

“FM” — 2017/10/11 — 12:40 — page 1 — #1

NUMERICAL SOLUT ION OF
DIFFERENT IAL EQUAT IONS

This introduction to finite difference and finite element methods is aimed at
advanced undergraduate and graduate students who need to solve differential
equations. The prerequisites are few (basic calculus, linear algebra, and ordi-
nary and partial differential equations) and so the book will be accessible and
useful to readers from a range of disciplines across science and engineering.

Part I begins with finite difference methods. Finite element methods are
then introduced in Part II. In each part, the authors begin with a comprehen-
sive discussion of one-dimensional problems, before proceeding to consider
two or higher dimensions. An emphasis is placed on numerical algorithms,
related mathematical theory, and essential details in the implementation, while
some useful packages are also introduced. The authors also provide well-tested
Matlab® codes, all available online.

ZHILIN LI is a tenured full professor at the Center for Scientific Computation &
Department of Mathematics at North Carolina State University. His research
area is in applied mathematics in general, particularly in numerical analysis
for partial differential equations, moving interface/free boundary problems,
irregular domain problems, computational mathematical biology, and sci-
entific computing and simulations for interdisciplinary applications. Li has
authored onemonograph,The Immersed InterfaceMethod, and also edited sev-
eral books and proceedings.

ZHONGHUA QIAO is an associate professor in the Department of Applied
Mathematics at the Hong Kong Polytechnic University.

TAO TANG is a professor in the Department of Mathematics at Southern
University of Science and Technology, China.

13:40:38, subject to the Cambridge Core

http://www.ebook3000.org

“FM” — 2017/10/11 — 12:40 — page 2 — #2

13:40:38, subject to the Cambridge Core

“FM” — 2017/10/11 — 12:40 — page 3 — #3

NUMERICAL SOLUTION OF
DIFFERENTIAL EQUATIONS

Introduction to Finite Difference and
Finite Element Methods

ZHILIN LI
North Carolina State University, USA

ZHONGHUA QIAO
Hong Kong Polytechnic University, China

TAO TANG
Southern University of Science and Technology, China

13:40:38, subject to the Cambridge Core

http://www.ebook3000.org

“FM” — 2017/10/11 — 12:40 — page 4 — #4

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107163225
DOI: 10.1017/9781316678725

© Zhilin Li, Zhonghua Qiao, and Tao Tang 2018

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2018

Printed in the United Kingdom by Clays, St Ives plc

A catalogue record for this publication is available from the British Library.

ISBN 978-1-107-16322-5 Hardback
ISBN 978-1-316-61510-2 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy
of URLs for external or third-party internet websites referred to in this publication
and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate.

13:40:38, subject to the Cambridge Core

“FM” — 2017/10/11 — 12:40 — page v — #5

Table of Contents

Preface page ix

1 Introduction 1
1.1 Boundary Value Problems of Differential Equations 1
1.2 Further Reading 5

PART I FINITE DIFFERENCEMETHODS 7

2 Finite Difference Methods for 1D Boundary Value Problems 9
2.1 A Simple Example of a Finite Difference Method 9
2.2 Fundamentals of Finite Difference Methods 14
2.3 Deriving FD Formulas Using the Method of Undetermined

Coefficients 19
2.4 Consistency, Stability, Convergence, and Error Estimates of

FD Methods 21
2.5 FD Methods for 1D Self-adjoint BVPs 27
2.6 FD Methods for General 1D BVPs 29
2.7 The Ghost Point Method for Boundary Conditions Involving

Derivatives 30
2.8 An Example of a Nonlinear BVP 34
2.9 The Grid Refinement Analysis Technique 37
2.10 * 1D IIM for Discontinuous Coefficients 39

Exercises 44

3 Finite Difference Methods for 2D Elliptic PDEs 47
3.1 Boundary and Compatibility Conditions 49
3.2 The Central Finite Difference Method for Poisson Equations 51
3.3 The Maximum Principle and Error Analysis 55

13:40:46, subject to the Cambridge Core

http://www.ebook3000.org

“FM” — 2017/10/11 — 12:40 — page vi — #6

vi Table of Contents

3.4 Finite Difference Methods for General Second-order Elliptic
PDEs 60

3.5 Solving the Resulting Linear System of Algebraic Equations 61
3.6 A Fourth-order Compact FD Scheme for Poisson Equations 67
3.7 A Finite Difference Method for Poisson Equations in Polar

Coordinates 69
3.8 Programming of 2D Finite Difference Methods 72

Exercises 75

4 FD Methods for Parabolic PDEs 78
4.1 The Euler Methods 80
4.2 The Method of Lines 85
4.3 The Crank–Nicolson scheme 87
4.4 Stability Analysis for Time-dependent Problems 89
4.5 FD Methods and Analysis for 2D Parabolic Equations 97
4.6 The ADI Method 99
4.7 An Implicit–explicit Method for Diffusion and Advection

Equations 104
4.8 Solving Elliptic PDEs usingNumericalMethods for Parabolic

PDEs 105
Exercises 105

5 Finite Difference Methods for Hyperbolic PDEs 108
5.1 Characteristics and Boundary Conditions 109
5.2 Finite Difference Schemes 110
5.3 The Modified PDE and Numerical Diffusion/Dispersion 115
5.4 The Lax–Wendroff Scheme and Other FD methods 117
5.5 Numerical Boundary Conditions 120
5.6 Finite Difference Methods for Second-order Linear

Hyperbolic PDEs 121
5.7 Some Commonly Used FD Methods for Linear System of

Hyperbolic PDEs 127
5.8 Finite Difference Methods for Conservation Laws 127

Exercises 131

PART II FINITE ELEMENTMETHODS 133

6 Finite Element Methods for 1D Boundary Value Problems 135
6.1 The Galerkin FE Method for the 1D Model 135
6.2 Different Mathematical Formulations for the 1D Model 138
6.3 Key Components of the FE Method for the 1D Model 143

13:40:46, subject to the Cambridge Core

“FM” — 2017/10/11 — 12:40 — page vii — #7

Table of Contents vii

6.4 Matlab Programming of the FE Method for the 1D Model
Problem 152
Exercises 156

7 Theoretical Foundations of the Finite Element Method 158
7.1 Functional Spaces 158
7.2 Spaces for Integral Forms, L2(Ω) and Lp(Ω) 160
7.3 Sobolev Spaces and Weak Derivatives 164
7.4 FE Analysis for 1D BVPs 168
7.5 Error Analysis of the FE Method 173

Exercises 178

8 Issues of the FE Method in One Space Dimension 181
8.1 Boundary Conditions 181
8.2 The FE Method for Sturm–Liouville Problems 185
8.3 High-order Elements 189
8.4 A 1D Matlab FE Package 195
8.5 The FE Method for Fourth-order BVPs in 1D 208
8.6 The Lax–Milgram Lemma and the Existence of FE Solutions 214
8.7 *1D IFEM for Discontinuous Coefficients 221

Exercises 223

9 The Finite Element Method for 2D Elliptic PDEs 228
9.1 The Second Green’s Theorem and Integration by Parts in 2D 228
9.2 Weak Form of Second-order Self-adjoint Elliptic PDEs 231
9.3 Triangulation and Basis Functions 233
9.4 Transforms, Shape Functions, and Quadrature Formulas 246
9.5 Some Implementation Details 248
9.6 Simplification of the FE Method for Poisson Equations 251
9.7 Some FE Spaces in H1(Ω) and H2(Ω) 257
9.8 The FE Method for Parabolic Problems 272

Exercises 275

Appendix: Numerical Solutions of Initial Value Problems 279
A.1 System of First-order ODEs of IVPs 279
A.2 Well-posedness of an IVP 280
A.3 Some Finite Difference Methods for Solving IVPs 281
A.4 Solving IVPs Using Matlab ODE Suite 284

Exercises 288

References 289

Index 291

13:40:46, subject to the Cambridge Core

http://www.ebook3000.org

“FM” — 2017/10/11 — 12:40 — page viii — #8

13:40:46, subject to the Cambridge Core

“FM” — 2017/10/11 — 12:40 — page ix — #9

Preface

The purpose of this book is to provide an introduction to finite difference and
finite element methods for solving ordinary and partial differential equations
of boundary value problems. The book is designed for beginning graduate stu-
dents, upper level undergraduate students, and students from interdisciplinary
areas including engineers and others who need to obtain such numerical solu-
tions. The prerequisite is a basic knowledge of calculus, linear algebra, and
ordinary differential equations. Some knowledge of numerical analysis and
partial differential equations would also be helpful but not essential.

The emphasis is on the understanding of finite difference and finite element
methods and essential details in their implementation with reasonably mathe-
matical theory. Part I considers finite difference methods, and Part II is about
finite element methods. In each part, we start with a comprehensive discus-
sion of one-dimensional problems before proceeding to consider two or higher
dimensions. We also list some useful references for those who wish to know
more in related areas.

The materials of this textbook in general can be covered in an academic year.
The two parts of the book are essentially independent. Thus it is possible to use
only one part for a class.

This is a textbook based on materials that the authors have used, and some
are from Dr. Randall J. LeVeque’s notes, in teaching graduate courses on the
numerical solution of differential equations. Most sample computer program-
ming is written in Matlab®. Some advantages of Matlab are its simplicity, a
wide range of library subroutines, double precision accuracy, andmany existing
and emerging tool-boxes.

A website www4.ncsu.edu/~zhilin/FD_FEM_Book has been set up, to post or
link computer codes accompanying this textbook.

We would like to thank Dr. Roger Hoskin, Lilian Wang, Peiqi Huang, and
Hongru Chen for proofreading the book, or for providing Matlab code.

ix

01
08:57:00, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“FM” — 2017/10/11 — 12:40 — page x — #10

01
08:57:00, subject to the Cambridge Core terms of use,

“c01” — 2017/10/10 — 10:37 — page 1 — #1

1

Introduction

1.1 Boundary Value Problems of Differential Equations

We discuss numerical solutions of problems involving ordinary differential
equations (ODEs) or partial differential equations (PDEs), especially linear
first- and second-order ODEs and PDEs, and problems involving systems of
first-order differential equations.

A differential equation involves derivatives of an unknown function of one
independent variable (say u(x)), or the partial derivatives of an unknown
function of more than one independent variable (say u(x, y), or u(t, x), or
u(t, x, y, z), etc.). Differential equations have been used extensively to model
many problems in daily life, such as pendulums, Newton’s law of cooling,
resistor and inductor circuits, population growth or decay, fluid and solid
mechanics, biology, material sciences, economics, ecology, kinetics, thermo-
dynamics, sports and computer sciences.1 Examples include the Laplace equa-
tion for potentials, the Navier–Stokes equations in fluid dynamics, biharmonic
equations for stresses in solid mechanics, and Maxwell equations in electro-
magnetics. For more examples and for the mathematical theory of PDEs, we
refer the reader to Evans (1998) and references therein.

However, although differential equations have such wide applications, too
few can be solved exactly in terms of elementary functions such as polynomials,
log x, ex, trigonometric functions (sin x, cos x, . . .), etc. and their combina-
tions. Even if a differential equation can be solved analytically, considerable
effort and sound mathematical theory are often needed, and the closed form
of the solution may even turn out to be too messy to be useful. If the analytic
solution of the differential equation is unavailable or too difficult to obtain, or

1 There are other models in practice, for example, statistical models.

1

02
08:59:40, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c01” — 2017/10/10 — 10:37 — page 2 — #2

2 Introduction

Solution techniques

Interpret solution Applications

Products

Experiments

Prediction

Better models

Mathematical/physical

models

Approximated

Analytic/exact

Use computers

Visualization

Real problem Physical laws/

other approach

Figure 1.1. A flowchart of a problem-solving process.

takes some complicated form that is unhelpful to use, we may try to find an
approximate solution. There are two traditional approaches:

1. Semi-analytic methods. Sometimes we can use series, integral equations,
perturbation techniques, or asymptotic methods to obtain an approximate
solution expressed in terms of simpler functions.

2. Numerical solutions. Discrete numerical values may represent the solution
to a certain accuracy. Nowadays, these number arrays (and associated tables
or plots) are obtained using computers, to provide effective solutions of
many problems that were impossible to obtain before.

In this book, we mainly adopt the second approach and focus on numeri-
cal solutions using computers, especially the use of finite difference (FD) or
finite element (FE) methods for differential equations. In Figure 1.1, we show
a flowchart of the problem-solving process.

Some examples of ODE/PDEs are as follows.

1. Initial value problems (IVP). A canonical first-order system is

dy
dt

= f(t, y), y(t0)= y0 ; (1.1)

and a single higher-order differential equation may be rewritten as a first-
order system. For example, a second-order ODE

u′′(t) + a(t)u′(t) + b(t)u(t)= f(t),

u(0)= u0, u′(0)= v0 .
(1.2)

02
08:59:40, subject to the Cambridge Core terms of use,

“c01” — 2017/10/10 — 10:37 — page 3 — #3

1.1 Boundary Value Problems of Differential Equations 3

can be converted into a first-order system by setting y1(t)= u and
y2(t)= u′(t).

An ODE IVP can often be solved using Runge–Kutta methods, with
adaptive time steps. InMatlab, there is theODE-Suite which includes ode45,
ode23, ode23s, ode15s, etc. For a stiff ODE system, either ode23s or ode15s
is recommended; see Appendix for more details.

2. Boundary value problems (BVP). An example of an ODE BVP is

u′′(x) + a(x)u′(x) + b(x)u(x)= f(x), 0< x< 1,

u(0)= u0, u(1)= u1 ;
(1.3)

and a PDE BVP example is

uxx + uyy= f(x, y), (x, y)∈Ω,

u(x, y)= u0(x, y), (x, y)∈ ∂Ω,
(1.4)

where uxx= ∂2u
∂x2 and uyy= ∂2u

∂y2 , in a domain Ω with boundary ∂Ω. The above
PDE is linear and classified as elliptic, and there are two other classifications
for linear PDE, namely, parabolic and hyperbolic, as briefly discussed below.

3. BVP and IVP, e.g.,

ut= auxx + f(x, t),

u(0, t)= g1(t), u(1, t)= g2(t), BC

u(x, 0)= u0(x), IC,

(1.5)

where BC and IC stand for boundary condition(s) and initial condition,
respectively, where ut= ∂u

∂t .
4. Eigenvalue problems, e.g.,

u′′(x)=λu(x),

u(0)= 0, u(1)= 0.
(1.6)

In this example, both the function u(x) (the eigenfunction) and the scalar λ
(the eigenvalue) are unknowns.

5. Diffusion and reaction equations, e.g.,

∂u
∂t

=∇ · (β∇u) + a · ∇u+ f(u) (1.7)

where a is a vector, ∇ · (β∇u) is a diffusion term, a · ∇u is called an
advection term, and f(u) a reaction term.

02
08:59:40, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c01” — 2017/10/10 — 10:37 — page 4 — #4

4 Introduction

6. Systems of PDE. The incompressible Navier–Stokes model is an important
nonlinear example:

ρ (ut + (u · ∇)u)=∇p+ µ∆u+ F,

∇ · u= 0.
(1.8)

In this book, we will consider BVPs of differential equations in one dimen-
sion (1D) or two dimensions (2D).A linear second-order PDEhas the following
general form:

a(x, y)uxx + 2b(x, y)uxy + c(x, y)uyy

+ d(x, y)ux + e(x, y)uy + g(x, y)u(x, y)= f(x, y) (1.9)

where the coefficients are independent of u(x, y) so the equation is linear in u
and its partial derivatives. The solution of the 2D linear PDE is sought in some
bounded domain Ω; and the classification of the PDE form (1.9) is:

• Elliptic if b2 − ac< 0 for all (x, y)∈Ω,
• Parabolic if b2 − ac= 0 for all (x, y)∈Ω, and
• Hyperbolic if b2 − ac> 0 for all (x, y)∈Ω.

The appropriate solution method typically depends on the equation class. For
the first-order system

∂u
∂t

=A(x)
∂u
∂x
, (1.10)

the classification is determined from the eigenvalues of the coefficient
matrix A(x).

Finite difference and finite element methods are suitable techniques to
solve differential equations (ODEs and PDEs) numerically. There are other
methods as well, for example, finite volume methods, collocation methods,
spectral methods, etc.

1.1.1 Some Features of Finite Difference and Finite
Element Methods

Many problems can be solved numerically by some finite difference or finite
element methods. We strongly believe that any numerical analyst should be
familiar with both methods and some important features listed below.

02
08:59:40, subject to the Cambridge Core terms of use,

“c01” — 2017/10/10 — 10:37 — page 5 — #5

1.2 Further Reading 5

Finite difference methods:

• Often relatively simple to use, and quite easy to understand.
• Easy to implement for regular domains, e.g., rectangular domains in Carte-

sian coordinates, and circular or annular domains in polar coordinates.
• Their discretization and approximate solutions are pointwise, and the

fundamental mathematical tool is the Taylor expansion.
• There are many fast solvers and packages for regular domains, e.g., the

Poisson solvers Fishpack (Adams et al.) and Clawpack (LeVeque, 1998).
• Difficult to implement for complicated geometries.
• Have strong regularity requirements (the existence of high-order derivatives).

Finite element methods:

• Very successful for structural (elliptic type) problems.
• Suitable approach for problems with complicated boundaries.
• Sound theoretical foundation, at least for elliptic PDE, using Sobolev space

theory.
• Weaker regularity requirements.
• Many commercial packages, e.g., Ansys, Matlab PDE Tool-Box, Triangle,

and PLTMG.
• Usually coupled with multigrid solvers.
• Mesh generation can be difficult, but there are now many packages that do

this, e.g., Matlab, Triangle, Pltmg, Fidap, Gmsh, and Ansys.

1.2 Further Reading

This textbook provides an introduction to finite difference and finite element
methods. There are many other books for readers who wish to become expert
in finite difference and finite element methods.

For FD methods, we recommend Iserles (2008); LeVeque (2007);
Morton and Mayers (1995); Strikwerda (1989) and Thomas (1995). The text-
books by Strikwerda (1989) and Thomas (1995) are classical, while Iserles
(2008); LeVeque (2007) and Morton and Mayers (1995) are relatively new.
With LeVeque (2007), the readers can find the accompanyingMatlab code from
the author’s website.

A classic book on FE methods is Ciarlet (2002), while Johnson (1987) and
Strang and Fix (1973) have been widely used as graduate textbooks. The series
by Carey and Oden (1983) not only presents the mathematical background
of FE methods, but also gives some details on FE method programming in
Fortran. Newer textbooks include Braess (2007) and Brenner and Scott (2002).

02
08:59:40, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c01” — 2017/10/10 — 10:37 — page 6 — #6

02
08:59:40, subject to the Cambridge Core terms of use,

“c02” — 2017/10/10 — 11:51 — page 7 — #1

Part I

Finite Difference Methods

13:34:07, subject to the Cambridge Core

http://www.ebook3000.org

“c02” — 2017/10/10 — 11:51 — page 8 — #2

13:34:07, subject to the Cambridge Core

“c02” — 2017/10/10 — 11:51 — page 9 — #3

2

Finite Difference Methods for 1D
Boundary Value Problems

2.1 A Simple Example of a Finite Difference Method

Let us consider a model problem

u′′(x)= f (x), 0< x< 1, u(0)= ua, u(1)= ub,

to illustrate the general procedure using a finite difference method as follows.

1. Generate a grid.A grid is a finite set of points on which we seek the function
values that represent an approximate solution to the differential equa-
tion. For example, given an integer parameter n> 0, we can use a uniform
Cartesian grid

xi= i h, i= 0, 1, . . . , n, h=
1
n
.

The parameter n can be chosen according to accuracy requirement. If we
wish that the approximate solution has four significant digits, then we can
take n= 100 or larger, for example.

2. Represent the derivative by some finite difference formula at every grid point
where the solution is unknown, to get an algebraic system of equations. Note
that for a twice differentiable function ϕ(x), we have

ϕ′′(x)= lim
∆x→0

ϕ(x−∆x)− 2ϕ(x) + ϕ(x+∆x)
(∆x)2

.

Thus at a grid point xi, we can approximate u′′(xi) using nearby function
values to get a finite difference formula for the second-order derivative

u′′(xi)≈
u(xi − h)− 2u(xi) + u(xi + h)

h2
,

9

03
09:05:56, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c02” — 2017/10/10 — 11:51 — page 10 — #4

10 Finite Difference Methods for 1D Boundary Value Problems

with some error in the approximation. In the finite difference method, we
replace the differential equation at each grid point xi by

u(xi − h)− 2u(xi) + u(xi + h)
h2

= f (xi) + error,

where the error is called the local truncation error and will be reconsidered
later. Thus we define the finite difference (FD) solution (an approximation)
for u(x) at all xi as the solutionUi (if it exists) of the following linear system
of algebraic equations:

ua − 2U1 +U2

h2
= f (x1)

U1 − 2U2 +U3

h2
= f (x2)

U2 − 2U3 +U4

h2
= f (x3)

· · · = · · ·
Ui−1 − 2Ui +Ui+1

h2
= f (xi)

· · · = · · ·
Un−3 − 2Un−2 +Un−1

h2
= f (xn−2)

Un−2 − 2Un−1 + ub
h2

= f (xn−1).

Note that the finite difference equation at each grid point involves solution
values at three grid points, i.e., at xi−1, xi, and xi+1. The set of these three
grid points is called the finite difference stencil.

3. Solve the system of algebraic equations, to get an approximate solution at
each grid point. The system of algebraic equations can be written in the
matrix and vector form

− 2
h2

1
h2

1
h2 − 2

h2
1
h2

1
h2 − 2

h2
1
h2

.

1
h2 − 2

h2
1
h2

1
h2 − 2

h2





U1

U2

U3

...

Un−2

Un−1


=



f (x1)− ua/h2

f (x2)

f (x3)

...

f (xn−2)

f (xn−1)− ub/h2


(2.1)

03
09:05:56, subject to the Cambridge Core terms of use,

“c02” — 2017/10/10 — 11:51 — page 11 — #5

2.1 A Simple Example of a Finite Difference Method 11

The tridiagonal system of linear equations above can be solved efficiently
in O(Cn) operations by the Crout or Cholesky algorithm, see for example,
Burden and Faires (2010), whereC is a constant, typicallyC= 5 in this case.

4. Implement and debug the computer code. Run the program to get the output.
Analyze and visualize the results (tables, plots, etc.).

5. Error analysis. Algorithmic consistency and stability implies convergence of
the finite differencemethod, whichwill be discussed later. The convergence is
pointwise, i.e., lim

h→0
∥u(xi)−Ui∥∞= 0. The finite difference method requires

the solution u(x) to have up to second-order continuous derivatives.

2.1.1 A Matlab Code for the Model Problem

Below we show a Matlab function called two_point.m, for the model problem,
and use this Matlab function to illustrate how to convert the algorithm to a
computer code.

function [x,U] = two_point(a,b,ua,ub,f,n)

%%
% This matlab function two_point solves the following %
% two-point boundary value problem: u''(x) = f(x) %
% using the centered finite difference scheme. %
% Input: %
% a, b: Two end points. %
% ua, ub: Dirichlet boundary conditions at a and b %
% f: external function f(x). %
% n: number of grid points. %
% Output: %
% x: x(1),x(2),...x(n-1) are grid points %
% U: U(1),U(2),...U(n-1) are approximate solution at %
% grid points %
%%

h = (b-a)/n; h1=h*h;

A = sparse(n-1,n-1);
F = zeros(n-1,1);

for i=1:n-2,
A(i,i) = -2/h1; A(i+1,i) = 1/h1; A(i,i+1)= 1/h1;

end
A(n-1,n-1) = -2/h1;

for i=1:n-1,
x(i) = a+i*h;
F(i) = feval(f,x(i));

03
09:05:56, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c02” — 2017/10/10 — 11:51 — page 12 — #6

12 Finite Difference Methods for 1D Boundary Value Problems

end
F(1) = F(1) - ua/h1;
F(n-1) = F(n-1) - ub/h1;

U = A\F;

return
%%%%%--------- End of the program -------------------------

We can call the Matlab function two_point directly in a Matlab command
window, but a better way is to put all Matlab commands in a Matlab file (called
an M-file), referred to here asmain.m. The advantage of this is to keep a record,
and we can also revisit or modify the file whenever we want.

To illustrate, suppose the differential equation is defined in the interval of
(0, 1), with f (x)=−π2 cos(πx), u(0)= 0, and u(1)=−1. A sample Matlab
M-file is then as follows.

%%%%%%%% Clear all unwanted variables and graphs.
clear; close all

%%%%%%% Input

a=0; b=1; n=40;
ua=1; ub=-1;

%%%%%% Call the solver: U is the FD solution at the grid
points.

[x,U] = two_point(a,b,ua,ub,'f',n);

%%%%%%%%%%%%%%%%% Plot and show the error %%%%%%%%%%%%%%%%%%

plot(x,U,'o'); hold % Plot the computed solution

u=zeros(n-1,1);
for i=1:n-1,

u(i) = cos(pi*x(i));
end
plot(x,u) %%% Plot the true solution at the grid

%%% points on the same plot.
%%%%%%% Plot the error

figure(2); plot(x,U-u)

norm(U-u,inf) %%% Print out the maximum error.

It is easy to check that the exact solution of the BVP is cos(πx). If we plot
the computed solution, the finite difference approximation to the true solution
at the grid points (use plot(x, u, ′o′), and the exact solution represented by the

03
09:05:56, subject to the Cambridge Core terms of use,

“c02” — 2017/10/10 — 11:51 — page 13 — #7

2.1 A Simple Example of a Finite Difference Method 13

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5
× 10−4

Figure 2.1. (a) A plot of the computed solution (little ‘o’s) with n= 40, and
the exact solution (solid line). (b) The plot of the error.

solid line in Figure 2.1(a), the difference at the grid points is not too evident.
However, if we plot the difference of the computed solution and the exact solu-
tion, which we call the error, we see that there is indeed a small difference of
O(10−3), cf. Figure 2.1(b), but in practice we may nevertheless be content with
the accuracy of the computed numerical solution.

Questions One May Ask from This Example:

• Are there other finite difference formulas to approximate derivatives? If so,
how do we derive them? The reader may have already encountered other
formulas in an elementary numerical analysis textbook.

• Howdowe knowwhether a finite differencemethodworks or not? If it works,
how accurate is it? Specifically, what is the error of the computed solution?

• Do round-off errors affect the computed solution? If so, by how much?
• How do we deal with boundary conditions other than Dirichlet condi-

tions (involving only function values) as above, notablyNeumann conditions
(involving derivatives) or mixed boundary conditions?

• Do we need different finite difference methods for different problems? If so,
are the procedures similar?

• How do we know that we are using the most efficient method? What are the
criteria, in order to implement finite difference methods efficiently?

We will address these questions in the next few chapters.

03
09:05:56, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c02” — 2017/10/10 — 11:51 — page 14 — #8

14 Finite Difference Methods for 1D Boundary Value Problems

2.2 Fundamentals of Finite Difference Methods

The Taylor expansion is the most important tool in the analysis of finite
difference methods. It may be written as an infinite series

u(x+ h) = u(x) + hu′(x) +
h2

2
u′′(x) + · · ·+ hk

k!
u(k)(x) + · · · (2.2)

if u(x) is “analytic” (differentiable to any order), or as a finite sum

u(x+ h) = u(x) + hu′(x) +
h2

2
u′′(x) + · · ·+ hk

k!
u(k)(ξ), (2.3)

where x<ξ < x+ h (or x+ h<ξ < x if h< 0), if u(x) is differentiable up to
k-th order. The second form of the Taylor expansion is sometimes called the
extended mean value theorem. As indicated earlier, we may represent deriva-
tives of a differential equation by finite difference formulas at grid points to get
a linear or nonlinear algebraic system. There are several kinds of finite differ-
ence formulas to consider, but in general their accuracy is directly related to the
magnitude of h (typically small).

2.2.1 Forward, Backward, and Central Finite Difference
Formulas for u′(x)

Let us first consider the first derivative u′(x) of u(x) at a point x̄ using the
nearby function values u(x̄± h), where h is called the step size. There are three
commonly used formulas:

Forward FD: ∆+u(x̄)=
u(x̄+ h)− u(x̄)

h
∼ u′(x̄), (2.4)

Backward FD: ∆−u(x̄)=
u(x̄)− u(x̄− h)

h
∼ u′(x̄), (2.5)

Central FD: δu(x̄)=
u(x̄+ h)− u(x̄− h)

2h
∼ u′(x̄). (2.6)

Below we derive these finite difference formulas from geometric intuitions and
calculus.

From calculus, we know that

u′(x̄)= lim
h→0

u(x̄+ h)− u(x̄)
h

.

Assume |h| is small and u′(x) is continuous, then we expect that u(x̄+h)−u(x̄)
h

is close to but usually not exactly u′(x̄). Thus an approximation to the first

03
09:05:56, subject to the Cambridge Core terms of use,

“c02” — 2017/10/10 — 11:51 — page 15 — #9

2.2 Fundamentals of Finite Difference Methods 15

derivative at x̄ is the forward finite difference denoted and defined by

∆+u(x̄)=
u(x̄+ h)− u(x̄)

h
∼ u′(x̄) , (2.7)

where an error is introduced and h> 0 is called the step size, the distance
between two points. Geometrically, ∆+u(x̄) is the slope of the secant line that
connects the two points (x̄, u(x̄)) and (x̄+ h, u(x̄+ h)), and in calculus we
recognize it tends to the slope of the tangent line at x̄ in the limit h→ 0.

To determine how closely ∆+u(x̄) represents u′(x̄), if u(x) has second-order
continuous derivatives we can invoke the extended mean value theorem (Taylor
series) such that

u(x̄+ h)= u(x̄) + u′(x̄)h+
1
2
u′′(ξ) h2, (2.8)

where 0<ξ < h. Thus we obtain the error estimate

Ef (h)=
u(x̄+ h)− u(x̄)

h
− u′(x̄)=

1
2
u′′(ξ)h=O(h), (2.9)

so the error, defined as the difference of the approximate value and the exact
one, is proportional to h and the discretization (2.7) is called first-order accurate.
In general, if the error has the form

E(h)=Chp, p> 0, (2.10)

then the method is called p-th order accurate.
Similarly, we can analyze the backward finite difference formula

∆−u(x̄)=
u(x̄)− u(x̄− h)

h
, h> 0, (2.11)

for approximating u′(x̄), where the error estimate is

Eb(h)=
u(x̄)− u(x̄− h)

h
− u′(x̄)=−1

2
u′′(ξ) h=O(h) , (2.12)

so this formula is also first-order accurate.
Geometrically (see Figure 2.2), one may expect the slope of the secant line

that passes through (x̄+ h, u(x̄+ h)) and (x̄− h, u(x̄− h)) is a better approxi-
mation to the slope of the tangent line of u(x̄) at (x̄, u(x̄)), suggesting that the
corresponding central finite difference formula

δu(x̄)=
u(x̄+ h)− u(x̄− h)

2h
, h> 0, (2.13)

03
09:05:56, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c02” — 2017/10/10 — 11:51 — page 16 — #10

16 Finite Difference Methods for 1D Boundary Value Problems

x̄ + hx̄x̄ − h

u(x)

Tangent line at x̄

Figure 2.2. Geometric illustration of the forward, backward, and central
finite difference formulas for approximating u′(x̄).

for approximating the first-order derivative may be more accurate. In order
to get the relevant error estimate, we need to retain more terms in the Taylor
expansion:

u(x+ h) = u(x) + hu′(x) +
1
2
u′′(x)h2 +

1
6
u′′′(x)h3 +

1
24
u(4)(x)h4 + · · · ,

u(x− h) = u(x)− hu′(x) +
1
2
u′′(x)h2 − 1

6
u′′′(x)h3 +

1
24
u(4)(x)h4 + · · · ,

which leads to

Ec(h)=
u(x̄+ h)− u(x̄− h)

2h
− u′(x̄)=

1
6
u′′′(x̄)h2 + · · ·=O(h2) (2.14)

where · · · stands for higher-order terms, so the central finite difference formula
is second-order accurate. It is easy to show that (2.13) can be rewritten as

δu(x̄)=
u(x̄+ h)− u(x̄− h)

2h
=

1
2

(
∆+ +∆−

)
u(x̄).

There are other higher-order accurate formulas too, e.g., the third-order
accurate finite difference formula

δ3u(x̄)=
2u(x̄+ h) + 3u(x̄)− 6u(x̄− h) + u(x̄− 2h)

6h
. (2.15)

2.2.2 Verification and Grid Refinement Analysis

Suppose now thatwe have learned or developed a numericalmethod and associ-
ated analysis. If we proceed to write a computer code to implement the method,
how do we know that our code is bug-free and our analysis is correct? One way
is by a grid refinement analysis.

Grid refinement analysis can be illustrated by a case where we know the
exact solution.1 Starting with a fixed h, say h= 0.1, we decrease h by half to

1 Of course, we usually do not know it and there are other techniques to validate a computed solution to be
discussed later.

03
09:05:56, subject to the Cambridge Core terms of use,

“c02” — 2017/10/10 — 11:51 — page 17 — #11

2.2 Fundamentals of Finite Difference Methods 17

10−12 10−10 10−8 10−6 10−4 10−2 100
10−12

10−10

10−8

10−6

10−4

10−2

100

Grid re!nement analysis and comparison

Step size h

E
rr

o
r

Slope of FW and BW = 1

Slope of CT = 2

Figure 2.3. A plot of a grid refinement analysis of the forward, backward,
and central finite difference formulas for u′(x) using the log–log plot. The
curves for forward and backward finite difference are almost identical and
have slope one. The central formula is second-order accurate and the slope
of the plot is two. As h gets smaller, round-off errors become evident and
eventually dominant.

see how the error changes. For a first-order method, the error should decrease
by a factor of two, cf. (2.9), and for a second-order method the error should
be decrease by a factor of four, cf. (2.14), etc. We can plot the errors versus
h in a log–log scale, where the slope is the order of convergence if the scales
are identical on both axes. The forward, backward, and central finite difference
formula rendered in aMatlab script file compare.m are shown below. For exam-
ple, consider the function u(x)= sin x at x= 1, where the exact derivative is of
course cos 1. We plot the errors versus h in log–log scale in Figure 2.3, where
we see that the slopes do indeed correctly produce the convergence order. As
h decreases further, the round-off errors become dominant, which affects the
actual errors. Thus for finite difference methods, we cannot take h arbitrarily
small hoping to improve the accuracy. For this example, the best h that would

03
09:05:56, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c02” — 2017/10/10 — 11:51 — page 18 — #12

18 Finite Difference Methods for 1D Boundary Value Problems

provide the smaller error is h∼
√
ϵ=

√
10−16 ∼ 10−8 for the forward and back-

ward formulas while it is h∼ 3
√
ϵ∼ 10−5 for the central formula, where ϵ is the

machine precision which is around 10−16 in Matlab for most computers. The
best h can be estimated by balancing the formula error and the round-off errors.
For the central formula, they are O(h2) and ϵ/h, respectively. The best h then
is estimated by h2 = ϵ/h or h= 3

√
ϵ. The following is a Matlab script file called

compare.m that generates Figure 2.3.

% Compare truncation errors of the forward, backward,
% and central scheme for approximating u'(x). Plot the
% error and estimate the convergence order.
% u(x) = sin(x) at x=1. Exact derivative: u'(1) =
% cos(1).

clear; close all
h = 0.1;
for i=1:5,

a(i,1) = h;
a(i,2) = (sin(1+h)-sin(1))/h - cos(1);
a(i,3) = (sin(1) - sin(1-h))/h - cos(1);
a(i,4) = (sin(1+h)-sin(1-h))/(2*h)- cos(1);
h = h/2;

end

format short e % Use this option to see the first
% a few significant digits.

a = abs(a); % Take absolute values of the matrix.
h1 = a(:,1); % Extract the first column which is h.
e1 = a(:,2); e2 = a(:,3); e3 = a(:,4);

loglog(h1,e1,h1,e2,h1,e3)
axis('equal'); axis('square')
axis([1e-6 1e1 1e-6 1e1])
gtext('Slope of FW and BW = 1')
gtext('Slope of CD =2')

%%%%%%%%%%%%%%%%% End Of Matlab Program %%%%%%%%%%%%%%%%

%Computed Results:

% h forward backward central

% 1.0000e-01 -4.2939e-02 4.1138e-02 -9.0005e-04
% 5.0000e-02 -2.1257e-02 2.0807e-02 -2.2510e-04
% 2.5000e-02 -1.0574e-02 1.0462e-02 -5.6280e-05
% 1.2500e-02 -5.2732e-03 5.2451e-03 -1.4070e-05
% 6.2500e-03 -2.6331e-03 2.6261e-03 -3.5176e-06

03
09:05:56, subject to the Cambridge Core terms of use,

“c02” — 2017/10/10 — 11:51 — page 19 — #13

2.3 Deriving FD Formulas Using the Method of Undetermined Coefficients 19

2.3 Deriving FD Formulas Using the Method
of Undetermined Coefficients

Sometimes we need a “one-sided” finite difference, for example to approxi-
mate a first derivative at some boundary value x̄= b, and such approximations
may also be used more generally. Thus to approximate a first derivative to
second-order accuracy, we may anticipate a formula involving the values u(x̄),
u(x̄− h), and u(x̄− 2h) in using the method of undetermined coefficients in
which we write

u′(x̄)∼ γ1u(x̄) + γ2u(x̄− h) + γ3u(x̄− 2h).

Invoking the Taylor expansion at x̄ yields

γ1u(x̄) + γ2u(x̄− h) + γ3u(x̄− 2h)

= γ1u(x̄) + γ2

(
(u(x̄)− hu′(x̄) +

h2

2
u′′(x̄)− h3

6
u′′′(x̄)

)

+ γ3

(
(u(x̄)− 2hu′(x̄) +

4h2

2
u′′(x̄)− 8h3

6
u′′′(x̄)

)
+O(max |γk|h4) ,

which should approximate u′(x̄) if we ignore the high-order term. So we set

γ1 + γ2 + γ3 = 0

−hγ2 − 2hγ3 = 1

h2γ2 + 4h2γ3 = 0 .

It is easy to show that the solution to this linear system is

γ1 =
3
2h
, γ2 =−2

h
, γ3 =

1
2h
,

and hence we obtain the one-sided finite difference scheme

u′(x̄)=
3
2h

u(x̄)− 2
h
u(x̄− h) +

1
2h

u(x̄− 2h) +O(h2). (2.16)

Another one-sided finite difference formula is immediately obtained by setting
−h for h, namely,

u′(x̄)=− 3
2h

u(x̄) +
2
h
u(x̄+ h)− 1

2h
u(x̄+ 2h) +O(h2). (2.17)

03
09:05:56, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c02” — 2017/10/10 — 11:51 — page 20 — #14

20 Finite Difference Methods for 1D Boundary Value Problems

One may also differentiate a polynomial interpolation formula to get a
finite difference scheme. For example, given a sequence of points (xi, u(xi)),
i= 0, 1, 2, . . . , n, the Lagrange interpolating polynomial is

pn(x)=
n∑
i=0

li(x)u(xi), where li(x)=
n∏

j=0,j̸=i

(x− xj)
(xi − xj)

,

suggesting that u′(x̄) can be approximated by

u′(x̄)∼ p′n(x̄)=
n∑
i=0

l′i(x̄)u(xi) .

2.3.1 FD Formulas for Second-order Derivatives

We can apply finite difference operators twice to get finite difference formulas to
approximate the second-order derivative u′′(x̄), e.g., the central finite difference
formula

∆+∆−u(x̄) = ∆+
u(x̄)− u(x̄− h)

h

=
1
h

(
u(x̄+ h)− u(x̄)

h
− u(x̄)− u(x̄− h)

h

)
=
u(x̄− h)− 2u(x̄) + u(x̄+ h)

h2

= ∆−∆+u(x̄)= δ2u(x̄) (2.18)

approximates u′′(x̄) to O(h2).
Using the same finite difference operator twice produces a one-sided finite

difference formula, e.g.,

∆+∆+u(x̄) = (∆+)
2u(x̄)=∆+

u(x̄+ h)− u(x̄)
h

=
1
h

(
u(x̄+ 2h)− u(x̄+ h)

h
− u(x̄+ h)− u(x̄)

h

)
=
u(x̄)− 2u(x̄+ h) + u(x̄+ 2h)

h2
, (2.19)

also approximates u′′(x̄), but only to first-order accuracy O(h).
In a similar way, finite difference operators can be used to derive approx-

imations for partial derivatives. We obtain similar forms not only for partial

03
09:05:56, subject to the Cambridge Core terms of use,

“c02” — 2017/10/10 — 11:51 — page 21 — #15

2.4 Consistency, Stability, Convergence, and Error Estimates of FD Methods 21

derivatives ux, uxx, etc., but also for mixed partial derivatives, e.g.,

δxδyu(x̄, ȳ)

=
u(x̄+ h, ȳ+ h) + u(x̄− h, ȳ− h)− u(x̄+ h, ȳ− h)− u(x̄− h, ȳ+ h)

4h2

≈ ∂2u
∂x∂y

(x̄, ȳ) , (2.20)

if we adopt a uniform step size in both x and y directions. Here we use the x
subscript on δx to denote the central finite difference operator in the x direction,
and so on.

2.3.2 FD Formulas for Higher-order Derivatives

We can likewise apply either lower-order finite difference formulas or the
method of undetermined coefficients to obtain finite difference formulas for
approximating third-order derivatives. For example,

∆+δ
2u(x̄) = ∆+

u(x̄− h)− 2u(x̄) + u(x̄+ h)
h2

=
−u(x̄− h) + 3u(x̄)− 3u(x̄+ h) + u(x̄+ 2h)

h3

= u′′′(x̄) +
h
2
u(4)(x̄) + · · ·

is first-order accurate. If we use the central formula

−u(x̄− 2h) + 2u(x̄− h)− 2u(x̄+ h) + u(x̄+ 2h)
2h3

= u′′′(x̄) +
h2

4
u(5)(x̄) + · · · ,

then we can have a second-order accurate scheme. In practice, we seldom need
more than fourth-order derivatives. For higher-order differential equations, we
usually convert them to first- or second-order systems.

2.4 Consistency, Stability, Convergence, and Error
Estimates of FD Methods

When a finite difference method is used to solve a differential equation, it
is important to know how accurate the resulting approximate solution is
compared to the true solution.

03
09:05:56, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c02” — 2017/10/10 — 11:51 — page 22 — #16

22 Finite Difference Methods for 1D Boundary Value Problems

2.4.1 Global Error

IfU= [U1,U2, . . . ,Un]
T denotes the approximate solution generated by a finite

difference scheme with no round-off errors and u= [u(x1), u(x2), . . . , u(xn)] is
the exact solution at the grid points x1, x2, . . ., xn, then the global error vector
is defined as E=U− u. Naturally, we seek a smallest upper bound for the error
vector, which is commonly measured using one of the following norms:

• Themaximum or infinity norm ∥E∥∞=maxi{|ei|}. If the error is large at even
one grid point then the maximum norm is also large, so this norm is regarded
as the strongest measurement.

• The 1-norm, an average norm defined as ∥E∥1 =
∑

i hi|ei|, analogous to the
L1 norm

∫
|e(x)| dx, where hi= xi+1 − xi.

• The 2-norm, another average norm defined as ∥E∥2 =(
∑

i hi|ei|2)1/2, analo-
gous to the L2 norm (

∫
|e(x)|2 dx)1/2.

If ∥E∥≤Chp, p> 0, we call the finite difference method p-th order accurate.
We prefer to use a reasonably high-order accurate method while keeping the
computational cost low.

Definition 2.1. A finite difference method is called convergent if lim
h→0

∥E∥= 0.

2.4.2 Local Truncation Errors

Local truncation errors refer to the differences between the original differential
equation and its finite difference approximations at grid points. Local trunca-
tion errors measure how well a finite difference discretization approximates the
differential equation.

For example, for the two-point BVP

u′′(x)= f (x), 0< x< 1, u(0)= ua, u(1)= ub,

the local truncation error of the finite difference scheme
Ui−1 − 2Ui +Ui+1

h2
= f (xi)

at xi is

Ti=
u(xi − h)− 2u(xi) + u(xi + h)

h2
− f (xi), i= 1, 2, . . . , n− 1.

Thus on moving the right-hand side to the left-hand side, we obtain the local
truncation error by rearranging or rewriting the finite difference equation
to resemble the original differential equation, and then substituting the true
solution u(xi) for Ui.

03
09:05:56, subject to the Cambridge Core terms of use,

“c02” — 2017/10/10 — 11:51 — page 23 — #17

2.4 Consistency, Stability, Convergence, and Error Estimates of FD Methods 23

We define the local truncation error as follows. Let P (d/dx) denote a
differential operator on u in a linear differential equation, e.g.,

• Pu= f represents u′′(x)= f (x) if P
(
d
dx

)
=

d2

dx2 ; and

• Pu= f represents u′′′ + au′′ + bu′ + cu= f (x) if

P
(
d
dx

)
=

d3

dx3 + a(x)
d2

dx2 + b(x)
d
dx

+ c(x).

Let Ph be a corresponding finite difference operator, e.g., for the second-order
differential equation u′′(x)= f (x), a possible finite difference operator is

Phu(x)=
u(x− h)− 2u(x) + u(x+ h)

h2
.

More examples will be considered later. In general, the local truncation error
is then defined as

T(x)=Phu− Pu, (2.21)

where it is noted that u is the exact solution. For example, for the differential
equation u′′(x)= f (x) and the three-point central difference scheme (2.18) the
local truncation error is

T(x) = Phu− Pu=
u(x− h)− 2u(x) + u(x+ h)

h2
− u′′(x)

=
u(x− h)− 2u(x) + u(x+ h)

h2
− f (x). (2.22)

Note that local truncation errors depend on the solution in the finite difference
stencil (three-point in this example) but not on the solution globally (far away),
hence the local tag.

Definition 2.2. A finite difference scheme is called consistent if

lim
h→0

T(x)= lim
h→0

(Phu− Pu)= 0. (2.23)

Usually we should use consistent finite difference schemes.
If |T(x)| ≤Chp, p> 0, then we say that the discretization is p-th order accu-

rate, where C=O(1) is the error constant dependent on the solution u(x). To
check whether or not a finite difference scheme is consistent, we Taylor expand
all the terms in the local truncation error at a master grid point xi. For example,
the three-point central finite difference scheme for u′′(x)= f (x) produces

T(x)=
u(x− h)− 2u(x) + u(x+ h)

h2
− u′′(x)=

h2

12
u(4)(x) + · · ·=O(h2)

03
09:05:56, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c02” — 2017/10/10 — 11:51 — page 24 — #18

24 Finite Difference Methods for 1D Boundary Value Problems

such that |T(x)| ≤Ch2, where C=max0≤x≤1 | 1
12u

(4)(x)| — i.e., the finite
difference scheme is consistent and the discretization is second-order
accurate.

Now let us examine another finite difference scheme for u′′(x)= f (x), namely,

Ui − 2Ui+1 +Ui+2

h2
= f (xi), i= 1, 2, . . . , n− 2,

Un−2 − 2Un−1 + u(b)
h2

= f (xn−1).

The discretization at xn−1 is second-order accurate since T(xn−1)=O(h2), but
the local truncation error at all other grid points is

T(xi)=
u(xi)− 2u(xi+1) + u(xi+2)

h2
− f (xi)=O(h),

i.e., at all grid points where the solution is unknown. We have limh→0 T(xi)= 0,
so the finite difference scheme is consistent. However, if we implement this
finite difference scheme we may get weird results, because it does not use the
boundary condition at x= a, which is obviously wrong. Thus consistency can-
not guarantee the convergence of a scheme, and we need to satisfy another
condition, namely, its stability.

Consider the representation

Au=F+ T, AU=F =⇒ A(u−U)=T=−AE , (2.24)

where E=U− u, A is the coefficient matrix of the finite difference equa-
tions, F is the modified source term that takes the boundary condition into
account, and T is the local truncation error vector at the grid points where
the solution is unknown. Thus, if A is nonsingular, then ∥E∥= ∥A−1T∥≤
∥A−1∥∥T∥. However, if A is singular, then ∥E∥ may become arbitrarily large
so the finite difference method may not converge. This is the case in the
example above, whereas for the central finite difference scheme (2.22) we have
∥E∥≤∥A−1∥ h2 and we can prove that ∥A−1∥ is bounded by a constant. Note
that the global error depends on both ∥A−1∥ and the local truncation error
vector T.

Definition 2.3. A finite difference method for the BVPs is stable ifA is invertible
and

∥A−1∥≤C, for all 0< h< h0, (2.25)

where C and h0 are two constants that are independent of h.

03
09:05:56, subject to the Cambridge Core terms of use,

“c02” — 2017/10/10 — 11:51 — page 25 — #19

2.4 Consistency, Stability, Convergence, and Error Estimates of FD Methods 25

From the definitions of consistency and stability, and the discussion above,
we reach the following theorem:

Theorem 2.4. A consistent and stable finite difference method is convergent.

Usually it is easy to prove consistency but more difficult to prove stability.
To prove the convergence of the central finite difference scheme (2.22) for

u′′(x)= f (x), we can apply the following lemma:

Lemma 2.5. Consider a symmetric tridiagonal matrix A∈Rn×n whose main
diagonals and off-diagonals are two constants, d and α, respectively. Then the
eigenvalues of A are

λj= d+ 2α cos
(

πj
n+ 1

)
, j= 1, 2, . . . , n, (2.26)

and the corresponding eigenvectors are

xjk= sin
(
πkj
n+ 1

)
, k= 1, 2, . . . , n. (2.27)

The lemma can be proved by direct verification (from Axj=λjxj). We also note
that the eigenvectors xj are mutually orthogonal in the Rn vector space.

Theorem 2.6. The central finite difference method for u′′(x)= f (x) and a
Dirichlet boundary condition is convergent, with ∥E∥∞≤∥E∥2 ≤Ch3/2.

Proof From the finite difference method, we know that the finite difference
coefficient matrix A∈R(n−1)×(n−1) and it is tridiagonal with d=−2/h2 and
α= 1/h2, so the eigenvalues of A are

λj=− 2
h2

+
2
h2

cos
(
πj
n

)
=

2
h2

(
cos(πjh)− 1

)
.

Noting that the eigenvalues ofA−1 are 1/λj andA−1 is also symmetric, we have2

∥A−1∥2 =
1

min |λj|

=
h2

2(1 − cos(πh))
=

h2

2(1 − (1 − (πh)2/2 + (πh)4/4! + · · ·)
<

1
π2 .

Using the inequality ∥A−1∥∞≤
√
n− 1 ∥A−1∥2, therefore, we have

∥E∥∞≤∥A−1∥∞ ∥T∥∞≤
√
n− 1 ∥A−1∥2 ∥T∥∞≤

√
n− 1
π2 Ch2 ≤ C̄h3/2,

2 We can also use the identity 1 − cos(πh)= 2 sin2 πh
2 to get ∥A−1∥2 =

h2

2(1−cos(πh)) =
h2

4 sin2 πh
2

≈ 1
π2 .

03
09:05:56, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c02” — 2017/10/10 — 11:51 — page 26 — #20

26 Finite Difference Methods for 1D Boundary Value Problems

since
√
n− 1∼O(1/

√
h). The error bound is overestimated since we can also

prove that the infinity norm is also proportional to h2 using the maximum
principle or the Green function approach (cf. LeVeque, 2007).

Remark 2.7. The eigenvectors and eigenvalues of the coefficient matrix in (2.1)
can be obtained by considering the Sturm–Liouville eigenvalue problem

u′′(x)− λu= 0, u(0)= u(1)= 0. (2.28)

It is easy to check that the eigenvalues are

λk=−(kπ)2, k= 1, 2, . . . , (2.29)

and the corresponding eigenvectors are

uk(x)= sin(kπx). (2.30)

The discrete form at a grid point is

uk(xi)= sin(kπih), i= 1, 2, . . . , n− 1 , (2.31)

one of the eigenvectors of the coefficient matrix in (2.1). The corresponding
eigenvalue can be found using the definition Ax=λx.

2.4.3 The Effect of Round-off Errors

From knowledge of numerical linear algebra, we know that

• ∥A∥2 =max |λj|= 2
h2 (1 − cos(π(n− 1)h))∼ 4

h2 = 4n2, therefore the condi-
tion number of A satisfies κ(A)= ∥A∥2∥A−1∥2 ∼ n2.

• The relative error of the computed solution U for a stable scheme satisfies

∥U− u∥
∥u∥

≤ local truncation error + round-off error in solving AU=F

≤ ∥A−1∥∥T∥+ C̄g(n)∥A∥∥A−1∥ ϵ

≤ Ch2 + C̄g(n)
1
h2
ϵ,

where g(n) is the growth factor of the algorithm for solving the linear system of
equations and ϵ is the machine precision. For most computers, ϵ∼ 10−8 when
we use the single precision, and ϵ∼ 10−16 for the double precision.

Usually, the global error decreases as h decreases, but in the presence of
round-off errors it may actually increase if h is too small! We can roughly esti-
mate such a critical h. To keep the discussion simple, assume that C∼O(1)

03
09:05:56, subject to the Cambridge Core terms of use,

“c02” — 2017/10/10 — 11:51 — page 27 — #21

2.5 FD Methods for 1D Self-adjoint BVPs 27

and g(n)∼O(1), roughly the critical h occurs when the local truncation error
is about the same as the round-off error (in magnitute), i.e.,

h2 ∼ 1
h2
ϵ, =⇒ n∼ 1

h
=

1
ϵ1/4

which is about 100 for the single precision with the machine precision 10−8

and 10,000 for the double precision with the machine precision 10−16. Conse-
quently, if we use the single precision there is no point in taking more than 100
grid points and we get roughly four significant digits at best, so we usually use
the double precision to solve BVPs. Note that Matlab uses double precision by
default.

2.5 FD Methods for 1D Self-adjoint BVPs

Consider 1D self-adjoint BVPs of the form(
p(x)u′(x)

)′ − q(x)u(x)= f (x), a< x< b, (2.32)

u(a)= ua, u(b)= ub, or other BC. (2.33)

This is also called a Sturm–Liouville problem. The existence and uniqueness of
the solution is assured by the following theorem.

Theorem 2.8. If p(x)∈C1(a, b), q(x)∈C0(a, b), f (x)∈C0(a, b), q(x)≥ 0 and
there is a positive constant such that p(x)≥ p0> 0, then there is unique solution
u(x)∈C2(a, b).

Here C0(a, b) is the space of all continuous functions in [a, b], C1(a, b) is the
space of all functions that have continuous first-order derivative in [a, b], and
so on. We will see later that there are weaker conditions for finite element
methods, where integral forms are used. The proof of this theorem is usually
given in advanced differential equations courses.

Let us assume the solution exists and focus on the finite difference method
for such a BVP, which involves the following steps.

Step 1: Generate a grid. For simplicity, consider the uniform Cartesian grid

xi= a+ ih, h=
b− a
n

, i= 0, 1, . . . , n ,

where in particular x0 = a, xn= b. Sometimes an adaptive grid may be pre-
ferred, but not for the central finite difference scheme.

Step 2: Substitute derivatives with finite difference formulas at each grid point
where the solution is unknown. This step is also called the discretization.

03
09:05:56, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c02” — 2017/10/10 — 11:51 — page 28 — #22

28 Finite Difference Methods for 1D Boundary Value Problems

Define xi+ 1
2
= xi + h/2, so xi+ 1

2
− xi− 1

2
= h. Thus using the central finite

difference formula at a typical grid point xi with half grid size, we obtain

pi+ 1
2
u′(xi+ 1

2
)− pi− 1

2
u′(xi− 1

2
)

h
− qiu(xi)= f (xi) + E1

i ,

where pi+ 1
2
= p(xi+ 1

2
), qi= q(xi), fi= f (xi), and E1

i =Ch2. Applying the central
finite difference scheme for the first-order derivative then gives

pi+ 1
2

u(xi+1)−u(xi)
h − pi− 1

2

u(xi)−u(xi−1)
h

h
− qiu(xi)= f (xi) + E1

i + E2
i ,

for i= 1, 2, . . . , n− 1.
The consequent finite difference solution Ui≈ u(xi) is then defined as the

solution of the linear system of equations

pi+ 1
2
Ui+1 −

(
pi+ 1

2
+ pi− 1

2

)
Ui + pi− 1

2
Ui−1

h2
− qiUi= fi,

(2.34)

for i= 1, 2, . . . , n− 1. In a matrix-vector form, this linear system can be written
as AU=F, where

A =



−p1/2+p3/2

h2 − q1
p3/2

h2

p3/2

h2 −p3/2+p5/2

h2 − q2
p5/2

h2

.

pn−3/2

h2 −pn−3/2+pn−1/2

h2 − qn−1


,

U =



U1

U2

U3

...

Un−2

Un−1


, F=



f (x1)−
p1/2ua
h2

f (x2)

f (x3)

...

f (xn−2)

f (xn−1)−
pn−1/2ub

h2


.

It is important to note thatA is symmetric, negative definite, weakly diagonally
dominant, and an M-matrix. Those properties guarantee thatA is nonsingular.

The differential equation may also be written in the nonconservative form

p(x)u′′ + p′(x)u′ − qu= f (x) ,

03
09:05:56, subject to the Cambridge Core terms of use,

“c02” — 2017/10/10 — 11:51 — page 29 — #23

2.6 FD Methods for General 1D BVPs 29

where second-order finite difference formulas can be applied. However,

• the derivative of p(x) or its finite difference approximation is needed and
• the coefficient matrix of the corresponding finite difference equations is no

longer symmetric, nor negative positive definite, nor diagonally dominant.

Consequently, we tend to avoid using the nonconservative form if possible.
The local truncation error of the conservative finite difference scheme is

Ti=
pi+ 1

2
u(xi+1)− (pi+ 1

2
+ pi− 1

2
)u(xi) + pi− 1

2
u(xi−1)

h2
− qiu(xi)− fi. (2.35)

Note that P (d/dx)= (d/dx) (p d/dx)− q is the differential operator. It is easy
to show that |Ti| ≤Ch2, but it is more difficult to show that ∥A−1∥≤C. How-
ever, we can use the maximum principle to prove second-order convergence of
the finite difference scheme, as explained later.

2.6 FD Methods for General 1D BVPs

Consider the problem

p(x)u′′(x) + r(x)u′(x)− q(x)u(x)= f (x), a< x< b, (2.36)

u(a)= ua, u(b)= ub, or other BC. (2.37)

There are two different discretization techniques that we can use depending on
the magnitude of r(x).

1. Central finite difference discretization for all derivatives:

pi
Ui−1 − 2Ui +Ui+1

h2
+ ri

Ui+1 −Ui−1

2h
− qiUi= fi, (2.38)

for i= 1, 2, . . . , n− 1, where pi= p(xi) and so on. An advantage of this
discretization is that the method is second-order accurate, but a disadvan-
tage is that the coefficient matrix may not be diagonally dominant even if
q(x)≥ 0 and p(x)> 0. If u denotes the velocity in some applications, then
r(x)u′(x) is often called an advection term. When the advection is strong
(i.e., |r(x)| is large), the central finite difference approximation is likely to
have nonphysical oscillations, e.g., when ri∼ 1/h.

2. The upwinding discretization for the first-order derivative and the central
finite difference scheme for the diffusion term:

pi
Ui−1 − 2Ui +Ui+1

h2
+ ri

Ui+1 −Ui

h
− qiUi= fi, if ri≥ 0,

pi
Ui−1 − 2Ui +Ui+1

h2
+ ri

Ui −Ui−1

h
− qiUi= fi, if ri< 0.

03
09:05:56, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c02” — 2017/10/10 — 11:51 — page 30 — #24

30 Finite Difference Methods for 1D Boundary Value Problems

This scheme increases the diagonal dominance of the finite difference coef-
ficient matrix if q(x)≥ 0, but it is only first-order accurate. It is often easier
and more accurate to solve a linear system of equations with diagonally
dominant matrices. If |r(x)| is very large (say |r(x)| ∼ 1/h), the finite dif-
ference solution using the upwinding scheme will not have nonphysical
oscillations compared with the central finite difference scheme.

Note that if p(x)= 1, r(x)= 0, and q(x)≤ 0, then the BVP is a 1D Helmholtz
equation that may be difficult to solve if |q(x)| is large, say q(x)∼ 1/h2.

2.7 The Ghost Point Method for Boundary Conditions
Involving Derivatives

In this section, we discuss how to treat Neumann and mixed (Robin) boundary
conditions. Let us first consider the problem

u′′(x)= f (x), a< x< b,

u′(a)=α, u(b)= ub ,

where the solution at x= a is unknown. If we use a uniform Cartesian grid xi=
a+ ih, then U0 is one component of the solution. We can still use the central
finite difference discretization at interior grid points

Ui−1 − 2Ui +Ui+1

h2
= fi, i= 1, 2, . . . , n− 1,

but we need an additional equation at x0 = a given the Neumann boundary
condition at a. One approach is to take

U1 −U0

h
=α or

−U0 +U1

h2
=
α

h
, (2.39)

and the resulting linear system of equations is again tridiagonal and symmetric
negative definite:

− 1
h2

1
h2

1
h2 − 2

h2
1
h2

1
h2 − 2

h2
1
h2

.

1
h2 − 2

h2
1
h2

1
h2 − 2

h2





U0

U1

U2

...

Un−2

Un−1


=



α

h

f (x1)

f (x2)

...

f (xn−2)

f (xn−1)−
ub
h2


. (2.40)

However, this approach is only first-order accurate if α ̸= 0.

03
09:05:56, subject to the Cambridge Core terms of use,

“c02” — 2017/10/10 — 11:51 — page 31 — #25

2.7 The Ghost Point Method for Boundary Conditions Involving Derivatives 31

To maintain second-order accuracy, the ghost point method is recommended,
where a ghost grid point x−1 = x0 − h= a− h is added and the solution is
extended to the interval [a− h, a]. Then the central finite difference scheme
can be used at all grid points where the solution is unknown, i.e., for i=
0, 1, . . . , n− 1. However, we now have n equations and n+ 1 unknowns includ-
ing U−1, so one more equation is needed to close the system. The additional
equation is the central finite difference equation for the Neumann boundary
condition

U1 −U−1

2h
=α, (2.41)

which yields U−1 =U1 − 2hα. Inserting this into the central finite difference
equation at x= a, i.e., at x0, now treated as an “interior” grid point, we have

U−1 − 2U0 +U1

h2
= f0,

U1 − 2hα− 2U0 +U1

h2
= f0,

−U0 +U1

h2
=
f0
2
+
α

h
,

where the coefficient matrix is precisely the same as for (2.40) and the only dif-
ference in this second-order method is the component f0/2 + α/h in the vector
on the right-hand side, rather than α/h in the previous first-order method.

To discuss the stability, we can use the eigenvalues of the coefficient matrix,
so the 2-norm of the inverse of the coefficient matrix, ∥A−1∥2. The eigenvalues
can again be associated with the related continuous problem

u′′(x)− λu= 0, u′(0)= 0, u(1)= 0. (2.42)

It is easy to show that the eigenvectors are

uk(x)= cos
(πx

2
+ kπx

)
(2.43)

corresponding to the eigenvalues λk=−(π/2 + kπ)2, from which we can con-
clude that the ghost point approach is stable. The convergence follows by
combining the stability and the consistency.

We compare the two finite difference methods in Figure 2.4, where the
differential equation u′′(x)= f (x) is subject to a Dirichlet boundary con-
dition at x= 0 and a Neumann boundary condition at x= 0.5. When
f (x)=−π2 cosπx, u(0)= 1, u′(0.5)=−π, the exact solution is u(x)= cosπx.
Figure 2.4(a) shows the grid refinement analysis using both the backward finite

03
09:05:56, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c02” — 2017/10/10 — 11:51 — page 32 — #26

32 Finite Difference Methods for 1D Boundary Value Problems

(a)

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

Grid refinement analysis and comparison

The first-order method: slope = 1

The ghost point method: slope = 2

The step size h

E
rr
o
r

(b)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−2.5

−2

−1.5

−1

−0.5

0

× 10
−5

Error from the ghost point method

x

E
rr
o
r

Figure 2.4. (a) A grid refinement analysis of the ghost point method and
the first-order method. The slopes of the curves are the order of convergence.
(b) The error plot of the computed solution from the ghost point method.

difference method (bw_at_b.m) and the ghost point method (ghost_at_b.m).
The error in the second-order method is evidently much smaller than that in
the first-order method. In Figure 2.4(b), we show the error plot of the ghost
point method, and note the error at x= b is no longer zero.

2.7.1 A Matlab Code of the Ghost Point Method
function [x,U] = ghost_at_b(a,b,ua,uxb,f,n)

%%
% This matlab function two_point solves the following %
% two-point boundary value problem: u''(x) = f(x) %
% using the center finite difference scheme. %
% Input: %
% a, b: Two end points. %
% ua, uxb: Dirichlet and Neumann boundary conditions %
% at a and b %
% f: external function f(x). %
% n: number of grid points. %
% Output: %
% x: x(1),x(2),...x(n) are grid points %
% U: U(1),U(2),...U(n) are approximate solution at %
% grid points. %
%%

03
09:05:56, subject to the Cambridge Core terms of use,

“c02” — 2017/10/10 — 11:51 — page 33 — #27

2.7 The Ghost Point Method for Boundary Conditions Involving Derivatives 33

h = (b-a)/n; h1=h*h;

A = sparse(n,n);
F = zeros(n,1);

for i=1:n-1,
A(i,i) = -2/h1; A(i+1,i) = 1/h1; A(i,i+1)= 1/h1;

end
A(n,n) = -2/h1;
A(n,n-1) = 2/h1;

for i=1:n,
x(i) = a+i*h;
F(i) = feval(f,x(i));

end
F(1) = F(1) - ua/h1;
F(n) = F(n) - 2*uxb/h;

U = A\F;

return

2.7.1.1 The Matlab Driver Program

Below is a Matlab driver code to solve the two-point BVP

u′′(x)= f (x), a< x< b,

u(a)= ua, u′(b)= uxb.

%%%%%%%% Clear all unwanted variable and graphs.

clear; close all

%%%%%%% Input

a =0; b=1/2;
ua = 1; uxb = -pi;

%%%%%% Call solver: U is the FD solution

n=10;
k=1;

for k=1:5
[x,U] = ghost_at_b(a,b,ua,uxb,'f',n);
%ghost-point method.

u=zeros(n,1);
for i=1:n,
u(i) = cos(pi*x(i));

end

03
09:05:56, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c02” — 2017/10/10 — 11:51 — page 34 — #28

34 Finite Difference Methods for 1D Boundary Value Problems

h(k) = 1/n;
e(k) = norm(U-u,inf); %%% Print out the maximum error.
k = k+1; n=2*n;

end

log-log(h,e,h,e,'o'); axis('equal'); axis('square'),
title('The error plot in log-log scale, the slope = 2');
figure(2); plot(x,U-u); title('Error')

2.7.2 Dealing with Mixed Boundary Conditions

The ghost point method can be used to discretize a mixed boundary condition.
Suppose that αu′(a) + βu(a)= γ at x= a, where α ̸= 0. Then we can discretize
the boundary condition by

α
U1 −U−1

2h
+ βU0 = γ,

or U−1 =U1 +
2βh
α

U0 −
2hγ
α
,

and substitute this into the central finite difference equation at x= x0 to get(
− 2
h2

+
2β
αh

)
U0 +

2
h2
U1 = f0 +

2γ
αh
, (2.44)

or
(
− 1
h2

+
β

αh

)
U0 +

1
h2
U1 =

f0
2
+

γ

αh
, (2.45)

yielding a symmetric coefficient matrix.

2.8 An Example of a Nonlinear BVP

Discretrizing a nonlinear differential equation generally produces a nonlinear
algebraic system. Furthermore, if we can solve the nonlinear system thenwe can
get an approximate solution. We present an example in this section to illustrate
the procedure.

Consider the following nonlinear (a quasilinear) BVP:

d2u
dx2 − u2 = f (x), 0< x<π,

u(0)= 0, u(π)= 0.
(2.46)

03
09:05:56, subject to the Cambridge Core terms of use,

“c02” — 2017/10/10 — 11:51 — page 35 — #29

2.8 An Example of a Nonlinear BVP 35

If we apply the central finite difference scheme, then we obtain the system of
nonlinear equations

Ui−1 − 2Ui +Ui+1

h2
−U2

i = f (xi), i= 1, 2, . . . , n− 1. (2.47)

The nonlinear system of equations above can be solved in several ways:

• Approximate the nonlinear ODE using a linearization process. Unfortu-
nately, not all linearization processes will work.

• Substitution method, where the nonlinear term is approximated upon an
iteration using the previous approximation. For an example, given an initial
guess U(0)(x), we get a new approximation using

Uk+1
i−1 − 2Uk+1

i +Uk+1
i+1

h2
−Uk

i U
k+1
i = f (xi), k= 0, 1, . . . , (2.48)

involving a two-point BVP at each iteration. The main concerns are then
whether or not the method converges, and the rate of the convergence if it
does.

