.6
1. (a) X̄G = 22.47, MG = 23, Mode = 26.25 (b) S2 = 20.165, S = 4.491. 3. (a) X̄G =
108.8, MG = 108.57, Mode = 100 (b) S2 = 55.138, S = 7.425. 5. X̄G = 49.89, SG = 6.727,
X̄ = 49.56, S = 7.0.

Sections 2.7 and 2.8
1. (a) X̄ = 12.026, S2 = 0.289, S = 0.537 (b) Q1 = 11.753, Q2 = 12.070, Q3 = 12.320,
IQR = 0.567 (c) Outlier 13.60. 3. Outliers 56, 58, 59. 5.(I) X̄ = 25.667, S = 2.820, CV
= 10.91%, (II) X̄ = 51.194, S = 5.966, CV = 11.56%. Second set has slightly higher vari-
ability. 7. (a) X̄ = 49.56, S2 = 49.00, S = 7.00 (b) Q1 = 43, Q2 = 48, Q3 = 57.75, IQR =
14.75. (c) No outliers.

Section 2.9
1. (a) No correlation (b) 0.075. 3. (a) Positive correlation (b) 0.822.

Review Practice Problems

1. On the majority of days, 6–10 workers did not come to work. On about 10% of
the days, more than 10 workers did not come to work. 3. Most shifts had one or two
machine breakdowns. In about 15% of the shifts, no machine had any breakdown.
Very rarely, more than four machines had any breakdown. 5. Side-by-side bar chart is
more informative. 7. (c) 32.2%. 11. About 40% of the defects are of type B, whereas
type A defects are only about 4%. Defects of types C, D, and E occurred with almost
the same frequency. 13. (d) 46% (e) 54%. 15. The two frequency distributions are
same. 17. X̄ = 11, med = 11.50, mode = 7. 19. X̄ = 420.90, med = 416.00, mode =
380, 398, 416, 430, 450; slightly right skewed (b) S2 = 869.27, S = 29.48, CV = 7.0%,
Range = 110.0. 23. X̄G = 33.95, SG = 7.55, S2

G = 56.99, X̄ = 33.13, S = 7.51, S2 = 56.45.
25. (a) X̄ = 125.0, S2 = 29.18, S = 5.40 (b) Empirical rule holds. 27. (a) Q1 = 32,
Q2 = 33, Q3 = 35 (b) IQR = 3 (c) No outliers. 29. (a) Q1 = 30.50, Q2 = 36.00,
Q3 = 41.50, IQR = 11.00 (b) 50% (c) Yes. 31. (a) X̄ = 779.0, S = 85.6 (b) 55%. 33.
(a) 68% (b) 100% (c) 2.5% (d) 2.5%. 35. (a) X̄ = 288.25, S = 26.96 (b) 100% (c) 46.25.
37. (a) X̄ = 12.733 (b) S = 2.840 (c) CV = 22.31%. 39. The data in Problem 37 is
slightly right skewed, and in Problem 38, it is almost symmetric. 41. Shipment I:
Q1 = 60.00, Q2 = 67.50, Q3 = 71.75, Shipment II: Q1 = 42.25, Q2 = 49.50, Q3 = 55.00
(c) The average number of defective ball bearings per shipment is higher in the first
shipment than in the second shipment. However, there is more variability in the second
shipment. 43. 0.314, correlation between inflation rates and interest rates is quite weak.
45. 0.252, correlation between hours of sleep and test scores is quite weak.

CHAPTER 3

Sections 3.2 and 3.3
1. (a) A ∪ B (b) A ∩ B (c) Ā ∩ B̄ or (A ∪ B) (d) (A ∩ B̄) ∪ (Ā ∩ B) (e) (A ∩ B). 3. (a) S =
{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}, (b) S = {(H, 1) (H, 2) (H, 3) (H, 4)
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(H, 5) (H, 6) (T, 1) (T, 2) (T, 3) (T, 4) (T, 5) (T, 6)} (c) S = {(1, 1) (1, 2) · · · (1, 6) (2, 1)
(2, 2) · · · (2, 6) · · · (6, 6)}, (d) S = {BBB, BBG, BGB, BGG, GBB, GBG, GGB, GGG},
(e) S = {(HH, 1) (HT, 1) (TH, 1) (TT, 1) (HH, 2) (HT, 2) (TH, 2) (TT, 2) · · · (HH,
6) (HT, 6) (TH, 6) (TT, 6)}. 5. S = {MMM, MMC, MME, MCM, MCC, MCE, MEM,
MCE, MEE, CMM, CMC, CME, CCM, CCC, CCE, CEM, CCE, CEE, EMM, EMC,
EME, ECM, ECC, ECE, EEM, ECE, EEE}, 20/27. 7. (a) {4} (b) {1, 4, 5, 7} (c) {1, 3,
4, 7} (d) {5} (e) ∅ (f) ∅. 9. (a) A ∩ B ∩ C: The patient is diagnosed with liver cancer and
needs a liver transplant and the hospital finds a matching liver in time. (b) A ∩ (B ∪ C):
The patient is diagnosed with liver cancer and the patient needs a liver transplant but
the hospital does not find the matching liver in time. OR: The patient is diagnosed with
liver cancer and does need a liver transplant but the hospital finds a matching liver in
time. OR: The patient is diagnosed with liver cancer who needs a liver transplant and the
hospital finds a matching liver in time. (c) Ā ∩ B̄ = (AUB): The patient is not diagnosed
with liver cancer and does not need a liver transplant. (d) (Ā ∩ B̄ ∩ C̄) = (A ∪ B ∪ C):
The patient is not diagnosed with liver cancer and does not need a liver transplant and
the hospital does not find a matching liver. 11. {CCCCC, CCCCN, CCCNC, CCNCC,
CNCCC, NCCCC, . . . , NNNNC, NNNNN}13. (a) {HHT, HTH, THH, HHH} (b) {HTT,
THT, TTH, TTT} (c) {HHT, HTH, THH} (d) {TTT}.

Section 3.4
1. 20. 3. (a) 657,720 (b) 810,000. 5. 480. 7. 0.02166. 9. 40. 11. 48.

Sections 3.5 and 3.6
1. 2/3. 3. P (A1|E) = 0.1569, P (A2|E) = 0.0392, P (A3|E) = 0.2059, P (A4|E) = 0.3529,
P (A5|E) = 0.2451. 5. (a) 0.2727 (b) 0.4. 7. 0.4138. 9. 0.5714.

Review Practice Problems

1. (a) 93.9% (b) 6.1% (c) 95.8% (d) 98.9%. 3. (a) EA ∩ EB = 2, EA ∩ ĒB = 5, ĒA ∩ EB =
3, ĒA ∩ ĒB = 90, EA ∪ EB = 10, (b) G ∩ GA ∩ GB = ∅, G ∩ GA ∩ ḠB = ∅, G ∩ ḠA ∩
GB = ∅, Ḡ ∩ ḠA ∩ ḠB = ∅, Ḡ ∩ GA ∩ ḠB = 460, G ∩ ḠA ∩ ḠB = 4005, Ḡ ∩ ḠA ∩ GB =
273, Ḡ ∩ GA ∩ GB = 212. 5. (a) 0.000119 (b) 0.0005934 (c) 0.0000182. 7. (b) 0.9999,
0.99999603 (c) 1 − p2, 1 − [p4 + 4p3(1 − p)]. 9. 0.368, 0.368, e−1/k!. 11. 0.182, 0.2165,
0.1970. 13. (a) 1/65 (b) 5/324 (c) 25/108. 15. (a) 9/24 (b) 15/24. 17. 0.0456. 21. 4/13.
23. 8/9. 25. 8/39, 1/39, 24/39, 6/39. 27. (a) 0.2105 (b) 0.2632 (c) 0.5263. 29. 165/237,
18/29, 45/67. 31. No, no, yes. 33. (a) A = {3, 4, 5}, B = {4, 6}, C = {5, 7, 8} (b) (i) 1/4
(ii) 1/6 (iii) 1/4 (iv) 1/12 (v) 0 (vi) 1 (vii) 1/2 (viii) 1/2.

CHAPTER 4

Sections 4.1 and 4.2
1. (a) 0.17 (b) 0.33 (c) 0.50 (d) 0.48. 3. (a) Yes (b) No (c) No. 5. μ = 3.75, σ2 = 0.9375.
7.
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X = x 2 3 4 5 6 7 8 9 10 11 12

P (X = x) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

μ = 7, σ2 = 5.83. 9. (a) 21, 52.47 (b) 19, 23.32.

Sections 4.3 and 4.4
1. P (X = i) = 1/10, i = 1, 2, . . . , 10, μ = 5.5, σ2 = 8.25. 3.

X 0 1 2 3 4

p(x) 0.0303 0.2424 0.4545 0.2424 0.0303

μ = 2, σ2 = 0.7273. 5. S = {ei = i|i = 1, 2, . . . , 20}, P (X = i) = 1/20, i = 1, 2, . . . , 20,

(a) 0.25 (b) 0.45 (c) 0.45. 7. (a) 0.3576 (b) 0.4551 9. (a) 0.4242 (b) 0.5758 (c) 0.8484.

Sections 4.5 and 4.6
1. (a) 0.7238 (b) 0.9601 (c) 0.2762. 3. P (X = x) =

(
n
x

)
(p)x(1 − p)n−x, x = 0, 1, . . . , n. 5.

(a) 0.000004 (b) 0.189651 (c) 0.998356 7. Binomial n =16, p = 0.75, 0.99836 9. 0.5941.

Section 4.7
1. 0.03762. 3. 0.00025. 5. 0.00647. 7. 0.00028.

Section 4.8
1. (a) 0.7255 (b) 0.7989 (c) 0.0268 (d) 0.2745. 3. (a) 0.1680 (b) 0.2560 (c) 0.4557. 5.
(a) 0.7127 (b) 0.1336 (c) 0.9858. 7. 0.4126.

Section 4.9
1. 0.0068. 3. 0.03195 5. 0.8245 7. 0.01388.

Review Practice Problems

1. 0.1867, 0.3843, 0.2964, 0.1098, 0.0208, 0.0020, 0.0001, 0.00. 3. 0.598, 0.402, 0.161.

5. 0.0036. 7. (a)

( 13
x

)
( 39

13−x )
( 52

13 )
(b)

( 13
y

)
( 39

13−y )
( 52

13 )
(c)

( 13
x

)
( 13

y )( 39
13−x−y )

( 52
13 )

. 9. 0.000. 11. (a) 0.3233

(b) 0.0025. 13. (a) 0.0641 (b) 0.00098. 15.

( 10
4

)
( 20

x−5 )
( 30

x−1 )
× 6

30 − x + 1
, x = 5, . . . , 25.

17. (a)
(

m
x

)
px(1 − p)m−x (b)

(
n
y

)
(1 − p)my(1 − [1 − p]m)n−y. 19. 0.2508. 21.

(a) (1 − p)x−1p (b)
(

x−1
k−1

)
(1 − p)x−kpk. 23. 0.1175,

(
x−1
x

)
(0.85)4(0.15)x−4. 29.
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(a) 0.6165 (b) 0.3348 (c) 0.9427 (d) 0.0022. 31. (a) 0.5155 (b) 0.05 (c) 0.5948. 33.
μ = 0.8, σ2 = 0.6691, σ = 0.8180. 35. (a) 0.8488 (b) 0.9574 (c) 0.5622 (d) 0.0174 (e) 0.9380.
37. (a) 0.3712 (b) 0.2381 (c) 0.7977 (d) 0.7851. 39. (a) 0.9997 (b) 0.0210 (c) 0.1259
(d) 0.0355 (e) 0.1275. 41. 0.5615. 43. (a) No (b) Yes (c) No. 45. (a) 20/21 (b) 1/60
(c) 1/15. 47. (a) μ = 4.33, σ2 = 2.251 (b) μ = 4.2, σ2 = 0.84. 49. μ = p, σ2 = p(1 − p).
51. μ = [(n + 1)/2] + c, σ2 = (n2 − 1)/12. 53. (a) 0.01264 (b) 0.0902 (c) 0.6321. 55.
(a) p(x) = (1 − p)x−1p, x = 1, 2, . . . , μ = 1/p, σ2 = (1 − p)/p2 (c) 0.01763. 57. (a) 0.3916
(b) 0.8998 (c) 0.4266.

CHAPTER 5

Sections 5.1 and 5.2
1. (a) 0.0003 (b) 1.0000 (c) 0.0183 (d) 0.00. 3. c = 1/48 (a) 1 (b) 0.7422 (c) 0.5000. 5.
c = 12, 0.1808. 7. (1 − t/λ)−1, μ = 1/λ, σ2 = 1/λ2. 9. (a) 0.5813 (b) 1 (c) 1.

Section 5.3
1. X̄ = 17.550, S = 1.468, 80%, 100%, 100%. 3. X̄ = 10.9, S = 3.463, 90%, 95%,100%. 5.
75%.

Section 5.4
1. (a) 2/3 (b) 1/2 (c) 1/2. 3. μ = 7.5, σ2 = 18.75, σ = 4.33. 5. 7/12. 7. μ = 3, σ2 =
0.333, σ = 0.577, 1.00.

Section 5.5
1. (a) 0.8164 (b) 0.9082 (c) 0.8413. 3. (a) 0.6730 (b) 0.8413 (c) 0.9452. 5. (a) 0.5 (b) 0.0228
(c) 0.1587. 7. (a) 0.8472 (b) 0.7611 (c) 0.9772.

Section 5.6
1. (a) 0.0548 (b) 0.7118 (c) 0.5670 (d) 0.8790. 3. (a) 0.5 (b) 0.7933 (c) 0.9282. 5.
N(32, (3.145)2).

Sections 5.7 and 5.8
1. Normal, X̄ = 27.5, S = 4.662. 3. Normal 5. (a) 0.9630 (b) 0.9596. 7. (a) 0.9251
(b) 0.4768. 9. 0.8708.

Section 5.9.1
1. 0.2236. 3. 8.373, 19.91. 5. (a) Mean = 54.6, SD = 399.72 (b) 0.0392 (c) 0.0473.
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Section 5.9.2
1. (a) 0.2865 (b) 0.2493 (c) 0.6321 (d) 0.7135. 3. 0.2635. 5. 0.0000. 7. (a) 0.2231 (b) 0.1422
(c) 0.7135.

Sections 5.9.3 and 5.9.4
1. 0.0000. 3. (a) 0.9656 (b) 0.8444 (c) 0.6879. 5. (a) μ = 12, σ2 = 720 (b) 0.2750 (c) 0.7943.
7. (a) 0.4060 (b) 0.9084 (c) 0.3144. 9. (a) μ = 4 (b) 0.2057.