• Solve the nonlinear system of equations using advanced methods, i.e.,
Newton’s method as explained below, or its variations.

In general, a nonlinear system of equations F(U)= 0 is obtained if we
discretize a nonlinear ODE or PDE, i.e.,

F1(U1,U2, . . . ,Um)= 0,

F2(U1,U2, . . . ,Um)= 0,

...
...

...
...

Fm(U1,U2, . . . ,Um)= 0,

(2.49)

where for the example, we have m= n− 1, and

Fi(U1,U2, . . . ,Um)=
Ui−1 − 2Ui +Ui+1

h2
−U2

i − f (xi), i= 1, 2, . . . , n− 1.

The system of the nonlinear equations can generally be solved by Newton’s
method or some sort of variation. Given an initial guess U(0), the Newton
iteration is

U(k+1)=U(k) − (J(U(k)))−1F(U(k)) (2.50)

or {
J(U(k))∆U(k)=−F(U(k)),

U(k+1)=U(k) +∆U(k) ,
k= 0, 1, . . .

03
09:05:56, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c02” — 2017/10/10 — 11:51 — page 36 — #30

36 Finite Difference Methods for 1D Boundary Value Problems

(a)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

Initial and consecutive approximations

x

Initial

Last

(b)

0 0.5 1 1.5 2 2.5 3

0

10

20
× 10

−5
The error

E=1.854e−4

x

Figure 2.5. (a) Plot of the initial and consecutive approximations to the
nonlinear system of equations and (b) the error plot.

where J(U) is the Jacobian matrix defined as

∂F1

∂U1

∂F1

∂U2
· · · ∂F1

∂Um

∂F2

∂U1

∂F2

∂U2
· · · ∂F2

∂Um

...
...

...
...

∂Fm
∂U1

∂Fm
∂U2

· · · ∂Fm
∂Um


.

For the example problem, we have

J(U)=
1
h2


−2 − 2h2U1 1

1 −2 − 2h2U2 1

.

1 −2 − 2h2Un−1

 .

We implemented Newton’s method in a Matlab code non_tp.m. In
Figure 2.5(a), we show the initial and consecutive approximations to the non-
linear BVP using Newton’s method with U0

i = xi(π − xi). With an n= 40 mesh
and the tolerance tol= 10−8, it takes only 6 iterations to converge. The infinity
error of the computed solution at the grid points is ∥E∥∞= 1.8540 × 10−4. In
the right plot, the errors at the grid points are plotted.

03
09:05:56, subject to the Cambridge Core terms of use,

“c02” — 2017/10/10 — 11:51 — page 37 — #31

2.9 The Grid Refinement Analysis Technique 37

It is not always easy to find J(U) and it can be computationally expen-
sive. Furthermore, Newton’s method is only locally convergent, i.e., it requires
a close initial guess to guarantee its convergence. Quasi-Newton methods,
such as the Broyden and BFGS rank-one and rank-two update methods, and
also conjugate gradient methods, can avoid evaluating the Jacobian matrix.
The main issues remain global convergence, the convergence order (Newton’s
method is quadratically convergent locally), and computational issues (storage,
etc.). A well-known software package called MINPACK is available through
the netlib (cf. Dennis and Schnabel, 1996 for more complete discussions).

2.9 The Grid Refinement Analysis Technique

After we have learned or developed a numerical method, together with its
convergence analysis (consistency, stability, order of convergence, and compu-
tational complexity such as operation counts, storage), we need to validate and
confirm the analysis numerically. The algorithmic behavior becomes clearer
through the numerical results, and there are several ways to proceed.

• Analyze the output. Examine the boundary conditions and maximum/
minimum values of the numerical solutions, to see whether they agree with
the ODE or PDE theory and your intuition.

• Compare the numerical solutions with experiential data, with sufficient
parameter variations.

• Do a grid refinement analysis, whether an exact solution is known or not.

Let us now explain the grid refinement analysis when there is an exact solution.
Assume a method is p-th order accurate, such that ∥Eh∥∼Chp if h is small
enough, or

log ∥Eh∥≈ logC+ p log h. (2.51)

Thus, if we plot log ∥Eh∥ against log h using the same scale, then the slope p is
the convergence order. Furthermore, if we divide h by half to get ∥Eh/2∥, then
we have the following relations:

ratio=
∥Eh∥
∥Eh/2∥

≈ Chp

C(h/2)p
= 2p, (2.52)

p≈
log
(
∥Eh∥/∥Eh/2∥

)
log 2

=
log (ratio)

log 2
. (2.53)

03
09:05:56, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c02” — 2017/10/10 — 11:51 — page 38 — #32

38 Finite Difference Methods for 1D Boundary Value Problems

For a first-order method (p= 1), the ratio approaches number two as h
approaches zero. For a second-order method (p= 2), the ratio approaches
number four as h approaches zero, and so on. Incidentally, the method is called
superlinear convergent if p is some number between one and two.

For a simple problem, we may come up with an exact solution easily. For
example, for most single linear single ODE or PDE, we can simply set an exact
solution ue(x) and hence determine other functions and parameters such as the
source term f (x), boundary and initial conditions, etc. For more complicated
systems of ODE or PDE, the exact solution is often difficult if not impossible
to construct, but one can search the literature to see whether there are similar
examples, e.g., some may have become benchmark problems. Any new method
may then be compared with benchmark problem results.

If we do not have the exact solution, the order of convergence can still be
estimated by comparing a numerical solution with one obtained from a finer
mesh. Suppose the numerical solution converges and satisfies

uh= ue + Chp + · · · (2.54)

where uh is the numerical solution and ue is the true solution, and let uh∗ be the
solution obtained from the finest mesh

uh∗ = ue + Ch∗
p + · · · . (2.55)

Thus we have

uh − uh∗ ≈ C (hp − h∗
p) , (2.56)

uh/2 − uh∗ ≈ C ((h/2)p − h∗
p) . (2.57)

From the estimates above, we obtain the ratio

uh − uh∗
uh/2 − uh∗

≈ hp − h∗
p

(h/2)p − h∗
p =

2p (1 − (h∗/h)
p)

1 − (2h∗/h)
p , (2.58)

from which we can estimate the order of accuracy p. For example, on doubling
the number of grid points successively we have

h∗
h
= 2−k, k= 2, 3, . . . , (2.59)

then the ratio in (2.58) is

ũ(h)− ũ(h∗)

ũ(h2)− ũ(h∗)
=

2p
(
1 − 2−kp

)
1 − 2p(1−k)

. (2.60)

03
09:05:56, subject to the Cambridge Core terms of use,

“c02” — 2017/10/10 — 11:51 — page 39 — #33

2.10 * 1D IIM for Discontinuous Coefficients 39

In particular, for a first-order method (p= 1) this becomes

ũ(h)− ũ(h∗)

ũ(h2)− ũ(h∗)
=

2
(
1 − 2−k

)
1 − 21−k =

2k − 1
2k−1 − 1

.

If we take k= 2, 3, . . ., then the ratios above are

3,
7
3
≃ 2.333,

15
7

≃ 2.1429,
31
15

≃ 2.067, · · · .

Similarly, for a second-order method (p= 2), (2.60) becomes

ũ(h)− ũ(h∗)

ũ(h2)− ũ(h∗)
=

4
(
1 − 4−k

)
1 − 41−k =

4k − 1
4k−1 − 1

,

and the ratios are

5,
63
15

= 4.2,
255
63

≃ 4.0476,
1023
255

≃ 4.0118, · · ·

when k= 2, 3, . . .
To do the grid refinement analysis for 1D problems, we can take n=

10, 20, 40, . . ., 640, depending on the size of the problem and the computer
speed; for 2D problems (10, 10), (20, 20), . . ., (640, 640), or (16, 16), (32, 32),
. . ., (512, 512); and for 3D problems (8, 8, 8), (16, 16, 16), . . ., (128, 128, 128),
if the computer used has enough memory.

To present the grid refinement analysis, we can tabulate the grid size n and the
ratio or order, so the order of convergence can be seen immediately. Another
way is to plot the error versus the step size h, in a log–log scale with the same
scale on both the horizontal and vertical axes, then the slope of the approximate
line is the order of convergence.

2.10 * 1D IIM for Discontinuous Coefficients

In some applications, the coefficient of a differential equation can have a finite
discontinuity. Examples include composite materials, two-phase flows such as
ice and water, etc. Assume that we have a two-point BVP,

(pu′)′ − qu= f (x), 0< x< 1, u(0)= u0, u(1)= u1.

Assume that the coefficient p(x) is a piecewise constant

p(x)=

{
β− if 0< x<α,

β+ if α< x< 1,
(2.61)

03
09:05:56, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c02” — 2017/10/10 — 11:51 — page 40 — #34

40 Finite Difference Methods for 1D Boundary Value Problems

where 0<α< 1 is called an interface, β− and β+ are two positive but differ-
ent constants. For simplicity, we assume that both q and f are continuous in
a domain (0, 1). In a number of applications, u stands for the temperature
that should be continuous physically, which means [u] = 0 across the interface,
where

[u] = lim
x→α+

u(x)− lim
x→α−

u(x)= u+ − u−, (2.62)

denotes the jump of u(x) at the interface α. The quantity

[β ux] = lim
x→α+

β(x)u′(x)− lim
x→α−

β(x)u′(x)=β+u+x − β−u−x (2.63)

is called the jump in the flux. If there is no source at the interface, then the flux
should also be continuous which leads to another jump condition [βux] = 0.
The two jump conditions

[u] = 0, [βux] = 0 (2.64)

are called the natural jump conditions. Note that since β has a finite jump at α,
so does ux unless u−x = 0 and u+x = 0 which is unlikely.

Using a finite difference method, there are several commonly used methods
to deal with the discontinuity in the coefficients.

• Direct discretization if xi−1/2 ̸=α for i= 1, 2, . . . since pi−1/2 is well-defined.
If the interface α= xj−1/2 for some j, then we can define the value of p(x) at
xj−1/2 as the average, that is, pj−1/2 =(β− + β+)/2.

• The smoothing method using

βϵ(x)=β−(x) +
(
β+(x)− β−(x)

)
Hϵ(x− α), (2.65)

where Hϵ is a smoothed Heaviside function

Hϵ(x)=


0, if x<−ϵ,
1
2

(
1 +

x
ϵ
+

1
π

sin
πx
ϵ

)
, if |x| ≤ ϵ,

1, if x>ϵ,

(2.66)

often ϵ is taken as h or Ch for some constant C≥ 1 in a finite difference
discretization.

• Harmonic averaging of p(x) defined as

pi+ 1
2
=

[
1
h

∫ xi+1

xi
p−1(x) dx

]−1

. (2.67)

03
09:05:56, subject to the Cambridge Core terms of use,

“c02” — 2017/10/10 — 11:51 — page 41 — #35

2.10 * 1D IIM for Discontinuous Coefficients 41

For the natural jump conditions, the harmonic averaging method pro-
vides second-order accurate solution in the maximum norm due to error
cancellations even though the finite difference discretization may not be
consistent.

The methods mentioned above are simple but work only with natural jump
conditions. The first two methods are less accurate than the third one. The
error analysis for these methods are not straightforward. The second and third
approaches cannot be directly generalized to 2D or 3D problems with general
interfaces.

We now explain the Immersed Interface Method (IIM) for this problem
which can be applied for more general jump conditions [βux] = c and even with
discontinuous solutions ([u] ̸= 0). We refer the reader to Li and Ito (2006) for
more details about the method.

Assume we have a mesh xi, i= 0, 1, . . . , n. Then there is an integer j such that
xj≤α< xj+1. Except for grid points xj and xj+1, other grid points are called reg-
ular since the standard three-point finite stencil does not contain the interface
α. The standard finite difference scheme is still used at regular grid points.

At irregular grid points xj and xj+1, the finite difference approximations need
to be modified to take the discontinuity in the coefficient into account. Note
that when f (x) is continuous, we also have

β+u+xx − q+u+=β−u−xx − q−u−.

Since we assume that q+= q−, and u+= u−, we can express the limiting
quantities from + side in terms of those from the − side to get,

u+= u−, u+x =
β−

β+
u−x +

c
β+

, u+xx=
β−

β+
u−xx. (2.68)

The finite difference equations are determined from the method of undeter-
mined coefficients:

γj,1uj−1 + γj,2uj + γj,3uj+1 − qjuj= fj + Cj,

γj+1,1uj + γj+1,2uj+1 + γj+1,3uj+2 − qj+1uj+1 = fj+1 + Cj+1.
(2.69)

For the simple model problem, the coefficients of the finite difference scheme
have the following closed form:

γj,1 =
(
β− − [β](xj − α)/h

)
/Dj, γj+1,1 =β−/Dj+1,

γj,2 =
(
−2β− + [β](xj−1 − α)/h

)
/Dj, γj+1,2 =

(
−2β+ + [β](xj+2 − α)/h

)
/Dj+1,

γj,3 =β+/Dj, γj+1,3 =
(
β+ − [β](xj+1 − α)/h

)
/Dj+1,

03
09:05:56, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c02” — 2017/10/10 — 11:51 — page 42 — #36

42 Finite Difference Methods for 1D Boundary Value Problems

where

Dj = h2 + [β](xj−1 − α)(xj − α)/2β−,

Dj+1 = h2 − [β](xj+2 − α)(xj+1 − α)/2β+.

It has been been shown in Huang and Li (1999) and Li (1994) that Dj ̸= 0 and
Dj+1 ̸= 0 if β−β+> 0. The correction terms are:

Cj= γj,3 (xj+1 − α)
c
β+

, Cj+1 = γj+1,1 (α− xj+1)
c
β−

. (2.70)

Remark 2.9. If β+=β−, i.e., the coefficient is continuous, then the coefficients
of the finite difference scheme are the same as that from the standard central
finite difference scheme as if there was no interface. The correction term is not
zero if c is not zero corresponding to a singular source cδ(x− α). On the other
hand, if c= 0, then the correction terms are also zero. But the coefficients are
changed due to the discontinuity in the coefficient of the ODE BVP.

2.10.1 A Brief Derivation of the Finite Difference Scheme
at an Irregular Grid Point

We illustrate the idea of the IIM in determining the finite difference coefficients
γj,1, γj,2 and γj,3 in (2.69). We want to determine the coefficients so that the local
truncation error is as small as possible in the magnitude. The main tool is the
Taylor expansion in expanding u(xj−1), u(xj), and u(xj+1) from each side of the
interface α. After the expansions, then we can use the interface relations (2.68)
to express the quantities of u±, u±x , and u±xx in terms of the quantities from one
particular side.

It is reasonable to assume that the u(x) has up to third-order derivatives in
(0, α) and (α, 1) excluding the interface. Using the Tailor expansion for u(xj+1)

at α, we have

u(xj+1)= u+(α) + (xj+1 − α) u+x (α) +
1
2
(xj+1 − α)2 u+xx(α) + O(h3).

Using the jump relation (2.68), the expression above can be written as

u(xj+1) = u−(α) + (xj+1 − α)

(
β−

β+
u−x (α) +

c
β+

)
+

1
2
(xj+1 − α)2

β−

β+
u−xx(α) +O(h3).

03
09:05:56, subject to the Cambridge Core terms of use,

“c02” — 2017/10/10 — 11:51 — page 43 — #37

2.10 * 1D IIM for Discontinuous Coefficients 43

The Taylor expansions of u(xj−1) and u(xj) at α from the left hand side have
the following expression

u(xl)= u−(α) + (xl − α)u−x (α) +
1
2
(xl − α)2 u−xx(α) +O(h3), l= j− 1, j.

Therefore we have the following

γj,1u(xj−1) + γj,2u(xj) + γj,3u(xj+1) = (γj,1 + γj,2 + γj,3)u
−(α)

+

(
(xj−1 − α)γj,1 + (xj − α)γj,2 +

β−

β+
(xj+1 − α)γj,3

)
u−x (α)

+ γj,3(xj+1 − α)
c
β+

+
1
2

(
(xj−1 − α)2γj,1 + (xj − α)2γj,2 +

β−

β+
(xj+1 − α)2

)
u−xx(α)

+O(max
l

|γj,l| h3),

after the Taylor expansions and collecting terms for u−(α), u−x (α) and u−xx(α).
By matching the finite difference approximation with the differential equa-

tion at α from the − side,3 we get the system of equations for the coefficients
γj’s below:

γj,1 + γj,2 + γj,3 = 0

−(α− xj−1) γj,1 − (α− xj) γj,2 +
β−

β+
(xj+1 − α)γj,3 = 0

1
2
(α− xj−1)

2 γj,1 +
1
2
(α− xj)2 γj,2 +

β−

2β+
(xj+1 − α)2 γj,3 = β−.

(2.71)

It is easy to verify that the γj’s in the left column in the previous page satisfy the
system above.Once those γj’s have been computed, it is easy to set the correction
term Cj to match the remaining leading terms of the differential equation.

3 It is also possible to further expand at x= xj to match the differential equation at x= xj. The order of
convergence will be the same.

03
09:05:56, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c02” — 2017/10/10 — 11:51 — page 44 — #38

44 Finite Difference Methods for 1D Boundary Value Problems

Exercises
1. When dealing with irregular boundaries or using adaptive grids, nonuniform grids are

needed. Derive the finite difference coefficients for the following:

(A) : u′(x̄)≈α1u(x̄− h1) + α2u(x̄) + α3u(x̄+ h2),

(B) : u′′(x̄)≈α1u(x̄− h1) + α2u(x̄) + α3u(x̄+ h2),

(C) : u′′′(x̄)≈α1u(x̄− h1) + α2u(x̄) + α3u(x̄+ h2).

Are they consistent? In otherwords, as h=max{h1, h2} approaches zero, does the error also
approach zero? If so, what are the orders of accuracy? Do you see any potential problems
with the schemes you have derived?

2. Consider the following finite difference scheme for solving the two-point BVP u′′(x)= f (x),
a< x< b, u(a)= ua and u(b)= ub:

Ui−1 − 2Ui +Ui+1

h2
= f (xi), i= 2, 3, . . . , n− 1, (2.72)

where xi = a+ ih, i= 0, 1, . . . , n, h=(b− a)/n. At i= 1, the finite difference scheme is

U1 − 2U2 +U3

h2
= f (x1). (2.73)

(a) Find the local truncation errors of the finite difference scheme at xi, i= 2, 3, . . . , n− 1,
and x1. Is this scheme consistent?

(b) Does this scheme converge? Justify your answer.

3. Program the central finite difference method for the self-adjoint BVP

(β(x)u′)′ − γ(x)u(x) = f (x), 0< x< 1,

u(0)= ua, au(1) + bu′(1)= c ,

using a uniform grid and the central finite difference scheme

βi+ 1
2
(Ui+1 −Ui)/h− βi− 1

2
(Ui −Ui−1)/h

h
− γ(xi)Ui = f (xi) . (2.74)

Test your code for the case where

β(x)= 1 + x2, γ(x)= x, a= 2, b=−3, (2.75)

and the other functions or parameters are determined from the exact solution

u(x)= e−x(x− 1)2 . (2.76)

Plot the computed solution and the exact solution, and the error for a particular grid n= 80.
Do the grid refinement analysis, to determine the order of accuracy of the global solution.
Also try to answer the following questions:

• Can your code handle the case when a= 0 or b= 0?
• If the central finite difference scheme is used for the equivalent differential equation

βu′′ + β′u′ − γu= f , (2.77)

what are the advantages or disadvantages?

03
09:05:56, subject to the Cambridge Core terms of use,

“c02” — 2017/10/10 — 11:51 — page 45 — #39

Exercises 45

4. Consider the finite difference scheme for the 1D steady state convection–diffusion equation

ϵu′′ − u′ = −1, 0< x< 1, (2.78)

u(0)= 1, u(1)= 3. (2.79)

(a) Verify the exact solution is

u(x)= 1 + x+

(
ex/ϵ − 1
e1/ϵ − 1

)
. (2.80)

(b) Compare the following two finite difference methods for ϵ= 0.3, 0.1, 0.05, and 0.0005.
(1) Central finite difference scheme:

ϵ
Ui−1 − 2Ui +Ui+1

h2
− Ui+1 −Ui−1

2h
=−1. (2.81)

(2) Central-upwind finite difference scheme:

ϵ
Ui−1 − 2Ui +Ui+1

h2
− Ui −Ui−1

h
=−1. (2.82)

Do the grid refinement analysis for each case to determine the order of accuracy. Plot
the computed solution and the exact solution for h= 0.1, h= 1/25, and h= 0.01. You
can use the Matlab command subplot to put several graphs together.

(c) From your observations, in your opinion which method is better?

5. (*) For the BVP

u′′ = f, 0< x< 1, (2.83)

u(0)= 0, u′(1)=σ, (2.84)

show that the finite difference method using the central formula and the ghost pointmethod
at x= 1 are stable and consistent. Find their convergence order and prove it.

6. For the set of points (xi, ui), i= 0, 1, . . . ,N, find the Lagrange interpolation polynomial
from the formula

p(x)=
N∑
i=0

li(x) ui, li(x)=
N∏

j=0,j̸=i

x− xj
xi − xj

. (2.85)

By differentiating p(x) with respect to x, one can get different finite difference formulas for
approximating different derivatives. Assuming a uniform mesh

xi+1 − xi = xi − xi−1 = · · ·= x1 − x0 = h,

derive a central finite difference formula for u(4) and a one-sided finite difference formula
for u(3) with N= 4.

7. Derive the finite difference method for

u′′(x)− q(x)u(x) = f (x), a< x< b, (2.86)

u(a) = u(b), periodic BC, (2.87)

using the central finite difference scheme and a uniform grid. Write down the system
of equations AhU=F. How many unknowns are there (ignoring redundancies)? Is the
coefficient matrix Ah tridiagonal?

03
09:05:56, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c02” — 2017/10/10 — 11:51 — page 46 — #40

46 Finite Difference Methods for 1D Boundary Value Problems

Hint: Note that U0 =Un, and set unknowns as U1, U2, . . ., Un.

If q(x)= 0, does the solution exist? Derive a compatibility condition for which the solution
exists.
If the solution exists, is it unique? How do we modify the finite difference method to make
the solution unique?

8. Modify the Matlab code non_tp.m to apply the finite difference method and Newton’s
nonlinear solver to find a numerical solution to the nonlinear pendulum model

d 2 θ

dt2
+ K sin θ= 0, 0<θ< 2π,

θ(0)= θ1, θ(2π)= θ2,

(2.88)

where K, θ1 and θ2 are parameters. Compare the solution with the linearized model
d 2 θ

dt2
+ Kθ= 0.

03
09:05:56, subject to the Cambridge Core terms of use,

“c03” — 2017/10/10 — 11:12 — page 47 — #1

3

Finite Difference Methods for 2D Elliptic PDEs

There are many important applications of elliptic PDEs, see page 4 for the def-
inition of elliptic PDEs. Below we give some examples of linear and nonlinear
equations of elliptic PDEs.

• Laplace equations in 2D,

uxx + uyy= 0 . (3.1)

The solution u is sometimes called a potential function, because a conserva-
tive vector field v (i.e., such that∇× v= 0) is given by v=∇u (or alternatively
v=−∇u), where ∇ is the gradient operator that acts as a vector. In 2D, the
gradient operator is ∇= [∂

∂x ,
∂
∂y]

T. If u is a scalar, the ∇u= [∂u∂x ,
∂u
∂y]

T is
the gradient vector of u, and if v is a vector, then ∇ · v= div(v) is the diver-
gence of the vector v. The scalar ∇ · ∇u= uxx + uyy is the Laplacian of u,
which is denoted as ∇2u literally from its definition. It is also common to
use the notation of ∆u=∇2u for the Laplacian of u. If the conservative
vector field v is also divergence free, (i.e., div(v)=∇ · v= 0, then we have
∇ · v=∇ · ∇u=∆u= 0, that is, the potential function is the solution of a
Laplace equation.

• Poisson equations in 2D,

uxx + uyy= f . (3.2)

• Generalized Helmholtz equations,

uxx + uyy − λ2u= f . (3.3)

Many incompressible flow solvers are based on solving one or several Poisson
or Helmholtz equations, e.g., the projection method for solving incompress-
ible Navier–Stokes equations for flow problems (Chorin, 1968; Li and Lai,

47

04
10:37:27, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c03” — 2017/10/10 — 11:12 — page 48 — #2

48 Finite Difference Methods for 2D Elliptic PDEs

2001; Minion, 1996) at low or modest Reynolds number, or the stream–
vorticity formulation method for large Reynolds number (Calhoun, 2002; Li
and Wang, 2003). In particular, there are some fast Poisson solvers available
for regular domains, e.g., in Fishpack (Adams et al.).

• Helmholtz equations,

uxx + uyy + λ2u= f . (3.4)

The Helmholtz equation arises in scattering problems, when λ is a wave
number, and the corresponding problem may not have a solution if λ2 is
an eigenvalue of the corresponding BVP. Furthermore, the problem is hard
to solve numerically if λ is large.

• General self-adjoint elliptic PDEs,

∇ · (a(x, y)∇u(x, y))− q(x, y)u= f (x, y) (3.5)

or (aux)x + (auy)y − q(x, y)u= f (x, y) . (3.6)

We assume that a(x, y) does not change sign in the solution domain, e.g.,
a(x, y)≥ a0> 0, where a0 is a constant, and q(x, y)≥ 0 to guarantee that the
solution exists and it is unique.

• General elliptic PDEs (diffusion and advection equations),

a(x, y)uxx + 2b(x, y)uxy + c(x, y)uyy

+ d(x, y)ux + e(x, y)uy + g(x, y)u(x, y)= f (x, y), (x, y)∈Ω,

if b2 − ac< 0 for all (x, y)∈Ω. This equation can be rewritten as

∇ · (a(x, y)∇u(x, y)) + w(x, y) · ∇u+ c(x, y)u= f (x, y) (3.7)

after a transformation, where w(x, y) is a vector.

• Diffusion and reaction equation,

∇ · (a(x, y)∇u(x, y))= f (u). (3.8)

Here ∇ · (a(x, y)∇u(x, y)) is called a diffusion term, the nonlinear term f (u)
is called a reaction term, and if a(x, y)≡ 1 the PDE is a nonlinear Poisson
equation.

• p-Laplacian equation,

∇ ·
(
|∇u|p−2∇u

)
= 0, p≥ 2, (3.9)

where |∇u|=
√
u2x + u2y in 2D.

04
10:37:27, subject to the Cambridge Core terms of use,

“c03” — 2017/10/10 — 11:12 — page 49 — #3

3.1 Boundary and Compatibility Conditions 49

Ω

∂Ω

∂Ω

n

n

Figure 3.1. A diagram of a 2D domain Ω, its boundary ∂Ω, and its unit
normal direction.

• Minimal surface equation,

∇ ·

(
∇u√

1 + |∇u|2

)
= 0. (3.10)

We note that an elliptic PDE (P(∂
∂x ,

∂
∂y)u= 0) can be regarded as the steady

state solution of a corresponding parabolic PDE (ut=P(∂
∂x ,

∂
∂y)u). Further-

more, if a linear PDE is defined on a rectangle domain then a finite difference
approximation (in each dimension) can be used for both the equation and the
boundary conditions, but the more difficult part is to solve the resulting linear
system of algebraic equations efficiently.

3.1 Boundary and Compatibility Conditions

Let us consider a 2D second-order elliptic PDE on a domain Ω, with bound-
ary ∂Ω whose unit normal direction is n according to the “right side rule” (cf.
Figure 3.1). Some common boundary conditions are as follows.

• Dirichlet boundary condition: the solution is known on the boundary,

u(x, y)|∂Ω= u0(x, y) .

• Neumann or flux boundary condition: the normal derivative is given along
the boundary,

∂u
∂n

≡ n · ∇u= un= uxnx + uyny= g(x, y) ,

where n=(nx, ny) (n2x + n2y= 1) is the unit normal direction.

04
10:37:27, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c03” — 2017/10/10 — 11:12 — page 50 — #4

50 Finite Difference Methods for 2D Elliptic PDEs

• Mixed boundary condition:(
α(x, y)u(x, y) + β(x, y)

∂u
∂n

)∣∣∣∣
∂Ω

= γ(x, y)

is given along the boundary ∂Ω.
• In some cases, a boundary condition is periodic, e.g., for Ω= [a, b]× [c, d],
u(a, y)= u(b, y) is periodic in the x-direction, and u(x, c)= u(x, d) is periodic
in the y-direction.

There can be different boundary conditions on different parts of the boundary,
e.g., for a channel flow in a domain (a, b)× (c, d), the flux boundary condition
may apply at x= a, and a no-slip boundary condition u= 0 at the boundaries
y= c and y= d. It is challenging to set up a correct boundary condition at x= b
(outflow). One approximate to the outflow boundary condition is to set ∂u

∂x = 0.
For a Poisson equation with a purely Neumann boundary condition, there is

no solution unless a compatibility condition is satisfied. Consider the following
problem:

∆u= f (x, y), (x, y)∈Ω,
∂u
∂n

∣∣∣∣
∂Ω

= g(x, y).

On integrating over the domain Ω∫∫
Ω
∆udxdy=

∫∫
Ω
f (x, y)dxdy ,

and applying the Green’s theorem gives∫∫
Ω
∆udxdy=

∮
∂Ω

∂u
∂n
ds ,

so we have the compatibility condition∫∫
Ω
∆udxdy=

∮
∂Ω

g ds=
∫∫

Ω
f (x, y)dxdy (3.11)

for the solution to exist. If the compatibility condition is satisfied and ∂Ω is
smooth, then the solution does exist but it is not unique. Indeed, u(x, y) + C is
a solution for arbitrary constant C if u(x, y) is a solution, but we can specify
the solution at a particular point (e.g., u(x0, y0)= 0) to render it well-defined.

04
10:37:27, subject to the Cambridge Core terms of use,

“c03” — 2017/10/10 — 11:12 — page 51 — #5

3.2 The Central Finite Difference Method for Poisson Equations 51

3.2 The Central Finite Difference Method for Poisson Equations

Let us now consider the following problem, involving a Poisson equation and
a Dirichlet BC:

uxx + uyy= f (x, y), (x, y)∈Ω=(a, b)× (c, d), (3.12)

u(x, y)|∂Ω= u0(x, y) . (3.13)

If f∈C(Ω), then the solution u(x, y)∈C2(Ω) exists and it is unique. Later on,
we can relax the condition f∈C(Ω) if the finite element method is used in
which we seek a weak solution. An analytic solution is often difficult to obtain,
and a finite difference approximation can be obtained through the following
procedure.

• Step 1: Generate a grid. For example, a uniform Cartesian grid can be
generated with two given parameters m and n:

xi= a+ ihx, i= 0, 1, 2, . . . ,m, hx=
b− a
m

, (3.14)

yj= c+ jhy, j= 0, 1, 2, . . . , n, hy=
d− c
n

. (3.15)

In seeking an approximate solutionUij at the grid points (xi, yj)where u(x, y)
is unknown, there are (m− 1)(n− 1) unknowns.

• Step 2: Approximate the partial derivatives at grid points with finite dif-
ference formulas involving the function values at nearby grid points. For
example, if we adopt the three-point central finite difference formula for
second-order partial derivatives in the x- and y-directions, respectively, then

u(xi−1, yj)− 2u(xi, yj) + u(xi+1, yj)
(hx)2

+
u(xi, yj−1)− 2u(xi, yj) + u(xi, yj+1)

(hy)2

= fij + Tij, i= 1, . . . ,m− 1, j= 1, . . . , n− 1, (3.16)

where fij= f (xi, yj). The local truncation error satisfies

Tij∼
(hx)2

12
∂4u
∂x4

(
xi, yj

)
+

(hy)2

12
∂4u
∂y4

(
xi, yj

)
+O(h4), (3.17)

where

h=max{ hx, hy } . (3.18)

We ignore the error term in (3.16) and replace the exact solution values
u(xi, yj) at the grid points with the approximate solution values Uij obtained

04
10:37:27, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c03” — 2017/10/10 — 11:12 — page 52 — #6

52 Finite Difference Methods for 2D Elliptic PDEs

from solving the linear system of algebraic equations, i.e.,

Ui−1, j +Ui+1, j

(hx)2
+
Ui, j−1 +Ui, j+1

(hy)2
−
(

2
(hx)2

+
2

(hy)2

)
Uij= fij,

(3.19)
i= 1, 2, . . . ,m− 1, j= 1, 2, . . . , n− 1 .

The finite difference equation at a grid point (xi, yj) involves five grid points
in a five-point stencil, (xi−1, yj), (xi+1, yj), (xi, yj−1), (xi, yj+1), and (xi, yj).
The grid points in the finite difference stencil are sometimes labeled east,
north, west, south, and the center in the literature. The center (xi, yj) is
called the master grid point, where the finite difference equation is used to
approximate the PDE.

It is obvious that the finite difference discretization is second-order accu-
rate and consistent since

lim
h→0

Tij= 0, and lim
h→0

∥T∥∞= 0, (3.20)

where T is the local truncation error matrix formed by {Tij}.
• Solve the linear system of algebraic equations (3.19), to get the approximate

values for the solution at all of the grid points.
• Error analysis, implementation, visualization, etc.

3.2.1 The Matrix–vector Form of the FD Equations

In solving the algebraic system of finite difference equations by a direct method
such as Gaussian elimination or some sparse matrix technique, knowledge of
the matrix structure is important, although less so for an iterative solver such as
the Jacobi, Gauss–Seidel, or SOR(ω) methods. In the matrix-vector formAU=

F, the unknown U is a 1D array. From 2D Poisson equations the unknowns
{Uij} are a 2D array, but we can order it to get a 1D array. We also need to
order the finite difference equations, and it is a common practice to use the same
ordering for the equations as for the unknown array. There are two commonly
used orderings, namely, the natural ordering, a natural choice for sequential
computing, and red–black ordering, considered to be a good choice for parallel
computing.

3.2.1.1 The Natural Row Ordering

In the natural row ordering, we order the unknowns and equations row by row.
Thus the k-th finite difference equation corresponding to (i, j) has the following

04
10:37:27, subject to the Cambridge Core terms of use,

“c03” — 2017/10/10 — 11:12 — page 53 — #7

3.2 The Central Finite Difference Method for Poisson Equations 53

3

4 5

61 2 3

4 5 6

7

(a) (b)

8 9

1 2

7 8

9

Figure 3.2. (a) The natural ordering and (b) the red–black ordering.

relation:

k= i+ (m− 1)(j− 1), i= 1, 2, . . . ,m− 1, j= 1, 2, . . . , n− 1 (3.21)

(see Figure 3.2(a)).
Referring to Figure 3.2(a) that hx= hy= h, m= n= 4. Then there are nine

equations and nine unknowns, so the coefficient matrix is 9 by 9. To write down
the matrix-vector form, use a 1D array x to express the unknownUij according
to the ordering, we should have

x1 =U11, x2 =U21, x3 =U31, x4 =U12, x5 =U22,

x6 =U32, x7 =U13, x8 =U23, x9 =U33 .
(3.22)

Now if the algebraic equations are ordered in the same way as the unknowns,
the nine equations from the standard central finite difference scheme using the
five-point stencil are

Eqn.1 :
1
h2

(−4x1 + x2 + x4)= f11 −
u01 + u10

h2

Eqn.2 :
1
h2

(x1 − 4x2 + x3 + x5)= f21 −
u20
h2

Eqn.3 :
1
h2

(x2 − 4x3 + x6)= f31 −
u30 + u41

h2

Eqn.4 :
1
h2

(x1 − 4x4 + x5 + x7)= f12 −
u02
h2

04
10:37:27, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c03” — 2017/10/10 — 11:12 — page 54 — #8

54 Finite Difference Methods for 2D Elliptic PDEs

Eqn.5 :
1
h2

(x2 + x4 − 4x5 + x6 + x8)= f22

Eqn.6 :
1
h2

(x3 + x5 − 4x6 + x9)= f32 −
u42
h2

Eqn.7 :
1
h2

(x4 − 4x7 + x8)= f13 −
u03 + u14

h2

Eqn.8 :
1
h2

(x5 + x7 − 4x8 + x9)= f23 −
u24
h2

Eqn.9 :
1
h2

(x6 + x8 − 4x9)= f33 −
u34 + u43

h2
.

The corresponding coefficient matrix is block tridiagonal,

A=
1
h2


B I 0

I B I

0 I B

 , (3.23)

where I is the 3 × 3 identity matrix and

B=


−4 1 0

1 −4 1

0 1 −4

 .
In general, for an n+ 1 by n+ 1 grid we obtain

A=
1
h2


B I

I B I

.

I B


n2×n2

, B=


−4 1

1 −4 1

.

1 −4


n2×n2

.

Since −A is symmetric positive definite and weakly diagonally dominant, the
coefficient matrix A is a nonsingular, and hence the solution of the system of
the finite difference equations is unique.

The matrix-vector form is useful to understand the structure of the linear
system of algebraic equations, and as mentioned it is required when a direct
method (such as Gaussian elimination or a sparse matrix technique) is used
to solve the system. However, it can sometimes be more convenient to use a
two-index system, especially when an iterative method is preferred but also as
more intuitive and to visualize the data. The eigenvalues and eigenvectors of A

04
10:37:27, subject to the Cambridge Core terms of use,

“c03” — 2017/10/10 — 11:12 — page 55 — #9

3.3 The Maximum Principle and Error Analysis 55

can also be indexed by two parameters p and k, corresponding to wave num-
bers in the x and y directions. Assume m= n for simplicity, then the (p, k)-th
eigenvector up,k has n− 1 components,

up,kij = sin(pπih) sin(kπjh), i, j= 1, 2, . . . , n− 1 (3.24)

for p, k= 1, 2, . . . , n− 1; and the corresponding (p, k)-th eigenvalue is

λp,k=
2
h2

(
cos(pπh)− 1) + cos(kπh)− 1)

)
. (3.25)

The least dominant (smallest magnitude) eigenvalue is

λ1,1 =−2π2 +O(h2), (3.26)

obtained from the Taylor expansion of (3.25) in terms of h∼ 1/n; and the
dominant (largest magnitude) eigenvalue is

λint(n/2),int(n/2)∼− 8
h2
. (3.27)

It is noted that the dominant and least dominant eigenvalues are twice the
magnitude of those in 1D representation, so we have the following estimates:

∥A∥2 ∼max |λp,k|= 8
h2
, ∥A−1∥2 =

1
min |λp,k|

∼ 1
2π2 ,

cond2(A)= ∥A∥2∥A−1∥2 ∼
4

π2h2
=O(n2) .

(3.28)

Note that the condition number is about the same order magnitude as that in
the 1D case; and since it is large, double precision is recommended to reduce
the effect of round-off errors.

3.3 The Maximum Principle and Error Analysis

Consider an elliptic differential operator

L= a
∂2

∂x2 + 2b
∂2

∂x∂y
+ c

∂2

∂y2
, b2 − ac< 0, for (x, y)∈Ω ,

andwithout loss of generality assume that a> 0, c> 0. Themaximumprinciple
is given in the following theorem.

Theorem 3.1. If u(x, y)∈C3(Ω) satisfies Lu(x, y)≥ 0 in a bounded domain Ω,
then u(x, y) has its maximum on the boundary of the domain.

04
10:37:27, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c03” — 2017/10/10 — 11:12 — page 56 — #10

56 Finite Difference Methods for 2D Elliptic PDEs

Proof If the theorem is not true, then there is an interior point (x0, y0)∈Ω such
that u(x0, y0)≥ u(x, y) for all (x, y)∈Ω. The necessary condition for a local
extremum (x0, y0) is

∂u
∂x

(x0, y0)= 0,
∂u
∂y

(x0, y0)= 0 .

Now since (x0, y0) is not on the boundary of the domain and u(x, y) is contin-
uous, there is a neighborhood of (x0, y0) within the domain Ω where we have
the Taylor expansion,

u(x0 +∆x, y0 +∆y) = u(x0, y0) +
1
2

(
(∆x)2u0xx + 2∆x∆yu0xy + (∆y)2u0yy

)
+O((∆x)3, (∆y)3) ,

with superscript of 0 indicating that the functions are evaluated at (x0, y0), i.e.,
u0xx=

∂2u
∂x2 (x0, y0) evaluated at (x0, y0), and so on.

Since u(x0 +∆x, y0 +∆y)≤ u(x0, y0) for all sufficiently small ∆x and ∆y,

1
2

(
(∆x)2u0xx + 2∆x∆yu0xy + (∆y)2u0yy

)
≤ 0 . (3.29)

On the other hand, from the given condition

Lu0 = a0u0xx + 2b0u0xy + c0u0yy≥ 0 , (3.30)

where a0 = a(x0, y0) and so forth. In order to match the Taylor expansion to
get a contradiction, we rewrite the inequality above as(√

a0

M

)2

u0xx + 2

√
a0

M
b0√
a0M

u0xy +
(

b0√
a0M

)2

u0yy

+
u0yy
M

(
c0 − (b0)2

a0

)
≥ 0 , (3.31)

where M> 0 is a constant. The role of M is to make some choices of ∆x and
∆y that are small enough.

Let us now set

∆x=

√
a0

M
, ∆y=

b0√
a0M

.

From (3.29), we know that

a0

M
u0xx +

2b0

M
u0xy +

b0

a0M
u0yy≤ 0. (3.32)

04
10:37:27, subject to the Cambridge Core terms of use,

“c03” — 2017/10/10 — 11:12 — page 57 — #11

3.3 The Maximum Principle and Error Analysis 57

Now we take

∆x= 0, ∆y=

√(
c0 − (b0)2

a0

)
/M ;

and from (3.29) again,

(∆y)2u0yy=
1
M

(
c0 − (b0)2

a0

)
u0yy≤ 0 . (3.33)

Thus from (3.32) and (3.33), the left-hand side of (3.31) should not be positive,
which contradicts the condition

Lu0 = a0u0xx + 2b0u0xy + c0u0yy≥ 0,

and with this the proof is completed. �
On the other hand, if Lu≤ 0 then the minimum value of u is on the boundary

of Ω. For general elliptic equations the maximum principle is as follows. Let

Lu= auxx + 2buxy + cuyy + d1ux + d2uy + eu= 0, (x, y)∈Ω,

b2 − ac< 0, a> 0, c> 0, e≤ 0,

where Ω is a bounded domain. Then from Theorem 3.1, u(x, y) cannot have a
positive local maximum or a negative local minimum in the interior of Ω.

3.3.1 The Discrete Maximum Principle

Theorem 3.2. Consider a grid function Uij, i= 0, 1, . . . ,m, j= 0, 1, 2, . . . , n. If the
discrete Laplacian operator (using the central five-point stencil) satisfies

∆hUij=
Ui−1, j +Ui+1, j +Ui, j−1 +Ui, j+1 − 4Uij

h2
≥ 0,

i= 1, 2, . . . ,m− 1, j= 1, 2, . . . , n− 1 ,
(3.34)

then Uij attains its maximum on the boundary. On the other hand, if ∆hUij≤ 0
then Uij attains its minimum on the boundary.

ProofAssume that the theorem is not true, soUij has its maximum at an interior
grid point (i0, j0). Then Ui0, j0 ≥Ui, j for all i and j, and therefore

Ui0,j0 ≥
1
4

(
Ui0−1, j0 +Ui0+1, j0 +Ui0, j0−1 +Ui0, j0+1

)
.

On the other hand, from the condition ∆hUij≥ 0

Ui0,j0 ≤
1
4

(
Ui0−1, j0 +Ui0+1, j0 +Ui0, j0−1 +Ui0, j0+1

)
,

04
10:37:27, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c03” — 2017/10/10 — 11:12 — page 58 — #12

58 Finite Difference Methods for 2D Elliptic PDEs

in contradiction to the inequality above unless all Uij at the four neighbors of
(i0, j0) have the same value U(i0, j0). This implies that neighboring Ui0−1, j0 is
also a maximum, and the same argument can be applied enough times until
the boundary is reached. Then we would also know that U0, j0 is a maximum.
Indeed, if Uij has its maximum in interior it follows that Uij is a constant.
Finally, if ∆hUij≤ 0 then we consider −Uij to complete the proof. �

3.3.2 Error Estimates of the Finite Difference Method
for Poisson Equations

With the discrete maximum principle, we can easily get the following lemma.

Lemma 3.3. Let Uij be a grid function that satisfies

∆hUij=
Ui−1, j +Ui+1, j +Ui, j−1 +Ui, j+1 − 4Uij

h2
= fij , (3.35)

i, j= 0, 1, . . . , n with an homogeneous boundary condition. Then we have

∥U∥∞= max
0≤i, j≤n

|Uij| ≤
1
8

max
1≤i, j≤n

|∆hUij|=
1
8

max
0≤i, j≤n

|fij| . (3.36)

Proof Define a grid function

wij=
1
4

((
xi −

1
2

)2

+

(
yj −

1
2

)2
)
, (3.37)

where

xi= ih, yj= jh, i, j= 0, 1, . . . , n, h=
1
n
,

corresponding to the continuous function w(x)= 1
4

(
(x− 1/2)2 + (y− 1/2)2

)
.

Then

∆hwij= (wxx + wyy)
∣∣∣
(xi,yj)

+
h2

12

(
∂4w
∂x4 +

∂4w
∂y4

)
(x∗i ,y

∗
j)

= 1 , (3.38)

where (x∗i , y
∗
j) is some point near (xi, yj), and consequently

∆h
(
Uij − ∥ f ∥∞wij

)
=∆hUij − ∥ f ∥∞= fij − ∥ f ∥∞≤ 0,

∆h
(
Uij + ∥ f ∥∞wij

)
=∆hUij + ∥ f ∥∞= fij + ∥ f ∥∞≥ 0 .

(3.39)

04
10:37:27, subject to the Cambridge Core terms of use,

“c03” — 2017/10/10 — 11:12 — page 59 — #13

3.3 The Maximum Principle and Error Analysis 59

From the discrete maximum principle, Uij + ∥ f ∥∞wij has its maximum on the
boundary, while Uij − ∥ f ∥∞wij has its minimum on the boundary, i.e.,

min
∂Ω

(
Uij − ∥ f ∥∞wij

)
≤Uij − ∥ f ∥∞wij

and Uij + ∥ f ∥∞wij≤max
∂Ω

(
Uij + ∥ f ∥∞wij

)
,

for all i and j. Since Uij is zero on the boundary and ∥ f ∥∞wij≥ 0, we immedi-
ately have the following,

−∥ f ∥∞ min ∥wij∥∂Ω≤Uij − ∥ f ∥∞wij≤Uij,

and Uij≤Uij + ∥ f ∥∞wij≤∥ f ∥∞ max ∥wij∥∂Ω .

It is easy to check that

∥wij∥∂Ω=
1
8
,

and therefore

−1
8
∥ f ∥∞≤Uij≤

1
8
∥ f ∥∞, (3.40)

which completes the proof. �
Theorem 3.4. Let Uij be the solution of the finite difference equations using the
standard central five-point stencil, obtained for a Poisson equation with aDirichlet
boundary condition. Assume that u(x, y)∈C4(Ω), then the global error ∥E∥∞
satisfies:

∥E∥∞ = ∥U− u∥∞=max
ij

|Uij − u(xi, yj)|

≤ h2

96

(
max |uxxxx|+ max |uyyyy|

)
,

(3.41)

where max |uxxxx|= max
(x,y)∈D

∣∣∣∣∂4u
∂x4 (x, y)

∣∣∣∣, and so on.
Proof We know that

∆hUij= fij + Tij, ∆hEij=Tij,

where Tij is the local truncation error at (xi, yj) and satisfies

|Tij| ≤
h2

12

(
max |uxxxx|+ max |uyyyy|

)
,

so from lemma 3.3

∥E∥∞≤ 1
8
∥T∥∞≤ h2

96

(
max |uxxxx|+ max |uyyyy|

)
.

04
10:37:27, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c03” — 2017/10/10 — 11:12 — page 60 — #14

60 Finite Difference Methods for 2D Elliptic PDEs

3.4 Finite Difference Methods for General Second-order Elliptic PDEs

If the domain of the interest is a rectangle [a, b]× [c, d] and there is no mixed
derivative term uxy in the PDE, then the PDE can be discretized dimension by
dimension. Consider the following example:

∇ · (p(x, y)∇u)− q(x, y) u= f (x, y), or (pux)x + (puy)y − qu= f,

with a Dirichlet boundary condition at x= b, y= c, and y= d but a Neumann
boundary condition ux= g(y) at x= a.

For simplicity, let us adopt a uniform Cartesian grid again

xi= a+ ihx, i= 0, 1, . . . ,m, hx=
b− a
m

,

yj= c+ jhy, j= 0, 1, . . . , n, hy=
d− c
n

.

If we discretize the PDE dimension by dimension, at a typical grid point (xi, yj)
the finite difference equation is

pi+ 1
2 , j
Ui+1, j − (pi+ 1

2 , j
+ pi− 1

2 , j
)Uij + pi− 1

2 , j
Ui−1, j

(hx)2

+
pi, j+ 1

2
Ui, j+1 − (pi, j+ 1

2
+ pi, j− 1

2
)Uij + pi, j− 1

2
Ui, j−1

(hy)2
− qijUij= fij (3.42)

for i= 1, 2, . . . ,m− 1 and j= 1, 2, . . . , n− 1, where pi± 1
2 , j

= p(xi ± hx/2, yj)
and so on.

For the indices i= 0, j= 1, 2, . . . , n− 1, we can use the ghost point method to
deal with the Neumann boundary condition. Using the central finite difference
scheme for the flux boundary condition

U1, j −U−1, j

2hx
= g(yj), or U−1, j=U1, j − 2hx g(yj), j= 1, 2, . . . , n− 1 ,

on substituting into the finite difference equation at (0, j), we obtain

(p− 1
2 , j

+ p 1
2 , j
)U1, j − (p 1

2 , j
+ p− 1

2 , j
)U0j

(hx)2

+
p0,j+ 1

2
U0, j+1 − (p0, j+ 1

2
+ p0, j− 1

2
)U0j + p0, j− 1

2
U0, j−1

(hy)2

− q0jU0j= f0j +
2 p− 1

2 , j
g(yj)

hx
. (3.43)

04
10:37:27, subject to the Cambridge Core terms of use,

“c03” — 2017/10/10 — 11:12 — page 61 — #15

3.5 Solving the Resulting Linear System of Algebraic Equations 61

For a general second-order elliptic PDE with no mixed derivative term
uxy, i.e.,

∇ · (p(x, y)∇u) + w · ∇u− q(x, y)u= f (x, y) ,

the central finite difference scheme when |w|≪ 1/h can be used, but an upwind-
ing scheme may be preferred to deal with the advection term w · ∇u.

3.4.1 A Finite Difference Formula for Approximating the
Mixed Derivative uxy

If there is a mixed derivative term uxy, we cannot proceed dimension by
dimension but a centered finite difference scheme (2.20) for uxy can be used, i.e.,

uxy(xi, yj)≈
u(xi−1, yj−1) + u(xi+1, yj+1)− u(xi+1, yj−1)− u(xi−1, yj+1)

4hxhy
.

(3.44)
From the Taylor expansion at (xi, yj), this finite difference formula can be
shown to be consistent and the discretization is second-order accurate, and
the consequent central finite difference formula for a second-order linear PDE
involves nine grid points. The resulting linear system of algebraic equations for
PDE is more difficult to solve, because it is no longer symmetric nor diagonally
dominant. Furthermore, there is no known upwinding scheme to deal with the
PDE with mixed derivatives.

3.5 Solving the Resulting Linear System of Algebraic Equations

The linear systems of algebraic equations resulting from finite difference
discretizations for 2D or higher-dimensional problems are often very large,
e.g., the linear system from an n× n grid for an elliptic PDE has O(n2) equa-
tions, so the coefficient matrix is O(n2 × n2). Even for n= 100, a modest
number, the O(104 × 104) matrix cannot be stored in most modern computers
if the desirable double precision is used. However, thematrix from a self-adjoint
elliptic PDE is sparse since the nonzero entries are aboutO(5n2), so an iterative
method or sparse matrix technique may be used. For an elliptic PDE defined
on a rectangle domain or a disk, frequently used methods are listed below.

• Fast Poisson solvers such as the fast Fourier transform (FFT) or cyclic reduc-
tion (Adams et al.). Usually the implementation is not so easy, and the use
of existing software packages is recommended, e.g., Fishpack, written in
Fortran and free on the Netlib.

04
10:37:27, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c03” — 2017/10/10 — 11:12 — page 62 — #16

62 Finite Difference Methods for 2D Elliptic PDEs

• Multigrid solvers, either structured multigrid, e.g., MGD9V (De Zeeuw,
1990) that uses a nine-point stencil, or AMGs (algebraic multigrid solvers).

• Sparse matrix techniques.
• Simple iterative methods such as Jacobi, Gauss–Seidel, SOR(ω). They are

easy to implement, but often slow to converge.
• Other iterative methods such as the conjugate gradient (CG) or pre-

conditioned conjugate gradient (PCG), generalized minimized residual
(GMRES), biconjugate gradient (BICG) method for nonsymmetric system
of equations. We refer the reader to Saad (1986) for more information and
references.

An important advantage of an iterative method is that zero entries play
no role in the matrix-vector multiplications involved and there is no need to
manipulate the matrix and vector forms, as the algebraic equations in the sys-
tem are used directly. Assume that we are given a linear system of equation
Ax= b where A is nonsingular (det(A) ̸= 0), if A can be written as A=M−N
where M is an invertible matrix, then (M−N)x= b or Mx=Nx+ b or x=
M−1Nx+M−1b. We may iterate starting from an initial guess x0, via

xk+1 =M−1Nxk +M−1b, k= 0, 1, 2, . . . , (3.45)

and the iteration converges or diverges depending the spectral radius of
ρ(M−1N)=max |λi(M−1N)|. Incidentally, if T=M−1N is a constant matrix,
the iterative method is called stationary.

3.5.1 The Jacobi Iterative Method

The idea of the Jacobi iteration is to solve for the variables on the diagonals and
then form the iteration. Solving for x1 from the first equation in the algebraic
system, x2 from the second, and so forth, we have

x1 =
1
a11

(
b1 − a12x2 − a13x3 · · · − a1nxn

)
x2 =

1
a22

(
b2 − a21x1 − a23x3 · · · − a2nxn

)
...

...
...

...

xi =
1
aii

(
bi − ai1x1 − ai2x2 · · · − ai,i−1xi−1 − ai,i+1xi+1 − · · · − ainxn

)
...

...
...

...

xn =
1
ann

(
bn − ai1x1 − an2x2 · · · − an,n−1xn−1

)
.

04
10:37:27, subject to the Cambridge Core terms of use,

“c03” — 2017/10/10 — 11:12 — page 63 — #17

3.5 Solving the Resulting Linear System of Algebraic Equations 63

Given some initial guess x0, the corresponding Jacobi iterative method is

xk+1
1 =

1
a11

(
b1 − a12x

k
2 − a13x

k
3 · · · − a1nx

k
n

)
xk+1
2 =

1
a22

(
b2 − a21x

k
1 − a23x

k
3 · · · − a2nx

k
n

)
...

...
...

...

xk+1
i =

1
aii

(
bi − ai1x

k
1 − ai2x

k
2 · · · − ainxkn

)
...

...
...

...

xk+1
n =

1
ann

(
bn − ai1x

k
1 − an2x

k
2 · · · − an,n−1x

k
n−1

)
.

It can be written compactly as

xk+1
i =

1
aii

bi − n∑
j=1,j̸=i

aijxkj

 , i= 1, 2, . . . , n , (3.46)

which is the basis for easy programming. Thus for the finite difference equations

Ui+1 − 2Ui +Ui+1

h2
= fi

with Dirichlet boundary conditions U0 = ua and Un= ub, we have

Uk+1
1 =

ua+Uk
2

2
− h2f1

2

Uk+1
i =

Uk
i−1 +Uk

i+1

2
− h2fi

2
, i= 2, 3, . . . , n− 1

Uk+1
n−1 =

Uk
n−2 + ub

2
− h2fn−1

2
;

and for a 2D Poisson equation,

Uk+1
ij =

Uk
i−1, j +Uk

i+1, j +Uk
i, j−1 +Uk

i, j+1

4
−
h2fij
4
,

i, j= 1, 2, . . . , n− 1 assuming m= n.

3.5.2 The Gauss–Seidel Iterative Method

The idea of the Gauss–Seidel iteration is to solve for the variables on the diag-
onals, then form the iteration, and use the most updated information. In the
Jacobi iterative method, all components xk+1 are updated based on xk, whereas

04
10:37:27, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c03” — 2017/10/10 — 11:12 — page 64 — #18

64 Finite Difference Methods for 2D Elliptic PDEs

in the Gauss–Seidel iterative method the most updated information is used as
follows:

xk+1
1 =

1
a11

(
b1 − a12x

k
2 − a13x

k
3 · · · − a1nx

k
n

)
xk+1
2 =

1
a22

(
b2 − a21x

k+1
1 − a23x

k
3 · · · − a2nx

k
n

)
...

...
...

...

xk+1
i =

1
aii

(
bi − ai1x

k+1
1 − ai2x

k+1
2 · · · − ai,i−1x

k+1
i−1 − ai,i+1x

k
i+1 − · · · − ainxkn

)
...

...
...

...

xk+1
n =

1
ann

(
bn − ai1x

k+1
1 − an2x

k+1
2 · · · − an,n−1x

k+1
n−1

)
,

or in a compact form

xk+1
i =

1
aii

bi − i−1∑
j=1

aijxk+1
j −

n∑
j=i+1

aijxkj

 , i= 1, 2, . . . , n . (3.47)

Below is a pseudo-code, where the Gauss–Seidel iterative method is used to
solve the finite difference equations for the Poisson equation, assuming u0 is an
initial guess:

% Give u0(i,j) and a tolerance tol, say 1e-6.

err = 1000; k = 0; u = u0;
while err > tol

for i=1:n
for j=1:n

u(i,j) = ((u(i-1,j)+u(i+1,j)+u(i,j-1)+u(i,j+1))
-h^2*f(i,j))/4;

end
end
err = max(max(abs(u-u0)));
u0 = u; k = k + 1; % Next iteration if err > tol

end

Note that this pseudo-code has a framework generally suitable for iterative
methods.

3.5.3 The Successive Overrelaxation Method SOR(ω)

The idea of the successive overrelaxation (SOR(ω)) iteration is based on an
extrapolation technique. Suppose xk+1

GS denotes the update from xk in the

04
10:37:27, subject to the Cambridge Core terms of use,

“c03” — 2017/10/10 — 11:12 — page 65 — #19

3.5 Solving the Resulting Linear System of Algebraic Equations 65

Gauss–Seidel method. Intuitively, one may anticipate the update

xk+1 =(1 − ω)xk + ωxk+1
GS , (3.48)

a linear combination of xk and xk+1
GS , may give a better approximation for

a suitable choice of the relaxation parameter ω. If the parameter 0<ω< 1,
the combination above is an interpolation, and if ω> 1 it is an extrapolation
or overrelaxation. For ω= 1, we recover the Gauss–Seidel method. For ellip-
tic problems, we usually choose 1≤ω< 2. In component form, the SOR(ω)
method can be represented as

xk+1
i =(1 − ω)xki +

ω

aii

 bi −
i−1∑
j=1

aijxk+1
j −

n∑
j=i+1

aijxkj

 , (3.49)

for i= 1, 2, . . . , n. Therefore, only one line in the pseudo-code of the Gauss–
Seidel method above need be changed, namely,

u(i,j) = (1-omega)*u0(i,j) + omega*(u(i-1,j) + u(i+1,j)
+ u(i,j-1) + u(i,j+1) -h^2*f(i,j))/4

The convergence of the SOR(ω) method depends on the choice of ω. For
the linear system of algebraic equations obtained from the standard five-point
stencil applied to a Poisson equation with h= hx= hy= 1/n, it can be shown
that the optimal ω is

ωopt=
2

1 + sin(π/n)
∼ 2

1 + π/n
, (3.50)

which approaches two as n approaches infinity. Although the optimal ω is
unknown for general elliptic PDEs, we can use the optimal ω for the Poisson
equation as a trial value, and in fact larger rather than smaller ω values are
recommended. If ω is so large that the iterative method diverges, this is soon
evident because the solution will “blow-up.” Incidentally, the optimal choice
of ω is independent of the right-hand side.

3.5.4 Convergence of Stationary Iterative Methods

For a stationary iterative method, the following theorem provides a necessary
and sufficient condition for convergence.

Theorem 3.5. Given a stationary iteration

xk+1 =Txk + c, (3.51)

04
10:37:27, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c03” — 2017/10/10 — 11:12 — page 66 — #20

66 Finite Difference Methods for 2D Elliptic PDEs

where T is a constant matrix and c is a constant vector, the vector sequence {xk}
converges for arbitrary x0 if and only if ρ(T)< 1 where ρ(T) is the spectral radius
of T defined as

ρ(T)=max |λi(T)|, (3.52)

i.e., the largest magnitude of all the eigenvalues of T.

Another commonly used sufficient condition to check the convergence of a
stationary iterative method is given in the following theorem.

Theorem 3.6. If there is a matrix norm ∥ · ∥ such that ∥T∥< 1, then the stationary
iterative method converges for arbitrary initial guess x0.

We often check whether ∥T∥p< 1 for p= 1, 2,∞, and if there is just one norm
such that ∥T∥< 1, then the iterative method is convergent. However, if ∥T∥≥ 1
there is no conclusion about the convergence.

Let us now briefly discuss the convergence of the Jacobi, Gauss–Seidel, and
SOR(ω) methods. Given a linear system Ax= b, let D denote the diagonal
matrix formed from the diagonal elements of A, −L the lower triangular part
of A, and −U the upper triangular part of A. The iteration matrices for the
three basic iteration methods are thus

• Jacobi method: T=D−1(L+U), c=D−1b.
• Gauss–Seidel method: T=(D− L)−1U, c=(D− L)−1b.
• SOR(ω) method: T=(I− ωD−1L)−1

(
(1 − ω)I+ ωD−1U

)
, c=ω(I− ω

L)−1D−1b.

Theorem 3.7. If A is strictly row diagonally dominant, i.e.,

|aii|>
n∑

j=1, j̸=n
|aij| , (3.53)

then both the Jacobi and Gauss–Seidel iterative methods converge. The conclusion
is also true when (1): A is weakly row diagonally dominant

|aii| ≥
n∑

j=1, j̸=n
|aij|; (3.54)

(2): the inequality holds for at least one row; (3) A is irreducible.

We refer the reader to Golub and Van Loan (1989) for the definition of irre-
ducibility. From this theorem, both the Jacobi and Gauss–Seidel iterative

04
10:37:27, subject to the Cambridge Core terms of use,

“c03” — 2017/10/10 — 11:12 — page 67 — #21

3.6 A Fourth-Order Compact FD Scheme for Poisson Equations 67

methods converge when they are applied to the linear system of algebraic equa-
tions obtained from the standard central finite difference method for Poisson
equations. In general, Jacobi and Gauss–Seidel methods need O(n2) number
of iterations for solving the resulting linear system of finite difference equa-
tions for a Poisson equations, while it is O(n) for the SOR(ω) method with the
optimal choice of ω.

3.6 A Fourth-Order Compact FD Scheme for Poisson Equations

A compact fourth-order accurate scheme (∥u−U∥≤Ch4) can be applied to
Poisson equations, using a nine-point discrete Laplacian. An advantage of a
higher-order method is that fewer grid points are used for the same order accu-
racy as a lower-order method; therefore a smaller resulting system of algebraic
equations needs to be solved. A disadvantage is that the resulting system of
algebraic equations is denser.

Although other methods may be used, let us follow a symbolic derivation
from the second-order central scheme for uxx. Recalling that, (cf. (2.18) on
page 20)

δ2xxu =
∂2u
∂x2 +

h2

12
∂4u
∂x4 +O(h4)

=

(
1 +

h2

12
∂2

∂x2

)
∂2

∂x2 u+O(h4) , (3.55)

and substituting the operator relation

∂2

∂x2 = δ2xx +O(h2)

into (3.55), we obtain

δ2xxu =
(
1 +

h2

12

(
δ2xx +O(h2)

)) ∂2

∂x2 u+O(h4)

=

(
1 +

h2

12
δ2xx

)
∂2

∂x2 u+O(h4) ,

from which we further have

∂2

∂x2 =

(
1 +

h2

12
δ2xx

)−1

δ2xxu+
(
1 +

h2

12
δ2xx

)−1

O(h4) .

It is noted that (
1 +

h2

12
δ2xx

)−1

= 1 − h2

12
δ2xx +O(h4),

04
10:37:27, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c03” — 2017/10/10 — 11:12 — page 68 — #22

68 Finite Difference Methods for 2D Elliptic PDEs

if h is sufficiently small. Thus we have the symbolic relation

∂2

∂x2 =

(
1 +

h2

12
δ2xx

)−1

δ2xx +O(h4), or

∂2

∂x2 =

(
1 − h2

12
δ2xx

)
δ2xx +O(h4).

On a Cartesian grid and invoking this fourth-order operator, the Poisson
equation ∆u= f can be approximated by(

1 +
h2x
12
δ2xx

)−1

δ2xxu+

(
1 +

h2y
12
δ2yy

)−1

δ2yyu= f (x, y) +O(h4) ,

where h=max(hx, hy). On multiplying this by(
1 +

h2x
12
δ2xx

)(
1 +

h2y
12
δ2yy

)
and using the commutativity(

1 +
(∆x)2

12
δ2xx

)(
1 +

(∆y)2

12
δ2yy

)
=

(
1 +

(∆y)2

12
δ2yy

)(
1 +

(∆x)2

12
δ2xx

)
,

we get:(
1 +

h2y
12
δ2yy

)
δ2xxu+

(
1 +

h2x
12
δ2xx

)
δ2yyu=

(
1 +

h2x
12
δ2xx

)(
1 +

h2y
12
δ2yy

)
f (x, y)

+O(h4)=

(
1 +

h2x
12
δ2xx +

h2y
12
δ2yy

)
f (x, y) +O(h4).

Expanding this expression above and ignoring the high-order terms, we obtain
the nine-point scheme(

1 +
h2y
12
δ2yy

)
δ2xxUij +

(
1 +

h2y
12
δ2yy

)
Ui−1, j − 2Uij +Ui+1, j

(hx)2

=
Ui−1, j − 2Uij +Ui+1, j

(hx)2
+

1
12(hy)2

(
Ui−1, j−1,−2Ui−1, j +Ui−1, j+1

− 2Ui, j−1 + 4Uij − 2Ui, j+1 +Ui+1, j−1 − 2Ui+1, j +Ui+1, j+1

)
.

For the special case when hx= hy= h, the finite difference coefficients and
linear combination of f are given in Figure 3.3. The above discretization is called

04
10:37:27, subject to the Cambridge Core terms of use,

“c03” — 2017/10/10 — 11:12 — page 69 — #23

3.7 A Finite Difference Method for Poisson Equations in Polar Coordinates 69

1 4 1

141

4

1

1

1
1

12

1

6h
2

u(x, y) f (x, y)

−20 4 8 1

Figure 3.3. The coefficients of the finite difference scheme using the compact
nine-point stencil (a) and the linear combination of f (b).

the nine-point discrete Laplacian, and it is a fourth-order compact scheme
because the distance is the least between the grid points in the finite difference
stencil and the master grid point (of all fourth-order finite difference schemes).

The advantages and disadvantages of nine-point finite difference schemes for
Poisson equations include:

• It is fourth-order accurate and it is still compact. The coefficient matrix is
still block tridiagonal.

• Less grid orientation effects compared with the standard five-point finite
difference scheme.

• It seems that there are no FFT-based fast Poisson solvers for the fourth-order
compact finite difference scheme.

Incidentally, if we apply

∂2

∂x2 =

(
1 − h2

12
δ2xx

)
δ2xxu+O(h4)

to the Poisson equation directly, we obtain another nine-point finite difference
scheme, which is not compact, and has stronger grid orientation effects.

3.7 A Finite Difference Method for Poisson Equations in
Polar Coordinates

If the domain of interest is a circle, an annulus, or a fan, etc. (cf. Figure 3.4 for
some illustrations), it is natural to use plane polar coordinates

x= r cos θ, y= r sin θ. (3.56)

04
10:37:27, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c03” — 2017/10/10 — 11:12 — page 70 — #24

70 Finite Difference Methods for 2D Elliptic PDEs

r r r

BC
BC

BC

Periodic

θθθ

BC

BCBC

BC

2π 2πNo BC

BC

BC

Periodic

r

θ

Figure 3.4. Diagrams of domains and boundary conditions that may be
better solved in polar coordinates.

The Poisson equation in the polar coordinates is

1
r
∂

∂r

(
r
∂u
∂r

)
+

1
r2
∂2u
∂θ2

= f (r, θ), conservative form

or
∂2u
∂r2

+
1
r
∂u
∂r

+
1
r2
∂2u
∂θ2

= f (r, θ), nonconservative form.