Review Practice Problems

1. (a) 0.3085 (b) 0.1587 (c) 1829 (d) 392. 3. (a) 2.28% (b) 81.75%. 5. (a) 50.135%
(b) μ = 0.25 (c) 13.36%. 7. Normal. 9. (a) 0.0052 (b) 17. 11. (a) 0.0004 (b) 11. 13.
(a) 0.1469 (b) 0.9596. 15. (a) 0.0036 (b) 63.03. 17. (a) 1438.49 (b) 0.9772. 19. (a) 0.9826
(b) 0.8849 (c) 0.9347 (d) 0.0250 (e) 0.0250. 21. (a) 0.1353 (b) 0.0183 (c) 0.1170 (d) 1.
23. (a) 0.1199 (b) 0.0710. 25. (a) 0.4727 (b) 0.3679 (c) 0.2625. 27. 0.4066. 29. (a) μ = 3,
σ2 = 3 (b) μ = 4, σ2 = 2.67. 31. (a) f(x) = nxn−1, 0 ≤ x ≤ 1, and 0 elsewhere (b) 2−1/n

(c) μ = n/(n + 1), σ2 = n/[(n + 1)2(n + 2)]. 33. (a) F (x) = 0 for x ≤ 0, x3 for 0 < x <
1, 1 for x ≥ 1 (b) 0.088 (c) 0.63 (d) μ = 0.75, σ2 = 0.0375. 35. (a) 2/9 (b) 4/27 (c) 20.
37.1, 75%; 0.9728, 75%. 39. (a) 0.7059 (b) 0.4335 (c) 0.7350. 41. μ = 80, σ2 = 1600.
43. (a) 0.3679 (b) 0.7769 (c) 0.1448. 45. (a) (0, 7.20) (b) 0.9835. 47. (a) 0.4422 (b)
0.7358. 49. (a) 0.0646 (b) 0.0470. 51. μ = 54.60, σ2 = 1.59773 × 105. 53. (a) μ = 7200
(b) σ2 = 3.57696 × 109. 55. (a) 0.8867 (b) 0.0285 (c) 0.1005. 57. (a) 0.2835 (b) 0.1859
(c) 0.3679. 59. (a) 0.2323 (b) 0.4942 (c) 0.5039. 61. (a) 0.9951 (b) 0.0274 (c) 0.000. 63.
(a) 1/4 (b) 13/20 (c) 2/5. 65. (a) μ = 19.5, σ2 = 1/12 (b) 1.00. 67. μ̂ = 5.766, σ̂2 = 0.271.
69. μ̂ = 3.132, σ̂2 = 0.691.

CHAPTER 6

Section 6.2
1. (a) E(U) = 103, V (U) = 689 (b) E(U) = 103, V (U) = 103. 3. E(T ) = 0.80, V (T ) =
0.0023. 5. f1(x1) = 2(1 − x1), 0 ≤ x1 ≤ 1, f2(x2) = 2(1 − x2), 0 ≤ x2 ≤ 1, E(X1) = 1/3,
E(X2) = 1/3, V ar(X1) = 1/18, V ar(X2) = 1/18, ρ = −1/2. 7. E(X1|X2 = 0) = 1, E(X1|
X2 = 1) = 1, V ar(X1|X2 = 0) = 1, V ar(X1|X2 = 1) = 0. 9. h1(u) = e−u, for u ≥ 0, and 0
elsewhere.

Sections 6.3 and 6.4
1. Mu(t) = et2

, μ = 0, σ2 = 2. 3. Mv(t) = e(13/2)t2
, μ = 0, σ2 = 13. 5. Mu(t) = (1 − t)−1.

Review Practice Problems

1. MY (t) = (1 − t/λ)−Σγi . 3. MY (t) = e(Σλi)(et−1). 5. μT = 350, σT = 3.606. 7. μT =
0.0450, σT = 0.0009. 9. (a) X2 ∼ Bin(n, p2) (b) E(X2) = np2, V ar(X2) = np2(1 − p2)
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(c) −np1p2. 11. μT = 4.5n, σ2
T = 8.25n. 13. 2341. 15. 1,112,430. 17. p(0) = 9

24 ,
p(1) = 8

24 , p(2) = 6
24 , p(3) = 0, p(4) = 1

24 , μ = 1, σ2 = 1. 25. (a) μ1 = 2, μ2 = 3,
σ1 = σ2 = 1, ρ = 4/5 (b) c = 5

6π (c) f1(x) = 1√
2π

e−(1/2)(x−2)2
,−∞ < x < ∞, f2(y) =

1√
2π

e−(1/2)(y−3)2
,−∞ < y < ∞.

CHAPTER 7

Section 7.1
1. (a) All employees of the manufacturing company (b) All the chips manufactured in
that batch (c) All the voters in that metropolitan area. 3. $ 396,000, 39.38 × 108. 5. 32.20,
5.25.

Section 7.2
1. Approximately N(28, (1.5)2). 3. (a) Decreases from σ

6 to σ
8 (b) Decreases from σ

10 to σ
20

(c) Decreases from σ
9 to σ

18 (d) Decreases from σ
16 to σ

24 . 5. (a) 0.1587 (b) 0.5 (c) 0.8904. 7.
(a) Approximately N(0.5, (0.05)2) (b) P (p̂ > 0.60) = P

(
p̂−0.5
0.05

)
= P (Z > 2.00) = 0.0228.

Section 7.3
1. (a) 0.05 (b) 0.975 (c) 0.025 (d) 0.95 (e) 0.05. 3. (a) 3.58 (b) 5.06 (c) 3.22 (d) 3.53. 7.
(a) 20.483 (b) 34.170 (c) 40.646.

Section 7.4
1. (a) g(x(n)) = nxn−1

(n) for 0 < x(n) < 1, and 0 elsewhere (b) g(x(1)) = n(1 − x(1))
n−1 for

0 < x(1) < 1, and 0 elsewhere (c) g(x(r)) = n!
(r−1)!(n−r)!x

r−1
(r) (1 − x(r))

n−r for 0 < x(r) < 1,

and 0 elsewhere. 3. e−100λy. 5. (a) g(y) = (n/15n)(y − 15)n−1 (b) 15(2n + 1)/(n + 1). 7.
(a) g(x(11)) = (2.586584 × 105)

(
x−15

15

)10( 30−x
15

)10 (b) 29.32.

Review Practice Problems

1. (a) 0.1151 (b) 0.0013 (c) 0.9559. 3. (a) Approximately N(0.8, (0.0179)2) (b) 0.9974.
5. (a) [1 − F (x)]100 (b) 100[1 − F (x)]99f(x)dx. 7. (a) 0.9544 (b) 0.7745. 15. S2 ∼ 7.2χ2

20,
μ = 144, σ2 = 2073.6. 17. g(t) = nλe−nλt, 0.0498. 19. 0.0012, 0.1816.

CHAPTER 8

Section 8.2
1. p̂ = X̄. 3. (b) V (μ̂1) = 9σ2, V (μ̂2) = 17σ2, μ̂1 is a better estimator. 5. (a) 9.850 (b)
1.7271. 7. λ̂ = X̄. 9. θ̂ = Max(X1,X2, . . . ,Xn) = X(n).
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Section 8.3
1. (a) (45.562, 48.049) (b) (45.762, ∞), (0, 47.849). 3. (a) (8.164, 9.036) (b) (8.260, ∞),
(0, 8.940). 5. (8.608, 9.378). 7. (16.109, 20.891). 9. (0, 87.605), (85.130,∞). 11. (1301.7,
1513.3); we may conclude with 99% confidence that μ = 1400.

Section 8.4
1. (−19.48, 6.48). 3. (−80.4, 353.8), yes. 5. (−0.071, 0.711), no. 7. (−0.852,−0.302). 9.
(−22.74,−15.36).

Sections 8.5 and 8.6
1. (43.257, 248.496). 3. (a) (1.081, 1.839) (b) (− 0.1888, 0.0088). 5. (15.2423 ≤ σ2 ≤
48.3828), (3.9041 ≤ σ ≤ 6.9557), 4.0591, 6.5823. 7. (2.62, 12.16), (2.35 ≤ σ2

1 ≤ ∞), (0 ≤
σ2

2 ≤ 14.69).

Section 8.7
1. (0.3571, 0.4429). 3. (−0.1836, 0.0036). 5. (−0.0597, −0.0063). 7. (−0.0217, 0.0484). 9.
(0.3640, 0.4360).

Section 8.8
1. 49. 3. (a) 1201 (b) 1568 (c) 2135. 5. (a) 1201 (b) 1145. 7. 1509. 9. 39.

Review Practice Problems

1. (5.152σ/L)2. 3. (a) (7.867, 7.973) (b) (0.0103, 0.0681). 5. (a) (−4.80, 5.30) (b) (3.994,

12.296). 7. (25.67, 72.80). 9. (−1.285, 2.625). 11. (−16.15, 3.39). 13. (−0.235, 10.715).
15. (0.0486, 11.5964). 17. (513.059, 518.681). 19. (67.516, 68.584). 21. (a) (0.422,
0.867) (b) (−0.006, 0.806). 23. (a) (0.2637, 0.7491) (b) (−3.8568, −0.1432). 25.
(a) (0.4319, 1.7451) (b) (1.6088, 2.0892). 27. (0.3521, 0.8479). 29. μ̂ = X̄, yes,
X̄ ∼ N(μ, σ2

0/n). 31. ±0.49. 33. (11.8069, 12.1931). 35. (−13661.2523, −6331.2523). 37.
(a) (−9.573, 4.427) (b) (−9.704,∞), (−∞,−4.304). 39. (−0.2428,−0.0172). 41. 31. 43.
(0, 1.8857). 45. (0.3436, 0.4564). 47. (−0.2130, 0.0330). 49. (−0.0681, 0.0021), width of
the confidence interval has increased.

CHAPTER 9

Section 9.2
1. H0: μ = 4 versus H1: μ > 4, Z = 2.4, reject H0. 3. Type II error smaller, β = 0.00. 5.
n = 54.
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Section 9.3
1. Z = 4, reject H0

μ1 800 802 804 806 808 810 812 814

γ(μ1) 0.01 0.05 0.16 0.37 0.63 0.84 0.95 0.99

The power curve is obtained by plotting μ1 versus γ(μ1). 3. Z = −5.00, reject H0, 1 − β =
0.8431. 5. (X̄ < 0.2488 or X̄ > 0.2512); 1 − β = 0.3203.

Section 9.4
1. p-value = 0.349, do not reject H0. 3. p-value = 0.016, do not reject H0. 5. p-value
= 0.911, do not reject H0. 7. p-value = 0.025, reject H0.

Section 9.5
1. Z = −2.052, reject H0. 3. T = 2.706, reject H0. 5. Z = −0.77, do not reject H0, p-value
0.780.

Section 9.6
1. Z = −1.7003, reject H0. 3. Z = 0.6187, do not reject H0, 0.0645. 5. Z = −8.576, p-value
is 0.00, reject H0.

Section 9.7
1. Z = 1.6; do not reject H0. 3. t = −0.37, do not reject H0, p-value = 0.715. 5. t = 3.96,
reject H0, p-value 0.000. 7. t = −0.37, do not reject H0, p-value 0.716.

Section 9.8
3. Z = 1.84, do not reject H0, p-value 0.066. 5. Z = −5.06, reject H0, p-value 0.00. 7. Z =
−0.7924, p-values (a) 0.214 (b) 0.786 (c) 0.428, in either case do not reject H0.

Section 9.9
1. χ2 = 15.68 > χ2

8;0.05, reject H0. 3. χ2 = 6.8 < χ2
4;0.05, do not reject H0. 5. χ2 = 0.0037,

reject H0.

Section 9.10
1. (a) F = 1.108, do not reject H0 (b) t = 1.372, do not reject H0. 3. F = 1.3972, do not
reject H0. 5. F = 0.4868, do not reject H0.
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Sections 9.11 and 9.12
1. (a) (624.46, 635.54) (b) reject H0. 3. (a) (17.015, 21.785) (b) do not reject H0. 5.
(a) (−0.332, 1.092) (b) do not reject H0. 7. (a) (0.4569, 0.7431) (b) do not reject H0.

Review Practice Problems

1. (a) Z = −3, reject H0 (b) γ(μ1) = 0.5675 (c)

μ1 1300 1325 1350 1375 1400 1425 1450 1475

γ(μ1) 0.996 0.98 0.92 0.79 0.57 0.33 0.14 0.04

The power curve is obtained by plotting μ1 versus γ(μ1). 5. Reject H0 if X̄ < 39.0229 or
X̄ > 40.9771.

μ1 38 38.2 38.4 38.6 38.8 39 39.2 39.4 39.6 39.8 40 40.2

γ(μ1) 0.996 0.985 0.95 0.87 0.72 0.52 0.32 0.16 0.06 0.01 0.02 0.06

The power curve is obtained by plotting μ1 versus γ(μ1). 7. t = 1.395, do not reject H0.
9. t = 1.786, do not reject H0. 11. χ2 = 29.4, reject H0. 13. (a) F = 1, do not reject
H0 (b) t = 28.57, reject H0. 15. (a) F= 0.666, do not reject H0 (b) Reject H0. 17. (a)
F= 0.514, do not reject H0 (b) t = 4.859, reject H0. 19. (a) F= 0.931, do not reject
H0 (b) t = 0.9005, do not reject H0. 21. (a) F= 1.2958, do not reject H0 (b) Z = 2.883,
reject H0. 23. (a) F= 1.7602, do not reject H0 (b) Z = 3.341, reject H0. 25. t = 4.00,
reject H0. 27. Z = 21.86, reject H0. 29. F = 0.6251, do not reject H0. 31. F = 1.410, do
not reject H0. 33. F = 0.897, do not reject H0. 37. Z = 2.5, reject H0. 39. (a) p-value =
0.00, reject H0 (b) p-value = 0.00, reject H0. 41. Z = 1.33, do not reject H0, p-value =
0.1836, power = 0.9147. 43. (a) Z = −9.8918, reject H0 (b) β = 0.0122, 1 − β = 0.9878.
45. (a) Z = 2.86, reject H0 (b) β = 0.0004, 1 − β = 0.9996. 47. t = −0.99, do not reject
H0, p-value = 0.1689. 49. t = −1.34, do not reject H0, p − value > 0.20. 51. (a) H0: μ ≥ 16
versus H1: μ < 16 (b) t = 0.0992, do not reject H0 (c) 0.539. 53. Reject H0, p-value <
0.005. 55. (a) H0: p = 0.5 versus H1: p �= 0.5 (b) Reject H0, p-value = 0.00, Z = −4.00.
57. Z = 1.126, do not reject H0, p-value = 0.1301. 59. χ2 = 12.446, do not reject H0. 61.
F = 0.8335, do not reject H0. 63. F = 0.3335, do not reject H0. 65. (0.3571, 0.4429), reject
H0. 67. Z = −1.775, p-value = 0.076, do not reject H0. 69. Z = −2.49, p-value = 0.0128,
reject H0.

CHAPTER 10

Section 10.1
1. 0.7165; 0.0333. 3. 0.5481; 0.0002. 5. f(t) = αβtβ−1

(1+αtβ)2 ,H(t) = ln(1 + αtβ), R(t) = 1
1+αtβ .
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Section 10.2
1. μ̂ = 2353.33. 3. (0.3813, 0.8339). 5. λ̂ = 0.0069, (0.0015, 0.0173).

Sections 10.3 and 10.4
1. (a) Sampling continues if −530 + 91.95m ≤ Tm ≤ 530 + 91.95m, reject H0 if
Tm < −530 + 91.95m, do not reject H0 if Tm > 530 + 91.95m (b) Sampling contin-
ues if −520 + 91.95m ≤ Tm ≤ 405 + 91.95m, reject if Tm < −520 + 91.95m, do not
reject H0 if Tm > 405 + 91.95m. 3. μ̂ = 8563.57, 95% CI = (4590.14, 21299.76).
5. (a) μ̂ = 8700.71 (b) R̂(8000) = 0.3987 (c) 1.1493 × 10−4 (d) (4663.65, 21640.79)
(e) (4.6209 × 10−5, 2.14424 × 10−4) (f) 5142.96. 9. μ̂ = 4.1080, σ̂2 = 0.02592; estimate of
mean time to failure = 61.618, estimate of variance of time to failure = 99.7.

Review Practice Problems

1. MTBF = 9491 hours, h(t) = 1.054 × 10−4 3. λ̂ = k
Tk

, Tk =
k∑

i=1
t(i) + (n − k)t(k). 5.

R̂(4000) = 0.615. 7. (a) (1733, 10931), 1939 (b) 0.569; 0.356 (c) 2460. 9. (a) Sampling
continues if −43356 + 2735m ≤ Tm ≤ 33769 + 2735m, reject H0 if Tm < −43356 + 2735m,
do not reject H0 if Tm > 33769 + 2735m.

CHAPTER 11

Review Practice Problems

1. See Section 11.2. 3. Tabular and graphical displays. See Section 11.4. 5. See Section
11.5. 7. 2D scatter plot shows that variable “Fare” tends to increase with the “Age.”
Passengers who pay high “Fare” (>100) seems to survive. 3D scatter plot also shows that
the variable “Fare” tends to increase with the “Age,” but the “Fare” seems to be lower
among the people who died than who survived. Specially, the middle aged who paid a
high fare seem to survive better than the middle aged who paid a lower fare. 9. (a) All
females were survived, while all males were died. (b) Survival rate for class 1 passengers
is somewhat higher than the other two groups. 11. Class 0 error rate = 28.57%, class 1
error rate = 0%. 13. (b) When cutoff value increases, class 0 error rate decreases and
class 1 error rate increases. Cutoff value close to 0.46. 15. (a) Abdomen and Wrist are
the significant classifiers. (b) Class 0 error rate = 5.88%, class 1 error rate = 13.17%, and
overall error rate = 10.71%. (c) Variables Abdomen, Height, and Wrist are the significant
classifiers. (d) Regression method, suitable. 17. Abdomen, Knee, Height, and Wrist are
the significant classifiers. (a) A positive linear trend. (b) Correlation = 0.70. 19. All the
“D” grades and one “C” grade are classified as “D” grades. Rest of the grades are classified
as “B” grades indicating a binary classification.
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CHAPTER 12

Review Practice Problems

1. (a) 37.177 (b) 63.5 (c) 0.995. 3. (c) Both Euclidean and city-block distances provide the
same key information about distances between items as such the graphs convey similar
information though those are not exactly the same. 5. Patient pairs “P011” and “P015”
and “P014” and “P015” show perfect matching rates while patient pairs “P012” and
“P013” and “P013” and “P015” show zero matching rate. 7. (b) (S1, S3, S4), (S5, S6, S7),
(S9, S10), and (S2). The students within those clusters seem to be statistically closer. 9.
(b) (S1, S4, S3, S8), (S5, S7, S6), (S9, S10), and S2. 11. (a) (S1, S3, S4, S8), (2.95, 3.25);
(S5, S6, S7), (3.70, 3.00); (S9, S10), (3.15, 3.85); (S2), (4.00, 3.90). (b) The clusters (S1,
S3, S4, S8), (S9, S10) group the students who moderately and highly improved their GPA
at the college compare to high school, respectively but the cluster (S5, S6, S7) groups the
students who have that of the opposite behavior. The student S2 seems to maintain the
GPA without any considerable fluctuation. 13. (a) (S1, S3, S4, S8), (S5, S6), (S2, S9, S10),
(S7). 15. (a) (A, B, C); (D, E, F, J); (G, H, I) (b) Final clusters: (A, B, C), (1, 0.33);
(D, E, F, J), (4.00, 7.00); (G, H, I), (6, 1.33). 21. (a) BIC values attain their maximums
at three clusters. (b) The BIC values of “EII,” “VII,” “EEE,” and “VEE” are very close
to each other when the number of clusters is three. Favor spherical shape clusters with or
without the same volumes.

CHAPTER 13

Section 13.2
1. Do not reject H0, p-value = 0.395. 3. Reject H0, p-value = 0.000. 5. Do not reject H0,
p-value = 0.332. 7. Reject H0, p-value = 0.000. 9. Reject H0, p-value = 0.0108.

Section 13.3
1. Do not reject H0, p-value = 0.177. 3. Reject H0, p-value = 0.000. 5. Reject H0, p-value =
0.000.

Section 13.4
1. Do not reject H0, p-value = 0.187. 3. Reject H0, p-value = 0.000. 5. Reject H0, p-value =
0.000.

Review Practice Problems

1. Reject H0, p-value = 0.0162. 3. χ2 = 6.0808, reject H0. 5. χ2 = 19.30, do not reject H0.
7. χ2 = 6.1393, reject H0. 9. χ2 = 5.1625, do not reject H0. 11. χ2 = 3.111, do not reject
H0. 13. Do not reject H0, p-value = 0.843. 15. Do not reject H0, p-value = 0.1356. 17. Do
not reject H0, p-value = 0.406. 19. Reject H0, p-value = 0.003. 21. Reject H0, p-value =
0.008. 23. Do not reject H0, p-value = 0.333.
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CHAPTER 14

Section 14.2
1. Do not reject H0, p-value = 0.7539. 3. Do not reject H0, p-value = 0.8811. 5. Do not
reject H0, p-value = 0.936. 7. Do not reject H0, p-value = 0.5034. 9. Reject H0, p-value =
0.040.

Section 14.3
1. Do not reject H0, p-value = 0.1250. 3. Reject H0, p-value = 0.0223. 5. Do not reject
H0, p-value = 0.3984.

Section 14.4
1. Do not reject H0. 3. Do not reject H0. 5. Do not reject H0. 7. Reject H0.

Section 14.5
1. rs = −0.3030, do not reject H0. 3. rs = −0.1643, do not reject H0. 5. rs = 0.4703, do
not reject H0. 7. rs = −0.4212, do not reject H0.

Review Practice Problems

1. Do not reject H0, p-value = 1.0. 3. r = 15, reject H0. 5. Z = −2.513, reject H0. 7.
r = 16, do not reject H0, p-value = 0.210. 9. Z = −2.412, reject H0. 11. Do not reject H0.
13. r = 2, reject H0. 15. rs = 0.2815, do not reject H0.

CHAPTER 15

Section 15.2
1. (a) No (b) Ŷ = 135.7 + 0.237X (c) β̂0 = 135.70, β̂1 = 0.2371. 3. (a) No
(b) Ŷ = 105.5 − 0.11X (c) β̂0 = 105.5, β̂1 = −0.11. 5. (a) Yes (b) Ŷ = −2.53 + 0.0333X
(c) β̂0 = −2.53, β̂1 = 0.0333. 7. (a) No (b) Ŷ = 55.5 + 0.347X (c) β̂0 = 55.5, β̂1 = 0.347.
9. (a) Yes (b) Ŷ = 29.83 + 4.829X (c) β̂0 = 29.829, β̂1 = 4.829. 11. (a) Yes
(b) Ŷ = 18.8 + 0.926X (c) β̂0 = 18.80, β̂1 = 0.926.

Sections 15.3 and 15.4
1. (a) 2.36 (b) (8.2257, 10.3205), (1.1057, 1.7673) (c) (12.737, 15.863) (d) (10.490, 18.110).
3. (a) 78.97 (b) (−59.9875, 97.5875), (0.3734, 1.4786) (c) (148.283, 156.921) (d) (133.439,
171.765). 5. (a) 28.71 (b) (59.1546, 112.0854), (−0.7904, 0.6324) (c) (79.0074, 86.7188)
(d) (70.1436, 95.5826). 7. (a) 39.89 (b) (7.2068, 82.9932), (−0.2218, 2.3438) (c) (74.38,
83.66) (d) (64.36, 93.68). 9. (a) 28.21 (b) (−31.9013, 33.4013), (−1.7879, 4.2879) (c) (7.61,
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17.64) (d) (0, 26.55). 11. (a) 15.8 (b) (−16.7760, 25.3760), (4.2903, 7.1097) (c) (91.64,
99.36) (d) (85.05, 105.95).

Section 15.5
1. Do not reject H0: β0 = 0,H0: β1 = 0. 3. Do not reject H0: β0 = 0,H0: β1 = 0. 5. Do
not reject H0: β0 = 0,H0: β1 = 0. 7. Do not reject H0: β0 = 0,H0: β1 = 0. 9. Reject H0:
β0 = 0,H0: β1 = 0. 11. Do not reject H0: β0 = 0, reject H0: β1 = 0.

Section 15.6
1. (a) Provides a good fit (b) F-statistic = 96.18, p-value is 0.000. 3. (b) F-statistic =
12.39, provides a good fit (c) p-value is 0.002 (d) R2 = 40.8%. 5. (b) F-statistic = 0.40,
does not provide a good fit (c) p-value is 0.544 (d) R2 = 4.78%. 7. (b) F-statistic = 0.000,
does not provide a good fit (c) p-value is 0.978 (d) R2 = 0.008%. 9. (b) F-statistic = 97.88,
provides a good fit (c) p-value is 0.000 (d) R2 = 94.22%.

Section 15.7
1. (a) Normality assumption valid (b) Model assumptions satisfactory. 3. (a) Normality
assumption valid (b) Model assumptions satisfactory. 5. (a) Normality assumption valid
(b) Model assumptions satisfactory. 7. (a) Normality assumption valid (b) Model assump-
tions satisfactory. 9. (a) Normality assumption valid (b) Model assumptions satisfactory.
11. (a) Normality assumption valid (b) Model assumptions satisfactory.

Section 15.8
1. (a) log(Ŷ ) = 1.71 + 0.00579X (b) β̂0 = 1.71, β̂1 = 0.00579 (c) Reject H0: β0 = 0,H0:
β1 = 0. 3. (a) log(Ŷ ) = 1.369 + 0.349 log(X) (b) β̂0 = 1.369, β̂1 = 0.349 (c) reject H0: β0 =
0,H0: β1 = 0.

Section 15.9
1. Do not reject H0: ρ = 0. 3. Reject H0: ρ = 0. 5. Reject H0: ρ = 0.

Review Practice Problems

3. (β̂0 = 48.00, β̂1 = −0.3167, Ŷ = 48.00 − 0.3167X, (39.96, 56.04), (−0.442,−0.191),
Ŷ0 ± (2.228)

√
((1/12) + (x0 − 60)2/6000)(19.033). 5. β̂0 = 6.2825, β̂1 = 0.1831, η̂ =

6.2825 + 0.1831X, (6.1415, 6.4245), (0.1757, 0.1903),
Ŷ0 ± (2.776)

√
((1/6) + (x0 − 17.5)2/437.50)(0.003). 7. β̂0 = 2.7, β̂1 = 0.193, Ŷ =

2.7 + 0.193X, (2.197, 3.203), (0.127, 0.258) Ŷ0 ± (2.776)
√

((1/6) + (x0 − 7)2/70)(0.037857)
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X = x0 2 4 6 8 10 12

Ŷ0 3.0857 3.4714 3.8571 4.2429 4.6286 5.0143

95% confidence band ±0.3909 ±0.2934 ±0.2298 ±0.2298 ±0.2934 ±0.3909

9. 12.917, (10.075, 15.759). 11. Reject H0: ρ = 0, (0.9217, 0.9915). 13. Reject H0:
ρ = 0, (0.9839, 0.9992). 15. (a) Ŷ = 8.0250 + 0.3715X (b) Ŷ = 18.1453 + 2.4229X (c)
Assumptions are such that the independent variable is measured without error, while
the dependent variable has a random error component. 17. (a) Ŷ = −1.6938 + 2.3643X
(b) 69.2356 (c) 40.897. 19. (29.5195, 30.9227). 21. No, X = 11 is outside the exper-
imental range. 23. Residual plots suggest some abnormalities, quadratic model
Y = 18.38 + 764.7X − 175.6X2 is a better fit. 25. Do not reject H0: ρ = 0. 27. (a)
Linear model (b) Ŷ = −19.7 + 0.322X (c) Model assumptions not violated. 29. (a)
Ŷ = 31.4 + 0.017X, Ŷ = 5.60 + 3.05X − 0.0677X2 (b) Quadratic model is a better fit.
31. (a) Ŷ = 58.3 + 0.433X, some departure from the assumptions (b) (51.900, 64.754),
(0.221, 0.645) (c) (54.40, 84.77), (57.79, 88.30), (61.39, 92.49). 33. (a) r = −0.872 (b)
Do not reject H0: ρ = 0, p-value = 0.972 >α. 35. (a) Ŷ = 129.787 − 24.02X (c) Model is
a good fit, F-ratio = 352.27. 37. (a) log(Ŷ ) = 2.118 − 0.0984X (b) 93.334, 93.757 using
model of Problem 35.

CHAPTER 16

Section 16.3
1. Yi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + εi, i = 1, 2, . . . n, E(ε) = 0, V (ε) = σ2. 5. (a) β̂0 =
−63.5645, β̂1 = 1.0742, β̂2 = 1.0153 (b) 88.0716. 7. Ŷ = 7.46 − 0.030X2 + 0.521X3 −
0.102X4 − 2.16X5 (b) Model is significant, p-value = 0.002 (c) (6.848, 11.143). 9.
Do not reject H0, p-value = 0.1596. 11. (a) Ŷ = 158 + 15.5X1 − 0.911X2 (b) Reject H0,
p-value is 0.001.

Section 16.4
1. Ŷ = 127.4 − 1.460X1 − 5.98Lab, indicator variables 1 for Lab A and 0 for Lab B. 3. For
private: Ŷ = 21.80 + 0.039X1, for public Y = 28.14 + 0.039X1. 5. Brick: Ŷ = −18.3568 +
2.84465X1 + 28.6835X2 − 2.41353X3 + 25.8673X4.
Stucco: Ŷ = −27.8076 + 2.84465X1 + 28.6835X2 − 2.41353X3 + 25.8673X4.
Vinyl: Ŷ = −5.33475 + 2.84465X1 + 28.6835X2 − 2.41353X3 + 25.8673X4.
Wood: Ŷ = −31.013 + 2.84465X1 + 28.6835X2 − 2.41353X3 + 25.8673X4.
7. Ŷ = −27.84 + 4.6X1 + 20.5X2 + 24.1X4. 9. Fitted model is significant, p-value = 0.00.

Sections 16.6 and 16.7
1. (a) Ŷ = 9.21 + 1.192X4 − 0.318X5 − 2.609X6 − 1.094X7 (b) Same as in part (a).
3. Ŷ = 9.144 − 0.2X1 + 0.09X2 + 1.14X4 − 0.33X5 − 2.52X6 − X7, Cp = 6.1,PRESS =
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40.0492, R2
pred = 74.1, Model in Problem 1 is better. 5. (a) Ŷ = −2.14 + 0.513X1 −

0.03052X3 − 0.0250X2
1 + 0.00433X2

2 (b) The model has smaller bias due to sampling
error. 7. (a) Ŷ = 4.66 + 0.511X3 − 0.1242X4 (b) Both models are the same.

Section 16.8
1. η̂ = −22.2 + 0.707X1. 3. η̂ = −1.59 + 0.118X1.

Review Practice Problems

1. β̂ = (X ′X)−1X ′Y . 5. (a) Ŷ = 0.41 + 0.715 X1 + 0.485 X3 − 0.137 X4 + 1.07 X6 (b)

σ̂2 = 0.7456. 7.
(

0.024713 0.001563
0.001563 0.003163

)
(0.7456). 9.

Source DF SS MS F-ratio P-value

Regression 4 22.7821 5.6955 7.64 0.002
Residual error 14 10.4389 0.7456
Total 18 33.2211

R2 = 68.6%, R2
adj = 59.6%.