(3.57)

For 0<R1 ≤ r≤R2 and θl≤ θ≤ θr, where the origin is not in the domain of
interest, using a uniform grid in the polar coordinates

ri=R1 + i∆r, i= 0, 1, . . . ,m, ∆r=
R2 − R1

m
,

θj= θl + j∆θ, j= 0, 1, . . . , n, ∆θ=
θr − θl
n

,

the discretized finite difference equation (in conservative form) is

1
ri

ri− 1
2
Ui−1, j − (ri− 1

2
+ ri+ 1

2
)Uij + ri+ 1

2
Ui+1, j

(∆r)2

+
1
r2i

Ui, j−1 − 2Uij +Ui, j+1

(∆θ)2
= f (ri, θj) , (3.58)

where again Uij is an approximation to the solution u(ri, θj).

04
10:37:27, subject to the Cambridge Core terms of use,

“c03” — 2017/10/10 — 11:12 — page 71 — #25

3.7 A Finite Difference Method for Poisson Equations in Polar Coordinates 71

3.7.1 Treating the Polar Singularity

If the origin is within the domain and 0≤ θ < 2π, we have a periodic bound-
ary condition in the θ direction (i.e., u(r, θ)= u(r, θ + 2π)), but in the radial (r)
direction the originR1 = 0 needs special attention. The PDE is singular at r= 0,
which is called a pole singularity. There are different ways of dealing with a sin-
gularity at the origin, but some methods lead to an undesirable structure in the
coefficient matrix from the finite difference equations. One approach discussed
is to use a staggered grid:

ri=
(
i− 1

2

)
∆r, ∆r=

R2

m− 1
2

, i= 1, 2, . . . ,m , (3.59)

where r1 =∆r/2 and rm=R2. Except for i= 1 (i.e., at i= 2, . . . ,m− 1), the con-
servative form of the finite difference discretization can be used. At i= 1, the
following nonconservative form is used to deal with the pole singularity at r= 0:

U0j − 2U1j +U2j

(∆r)2
+

1
r1

U2j −U0j

2∆r
+

1
r21

U1, j−1 − 2U1j +U1, j+1

(∆θ)2
= f (r1, θj).

Note that r0 =−∆r/2 and r1 =∆r/2. The coefficient of U0j in the above finite
difference equation, the approximation at the ghost point r0, is zero! The above
finite difference equation simplifies to

−2U1j +U2j

(∆r)2
+

1
r1

U2j

2∆r
+

1
r21

U1, j−1 − 2U1j +U1, j+1

(∆θ)2
= f (r1, θj) ,

and we still have a diagonally dominant system of linear algebraic equations.

3.7.2 Using the FFT to Solve Poisson Equations in Polar Coordinates

When the solution u(r, θ) is periodic in θ, we can approximate u(r, θ) by the
truncated Fourier series

u(r, θ)=
N/2−1∑
n=−N/2

un(r)einθ , (3.60)

where i=
√
−1 and un(r) is the complex Fourier coefficient given by

un(r)=
1
N

N−1∑
k=0

u(r, θ)e−inkθ. (3.61)

04
10:37:27, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c03” — 2017/10/10 — 11:12 — page 72 — #26

72 Finite Difference Methods for 2D Elliptic PDEs

Substituting (3.60) into the Poisson equation (in polar coordinates) (3.57) gives

1
r
∂

∂r

(
1
r
∂un
∂r

)
− n2

r2
un = fn(r), n=−N/2, . . . ,N/2 − 1, (3.62)

where fn(r) is the n-th coefficient of the Fourier series of f (r, θ) defined in
(3.61). For each n, we can discretize the above ODE in the r direction using
the staggered grid, to get a tridiagonal system of equations that can be solved
easily.

With a Dirichlet boundary condition u(rmax, θ)= uBC(θ) at r= rmax, the
Fourier transform

uBCn (rmax)=
1
N

N−1∑
k=0

uBC(θ)e−inkθ (3.63)

can be invoked to find uBCn (rmax), the corresponding boundary condition for the
ODE.After the Fourier coefficient un is obtained, the inverse Fourier transform
(3.60) can be applied to get an approximate solution to the problem.

3.8 Programming of 2D Finite Difference Methods

After discretization of an elliptic PDE, there are a variety of approaches that
can be used to solve the system of the finite difference equations. Below we list
some of them according to our knowledge.

• Sparse matrix techniques. In Matlab, one can form the coefficient matrix,
A and the right-hand side F, then get the finite difference solution using
U=A\F. Note that, the solution will be expressed as a 1D array. For the
visualization purpose, it is desirable to convert between the 1D vector and
the 2D array.

• Fast Poisson solvers. For Poisson equations defined on rectangular domains
and linear boundary conditions (Dirichlet, Neumann, Robin) on four sides
of the domain, one can apply a fast Poisson solver, for example, the Fish-
pack (Adams et al.). The Fishpack includes a variety of solvers for Cartesian,
polar, or cylindrical coordinates.

• Iterative solvers. One can apply stationary iterative methods such as Jacobi,
Gauss–Seidel, SOR(ω) for the linear system of equations obtained for
general elliptic PDEs. The programming is easy and requires least storage.
However, the convergence speed is often slow and the number of iterations
is O((mn)2)=O(N2) (N=mn) assuming that m and n are the number of
grid lines in each coordinate direction. One can also apply more advanced
iterative methods such as the CG method, PCG method if the coefficient

04
10:37:27, subject to the Cambridge Core terms of use,

“c03” — 2017/10/10 — 11:12 — page 73 — #27

3.8 Programming of 2D Finite Difference Methods 73

matrix A is symmetric, or GMRES (Saad, 1986) iterative method is A is
nonsymmetric.

• Multigrid solvers. There are two kinds of multigrid solvers that one can use.
One is a structured multigrid. A very good package written in Fortran is
DMG9V (De Zeeuw, 1990) that uses a nine-point stencil which is suitable
for the finite difference methods applied to second-order linear elliptic PDEs
described in this book, either centered five-point stencil or the compact nine-
point stencil. Another type is algebraic multigrid solvers, for example, (Ruge
and Stuben, 1987; Stuben, 1999). In general, the structured multigrid solvers
work better than algebraic multigrid solvers for structured meshes.

3.8.1 A Matlab Code for Poisson Equations using A\F

The accompanying Matlab code, poisson_matlab.m, solves the Poisson equa-
tion on a rectangular domain [a, b]× [c, d] with a Neumann boundary condi-
tion on x= a and Dirichelt boundary conditions on other three sides. The mesh
parameters are m and n; and the total number of unknowns is M=(n− 1)m.
The conversion between the 1D solution U(k) and 2D array using the natural
row ordering is k= i+ (j− 1)m. The files include poisson_matlab.m (the main
code), f.m (function f (x, y)), ux.m (the Neumann boundary condition ∂u

∂x(a, y)
at x= a), and ue.m (the true solution for testing purpose). In Figure 3.5,
we show a mesh plot of the solution of the finite difference method and its
error plot.

(a)

−1
−0.5

0
0.5

1

1
1.2

1.4
1.6

1.8
2

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

y

The solution plot

x

(b)

−1
−0.5

0
0.5

1

1
1.2

1.4
1.6

1.8
2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
×10

−4

y

The error plot

x

Figure 3.5. (a) The mesh plot of the computed finite difference solution
[1, 2]× [−1, 1] and (b) the error plot. Note that we can see the errors are zeros
for Dirichlet boundary conditions, and the errors are not zero for Neumann
boundary condition at x= 1.

04
10:37:27, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c03” — 2017/10/10 — 11:12 — page 74 — #28

74 Finite Difference Methods for 2D Elliptic PDEs

%%
clear; close all
a = 1; b=2; c = -1; d=1;
m=32; n=64;

hx = (b-a)/m; hx1 = hx*hx; x=zeros(m+1,1);
for i=1:m+1,

x(i) = a + (i-1)*hx;
end
hy = (d-c)/n; hy1 = hy*hy; y=zeros(n+1,1);
for i=1:n+1,

y(i) = c + (i-1)*hy;
end

M = (n-1)*m; A = sparse(M,M); bf = zeros(M,1);

for j = 1:n-1,
for i=1:m,

k = i + (j-1)*m;
bf(k) = f(x(i),y(j+1));
A(k,k) = -2/hx1 -2/hy1;
if i == 1

A(k,k+1) = 2/hx1;
bf(k) = bf(k) + 2*ux(y(j+1))/hx;

else
if i==m

A(k,k-1) = 1/hx1;
bf(k) = bf(k) - ue(x(i+1),y(j+1))/hx1;

else
A(k,k-1) = 1/hx1; A(k,k+1) = 1/hx1;

end
end

%-- y direction --------------

if j == 1
A(k,k+m) = 1/hy1;
bf(k) = bf(k) - ue(x(i),c)/hy1;

else
if j==n-1

A(k,k-m) = 1/hy1;
bf(k) = bf(k) - ue(x(i),d)/hy1;

else
A(k,k-m) = 1/hy1; A(k,k+m) = 1/hy1;

end
end

end
end

U = A \bf;

04
10:37:27, subject to the Cambridge Core terms of use,

“c03” — 2017/10/10 — 11:12 — page 75 — #29

Exercises 75

%--- Transform back to (i,j) form to plot the solution ---

j = 1;
for k=1:M

i = k - (j-1)*m ;
u(i,j) = U(k);
u2(i,j) = ue(x(i),y(j+1));
j = fix(k/m) + 1;

end

% Analyze and Visualize the result.

e = max(max(abs(u-u2))) % The maximum error
x1=x(1:m); y1=y(2:n);

mesh(y1,x1,u); title('The solution plot'); xlabel('y');
ylabel('x'); figure(2); mesh(y1,x1,u-u2); title('The error plot');
xlabel('y'); ylabel('x');

3.8.2 A Matlab Code for Poisson Equations using the SOR(ω) Iteration

The accompanying Matlab code, poisson_jacobi.m, and poisson_sor.m, pro-
vide interactive Jacobi and SOR(ω) iterative methods for the Poisson equation
on a square domain [a, b]× [c, d]with (b− a)= (d− c) andDirichelt boundary
conditions on all sides. When ω= 1, the SOR(ω) method becomes the Gauss-
Seidel iteration. The otherMatlab functions involved are fcn.m, the source term
f (x, y), and uexact.m, the solution for the testing purpose.

We test an example with true solution u(x, y)= ex sin(πy), the source term
then is f (x, y)= ex sin(πy)(1 − π2). We take m= n= 40, and the domain is
[−1, 1]× [−1, 1]. Thus h= 1/40 and h2 = 6.25 × 10−4. So we take the tolerance
as tol= 10−5. The Jacobi iteration takes 2105 iterations, the Gauss–Seidel takes
1169 iterations, the SOR(ω) with the optimal ω= 2/(1 + sinπ/n))= 1.8545
takes 95 iterations, SOR(1.8) takes 158 iterations, and SOR(1.9) takes 133
iterations. Usually we would rather take ω larger than smaller in the range
1≤ω< 2.

Exercises
1. State the maximum principle for 1D elliptic problems. Use the maximum principle to

show that the three-point central finite difference scheme for u′′(x)= f (x) with a Dirichlet
boundary condition is second-order accurate in the maximum norm.

2. Write down the coefficient matrix of the finite difference method using the standard central
five-point stencil with both the Red–Black and the Natural row ordering for the Poisson
equation defined on the rectangle [a, b]× [c, d]. Take m= n= 3 and assume a Dirichlet

04
10:37:27, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c03” — 2017/10/10 — 11:12 — page 76 — #30

76 Finite Difference Methods for 2D Elliptic PDEs

boundary condition at x= a, y= c and y= d, and a Neumann boundary condition ∂u
∂n =

g(y) at x= b. Use the ghost point method to deal with the Neumann boundary condition.
3. Implement and compare the Gauss–Seidel method and the SOR method (trying to find the

best ω by testing), for the elliptic equation

uxx + p(x, y)uyy + r(x, y)u(x, y)= f (x, y)

a< x< b, c< y< d,

subject to the boundary conditions

u(a, y)= 0, u(x, c)= 0, u(x, d)= 0,
∂u
∂x

(b, y)=−π sin(πy).

Test and debug your code for the case: 0< x, y< 1, and

p(x, y)= (1 + x2 + y2), r(x, y)=−xy.

The source term f (x, y) is determined from the exact solution

u(x, y)= sin(πx) sin(πy).

Do the grid refinement analysis for n= 16, n= 32, and n= 64 (if possible) in the infin-
ity norm (Hint: In Matlab, use max(max(abs(e)))). Take the tolerance as 10−8. Does the
method behave like a second-order method? Compare the number of iterations, and test
the optimal relaxation factor ω. Plot the solution and the error for n= 32.
Having ensured your code is working correctly, introduce a point source f (x, y)= δ(x−
0.5)δ(y− 0.5) and ux =−1 at x= 1, with p(x, y)= 1 and r(x, y)= 0. Along other three
sides x= 0, y= 0, and y= 1, u= 0. The u(x, y) can be interpreted as the steady state tem-
perature distribution in a room with an insulated wall on three sides, a constant heat flow
on one side, and a point source such as a heater in the room. Note that the heat source can
be expressed as f (n/2, n/2)= 1/h2, and f (i, j)= 0 for other grid points. Use the mesh and
contour plots to visualize the solution for n= 36 (mesh(x, y, u), contour(x, y, u, 30)).

4. (a) Show the eigenvalues and eigenvectors for the Laplace equation

∆u+ λu = 0, 0< x, y< 1,

u = 0, on the boundaries,

are

λk,l =π2
(
l2 + k2

)
, l, k= 1, 2, . . . ,∞,

uk,l(x, y)= sin(kπx) sin(lπy).

(b) Show that the standard central finite difference scheme using the five-point stencil is
stable for the Poisson equation.

Hint: The eigenvectors for AhUh =F (grid functions) are

uk,l,i, j = sin(ilπ/N) sin(jkπ/N), i, j, l, k= 1, 2, . . . ,N− 1.

The 2-norm of A−1
h is 1/min{|λi(Ah)|}.

5. Modify your SOR code for Problem 4, so that either the mixed boundary condition used
at x= b or the periodic boundary condition is used at x= a and x= b.

04
10:37:27, subject to the Cambridge Core terms of use,

“c03” — 2017/10/10 — 11:12 — page 77 — #31

Exercises 77

6. Modify the Matlab code poisson_matlab.m for Poisson equations to solve the general self-
adjoint elliptic PDEs

∇ · (p∇u)− qu= f (x, y), a< x< b, c< y< d.

Validate your code with analytic solutions u(x, y)= x2 + y2 and u(x, y)= cos x sin y and
p(x, y)= 1 and p(x, y)= ex+y; q(x, y)= 1 and q(x, y)= x2 + y2. Analyze your numerical
results and plot the absolute and relate errors.

7. Search the Internet to find a fast Poisson solver or multigrid method, and test it.

04
10:37:27, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c04” — 2017/10/10 — 11:14 — page 78 — #1

4

FD Methods for Parabolic PDEs

A linear PDE of the form

ut=Lu, (4.1)

where t usually denotes the time and L is a linear elliptic differential operator
in one or more spatial variables, is called parabolic. Furthermore, the second-
order canonical form

a(x, t)utt + 2b(x, t)uxt + c(x, t)uxx + lower-order terms= f (x, t)

is parabolic if b2 − ac≡ 0 in the entire x and t domain. Note that, we can trans-
form this second-order PDE into a system of two PDEs by setting v= ut, where
the t-derivative is first order. Some important parabolic PDEs are as follows.

• 1D heat equation with a source

ut= uxx + f (x, t).

The dimension refers to the space variable (x direction).
• General heat equation

ut=∇ · (β∇u) + f (x, t) , (4.2)

where β is the diffusion coefficient and f (x, t) is the source (or sink) term.
• Diffusion–advection equation

ut=∇ · (β∇u) + w · ∇u+ f (x, t) ,

where ∇ · (β∇u) is the diffusion term and w · ∇u the advection term.
• Canonical form of diffusion–reaction equation

ut=∇ · (β∇u) + f (x, t, u).

The nonlinear source term f (x, t, u) is a reaction term.

78

05
10:12:57, subject to the Cambridge Core terms of use,

“c04” — 2017/10/10 — 11:14 — page 79 — #2

FDMethods for Parabolic PDEs 79

The steady-state solutions (when ut= 0) are the solutions of the corre-
sponding elliptic PDEs, i.e.,

∇ · (β∇u) + f̄ (x, u)= 0

for the last case, assuming lim
t→∞

f (x, t, u)= f̄ (x, u) exists.

Initial and Boundary Conditions

In time-dependent problems, there is an initial condition that is usually spec-
ified at t= 0, i.e., u(x, 0)= u0(x) for the above PDEs, in addition to relevant
boundary conditions. If the initial condition is given at t=T ̸= 0, it can of
course be rendered at t= 0 by a translation t′= t− T. Thus for the 1D heat
equation ut= uxx on a< x< b for example, we expect to have an initial condi-
tion at t= 0 in addition to boundary conditions at x= a and x= b. Note that the
boundary conditions at t= 0 may or may not be consistent with the initial con-
dition, e.g., if a Dirichlet boundary condition is prescribed at x= a and x= b
such that u(a, t)= g1(t) and u(b, t)= g2(t), then u0(a)= g1(0) and u0(b)= g2(0)
for consistency.

Dynamical Stability

The fundamental solution u(x.t)= e−x
2/4t/

√
4πt for the 1D heat equation

ut= uxx is uniformly bounded. However, for the backward heat equation ut=
−uxx, if u(x, 0) ̸= 0 then limt→∞ u(x, t)=∞. The solution is said to be dynam-
ically unstable if it is not uniformly bounded, i.e., if there is no constant C> 0
such that |u(x, t)| ≤C. Some applications are dynamically unstable and “blow
up,” but we do not discuss how to solve such dynamically unstable problems in
this book, i.e., we only consider the numerical solution of dynamically stable
problems.

Some Commonly Used FD Methods

We discuss the following finite difference methods for parabolic PDE in this
chapter:

• the forward and backward Euler methods;
• the Crank–Nicolson and θ methods;
• the method of lines (MOL), provided a goodODE solver can be applied; and
• the alternating directional implicit (ADI) method, for high-dimensional

problems.

05
10:12:57, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c04” — 2017/10/10 — 11:14 — page 80 — #3

80 FDMethods for Parabolic PDEs

k + 1

k

FW-CT BW-CT

t = 0

MOL

IC

CBCB

Figure 4.1. Diagram of the finite difference stencil for the forward and
backward Euler methods, and the MOL.

Finite difference methods applicable to elliptic PDEs can be used to treat the
spatial discretization and boundary conditions, so let us focus on the time dis-
cretization and initial condition(s). To consider the stability of the consequent
numerical methods, we invoke a Fourier transformation and von Neumann
stability analysis.

4.1 The Euler Methods

For the following problem involving the heat equation with a source term,

ut=βuxx + f (x, t), a< x< b, t> 0,

u(a, t)= g1(t), u(b, t)= g2(t), u(x, 0)= u0(x) ,

let us seek a numerical solution for u(x, t) at a particular timeT> 0 or at certain
times in the interval 0< t<T.

As the first step, we expect to generate a grid

xi= a+ ih, i= 0, 1, . . . ,m, h=
b− a
m

,

tk= k∆t, k= 0, 1, . . . , n , ∆t=
T
n
.

It turns out that we cannot use arbitrary ∆t (even it may be small) for explicit
methods because of numerical instability concerns. The second step is to
approximate the derivatives with finite difference approximations. Since we
already know how to discretize the spatial derivatives, let us focus on possi-
ble finite difference formulas for the time derivative. In Figure 4.1, we sketch
the stencils of several finite difference methods.

05
10:12:57, subject to the Cambridge Core terms of use,

“c04” — 2017/10/10 — 11:14 — page 81 — #4

4.1 The Euler Methods 81

4.1.1 Forward Euler Method (FW-CT)

At a grid point (xi, tk), k> 0, on using the forward finite difference approxima-
tion for ut and central finite difference approximation for uxx we have

u(xi, tk +∆t)− u(xi, tk)
∆t

= β
u(xi−1, tk)− 2u(xi, tk) + u(xi+1, tk)

h2

+ f (xi, tk) + T(xi, tk) .

The local truncation error is

T(xi, tk)=−h2 β
12

uxxxx(xi, tk) +
∆t
2
utt(xi, tk) + · · · ,

where the dots denote higher-order terms, so the discretization is O(h2 +∆t).
The discretization is first order in time and second order in space, when the
finite difference equation is

Uk+1
i −Uk

i

∆t
=β

Uk
i−1 − 2Uk

i +Uk
i+1

h2
+ f ki , (4.3)

where f ki = f (xi, tk), withUk
i again denoting the approximate values for the true

solution u(xi, tk).When k= 0,U0
i is the initial condition at the grid point (xi, 0);

and from the values Uk
i at the time level k the solution of the finite difference

equation at the next time level k+ 1 is

Uk+1
i =Uk

i +∆t

(
β
Uk
i−1 − 2Uk

i +Uk
i+1

h2
+ f ki

)
, i= 1, 2, . . . ,m− 1 . (4.4)

The solution of the finite difference equations is thereby directly obtained from
the approximate solution at previous time steps and we do not need to solve
a system of algebraic equations, so the method is called explicit. Indeed, we
successively compute the solution at t1 from the initial condition at t0, and then
at t2 using the approximate solution at t1. Such an approach is often called a
time marching method.

Remark 4.1. The local truncation error of the FW-CT finite difference scheme
under our definition is

T(x, t) =
u(x, t+∆t)− u(x, t)

∆t
− β

u(x− h, t)− 2u(x, t) + u(x+ h, t)
h2

− f (x, t)

= O(h2 +∆t) .

05
10:12:57, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c04” — 2017/10/10 — 11:14 — page 82 — #5

82 FDMethods for Parabolic PDEs

In passing, we note an alternative definition of the truncation error in the
literature.

T(x, t) = u(x, t+∆t)−u(x, t)−∆t
(
β
u(x−h, t)−2u(x, t)+u(x+h, t)

h2
−f (x, t)

)
= O

(
∆t(h2 +∆t)

)
introduces an additional factor ∆t, so it is one order higher in ∆t.

Remark 4.2. If f (x, t)≡ 0 and β is a constant, then from ut=βuxx and utt=
β∂uxx/∂t=β∂2ut/∂x2 =β2uxxxx, the local truncation error is

T(x, t)=
(
β2∆t

2
− βh2

12

)
uxxxx +O

(
(∆t)2 + h4

)
. (4.5)

Thus if β is constant we can choose ∆t= h2/(6β) to get O(h4 + (∆t)2)=
O(h4), i.e., the local truncation error is fourth-order accurate without further
computational complexity, which is significant for an explicit method.

It is easy to implement the forward Euler method compared with other
methods. Belowwe list some scripts of theMatlab file calledFW_Euler_heat.m:

a = 0; b=1; m = 10; n=20;
h = (b-a)/m;
k = h^2/2; % Try k = h^2/1.9 to see what happens;

t = 0; tau = k/h^2;
for i=1:m+1,

x(i) = a + (i-1)*h; y1(i) = uexact(t,x(i)); y2(i) = 0;
end
plot(x,y1); hold

for j=1:n,
y1(1)=0; y1(m+1)=0;
for i=2:m

y2(i) = y1(i) + tau*(y1(i-1)-2*y1(i)+y1(i+1)) + k*f(t,x(i));
end
plot(x,y2); pause(0.25)
t = t + k; y1 = y2;

end

In the code above, we also plot the history of the solution. On testing the
forward Euler method with different ∆t and checking the error in a problem
with a known exact solution, we find the method works well when 0<∆t≤ h2

2β

but blows up when ∆t> h2
2β . Since the method is consistent, we anticipate that

05
10:12:57, subject to the Cambridge Core terms of use,

“c04” — 2017/10/10 — 11:14 — page 83 — #6

4.1 The Euler Methods 83

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x

Figure 4.2. (a) Plot of the computed solutions using two different time step
sizes and the exact solution at some time for the test problem. (b) Error plots
of the computed solution using the two different step sizes: one is stable and
the error is small; the other one is unstable and the error grows rapidly.

this is a question of numerical stability. Intuitively, to prevent the errors in uki
being amplified, one can set

0<
2β∆t
h2

≤ 1 , or 0<∆t≤ h2

2β
. (4.6)

This is a time step constraint, often called the CFL (Courant–Friedrichs–Lewy)
stability condition, which can be verified numerically. In Figure 4.2, we plot
the computed solutions and errors for a testing problem with β= 1, f (x)=
− sin t sin(πx) + cos t sin(πx)π2. The true solution is u(x, t)= cos t sin(πx). We
take 20 time marching steps using two different time steps, one is ∆t1 = h2/2
(stable), and the other one is ∆t2 = 2h2 (unstable). The left plots are the true
and computed solutions at t1 = 20∆t1 and t2 = 20∆t2. The gray lines are the
history of the solution computed using ∆t2 = 2h2, and the “*” indicates the
computed solution at the grid points for the final step. We see that the solution
begins to grow and oscillate. The plot of the black line is the true solution at
t1 = 20∆t1 with the little “o” as the finite difference solution at the grid points,
which is first-order accurate. The right figure is the error plots with the black
one (the error is small) for the computed solution using ∆t1 = h2/2; while the
gray one for the computed solution using∆t2 = 2h2, whose error grows rapidly
and begins to oscillate. If the final time T gets larger, so does the error, a
phenomenon we call a blow-up due to the instability of the algorithm. The
stability and the CFL condition of the time step constraint are very important
for explicit or semi-explicit numerical algorithms.

05
10:12:57, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c04” — 2017/10/10 — 11:14 — page 84 — #7

84 FDMethods for Parabolic PDEs

4.1.2 The Backward Euler Method (BW-CT)

If the backward finite difference formula is used for ut and the central finite
difference approximation for uxx at (xi, tk), we get

Uk
i −U k−1

i

∆t
=β

U k
i−1 − 2U k

i +U k
i+1

h2
+ f ki , k= 1, 2, . . . ,

which is conventionally reexpressed as

Uk+1
i −Uk

i

∆t
=β

Uk+1
i−1 − 2Uk+1

i +Uk+1
i+1

h2
+ f k+1

i , k= 0, 1, (4.7)

The backward Euler method is also consistent, and the discretization error is
again O(∆t+ h2).

Using the backward Euler method, we cannot get Uk+1
i with a few simple

algebraic operations because all of the Uk+1
i ’s are coupled together. Thus we

need to solve the following tridiagonal system of equations, in order to get the
approximate solution at the time level k+ 1:



1 + 2µ −µ

−µ 1 + 2µ −µ

−µ 1 + 2µ −µ

.

−µ 1 + 2µ −µ

−µ 1 + 2µ





Uk+1
1

Uk+1
2

Uk+1
3

...

Uk+1
m−2

Uk+1
m−1



=



Uk
1 +∆t f k+1

1 + µgk+1
1

Uk
2 +∆t f k+1

2

Uk
3 +∆t f k+1

3

...

Uk
m−2 +∆t f k+1

m−2

Uk
m−1 +∆t f k+1

m−1 + µgk+1
2


, (4.8)

05
10:12:57, subject to the Cambridge Core terms of use,

“c04” — 2017/10/10 — 11:14 — page 85 — #8

4.2 The Method of Lines 85

where µ= β∆t
h2 and f k+1

i = f (xi, tk+1). Note that we can use f (xi, tk) instead of
f (xi, tk+1), since the method is first-order accurate in time. Such a numerical
method is called implicit, because the solution at time level k+ 1 are coupled
together. The advantage of the backward Euler method is that it is stable for
any choice of∆t. For 1D problems, the computational cost is only slightlymore
than the explicit Euler method if we can use an efficient tridiagonal solver, such
as the Grout factorization method at cost O(5n) (cf. Burden and Faires, 2010,
for example).

4.2 The Method of Lines

With a good solver for ODEs or systems of ODEs, we can use the MOL to
solve parabolic PDEs. In Matlab, we can use the ODE Suite to solve a system
of ODEs. The ODE Suite contains Matlab functions such as ode23, ode23s,
ode15s, ode45, and others. The Matlab function ode23 uses a combination of
Runge–Kutta methods of order 2 and 3 and uses an adaptive time step size. The
Matlab function ode23s is designed for a stiff system of ODE.

Consider a general parabolic equation of the form

ut(x, t)=Lu(x, t) + f (x, t) ,

where L is an elliptic operator. Let Lh be a corresponding finite difference oper-
ator acting on a grid xi= a+ ih. We can form a semidiscrete system of ODEs
of form

∂Ui

∂t
=LhUi(t) + fi(t) ,

whereUi(t)≃ u(xi, t) is the spatial discretization of u(x, t) along the line x= xi,
i.e., we only discretize the spatial variable. For example, the heat equation with
a source ut=βuxx + fwhereL=β∂2/∂x2 is represented byLh=βδ2xx produces
the discretized system of ODE

∂U1(t)
∂t

= β
−2U1(t) +U2(t)

h2
+ β

g1(t)
h2

+ f (x1, t) ,

∂Ui(t)
∂t

= β
Ui−1(t)− 2Ui(t) +Ui+1(t)

h2
+ f (xi, t), i= 2, 3, . . . ,m− 2 ,

∂Um−1(t)
∂t

= β
Um−2(t)− 2Um−1(t)

h2
+ β

g2(t)
h2

+ f (xm−1, t) , (4.9)

05
10:12:57, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c04” — 2017/10/10 — 11:14 — page 86 — #9

86 FDMethods for Parabolic PDEs

and the initial condition is

Ui(0)= u0(xi, 0), i= 1, 2, . . . ,m− 1 . (4.10)

The ODE system can be written in the vector form

dy
dt

= f (y, t), y(0)= y0 . (4.11)

TheMOL is especially useful for nonlinear PDEs of the form ut= f (∂/∂x, u, t).
For linear problems, we typically have

dy
dt

=Ay+ c ,

where A is a matrix and c is a vector. Both A and c may depend on t.
There are many efficient solvers for a system of ODEs. Most are based on

high-order Runge–Kutta methods with adaptive time steps, e.g., ODE suite in
Matlab, or dsode.f available through Netlib. However, it is important to recog-
nise that the ODE system obtained from the MOL is typically stiff, i.e., the
eigenvalues of A have very different scales. For example, for the heat equation
the magnitude of the eigenvalues range from O(1) to O(1/h2). In Matlab, we
can call an ODE solver using the format

[t,y] = ode23s('yfun-mol', [0, t_final], y0);

The solution is stored in the last row of y, which can be extracted using

[mr,nc] = size(y);
ysol = y(mr,:);

Then ysol is the approximate solution at time t= t_ final. To define the ODE
system of theMOL,we can create aMatlab file, say yfun-mol.mwhose contents
contain the following

function yp = yfun-mol(t,y)
global m h x
k = length(y); yp=size(k,1);
yp(1) = (-2*y(1) + y(2))/(h*h) + f(t,x(1)) + g1(t)/(h*h);
for i=2:m-2

yp(i) = (y(i-1) -2*y(1) + y(2))/(h*h) + f(t,x(i));
end
yp(m-1) = (y(m-2) -2*y(m-1))/(h*h) + f(t,x(i)) + g2(t)/(h*h);

where g1(t) and g2(t) are two Matlab functions for the boundary conditions at
x= a and x= b; and f (t, x) is the source term.

05
10:12:57, subject to the Cambridge Core terms of use,

“c04” — 2017/10/10 — 11:14 — page 87 — #10

4.3 The Crank–Nicolson Scheme 87

The initial condition can be defined as

global m h x
for i=1:m-1

y0(i) = u_0(x(i));
end

where u0(x) is a Matlab function of the initial condition.

4.3 The Crank–Nicolson Scheme

The time step constraint∆t= h2/(2β) for the explicit Euler method is generally
considered to be a severe restriction, e.g., if h= 0.01, the final time isT= 10 and
β= 100, then we need 2 × 107 steps to get the solution at the final time. The
backward Euler method does not have the time step constraint, but it is only
first-order accurate. If we want second-order accuracy O(h2), we need to take
∆t=O(h2). One finite difference scheme that is second-order accurate both in
space and time, without compromising stability and computational complexity,
is the Crank–Nicolson scheme.

The Crank–Nicolson scheme is based on the following lemma, which can be
proved easily using the Taylor expansion.

Lemma 4.3. Let ϕ(t) be a function that has continuous first- and second-order
derivatives, i.e., ϕ(t)∈C2. Then

ϕ(t)=
1
2

(
ϕ

(
t− ∆t

2

)
+ ϕ

(
t+

∆t
2

))
+

(∆t)2

8
u′′(t) + h.o.t . (4.12)

Intuitively, the Crank–Nicolson scheme approximates the PDE

ut=(βux)x + f (x, t)

at (xi, tk +∆t/2), by averaging the time level tk and tk+1 of the spatial
derivative ∇ · (β∇u)) and f (x, t). Thus it has the following form

Uk+1
i −Uk

i

∆t
=
βk
i− 1

2
Uk
i−1 − (βk

i− 1
2
+ βk

i+ 1
2
)Uk

i + βk
i+ 1

2
Uk
i+1

2h2

+
β k+1
i− 1

2
Uk+1
i−1 − (β k+1

i− 1
2
+ β k+1

i+ 1
2
)Uk+1

i + β k+1
i+ 1

2
Uk+1
i+1

2h2
+

1
2

(
f ki + f k+1

i

)
. (4.13)

The discretization is second order in time (central at t+∆t/2 with step size
∆t/2) and second order in space. This can easily be seen using the following

05
10:12:57, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c04” — 2017/10/10 — 11:14 — page 88 — #11

88 FDMethods for Parabolic PDEs

relations, taking β= 1 for simplicity:

u(x, t+∆t)− u(x, t)
∆t

= ut(x, t+∆t/2) +
1
3

(
∆t
2

)2

uttt(x, t+∆t/2)

+O((∆t)4),

u(x− h, t)− 2u(x, t) + u(x+ h, t)
2h2

= uxx(x, t) + O(h2),

u(x− h, t+∆t)− 2u(x, t+∆t) + u(x+ h, t+∆t)
2h2

= uxx(x, t+∆t) + O(h2) ,

1
2

(
uxx(x, t) + uxx(x, t+∆t)

)
= uxx(x, t+∆t/2) + O((∆t)2),

1
2

(
f (x, t) + f (x, t+∆t)

)
= f (x, t+∆t/2) + O((∆t)2) .

At each time step, we need to solve a tridiagonal system of equations to get
Uk+1
i . The computational cost is only slightly more than that of the explicit

Euler method in one space dimension, andwe can take∆t≃ h and have second-
order accuracy. Although the Crank–Nicolson scheme is an implicit method,
it is much more efficient than the explicit Euler method since it is second-
order accurate both in time and space with the same computational complexity.
A sample Matlab code crank.m is accompanied with the book. If we use a fixed
time step ∆t= h, given a final time T, we can easily get the number of time
marking steps as NT= int(T/h) as used in the crank.m. In the next section, we
will prove it is unconditionally stable for the heat equation.

4.3.1 A Class of One-step FD Methods: The θ-Method

The θ-method for the heat equation ut= uxx + f (x, t) has the following form:

Uk+1
i −Uk

i

∆t
= θδ2xxU

k
i + (1 − θ)δ2xxU

k+1
i + θf ki + (1 − θ)f k+1

i .

When θ= 1, the method is the explicit Euler method; when θ= 0, the method
is the backward Euler method; and when θ= 1/2, it is the Crank–Nicolson
scheme. If 0<θ≤ 1/2, then themethod is unconditionally stable, and otherwise
it is conditionally stable, i.e., there is a time step constraint. The θ-method is
generally first order in time and second order in space, except for θ= 1/2.

The accompanying Matlab code for this chapter included Euler, Crank–
Nicolson, ADI, and MOL methods.

05
10:12:57, subject to the Cambridge Core terms of use,

“c04” — 2017/10/10 — 11:14 — page 89 — #12

4.4 Stability Analysis for Time-dependent Problems 89

4.4 Stability Analysis for Time-dependent Problems

A standard approach to stability analysis of finite difference methods for time-
dependent problems is named after John von Neumann and based on the
discrete Fourier transform (FT).

4.4.1 Review of the Fourier Transform

Let us first consider the Fourier transform in continuous space. Consider u(x)∈

L2(−∞,∞), i.e.,
∫ ∞

−∞
u2dx<∞ or ∥u∥2<∞. The Fourier transform is defined

as

û(ω)=
1√
2π

∫ ∞

−∞
e−iωxu(x)dx (4.14)

where i=
√
−1, mapping u(x) in the space domain into û(ω) in the frequency

domain. Note that if a function is defined in the domain (0,∞) instead of
(−∞,∞), we can use the Laplace transform. The inverse Fourier transform is

u(x)=
1√
2π

∫ ∞

−∞
eiωxû(ω)dω . (4.15)

Parseval’s relation: Under the Fourier transform, we have ∥û∥2 = ∥u∥2 or∫ ∞

−∞
|û|2dω=

∫ ∞

−∞
|u|2dx . (4.16)

From the definition of the Fourier transform we have(̂
∂û
∂ω

)
=−ixu , ∂̂u

∂x
= iωû . (4.17)

To show this we invoke the inverse Fourier transform

∂u(x)
∂x

=
1√
2π

∫ ∞

−∞
eiωx

∂̂u
∂x

dω

so that, since u(x) and û(ω) are both in L2(−∞,∞), on taking the partial
derivative of the inverse Fourier transform with respect to x we have

∂u(x)
∂x

=
1√
2π

∫ ∞

−∞

∂

∂x

(
eiωx û

)
dω=

1√
2π

∫ ∞

−∞
iωûeiωx dω .

Then as the Fourier transform and its inverse are unique, ∂̂u/∂x= iωû. The
proof of the first equality is left as an exercise. It is easy to generalize the

05
10:12:57, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c04” — 2017/10/10 — 11:14 — page 90 — #13

90 FDMethods for Parabolic PDEs

equality, to get

∂̂mu
∂xm

=(iω)m û (4.18)

i.e., we remove the derivatives of one variable.
The Fourier transform is a powerful tool to solve PDEs, as illustrated below.

Example 4.4. Consider

ut + aux= 0 , −∞< x<∞, t> 0 , u(x, 0)= u0(x)

which is called an advection equation, or a one-way wave equation. This is a
Cauchy problem since the spatial variable is defined in the entire space and
t≥ 0. On applying the FT to the equation and the initial condition,

ût + âux= 0, or ût + aiωû= 0, û(ω, 0)= û0(ω)

i.e., we get an ODE for û(ω) whose solution is

û(ω, t)= û(ω, 0) e−iaωt= û0(ω) e
−iaωt.

The solution to the original advection equation is thus

u(x, t) =
1√
2π

∫ ∞

−∞
eiωx û0(ω) e

−iaωt dω

=
1√
2π

∫ ∞

−∞
eiω(x−at) û0(ω) dω

= u(x− at, 0) ,

on taking the inverse Fourier transform. It is noted that the solution for the
advection equation does not change shape, but simply propagates along the
characteristic line x− at= 0, and that

∥u∥2 = ∥û∥2 = ∥û(ω, 0)e−iaωt∥2 = ∥û(ω, 0)∥2 = ∥u0∥2 .

Example 4.5. Consider

ut=βuxx, −∞< x<∞, t> 0, u(x, 0)= u0(x), lim
|x|→∞

u= 0 ,

involving the heat (or diffusion) equation. On again applying the Fourier
transform to the PDE and the initial condition,

ût= β̂uxx, or ût=β(iω)2û=−βω2û, û(ω, 0)= û0(ω) ,

and the solution of this ODE is

û(ω, t)= û(ω, 0) e−βω2t .

05
10:12:57, subject to the Cambridge Core terms of use,

“c04” — 2017/10/10 — 11:14 — page 91 — #14

4.4 Stability Analysis for Time-dependent Problems 91

Consequently, if β > 0, from the Parseval’s relation, we have

∥u∥2 = ∥û∥2 = ∥û(ω, 0)e−βω2t∥2 ≤∥u0∥2 .

Actually, it can be seen that limt→∞ ∥u∥2 = 0 and the second-order partial
derivative term is called a diffusion or dissipative. If β < 0, then limt→∞ ∥u∥2

=∞, the PDE is dynamically unstable.

Example 4.6. Dispersive waves.
Consider

ut=
∂2m+1u
∂x2m+1 +

∂2mu
∂x2m + l.o.t.,

where m is a nonnegative integer. For the simplest case ut= uxxx, we have

ût= β̂uxxx, or ût=β(iω)3û=−iω3û ,

and the solution of this ODE is

û(ω, t)= û(ω, 0) e−iω
3t .

Therefore,

∥u∥2 = ∥û∥2 = ∥û(ω, 0)∥2 = ∥u(ω, 0)∥2 ,

and the solution to the original PDE can be expressed as

u(x, t) =
1√
2π

∫ ∞

−∞
eiωx û0(ω) e

−iω3t dω

=
1√
2π

∫ ∞

−∞
eiω(x−ω2t) û0(ω) dω .

Evidently, the Fourier componentwithwave numberω propagates with velocity
ω2, so waves mutually interact but there is no diffusion.

Example 4.7. PDEs with even higher-order derivatives.
Consider

ut=α
∂2mu
∂x2m +

∂2m−1u
∂x2m−1 + l.o.t.,

where m is a nonnegative integer. The Fourier transform yields

ût=α(iω)2mû+ · · ·=

{
−αω2mû+ · · · if m= 2k+ 1,

αω2mû+ · · · if m= 2k,

05
10:12:57, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c04” — 2017/10/10 — 11:14 — page 92 — #15

92 FDMethods for Parabolic PDEs

hence

û=

{
û(ω, 0) e−αiω2mt + · · · if m= 2k+ 1,

û(ω, 0) eαiω
2mt + · · · if m= 2k,

such that ut= uxx and ut=−uxxxx are dynamically stable, whereas ut=−uxx
and ut= uxxxx are dynamically unstable.

4.4.2 The Discrete Fourier Transform

Motivations to study a discrete Fourier transform include the stability analysis
of finite difference schemes, data analysis in the frequency domain, filtering
techniques, etc.

Definition 4.8. If . . . , v−2, v−1, v0, v1, v2, . . . denote the values of a continuous
function v(x) at xi= i h, the discrete Fourier transform is defined as

v̂(ξ)=
1√
2π

∞∑
j=−∞

h e−iξ jh vj . (4.19)

Remark 4.9.

• The definition is a quadrature approximation to the continuous case, i.e., we
approximate

∫
by
∑

, and replace dx by h.
• v̂(ξ) is a continuous and periodic function of ξ with period 2π/h, since

e−ijh(ξ+2π/h)= e−ijhξe2ijπ = e−iξ jh , (4.20)

so we can focus on v̂(ξ) in the interval [−π/h, π/h], and consequently have
the following definition.

Definition 4.10. The inverse discrete Fourier transform is

vj=
1√
2π

∫ π/h

−π/h
eiξ jh v̂(ξ) dξ . (4.21)

Given any finite sequence not involving h,

v1, v2, . . . , vM ,

we can extend the finite sequence according to the following

. . . , 0, 0, v1, v2, . . . , vM, 0, 0, . . . ,

05
10:12:57, subject to the Cambridge Core terms of use,

“c04” — 2017/10/10 — 11:14 — page 93 — #16

4.4 Stability Analysis for Time-dependent Problems 93

and alternatively define the discrete Fourier and inverse Fourier transform as

v̂(ξ) =
1√
2π

∞∑
j=−∞

e−iξ jvj=
M∑
j=0

e−iξ j vj , (4.22)

vj =
1√
2π

∫ π

−π
eiξ j v̂(ξ) dξ . (4.23)

We also define the discrete norm as

∥v∥h=

√√√√ ∞∑
j=−∞

v2j h , (4.24)

which is often denoted by ∥v∥2. Parseval’s relation is also valid, i.e.,

∥v̂∥2
h=

∫ π/h

−π/h
|v̂(ξ)|2dξ=

∞∑
j=−∞

h |vj|2 = ∥v∥2
h . (4.25)

4.4.3 Definition of the Stability of a FD Scheme

A finite difference scheme P∆t,hvkj = 0 is stable in a stability region Λ if for any
positive time T there is an integer J and a constant CT independent of ∆t and
h such that

∥vn∥h≤CT

J∑
j=0

∥v j∥h , (4.26)

for any n that satisfies 0≤ n∆t≤T with (∆t, h)∈Λ.

Remark 4.11.

1. The stability is usually independent of source terms.
2. A stable finite difference scheme means that the growth of the solution is at

most a constant multiple of the sum of the norms of the solution at the first
J+ 1 steps.

3. The stability region corresponds to all possible ∆t and h for which the finite
difference scheme is stable.

The following theorem provides a simple way to check the stability of any
finite difference scheme.

Theorem 4.12. If ∥vk+1∥h≤∥vk∥h is true for any k, then the finite difference
scheme is stable.

05
10:12:57, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c04” — 2017/10/10 — 11:14 — page 94 — #17

94 FDMethods for Parabolic PDEs

Proof From the condition, we have

∥vn∥h≤∥vn−1∥h≤ · · ·≤ ∥v1∥h≤∥v0∥h ,

and hence stability for J= 0 and CT= 1.

4.4.4 The von Neumann Stability Analysis for FD Methods

The von Neumann stability analysis of a finite difference scheme can be
sketched briefly as Discrete scheme =⇒ discrete Fourier transform =⇒ growth
factor g(ξ) =⇒ stability (|g(ξ)| ≤ 1?). We will also explain a simplification of
the von Neumann analysis.

Example 4.13. The forward Euler method (FW-CT) for the heat equation ut=
βuxx is

Uk+1
i =Uk

i + µ
(
Uk
i−1 − 2Uk

i +Uk
i+1

)
, µ=

β∆t
h2

. (4.27)

From the discrete Fourier transform, we have the following

Uk
j =

1√
2π

∫ π/h

−π/h
eiξ jhÛk(ξ)dξ , (4.28)

Uk
j+1 =

1√
2π

∫ π/h

−π/h
eiξ(j+1)hÛk(ξ)dξ=

1√
2π

∫ π/h

−π/h
eiξ jheiξhÛk(ξ)dξ , (4.29)

and similarly

Uk
j−1 =

1√
2π

∫ π/h

−π/h
eiξ jhe−iξhÛk(ξ)dξ . (4.30)

Substituting these relations into the forward Euler finite difference scheme, we
obtain

Uk+1
i =

1√
2π

∫ π/h

−π/h
eiξ jh

(
1 + µ(e−iξh − 2 + eiξh)

)
Ûk(ξ)dξ . (4.31)

On the other hand, from the definition of the discrete Fourier transform, we
also know that

Uk+1
i =

1√
2π

∫ π/h

−π/h
eiξ jhÛk+1(ξ)dξ . (4.32)

The discrete Fourier transform is unique, which implies

Ûk+1(ξ)=
(
1 + µ(e−iξh − 2 + eiξh)

)
Ûk(ξ)= g(ξ)Ûk(ξ) , (4.33)

05
10:12:57, subject to the Cambridge Core terms of use,

“c04” — 2017/10/10 — 11:14 — page 95 — #18

4.4 Stability Analysis for Time-dependent Problems 95

where

g(ξ)= 1 + µ(e−iξh − 2 + eiξh) (4.34)

is called the growth factor. If |g(ξ)| ≤ 1, then |Ûk+1| ≤ |Ûk| and thus ∥Ûk+1∥h≤
∥Ûk∥h, so the finite difference scheme is stable.

Let us examine |g(ξ)| now. We have

g(ξ) = 1 + µ (cos(−ξh)− i sin(ξh)− 2 + cos(ξh) + i sin(ξh))

= 1 + 2µ (cos(ξh)− 1)= 1 − 4µ sin2(ξh)/2 ,
(4.35)

but we need to know when |g(ξ)| ≤ 1, or −1≤ g(ξ)≤ 1. Note that

−1≤ 1 − 4µ≤ 1 − 4µ sin2(ξh)/2= g(ξ)≤ 1 , (4.36)

so on taking −1≤ 1 − 4µ we can guarantee that |g(ξ)| ≤ 1, which implies the
stability. Thus a sufficient condition for the stability of the forward Euler
method is

−1≤ 1 − 4µ or 4µ≤ 2, or ∆t≤ h2

2β
. (4.37)

Although we cannot claim what will happen if this condition is violated, it
provides an upper bound for the stability.

4.4.5 Simplification of the von Neumann Stability Analysis
for One-step Time Marching Methods

Consider the one-step timemarchingmethodUk+1 = f (Uk,Uk+1). The follow-
ing theorem provides a simple way to determine the stability.

Theorem 4.14. Let θ= hξ. A one-step finite difference scheme (with constant
coefficients) is stable if and only if there is a constant K (independent of θ, ∆t,
and h) and some positive grid spacing ∆t0 and h0 such that

|g(θ,∆t, h)| ≤ 1 + K∆t (4.38)

for all θ and 0< h≤ h0. If g(θ,∆t, h) is independent of h and∆t, then the stability
condition (4.38) can be replaced by

|g(θ| ≤ 1. (4.39)

Thus only the amplification factor g(hξ)= g(θ) needs to be considered, as
observed by von Neumann.

05
10:12:57, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c04” — 2017/10/10 — 11:14 — page 96 — #19

96 FDMethods for Parabolic PDEs

The von Neumann stability analysis usually involves the following steps:

1. set Uk
j = eijhξ and substitute it into the finite difference scheme;

2. express Uk+1
j as Uk+1

j = g(ξ)eijhξ, etc.;
3. solve for g(ξ) and determine whether or when |g(ξ)| ≤ 1 (for stability); but

note that
4. if there are some ξ such that |g(ξ)|> 1, then the method is unstable.

Example 4.15. The stability of the backward Euler method for the heat
equation ut=βuxx is

Uk+1
i =Uk

i + µ
(
Uk+1
i−1 − 2Uk+1

i +Uk+1
i+1

)
, µ=

β∆t
h2

. (4.40)

Following the procedure mentioned above, we have

g(ξ)eijhξ = eijhξ + µ
(
eiξ(j−1)h − 2eiξ jh + eiξ(j+1)h

)
g(ξ)

= eiξ jh
(
1 + µ

(
e−iξh − 2 + eiξh

)
g(ξ)

)
, (4.41)

with solution

g(ξ) =
1

1 − µ(e−iξh − 2 + eiξh)

=
1

1 − µ(2 cos(hξ)− 2)
=

1

1 + 4µ sin2(hξ)/2
≤ 1, (4.42)

for any h and ∆t> 0. Obviously, −1< 0≤ g(ξ) so |g(ξ)| ≤ 1 and the backward
Euler method is unconditionally stable, i.e., there is no constraint on ∆t for
stability.

Example 4.16. The Leapfrog scheme (two-stage method) for the heat equation
ut= uxx is

Uk+1
i −Uk−1

i

2∆t
=
Uk
i−1 − 2Uk

i +Uk
i+1

h2
, (4.43)

involving the central finite difference formula both in time and space. This
method is unconditionally unstable! To show this, we use Uk−1

j = eijhξ/g(ξ)
to get

g(ξ)eijhξ =
1

g(ξ)
eijhξ + eiξ jh

(
µ(e−iξh − 2 + eiξh)

)
=

1
g(ξ)

eijhξ − eijhξ4µ sin2(hξ/2) ,

05
10:12:57, subject to the Cambridge Core terms of use,

“c04” — 2017/10/10 — 11:14 — page 97 — #20

4.5 FD Methods and Analysis for 2D Parabolic Equations 97

yielding a quadratic equation for g(ξ):

(g(ξ))2 + 4µ sin2(hξ/2) g(ξ)− 1= 0. (4.44)

The two roots are

g(ξ)=−2µ sin2(hξ/2)±
√

4µ2 sin4(hξ/2) + 1 ,

and one root

g(ξ)=−2µ sin2(hξ/2)−
√

4µ2 sin4(hξ/2) + 1

has magnitude |g(ξ)| ≥ 1. Thus there are ξ such that |g(ξ)|> 1, so the method
is unstable.

4.5 FD Methods and Analysis for 2D Parabolic Equations

The general form of a parabolic PDE is

ut + a1ux + a2uy=(βux)x + (βuy)y + κu+ f (x, y, t) ,

with boundary conditions and an initial condition. We need β≥β0> 0 for the
dynamic stability. The PDE can be written as

ut=Lu+ f ,

where L is the spatial differential operator. The MOL can be used provided
there is a good solver for the stiff ODE system. Note that the system is
large (O(mn)), if the numbers of grid lines are O(m) and O(n) in the x- and
y-directions, respectively.

For simplicity, let us consider the heat equation ut=∇ · (β∇u) + f (x, y, t)
and assume β is a constant. The simplest method is the forward Euler
method:

Uk+1
lj =Uk

lj + µ
(
Uk
l−1, j +Uk

l+1, j +Uk
l, j−1 +Uk

l, j+1 − 4Uk
l, j

)
+∆tf klj ,

05
10:12:57, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c04” — 2017/10/10 — 11:14 — page 98 — #21

98 FDMethods for Parabolic PDEs

where µ=β∆t/h2. The method is first order in time and second order in space,
and it is conditionally stable. The stability condition is

∆t≤ h2

4β
. (4.45)

Note that the factor is now 4, instead of 2 for 1D problems. To show stability
using the von Neumann analysis with f= 0, set

uklj = ei (lhxξ1+jhyξ2)= ei ξ·x (4.46)

where ξ= [ξ1, ξ2]
T and x= [hxl, hyj]T ,

Uk+1
lj = g(ξ1, ξ2) e

i ξ·x. (4.47)

Note that the index is l instead of i in the x-direction, to avoid confusion with
the imaginary unit i=

√
−1.

Substituting these expressions into the finite difference scheme, we obtain

g(ξ1, ξ2)= 1 − 4µ
(
sin2(ξ1h/2) + sin2(ξ2h/2)

)
,

where hx= hy= h for simplicity. If we enforce

−1≤ 1 − 8µ≤ 1 − 4µ
(
sin2(ξ1h/2) + sin2(ξ2h/2)

)
≤ 1 − 8µ,

and take −1≤ 1 − 8µ, we can guarantee that |g(ξ1, ξ2)| ≤ 1, which implies the
stability. Thus, a sufficient condition for the stability of the forward Euler
method in 2D is

8∆tβ
h2

≤ 2, or ∆t≤ h2

4β
,

in addition to the condition ∆t> 0.

4.5.1 The Backward Euler Method (BW-CT) in 2D

The backward Euler scheme can be written as

Uk+1
ij −Uk

ij

∆t
=
Uk+1
i−1, j +Uk+1

i+1, j +Uk+1
i, j−1 +Uk+1

i, j+1 − 4Uk+1
ij

h2
+ f k+1

ij , (4.48)

05
10:12:57, subject to the Cambridge Core terms of use,

“c04” — 2017/10/10 — 11:14 — page 99 — #22

4.6 The ADI Method 99

which is first order in time and second order in space, and it is unconditionally
stable. The coefficient matrix for the unknown Uk+1

ij is block tridiagonal, and
strictly row diagonally dominant if the natural row ordering is used to index
the Uk+1

ij and the finite difference equations.

4.5.2 The Crank–Nicolson (C–N) Scheme in 2D

The Crank–Nicolson scheme can be written as

Uk+1
ij −Uk

ij

∆t
=

1
2

(
Uk+1
i−1, j +Uk+1

i+1, j +Uk+1
i, j−1 +Uk+1

i, j+1 − 4Uk+1
ij

h2
+ f k+1

ij

+
Uk
i−1, j +Uk

i+1, j +Uk
i, j−1 +Uk

i, j+1 − 4Uk
ij

h2
+ f kij

)
. (4.49)

Both the local truncation error and global error are O
(
(∆t)2 + h2

)
. The scheme

is unconditionally stable for linear problems. However, we need to solve a sys-
tem of equations with a strictly row diagonally dominant and block tridiagonal
coefficient matrix, if we use the natural row ordering for both the equations and
unknowns.

A structured multigrid method can be applied to solve the linear system of
equations from the backward Euler method or the Crank–Nicolson scheme.

4.6 The ADI Method

The ADI is a time splitting or fractional step method. The idea is to use
an implicit discretization in one direction and an explicit discretization in
another direction. For the heat equation ut= uxx + uyy + f (x, y, t), the ADI
method is

U
k+ 1

2
ij −Uk

ij

(∆t)/2
=
U
k+ 1

2
i−1, j − 2U

k+ 1
2

ij +U
k+ 1

2
i+1, j

h2x
+
Uk
i, j−1 − 2Uk

ij +Uk
i, j+1

h2y
+ f

k+ 1
2

ij ,

Uk+1
ij −U

k+ 1
2

ij

(∆t)/2
=
U
k+ 1

2
i−1, j − 2U

k+ 1
2

ij +U
k+ 1

2
i+1, j

h2x
+
Uk+1
i, j−1 − 2Uk+1

ij +Uk+1
i, j+1

h2y
+ f

k+ 1
2

ij ,

(4.50)

which is second order in time and in space if u(x, y, t)∈C4(Ω), where Ω is the
bounded domain where the PDE is defined. It is unconditionally stable for
linear problems. We can use symbolic expressions to discuss the method by

05
10:12:57, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c04” — 2017/10/10 — 11:14 — page 100 — #23

100 FDMethods for Parabolic PDEs

rewriting the ADI method as

U
k+ 1

2
ij = Uk

ij +
∆t
2
δ2xxU

k+ 1
2

ij +
∆t
2
δ2yyU

k
ij +

∆t
2
f
k+ 1

2
ij ,

Uk+1
ij = U

k+ 1
2

ij +
∆t
2
δ2xxU

k+ 1
2

ij +
∆t
2
δ2yyU

k+1
ij +

∆t
2
f
k+ 1

2
ij .

(4.51)

Thus on moving unknowns to the left-hand side, in matrix-vector form we have(
I− ∆t

2
D2
x

)
Uk+ 1

2 =

(
I+

∆t
2
D2
y

)
Uk +

∆t
2
Fk+ 1

2 ,(
I− ∆t

2
D2
y

)
Uk+1 =

(
I+

∆t
2
D2
x

)
Uk+ 1

2 +
∆t
2
Fk+ 1

2 ,

(4.52)

leading to a simple analytically convenient result as follows. From the first
equation we get

Uk+ 1
2 =

(
I− ∆t

2
D2
x

)−1(
I+

∆t
2
D2
y

)
Uk +

(
I− ∆t

2
D2
x

)−1 ∆t
2
Fk+ 1

2 ,

and substituting into the second equation to have(
I− ∆t

2
D2
y

)
Uk+1 =

(
I+

∆t
2
D2
x

)(
I− ∆t

2
D2
x

)−1(
I+

∆t
2
D2
y

)
Uk

+

(
I+

∆t
2
D2
x

)(
I− ∆t

2
D2
x

)−1 ∆t
2
Fk+ 1

2 +
∆t
2
Fk+ 1

2 .

We can go further to get(
I− ∆t

2
D2
x

)(
I− ∆t

2
D2
y

)
Uk+1 =

(
I+

∆t
2
D2
x

)(
I+

∆t
2
D2
y

)
Uk

+

(
I+

∆t
2
D2
x

)
∆t
2
Fk+ 1

2 +
∆t
2
Fk+ 1

2 .

This is the equivalent one step time marching form of the ADI method, which
will be use to show the stability of the ADI method later. Note that in this
derivation we have used(

I+
∆t
2
D2
x

)(
I+

∆t
2
D2
y

)
=

(
I+

∆t
2
D2
y

)(
I+

∆t
2
D2
x

)
and other commutative operations.

05
10:12:57, subject to the Cambridge Core terms of use,

“c04” — 2017/10/10 — 11:14 — page 101 — #24

4.6 The ADI Method 101

4.6.1 Implementation of the ADI Algorithm

The key idea of the ADI method is to use the implicit discretization dimension
by dimension by taking advantage of fast tridiagonal solvers. In the x-direction,
the finite difference approximation is

U
k+ 1

2
ij = Uk

ij +
∆t
2
δ2xxU

k+ 1
2

ij +
∆t
2
δ2yyU

k
ij +

∆t
2
f
k+ 1

2
ij .

For a fixed j, we get a tridiagonal system of equations for U
k+ 1

2
1j , U

k+ 1
2

2j , . . .,

U
k+ 1

2
m−1, j, assuming a Dirichlet boundary condition at x= a and x= b. The

system of equations in matrix-vector form is



1 + 2µ −µ

−µ 1 + 2µ −µ

−µ 1 + 2µ −µ
.

−µ 1 + 2µ −µ

−µ 1 + 2µ





U
k+ 1

2
1j

U
k+ 1

2
2j

U
k+ 1

2
3j

...

U
k+ 1

2
m−2, j

U
k+ 1

2
m−1, j


= F̂ ,

where

F̂=



Uk
1, j +

∆t
2
f
k+ 1

2
1j + µ ubc(a, yj)k+

1
2 + µ

(
Uk

1, j−1 − 2Uk
1, j +Uk

1, j+1

)
Uk

2, j +
∆t
2
f
k+ 1

2
2j + µ

(
Uk

2, j−1 − 2Uk
2, j +Uk

2, j+1

)
Uk

3j +
∆t
2
f
k+ 1

2
3j + µ

(
Uk

3, j−1 − 2Uk
3, j +Uk

3, j+1

)
...

Uk
m−2, j +

∆t
2
f
k+ 1

2
m−2, j + µ

(
Uk
m−2, j−1 − 2Uk

m−2, j +Uk
m−2, j+1

)
Uk
m−1, j +

∆t
2
f
k+ 1

2
m−1, j + µ

(
Uk
m−1, j−1 − 2Uk

m−1, j +Uk
m−1, j+1

)
+ µ ubc(b, yj)k+

1
2



,

and µ= β∆t
2h2 , and f

k+ 1
2

i = f (xi, t k+
1
2). For each j, we need to solve a symmetric

tridiagonal system of equations. The cost for the x-sweep is about O(5mn).

05
10:12:57, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c04” — 2017/10/10 — 11:14 — page 102 — #25

102 FDMethods for Parabolic PDEs

4.6.1.1 A Pseudo-code of the ADI Method in Matlab
for j = 2:n, % Loop for fixed j

A = sparse(m-1,m-1); b=zeros(m-1,1);
for i=2:m,

b(i-1) = (u1(i,j-1) -2*u1(i,j) + u1(i,j+1))/h1 + ...
f(t2,x(i),y(j)) + 2*u1(i,j)/dt;

if i == 2
b(i-1) = b(i-1) + uexact(t2,x(i-1),y(j))/h1;
A(i-1,i) = -1/h1;

else
if i==m

b(i-1) = b(i-1) + uexact(t2,x(i+1),y(j))/h1;
A(i-1,i-2) = -1/h1;

else
A(i-1,i) = -1/h1;
A(i-1,i-2) = -1/h1;

end
end
A(i-1,i-1) = 2/dt + 2/h1;

end
ut = A\b; % Solve the diagonal matrix.

%-------------- loop in the y direction --------------------------
for i = 2:m,

A = sparse(m-1,m-1); b=zeros(m-1,1);
for j=2:n,

b(j-1) = (u2(i-1,j) -2*u2(i,j) + u2(i+1,j))/h1 + ...
f(t2,x(i),y(j)) + 2*u2(i,j)/dt;

if j == 2
b(j-1) = b(j-1) + uexact(t1,x(i),y(j-1))/h1;
A(j-1,j) = -1/h1;

else
if j==n

b(j-1) = b(j-1) + uexact(t1,x(i),y(j+1))/h1;
A(j-1,j-2) = -1/h1;

else
A(j-1,j) = -1/h1;
A(j-1,j-2) = -1/h1;

end
end
A(j-1,j-1) = 2/dt + 2/h1; % Solve the system

end
ut = A\b;

A Matlab test code adi.m can be found in the depository directory of this
chapter.

05
10:12:57, subject to the Cambridge Core terms of use,

“c04” — 2017/10/10 — 11:14 — page 103 — #26

4.6 The ADI Method 103

4.6.2 Consistency of the ADI Method

Adding the two equations in (4.50) together, we get

Uk+1
ij −Uk

ij

(∆t)/2
= 2δ2xxU

k+ 1
2

ij + δ2yy

(
Uk+1
ij +Uk

ij

)
+ 2f

k+ 1
2

ij ; (4.53)

and if we subtract the first equation from the second equation, we get

4U
k+ 1

2
ij = 2

(
Uk+1
ij +Uk

ij

)
−∆tδ2yy

(
Uk+1
ij −Uk

ij

)
. (4.54)

Substituting this into (4.53) we get(
1 +

(∆t)2

4
δ2xxδ

2
yy

) Uk+1
ij −Uk

ij

∆t
=
(
δ2xx + δ2yy

) Uk+1
ij +Uk

ij

2
+ f

k+ 1
2

ij , (4.55)

and we can clearly see that the discretization is second-order accurate in both
space and time, i.e., Tkij=O((∆t)2 + h2).

4.6.3 Stability Analysis of the ADI Method

Taking f= 0 and setting

Uk
lj = ei(ξ1h1l+ξ2h2j), Uk+1

lj = g(ξ1, ξ2) e
i(ξ1h1l+ξ2h2j), (4.56)

on using the operator form we have(
1 − ∆t

2
δ2xx

)(
1 − ∆t

2
δ2yy

)
Uk+1
jl =

(
1 +

∆t
2
δ2xx

)(
1 +

∆t
2
δ2yy

)
Uk
jl ,

which yields, (
1 − ∆t

2
δ2xx

)(
1 − ∆t

2
δ2yy

)
g(ξ1, ξ2) e

i(ξ1h1l+ξ2h2j)

=

(
1 +

∆t
2
δ2xx

)(
1 +

∆t
2
δ2yy

)
ei(ξ1h1l+ξ2h2j) .

After some manipulations, we get

g(ξ1, ξ2)=

(
1 − 4µ sin2(ξ1h/2)

)(
1 − 4µ sin2(ξ2h/2)

)
(

1 + 4µ sin2(ξ1h/2)
)(

1 + 4µ sin2(ξ2h/2)
) ,

05
10:12:57, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c04” — 2017/10/10 — 11:14 — page 104 — #27

104 FDMethods for Parabolic PDEs

where µ= ∆t
2h2 and for simplicity we have set hx= hy= h. Thus |g(ξ1, ξ2)| ≤ 1,

no matter what ∆t and h are, so the ADI method is unconditionally stable for
linear heat equations.

4.7 An Implicit–explicit Method for Diffusion
and Advection Equations

Consider a diffusion and advection PDE in 2D

ut + w · ∇u=∇ · (β∇u) + f (x, y, t)

where w is a 2D vector, and ∇ is the gradient operator in 2D, see page 48.
In this case, it is not so easy to get a second-order implicit scheme such that
the coefficient matrix is diagonally dominant or symmetric positive or negative
definite, due to the advection term w · ∇u. One approach is to use an implicit
scheme for the diffusion term and an explicit scheme for the advection term, of
the following form from time level tk to tk+1:

uk+1 − uk

∆t
+ (w · ∇hu)

k+ 1
2 =

1
2

(
(∇h · β∇hu)

k + (∇h · β∇hu)
k+1
)
+ f k+

1
2 ,

(4.57)

where

(w · ∇hu)
k+ 1

2 =
3
2
(w · ∇hu)

k − 1
2
(w · ∇hu)

k−1 , (4.58)

where ∇hu= [δxu, δyu]T, and at a grid point (xi, yj), they are

δxu=
ui+1, j − ui−1, j

2hx
; δxu=

ui, j+1 − ui, j−1

2hy
. (4.59)

We treat the advection term explicitly, since the term only contains the first-
order partial derivatives and the CFL constraint is not a main concern unless
∥w∥ is very large. The time step constraint is

∆t≤ h
2∥w∥2

. (4.60)

At each time step, we need to solve a generalized Helmholtz equation

(∇ · β∇u)k+1 − 2uk+1

∆t
=−2uk

∆t
+ 2 (w · ∇u)k+

1
2 − (∇ · β∇u)k − 2f k+

1
2 .

(4.61)

05
10:12:57, subject to the Cambridge Core terms of use,

“c04” — 2017/10/10 — 11:14 — page 105 — #28

Exercises 105

We need u1 to get the scheme above started. We can use the explicit Euler
method (FW-CT) to approximate u1, as this should not affect the stability and
global error O((∆t)2 + h2).

4.8 Solving Elliptic PDEs using Numerical Methods
for Parabolic PDEs

We recall the steady-state solution of a parabolic PDE is the solution of the
corresponding elliptic PDE, e.g., the steady-state solution of the parabolic PDE

ut=∇ · (β∇u) + w · ∇u+ f (x, t)

is the solution to the elliptic PDE

∇ · (β∇u) + w · ∇u+ f̄(x)= 0 ,

if the limit

f̄(x)= lim
t→∞

f (x, t)

exists. The initial condition is irrelevant to the steady-state solution, but the
boundary condition is relevant. This approach has some advantages, especially
for nonlinear problems where the solution is not unique. We can control the
variation of the intermediate solutions, and the linear system of equations is
more diagonally dominant. Since we only require the steady-state solution, we
prefer to use implicit methods with large time steps since the accuracy in time
is unimportant.