11. (a) Do not reject H0 for i = 2, 4, and 5 (b) (−0.0297 ± 0.56478), (0.5205 ± 0.29151),
(−0.10180 ± 0.11452), (−2.161 ± 5.13727). 13. R2 = 71.1%, R2

adj = 56.7%. 15. No, since
predictor values fall outside the experimental region. 17. Ŷ = 18.0 + 1.50X1 + 0.877X2.
19. (a) Ŷ = −1.77 + 0.421X1 + 0.222X2 − 0.128X3 − 0.0193X2

1 − 0.0074X2
2 + 0.00082X2

3
− 0.0199X1X2 + 0.00915X1X3 + 0.00258X2X3 (b) p-value = 0.00 (c) Model assumptions
valid (d) Do not reject H0, p-value = 0.2076. 21. Ŷ = −0.259 + 0.0782X1 + 0.121X2 −
0.110X3 − 0.0124X1X2 + 0.00842X1X3 + 0.00233X2X3 (b) Cp = 7, PRESS = 0.429932,
R2

pred = 39.87, model in problem 20 is better. 25. (a) β̂0 = 52.5773, β̂1 = 1.4683, β̂2 =
0.6623 (b) (94.4596, 97.4732), (90.401, 101.5317). 27. (a) Ŷ = −0.0784 + 0.000044X1 +
0.00245X2 + 0.0183X3 + 0.00779X4 − 0.00313X5 (b) Fitted model is significant, p-value =
0.000. 29. (a) Ŷ = 0.012468 − 0.00001X1X2 + 0.01988X2X3 (b) R2

pred = 91.55%.
31. (a) V ar(Ŷ ) = 0.000676265 (b) σ̂β̂1

= 0.001415, σ̂β̂2
= 0.07201 (c) (−0.007246 ±

0.002928), (1.58934 ± 0.14899). 33. η̂ = −53.0928 + 0.114493X1 + 1.13665X2 −
2.44767X3. 35. (a) η̂ = −6.61146 + 0.497121X1 + 0.0507921X2 (b) p-values = 0.568,
0.015, β2 is not significant, β1 is significant.

37. (a) Males: Ŷ = −97.205 + 0.0415982X1 + 12.2375X2 + 3.92213X3, females: Ŷ =
−86.8758 + 0.0415982X1 + 12.2375X2 + 3.92213X3. (b) Fitted model is significant at 5%
level. (66.1566, 128.270), (30.7276, 163.699). 39. (a) (71.3893, 115.419) (b) (33.3880,
153.420).

CHAPTER 17

Section 17.2
5. No, Maximum number of linearly independent estimable functions is 2.
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Section 17.3
1. Reject H0, p-value = 0.000. 3. p-value = 0.025, reject H0 (b) δ̂1 = −1.475, δ̂2 = 2.125,
δ̂3 = −0.650. 5. p-value = 0.147 > 0.10 = α, do not reject hypothesis of equal means. 7.
δ2 − δ1: (0.763, 6.737), δ3 − δ1: (− 1.491, 4.041), δ4 − δ1: (3.905, 9.155), δ3 − δ2: (− 5.462,
0.512), δ4 − δ2: (− 0.076, 5.636), δ4 − δ3: (2.63, 7.88). 9. Do not reject hypothesis of equal
means. 11. δ2 − δ1: (−0.878, 8.078), δ3 − δ1: (−3.653, 5.303), δ3 − δ2: (−7.253, 1.703), yes.
13. δ2 − δ1: (− 1.359, 4.693), δ3 − δ1: (− 0.644, 5.644), δ4 − δ1: (− 2.444, 3.844), δ5 − δ1:
(− 2.080, 5.080), δ3 − δ2: (− 2.005, 3.671), δ4 − δ2: (− 3.895, 1.871), δ5 − δ2: (− 3.481,
3.147), δ4 − δ3: (− 4.764, 1.164), δ5 − δ3: (− 4.423, 2.423), δ5 − δ4: (− 2.623, 4.223), do
not reject H0. Here, we note that all the confidence intervals contain zero. Hence, we may
conclude that based on these data all training programs are equally good. Yes.

Section 17.4
1. p-value for coatings and blocks >0.05. 3. Chemicals are significantly different but
machines are not at 10% level. 5. p-value = 0.083, chemicals are significantly different
at α = 0.10. 7. p-value = 0.083, chemicals are not significantly different at α = 0.05.

Section 17.5
1. Yijk = μ + αi + βj + γij + εijk, i = 1, 2, 3; j = 1, 2, 3, 4; k = 1, 2;

∑3
i=1 αi = 0,

∑4
j=1

βj = 0,
∑3

i=1 γij =
∑4

j=1 γij = 0; εijk ∼ N(0, σ2), and εijk’s are independent.

Source DF SS MS F-ratio P-value

Temperatures 2 68.583 34.2917 3.04 0.086
Raw material 3 36.458 12.1528 1.08 0.396
Interaction 6 167.417 27.9028 2.47 0.086
Error 12 135.500 11.2917
Total 23 407.958

3. H0: α1 = α2 = α3 versus H1: all αi are not equal, do not reject H0. 5. All p-values
>0.05. 7. Pint. = 0.2616 > 0.05, Ptemp = 0.5176 > 0.05, Pcurrent = 0.6832 > 0.05, Pbl =
0.7849 > 0.05. 9. (b) Pint = 0.320 > 0.05 (c) Fcloth = 7.94, Fmach. = 2.68, Pcloth = 0.002,
Pmach. = 0.026.

Section 17.6

Source DF SS MS F-ratio P-value

Temperature 3 69.25 23.08 5.3303 0.0396
Catalyst 3 14.25 4.75 1.0970 0.4201
Reaction time 3 36.25 12.08 2.7898 0.1318
Error 6 26.0 4.33
Total 15 145.75

3. All p-values >0.05.
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Section 17.7
1. A: H0: αi = 0, MSA/MSAB ∼ F3,12; B: H0: σ2

β = 0, MSB/MSE ∼ F4,40; AB: H0:
σ2

γ = 0, MSAB/MSE ∼ F12,40. 3. p-values for FWA= 0.148, for rolls = 0.294. 5. p-values
for manufacturer = 0.484, for clinics = 0.163. 7. pInstructor = 0.902 > 0.01, pstudents =
0.360 > 0.01.

Review Practice Problems

1. Reject H0, p-value = 0.000. δ2 − δ1: (−14.20, 71.80), δ3 − δ1: (−21.40, 64.60), δ4 − δ1:
(24.80, 110.80), δ3 − δ2: (−50.20, 35.80), δ4 − δ2: (−4.00, 82.00), δ4 − δ3: (3.20, 89.20).
3. In Problem 2, machine effects not significant. 5. (a) Catalytic effects significant,
p-value = 0.015 (b) δ̂I = −1.80, δ̂II = 0.10, δ̂III = 1.37. 7. (a) p-value = 0.132, (b) do
not reject H0. 9. t = −2.24, p-value = 0.086. 11. p-value = 0.167, do not reject H0 13.
pbl = 0.006, ptreat. = 0.907. 15. pDisease = 0.215 > 0.05, pGroup = 0.000 < 0.05. 17. (b)
panal. = 0.178 > 0.05 (c) pBatch = 0.000 < 0.05, β̂1 = 3.9611, β̂2 = −1.3389, β̂3 = 3.1056,
β̂4 = 1.6611, β̂5 = −0.0389, β̂6 = −1.1389 (d) A contrast: βa + βb + βc − βd − βe − βf ,
CI (−1.50, −0.44), suppliers I has lower effect. 19. (a) pAnalyst = 0.184 > 0.05,

(b) pmetal = 0.000 < 0.05, metal effects are significant, β̂1 = −1.95, β̂2 = −1.675, β̂3 =
−0.425, β̂4 = 2.550, β̂5 = 1.500. 21. (b) pInteraction = 0.078 > 0.05, (c) pPoison =
0.000 < 0.05, pTreatment = 0.000 < 0.05. 23. (b) pInteraction = 0.002 < 0.05, inter-
action effects are significant. 25. pBlock = 0.107 > 0.05, pInteraction = 0.781 > 05,
pA = 0.000 < 0.05, pB = 0.000 < 0.05, effects of factors A and B are significant. 27.
(b). pDrivers = 0.005 < 0.05, driver effects significant, δ̂a = −0.10, δ̂b = 0.48, δ̂c = −0.40,
δ̂d = 0.02 (c) Since pV ehicle = 0.698, effects of the vehicles are not significant. 31.
pMachines = 0.000 < 0.01, machine effects are significant, pSample = 0.259 > 0.01. 33.
pPr ocess = 0.281 > 0.01, pBatch = 0.000 < 0.01. 35. (b) panesthesia = 0.896 > 0.05, (c) Since
pmouse = 0.991 > 0.05 do not reject the null hypothesis of no mouse variation within
anesthesia. 37. pAge Group = 0.001 < 0.05, α̂1 = 0.8, α̂2 = 7.1, α̂3 = −2.8, α̂4 = −5.1. 39.
H = 7.47,DF = 3, p-value = 0.058 do not reject the null hypothesis of equal means
among preparations. 41. S = 3.96,DF = 3, p-value = 0.266. 43. S = 3.90, DF = 3,
p-value = 0.272.

CHAPTER 18

Section 18.2
3. L1 = Y1 − Y2 − Y3 + Y4, L2 = −Y1 + Y2 − Y3 + Y4, L3 = −Y1 − Y2 + Y3 + Y4. 5. Test
statistics is L

S
√

Σc2
i

= L
S
√

4
= L

2S , rejection region is
∣∣ L
2S

∣∣ > tn−1,α/2. 7. Answer varies from

field to field.

Section 18.3
3. 6, 4, 1. 7. σ̂/

√
8 =

√
MSE/8. 9. ((Ȳ (A)

+ − Ȳ
(A)
− ) ± 0.989

√
MSE), ((Ȳ (B)

+ − Ȳ
(B)
− ) ±

0.989
√

MSE), ((Ȳ (C)
+ − Ȳ

(C)
− ) ± 0.989

√
MSE).
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Section 18.4
1. (a) A (b) (8.812 ± 1.96) (c) Normal probability plot shows effects A, B, C, AC, BC, and
ACD significant at 5% level (d) (8.812 ± 0.7587). 3. (a) 1.5104 (b) [(Estimates of factor
effect) ±3.202]. 5. (a) 3.062 (b) 0.8750 (c) B: (11.1250 ± 4.029), C: (7.8750 ± 4.029),D:
(5.8750 ± 4.029).

Section 18.5
1. (a) Block 1 (principal block): 1, ab, ac, bc, ad, bd, cd, abcd; Block 2: a, b, c, d, abc, abd, acd,
bcd. 3. (1) (−,−) 1, ad, bc, abcd, abe, ace, cde, bde, (2) (+,−) a, d, abc, bcd, be, abde, ce, acde,
(3) (−,+) b, abd, c, acd, ae, de, abce, bcde, (4) (+,+) ab, ac, bd, cd, e, ade, bce, abcde.
5. Effects A, B, C, AB, AC, BC, and ACD are significant at the 5% level of significance.
7. Effects A, B, C, AC. BC, and ACD are significant at the 5% level of significance.

Section 18.6
1. Main effect A significant at the 5% level of significance. 3. None of the effects is sig-
nificant at the 5% level of significance. 5. Only main effect D is significant at the 5%
level of significance. 7. None of the effects is significant at the 5% level of significance. 9.
Interactions AB, BC, and ABC are not significant.

Review Practice Problems

1. (a) Yijk = μ +
∑

iαixi +
∑i

i<j

∑
jαijxixj + βk + εijk; i = 1, 2; j = 1, . . . , 5; εij ∼ N(0,

σ2) (b) Ftreat = 149.10 > 3.4903 (c) Fbatch = 7.80 > 3.2592, (d) Effect: pH =
51.8, temp. = 20.2, (e) SSpH = 13416.2, SStemp = 2040.2 (f) σ̂2 = 28.8, (−6.43, 4.03). 3.
(c) Blocks are significantly different, p-value = 0.000 (d) τ = β1 + β2 − 2β3, Fτ = 56.07 >
4.6001 (e) (0.2463, 0.3587). 5. (a) None of the effects is significant (b) σ̂2 = 0.228942 (c)
p − value = 0.594. 7. Alias structure is: I + ABCDEF, A + BCDEF, B + ACDEF, C
+ ABDEF, D + ABCEF, E + ABCDF, F + ABCDE, AB + CDEF, AC + BDEF, AD
+ BCEF, AE + BCDF, AF + BCDE, BC + ADEF, BD + ACEF, BE + ACDF, BF
+ ACDE, CD + ABEF, CE + ABDFCF + ABDF, DE + ABCF, DF + ABCE, EF +
ABCD, ABC + DEF, ABD + CEF, ABE + CDF, ABF + CDE, ACD + BEF, ACE +
BDF, ACF + BDE, ADE + BCF, ADF + BCE, AEF + BCD.

9. None of the main effects or two factor interactions is significant at the 5% level of
significance (assuming BC, BD, and CD negligible), since all the corresponding p-values
are greater than 0.05, the level of significance.

11. (a) A and AC are significant at α = 0.05 (b) No degree of freedom for
estimating σ2. 13. None of the effects is significant. 15. (a) M,N,NP,NK,MPK
are significant at α = 0.05, σ̂2 = 28.625. 17. Effects M,N,NK,ME,NK,MNF are
significant at α = 0.05. 19. A = 1.50, B = −25.50, C = 27.50, D = 38.50, AB = −9.50,
AC = −32.50, AD = −17.50, none of the effects is significant. 23. A = 0.075, B = 1.625,
C = −0.425, D = 2.925, AB = −0.525, AC = 0.325, AD = 0.175, No. 25. (a) T = −1.12,
C = 7.37, S = −1.87, M = −27.62, TC = 1.88, TS = 4.13, TM = −3.13, CS = −3.88,
CM = 4.87, SM = −1.37, TCS = −4.37, TCM = −1.12, TSM = 2.13, CSM = 1.62,
TCSM = −3.37 (b) Main effects C and M are significant at 5% level.
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CHAPTER 19

Section 19.2
1. (a) Ŷ = 50.8583 − 0.125x1 + 1.25x2 + 1.55x3 (b) MSLF = 26.9873,MSPE = 7.3892
(c) FLF = MSLF /MSPE = 3.65, p-value = 0.158 > 0.05. 3. (a) Ŷ = 25.25 + 1.375x1 +
2.125x2 + 1.125x3 − 0.125X4 (b) MSLF = 1.1875,MSPE = 12.6667 (c) FLF =
MSLF /MSPE = 0.09, p-value = 0.978 > 0.05, no evidence of lack-of-fit. 5. (a) Ŷ =
24.875 + 1.375x1 + 2.125x2 + 1.125x3 − 0.125x4 (b) β12 = β34, β13 = β24, β14 = β23 (d)
Main effects A, B, C are significant at 5% level.

Section 19.3
1. (a) Ŷ = 32.25 + 2.268A + 0.530B − 0.188A ∗ A + 0.062B ∗ B + 5.00A ∗ B (b) σ̂2 =
3.250 (c) the interaction term is significant at any level greater than the 0.01. 3. (a)
Ŷ = 35.00 + 0.50x1 + 0.75x2 − 0.25x3 (b) MSLF = 127.4,MSPE = 70.667 (c) p-value =
0.333 > 0.05, the first-order model is declared good. 5. (a) Ŷ = 31.98 + 1.47x1 − 0.97x2 −
1.45x3 − 2.00x2

1 − 2.67x2
2 − 0.83x2

3 + 2.25x1x2 − 4.00x1x3 − 1.00x2x3 (b) σ̂2 = 16.792 (c)
Both the first and second order terms are not significant.

Section 19.4
1. (a) Ŷ = 32.02 − 2.57w2

1 + 2.44w2
2, saddle. 3. (a) Ŷ = 35.76 + 4.73w2

1 − 3.91w2
2 −

1.63w2
3, saddle, minimax point. 5. (a) Ŷ = 28.75 + 3.00x1 − 3.00x2 − 2.75x3 (b)

(1,−1,−0.917)(2,−2,−1.834)(3,−3,−2.751)(4,−4,−3.668)(5,−5,−4.585).

Review Practice Problems

1. (0, 0, 0), 50.8583; (0.1,−1,−1.24) 47.6738; (0.2,−2,−2.48) 44.4893 (0.3,−3,−3.72)
41.3048; (0.4,−4,−4.96) 38.1203; (0.5,−5,−6.20) 34.9358. 3. p-value for lack of fit = 0.004,
not adequate (c) Ŷ = 94.500 + 2.488X1 + 3.622X2 − 6.313X1 ∗ X1 − 5.563X2 ∗ X2 +
5.500X1 ∗ X2 (d) Maximum point, surface is a mound 5. (b) p-value of lack of fit = 0.07,
adequate (c) Ŷ = 56.0615 + 3.9125x1 + 1.8375x2 − 4.3904x2

1 + 0.7096x2
2 − 12.2500x1x2.

7. β̂1, β̂2, and β̂3 biased estimators of β1, β2 and β3, with bias −β23, −β13, and −β12,
respectively. 9. (a) Ŷ = 4.231 − 0.846x1 − 0.164x2 − 0.089x3 (b) σ̂2 = 0.01287. 11.
F = MSLF /MSPF = 3.05 < 3.48166, do not reject. 15. (1,−0.55, 0.95) (2,−1.10, 1.90)
(3,−1.65, 2.85) (4,−2.20, 3.80) (5,−2.75, 4.75) (6,−3.30, 5.70). 17. To estimate
the error variance, pure error, and lack-of-fit to determine model adequacy. 19.
(a) Ŷ = 61.10 + 7.875x1 + 2.625x2 + 1.375x3 (b) Adequate (c) None of the regression
coefficients is significant at the 5% level. 21. (b) X ′X = 8I5 (c) Variance optimal
X ′X = NIp = 8I5. 23. (b) X ′X = 16I5 (c) Variance optimal X ′X = NIp = 16I5.
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CHAPTER 20

Section 20.3 and 20.4
7. (i) 0.9332 (ii) 0.7734 (iii) 0.5000 (iv) 0.0668 (v) 0.0013. 9. 44, 15, 6, 2, 1.

Section 20.5
1. (a) σ̂ = 5.417 (b) LCL = 33.2298, CL = 40.50, UCL = 47.7702 (c) LCL = 0, CL =
12.6, UCL = 26.6364. 3. (a) σ̂ = 6.945, (b) LCL =49.8253, CL =60.25, UCL = 70.6747
(c) LCL = 0, CL = 14.3, UCL = 32.6326. 5. (a) μ̂ = 20.066, σ̂ = 0.7021 (b) 17.79%.
7. UCL X̄ = 20.9460, CLX̄ = 20.2274, LCLX̄ = 19.5087, UCLS̄ = 1.0520, CLS̄ = 0.5036,
LCLS̄ = 0.00, the process is in statistical control. 9. All the values of X̄ and S fall within
their control limits, so the process in statistical control. 11. In X̄ Control Chart, there
are two points that fall outside the control limits, so that the process is not in statistical
control. In order to check whether or not the process is behaving according to the speci-
fications, one must first bring the process under statistical control. 13. The process is in
statistical control.

Section 20.6
3. Process is in control. 5. (a) UCL = 74.76, CL = 52.93, LCL = 31.11 (b) Process is
in control. 7. Point #7 is beyond UCL; revised control limits are UCL = 0.1429, CL =
0.0676, LCL = 0. 9. λ̂ = 8.46, UCL = 17.18, CL = 8.46, LCL = 0, process is in control.
11. ū = 9.95, UCL = 18.69, CL = 9.95, LCL = 1.21, process is in control. 13. ARL = 21,
(a) 38 (b) 20 (c) 12.

Section 20.7
1. Ĉp = 0.8306,no. 3. Ĉp = 1.0374; process is capable. 5. Since the value of Ĉp is not
sensitive to the location of center of the process, the value of Ĉp does not change.

Review Practice Problems
1. The process is in control. 3. 1.28%. 5. (a) μ̂ = 10.019, σ̂ = 0.5330 (b) (8.974, 11.064).
7. 370. 9. 0.2222. 11. (a)UCL = 16.539, CL = 15, LCL = 13.461; UCLR̄ = 5.638,
CLR̄ = 2.667, LCLR̄ = 0.00 (b) μ̂ = 15, σ̂ = 1.1465 (c) Ĉp = 1.0176 > 1; process
is capable. 13. UCL = 16.6886, CL = 15, LCL = 13.3114;UCLS̄ = 2.4719,CLS̄ =
1.1833,LCLS̄ = 0.00. 15. UCLX̄ = 2.3076,CLX̄ = 2.0128,LCLX̄ = 1.7180,UCLS̄ =
0.4123,CLS̄ = 0.1757,LCLS̄ = 0. 17. 0.223. 19. (a) UCL = 0.08250, CL = 0.04063,
LCL = 0 (b) Process is in control, control limits remains the same. 21. (a) UCL =0.1014,
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CL =0.0487, LCL = 0 (b) Process is in control, control limits remains the same. 23.
Again, the process is in statistical control. 25. (a) np control chart is appropriate, control
limits are UCL = 32.55, CL = 19.45, LCL = 6.35 (b) Process is in control, control limits
remains the same. 27. (a) p̂ = 0.0333, (b) UCL = 6.17, CL = 2, LCL =0, (c) 0.027. 29.
UCL = 0.0298, CL = 0.0171, LCL = 0.0044. 31. UCL = 31.40, CL = 18.5, LCL = 5.60.
33. CL = 3.721, control limits vary from sample to sample. 35. UCL = 13.3541, CL = 10,
LCL = 6.6459.

CHAPTER 21

Section 21.2
3. The CUSUM Control Charts plot the cumulative sum of the deviations of sample
values (or sample means, if the sample size is greater than one) from the target value. 5.
S+

i = Max(0, Zi − k + S+
i−1) or S−

i = Min(0, Zi + k + S−
i−1), i = 1, 2, 3, . . . , 10, k = |μ1−μ0|

2σ .

Section 21.3
1. k = 0.5, h = 5, process is out of control on the lower side. 3. CUSUM-chart k = 0.5,
h = 4.77, process is out of control on lower side at sample 3 and on upper side at sample
13. 5. k = 0.5, h = 5, (S+

0 = h/2 = 2.5, S−
0 = −h/2 = −2.5), process is out of control on

lower side at sample 1. 7. Process is in statistical control. 9. Process is in statistical control.

Section 21.4
1. MA-chart, CL = 11.44, UCL = 17.92, LCL = 4.96, process is in statistical control.
3. MA-chart, CL = 35.93, UCL = 37.102, LCL = 34.758, process is in statistical con-
trol. 5. MA-chart, CL = 35.93, UCL = 36.838, LCL = 35.022, process is in statistical
control.

Section 21.5
1. EMWA-chart, CL = 12, UCL = 15.752, LCL = 8.248, process is in statistical control.
3. EMWA-chart, λ = 0.2, CL = 11.44, UCL = 15.76, LCL =7.12, process is in statistical
control; EMWA-chart, λ = 0.25, CL = 11.44, UCL = 16.34, LCL = 6.54, process is in
statistical control; EMWA-chart, λ = 0.3, CL = 11.44, UCL = 16.89, LCL = 5.99, process
is in statistical control. 5. EMWA-chart, CL = 36, UCL = 36.3826, LCL = 35.6174, pro-
cess is in statistical control. 7. EMWA-chart, CL = 36, UCL = 36.2332, LCL = 35.7668,
process is in statistical control.

Review Practice Problems

1. X̄–R chart, CL = 12, UCL = 12.3, LCL = 11.7; CL = 0.412, UCL = 0.939, LCL = 0,
process is out of control; CUSUM-chart, CL = 0, UCL = 5, LCL = −5, process is out
of control at sample 12. 3. MA-chart, CL = 12, UCL = 12.268, LCL = 11.732, process
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is out of control at sample 15. 5. EMWA-chart, λ = 0.4, CL = 25, UCL = 29.58, LCL =
20.42, process is in statistical control. 7. CUSUM-chart, k = 0.5, h = ±5, process is in
statistical control. 9. MA-chart, CL = 24.21, UCL = 26.82, LCL = 21.60, process is out
of statistical control at sample 1. 11. CUSUM-chart, FIR = h/2, process is in statisti-
cal control. 13. MA-chart, m = 3, CL = 46, UCL = 58.64, LCL = 33.36, m = 4, CL =
46, UCL = 56.94, LCL = 35.06, m = 5, CL = 46, UCL = 55.79, LCL = 36.21, process
is in statistical control. 15. EMWA-chart L = 2.5, CL = 46, UCL =54.03, LCL = 37.97,
L = 3, CL = 46, UCL = 55.64, LCL = 36.36,L = 3.5, CL = 46, UCL =57.24, LCL = 34.76,
process is in statistical control. 17. CUSUM-chart, FIR = 3h/4, process is in statistical
control. 19. CUSUM-chart, FIR = h/2, process is in statistical control. 21. EMWA-chart,
L = 2.5, CL = 6.7685, UCL = 7.0004, LCL = 6.5366, L = 3, CL = 6.7685, UCL = 7.0468,
LCL = 6.4902, L = 3.5, CL = 6.7685, UCL = 7.0931, LCL = 6.4439, process is in statis-
tical control. 23. CUSUM-chart k = 0.5, h = 4.77, process is in statistical control. 25.
MA-chart, m = 3, CL = 22, UCL = 23.910, LCL = 20.090, process is out of control on the
lower side at sample 8; m = 5, CL = 22, UCL = 23.480, LCL = 20.520 process came very
close to be out of control at samples 3 and 17.
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Ligges, U., and M. Mächler (2003). “Scatterplot3d - an R package for visualizing multi-
variate data.” Journal of Statistical Software, 8(11), 1–20.

Lohr, S.L. (1999). Sampling Design and Analysis, Duxbury Press.

Lucas, J.M. (1982). “Combined Shewhart CUSUM quality control scheme.” Journal of
Quality Technology , 14(2), 51–59.

Lucas, J.M., and R.B. Crosier (1982). “Fast initial response for CUSUM quality control
scheme.” Technometrics, 24(3), 199–205.

Lucas, J.M., and M.S. Saccucci (1990). “Exponentially weighted moving average control
schemes: properties and enhancements.” Technometrics, 32(1), 1–29.

Lucas, J.M., D.J. Davis, and E. Saniga (2006). “Detecting improvements using Shewhart
attribute control charts when the lower control limit is zero.” IIE Transactions, 38,
659–669.

Mann, N.R., R.E. Schafer, and N.D. Singpurwalla (1974). Methods for Statistical Analysis
of Reliability and Life Data, Wiley.

McDonald, G.C., L.C., Vance, and D.I. Gibbons (1995). “Some Tests for Discrimination
Between Lognormal and Weibull Distributions: An application to Emissions Data,”
Recent Advances in Life Testing and Reliability , Ed. N. Balakrishnan, pp. 475–487.
CRC Press.

McNeil, D.R. (1977). Interactive Data Analysis. New York: Wiley.

Melnykov, V., and R. Maitra (2010). “Finite mixture models and model-based clustering.”
Statistics Surveys, 4, 80–116.

Mendenhall, W.M. and T.L. Sincich (2007). Statistics for Engineers and the Sciences,
Pearson/Prentice Hall.

Miller, I., and M. Miller (2004). John E. Freund’s Mathematical Statistics with Applica-
tions, Pearson/Prentice Hall.

Millikan, R.A. (1930). “Values of the electron and related constants.” Physical Review , 35,
1231.

Mitchell, T.M. (1997). Machine Learning , New York: McGraw-Hill.

Montgomery, D.C. (2009a). Design and Analysis of Experiments, Wiley.



998 C Bibliography

Montgomery, D.C. (2008). Introduction to Statistical Quality Control , Wiley.

Montgomery, D.C. (2011). Applied Statistics and Probability for Engineers, Wiley.

Montgomery, D.C., E.A. Peck, and G.G. Vining (2006). Introduction to Linear Regression
Analysis, Wiley.

Mood, A.M., and Graybill, F.A. (1963). Introduction to the Theory of Statistics,
McGraw-Hill.

Murphy, R.B. (1948). “Non-parametric tolerance limits.” Annals of Mathematical Statis-
tics, 19, 581–589.

Myers, R.H. (1990). Classical and Modern Regression with Applications, Duxbury Press.

Myers, R.H., and D.C. Montgomery (1995). Response Surface Methodology, Process and
Product Optimization Using Designed Experiments, Wiley.

Myers Raymond, H., and Montgomery, D. C. (2002). Response Surface Methodology:
Process and Product Optimization using Designed Experiment , A Wiley-Interscience
Publication.

Nativ, O., Y. Raz, H.Z. Winkler, Y. Hosaka, E.T. Boyle, T.M. Therneau, and M.M.
Lieber (1988). “Prognostic value of flow cytometric nuclear DNA analysis in stage
C prostate carcinoma.” Surgical Forum, (Vol. 39, pp. 685–687). American College of
Surgeons.

Nelson, W.B., and N. Doganaksoy, (1995). “Statistical Analysis of Life or Strength Data
from Specimens of Various Sizes Using the Power-(log) Normal Model,” In Recent
Advances in Life Testing and Reliability , Ed. N. Balakrishnan, pp. 378–408. CRC
Press.

NIST and SEMATECH (2003). Engineering Statistics Handbook, National Institute of
Standards and Technology (NIST). http://www.itl.nist.gov/div898 /handbook/.

Parzen, E. (1960). Modern Probability Theory and Its Applications, Wiley.

Penrose, K.W., A.G. Nelson, and A.G. Fisher (1985). “Generalized body composition
prediction equation for men using simple measurement techniques.” Medicine and
Science in Sports and Exercise, 17(2), 189.

Quesenberry, C.P. (1997). SPC Methods for Quality Improvement , Wiley.

Quinlan, J.R. (1986). “Induction of decision trees.” Machine Learning , 1, 81–106.

Raiffa, H., and R. Schlaifer (1961). Applied Statistical Decision Theory , Graduate School
of Business Administration, Harvard University.

R Core Team (2018). R: A language and environment for statistical computing. R Foun-
dation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Rawlings, J.O. (1988). Applied Regression Analysis, A Research Tool , Wadsworth.

Reid, C. (1982). Neyman from Life, New York: Springer-Verlag.

Reinsel, D., J. Gantz, and R. Rydning (2018). Data Age 2025, The Digitization of the
World From Edge to Core, An IDC White Paper.



C Bibliography 999

Resnikoff, G.J., and G.J. Lieberman (1957). Tables of the Non-Central t-Distribution,
Stanford University Press.

Ripley, B.D. (1996). Pattern Recognition and Neural Networks , Cambridge, England: Cam-
bridge University Press.

Roberts, S.W. (1959). “Control chart tests based on geometric moving averages.” Techno-
metrics, 1(3), 239–250.

Rohatgi, V. (1984). Statistical Inference, Wiley.

Ross, S.M. (1996a). Introduction to Probability and Statistics for Engineers and Scientists,
Academic Press.

Ross, S.M. (1996b). Introductory Statistics, McGraw-Hill.

Russell, V.L. (2009). “Response-surface methods in R, using RSM.” Journal of Statistical
Software, 32(7), 1–17. http://www.jstatsoft.org/v32/i07/.

Ryan, T.P. (2000). Statistical Methods for Quality Improvement , Wiley.

Saniga, E.M., D.J. Davis, and J.M. Lucas (2009). “Using Shewhart and CUSUM Charts
for Diagnosis with Count Data in Vendor Certification Study.” Journal of Quality
Technology , 41(3), 217–227.

Schafft, H.A., T.C. Staton, J. Mandel, and J.D. Shott (1987). “Reproduceability of
electro-migration measurements.” IEEE Transactions on Electron Devices, ED-34,
673–681.

Scheaffer, R.L., W. Mendenhall III, and R.L. Ott (2006). Elementary Survey Sampling ,
Duxbury: Thomson, Brooks/Cole.

Scheffe, H. (1953). “A method for judging all contrasts in the analysis of variance.”
Biometrika, 40, 87–104.

Scheffe, H. (1959). The Analysis of Variance, Wiley.

Schwarz, G. (1978). “Estimating the dimensions of a model.” Annals of Statistics, 6,
461–464.

Scrucca, L. (2004). “qcc: an R package for quality control charting and statistical process
control.” R News , 4/1, 11–17.