Exercises

1. Show that a scheme for

ut =β uxx (4.62)

of the form

U k+1
i =αUk

i +
1 − α

2

(
U k
i+1 +U k

i−1

)
where α= 1 − 2βµ, µ=∆t/h2 is consistent with the heat equation (4.62). Find the order
of the discretization.

2. Show that the implicit scheme(
1 − ∆tβ

2
δ2
xx

)(
U k+1
i −U k

i

∆t

)
=β

(
1 − h2

12
δ2
xx

)
δ2
xxU

k
i (4.63)

05
10:12:57, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c04” — 2017/10/10 — 11:14 — page 106 — #29

106 FDMethods for Parabolic PDEs

for the heat equation (4.62) has order of accuracy ((∆t)2, h4), where

δ2
xxUi =

Ui−1 − 2Ui +Ui+1

h2
,

and ∆t=O(h2). Compare this method with FW-CT, BW-CT, and Crank–Nicolson
schemes and explain the advantages and limitations. (Note: The stability condition of the
scheme is βµ≤ 3

2).
3. For the implicit Euler method applied to the heat equation ut = uxx, is it possible to choose

∆t such that the discretization is O((∆t)2 + h4)?
4. Consider the diffusion and advection equation

ut + ux =βuxx, β > 0 . (4.64)

Use the von Neumann analysis to derive the time step restriction for the scheme

U k+1
i −U k

i

∆t
+
Uk
i+1 −U k

i−1

2h
=β

U k
i−1 − 2U k

i +U k
i+1

h2
.

5. Implement and compare the Crank–Nicolson and theMOL methods using Matlab for the
heat equation:

ut =βuxx + f (x, t), a< x< b, t≥ 0,

u(x, 0)= u0(x); u(a, t)= g1(t); ux(b, t)= g2(t),

where β is a constant. Use u(x, t)= (cos t) x2 sin(πx), 0< x< 1, tfinal= 1.0 to test and
debug your code. Write a short report about these two methods. Your discussion should
include the grid refinement analysis, error and solution plots for m= 80, comparison of
cputime, and any conclusions you can draw from your results. You can use Matlab code
ode15s or ode23s to solve the semidiscrete ODE system.
Assume that u is the temperature of a thin rod with one end (x= b) just heated. The other
end of the rod has a room temperature (70◦C). Solve the problem and find the history of
the solution. Roughly how long does it take for the temperature of the rod to reach the
steady state? What is the exact solution of the steady state? Hint: Take the initial condition
as u(x, 0)=T0 e−(x−b)2/γ , where T0 and γ are two constants, f (x, t)= 0, and the Neumann
boundary condition ux(b, t)= 0.

6. Carry out the von Neumann analysis to determine the stability of the θ method

U (n+1)
j −U n

j

k
= b

(
θ δ2

xU
(n)
j + (1 − θ) δ2

xU
(n+1)
j

)
(4.65)

for the heat equation ut = buxx, where

δ2
xUj =

Uj−1 − 2Uj +Uj+1

h2
and 0≤ θ≤ 1 .

7. Modify the Crank–Nicolson Matlab code for the backward Euler method and for variable
β(x, t)’s in one space dimensions. Validate your code.

8. Implement and compare the ADI and Crank–Nicolson methods with the SOR(ω) (try to
test optimal ω) for the following problem involving the 2D heat equation:

ut = uxx + uyy + f (t, x, y) , a< x< b , c≤ y≤ d, t≥ 0 ,

u(0, x, y)= u0(x, y),

05
10:12:57, subject to the Cambridge Core terms of use,

“c04” — 2017/10/10 — 11:14 — page 107 — #30

Exercises 107

and Dirichlet boundary conditions. Choose two examples with known exact solutions to
test and debug your code. Write a short report about the two methods. Your discussion
should include the grid refinement analysis (with a fixed final time, say T= 0.5), error and
solution plots, comparison of cpu time and flops, and any conclusions you can draw from
your results.

9. Extra credit: Modify the ADI Matlab code for variable heat conductivity β(x, y).

05
10:12:57, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c05” — 2017/10/10 — 13:06 — page 108 — #1

5

Finite Difference Methods for Hyperbolic PDEs

In this chapter, we discuss finite difference methods for hyperbolic PDEs
(see page 6 for the definition of hyperbolic PDEs). Let us first list a few typical
model problems involving hyperbolic PDEs.

• Advection equation (one-way wave equation):

ut + aux= 0 , 0< x< 1 ,

u(x, 0)= η(x) , IC ,

u(0, t)= gl(t) if a≥ 0 , or u(1, t)= gr(t) if a≤ 0 .

(5.1)

Here gl and gr are prescribed boundary conditions from the left and right,
respectively.

• Second-order linear wave equation:

utt= auxx , 0< x< 1 ,

u(x, 0)= η(x),
∂u
∂t

(x, 0)= v(x), IC ,

u(0, t)= gl(t) , u(1, t)= gr(t), BC.

(5.2)

• Linear first-order hyperbolic system:

ut=Aux + f(x, t) , (5.3)

where u and f are two vectors and A is a matrix. The system is called hyper-
bolic if A is diagonalizable, i.e., if there is a nonsingular matrix T such that
A=TDT−1, and all eigenvalues of A are real numbers.

108

06
10:43:26, subject to the Cambridge Core terms of use,

“c05” — 2017/10/10 — 13:06 — page 109 — #2

5.1 Characteristics and Boundary Conditions 109

• Nonlinear hyperbolic equation or system, notably conservation laws:

ut + f(u)x= 0 , e.g., Burgers’ equation ux +
(
u2

2

)
x
= 0 ; (5.4)

ut + fx + gy= 0 . (5.5)

For nonlinear hyperbolic PDE, shocks (a discontinuous solution) can
develop even if the initial data is smooth.

5.1 Characteristics and Boundary Conditions

We know the exact solution for the one-way wave equation

ut + aux= 0 , −∞< x<∞ ,

u(x, 0)= η(x) , t> 0

is u(x, t)= η(x− at). If the domain is finite, we can also find the exact solution.
We can solve the model problem

ut + aux= 0 , 0< x< 1 ,

u(x, 0)= η(x) , t> 0 , u(0, t)= gl(t) if a> 0

by themethod of characteristics since the solution is constant along the charac-
teristics. For any point (x, t)we can readily trace the solution back to the initial
data. In fact, for the characteristic

z(s)= u(x+ ks, t+ s) (5.6)

along which the solution is a constant (z′(s)≡ 0), on substituting into the PDE
we get

z′(s)= ut + kux= 0 ,

which is always true if k= a. The solution at (x+ ks, t+ s) is the same as
at (x, t), so we can solve the problem by tracing back until the line hits the
boundary, i.e., u(x̄, t̄)= u(x+ as, t+ s)= u(x− at, 0) if x− at≥ 0, on tracing
back to the initial condition. If x− at< 0, we can only trace back to x= 0 or
s=−x̄/a and t= x̄/a, and the solution is u(x̄, t̄)= u(0, t− x̄/a)= gl(t− x̄/a).
The solution for the case a≥ 0 can therefore be written as

u(x, t)=

η(x− at) if x≥ at,

gl
(
t− x

a

)
if x< at .

(5.7)

06
10:43:26, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c05” — 2017/10/10 — 13:06 — page 110 — #3

110 Finite Difference Methods for Hyperbolic PDEs

Now we can see why we have to prescribe a boundary condition at x= 0, but we
cannot have any boundary condition at x= 1. It is important to have correct
boundary conditions for hyperbolic problems!

The one-way wave equation is often used as a benchmark problem for
different numerical methods for hyperbolic problems.

5.2 Finite Difference Schemes

Simple numerical methods for hyperbolic problems include:

• Lax–Friedrichs method;
• Upwind scheme;
• Leap-frog method (note it does not work for the heat equation but works for

linear hyperbolic equations);
• Box scheme;
• Lax–Wendroff method;
• Crank–Nicolson scheme (not recommended for hyperbolic problems, since

there are no severe time step size constraints); and
• Beam–Warming method (one-sided second-order upwind scheme if the

solution is smooth).

There are also some high-order methods in the literature. For linear
hyperbolic problems, if the initial data is smooth (no discontinuities), it is
recommended to use second-order accuratemethods such as the Lax–Wendroff
method. However, care has to be taken if the initial data has finite discontinu-
ities, called shocks, as second- or high-order methods often lead to oscillations
near the discontinuities (Gibbs phenomena). Some of themethods are the bases
for numerical methods for a conservation law, a special conservative nonlinear
hyperbolic system, for which shocks may develop in finite time even if the ini-
tial data is smooth. Also for hyperbolic differential equations, usually there is
no strict time step constraint as for parabolic problems. Often explicit methods
are preferred.

5.2.1 Lax–Friedrichs Method

Consider the one-way wave equation ut + aux= 0, and the simple finite differ-
ence scheme

Uk+1
j −Uk

j

∆t
+

a
2h

(
Uk
j+1 −Uk

j−1

)
= 0 ,

or Uk+1
j =Uk

j − µ
(
Uk
j+1 −Uk

j−1

)
,

06
10:43:26, subject to the Cambridge Core terms of use,

“c05” — 2017/10/10 — 13:06 — page 111 — #4

5.2 Finite Difference Schemes 111

where µ= a∆t/(2h). The scheme has O(∆t+ h2) local truncation error, but the
method is unconditionally unstable from the von Neumann stability analysis.
The growth factor for the FW-CT finite difference scheme is

g(θ) = 1 − µ
(
eihξ − e−ihξ

)
= 1 − µ 2 i sin(hξ),

where θ= hξ, so

|g(θ)|2 = 1 + 4µ2 sin2(hξ)≥ 1 .

In the Lax–Friedrichs scheme, we average Uk
j using Uk

j−1 and Uk
j+1 to get

Uk+1
j =

1
2

(
Uk
j−1 +Uk

j+1

)
− µ

(
Uk
j+1 −Uk

j−1

)
.

The local truncation error is O(∆t+ h) if ∆t≃ h. The growth factor is

g(θ) =
1
2

(
eihξ + e−ihξ

)
+ µ

(
eihξ − e−ihξ

)
= cos(hξ)− 2µ sin(hξ)i

so

|g(θ)|2 = cos2(hξ) + 4µ2 sin2(hξ)

= 1 − sin2(hξ) + 4µ2 sin2(hξ)

= 1 − (1 − 4µ2) sin2(hξ) ,

and we conclude that |g(θ)| ≤ 1 if 1 − 4µ2 ≥ 0 or 1 − (a∆t/h)2 ≥ 0, which
implies that∆t≤ h/|a|. This is the CFL (Courant–Friedrichs–Lewy) condition.

For the Lax–Friedrichs scheme, we need a numerical boundary condition
(NBC) at x= 1, as explained later. The Lax–Friedrichs scheme is the basis for
several other popular schemes. A Matlab code called lax_fred.m can be found
in the Matlab programming collections that accompany the book.

5.2.2 The Upwind Scheme

The upwind scheme for ut + aux= 0 is

Uk+1
j −Uk

j

∆t
=


−a
h

(
Uk
j −Uk

j−1

)
if a≥ 0 ,

−a
h

(
Uk
j+1 −Uk

j

)
if a< 0 ,

(5.8)

06
10:43:26, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c05” — 2017/10/10 — 13:06 — page 112 — #5

112 Finite Difference Methods for Hyperbolic PDEs

which is first-order accurate in time and in space. To find the CFL constraint,
we conduct the von Neumann stability analysis. The growth factor for the case
when a≥ 0 is

g(θ) = 1 − µ
(
1 − e−ihξ

)
= 1 − µ(1 − cos(hξ))− iµ sin(hξ)

with magnitude

|g(θ)|2 = (1 − µ+ µ cos(hξ))2 + µ2 sin2(hξ)

= (1 − µ)2 + 2(1 − µ)µ cos(hξ) + µ2

= 1 − 2(1 − µ)µ(1 − cos(hξ)) ,

so if 1 − µ≥ 0 (i.e., µ≤ 1) or ∆t≤ h/a we have |g(θ)| ≤ 1.
Note that no NBC is needed for the upwind scheme, and there is no severe

time step restriction, since ∆t≤ h/a. If a= a(x, t) is a variable function that
does not change the sign, then the CFL condition is

0<∆t≤ h
max |a(x, t)|

.

However, the upwind scheme is first-order accurate in time and in space, and
there are some high-order schemes.

A Matlab code called upwind.m can be found in the Matlab programming
collections accompanying this book. The main structure of the code is listed
below:

a = 0; b=1; tfinal = 0.5 % Input the domain and final time.
m = 20; h = (b-a)/m; k = h; mu = k/h; % Set mesh and time step

n = fix(tfinal/k); % Find the number of time steps
y1 = zeros(m+1,1); y2=y1; x=y1; % Initialization

figure(1); hold % Open a plot window for solutions at
% different time.

axis([-0.1 1.1 -0.1 1.1]);

for i=1:m+1, % Initialization.
x(i) = a + (i-1)*h;
y1(i) = uexact(t,x(i)); y2(i) = 0;

end

t = 0; % Begin time marching.
for j=1:n,

y1(1)=bc(t); y2(1)=bc(t+k);
for i=2:m+1

y2(i) = y1(i) - mu*(y1(i)-y1(i-1));
end

06
10:43:26, subject to the Cambridge Core terms of use,

“c05” — 2017/10/10 — 13:06 — page 113 — #6

5.2 Finite Difference Schemes 113

(a)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x

The history of the FD solution (b)

0 0.2 0.4 0.6 0.8 1
−200

−150

−100

−50

0

50

100

150

x

Figure 5.1. Plot of the initial and consecutive approximation of the upwind-
ing method for an advection equation. (a) The time step is ∆t= h and the
scheme is stable. (b) The time step is ∆t= 1.5h and the scheme is unstable
which leads to a blowing-up quantity.

t = t + k; y1 = y2; % Overwrite old solutions
plot(x,y2); pause(0.5) % Plot the current solution.

end

In Figure 5.1(a), we show the initial data and several consecutive finite dif-
ference approximations of the upwinding scheme applied to the advection
equation ut + ux= 0 in the domain 0< x< 1. The initial condition is

u(x, 0)= u0(x)=

{
0 if 0< x< 1/2,

1 if 1/2≤ x< 1 .

The boundary condition is u(0, t)= sin t. The analytic solution is

u(x, t)=

{
u0(x− t) if 0< t< x< 1,

sin(t− x) if 0< x< t< 1 .

If we take ∆t≤ h, the scheme works well and we obtain the exact solution for
this example (see Figure 5.1(a)). However, if we take ∆t> h, say ∆t= 1.5h as
in the plot of Figure 5.1(b), the solution blows up quickly since the scheme is
unstable. Once again, it shows the importance of the time step constraint.

06
10:43:26, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c05” — 2017/10/10 — 13:06 — page 114 — #7

114 Finite Difference Methods for Hyperbolic PDEs

5.2.3 The Leap-frog Scheme

The leap-frog scheme for ut + aux= 0 is

Uk+1
j −Uk−1

j

2∆t
+

a
2h

(
Uk
j+1 −Uk

j−1

)
= 0 ,

or Uk+1
j =Uk−1

j − µ
(
Uk
j+1 −Uk

j−1

)
,

(5.9)

where µ= a∆t/(2h). The discretization is second-order in time and in space. It
requires an NBC at one end and needsU1

j to get started. We know that the leap-
frog scheme is unconditionally unstable for the heat equation. Let us consider
the stability for the advection equation through the von Neumann analysis.
Substituting

Uk
j = eijξ, Uk+1

j = g(ξ)eijξ, Uk−1
j =

1
g(ξ)

eijξ

into the leap-frog scheme, we get

g2 + µ(eihξ − e−ihξ)g− 1= 0 ,

or g2 + 2µi sin(hξ) g− 1= 0 ,

with solution

g±=−iµ sin(hξ)±
√

1 − µ2 sin2(hξ) . (5.10)

We distinguish three different cases.

1. If |µ|> 1, then there are ξ such that at least one of |g−|> 1 or |g+|> 1 holds,
so the scheme is unstable!

2. If |µ|< 1, then 1 − µ2 sin2(hξ)≥ 0 such that

|g±|2 =µ2 sin2(hξ) + 1 − µ2 sin2(hξ)= 1 .

However, since it is a two-stage method, we have to be careful about the
stability. From linear finite difference theory, we know the general solution is

Uk = C1g
k
− + C2g

k
+

|Uk| ≤ max{C1,C2}
(
|gk−|+ |gk+|

)
≤ 2max{C1,C2} ,

so the scheme is neutral stable according to the definition ∥Uk∥≤
CT
∑J

j=0 ∥U j∥.

06
10:43:26, subject to the Cambridge Core terms of use,

“c05” — 2017/10/10 — 13:06 — page 115 — #8

5.3 The Modified PDE and Numerical Diffusion/Dispersion 115

3. If |µ|= 1, we still have |g±|= 1, but we can find ξ such that µ sin(hξ)= 1 and
g+= g−=−i, i.e., −i is a double root of the characteristic polynomial. The
solution of the finite difference equation therefore has the form

Uk
j =C1(−i)k + C2k(−i)k ,

where the possibly complex numbers C1 and C2 are determined from the
initial conditions. Thus there are solutions such that ∥Uk∥≃ k which are
unstable (slow growing).

In conclusion, the leap-frog scheme is stable if∆t< h
|a| . Note that we can use

the upwind or other scheme (even unstable ones) to initialize the leap-frog
scheme to get U1

j . We call a numerical scheme (such as the Lax–Friedrichs and
upwind schemes) dissipative if |g(ξ)|< 1, and otherwise (such as the leap-frog
scheme) it is nondissipative.

5.3 The Modified PDE and Numerical Diffusion/Dispersion

A modified PDE is the PDE that a finite difference equation satisfies exactly at
grid points. Consider the upwindmethod for the advection equation ut + aux=
0 in the case a> 0,

Uk+1
j −Uk

j

∆t
+
a
h

(
Uk
j −Uk

j−1

)
= 0 .

The derivation of a modified PDE is similar to computing the local truncation
error, only now we insert v(x, t) into the finite difference equation to derive a
PDE that v(x, t) satisfies exactly, thus

v(x.t+∆t)− v(x, t)
∆t

+
a
h
(v(x, t)− v(x− h, t))= 0 .

Expanding the terms in Taylor series about (x, t) and simplifying yields

vt +
1
2
∆t vtt + · · ·+ a

(
vx −

1
2
hvxx +

1
6
h2vxxx + · · ·

)
= 0 ,

which can be rewritten as

vt + avx=
1
2
(ahvxx −∆tvtt)−

1
6

(
ah2vxxx + (∆t)2vtt

)
+ · · · ,

06
10:43:26, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c05” — 2017/10/10 — 13:06 — page 116 — #9

116 Finite Difference Methods for Hyperbolic PDEs

which is the PDE that v satisfies. Consequently,

vtt = −avxt +
1
2
(ahvxxt −∆tvttt)

= −avxt +O(∆t, h)

= −a ∂
∂x

(
−avx +O(∆t, h)

)
,

so the leading modified PDE is

vt + avx=
1
2
ah
(
1 − a∆t

h

)
vxx . (5.11)

This is an advection–diffusion equation. The grid values Un
j can be viewed as

giving a second-order accurate approximation to the true solution of this equa-
tion, whereas they only give a first-order accurate approximation to the true
solution of the original problem. From the modified equation, we can conclude
that:

• the computed solution smooths out discontinuities because of the diffusion
term (the second-order derivative term is called numerical dissipation, or
numerical viscosity);

• if a is a constant and ∆t= h/a, then 1 − a∆t/h= 0 (we have second-order
accuracy);

• we can add the correction term to offset the leading error term to render
a higher-order accurate method, but the stability needs to be checked. For
instance, we can modify the upwind scheme to get

Uk+1
j −Uk

j

∆t
+ a

Uk
j −Uk

j−1

h
=

1
2
ah
(
1 − a∆t

h

) Uk
j−1 − 2Uk

j +Uk
j+1

h2
,

which is second-order accurate if ∆t≃ h;
• from the modified equation, we can see why some schemes are unstable, e.g.,

the leading term of the modified PDE for the unstable scheme

Uk+1
j −Uk

j

∆t
+ a

Uk
j+1 −Uk

j−1

2h
= 0 (5.12)

is

vt + avx=−a2∆t
2

vxx , (5.13)

where the highest derivative is similar to the backward heat equation that is
dynamically unstable!

06
10:43:26, subject to the Cambridge Core terms of use,

“c05” — 2017/10/10 — 13:06 — page 117 — #10

5.4 The Lax–Wendroff Scheme and Other FD methods 117

5.4 The Lax–Wendroff Scheme and Other FD methods

To derive the Lax–Wendroff scheme, we notice that

u(x, t+∆t)− u(x, t)
∆t

= ut +
∆t
2
utt +O((∆t)2)

= ut +
1
2
a2(∆t)uxx +O((∆t)2) .

We can add the numerical viscosity 1
2a

2∆t uxx term to improve the accuracy in
time, to get the Lax–Wendroff scheme

Uk+1
j −Uk

j

∆t
+ a

Uk
j+1 −Uk

j−1

2h
=

1
2
a2∆t
h2

(
Uk
j−1 − 2Uk

j +Uk
j+1

)
, (5.14)

which is second-order accurate both in time and space. To show this, we
investigate the corresponding local truncation error

T(x, t) =
u(x, t+∆t)− u(x, t)

∆t
− a (u(x+ h, t)− u(x− h, t))

2h

− a2∆t (u(x− h, t)− 2u(x, t) + u(x+ h, t))
2h2

= ut +
∆t
2
utt − aux −

a2∆t
2

uxx +O((∆t)2 + h2)

= O((∆t)2 + h2) ,

since ut=−aux and utt=−auxt=−a ∂
∂xut= a2uxx.

To get the CFL condition for the Lax–Wendroff scheme, we carry out the von
Neumann stability analysis. The growth factor of the Lax–Wendroff scheme is

g(θ) = 1 − µ

2

(
eihξ − e−ihξ

)
+
µ2

2

(
e−ihξ − 2 + eihξ

)
= 1 − µi sin θ − 2µ2 sin2(θ/2),

06
10:43:26, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c05” — 2017/10/10 — 13:06 — page 118 — #11

118 Finite Difference Methods for Hyperbolic PDEs

where again θ= hξ, so

|g(θ)|2 =
(
1 − 2µ2 sin2 θ

2

)2

+ µ2 sin2 θ

= 1 − 4µ2 sin2 θ

2
+ 4µ4 sin4 θ

2
+ 4µ2 sin2 θ

2

(
1 − sin2 θ

2

)
= 1 − 4µ2

(
1 − µ2

)
sin4 θ

2

≤ 1 − 4µ2
(
1 − µ2

)
.

We conclude |g(θ)| ≤ 1 if µ≤ 1, i.e., ∆t≤ h/|a|. If ∆t> h/|a|, there are ξ such
that |g(θ)|> 1 so the scheme is unstable.

The leading modified PDE for the Lax–Wendroff method is

vt + avx=−1
6
ah2
(

1 −
(
a∆t
h

)2
)
vxxx (5.15)

which is a dispersive equation. The group velocity for the wave number ξ is

cg= a− 1
2
ah2
(

1 −
(
a∆t
h

)2
)
ξ2 , (5.16)

which is less than a for all wave numbers. Consequently, the numerical result
can be expected to develop a train of oscillations behind the peak, with high
wave numbers lagging farther behind the correct location (cf. Strikwerda, 1989
for more details). If we retain one more term in the modified equation for the
Lax–Wendroff scheme, we get

vt + avx=
1
6
ah2
((

a∆t
h

)2

− 1

)
vxxx − ϵvxxxx , (5.17)

where the ϵ in the fourth-order dissipative term is O(h3) and positive when
the stability bound holds. This high-order dissipation causes the highest wave
number to be damped, so that the oscillations are limited.

5.4.1 The Beam–Warming Method

The Beam–Warming method is a one-sided finite difference scheme for the
modified equation

vt + avx=
a2∆t

2
vxx .

06
10:43:26, subject to the Cambridge Core terms of use,

“c05” — 2017/10/10 — 13:06 — page 119 — #12

5.4 The Lax–Wendroff Scheme and Other FD methods 119

Recall the one-sided finite difference formulas, cf. page 21

u′(x) =
3u(x)− 4u(x− h) + u(x− 2h)

2h
+O(h2) ,

u′′(x) =
u(x)− 2u(x− h) + u(x− 2h)

h2
+O(h) .

The Beam–Warming method for ut + aux= 0 for a> 0 is

Uk+1
j =Uk

j − a∆t
2h

(
3Uk

j − 4Uk
j−1 +Uk

j−2

)
+

(a∆t)2

2h2

(
Uk
j − 2Uk

j−1 +Uk
j−2

)
,

(5.18)
which is second-order accurate in time and space if ∆t≃ h. The CFL
constraint is

0<∆t≤ 2h
|a|

. (5.19)

For this method, we do not require an NBC at x= 1, but we need a scheme
to compute the solution U j

1. The leading terms of the modified PDE for the
Beam–Warming method are

vt + avx=
1
6
ah2
((

a∆t
h

)2

− 1

)
vxxx . (5.20)

In this case, the group velocity is greater than a for all wave numbers when
0≤ a∆t/h≤ 1, so initial oscillations would move ahead of the main hump.
On the other hand, if 1≤ a∆t/h≤ 2 the group velocity is less than a, so the
oscillations fall behind.

5.4.2 The Crank–Nicolson Scheme

The Crank–Nicolson scheme for the advection equation ut + aux= f is

Uk+1
j −Uk

j

∆t
+ a

Uk
j+1 −Uk

j−1 +Uk+1
j+1 −Uk+1

j−1

4h
= f

k+ 1
2

j , (5.21)

which is second-order accurate in time and in space, and unconditionally
stable. An NBC is needed at x= 1. This method is effective for the 1D prob-
lem, since it is easy to solve the resulting tridiagonal system of equations. For
higher-dimensional problems, themethod is not recommended in general as for
hyperbolic equations the time step constraint ∆t ≃ h is not a major concern.

06
10:43:26, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c05” — 2017/10/10 — 13:06 — page 120 — #13

120 Finite Difference Methods for Hyperbolic PDEs

5.4.3 The Method of Lines

Different method of lines (MOL) methods can be used, depending on how the
spatial derivative term is discretized. For the advection equation ut + aux= 0,
if we use

∂Ui

∂t
+ a

Ui+1 −Ui−1

2h
= 0 (5.22)

the ODE solver is likely to be implicit, since the leap-frog method is unstable!

5.5 Numerical Boundary Conditions

We need a numerical boundary condition (NBC) at one end for the one-way
wave equation when we use any of the Lax–Friedrichs, Lax–Wendroff, or leap-
frog schemes. There are several possible approaches.

• Extrapolation. One simplest first-order approximation is

Uk+1
M =Uk+1

M−1.

To get a second-order approximation, recall the Lagrange interpolation
formula

f(x)≃ f(x1)
x− x2

x1 − x2
+ f(x2)

x− x1

x2 − x1
.

We can use the same time level for the interpolation to get

Uk+1
M =Uk+1

M−2
xM − xM−1

xM−1 − xM
+Uk+1

M−1
xM − xM−2

xM−2 − xM−1
.

If a uniform grid is used with spatial step size h, this formula becomes

Uk+1
M =−Uk+1

M−2 + 2Uk+1
M−1 .

• Quasi-characteristics. If we use previous time levels for the interpolation,
we get

Uk+1
M = Uk

M−1, first order,

Uk+1
M = Uk

M−2
xM − xM−1

xM−1 − xM
+Uk

M−1
xM − xM−2

xM−2 − xM−1
, second order.

• We may use schemes that do not need an NBC at or near the boundary, e.g.,
the upwind scheme or the Beam–Warming method to provide the boundary
conditions.

The accuracy and stability of numerical schemes usually depend upon the NBC
used. Usually, the main scheme and the scheme for an NBC should both be
stable.

06
10:43:26, subject to the Cambridge Core terms of use,

“c05” — 2017/10/10 — 13:06 — page 121 — #14

5.6 Finite Difference Methods for Second-order Linear Hyperbolic PDEs 121

5.6 Finite Difference Methods for Second-order Linear
Hyperbolic PDEs

In reality, a 1D sound wave propagates in two directions and can be modeled
by the wave equation

utt= a2uxx, (5.23)

where a> 0 is the wave speed. We can find the general solution by changing
variables as follows, {

ξ= x− at

η= x+ at
or


x=

ξ + η

2

t=
η − ξ

2a

(5.24)

and using the chain-rule, we have

ut = −auξ + auη ,

utt = a2uξξ − 2a2uξη + a2uηη ,

ux = uξ + uη ,

uxx = uξξ + 2uξη + uηη .

Substituting these relations into the wave equation, we get

uξξa
2 − 2a2uξη + a2uηη = a2 (uξξ + 2uξη + uηη) ,

which simplifies to

4a2uξη = 0 ,

yielding the solution

uξ = F̃(ξ), =⇒ u(x, t)=F(ξ) + G(η) ,

u(x, t)=F(x− at) + G(x+ at) ,

where F(ξ) and G(η) are two differential functions of one variable. The two
functions are determined by initial and boundary conditions.

With the general solution above, we can get the analytic solution to the
Cauchy problem below:

utt= a2uxx , −∞< x<∞ ,

u(x, 0)= u0(x) , ut(x, 0)= g(x) ,

06
10:43:26, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c05” — 2017/10/10 — 13:06 — page 122 — #15

122 Finite Difference Methods for Hyperbolic PDEs

(x0, t0)

(x0 − at, 0) (x0 + at, 0)

x

(x0, 0)

x − at = x0
x + at = x0

x

(a) (b)

Figure 5.2. A diagram of the domain of dependence (a) and influence (b).

as

u(x, t)=
1
2
(u0(x− at) + u0(x+ at)) +

1
2a

∫ x+at

x−at
g(s)ds. (5.25)

The solution is called the D’Alembert’s formula. In particular, if ut(x, 0)= 0,
then the solution is

u(x, t)=
1
2

(
u(x− at, 0) + u(x+ at, 0)

)
,

demonstrating that a signal (wave) propagates along each characteristic x− at
and x+ at with speed a at half of its original strength. The solution u(x, t) at a
point (x0, t0) depends on the initial conditions only in the interval of (x0 −
at0, x0 + at0). The initial values between (x0 − at0, x0 + at0) not only deter-
mine the solution value of u(x, t) at (x0, t0) but also all the values of u(x, t) in the
triangle formed by the three vertices (x0, t0), (x0 − at0, 0), and (x0 + at0, 0).
This domain is called the domain of dependence (see Figure 5.2(a)).

Also we see that given any point (x0, 0), any solution value u(x, t), t> 0, in
the cone formed by the characteristic lines x+ at= x0 and x− at= x0 depends
on the initial values at (x0, 0). The domain formed by the cone is called the
domain of influence (see Figure 5.2(b)).

5.6.1 An FD Method (CT–CT) for Second-order Wave Equations

Now we discuss how to solve the boundary value problems for which the
analytic solution is difficult to obtain.

utt= a2uxx , 0< x< 1 ,

IC: u(x, 0)= u0(x) , ut(x, 0)= u1(x) ,

BC: u(0, t)= g1(t) , u(1, t)= g2(t) .

06
10:43:26, subject to the Cambridge Core terms of use,

“c05” — 2017/10/10 — 13:06 — page 123 — #16

5.6 Finite Difference Methods for Second-order Linear Hyperbolic PDEs 123

We can use the central finite difference discretization both in time and space
to get

Uk+1
j − 2Uk

j +Uk−1
j

(∆t)2
= a2

Uk
j−1 − 2Uk

j +Uk
j+1

h2
, (5.26)

which is second-order accurate both in time and space ((∆t)2 + h2). The
CFL constraint for this method is ∆t≤ h

|a| , as verified through the following
discussion.

The scheme above cannot be used to obtain the values of U1
j since U−1

j ∼
u(xj,−∆t) is not explicitly defined. There are several ways to jump-start the
process. We list two commonly used ones below.

• Apply the forward Euler method to the boundary condition ut(x, 0)= u1(x)
to getU1

j =U0
j +∆t u1(xj). The finite difference solution in a finite time t=T

will still be second-order accurate.
• Apply the ghost point method using U−1

j =U1
j − 2∆t u1(xj) to get

U1
j =U0

j +∆t u1(xj) +
(
a2

h

)2 (
U0
j−1 − 2U0

j +U0
j+1

)
. (5.27)

5.6.1.1 The Stability Analysis

The von Neumann analysis gives

g− 2 + 1/g
(∆t)2

= a2
e−ihξ − 2 + eihξ

h2
.

When µ= |a|∆t/h, using 1 − cos(hξ)= 2 sin2(hξ/2), this equation becomes

g2 − 2g+ 1=
(
−4µ2 sin2 θ

)
g,

or

g2 −
(
2 − 4µ2 sin2 θ

)
g+ 1= 0,

where θ= hξ/2, with solution

g= 1 − 2µ2 sin2 θ ±
√

(1 − 2µ2 sin2 θ)2 − 1 .

Note that 1 − 2µ2 sin2 θ≤ 1. If we also have 1 − 2µ2 sin2 θ <−1, then one of
the roots is

g1 = 1 − 2µ2 sin2 θ −
√
(1 − 2µ2 sin2 θ)2 − 1<−1

so |g1|> 1 for some θ, such that the scheme is unstable.

06
10:43:26, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c05” — 2017/10/10 — 13:06 — page 124 — #17

124 Finite Difference Methods for Hyperbolic PDEs

To have a stable scheme, we require 1 − 2µ2 sin2 θ≥−1, or µ2 sin2 θ≤ 1,
which can be guaranteed if µ2 ≤ 1 or ∆t≤ h/|a|. This is the CFL condition
expected. Under this CFL constraint,

|g|2 =
(
1 − 2µ2 sin2 θ

)2
+

(
1 −

(
1 − 2µ2 sin2 θ

)2
)
= 1

since the second part in the expression of g is imaginary, so the scheme is
neutrally stable.

Recall a finite difference scheme for a second-order PDE (in time)P∆t,hvkj = 0
is stable in a stability region Λ if there is an integer J such that for any positive
time T there is a constant CT independent of ∆t and h, such that

∥vn∥h≤
√

1 + n2CT

J∑
j=0

∥v j∥h (5.28)

for any n that satisfies 0≤ n∆t≤T with (∆t, h)∈Λ. The definition allows
linear growth in time. Once again, a finite difference scheme converges if it is
consistent and stable.

5.6.2 Transforming the Second-order Wave Equation
to a First-Order System

Although we can solve the second-order wave equation directly, in this section,
let us discuss how to change this equation into a first-order system. The first-
order linear hyperbolic system of interest has the form

ut=(Au)x=Aux ,

which is a special case of 1D conservation laws

ut + (f(u))x= 0.

To transfer the second-order wave equation to a first-order system, let us
consider {

p= ut

q= ux ,
utt= pt, qx= uxx ,

then we have {
pt= utt= uxx= qx

qt= uxt=(ut)x= px

06
10:43:26, subject to the Cambridge Core terms of use,

“c05” — 2017/10/10 — 13:06 — page 125 — #18

5.6 Finite Difference Methods for Second-order Linear Hyperbolic PDEs 125

or in matrix-vector form [
p

q

]
t

=

[
0 1

1 0

][
p

q

]
x

, (5.29)

and the eigenvalues of A are −1 and 1.

5.6.2.1 Initial and Boundary Conditions for the System

From the given boundary conditions for u(x, t), we get

u(0, t)= g1(t) , ut(0, t)= g′1(t)= p(0, t) ,

u(1, t)= g2(t) , ut(0, t)= g′1(t)= p(1, t) ,

and there is no boundary condition for q(x, t). The initial conditions are

p(x, 0)= ut(x, 0)= u1(x), known,

q(x, 0)= ux(x, 0)=
∂

∂x
u(x, 0)= u′0(x), known.

To solve the first-order system ut=Aux numerically, we usually diagonal-
ize the system (corresponding to characteristic directions) and then determine
the boundary conditions, and apply an appropriate numerical method (e.g., the
upwind method). Thus we write A=T−1DT, where D= diag(λ1, λ2, . . . , λn)

is the matrix containing the eigenvalues of A on the diagonal and T is a
nonsingular matrix. From the following

ut=Aux , Tut=TAT−1Tux , (Tu)t=D (Tu)x ,

and writing ũ=Tu, we get the new first-order system

ũt=Dũx

or (ũi)t=λi(ũi)x, i= 1, 2, . . . , n, a simple system of equations that we can solve
one by one. We also know at which end we should have a boundary condition,
depending on the sign of λi.

For the second-order wave equation, let us recall that the eigenvalues are
1 and −1. The unit eigenvector (such that ∥x∥2 = 1) corresponding to the
eigenvalue 1, found by solving Ax= x, is x= [1, 1]T/

√
2. Similarly, the unit

eigenvector corresponding to the eigenvalue −1 is x= [−1, 1]T/
√

2, so

T=


1√
2

− 1√
2

1√
2

1√
2

 , T−1 =


1√
2

1√
2

− 1√
2

1√
2

 .

06
10:43:26, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c05” — 2017/10/10 — 13:06 — page 126 — #19

126 Finite Difference Methods for Hyperbolic PDEs

The transformed result is thus
1√
2

− 1√
2

1√
2

1√
2


[
p

q

]
t

=


1√
2

− 1√
2

1√
2

1√
2


[
0 1

1 0

]
1√
2

1√
2

− 1√
2

1√
2


[
p

q

]
x

=

[
−1 0

0 1

]
1√
2

− 1√
2

1√
2

1√
2


[
p

q

]
x

,

or in equivalent component form(
1√
2
p− 1√

2
q
)
t
= −

(
1√
2
p− 1√

2
q
)
x(

1√
2
p+

1√
2
q
)
t
=

(
1√
2
p+

1√
2
q
)
x
.

By setting 
y1 =

1√
2
p− 1√

2
q ,

y2 =
1√
2
p+

1√
2
q ,

we get 
∂

∂t
y1 =− ∂

∂x
y1 ,

∂

∂t
y2 =

∂

∂x
y2 ,

i.e., two separate one-way wave equations, for which we can use various
numerical methods.

We already know the initial conditions, but need to determine a boundary
condition for y1 at x= 0 and a boundary condition for y2 at x= 1. Note that

y1(0, t) =
1√
2
p(0, t)− 1√

2
q(0, t),

y2(0, t) =
1√
2
p(0, t) +

1√
2
q(0, t),

06
10:43:26, subject to the Cambridge Core terms of use,

“c05” — 2017/10/10 — 13:06 — page 127 — #20

5.8 Finite Difference Methods for Conservation Laws 127

and q(0, t) is unknown. We do know that, however,

y1(0, t) + y2(0, t)=
2√
2
p(0, t) ,

and can use the following steps to determine the boundary condition at x= 0:

1. update (y1)
k+1
0 first, for which we do not need a boundary condition; and

2. use (y2)
k+1
0 = 2√

2
pk+1
0 − (y1)

k+1
0 to get the boundary condition for y2

at x= 0.

Similar steps likewise can be applied to the boundary condition at x= 1 as well.

5.7 Some Commonly Used FD Methods for Linear System
of Hyperbolic PDEs

We now list some commonly used finite difference methods for solving a linear
hyperbolic system of PDEs

ut + Aux= 0 , u(x, 0)= u0(x) , (5.30)

where A is a matrix with real eigenvalues.

• The Lax–Friedrichs scheme

Uk+1
j =

1
2

(
Uk
j+1 +Uk

j−1

)
− ∆t

2h
A
(
Uk
j+1 −Uk

j−1

)
. (5.31)

• The leap-frog scheme

Uk+1
j =Uk−1

j − ∆t
2h
A
(
Uk
j+1 −Uk

j−1

)
. (5.32)

• The Lax–Wendroff scheme

Uk+1
j = Uk

j − ∆t
2h
A
(
Uk
j+1 −Uk

j−1

)
+

(∆t)2

2h2
A2
(
Uk
j−1 − 2Uk

j +Uk
j+1

)
. (5.33)

To determine correct boundary conditions, we usually need to find the diagonal
form A=T−1DT and the new system ũt=Dũx with ũ=Tu.

5.8 Finite Difference Methods for Conservation Laws

The canonical form for the 1D conservation law is

ut + f(u)x= 0 , (5.34)

06
10:43:26, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c05” — 2017/10/10 — 13:06 — page 128 — #21

128 Finite Difference Methods for Hyperbolic PDEs

and one famous benchmark problem is Burgers’ equation

ut +
(
u2

2

)
x
= 0 , (5.35)

in which f(u)= u2/2. The term f(u) is often called the flux. This equation can
be written in the nonconservative form

ut + uux= 0 , (5.36)

and the solution likely develops shock(s) where the solution is discontinuous,1

even if the initial condition is arbitrarily differentiable, i.e., u0(x)= sin x.
We can use the upwind scheme to solve Burgers’ equation. From the non-

conservative form, we obtain

Uk+1
j −Uk

j

∆t
+Uk

j

Uk
j −Uk

j−1

h
= 0 , if Uk

j ≥ 0 ,

Uk+1
j −Uk

j

∆t
+Uk

j

Uk
j+1 −Uk

j

h
= 0 , if Uk

j < 0 ,

or from the conservative form

Uk+1
j −Uk

j

∆t
+

(Uk
j)

2 − (Uk
j−1)

2

2h
= 0 , if Uk

j ≥ 0 ,

Uk+1
j −Uk

j

∆t
+

(Uk
j+1)

2 − (Uk
j)

2

2h
= 0 , if Uk

j < 0 .

If the solution is smooth, both methods work well (first-order accurate). How-
ever, if shocks develop the conservative form gives much better results than that
of the nonconservative form.

We can derive the Lax–Wendroff scheme using the modified equation of the
nonconservative form. Since ut=−uux,

utt = −utux − uutx
= uu2x + u(uux)x

= uu2x + u
(
u2x + uuxx

)
= 2uu2x + u2uxx ,

so the leading term of the modified equation for the first-order method is

ut + uux=
∆t
2

(
2uu2x + u2uxx

)
, (5.37)

1 There is no classical solution to the PDE when shocks develop because ux is not well defined. We need to
look for weak solutions.

06
10:43:26, subject to the Cambridge Core terms of use,

“c05” — 2017/10/10 — 13:06 — page 129 — #22

5.8 Finite Difference Methods for Conservation Laws 129

and the nonconservative Lax–Wendroff scheme for Burgers’ equation is

Uk+1
j = Uk

j −∆tUk
j

Uk
j+1 −Uk

j−1

2h

= +
(∆t)2

2

2Uk
j

(
Uk
j+1 −Uk

j−1

2h

)2

+ (Uk
j)

2
Uk
j−1 − 2Uk

j +Uk
j+1

h2

.
5.8.1 Conservative FD Methods for Conservation Laws

Consider the conservation law

ut + f(u)x= 0 ,

and let us seek a numerical scheme of the form

uk+1
j = ukj − ∆t

h

(
gk
j+ 1

2
− gk

j− 1
2

)
, (5.38)

where

gj+ 1
2
= g

(
ukj−p+1, u

k
j−p+2, . . . , u

k
j+q+1

)
is called the numerical flux, satisfying

g(u, u, . . . , u)= f(u) . (5.39)

Such a scheme is called conservative. For example, we have g(u)= u2/2 for
Burgers’ equation.

We can derive general criteria which g should satisfy, as follows.

1. Integrate the equation with respect to x from xj− 1
2
to xj+ 1

2
, to get∫ x

j+ 1
2

x
j− 1

2

utdx = −
∫ x

j+ 1
2

x
j− 1

2

f(u)xdx

= −
(
f(u(xj+ 1

2
, t))− f(u(xj− 1

2
, t))
)
.

2. Integrate the equation above with respect to t from tk to tk+1, to get∫ t k+1

t k

∫ x
j+ 1

2

x
j− 1

2

ut dx dt = −
∫ t k+1

t k

(
f(u(xj+ 1

2
, t))− f(u(xj− 1

2
, t))
)
dt ,

∫ x
j+ 1

2

x
j− 1

2

(
u(x, tk+1)− u(x, tk)

)
dx = −

∫ t k+1

t k

(
f(u(xj+ 1

2
, t))− f(u(xj− 1

2
, t))
)
dt .

06
10:43:26, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c05” — 2017/10/10 — 13:06 — page 130 — #23

130 Finite Difference Methods for Hyperbolic PDEs

Define the average of u(x, t) as

ūkj =
1
h

∫ x
j+ 1

2

x
j− 1

2

u(x, tk)dx , (5.40)

which is the cell average of u(x, t) over the cell (xj− 1
2
, xj+ 1

2
) at the time level k.

The expression that we derived earlier can therefore be rewritten as

ūk+1
j = ūkj − 1

h

(∫ t k+1

t k
f(u(xj+ 1

2
, t))dt−

∫ t k+1

t k
f(u(xj− 1

2
, t))dt

)

= ūkj − ∆t
h

(
1
∆t

∫ t k+1

t k
f(u(xj+ 1

2
, t))dt− 1

∆t

∫ t k+1

t k
f(u(xj− 1

2
, t))dt

)

= ūkj − ∆t
h

(
gj+ 1

2
− gj+ 1

2

)
,

where

gj+ 1
2
=

1
∆t

∫ t k+1

t k
f(u(xj+ 1

2
, t))dt .

Different conservative schemes can be obtained, if different approximations are
used to evaluate the integral.

5.8.2 Some Commonly Used Numerical Scheme for Conservation Laws

Some commonly used schemes are:

• Lax–Friedrichs scheme

Uk+1
j =

1
2

(
Uk
j+1 +Uk

j−1

)
− ∆t

2h

(
f(Uk

j+1)− f(Uk
j−1)

)
; (5.41)

• Lax–Wendroff scheme

Uk+1
j = Uk

j − ∆t
2h

(
f(Uk

j+1)− f(Uk
j−1)

)
+

(∆t)2

2h2

{
Aj+ 1

2

(
f(Uk

j+1)− f(Uk
j)
)
− Aj− 1

2

(
f(Uk

j)− f(Uk
j−1)

)}
,

(5.42)
where Aj+ 1

2
=Df(u(xj+ 1

2
, t)) is the Jacobian matrix of f(u) at u(xj+ 1

2
, t).

06
10:43:26, subject to the Cambridge Core terms of use,

“c05” — 2017/10/10 — 13:06 — page 131 — #24

Exercises 131

A modified version
U
k+ 1

2

j+ 1
2
=

1
2

(
Uk
j +Uk

j+1

)
− ∆t

2h

(
f(Uk

j+1)− f(Uk
j)
)

Uk+1
j =Uk

j − ∆t
h

(
f(U

k+ 1
2

j+ 1
2
)− f(U

k+ 1
2

j− 1
2
)

)
,

(5.43)

called the Lax–Wendroff–Richtmyer scheme, does not need the Jacobian
matrix.

Exercises
1. Show that the following scheme is consistent with the PDE ut + cutx + aux = f:

U n+1
i −U n

i

k
+ c

U n+1
i+1 −U n+1

i−1 −U n
i+1 +U n

i−1

2kh
+ a

U n
i+1 −U n

i−1

2h
= f ni .

Discuss also the stability, as far as you can.
2. Implement and test the upwind and the Lax–Wendroff schemes for the one-way wave

equation

ut + ux = 0.

Assume the domain is−1≤ x≤ 1, and tfinal = 1. Test your code for the following parameters:

(a) u(t,−1)= 0, and u(0, x)= (x+ 1)e−x/2.

(b) u(t,−1)= 0, and u(0, x)=


0 if x<−1/2,

1 if −1≤ x≤ 1/2,

0 if x> 1/2.

Do the grid refinement analysis at tfinal = 1 for case (a) where the exact solution is available,
take m= 10, 20, 40, and 80. For problem (b), use m= 40. Plot the solution at tfinal = 1 for
both cases.

3. Use the upwind and Lax–Wendroff schemes for Burgers’ equation

ut +
(
u2

2

)
x

= 0

with the same initial and boundary conditions as in problem 2.
4. Solve the following wave equation numerically using a finite difference method.

∂2u
∂t2

= c2
∂2u
∂x2

+ f(x, t), 0< x< 1,

u(0, t)= u(1, t)= 0, u(x, 0)=

{
x/4 if 0≤ x< 1/2,

(1 − x)/4 if 1/2≤ x≤ 1.

(a) Test your code and convergence order using a problem that has the exact solution.
(b) Test your code again by setting f(x, t)= 0.
(c) Modify and validate your code to the PDE with a damping term

∂2u
∂t2

− β
∂u
∂t

= c2
∂2u
∂x2

+ f(x, t).

06
10:43:26, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c05” — 2017/10/10 — 13:06 — page 132 — #25

132 Finite Difference Methods for Hyperbolic PDEs

(d) Modify and validate your code to the PDE with an advection term

∂2u
∂t2

= c2
∂2u
∂x2

+ β
∂u
∂x

+ f(x, t),

where c and β are positive constants.
5. Download the Clawpack for conservation laws from the Internet. Run a test problem in 2D.

Write 2 to 3 pages to detail the package and the numerical results.

06
10:43:26, subject to the Cambridge Core terms of use,

“c06” — 2017/10/10 — 11:28 — page 133 — #1

Part II

Finite Element Methods

13:36:48, subject to the Cambridge Core

http://www.ebook3000.org

“c06” — 2017/10/10 — 11:28 — page 134 — #2

13:36:48, subject to the Cambridge Core

“c06” — 2017/10/10 — 11:28 — page 135 — #3

6

Finite Element Methods for 1D Boundary
Value Problems

The finite element (FE) method was developed to solve complicated prob-
lems in engineering, notably in elasticity and structural mechanics modeling
involving elliptic PDEs and complicated geometries. But nowadays the range
of applications is quite extensive. We will use the following 1D and 2D model
problems to introduce the finite element method:

1D: − u′′(x)= f(x) , 0< x< 1 , u(0)= 0 , u(1)= 0 ;

2D: −
(
uxx + uyy

)
= f(x, y) , (x, y)∈ Ω, u(x, y)

∣∣∣
∂Ω

= 0 ,

where Ω is a bounded domain in (x, y) plane with the boundary ∂Ω.

6.1 The Galerkin FE Method for the 1D Model

We illustrate the finite element method for the 1D two-point BVP

−u′′(x)= f(x) , 0< x< 1 , u(0)= 0 , u(1)= 0 ,

using the Galerkin finite element method described in the following steps.

1. Construct a variational or weak formulation, by multiplying both sides of
the differential equation by a test function v(x) satisfying the boundary
conditions (BC) v(0)= 0, v(1)= 0 to get

−u′′v= fv ,

135

07
12:27:52, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c06” — 2017/10/10 — 11:28 — page 136 — #4

136 Finite Element Methods for 1D Boundary Value Problems

and then integrating from 0 to 1 (using integration by parts) to have the
following, ∫ 1

0
(−u′′v) dx = − u′v

∣∣∣1
0
+

∫ 1

0
u′v′dx

=

∫ 1

0
u′v′dx

=⇒
∫ 1

0
u′v′dx =

∫ 1

0
fv dx , the weak form.

2. Generate amesh, e.g., a uniformCartesianmesh xi= i h, i= 0, 1, . . . , n, where
h= 1/n, defining the intervals (xi−1, xi), i= 1, 2, . . . , n.

3. Construct a set of basis functions based on the mesh, such as the piecewise
linear functions (i= 1, 2, . . . , n− 1)

ϕi(x) =


x− xi−1

h
if xi−1 ≤ x< xi,

xi+1 − x
h

if xi≤ x< xi+1,

0 otherwise ,
xixi−1 xi+1

often called the hat functions, see the right diagram for a hat function.
4. Represent the approximate (FE) solution by a linear combination of the basis

functions

uh(x)=
n−1∑
j=1

cjϕj(x) ,

where the coefficients cj are the unknowns to be determined. On assuming
the hat basis functions, obviously uh(x) is also a piecewise linear function,
although this is not usually the case for the true solution u(x). Other basis
functions are considered later. We then derive a linear system of equations
for the coefficients by substituting the approximate solution uh(x) for the
exact solution u(x) in the weak form

∫ 1
0 u

′v′dx=
∫ 1
0 fv dx, i.e.,∫ 1

0
u′hv

′dx =

∫ 1

0
fvdx , (noting that errors are introduced!)

=⇒
∫ 1

0

n−1∑
j=1

cjϕ′jv
′dx =

n−1∑
j=1

cj

∫ 1

0
ϕ′jv

′dx

=

∫ 1

0
fv dx .

07
12:27:52, subject to the Cambridge Core terms of use,

“c06” — 2017/10/10 — 11:28 — page 137 — #5

6.1 The Galerkin FE Method for the 1D Model 137

Next, choose the test function v(x) as ϕ1, ϕ2, . . ., ϕn−1 successively,
to get the system of linear equations (noting that further errors are
introduced):

(∫ 1

0
ϕ′1ϕ

′
1dx

)
c1 + · · ·+

(∫ 1

0
ϕ′1ϕ

′
n−1dx

)
cn−1 =

∫ 1

0
fϕ1dx(∫ 1

0
ϕ′2ϕ

′
1dx

)
c1 + · · ·+

(∫ 1

0
ϕ′2ϕ

′
n−1dx

)
cn−1 =

∫ 1

0
fϕ2dx

· ·(∫ 1

0
ϕ′iϕ

′
1dx

)
c1 + · · ·+

(∫ 1

0
ϕ′iϕ

′
n−1dx

)
cn−1 =

∫ 1

0
fϕidx

· ·(∫ 1

0
ϕ′n−1ϕ

′
1dx

)
c1 + · · ·+

(∫ 1

0
ϕ′n−1ϕ

′
n−1dx

)
cn−1 =

∫ 1

0
fϕn−1dx,

or in the matrix-vector form:



a(ϕ1, ϕ1) a(ϕ1, ϕ2) · · · a(ϕ1, ϕn−1)

a(ϕ2, ϕ1) a(ϕ2, ϕ2) · · · a(ϕ2, ϕn−1)

...
...

...
...

a(ϕn−1, ϕ1) a(ϕn−1, ϕ2) · · · a(ϕn−1, ϕn−1)





c1

c2
...

cn−1


=



(f, ϕ1)

(f, ϕ2)

...

(f, ϕn−1)

,

where

a(ϕi, ϕj)=
∫ 1

0
ϕ′iϕ

′
jdx , (f, ϕi)=

∫ 1

0
fϕidx .

The term a(u, v) is called a bilinear form since it is linear with each variable
(function), and (f, v) is called a linear form. If ϕi are the hat functions, then

07
12:27:52, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c06” — 2017/10/10 — 11:28 — page 138 — #6

138 Finite Element Methods for 1D Boundary Value Problems

in particular we get

2
h −1

h

−1
h

2
h −1

h

−1
h

2
h −1

h

.

−1
h

2
h −1

h

−1
h

2
h





c1

c2

c3
...

cn−2

cn−1


=



∫ 1
0 fϕ1dx∫ 1
0 fϕ2dx∫ 1
0 fϕ3dx

...∫ 1
0 fϕn−2dx∫ 1
0 fϕn−1dx


.

5. Solve the linear system of equations for the coefficients and hence obtain the
approximate solution uh(x)=

∑
i ciϕi(x).

6. Carry out the error analysis (a priori or a posteriori error analysis).

Questions are often raised about how to appropriately

• represent ODE or PDE problems in a weak form;
• choose the basis functions ϕ, e.g., in view of ODE/PDE, mesh, and the

boundary conditions, etc.;
• implement the finite element method;
• solve the linear system of equations; and
• carry out the error analysis,

which will be addressed in subsequent chapters.

6.2 Different Mathematical Formulations for the 1D Model

Let us consider the 1D model again,

−u′′(x)= f(x), 0< x< 1,

u(0)= 0, u(1)= 0.
(6.1)

There are at least three different formulations to consider for this problem:

1. the (D)-form, the original differential equation;
2. the (V)-form, the variational form or weak form∫ 1

0
u′v′dx=

∫ 1

0
fv dx (6.2)

for any test function v∈H1
0(0, 1), the Sobolev space for functions in integral

forms like the C1 space for functions (see later), and as indicated above, the

07
12:27:52, subject to the Cambridge Core terms of use,

“c06” — 2017/10/10 — 11:28 — page 139 — #7

6.2 Different Mathematical Formulations for the 1D Model 139

f (x)

u (x)

x = 0 x x + ∆ x

∆ x
u (x) u (x + ∆ x)

Figure 6.1. A diagram of elastic string with two ends fixed: the displacement
and force.

corresponding finite element method is often called the Galerkin method;
and

3. the (M)-form, the minimization form

min
v(x)∈H1

0(0,1)

{∫ 1

0

(
1
2
(v′)2 − fv

)
dx

}
, (6.3)

when the corresponding finite element method is often called the Ritz
method.

As discussed in subsequent subsections, under certain assumptions these
three different formulations are equivalent.

6.2.1 A Physical Example

From the viewpoint of mathematical modeling, both the variational (or weak)
form and theminimization form aremore natural than the differential formula-
tion. For example, suppose we seek the equilibrium position of an elastic string
of unit length, with two ends fixed and subject to an external force.

The equilibrium is the state that minimizes the total energy. Let u(x) be the
displacement of the string at a point x, and consider the deformation of an ele-
ment of the string in the interval (x, x+∆x) (see Figure 6.1 for an illustration).
The potential energy of the deformed element is

τ · increase in the element length

= τ

(√
(u(x+∆x)− u(x))2 + (∆x)2 −∆x

)

= τ

√(u(x) + ux(x)∆x+
1
2
uxx(x)(∆x)2 + · · · − u(x)

)2

+ (∆x)2 −∆x


≃ τ

(√
[1 + u2x(x)] (∆x)2 −∆x

)
≃ 1

2
τu2x(x)∆x,

07
12:27:52, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c06” — 2017/10/10 — 11:28 — page 140 — #8

140 Finite Element Methods for 1D Boundary Value Problems

where τ is the coefficient of the elastic tension that we assume to be con-
stant. If the external force is denoted by f(x), the work done by this force is
−f(x)u(x) at every point x. Consequently, the total energy of the string (over
0< x< 1) is

F(u)=
∫ 1

0

1
2
τu2x(x) dx−

∫ 1

0
f(x)u(x) dx ,

from the work–energy principle: the change in the kinetic energy of an object
is equal to the net work done on the object. Thus to minimize the total energy,
we seek the extremal u∗ such that

F(u∗)≤F(u)

for all admissible u(x), i.e., the “minimizer” u∗ of the functionalF(u) (a function
of functions).

Using the principle of virtual work, we also have

∫ 1

0
u′v′dx=

∫ 1

0
fvdx

for any admissible function v(x).
On the other hand, the force balance yields the relevant differential equation.

The external force f(x) is balanced by the tension of the elastic string given by
Hooke’s law, see Figure 6.1 for an illustration, such that

τ (ux(x+∆x)− ux(x)) ≃ −f(x)∆x

or τ
ux(x+∆x)− ux(x)

∆x
≃ −f(x),

thus, for ∆x→ 0 we get the PDE

−τuxx= f(x),

alongwith the boundary condition u(0)= 0 and u(1)= 0 since the string is fixed
at the two ends.

The three formulations are equivalent representations of the same problem.
We show the mathematical equivalence in the next subsection.

07
12:27:52, subject to the Cambridge Core terms of use,

“c06” — 2017/10/10 — 11:28 — page 141 — #9

6.2 Different Mathematical Formulations for the 1D Model 141

6.2.2 Mathematical Equivalence

At the beginning of this chapter, we proved that (D) is equivalent to (V)
using integration by parts. Let us now prove that under certain conditions
(V) is equivalent to (D), and that (V) is equivalent to (M), and that (M) is
equivalent (V).

Theorem 6.1. (V)→ (D). If uxx exists and is continuous, then∫ 1

0
u′v′dx=

∫ 1

0
fvdx, ∀ v(0)= v(1)= 0, v∈H1(0, 1),

implies that −uxx= f(x).

Recall that H1(0, 1) denotes a Sobolev space, which here we can regard as the
space of all functions that have a first-order derivative.
Proof From integration by parts, we have∫ 1

0
u′v′dx = u′v

∣∣1
0 −

∫ 1

0
u′′v dx,

=⇒ −
∫ 1

0
u′′vdx =

∫ 1

0
fv dx,

or
∫ 1

0

(
u′′ + f

)
v dx = 0 .

Since v(x) is arbitrary and continuous, and u′′ and f are continuous, we must
have

u′′ + f= 0, i.e., − u′′= f.

Theorem 6.2. (V)→ (M). Suppose u∗(x) satisfies∫ 1

0
u∗′v′dx=

∫ 1

0
vfdx

for any v(x)∈H1(0, 1), and v(0)= v(1)= 0. Then

F(u∗) ≤ F(u) or

1
2

∫ 1

0
(u∗)2xdx−

∫ 1

0
fu∗dx ≤ 1

2

∫ 1

0
u2xdx−

∫ 1

0
fudx.

07
12:27:52, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c06” — 2017/10/10 — 11:28 — page 142 — #10

142 Finite Element Methods for 1D Boundary Value Problems

Proof

F(u) = F(u∗ + u− u∗)=F(u∗ + w) (wherew= u− u∗, w(0)=w(1)= 0) ,

=

∫ 1

0

(
1
2
(u∗ + w)2x − (u∗ + w)f

)
dx

=

∫ 1

0

(
(u∗)2x + w2

x + 2(u∗)xwx
2

− u∗f− wf

)
dx

=

∫ 1

0

(
1
2
(u∗)2x − u∗f

)
dx+

∫ 1

0

1
2
w2
xdx+

∫ 1

0
((u∗)xwx − fw) dx

=

∫ 1

0

(
1
2
(u∗)2x − u∗f

)
dx+

∫ 1

0

1
2
w2
xdx+ 0

= F(u∗) +
∫ 1

0

1
2
w2
xdx

≥ F(u∗).

The proof is completed.

Theorem 6.3. (M)→ (V). If u∗(x) is the minimizer of F(u∗), then∫ 1

0
(u∗)xvxdx=

∫ 1

0
fvdx

for any v(0)= v(1)= 0 and v∈H1(0, 1).

Proof Consider the auxiliary function:

g(ϵ)=F(u∗ + ϵv) .

Since F(u∗)≤F(u∗ + ϵv) for any ϵ, g(0) is a global or local minimum such that
g′(0)= 0. To obtain the derivative of g(ϵ), we have

g(ϵ) =
∫ 1

0

{
1
2
(u∗ + ϵv)2x − (u∗ + ϵv)f

}
dx

=

∫ 1

0

{
1
2

(
(u∗)2x + 2(u∗)xvxϵ+ v2xϵ

2
)
− u∗f− ϵvf

}
dx

=

∫ 1

0

(
1
2
(u∗)2x − u∗f

)
dx+ ϵ

∫ 1

0
((u∗)xvx − fv) dx+

ϵ2

2

∫ 1

0
v2xdx .

Thus we have

g′(ϵ)=
∫ 1

0
((u∗)xvx − fv) dx+ ϵ

∫ 1

0
v2xdx

07
12:27:52, subject to the Cambridge Core terms of use,

“c06” — 2017/10/10 — 11:28 — page 143 — #11

6.3 Key Components of the FE Method for the 1D Model 143

and

g′(0)=
∫ 1

0
((u∗)xvx − fv) dx= 0

since v(x) is arbitrary, i.e., the weak form is satisfied.
However, the three different formulations may not be equivalent for some

problems, depending on the regularity of the solutions. Thus, although

(D) =⇒ (M) =⇒ (V),

in order for (V) to imply (M), the differential equation is usually required to
be self-adjoint, and for (M) or (V) to imply (D); the solution of the differential
equation must have continuous second-order derivatives.

6.3 Key Components of the FE Method for the 1D Model

In this section, we discuss themodel problem (6.1) using the followingmethods:

• Galerkin method for the variational or weak formulation;
• Ritz method for the minimization formulation.

We also discuss another important aspect of finite element methods, namely,
how to assemble the stiffness matrix using the element by element approach.

The first step is to choose an integral form, usually the weak form, say∫ 1
0 u

′v′dx=
∫ 1
0 fv dx for any v(x) in the Sobolev space H1(0, 1) with v(0)=

v(1)= 0.

6.3.1 Mesh and Basis Functions
For a 1D problem, amesh is a set of points in the interval of interest, say, x0 = 0,
x1, x2, . . . , xM= 1 (see Figure 6.2 for an illustration). Let hi= xi+1 − xi, i=
0, 1, . . . ,M− 1, then

• xi is called a node, or nodal point.
• (xi, xi+1) is called an element.
• h= max

0≤i≤M−1
{ hi} is the mesh size, a measure of how fine the partition is.

6.3.1.1 Define a Finite Dimensional Space on the Mesh

Let the solution be in the space V, which is H1
0(0, 1) in the model problem.

Based on the mesh, we wish to construct a subspace

Vh (a finite dimensional space)⊂V (the solution space) ,

such that the discrete problem is contained in the continuous problem.

07
12:27:52, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c06” — 2017/10/10 — 11:28 — page 144 — #12

144 Finite Element Methods for 1D Boundary Value Problems

x0 = 0 x1 x2 xi xM = 1

f0 f1 fi fM

Figure 6.2. Diagram of a mesh and hat basis functions.

Any such finite element method is called a conforming one. Different finite
dimensional spaces generate different finite element solutions. Since Vh has
finite dimension, we can find a set of basis functions

ϕ1, ϕ2, . . . , ϕM−1 ⊂Vh

that are linearly independent, i.e., if

M−1∑
j=1

αjϕj= 0 ,

then α1 =α0 = · · ·=αM−1 = 0. Thus Vh is the space spanned by the basis
functions:

Vh=

vh(x), vh(x)=
M−1∑
j=1

αjϕj

.
The simplest finite dimensional space is the piecewise continuous linear

function space defined over the mesh:

Vh =
{
vh(x), vh(x) is continuous piecewise linear, vh(0)= vh(1)= 0

}
.

It is easy to show that Vh has a finite dimension, even though there are an
infinite number of elements in Vh.

6.3.1.2 Find the Dimension of Vh

A linear function l(x) in an interval (xi, xi+1) is uniquely determined by its
values at xi and xi+1:

l(x)= l(xi)
x− xi+1

xi − xi+1
+ l(xi+1)

x− xi
xi+1 − xi

.

There are M− 1 nodal values l(xi)’s, l(x1), l(x2), . . ., l(xM−1) for a piecewise
continuous linear function over the mesh, in addition to l(x0)= l(xM)= 0.
Given a vector [l(x1), l(x2), . . . , l(xM−1)]

T ∈RM−1, we can construct a vh(x)∈
Vh by taking vh(xi)= l(xi), i= 1, . . . ,M− 1. On the other hand, given vh(x)∈

07
12:27:52, subject to the Cambridge Core terms of use,

“c06” — 2017/10/10 — 11:28 — page 145 — #13

6.3 Key Components of the FE Method for the 1D Model 145

Vh, we get a vector [v(x1), v(x2), . . . , v(xM−1)]
T ∈RM−1. Thus there is a one

to one relation between Vh and RM−1, so Vh has the finite dimension M− 1.
Consequently, Vh is considered to be equivalent to RM−1.

6.3.1.3 Find a Set of Basis Functions

The finite dimensional space can be spanned by a set of basis functions. There
are infinitely many sets of basis functions, but we should choose one that:

• is simple;
• has compact (minimum) support, i.e., zero almost everywhere except for a

small region; and
• meets the regularity requirement, i.e., continuous and differentiable, except

at nodal points.

The simplest is the set of hat functions

ϕ1(x1)= 1 , ϕ1(xj)= 0 , j= 0, 2, 3, . . . ,M,

ϕ2(x2)= 1 , ϕ2(xj)= 0 , j= 0, 1, 3, . . . ,M,

· · ·
ϕi(xi)= 1 , ϕi(xj)= 0 , j= 0, 1, . . . i− 1, i+ 1, . . . ,M,

· · ·
ϕM−1(xM−1)= 1 , ϕM−1(xj)= 0 , j= 0, 1, . . . ,M− 2, M.

They can be represented simply as ϕi(xj)= δ
j
i , i.e.,

ϕi(xj)=

{
1 , if i= j ,

0 , otherwise .
(6.4)

The analytic form of the hat functions for i= 1, 2, . . . ,m− 1 is

ϕi(x)=



0 , if x< xi−1 ,

x− xi−1

hi
, if xi−1 ≤ x< xi ,

xi+1 − x
hi+1

, if xi≤ x< xi+1 ,

0 , if xi+1 ≤ x ;

(6.5)

and the finite element solution sought is

uh(x)=
M−1∑
j=1

αj ϕj(x) , (6.6)

07
12:27:52, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c06” — 2017/10/10 — 11:28 — page 146 — #14

146 Finite Element Methods for 1D Boundary Value Problems

and either the minimization form (M) or the variational or weak form (V) can
be used to derive a linear system of equations for the coefficients αj. On using
the hat functions, we have

uh(xi)=
M−1∑
j=1

αjϕj(xi)=αiϕi(xi)=αi , (6.7)

so αi is an approximate solution to the exact solution at x= xi.