Scrucca, L., M. Fop, T.B. Murphy, and A.E. Raftery (2016). “mclust 5: clustering, classifi-
cation and density estimation using Gaussian finite mixture models.” The R Journal ,
8(1), 205–233.

Shewhart, W.A. (1931). Economic Control of Manufactured Product , ASQ Press.

Shewhart, W.A. (1939). Statistical Methods From the Viewpoint of Quality Control ,
Courier Devor Publications.

Siegle, S. (1965). Nonparametric Statistics for the Behavioral Sciences, McGraw-Hill.

Snow, G. (2016). “TeachingDemos: Demonstrations for Teaching and Learning,” R package
version 2.10. https://CRAN.R-project.org/package=TeachingDemos.

Somerville, P.N. (1958). “Tables for obtaining non-parametric tolerance limits.” Annals of
Mathematical Statistics, 29, 599–601.



1000 C Bibliography

Statistical Research Group, Columbia University (1948). Sampling Inspection, McGraw-
Hill.

Steel, R.G.D., and J.H. Torrie (1960). Principles and Procedures of Statistics, McGraw-
Hill.

Stephane, C. (2017). “pwr: Basic Functions for Power Analysis,” R package version 1.2-1.
https://CRAN.R-project.org/package=pwr.

Stephen, M. (2018). “rpart.plot: Plot ‘rpart’ Models: An Enhanced Version of ‘plot.rpart’,”
R package version 3.0.5. https://CRAN.R-project.org/package=rpart.plot.

Stone, G.C., and J.F. Lawless (1979). “The applications of Weibull statistics to insulation
aging test.” IEEE Transactions on Electrical Insulation, EI-14, 233–239.

Student (1908). “On the probable error of the mean.” Biometrika, 6, 1–25.

Sukhatme, P.V., and B.V. Sukhatme (1970). Sampling Theory of Survey with Applications
(2nd edition), Ames: Iowa State University Press.

Therneau, T. (2017). “A Package for Survival Analysis in S. version 2.38. 2015,” Reference
Source. http://CRAN.R-project.org/package=survival.

Therneau, T.M., and E.J. Atkinson (1997). “An introduction to recursive partitioning
using the RPART routines.”

Therneau, T., and B. Atkinson (2018). “rpart: Recursive Partitioning and Regression
Trees,” R package version 4.1-13. https://CRAN.R-project.org/package=rpart.

Therneau, T.M. and P.M. Grambsch (2000). Modeling Survival Data: Extending the Cox
Model , New York: Springer. ISBN: 0-387-98784-3.

Tufte, E.R. (2001). The Visual Display of Quantitative Information, Vol. 2, Cheshire, CT:
Graphics Press.

Tukey, J.W. (1953). The Problem of Multiple Comparisons, unpublished notes, Princeton
University.

Tukey, J.W. (1977). Exploratory Data Analysis, Addison Wesley.

United States Department of Defense (1950). Military Standard. Sampling Procedures and
Tables for Inspection by Attributes (Military Standard 105A.), Government Printing
Office.

Van Dobben de Bruyn, C. S. (1968). Cumulative sum tests: Theory and practice.

Venables, B. (2013). “conf.design: Construction of factorial designs,” R package version
2.0.0. https://CRAN.R-project.org/package=conf.design.

Venables, W.N., and B.D. Ripley (2002). Modern Applied Statistics with S (4th edition),
New York: Springer. ISBN: 0-387-95457-0.

Wackerly, D., Mendenhall, W. and Scheaffer, R.L. (2008). Mathematical Statistics with
Applications, Brooks/Cole.

Wald, A. (1947). Sequential Analysis, Wiley.

Walpole, R.E., Myers, R.M. and Myers, S.L. (2007). Probability and Statistics for Engineers
and Scientists, Pearson/Prentice Hall.



C Bibliography 1001

Weibull, W. (1951). “Statistical Distribution Function of Wide Applicable Applicabil-
ity, ASME Journal of Applied Mechanics, Transactions of the American Society of
Machanical Engineers” Journal of Applied Mechanics, Transactions ASME , 18(3),
293–927.

Weksi, B. (2018). “kmed: Distance-Based k-Medoids,” R package version 0.1.0. https://
CRAN.R-project.org/package=kmed.

Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis, New York:
Springer-Verlag.

Wickham, H., M. Lawrence, D.T. Lang, and D.F. Swayne (2008). “An introduction to
rggobi.” R News , 8(2), 3–7.

Western Electric, (1985). Statistical Quality Control Handbook , Western Electric Corpo-
ration, Indianapolis, IN.

Wilks, S.S. (1948). Elementary Statistical Analysis, Princeton University Press.

Western Electric, (1956). Statistical Quality Control Handbook , Western Electric Corpo-
ration, Indianapolis, IN.

Wilks, S.S. (1962). Mathematical Statistics, Wiley.

Woodward, R.H., and P.L. Goldsmith (1964). Cumulative Sum Techniques, Oliver and
Boyd.

Wu, S.M., (1964). “Tool life testing by response surface methodology, I and II,” Transac-
tions of the ASME, Journal of Engineering for Industry , 86, 105.

Yates, F. (1958). The Design and Analysis of Factorial Experiments, Commonwealth Agri-
culture Bureau.



Index

Aesthetic, 487
Agglomerative, 525–526
Aggregation, 480

data cube, 480
Akaike information criterion (AIC), 548, 733,

831
Aliases, 877, 879–881, 884, 904–905

matrix, 904
Analysis

fitted second-order response surface,
941–946

principal component, 480
regression, 8, 477, 479, 480, 625, 636, 644,

655, 657, 659–663, 668, 670, 676–680,
695, 697, 724, 732

residual, 8, 622, 665–672, 675, 684, 694, 698,
734, 758, 772, 847, 872, 889

Analysis of categorical data goodness-of-fit
tests

applied to testing homogeneity, 577, 578
for 2×2 contingency tables, 568–572
for k categories, θ’s known, 560
for k categories, θ’s unknown, 560
for r× s contingency tables, 572–575, 577,

578
Analysis of variance

approach, simple linear regression analysis,
659–663

approach to regression analysis, 704
case study, 831–832
design models, 758–760
estimable functions, 760
estimable parameters, 758–760
mixed-effects model, 822–824
multiple comparisons, 773–780

Bonferroni method, 777–779
Bonferroni multiple comparison method,

777
one-way ANOVA, 773
Scheffe method, 775–776, 779–780
Tukey method, 776–777, 779

nested (hierarchical) designs, 824–829

Statistics and Probability with Applications for Engineers and Scientists using MINITAB, R and JMP,
Second Edition. Bhisham C. Gupta, Irwin Guttman, and Kalanka P. Jayalath.
c© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/college/gupta/statistics2e

one-way experimental layouts, 761–783
confidence intervals for treatment means,

767–772
Kruskal–Wallis test, 781–783
model and analysis, 761–767

random-effects model, 820–822
randomized complete block designs, 785–792

Friedman Fr-test, 792–793
RCB-design experiment one missing

observation, 794
several missing observations, 795–796

sample size, determination of, 780–781
table, 704–706, 765

Analytics, 477
predictive, 478

ANOVA table. See also Experimental design
for fitted regression, 705
2k factorial designs

Latin square, 813–817
mixed effect, 822–824
nested, 824–829
one-way experiments, 765, 767
random effect, 820–822
two-way experiments, 821, 823

Approximation
to binomial distribution, 193–195, 213–216
binomial probabilities using normal

approximation, 193
to hypergeometric distribution, 137–141

Area under the ROC curve, 498
Assignable causes, 859

Backward eliminating procedure, 730
Bagging, 509
Bar chart, 33–36
Bayes’s theorem, 116

for k events, 118
for two events, 116–117

Bayesian information criterion (BIC), 548–550
Bernoulli distribution, 141

mean and variance, 141–142
Bernoulli populations, 259, 331, 334, 341

1003



1004 Index

Bernoulli variable, 740–741
Binomial coefficient, 111
Binomial distribution, 142

approximation by normal distribution, 193,
194

approximation using central limit theorem,
260

mean and variance, 143, 195
moment generating function, 145
negative, 153–155
probabilities, 143
function, 144
random variable, 143

Big data, 477–479, 490
Binomial parameter

interval estimate, 290
point estimate, 290

Binomial probability distribution function,
193–194

Binomial random variable, 143, 153, 581–583
moment-generating function, 145

Binomial waiting-time distribution, 154
Bivariate normal distribution, 7, 241–243,

681–682
Blocking in two-way experimental designs, 810
Bonferroni multiple comparison method, 777
Boosting, 509
Border object, 544–546
Boxplot (Box-Whisker plot), 75–79

usage, 76–79
Boyle’s law, 623
Building regression type prediction models,

730–734
first variable, to enter, 730–732

Canonical, 941–942, 945
CART, 500, 502
Categorical data, 558–559. See also Analysis

of categorical data
case studies, 568–572

Censoring. See also Reliability
right, 459–460

type I, 459
type II, 457

Center of the design, 904, 908, 919, 931
Central composite designs, 918–929
Central Limit Theorem, 7, 190, 259–263, 303,

314, 367, 378, 382, 582
Charles’s law, 625, 626
Chebychev’s inequality, 255
Chi-square distribution, 264–271, 275, 276,

315, 322–323, 325, 327, 560, 569, 571,
573, 582, 754, 858, 899

contingency table, 578

goodness-of-fittest, 577–579
homogeneity test, 577–579
independence test, 575
mean and variance, 266
moment generating function, 265
p.d.f. defined, 265–266

Chi-square test
for homogeneity, 577–579
statistic, 560

city-block, 520, 521, 538, 553
Class limits

class mark (class midpoint), 38, 67
lower class limit, 25
upper class limit, 25

Classification, 18, 493–499
and regression tree, 500

Closeness, 519, 521
Cluster random sampling, 16

advantage, 17
Cluster

analysis, 518–519, 529, 534, 537
centroids, 539–543

Coefficient
adjusted multiple determination, 736
correlation, 81, 83, 238–239, 241, 243,

520–521, 525, 681–682
determination, 647, 676, 694, 706, 728, 731
variation, 73–75

Combinations, 110–111
application to probability problems, 112

Comparisons
multiple, 773–780
paired, 396

Computing time, 478–480
Conditional distributions, 235–236

conditional probability function, 236
determination marginal probability

functions, 237–238
discrete random variables, 235, 237
uniformly, 237

Conditional probability, 113–116, 235, 236,
238, 446

applying probability in testing quality,
115–116

for continuous random variables, 122, 236
discrete random variables, 235
rule of multiplication of probabilities, 115

Confidence coefficient
confidence interval, 642–645
future observation, prediction interval,

645–649
Confidence interval. See also Interval

estimators
binomial parameter, 333, 335–336



Index 1005

with confidence coefficient, 639–645
contrast, 779–780
correlation coefficient, 681
expected response, 711
future observation, 647–648
regression coefficients, 631, 639

Confidence limits, 290, 302, 310, 314, 319–320,
323, 335–336, 458–459, 648, 864,
872–873

Confusion matrix, 493–495, 497, 505–506
Contingency tables, 523, 525, See also

Analysis of categorical data
2 × 2 case, 568–572
r × s case, 572–575

Continuous distributions
chi-square, 264–271
exponential, 206–210
gamma, 211–214
lognormal, 202–205
normal, 180–188
standard normal, 182–187
Student t, 271–275
uniform, 175–179
Weibull, 214–217

Continuous probability distributions, 175
Continuous random variables, 165–167. See

also Continuous distributions
cumulative distribution function, 232
expected value and function, 168–170
joint probability density function, 232–233
kth moment about mean, 171
kth moments about origin, 133, 171
marginal probability density functions,

232–233
marginals of two continuous variables, 237
mean and variance, 168–173
moment-generating function, 171–172,

187–188
probability density function, 168
two continuous random variables, 232–233
use of marginals to establish independence,

233
variance, 170

Contrasts defining, 773
orthogonal contrasts defined, 773
sum of squares, 773

Control. See also Quality control
c chart, 958
CUSUM chart,

960
CUSUM tabular, 960
CUSUM with initial response, 960
EWMA chart, 960
limits, 989, 990

MA chart, 960
np chart, 958
p chart sample size variable, 958
phase I control charts, 958
phase II control charts, 960
Shewhart Xand R charts, 958
u chart, 958

Control charts, 7, 9, 958–960
for attributes, 7, 959
c chart, 958
conforming/nonconforming, 155, 613
control limits calculation of, 990
vs. specification limits, 184
CUSUM control charts, 960
fast initial response (FIR) feature, 960
one-sided, 960
two-sided, 960
exponentially weighted moving average

(EWMA), 960
for fraction nonconforming, 959
interpretation of Shewhart Xand R chart,

958
moving average (MA), 960
np control chart, 959, 960
operating characteristic curve, 360
p chart, 958
pictorial representation, 129, 136, 175, 230,

231, 237, 240, 242, 715
Shewhart Xand S chart, 958
Shewhart–CUSUM quality control, 960
u control chart, 958
for variables, 9, 961

Control charts: cumulativesum (CUSUM), 960
Core object, 544, 545
Corrected sum of cross products, 629
Correlation coefficient, 81, 238

for bivariate normal, 241–243
definition, 81
between two random variables, 238–239
pairwise, 480

Cosine correlation, 520, 521
Counting sample points, 108–112

applications to probability, 112
combinations, 110–111
multiplication rule, 110
permutations, 110
tree diagram, 108–110

Covariance, 234, 235, 548–551, 703, 722, 734
Cumulative distribution function

of continuous random variable, 232
of discrete random variable, 129–130

Curse of dimensionality, 478
CUSUM charts. See Quality control
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Data
analysis, 33, 477, 489, 800
analytics, 478
bivariate, 81
capturing, 478
Challenger O-ring, 495, 496
collection method, 33, 477
crime, 520, 526, 528, 530, 531
graphical description, 30–47
historical, 7
hospital, 23–24
interval, 19
Iris flower, 483–484, 504, 506
left skewed, 56
management, 477–478
mining, 477–481, 490, 492, 502, 511, 519
nominal, 18, 19
non-numerical, 18
numerical, 18–20
ordinal, 19
paired, 395
pancreatic cancer, 494
Pareto chart, 447
pre-processing, 477, 479, 481
qualitative, 18, 21–24, 31
quantitative, 18, 24–28, 37, 45, 559
ratio, 19
reduction, 477–481, 490
right skewed, 56
selection, 477
Stage C Prostate Cancer, 507–510
storage, 478
symmetric, 56
types, 18–19
visualize, 481–489

Data-ink, 482–483
Database, 477, 479, 511
DBSCAN, 544–547
Decision tree, 490, 499–511
Density-based clustering, 544–547
Density-connected, 544
Density function

exponential, 207
gamma, 450
lognormal, 202
normal, 181–182, 242–243
probability, 168, 212, 214, 232, 233,

236–237, 239, 241, 244–245, 247–248,
272–273, 276–277, 290, 297, 446, 628

Density-reachability, 544–545
Density-reachable, 544–546
Derivations and proofs, 156
Designed experiments, 2

changing criteria, 3

good operating conditions, 3
motivation for study, 2, 3
objective of investigation, 3
phases of investigation, 5–6

Dimensionality, 478–480
reduction, 479

Directly density-reachable, 544–545
Discrete distributions, 7, 121

mean and variance, 130–134
Discrete probability distributions

Bernoulli, 141–142
binomial, 142–145
hypergeometric, 137–140
multinomial, 146
negative binomial, 153–155
Poisson, 147–152, 156
uniform, 136–137

Discrete random variables, 133–134
mean, 131–133
values and functions, 133–134
variance, 131–133