6.3.2 The Ritz Method

Although not every problem has a minimization form, the Ritz method was
one of the earliest and has proven to be one of the most successful.

For the model problem (6.1), the minimization form is

min
v∈H1

0(0,1)
F(v) : F(v)=

1
2

∫ 1

0
(vx)2dx−

∫ 1

0
fv dx . (6.8)

As before, we look for an approximate solution of the form uh(x)=
M−1∑
j=1

αjϕj(x).

Substituting this into the functional form gives

F(uh)=
1
2

∫ 1

0

M−1∑
j=1

αjϕ
′
j(x)

2

−
∫ 1

0
f
M−1∑
j=1

αjϕj(x)dx , (6.9)

which is a multivariate function of α1, α2, . . . , αM−1 and can be written as

F(uh)=F (α1, α2, . . . , αM−1) .

The necessary condition for a global minimum (also a local minimum) is

∂F
∂α1

= 0 ,
∂F
∂α2

= 0 , · · · , ∂F
∂αi

= 0 , · · · , ∂F
∂αM−1

= 0 .

Thus taking the partial derivatives with respect to αj we have

∂F
∂α1

=

∫ 1

0

M−1∑
j=1

αjϕ
′
j

ϕ′1dx−
∫ 1

0
fϕ1dx= 0

· · ·

∂F
∂αi

=

∫ 1

0

M−1∑
j=1

αjϕ
′
j

ϕ′idx−
∫ 1

0
fϕidx= 0, i= 1, 2, . . . ,M− 1 ,

07
12:27:52, subject to the Cambridge Core terms of use,

“c06” — 2017/10/10 — 11:28 — page 147 — #15

6.3 Key Components of the FE Method for the 1D Model 147

and on exchanging the order of integration and summation:

M−1∑
j=1

(∫ 1

0
ϕ′jϕ

′
idx

)
αj=

∫ 1

0
fϕidx, i= 1, 2, . . . ,M− 1.

This is the same system of equations that follow from the Galerkin method
with the weak form, i.e.,∫ 1

0
u′v′dx =

∫ 1

0
fv dx immediately gives

∫ 1

0

M−1∑
j=1

αjϕ
′
j

ϕ′idx =

∫ 1

0
fϕi dx, i= 1, 2, . . . ,M− 1 .

6.3.2.1 Comparison of the Ritz and the Galerkin FE Methods

For many problems, the Ritz and Galerkin methods are theoretically equiva-
lent.

• The Ritz method is based on the minimization form, and optimization
techniques can be used to solve the problem.

• The Galerkin method usually has weaker requirements than the Ritz
method. Not every problem has a minimization form, whereas almost all
problems have some kind of weak form. How to choose a suitable weak form
and the convergence of different methods are all important issues for finite
element methods.

6.3.3 Assembling the Stiffness Matrix Element by Element

Given a problem, say the model problem, after we have derived the minimiza-
tion or weak form and constructed a mesh and a set of basis functions we need
to form:

• the coefficient matrix A= {aij}= {
∫ 1
0 ϕ

′
iϕ

′
jdx}, often called the stiffness

matrix for the first-order derivatives, and
• the right-hand side vectorF= { fi}= {

∫ 1
0 fiϕidx}, often called the load vector.

The procedure to form A and F is a crucial part in the finite element method.
For the model problem, one way is by assembling element by element:

(x0, x1) , (x1, x2), · · · (xi−1, xi) · · · (xM−1, xM),

Ω1 , Ω2 , · · · Ωi , · · · ΩM .

07
12:27:52, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c06” — 2017/10/10 — 11:28 — page 148 — #16

148 Finite Element Methods for 1D Boundary Value Problems

The idea is to break up the integration element by element, so that for any
integrable function g(x) we have

∫ 1

0
g(x) dx=

M∑
k=1

∫ xk

xk−1

g(x) dx=
M∑
k=1

∫
Ωk

g(x) dx .

The stiffness matrix can then be written

A =



∫ 1
0 (ϕ

′
1)

2dx
∫ 1
0 ϕ

′
1ϕ

′
2dx · · ·

∫ 1
0 ϕ

′
1ϕ

′
M−1dx∫ 1

0 ϕ
′
2ϕ

′
1dx

∫ 1
0 (ϕ

′
2)

2dx · · ·
∫ 1
0 ϕ

′
2ϕ

′
M−1dx

...
...

...
...∫ 1

0 ϕ
′
M−1ϕ

′
1dx

∫ 1
0 ϕ

′
M−1ϕ

′
2dx · · ·

∫ 1
0 (ϕ

′
M−1)

2dx



=



∫ x1
x0
(ϕ′1)

2dx
∫ x1
x0
ϕ′1ϕ

′
2dx · · ·

∫ x1
x0
ϕ′1ϕ

′
M−1dx∫ x1

x0
ϕ′2ϕ

′
1dx

∫ x1
x0
(ϕ′2)

2dx · · ·
∫ x1
x0
ϕ′2ϕ

′
M−1dx

...
...

...
...∫ x1

x0
ϕ′M−1ϕ

′
1dx

∫ x1
x0
ϕ′M−1ϕ

′
2dx · · ·

∫ x1
x0
(ϕ′M−1)

2dx



+



∫ x2
x1
(ϕ′1)

2dx
∫ x2
x1
ϕ′1ϕ

′
2dx · · ·

∫ x2
x1
ϕ′1ϕ

′
M−1dx∫ x2

x1
ϕ′2ϕ

′
1dx

∫ x2
x1
(ϕ′2)

2dx · · ·
∫ x2
x1
ϕ′2ϕ

′
M−1dx

...
...

...
...∫ x2

x1
ϕ′M−1ϕ

′
1dx

∫ x2
x1
ϕ′M−1ϕ

′
2dx · · ·

∫ x2
x1
(ϕ′M−1)

2dx


+ · · ·

+



∫ xM
xM−1

(ϕ′1)
2dx

∫ xM
xM−1

ϕ′1ϕ
′
2dx · · ·

∫ xM
xM−1

ϕ′1ϕ
′
M−1dx∫ xM

xM−1
ϕ′2ϕ

′
1dx

∫ xM
xM−1

(ϕ′2)
2dx · · ·

∫ xM
xM−1

ϕ′2ϕ
′
M−1dx

...
...

...
...∫ xM

xM−1
ϕ′M−1ϕ

′
1dx

∫ xM
xM−1

ϕ′M−1ϕ
′
2dx · · ·

∫ xM
xM−1

(ϕ′M−1)
2dx


.

07
12:27:52, subject to the Cambridge Core terms of use,

“c06” — 2017/10/10 — 11:28 — page 149 — #17

6.3 Key Components of the FE Method for the 1D Model 149

For the hat basis functions, it is noted that each interval has only two nonzero
basis functions (cf. Figure 6.3). This leads to

A =



∫ x1
x0
(ϕ′1)

2dx 0 · · · 0

0 0 · · · 0

...
...

...
...

0 0 · · · 0

+



∫ x2
x1
(ϕ′1)

2dx
∫ x2
x1
ϕ′1ϕ

′
2dx · · · 0∫ x2

x1
ϕ′2ϕ

′
1dx

∫ x2
x1
(ϕ′2)

2dx · · · 0

...
...

...
...

0 0 · · · 0



+



0 0 0 · · · 0

0
∫ x3
x2
(ϕ′2)

2dx
∫ x3
x2
ϕ′2ϕ

′
3dx · · · 0

0
∫ x3
x2
ϕ′3ϕ

′
2dx

∫ x3
x2
(ϕ′3)

2dx · · · 0

...
...

...
...

...

0 0 0 · · · 0


+



0 0 0 · · · 0

0 0 0 · · · 0

...
...

...
...

...

0 0 0 · · · 0

0 0 0 · · ·
∫ xM
xM−1

(ϕ′M−1)
2dx


.

The nonzero contribution from a particular element is

Ke
i =

[∫ xi+1
xi

(ϕ′i)
2dx

∫ xi+1
xi

ϕ′iϕ
′
i+1dx∫ xi+1

xi
ϕ′i+1ϕ

′
idx

∫ xi+1
xi

(ϕ′i+1)
2dx

]
,

the two by two local stiffness matrix. Similarly, the local load vector is

Fei =

[∫ xi+1
xi

fϕidx∫ xi+1
xi

fϕi+1dx

]
,

and the global load vector can also be assembled element by element:

F=



∫ x1
x0
fϕ1dx

0

0

...

0

0


+



∫ x2
x1
fϕ1dx∫ x2

x1
fϕ2dx

0

...

0

0


+



0∫ x3
x2
fϕ2dx∫ x3

x2
fϕ3dx

...

0

0


+ · · ·+



0

0

0

...

0∫ xM
xM−1

fϕM−1dx


.

07
12:27:52, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c06” — 2017/10/10 — 11:28 — page 150 — #18

150 Finite Element Methods for 1D Boundary Value Problems

Ω
1

Ω
2

Ω
3

Ω
4

11

1

1

1

1

1

1

1

1

1 2 3 4 5

ϕ ϕ ϕ ϕ ϕ
1

52 42 3

ψ

ψ

1

ψ 1

2

1

1

2

ψ

ψ

ψ

2

2

3

1

2
ψ3

4

1

ψ 4

2

Figure 6.3. Continuous piecewise linear basis functions ϕi for a four-element
mesh generated by linear shape functionsψe1,ψ

e
2 defined over each element. On

each interior element, there are only two nonzero basis functions. The figure
is adapted from Carey and Oden (1983).

07
12:27:52, subject to the Cambridge Core terms of use,

“c06” — 2017/10/10 — 11:28 — page 151 — #19

6.3 Key Components of the FE Method for the 1D Model 151

6.3.4 Computing Local Stiffness Matrix Ke
i and Local Load Vector F

e
i

In the element (xi, xi+1), there are only two nonzero hat functions centered at
xi and xi+1 respectively:

ψei (x)=
xi+1 − x
xi+1 − xi

, ψei+1(x)=
x− xi
xi+1 − xi

,

(ψei)
′=− 1

hi
, (ψei+1)

′=
1
hi
,

where ψei and ψei+1 are defined only on one particular element. We can concen-
trate on the corresponding contribution to the stiffness matrix and load vector
from the two nonzero hat functions. It is easy to verify that∫ xi+1

xi
(ψ′

i)
2 dx=

∫ xi+1

xi

1
h2i
dx=

1
hi
,

∫ xi+1

xi
ψ′
iψ

′
i+1 dx=

∫ xi+1

xi
− 1
h2i
dx=− 1

hi
,

∫ xi+1

xi
(ψ′

i+1)
2 dx=

∫ xi+1

xi

1
h2i
dx=

1
hi
.

The local stiffness matrix Ke
i is therefore

Ke
i =


1
hi

− 1
hi

− 1
hi

1
hi

 ,
and the stiffness matrix A is assembled as follows:

A = 0(M−1)×(M−1) , A=


1
h0

0 0 · · ·

0 0 0 · · ·
...

...
...

...

 , A=



1
h0

+ 1
h1

− 1
h1

0 · · ·

− 1
h1

1
h1

0 · · ·

0 0 0 · · ·
...

...
...

...


,

· · · A=



1
h0

+ 1
h1

− 1
h1

0 0 · · ·

− 1
h1

1
h1

+ 1
h2

− 1
h2

0 · · ·

0 − 1
h2

1
h2

0 · · ·
...

...
...

...


.

07
12:27:52, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c06” — 2017/10/10 — 11:28 — page 152 — #20

152 Finite Element Methods for 1D Boundary Value Problems

Thus we finally assemble the tridiagonal matrix

A =



1
h0

+ 1
h1

− 1
h1

− 1
h1

1
h1

+ 1
h2

− 1
h2

− 1
h2

1
h2

+ 1
h3

− 1
h3

.

− 1
hM−3

1
hM−3

+ 1
hM−2

− 1
hM−2

− 1
hM−2

1
hM−2

+ 1
hM−1


.

Remark 6.4. For a uniform mesh xi= ih, h= 1/M, i= 0, 1, . . . ,M and the
integral approximated by the mid-point rule∫ 1

0
f(x)ϕi(x)dx =

∫ xi+1

xi−1

f(x)ϕi(x)≃
∫ xi+1

xi−1

f(xi)ϕi(x)dx

= f(xi)
∫ xi+1

xi−1

ϕi(x)dx= f(xi) ,

the resulting system of equations for the model problem from the finite element
method is identical to that obtained from the FD method.

6.4 Matlab Programming of the FE Method for the 1D Model Problem

Matlab code to solve the 1D model problem

−u′′(x)= f(x), a< x< b; u(a)= u(b)= 0 (6.10)

using the hat basis functions is available either through the link

www4.ncsu.edu/~zhilin/FD_FEM_book
or by e-mail request to the authors.

The Matlab code includes the following Matlab functions:

• U= fem1d(x) is the main subroutine of the finite element method using the
hat basis functions. The input x is the vector containing the nodal points.
The output U, U(0)=U(M)= 0 is the finite element solution at the nodal
points, where M+ 1 is the total nodal points.

• y= hat1(x, x1, x2) is the local hat function in the interval [x1, x2]which takes
one at x= x2 and zero at x= x1.

07
12:27:52, subject to the Cambridge Core terms of use,

“c06” — 2017/10/10 — 11:28 — page 153 — #21

6.4 Matlab Programming of the FE Method for the 1D Model Problem 153

• y= hat2(x, x1, x2) is the local hat function in the interval [x1, x2]which takes
one at x= x1 and zero at x= x2.

• y= int_hata1_f(x1, x2) computes the integral
∫ x2
x1 f(x)hat1dx using the

Simpson rule.
• y= int_hata2_f(x1, x2) computes the integral

∫ x2
x1 f(x)hat2dx using the

Simpson quadrature rule.
• The main function is drive.m which solves the problem, plots the solution

and the error.
• y= f(x) is the right-hand side of the differential equation.
• y= soln(x) is the exact solution of differential equation.
• y= fem_soln(x,U, xp) evaluates the finite element solution at an arbitrary

point xp in the solution domain.

We explain some of these Matlab functions in the following subsections.

6.4.1 Define the Basis Functions

In an element [x1, x2] there are two nonzero basis functions: one is

ψe1(x)=
x− x1

x2 − x1
(6.11)

where the Matlab code is the file hat1.m so

function y = hat1(x,x1,x2)
% This function evaluates the hat function

y = (x-x1)/(x2-x1);
return

and the other is

ψe2(x)=
x2 − x
x2 − x1

(6.12)

where the Matlab code is the file hat2.m so

function y = hat2(x,x1,x2)
% This function evaluates the hat function

y = (x2-x)/(x2-x1);
return

6.4.2 Define f(x)
function y = f(x)

y = 1; % for example
return

07
12:27:52, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c06” — 2017/10/10 — 11:28 — page 154 — #22

154 Finite Element Methods for 1D Boundary Value Problems

6.4.3 The Main FE Routine
function U = fem1d(x)

%%%
% %
% A simple Matlab code of 1D FE method for %
% %
% -u'' = f(x), a <= x <= b, u(a)=u(b)=0 %
% Input: x, Nodal points %
% Output: U, FE solution at nodal points %
% %
% Function needed: f(x). %
% %
% Matlab functions used: %
% %
% hat1(x,x1,x2), hat function in [x1,x2] that is 1 at x2; and %
% 0 at x1. %
% %
% hat2(x,x1,x2), hat function in [x1,x2] that is 0 at x2; and %
% 1 at x1. %
% %
% int_hat1_f(x1,x2): Contribution to the load vector from hat1 %
% int_hat2_f(x1,x2): Contribution to the load vector from hat2 %
% %
%%%

M = length(x);
for i=1:M-1,

h(i) = x(i+1)-x(i);
end

A = sparse(M,M); F=zeros(M,1); % Initialization
A(1,1) = 1; F(1)=0;
A(M,M) = 1; F(M)=0;
A(2,2) = 1/h(1); F(2) = int_hat1_f(x(1),x(2));

for i=2:M-2, % Assembling element by element
A(i,i) = A(i,i) + 1/h(i);
A(i,i+1) = A(i,i+1) - 1/h(i);
A(i+1,i) = A(i+1,i) - 1/h(i);
A(i+1,i+1) = A(i+1,i+1) + 1/h(i);
F(i) = F(i) + int_hat2_f(x(i),x(i+1));
F(i+1) = F(i+1) + int_hat1_f(x(i),x(i+1));

end

A(M-1,M-1) = A(M-1,M-1) + 1/h(M-1);
F(M-1) = F(M-1) + int_hat2_f(x(M-1),x(M));

U = A\F; % Solve the linear system of equations

return

07
12:27:52, subject to the Cambridge Core terms of use,

“c06” — 2017/10/10 — 11:28 — page 155 — #23

6.4 Matlab Programming of the FE Method for the 1D Model Problem 155

6.4.4 A Test Example

Let us consider the test example

f(x)= 1, a= 0, b= 1.

The exact solution is

u(x)=
x(1 − x)

2
. (6.13)

A sample Matlab drive code is listed below:

clear all; close all; % Clear every thing so it won't mess up
% with other existing variables.

%%%%%% Generate a mesh.

x(1)=0; x(2)=0.1; x(3)=0.3; x(4)=0.333; x(5)=0.5; x(6)=0.75;x(7)=1;

U = fem1d(x);

%%%%%% Compare errors:

x2 = 0:0.05:1; k2 = length(x2);
for i=1:k2,

u_exact(i) = soln(x2(i));
u_fem(i) = fem_soln(x,U,x2(i)); % Compute FE solution at x2(i)

end

error = norm(u_fem-u_exact,inf) % Compute the infinity error

plot(x2,u_fem,':', x2,u_exact) % Solid: the exact,
% dotted: FE solution

hold; plot(x,U,'o') % Mark the solution at nodal
% points

xlabel('x'); ylabel('u(x) & u_{fem}(x)');
title('Solid line: Exact solution, Dotted line: FE solution')

figure(2); plot(x2,u_fem-u_exact); title('Error plot')
xlabel('x'); ylabel('u-u_{fem}'); title('Error Plot')

Figure 6.4 shows the plots produced by running the code. Figure 6.4(a) shows
both the true solution (the solid line) and the finite element solution (the dashed
line). The little “o”s are the finite element solution values at the nodal points.
Figure 6.4(b) shows the error between the true and the finite element solutions
at a few selected points (zero at the nodal points in this example, although may
not be so in general).

07
12:27:52, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c06” — 2017/10/10 — 11:28 — page 156 — #24

156 Finite Element Methods for 1D Boundary Value Problems

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

x

u
(x

)
a

n
d

 u
fe
m

(x
)

Solid line: Exact solution,

Dotted line: FEM solution
(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8

−7

−6

−5

−4

−3

−2

−1

0
×10−3 Error plot

x

u
−
u
fe
m

Figure 6.4. (a) Plot of the true solution (solid line) and the finite element
solution (the dashed line) and (b) the error plot at some selected points.

Exercises
1. Consider the following BVP:

−u′′(x) + u(x)= f(x), 0< x< 1, u(0)= u(1)= 0.

(a) Show that the weak form (variational form) is

(u′, v′) + (u, v)= (f, v), ∀ v(x)∈H1
0(0, 1),

where

(u, v) =
∫ 1

0
u(x)v(x)dx,

H1
0(0, 1) =

{
v(x), v(0)= v(1)= 0,

∫ 1

0
v2dx<∞

}
.

(b) Derive the linear system of the equations for the finite element approximation

uh =
3∑
j=1

αjϕj(x) ,

with the following information:

• f(x)= 1 ;
• the nodal points and the elements are indexed as

x0 = 0, x2 =
1
4
, x3 =

1
2
, x1 =

3
4
, x4 = 1.

Ω1 = [x3, x1], Ω2 = [x1, x4], Ω3 = [x2, x3], Ω4 = [x0, x2] ;

• the basis functions are the hat functions

ϕi(xj)=

{
1 , if i= j ,

0 , otherwise ,

and do not reorder the nodal points and elements; and
• assemble the stiffness matrix and the load vector element by element.

07
12:27:52, subject to the Cambridge Core terms of use,

“c06” — 2017/10/10 — 11:28 — page 157 — #25

Exercises 157

2. (This problem involves modifying drive.m, f.m and soln.m.) Use the Matlab code to solve

−u′′(x)= f(x), 0< x< 1, u(0)= u(1)= 0.

Try two different meshes: (a) the one given in drive.m; (b) the uniform mesh xi = i h, h=
1/M, i= 0, 1, . . . ,M. Take M= 10, done in Matlab using the command: x= 0 : 0.1 : 1.
Use the two meshes to solve the problem for the following f(x) or exact u(x):

(a) given u(x)= sin(πx), what is f(x)?
(b) given f(x)= x3, what is u(x)?
(c) (extra credit) given f(x)= δ(x− 1/2), where δ(x) is the Dirac delta function, what is

u(x)?
Hint: The Dirac delta function is defined as a distribution satisfying

∫ b
a f(x)δ(x)dx=

f(0) for any function f(x)∈C(a, b) if x= 0 is in the interior of the integration.

Ensure that the errors are reasonably small.
3. (This problem involves modifying fem1d.m, drive.m, f.m and soln.m.) Assume that∫ xi+1

xi

ϕi(x)ϕi+1(x)dx=
h
6
,

where h= xi+1 − xi, and ϕi and ϕi+1 are the hat functions centered at xi and xi+1 respec-
tively. Use the Matlab code to solve

−u′′(x) + u(x)= f(x), 0< x< 1, u(0)= u(1)= 0 .

Try to use the uniform grid x= 0 : 0.1 : 1 in Matlab, for the following exact u(x):

(a) u(x)= sin(πx), what is f(x)?
(b) u(x)= x(1 − x)/2, what is f(x)?

07
12:27:52, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c07” — 2017/10/10 — 11:32 — page 158 — #1

7

Theoretical Foundations of the Finite
Element Method

Using finite element methods, we need to answer these questions:

• What is the appropriate functional space V for the solution?
• What is the appropriate weak or variational form of a differential equation?
• What kind of basis functions or finite element spaces should we choose?
• How accurate is the finite element solution?

We briefly address these questions in this chapter. Recalling that finite ele-
ment methods are based on integral forms and not on the pointwise sense as
in finite difference methods, we will generalize the theory corresponding to the
pointwise form to deal with integral forms.

7.1 Functional Spaces

A functional space is a set of functions with operations. For example,

C(Ω)=C0(Ω)=
{
u(x), u(x) is continuous onΩ

}
(7.1)

is a linear space that contains all continuous functions on Ω, the domain where
the functions are defined, i.e.,Ω= [0, 1]. The space is linear because for any real
numbers α and β and u1 ∈C(Ω) and u2 ∈C(Ω), we haveαu1 + βu2 ∈C(Ω).

The functional space with first-order continuous derivatives in 1D is

C1(Ω)=
{
u(x), u(x), u′(x) are continuous onΩ

}
, (7.2)

and similarly

Cm(Ω)=
{
u(x), u(x), u′(x), . . . , u(m) are continuous onΩ

}
. (7.3)

Obviously,

C0 ⊃C1 ⊃ · · ·⊃Cm⊃ · · · . (7.4)

158

08
11:15:58, subject to the Cambridge Core terms of use,

“c07” — 2017/10/10 — 11:32 — page 159 — #2

7.1 Functional Spaces 159

Then as m→∞, we define

C∞(Ω)= {u(x), u(x) is indefinitely differentiable onΩ} . (7.5)

For example, ex, sin x, cos x, and polynomials, are in C∞(−∞,∞), but some
other elementary functions such as log x, tan x, cot x are not if x= 0 is in the
domain.

7.1.1 Multidimensional Spaces and Multi-index Notations

Let us now consider multidimensional functions u(x)= u(x1, x2, . . . , xn),
x∈Rn, and a corresponding multi-index notation that simplifies expressions
for partial derivatives. We can write α=(α1, α2, . . . , αn), αi≥ 0 for an inte-
ger vector in Rn, e.g., if n= 5, then α=(1, 2, 0, 0, 2) is one of possible vectors.
We can readily represent a partial derivative as

Dαu(x)=
∂|α| u

∂xα1
1 ∂x

α2
2 · · · ∂xαnn

, |α|=α1 + α2 + · · ·+ αn , αi≥ 0 (7.6)

which is the so-called multi-index notation.

Example 7.1. For n= 2 and u(x)= u(x1, x2), all possible Dαu when |α|= 2 are

α=(2, 0), Dαu=
∂2u
∂x2

1

,

α=(1, 1), Dαu=
∂2u

∂x1∂x2
,

α=(0, 2), Dαu=
∂2u
∂x2

2

.

With the multi-index notation, the Cm space in a domain Ω∈Rn can be
defined as

Cm(Ω)= {u(x1, x2, . . . , xn), Dαu are continuous onΩ, |α| ≤m} (7.7)

i.e., all possible derivatives up to order m are continuous on Ω.

Example 7.2. For n= 2 andm= 3, we have u, ux, uy, uxx, uxy, uyy, uxxx, uxxy, uxyy
and uyyy all continuous on Ω if u∈C3(Ω), or simply Dαu∈C3(Ω) for |α| ≤ 3.
Note that Cm(Ω) has infinite dimensions.

The distance in C0(Ω) is defined as

d(u, v)=max
x∈Ω

|u(x)− v(x)|

08
11:15:58, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c07” — 2017/10/10 — 11:32 — page 160 — #3

160 Theoretical Foundations of the Finite Element Method

with the properties (1), d(u, v)≥ 0 ; (2), d(u, v)= 0 if and only if u≡ v ; and (3),
d(u, v+ w)≤ d(u, v) + d(u,w), the triangle inequality. A linear space with a
distance defined is called a metric space.

A norm in C0(Ω) is a nonnegative function of u that satisfies

∥u(x)∥= d(u, θ) = max
x∈Ω

|u(x)|,where θ is the zero element,

with the properties (1), ∥u(x)∥ ≥ 0 , and ∥u(x)∥= 0 if and only if u≡ 0 ;

(2), ∥αu(x)∥ = |α|∥u(x)∥, where α is a number ;

(3), ∥u(x) + v(x)∥ ≤ ∥u(x)∥+ ∥v(x)∥ , the triangle inequality.

A linear space with a norm defined is called a normed space. In Cm(Ω), the
distance and the norm are defined as

d(u, v) = max
0≤|α|≤m

max
x∈Ω

|Dαu(x)−Dαv(x)| , (7.8)

∥u(x)∥ = max
0≤|α|≤m

max
x∈Ω

|Dαu| . (7.9)

7.2 Spaces for Integral Forms, L2(Ω) and Lp(Ω)

In analogy to pointwise spaces Cm(Ω), we can define Sobolev spacesHm(Ω) in
integral forms. The square-integrable space H0(Ω)=L2(Ω) is defined as

L2(Ω)=

{
u(x),

∫
Ω
u2(x) dx<∞

}
(7.10)

corresponding to the pointwise C0(Ω) space. It is easy to see that

C(Ω)=C0(Ω)⊂L2(Ω) .

Example 7.3. It is easy to verify that y(x)= 1/x1/4 /∈C0(0, 1), but∫ 1

0

(
1

x1/4

)2

dx=
∫ 1

0

1√
x
dx= 2<∞

so that y(x)∈L2(0, 1). But it is obvious that y(x) is not in C(0, 1) since y(x)
blows up as x→ 0 from x> 0, see Figure 7.1 in which we also show that a piece-
wise constant function 0 and 1 in (0, 1) is in L2(0, 1) but not inC(0, 1) since the
function is discontinuous (nonremovable discontinuity) at x= 0.5.

The distance in L2(Ω) is defined as

d(f, g)=
{∫

Ω
|f− g|2 dx

}1/2

, (7.11)

08
11:15:58, subject to the Cambridge Core terms of use,

“c07” — 2017/10/10 — 11:32 — page 161 — #4

7.2 Spaces for Integral Forms, L2(Ω) and Lp(Ω) 161

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

2.5

3

y=1/x
1/4

y=1

y=0

Figure 7.1. Plot of two functions that are in L2(0, 1) but not in C[0, 1]. One
function is y(x)= 1

4√x
. The other one is y(x)= 0 in [0, 1/2) and y(x)= 1 in

[1/2, 1].

which satisfies the three conditions of the distance definition; so L2(Ω) is a
metric space. We say that two functions f and g are identical (f≡ g) in L2(Ω) if
d(f, g)= 0. For example, the following two functions are identical in L2(−2, 2):

f(x)=

{
0, if −2≤ x< 0,

1, if 0≤ x≤ 2,
g(x)=

{
0, if −2≤ x≤ 0,

1, if 0< x≤ 2.

The norm in the L2(Ω) space is defined as

∥u∥L2 = ∥u∥0 =

{∫
Ω
|u|2 dx

}1/2

. (7.12)

It is straightforward to prove that the usual properties for the distance and the
norm hold.

We say that L2(Ω) is a complete space, meaning that any Cauchy sequence
{fn(Ω)} in L2(Ω) has a limit in L2(Ω), i.e., there is a function f∈L2(Ω) such
that

lim
n→∞

∥fn − f∥L2 = 0, or lim
n→∞

fn= f.

A Cauchy sequence is a sequence that satisfies the property that, for any given
positive number ϵ, no matter how small it is, there is an integer N such that

∥fn − fm∥L2 <ϵ, if m≥N, n≥N .

08
11:15:58, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c07” — 2017/10/10 — 11:32 — page 162 — #5

162 Theoretical Foundations of the Finite Element Method

A complete normed space is called a Banach space (a Cauchy sequence
converges in terms of the norm), so L2(Ω) is a Banach space.

7.2.1 The Inner Product in L2

For any two vectors

x=


x1

x2

...

xn

 , y=


y1

y2
...

yn


in Rn, we recall that the inner product is

(x, y)= xTy=
n∑
i=1

xiyi= x1y1 + x2y2 + · · ·+ xnyn .

Similarly, the inner product in L2(Ω) space in R, the real number space, is
defined as

(f, g)=
∫
Ω
f(x)g(x) dx , for any f and g∈L2(Ω) , (7.13)

and satisfies the familiar properties

(f, g) = (g, f) ,

(αf, g) = (f, αg)=α(f, g), ∀α∈R,
(f, g+ w) = (f, g) + (f,w)

for any f, g, and w∈L2(Ω). The norm, distance, and inner product in L2(Ω) are
related as follows:

∥u∥0 = ∥u∥L2(Ω)=
√

(u, u)= d(u, θ)=
{∫

Ω
|u|2 dx

}1/2

. (7.14)

With the L2(0, 1) inner product, for the simple model problem

−u′′= f , 0< x< 1 , u(0)= u(1)= 0,

we can rewrite the weak form as

(u′, v ′)= (f, v) , ∀v∈H1
0(0, 1) ,

08
11:15:58, subject to the Cambridge Core terms of use,

“c07” — 2017/10/10 — 11:32 — page 163 — #6

7.2 Spaces for Integral Forms, L2(Ω) and Lp(Ω) 163

and the minimization form as

min
v∈H1

0(0,1)
F(v) : F(v)=

1
2
(v ′, v ′)− (f, v) .

7.2.2 The Cauchy–Schwarz Inequality in L2(Ω)

For a Hilbert space with the norm ∥u∥=
√

(u, u), the Cauchy–Schwarz
inequality is

|(u, v)| ≤ ∥u∥∥v∥. (7.15)

Examples of the Cauchy–Schwarz inequality corresponding to inner products
in Rn and in L2 spaces are∣∣∣∣∣

n∑
i=1

xiyi

∣∣∣∣∣ ≤
{

n∑
i=1

x2
i

}1/2{ n∑
i=1

y2i

}1/2

,

∣∣∣∣∣
n∑
i=1

xi

∣∣∣∣∣ ≤ √
n

{
n∑
i=1

x2
i

}1/2

,

∣∣∣∣∫
Ω
fgdx

∣∣∣∣ ≤ {∫
Ω
f2 dx

}1/2{∫
Ω
g2 dx

}1/2

,

∣∣∣∣∫
Ω
fdx

∣∣∣∣ ≤ {∫
Ω
f2 dx

}1/2 √
V,

where V is the volume of Ω.

7.2.2.1 A Proof of the Cauchy–Schwarz Inequality

Noting that (u, u)= ∥u∥2, we construct a quadratic function of α given u and v:

f(α)= (u+ αv, u+ αv)= (u, u) + 2α(u, v) + α2(v, v)≥ 0 .

The quadratic function is nonnegative; hence the discriminant of the quadratic
form satisfies

∆= b2 − 4ac≤ 0, i.e., 4(u, v)2 − 4(u, u)(v, v)≤ 0 or (u, v)2 ≤ (u, u)(v, v) ,

yielding the Cauchy–Schwarz inequality |(u, v)| ≤ ∥u∥∥v∥, on taking the square
root of both sides.

A complete Banach space with an inner product defined is called a Hilbert
space. Hence, L2(Ω) is a Hilbert space (linear space, inner product, complete).

08
11:15:58, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c07” — 2017/10/10 — 11:32 — page 164 — #7

164 Theoretical Foundations of the Finite Element Method

7.2.2.2 Relationships Between the Spaces

The relationships (and relevant additional properties) in the hierarchy of
defined spaces may be summarized diagrammatically:

Metric Space (distance) =⇒ Normed Space (norm) =⇒ Banach space
(complete) =⇒ Hilbert space (inner product).

7.2.3 Lp(Ω) Spaces

An Lp(Ω) (0< p<∞) space is defined as

Lp(Ω)=
{
u(x),

∫
Ω
|u(x)|p dx<∞

}
, (7.16)

and the distance in Lp(Ω) is defined as

d(f, g)=
{∫

Ω
|f− g|p dx

}1/p

. (7.17)

AnLp(Ω) space has a distance and is complete, so it is a Banach space.However,
it is not a Hilbert space, because no corresponding inner product is defined
unless p= 2.

7.3 Sobolev Spaces and Weak Derivatives

Similar to Cm(Ω) spaces, we use Sobolev spaces Hm(Ω) to define function
spaces with derivatives involving integral forms. If there is no derivative, then
the relevant Sobolev space is

H0(Ω)=L2(Ω)=

{
v(x),

∫
Ω
|v|2dx<∞

}
. (7.18)

7.3.1 Definition of Weak Derivatives

If u(x)∈C1[0, 1], then for any function ϕ∈C1(0, 1) such that ϕ(0)=ϕ(1)= 0
we recall∫ 1

0
u′(x)ϕ(x)= uϕ

∣∣∣1
0
−
∫ 1

0
u(x)ϕ′(x) dx=−

∫ 1

0
u(x)ϕ′(x) dx , (7.19)

where ϕ(x) is a test function in C1
0(0, 1). The first-order weak derivative of

u(x)∈L2(Ω)=H0(Ω) is defined to be a function v(x) satisfying∫
Ω
v(x)ϕ(x)dx=−

∫
Ω
u(x)ϕ′(x)dx (7.20)

08
11:15:58, subject to the Cambridge Core terms of use,

“c07” — 2017/10/10 — 11:32 — page 165 — #8

7.3 Sobolev Spaces and Weak Derivatives 165

for allϕ(x)∈C1
0(Ω)withϕ(0)=ϕ(1)= 0. If such a function exists, thenwewrite

v(x)= u′(x).

Example 7.4. Consider the following function u(x)

u(x)=


x
2
, if 0≤ x<

1
2
,

1 − x
2

, if
1
2
≤ x≤ 1.

It is obvious that u(x)∈C[0, 1] but u′(x) ̸∈C(0, 1) since the classic derivative
does not exist at x= 1

2 . Let ϕ(x)∈C1(0, 1) be any function that vanishes at two
ends, i.e., ϕ(0)=ϕ(1)= 0, and has first-order continuous derivative on (0, 1).
We carry out the following integration by parts.∫ 1

0
ϕ′udx =

∫ 1
2

0
ϕ′udx+

∫ 1

1
2

ϕ′udx

= ϕ(x) u(x)
∣∣∣ 12
0
+ ϕ(x) u(x)

∣∣∣1
1
2

−
∫ 1

2

0
ϕu′dx+

∫ 1

1
2

ϕu′dx

= ϕ(1/2)
(
u(1/2−)− u(1/2+)

)
−
∫ 1

2

0

ϕ(x)
2

dx−
∫ 1

1
2

−ϕ(x)
2

dx

= −
∫ 1

0
ψ(x)ϕ(x)dx,

where we have used the property that ϕ(0)=ϕ(1)= 0 and ψ(x) is defined as

ψ(x)=


1
2
, if 0< x<

1
2
,

−1
2
, if 1

2 < x< 1,

which is what we would expect. In other words, we define the weak derivative
of u(x) as u′(x)=ψ(x) which is an H1(0, 1) but not a C(0, 1) function.

Similarly, the m-th order weak derivative of u(x)∈H0(Ω) is defined as a
function v(x) satisfying∫

Ω
v(x)ϕ(x)dx=(−1)m

∫
Ω
u(x)ϕ(m)(x)dx (7.21)

for all ϕ(x)∈Cm
0 (Ω) with ϕ(x)=ϕ′(x)= · · ·=ϕ(m−1)(x)= 0 for all x∈ ∂Ω. If

such a function exists, then we write v(x)= u(m)(x).

08
11:15:58, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c07” — 2017/10/10 — 11:32 — page 166 — #9

166 Theoretical Foundations of the Finite Element Method

7.3.2 Definition of Sobolev Spaces Hm(Ω)

The Sobolev space H1(Ω) defined as

H1(Ω)=
{
v(x) , Dαv∈L2(Ω) , |α| ≤ 1

}
(7.22)

involves first-order derivatives, e.g.,

H1(a, b)=

{
v(x) , a< x< b ,

∫ b

a
v2dx<∞ ,

∫ b

a
(v ′)2dx<∞

}
,

and in two space dimensions, H1(Ω) is defined as

H1(Ω)=

{
v(x, y) , v∈L2(Ω) ,

∂v
∂x

∈L2(Ω) ,
∂v
∂y

∈L2(Ω)

}
.

The extension is immediate to the Sobolev space of general dimension

Hm(Ω)=
{
v(x) , Dαv∈L2(Ω) , |α| ≤m

}
. (7.23)

7.3.3 Inner Products in Hm(Ω) Spaces

The inner product in H0(Ω) is the same as that in L2(Ω), i.e.,

(u, v)H0(Ω)=(u, v)0 =
∫
Ω
uv dx .

The inner product in H1(a, b) is defined as

(u, v)H1(a,b)=(u, v)1 =
∫ b

a

(
uv+ u′v ′

)
dx;

the inner product in H1(Ω) of two variables is defined as

(u, v)H1(Ω)=(u, v)1 =
∫∫

Ω

(
uv+

∂u
∂x

∂v
∂x

+
∂u
∂y

∂v
∂y

)
dxdy ; and

the inner product in Hm(Ω) (of general dimension) is

(u, v)Hm(Ω)=(u, v)m=

∫
Ω

∑
|α|≤m

(Dαu(x)) (Dαv(x)) dx. (7.24)

The norm in Hm(Ω) (of general dimension) is

∥u∥Hm(Ω)= ∥u∥m=


∫
Ω

∑
|α|≤m

|Dαu(x)|2 dx


1/2

, (7.25)

08
11:15:58, subject to the Cambridge Core terms of use,

“c07” — 2017/10/10 — 11:32 — page 167 — #10

7.3 Sobolev Spaces and Weak Derivatives 167

therefore, Hm(Ω) is a Hilbert space. A norm can be defined from the inner
product, e.g., in H1(a, b), the norm is

∥u∥1 =

{∫ b

a

(
u2 + u′2

)
dx

}1/2

.

The distance in Hm(Ω) (of general dimension) is defined as

d(u, v)m= ∥u− v∥m. (7.26)

7.3.4 Relations Between Cm(Ω) and Hm(Ω) – The Sobolev
Embedding Theorem

In 1D spaces, we have

H1(Ω)⊂C0(Ω), H2(Ω)⊂C1(Ω), . . . , H1+j(Ω)⊂C j(Ω) .

Theorem 7.5. The Sobolev embedding theorem: If 2m> n, then

Hm+j⊂C j, j= 0, 1, . . . , (7.27)

where n is the dimension of the independent variables of the elements in the
Sobolev space.

Example 7.6. In 2D spaces, we have n= 2. The condition 2m> n means that
m> 1. From the embedding theorem, we have

H2+j⊂C j, j= 0 =⇒ H2 ⊂C0, j= 1 =⇒ H3 ⊂C1, (7.28)

If u(x, y)∈H2, which means that u, ux, uy, uxx, uxy, and uyy all belong to L2,
then u(x, y) is continuous, but ux and uy may not be continuous!

Example 7.7. In 3D spaces, we have n= 3 and the condition 2m> n means
that m> 3/2 whose closest integer is number two, leading to the same result as
in 2D:

H2+j⊂C j, j= 0 =⇒ H2 ⊂C0 , j= 1 =⇒H3 ⊂C1 , (7.29)

We regard the regularity of a solution as the degree of smoothness for a class
of problems measured in Cm or Hm space. Thus, for u(x)∈Hm or u(x)∈Cm,
the larger the m the smoother the function.

08
11:15:58, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c07” — 2017/10/10 — 11:32 — page 168 — #11

168 Theoretical Foundations of the Finite Element Method

7.4 FE Analysis for 1D BVPs

For the simple 1D model problem

−u′′= f , 0< x< 1 , u(0)= u(1)= 0 ,

we know that the weak form is∫ 1

0
u′v ′ dx=

∫ 1

0
fv dx or (u′, v ′)= (f, v) .

Intuitively, because v is arbitrary we can take v= f or v= u to get∫ 1

0
u′v ′ dx=

∫ 1

0
u′2 dx ,

∫ 1

0
fv dx=

∫ 1

0
f2 dx ,

so u, u′, f, v, and v ′ should belong to L2(0, 1), i.e., we have u∈H1
0(0, 1) and v∈

H1
0(0, 1); so the solution is in the Sobolev space H1

0(0, 1). We should also take
v in the same space for a conforming finite element method. From the Sobolev
embedding theorem, we also know thatH1 ⊂C0, so the solution is continuous.

7.4.1 Conforming FE Methods

Definition 7.8. If the finite element space is a subspace of the solution space,
then the finite element space is called a conforming finite element space, and the
finite element method is called a conforming FE method.

For example, the piecewise linear function over a given mesh is a conforming
finite element space for themodel problem.Wemainly discuss conforming finite
element methods in this book. On including the boundary condition, we define
the solution space as

H1
0(0, 1)=

{
v(x) , v(0)= v(1)= 0 , v∈H1(0, 1)

}
. (7.30)

When we look for a finite element solution in a finite-dimensional space Vh, it
should be a subspace of H1

0(0, 1) for a conforming finite element method. For
example, given a mesh for the 1D model, we can define a finite-dimensional
space using piecewise continuous linear functions over the mesh:

Vh= {vh , vh(0)= vh(1)= 0 , vh is continuous piecewise linear} .

The finite element solution would be chosen from the finite-dimensional
space Vh, a subspace ofH1

0(0, 1). If the solution of the weak form is inH1
0(0, 1)

but not in the Vh space; then an error is introduced on replacing the solu-
tion space with the finite-dimensional space. Nevertheless, the finite element
solution is the best approximation in Vh in some norm, as discussed later.

08
11:15:58, subject to the Cambridge Core terms of use,

“c07” — 2017/10/10 — 11:32 — page 169 — #12

7.4 FE Analysis for 1D BVPs 169

7.4.2 FE Analysis for 1D Sturm–Liouville Problems

A 1DSturm–Liouville problem on (xl, xr)with aDirichlet boundary condition
at two ends is

−(p(x)u′(x))′ + q(x)u(x) = f(x) , xl< x< xr ,

u(xl)= 0 , u(xr)= 0 ,

p(x)≥ pmin> 0 , q(x)≥ qmin≥ 0 .

(7.31)

The conditions on p(x) and q(x) guarantee the problem is well-posed, such that
the weak form has a unique solution. It is convenient to assume p(x)∈C(xl, xr)
and q(x)∈C(xl, xr). Later we will see that these conditions together with f(x)∈
L2(xl, xr), guarantee the unique solution to the weak form of the problem. To
derive the weak form, we multiply both sides of the equation by a test function
v(x), v(xl)= v(xr)= 0 and integrate from xl to xr to get∫ xr

xl

(
−(p(x)u′)′ + qu

)
v dx = −pu′v

∣∣∣xr
xl
+

∫ xr

xl

(
pu′v ′ + quv

)
dx

=

∫ xr

xl
fv dx

=⇒
∫ xr

xl

(
pu′v ′ + quv

)
dx =

∫ xr

xl
fv dx , ∀v∈H1

0(xl, xr) or a(u, v)=L(v).

7.4.3 The Bilinear Form

The integral

a(u, v)=
∫ xr

xl

(
pu′v ′ + quv

)
dx (7.32)

is a bilinear form, because it is linear for both u and v from the following

a(αu+ βw, v) =
∫ xr

xl

(
p(αu′ + βw′)v ′ + q(αu+ βw)v

)
dx

= α

∫ xr

xl

(
pu′v ′ + quv

)
dx+ β

∫ xr

xl

(
pu′v ′ + qwv

)
dx

= αa(u, v) + βa(w, v) ,

where α and β are scalars; and similarly,

a(u, αv+ βw)=αa(u, v) + βa(u,w) .

08
11:15:58, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c07” — 2017/10/10 — 11:32 — page 170 — #13

170 Theoretical Foundations of the Finite Element Method

It is noted that this bilinear form is an inner product, usually different from the
L2 and H1 inner products, but if p≡ 1 and q≡ 1 then

a(u, v)= (u, v).

Since a(u, v) is an inner product, under the conditions: p(x)≥ pmin> 0, q(x)≥
0, we can define the energy norm as

∥u∥a=
√
a(u, u)=

{∫ xr

xl

(
p(u′)2 + qu2

)
dx
} 1

2

, (7.33)

where the first term may be interpreted as the kinetic energy and the second
term as the potential energy. The Cauchy–Schwarz inequality implies |a(u, v)| ≤
∥u∥a∥v∥a.

The bilinear form combined with linear form often simplifies the notation for
the weak and minimization forms, e.g., for the above Sturm–Liouville problem
the weak form becomes

a(u, v)=L(v) , ∀v∈H1
0(xl, xr) , (7.34)

and the minimization form is

min
v∈H1

0(xl,xr)
F(v)= min

v∈H1
0(xl,xr)

{
1
2
a(v, v)− L(v)

}
. (7.35)

Later we will see that all self-adjoint differential equations have both weak and
minimization forms, and that the finite element method using the Ritz form is
the same as with the Galerkin form.

7.4.4 The FE Method for 1D Sturm–Liouville Problems
Using Hat Basis Functions

Consider any finite-dimensional space Vh⊂H1
0(xl, xr) with the basis

ϕ1(x)∈H1
0(xl, xr) , ϕ2(x)∈H1

0(xl, xr) , . . . , ϕM(x)∈H1
0(xl, xr),

that is,

Vh = span {ϕ1, ϕ2, . . . , ϕM}

=

{
vs, vs=

M∑
i=1

αiϕi

}
⊂H1

0(xl, xr) .

The Galerkin finite method assumes the approximate solution to be

us(x)=
M∑
j=1

αjϕj(x), (7.36)

08
11:15:58, subject to the Cambridge Core terms of use,

“c07” — 2017/10/10 — 11:32 — page 171 — #14

7.4 FE Analysis for 1D BVPs 171

and the coefficients {αj} are chosen such that the weak form

a(us, vs)= (f, vs), ∀ vs ∈Vh

is satisfied. Thus we enforce the weak form in the finite-dimensional space Vh

instead of the solution space H1
0(xl, xr), which introduces some error.

Since any element in the space is a linear combination of the basis functions,
we have

a (us, ϕi) = (f, ϕi) , i= 1, 2, . . . ,M ,

or

a

 M∑
j=1

αj ϕj, ϕi

=(f, ϕi) , i= 1, 2, . . . ,M ,

or
M∑
j=1

a(ϕj, ϕi)αj=(f, ϕi) , i= 1, 2, . . . ,M .

In the matrix-vector form AX=F, this system of algebraic equations for the
coefficients is

a(ϕ1, ϕ1) a(ϕ1, ϕ2) · · · a(ϕ1, ϕM)

a(ϕ2, ϕ1) a(ϕ2, ϕ2) · · · a(ϕ2, ϕM)

...
...

...
...

a(ϕM, ϕ1) a(ϕM, ϕ2) · · · a(ϕM, ϕM)




α1

α2

...

αM

=


(f, ϕ1)

(f, ϕ2)

...

(f, ϕM)

 ,

and the system has some attractive properties.

• The coefficient matrix A is symmetric, i.e., {aij}= {aji} or A=AT, since
a(ϕi, ϕj)= a(ϕj, ϕi). Note that this is only true for a self-adjoint problem such
as the above, with the second-order ODE

−(pu′)′ + qu= f .

For example, the similar problem involving the ODE

−u′′ + u′= f

is not self-adjoint; and the Galerkin finite element method using the
corresponding weak form

(u′, v ′) + (u′, v)= (f, v) or (u′, v ′)− (u, v ′)= (f, v)

08
11:15:58, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c07” — 2017/10/10 — 11:32 — page 172 — #15

172 Theoretical Foundations of the Finite Element Method

produces terms such as (ϕ′i, ϕj) that differ from (ϕ′j, ϕi), so that the coefficient
matrix A is not symmetric.

• A is positive definite, i.e.,

xTAx> 0 if x ̸= 0 , and all eigenvalues ofA are positive.

Proof For any η ̸= 0, we show that ηTA η > 0 as follows

ηTA η = ηT(Aη)=
M∑
i=1

ηi

M∑
j=1

aijηj

=

M∑
i=1

ηi

M∑
j=1

a(ϕi, ϕj)ηj

=

M∑
i=1

ηi

M∑
j=1

a(ϕi, ηjϕj)

=

M∑
i=1

ηi a

ϕi, M∑
j=1

ηjϕj


= a

 M∑
i=1

ηiϕi,

M∑
j=1

ηjϕj


= a (vs, vs)= ∥vs∥2

a> 0 ,

since vs=
M∑
i=1

ηiϕi ̸= 0 because η is a nonzero vector and the {ϕi}’s are linear-

independent.

7.4.5 Local Stiffness Matrix and Load Vector Using the
Hat Basis Functions

The local stiffness matrix using the hat basis functions is a 2 × 2 matrix of the
following,

Ke
i =

[∫ xi+1
xi

p(x) (ϕ′i)
2dx

∫ xi+1
xi

p(x)ϕ′iϕ
′
i+1dx∫ xi+1

xi
p(x)ϕ′i+1ϕ

′
idx

∫ xi+1
xi

p(x) (ϕ′i+1)
2dx

]

+

[∫ xi+1
xi

q(x)ϕ2
i dx

∫ xi+1
xi

q(x)ϕiϕi+1dx∫ xi+1
xi

q(x)ϕi+1ϕidx
∫ xi+1
xi

q(x)ϕ2
i+1dx

]
,

08
11:15:58, subject to the Cambridge Core terms of use,

“c07” — 2017/10/10 — 11:32 — page 173 — #16

7.5 Error Analysis of the FE Method 173

and the local load vector is

Fei =

[∫ xi+1
xi

fϕidx∫ xi+1
xi

fϕi+1dx

]
.

The global stiffness matrix and load vector can be assembled element by
element.

7.5 Error Analysis of the FE Method

Error analysis for finite element methods usually includes two parts:

1. error estimates for an intermediate function in Vh, often the interpolation
function; and

2. convergence analysis, a limiting process that shows the finite element solu-
tion converges to the true solution of the weak form in some norm, as the
mesh size h approaches zero.

We first recall some notations and setting up:

1. Given a weak form a(u, v)=L(v) and a space V, which usually has infinite
dimension, the problem is to find a u∈V such that the weak form is satisfied
for any v∈V. Then u is called the solution of the weak form.

2. A finite-dimensional subspace of V denoted by Vh (i.e., Vh⊂V) is adopted
for a conforming finite element method and it does not have to depend on
h, however.

3. The solution of the weak form in the subspace Vh is denoted by uh, i.e., we
require a(uh, vh)=L(vh) for any vh ∈Vh.

4. The global error is defined by eh= u(x)− uh(x), and we seek a sharp upper
bound for ∥eh∥ using certain norm.

It was noted that error is introduced when the finite-dimensional space replaces
the solution space, as the weak form is usually only satisfied in the subspace
Vh and not in the solution space V. However, we can prove that the solution
satisfying the weak form in the subspace Vh is the best approximation to the
exact solution u in the finite-dimensional space in the energy norm.

Theorem 7.9. With the notations above, we have

1. uh is the projection of u onto Vh through the inner product a(u, v), i.e.,

u− uh⊥Vh or u− uh⊥ϕi , i= 1, 2, . . . ,M , (7.37)

a(u− uh, vh)= 0 ∀ vh ∈Vh or a(u− uh, ϕi)= 0 , i= 1, 2, . . . ,M, (7.38)

where {ϕi}’s are the basis functions.

08
11:15:58, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c07” — 2017/10/10 — 11:32 — page 174 — #17

174 Theoretical Foundations of the Finite Element Method

2. uh is the best approximation in the energy norm, i.e.,

∥u− uh∥a≤∥u− vh∥a , ∀ vh ∈Vh.

Proof

a(u, v) = (f, v) , ∀ v∈V,

→ a(u, vh) = (f, vh) , ∀ vh ∈Vh sinceVh⊂V,

a(uh, vh) = (f, vh), ∀ vh ∈Vh since uh is the solution inVh,

subtract→ a(u− uh, vh) = 0 or a(eh, vh)= 0 , ∀ vh ∈Vh.

Now we prove that uh is the best approximation in Vh.

∥u− vh∥2
a = a(u− vh, u− vh)

= a(u− uh + uh − vh, u− uh + uh − vh)

= a(u− uh + wh, u− uh + wh) , on letting wh= uh − vh ∈Vh,

= a(u− uh, u− uh + wh) + a(wh, u− uh + wh)

= a(u− uh, u− uh) + a(u− uh,wh) + a(wh, u− uh) + a(wh,wh)

= ∥u− uh∥2
a + 0 + 0 + ∥wh∥2

a, since, a(eh, uh)= 0

≥ ∥u− uh∥2
a

i.e., ∥u− uh∥a≤∥u− vh∥a. Figure 7.2 is a diagram to illustrate the theorem.

u

Vh

uh

u − uh

Vh

u

uh

u − uh

Figure 7.2. A diagram of FE approximation properties. The finite element
solution is the best approximation to the solution u in the finite-dimensional
spaceVh in the energy norm; and the error u− uh is perpendicular to the finite-
dimensional space Vh in the inner product of a(u, v).

08
11:15:58, subject to the Cambridge Core terms of use,

“c07” — 2017/10/10 — 11:32 — page 175 — #18

7.5 Error Analysis of the FE Method 175

Example: For the Sturm–Liouville problem,

∥u− uh∥2
a =

∫ b

a

(
p(x) (u′ − u′h)

2 + q(x) (u− uh)
2
)
dx

≤ pmax

∫ b

a
(u′ − u′h)

2dx+ qmax

∫ b

a
(u− uh)

2 dx

≤ max{pmax, qmax}
∫ b

a

(
(u′ − u′h)

2 + (u− uh)
2
)
dx

= C∥u− uh∥2
1,

where C=max{pmax, qmax}. Thus, we obtain

∥u− uh∥a ≤ Ĉ∥u− uh∥1,

∥u− uh∥a ≤ ∥u− vh∥a≤ C̄∥u− vh∥1.

7.5.1 Interpolation Functions and Error Estimates

Usually the solution is unknown; so in order to get the error estimate we
choose a special v∗h ∈Vh, for which we can get a good error estimate. We may
then use the error estimate ∥u− uh∥a≤∥u− v∗h∥a to get an error estimate for
the finite element solution (may be overestimated). Usually we can choose a
piecewise interpolation function for this purpose. That is another reason that
we choose piecewise linear, quadratic, or cubic functions over the given mesh
in finite element methods.

7.5.1.1 Linear 1D Piecewise Interpolation Function

Given a mesh x0, x1, x2, . . . , xM, the linear 1D piecewise interpolation function
is defined as

uI(x)=
x− xi
xi−1 − xi

u(xi−1) +
x− xi−1

xi − xi−1
u(xi) , xi−1 ≤ x≤ xi .

It is obvious that uI(x)∈Vh, where Vh⊂H1 is the set of continuous piecewise
linear functions that have the first-order weak derivative, so

∥u− uh∥a≤∥u− uI∥a .

Since u(x) is unknown, then so is uI(x). Nevertheless, we know the upper error
bound of the interpolation functions.

08
11:15:58, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c07” — 2017/10/10 — 11:32 — page 176 — #19

176 Theoretical Foundations of the Finite Element Method

Theorem 7.10. Given a function u(x)∈C2[a, b] and a mesh x0, x1, x2, . . . , xM,
the continuous piecewise linear function uI has the error estimates

∥u− uI∥∞= max
x∈[a,b]

|u(x)− uI(x)| ≤
h2

8
∥u′′∥∞ , (7.39)

∥u′(x)− u′I(x)∥L2(a,b) ≤ h
√
b− a∥u′′∥∞ . (7.40)

Proof If ẽh= u(x)− uI(x), then ẽh(xi−1)= ẽh(xi)= 0. From Rolle’s theorem,
there must be at least one point zi between xi−1 and xi such that ẽh

′(zi)= 0,
hence

ẽh
′(x) =

∫ x

zi
ẽh

′′(t) dt

=

∫ x

zi

(
u′′(t)− u′′I (t)

)
dt

=

∫ x

zi
u′′(t) dt .

Therefore, we obtain the error estimates below

|ẽh′(x)| ≤
∫ x

zi
|u′′(t)|dt≤∥u′′∥∞

∫ x

zi
dt≤∥u′′∥∞h , and

∥ẽh′∥L2(a,b) = ∥ẽh′∥0 ≤

{
∥u′′∥2

∞

∫ b

a
h2dt

} 1
2

≤
√
b− a∥u′′∥∞h ;

so we have proved the second inequality. To prove the first, assume that
xi−1 + h/2≤ zi≤ xi, otherwise we can use the other half interval. From the
Taylor expansion

ẽh(x) = ẽh(zi + x− zi) , assuming xi−1 ≤ x≤ xi ,

= ẽh(zi) + ẽh
′(zi)(x− zi) +

1
2
ẽh

′′(ξ)(x− zi)2, xi−1 ≤ ξ≤ xi ,

= ẽh(zi) +
1
2
ẽh

′′(ξ)(x− zi)2 ,

so at x= xi we have

0 = ẽh(xi)= ẽh(zi) +
1
2
ẽh

′′(ξ)(xi − zi)2 ,

ẽh(zi) = −1
2
ẽh

′′(ξ)(xi − zi)2 ,

|ẽh(zi)| ≤
1
2
∥u′′∥∞(xi − zi)2 ≤

h2

8
∥u′′∥∞ .

Note that the largest value of ẽh(x) has to be the zi where the derivative is zero.

08
11:15:58, subject to the Cambridge Core terms of use,

“c07” — 2017/10/10 — 11:32 — page 177 — #20

7.5 Error Analysis of the FE Method 177

7.5.2 Error Estimates of the Finite Element Methods
Using the Interpolation Function

Theorem 7.11. For the 1DSturm–Liouville problem, the following error estimates
hold,

∥u− uh∥a ≤ Ch∥u′′∥∞,

∥u− uh∥1 ≤ Ĉh∥u′′∥∞ ,

where C and Ĉ are two constants.

Proof

∥u− uh∥2
a ≤ ∥u− uI∥2

a

≤
∫ b

a

(
p(x) (u′ − u′I)

2 + q(x) (u− uI)2
)
dx

≤ max {pmax, qmax}
∫ b

a

(
(u′ − u′I)

2 + (u− uI)2
)
dx

≤ max {pmax, qmax} ∥u′′∥2
∞

∫ b

a

(
h2 + h4/64

)
dx

≤ Ch2∥u′′∥∞ .

The second inequality is obtained because ∥ ∥a and ∥ ∥1 are equivalent, so

c∥v∥a≤∥v∥1 ≤C∥v∥a , ĉ∥v∥1 ≤∥v∥a≤ Ĉ∥v∥1 .

7.5.3 Error Estimate in the Pointwise Norm

We can easily prove the following error estimate.

Theorem 7.12. For the 1D Sturm–Liouville problem,

∥u− uh∥∞ ≤ Ch∥u′′∥∞, (7.41)

where C is a constant. The estimate is not sharp (or optimal); or simply it is
overestimated.

We note that u′h is discontinuous at nodal points, and the infinity norm
∥u′ − u′h∥∞ can only be defined for continuous functions.

08
11:15:58, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c07” — 2017/10/10 — 11:32 — page 178 — #21

178 Theoretical Foundations of the Finite Element Method

Proof

eh(x) = u(x)− uh(x)=
∫ x

a
e′h(t)dt

|eh(x)| ≤
∫ b

a
|e′h(t)|dt

≤

{∫ b

a
|e′h|

2dt

}1/2{∫ b

a
1 dt

}1/2

≤
√
b− a

{∫ b

a

p
pmin

|e′h|
2dt

}1/2

≤

√
b− a
pmin

∥eh∥a

≤

√
b− a
pmin

∥ẽh∥a

≤ Ch ∥u′′∥∞ .

Remark 7.13. Actually, we can prove a better inequality

∥u− uh∥∞ ≤ Ch2∥u′′∥∞,

so the finite elementmethod is second-order accurate. This is an optimal (sharp)
error estimate.

Exercises
1. Assuming the number of variables n= 3, describe the Sobolev space H3(Ω) (i.e., for

m= 3) in terms of L2(Ω), retaining all the terms but not using the multi-index notation.
Then using the multi-index notation when applicable, represent the inner product, the
norm, the Schwarz inequality, the distance, and the Sobolev embedding theorem in this
space.

2. Consider the function v(x)= |x|α on Ω=(−1, 1) with α∈R. For what values of α is
v∈H0(Ω)? (Consider both positive and negative α.) For what values is v∈H1(Ω)? in
Hm(Ω)? For what values of α is v∈Cm(Ω)?

08
11:15:58, subject to the Cambridge Core terms of use,

“c07” — 2017/10/10 — 11:32 — page 179 — #22

Exercises 179

Hint: Make use of the following

|x|α =

{
xα if x≥ 0

(−x)α if x< 0 ,

and when k is a nonnegative integer note that

|x|α =

{
x2k if α= 2k

1 if α= 0 ;

also

lim
x→0

|x|α =


0 if α> 0

1 if α= 0

∞ if α< 0

and
∫ 1

−1
|x|αdx=


2

α+ 1
if α>−1

∞ if α≤−1 .

3. Are each of the following statements true or false? Justify your answers.

(a) If u∈H2(0, 1), then u′ and u′′ are both continuous functions.
(b) If u(x, y)∈H2(Ω), then u(x, y)may not have continuous partial derivatives ∂u/∂x and

∂u/∂y.

Does u(x, y) have first- and second-order weak derivatives?
Is u(x, y) continuous in Ω?

4. Consider the Sturm–Liouville problem

−
(
p(x)u(x)′

)′
+ q(x)u(x) = f(x) , 0< x<π ,

αu(0) + βu′(0)= γ , u′(π)= ub ,

where 0< pmin ≤ p(x)≤ pmax < ∞ ,

0≤ qmin ≤ q(x)≤ qmax < q∞ .

(a) Derive the weak form for the problem. Define a bilinear form a(u, v) and a linear form
L(v) to simplify the weak form. What is the energy norm?

(b) What kind of restrictions should we have for α, β, and γ in order that the weak form
has a solution?

(c) Determine the space where the solution resides under the weak form.
(d) If we look for a finite element solution in a finite-dimensional space Vh using

a conforming finite element method, should Vh be a subspace of C 0, or C1,
or C2?

(e) Given a mesh x0 = 0< x1< x2< · · ·< xM−1< xM =π, if the finite-dimensional space
is generated by the hat functions, what kind of structure do the local and global stiff-
nessmatrix and the load vector have? Is the resulting linear systemof equations formed
by the global stiffness matrix and the load vector symmetric, positive definite and
banded?

08
11:15:58, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c07” — 2017/10/10 — 11:32 — page 180 — #23

180 Theoretical Foundations of the Finite Element Method

5. Consider the two-point BVP

−u′′(x)= f(x), a< x< b , u(a)= u(b)= 0 .

Let uh(x) be the finite element solution using the piecewise linear space (in H1
0(a, b))

spanned by a mesh {xi}. Show that

∥u− uh∥∞ ≤Ch2,

where C is a constant.
Hint: First show ∥uh − uI∥a = 0, where uI(x) is the interpolation function in Vh.

08
11:15:58, subject to the Cambridge Core terms of use,

“c08” — 2017/10/11 — 12:39 — page 181 — #1

8

Issues of the FE Method in One Space Dimension

8.1 Boundary Conditions

For a second-order two-point BVP, typical boundary conditions (BC) include
one of the following at each end, say at x= xl,

1. a Dirichlet condition, e.g., u(xl)= ul is given;
2. a Neumann condition, e.g., u′(xl) is given; or
3. a Robin (mixed) condition, e.g., αu(xl) + βu′(xl)= γ is given, where α, β,

and γ are known but u(xl) and u′(xl) are both unknown.

Boundary conditions affect the bilinear and linear form, and the solution space.

Example 8.1. For example,

−u′′= f, 0< x< 1,

u(0)= 0, u′(1)= 0,

involves a Dirichlet BC at x= 0 and a Neumann BC at x= 1. To derive the
weak form, we again follow the familiar procedure:∫ 1

0
−u′′vdx =

∫ 1

0
fv dx,

−u′ v|10 +
∫ 1

0
u′v ′dx =

∫ 1

0
fv dx,

−u′(1)v(1) + u′(0)v(0) +
∫ 1

0
u′v ′dx =

∫ 1

0
fv dx .

For a conforming finite element method, the solution function u and the test
functions v should be in the same space. So it is natural to require that the
test functions v satisfy the same homogeneous Dirichlet BC, i.e., we require
v(0)= 0; and the Dirichlet condition is therefore called an essential boundary

181

09
11:16:02, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c08” — 2017/10/11 — 12:39 — page 182 — #2

182 Issues of the FE Method in One Space Dimension

condition. On the other hand, since u′(1)= 0, the first term in the final expres-
sion is zero, so it does not matter what v(1) is, i.e., there is no constraint on
v(1); so the Neumann BC is called a natural boundary condition. It is noted
that u(1) is unknown. The weak form of this example is the same as before
for homogeneous Dirichlet BC at both ends; but now the solution space is
different:

(u′, v ′) = (f, v) , ∀v∈H1
E(0, 1),

where H1
E(0, 1) =

{
v(x) , v(0)= 0 , v∈H1(0, 1)

}
,

where we use the subscript E in H1
E(0, 1) to indicated an essential boundary

condition.

8.1.1 Mixed Boundary Conditions

Consider a Sturm–Liouville problem

−(pu′)′ + qu = f, xl< x< xr, p(x)≥ pmin> 0 , q(x)≥ 0 , (8.1)

u(xl)= 0, αu(xr) + βu′(xr)= γ, β ̸= 0,
α

β
≥ 0, (8.2)

where α, β, and γ are known constants but u(xr) and u′(xr) are unknown.
Integration by parts again gives

−p(xr)u′(xr)v(xr) + p(xl)u
′(xl)v(xl) +

∫ xr

xl

(
pu′v ′ + quv

)
dx=

∫ xr

xl
fv dx.

(8.3)

As explained earlier, we set v(xl)= 0 (an essential BC). Now we reexpress the
mixed BC as

u′(xr)=
γ − αu(xr)

β
, (8.4)

and substitute this into (8.3) to obtain

−p(xr)v(xr)
γ − αu(xr)

β
+

∫ xr

xl

(
pu′v ′ + quv

)
dx =

∫ xr

xl
fv dx

or equivalently∫ xr

xl

(
pu′v ′ + quv

)
dx+

α

β
p(xr)u(xr)v(xr)=

∫ xr

xl
fv dx+

γ

β
p(xr)v(xr), (8.5)

09
11:16:02, subject to the Cambridge Core terms of use,

“c08” — 2017/10/11 — 12:39 — page 183 — #3

8.1 Boundary Conditions 183

which is the corresponding weak (variational) form of the Sturm–Liouville
problem. We define

a(u, v) =
∫ xr

xl

(
pu′v ′ + quv

)
dx+

α

β
p(xr)u(xr)v(xr), the bilinear form, (8.6)

L(v) = (f, v) +
γ

β
p(xr)v(xr), the linear form. (8.7)

We can prove that:

1. a(u, v)= a(v, u), i.e., a(u, v) is symmetric;
2. a(u, v) is a bilinear form, i.e.,

a(ru+ sw, v) = ra(u, v) + sa(w, v),

a(u, rv+ sw) = ra(u, v) + sa(u,w),

for any real numbers r and s; and
3. a(u, v) is an inner product, and the corresponding energy norm is

∥u∥a=
√
a(u, u)=

{∫ xr

xl

(
pu′2 + qu2

)
dx+

α

β
p(xr)u(xr)2

} 1
2

.

It is now evident why we require β ̸= 0, and α/β≥ 0. Using the inner product,
the solution of the weak form u(x) satisfies

a(u, v) = L(v), ∀v∈H1
E(xl, xr), (8.8)

H1
E(xl, xr) =

{
v(x), v(xl)= 0, v∈H1(xl, xr)

}
, (8.9)

and we recall that there is no restriction on v(xr). The boundary condition is
essential at x= xl, but natural at x= xr. The solution u is also the minimizer of
the functional

F(v)=
1
2
a(v, v)− L(v)

in the H1
E(xl, xr) space.

8.1.2 Nonhomogeneous Dirichlet Boundary Conditions

Suppose now that u(xl)= ul ̸= 0 in (8.2). In this case, the solution can be
decomposed as the sum of the particular solution

−(pu′1)
′ + qu1 = 0, xl< x< xr,

u1(xl)= ul, αu1(xr) + βu′1(xr)= 0, β ̸= 0,
α

β
≥ 0,

(8.10)

09
11:16:02, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c08” — 2017/10/11 — 12:39 — page 184 — #4

184 Issues of the FE Method in One Space Dimension

and

−(pu′2)
′ + qu2 = f, xl< x< xr,

u2(xl)= 0, αu2(xr) + βu′2(xr)= γ, β ̸= 0,
α

β
≥ 0.

(8.11)

We can use theweak form to find the solution u2(x) corresponding to the homo-
geneous Dirichlet BC at x= xl. If we can find a particular solution u1(x) of
(8.10), then the solution to the original problem is u(x)= u1(x) + u2(x).

Another simple way is to choose a function u0(x), u0(x)∈H1(xl, xr) that
satisfies

u0(xl)= ul, αu0(xr) + βu′0(xr)= 0.

For example, the function u0(x)= ulϕ0(x) would be such a function, where
ϕ0(x) is the hat function centered at xl if a mesh {xi} is given. Then û(x)=
u(x)− u0(x)would satisfy a homogeneous Dirichlet BC at xl and the following
S-L problem:

−(pû′)′ + qû = f (x) + (pu′0)
′ − qu0, xl< x< xr,

û(xl)= 0, αû′(xr) + βû(xr)= γ.

We can apply the finite element method for û(x) previously discussed with the
modified source term f (x), where the weak form u(x) after substituting back is
the same as before:

a1(û, v)=L1(v), ∀ v(x)∈H1
E(xl, xr),

where

a1(û, v) =
∫ xr

xl

(
pû′v ′ + qûv

)
dx+

α

β
p(xr)û(xr)v(xr)

L1(v) =
∫ xr

xl
fvdx+

γ

β
p(xr)v(xr) +

∫ xr

xl

(
(pu′0)

′v− qu0v
)
dx

=

∫ xr

xl
fvdx+

γ

β
p(xr)v(xr)−

∫ xr

xl

(
pu′0v

′ + qu0v
)
dx

− α

β
p(xr)u0(xr)v(xr).

09
11:16:02, subject to the Cambridge Core terms of use,

“c08” — 2017/10/11 — 12:39 — page 185 — #5

8.2 The FE Method for Sturm–Liouville Problems 185

If we define

a(u, v) =
∫ xr

xl

(
pu′v ′ + quv

)
dx+

α

β
p(xr)u(xr)v(xr),

L(v) =
∫ xr

xl
fvdx+

γ

β
p(xr)v(xr),

as before, then we have

a1(u− u0, v)= a(u− u0, v)=L1(v)=L(v)− a(u0, v), or a(u, v)=L(v).

(8.12)

While we still have a(u, v)=L(v), the solution is not inH1
E(xl, xr) space due to

the nonhomogeneous Dirichlet boundary condition. Nevertheless u− u0 is in
H1
E(xl, xr). The formula above is also the basis of the numerical treatment of

Dirichlet boundary conditions later.

8.2 The FE Method for Sturm–Liouville Problems

Let us now consider the finite element method using the piecewise linear func-
tion over a mesh x1 = xl, x2, . . ., xM= xr (see a diagram in Figure 8.1) for the
Sturm–Liouville problem

−(pu′)′ + qu = f, xl< x< xr,

u(xl)= ul, αu(xr) + βu′(xr)= γ, β ̸= 0,
α

β
≥ 0.

We again use the hat functions as the basis such that

uh(x)=
M∑
i=0

αiϕi(x),

and now focus on the treatment of the BC.
The solution is unknown at x= xr, so it is not surprising to have ϕM(x) for

the natural BC. The first term ϕ0(x) is the function used as u0(x), to deal with

x
0 = 0 x

1
x
2

x
i

1 i M

x
M = 1

0
ϕ ϕ ϕ ϕ

Figure 8.1. Diagram of a 1D mesh where xl= 0 and xr= 1.

09
11:16:02, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c08” — 2017/10/11 — 12:39 — page 186 — #6

186 Issues of the FE Method in One Space Dimension

the nonhomogeneous Dirichlet BC. The local stiffness matrix is

Ke
i =

[
a(ϕi, ϕi) a(ϕi, ϕi+1)

a(ϕi+1, ϕi) a(ϕi+1, ϕi+1)

]
(xi,xi+1)

=


∫ xi+1

xi
pϕ′i

2 dx
∫ xi+1

xi
pϕ′iϕ

′
i+1 dx∫ xi+1

xi
pϕ′i+1ϕ

′
i dx

∫ xi+1

xi
pϕ′i+1

2 dx



+


∫ xi+1

xi
qϕi2dx

∫ xi+1

xi
qϕiϕi+1 dx∫ xi+1

xi
qϕi+1ϕi dx

∫ xi+1

xi
qϕ2

i+1 dx


+
α

β
p(xr)

[
ϕ2
i (xr) ϕi(xr)ϕi+1(xr)

ϕi+1(xr)ϕi(xr) ϕ2
i+1(xr)

]
,

and the local load vector is

Fei =

[
L(ϕi)

L(ϕi+1)

]
=


∫ xi+1

xi
fϕidx∫ xi+1

xi
fϕi+1dx

+
γ

β
p(xr)

[
ϕi(xr)

ϕi+1(xr)

]
.

We can see clearly the contributions from the BC; and in particular, that the
only nonzero contribution of the BC to the stiffness matrix and the load vector
is from the last element (xM−1, xM) due to the compactness of the hat functions.

8.2.1 Numerical Treatments of Dirichlet BC

The finite element solution defined on the mesh can be written as

uh(x)= ul ϕ0(x) +
M∑
j=1

αjϕj(x),

whereαj, j= 1, 2, . . . ,M are the unknowns. Note that ulϕ0(x) is an approximate
particular solution inH1(xl, xr), and satisfies the Dirichlet boundary condition
at x= xl and homogeneous Robin boundary condition at x= xr. To use the
finite element method to determine the coefficients, we enforce the weak form
for uh(x)− uaϕ0(x) for the modified differential problem,

−(pu′)′ + qu = f+ ul (pϕ
′
0)

′ − ulqϕ0, xl< x< xr,

u(xl)= 0, αu(xr) + βu′(xr)= γ, β ̸= 0,
α

β
≥ 0.

(8.13)

09
11:16:02, subject to the Cambridge Core terms of use,

“c08” — 2017/10/11 — 12:39 — page 187 — #7

8.2 The FE Method for Sturm–Liouville Problems 187

Thus the system of linear equations is

â (uh(x), ϕi(x))= L̂(ϕi), i= 1, 2, . . . ,M,

where â(:, :) and L̂(:) are the bilinear and linear forms for the BVP above, or
equivalently

a(ϕ1, ϕ1)α1 + a(ϕ1, ϕ2)α2 + · · ·+ a(ϕ1, ϕM)αM = L(ϕ1)− a(ϕ0, ϕ1) ul
a(ϕ2, ϕ1)α1 + a(ϕ2, ϕ2)α2 + · · ·+ a(ϕ2, ϕM)αM = L(ϕ2)− a(ϕ0, ϕ2) ul

· · · · · · · · · · · · = · · · · · · · · · · · ·
a(ϕM, ϕ1)α1 + a(ϕM, ϕ2)α2 + · · ·+ a(ϕM, ϕM)αM = L(ϕM)− a(ϕ0, ϕM) ul,

where the bilinear and linear forms are still

a(u, v) =
∫ xr

xl

(
pu′v ′ + quv

)
dx+

α

β
p(xr)u(xr)v(xr);

L(v) =
∫ xr

xl
fvdx+

γ

β
p(xr)v(xr),

since ∫ xr

xl

(
ul(pϕ

′
0)

′ − ulqϕ0
)
ϕi(x)dx=−ula(ϕ0, ϕi).

After moving the a(ϕi, ulϕ0(x))= a(ϕi, ϕ0(x)) ul to the right-hand side, we
get the matrix-vector form

1 0 · · · 0

0 a(ϕ1, ϕ1) · · · a(ϕ1, ϕM)

...
...

...
...

0 a(ϕM, ϕ1) · · · a(ϕM, ϕM)




α0

α1

...

αM

=


ul

L(ϕ1)− a(ϕ1, ϕ0)ul
...

L(ϕM)− a(ϕM, ϕ0)ul

.

This outlines one method to deal with a nonhomogeneous Dirichlet boundary
condition.

8.2.2 Contributions from Neumann or Mixed BC

The contribution of mixed boundary condition at xr using the hat basis
functions is zero until the last element [xM−1, xM], where ϕM(xr) is not zero.

09
11:16:02, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c08” — 2017/10/11 — 12:39 — page 188 — #8

188 Issues of the FE Method in One Space Dimension

The local stiffness matrix of the last element is
∫ xM

xM−1

(
pϕ′M−1

2
+ qϕ2

M−1

)
dx

∫ xM

xM−1

(
pϕ′M−1ϕ

′
M + qϕM−1ϕM

)
dx∫ xM

xM−1

(
pϕ′Mϕ

′
M−1 + qϕMϕM−1

)
dx

∫ xM

xM−1

(
pϕ′M

2
+ ϕ2

M

)
dx+

α

β
p(xr)

,
and the local load vector is

FeM−1 =


∫ xM

xM−1

f (x)ϕM−1(x) dx∫ xM

xM−1

f (x)ϕM(x) dx+
γ

β
p(xr)

.

8.2.3 Pseudo-code of the FE Method for 1D Sturm–Liouville
Problems Using the Hat Basis Functions

• Initialize:

for i=0, M
F(i) = 0
for j=0, M

A(i,j) = 0
end

end

• Assemble the coefficient matrix element by element:

for i=1, M

A(i− 1, i− 1)=A(i− 1, i− 1) +
∫ xi

xi−1

(
pϕ′i−1

2
+ qϕ2

i−1

)
dx

A(i− 1, i)=A(i− 1, i) +
∫ xi

xi−1

(
pϕ′i−1ϕ

′
i + qϕi−1ϕi

)
dx

A(i, i− 1)=A(i− 1, i)

A(i, i)=A(i, i) +
∫ xi

xi−1

(
pϕ′i

2
+ qϕ2

i

)
dx

F(i− 1)=F(i− 1) +
∫ xi

xi−1

f (x)ϕi−1(x) dx

F(i)=F(i) +
∫ xi

xi−1

f (x)ϕi(x) dx

end.

09
11:16:02, subject to the Cambridge Core terms of use,

“c08” — 2017/10/11 — 12:39 — page 189 — #9

8.3 High-order Elements 189

• Deal with the Dirichlet BC:

A(0, 0)= 1; F(0)= ua
for i=1, M

F(i)=F(i)− A(i, 0) ∗ ua;
A(i, 0)= 0; A(0, i)= 0;

end.

• Deal with the Mixed BC at x= b.

A(M,M)=A(M,M) +
α

β
p(b);

F(M)=F(M) +
γ

β
p(b).

• Solve AU=F.
• Carry out the error analysis.

8.3 High-order Elements

To solve the Sturm–Liouville or other problems involving second-order differ-
ential equations, we can use the piecewise linear finite-dimensional space over
a mesh. The error is usually O(h) in the energy andH1 norms, and O(h2) in the
L2 and L∞ norms. If we want to improve the accuracy, we can choose to:

• refine the mesh, i.e., decrease h; or
• use more accurate (high order) and larger finite-dimensional spaces, i.e., the

piecewise quadratic or piecewise cubic basis functions.

Let us use the Sturm–Liouville problem

−
(
p′u
)′
+ qu = f, xl< x< xr,

u(xl)= 0, u(xr)= 0,

again as the model problem for the discussion here. The other boundary con-
ditions can be treated in a similar way, as discussed before. We assume a given
mesh

x0 = xl, x1, . . . , xM= xr, and the elements,

Ω1 =(x0, x1) , Ω2 =(x1, x2), . . . , ΩM=(xM−1, xM),

and consider piecewise quadratic and piecewise cubic functions, but still require
the finite-dimensional spaces to be in H1

0(xl, xr) so that the finite element
methods are conforming.

09
11:16:02, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c08” — 2017/10/11 — 12:39 — page 190 — #10

190 Issues of the FE Method in One Space Dimension

8.3.1 Piecewise Quadratic Basis Functions

Define

Vh =
{
v(x) , where v(x) is continuous piecewise quadratic in H1

}
,

over a given mesh. The piecewise linear finite-dimensional space is obviously a
subspace of the space defined above, so the finite element solution is expected
to be more accurate than the one obtained using the piecewise linear functions.

To use the Galerkin finite element method, we need to know the dimension
of the space Vh of the piecewise quadratic functions in order to choose a set
of basis functions. The dimension of a finite-dimensional space is sometimes
called the the degree of freedom (DOF). Given a function ϕ(x) in Vh, on each
element a quadratic function has the form

ϕ(x)= aix2 + bix+ ci, xi≤ x< xi+1,

so there are three parameters to determine a quadratic function in the interval
(xi, xi+1). In total, there areM elements, and so 3M parameters. However, they
are not totally free, because they have to satisfy the continuity condition

lim
x→xi−

ϕ(x)= lim
x→xi+

ϕ(x)

for x1, x2, . . ., xM−1, or more precisely,

ai−1x
2
i + bi−1xi + ci−1 = aix2

i + bixi + ci, i= 1, 2, . . . ,M.

There areM− 1 interior nodal points, so there areM− 1 constraints, and ϕ(x)
should also satisfy the BC ϕ(xl)=ϕ(xr)= 0. Thus the total degree of freedom,
the dimension of the finite element space, is

3M− (M− 1)− 2= 2M− 1.

We now know that the dimension of Vh is 2M− 1. If we can construct 2M− 1
basis functions that are linearly independent, then all of the functions inVh can
be expressed as linear combinations of them. The desired properties are similar
to those of the hat basis functions; and they should

• be continuous piecewise quadratic functions;
• have minimum support, i.e., be zero almost everywhere; and
• be determined by the values at nodal points (we can choose the nodal values

to be unity at one point and zero at the other nodal points).

Since the degree of freedom is 2M− 1 and there are only M− 1 interior
nodal points, we add M auxiliary points (not nodal points) between xi and

09
11:16:02, subject to the Cambridge Core terms of use,

“c08” — 2017/10/11 — 12:39 — page 191 — #11

8.3 High-order Elements 191

xi+1 and define

z2i = xi, nodal points, (8.14)

z2i+1 =
xi + xi+1

2
, auxiliary points. (8.15)

For instance, if the nodal points are x0 = 0, x1 =π/2, x2 =π, then z0 = x0, z1 =
π/4, z2 = x1 =π/2, z3 = 3π/4, z4 = x2 =π. Note that in general all the basis
functions should be one piece in one element (z2k, z2k+2), k= 0, 1, . . . ,M− 1.
Now we can define the piecewise quadratic basis functions as

ϕi(zj)=

{
1 if i= j,

0 otherwise.
(8.16)

We can derive analytic expressions of the basis functions using the proper-
ties of quadratic polynomials. As an example, let us consider how to construct
the basis functions in the first element (x0, x1) corresponding to the inter-
val (z0, z2). In this element, z0 is the boundary point, z2 is a nodal point,
and z1 =(z0 + z2)/2 is the mid-point (the auxiliary point). For ϕ1(x), we have
ϕ1(z0)= 0, ϕ1(z1)= 1 and ϕ1(z2)= 0, ϕ1(zj)= 0, j= 3, . . . , 2M− 1; so in the
interval (z0, z2), ϕ1(x) has the form

ϕ1(x)=C(x− z0)(x− z2),

because z0 and z2 are roots of ϕ1(x). We choose C such that ϕ1(z1)= 1, so

ϕ1(z1)=C(z1 − z0)(z1 − z2)= 1, =⇒C=
1

(z1 − z0)(z1 − z2)

and the basis function ϕ1(x) is

ϕ1(x)=


(x− z0)(x− z2)
(z1 − z0)(z1 − z2)

if z0 ≤ x< z2,

0 otherwise.

It is easy to verify that ϕ1(x) is a continuous piecewise quadratic function in
the domain (x0, xM). Similarly, we have

ϕ2(x)=
(z− z1)(z− z0)
(z2 − z1)(z2 − z0)

.

09
11:16:02, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c08” — 2017/10/11 — 12:39 — page 192 — #12

192 Issues of the FE Method in One Space Dimension

Generally, the three global basis functions that are nonzero in the element
(xi, xi+1) have the following forms:

ϕ2i(z) =



0 if z< xi−1

(z− z2i−1)(z− z2i−2)

(z2i − z2i−1)(z2i − z2i−2)
if xi−1 ≤ z< xi

(z− z2i+1)(z− z2i+2)

(z2i − z2i+1)(z2i − z2i+2)
if xi≤ z< xi+1

0 if xi+1< z.

ϕ2i+1(z) =


0 if z< xi

(z− z2i)(z− z2i+2)

(z2i+1 − z2i)(z2i+1 − z2i+2)
if xi≤ z< xi+1

0 if xi+1< z.

ϕ2i+2(z) =



0 if z< xi

(z− z2i)(z− z2i+1)

(z2i+2 − z2i)(z2i+2 − z2i+1)
if xi≤ z< xi+1

(z− z2i+3)(z− z2i+4)

(z2i+2 − z2i+3)(z2i+2 − z2i+4)
if xi+1 ≤ z< xi+2

0 if xi+2< z.

In Figure 8.2, we plot some quadratic basis functions in H1. Figure 8.2(a)
is the plot of the shape functions, that is, the nonzero basis functions defined
in the interval (−1, 1). In Figure 8.2(b), we plot all the basis functions over a
three-node mesh in (0, 1). In Figure 8.2(c), we plot some basis functions over
the entire domain, ϕ0(x), ϕ1(x), ϕ2(x), ϕ3(x), ϕ4(x), where ϕ1(x) is centered at
the auxiliary point z1 and nonzero at only one element while ϕ2(x), ϕ4(x) are
nonzero at two elements.

8.3.2 Assembling the Stiffness Matrix and the Load Vector

The finite element solution can be written as

uh(x)=
2M−1∑
i=1

αiϕi(x).

The entries of the coefficient matrix are {aij}= a(ϕi, ϕj) and the load vector is
Fi=L(ϕi). On each element (xi, xi+1), or (z2i, z2i+2), there are three nonzero

09
11:16:02, subject to the Cambridge Core terms of use,

“c08” — 2017/10/11 — 12:39 — page 193 — #13

8.3 High-order Elements 193

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.2

0

0.2

0.4

0.6

0.8

1

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

Figure 8.2. Quadratic basis functions in H1: (a) the shape functions (basis
functions in (−1, 1); (b) all the basis functions over a three-node mesh in
(0, 1); and (c) plot of some basis functions over the entire domain, ϕ0(x),
ϕ1(x), ϕ2(x), ϕ4(x), ϕ4(x), where ϕ1(x) is centered at the auxiliary point z1 and
nonzero at only one element, while ϕ2(x), ϕ4(x) are nonzero at two elements.

09
11:16:02, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c08” — 2017/10/11 — 12:39 — page 194 — #14

194 Issues of the FE Method in One Space Dimension

0

00

3 3

+ ...

++

 * * *

 * * *

* * * * *

* * *

* *

 *

 *

* *

 ** *

* * *

* *

0

22

3

2

1

1

1

1

3

33

333

222

222

Figure 8.3. Assembling the stiffness matrix using piecewise quadratic basis
functions.

basis functions: ϕ2i, ϕ2i+1, and ϕ2i+2. Thus the local stiffness matrix is

Ke
i =


a(ϕ2i, ϕ2i) a(ϕ2i, ϕ2i+1) a(ϕ2i, ϕ2i+2)

a(ϕ2i+1, ϕ2i) a(ϕ2i+1, ϕ2i+1) a(ϕ2i+1, ϕ2i+2)

a(ϕ2i+2, ϕ2i) a(ϕ2i+2, ϕ2i+1) a(ϕ2i+2, ϕ2i+2)


(xi,xi+1)

(8.17)

and the local load vector is

Lei =


L(ϕ2i)

L(ϕ2i+1)

L(ϕ2i+2)


(xi,xi+1)

, (8.18)

see the diagram in Figure 8.3 for an illustration. The stiffness matrix is still
symmetric positive definite, but denser than that with the hat basis functions. It
is still a banded matrix, with the band width five, a penta-diagonal matrix. The
advantage in using quadratic basis functions is that the finite element solution
is more accurate than that obtained on using the linear basis functions with the
same mesh.

09
11:16:02, subject to the Cambridge Core terms of use,

“c08” — 2017/10/11 — 12:39 — page 195 — #15

8.4 A 1D Matlab FE Package 195

8.3.3 The Cubic Basis Functions in H1(xl, xr) Space

We can also construct piecewise cubic basis functions in H1(xl, xr). On each
element (xi, xi+1), a cubic function has the form

ϕ(x)= aix3 + bix2 + cix+ di , i= 0, 1, . . . ,M− 1.

There are four parameters; and the total degree of freedom is 3M− 1 if a
Dirichlet boundary condition is imposed at both ends. To construct cubic basis
functions with properties similar to the piecewise linear and quadratic basis
functions, we need to add two auxiliary points between xi and xi+1. The local
stiffness matrix is then a 4 × 4 matrix. We leave the construction of the basis
functions, and the application to the Sturm–Liouville BVPs as a project for
students.

8.4 A 1D Matlab FE Package

A general 1D Matlab package has been written and is available at the book’s
depository, www4.ncsu.edu/~zhilin/FD_FEM_Book/MATLAB/1D or upon
request.

• The code can be used to solve a general Sturm–Liouville problem

−(p(x)u′)′ + c(x)u′ + q(x)u= f (x) , a< x< b,

with a Dirichlet, Neumann, or mixed boundary condition at x= a
and x= b.1

• We use conforming finite element methods.
• The mesh is

x0 = a< x1< x2 · · ·< xM= b,

as elaborated again later.
• The finite element spaces can be piecewise linear, quadratic, or cubic func-

tions over the mesh.
• The integration formulas are the Gaussian quadrature of order 1, 2, 3, or 4.
• The matrix assembly is element by element.

8.4.1 Gaussian Quadrature Formulas

In a finite element method, we typically need to evaluate integrals such
as
∫ b
a p(x)ϕ

′
i(x)ϕ

′
j(x) dx,

∫ b
a q(x)ϕi(x)ϕj(x) dx and

∫ b
a f (x)ϕi(x) dx over some

1 In the package, p(x) is expressed as k(x).

09
11:16:02, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c08” — 2017/10/11 — 12:39 — page 196 — #16

196 Issues of the FE Method in One Space Dimension

intervals (a, b) such as (xi−1, xi). Although the functions involvedmay be arbi-
trary, it is usually neither practical nor necessary to find the exact integrals.
A standard approach is to transfer the interval of integration to the interval
(−1, 1) as follows ∫ b

a
f (x) dx =

∫ 1

−1
f̄(ξ) dξ, (8.19)

where

ξ=
x− a
b− a

+
x− b
b− a

or x= a+
b− a

2

(
1 + ξ

)
,

=⇒ dξ=
2

b− a
dx or dx=

b− a
2

dξ.
(8.20)

In this way, we have∫ b

a
f (x) dx=

b− a
2

∫ 1

−1
f
(
a+

b− a
2

(1 + ξ)

)
dξ=

b− a
2

∫ 1

−1
f̄(ξ) dξ,

(8.21)

where f̄(ξ)= f(a+ b−a
2 (1 + ξ)); and then to use a Gaussian quadrature formula

to approximate the integral. The general quadrature formula can be written∫ 1

−1
g(ξ)dξ≈

N∑
i=1

wig(ξi),

where the Gaussian points ξi and weights wi are chosen so that the quadrature
is as accurate as possible. In the Newton–Cotes quadrature formulas such as
the mid-point rule, the trapezoidal rule, and the Simpson methods, the ξi are
predefined independent ofwi. In Gaussian quadrature formulas, all ξi’s andwi’s
are unknowns, and are determined simultaneously such that the quadrature
formula is exact for g(x)= 1, x, . . . , x2N−1. The number 2N− 1 is called the
algebraic precision of the quadrature formula.

Gaussian quadrature formulas have the following features:

• accurate with the best possible algebraic precision using the fewest points;
• open with no need to use two end points where some kind of discontinu-

ities may occur, e.g., the discontinuous derivatives of the piecewise linear
functions at nodal points;

• no recursive relations for the Gaussian points ξi’s and the weights wi’s;
• accurate enough for finite element methods, because b− a∼ h is generally

small and only a few points ξi’s are needed.

We discuss some Gaussian quadrature formulas below.

09
11:16:02, subject to the Cambridge Core terms of use,

“c08” — 2017/10/11 — 12:39 — page 197 — #17

8.4 A 1D Matlab FE Package 197

8.4.1.1 Gaussian Quadrature of Order 1 (One Point):

With only one point, the Gaussian quadrature can be written as∫ 1

−1
g(ξ)dξ=w1g(ξ1) .

We choose ξ1 and w1 such that the quadrature formula has the highest
algebraic precision (2N− 1= 1 for N= 1) if only one point is used. Thus we
choose g(ξ)= 1 and g(ξ)= ξ to have the following,

for g(ξ)= 1,
∫ 1

−1
g(ξ)dξ= 2 =⇒ 2=w1 · 1 ; and

for g(ξ)= ξ ,

∫ 1

−1
g(ξ)dξ= 0 =⇒ 0=w1ξ1.

Thus we get w1 = 2 and ξ1 = 0. The quadrature formula is simply the mid-point
rule.

8.4.1.2 Gaussian Quadrature of Order 2 (Two Points):

With two points, the Gaussian quadrature can be written as∫ 1

−1
g(ξ)dξ=w1g(ξ1) + w2g(ξ2).

We choose ξ1, ξ2, and w1, w2 such that the quadrature formula has the
highest algebraic precision (2N− 1= 3 for N= 2) if two points are used. Thus
we choose g(ξ)= 1, g(ξ)= ξ, g(ξ)= ξ2, and g(ξ)= ξ3 to have the following,

for g(ξ) = 1,
∫ 1

−1
g(ξ)dξ= 2 =⇒ 2=w1 + w2;

for g(ξ) = ξ,

∫ 1

−1
g(ξ)dξ= 0 =⇒ 0=w1ξ1 + w2ξ2;

for g(ξ) = ξ2,

∫ 1

−1
g(ξ)dξ=

2
3
=⇒ 2

3
=w1ξ

2
1 + w2ξ

2
2 ; and

for g(ξ) = ξ3,

∫ 1

−1
g(ξ)dξ= 0 =⇒ 0=w1ξ

3
1 + w2ξ

3
2 .

On solving the four nonlinear systems of equations by taking advantage of the
symmetry, we get

w1 =w2 = 1, ξ1 =− 1√
3

and ξ2 =
1√
3
.

09
11:16:02, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c08” — 2017/10/11 — 12:39 — page 198 — #18

198 Issues of the FE Method in One Space Dimension

So the Gaussian quadrature formula of order 2 is∫ 1

−1
g(ξ)dξ≃ g

(
− 1√

3

)
+ g

(
1√
3

)
. (8.22)

Higher-order Gaussian quadrature formulas are likewise obtained, and for
efficiency we can prestore the Gaussian points and weights in two separate
matrices:

ξi wi

0
−1√

3

−
√

3√
5

−0.8611363116 · · ·

1√
3

0 −0.3399810436 · · ·
√

3√
5

0.3399810436 · · ·

0.8611363116 · · ·


,



2 1
5
9

0.3478548451 · · ·

1
8
9

0.6521451549 · · ·

5
9

0.6521451549 · · ·

0.3478548451 · · ·


.

Below is a Matlab code setint.m to store the Gaussian points and weights up
to order 4.

function [xi,w] = setint

%%%
% %
% Function setint provides the Gaussian points x(i), and the %
% weights of the Gaussian quadrature formula. %
% Output: %
% x(4,4): x(:,i) is the Gaussian points of order i. %
% w(4,4): w(:,i) is the weights of quadrature of order i. % %--%

clear x; clear w

xi(1,1) = 0;
w(1,1) = 2; % Gaussian quadrature of order 1

xi(1,2) = -1/sqrt(3);
xi(2,2) = -xi(1,2);
w(1,2) = 1;
w(2,2) = w(1,2); % Gaussian quadrature of order 2

xi(1,3) = -sqrt(3/5);
xi(2,3) = 0;
xi(3,3) = -xi(1,3);

09
11:16:02, subject to the Cambridge Core terms of use,

“c08” — 2017/10/11 — 12:39 — page 199 — #19

8.4 A 1D Matlab FE Package 199

w(1,3) = 5/9;
w(2,3) = 8/9;
w(3,3) = w(1,3); % Gaussian quadrature of order 3

xi(1,4) = - 0.8611363116;
xi(2,4) = - 0.3399810436;
xi(3,4) = -xi(2,4);
xi(4,4) = -xi(1,4);
w(1,4) = 0.3478548451;
w(2,4) = 0.6521451549;
w(3,4) = w(2,4);
w(4,4) = w(1,4); % Gaussian quadrature of order 4

return

%----------------------- END OF SETINT ------------------------

8.4.2 Shape Functions

Similar to transforming an integral over some arbitrary interval to the integral
over the standard interval between −1 and 1, it is easier to evaluate the basis
functions and their derivatives in the standard interval (−1, 1). Basis func-
tions in the standard interval (−1, 1) are called shape functions and often have
analytic forms.

Using the transform between x and ξ in (8.19)–(8.20) for each element, on
assuming c(x)= 0 we have∫ xi+1

xi

(
p(x)ϕ′iϕ

′
j + q(x)ϕiϕj

)
dx=

∫ xi+1

xi
f (x)ϕi(x) dx

which is transformed to

xi+1 − xi
2

∫ 1

−1

(
p̄(ξ)ψ′

iψ
′
j + q̄(ξ)ψiψj

)
dξ=

xi+1 − xi
2

∫ 1

−1
f̄(ξ)ψi dξ

where

p̄(ξ)= p
(
xi +

xi+1 − xi
2

(1 + ξ)

)
,

and so on. Here ψi and ψj are the local basis functions under the new variables,
i.e., the shape functions and their derivatives. For piecewise linear functions,

09
11:16:02, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c08” — 2017/10/11 — 12:39 — page 200 — #20

200 Issues of the FE Method in One Space Dimension

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 8.4. Plot of some shape functions: (a) the hat (linear) functions and
(b) the quadratic functions

there are only two nonzero shape functions

ψ1 =
1 − ξ

2
, ψ2 =

1 + ξ

2
, (8.23)

with derivatives ψ′
1 =−1

2
, ψ′

2 =
1
2
. (8.24)

There are three nonzero quadratic shape functions

ψ1 =
ξ(ξ − 1)

2
, ψ2 = 1 − ξ2, ψ3 =

ξ(ξ + 1)
2

, (8.25)

with derivatives ψ′
1 = ξ − 1

2
, ψ′

2 =−2ξ, ψ′
3 = ξ +

1
2
. (8.26)

These hat (linear) and quadratic shape functions are plotted in Figure 8.4.
It is noted that there is an extra factor in the derivatives with respect to x,

due to the transform:
dϕi
dx

=
dψi
dξ

dξ
dx

=ψ′
i

2
xi+1 − xi

.

The shape functions can be defined in a Matlab function

[psi, dpsi] = shape(xi, n),

where n= 1 renders the linear basis function, n= 2 the quadratic basis func-
tion, and n= 3 the cubic basis function values. For example, with n= 2 the
outputs are

psi(1), psi(2), psi(3), three basis function values,

dpsi(1), dpsi(2), dpsi(3), three derivative values.

09
11:16:02, subject to the Cambridge Core terms of use,

“c08” — 2017/10/11 — 12:39 — page 201 — #21

8.4 A 1D Matlab FE Package 201

The Matlab subroutine is as follows.

function [psi,dpsi]=shape(xi,n);

%%%
% %
% Function ''shape'' evaluates the values of the basis functions %
% and their derivatives at a point xi. %
% %
% n: The basis function. n=2, linear, n=3, quadratic, n=3, cubic. %
% xi: The point where the base function is evaluated. %
% Output: %
% psi: The value of the base function at xi. %
% dpsi: The derivative of the base function at xi. %
%---%

switch n
case 2,

% Linear base function
psi(1) = (1-xi)/2;
psi(2) = (1+xi)/2;
dpsi(1) = -0.5;
dpsi(2) = 0.5;
return

case 3,
% quadratic base function
psi(1) = xi*(xi-1)/2;
psi(2) = 1-xi*xi;
psi(3) = xi*(xi+1)/2;
dpsi(1) = xi-0.5;
dpsi(2) = -2*xi;
dpsi(3) = xi + 0.5;
return

case 4,
% cubic base function
psi(1) = 9*(1/9-xi*xi)*(xi-1)/16;
psi(2) = 27*(1-xi*xi)*(1/3-xi)/16;
psi(3) = 27*(1-xi*xi)*(1/3+xi)/16;
psi(4) = -9*(1/9-xi*xi)*(1+xi)/16;

dpsi(1) = -9*(3*xi*xi-2*xi-1/9)/16;
dpsi(2) = 27*(3*xi*xi-2*xi/3-1)/16;
dpsi(3) = 27*(-3*xi*xi-2*xi/3+1)/16;
dpsi(4) = -9*(-3*xi*xi-2*xi+1/9)/16;
return

end
%------------------------- END OF SHAPE --------------------------

09
11:16:02, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c08” — 2017/10/11 — 12:39 — page 202 — #22

202 Issues of the FE Method in One Space Dimension

x3 x4 5x2x1x

x3 x4 x5x2x1

e1e2

e1 e2 e3 e4

Figure 8.5. Example of the relation between nodes and elements: (a) linear
basis functions and (b) quadratic basis functions

8.4.3 The Main Data Structure

In one space dimension, a mesh is a set of ordered points as described below.

• Nodal points: x1 = a, x2, . . ., xnnode= b. The number of total nodal points
plus the auxiliary points is nnode.

• Elements: Ω1, Ω2, . . ., Ωnelem. The number of elements is nelem.
• Connection between the nodal points and the elements: nodes(nnode, nelem),

where nodes(j, i) is the j-th index of the nodes in the i-th element. For the
linear basis function, j= 1, 2 since there are two nodes in an element; for the
quadratic basis function, j= 1, 2, 3 since there are two nodes and an auxiliary
point.

Example. Given the mesh and the indexing of the nodal points and the
elements in Figure 8.5, for linear basis functions, we have

nodes(1, 1)= 1, nodes(1, 2)= 3,

nodes(2, 1)= 3, nodes(2, 2)= 4,

nodes(1, 3)= 4, nodes(1, 4)= 2,

nodes(2, 3)= 2, nodes(2, 4)= 5.

Example. Given the mesh and the indexing of the nodal points and the
elements in Figure 8.5, for quadratic basis functions, we have

nodes(1, 1)= 4 , nodes(2, 1)= 2 , nodes(3, 1)= 5,

nodes(1, 2)= 1 , nodes(2, 2)= 3 , nodes(3, 2)= 4.

8.4.4 Outline of the Algorithm

function [x,u]=fem1d

global nnode nelem
global gk gf
global xi w

09
11:16:02, subject to the Cambridge Core terms of use,

“c08” — 2017/10/11 — 12:39 — page 203 — #23

8.4 A 1D Matlab FE Package 203

%%% Output: x are nodal points; u is the FE solution at
%%% nodal points.

[xi,w] = setint; % Get Gaussian points and weights.

%%% Input data, pre-process

[x,kbc,ubc,kind,nint,nodes] = prospset;

%%% x(nnode): Nodal points, kbc, ubc: Boundary conditions

%%% kind(nelen): Choice of FE spaces. kind(i)=1,2,3 indicate
%%% piecewise linear, quadratic, and cubic FE space over the
%%% triangulation.

%%% nint(nelen): Choice of Gaussian quadrature. nint(i)=1,2,3,4
%%% indicate Gaussian order 1, 2, 3, 4.

formkf(kind,nint,nodes,x,xi,w);

%%% Assembling the stiffness matrix and the load vector element by
%%% element.

aplyb(kbc,ubc);

%%% Deal with the BC.

u = gk\gf; % Solve the linear system of equations

%%% Error analysis ...

8.4.5 Assembling Element by Element

The Matlab code is formkf.m

function formkf(kind,nint,nodes,x,xi,w)

............

for nel = 1:nelem,
n = kind(nel) + 1; % Linear FE space. n = 2, quadratic n=3, ..

i1 = nodes(1,nel); % The first node in nel-th element.
i2 = nodes(n,nel); % The last node in nel-th element.
i3 = nint(nel); % Order of Gaussian quadrature.
xic = xi(:,i3); % Get Gaussian points in the column.
wc = w(:,i3); % Get Gaussian weights.

%%% Evaluate the local stiffness matrix ek, and the load vector ef.
[ek,ef] = elem(x(i1),x(i2),n,i3,xic,wc);

%%% Assembling to the global stiffness matrix gk, and the load vector gf.
assemb(ek,ef,nel,n,nodes);

end

09
11:16:02, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c08” — 2017/10/11 — 12:39 — page 204 — #24

204 Issues of the FE Method in One Space Dimension

8.4.5.1 Evaluation of Local Stiffness Matrix and the Load Vector

The Matlab code is elem.m

function [ek,ef] = elem(x1,x2,n,nl,xi,w)
dx = (x2-x1)/2;

% [x1,x2] is an element [x1,x2]
% n is the choice of FE space. Linear n=2; quadratic n=3; ...

for l=1:nl, % Quadrature formula that summarize.
x = x1 + (1.0 + xi(l))*dx; % Transform the Gaussian points.
[xp,xc,xb,xf] = getmat(x); % Get the coefficients at the

% Gaussian points.
[psi,dpsi] = shape(xi(l),n); % Get the shape function and

% its derivatives.
% Assembling the local stiffness matrix and the load vector.
% Notice the additional factor 1/dx in the derivatives.

for i=1:n,
ef(i) = ef(i) + psi(i)*xf*w(l)*dx;
for j=1:n,

ek(i,j)=ek(i,j)+(xp*dpsi(i)*dpsi(j)/(dx*dx) ...
+xc*psi(i)*dpsi(j)/dx+xb*psi(i)*psi(j))*w(l)*dx;

end
end

end

8.4.5.2 Global Assembling

The Matlab code is assemb.m

function assemb(ek,ef,nel,n,nodes)
global gk gf

for i=1:n, % Connection between nodes and the elements
ig = nodes(i,nel); % Assemble global vector gf
gf(ig) = gf(ig) + ef(i);

for j=1:n,
jg = nodes(j,nel); % Assemble global stiffness matrix gk
gk(ig,jg) = gk(ig,jg) + ek(i,j);

end
end

8.4.5.3 Input Data

The Matlab code is propset.m

function [x,kbc,vbc,kind,nint,nodes] = propset

• The relation between the number of nodes nnode and the number of elements
nelem: Linear: nelem= nnode− 1.
Quadratic: nelem=(nnode− 1)/2.
Cubic: nelem=(nnode− 1)/3.

09
11:16:02, subject to the Cambridge Core terms of use,

“c08” — 2017/10/11 — 12:39 — page 205 — #25

8.4 A 1D Matlab FE Package 205

• Nodes arranged in ascendant order. Equally spaced points are grouped
together. The Matlab code is datain.m

function [data] = datain(a,b,nnode,nelem)

The output data has nrec groups

data(i, 1)= n1, index of the beginning of nodes.

data(i, 2)= n2, number of points in this group.

data(i, 3)= x(n1), the first nodal point.

data(i, 4)= x(n1 + n2), the last nodal point in this group.

The simple case is

data(i, 1)= i , data(i, 2)= 0 , data(i, 3)= x(i) , data(i, 4)= x(i) .

• The basis functions to be used in each element:

for i=1:nelem
kind(i) = inf_ele = 1, or 2, or 3.
nint(i) = 1, or 2, or 3, or 4.
for j=1,kind(i)+1
nodes(j,i) = j + kind(i)*(i-1);

end
end

8.4.6 Input Boundary Conditions

The Matlab code aplybc.m involves an array of two elements kbc(2) and a data
array vbc(2, 2). At the left boundary

kbc(1)= 1 , vbc(1, 1)= ua, Dirichlet BC at the left end;

kbc(1)= 2, vbc(1, 1)=−p(a)u′(a), Neumann BC at the left end;

kbc(1)= 3, vbc(1, 1)= uxma, vbc(2, 1)= uaa, Mixed BC of the form:

p(a)u′(a)= uxma(u(a)− uaa).

The BC will affect the stiffness matrix and the load vector and are handled in
Matlab codes aplybc.m and drchlta.m.

• Dirichlet BC u(a)= ua= vbc(1, 1).

for i=1:nnode,
gf(i) = gf(i) - gk(i,1)*vbc(1,1);
gk(i,1) = 0; gk(1,i) = 0;

end
gk(1,1) = 1; gf(1) = vbc(1,1);

where gk is the global stiffness matrix and gf is the global load vector.

09
11:16:02, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c08” — 2017/10/11 — 12:39 — page 206 — #26

206 Issues of the FE Method in One Space Dimension

• Neumann BC u′(a)= uxa. The boundary condition can be rewritten as
−p(a)u′(a)=−p(a)uxa= vbc(1, 1). We only need to change the load vector.

gf(1) = gf(1) + vbc(1,1);

• Mixed BC αu(a) + βu′(a)= γ, β ̸= 0. The BC can be rewritten as

p(a)u′(a) = −α
β
p(a)

(
u(a)− γ

α

)
= uxma (u(a)− uaa)= vbc(1, 1) (u(a)− vbc(2, 1)) .

Weneed to change both the global stiffnessmatrix and the global load vector.

gf(1) = gf(1) + vbc(1,1)*vbc(2,1);
gk(1,1) = gk(1,1) + vbc(1,1);

Examples.

1. u(a)= 2, we should set kbc(1)= 1 and vbc(1, 1)= 2.
2. p(x)= 2 + x2, a= 2, u′(2)= 2. Since p(a)= p(2)= 6 and −p(a)u′(a)=−12,

we should set kbc(1)= 2 and vbc(1, 1)=−12.
3. p(x)= 2 + x2, a= 2, 2u(a) + 3u′(a)= 1. Since

3u′(a)=−2u(a) + 1,

6u′(a)=−4u(a) + 2=−4
(
u(a)− 1

2

)
,

we should set kbc(1)= 3, vbc(1, 1)=−4 and vbc(2, 1)= 1/2.

Similarly, at the right BC x= b we should have

kbc(2)= 1, vbc(1, 2)= ub, Dirichlet BC at the right end;

kbc(2)= 2, vbc(1, 2)= p(b)u′(b), Neumann BC at the right end;

kbc(2)= 3, vbc(1, 2)= uxmb, vbc(2, 2)= ubb, Mixed BC of the form

−p(b)u′(b)= uxmb(u(b)− ubb) .

The BC will affect the stiffness matrix and the load vector and are handled
in Matlab codes aplybc.m and drchlta.m.

• Dirichlet BC u(b)= ub= vbc(1, 2).

for i=1:nnode,
gf(i) = gf(i) - gk(i,nnode)*vbc(1,2);
gk(i,nnode) = 0; gk(nnode,i) = 0;

end
gk(nnode,nnode) = 1; gf(nnode) = vbc(1,1).

09
11:16:02, subject to the Cambridge Core terms of use,

“c08” — 2017/10/11 — 12:39 — page 207 — #27

8.4 A 1D Matlab FE Package 207

• Neumann BC u′(b)= uxb is given. The boundary condition can be rewritten
as p(b)u′(b)= p(b)uxb= vbc(1, 2). We only need to change the load vector.

gf(nnode) = gf(nnode) + vbc(1,2);

• Mixed BC αu(b) + βu′(b)= γ, β ̸= 0. The BC can be re-written as

−p(b)u′(b) = α

β
p(b)

(
u(b)− γ

α

)
= uxmb (u(b)− ubb)= vbc(1, 2) (u(b)− vbc(2, 2)) .

Weneed to change both the global stiffnessmatrix and the global load vector.

gf(nnode) = gf(nnode) + vbc(1,2)*vbc(2,2);
gk(nnode,nnode) = gk(nnode,nnode) + vbc(1,2);

8.4.7 A Testing Example

To check the code, we often try to compare the numerical results with some
known exact solution, e.g., we can choose

u(x)= sin x, a≤ x≤ b.

If we set the material parameters as

p(x)= 1 + x, c(x)= cos x, q(x)= x2,

then the right-hand side can be calculated as

f (x)= (pu′)′ + cu′ + qu=(1 + x) sin x− cos x+ cos2 x+ x2 sin x.

These functions are defined in the Matlab code getmat.m

function [xp,xc,xq,xf] = getmat(x);
xp = 1+x; xc = cos(x); xq = x*x;
xf = (1+x)*sin(x)-cos(x)+cos(x)*cos(x)+x*x*sin(x);

The mesh is defined in the Matlab code datain.m. All other parameters
used for the finite element method are defined in the Matlab code propset.m,
including the following:

• The boundary x= a and x= b, e.g., a= 1, b= 4.
• The number of nodal points, e.g., nnode= 41.
• The choice of basis functions. If we use the same basis function, then for

example we can set inf_ele= 2, which is the quadratic basis function kind(i)=
inf_ele.

• The number of elements. If we use uniform elements, then nelem=

(nnode− 1)/inf_ele. We need to make it an integer.

09
11:16:02, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c08” — 2017/10/11 — 12:39 — page 208 — #28

208 Issues of the FE Method in One Space Dimension

(a)

1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1

1.5

2
×10

−4
×10

−6
a=1, b=4, nnode = 41, inf

e
le = 1, nint=1, kbc(1)=1, kbc(2) = 3 (b)

1 1.5 2 2.5 3 3.5 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

a=1, b=4, nnode = 41, inf
e
le = 2, nint=4, kbc(1)=3, kbc(2) = 2

Figure 8.6. Error plots of the FE solutions at nodal points. (a) The result
is obtained with piecewise linear basis function and Gaussian quadrature of
order 1 in the interval [1, 4]. Dirichlet BC at x= a and mixed BC 3u(b) +
4u′(b)= γ from the exact solution u(x)= sin x are used. The magnitude of
the error is O(10−4). (b) Mixed BC 3u(a) + 4u′(a)= γ at x= a and the Neu-
mann BC at x= b from the exact solution are used. The result is obtained with
piecewise quadratic basis functions and Gaussian quadrature of order 4. The
magnitude of the error is O(10−6).

• The choice ofGaussian quadrature formula, e.g., nint(i)= 4. The order of the
Gaussian quadrature formula should be the same or higher than the order
of the basis functions, for otherwise it may not converge! For example, if
we use linear elements (i.e., inf_ele= 1), then we can choose nint(i)= 1 or
nint(i)= 2, etc.

• Determine the BCs kbc(1) and kbc(2), and vbc(i, j), i, j= 1, 2. Note that the
linear system of equations is singular if both BCs are Neumann, for the
solution either does not exist or is not unique.

To run the program, simply type the following into the Matlab:

[x,u]= fem1d;

To find out the detailed usage of the finite element code, read README
carefully. Figure 8.6 gives the error plots for two different boundary conditions.

8.5 The FE Method for Fourth-Order BVPs in 1D

Let us now discuss how to solve fourth-order differential equations using the
finite element method. An important fourth-order differential equation is the

09
11:16:02, subject to the Cambridge Core terms of use,

“c08” — 2017/10/11 — 12:39 — page 209 — #29

8.5 The FE Method for Fourth-Order BVPs in 1D 209

biharmonic equation, such as in the model problem

u′′′′ + q(x)u= f (x), 0< x< 1, subject to the BC

I : u(0)= u′(0)= 0, u(1)= u′(1)= 0 ; or

II : u(0)= u′(0)= 0, u(1)= 0, u′′(1)= 0 ; or

III : u(0)= u′(0)= 0, u′′(1)= 0, u′′′(1)= 0.

Note that there is no negative sign in the highest derivative term. To derive the
weak form, we again multiply by a test function v(x)∈V and integrate by parts
to get ∫ 1

0
(u′′′′ + q(x)u)v dx=

∫ 1

0
fv dx,

u′′′v
∣∣1
0 −

∫ 1

0
u′′′v ′ dx+

∫ 1

0
quv dx=

∫ 1

0
fv dx,

u′′′v
∣∣1
0 − u′′v ′

∣∣1
0 +

∫ 1

0

(
u′′v ′′ + quv

)
dx=

∫ 1

0
fv dx,

u′′′(1)v(1)− u′′′(0)v(0)− u′′(1)v ′(1) + u′′(0)v ′(0) +
∫ 1

0

(
u′′v ′′ + quv

)
dx

=

∫ 1

0
fv dx.

For u(0)= u′(0)= 0, u(1)= u′(1)= 0, they are essential boundary conditions,
thus we set

v(0)= v ′(0)= v(1)= v ′(1)= 0. (8.27)

The weak form is

a(u, v)= f (v), (8.28)

where the bilinear form and the linear form are

a(u, v) =
∫ 1

0

(
u′′v ′′ + quv

)
dx, (8.29)

L(v) =
∫ 1

0
fv dx. (8.30)

Since the weak form involves second-order derivatives, the solution space is

H2
0(0, 1)=

{
v(x) , v(0)= v ′(0)= v(1)= v ′(1)= 0 , v , v ′ and v ′′ ∈L2

}
,

(8.31)

09
11:16:02, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c08” — 2017/10/11 — 12:39 — page 210 — #30

210 Issues of the FE Method in One Space Dimension

and from the Sobolev embedding theorem we know that H2 ⊂C1.

For the boundary conditions u(1)= u′′(1)= 0, we still have v(1)= 0, but there
is no restriction on v ′(1) and the solution space is

H2
E=

{
v(x), v(0)= v ′(0)= v(1)= 0, v∈H2(0, 1)

}
. (8.32)

For the boundary conditions u′′(1)= u′′′(1)= 0, there are no restrictions on
both v(1) and v ′(1) and the solution space is

H2
E=

{
v(x), v(0)= v ′(0)= 0, v∈H2(0, 1)

}
. (8.33)

For nonhomogeneous natural or mixed boundary conditions, the weak form
and the linear form may be different. For homogeneous essential BC, the weak
form and the linear form will be the same. We often need to do something to
adjust the essential boundary conditions.

8.5.1 The Finite Element Discretization

Given a mesh

0= x0< x1< x2< · · ·< xM= 1,

we want to construct a finite-dimensional space Vh. For conforming finite ele-
ment methods we have Vh ∈H2(0, 1), therefore we cannot use the piecewise
linear functions since they are in the Sobolev spaceH1(0, 1) but not inH2(0, 1).

For piecewise quadratic functions, theoretically we can find a finite-
dimensional space that is a subset of H2(0, 1); but this is not practical as the
basis functions would have large support and involve at least six nodes. The
most practical conforming finite-dimensional space in 1D is the piecewise cubic
functions over the mesh

Vh=
{
v(x), v(x) is a continuous piecewise cubic function, v∈H2

0(0, 1)
}
.

(8.34)

The degree of freedom. On each element, we need four parameters to deter-
mine a cubic function. For essential boundary conditions at both x= a and
x= b, there are 4M parameters for M elements; and at each interior nodal
point, the cubic and its derivative are continuous and there are four boundary
conditions, so the dimension of the finite element space is

4M− 2(M− 1)− 4= 2(M− 1).

09
11:16:02, subject to the Cambridge Core terms of use,

“c08” — 2017/10/11 — 12:39 — page 211 — #31

8.5 The FE Method for Fourth-Order BVPs in 1D 211

8.5.1.1 Construct the Basis Functions in H2 in 1D

Since the derivative has to be continuous, we can use the piecewise Hermite
interpolation and construct the basis functions in two categories. The first
category is

ϕi(xj)=

{
1 if i= j,

0 otherwise,
(8.35)

and ϕ′i(xj)= 0, for any xj,

i.e., the basis functions in this group have unity at one node and are zero at
other nodes, and the derivatives are zero at all nodes. To construct the local
basis function in the element (xi, xi+1), we can set

ϕi(x)=
(x− xi+1)

2 (a(x− xi) + 1)
(xi − xi+1)2

.

It is obvious that ϕi(xi)= 1 and ϕi(xi+1)=ϕ′i(xi+1)= 0, i.e., xi+1 is a double
root of the polynomial. We use ϕ′(xi)= 0 to find the coefficient a, to finally
obtain

ϕi(x)=
(x− xi+1)

2
(

2(x− xi)
(xi+1 − xi)

+ 1
)

(xi − xi+1)2
. (8.36)

The global basis function can thus be written as

ϕi(x)=



0 if x≤ xi−1 ,

(x− xi−1)
2
(

2(x− xi)
(xi−1 − xi)

+ 1
)

(xi − xi−1)2
if xi−1 ≤ x≤ xi,

(x− xi+1)
2
(

2(x− xi)
(xi+1 − xi)

+ 1
)

(xi − xi+1)2
, if xi≤ x≤ xi+1,

0 if xi+1 ≤ x.

(8.37)

There are M− 1 such basis functions. The second group of basis functions
satisfy

ϕ̄′i(xj)=

{
1 if i= j,

0 otherwise,
(8.38)

and ϕ̄i(xj)= 0, for any xj,

09
11:16:02, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c08” — 2017/10/11 — 12:39 — page 212 — #32

212 Issues of the FE Method in One Space Dimension

i.e., the basis functions in this group are zero at all nodes, and the derivatives are
unity at one node and zero at other nodes. To construct the local basis functions
in an element (xi, xi+1), we can set

ϕ̄i(x)=C(x− xi)(x− xi+1)
2,

since xi and xi+1 are zeros of the cubic and xi+1 is a double root of the cubic.
The constant C is chosen such that ψ′

i(xi)= 1, so we finally obtain

ϕ̄i(x)=
(x− xi)(x− xi+1)

2

(xi − xi+1)2
. (8.39)

The global basis function for this category is thus

ϕ̄i(x)=



0 if x≤ xi−1,

(x− xi)(x− xi−1)
2

(xi − xi−1)2
if xi−1 ≤ x≤ xi ,

(x− xi)(x− xi+1)
2

(xi+1 − xi)2
if xi≤ x≤ xi+1,

0 if xi+1 ≤ x.

(8.40)

8.5.2 The Shape Functions

There are four shape functions in the interval (−1, 1), namely,

ψ1(ξ) =
(ξ − 1)2(ξ + 2)

4
,

ψ2(ξ) =
(ξ + 1)2(−ξ + 2)

4
,

ψ3(ξ) =
(ξ − 1)2(ξ + 1)

4
,

ψ4(ξ) =
(ξ + 1)2(ξ − 1)

4
.

In Figure 8.7, we show the shape functions and some global basis functions
from the Hermite cubic interpolation. It is noted that there are two basis func-
tions centered at each node, so-called a double node. The finite element solution
can be written as

uh(x)=
M−1∑
j=1

αjϕj(x) +
M−1∑
j=1

βjϕ̄j(x), (8.41)

09
11:16:02, subject to the Cambridge Core terms of use,

“c08” — 2017/10/11 — 12:39 — page 213 — #33

8.5 The FE Method for Fourth-Order BVPs in 1D 213

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b)

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−4 −3 −2 −1 0 1 2 3 4

−4 −3 −2 −1 0 1 2 3 4

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Figure 8.7. (a) Hermite cubic shape functions on a master element and
(b) corresponding global functions at a node i in a mesh.

09
11:16:02, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c08” — 2017/10/11 — 12:39 — page 214 — #34

214 Issues of the FE Method in One Space Dimension

and after the coefficients αj and βj are found we have

uh(xj)=αj, u′h(xj)=βj.

There are four nonzero basis functions on each element (xi, xi+1); and on
adopting the order ϕ1, ϕ2, ψ1, ψ2, ϕ3, ϕ3, ψ3, . . ., the local stiffness matrix has
the form

a(ϕi, ϕi) a(ϕi, ϕi+1) a(ϕi, ϕ̄i) a(ϕi, ϕ̄i+1)

a(ϕi+1, ϕi) a(ϕi+1, ϕi+1) a(ϕi+1, ϕ̄i) a(ϕi+1, ϕ̄i+1)

a(ϕ̄i, ϕi) a(ϕ̄i, ϕi+1) a(ϕ̄i , ϕ̄i) a(ϕ̄i, ϕ̄i+1)

a(ϕ̄i+1, ϕi) a(ϕ̄i+1, ϕi+1) a(ϕ̄i+1, ϕ̄i) a(ϕ̄i+1, ϕ̄i+1)


(xi,xi+1)

.

This global stiffness matrix is still banded, and has band width six.

8.6 The Lax–Milgram Lemma and the Existence of FE Solutions

One of the most important issues is whether the weak form has a solution, and
if so under what assumptions. Further, if the solution does exist, is it unique,
and how close is it to the solution of the original differential equations?Answers
to these questions are based on the Lax–Milgram Lemma.

8.6.1 General Settings: Assumptions and Conditions

Let V be a Hilbert space with an inner product (u , v)V and the norm ∥u∥V=√
(u, u)V, e.g., Cm, the Sobolev spaces H1 and H2, etc. Assume there is a

bilinear form

a(u, v), V× V 7−→R,

and a linear form

L(v), V 7−→R,

that satisfy the following conditions:

1. a(u, v) is symmetric, i.e., a(u, v)= a(v, u);
2. a(u, v) is continuous in both u and v, i.e., there is a constant γ such that

|a(u, v)| ≤ γ∥u∥V∥v∥V ,

for any u and v∈V; the norm of the operator a(u, v)2;

2 If this condition is true, then a(u, v) is called a bounded operator and the largest lower bound of such a
γ > 0 is called the norm of a(u, v).

09
11:16:02, subject to the Cambridge Core terms of use,

“c08” — 2017/10/11 — 12:39 — page 215 — #35

8.6 The Lax–Milgram Lemma and the Existence of FE Solutions 215

3. a(u, v) is V-elliptic, i.e., there is a constant α such that

a(v, v)≥α∥v∥2
V

for any v∈V (alternative terms are coercive, or inf–sup condition); and
4. L is continuous, i.e., there is a constant Λ such that

|L(v)| ≤Λ∥v∥V,

for any v∈V.

8.6.2 The Lax–Milgram Lemma

Theorem 8.2. Under the above conditions 2 to 4, there exists a unique element
u∈V such that

a(u, v)=L(v), ∀ v∈V.

Furthermore, if the condition 1 is also true, i.e., a(u, v) is symmetric, then

1. ∥u∥V≤ Λ

α
and

2. u is the unique global minimizer of

F(v)=
1
2
a(v, v)− L(v) .

Sketch of the proof. The proof exploits the Riesz representation theorem
from functional analysis. Since L(v) is a bounded linear operator in the Hilbert
spaceVwith the inner product a(u, v), there is unique element u∗ inV such that

L(v)= a(u∗, v), ∀ v∈V.

Next we show that the a-norm is equivalent to V norm. From the continuity
condition of a(u, v), we get

∥u∥a=
√
a(u, u)≤

√
γ∥u∥2

V=
√
γ ∥u∥V.

From the V-elliptic condition, we have

∥u∥a=
√
a(u, u)≥

√
α∥u∥2

V=
√
α ∥u∥V,

therefore

√
α ∥u∥V≤∥u∥a≤

√
γ ∥u∥V,

09
11:16:02, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c08” — 2017/10/11 — 12:39 — page 216 — #36

216 Issues of the FE Method in One Space Dimension

or
1
√
γ
∥u∥a≤∥u∥V≤ 1√

α
∥u∥a.

Often ∥u∥a is called the energy norm.
Now we show that F(u∗) the global minimizer. For any v∈V, if a(u, v)=

a(v, u), then

F(v) = F(u∗ + v− u∗)=F(u∗ + w)=
1
2
a(u∗ + w, u∗ + w)− L(u∗ + w)

=
1
2
(a(u∗ + w, u∗) + a(u∗ + w,w))− L(u∗)− L(w)

=
1
2
(a(u∗, u∗) + a(w, u∗) + a(u∗,w) + a(w,w))− L(u∗)− L(w)

=
1
2
a(u∗, u∗)− L(u∗) +

1
2
a(w,w) + a(u∗,w)− L(w)

= F(u∗) +
1
2
a(w,w)− 0

≥ F(u∗) .

Finally we show the proof of the stability. We have

α∥u∗∥2
V≤ a(u∗, u∗)=L(u∗)≤Λ∥u∗∥V ,

therefore

α∥u∗∥2
V≤Λ∥u∗∥V =⇒ ∥u∗∥V≤ Λ

α
.

Remark: The Lax–Milgram Lemma is often used to prove the existence and
uniqueness of the solutions of ODEs/PDEs.

8.6.3 An Example using the Lax–Milgram Lemma

Let us consider the 1D Sturm–Liouville problem once again:

−(pu′)′ + qu= f, a< x< b,

u(a)= 0, α̃u(b) + β̃u′(b)= γ̃, β̃ ̸= 0,
α̃

β̃
≥ 0.

The bilinear form is

a(u, v)=
∫ b

a

(
pu′v ′ + quv

)
dx+

α̃

β̃
p(b)u(b)v(b),

and the linear form is

L(v) = (f, v) +
γ̃

β̃
p(b)v(b).

09
11:16:02, subject to the Cambridge Core terms of use,

“c08” — 2017/10/11 — 12:39 — page 217 — #37

8.6 The Lax–Milgram Lemma and the Existence of FE Solutions 217

The space is V=H1
E(a, b). To consider the conditions of the Lax–Milgram

theorem, we need the Poincaré inequality:

Theorem 8.3. If v(x)∈H1 and v(a)= 0, then∫ b

a
v2 dx≤ (b− a)2

∫ b

a
|v ′(x)|2 dx or

∫ b

a
|v ′(x)|2 dx≥ 1

(b− a)2

∫ b

a
v2 dx.

(8.42)

Proof We have

v(x) =
∫ x

a
v ′(t) dt

=⇒ |v(x)| ≤
∫ x

a
|v ′(t)| dt≤

{∫ x

a
|v ′(t)|2dt

}1/2{∫ x

a
dt
}1/2

≤
√
b− a

{∫ b

a
|v ′(t)|2

}1/2

,

so that

v2(x) ≤ (b− a)
∫ b

a
|v ′(t)|2 dt

=⇒
∫ b

a
v2(x) dx ≤ (b− a)

∫ b

a
|v ′(t)|2dt

∫ b

a
dx≤ (b− a)2

∫ b

a
|v ′(x)| dx.

This completes the proof.

We now verify the Lax–Milgram Lemma conditions for the Sturm–Liouville
problem.

• Obviously a(u, v)= a(v, u).
• The bilinear form is continuous:

|a(u, v)| =

∣∣∣∣∣
∫ b

a

(
pu′v ′ + quv

)
dx+

α̃

β̃
p(b)u(b)v(b)

∣∣∣∣∣
≤ max{ pmax, qmax }

(∫ b

a

(
|u′v ′|+ |uv|

)
dx+

α̃

β̃
|u(b)v(b)|

)

≤ max{ pmax, qmax }

(∫ b

a
|u′v ′|dx+

∫ b

a
|uv| dx+ α̃

β̃
|u(b)v(b)|

)

≤ max{ pmax, qmax }
(
2∥u∥1∥v∥1 +

α̃

β̃
|u(b)v(b)|

)
.

09
11:16:02, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c08” — 2017/10/11 — 12:39 — page 218 — #38

218 Issues of the FE Method in One Space Dimension

From the inequality

|u(b)v(b)| =

∣∣∣∣∣
∫ b

a
u′(x) dx

∫ b

a
v ′(x) dx

∣∣∣∣∣
≤ (b− a)

√∫ b

a
|u′(x)|2 dx

√∫ b

a
|v ′(x)|2 dx

≤ (b− a)

√∫ b

a
(|u′(x)|2 + |u(x)|2) dx

√∫ b

a
(|v ′(x)|2 + |v(x)|2) dx

≤ (b− a)∥u∥1∥v∥1,

we get

|a(u, v)| ≤max{ pmax, qmax}
(
2 +

α̃

β̃
(b− a)

)
∥u∥1∥v∥1

i.e., the constant γ can be determined as

γ=max{ pmax, qmax}
(
2 +

α̃

β̃
(b− a)

)
.

• a(v, v) is V-elliptic. We have

a(v, v) =
∫ b

a

(
p(v ′)2 + qv2

)
dx+

α̃

β̃
p(b)v(b)2

≥
∫ b

a
p(v ′)2 dx

≥ pmin

∫ b

a
(v ′)2 dx

= pmin

(
1
2

∫ b

a
(v ′)2 dx+

1
2

∫ b

a
(v ′)2 dx

)

≥ pmin

(
1
2

1
(b− a)2

∫ b

a
v2 dx+

1
2

∫ b

a
(v ′)2 dx

)

= pmin min
{

1
2(b− a)2

,
1
2

}
∥v∥2

1,

i.e., the constant α can be determined as

α= pmin min
{

1
2(b− a)2

,
1
2

}
.

09
11:16:02, subject to the Cambridge Core terms of use,

“c08” — 2017/10/11 — 12:39 — page 219 — #39

8.6 The Lax–Milgram Lemma and the Existence of FE Solutions 219

• L(v) is continuous because

L(v) =
∫ b

a
f (x)v(x) dx+

γ̃1

β̃
p(b)v(b)

|L(v)| ≤ (|f |, |v|)0 +
∣∣∣∣ γ̃1

β̃

∣∣∣∣ p(b)√b− a ∥v∥1

≤ ∥f∥0∥v∥1 +

∣∣∣∣ γ̃1

β̃

∣∣∣∣ p(b)√b− a ∥v∥1

≤
(
∥f∥0 +

∣∣∣∣ γ̃1

β̃

∣∣∣∣ p(b)√b− a
)
∥v∥1,

i.e., the constant Λ can be determined as

Λ= ∥f∥0 +

∣∣∣∣ γ̃1

β̃

∣∣∣∣ p(b)√b− a.

Thus we have verified the conditions of the Lax–Milgram lemma under certain
assumptions such as p(x)≥ pmin> 0, q(x)≥ 0, etc., and hence conclude that
there is the unique solution in H1

e(a, b) to the original differential equation.
The solution also satisfies

∥u∥1 ≤
∥f∥0 +

∣∣∣γ̃/β̃∣∣∣ p(b)√b− a

pmin min
{

1
2(b−a)2 ,

1
2

} .

8.6.4 Abstract FE Methods

In the same setting, let us assume that Vh is a finite-dimensional subspace of
V and that {ϕ1, ϕ2, . . . , ϕM} is a basis for Vh. We can formulate the following
abstract finite element method using the finite-dimensional subspace Vh. We
seek uh ∈Vh such that

a(uh, v)=L(v) , ∀v∈Vh, (8.43)

or equivalently

F(uh)≤F(v), ∀v∈Vh. (8.44)

We apply the weak form in the finite-dimensional Vh:

a(uh, ϕi)=L(ϕi), i= 1, . . . ,M. (8.45)

09
11:16:02, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c08” — 2017/10/11 — 12:39 — page 220 — #40

220 Issues of the FE Method in One Space Dimension

Let the finite element solution uh be

uh=
M∑
j=1

αjϕj.

Then from the weak form in Vh we get

a

 M∑
j=1

αjϕj, ϕi

=

M∑
j=1

αja(ϕj, ϕi)=L(ϕi), i= 1, . . . ,M,

which in the matrix-vector form is

AU=F,

whereU∈RM,F∈RM withF(i)=L(ϕi) andA is anM×Mmatrix with entries
aij= a(ϕj, ϕi). Since any element in Vh can be written as

v=
M∑
i=1

ηiϕi,

we have

a(v, v)= a

 M∑
i=1

ηiϕi,
M∑
j=1

ηjϕj

=
M∑
i,j=1

ηia(ϕi, ϕj)ηj= ηTAη > 0

provided ηT= {η1, . . . , ηM} ̸= 0. Consequently,A is symmetric positive definite.
The minimization form using Vh is

1
2
UTAU− FTU= min

η∈RM

(
1
2
ηTAη − FTη

)
. (8.46)

The existence and uniqueness of the abstract FE method.
Since the matrix A is symmetric positive definite and it is invertible, so there
is a unique solution to the discrete weak form. Also from the conditions of
Lax–Milgram lemma, we have

α∥uh∥2
V≤ a(uh, uh)=L(uh)≤Λ∥uh∥V,

whence

∥uh∥V≤ Λ

α
.