Discrete uniform distribution, 136–137
mean and variance, 136–137

Distance
city-block, 520–521, 538
Euclidean, 519–522, 524, 527–528, 531–532,

537–539
Manhattan, 520
matrix, 520–522, 528, 530, 536
Minkowski, 520

Distribution function
cumulative, 129, 130, 187, 196, 205, 210,

214, 217, 232, 446, 598
independent normal variables, 189–192
independent variables, 189
joint, 229, 233
mean and variance, 233–235
two random variables (continuous), 232–233
two random variables (discrete), 229–232

Divisive, 525–526
Dot plot, 30–31
Dummy variable, definition, 714, 715

Empirical distribution, 129
Empirical rule, 60–63, 79
Encoding, 480
Error mean square, 638
Error of estimation, 292
Error or residual sum of squares (SSE), 637
Error rate, 494
Errors

type I, 355–356, 358, 360, 362, 363, 372,
374, 380–381, 388, 389, 410, 414,
465–466, 592, 652, 653, 707, 774



Index 1007

type II, 355–356, 358–360, 362, 363, 366,
368–376, 381–383, 385, 388–392,
394–396, 398–399, 403, 405, 411, 423,
426, 427, 465–466

Estimable functions, 760
defined, 760
linear combination, 774
linearly, 774

Estimation
efficient estimators, 294
exponential distribution, 457–464
finite population correction, 260
interval estimators defined, 290
margin of error of estimates, defined, 338,

341–342
maximum likelihood estimators, 298–300
method of moments, 295–297
point estimators finding, 295–300
unbiased point estimators, 332
using matrix notation, 701
Weibull distribution, 467–471

Estimator
least squares, 637
properties of least squares, 703–704
regression coefficients, 699–702

Euclidean, 519–522, 524, 526–532, 536–539
Events, 99

complement, 100
difference, 102
disjoint, 103, 104
empty (null), 100, 120
equal/equivalent, 102
impossible, 100
independent, 116, 153, 466
intersection, 101, 103
mutually exclusive, 103
null, 100
subevent, 102
union, 100, 102
Venn diagram, 102

Expectation. See also Mean
of continuous random variable, 168–170
of discrete random variable, 130–133
of function of random variable g(x), 131,

170
Expectation-Maximization, 548
Expected mean squared error, 736
Experimental designs

blocking in 2k factorial designs, 867–876
confidence intervals, for treatment means,

767–772
confounding in 2k factorial designs, 867–875
2k factorial design, 851

blocking, 867–876

confounding, 867–875
one-half replicate of, 877–882
one-quarter replicate of, 882–885
unreplicated, 859–864

Latin square designs, 813–817
mixed-effects, 820

model, 822–824
multiple comparisons in one-way situation,

773–775
nested (hierarchical) designs, 824–829
one-quarter replicate 2k factorial designs,

882–885
one-way layouts, 761–783
random-effects, 820–822

model, 820–822
RCB designs, 785

with one missing observation, 794
with several missing observation,

795–796
three-way layouts, 814
two-way layouts, 798–813
use of orthogonal contrasts for one-way

data, 773
Yates’s algorithm, 875–876

Exponential distribution, 169, 201, 214, 260,
446, 447, 455–459, 464–467. See also
Continuous distributions

distribution function F(x), 207–210
mean and standard deviation, 206
mean and variance, 209
memory less property, 207–208
moment-generating function, 209

Exponential model, 208, 460

Factorial designs, 848
alias in fractional factorials, 879–881
blocking 2k factorial design, 867–876
confounding when blocking 2k design,

867–875
design matrix, 850
generators of fractional factorials, 877
2k factorial design, 848, 850, 971

blocking, 867–876
confounding, 867–875
one-half replicate of, 877–882
one-quarter replicate of, 882–885

unreplicated, 859–864
unreplicated 2k factorial designs, 859–864
Yates’ algorithm, 875–876

False negative, 495
positive, 495

Failure rate function, 446
F distribution, 276

defined, 276
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F distribution (continued)
mean and variance, 276
p.d.f., 276

Finite population, 15, 138
correction factor, 196, 260, 262, 263
random sampling from, 256–257
sampling, 142

First-degree polynomial, 901, 919, 937, 939
First-order linear model, 625, 674
First-order designs, 903–915, 919
First-order coefficient, 899
First-order Taylor series, 898
Forward selection procedure, 730
Frequency distribution tables, 20

qualitative data, 21–24
quantitative data, 24–28

Frequency histogram, 37–39, 41, 42
frequency polygon, 39–40
relative, 37–39

Frequency table
for qualitative data, 24
for quantitative data, 26

Friedman test, 792–793. See also
Nonparametric tests

Gamma distribution, 201. See also Continuous
distributions

gamma model for industrial breakdowns,
213

mean and variance, 212
moment generating function, 212
probability density function, 212
scale parameter, 211
threshold parameter values, 211

Gauss–Markov theorem, 626, 704
Gini split, 502–504

impurity, 501
index, 501–504
indices, 502

Goodness-of-fit tests, 577

Hat matrix, 721–722, 738
Hazard rate function, 446

definition, 446–447
employing, 455–456
estimation (exponential), 457–459
estimation (lognormal), 471
estimation (Weibull), 467–468
hypothesis testing (exponential), 465–467

Heterogeneous, 499, 524, 547
Heteroskedasticity, 734
Hierarchical, 519, 824

clustering, 525–526, 536–537
Historical data, 7

Homogeneity
Chi-square test for, 577–579
null hypothesis of, 579

Homogeneous, 499, 518, 519, 578
Homogeneous populations. See also Analysis

of categorical data
test for homogeneity, 578–579

Hypergeometric distribution, 137–139
mean and variance, 138

Hypothesis testing
basic concepts, 353–357
case studies, 430–431
composite hypothesis, 354
confidence intervals, 418–422
correlation coefficient, 681
critical (rejection) and acceptance regions,

355
difference of two population

means-known variance, 340
means-unknown variance, 341
proportions, 341

exponential distribution, 465–467
hypothesis formulation, 353–355
known variances, 380

left-tail test, 380–381
right-tail test, 381–382
two-tail test, 383–386

large sample theory, 378–379
normal population mean

with known variance, 358–371
with unknown variance, 372–376

null, alternative hypotheses, 356
null hypothesis, 356
one population proportion, 340–341
one-tail and two-tailed tests, 354
one-tail (left-sided) test, 358–362
one-tail (right-sided) test, 362–363
power of test, 357
ratio of two normal population variances,

328–329
regression coefficients, 652
research/alternative hypothesis, 354
risk assessment, 355–357
sequential tests

one-tail sequential testing procedure,
422–427

two-tail sequential testing procedure,
427–428

simple and composite hypotheses, 354
statistical hypotheses using confidence

intervals, 418–422
subsets of regression coefficients, 707
testing population proportions, 401
testing under normality, 197
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testing with large samples, 378–379
t-tests, 395–396

paired, 395–396
two population proportions, differences,

405–409
two-sided sequential test, 427–428
two-tail test, 363–371
type I and II errors, 358
unknown variance

left-tail test, 372–373
paired t-test, 395–399
right-tail test, 373
two population variances
equal, 388–392
unequal, 392–395
two-tail, 374–376

using confidence intervals, 418–422
variances of normal population, 410–417

Impurity, 499, 501, 502, 507
Independent normal variables, 189

distribution of linear combination, 189–192
means and variances, 190–191
random sample, 190

Instantaneous failure rate, 447
Interquartile range, 72–73
Interval data, 19
Interval estimators (confidence interval), 308

for difference of means of two normal
populations, 313

for mean μ of a normal population, 301–311
one-sided

for the binomial parameter, 331–333
difference of two binomial parameters,

335
large sample sizes, 339
for means: normal case, mean unknown,

304–306
for ratio of two variances, 328–329
and variance known, 313–314
for variances; normal case, 322–325
and variance unknown, 314–320
for parameters of binomial populations,

331–333
two-sided

binomial parameter, 334–337
difference of two binomial parameters,

339–340
difference of two means with variance

known, 335
difference of two means with variance

unknown, 335
large sample size, 334
means: large sample sizes, 306

means: normal case, mean unknown,
variance known, 302

means: normal case, mean unknown,
variance unknown, 304, 305

ratio of two variances, normal case,
327–330

subset of regression coefficients, 736
use of pivotal quantities, 301–302

for variance of normal population, 322–327

Jaccard coefficient, 524
JMP. See Various procedures
Joint distributions

continuous random variables, 232–233
discrete random variables, 229–232
2k factorial designs, 847–889. See also

Factorial designs
aliases, 879
ANOVA table, 870
blocking, 867
confounding, 867–868
case studies, 887–889
contrast coefficients, 877
fractional replication, 880
geometric display, 851
linear and quadratic effect, 858
one-half replicate, 877–882
one-quarter replicate, 882–885
unreplicated, 859–864
Yates’s algorithm, 875–876

K-means, 538, 541–543, 547
K-medoids, 538
Kruskal–Wallis test, 781

H test, 792
for one-way layouts, 781–783

Lack-of-fit statistics distribution of, 581–583
Latin square designs, 813–819, 867

ANOVA table for r × r latin square design,
817

experimental designs, 813–819
Least squares, 469, 471. See also

Gauss–Markov theorem
estimating reliability, 468–471
fitting multiple regression model, 693, 699
fitting simple regression model, 622,

626–631
Least-squares estimators, 628, 637, 700, 701,

748, 760, 941
properties, 703–704

Likelihood. See also Maximum likelihood
estimation, 297, 298

Line graph (time-series graph), 44



1010 Index

Linkage
average, 526, 533–536, 555
complete, 526, 531–533, 535, 536, 555
single, 526–531, 535, 536, 554

Logistic regression, 477, 481, 495, 496, 498,
500, 514, 740–745, 753, 754

Logit transformation, 741
Lognormal distribution, 201–206

mean and variance, 202, 203, 471
Lognormal model, 459–460, 462
Lower confidence limit (LCL), 290, 302
Lower one-sided confidence intervals, 308, 309

Machine learning, 8, 477, 499
Manhattan distance, 520
Mann–Whitney W test, 618, 620

for two samples (not paired), 618
Marginal distributions, 229–231, 239, 240, 242

arising from two continuous random
variables, 232–233

discrete random variables, 229
used to establish independence of two

random variable, 230–231
Marginal probability, 230

used to establish independence, 230
Margin of error, 292, 293, 295, 303, 338–342,

348–350
Match-Mismatch, 524, 554
Mathematical model, 623, 629, 811, 812, 819,

888, 889, 912
Maximum likelihood, 295, 297–301, 457, 459,

468, 471, 548, 561, 628, 675
for estimating reliability, 457, 459
estimator, 298–300, 457, 628, 704
method, 295, 297–301, 469, 671, 675

Maximum likelihood estimation, 297, 298,
470, 473, 474, 548, 763

Mean
discrete random variable, 130–135
population mean, 8, 51, 52, 58, 67, 130, 254,

256, 258, 261, 290–305, 308–311, 313,
314, 316, 319, 338–340, 357, 358, 378,
381, 383, 389, 393, 395, 401, 418,
425, 437, 565, 762

sample, 7, 51, 52, 64, 74, 190, 192, 255,
258–264, 303, 358, 378, 491

weighted mean, 54–55
Mean squared error, 293, 294, 638, 663, 736,

737
Mean time between failures (MTBF), 458,

459, 465, 472, 474, 475
Measures of association, 80–84
Measures of centrality, 56–66

mean, 51–52

median, 53–54
mode, 55–56
weighted mean, 54–55

Measures of dispersion, 56–66
range, 57
standard deviation, 59–60
variance, 57–59

Measures of relative position, 70–75
coefficient of variation, 73–75
interquartile range, 72–73
percentiles, 71–72
quartiles, 72

Median, 14, 45, 46, 51–54, 56, 57, 64, 68, 71,
72, 76, 282–285, 290, 294, 461, 492,
538, 592, 593, 595–599, 603, 608–611

Merging cost, 536, 537
Method

maximum likelihood, 295, 297–301, 469,
671, 675

moments, 295–297
steepest ascent, 900, 937–941

MINITAB, used in various procedures, 9, 14,
129, 165, 253, 289, 368, 449, 528,
563, 594, 623, 624, 694, 695, 758,
769, 847, 897, 959

Minkowski, 520
Missing data, 490

mixed-effects models, 794–796
two-way layouts, 798–813
values, 490

Mode, 51, 55–57, 64
Model

design, 758–761
multiple linear regression, 694–699, 707,

726, 734, 748
multiple linear regression with qualitative

variables, 714–726
normal error regression, 626
selection criteria

adjusted coefficient of determination, 736
coefficient of determination, 735–736
Mallow’s Cp statistic, 736–737
PRESS statistic, 738

simple linear regression, 624–637, 644, 665,
667, 668, 680, 691, 694, 698, 699,
741, 742

Model-based clustering, 547–552
Moment-generating function, 7, 129, 133, 142,

145, 151, 152, 155, 245–247, 249, 251,
252, 265–267

revisited, 245–249
Moments, 133

about the origin, 132, 171
about the population mean, 130



Index 1011

as an expectation, 131
method of, 295–297
moment-generating function expected value

of a special function, 133–135,
171–172

used to determine estimators, 296
Mound, 902, 941, 942, 945
Moving average (MA), 960

control chart, 960
Multicollinearity, 478, 694, 728–730
Multinomial distribution, 146–147

probabilities for trinomial situation, 146
Multiple comparisons in one-way layouts, 776

Bonferroni, 777, 779–780
Scheffe (S-method), 775–779
Tukey (T-method), 776–777, 779

Multiple determination R2 coefficient, 735–736
Multiple linear regression analysis, case

studies, 745–747
Multiple linear regression models, 694–699

second-order, 694
single qualitative variable

with three/more categories, 716–725
with two categories, 714–715

using quantitative and qualitative predictor
variables, 714–726

Multivariate normal distributions, 547

Negative binomial distribution, 153
binomial waiting-time distribution, 157
case study, 156–157
mean and variance, 155
probability function, 153

Nested (hierarchical) designs, 824–831
ANOVA table for a nested design with

mixed-effects, 826
Network graph, 520–522
Noise object, 544, 545
Nominal data, 18, 19
Non parametric tests Friedman test for

Kruskal–Wallis test, 781–785
Mann–Whitney (Wilcoxon) test, 604–608
one sample sign test, 592–595
RCB design, 792–794
run tests (above, below the median),

608–611
sign test, 592–604
two-sample test, 598–604
Wald–Wolfowitz run test, 611–614
Wilcoxon signed rank test, 595–598

Normal distribution, 7, 165, 180–189
approximation of binomial and Poisson

distribution, 193–196

characteristics, of normal density function,
181

cumulative distribution function, 182, 187
definition, 180–182
linear combination of independent variables,

189, 190
mean and standard deviation, 180–181
moment generating function, 187–189
normal density function, 181–182
probabilities, 183, 184
properties, 180–182
random variable, 182, 183
significance points, 186
standard, 182–187, 203, 260, 265, 302, 367
tests for normality, 196, 198
variance, 181

Normal equations
multiple linear regression model, 700
simple linear regression model, 629

Normal error regression model, 626
Numerical measures of grouped data, 67–70

mean of grouped data, 67–68
median of grouped data, 68
mode of grouped data, 69
variance of grouped data, 69

Numerosity reduction, 481

Observational study, 2, 6–7
Observed cell frequency, 559
Ogive curve, 43
One-factor-at-a-time, 937
One-sample sign test, 595, 603
Operating characteristic (OC) curve, 360
Optimal point, 898, 900, 923, 937
Order statistics, 279

distribution of kth order statistic, 282–284
distribution of median, 281–282
distribution of smallest observation,

281–282
Ordinal data, 19, 480
Orthogonal blocks, 919, 920, 929, 934, 936
Orthogonal contrasts, 773, 811, 848–850, 852,