09
11:16:02, subject to the Cambridge Core terms of use,

“c08” — 2017/10/11 — 12:39 — page 221 — #41

8.7 *1D IFEM for Discontinuous Coefficients 221

Error estimates. If eh= u− uh is the error, then:

• a(eh, vh)= (eh, vh)a= 0, ∀vh ∈Vh;
• ∥u− uh∥a=

√
a(eh, eh)≤∥u− vh∥a , ∀vh ∈Vh, i.e., uh is the best approxima-

tion to u in the energy norm; and
• ∥u− uh∥V≤ γ

α∥u− vh∥V, ∀vh ∈Vh, which gives the error estimates in the V
norm.

Sketch of the proof: From the weak form, we have

a(u, vh)=L(vh), a(uh, vh)=L(vh) =⇒ a(u− uh, vh)= 0.

This means the finite element solution is the projection of u onto the space Vh.
It is the best solution in Vh in the energy norm, because

∥u− vh∥2
a = a(u− vh, u− vh)= a(u− uh + wh, u− uh + wh)

= a(u− uh, u− uh) + a(u− uh,wh) + a(wh, u− uh) + a(wh,wh)

= a(u− uh, u− uh) + a(wh,wh)

≥ ∥u− uh∥2
a ,

where wh= uh − vh ∈Vh. Finally, from the condition 3, we have

α∥u− uh∥2
V ≤ a(u− uh, u− uh)= a(u− uh, u− uh) + a(u− uh,wh)

= a(u− uh, u− uh + wh)= a(u− uh, u− vh)

≤ γ∥u− uh∥V∥u− vh∥V.

The last inequality is obtained from condition 2.

8.7 *1D IFEM for Discontinuous Coefficients

Now we revisit the 1D interface problems discussed in Section 2.10

−(pu′)′ = f (x), 0< x< 1, u(0)= 0, u(1)= 0, (8.47)

and consider the case in which the coefficient has a finite jump,

p(x)=

{
β−(x) if 0< x<α,

β+(x) if α< x< 1.
(8.48)

The theoretical analysis about the solution still holds if the natural jump
conditions

[u]α= 0,
[
β u′
]
α
= 0, (8.49)

are satisfied, where [u]α means the jump defined at α.

09
11:16:02, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c08” — 2017/10/11 — 12:39 — page 222 — #42

222 Issues of the FE Method in One Space Dimension

Given a uniform mesh xi, i= 0, 1, . . . , n, xi+1 − xi= h. Unless the interface
α in (8.47) itself is a node, the solution obtained from the standard finite ele-
ment method using the linear basis functions is only first-order accurate in the
maximum norm. In Li (1998), modified basis functions that are defined below,

ϕi(xk) =

{
1, if k= i,

0, otherwise,
(8.50)

[ϕi]α= 0, [β ϕ′i]α= 0, (8.51)

are proposed. Obviously, if xj≤α< xj+1, then only ϕj and ϕj+1 need to be
changed to satisfy the second jump condition. Using the method of undeter-
mined coefficients, that is, we look for the basis function ϕj(x) in the interval
(xj, xj+1) as

ϕj(x)=

{
a0 + a1x if xj≤ x<α,

b0 + b1x if α≤ x≤ xj+1,
(8.52)

which should satisfy ϕj(xj)= 1, ϕj(xj+1)= 0, ϕj(α−)=ϕj(α+), and
β−ϕ′j(α−)=β+ϕ′j(α+). There are four unknowns and four conditions. It has
been proved in Li (1998) that the coefficients are unique determined and have
the following closed form if β is a piecewise constant and β−β+> 0,

ϕj(x)=



0, 0≤ x< xj−1,

x− xj−1

h
, xj−1 ≤ x< xj,

xj − x
D

+ 1, xj≤ x<α,

ρ (xj+1 − x)
D

, α≤ x< xj+1,

0, xj+1 ≤ x≤ 1,

ϕj+1(x)=



0, 0≤ x< xj,

x− xj
D

, xj≤ x<α,

ρ (x− xj+1)

D
+ 1, α≤ x< xj+1,

xj+2 − x
h

, xj+1 ≤ x< xj+2,

0, xj+2 ≤ x≤ 1.

where

ρ=
β−

β+
, D= h− β+ − β−

β+
(xj+1 − α).

Figure 8.8 shows several plots of the modified basis functions ϕj(x), ϕj+1(x),
and some neighboring basis functions, which are the standard hat functions.
At the interface α, we can clearly see kinks in the basis functions which reflect
the natural jump condition.

Using the modified basis functions, it has been shown in Li (1998) that the
finite element solution obtained from the Galerkin finite method with the new
basis functions is second-order accurate in the maximum norm.

09
11:16:02, subject to the Cambridge Core terms of use,

“c08” — 2017/10/11 — 12:39 — page 223 — #43

Exercises 223

0.6 0.65 0.7
0

0.2

0.4

0.6

0.8

1

N=40, β
−
=1,β

+
=5,α=2/3

0.6 0.65 0.7
0

0.2

0.4

0.6

0.8

1

N=40, β
−
=5,β

+
=1,α=2/3

0.6 0.65 0.7

0

0.2

0.4

0.6

0.8

1

N=40, β
−
=1,β

+
=100, α=2/3

0.6 0.65 0.7

0

0.2

0.4

0.6

0.8

1

N=40, β
−
=100, β

+
=1,α=2/3

Figure 8.8. Plot of some basis function near the interface with different β−

and β+. The interface is at α= 2
3 .

For 1D interface problems, the finite difference and finite element methods
are notmuch different. The finite elementmethod likely performs better for self-
adjoint problems, while the finite difference method is more flexible for general
elliptic interface problems.

Exercises

1. (Purpose: Review abstract FE methods.) Consider the Sturm–Liouville problem

−u′′ + u = f, 0< x<π,

u(0)= 0, u(π) + u′(π)= 1.

Let Vf be the finite-dimensional space

Vf = span { x, sin(x), sin(2x) } .

Find the best approximation to the solution of the weak form from Vf in the energy norm
(∥ : ∥a =

√
a(:, :)). You can use either analytic derivation or computer software packages

09
11:16:02, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c08” — 2017/10/11 — 12:39 — page 224 — #44

224 Issues of the FE Method in One Space Dimension

(e.g., Maple, Matlab, SAS, etc.). Take f= 1 for the computation. Compare this approach
with the finite element method using three hat basis functions. Find the true solution, and
plot the solution and the error of the finite element solution.

2. Consider the Sturm–Liouville problem

−((1 + x2)u′)′ + xu = f, 0< x< 1,

u(1)= 2.

Transform the problem to a problem with homogeneous Dirichlet boundary condition at
x= 1. Write down the weak form for each of the following case:

(a) u(0)= 3. Hint: Construct a function u0(x)∈H1 such that u0(0)= 3 and u0(1)= 2.
(b) u′(0)= 3. Hint: Construct a function u0(x)∈H1 such that u0(1)= 2 and u′0(0)= 0.
(c) u(0) + u′(0)= 3. Hint: Construct a function u0(x)∈H1 such that u0(1)= 2 and

u0(0) + u′0(0)= 0.

3. Consider the Sturm–Liouville problem

−(pu′)′ + qu = f, a< x< b,

u(a)= 0, u(b)= 0.

Consider a mesh a= x0< x1 · · ·< xM = b and the finite element space

Vh =
{
v(x)∈H1

0(a, b), v(x) is piecewise cubic function over the mesh
}
.

(a) Find the dimension of Vh.
(b) Find all nonzero shape functions ψi(ξ) where −1≤ ξ≤ 1, and plot them.
(c) What is the size of the local stiffness matrix and load vector? Sketch the assembling

process.
(d) List some advantages and disadvantages of this finite element space, compared with

the piecewise continuous linear finite-dimensional space (the hat functions).

4. Download the files of the 1Dfinite elementMatlab package. Consider the following analytic
solution and parameters,

u(x)= ex sin x, p(x)= 1 + x2, q(x)= e−x, c(x)= 1 ,

and f (x) determined from the differential equation

−(pu′)′ + c(x)u′ + qu= f, a< x< b.

Use this example to become familiar with the 1D finite element Matlab package, by trying
the following boundary conditions:

(a) Dirichlet BC at x= a and x= b, where a=−1, b= 2 ;
(b) Neumann BC at x= a and Dirichlet BC at x= b, where a=−1 and b= 2 ;
(c) Mixed BC γ= 3u(a)− 5u′(a) at x= a=−1, and Neumann BC at x= b= 2 .

Using linear, quadratic, and cubic basis functions, tabulate the errors in the infinity norm

eM = max
0≤i≤M

|u(xi)−Ui|

at the nodes and auxiliary points as follows:

M Basis Gaussian error eM/e2M

09
11:16:02, subject to the Cambridge Core terms of use,

“c08” — 2017/10/11 — 12:39 — page 225 — #45

Exercises 225

for differentM= 4, 8, 16, 32, 64 (nnode=M+ 1), or the closest integers if necessary. What
are the respective convergence orders?
(Note: The method is second-, third-, or fourth-order convergent if the ratio eM/e2M
approaches 4, 8, or 16, respectively.)
For the last case:
(1) Print out the stiffness matrix for the linear basis function with M= 5. Is it symmetric?
(2) Plot the computed solution against the exact one, and the error plot for the case of the
linear basis function. Take enough points to plot the exact solution to see the whole picture.
(3) Plot the error versus h= 1/M in log–log scale for the three different bases.
The slope of such a plot is the convergence order of themethod employed. For this problem,
you will only produce five plots for the last case.
Find the energy norm, H1 norm and L2 norm of the error and do the grid refinement
analysis.

5. Use the Lax–Milgram Lemma to show whether the following two-point value problem has
a unique solution:

−u′′ + q(x)u= f, 0< x< 1,

u′(0)= u′(1)= 0,
(8.53)

where q(x)∈C(0, 1), q(x)≥ qmin> 0. What happens if we relax the condition to q(x)≥ 0?
Give counterexamples if necessary.

6. Consider the general fourth-order two-point BVP

a4u
′′′′ + a3u

′′′ + a2u
′′ + a1u

′ + a0u= f, a< x< b,

with the mixed BC

2u′′′(a)− u′′(a) + γ1u
′(a) + ρ1u(a) = δ1 , (8.54)

u′′′(a) + u′′(a) + γ2u
′(a) + ρ2u(a) = δ2, (8.55)

u(b) = 0,

u′(b) = 0.

Derive the weak form for this problem.
Hint: Solve for u′′′(a) and u′′(a) from (8.54) and (8.55). The weak form should only involve
up to second-order derivatives.

7. (An eigenvalue problem) Consider

−(pu′)′ + qu− λu= 0, 0< x<π, (8.56)

u(0)= 0, u(π)= 0. (8.57)

(a) Find the weak form of the problem.
(b) Check whether the conditions of the Lax–Milgram Lemma are satisfied. Which con-

dition is violated? Is the solution unique for arbitrary λ?
Note: It is obvious that u= 0 is a solution. For some λ, we can find nontrivial solutions
u(x) ̸= 0. Such a λ is an eigenvalue of the system, and the nonzero solution is an eigen-
function corresponding to that eigenvalue. The problem to find the eigenvalues and the
eigenfunctions is called an eigenvalue problem.

(c) Find all the eigenvalues and eigenfunctions when p(x)= 1 and q(x)= 0.
Hint: λ1 = 1 and u(x)= sin(x) is one pair of the solutions.

09
11:16:02, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c08” — 2017/10/11 — 12:39 — page 226 — #46

226 Issues of the FE Method in One Space Dimension

8. Use the 1D finite element package with linear basis functions and a uniform grid to solve
the eigenvalue problem

−(pu′)′ + qu− λu= 0, 0< x<π,

u(0)= 0, u′(π) + αu(π)= 0,

where p(x)≥ pmin> 0, q(x)≥ 0, α≥ 0

in each of the following two cases:

(a) p(x)= 1 , q(x)= 1 , α= 1.
(b) p(x)= 1 + x2 , q(x)= x , α= 3.

Try to solve the eigenvalue problem with M= 5 and M= 20. Print out the eigenvalues but
not the eigenfunctions. Plot all the eigenfunctions in a single plot for M= 5, and plot two
typical eigenfunctions for M= 20 (6 plots in total).
Hint: The approximate eigenvalues λ1, λ2, . . ., λM and the eigenfunction uλi(x) are the
generalized eigenvalues of

Ax=λBx,

where A is the stiffness matrix and B= {bij} with bij =
∫ π

0 ϕi(x)ϕj(x)dx. You can gener-
ate the matrix B either numerically or analytically; and in Matlab you can use [V,D] =
EIG(A,B) to find the generalized eigenvalues and the corresponding eigenvectors. For a
computed eigenvalue λi, the corresponding eigenfunction is

uλi(x)=
M∑
j=1

αi,jϕj(x),

where [αi,1, αi,2, . . . , αi,M]T is the eigenvector corresponding to the generalized eigenvalue.
Note: if we can find the eigenvalues and corresponding eigenfunctions, the solution to the
differential equation can be expanded in terms of the eigenfunctions, similar to Fourier
series.

9. (An application.) Consider a nuclear fuel element of spherical form, consisting of a sphere
of “fissionable” material surrounded by a spherical shell of aluminum “cladding” as shown
in the figure. We wish to determine the temperature distribution in the nuclear fuel element
and the aluminum cladding. The governing equations for the two regions are the same,
except that there is no heat source term for the aluminum cladding. Thus

− 1
r2

d
dr
r2k1

dT1

dr
= q, 0≤ r≤RF,

− 1
r2

d
dr
r2k2

dT2

dr
= 0, RF ≤ r≤RC,

where the subscripts 1 and 2 refer to the nuclear fuel element and the cladding, respectively.
The heat generation in the nuclear fuel element is assumed to be of the form

q1 = q0

[
1 + c

(
r
RF

)2
]
,

where q0 and c are constants depending on the nuclear material. The BC are

kr2
dT1

dr
= 0 at r= 0 (natural BC),

T2 = T0 at r=RC,

where T0 is a constant. Note the temperature at r=RF is continuous.

09
11:16:02, subject to the Cambridge Core terms of use,

“c08” — 2017/10/11 — 12:39 — page 227 — #47

Exercises 227

• Derive a weak form for this problem. (Hint: First multiply both sides by r2.)
• Use two linear elements [0,RF] and [RF,RC] to determine the finite element solution.
• Compare the nodal temperaturesT(0) andT(RF)with the values from the exact solution

T1 = T0 +
q0R2

F

6k1

{[
1 −

(
r
RF

)2
]
+

3
10
c

[
1 −

(
r
RF

)4
]}

+
q0R2

F

3k2

(
1 +

3
5
c
)(

1 − RF

RC

)
,

T2 = T0 +
q0R2

F

3k2

(
1 +

3
5
c
)(

RF

r
− RF

RC

)
.

Take T0 = 80, q0 = 5, k1 = 1, k2 = 50, RF = 0.5, RC = 1, c= 1 for plotting and comparison.

09
11:16:02, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c09” — 2017/10/10 — 12:27 — page 228 — #1

9

The Finite Element Method for 2D
Elliptic PDEs

The procedure of the finite element method to solve 2D problems is the same
as that for 1D problems, as the flow chart below demonstrates.

PDE −→ Integration by parts −→ weak form in a space V : a(u, v)=L(v)

or min
v∈V

F(v) −→Vh (finite-dimensional space and basis functions)

−→ a(uh, vh)=L(vh) −→ uh and error analysis.

9.1 The Second Green’s Theorem and Integration by Parts in 2D

Let us first recall the 2D version of the well-known divergence theorem in
Cartesian coordinates.

Theorem 9.1. If F∈H1(Ω)×H1(Ω) is a vector in 2D, then∫ ∫
Ω
∇·F dxdy=

∫
∂Ω

F·n ds, (9.1)

where n is the unit normal direction pointing outward at the boundary ∂Ω with

line element ds, and ∇ is the gradient operator,∇=
[

∂
∂x ,

∂
∂y

]T
.

The second Green’s theorem is a corollary of the divergence theorem if we set

F= v∇u=
[
v
∂u
∂x
, v
∂u
∂y

]T
. Thus since

∇·F =
∂

∂x

(
v
∂u
∂x

)
+

∂

∂y

(
v
∂u
∂y

)

=
∂u
∂x

∂v
∂x

+ v
∂2u
∂x2 +

∂u
∂y

∂v
∂y

+ v
∂2u
∂y2

= ∇u · ∇v+ v∆u,

228

10
11:44:22, subject to the Cambridge Core terms of use,

“c09” — 2017/10/10 — 12:27 — page 229 — #2

9.1 The Second Green’s Theorem and Integration by Parts in 2D 229

Ω

∂Ω

∂Ω

n

n

Figure 9.1. A diagram of a 2D domain Ω, its boundary ∂Ω and its unit
normal direction.

where ∆u=∇·∇u= uxx + uyy, we obtain∫ ∫
Ω
∇·F dxdy =

∫ ∫
Ω
(∇u · ∇v+ v∆u) dxdy

=

∫
∂Ω

F · n ds

=

∫
∂Ω

v∇u · n ds=
∫
∂Ω

v
∂u
∂n

ds,

where n=(nx, ny) (n2x + n2y= 1) is the unit normal direction, and ∂u
∂n =∇u · n=

nx ∂u
∂x + ny ∂u∂y , the normal derivative of u, see Figure 9.1 for an illustration. This

result immediately yields the formula for integration by parts in 2D.

Theorem 9.2. If u(x, y)∈H2(Ω) and v(x, y)∈H1(Ω) where Ω is a bounded
domain, then∫ ∫

Ω
v∆u dxdy=

∫
∂Ω

v
∂u
∂n

ds−
∫ ∫

Ω
∇u · ∇v dxdy . (9.2)

Note: The normal derivative ∂u/∂n is sometimes written more concisely as un.

Some important elliptic PDEs in 2D Cartesian coordinates are:

uxx + uyy= 0, Laplace equation,

−uxx − uyy= f(x, y), Poisson equation,

−uxx − uyy + λu= f, generalized Helmholtz equation,

uxxxx + 2uxxyy + uyyyy= 0, Biharmonic equation.

When λ> 0, the generalized Helmholtz equation is easier to solve than when
λ< 0. Incidentally, the expressions involved in these PDEs may also be
abbreviated using the gradient operator ∇, e.g., uxx + uyy=∇·∇u=∆u as

10
11:44:22, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c09” — 2017/10/10 — 12:27 — page 230 — #3

230 The Finite Element Method for 2D Elliptic PDEs

mentioned before.We also recall that a general linear second-order elliptic PDE
has the form

a(x, y)uxx + 2b(x, y)uxy + c(x, y)uyy + d(x, y)ux
+ e(x, y)uy + g(x, y)u= f(x, y)

with discriminant b2 − ac< 0. A second-order self-adjoint elliptic PDE has the
form

−∇ · (p(x, y)∇u) + q(x, y)u= f(x, y). (9.3)

9.1.1 Boundary Conditions

In 2D, the domain boundary ∂Ω is one or several curves. We consider the
following various linear boundary conditions.

• Dirichlet boundary condition on the entire boundary, i.e., u(x, y)|∂Ω=

u0(x, y) is given.
• Neumann boundary condition on the entire boundary, i.e., ∂u/∂n|∂Ω=

g(x, y) is given.
In this case, the solution to a Poisson equation may not be unique or
even exist, depending upon whether a compatibility condition is satisfied.
Integrating the Poisson equation over the domain, we have∫ ∫

Ω
f dxdy=−

∫ ∫
Ω
∆u dxdy=−

∫ ∫
Ω
∇ · ∇u dxdy

=−
∫
∂Ω

un ds=−
∫
∂Ω

g(x, y) ds ,
(9.4)

which is the compatibility condition to be satisfied for the solution to exist. If
a solution does exist, it is not unique as it is determined within an arbitrary
constant.

• Mixed boundary condition on the entire boundary, i.e.,

α(x, y)u(x, y) + β(x, y)
∂u
∂n

= γ(x, y)

is given, where α(x, y), β(x, y), and γ(x, y) are known functions.
• Dirichlet, Neumann, and Mixed boundary conditions on some parts of the

boundary.

10
11:44:22, subject to the Cambridge Core terms of use,

“c09” — 2017/10/10 — 12:27 — page 231 — #4

9.2 Weak Form of Second-Order Self-Adjoint Elliptic PDEs 231

9.2 Weak Form of Second-Order Self-Adjoint Elliptic PDEs

Now we derive the weak form of the self-adjoint PDE (9.3) with a homoge-
neous Dirichlet boundary condition on part of the boundary ∂ΩD, u|∂ΩD = 0
and a homogeneous Neumann boundary condition on the rest of boundary
∂ΩN= ∂Ω− ∂ΩD, ∂u

∂n |∂ΩN = 0. Multiplying the equation (9.3) by a test function
v(x, y)∈H1(Ω), we have∫ ∫

Ω

{
−∇ · (p(x, y)∇u) + q(x, y) u

}
v dxdy=

∫ ∫
Ω
fv dxdy ;

and on using the formula for integration by parts the left-hand side becomes∫ ∫
Ω

(
p∇u · ∇v+ quv

)
dxdy−

∫
∂Ω

pvun ds ,

so the weak form is∫ ∫
Ω
(p∇u · ∇v+ quv) dxdy=

∫ ∫
Ω
fv dxdy

+

∫
∂ΩN

pg(x, y)v(x, y) ds ∀v(x, y)∈H1(Ω) .

(9.5)

Here ∂ΩN is the part of boundary where a Neumann boundary condition is
applied; and the solution space resides in

V=
{
v(x, y) , v(x, y)= 0 , (x, y)∈ ∂ΩD , v(x, y)∈H1(Ω)

}
, (9.6)

where ∂ΩD is the part of boundary where a Dirichlet boundary condition is
applied.

9.2.1 Verification of Conditions of the Lax–Milgram Lemma

The bilinear form for (9.3) is

a(u, v)=
∫ ∫

Ω
(p∇u · ∇v+ quv) dxdy , (9.7)

and the linear form is

L(v)=
∫ ∫

Ω
fv dxdy (9.8)

for a Dirichlet BC on the entire boundary. As before, we assume that

0< pmin≤ p(x, y)≤ pmax , 0≤ q(x)≤ qmax , p∈C(Ω) , q∈C(Ω) .

We need the Poincaré inequality to prove the V-elliptic condition.

10
11:44:22, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c09” — 2017/10/10 — 12:27 — page 232 — #5

232 The Finite Element Method for 2D Elliptic PDEs

Theorem 9.3. If v(x, y)∈H1
0(Ω),Ω⊂R2, i.e., v(x, y)∈H1(Ω) and vanishes at the

boundary ∂Ω (can be relaxed to a point on the boundary), then∫ ∫
Ω
v2dxdy≤C

∫∫
Ω
|∇v|2 dxdy , (9.9)

where C is a constant.

Now we are ready to check the conditions of the Lax–Milgram Lemma.

1. It is obvious that a(u, v)= a(v, u).

2. It is easy to see that

|a(u, v)| ≤ max {pmax, qmax}
∣∣∣∣∫ ∫

Ω
(|∇u · ∇v|+ |uv|) dxdy

∣∣∣∣
= max {pmax, qmax} |(|u|, |v|)1|
≤ max {pmax, qmax} ∥u∥1∥v∥1 ,

so a(u, v) is a continuous and bounded bilinear operator.

3. From the Poincaré inequality

|a(v, v)| =
∣∣∣∣∫ ∫

Ω
p
(
|∇v|2 + qv2

)
dxdy

∣∣∣∣
≥ pmin

∫ ∫
Ω
|∇v|2 dxdy

=
1
2
pmin

∫ ∫
Ω
|∇v|2 dxdy+ 1

2
pmin

∫ ∫
Ω
|∇v|2 dxdy

≥ 1
2
pmin

∫ ∫
Ω
|∇v|2 dxdy+ pmin

2C

∫ ∫
Ω
|v|2 dxdy

≥ 1
2
pmin min

{
1,

1
C

}
∥v∥2

1 ,

therefore a(u, v) is V-elliptic.

4. Finally, we show that L(v) is continuous:

|L(v)|= |(f, v)0| ≤ ∥ f ∥0∥v∥0 ≤∥ f ∥0∥v∥1 .

Consequently, the solutions to the weak form and the minimization form are
unique and bounded in H1

0(Ω).

10
11:44:22, subject to the Cambridge Core terms of use,

“c09” — 2017/10/10 — 12:27 — page 233 — #6

9.3 Triangulation and Basis Functions 233

9.3 Triangulation and Basis Functions

The general procedure of the finite element method is the same for any dimen-
sion, and the Galerkin finite element method involves the following main
steps.

• Generate a triangulation over the domain. Usually the triangulation is
composed of either triangles or rectangles. There are a number of mesh
generation software packages available, e.g., the Matlab PDE toolbox from
Mathworks, Triangle from Carnegie Mellon University, etc. Some are avail-
able through the Internet.

• Construct basis functions over the triangulation. We mainly consider the
conforming finite element method in this book.

• Assemble the stiffness matrix and the load vector element by element, using
either the Galerkin finite method (the weak form) or the Ritz finite element
method (the minimization form).

• Solve the system of equations.
• Do the error analysis.

In Figure 9.2, we show a diagram of a simple mesh generation process.
The circular domain is approximated by a polygon with five vertices (selected
points on the boundary).We then connect the five vertices and an interior point
to get an initial five triangles (solid line) to obtain an initial coarse mesh. We
can refine the mesh using the so-called middle point rule by connecting all the
middle points of all triangles in the initial mesh to obtain a finer mesh (solid
and dashed lines).

9.3.1 Triangulation and Mesh Parameters

Given a general domain, we can approximate the domain by a polygon and then
generate a triangulation over the polygon, and we can refine the triangulation if

Figure 9.2. A diagram of a simple generation process and the middle point
rule.

10
11:44:22, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c09” — 2017/10/10 — 12:27 — page 234 — #7

234 The Finite Element Method for 2D Elliptic PDEs

necessary. A simple approach is the mid-point rule by connecting all the middle
points of three sides of existing triangles to get a refined mesh.

A triangulation usually has the mesh parameters

Ωp : polygonal region=K1 ∪ K2 ∪ K3 · · · ∪ Knelem,

Kj : are nonoverlapping triangles, j= 1, 2, . . . , nelem,

Ni : are nodal points, i= 1, 2, . . . , nnode,

hj : the longest side of Kj,

ρj : the diameter of the circle inscribed in Kj (encircle),

h : the largest of all hj, h=max{hj} ,
ρ : the smallest of all ρj, ρ=min{ρj},

with

1≥
ρj
hj

≥β > 0,

where the constant β is a measurement of the triangulation quality (see
Figure 9.7 for an illustration of such ρ’s and h’s). The larger the β, the bet-
ter the quality of the triangulation. Given a triangulation, a node is also the
vertex of all adjacent triangles. We do not discuss hanging nodes here.

9.3.2 The FE Space of Piecewise Linear Functions over a Triangulation

For linear second-order elliptic PDEs, we know that the solution space is in the
H1(Ω). Unlike the 1D case, an element v(x, y) inH1(Ω)may not be continuous

x

h

a
1

a
2p1

p2

a
3

Figure 9.3. A diagram of a triangle with three vertices a1, a2, and a3; an adja-
cent triangle with a common side; and the local coordinate system in which
a2 is the origin and a2a3 is the η-axis.

10
11:44:22, subject to the Cambridge Core terms of use,

“c09” — 2017/10/10 — 12:27 — page 235 — #8

9.3 Triangulation and Basis Functions 235

under the Sobolev embedding theorem.However, in practicemost solutions are
indeed continuous, especially for second-order PDEs with certain regularities.
Thus, we still look for a solution in the continuous function spaceC0(Ω). Let us
first consider how to construct piecewise linear functions over a triangulation
with the Dirichlet BC

u(x, y)|∂Ω= 0.

Given a triangulation, we define

Vh =
{
v(x, y) is continuous in Ω and piecewise linear over each Kj,

v(x, y)|∂Ω= 0
}
. (9.10)

We need to determine the dimension of this space and construct a set of basis
functions. On each triangle, a linear function has the form

vh(x, y)=α+ βx+ γy , (9.11)

where α, β and γ are constants (three free parameters). Let

Pk= { p(x, y) , a polynomial of degree of k} . (9.12)

We have the following theorem.

Theorem 9.4.

1. A linear function p1(x, y)=α+ βx+ γy defined on a triangle is uniquely
determined by its values at the three vertices.

2. If p1(x, y)∈P1 and p2(x, y)∈P1 are such that p1(A)= p2(A) and p1(B)=
p2(B), where A and B are two points in the xy-plane, then p1(x, y)≡
p2(x, y), ∀(x, y)∈ IAB, where IAB is the line segment between A and B.

Proof Assume the vertices of the triangle are (xi, yi), i= 1, 2, 3. The linear
function takes the value vi at the vertices, i.e.,

p(xi, yi)= vi,

so we have the three equations

α+ βx1 + γy1 = v1,

α+ βx2 + γy2 = v2,

α+ βx3 + γy3 = v3.

10
11:44:22, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c09” — 2017/10/10 — 12:27 — page 236 — #9

236 The Finite Element Method for 2D Elliptic PDEs

The determinant of this linear algebraic system is

det


1 x1 y1

1 x2 y2

1 x3 y3

=±2 area of the triangle ̸= 0 since
ρj
hj

≥β > 0, (9.13)

hence the linear system of equations has a unique solution.
Now let us prove the second part of the theorem. Suppose that the equation

of the line segment is

l1x+ l2y+ l3 = 0 , l 21 + l 22 ̸= 0 .

We can solve for x or for y:

x = − l2y+ l3
l1

if l1 ̸= 0,

or y = − l1x+ l3
l2

if l2 ̸= 0 .

Without loss of generality, let us assume l2 ̸= 0 such that

p1(x, y) = α+ βx+ γy

= α+ βx− l1x+ l3
l2

γ

=

(
α− l3

l2
γ

)
+

(
β − l1

l2
γ

)
x

= α1 + β1x .

Similarly, we have

p2(x, y) = ᾱ1 + β̄1x .

Since p1(A)= p2(A) and p1(B)= p2(B),

α1 + β1x1 = p(A), ᾱ1 + β̄1x1 = p(A),

α1 + β1x2 = p(B), ᾱ1 + β̄1x2 = p(B),

where both of the linear systems of algebraic equations have the same coefficient
matrix [

1 x1

1 x2

]

10
11:44:22, subject to the Cambridge Core terms of use,

“c09” — 2017/10/10 — 12:27 — page 237 — #10

9.3 Triangulation and Basis Functions 237

that is nonsingular since x1 ̸= x2 (because pointsA and B are distinct). Thus we
conclude that α1 = ᾱ1 and β1 = β̄1, so the two linear functions have the same
expression along the line segment, i.e., they are identical along the line segment.

Corollary 9.5. A piecewise linear function in C0(Ω) ∩H1(Ω) over a triangula-
tion (a set of nonoverlapping triangles) is uniquely determined by its values at
the vertices.

Theorem 9.6. The dimension of the finite-dimensional space composed of piece-
wise linear functions in C0(Ω) ∩H1(Ω) over a triangulation for (9.3) is the
number of interior nodal points plus the number of nodal points on the boundary
where the natural BC are imposed (Neumann and mixed boundary conditions).

Example 9.7. Given the triangulation shown in Figure 9.4, a piecewise contin-
uous function vh(x, y) is determined by its values on the vertices of all triangles,
more precisely, vh(x, y) is determined from

(0, 0, v(N1)) , (x, y)∈K1 , (0, v(N2), v(N1)) , (x, y)∈K2 ,

(0, 0, v(N2)) , (x, y)∈K3 , (0, 0, v(N2)) , (x, y)∈K4 ,

(0, v(N3), v(N2)) , (x, y)∈K5 , (0, 0, v(N3)), (x, y)∈K6,

(0, v(N1), v(N3)) , (x, y)∈K7 , (v(N1), v(N2), v(N3)) , (x, y)∈K8 .

Note that although three values of the vertices are the same, like the values for
K3 and K4, the geometries are different, hence, the functions will likely have
different expressions on different triangles.

1

2

3

1

2

3

4

5

6

7

8

0
0

0

0

Figure 9.4. A diagramof a simple triangulationwith a homogeneous bound-
ary condition.

10
11:44:22, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c09” — 2017/10/10 — 12:27 — page 238 — #11

238 The Finite Element Method for 2D Elliptic PDEs

9.3.3 Global Basis Functions

A global basis function of the piecewise linear functions in C0(Ω) ∩H1(Ω) can
be defined as

ϕi(Nj)=

{
1 if i= j,

0 otherwise,
(9.14)

where Nj are nodal points. The shape (mesh plot) of ϕi(Nj) looks like a “tent”
without a door; and its support of ϕi(Nj) is the union of the triangles surround-
ing the nodeNi (cf.Figure 9.5, where Figure 9.5(a) is themesh plot of the global
basis function and Figure 9.5(b) is the plot of a triangulation and the con-
tour plot of the global basis function centered at a node). The basis function is
piecewise linear and it is supported only in the surrounding triangles.

It is almost impossible to give a closed form of a global basis function except
for some very special geometries (cf. the example in the next section). However,
it is much easier to write down the shape function.

Example 9.8. Let us consider a Poisson equation and a uniform mesh, as
an example to demonstrate the piecewise linear basis functions and the finite
element method:

−(uxx + uyy) = f(x, y), (x, y)∈ (a, b)× (c, d),

u(x, y)|∂Ω = 0.

We know how to use the standard central finite difference scheme with the
five-point stencil to solve the Poisson equation. With some manipulations, the

(a)

−2 −1.5
−1 −0.5

0 0.5 1 1.5 2

−2

−1

0

1

2
0

0.2

0.4

0.6

0.8

1

(b)

−2 −1 0 1 2
−2

−1

0

1

2

Figure 9.5. A global basis function ϕj: (a) the mesh plot of the global
function and (b) the triangulation and the contour plot of the global basis
function.

10
11:44:22, subject to the Cambridge Core terms of use,

“c09” — 2017/10/10 — 12:27 — page 239 — #12

9.3 Triangulation and Basis Functions 239

1 2 3

1

2

3

4

5

6

Figure 9.6. A uniform triangulation defined on a rectangular domain.

linear system of equations on using the finite element method with a uniform
triangulation (cf. Figure 9.6) proves to be the same as that obtained from the
finite difference method.

Given a uniform triangulation as shown in Figure 9.6, if we use row-wise
natural ordering for the nodal points

(xi, yj), xi= ih, yj= jh, h=
1
n
, i= 1, 2, . . . ,m− 1, j= 1, 2, . . . , n− 1,

then the global basis function defined at (xi, yj)= (ih, jh) is

ϕj(n−1)+i=



x− (i− 1)h+ y− (j− 1)h
h

− 1 Region 1

y− (j− 1)h
h

Region 2

h− (x− ih)
h

Region 3

1 − x− ih+ y− jh
h

Region 4

h− (y− jh)
h

Region 5

x− (i− 1)h
h

Region 6

0 otherwise .

10
11:44:22, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c09” — 2017/10/10 — 12:27 — page 240 — #13

240 The Finite Element Method for 2D Elliptic PDEs

If m= n= 3, there are nine interior nodal points such that the stiffness matrix
is a 9 × 9 matrix:

A=



∗ ∗ 0 ∗ 0 0 0 0 0

∗ ∗ ∗ o ∗ 0 0 0 0

0 ∗ ∗ 0 o ∗ 0 0 0

∗ o 0 ∗ ∗ 0 ∗ 0 0

0 ∗ o ∗ ∗ ∗ o ∗ 0

0 0 ∗ 0 ∗ ∗ 0 o ∗

0 0 0 ∗ o 0 ∗ ∗ 0

0 0 0 0 ∗ o ∗ ∗ ∗

0 0 0 0 0 ∗ 0 ∗ ∗



,

where “∗” stands for the nonzero entries and “o” happens to be zero for Poisson
equations. Generally, the stiffness matrix is block tridiagonal:

A=



B −I 0

−I B −I
· · · · · ·

· · · · · ·
−I B −I

−I B


, whereB=



4 −1 0

−1 4 −1

· · · · · ·
· · · · · ·
−1 4 −1

−1 4


and I is the identity matrix. The component of the load vector Fi can be
approximated as∫ ∫

D
f(x, y)ϕidxdy≃ fij

∫ ∫
D
ϕi dxdy= h2fij,

so after dividing by h2 we get the same system of equations as in the finite
difference scheme, namely,

−
Ui−1, j +Ui+1, j +Ui, j−1 +Ui, j+1 − 4Uij

h2
= fij,

with the same ordering.

10
11:44:22, subject to the Cambridge Core terms of use,

“c09” — 2017/10/10 — 12:27 — page 241 — #14

9.3 Triangulation and Basis Functions 241

9.3.4 The Interpolation Function and Error Analysis

We know that the finite element solution uh is the best solution in terms of
the energy norm in the finite-dimensional space Vh, i.e., ∥u− uh∥a≤∥u− vh∥a,
assuming that u is the solution to the weak form. However, this does not give a
quantitative estimate for the finite element solution, and we may wish to have a
more precise error estimate in terms of the solution information and the mesh
size h. This can be done through the interpolation function, for which an error
estimate is often available from the approximation theory. Note that the solu-
tion information appears as part of the error constants in the error estimates,
even though the solution is unknown. We will use the mesh parameters defined
on page 6 in the discussion here.

Definition 9.9. Given a triangulation ofTh, letK∈Th be a triangle with vertices
ai, i= 1, 2, 3. The interpolation function for a function v(x, y) on the triangle is
defined as

vI(x, y)=
3∑
i=1

v(ai)ϕi(x, y), (x, y)∈K , (9.15)

where ϕi(x, y) is the piecewise linear function that satisfies ϕi(a j)= δ
j
i (with δ ji

being the Kronecker delta). A global interpolation function is defined as

vI(x, y)=
nnode∑
i=1

v(ai)ϕi(x, y), (x, y)∈Th , (9.16)

where ai’s are all nodal points and ϕi(x, y) is the global basis function centered
at ai.

Theorem 9.10. If v(x, y)∈C2(K), then we have an error estimate for the inter-
polation function on a triangle K,

∥v− vI∥∞≤ 2h2 max
|α|=2

∥Dαv∥∞ , (9.17)

where h is the longest side. Furthermore, we have

max
|α|=1

∥Dα (v− vI) ∥∞≤ 8h2

ρ
max
|α|=2

∥Dαv∥∞. (9.18)

10
11:44:22, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c09” — 2017/10/10 — 12:27 — page 242 — #15

242 The Finite Element Method for 2D Elliptic PDEs

Proof From the definition of the interpolation function and the Taylor
expansion of v(ai) at (x, y), we have

vI(x, y) =
3∑
i=1

v(ai)ϕi(x, y)

=
3∑
i=1

ϕi(x, y)
(
v(x, y) +

∂v
∂x

(x, y)(xi − x) +
∂v
∂y

(x, y)(yi − y)

+
1
2
∂2v
∂x2 (ξ, η)(xi − x)2 +

∂2v
∂x∂y

(ξ, η)(xi − x)(yi − y) +
1
2
∂2v
∂y2 (ξ, η)(yi − y)2

)

=

3∑
i=1

ϕi(x, y)v(x, y) +
3∑
i=1

ϕi(x, y)
(
∂v
∂x

(x, y)(xi − x) +
∂v
∂y

(x, y)(yi − y)
)

+R(x, y),

where (ξ, η) is a point in the triangle K. It is easy to show that

|R(x, y)| ≤ 2h2 max
|α|=2

∥Dαv∥∞
3∑
i=1

|ϕi(x, y)|= 2h2 max
|α|=2

∥Dαv∥∞ ,

since ϕ(x, y)≥ 0 and
∑3

i=1 ϕi(x, y)= 1. If we take v(x, y)= 1, which is a linear
function, then ∂v/∂x= ∂v/∂y= 0 and max|α|=2 ∥Dαv∥∞= 0. The interpola-
tion is simply the function itself, since it is uniquely determined by the values
at the vertices of T, hence

vI(x, y)= v(x, y)=
3∑
i=1

v(ai)ϕi(x, y)=
3∑
i=1

ϕi(x, y)= 1 . (9.19)

If we take v(x, y)= d1x+ d2y, which is also a linear function, then ∂v/∂x= d1,
∂v/∂y= d2, and max|α|=2 ∥Dαv∥∞= 0. The interpolation is again simply the
function itself, since it is uniquely determined by the values at the vertices of
K. Thus from the previous Taylor expansion and the identity

∑3
i=1 ϕi(x, y)= 1,

we have

vI(x, y)= v(x, y)= v(x, y) +
3∑
i=1

ϕi(x, y) (d1(xi − x) + d2(yi − y))= v(x, y),

(9.20)

hence
∑3

i=1 ϕi(x, y) (d1(xi − x) + d2(yi − y))= 0 for any d1 and d2, i.e.,
the linear part in the expansion is the interpolation function. Consequently,

10
11:44:22, subject to the Cambridge Core terms of use,

“c09” — 2017/10/10 — 12:27 — page 243 — #16

9.3 Triangulation and Basis Functions 243

for a general function v(x, y)∈C2(K) we have

vI(x, y)= v(x, y) + R(x, y) , ∥v− vI∥∞≤ 2h2 max
|α|=2

∥Dαv∥∞ ,

which completes the proof of the first part of the theorem.
To prove the second part concerning the error estimate for the gradient,

choose a point (x0, y0) inside the triangle K and apply the Taylor expansion
at (x0, y0) to get

v(x, y) = v(x0, y0) +
∂v
∂x

(x0, y0)(x− x0) +
∂v
∂y

(x0, y0)(y− y0) + R2(x, y),

= p1(x, y) + R2(x, y), |R2(x, y)| ≤ 2h2 max
|α|=2

∥Dαv∥∞ .

Rewriting the interpolation function vI(x, y) as

vI(x, y)= v(x0, y0) +
∂v
∂x

(x0, y0)(x− x0) +
∂v
∂y

(x0, y0)(y− y0) + R1(x, y),

where R1(x, y) is a linear function of x and y, we have

vI(ai)= p1(a
i) + R1(a

i), i= 1, 2, 3,

from the definition above. On the other hand, vI(x, y) is the interpolation
function, such that also

vI(ai)= v(ai)= p1(a
i) + R2(a

i), i= 1, 2, 3.

Since p1(ai) + R1(ai)= p1(ai) + R2(ai), it follows that R1(ai)=R2(ai), i.e.,
R1(x, y) is the interpolation function of R2(x, y) in the triangle K, and we have

R1(x, y)=
3∑
i=1

R2(a
i)ϕi(x, y) .

With this equality and on differentiating

vI(x, y)= v(x0, y0) +
∂v
∂x

(x0, y0)(x− x0) +
∂v
∂y

(x0, y0)(y− y0) + R1(x, y)

with respect to x, we get

∂vI
∂x

(x, y)=
∂v
∂x

(x0, y0) +
∂R1

∂x
(x, y)=

∂v
∂x

(x0, y0) +
3∑
i=1

R2(a
i)
∂ϕi
∂x

(x, y) .

10
11:44:22, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c09” — 2017/10/10 — 12:27 — page 244 — #17

244 The Finite Element Method for 2D Elliptic PDEs

h

r

a
1

a
2

a
3

h

x

x1

Figure 9.7. A diagram used to prove Theorem 9.10.

Applying the Taylor expansion for ∂v(x, y)/∂x at (x0, y0) gives

∂v
∂x

(x, y)=
∂v
∂x

(x0, y0) +
∂2v
∂x2 (x̄, ȳ)(x− x0) +

∂2v
∂x∂y

(x̄, ȳ)(y− y0) ,

where (x̄, ȳ) is a point in the triangle K. From the last two equalities, we obtain∣∣∣∣ ∂v∂x − ∂vI
∂x

∣∣∣∣ =
∣∣∣∣∣ ∂2v
∂x2 (x̄, ȳ)(x− x0) +

∂2v
∂x∂y

(x̄, ȳ)(y− y0)−
3∑
i=1

R2(a
i)
∂ϕi
∂x

∣∣∣∣∣
≤ max

|α|=2
∥Dαv∥∞

(
2h+ 2h2

3∑
i=1

∣∣∣∣∂ϕi∂x

∣∣∣∣
)
.

It remains to prove that |∂ϕi/∂x| ≤ 1/ρ, i= 1, 2, 3. We take i= 1 as an illustra-
tion, and use a shift and rotation coordinate transform such that a2a3 is the η
axis and a2 is the origin (cf. Figure 9.7):

ξ = (x− x2) cos θ + (y− y2) sin θ ,

η = −(x− x2) sin θ + (y− y2) cos θ .

Then ϕ1(x, y)=ϕ1(ξ, η)=Cξ= ξ/ξ1, where ξ1 is the ξ coordinate in the (ξ, η)
coordinate system, such that∣∣∣∣∂ϕ1

∂x

∣∣∣∣= ∣∣∣∣∂ϕ1

∂ξ
cos θ − ∂ϕ1

∂η
sin θ

∣∣∣∣≤ ∣∣∣∣ 1ξ1 cos θ

∣∣∣∣≤ 1
|ξ1|

≤ 1
ρ
.

The same estimate applies to ∂ϕi/∂x, i= 2, 3, so finally we have∣∣∣∣ ∂v∂x − ∂vI
∂x

∣∣∣∣≤max
|α|=2

∥Dαv∥∞
(
2h+

6h2

ρ

)
≤ 8h2

ρ
max
|α|=2

∥Dαv∥∞ ,

10
11:44:22, subject to the Cambridge Core terms of use,

“c09” — 2017/10/10 — 12:27 — page 245 — #18

9.3 Triangulation and Basis Functions 245

from the fact that ρ≤ h. Similarly, we may obtain the same error estimate for
∂vI/∂y. �

Corollary 9.11. Given a triangulation of Th, we have the following error
estimates for the interpolation function:

∥v− vI∥L2(Th)≤C1h
2∥v∥H 2(Th), ∥v− vI∥H1(Th)≤C2h∥v∥H 2(Th) , (9.21)

where C1 and C2 are constants.

9.3.5 Error Estimates of the FE Solution

Let us now recall the 2D Sturm–Liouville problem in a bounded domain Ω:

−∇ · (p(x, y)∇u(x, y)) + q(x, y)u(x, y)= f(x, y), (x, y)∈Ω,

u(x, y)∂Ω= u0(x, y),

where u0(x, y) is a given function, i.e., a Dirichlet BC is prescribed. If we assume
that p, q∈C(Ω), p(x, y)≥ p0> 0, q(x, y)≥ 0, f∈L2(Ω) and the boundary ∂Ω
is smooth (in C1), then we know that the weak form has a unique solution
and the energy norm ∥v∥a is equivalent to the H1 norm ∥v∥1. Furthermore,
we know that the solution u(x, y)∈H2(Ω). Given a triangulation Th with a
polygonal approximation to the outer boundary ∂Ω, let Vh be the piecewise
linear function space over the triangulation Th, and uh be the finite element
solution. With those assumptions, we have the following theorem for the error
estimates.

Theorem 9.12.

∥u− uh∥a≤C1h∥u∥H2(Th), ∥u− uh∥H1(Th)≤C2h∥u∥H2(Th), (9.22)

∥u− uh∥L2(Th)≤C3h
2∥u∥H2(Th), ∥u− uh∥∞≤C4h

2∥u∥H2(Th), (9.23)

where Ci are constants.

Sketch of the proof. Since the finite element solution is the best solution in the
energy norm, we have

∥u− uh∥a≤∥u− uI∥a≤ C̄1∥u− uI∥H1(Th)≤ C̄1C̄2h∥u∥H2(Th),

because the energy norm is equivalent to theH1 norm. Furthermore, because of
the equivalence we get the estimate for theH1 norm as well. The error estimates
for theL2 andL∞ norm are not trivial in 2D, and the readermay care to consult
other advanced textbooks on finite element methods.

10
11:44:22, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c09” — 2017/10/10 — 12:27 — page 246 — #19

246 The Finite Element Method for 2D Elliptic PDEs

(x1, y1)

(x2, y2)

(x3, y3)

(x, y)

(0,0)

(x,h)

(1,0)

(0,1)

h

x

Figure 9.8. The linear transform from an arbitrary triangle to the standard
triangle (master element) and the inverse map.

9.4 Transforms, Shape Functions, and Quadrature Formulas

Any triangle with nonzero area can be transformed to the right-isosceles master
triangle, or standard triangle △ (cf. Figure 9.8). There are three nonzero basis
functions over this standard triangle △, namely,

ψ1(ξ, η) = 1 − ξ − η, (9.24)

ψ2(ξ, η) = ξ, (9.25)

ψ3(ξ, η) = η. (9.26)

The linear transform from a triangle with vertices (x1, y1), (x2, y2), and
(x3, y3) arranged in the counterclockwise direction to the master triangle
△ is

x=
3∑
j=1

xjψj(ξ, η), y=
3∑
j=1

yjψj(ξ, η), (9.27)

or

ξ =
1

2Ae

(
(y3 − y1)(x− x1)− (x3 − x1)(y− y1)

)
, (9.28)

η =
1

2Ae

(
−(y2 − y1)(x− x1) + (x2 − x1)(y− y1)

)
, (9.29)

where Ae is the area of the triangle that can be calculated using the formula in
(9.13).

10
11:44:22, subject to the Cambridge Core terms of use,

“c09” — 2017/10/10 — 12:27 — page 247 — #20

9.4 Transforms, Shape Functions, and Quadrature Formulas 247

a

a

b

a

b

d

c

c

Figure 9.9. A diagram of the quadrature formulas in 2D with one, three, and
four quadrature points, respectively.

Table 9.1. Quadrature points and weights corresponding to the geometry in
Figure 9.9

L Points (ξk, ηk) wk

1 a
(

1
3
,

1
3

)
1
2

3 a
(

0,
1
2

)
1
6

b
(

1
2
, 0

)
1
6

c
(

1
2
,

1
2

)
1
6

4 a
(

1
3
,

1
3

)
− 27

96

b
(

2
15
,

11
15

)
25
96

c
(

2
15
,

2
15

)
25
96

d
(

11
15
,

2
15

)
25
96

9.4.1 Quadrature Formulas
In the assembling process, we need to evaluate the double integrals∫ ∫

Ωe

q(x, y)ϕi(x, y)ϕj(x, y) dxdy =

∫ ∫
△
q(ξ, η)ψi(ξ, η)ψj(ξ, η)

∣∣∣∣∂(x, y)(∂ξ, η)

∣∣∣∣ dξdη,

10
11:44:22, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c09” — 2017/10/10 — 12:27 — page 248 — #21

248 The Finite Element Method for 2D Elliptic PDEs∫ ∫
Ωe

f(x, y)ϕj(x, y) dxdy =

∫ ∫
△
f(ξ, η)ψj(ξ, η)

∣∣∣∣∂(x, y)(∂ξ, η)

∣∣∣∣ dξdη,
∫ ∫

Ωe

p(x, y)∇ϕi · ∇ϕj dxdy =

∫ ∫
△
p(ξ, η)∇(x,y)ψi · ∇(x,y)ψj

∣∣∣∣ (∂(x, y)∂ξ, η)

∣∣∣∣ dξdη
in which, for example, q(ξ, η) should really be q(x(ξ, η), y(ξ, η))= q̄(ξ, η) and
so on. For simplification of the notations, we omit the bar symbol.

A quadrature formula has the form

∫∫
S△

g(ξ, η)dξdη=
L∑
k=1

wk g(ξk, ηk), (9.30)

where S△ is the standard right triangle and L is the number of points involved
in the quadrature. In Table 9.1 we list some commonly used quadrature for-
mulas in 2D using one, three, and four points. The geometry of the points is
illustrated in Figure 9.9, and the coordinates of the points and the weights are
given in Table 9.1. It is noted that only the three-point quadrature formula is
closed, since the three points are on the boundary of the triangle, and the other
quadrature formulas are open.

9.5 Some Implementation Details

The procedure is essentially the same as in the 1D case, but some details are
slightly different.

9.5.1 Description of a Triangulation

A triangulation is determined by its elements and nodal points. We use the
following notation:

• Nodal points: Ni, (x1, y1), (x2, y2), . . . , (xnnode, ynnode), i.e., we assume there
are nnode nodal points.

• Elements: Ki, K1,K2, . . . ,Knelem, i.e., we assume there are nelem elements.
• A 2D array nodes is used to describe the relation between the nodal points

and the elements: nodes(3, nelem). The first index is the index of nodal point
in an element, usually in the counterclockwise direction, and the second
index is the index of the element.

10
11:44:22, subject to the Cambridge Core terms of use,

“c09” — 2017/10/10 — 12:27 — page 249 — #22

9.5 Some Implementation Details 249

1 2 3 4

85

9 12

13 16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Figure 9.10. A simple triangulation with the row-wise natural ordering.

Example 9.13. Below we show the relation between the index of the nodal
points and elements, and its relations, cf. also Figure 9.10.

nodes(1, 1)= 5, (x5, y5)= (0, h),

nodes(2, 1)= 1, (x1, y1)= (0, 0) ,

nodes(3, 1)= 6, (x6, y6)= (h, h) ,

nodes(1, 10)= 7, (x7, y7)= (2h, h),

nodes(2, 10)= 11, (x11, y11)= (2h, 2h) ,

nodes(3, 10)= 6 , (x6, y6)= (h, h).

9.5.2 Outline of the FE Algorithm using the Piecewise
Linear Basis Functions

The main assembling process is the following loop.

for nel = 1:nelem
i1 = nodes(1,nel); % (x(i1),y(i1)), get nodal points
i2 = nodes(2,nel); % (x(i2),y(i2))
i3 = nodes(3,nel); % (x(i3),y(i3))

..............

• Computing the local stiffness matrix and the load vector.

ef=zeros(3,1);
ek = zeros(3,3);
for l=1:nq % nq is the number of quadrature points.
[xi_x(l),eta_y(l)] = getint, % Get a quadrature point.
[psi,dpsi] = shape(xi_x(l),eta_y(l));
[x_l,y_l] = transform, % Get (x,y) from (\xi_x(l), \eta_y(l))

10
11:44:22, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c09” — 2017/10/10 — 12:27 — page 250 — #23

250 The Finite Element Method for 2D Elliptic PDEs

[xk,xq,xf] = getmat(x_l,y_l); % Get the material
%coefficients at the quadrature point.

for i= 1:3
ef(i) = ef(i) + psi(i)*xf*w(l)*J; % J is the Jacobian
for j=1:3

ek(i,j)=ek(i,j)+ (T + xq*psi(i)*psi(j))*J % see below
end

end
end

Note that psi has three values corresponding to three nonzero basis func-
tions; dpsi is a 3 × 2 matrix which contains the partial derivatives ∂ψi/∂ξ and
∂ψi/∂η. The evaluation of T is∫ ∫

Ωe

p(x, y)∇ϕi · ∇ϕj dx dy=
∫ ∫

Ωe

p(ξ, η)
(
∂ψi
∂x

∂ψj
∂x

+
∂ψi
∂y

∂ψj
∂y

)
|J| dξ dη ,

where J= ∂(x,y)
∂(ξ,η) is the Jacobian of the transform.Weneed to calculate ∂ψi/∂x

and ∂ψi/∂y in terms of ξ and η. Notice that

∂ψi
∂x

=
∂ψi
∂ξ

∂ξ

∂x
+
∂ψi
∂η

∂η

∂x
,

∂ψi
∂y

=
∂ψi
∂ξ

∂ξ

∂y
+
∂ψi
∂η

∂η

∂y
.

Since we know that

ξ =
1

2Ae

(
(y3 − y1)(x− x1)− (x3 − x1)(y− y1)

)
,

η =
1

2Ae

(
−(y2 − y1)(x− x1) + (x2 − x1)(y− y1)

)
,

we obtain those partial derivatives below,

∂ξ

∂x
=

1
2Ae

(y3 − y1),
∂ξ

∂y
=− 1

2Ae
(x3 − x1) ,

∂η

∂x
=− 1

2Ae
(y2 − y1),

∂η

∂y
=

1
2Ae

(x2 − x1) .

• Add to the global stiffness matrix and the load vector.

for i= 1:3
ig = nodes(i,nel);
gf(ig) = gf(ig) + ef(i);
for j=1:3

jg = nodes(j,nel);
gk(ig,jg) = gk(ig,jg) + ek(i,j);

end
end

10
11:44:22, subject to the Cambridge Core terms of use,

“c09” — 2017/10/10 — 12:27 — page 251 — #24

9.6 Simplification of the FE Method for Poisson Equations 251

• Solve the system of equations gkU= gf.

– Direct method, e.g., Gaussian elimination.
– Sparse matrix technique, e.g., A= sparse(M,M).
– Iterative method plus preconditioning, e.g., Jacobi, Gauss–Seidel,

SOR(ω), conjugate gradient methods, etc.

• Error analysis.

– Construct interpolation functions.
– Error estimates for interpolation functions.
– Finite element solution is the best approximation in the finite element

space in the energy norm.

9.6 Simplification of the FE Method for Poisson Equations

With constant coefficients, there is a closed form for the local stiffness matrix,
in terms of the coordinates of the nodal points; so the finite element algorithm
can be simplified. We now introduce the simplified finite element algorithm.
A good reference is White (1985): An introduction to the finite element method
with applications to nonlinear problems by R.E. White, John Wiley & Sons.

Let us consider the Poisson equation below

−∆u = f(x, y), (x, y)∈Ω,

u(x, y) = g(x, y) , (x, y)∈ ∂Ω1,

∂u
∂n

= 0 , (x, y)∈ ∂Ω2,

whereΩ is an arbitrary but bounded domain. We can use Matlab PDE Toolbox
to generate a triangulation for the domain Ω.

The weak form is ∫ ∫
Ω
∇u · ∇v dxdy=

∫ ∫
Ω
fv dxdy.

With the piecewise linear basis functions defined on a triangulation on Ω, we
can derive analytic expressions for the basis functions and the entries of the
local stiffness matrix.

Theorem 9.14. Consider a triangle determined by (x1, y1), (x2, y2) and (x3, y3).
Let

ai = xjym − xmyj, (9.31)

bi = yj − ym, (9.32)

ci = xm − xj, (9.33)

10
11:44:22, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c09” — 2017/10/10 — 12:27 — page 252 — #25

252 The Finite Element Method for 2D Elliptic PDEs

where i, j, m is a positive permutation of 1, 2, 3, e.g., i= 1, j= 2 and m= 3; i= 2,
j= 3 and m= 1; and i= 3, j= 1 and m= 2. Then the corresponding three nonzero
basis functions are

ψi(x, y)=
ai + bi x+ ci y

2∆
, i= 1, 2, 3 , (9.34)

where ψi(xi, yi)= 1, ψi(xj, yj)= 0 if i ̸= j, and

∆=
1
2
det


1 x1 y1

1 x2 y2

1 x3 y3

=± area of the triangle. (9.35)

We prove the theorem for ψ1(x, y). Substitute a1, b1, and c1 in terms of xi
and yi in the definition of ψ1, we have,

ψ1(x, y) =
a1 + b1x+ c1y

2∆
,

=
(x2y3 − x3y2) + (y2 − y3)x+ (x3 − x2)y

2∆
,

so ψ1(x2, y2) =
(x2y3 − x3y2) + (y2 − y3)x2 + (x3 − x2)y2

2∆
= 0,

ψ1(x3, y3) =
(x2y3 − x3y2) + (y2 − y3)x3 + (x3 − x2)y3

2∆
= 0,

ψ1(x1, y1) =
(x2y3 − x3y2) + (y2 − y3)x1 + (x3 − x2)y1

2∆
=

2∆
2∆

= 1.

We can prove the same feature for ψ2 and ψ3.

We also have the following theorem, which is essential for the simplified finite
element method.

10
11:44:22, subject to the Cambridge Core terms of use,

“c09” — 2017/10/10 — 12:27 — page 253 — #26

9.6 Simplification of the FE Method for Poisson Equations 253

Theorem 9.15. With the same notations as in Theorem 9.14, we have∫ ∫
Ωe

(ψ1)
m(ψ2)

n(ψ3)
l dxdy=

m! n! l!
(m+ n+ l+ 2) !

2∆, (9.36)

∫ ∫
Ωe

∇ψi · ∇ψj dxdy=
bibj + cicj

4∆
,

Fe1 =
∫ ∫

Ωe

ψ1 f(x, y) dxdy≃ f1
∆

6
+ f2

∆

12
+ f3

∆

12
,

Fe2 =
∫ ∫

Ωe

ψ2 f(x, y) dxdy≃ f1
∆

12
+ f2

∆

6
+ f3

∆

12
,

Fe3 =
∫ ∫

Ωe

ψ3 f(x, y) dxdy≃ f1
∆

12
+ f2

∆

12
+ f3

∆

6
,

where fi= f(xi, yi).

The proof is straightforward since we have the analytic form for ψi. We
approximate f(x, y) using

f(x, y)≃ f1ψ1 + f2ψ2 + f3ψ3, (9.37)

and therefore

Fe1 ≃
∫ ∫

Ωe

ψ1 f(x, y) dxdy

= f1

∫ ∫
Ωe

ψ2
1dxdy+ f2

∫ ∫
Ωe

ψ1ψ2 dxdy+ f3

∫ ∫
Ωe

ψ1ψ3 dxdy.
(9.38)

Note that the integrals in the last expression can be obtained from the formula
(9.36). There is a negligible error from approximating f(x, y) comparedwith the
error from the finite element approximationwhenwe seek approximate solution
only in Vh space instead of H1(Ω) space. Similarly we can get approximation
Fe2 and Fe3 .

9.6.1 A Pseudo-code of the Simplified FE Method

Assume that we have a triangulation, e,g., a triangulation generated from
Matlab by saving the mesh. Then we have

p(1, 1), p(1, 2), . . . , p(1, nnode) as x coordinates of the nodal points,

p(2, 1), p(2, 2), . . . , p(2, nnode) as y coordinates of the nodal points;

10
11:44:22, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c09” — 2017/10/10 — 12:27 — page 254 — #27

254 The Finite Element Method for 2D Elliptic PDEs

and the array t (the nodes in our earlier notation)

t(1, 1), t(1, 2), . . . , t(1, nele) as the index of the first node of an element,

t(2, 1), t(2, 2), . . . , t(2, nele) as the index of the second node of the element,

t(3, 1), t(3, 2), . . . , t(3, nele) as the index of the third node of the element;

and the array e to describe the nodal points on the boundary

e(1, 1), e(1, 2), . . . , e(1, nbc) as the index of the beginning node of a

boundary edge,

e(2, 1), e(2, 2), . . . , e(2, nbc) as the index of the end node of the

boundary edge.

A Matlab code for the simplified finite element method is listed below.

% Set-up: assume we have a triangulation p,e,t from Matlab PDE tool box
% already.

[ijunk,nelem] = size(t);
[ijunk,nnode] = size(p);

for i=1:nelem
nodes(1,i)=t(1,i);
nodes(2,i)=t(2,i);
nodes(3,i)=t(3,i);

end

gk=zeros(nnode,nnode);
gf = zeros(nnode,1);

for nel = 1:nelem, % Begin to assemble by element.

for j=1:3, % The coordinates of the nodes in the
jj = nodes(j,nel); % element.
xx(j) = p(1,jj);
yy(j) = p(2,jj);

end

for nel = 1:nelem, % Begin to assemble by element.

for j=1:3, % The coordinates of the nodes in the
jj = nodes(j,nel); % element.
xx(j) = p(1,jj);
yy(j) = p(2,jj);

end

for i=1:3,

10
11:44:22, subject to the Cambridge Core terms of use,

“c09” — 2017/10/10 — 12:27 — page 255 — #28

9.6 Simplification of the FE Method for Poisson Equations 255

j = i+1 - fix((i+1)/3)*3;
if j == 0

j = 3;
end
m = i+2 - fix((i+2)/3)*3;
if m == 0

m = 3;
end

a(i) = xx(j)*yy(m) - xx(m)*yy(j);
b(i) = yy(j) - yy(m);
c(i) = xx(m) - xx(j);

end

delta = (c(3)*b(2) - c(2)*b(3))/2.0; % Area.

for ir = 1:3,
ii = nodes(ir,nel);
for ic=1:3,

ak = (b(ir)*b(ic) + c(ir)*c(ic))/(4*delta);
jj = nodes(ic,nel);
gk(ii,jj) = gk(ii,jj) + ak;

end
j = ir+1 - fix((ir+1)/3)*3;

if j == 0
j = 3;

end
m = ir+2 - fix((ir+2)/3)*3;

if m == 0
m = 3;

end
gf(ii) = gf(ii)+(f(xx(ir),yy(ir))*2.0 + f(xx(j),yy(j)) ...

+ f(xx(m),yy(m)))*delta/12.0;
end

end % End assembling by element.

%--
% Now deal with the Dirichlet BC

[ijunk,npres] = size(e);
for i=1:npres,

xb = p(1,e(1,i)); yb=p(2,e(1,i));
g1(i) = uexact(xb,yb);

end

for i=1:npres,
nod = e(1,i);
for k=1:nnode,

gf(k) = gf(k) - gk(k,nod)*g1(i);
gk(nod,k) = 0;
gk(k,nod) = 0;

10
11:44:22, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c09” — 2017/10/10 — 12:27 — page 256 — #29

256 The Finite Element Method for 2D Elliptic PDEs

end
gk(nod,nod) = 1;
gf(nod) = g1(i);

end

u=gk\gf; % Solve the linear system.
pdemesh(p,e,t,u) % Plot the solution.

% End.

Example 9.16. We test the simplified finite element method to solve a Poisson
equation using the following example:

• Domain: Unit square with a hole (cf. Figure 9.11).
• Exact solution: u(x, y)= x2 + y2, for f(x, y)=−4.
• BC: Dirichlet condition on the whole boundary.
• Use Matlab PDE Toolbox to generate initial mesh and then export it.

Figure 9.11 shows the domain and the mesh generated by the Matlab PDE
Toolbox. Figure 9.12(a) is the mesh plot for the finite element solution, and the
Figure 9.12(b) is the error plot (the magnitude of the error is O(h2)).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 9.11. A mesh generated from Matlab.

10
11:44:22, subject to the Cambridge Core terms of use,

“c09” — 2017/10/10 — 12:27 — page 257 — #30

9.7 Some FE Spaces in H1(Ω) and H2(Ω) 257

(a)

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b)

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−8

−6

−4

−2

0

2

4

6
x 10

−3

Figure 9.12. (a) A plot of the finite element solution when f(x, y)=−4 and
(b) the corresponding error plot.

9.7 Some FE Spaces in H1(Ω) and H2(Ω)

Given a triangulation (triangles, rectangles, quadrilaterals, etc.), let us construct
different finite element spaces with finite dimensions. There are several reasons
to do so, including:

• better accuracy of the finite element solution, with piecewise higher-order
polynomial basis functions, and

• to allow for higher-order derivatives in higher-order PDEs, e.g., in solving
the biharmonic equation in H2 space.

As previously mentioned, we consider conforming piecewise polynomial
finite element spaces. A set of polynomials of degree k is denoted by

Pk=

v(x, y) , v(x, y)=
i+j≤k∑
i,j=0

aij xix j

,
in the xy-plane. Below we list some examples,

P1 = { v(x, y), v(x, y)= a00 + a10x+ a01y },

P2 =
{
v(x, y), v(x, y)= a00 + a10x+ a01y+ a20x

2 + a11xy+ a02y
2
}
,

P3 = P2 +
{
a30x

3 + a21x
2y+ a12xy

2 + a03y
3
}
,

· · · .

Degree of freedom of Pk. For any fixed xi, all the possible yj terms in a
pk(x, y)∈Pk are y0, y1, . . ., yk−i, i.e., j ranges from 0 to k− i. Thus there are

10
11:44:22, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c09” — 2017/10/10 — 12:27 — page 258 — #31

258 The Finite Element Method for 2D Elliptic PDEs

k− i+ 1 parameters for a given xi, and the total degree of freedom is

k∑
i=0

(k− i+ 1) =
k∑
i=0

(k+ 1)−
k∑
i=0

i

= (k+ 1)2 − k(k+ 1)
2

=
(k+ 1)(k+ 2)

2
.

Some degrees of freedom for different k’s are:

• 3 when k= 1, the linear function space P1;
• 6 when k= 2, the quadratic function space P2;
• 10 when k= 3, the cubic function space P3;
• 15 when k= 4, the fourth-order polynomials space P4; and
• 21 when k= 5, the fifth-order polynomials space P5.

Regularity requirements: Generally, we cannot conclude that v(x, y)∈C0 if
v(x, y)∈H1. However, if Vh is a finite-dimensional space of piecewise poly-
nomials, then that is indeed true. Similarly, if v(x, y)∈H2 and v(x, y)|Ki ∈
Pk, ∀Ki ∈Th, then v(x, y)∈C1. The regularity requirements are important for
the construction of finite element spaces.

As is quite well known, there are two ways to improve the accuracy. One way
is to decrease the mesh size h, and the other is to use high-order polynomial
spaces Pk. If we use a Pk space on a given triangulation Th for a linear second-
order elliptic PDE, the error estimates for the finite element solution uh are

∥u− uh∥H1(Ω)≤C1h
k∥u∥Hk+1(Ω), ∥u− uh∥L2(Ω)≤C2h

k+1∥u∥Hk+1(Ω). (9.39)

9.7.1 A Piecewise Quadratic Function Space

The degree of freedom of a quadratic function on a triangle is six, so we may
add three auxiliary middle points along the three sides of the triangle.

Theorem 9.17. Consider a triangle K=(a1, a2, a3), as shown in Figure 9.13.
A function v(x, y)∈P2(K) is uniquely determined by its values at

v(ai), i= 1, 2, 3, and the three middle points v(a12), v(a23), v(a31).

As there are six parameters and six conditions, we expect to be able to
determine the quadratic function uniquely. Highlights of the proof are as
follows.

• We just need to prove the homogeneous case v(ai)= 0, v(aij)= 0, since the
right-hand side does not affect the existence and uniqueness.

10
11:44:22, subject to the Cambridge Core terms of use,

“c09” — 2017/10/10 — 12:27 — page 259 — #32

9.7 Some FE Spaces in H1(Ω) and H2(Ω) 259

a
31

a
23

a
12

a
3

a
2a

1

Figure 9.13. A diagram of six points in a triangle to determine a quadratic
function.

• We can represent a quadratic function as a product of two linear functions,
i.e., v(x)=ψ1(x)ω(x)=ψ1(x)ψ2(x)ω0, with ψi(x) denoting the local linear
basis function such that ψi(ai)= 1 and ψi(aj)= 0 if i ̸= j. Note that here we
use x=(x, y) notation for convenience.

• It is easier to introduce a coordinate axis aligned with one of the three sides.

Proof We introduce the new coordinates (cf. Figure 9.7)

ξ = (x− x2) cosα+ (y− y2) sinα ,

η = −(x− x2) sinα+ (y− y2) cosα ,

such that a2 is the origin and a2a3 is the η- axis. Then v(x, y) can be written as

v(x, y)= v(x(ξ, η), y(ξ, η))= v̄(ξ, η) = ā00 + ā10ξ + ā01η + ā20ξ
2

+ ā11ξη + ā02η
2.

Furthermore, under the new coordinates, we have

ψ1(ξ, η)=σ + βξ + γη=βξ , β ̸= 0,

since ψ1(a2)=ψ1(a3)= 0. Along the η-axis (ξ= 0), v̄(ξ, η) has the following
form

v̄(0, η)= ā00 + ā01η + ā02η
2.

Since v̄(a2)= v̄(a3)= v̄(a23)= 0, we get ā00 = 0, ā01 = 0 and ā02 = 0, therefore,

v̄(ξ, η) = ā10ξ + ā11ξη + ā20ξ
2 = ξ (ā10 + ā11η + ā20ξ)

= βξ

(
ā10
β

+
ā20
β
ξ +

ā11
β
η

)
= ψ1(ξ, η)ω(ξ, η).

10
11:44:22, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c09” — 2017/10/10 — 12:27 — page 260 — #33

260 The Finite Element Method for 2D Elliptic PDEs

Similarly, along the edge a1a3, we have

v(a13) = ψ1(a
13)ω(a13)=

1
2
ω(a13)= 0,

v(a1) = ψ1(a
1)ω(a1)=ω(a1)= 0,

i.e.,

ω(a13)= 0, ω(a1)= 0.

By similar arguments, we conclude that

ω(x, y)=ψ2(x, y)ω0,

and hence

v(x, y)=ψ1(x, y)ψ2(x, y)ω0.

Using the zero value of v at a12, we have

v(a12)=ψ1(a
12)ψ2(a

12)ω0 =
1
2

1
2
ω0 = 0 ,

so we must have ω0 = 0 and hence v(x, y)≡ 0.

9.7.1.1 Continuity Along the Edges

Along each edge, a quadratic function v(x, y) can be written as a quadratic
function of one variable. For example, if the edge is represented as

y= ax+ b or x= ay+ b,

then

v(x, y)= v(x, ax+ b) or v(x, y)= v(ay+ b, y).

Thus, the piecewise quadratic functions defined on two triangles with a com-
mon side are identical on the entire side if they have the same values at the two
end points and at the mid-point of the side.

9.7.1.2 Representing Quadratic Basis Functions using Linear Functions

To define quadratic basis functions with minimum compact support, we can
determine the six nonzero functions using the values at three vertices and
themid-points v=(v(a1), v(a2), v(a3), v(a12), v(a23), v(a13))∈R6.We can either
take v= ei ∈R6, i= 1, 2, . . . , 6, respectively, or determine a quadratic func-
tion on the triangle using the linear basis functions as stated in the following
theorem.

10
11:44:22, subject to the Cambridge Core terms of use,

“c09” — 2017/10/10 — 12:27 — page 261 — #34

9.7 Some FE Spaces in H1(Ω) and H2(Ω) 261

Theorem 9.18. A quadratic function on a triangle can be represented by

v(x, y) =
3∑
i=1

v(ai)ϕi(x, y)
(
2ϕi(x, y)− 1

)
+

3∑
i,j=1,i<j

4 v(aij)ϕi(x, y)ϕj(x, y),

(9.40)

where ϕi(x, y), i= 1, 2, 3, is one of the three linear basis functions centered at one
of the vertices ai.

Proof It is easy to verify the vertices if we substitute a j into the right-hand side
of the expression above,

v(a j)ϕj(a j)
(
2ϕj(a j)− 1

)
= v(a j),

since ϕi(a j)= 0 if i ̸= j. We take one mid-point to verify the theorem. On
substituting a12 into the left expression, we have

v(a1)ϕ1(a
12)
(
2ϕ1(a

12)− 1
)
+ v(a2)ϕ2(a

12)
(
2ϕ2(a

12)− 1
)

+ v(a3)ϕ3(a
12)
(
2ϕ3(a

12)− 1
)
+ 4v(a12)ϕ1(a

12)ϕ2(a
12)

+ 4v(a13)ϕ1(a
12)ϕ3(a

12) + 4v(a23)ϕ2(a
12)ϕ3(a

12)

= v(a12) ,

since 2ϕ1(a12)− 1= 2 × 1
2 − 1= 0, 2ϕ2(a12)− 1= 2 × 1

2 − 1= 0, ϕ3(a12)= 0
and 4ϕ1(a12)ϕ2(a12)= 4 × 1

2 × 1
2 = 1. Note that the local stiffness matrix is

6 × 6 when quadratic basis functions are used.
We have included a Matlab code of the finite element method using the

quadratic finite element space over a uniform triangular mesh for solving a
Poisson equation with a homogeneous (zero) Dirichlet boundary condition.

9.7.2 Cubic Basis Functions in H1 ∩ C 0

There are several ways to construct cubic basis functions in H1 ∩ C0 over a
triangulation, but a key consideration is to keep the continuity of the basis
functions along the edges of neighboring triangles. We recall that the degree
of freedom of a cubic function in 2D is ten, and one way is to add two auxil-
iary points along each side and one auxiliary point inside the triangle. Thus,
together with the three vertices, we have ten points on a triangle to match the

10
11:44:22, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c09” — 2017/10/10 — 12:27 — page 262 — #35

262 The Finite Element Method for 2D Elliptic PDEs

a
1

a
2

a
3

a
332

a
223

a
112

a
221

10, P3(K),C
0

a
331

a
113

10,P3(K),C
0

(a) (b)

Figure 9.14. A diagram of the freedom used to determine two different cubic
basis functions in H1 ∩ C0. We use the following notation: • for function
values and ◦ for values of the first derivatives.

degree of freedom (cf. Figure 9.14(a)). Existence and uniqueness conditions for
such a cubic function are stated in the following theorem.

Theorem 9.19. A cubic function v∈P3(K) is uniquely determined by the values of

v(ai), v(aiij), i, j= 1, 2, 3, i ̸= j and v(a123), (9.41)

where

a123 =
1
3

(
a1 + a2 + a3

)
, aiij=

1
3

(
2ai + a j

)
, i, j= 1, 2, 3, i ̸= j. (9.42)

Sketch of the proof: Similar to the quadratic case, we just need to prove that the
cubic function is identically zero if v(ai)= v(aiij)= v(a123)= 0. Again using the
local coordinates where one of the sides of the triangle T is on an axis, we can
write

v(x)=Cϕ1(x)ϕ2(x)ϕ3(x) ,

where C is a constant. Since v(a123)=Cϕ1(a123)ϕ2(a123)ϕ3(a123)= 0, we con-
clude that C= 0 since ϕi(a123) ̸= 0, i= 1, 2, 3; and hence v(x)≡ 0.

With reference to the continuity along the common side of two adjacent
triangles, we note that the polynomial of two variables again becomes a poly-
nomial of one variable there, since we can substitute either x for y, or y for x
from the line equations l0 + l10x+ l01y= 0. Furthermore, a cubic function of
one variable is uniquely determined by the values of four distinct points.

There is another choice of cubic basis functions, using the first-order deriva-
tives at the vertices (cf.Figure 9.14(b)). This alternative is stated in the following
theorem.

Theorem 9.20. A cubic function v∈P3(K) is uniquely determined by the values of

v(ai),
∂v
∂xj

(ai), i= 1, 2, 3, j= 1, 2 and i ̸= j, v(a123) , (9.43)

10
11:44:22, subject to the Cambridge Core terms of use,

“c09” — 2017/10/10 — 12:27 — page 263 — #36

9.7 Some FE Spaces in H1(Ω) and H2(Ω) 263

where ∂v/∂xj(ai) represents ∂v/∂x(ai) when j= 1 and ∂v/∂y(ai) when j= 2, at
the nodal point ai.

At each vertex of the triangle, there are three degrees of freedom, namely,
the function value and two first-order partial derivatives; so in total there
are nine degrees of freedom. An additional degree of freedom is the value
at the centroid of the triangle. For the proof of the continuity, we note that
on a common side of two adjacent triangles a cubic polynomial of one vari-
able is uniquely determined by its function values at two distinct points plus
the first-order derivatives in the Hermite interpolation theory. The first-order
derivative is the tangential derivative along the common side defined as ∂v/∂t=
∂v/∂x t1 + ∂v/∂y t2, where t=(t1, t2) such that t21 + t22 = 1 is the unit direction
of the common side.

9.7.3 Basis Functions in H2 ∩ C1

To solve fourth-order PDEs such as a 2D biharmonic equation

∆
(
uxx + uyy

)
= uxxxx + 2uxxyy + uyyyy= 0 , (9.44)

using the finite element method, we need to construct basis functions in
H2(Ω) ∩ C1(Ω). Since second-order partial derivatives are involved in the weak
form, we need to use polynomials with degree more than three. On a triangle,
if the function values and partial derivatives up to second order are specified
at the three vertices, the degree of freedom would be at least 18. The closest
polynomial would be of degree five, as a polynomial v(x)∈P5 has degree of
freedom 21 (cf. Figure 9.15(a)).

(a) (b)

Figure 9.15. A diagram of the freedom used to determine two different fifth-
order polynomial basis functions inH2 ∩ C1. (a)We specifyDαv(ai), 0≤α≤ 2
at each vertex (3 × 6= 18) plus three normal derivatives ∂v/∂n(aij) at the mid-
point of the three edges. (b) We can specify three independent constraints to
reduce the degree of freedom, e.g., ∂v/∂n(aij)= 0 at the mid-point of the three
edges.

10
11:44:22, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c09” — 2017/10/10 — 12:27 — page 264 — #37

264 The Finite Element Method for 2D Elliptic PDEs

Theorem 9.21. A quintic function v(x, y)∈P5(K) is uniquely determined by the
values of

Dαv(ai), i= 1, 2, 3, |α| ≤ 2,
∂v
∂n

(aij), i, j= 1, 2, 3, i< j, (9.45)

where ∂v/∂n(ai)= n1∂v/∂x(ai) + n2∂v/∂y(ai) represents the normal derivative
of v(x) at ai and n=(n1, n2) (n21 + n22 = 1) is the outward unit normal at the
boundary of the triangle.

Sketch of the proof: We just need to show that v(x)= 0 if Dαv(ai)= 0, i=
1, 2, 3, |α| ≤ 2 and ∂v/∂n(aij)= 0, i, j= 1, 2, 3, i< j. A fifth-order polynomial
v(s) of one variable s is uniquely determined by the values of v and its deriva-
tives v′(s) and v′′(s) at two distinct points, so along a2a3, v(x) must be zero
for the given homogeneous conditions. We note that ∂v

∂n(x) is a fourth-order
polynomial of one variable along a2a3. Since all of the first- and second-order
partial derivatives are zero at a2 and a3,

∂v
∂n

(ai)= 0 ,
∂

∂t

(
∂v
∂n

)
(ai)= 0, i= 2, 3 ,

and ∂v
∂n(a

23)= 0. Here again, ∂
∂t is the tangential directional derivative. From

the five conditions, we have ∂v
∂n(x)= 0 along a2a3, so we can factor ϕ2

1(x) out of
v(x) to get

v(x)=ϕ2
1(x) p3(x), (9.46)

where p3(x)∈P3. Similarly, we can factor out ϕ2
2(x) and ϕ2

3(x) to get

v(x)=ϕ2
1(x)ϕ

2
2(x)ϕ

2
3(x)C , (9.47)

where C is a constant. Consequently C= 0, otherwise v(x) would be a poly-
nomial of degree six, which contradicts that v(x)∈P5.

The continuity condition along a common side of two adjacent triangles in
C1 has two parts, namely, both the function and the normal derivative must
be continuous. Along a common side of two adjacent triangles, a fifth-order
polynomial of v(x, y) is actually a fifth-order polynomial of one variable v(s),
which can be uniquely determined by the values v(s), v′(s) and v′′(s) at two
distinct points. Thus the two fifth-order polynomials on two adjacent triangles
are identical along the common side if they have the same values of v(s), v′(s),
and v′′(s) at the two shared vertices. Similarly, for the normal derivative along
a common side of two adjacent triangles, we have a fourth-order polynomial
of one variable ∂v/∂n(s). The polynomials can be uniquely determined by the
values ∂v/∂n(s) and (d/ds) (∂v/∂n) (s) at two distinct points plus the value of

10
11:44:22, subject to the Cambridge Core terms of use,

“c09” — 2017/10/10 — 12:27 — page 265 — #38

9.7 Some FE Spaces in H1(Ω) and H2(Ω) 265

∂v/∂n(s) at the mid-point. Thus the continuity of the normal derivative is also
guaranteed.

An alternative approach is to replace the values of ∂v
∂n(a

ij) at the three mid-
points of the three sides by imposing another three conditions. For example,
assuming that along a2a3 the normal derivative of the fifth-order polynomial
has the form

∂v
∂n

= ã00 + ã10η + ã20η
2 + ã30η

3 + ã40η
4 ,

we can impose ã40 = 0. In other words, along the side of a2a3 the normal deriva-
tive ∂v/∂n becomes a cubic polynomial of one variable. The continuity can
again be guaranteed by the Hermite interpolation theory. Using this approach,
the degree of freedom is reduced to 18 from the original 21 (cf. Figure 9.15(b)
for an illustration).

9.7.4 Finite Element Spaces on Rectangular Meshes

While triangular meshes are intensively used, particularly for arbitrary
domains, meshes using rectangles are also popular for rectangular regions.
Bilinear functions are often used as basis functions. Let us first consider a
bilinear function space in H1 ∩ C0. A bilinear function space over a rectangle
K in 2D, as illustrated in Figure 9.16, is defined as

Q1(K)=
{
v(x, y), v(x, y)= a00 + a10x+ a01y+ a11xy

}
, (9.48)

where v(x, y) is linear in both x and y. The degree of freedom of a bilinear
function in Q1(K) is four.

Theorem 9.22. A bilinear function v(x, y)∈Q1(K) is uniquely determined by its
values at four corners.

(0, 0) (x1,0)

(x1, y1)(0, y1)

Figure 9.16. A standard rectangle on which four bilinear basis functions can
be defined.

10
11:44:22, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c09” — 2017/10/10 — 12:27 — page 266 — #39

266 The Finite Element Method for 2D Elliptic PDEs

Proof Without loss of the generality, assume that the rectangle is determined by
the four corners ai: (0, 0), (x1, 0), (x1, y1), and (0, y1). The coefficient matrix
of the linear system of algebraic equations that determines the coefficients aij,
i, j= 0, 1 is

A=


1 0 0 0
1 x1 0 0
1 0 y1 0
1 x1 y1 x1y1

,
with determinant det(A)= x2

1y
2
1 ̸= 0 since x1y1 ̸= 0. Indeed, we have analytic

expressions for the four nonzero basis functions over the rectangle, namely,

ϕ1(x, y) = 1 − x
x1

− y
y1

+
xy
x1y1

, (9.49)

ϕ2(x, y) =
x
x1

− xy
x1y1

, (9.50)

ϕ3(x, y) =
xy
x1y1

, (9.51)

ϕ4(x, y) =
y
y1

− xy
x1y1

. (9.52)

On each side of the rectangle, v(x, y) is a linear function of one variable (either
x or y) and uniquely determined by the values at the two corners. Thus any two
basis functions along one common side of two adjacent rectangles are identical
if they have the same values at the two corners, although it is hard to match the
continuity condition if quadrilaterals are used instead of rectangles or cubic
boxes.

A biquadratic function space over a rectangle is defined by

Q2(K) =
{
v(x, y), v(x, y)= a00 + a10x+ a01y+ a11xy

+ a20x
2 + a20y

2 + a21x
2y+ a12xy

2 + a22x
2y2
}
.

(9.53)

The degree of freedom is nine. To construct basis functions in H1 ∩ C0, as for
the quadratic functions over triangles, we can add four auxiliary points at the
mid-points of the four sides plus a point, often in the center of the rectangle.

In general, a bilinear function space of order k over a rectangle is defined by

Qk(K) =

v(x, y), v(x, y)=
∑

i, j=0,i≤k, j≤k
aijxiy j

. (9.54)

10
11:44:22, subject to the Cambridge Core terms of use,

“c09” — 2017/10/10 — 12:27 — page 267 — #40

9.7 Some FE Spaces in H1(Ω) and H2(Ω) 267

(a) (b)

Figure 9.17. (a) Q2(K) (biquadratic) inH1 ∩ C0 whose degree of freedom is
9 which can be uniquely determined by the values at the marked points and
(b) Q3(K) (bicubic) in H2 ∩ C1 whose degree of freedom is 16, which can be
determined by its values, first-order partial derivatives marked as /, andmixed
derivative marked as ↗, at the four corners.

(a) (b)

Figure 9.18. Finite element spaces in 3D. (a)T1(K) (linear) inH1 ∩ C0 whose
degree of freedom is 4 and (b) T2(K) (quadratic) in H1 ∩ C0 whose degree of
freedom is 10.

In Figure 9.17, we show two diagrams of finite element spaces defined on the
rectangles and their degree of freedom. Figure 9.17(a) is the biquadraticQ2(K)
finite element in H1 ∩ C0 whose degree of freedom is 9 and can be determined
by the values at the marked points. Figure 9.17(b) is the bicubic Q3(K) finite
element inH2 ∩ C1 whose degree of freedom is 16 and can be determined by the
values at the marked points. The bicubic polynomial is the lowest bipolynomial
inH2 ∩ C1 space. The bicubic function can be determined by its values, its par-

tial derivatives
(

∂
∂x ,

∂
∂y

)
, and its mixed partial derivative ∂2

∂x∂y at four vertices.

9.7.5 Some Finite Element Spaces in 3D

In three dimensions, the most commonly used meshes are tetrahedrons and
cubics. In Figure 9.18, we show two diagrams of finite element spaces defined on
the tetrahedrons and their degree of freedom. Figure 9.18(a) is the linear T1(K)
finite element in H1 ∩ C0 whose degree of freedom is 4 and can be determined
by the values at the four vertices. Figure 9.18(b) is the quadratic T2(K) finite
element in H1 ∩ C0 whose degree of freedom is 10 and can be determined by
the values at the four vertices and the mid points of the six edges.

10
11:44:22, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c09” — 2017/10/10 — 12:27 — page 268 — #41

268 The Finite Element Method for 2D Elliptic PDEs

(a) (b)

Figure 9.19. Diagram of non-conforming finite element spaces. (a)
Crouzeix–Raviart (C–R) linear non-conforming element that is determined
by the values at the middle points of the edges. (b) Morley quadratic non-
conforming element that is determined by the values at the vertices and the
normal derivatives at the middle points of the edges.

9.7.6 *Non-conforming Finite Element Spaces

For high-order PDEs, such as biharmonic equations (∆2u= f, where ∆ is the
Laplacian operator ∆= ∂2

∂x2 +
∂2

∂y2) in two or three dimensions, or systems of
PDEs with certain constraints, such as a divergence free condition, it is difficult
to construct and verify conforming finite element spaces. Even if it is possible,
the degree of polynomial of the basis functions is relatively high, for exam-
ple, we need fifth order polynomials for biharmonic equations in two space
dimensions, which may lead to Gibbs oscillations near the edges. Other types
of applications include non-fitted meshes or interface conditions for which it
is difficult or impossible to construct finite elements that meet the conforming
constraints. To overcome these difficulties, various approaches have been devel-
oped such as non-conforming finite element methods, discontinuous and weak
Galerkin finite element methods. Here we mention some non-conforming finite
element spaces that are developed in the framework of Galerkin finite element
methods.

For triangle meshes, a non-conforming P1 finite element space called
Cronzeix–Raviart (C–R) finite element space is defined as a set of linear func-
tions over all triangles that are continuous at the mid-points of all the edges.
The basis functions can be determined by taking either unity at one middle
point and zeros at other middle points of a triangle; see Figure 9.19(a) for an
illustration. The theoretical analysis can be found in Brenner and Scott (2002)
and Shi (2002), for example. A non-conformingQ1 finite element space on rect-
angles called the Wilson element is defined in a similar way but with a basis
{1, x, y, xy} of degree four. A rotated non-conformingQ1 is defined in the sim-
ilar way but using

{
1, x, y, x2 − y2

}
as the basis. Note that, for the conforming

biquadratic finite element space, those bases are equivalent, but it is not true
for non-conforming finite element spaces anymore.

10
11:44:22, subject to the Cambridge Core terms of use,

“c09” — 2017/10/10 — 12:27 — page 269 — #42

9.7 Some FE Spaces in H1(Ω) and H2(Ω) 269

(a)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

β+

β
Γ

Ω = Ω + UΩ–

Ω+

Ω−

−

(b)
A (0, h)

B C

E

D

(h, 0)

(h − y2, y2)

(0, 0)

(0, y1)

β

β −

T +

T −

M

+

Figure 9.20. (a) A configuration of a rectangular domainΩ=Ω+ ∪ Ω− with
an interface Γ from an IFEM test. The coefficient p(x) may have a finite
jump across the interface Γ. (b) An interface triangle and the geometry after
transformed to the standard right triangle.

For biharmonic equations, a nonconforming finite element space defined on
trianglemeshes called theMorley finite element (Shi, 2002) has been developed.
A Morley finite element on a triangle is defined as quadratic functions that
are determined by the values at the three vertices, and the normal derivative at
the middle points of the three edges, see Figure 9.19(b) for an illustration. An
alternative definition is to use the line integrals along the edges instead of the
values at the middle points.

9.7.7 *The Immersed Finite Element Method for
Discontinuous Coefficients

Following the idea of the immersed finite element method (IFEM) for 1D
problems, we explain the IFEM for 2D interface problems when the coefficient
p(x, y) has a discontinuity across a closed smooth interface Γ. The interface Γ
can be expressed as a parametric form (X(s),Y(s))∈C2, where s is a parameter,
say the arc-length. The interface cuts the domain Ω into two subdomains Ω+

and Ω−; see the diagram in Figure 9.20(a).
For simplicity, we assume that the coefficient p(x) is a piecewise constant

p(x, y)=

{
β+ if (x, y)∈Ω+,

β− if (x, y)∈Ω−.

Again, across the interface Γ where the discontinuity occurs, the natural jump
conditions hold

[u]Γ= 0,
[
β
∂u
∂n

]
Γ

= 0, (9.55)

10
11:44:22, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c09” — 2017/10/10 — 12:27 — page 270 — #43

270 The Finite Element Method for 2D Elliptic PDEs

(a) (b)

Figure 9.21. (a)Adiagramof a fittedmesh (unstructured) and (b) an unfitted
Cartesian mesh (structured).

where the jump at a point X=(X,Y)∈Γ on the interface is defined as

[u]X= u
∣∣∣+
X
− u

∣∣∣−
X
= lim

x→X,x∈Ω+
u(x)− lim

x→X,x∈Ω−
u(x),

and so on, where x=(x, y) is an interior point in the domain. Due to the dis-
continuity in the coefficient, the partial derivatives across the interface Γ are
discontinuous although the solution and the flux (the second jump condition)
are continuous. Such a problem is referred to as a 2D interface problem.

To solve such an interface problem using a finite element method, first a
mesh needs to be chosen. One way is to use a fitted mesh as illustrated in
Figure 9.21(a). A fitted mesh can be generated by many existing academic or
commercial software packages, e.g., Matlab PDE Toolbox, Freefem, Comsol,
PLTMG, Triangle, Gmesh, etc. Usually there is no fixed pattern between the
indexing of nodal points and elements, thus such a mesh is called an unstruc-
tured mesh. For such a mesh, the finite element method and most theoretical
analysis is still valid for the interface problem.

However, it may be difficult and time-consuming to generate a body fitted
mesh. Such a difficulty may become even more severe for moving interface
problems because a new mesh has to be generated at each time step, or every
other time step. A number of efficient software packages and methods that are
based on Cartesian meshes, such as the FFT, the level set method, and others,
may not be applicable with a body fitted mesh.

Another way to solve the interface problem is to use an unfitted mesh, e.g.,
a uniform Cartesian mesh as illustrated in Figure 9.21(b). There is rich litera-
ture on unfittedmeshes and related finite elementmethods. The nonconforming
IFEM (Li, 1998) is one of the early works in this direction. The idea is to enforce
the natural jump conditions in triangles that the interface cuts through, which

10
11:44:22, subject to the Cambridge Core terms of use,

“c09” — 2017/10/10 — 12:27 — page 271 — #44

9.7 Some FE Spaces in H1(Ω) and H2(Ω) 271

we call an interface triangle. Without loss of generality, we consider a reference
interface element T whose geometric configuration is given in Figure 9.20(b) in
which the curve between points D and E is a part of the interface. We assume
that the coordinates at A, B, C, D, and E are

(0, h), (0, 0), (h, 0), (0, y1), (h− y2, y2), (9.56)

with the restriction

0≤ y1< h, 0≤ y2< h. (9.57)

Given the values at the three vertices we explain how to determine a piece-
wise linear function in the triangle that satisfies the natural jump conditions.
Assuming that the values at vertices A, B, and C of the element T are specified,
we construct the following piecewise linear function:

u(x)=

{
u+(x)= a0 + a1x+ a2(y− h), if x=(x, y)∈T+,

u−(x)= b0 + b1x+ b2y, if x=(x, y)∈T−,
(9.58a)

u+(D)= u−(D), u+(E)= u−(E), β+
∂u
∂n

+

=β−
∂u
∂n

−
, (9.58b)

where n is the unit normal direction of the line segment DE. Intuitively, there
are six constraints and six parameters, so we can expect the solution exists and
is unique as confirmed in Theorem 8.4 in Li and Ito (2006).

The dimension of the non-conforming IFE space is the number of interior
points for a homogeneous Dirichlet boundary condition (u|∂Ω= 0) as if there
was no interface. The basis function centered at a node is defined as:

ϕi(xj)=

{
1 if i= j

0 otherwise,
[ϕi]Γ̄= 0,

[
β
∂ϕi
∂n

]
Γ̄

= 0, ϕi|∂Ω= 0. (9.59)

A basis function ϕi(x) is continuous in each element T except along some edges
if xi is a vertex of one or several interface triangles (see Figure 9.22).We use Γ̄ to
denote the union of the line segment that is used to approximate the interface.

The basis functions in an interface triangle are continuous piecewise linear.
However, it is likely discontinuous across the edges of neighboring interface
triangles. Thus, it is a non-conforming finite element space. Nevertheless, the
corresponding non-conforming finite element method performs much better
than the standard finite element method without any changes. Theoretically,
a second-order approximation property has been proved for the interpolation
function in the L∞ norm; and first-order approximation for the partial deriva-
tives except for the small mismatched region depicted as bounded by the points
D,E, andM. It has been shown that the non-conforming IFEM is second-order

10
11:44:22, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c09” — 2017/10/10 — 12:27 — page 272 — #45

272 The Finite Element Method for 2D Elliptic PDEs

(a)

−0.5 −0.45 −0.4 −0.35 −0.3 −0.25 −0.2 −0.15
−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15
(b)

−0.5−0.45
−0.4

−0.35
−0.3−0.25

−0.2−0.15

−0.5

−0.45

−0.4
−0.35

−0.3

−0.25

−0.2

−0.15
−0.5

0

0.5

1

Figure 9.22. (a) A standard domain of six triangles with an interface cutting
through. (b) A global basis function on its support of the non-conforming
immersed finite element space. The basis function has small jump across some
edges.

accurate in the L2 norm. But its convergence order in the L∞ norm is not so
clear. Various variations, improvements, extensions, and applications can be
found in the literature, particularly the symmetric and consistent IFEM that
takes mismatched edge contributions into account in the variational form (Ji
et al. (2014)), and various penalty methods. Note that, a conforming IFEM
can also be found in Li et al. (2003) although its implementation is not so
straightforward.

9.8 The FE Method for Parabolic Problems

We can apply the finite elementmethod to solve time-dependent problems using
two different approaches. One approach is to discretize the space variables
using the finite elementmethodwhile discretizing the time variable using a finite
difference method. This is possible if the PDE is separable. Another way is to
discretize both the space and time variables using the finite element method. In
this section, we briefly explain the first approach, since it is simple and easy to
implement.

Let us consider the following parabolic problem in 2D,

∂u
∂t

=∇ · (p∇u) + qu+ f(x, y, t) , (x, y)∈Ω, 0< t≤T, (9.60)

u(x, y, 0)= 0 , (x, y)∈Ω , the initial condition, (9.61)

u(x, y, t)
∣∣∣
∂Ω

= g(x, y, t), the boundary condition, (9.62)

10
11:44:22, subject to the Cambridge Core terms of use,

“c09” — 2017/10/10 — 12:27 — page 273 — #46

9.8 The FE Method for Parabolic Problems 273

where p, q, f, and g are given functions with usual regularity assumptions.
Multiplying the PDE by a test function v(x, y)∈H1(Ω) on both sides, and
then integrating over the domain, once again we obtain the weak form below,∫∫

Ω
utv dxdy=

∫∫
Ω
(quv− p∇u · ∇v) dxdy+

∫∫
Ω
fv dxdy, (9.63)

where ut= ∂u/∂t. The weak form above can be simplified as

(ut, v)=−a(u, v) + (f, v) ∀v∈H1(Ω), (9.64)

where a(u, v)=
∫∫

Ω (p∇u · ∇v− quv) dxdy.
Given a triangulation Th and finite element space Vh ∈H1(Ω) ∩ C0(Ω), with

ϕi(x, y), i= 1, 2, . . . ,M denoting a set of basis functions for Vh, we seek the
finite element solution of form

uh(x, y, t)=
M∑
j=1

αj(t)ϕj(x, y). (9.65)

Substituting this expression into (9.64), we obtain M∑
j=1

α′
i(t)ϕi(x, y) , vh

=−a

 M∑
j=1

αi(t)ϕi(x, y), vh

+ (f, vh), (9.66)

and then take vh(x, y)=ϕi(x, y) for i= 1, 2, . . . ,M to get the linear system of
ODEs in the αj(t):

(ϕ1, ϕ1) (ϕ1, ϕ2) · · · (ϕ1, ϕM)

(ϕ2, ϕ1) (ϕ2, ϕ2) · · · (ϕ2, ϕM)

...
...

...
...

(ϕM, ϕ1) (ϕM, ϕ2) · · · (ϕM, ϕM)




α′

1(t)

α′
2(t)

...

α′
M(t)



=


(f, ϕ1)

(f, ϕ2)

...

(f, ϕM)

−


a(ϕ1, ϕ1) a(ϕ1, ϕ2) · · · a(ϕ1, ϕM)

a(ϕ2, ϕ1) a(ϕ2, ϕ2) · · · a(ϕ2, ϕM)

...
...

...
...

a(ϕM, ϕ1) a(ϕM, ϕ2) · · · a(ϕM, ϕM)




α1(t)

α2(t)

...

αM(t)

.

The corresponding problem can therefore be expressed as

B
dα⃗
dt

+ Aα⃗=F, αi(0)= u(Ni, 0), i= 1, 2, . . . ,M. (9.67)

10
11:44:22, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c09” — 2017/10/10 — 12:27 — page 274 — #47

274 The Finite Element Method for 2D Elliptic PDEs

There are many methods to solve the above problem involving the system
of first-order ODEs. We can use the ODE Suite in Matlab, but note that the
ODE system is known to be very stiff. We can also use finite difference methods
that march in time, since we know the initial condition on α⃗(0). Thus, with the
solution α⃗k at time tk, we compute the solution α⃗k+1 at the time tk+1 = tk +∆t
for k= 0, 1, 2, . . .

9.8.1 Explicit Euler Method

If the forward finite difference approximation is invoked, we have

B
α⃗k+1 − α⃗k

∆t
+ Aα⃗k=Fk, (9.68)

or α⃗k+1 = α⃗k +∆tB−1
(
Fk − Aα⃗k

)
. (9.69)

Since B is a nonsingular tridiagonal matrix, its inverse and hence
B−1

(
Fk − Aα⃗k

)
can be computed. However, the CFL (Courant–Friedrichs–

Lewy) condition

∆t≤Ch2, (9.70)

must be satisfied to ensure the numerical stability. Thus we need to use a rather
small time step.

9.8.2 Implicit Euler Method

If we invoke the backward finite difference approximation, we get

B
α⃗k+1 − α⃗k

∆t
+ Aα⃗k+1 =Fk+1, (9.71)

or (B+∆tA) α⃗k+1 =Bα⃗k +∆tFk+1, (9.72)

then there is no constraint on the time step and thus themethod is called uncon-
ditionally stable. However, we need to solve a linear system of equations similar
to that for an elliptic PDE at each time step.

9.8.3 The Crank–Nicolson Method

Both of the above Euler methods are first-order accurate in time and second
order in space, i.e., the error in computing α⃗ isO(∆t+ h2).We obtain a second-
order scheme in time as well as in space if we use the central finite difference

10
11:44:22, subject to the Cambridge Core terms of use,

“c09” — 2017/10/10 — 12:27 — page 275 — #48

Exercises 275

approximation at tk+
1
2 :

B
α⃗k+1 − α⃗k

∆t
+

1
2
A
(
α⃗k+1 + α⃗k

)
=

1
2

(
Fk+1 + Fk

)
, (9.73)

or
(
B+

1
2
∆tA

)
α⃗k+1 =

(
B− 1

2
∆tA

)
α⃗k +

1
2
∆t
(
Fk+1 + Fk

)
. (9.74)

This Crank–Nicolson method is second-order accurate in both time and space,
and it is unconditionally stable for linear parabolic PDEs. The challenge is to
solve the resulting linear system of equations efficiently.

Exercises
1. Derive the weak form for the following problem:

−∇ · (p(x, y)∇u(x, y)) + q(x, y)u(x, y)= f(x, y) , (x, y)∈Ω,

u(x, y)= 0 , (x, y)∈ ∂Ω1 ,
∂u
∂n

= g(x, y), (x, y)∈ ∂Ω2,

a(x, y)u(x, y) +
∂u
∂n

= c(x, y), (x, y)∈ ∂Ω3,

where q(x, y)≥ qmin> 0, ∂Ω1 ∪ ∂Ω1 ∪ ∂Ω3 = ∂Ω and ∂Ωi ∩ ∂Ωj =ϕ. Provide necessary
conditions so that the weak form has a unique solution. Show your proof using the
Lax–Milgram Lemma but without using the Poincaré inequality.

2. Derive the weak form and appropriate space for the following problem involving the
biharmonic equation:

∆∆u(x, y) = f(x, y) , (x, y)∈Ω ,

u(x, y)|∂Ω = 0 , un(x, y)|∂Ω = 0 .

What kind of basis function do you suggest, to solve this problem numerically?
Hint: Use Green’s theorem twice.

3. Consider the problem involving the Poisson equation:

−∆u(x, y) = 1 , (x, y)∈Ω,

u(x, y)|∂Ω = 0,

where Ω is the unit square. Using a uniform triangulation, derive the stiffness matrix and
the load vector for N= 2; in particular, take h= 1/3 and consider

(a) the nodal points ordered as (1/3, 1/3), (2/3, 1/3); (1/3, 2/3), and (2/3, 2/3); and
(b) the nodal points ordered as ((1/3, 2/3), (2/3, 1/3); (1/3, 1/3), and (2/3, 2/3).

Write down each basis function explicitly.
4. Use the Matlab PDE toolbox to solve the following problem involving a parabolic equation

for u(x, y, t), and make relevant plots:

ut = uxx + uyy, (x, y)∈ (−1, 1)× (−1, 1),

u(x, y, 0) = 0.

10
11:44:22, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c09” — 2017/10/10 — 12:27 — page 276 — #49

276 The Finite Element Method for 2D Elliptic PDEs

u = 0

u = 0

u_n = −1

u_n = 0

(0,0)

r = 0.5
u_n = 1

Figure 9.23. Diagram for Exercise 2.

The geometry and the BCare defined inFigure 9.23. Show some plots of the solution (mesh,
contour, etc.).

5. Download the Matlab source code f.m, my_assemb.m, uexact.m from

www4.ncsu.edu/~zhilin/FD_FEM_Book.

Use the exported mesh of the geometry generated from Matlab, see Figure 9.23 to solve the
Poisson equation

−(uxx + uyy)= f(x, y),

subject to the Dirichlet BC corresponding to the exact solution

u(x, y)=
1
4

(
x2 + y4

)
sinπx cos 4πy.

Plot the solution and the error.
6. Modify the Matlab code to consider the generalized Helmholtz equation

−(uxx + uyy) + λ u= f(x, y).

Test your code with λ= 1, with reference to the same solution, geometry and BC as in
Problem 5. Adjust f(x, y) to check the errors.

7. Modify the Matlab code to consider the Poisson equation

−∇ (p(x, y) · ∇u(x, y))= f(x, y), (9.75)

using a third-order quadrature formula. Choose two examples with nonlinear p(x, y) and
u(x, y) to show that your code is bug-free. Plot the solutions and the errors.

9.8.4 Matlab PDE-Toolbox Lab Exercises
Purpose: to learn the Matlab PDE toolbox.

Use theMatlab PDE toolbox to solve some typical second-order PDE on some regions

10
11:44:22, subject to the Cambridge Core terms of use,

“c09” — 2017/10/10 — 12:27 — page 277 — #50

General Procedure 277

with various BC. Visualize the mesh triangulation and the solutions, and export the
triangulation.

Reference: PDE Toolbox, MathWorks.

Test Problems
1. Poisson equation on a unit circle:

−∆u = 1, x2 + y2< 1,

u|∂Ω = 0, x≤ 0,

un|∂Ω = 1, x> 0.

2. Wave equation on a unit square x∈ [−1, 1]× y∈ [−1, 1]:

∂2u
∂t2

= ∆u,

u(x, y, 0) = arctan
(
cos

πx
2

)
,

ut(x, y, 0) = 3 sin(πx)esin (πy/2),

u= 0 at x=−1 and x= 1, un = 0 at y=−1 and y= 1.

3. Eigenvalue problem on an L-shape:

−∆u=λu, u= 0 on ∂Ω.

The domain is the L-shape with corners (0,0) , (−1, 0) , (−1,−1) , (1,−1) , (1,1) , and (0,1).
4. The heat equation:

∂u
∂t

= ∆u .

The domain is the rectangle [−0.5, 0.5]× [−0.8, 0.8], with a rectangular cavity
[−0.05, 0.05]× [−0.4, 0.4]; and the BC are:

• u= 100 on the left-hand side;
• u=−10 on the right-hand side; and
• un = 0 on all other boundaries.

5. Download the Matlab source code 2D.rar from

www4.ncsu.edu/~zhilin/FD_FEM_Book

Export themesh of the last test problem fromMatlab and run assemb.m to solve the example.

General Procedure
• Draw the geometry;
• define the BC;
• define the PDE;
• define the initial conditions if necessary;
• solve the PDE;
• plot the solution;
• refine the mesh if necessary; and
• save and quit.

10
11:44:22, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“c09” — 2017/10/10 — 12:27 — page 278 — #51

10
11:44:22, subject to the Cambridge Core terms of use,

“APPENDIX” — 2017/10/10 — 11:58 — page 279 — #1

Appendix: Numerical Solutions of Initial
Value Problems

This textbook is about finite difference and finite element methods for BVPs of
differential equations assuming that the readers have knowledge of numerical
analysis which includes numerical methods for IVPs of differential equations.
The purpose of the appendix is to provide a necessary supplement for those
readers who have not been exposed to numerical methods for IVP.

A.1 System of First-Order ODEs of IVPs

We briefly explain finite difference methods for IVPs, particularly how to use
the Matlab ODE suite to solve such problems. The purpose of this appendix
is to make the book more complete and self-contained. Usually, the more
advanced material in the appendix can be found in the later stage of a numer-
ical analysis class. The readers who have not been exposed to the materials
will find the appendix useful. The methods described here can be used as time
discretization techniques for various applications.

Consider an IVP of the following,

dy
dt

= f (t, y) ,

y(t0)= v,
(A.1)

where f(t, y) is a given vector (or scalar) function, and v is a known vector (or
scalar). The following is the component form of the problem,

dy1
dt

= f1 (t, y1(t), y2(t), . . . , ym(t)) ,

dy2
dt

= f2 (t, y1(t), y2(t), . . . , ym(t)) ,
...

...
...

...
...

...
...

dym
dt

= fm (t, y1(t), y2(t), . . . , ym(t)) ,

(A.2)

279

11
11:47:10, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“APPENDIX” — 2017/10/10 — 11:58 — page 280 — #2

280 Appendix: Numerical Solutions of Initial Value Problems

with a known initial condition y1(t0)= v1, y2(t0)= v2, . . ., ym(t0)= vm. Such
an IVP is a quasilinear system since the highest derivative terms (here is the
first order) are linear. Often we have t0 = 0. We also use the notation dy

dt = y′(t).
Below are two such examples. The first one is a scale IVP while the second one
is a system of ODEs of an IVP.

Example A.1.

y′(t)= sin(y(t)), y(0)= 1.

Example A.2.

y′1(t) = y2(t), (A.3)

y′2(t) = −y1(t) + y1(t) y2(t), (A.4)

y1(0)= 1, y2(0)= 0.

Note that a high-order quasilinear ODE IVP can be converted to a system
of first-order ODEs of an IVP as shown in the following example.

Example A.3. Convert the IVP,

y′′ + cos2 t y′ + sin y= 0, y(0)= v1, y′(0)= v2,

to a first-order system of ODEs of an IVP, where v0 and v1 are two given
constants.

Solution: We set y1(t)= y(t), and y2(t)= y′(t). Thus we have y′1(t)=
y′(t)= y2(t); y′2(t)= y′′(t)=− cos2 t y′ − sin y=−(cos2 t) y2 − sin y1. The orig-
inal second-order IVP has been transformed to the following first-order system
of ODEs of the IVP,

y′1(t) = y2, y1(0)= v1
y′2(t) = − sin y1 − (cos2 t) y2, y2(0)= v2.

A.2 Well-posedness of an IVP

Most of the numerical methods are designed for well-posed problems. Ill-posed
problems need special algorithms and analysis. Here we discuss only well-posed
first-order IVPs (A.1). A well-posed problem means that the solution exists,
and is unique, and is not sensitive to perturbations of the data, such as the
initial condition. For an IVP (A.1), the Lipschitz continuity can guarantee the
well-posedness.

11
11:47:10, subject to the Cambridge Core terms of use,

“APPENDIX” — 2017/10/10 — 11:58 — page 281 — #3

A.3 Some Finite Difference Methods for Solving IVPs 281

Theorem A.4. Assume that f (t, y) is Lipschitz continuous in a neighborhood D
of (t0, y0), that is, there is a constant L such that

∥f (t, y1)− f (t, y2)∥≤L ∥y1 − y2∥ (A.5)

for all (t, y1) and (t, y2) in D. Then in the neighborhood D there is a unique solu-
tion y(t) to (A.1) that is not sensitive to perturbation of the data in the original
problem.

For a well-posed problem, the solution should be insensitive to the data such
as the initial condition and coefficients involved. For the IVP (A.1), this implies
the dynamical stability. If all the eigenvalues of the following matrix

Df
Dy

(
t, y(t)

)
=



∂f1
∂y1

∂f1
∂y2

· · · ∂f1
∂ym

∂f2
∂y1

∂f2
∂y2

· · · ∂f2
∂ym

...
...

...
...

∂fm
∂y1

∂fm
∂y2

· · · ∂fm
∂ym


(A.6)

at (t0, y(t0)) are negative, that is, λi
(
Df
Dy(t0, y(t0))

)
≤ 0, i= 1, 2, . . . ,m, then the

IVP is dynamically stable in a neighborhood of (t0, y(t0)).

A.3 Some Finite Difference Methods for Solving IVPs

Assume that the IVP (A.1) is well-posed, and we wish to find the solution y(t)
at some final time T> t0. For the sake of simplicity, we set t0 = 0 and discuss
time marching methods. We start with a uniform time discretization. Given a
parameter N, let ∆t= int(T/N), t0 = 0, tn= n∆t with ∆t be the uniform time
step size. We wish to find an approximate solution yn to the IVP problem at tn,
yn≈ y(tn), n= 1, 2, . . . ,N.

A.3.1 The Forward Euler Scheme

The simplest method is the forward Euler method

yn+1 − yn

∆t
= f (tn, yn) , n= 0, 1, . . . (A.7)

The method is first-order accurate, that is, ∥yn − y(tn)∥≤C∆t. The scheme
is conditionally stable meaning that we cannot take very large ∆t.

11
11:47:10, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“APPENDIX” — 2017/10/10 — 11:58 — page 282 — #4

282 Appendix: Numerical Solutions of Initial Value Problems

We can give a reasonable guess of ∆t< 1. Theoretically, the method is stable if

we choose ∆t such that |∆tλi
(
Df
Dy (t0, y(t0))

)
| ≤ 1 for all i’s.

A.3.2 The Backward Euler Scheme

The backward Euler method is

yn+1 − yn

∆t
= f
(
tn+1, yn+1

)
, n= 0, 1, (A.8)

The method is also first-order accurate, that is, ∥yn − y(tn, y(tn))∥≤C∆t. The
scheme is unconditionally stable, meaning that we can take any ∆t. The diffi-
culty of the backward Euler method is that we need to solve a nonlinear system
of equations in order to get the approximate solution at the next time step.
The advantage of this method is the strongest stability sometimes it is called a
metastable method.

A.3.3 The Crank–Nicolson Scheme

The Crank–Nicolson scheme is the following

yn+1 − yn

∆t
=

1
2

(
f (tn, yn) + f(tn+1, yn+1)

)
, n= 0, 1, (A.9)

The method is second-order accurate, that is, ∥yn − y(tn, y(tn))∥≤C(∆t)2. The
scheme is unconditionally stable for linear problems. The difficulty of the
Crank–Nicolson scheme is that we need to solve a nonlinear system of equa-
tions in order to get the approximate solution at the next time step. The stability
is better than the forward Euler method but not as good as the backward Euler
method.

The methods that we discussed above are all one step methods. We refer the
readers to a general textbook on Numerical Analysis, for example, the one by
Burden and Faires (2010) about other methods including multistep methods
for IVPs and analysis.

A.3.4 Runge–Kutta (RK(k)) Methods

In numerical analysis, the Runge–Kutta methods are a family of implicit and
explicit finite difference methods, which includes various Euler Methods, used
in temporal discretization for the approximate solutions of ODEs. In this sub-
section, we explain explicit Runge–Kutta methods for scalar IVPs (m= 1).
Below are some examples.

11
11:47:10, subject to the Cambridge Core terms of use,

“APPENDIX” — 2017/10/10 — 11:58 — page 283 — #5

A.3 Some Finite Difference Methods for Solving IVPs 283

Example A.5. The Crank–Nicolson scheme is an implicit scheme. We can use
a predictor and a corrector scheme to make the scheme explicit,

predictor: ỹn+1 = yn +∆t f(tn, yn)

corrector: yn+1 = yn +
∆t
2

(
f(tn, yn) + f(tn+1, ỹn+1)

)
.

(A.10)

The scheme is called Heun’s scheme which is second-order accurate and it is
conditionally stable. The scheme above can be written as a one-step scheme

yn+1 = yn +
∆t
2

(
f(tn, yn) + f(tn+1, yn +∆t f(tn, yn)

)
. (A.11)

A class of Runge–Kutta (2) methods can be written as

yn+1 = yn +∆t
(
(1 − 1

2α
)f(tn, yn) +

1
2α

f(tn + α∆t, yn + α∆t f(tn, yn))
)
,

for some α> 0. If α= 1, we get the above Heun’s scheme. If α= 1/2, we get the
middle point method. The middle point scheme is also second-order accurate.

The general k-th Runge–Kutta methods (RK(k)) can be written as

yn+1 = yn +∆t
k∑
i=1

bi fi, (A.12)

where

f1 = f(tn, yn),

f2 = f
(
tn + c2∆t, y

n +∆t (a21f1)
)
,

f3 = f
(
tn + c3∆t, y

n +∆t (a31f1 + a32f2)
)
,

...

fk = f
(
tn + ck∆t, y

n +∆t
(
ak1f1 + ak2f2 + · · · ak,k−1fk−1

))
.

To specify a particular method, one needs to provide the integer k, and the co-
efficients aij, (for 1≤ j< i≤ k), bi (for i= 1, 2, . . . , k), and ci (for i= 2, 3, . . . , k).
The matrix aij is called the Runge–Kutta matrix, while the bi and ci are known
as theweights and the nodes. Those coefficients can be arranged as in TableA.1.

The Runge–Kutta (RK(k)) method is consistent if

i−1∑
j=1

aij= ci for i= 2, . . . , k.

11
11:47:10, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“APPENDIX” — 2017/10/10 — 11:58 — page 284 — #6

284 Appendix: Numerical Solutions of Initial Value Problems

Table A.1. The table of the coefficients of an RK(k) method
0
c2 a21
c3 a31 a32
...

... …
ck ak1 ak2 · · · ak,k−1

b1 b2 · · · bk−1 bk

A well-known RK(4) has the following form. Given a step size h> 0 and
define

yn+1 = yn +
∆t
6

(f1 + 2f2 + 2f3 + f4) ,

where

f1 = f(tn, yn),

f2 = f
(
tn +∆t/2, yn +∆tf1/2

)
,

f3 = f
(
tn +∆t/2, yn +∆tf2/2

)
,

f4 = f
(
tn +∆t, yn +∆tf3

)
.

The coefficients table is

Table A.2. The table of the coefficients of an RK(4) method
0
1
2

1
2

1
2

0
1
2

1 0 0 1

1
6

1
3

1
3

1
6

A.4 Solving IVPs Using Matlab ODE Suite

It is quite easy to use the Matlab ODE Suite to solve a system of first-order
ODEs of an IVP and visualize the results. The Matlab ODE Suite is a col-
lection of five user-friendly finite difference codes for solving IVPs given by
first-order systems of ODEs and plotting their numerical solutions. The three
codes ode23, ode45, and ode113 are designed to solve nonstiff problems and
the two codes ode23s and ode15s are designed to solve both stiff and nonstiff

11
11:47:10, subject to the Cambridge Core terms of use,

“APPENDIX” — 2017/10/10 — 11:58 — page 285 — #7

A.4 Solving IVPs Using Matlab ODE Suite 285

problems. The mathematical and software developments and analysis are given
in Lawrence (1997). The Matlab ODE Suite is based on Runge–Kutta methods
and can choose time step size adaptively.

To call one of five methods in the Matlab ODE Suite, for example, ode23, we
can simply type in the Matlab command window the following

[t,y] = ode23('yp',[0,5], [1,0]');

assume that we have already defined the ODE system in a Matlab file called
yp.m. For Example A.2, the Matlab script file yp.m can be written as

function yp = yp(t,y)
k = length(y); yp = zeros(k,1); % detect the dimension,

% using column vector.
yp(1) = y(2); % Definition of f(t,y): y(1), y(2),

% ..., y(k).
yp(2) = -y(1) + y(1)*y(2);

Running the Matlab command will return outputs t, an array of differ-
ent time from t= 0 to t= 5; the matrix y∈RN,2, the approximate solution of
y(t) corresponding to the time. The column vectors y(:, 1) and y(:, 2) are the
components of the approximation solution of y1(t) and y2(t), respectively. In
FigureA.1, we plot the solution of y1(t) against time (the top plot); y2(t) against
time (the middle plot); and the phase plot y2(t) against y1(t) (the bottom plot).

We can put everything into aMatlab script file called ivp_ex2.m, below, which
we can modify later.

[t,y] = ode23('yp' ,[0,5], [1,0]');
y1=y(:,1); y2=y(:,2);
subplot(3,1,1); plot(t,y1)
xlabel('t'); ylabel('y_1(t)')
subplot(3,1,2); plot(t,y2)
xlabel('t'); ylabel('y_2(t)')
subplot(3,1,3); plot(y1,y2)
xlabel('y_1'); ylabel('y_2')

In the Matlab command window, we just need to type “ivp_ex2” and then we
will see the plot.

We can replace ode23 with four other subroutines in the Matlab ODE Suite,
ode45 and ode113, which are designed to solve nonstiff problems, and the two
codes ode23s and ode15s, which are designed to solve both stiff and nonstiff
problems. If we are not sure whether a problem is stiff or not, we can always
use the codes for stiff problems.

11
11:47:10, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“APPENDIX” — 2017/10/10 — 11:58 — page 286 — #8

286 Appendix: Numerical Solutions of Initial Value Problems

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−1

−0.5

0

0.5

1

t

y
1
(t
)

−2

−1

0

1

t

y
2
(t
)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

y1

y
2

FigureA.1. Plots of the approximate solution. (a) y1(t) against time; (b) y2(t)
against time; and (c) the phase plot y2(t) against y1(t).

Example A.6. As another demonstration, we solve the nondimensionalized
Lotka–Volterra predator–prey model of the following system,

y′1 = y1 − y1 y2,

y′2 =−ay2 + y1 y2,

y1(0)= p1, y2(0)= p2,

(A.13)

where p1 and p2 are two constants, y1(t) is the population of a prey, while y1(t)
is the population of a predator. Under certain conditions, predator and prey
can coexist.

This problem is potentially stiff as we can see from some of plots of the
solutions. We define the system in a Matlab function called prey_prd.m whose
contents are

function yp = prey_prd(t,y)
global a
k = length(y); yp = zeros(k,1);

11
11:47:10, subject to the Cambridge Core terms of use,

“APPENDIX” — 2017/10/10 — 11:58 — page 287 — #9

A.4 Solving IVPs Using Matlab ODE Suite 287

(a)

0 20 40 60 80 100 120 140 160 180 200
0
1
2
3
4
5
6
7

Population of prey

t

y
1
(t

)

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10
Population of predator

t

y
2
(t

)
(b)

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

8

9

Prey

P
re

d
a
to

r

Phase plot

Figure A.2. Plots of the solution of the prey–predator model from t= 0 to
t= 200 in which we can see the prey and predator coexist. (a) solution plots
against time and (b) the phase plot in which the limit cycle can be seen.

yp(1) = y(1) - y(1)*y(2) ;
yp(2) = -a*y(2) + y(1)*y(2);

To solve the problem, we write a Matlab script file called prey_prd_drive.m
containing the following.

global a
a = 0.5; t0 = 0; y0 = [0.01 0.01]; tfinal=200;
[t y] = ode23s('prey_prd',[t0,tfinal],y0);
y1 = y(:,1); y2=y(:,2); % Extract solution components.
figure(1); subplot(211); plot(t,y1); title('Population of prey')
subplot(212); plot(t,y2); title('Population of predator')
figure(2); plot(y1,y2) % Phase plot
xlabel('prey'); ylabel('predator'); title('phase plot')

In Figure A.2, we plot the computed solution for the parameters a= 0.5,
the initial data is y1(0)= y2(0)= 0.01. The final time is T= 200. The left plot
is the solution of each component against time. We can observe that the solu-
tion changes rapidly in some regions indicating the stiffness of the problem.
The right plot is the phase plot, that is, the plot of one component against the
other. The phase plot is more like a closed curve in the long run indicating the
existence of the limiting cycle of the model.

11
11:47:10, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“APPENDIX” — 2017/10/10 — 11:58 — page 288 — #10

288 Appendix: Numerical Solutions of Initial Value Problems

Exercises
1. Consider a model for chemical reaction,

y′1 = a− (b+ 1)y1 + y2
1 y2,

y′2 = by1 − y2
1 y(2).

Use the Matlab ODE Suite to solve the problem with various parameters, initial data, and
final time.

2. Use the Matlab ODE Suite to solve the Lorenz equations,

y′1 = σ (y2 − y1)

y′2 = y1 (ρ− y3)− y(2),

y′3 = y2
1 y(2)− βy3,

where σ, ρ, and β are constants. Try to solve the problem with various parameters, initial
data, and final time. In particular, try to get the Lorenz attractor.

11
11:47:10, subject to the Cambridge Core terms of use,

“BIBLIOGRAPHY” — 2017/10/10 — 11:59 — page 289 — #1

References

Adams, J., Swarztrauber, P., and Sweet, R., Fishpack: Efficient Fortran sub-
programs for the solution of separable elliptic partial differential equations.
www.netlib.org/fishpack/.

Braess, D., Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics.
Cambridge University Press, Cambridge, 3rd edition, 2007.

Brenner, S. C., and Scott, L. R., TheMathematical Theory of Finite Element Methods.
Springer, New York, 2002.

Burden, R. L., and Faires, J. D., Numerical Analysis. PWS-Kent Publ. Co.,
Brooks/Cole Cengage Learning, Boston, MA, 9th edition, 2010.

Calhoun, D., A Cartesian grid method for solving the streamfunction-vorticity
equation in irregular regions. J. Comput. Phys., 176:231–75, 2002.

Carey, G. F., and Oden, J. T., Finite Element, I–V. Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1983.

Chorin, A. J., Numerical solution of the Navier–Stokes equations. Math. Comp.,
22:745–62, 1968.

Ciarlet, P. G., The Finite Element Method for Elliptic Problems. North Holland, 1978.
Reprinted in Classics in Applied Mathematics 40. SIAM, Philadelphia, 2002.

De Zeeuw, D., Matrix-dependent prolongations and restrictions in a blackbox
multigrid solver. J. Comput. Appl. Math., 33:1–27, 1990.

Dennis, J. E., Jr. and Schnabel, R. B., Numerical Methods for Unconstrained Opti-
mization and Nonlinear Equations. SIAM, Philadelphia, PA, 1996.

Evans, L. C., Partial Differential Equations. AMS, Providence, RI, 1998.
Golub, G., and Van Loan, C., Matrix Computations. Johns Hopkins University Press,

Baltimore, MD, 2nd edition, 1989.
Huang, H., and Li, Z., Convergence analysis of the immersed interface method. IMA

J. Numer. Anal., 19:583–608, 1999.
Iserles, A., A First Course in the Numerical Analysis of Differential Equations.

Cambridge University Press, Cambridge, 2008.
Ji, H., Chen, J., and Li, Z., A symmetric and consistent immersed finite element

method for interface problems. J. Sci. Comput., 61(3):533–57, 2014.
Johnson, C., Numerical Solution of Partial Differential Equations by the Finite Element

Method. Cambridge University Press, Cambridge, 1987.
LeVeque, R. J., Clawpack and AMRClaw – Software for high-resolution Godunov

methods. 4th International Conference on Wave Propagation, Golden, CO, 1998.

289

12
11:49:52, subject to the Cambridge Core terms of use,

http://www.ebook3000.org

“BIBLIOGRAPHY” — 2017/10/10 — 11:59 — page 290 — #2

290 References

LeVeque, R. J., Finite Difference Methods for Ordinary and Partial Differential Equa-
tions, Steady State and Time Dependent Problems. SIAM, Philadelphia, PA,
2007.

Li, Z., The Immersed InterfaceMethod – ANumerical Approach for Partial Differential
Equations with Interfaces. PhD thesis, University of Washington, Seattle, WA,
1994.

Li, Z., The immersed interface method using a finite element formulation. Appl.
Numer. Math., 27:253–67, 1998.

Li, Z., and Ito, K., The immersed interface method – Numerical solutions of PDEs
involving interfaces and irregular domains. SIAM Front. Ser. Appl. Math., FR33,
2006.

Li, Z., and Lai, M.-C., The immersed interface method for the Navier–Stokes
equations with singular forces. J. Comput. Phys., 171:822–42, 2001.

Li, Z., Lin, T., and Wu, X., New Cartesian grid methods for interface problems using
the finite element formulation. Numer. Math., 96:61–98, 2003.

Li, Z., and Wang, C., A fast finite difference method for solving Navier–Stokes
equations on irregular domains. J. Commun. Math. Sci., 1:180–96, 2003.

Minion, M., A projection method for locally refined grids. J. Comput. Phys., 127:
158–78, 1996.

Morton,K.W., andMayers,D. F.,Numerical Solution of PartialDifferential Equations.
Cambridge University Press, Cambridge, 1995.

Ruge, J. W., and Stuben, K., Algebraic multigrid. In S. F. McCormick, ed., Multigrid
Method. SIAM, Philadelphia, PA, 1987, 73–130.

Saad, Y., GMRES: A generalized minimal residual algorithm for solving nonsym-
metric linear systems. SIAM J. Sci. Stat. Comput., 7:856–69, 1986.

Shampine, L. F., and Reichelt, M. W., The MATLAB ODE suite. SIAM J. Sci.
Comput., 18(1):1–22, 1997.

Shi, Z.-C., Nonconforming finite element methods. J. Comput. Appl. Math., 149:
221–5, 2002.

Strang, G., and Fix, G. J. An Analysis of the Finite Element Method. Prentice-Hall,
Upper Saddle River, NJ, 1973.

Strikwerda, J. C., Finite Difference Scheme and Partial Differential Equations.
Wadsworth & Brooks, Belmont, CA, 1989.

Stüben, K., Algebraic multigrid (AMG): An introduction with applications.
Gesellschaft für Mathematik und Datenveranbeitung, Nr. 70, 1999.

Thomas, J. W., Numerical Partial Differential Equations: Finite Difference Methods.
Springer, New York, 1995.

White, R. E., An Introduction to the FE Method with Applications to Non-linear
Problems. John Wiley & Sons, Charlottesville, VA, 1985.

12
11:49:52, subject to the Cambridge Core terms of use,

“Index” — 2017/10/10 — 12:04 — page 291 — #1

Index

1D IFEM, 221
1D IIM, 39
1D Sturm–Liouville problem, 27, 169
1D interface problem, 39
1D interpolation function, 175
2D IFEM, 269
2D interface problem, 270
2D second order self-adjoint elliptic PDE, 230

abstract FE method, 219
ADI method, 99

consistency, 103
stability, 103

algebraic precision of Gaussian quadrature, 196
assembling element by element, 203

backward Euler method
1D parabolic, 84
2D parabolic, 98
stability, 96

Beam–Warming method, 118
biharmonic equation, 263
bilinear basis on a rectangle, 265
bilinear form, 137

1D elliptic, 169
2D elliptic PDE, 231

boundary value problem (BVP), 3

Cauchy–Schwarz inequality, 163
CFL condition, 83, 111
characteristics, 109
compatibility condition, 50, 230
conforming FE methods, 168
conforming FEM, 143
Courant–Friedrichs–Lewy, 83
Crank–Nicolson scheme

for 1D advection equation, 119
1D parabolic equation, 87
2D, 99
in FEM for 2D parabolic, 274

cubic basis function
in 1D H1, 195
in 1D H2, 210
in 2D H1 ∩ C 0, 261
in 2D H2 ∩ C1, 263

D’Alembert’s formula, 122
degree of freedom, 190, 210
discrete Fourier transform, 92
discrete inverse Fourier transform, 92
discrete maximum principle in 2D, 57
distance in a space, 159
domain of dependence, 122
domain of influence, 122
double node, 212
dynamical stability, 281

eigenvalue problem, 26, 225
energy norm, 170, 216
essential BC, 209
essential boundary condition, 181, 209
explicit method, 81

fast Fourier transform (FFT), 71
FD approximation for u′(x), 14

backward finite difference, 14
central finite difference, 14
forward finite difference, 14

FD in polar coordinates, 69
FE method for parabolic problems, 272
FE space in 1D, 144
finite difference grid, 9
finite difference (FD) method, 5

1D grid points, 9
1D uniform Cartesian grid, 9
consistency, 23
convergence, 24
discretization, 23
finite difference stencil, 10
five-point stencil in 2D, 52

291

13:40:57, subject to the Cambridge Core

http://www.ebook3000.org

“Index” — 2017/10/10 — 12:04 — page 292 — #2

292 Index

ghost point method in 2D, 60
local truncation error, 10, 22
master grid point, 23, 52
stability, 24, 25
step size, 15

finite element method (FEM), 5, 135
a 1D element, 143
a 1D node, 143
assembling element by element, 147
hat functions, 136
piecewise linear function, 136
weak form in 1D, 136

finite element solution, 136
first order accurate, 15
FM spaces on rectangles, 265
forward Euler method

1D parabolic, 81
2D heat equation, 97
in FEM for 2D parabolic PDE, 274
stability, 94

Fourier transform (FT), 89
fourth order BVP in 1D, 209
fourth order compact scheme in 2D, 67
fourth-order compact scheme, 69
functional spaces, 158

Galerkin method, 143
Gauss–Seidel iterative method, 63
Gaussian points and weights, 196
Gaussian quadrature formulas, 195
global basis functions, 238
grid refinement analysis, 16
growth factor, 95

hat functions, 145

immersed finite element method
(IFEM), 269

implicit Euler method, 274
initial value problem (IVP), 2, 279
inner product in Hm, 166
inner product in L2, 162
interpolation function in 2D, 241
inverse Fourier transform, 72, 89

Jacobi iterative method, 62

L2(Ω) space, 160
Lax–Friedrichs method, 110
Lax–Milgram Lemma, 214, 215, 231
Lax–Wendroff scheme, 117
leap-frog scheme, 114

for heat equation, 96
linear form, 137
linear transform in 2D, 246
local load vector, 149
local stiffness matrix, 149
local stiffness matrix and load vector, 204

local truncation error
1D parabolic, 82

maximum principle in 2D elliptic PDE, 55
mesh generation, 233
mesh parameters, 233
mesh size in 1D, 143
method of line (MOL), 85
method of undetermined coefficients, 19
minimization form, 220
mixed (Robin) boundary condition, 34
modified PDE, 115

Lax–Wendroff method, 118
multi-index notation, 159

natural boundary condition, 182, 210
natural jump conditions

in 1D, 40, 221
in 2D, 269

natural ordering, 52
neutral stability, 114
nine-point discrete Laplacian, 69
nonconforming IFE space, 271
numerical boundary condition, 120
numerical dissipation, 116
numerical solutions, 2

one-sided finite difference, 19
one-way wave equations, 108
ordinary differential equation (ODE), 1

partial differential equation (PDE), 1
piecewise linear basis function

in 2D H1, 234
piecewise quadratic function in 2D H1, 258
Poincaré inequality, 217, 231
pole singularity, 71
p-th order accurate, 15

quadratic basis function in 1D H1, 190
quadrature formula in 2D, 247
quintic function, 264

red–black ordering, 52
Ritz method, 143, 146
round-off errors, 26, 55
Runge–Kutta methods RK(k), 283

second Green’s theorem, 228
shape function, 199, 212
simplified FE algorithm in 2D, 251
Sobolev embedding theorem, 167
Sobolev space, 164
SOR(ω) method, 64
stability

Lax–Wendroff scheme, 117
staggered grid in polar coordinates, 71
steady state solution, 79, 105

13:40:57, subject to the Cambridge Core

“Index” — 2017/10/10 — 12:04 — page 293 — #3

Index 293

Sturm–Liouville problem in 1D, 182
symmetric positive definite (SPD), 54

Taylor expansion, 14
time marching method, 81, 281
triangulation, 233
truncated Fourier series, 71

unconditional stability, 96
upwind scheme for 1D advection equation, 111
upwinding discretization, 29

von Neumann stability analysis, 89, 94

wave equation, 108
weak derivative, 164
weak form

1D Sturm–Liouville BVP, 183
2D elliptic PDE, 231

13:40:57, subject to the Cambridge Core

http://www.ebook3000.org