853, 877
Outcomes of a repetitive operation

(experiment), 98
Outliers, 14, 52, 54, 75–77, 79, 80, 89, 92, 95,

477, 479, 481, 491–492, 513, 536, 538,
544, 546, 547, 665, 694

Paired t-test, 395–401
Parameters, 51

noncentrality, 267, 271, 274, 278, 372–373,
660, 787, 803, 804

Pareto chart, 958
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Partial regression coefficients, 698, 903
Path of steepest ascent, 915, 929, 937–941,

948, 950
Pearson correlation coefficient, 81, 83, 520
Pearson product moment correlation, 525
Percentiles, 70–72, 84, 197, 198
Permutations, 108, 110, 111, 611
Pie chart, 31–33
Pivotal quantity, 301, 302, 304, 332, 334, 356,

357, 360, 363, 402, 406
Plots

bar chart, 33–36
box-whisker, 75–80
cumulative frequency histogram, 41–42
dot plot, 30–31
frequency and relative frequency polygons,

39
histograms, 37–43
line graph, 44
pie chart, 31–33
scatter plot, 81–83, 485–487, 625, 628, 630,

631, 655, 656, 665–668
scatter plot 3D, 487, 488, 550
stem-and-leaf plot, 45–48

Point estimators, 290–301, 313, 315, 332, 401,
571, 626, 630, 767

Poisson distribution, 147, 150
approximating binomial probability using,

149
approximating by normal distribution, 196
binomial approximation, 149
definition and properties, 147–148
derivation, 156
limiting form of Binomial, 148–153
mean and variance, 152
moment generating function, 151
Poisson experiment, 150
rare events, 147

Poisson process, 148, 150, 206–208, 446
Pooled estimator, 315
Population, 15

finite, 15
infinite, 15
mean, 51, 52
sampled, 15
in a statistical study, 16–17
target, 15, 16
variance, 58

Population parameters, estimation of, 6,
289–351

case study, 343
interval estimators

known variances, 313–314
normal population variance, 322–331

one binomial population, 331–334
sample size is large, 306–313
σ2 know, 301–304
σ2unknow, 304–305
two binomial populations, 334–338
two normal population, variance ratio,

313–322
unknown variances, 314–322

point/interval estimators, 290
mean and variance, 290–291
method of maximum likelihood, 297–300
methods of finding, 295–301
properties of, 292–295

sample size determination
one population mean, 339
one population proportion, 340–341
two population means, difference,

339–340
two population proportions, difference,

341–343
Practical interpretation, 303, 304, 309, 329
Prediction error sum of squares (PRESS),

480, 694, 735, 738
Predictive accuracy, 479
Predictor (independent) variable, 624, 717
Probability, 98, 103. See also Rules of

probability
bar charts, 194, 195
conditional, 97, 113–118, 208, 235
determination of probabilities of some

events, 105
models commonly used in reliability theory,

201–218
lognormal distribution, 202–205
mean and variance, 203

probability density function, 166, 168, 212,
214, 232, 233, 236, 237, 239, 241,
244, 245, 247, 248, 254, 272, 273,
277, 290, 297, 426, 446, 628

probability histograms, 194
rule for addition of probabilities

for mutually exclusive events, 105
for two arbitrary events, 105

rule for complementation, 104, 105
theory applicable for, 98

Probability distributions, 7, 39, 229, 256, 258,
259, 272, 276, 279, 282, 283, 294,
296, 338, 353, 357, 547, 571, 626,
627, 639, 640, 660

continuous, 164–227
discrete, 128–163

Process capability, 958. See also Quality
control

Process standard deviation, 958, 959
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Proportions
testing hypotheses concerning one

proportion, 354
testing hypotheses concerning two

proportions, 354, 407
Pruning, 500
Pure error, 723, 724, 908, 910, 914, 915, 918,

921, 933, 937, 947

Qualitative data, 18, 21–24, 31, 33
graphical description, 30–50

Quality control, 7, 29, 73, 89, 147, 156, 161,
163, 257, 356, 380, 428, 440, 589,
613, 813, 819, 826, 831

c-control chart, 958
control charts, 7, 958–960
CUSUM charts, 960
defect concentration diagram, 958
exponentially weighted moving average

charts, 960
moving average charts, 960
operating characteristic curves

Pareto charts, 958
process capability defined, 958
Shewhart X and R control, 958

Shewhart X and S control charts, 958
statistical, 958–960
u-chart, 958

Quantitative data, 18, 24–30
graphical description, 30–50
numerical measures, 50–66

Quartiles, 72
Q1, 25th percentile, 72–73
Q2, 50th percentile, 72–73
Q3, 75th percentile, 72–73

Random effects models, 820–822
ANOVA table for data in two-way layouts,

with fixed and random effects (mixed
model), 821, 823

with no fixed effects, 820
with some fixed effects, 822

Random experiments, 98
basic features, 98
outcome, 98, 99
sample space of experiment, 98–99

finite, 99
infinite, 99

Random forest, 509
Randomized block design, 785

analysis, 788
defined, 785
Friedman F-test for a RCB design, 794
missing observations, 794–796

Randomized complete block designs, 786,
792–794

Random sampling from finite population,
256–257

Random sampling, systematic, 16
cluster, 16, 17
designs, 16
simple, 16
stratified, 17
units, 16

Random variables, 120
continuous, 39, 122, 130, 165
continuous random variables, 130
correlation, 238–241

independence and correlation coefficient,
238–241

discrete, 121, 128, 130
distributions of functions, 228, 229

discrete, 229–230
extension, 244

mutually independent, 245
mean value and variance of functions,

233–235
probability function, 121

joint, 230–232
marginal, 230–233, 235, 237, 244, 245

Rank correlation (Spearman), 614–617
Ratio data, 18, 19
RCB-design, 788, 790, 794–796, 800
Receiver operating characteristic curve, 498
Regression analysis, 625, 676–679, 697, 724
Regression coefficients, estimation using

matrix notation, 701–702
Regression coefficients, inferences, 706–712
Regression, multiple, 693, 694, 698, 722

analysis of variance, 704
coefficient of multiple determination-R2,

735–736
criteria for model selection, 734–740
estimation of the regression coefficients, 701
logistic, 477, 481, 495, 496, 498, 500, 514,

515, 694, 740–745, 753, 754
Mallows’ statistic, 694, 736–737
model for multiple regression, 698
multicollinearity, 728–730
multiple regression with some categorical

variables, 722
normal equations, 700
PRESS statistic, 738–740
properties of least-squares estimates of

coefficients, 703–704
residual analysis for the multiple model,

665–674
standardized regression coefficients, 726
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Regression, multiple (continued)
stepwise regression procedure (forward

selection), 730, 732
tests of hypotheses concerning the

regression coefficient, 681
tests of simultaneous hypothesis concerning

r of k regression coefficients, 707
trees, 507–510
use of matrix notation, 701–702

Regression, simple
analysis of variance (simple model), 659–663
confidence intervals for (β0, β1)/ E(Y/X),

639–652
connection-least squares and normality, 628
correlation, 681
fitting model by least squares, 627–631
regression coefficients, 631–637
residual analysis, 665–674
solution to normal equations, 631
tests of hypotheses for β0 and β1, 652–659

Relative frequency polygon, 39
Reliability

definition, 446
estimate, 458
estimation of MTBF, 458–459
function (see Reliability function)
hypothesis testing, 465–467
least square methods, 468, 469, 471
probability plots, 460–462, 468, 470
right censoring, 459, 460
type I censoring, 457
type II censoring, 457

Reliability function, 446–456
case studies, 472–474
employing, hazard function, 455–456
hazard rate function, 455–456

Residual analysis, 665–675, 734–740
certain criteria for, 734–740

adjusted coefficient of multiple
determination, 736

Mallows’ Cp statistic, 736–737
prediction error sum of squares (PRESS)

statistic, 738–740
R2 coefficient of multiple determination,

735–736
Residual mean square. See Error mean square
Response surface, 487, 696, 848, 897–957

methodology, 9, 897, 898, 900, 948
Ridge

falling, 902, 941, 943
rising, 900–902, 941, 943
stationary, 902, 941, 943

ρ inference, 681–683
Rotatable design, 919, 925, 926

RSM, 897, 898, 900, 948
Rules of probability, 104

additive set function, 104
axioms of probability, 104
complementation rule, 104, 105
for mutually exclusive events, 105, 118–120,

125
for n (n >2) arbitrary events, 106
for two arbitrary events, 106

Runs tests
above and below the median, 608–611
Wald–Wolfowitz run test, 611–614

Russel and Rao, 524

Saddle, 902, 923, 941, 943
Sample

designs, 16
random, 16
relevant information, 6
in statistical study, 14–17
survey, 6, 558
types of sampling, 16

Sample average (sample mean), 51, 52
weighted, 54

Sample correlation coefficient, 81, 681. See
also correlation coefficient

Sample correlation matrix, 727
Sample size determination, 338–343, 780–781
Sample space, 98–106, 108–110, 112–116, 120,

121, 136–138, 142, 143, 149, 165,
229–234, 236, 237, 244, 283, 354, 355

finite, 99, 104, 108, 112, 120, 229
infinite, 99, 104, 149

Sampling distributions, 253–288
central limit theorem, 190, 259–264
Chebychev’s inequality, 255
Chi-square, 264–271
F-distribution, 276–279
finite population correction factor, 260
mean and variance, 255–257, 266, 272, 276
sampling from finite population, 256–258
sampling from infinite populations, 254–256
Student t-distribution, 271–275
variance (normal distribution), 268–269

Sampling frame, 16
Sampling random, 16

cluster, 16, 17
stratified, 16, 17
systematic, 16, 17

Sampling units, 16
Satterthwaite’s approximation, 318, 393, 394
Scatter plot, 81–83, 485–487, 625, 628, 630,

631, 655, 656, 665–668
aesthetic, 487–489
3D, 487, 488, 550
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Scheffe methods, 777–779
Second-order (central composite) designs

design, 917–936
model, 899, 900, 902, 931–933, 943, 946–948
polynomial, 899, 900, 903
response surface, 899, 941–946
Taylor series, 899

Sequential hypothesis testing
one-sided, 427
two-sided, 427, 428

Sign test
one sample, 592–595
two-sample, 598–604

Silicon wafer, 344
Similarity, 525, 526

coefficients, 523–525
Simple correlation matrix, 728
Simple linear regression analysis

analysis of variance approach, 659–665
case study, 683–684
mathematical model, 623, 629

Simple linear regression model, 624–627
regression coefficients, estimators sampling

distribution of, 631–637
straight line fitting by least squares,

627–631
Simple matching coefficient, 524
Simple random sampling design, 16
Single-factor method, 937
Snedecor’s F-distribution, 276–279, 327, 764,

855
mean and variance, 276
ratio of two sample variances, 276

SOIC package, 430
Spearman rank correlation, 614–617
Spearmen correlation, 525
Standard deviation, 14, 57, 59–66, 69, 70, 73,

74, 78–80, 91–95, 160, 168, 169,
173–175, 178–182, 184–189, 191, 198,
203, 205, 206, 213, 238, 241, 255,
258, 260–263, 269, 284, 290, 293–295,
302, 306, 307, 310, 316, 319, 324–329,
339, 357, 367, 368, 378, 383, 390–392,
398, 423, 454, 477, 565, 606, 612,
771, 958, 959

Standard error, 258, 294, 295, 335, 676, 679,
711, 720, 721, 774

Standardized regression coefficients, 726–730
multicollinearity, 728

consequences of, 729–730
Standard Latin square, 814
Standard normal variable, 182, 183, 192, 332,

600
approximating binomial probabilities, 195

density function, 183
tables of the cdf, 600

Statistic, 1, 7, 14–17, 50, 51, 125, 131, 167,
253, 284–286, 289, 352, 353, 449, 476,
519, 560, 591, 592, 623, 624, 694,
758, 847, 848, 897, 959, 961

Statistical data
classifications (see Data)
methods of data collection, 2

Statistical interpretation, 303
Statistical quality control (SQC), 958–960
Statistics

defined, 14
descriptive, 14
examples, 14
inferential, 14

Steepest
ascent, 900, 915, 929, 937–941, 948, 950
descent, 900, 915, 937, 938

Stem-and-leaf plot, 45–48
Stepwise regression procedure, 730
Strata, 17
Stratified random sampling

design, 17
example, 17

Student t distribution
mean and variance, 272
pdf defined, 272
Student-t random variable, 272

Student-t random variable, 272
Sum of squares due to regression (SSR), 659,

706, 708
Sum of squares of errors (SSE), 637, 638,

704, 706, 708, 760, 764, 786, 789,
794–796, 800, 802, 815, 854, 880,
914, 947

σ2 unbiased estimator, 637–639, 663, 705
Systematic random sampling, 16, 17

Test of normality, 196–201
graphical test of normality, 197
normal probability plot for data, 197–200

Three-way layouts, 814
Transformations, 219, 247, 405, 477, 666, 667,

674–680, 726, 727, 741, 941
wavelet, 480

Tree diagram, 108–110
Tukey methods, 776–777, 779
Two-way experimental designs, 804, 820, 821,

823, 828, 837, 838
interaction effects in two-way designs,

799
with one observation per cell, 800
r(r >1) observations per cell, 801–810
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Two-way experimental layouts, 798–800, 807
analysis of variance table, 804, 805
blocking, 810
with blocking, 810
designs to n-way experimental layouts,

811–813

Unbiased estimator, 290, 292–294, 297,
299–301, 334, 471, 628, 631, 633,
637–639, 663, 703–705, 765, 776, 788,
802, 810, 904, 953

Unbiased point estimator, 291, 304, 313, 315,
332, 571

Uniform distribution, 136, 175–180
cumulative distribution function, 179
definition, 175–178
discrete, 136–137
mean and variance (continuous case), 168
mean and variance (discrete case), 136–137
moment generating function, 178
probability for uniform random variable,

175–177
properties, 175–178

Upper confidence limit (UCL), 290, 302, 331,
335, 350

USING R
BSDA, 307, 308, 310, 317, 320, 370, 375,

376, 385, 386, 391, 392, 394–395, 595
conf.design, 873
datasets, 485
dbscan, 546
fpc, 534
ggplot2, 488
kmed, 555
lme4, 829
MASS, 733
Mclust, 549
party, 506
pwr, 370, 371, 376, 392, 399, 405
qgraph, 521
rpart, 509–510
rpart.plot, 510
rsm, 911, 924–925
Scatterplot3d, 487, 488
stats, 140, 144, 151, 155, 308, 398, 399, 404,

408, 534, 598, 606

survival, 462
TeachingDemos, 412, 416–417

Variable, 17
test of normality, 196

Variance, 57–59, 69
continuous random variable, 168–173
discrete random variable, 130–135
population variance, 8, 58, 69, 254, 258,

291, 292, 295, 296, 305, 324, 325,
328, 329, 340, 378, 388–395, 411, 412,
415, 418, 761

sample variance, 7, 58, 59, 69, 258, 268, 269,
274, 275, 290, 291, 323, 326, 327,
340, 353, 372, 410, 414, 415, 761

Variance-covariance matrix, 548, 703, 722
Variance of grouped data, 69, 565
Variance table, analysis, 660–662, 686,

704–706, 724, 751, 765, 766
Venn diagram, 100–102, 116–118
Visualization, 477, 481–490, 552

Waiting time distribution, 154
Wald–Wolfowitz run test, 611–614
Ward’s clustering, 536–538
Wavelet transformation, 480
Weibull distribution, 164, 201, 214–217. See

also Continuous distributions
case study, 218–219
location/threshold parameter, 215
mean and variance, 215–216
MINITAB and R for, 216–217
scale parameter, 215
standard, 215

Weibull model, 461, 468, 470, 472, 473
Western electric rules, 959
Wilcoxon rank-sum test, 604, 607
Wilcoxon signed-rank test, 595–598, 603,

604
Wilcoxon W test, 604–608. See also

Mann–Whitney W test

Yates’ algorithm for 2k factorial designs,
875–876

Yates’s order, 850–852, 875, 877, 881
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